<html lang="en"> <head> <title>Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex</title> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <link href="https://unpkg.com/@stencila/thema@2/dist/themes/elife/styles.css" rel="stylesheet"> <script src="https://unpkg.com/@stencila/thema@2/dist/themes/elife/index.js" type="text/javascript"></script> <script src="https://unpkg.com/@stencila/components@<=1/dist/stencila-components/stencila-components.esm.js" type="module"></script> <script src="https://unpkg.com/@stencila/components@<=1/dist/stencila-components/stencila-components.js" type="text/javascript" nomodule=""></script> </head> <body> <main role="main"> <article itemscope="" itemtype="http://schema.org/Article" data-itemscope="root"> <h1 itemprop="headline" content="Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal co…"> Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex</h1> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Inter-%20and%20intra-animal%20variation%20in%20the%20integrative%20properties%20of%20stellate%20cells%20in%20the%20medial%20entorhinal%20co%E2%80%A6"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Hugh Pastoll"><span data-itemprop="givenNames"><span itemprop="givenName">Hugh</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pastoll</span></span><span data-itemprop="affiliations"><a itemprop="affiliation" href="#author-organization-1">1</a></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Derek L Garden"><span data-itemprop="givenNames"><span itemprop="givenName">Derek</span><span itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Garden</span></span><span data-itemprop="affiliations"><a itemprop="affiliation" href="#author-organization-1">1</a></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ioannis Papastathopoulos"><span data-itemprop="givenNames"><span itemprop="givenName">Ioannis</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Papastathopoulos</span></span><span data-itemprop="affiliations"><a itemprop="affiliation" href="#author-organization-2">2</a><a itemprop="affiliation" href="#author-organization-3">3</a></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Gülşen Sürmeli"><span data-itemprop="givenNames"><span itemprop="givenName">Gülşen</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sürmeli</span></span><span data-itemprop="affiliations"><a itemprop="affiliation" href="#author-organization-1">1</a></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Matthew F Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">Matthew</span><span itemprop="givenName">F</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span><span data-itemprop="emails"><a itemprop="email" href="mailto:mattnolan@ed.ac.uk">mattnolan@ed.ac.uk</a></span><span data-itemprop="affiliations"><a itemprop="affiliation" href="#author-organization-1">1</a></span> </li> </ol> <ol data-itemprop="affiliations"> <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-1" id="author-organization-1"><span itemprop="name">Centre for Discovery Brain Sciences, University of Edinburgh</span> <address itemscope="" itemtype="http://schema.org/PostalAddress" itemprop="address"> <span itemprop="addressLocality">Edinburgh</span><span itemprop="addressCountry">United Kingdom</span></address> </li> <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-2" id="author-organization-2"><span itemprop="name">The Alan Turing Institute</span> <address itemscope="" itemtype="http://schema.org/PostalAddress" itemprop="address"> <span itemprop="addressLocality">London</span><span itemprop="addressCountry">United States</span></address> </li> <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-3" id="author-organization-3"><span itemprop="name">School of Mathematics, Maxwell Institute and Centre for Statistics, University of Edinburgh</span> <address itemscope="" itemtype="http://schema.org/PostalAddress" itemprop="address"> <span itemprop="addressLocality">Edinburgh</span><span itemprop="addressCountry">United Kingdom</span></address> </li> </ol><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span><time itemprop="datePublished" datetime="2020-02-13">2020-02-13</time> <ul data-itemprop="identifiers"> <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"> <meta itemprop="propertyID" content="https://registry.identifiers.org/registry/publisher-id"><span itemprop="name">publisher-id</span><span itemprop="value">52258</span> </li> <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"> <meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi"> <span itemprop="name">doi</span><span itemprop="value">10.7554/eLife.52258</span> </li> <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"> <meta itemprop="propertyID" content="https://registry.identifiers.org/registry/elocation-id"><span itemprop="name">elocation-id</span><span itemprop="value">e52258</span> </li> </ul> <section data-itemprop="description"> <h2 data-itemtype="http://schema.stenci.la/Heading">Abstract</h2> <meta itemprop="description" content="Distinctions between cell types underpin organizational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and the synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we found that integrative properties vary between mice and, in contrast to the modularity of grid cell spatial scales, have a continuous dorsoventral organization. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit-level set points that vary within and between animals."> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Distinctions between cell types underpin organizational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and the synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we found that integrative properties vary between mice and, in contrast to the modularity of grid cell spatial scales, have a continuous dorsoventral organization. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit-level set points that vary within and between animals.</p> </section> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="introduction">Introduction </h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The concept of cell types provides a general organizing principle for understanding biological structures including the brain (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib65">Regev et al., 2017</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib84">Zeng and Sanes, 2017</a></cite>). The simplest conceptualization of a neuronal cell type, as a population of phenotypically similar neurons with features that cluster around a single set point (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib79">Wang et al., 2011</a></cite>), is extended by observations of variability in cell type features, suggesting that some neuronal cell types may be conceived as clustering along a line rather than around a point in a feature space (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib19">Cembrowski and Menon, 2018</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib55">O'Donnell and Nolan, 2011</a></cite>; <a href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1A</a>). Correlations between the functional organization of sensory, motor and cognitive circuits and the electrophysiological properties of individual neuronal cell types suggest that this feature variability underlies key neural computations (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib1">Adamson et al., 2002</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib3">Angelo et al., 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib24">Fletcher and Williams, 2019</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib28">Garden et al., 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib30">Giocomo et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib46">Kuba et al., 2005</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib55">O'Donnell and Nolan, 2011</a></cite>). However, within-cell type variability has typically been deduced by combining data obtained from multiple animals. By contrast, the structure of variation within individual animals or between different animals has received little attention. For example, apparent clustering of properties along lines in feature space could reflect a continuum of set points, or could result from a small number of discrete set points that are obscured by inter-animal variation (<a href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1B</a>). Moreover, although investigations of invertebrate nervous systems show that set points may differ between animals (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib36">Goaillard et al., 2009</a></cite>), it is not clear whether mammalian neurons exhibit similar phenotypic diversity (<a href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1B</a>). Distinguishing these possibilities requires many more electrophysiological observations for each animal than are obtained in typical studies.</p> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-general="" data-setup,="" data-warning="FALSE," data-message="FALSE" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>print("Load data and general setup") # The packages broomExtra, corpcor must also be installed. library(tidyverse) library(cowplot) library(lme4) library(GGally) library(MuMIn) source("Functions.R") # Use standard cowplot theme throughout theme_set(theme_cowplot()) # Load stellate cell data fname.sc <- "Data/datatable_sc.txt" data.import.sc <- read_tsv(fname.sc) # Strip out rows from data where locations are unknown (are NaN) data.sc <- data.import.sc %>% drop_na(dvloc) # Convert dvloc from microns to millimetres - prevents errors in model fitting large dv values data.sc <- mutate(data.sc, dvlocmm = dvloc/1000) # Add the number of observations for each mouse as a column counts <- count(data.sc, id) data.sc$counts <- counts$n[match(data.sc$id, counts$id)] # Make sure id, hemi, housing, mlpos, expr, patchdir are factors col_facs <- c("id", "hemi", "housing", "mlpos", "expr", "patchdir") data.sc[col_facs] <- lapply(data.sc[col_facs], factor) # Load data from Wfs1+ve cells fname.wfs <- "Data/datatable_cal.txt" data.import.wfs <- read_tsv(fname.wfs) data.wfs <- data.import.wfs %>% drop_na(dvloc) data.wfs <- mutate(data.wfs, dvlocmm = dvloc/1000) # Convert SC data to nested tidy format. This is required for use of purrr::map, etc. data.sc_r <- data.sc %>% dplyr::select(vm:fi, dvlocmm, id, housing, id, mlpos, hemi, age, housing, expr, patchdir, rectime, counts) %>% gather("property", "value", vm:fi) %>% group_by(property) %>% nest %>% ungroup # Convert Wfs1+ve cell data to tidy format. data.wfs_r <- filter(data.wfs, classification == "Pyr") %>% select(-classification) %>% gather("property", "value", vm:fi) %>% group_by(property) %>% nest() # This is required for Figure 4D, E, 7B and Table 1. # Code is here as it only needs to be run once. # Model for uncorrelated random intercept and slope model_vsris <- function(df) { lme4::lmer(value ~ dvlocmm +(dvlocmm||id), data = df, REML = FALSE, na.action = na.exclude) } # Null model for uncorrelated random intercept and slope model_vsris_null <- function(df) { lme4::lmer(value ~ dvlocmm||id, data = df, REML = FALSE, na.action = na.exclude) } # Fit models to the data data.sc_r <- data.sc_r %>% mutate(mm_vsris = map(data, model_vsris))%>% mutate(mm_vsris_null = map(data, model_vsris_null)) # General clustering parameters. k.max <- 8 # Maximum number of clusters # d.power is the power to raise Euclidian distances to. Default is 1, Tibshirani used 2. # NB: changing this requires the threshold fit initial parameter guess values to be changed according to the comments in the 'fit_thresholds' function. d.power <- 2 iter.max <- 100 # Maximum iterations the kmeans algorithm will run. Default is 10 nstart <- 50 # The number of times the kmeans algorithm initialises. Total stability needs > 200 # Threshold parameters threshold_criterion = 0.01 # Specify false positive rate for each evaluated k # Parameters for uniform sampled simulated datasets. For calculating thresholds and calculated # reference dispersions. sim_unif_dataset_sizes <- seq(from = 20, to = 100, by = 10) # A wide range is useful for stable fits sim_unif_n_sims <- 20000 # >10000 provides sufficienty good fits # Parameters for example multimodal simulation illustration of clustering with different k mm_sims <- list() mm_sims$n_ex_modes <- 5 # Number of clusters mm_sims$ex_mode_sep_sd <- c(3.5, 4, 4.5, 5, 5.5, 6) # Separations between cluster centers # Parameters for evaluating cluster detection sensitivity mm_sims$n <- 5000 # Simulated datasets per combination of factors. 5000 provides stable results. mm_sims$sep_sd_max <- 6 # Range of separations of standard deviations to evaluate mm_sims$sep_sd_min <- 3 mm_sims$sep_sd_incr <- 0.5 mm_sims$n_data_max <- 70 # Range of multimodal dataset sizes to evaluate. mm_sims$n_data_min <- 20 mm_sims$n_data_incr <- 10 mm_sims$k_max <- 8 # Range of numbers of clusters (k) to evaluate mm_sims$k_min <- 2 mm_sims$k_incr <- 1 # Other variables (help with import, categorisation and plotting) mouse_ind <- 8 # Mouse to visualise clustering for. Takes integer values. props_subthresh <- c("vm", "ir", "sag", "tau", "resf", "resmag") props_suprathresh <- c("spkthr", "spkmax", "spkhlf", "rheo", "ahp", "fi") property_names <- c(props_subthresh, props_suprathresh) props_sub_labels <- c( "vm" = "Vm", "ir" = "IR", "sag" = "Sag", "tau" = "Mem. tau", "resf" = "Res. freq.", "resmag" = "Res. mag." ) props_supra_labels <- c( "spkthr" = "Spk. thresh.", "spkmax" = "Spk. max.", "spkhlf" = "Spk. halfwidth", "rheo" = "Rheobase", "ahp" = "AHP", "fi" = "FI" ) property_labels <- c(props_sub_labels, props_supra_labels) # Generate simulated delta gap data. If sim_unif_n_sims is high this will take a long time # to run. Will look for a loaded version of slopes_store, then for a saved version. # If it finds neither then will build slopes_store (and dispersion_store). if (exists("delta_gaps_store")) { print("delta_gaps_store already generated, remove it if you want to rebuild or reload it") if (NROW(delta_gaps_store) != sim_unif_n_sims) { warning("Number of simulated uniform datasets differs from parameter value") } } else { if (file.exists("GapData/unif_sims_delta_gaps_and_dispersions.Rda")) { load("GapData/unif_sims_delta_gaps_and_dispersions.Rda") print("Loaded simulated delta gaps and dispersions") if (NROW(delta_gaps_store) != sim_unif_n_sims) { warning("Number of simulated uniform datasets differs from parameter value") } } else { # Create unif_sims_delta_gaps_and_dispersions.Rda gen_unif_sims(sim_unif_n_sims, sim_unif_dataset_sizes, k.max = k.max, d.power = d.power) # Load 'delta_gaps_store' and 'dispersion_store' variables load("GapData/unif_sims_delta_gaps_and_dispersions.Rda") } } # Fitting the delta gap thresholds and dispersions # It's important to check after each regeneration of simulated data that the threshold fits are appropriate. With less than 10000 runs, the thresholds can be quite noisy and it's possible that the fits won't converge. The form of the fitted equations is $y = (a/n^{b}) + c$, where $n$ is the number of data points in the evaluated dataset and $a, b, c$ are the parameters to be fitted. # # In addition, to speed up evaluation of the reference dispersion to calculate the modified gap statistic k_est, it's also possible to fit the dispersions obtained from the simulated data and reuse this information so that multiple bootstrap samples don't have to be drawn for every evaluated dataset. Dispersion fits use a different fitting equation: $y = a*log(n) + b$, where $a, b$ are the parameters to be fitted. # Get the delta gap thresholds (and the delta gaps themselves for plotting) delta_gaps_thresholds <- get_delta_gaps_thresh_vals(delta_gaps_store, threshold_criterion = threshold_criterion) # Fit delta_slope_thresh_vals threshold_fit_results <- fit_thresholds(wd, delta_gaps_thresholds, sim_unif_dataset_sizes) # Find the average dispersion for each k across all simulations (prevents having to re-simulate # several uniform distributions every time the modified gap statistic is evaluated) mean_dispersions <- get_mean_dispersions(dispersion_store) # Fit mean_dispersions with log function dispersion_fit_results <- fit_dispersions(wd, mean_dispersions, sim_unif_dataset_sizes) </code></pre> <figure slot="outputs"><span itemscope="" itemtype="http://schema.stenci.la/Array">['[1] "Load data and general setup"\n']</span><span itemscope="" itemtype="http://schema.stenci.la/Array">['[1] "Loaded simulated delta gaps and dispersions"\n']</span></figure> </stencila-code-chunk> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1a" title="Figure 1A"> <label data-itemprop="label">Figure 1A</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 9 #' @height 9 # Make cell distributions for each 'cell type' numcells <- 100 Cell_A <- tibble(x = rnorm(numcells, 10, 1), y = rnorm(numcells, 12, 1), cell = "A") Cell_B <- tibble(x = runif(numcells, min = 20, max = 40) + rnorm(numcells,0,1), y = rnorm(numcells, 25, 2), cell = "B") Cell_C <- tibble(x = rnorm(numcells, 10, 2), y = rnorm(numcells, 35, 2), cell = "C") Cell_D <- tibble(x = rnorm(numcells, 30, 2), y = rnorm(numcells, 10, 2), cell = "D") CellFeatures <- bind_rows(Cell_A, Cell_B, Cell_C, Cell_D) # Plot 'cell features' using a colour blind friendly palette (from http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/). cbPalette <- c("#E69F00", "#D55E00", "#56B4E9", "#009E73") CF_plot <- ggplot(CellFeatures, aes(x, y, colour = cell)) + geom_point() + xlim(0,45) + ylim(0,45) + labs(x = "Feature 1", y = "Feature 2", colour = "Cell Type", title = "Cell type separation") + scale_colour_manual(values=cbPalette) + theme_classic() + theme(legend.position = "bottom", axis.ticks = element_blank(), axis.text = element_blank(), legend.text = element_blank()) CF_plot</code></pre> <figure slot="outputs"><img src="index.html.media/0" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="classification-and-variability-of-neuronal-cell-types">Classification and variability of neuronal cell types</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Neuronal cell types are identifiable by features clustering around a distinct point (blue, green and yellow) or a line (orange) in feature space. The clustering implies that neuron types are defined by either a single set point (blue, green and yellow) or by multiple set points spread along a line (orange).</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1b" title="Figure 1B"> <label data-itemprop="label">Figure 1B</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code># Example 'modular' data numcells <- 20 MF_A <- tibble(x = c(rnorm(numcells, 26, 0.5), rnorm(numcells, 31, 0.5), rnorm(numcells, 36, 0.5)), y = rnorm(numcells*3, 25, 2), animal = "1") MF_B <- tibble(x = c(rnorm(numcells, 28.5, 0.5), rnorm(numcells, 33.5, 0.5), rnorm(numcells, 38.5, 0.5)), y = rnorm(numcells*3, 25, 2), animal = "2") ModularFeatures <- rbind(MF_A, MF_B) # Example 'orthogonal' data numcells <- 60 OOF_A <- tibble(x = runif(numcells, min = 25, max = 40) + rnorm(numcells,0,1), y = rnorm(numcells, 23, 1), animal = "1") OOF_B <- tibble(x = runif(numcells, min = 25, max = 40) + rnorm(numcells,0,1), y = rnorm(numcells, 27, 1), animal = "2") OrthogOffsetFeatures <- rbind(OOF_A, OOF_B) # Example 'offset' data numcells <- 60 LOF_A <- tibble(x = runif(numcells, min = 25, max = 35) + rnorm(numcells,0,1), y = rnorm(numcells, 25, 2), animal = "1") LOF_B <- tibble(x = runif(numcells, min = 30, max = 40) + rnorm(numcells,0,1), y = rnorm(numcells, 25, 2), animal = "2") LinearOffsetFeatures <- rbind(LOF_A, LOF_B) # Combine into a plot ModularFeatures$scheme <- "modular" OrthogOffsetFeatures$scheme <- "orthog" LinearOffsetFeatures$scheme <- "offset" IntraAnimal <- bind_rows(ModularFeatures, OrthogOffsetFeatures, LinearOffsetFeatures) IntraAnimal$scheme <- as.factor(IntraAnimal$scheme) IntraAnimal$scheme = factor(IntraAnimal$scheme, c("modular", "orthog","offset")) labels_schemes <- c(modular = "Modular", orthog = "Orthogonal", offset = "Offset") IntraAnimalPlot <- ggplot(IntraAnimal, aes(x, y, alpha = animal)) + geom_point(colour = cbPalette[2]) + xlim(20,45) + ylim(20,30) + labs(x = "Feature 1", y = "Feature 2", alpha = "Animal", title = "Within cell type variability") + facet_wrap(~scheme, nrow = 3, labeller = labeller(scheme = labels_schemes)) + theme_classic() + theme(strip.background = element_blank(), axis.ticks = element_blank(), axis.text = element_blank()) + scale_alpha_discrete(range=c(0.1,1)) + theme(legend.position = "bottom", legend.text = element_blank()) print(IntraAnimalPlot)</code></pre> <figure slot="outputs"><img src="index.html.media/1" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="classification-and-variability-of-neuronal-cell-types-1">Classification and variability of neuronal cell types</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Phenotypic variability of a single neuron type could result from distinct set points that subdivide the neuron type but appear continuous when data from multiple animals are combined (modular), from differences in components of a set point that do not extend along a continuum but that in different animals cluster at different locations in feature space (orthogonal), or from differences between animals in the range covered by a continuum of set points (offset). These distinct forms of variability can only be made apparent by measuring the features of many neurons from multiple animals.</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 1—figure supplement 1"><label data-itemprop="label">Figure 1—figure supplement 1</label><img src="index.html.media/fig1-figsupp1.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="a-quantitative-adaptation-of-the-gap-statistic-clustering-algorithm">A quantitative adaptation of the gap statistic clustering algorithm.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A–C</strong>) Logic of the gap statistic. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Simulated clustered dataset with three modes (k = 3) (open gray circles) (upper) and the corresponding simulated reference dataset drawn from a uniform distribution with lower and upper limits set by the minimum and maximum values from the corresponding clustered dataset (open gray diamonds). Data were allocated to clusters by running a K-means algorithm 20 times on each set of data and selecting the partition with the lowest average intracluster dispersion. Red, green, blue and yellow dashed ovals show a realization of the data subsets allocated to each cluster when k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">Eval</sub> = 1, 2, 3 and 4 modes. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) The average value of the log intracluster dispersion for the clustered (open circles) and reference (open diamonds) datasets for each value of k tested in panel (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) Gap values resulting from the difference between the clustered and reference values for each k in panel (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>). Many (≥500 in this paper) reference distributions are generated and their mean intracluster dispersion values are subtracted from those arising from the clustered distribution to maximize the reliability of the Gap values. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D</strong>) A procedure for selecting the optimal k depending on the associated gap values. Quantitative procedure for selecting optimal k (k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub>). ∆Gap values (open circles) are obtained by subtracting from the Gap value of a given k the Gap value for the previous k (∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub> = Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub> – Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k-1</sub>). For each ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub>, if the ∆Gap value is greater than a threshold (filled triangles) associated with that ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub>, that ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub> will be k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub>, if no ∆Gap exceeds, the threshold, k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> = 1. In the figure, for ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub> = 2, 3, 4 (brown, pink and cyan), the ∆Gap value exceeds its threshold only when ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub> = 3. Therefore k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> = 3. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">E–G</strong>) Determination of ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub> thresholds. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">E</strong>) Histograms of ∆Gap values calculated from 20,000 simulated datasets drawn from uniform distributions for each ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub> (brown, pink and cyan, respectively, for ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub> = 2, 3, 4) for a single dataset size (n = 40). ∆Gap thresholds (filled triangles) are the values beyond which 1% of the ∆Gap values fall and vary with ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub>. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">F</strong>) Histograms of ∆Gap values for a range of dataset sizes (n = 20, 40, 100) and their associated thresholds. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">G</strong>) Plot of the ∆Gap thresholds as a function of dataset size and ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub>. For separate ∆Gap<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">k</sub>, ∆Gap threshold values are fitted well by a hyperbolic function of dataset size. These fits provide a practical method of finding the appropriate ∆Gap threshold for an arbitrary dataset size.</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 1—figure supplement 2"><label data-itemprop="label">Figure 1—figure supplement 2</label><img src="index.html.media/fig1-figsupp2.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="discrimination-of-continuous-from-modular-organizations-using-the-adapted-gap-statistic-algorithm"> Discrimination of continuous from modular organizations using the adapted gap statistic algorithm.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Simulated datasets (each n = 40) drawn from continuous (uniform, k = 1 mode) (upper) and modular (multimodal mixture of Gaussians with k = 2 modes) (lower) distributions, and plotted against simulated dorsoventral locations. Also shown are the probability density functions (pdf) used to generate each dataset (light blue) and the densities estimated post-hoc from the generated data as kernel smoothed densities (light gray pdfs). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Histograms showing the distribution of k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> from 1000 simulated datasets drawn from each pdf in panel (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>). k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> is determined for each dataset by a modified gap statistic algorithm (see <a href="#fig1s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 1</a> above). When k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> = 1, the dataset is considered to be continuous (unclustered), when k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> ≥2, the dataset is considered to be modular (clustered). The algorithm operates only on the feature values and does not use location information. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) Illustration of a set of clustered (k = 2) pdfs with the distance (in standard deviations) between clusters ranging from 2 to 6 (upper). Systematic evaluation of the ability of the modified gap statistic algorithm to detect clustered organization (k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> ≥2) in simulated datasets of different size (n = 20 to 100) drawn from the clustered (filled blue) and continuous (open blue) pdfs (lower). The proportion of datasets drawn from the continuous distribution that have k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> ≥2 is the false positive (FP) rate (pFP = <sub itemscope="" itemtype="http://schema.stenci.la/Subscript">0.07). The light gray filled circle shows the smallest dataset size (n = 40) with SD = 5, where the proportion of datasets detected as clustered (p</sub>detect<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">) is </sub>0.8. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D</strong>). Plot showing how p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> at n = 40, SD = 5 changes when datasets are drawn from pdfs with different numbers of clusters (n modes from 2 to 8). Further evaluation of the analysis of additional clusters is represented in the following figure.</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 1—figure supplement 3"><label data-itemprop="label">Figure 1—figure supplement 3</label><img src="index.html.media/fig1-figsupp3.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="additional-evaluation-of-the-adapted-gap-statistic-algorithm">Additional evaluation of the adapted gap statistic algorithm.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A–C</strong>) Plots showing how p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> (the ability of the modified gap statistic algorithm to detect clustered organization) depends on dataset size and separation between cluster modes in simulated datasets drawn from clustered pdfs with different numbers of modes. The gray markers indicate n = 40, SD = 5 (as shown in <a href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1E</a>). In each plot, p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> is shown as a function of simulated dataset size and separation between modes when k = 3 (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>), k = 5 (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) and k = 8 (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>), which was the maximum number of clusters evaluated. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D–F</strong>) Histograms showing the counts of k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> from the 1000 simulated n = 40, SD = 5 datasets (gray filled circles) illustrated in panels (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A–C</strong>), respectively. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">G</strong>) p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> as a function of dataset size and mode separation with k = 5 when cluster modes are unevenly sampled. Sample sizes from clusters vary randomly with each dataset. A single mode can contribute from all to none of the points in any simulated dataset. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">H</strong>) p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> as a function of dataset size and mode separation with k = 5 when the distance between mode centers increases by a factor of sqrt(2) between sequential cluster pairs. Data are shown for different initial separations (the distance between the first two cluster centers) ranging from 1 to 4 (with corresponding separations between the final cluster pair ranging from 4 to 16).</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 1—figure supplement 4"><label data-itemprop="label">Figure 1—figure supplement 4</label><img src="index.html.media/fig1-figsupp4.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="comparing-the-adapted-gap-statistic-algorithm-with-discontinuity-measures-for-discreteness"> Comparing the adapted gap statistic algorithm with discontinuity measures for discreteness.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Counts of log discontinuity ratio scores generated from a simulated uniform data distribution. The data distribution was ordered and then sampled either at positions drawn at random from a uniform distribution (dark blue) or at positions with a fixed increment (light blue). For the data sampled at random positions, approximately half of the scores are >0 and for even sampling all scores are >0. Therefore, a threshold score >0 does not distinguish discrete from continuous distributions. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Comparison of p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> as a function of dataset size for the adapted gap statistic algorithm, the discontinuity (upper) and the discreteness algorithm (lower). Each algorithm is adjusted to yield a 7% false positive rate. Each column shows simulations of data with different numbers of modes (k).</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 1—figure supplement 5"><label data-itemprop="label">Figure 1—figure supplement 5</label><img src="index.html.media/fig1-figsupp5.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="evaluation-of-modularity-of-grid-firing-using-an-adapted-gap-statistic-algorithm"> Evaluation of modularity of grid firing using an adapted gap statistic algorithm.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Examples of grid spacing for individual neurons (crosses) from different mice. Kernel smoothed densities (KSDs) were generated with either a wide (solid gray) or a narrow (dashed lines) kernel. The number of modes estimated using the modified gap statistic algorithm is ≥ 2 for all but one animal (animal 4) with n ≥ 20 (animals 3 and 7 have < 20 recorded cells). We did not have location information for animal 2.</p> </figcaption> </figure> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Stellate cells in layer 2 (SCs) of the medial entorhinal cortex (MEC) provide a striking example of correspondence between functional organization of neural circuits and variability of electrophysiological features within a single cell type. The MEC contains neurons that encode an animal’s location through grid-like firing fields (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib27">Fyhn et al., 2004</a></cite>). The spatial scale of grid fields follows a dorsoventral organization (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib42">Hafting et al., 2005</a></cite>), which is mirrored by a dorsoventral organization in key electrophysiological features of SCs (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib10">Boehlen et al., 2010</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib21">Dodson et al., 2011</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib28">Garden et al., 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib30">Giocomo et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib33">Giocomo and Hasselmo, 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib58">Pastoll et al., 2012</a></cite>). Grid cells are further organized into discrete modules (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>), with the cells within a module having a similar grid scale and orientation (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib6">Barry et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib40">Gu et al., 2018</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib82">Yoon et al., 2013</a></cite>); progressively more ventral modules are composed of cells with wider grid spacing (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>). Studies that demonstrate dorsoventral organization of integrative properties of SCs have so far relied on the pooling of relatively few measurements per animal. Hence, it is unclear whether the organization of these cellular properties is modular, as one might expect if they directly set the scale of grid firing fields in individual grid cells (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib30">Giocomo et al., 2007</a></cite>). The possibility that set points for electrophysiological properties of SCs differ between animals has also not been considered previously.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Evaluation of variability between and within animals requires statistical approaches that are not typically used in single-cell electrophysiological investigations. Given appropriate assumptions, inter-animal differences can be assessed using mixed effect models that are well established in other fields (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib4">Baayen et al., 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib29">Geiler-Samerotte et al., 2013</a></cite>). Because tests of whether data arise from modular as opposed to continuous distributions have received less general attention, to facilitate detection of modularity using relatively few observations, we introduce a modification of the gap statistic algorithm (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib75">Tibshirani et al., 2001</a></cite>) that estimates the number of modes in a dataset while controlling for observations expected by chance (see 'Materials and methods' and <a href="#fig1s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplements 1</a>–<a href="#fig1s5" itemscope="" itemtype="http://schema.stenci.la/Link">5</a>). This algorithm performs well compared with discreteness metrics that are based on the standard deviation of binned data (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib32">Giocomo et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>), which we find are prone to high false-positive rates (<a href="#fig1s4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 4A</a>). We find that recordings from approximately 30 SCs per animal should be sufficient to detect modularity using the modified gap statistic algorithm and given the experimentally observed separation between grid modules (see 'Materials and methods' and <a href="#fig1s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplements 2</a>–<a href="#fig1s3" itemscope="" itemtype="http://schema.stenci.la/Link">3</a>). Although methods for high-quality recording from SCs in ex-vivo brain slices are well established (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib59">Pastoll et al., 2012</a></cite>), typically fewer than five recordings per animal were made in previous studies, which is many fewer than our estimate of the minimum number of observations required to test for modularity.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We set out to establish the nature of the set points that establish the integrative properties of SCs by measuring intra- and inter-animal variation in key electrophysiological features using experiments that maximize the number of SCs recorded per animal. Our results suggest that set points for individual features of a neuronal cell type are established at the level of neuronal cell populations, differ between animals and follow a continuous organization.</p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="results">Results</h2> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="sampling-integrative-properties-from-many-neurons-per-animal">Sampling integrative properties from many neurons per animal</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Before addressing intra- and inter-animal variability, we first describe the data set used for the analyses that follow. We established procedures to facilitate the recording of integrative properties of many SCs from a single animal (see 'Materials and methods'). With these procedures, we measured and analyzed electrophysiological features of 836 SCs (n/mouse: range 11–55; median = 35) from 27 mice (median age = 37 days, age range = 18–57 days). The mice were housed either in a standard home cage (dimensions: 0.2 × 0.37 m, N = 18 mice, n = 583 neurons) or from postnatal day 16 in a 2.4 × 1.2 m cage, which provided a large environment that could be freely explored (N = 9, n = 253, median age = 38 days) (<a href="#fig2s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1</a>). For each neuron, we measured six sub-threshold integrative properties (<a href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2A–B</a>) and six supra-threshold integrative properties (<a href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2C</a>). Unless indicated otherwise, we report the analysis of datasets that combine the groups of mice housed in standard and large home cages and that span the full range of ages.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2" title="Figure 2"> <label data-itemprop="label">Figure 2</label><img src="index.html.media/fig2.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="dorsoventral-organization-of-intrinsic-properties-of-stellate-cells-from-a-single-animal"> Dorsoventral organization of intrinsic properties of stellate cells from a single animal.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A–C</strong>) Waveforms (gray traces) and example responses (black traces) from a single mouse for step (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>), ZAP (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) and ramp (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) stimuli (left). The properties derived from each protocol are shown plotted against recording location (each data point is a black cross) (right). KSDs with arbitrary bandwidth are displayed to the right of each data plot to facilitate visualization of the property’s distribution when location information is disregarded (light gray pdfs). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Injection of a series of current steps enables the measurement of the resting membrane potential (V<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">rest</sub>) (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">i</strong>), the input resistance (IR) (ii), the sag coefficient (sag) (iii) and the membrane time constant (τ<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">m</sub>) (iv). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Injection of ZAP current waveform enables the calculation of an impedance amplitude profile, which was used to estimate the resonance resonant frequency (Res. F) (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">i</strong>) and magnitude (Res. mag) (ii). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) Injection of a slow current ramp enabled the measurement of the rheobase (i); the slope of the current-frequency relationship (I-F slope) (ii); using only the first five spikes in each response (enlarged zoom, lower left), the AHP minimum value (AHP<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">min</sub>) (iii); the spike maximum (Spk. max) (iv); the spike threshold (Spk. thr.) (v); and the spike width at half height (Spk. HW) (vi).</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 2—figure supplement 1"><label data-itemprop="label">Figure 2—figure supplement 1</label><img src="index.html.media/fig2-figsupp1.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="large-environment-for-housing">Large environment for housing.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A, B</strong>) The large cage environment viewed from above (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) and from inside (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>).</p> </figcaption> </figure> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Because SCs are found intermingled with pyramidal cells in layer 2 (L2PCs), and as misclassification of L2PCs as SCs would probably confound investigation of intra-SC variation, we validated our criteria for distinguishing each cell type. To establish characteristic electrophysiological properties of L2PCs, we recorded from neurons in layer 2 that were identified by Cre-dependent marker expression in a <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Wfs1</em><sup itemscope="" itemtype="http://schema.stenci.la/Superscript">Cre</sup> mouse line (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib72">Sürmeli et al., 2015</a></cite>). Expression of Cre in this line, and in a similar line (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib44">Kitamura et al., 2014</a></cite>), labels L2PCs that project to the CA1 region of the hippocampus, but does not label SCs (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib44">Kitamura et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib72">Sürmeli et al., 2015</a></cite>). We identified two populations of neurons in layer 2 of MEC that were labelled in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Wfs1</em><sup itemscope="" itemtype="http://schema.stenci.la/Superscript">Cre</sup> mice (<a href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3A–C</a>). The more numerous population had properties consistent with L2PCs (<a href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3A,G</a>) and could be separated from the unidentified population on the basis of a lower rheobase (<a href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3C</a>). The unidentified population had firing properties that were typical of layer 2 interneurons (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib37">Gonzalez-Sulser et al., 2014</a></cite>). A principal component analysis (PCA) (<a href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3D–F</a>) clearly separated the L2PC population from the SC population, but did not identify subpopulations of SCs. The properties of the less numerous population were also clearly distinct from those of SCs (<a href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3A,C</a>). These data demonstrate that the SC population used for our analyses is distinct from other cell types also found in layer 2 of the MEC.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3" title="Figure 3"> <label data-itemprop="label">Figure 3</label><img src="index.html.media/fig3.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="distinct-and-dorsoventrally-organized-properties-of-layer-2-stellate-cells"> Distinct and dorsoventrally organized properties of layer 2 stellate cells.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Representative action potential after hyperpolarization waveforms from a SC (left), a pyramidal cell (middle) and an unidentified cell (right). The pyramidal and unidentified cells were both positively labelled in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Wfs1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">C</sup></em><sup itemscope="" itemtype="http://schema.stenci.la/Superscript">re</sup> mice. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Plot of the first versus the second principal component from PCA of the properties of labelled neurons in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Wfs1</em><sup itemscope="" itemtype="http://schema.stenci.la/Superscript">Cre</sup> mice reveals two populations of neurons. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) Histogram showing the distribution of rheobase values of cells positively labelled in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Wfs1</em><sup itemscope="" itemtype="http://schema.stenci.la/Superscript">Cre</sup> mice. The two groups identified in panel (B) can be distinguished by their rheobase. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D</strong>) Plot of the first two principal components from PCA of the properties of the L2PC (n = 44, green) and SC populations (n = 836, black). Putative pyramidal cells (x) and SCs (+) are colored according to their dorsoventral location (inset shows the scale). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">E</strong>) Proportion of total variance explained by the first five principal components for the analysis in panel (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D</strong>). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">F</strong>) Histograms of the locations of recorded SCs (upper) and L2PCs (lower). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">G</strong>) All values of measured features from all mice are plotted as a function of the dorsoventral location of the recorded cells. Lines indicate fits of a linear model to the complete datasets for SCs (black) and L2PCs (green). Putative pyramidal cells (x, green) and SCs (+, black). Adjusted R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> values use the same color scheme.</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 3G—executable version"><label data-itemprop="label">Figure 3G—executable version</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 30 #' @height 20 plot_sc_wfs <- data.sc %>% select(vm:fi, dvlocmm) %>% mutate(classification = "SC") plot_wfs <- data.wfs %>% select(vm:fi, dvlocmm, classification) plot_sc_wfs <- bind_rows(plot_sc_wfs, plot_wfs) %>% gather("property", "value", vm:fi) labels_intercepts <- c( ahp = "AHP min. (mV)", fi = "F-I (Hz / pA)", ir = "IR (MΩ)", resf = "Res F (Hz)", resmag = "Res. mag.", rheo = "Rheobase (pA)", sag = "Sag", spkhlf = "Spike h-w (ms)", spkmax = "Spike max. (mV)", spkthr = "Spike thres. (mV)", tau = "Tm (ms)", vm = "Vrest (mV)" ) figure_3 <- ggplot(plot_sc_wfs, aes(dvlocmm,value)) + geom_point(aes(colour = classification)) + scale_x_continuous(name = "Location (mm)", breaks = c(0, 1, 2)) + scale_colour_discrete(name = "Neuron type") + facet_wrap(~property, scales = "free_y", labeller = labeller(property = labels_intercepts)) + theme_classic() + theme(axis.title.y = element_blank(), strip.background = element_blank()) print(figure_3)</code></pre> <figure slot="outputs"><img src="index.html.media/2" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="distinct-and-dorsoventrally-organized-properties-of-layer-2-stellate-cells-1"> Distinct and dorsoventrally organized properties of layer 2 stellate cells.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">G</strong>) All values of measured features from all mice are plotted as a function of the dorsoventral location of the recorded cells. Lines indicate fits of a linear model to the complete datasets for SCs (black) and L2PCs (green). Putative pyramidal cells (x, green) and SCs (+, black). Adjusted R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> values use the same color scheme.</p> </figcaption> </figure> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To further validate the large SC dataset, we assessed the location-dependence of individual electrophysiological features, several of which have previously been found to depend on the dorso-ventral location of the recorded neuron (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib10">Boehlen et al., 2010</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib11">Booth et al., 2016</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib28">Garden et al., 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib30">Giocomo et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib58">Pastoll et al., 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib83">Yoshida et al., 2013</a></cite>). We initially fit the dependence of each feature on dorsoventral position using a standard linear regression model. We found substantial (adjusted R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> >0.1) dorsoventral gradients in input resistance, sag, membrane time constant, resonant frequency, rheobase and the current-frequency (I-F) relationship (<a href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3G</a>). In contrast to the situation in SCs, we did not find evidence for dorsoventral organization of these features in L2PCs (<a href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3G</a>). Thus, our large dataset replicates the previously observed dependence of integrative properties of SCs on their dorsoventral position, and shows that this location dependence further distinguishes SCs from L2PCs.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="inter-animal-differences-in-the-intrinsic-properties-of-stellate-cells">Inter-animal differences in the intrinsic properties of stellate cells</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To what extent does variability between the integrative properties of SCs at a given dorsoventral location arise from differences between animals? Comparing specific features between individual animals suggested that their distributions could be almost completely non-overlapping, despite consistent and strong dorsoventral tuning (<a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4A</a>). If this apparent inter-animal variability results from the random sampling of a distribution determined by a common underlying set point, then fitting the complete data set with a mixed model in which animal identity is included as a random effect should reconcile the apparent differences between animals (<a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4B</a>). In this scenario, the conditional R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> estimated from the mixed model, in other words, the estimate of variance explained by animal identity and location, should be similar to the marginal R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> value, which indicates the variance explained by location only. By contrast, if differences between animals contribute to experimental variability, the mixed model should predict different fitting parameters for each animal, and the estimated conditional R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> should be greater than the corresponding marginal R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> (<a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4C</a>).</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 4A—executable version"><label data-itemprop="label">Figure 4A—executable version</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 12 #' @height 6 (rheo_example <- ggplot(filter(data.sc, id == "mouse_20131106" | id == "mouse_20140113"), aes(dvloc, rheo)) + geom_point(aes(colour = id), shape = 3) + labs(x = "Location (µm)", y = "Rheobase (pA)", colour = "Mouse")) + theme(axis.title = element_text(size = 7), axis.text = element_text(size = 7), axis.title.x = element_text(vjust = 2.5), legend.text = element_text(size = 5), legend.title=element_text(size=5), legend.key.size = unit(0.2, "cm"), legend.position = "right", legend.key = element_rect(fill = "white", colour = "black")) + scale_colour_manual(labels = c("", ""), values = c("red", "blue")) </code></pre> <figure slot="outputs"><img src="index.html.media/3" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="inter-animal-variability-and-dependence-on-environment-of-intrinsic-properties-of-stellate-cells"> Inter-animal variability and dependence on environment of intrinsic properties of stellate cells.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Examples of rheobase as a function of dorsoventral position for two mice.</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4bcd" title="Figure 4B,C,D"><label data-itemprop="label">Figure 4B,C,D</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 12 #' @height 4 # Generate simulated data # Makes properties for each subject make_real_vals <- function(n_subjects, intersd_int = 1, intersd_slope = 1) { tb <- tibble( id = 1:n_subjects, int = rnorm(n_subjects, 1, intersd_int), slope = rnorm(n_subjects, 1, intersd_slope) ) } # Make data for each subject make_data <- function(subject_params, loc_n = 20, loc_max = 1, intrasd = 1) { total_points <- c(loc_n * count(subject_params))[[1]] tb <- tibble( id = rep(subject_params$id, loc_n), loc = rep(runif(total_points, 0, loc_max)), param = loc * subject_params$slope + subject_params$int + rnorm(total_points, 0, intrasd) ) } # Formats figures var_gp_format <- function(gg) { gg <- gg + ylim(0, 3) + ylab("Feature") + xlab("Location") + theme(axis.text = element_blank()) } # Generate data simulating dorsoventral organisation without inter-animal variability without_var_gp <- make_real_vals(20, 0, 0) without_var_gp_data <- make_data(without_var_gp, 20, 1, 0.5) # Plot fits to each animal separately without_var_gp_gg <- ggplot(without_var_gp_data, aes(loc, param, group = id)) + stat_smooth(geom = "line", method = lm, se = FALSE) + ylim(0, 3) without_var_gp_gg <- var_gp_format(without_var_gp_gg) + theme(axis.title = element_text(size = 9), axis.title.x = element_text(vjust = 2)) + labs(x = "") + scale_x_continuous( labels = function(breaks) { rep_along(breaks, "") } ) # Predictions for fitting with a mixed effect model without_var_gp_mm <- lmer(param ~ loc + (loc || id), data = without_var_gp_data, REML = FALSE) mm_without_predictplot <- predict_plot_2( without_var_gp_data, without_var_gp_mm, without_var_gp_data$loc, without_var_gp_data$param ) mm_without_predictplot <- var_gp_format(mm_without_predictplot) + annotate( "text", x = 0.6, y = 0.6, label = "paste(italic(R) ^ 2, \"marginal = .31\")", parse = TRUE, size = 2 ) + annotate( "text", x = 0.6, y = 0.2, label = "paste(italic(R) ^ 2, \"conditional = .31\")", parse = TRUE, size = 2 ) + theme(axis.title = element_text(size = 9), axis.title.x = element_text(vjust = 2)) mm_without_predictplot <- mm_without_predictplot + labs(x = "", y = "") plot_grid(without_var_gp_gg, mm_without_predictplot) # Generate data simulating dorsoventral organisation with inter-animal variability with_var_gp <- make_real_vals(20, 0.2, 0.2) with_var_gp_data <- make_data(with_var_gp, 20, 1, 0.2) # Plot fits to each animal separately with_var_gp_gg <- ggplot(with_var_gp_data, aes(loc, param, group = id)) + stat_smooth(geom = "line", method = lm, se = FALSE) with_var_gp_gg <- var_gp_format(with_var_gp_gg) + theme(axis.title = element_text(size = 9), axis.title.x = element_text(vjust = 2)) # Predictions for fitting with a mixed effect model with_var_gp_mm <- lmer(param ~ loc + (loc || id), data = with_var_gp_data, REML = FALSE) mm_with_predictplot <- predict_plot_2(with_var_gp_data, with_var_gp_mm, with_var_gp_data$loc, with_var_gp_data$param) mm_with_predictplot <- var_gp_format(mm_with_predictplot) + annotate( "text", x = 0.6, y = 0.6, label = "paste(italic(R) ^ 2, \"marginal = .49\")", parse = TRUE, size = 2 ) + annotate( "text", x = 0.6, y = 0.2, label = "paste(italic(R) ^ 2, \"conditional = .73\")", parse = TRUE, size = 2 ) + theme(axis.title = element_text(size = 9), axis.title.x = element_text(vjust = 2)) mm_with_predictplot <- mm_with_predictplot + labs(y = "") plot_grid(with_var_gp_gg, mm_with_predictplot) # The code below requires mixed effect models to have been fit to data in data.sc_r # Rheobase predictions from fits with a standard linear model rheo_predictplot <- ggplot(filter(data.sc_r, property == "rheo")$data[[1]], aes(x = dvlocmm, y = value, group = id)) + stat_smooth(geom = "line", method = lm, se = FALSE) rheo_predictplot <- gg_rheo_format(rheo_predictplot, 0, 600) rheo_predictplot_mod <- rheo_predictplot + theme(axis.title = element_text(size = 9), axis.text = element_text(size = 7), axis.title.x = element_text(vjust = 2.5)) # Rheobase predictions from mixed model fits mm_rheo_predictplot <- predict_plot(filter(data.sc_r, property == "rheo")$data[[1]], filter(data.sc_r, property == "rheo")$mm_vsris[[1]]) mm_rheo_predictplot <- gg_rheo_format(mm_rheo_predictplot, 0, 600) mm_rheo_predictplot_mod <- mm_rheo_predictplot + annotate("text", x = 1, y = 130, label = "paste(italic(R) ^ 2, \"marginal = .38\")", parse = TRUE, size = 2) + annotate("text", x = 1, y = 50, label = "paste(italic(R) ^ 2, \"conditional = .65\")", parse = TRUE, size = 2) + theme(axis.title = element_text(size = 9), axis.text = element_text(size = 7), axis.title.x = element_text(vjust = 2.5)) mm_rheo_predictplot_mod <- mm_rheo_predictplot_mod + labs(y = "") plot_grid(rheo_predictplot_mod, mm_rheo_predictplot_mod)</code></pre> <figure slot="outputs"><img src="index.html.media/4" alt="" itemscope="" itemtype="http://schema.org/ImageObject"><img src="index.html.media/5" alt="" itemscope="" itemtype="http://schema.org/ImageObject"><img src="index.html.media/6" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="inter-animal-variability-and-dependence-on-environment-of-intrinsic-properties-of-stellate-cells-1"> Inter-animal variability and dependence on environment of intrinsic properties of stellate cells.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B, C</strong>) Each line is the fit of simulated data from a different subject for datasets in which there is no inter-subject variability (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) or in which intersubject variability is present (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>). Fitting data from each subject independently with linear regression models suggests intersubject variation in both datasets (left). By contrast, after fitting mixed effect models (right) intersubject variation is no longer suggested for the dataset in which it is absent (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) but remains for the dataset in which it is present (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>). (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D</strong>) Each line is the fit of rheobase as a function of dorsoventral location for a single mouse. The fits were carried out independently for each mouse (left) or using a mixed effect model with mouse identity as a random effect (right).</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4e" title="Figure 4E"> <label data-itemprop="label">Figure 4E</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 25 #' @height 25 combined_intercepts_slopes <- prep_int_slopes(data.sc_r, "property", "mm_vsris") id_housing <- distinct(data.sc, id, housing, age, sex) combined_intercepts_slopes <- left_join(combined_intercepts_slopes, id_housing, by = "id") combined_intercepts_slopes$property_factors <- as.factor(combined_intercepts_slopes$property) combined_intercepts_slopes$property_factors = factor( combined_intercepts_slopes$property_factors, c( "vm", "ir", "sag", "tau", "resf", "resmag", "rheo", "fi", "ahp", "spkmax", "spkthr", "spkhlf" ) ) labels_intercepts <- c( ahp = "AHP min. (mV)", fi = "F-I (Hz / pA)", ir = "IR (MΩ)", resf = "Res F (Hz)", resmag = "Res. mag.", rheo = "Rheobase (pA)", sag = "Sag", spkhlf = "Spike h-w (ms)", spkmax = "Spike max. (mV)", spkthr = "Spike thres. (mV)", tau = "Tm (ms)", vm = "Vrest (mV)" ) print( ggplot( combined_intercepts_slopes, aes(x = measure, y = value_1, colour = housing) ) + geom_line(aes(group = id)) + geom_jitter(aes(y = value_2), width = 0.2, alpha = 0.5) + #geom_boxplot(aes(y = value_2), alpha = 0.1) + stat_summary( aes(y = value_2), fun.y = "mean", fun.ymin = "mean", fun.ymax = "mean", size = 0.2, geom = "crossbar" ) + scale_x_discrete( limits = c( "ind_intercept", "ind_intercept_slope", "global_intercept", "global_intercept_slope" ), label = c("I", "I + S", "", "") ) + facet_wrap( ~ property_factors, scales = "free", labeller = labeller(property_factors = labels_intercepts) ) + theme_classic() + hist_theme + theme( axis.line.x = element_blank(), axis.ticks.x = element_blank(), legend.position = "bottom" ) )</code></pre> <figure slot="outputs"><img src="index.html.media/7" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="inter-animal-variability-and-dependence-on-environment-of-intrinsic-properties-of-stellate-cells-2"> Inter-animal variability and dependence on environment of intrinsic properties of stellate cells.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">E</strong>) The intercept (I), sum of the intercept and slope (I + S), and slopes realigned to a common intercept (right) for each mouse obtained by fitting mixed effect models for each property as a function of dorsoventral position.</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4" title="Figure 4—figure supplement 1"><label data-itemprop="label">Figure 4—figure supplement 1</label><img src="index.html.media/fig4-figsupp1.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="properties-of-scs-in-medial-and-lateral-slices">Properties of SCs in medial and lateral slices.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Membrane properties of SCs from slices containing more medial (blue) and more lateral (red) parts of the MEC plotted as a function of dorsal ventral position. Neurons from more medial slices had a higher spike threshold, a lower spike maximum and a less-negative spike after-hyperpolarization (see <a href="#supp6" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 6</a>). Properties are labelled as in <a href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2</a>.</p> </figcaption> </figure> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Fitting the experimental measures for each feature with mixed models suggests that differences between animals contribute substantially to the variability in properties of SCs. In contrast to simulated data in which inter-animal differences are absent (<a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4B</a>), differences in fits between animals remained after fitting with the mixed model (<a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4D</a>). This corresponds with expectations from fits to simulated data containing inter-animal variability (<a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4C</a>). To visualize inter-animal variability for all measured features, we plot for each animal the intercept of the model fit (I), the predicted value at a location 1 mm ventral from the intercept (I+S), and the slope (lines) (<a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4E</a>). Strikingly, even for features such as rheobase and input resistance (IR) that are highly tuned to a neurons’ dorsoventral position, the extent of variability between animals is similar to the extent to which the property changes between dorsal and mid-levels of the MEC.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">If set points that determine integrative properties of SCs do indeed differ between animals, then mixed models should provide a better account of the data than linear models that are generated by pooling data across all animals. Consistent with this, we found that mixed models for all electrophysiological features gave a substantially better fit to the data than linear models that considered all neurons as independent (adjusted p<2×10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−17</sup> for all models, χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> test, <a href="#table1" itemscope="" itemtype="http://schema.stenci.la/Link">Table 1</a>). Furthermore, even for properties with substantial (R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> value >0.1) dorsoventral tuning, the conditional R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> value for the mixed effect model was substantially larger than the marginal R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> value (<a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4D</a> and <a href="#table1" itemscope="" itemtype="http://schema.stenci.la/Link">Table 1</a>). Together, these analyses demonstrate inter-animal variability in key electrophysiological features of SCs, suggesting that the set points that establish the underlying integrative properties differ between animals.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><strong itemscope="" itemtype="http://schema.stenci.la/Strong">Table 1. Dependence of the electrophysiological features of SCs on dorsoventral position.</strong></p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Key statistical parameters from analyses of the relationship between each measured electrophysiological feature and dorsoventral location. The data are ordered according to the marginal R2 for each property’s relationship with dorsoventral position. Slope is the population slope from fitting a mixed effect model for each feature with location as a fixed effect (mm−1), with p(slope) obtained by comparing this model to a model without location as a fixed effect (χ2 test). For all properties except the spike thereshold, the slope was unlikely to have arisen by chance (p<0.05). The marginal and conditional R2 values, and the minimum and maximum slopes across all mice, are obtained from the fits of mixed effect models that contain location as a fixed effect. The estimate p(vs linear) is obtained by comparing the mixed effect model containing location as a fixed effect with a corresponding linear model without random effects (χ2 test). The values of p(slope) and p(vs linear) were adjusted for multiple comparisons using the method of Benjamini and Hochberg (1995). Units for the slope measurements are units for the property mm−1. The data are from 27 mice.</p> <table itemscope="" itemtype="http://schema.org/Table"> <tbody> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Feature</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Slope</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">P (slope)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Marginal R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup></td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Conditional R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup></td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Slope (min)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Slope (max)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">P (vs linear)</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">IR (MΩ)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">11.794</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">8.39e-17</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.383</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.532</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">9.630</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">14.262</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">4.33e-40</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Rheobase (pA)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−119.887</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">9.07e-15</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.382</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.652</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−153.873</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−76.130</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">6.55e-43</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">I-F slope (Hz/pA)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.036</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">6.06e-10</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.228</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.561</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.019</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.087</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">6.82e-34</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Tm (ms)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">2.646</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">3.70e-12</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.192</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.343</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.809</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">3.979</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.20e-29</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Res. frequency (Hz)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−1.334</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">4.13e-09</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.122</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.553</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−2.299</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−0.342</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">6.37e-65</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Sag</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.033</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">6.06e-10</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.121</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.347</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.016</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.043</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.91e-38</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Spike maximum (mV)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.900</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.85e-05</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.064</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.436</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−1.288</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">3.297</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.14e-50</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Res. magnitude</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−0.114</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">6.34e-08</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.064</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.198</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−0.138</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−0.087</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">9.13e-20</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Vm (mV)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−0.884</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">3.67e-05</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.046</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.348</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−1.965</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.150</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">8.73e-35</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Spike AHP (mV)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−0.645</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.93e-02</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.011</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.257</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−1.828</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.408</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.82e-17</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Spike width (ms)</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.017</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1.93e-02</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.010</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.643</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−0.021</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.055</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">7.04e-139</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Spike threshold (mV) </td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.082</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">8.20e-01</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.000</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">0.510</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">−2.468</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">2.380</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">2.03e-17</td> </tr> </tbody> </table> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="experience-dependence-of-intrinsic-properties-of-stellate-cells">Experience-dependence of intrinsic properties of stellate cells</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Because neuronal integrative properties may be modified by changes in neural activity (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib85">Zhang and Linden, 2003</a></cite>), we asked whether experience influences the measured electrophysiological features of SCs. We reasoned that modifying the space through which animals can navigate may drive experience-dependent plasticity in the MEC. As standard mouse housing has dimensions less than the distance between the firing fields of more ventrally located grid cells (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib12">Brun et al., 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib42">Hafting et al., 2005</a></cite>), in a standard home cage, only a relatively small fraction of ventral grid cells is likely to be activated, whereas larger housing should lead to the activation of a greater proportion of ventral grid cells. We therefore tested whether the electrophysiological features of SCs differ between mice housed in larger environments (28,800 cm<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup>) and those with standard home cages (740 cm<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup>).</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We compared the mixed models described above to models in which housing was also included as a fixed effect. To minimize the effects of age on SCs (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib10">Boehlen et al., 2010</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib16">Burton et al., 2008</a></cite>; <a href="#supp2" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 2</a>), we focused these and subsequent analyses on mice between P33 and P44 (N = 25, n = 779). We found that larger housing was associated with a smaller sag coefficient, indicating an increased sag response, a lower resonant frequency and a larger spike half-width (adjusted p<0.05; <a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4E</a>, <a href="#supp3" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 3</a>). These differences were primarily from changes to the magnitude rather than the location-dependence of each feature. Other electrophysiological features appeared to be unaffected by housing.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To determine whether inter-animal differences remain after accounting for housing, we compared mixed models that include dorsoventral location and housing as fixed effects with equivalent linear regression models in which individual animals were not accounted for. Mixed models incorporating animal identity continued to provide a better account of the data, both for features that were dependent on housing (adjusted p<2.8×10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−21</sup>) and for features that were not (adjusted p<1.4×10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−7</sup>) (<a href="#supp4" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 4</a>).</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Together, these data suggest that specific electrophysiological features of SCs may be modified by experience of large environments. After accounting for housing, significant inter-animal variation remains, suggesting that additional mechanisms acting at the level of animals rather than individual neurons also determine differences between SCs.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="inter-animal-differences-remain-after-accounting-for-additional-experimental-parameters"> Inter-animal differences remain after accounting for additional experimental parameters </h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To address the possibility that other experimental or biological variables could contribute to inter-animal differences, we evaluated the effects of home cage size (<a href="#supp3" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary files 3</a>–<a href="#supp4" itemscope="" itemtype="http://schema.stenci.la/Link">4</a>), brain hemisphere (<a href="#supp5" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 5</a>), mediolateral position (<a href="#fig4s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 1</a> and <a href="#supp6" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 6</a>), the identity of the experimenter (<a href="#supp7" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 7</a>) and time since slice preparation (<a href="#supp8" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary files 8</a> and <a href="#supp9" itemscope="" itemtype="http://schema.stenci.la/Link">9</a>). Several of the variables influenced some measured electrophysiological features, for example properties primarily related to the action potential waveform depended on the mediolateral position of the recorded neuron (<a href="#supp6" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 6</a>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib18">Canto and Witter, 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib83">Yoshida et al., 2013</a></cite>), but significant inter-animal differences remained after accounting for each variable. We carried out further analyses using models that included housing, mediolateral position, experimenter identity and the direction in which sequential recordings were obtained as fixed effects (<a href="#supp10" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 10</a>), and using models fit to minimal datasets in which housing, mediolateral position and the recording direction were identical (<a href="#supp11" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 11</a>). These analyses again found evidence for significant inter-animal differences.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Inter-animal differences could arise if the health of the recorded neurons differed between brain slices. To minimize this possibility, we standardized our procedures for tissue preparation (see 'Materials and methods'), such that slices were of consistent high quality as assessed by low numbers of unhealthy cells and by visualization of soma and dendrites of neurons in the slice. Several further observations are consistent with comparable quality of slices between experiments. First, if the condition of the slices had differed substantially between animals, then in better quality slices, it should be easier to record from more neurons, in which case features that depend on tissue quality would correlate with the number of recorded neurons. However, the majority (10/12) of the electrophysiological features were not significantly (p>0.2) associated with the number of recorded neurons (<a href="#supp12" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 12</a>). Second, analyses of inter-animal differences that focus only on data from animals for which >35 recordings were made, which should only be feasible with uniformly high-quality brain slices, are consistent with conclusions from analysis of the larger dataset (<a href="#supp13" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 13</a>). Third, the conditional R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> values of electrophysiological features of L2PCs are much lower than those for SCs recorded under the same experimental conditions (<a href="#table1" itemscope="" itemtype="http://schema.stenci.la/Link">Table 1</a> and <a href="#supp1" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 1</a>), suggesting that inter-animal variation may be specific to SCs and cannot be explained by slice conditions. Together, these analyses indicate that differences between animals remain after accounting for experimental and technical factors that might contribute to variation in the measured features of SCs.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="the-distribution-of-intrinsic-properties-is-consistent-with-a-continuous-rather-than-a-modular-organization"> The distribution of intrinsic properties is consistent with a continuous rather than a modular organization</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The dorsoventral organization of SC integrative properties is well established, but whether this results from within animal variation consistent with a small number of discrete set points that underlie a modular organization (<a href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1B</a>) is unclear. To evaluate modularity, we used datasets with n ≥ 34 SCs (N = 15 mice, median age = 37 days, age range = 18–43 days). We focus initially on rheobase, which is the property with the strongest correlation to dorsoventral location, and resonant frequency, which is related to the oscillatory dynamics underlying dorsoventral tuning in some models of grid firing (e.g. <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib14">Burgess et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib30">Giocomo et al., 2007</a></cite>). For n ≥ 34 SCs, we expect that if properties are modular, then this would be detected by the modified gap statistic in at least 50% of animals (<a href="#fig1s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplements 2C</a> and <a href="#fig1s3" itemscope="" itemtype="http://schema.stenci.la/Link">3</a>). By contrast, we find that for datasets from the majority of animals, the modified gap statistic identifies only a single mode in the distribution of rheobase values (<a href="#fig5" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 5A</a> and <a href="#fig6" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 6</a>) (N = 13/15) and of resonant frequencies (<a href="#fig5" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 5B</a> and <a href="#fig6" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 6</a>) (N = 14/15), indicating that these properties have a continuous rather than a modular distribution. Consistent with this, smoothed distributions did not show clearly separated peaks for either property (<a href="#fig5" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 5</a>). The mean and 95% confidence interval for the probability of evaluating a dataset as clustered (p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub>) was 0.133 and 0.02–0.4 for rheobase and 0.067 and 0.002–0.32 for resonant frequency. These values of p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> were not significantly different from the proportions expected given the false positive rate of 0.1 in the complete absence of clustering (p=0.28 and 0.66, binomial test). Thus, the rheobase and resonant frequency of SCs, although depending strongly on a neuron’s dorsoventral position, do not have a detectable modular organization.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig5" title="Figure 5"> <label data-itemprop="label">Figure 5</label><img src="index.html.media/fig5.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="rheobase-and-resonant-frequency-do-not-have-a-detectable-modular-organization"> Rheobase and resonant frequency do not have a detectable modular organization.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A, B</strong>) Rheobase (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) and resonant frequency (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) are plotted as a function of dorsoventral position separately for each animal. Marker color and type indicate the age and housing conditions of the animal (‘+’ standard housing, ‘x’ large housing). KSDs (arbitrary bandwidth, same for all animals) are also shown. The number of clusters in the data (k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub>) is indicated for each animal (<span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span class="mjx-math" aria-label="{\displaystyle \hat{\mathrm{k}}}"><span class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-munderover"><span class="mjx-stack"><span class="mjx-over" style="height: 0.213em; padding-bottom: 0.06em; padding-left: 0.014em;"><span class="mjx-mo" style="vertical-align: top;"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.298em;">^</span></span></span><span class="mjx-op"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">k</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>). </p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig6" title="Figure 6"> <label data-itemprop="label">Figure 6</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 25 #' @height 10 # Note that reference data in GapData is generated through simulation. It was re-generated for the executable manuscript and so plots may look slightly different to the original manuscript. The conclusions are robust to the seeds for data generation. The reference data is loaded/generated with the setup code above (see block: "Clustering Gap Data Setup"). # Evaluate the stellate cell (sc) data for k_est fname <- "Data/datatable_sc.txt" sc_data <- read_tsv( fname, col_types = cols( .default = "d", mlpos = "c", hemi = "c", id = "c", housing = "c", expr = "c", patchdir = "c" ) ) sc_data_long <- sc_data %>% filter(totalcells >= 30) %>% select(property_names, id, dvloc) %>% gather(key = "property", value = "measurement", property_names, na.rm = TRUE) # Initialise list to store tibbles for cluster evaluation of each combination of animal # and measured property sc_cluster_data_list <- list() list_ind <- 0L # To track the list index inside the double loop for (m in unique(sc_data_long$id)) { for (p in property_names) { # The data for one measured property for a single animal data <- sc_data_long %>% filter(id == m, property == p) # Use the fitted parameters to obtain thresholds and dispersions. Note that where there # are measurement NAs in the original data, they will have already been removed, so the # fits are for the right dataset size. thresholds <- get_thresh_from_params(data, k.max, threshold_fit_results$thresh_params[[1]]) dispersions <- get_dispersions_from_params(data, k.max, dispersion_fit_results$dispersion_params[[1]]) # The clustering evaluation outputs cluster_out <- get_k_est( data$measurement, kmeans, iter.max = iter.max, nstart = nstart, K.max = k.max, B = NULL, d.power = d.power, thresholds = thresholds, dispersions = dispersions ) # Construct tibble that combines cluster evaluation output with other data in long format list_ind <- list_ind + 1 # Increment list index counter dimnames(cluster_out$cluster)[[2]] <- as.integer(1:k.max) # to set 'as.tibble()' behaviour sc_cluster_data_list[[list_ind]] <- as.tibble(cluster_out$cluster) %>% bind_cols(data) %>% mutate(k_est = rep(cluster_out$k_est, nrow(cluster_out$cluster))) %>% gather(key = "k_eval", value = "cluster", dimnames(cluster_out$cluster)[[2]]) } } # Aggregated data in long format. Most granular level is single measurement cluster membership # for a specified k. This is the main input to further SC data analyses. sc_cluster_data_long <- bind_rows(sc_cluster_data_list) %>% mutate(k_eval = as.integer(k_eval), cluster = as.factor(cluster)) %>% # Change class for plotting mutate(prop_type = case_when(property %in% props_subthresh ~ "subthr", TRUE ~ "suprathr")) # Plot k_est counts for subthreshold and suprathreshold properties ( clusters_a <- sc_cluster_data_long %>% filter(prop_type == "subthr") %>% distinct(id, property, k_est) %>% ggplot() + geom_bar(aes(x = k_est)) + facet_wrap( vars(property), ncol = 6, labeller = as_labeller(props_sub_labels) ) + labs(y = "Count", x = " ") + scale_x_continuous( labels = c(rep(" ", k.max)), breaks = 1:k.max, limits = c(0.5, k.max + 0.5) ) ) # Required Figure 6A to gave been generated first ( clusters_b <- sc_cluster_data_long %>% filter(prop_type == "suprathr") %>% distinct(id, property, k_est) %>% ggplot() + geom_bar(aes(x = k_est)) + facet_wrap( vars(property), ncol = 6, labeller = as_labeller(props_supra_labels) ) + labs( x = bquote( ~ "Estimated number of clusters, " ~ k[est]), y = "Count" ) + scale_x_continuous( labels = c("1", rep("", k.max - 2), toString(k.max)), breaks = 1:k.max, limits = c(0.5, k.max + 0.5) ) )</code></pre> <figure slot="outputs"><img src="index.html.media/8" alt="" itemscope="" itemtype="http://schema.org/ImageObject"><img src="index.html.media/9" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="significant-modularity-is-not-detectable-for-any-measured-property">Significant modularity is not detectable for any measured property.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A, B</strong>) Histograms showing the k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est </sub>(<span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span class="mjx-math" aria-label="{\displaystyle \hat{\mathrm{k}}}"><span class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-munderover"><span class="mjx-stack"><span class="mjx-over" style="height: 0.213em; padding-bottom: 0.06em; padding-left: 0.014em;"><span class="mjx-mo" style="vertical-align: top;"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.298em;">^</span></span></span><span class="mjx-op"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">k</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>) counts across all mice for each different measured sub-threshold (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) and supra-threshold (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) intrinsic property. The maximum k evaluated was 8. The proportion of each measured property with k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub>>1 was compared using binomial tests (with N = 15) to the proportion expected if the underlying distribution of that property is always clustered with all separation between modes ≥5 standard deviations (pink text), or if the underlying distribution of the property is uniform (purple text). For all measured properties, the values of k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> (<span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span class="mjx-math" aria-label="{\displaystyle \hat{\mathrm{k}}}"><span class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-munderover"><span class="mjx-stack"><span class="mjx-over" style="height: 0.213em; padding-bottom: 0.06em; padding-left: 0.014em;"><span class="mjx-mo" style="vertical-align: top;"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.298em;">^</span></span></span><span class="mjx-op"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">k</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>) were indistinguishable (p>0.05) from the data generated from a uniform distribution and differed from the data generated from a multi-modal distribution (p<1×10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−6</sup>).</p> </figcaption> </figure> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">When we investigated the other measured integrative properties, we also failed to find evidence for modularity. Across all properties, for any given property, at most 3 out of 15 mice were evaluated as having a clustered organization using the modified gap statistic (<a href="#fig6" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 6</a>). This does not differ significantly from the proportion expected by chance when no modularity is present (p>0.05, binomial test). Consistent with this, the average proportion of datasets evaluated as modular across all measured features was 0.072 ± 0.02 (± SEM), which is similar to the expected false-positive rate. By contrast, the properties of grid firing fields previously recorded with tetrodes in behaving animals (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>) were detected as having a modular organization using the modified gap statistic (<a href="#fig1s5" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 5</a>). For seven grid-cell datasets with n ≥ 20, the mean for p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> is 0.86, with 95% confidence intervals of 0.42 to 0.996. We note here that discontinuity algorithms that were previously used to assess the modularity of grid field properties (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib32">Giocomo et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>) did indicate significant modularity in the majority of the intrinsic properties measured in our dataset (N = 13/15 and N = 12/15, respectively), but this was attributable to false positives resulting from the relatively even sampling of recording locations (see <a href="#fig1s4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 4A</a>). Therefore, we conclude that it is unlikely that any of the intrinsic integrative properties of SCs that we examined have organization within individual animals resembling the modular organization of grid cells in behaving animals.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="multiple-sources-of-variance-contribute-to-diversity-in-stellate-cell-intrinsic-properties"> Multiple sources of variance contribute to diversity in stellate cell intrinsic properties </h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Finally, because many of the measured electrophysiological features of SCs emerge from shared ionic mechanisms (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib21">Dodson et al., 2011</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib28">Garden et al., 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib58">Pastoll et al., 2012</a></cite>), we asked whether dorsoventral tuning reflects a single core mechanism and whether inter-animal differences are specific to this mechanism or manifest more generally.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Estimation of conditional independence for measurements at the level of individual neurons (<a href="#fig7" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 7A</a>) or individual animals (<a href="#fig7" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 7B</a>) was consistent with the expectation that particular classes of membrane ion channels influence multiple electrophysiologically measured features. The first five dimensions of a principal components analysis (PCA) of all measured electrophysiological features accounted for almost 80% of the variance (<a href="#fig7" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 7C</a>). Examination of the rotations used to generate the principal components suggested relationships between individual features that are consistent with our evaluation of the conditional independence structure of the measured features (<a href="#fig7" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 7D and A</a>). When we fit the principal components using mixed models with location as a fixed effect and animal identity as a random effect, we found that the first two components depended significantly on dorsoventral location (<a href="#fig7" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 7E</a> and <a href="#supp14" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 14</a>) (marginal R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> = 0.50 and 0.09 and adjusted p=1.09×10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−15</sup> and 1.05 × 10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−4</sup>, respectively). Thus, the dependence of multiple electrophysiological features on dorsoventral position may be reducible to two core mechanisms that together account for much of the variability between SCs in their intrinsic electrophysiology.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig7a" title="Figure 7A"> <label data-itemprop="label">Figure 7A</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 8 #' @height 8 data.sc_neurons <- data.sc %>% dplyr::select(vm:fi) %>% na.omit Q_neurons <- calcQ(data.sc_neurons) Q_neurons <- as.matrix(Q_neurons) colnames(Q_neurons) <- colnames(data.sc_neurons) rownames(Q_neurons) <- colnames(data.sc_neurons) order_names <- c( "vm", "ir", "sag", "tau", "resf", "resmag", "rheo", "fi", "ahp", "spkmax", "spkthr", "spkhlf" ) Q_neurons <- Q_neurons[match(order_names, rownames(Q_neurons)), match(order_names, colnames(Q_neurons))] new_names <- c("Vm", "IR", "Sag", "Tm", "ResF", "ResM", "Rheo", "F-I", "AHP", "Smax", "Sthr", "SHW") colnames(Q_neurons) <- new_names rownames(Q_neurons) <- new_names ( Q_neurons_plot <- ggcorr( data = NULL, cor_matrix = Q_neurons, geom = "circle", min_size = 0, max_size = 5, legend.size = 7, size = 2 ) )</code></pre> <figure slot="outputs"><img src="index.html.media/10" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="feature-relationships-and-inter-animal-variability-after-reducing-dimensionality-of-the-data"> Feature relationships and inter-animal variability after reducing dimensionality of the data.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Partial correlations between the electrophysiological features investigated at the level of individual neurons. Partial correlations outside of the 95% basic bootstrap confidence intervals are color coded. Non-significant correlations are colored white. Properties shown are the resting membrane potential (Vm), input resistance (IR), membrane potential sag response (sag), membrane time constant (Tm), resonance frequency (Rm), resonance magnitude (Rm), rheobase (Rheo), slope of the current frequency relationship (FI), peak of the action potential after hyperpolarization (AHP), peak of the action potential (Smax) voltage threshold for the action potential (Sthr) and half-width of the action potential (SHW).</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig7b" title="Figure 7B"> <label data-itemprop="label">Figure 7B</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 8 #' @height 8 data_summary.mm_vsris <- prep_int_slopes_PCA(data.sc_r, "property", "mm_vsris") data_intercepts <- spread(data_summary.mm_vsris[,1:3], property, ind_intercept) data_slopes <- spread(data_summary.mm_vsris[,c(1:2, 4)], property, ind_slope) data.sc_fits <- data_intercepts %>% dplyr::select(ahp:vm) %>% na.omit Q_intercepts <- calcQ(data.sc_fits) Q_intercepts <- as.matrix(Q_intercepts) colnames(Q_intercepts) <- colnames(data.sc_fits) rownames(Q_intercepts) <- colnames(data.sc_fits) Q_intercepts <- Q_intercepts[match(order_names, rownames(Q_intercepts)), match(order_names, colnames(Q_intercepts))] colnames(Q_intercepts) <- new_names rownames(Q_intercepts) <- new_names (Q_intercepts_plot <- ggcorr(data = NULL, cor_matrix = Q_intercepts, geom = "circle", min_size = 0, max_size = 5, legend.size = 7, size = 2)) </code></pre> <figure slot="outputs"><img src="index.html.media/11" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="feature-relationships-and-inter-animal-variability-after-reducing-dimensionality-of-the-data-1"> Feature relationships and inter-animal variability after reducing dimensionality of the data.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Partial correlations between the electrophysiological features investigated at the level of animals. Partial correlations outside of the 95% basic bootstrap confidence intervals are color coded. Non-significant correlations are colored white. Properties shown are the resting membrane potential (Vm), input resistance (IR), membrane potential sag response (sag), membrane time constant (Tm), resonance frequency (Rm), resonance magnitude (Rm), rheobase (Rheo), slope of the current frequency relationship (FI), peak of the action potential after hyperpolarization (AHP), peak of the action potential (Smax) voltage threshold for the action potential (Sthr) and half-width of the action potential (SHW).</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig7c" title="Figure 7C"> <label data-itemprop="label">Figure 7C</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 8 #' @height 8 data.pca <- dplyr::select(data.sc, vm:fi, dvlocmm, id, housing, id, mlpos, hemi, sex, age, housing, expr, patchdir, rectime) %>% filter(age > 32 & age <45 & expr == "HP") all.pca <- prcomp(drop_na(data.pca[1:12], fi), retx = TRUE, scale = TRUE) prop.var.df <- as.data.frame(summary(all.pca)$importance[2,]) colnames(prop.var.df) <- c("PropVar") prop.var.df$components <- 1:12 (all.pca.prop.var.plot <- ggplot(prop.var.df, aes(components, PropVar)) + geom_bar(stat = "identity") + scale_x_discrete("Component") + ylab("Proportion of variance") + theme(title = element_text(size = 9), axis.text = element_text(size = 9)))</code></pre> <figure slot="outputs"><img src="index.html.media/12" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="feature-relationships-and-inter-animal-variability-after-reducing-dimensionality-of-the-data-2"> Feature relationships and inter-animal variability after reducing dimensionality of the data.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) Proportion of variance explained by each principal component. To remove variance caused by animal age and the experimenter identity, the principal component analysis used a reduced dataset obtained by one experimenter and restricted to animals between 32 and 45 days old (N = 25, n = 572).</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig7d" title="Figure 7D"> <label data-itemprop="label">Figure 7D</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 8 #' @height 8 # Requires Figure 7C to have been generated. (all.pca.biplot <- pca_biplot(as.data.frame(all.pca$rotation), fontsize = 2, order_names = order_names, new_names = c("Vm", "IR", "Sag", "Tm", "Res. F", "Res. Mag.", "Rheo", "FI", "AHPmax", "Spk. max", "Spk. thr", "Spk. HW")) + theme(text = element_text(size = 9)) + xlim(-0.5, 0.55))</code></pre> <figure slot="outputs"><img src="index.html.media/13" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="feature-relationships-and-inter-animal-variability-after-reducing-dimensionality-of-the-data-3"> Feature relationships and inter-animal variability after reducing dimensionality of the data.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D</strong>) Loading plot for the first two principal components.</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig7e" title="Figure 7E"> <label data-itemprop="label">Figure 7E</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 13 #' @height 7 all.pca.x <- bind_cols(as_tibble(all.pca$x), drop_na(data.pca, fi)) out.pca.x_g1_5 <- all.pca.x %>% gather("component", "value", 1:5) ( pc1to5_plot <- ggplot(data = out.pca.x_g1_5, aes( x = dvlocmm, y = value, colour = housing )) + geom_point(alpha = 0.5) + facet_wrap(~ component, ncol = 5) + scale_x_continuous("DV location (mm)", c(0, 1, 2)) + theme_classic() + PCA_theme + theme(legend.position = "bottom") )</code></pre> <figure slot="outputs"><img src="index.html.media/14" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="feature-relationships-and-inter-animal-variability-after-reducing-dimensionality-of-the-data-4"> Feature relationships and inter-animal variability after reducing dimensionality of the data.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">E</strong>) The first five principal components plotted as a function of position. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">F</strong>) Intercept (I), intercept plus the slope (I + S) and slopes aligned to the same intercept, for fits for each animal of the first five principal components to a mixed model with location as a fixed effect and animal as a random effect.</p> </figcaption> </figure> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig7f" title="Figure 7F"> <label data-itemprop="label">Figure 7F</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-programminglanguage="r"> <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#' @width 13 #' @height 6 # Reform data for use with dplyr. out.pca.x_g <- all.pca.x %>% gather("component", "value", 1:12) %>% group_by(component) %>% nest() %>% ungroup() # Fit models out.pca.x_g <- out.pca.x_g %>% mutate(mixedmodel_vsris = map(data, model_vsris)) %>% mutate(mixedmodel_vsris_null = map(data, model_vsris_null)) # Extract summary data from the fit out.pca.x_g <- out.pca.x_g %>% mutate(vsris_glance = map(mixedmodel_vsris, broom::glance)) %>% mutate(vsris_null_glance = map(mixedmodel_vsris_null, broom::glance)) # Preparation for making the figure combined_intercepts_slopes_PCA <- prep_int_slopes(out.pca.x_g, "component", "mixedmodel_vsris") id_housing_PCA <- distinct(all.pca.x, id, housing) combined_intercepts_slopes_PCA <- left_join(combined_intercepts_slopes_PCA, id_housing_PCA, by = "id") combined_intercepts_slopes_PCA$component_factors <- as.factor(combined_intercepts_slopes_PCA$component) combined_intercepts_slopes_PCA$component_factors = factor( combined_intercepts_slopes_PCA$component_factors, c( "PC1", "PC2", "PC3", "PC4", "PC5", "PC6", "PC7", "PC8", "PC9", "PC10", "PC11" ) ) # Plot the figure print( ggplot( subset( combined_intercepts_slopes_PCA, component %in% c("PC1", "PC2", "PC3", "PC4", "PC5") ), aes(x = measure, y = value_1, colour = housing) ) + geom_line(aes(group = id)) + geom_jitter(aes(y = value_2), width = 0.2) + scale_x_discrete( limits = c( "ind_intercept", "ind_intercept_slope", "global_intercept", "global_intercept_slope" ), label = c("I", "I + S", "", "") ) + facet_wrap( ~ component_factors, ncol = 5) + theme_classic() + hist_theme + theme( axis.line.x = element_blank(), axis.ticks.x = element_blank(), axis.text.x = element_text(angle = 90) ) + theme(legend.position = "none") )</code></pre> <figure slot="outputs"><img src="index.html.media/15" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="feature-relationships-and-inter-animal-variability-after-reducing-dimensionality-of-the-data-5"> Feature relationships and inter-animal variability after reducing dimensionality of the data.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">F</strong>) Intercept (I), intercept plus the slope (I + S) and slopes aligned to the same intercept, for fits for each animal of the first five principal components to a mixed model with location as a fixed effect and animal as a random effect.</p> </figcaption> </figure> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Is inter-animal variation present in PCA dimensions that account for dorsoventral variation? The intercept, but not the slope of the dependence of the first two principal components on dorsoventral position depended on housing (adjusted p=0.039 and 0.027) (<a href="#fig7" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 7E,F</a> and <a href="#supp15" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 15</a>). After accounting for housing, the first two principal components were still better fit by models that include animal identity as a random effect (adjusted p=3.3×10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−9</sup> and 4.1 × 10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−86</sup>), indicating remaining inter-animal differences in these components (<a href="#supp16" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 16</a>). A further nine of the next ten higher-order principal components did not depend on housing (adjusted p>0.1) (<a href="#supp15" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 15</a>), while eight differed significantly between animals (adjusted p<0.05) (<a href="#supp16" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 16</a>).</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Together, these analyses indicate that the dorsoventral organization of multiple electrophysiological features of SCs is captured by two principal components, suggesting two main sources of variance, both of which are dependent on experience. Significant inter-animal variation in the major sources of variance remains after accounting for experience and experimental parameters. </p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="discussion">Discussion</h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Phenotypic variation is found across many areas of biology (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib29">Geiler-Samerotte et al., 2013</a></cite>), but has received little attention in investigations of mammalian nervous systems. We find unexpected inter-animal variability in SC properties, suggesting that the integrative properties of neurons are determined by set points that differ between animals and are controlled at a circuit level (<a href="#fig8" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 8</a>). Continuous, location-dependent organization of set points for SC integrative properties provides new constraints on models for grid cell firing. More generally, the existence of inter-animal differences in set points has implications for experimental design and raises new questions about how the integrative properties of neurons are specified.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig8" title="Figure 8"> <label data-itemprop="label">Figure 8</label><img src="index.html.media/fig8.jpg" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="models-for-intra--and-inter-animal-variation">Models for intra- and inter-animal variation.</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) The configuration of a cell type can be conceived of as a trough (arrow head) in a developmental landscape (solid line). In this scheme, the trough can be considered as a set point. Differences between cells (filled circles) reflect variation away from the set point. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Neurons from different animals or located at different dorsoventral positions can be conceptualized as arising from different troughs in the developmental landscape. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) Variation may reflect inter-animal differences in factors that establish gradients (upper left) and in factors that are uniformly distributed (lower left), combining to generate set points that depend on animal identity and location (right). Each line corresponds to schematized properties of a single animal.</p> </figcaption> </figure> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="a-conceptual-framework-for-within-cell-type-variability">A conceptual framework for within cell type variability</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Theoretical models suggest how different cell types can be generated by varying target concentrations of intracellular Ca<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2+</sup> or rates of ion channel expression (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib56">O'Leary et al., 2014</a></cite>). The within cell type variability predicted by these models arises from different initial conditions and may explain the variability in our data between neurons from the same animal at the same dorsoventral location (<a href="#fig8" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 8A</a>). By contrast, the dependence of integrative properties on position and their variation between animals implies additional mechanisms that operate at the circuit level (<a href="#fig8" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 8B</a>). In principle, this variation could be accounted for by inter-animal differences in dorsoventrally tuned or spatially uniform factors that influence ion channel expression or target points for intracellular Ca<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2+</sup> (<a href="#fig8" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 8C</a>).</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The mechanisms for within cell type variability that are suggested by our results may differ from inter-animal variation described in invertebrate nervous systems. In invertebrates, inter-animal variability is between properties of individual identified neurons (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib36">Goaillard et al., 2009</a></cite>), whereas in mammalian nervous systems, neurons are not individually identifiable and the variation that we describe here is at the level of cell populations. From a developmental perspective in which cell identity is considered as a trough in a state-landscape through which each cell moves (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib79">Wang et al., 2011</a></cite>), variation in the population of neurons of the same type could be conceived as cell autonomous deviations from set points corresponding to the trough (<a href="#fig8" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 8A</a>). Our finding that variability among neurons of the same type manifests between as well as within animals, could be explained by differences between animals in the position of the trough or set point in the developmental landscape (<a href="#fig8" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 8B</a>).</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Our comparison of neurons from animals in standard and large cages provides evidence for the idea that within cell-type excitable properties are modified by experience (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib85">Zhang and Linden, 2003</a></cite>). For example, granule cells in the dentate gyrus that receive input from SCs increase their excitability when animals are housed in enriched environments (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib38">Green and Greenough, 1986</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib57">Ohline and Abraham, 2019</a></cite>). Our experiments differ in that we increased the size of the environment with the goal of activating more ventral grid cells, whereas previous enrichment experiments have focused on increasing the environmental complexity and availability of objects for exploration. Further investigation will be required to dissociate the influence of each factor on excitability.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="implications-of-continuous-dorsoventral-organization-of-stellate-cell-integrative-properties-for-grid-cell-firing"> Implications of continuous dorsoventral organization of stellate cell integrative properties for grid cell firing</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Dorsoventral gradients in the electrophysiological features of SCs have stimulated cellular models for the organization of grid firing (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib15">Burgess, 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib34">Giocomo and Hasselmo, 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib39">Grossberg and Pilly, 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib55">O'Donnell and Nolan, 2011</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib81">Widloski and Fiete, 2014</a></cite>). Increases in spatial scale following deletion of HCN1 channels (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib31">Giocomo et al., 2011</a></cite>), which in part determine the dorsoventral organization of SC integrative properties (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib28">Garden et al., 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib35">Giocomo and Hasselmo, 2009</a></cite>), support a relationship between the electrophysiological properties of SCs and grid cell spatial scales. Our data argue against models that explain this relationship through single cell computations (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib15">Burgess, 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib14">Burgess et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib30">Giocomo et al., 2007</a></cite>), as in this case, the modularity of integrative properties of SCs is required to generate modularity of grid firing. A continuous dorsoventral organization of the electrophysiological properties of SCs could support the modular grid firing generated by self-organizing maps (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib39">Grossberg and Pilly, 2012</a></cite>) or by synaptic learning mechanisms (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib45">Kropff and Treves, 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib76">Urdapilleta et al., 2017</a></cite>). It is less clear how a continuous gradient would affect the organization of grid firing predicted by continuous attractor network models, which can instead account for modularity by limiting synaptic interactions between modules (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib13">Burak and Fiete, 2009</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib17">Bush and Burgess, 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib26">Fuhs and Touretzky, 2006</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib41">Guanella et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib70">Shipston-Sharman et al., 2016</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib81">Widloski and Fiete, 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib82">Yoon et al., 2013</a></cite>). Modularity of grid cell firing could also arise through the anatomical clustering of calbindin-positive L2PCs (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib63">Ray et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib64">Ray and Brecht, 2016</a></cite>). Because many SCs do not appear to generate grid codes and as the most abundant functional cell type in the MEC appears to be non-grid spatial neurons (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib20">Diehl et al., 2017</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib43">Hardcastle et al., 2017</a></cite>), the continuous dorsoventral organization of SC integrative properties may also impact grid firing indirectly through modulation of these codes.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Our results add to previous comparisons of medially and laterally located SCs (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib18">Canto and Witter, 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib83">Yoshida et al., 2013</a></cite>). The similar dorsoventral organization of subthreshold integrative properties of SCs from medial and lateral parts of the MEC appears consistent with the organization of grid cell modules recorded in behaving animals (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>). How mediolateral differences in firing properties (<a href="#fig4s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 1</a>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib18">Canto and Witter, 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib83">Yoshida et al., 2013</a></cite>) might contribute to spatial computations within the MEC is unclear. </p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The continuous dorsoventral variation of the electrophysiological features of SCs suggested by our analysis is consistent with continuous dorsoventral gradients in gene expression along layer 2 of the MEC (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib62">Ramsden et al., 2015</a></cite>). For example, labelling of the mRNA and protein for the HCN1 ion channel suggests a continuous dorsoventral gradient in its expression (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib53">Nolan et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib62">Ramsden et al., 2015</a></cite>). It is also consistent with single-cell RNA sequencing analysis of other brain areas, which indicates that although the expression profiles for some cell types cluster around a point in feature space, others lie along a continuum (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib19">Cembrowski and Menon, 2018</a></cite>). It will be interesting in future to determine whether gene expression continua establish corresponding continua of electrophysiological features (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib47">Liss et al., 2001</a></cite>). </p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="functional-consequences-of-within-cell-type-inter-animal-variability">Functional consequences of within cell type inter-animal variability</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">What are the functional roles of inter-animal variability? In the crab stomatogastric ganglion, inter-animal variation correlates with circuit performance (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib36">Goaillard et al., 2009</a></cite>). Accordingly, variation in intrinsic properties of SCs might correlate with differences in grid firing (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib22">Domnisoru et al., 2013</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib40">Gu et al., 2018</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib66">Rowland et al., 2018</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib68">Schmidt-Hieber and Häusser, 2013</a></cite>) or behaviors that rely on SCs (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib44">Kitamura et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib61">Qin et al., 2018</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib74">Tennant et al., 2018</a></cite>). It is interesting in this respect that there appear to be inter-animal differences in the spatial scale of grid modules (Figure 5 of <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>). Modification of grid field scaling following deletion of HCN1 channels is also consistent with this possibility (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib31">Giocomo et al., 2011</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib48">Mallory et al., 2018</a></cite>). Alternatively, inter-animal differences may reflect multiple ways to achieve a common higher-order phenotype. According to this view, coding of spatial location by SCs would not differ between animals despite lower level variation in their intrinsic electrophysiological features. This is related to the idea of degeneracy at the level of single-cell electrophysiological properties (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib49">Marder and Goaillard, 2006</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib51">Mittal and Narayanan, 2018</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib56">O'Leary et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib73">Swensen and Bean, 2005</a></cite>), except that here the electrophysiological features differ between animals whereas the higher-order circuit computations may nevertheless be similar.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In conclusion, our results identify substantial within cell type variation in neuronal integrative properties that manifests between as well as within animals. This has implications for experimental design and model building as the distribution of replicates from the same animal will differ from those obtained from different animals (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib50">Marder and Taylor, 2011</a></cite>). An important future goal will be to distinguish causes of inter-animal variation. Many behaviors are characterized by substantial inter-animal variation (e.g. <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib77">Villette et al., 2017</a></cite>), which could result from variation in neuronal integrative properties, or could drive this variation. For example, it is possible that external factors such as social interactions may affect brain circuitry (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib78">Wang et al., 2011</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib80">Wang et al., 2014</a></cite>), although these effects appear to be focused on frontal cortical structures rather than circuits for spatial computations (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib80">Wang et al., 2014</a></cite>). Alternatively, stochastic mechanisms operating at the population level may drive the emergence of inter-animal differences during the development of SCs (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib23">Donato et al., 2017</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib64">Ray and Brecht, 2016</a></cite>). Addressing these questions may turn out to be critical to understanding the relationship between cellular biophysics and circuit-level computations in cognitive circuits (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib69">Schmidt-Hieber and Nolan, 2017</a></cite>).</p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="materials-and-methods"> Materials and methods</h2> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="mouse-strains">Mouse strains </h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All experimental procedures were performed under a United Kingdom Home Office license and with approval of the University of Edinburgh’s animal welfare committee. Recordings of many SCs per animal used C57Bl/6J mice (Charles River). Recordings targeting calbindin cells used a <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Wfs1</em><sup itemscope="" itemtype="http://schema.stenci.la/Superscript">Cre</sup> line (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Wfs1</em>-Tg3-CreERT2) obtained from Jackson Labs (Strain name: B6;C3-Tg(<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Wfs1</em>-cre/ERT2)3Aibs/J; stock number:009103) crossed to RCE:loxP (R26R CAG-boosted EGFP) reporter mice (described in <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib52">Miyoshi et al., 2010</a></cite>). To promote expression of Cre in the mice, tamoxifen (Sigma, 20 mg/ml in corn oil) was administered on three consecutive days by intraperitoneal injections, approximately 1 week before experiments. Mice were group housed in a 12 hr light/dark cycle with unrestricted access to food and water (light on 07.30–19.30 hr). Mice were usually housed in standard 0.2 × 0.37 m cages that contained a cardboard roll for enrichment. A subset of the mice was instead housed from pre-weaning ages in a larger 2.4 × 1.2 m cage that was enriched with up to 15 bright plastic objects and eight cardboard rolls (<a href="#fig2s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1</a>). Thus, the large cages had more items but at a slightly lower density (large cages — up to 1 item per 0.125 m<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup>; standard cages — 1 item per 0.074 m<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup>). All experiments in the standard cage used male mice. For experiments in the large cage, two mice were female, six mice were male and one was not identified. Because we did not find significant effects of sex on individual electrophysiologically properties, all mice were included in the analyses reported in the text. When only male mice were included, the effects of housing on the first principal component remained significant, whereas the effects of housing on individual electrophysiologically properties no longer reach statistical significance after correcting for multiple comparisons. Additional analyses that consider only male mice are provided in the code associated with the manuscript.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="slice-preparation">Slice preparation</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Methods for preparation of parasagittal brain slices containing medial entorhinal cortex were based on procedures described previously (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib59">Pastoll et al., 2012</a></cite>). Briefly, mice were sacrificed by cervical dislocation and their brains carefully removed and placed in cold (2–4°C) modified ACSF, with composition (in mM): NaCl 86, NaH<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub>PO<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">4</sub> 1.2, KCl 2.5, NaHCO<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">3</sub> 25, glucose 25, sucrose 75, CaCl<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub> 0.5, and MgCl<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub> 7. Brains were then hemisected and sectioned, also in modified ACSF at 4–8°C, using a vibratome (Leica VT1200S). To minimize variation in the slicing angle, the hemi-section was cut along the midline of the brain and the cut surface of the brain was glued to the cutting block. After cutting, brains were placed at 36°C for 30 min in standard ACSF, with composition (in mM): NaCl 124, NaH<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub>PO4 1.2, KCl 2.5, NaHCO<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">3</sub> 25, glucose 20, CaCl<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub> 2, and MgCl<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub> 1. They were then allowed to cool passively to room temperature. All slices were prepared by the same experimenter (HP), who followed the same procedure on each day.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="recording-methods">Recording methods</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Whole-cell patch-clamp recordings were made between 1 to 10 hr after slice preparation using procedures described previously (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib60">Pastoll et al., 2013</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib58">Pastoll et al., 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib59">Pastoll et al., 2012</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib72">Sürmeli et al., 2015</a></cite>). Recordings were made from slice perfused in standard ACSF maintained at 34–36°C. In these conditions, we observe spontaneous fast inhibitory and excitatory postsynaptic potentials, but do not find evidence for tonic GABAergic or glutamatergic currents. Patch electrodes were filled with the following intracellular solution (in mM): K gluconate 130; KCl 10, HEPES 10, MgCl<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub> 2, EGTA 0.1, Na<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub>ATP 2, Na<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">2</sub>GTP 0.3 and NaPhosphocreatine 10. The open tip resistance was 4–5 MΩ, all seal resistances were >2 GΩ and series resistances were <30 MΩ. Recordings were made in current clamp mode using Multiclamp 700B amplifiers (Molecular Devices, Sunnyvale, CA, USA) connected to PCs via Instrutech ITC-18 interfaces (HEKA Elektronik, Lambrecht, Germany) and using Axograph X acquisition software (<a href="http://axographx.com/" itemscope="" itemtype="http://schema.stenci.la/Link">http://axographx.com/</a>). Pipette capacitance and series resistances were compensated using the capacitance neutralization and bridge-balance amplifier controls. An experimentally measured liquid junction potential of 12.9 mV was not corrected for. Stellate cells were identified by their large sag response and the characteristic waveform of their action potential after hyperpolarization (see <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib2">Alonso and Klink, 1993</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib37">Gonzalez-Sulser et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib53">Nolan et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib58">Pastoll et al., 2012</a></cite>).</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To maximize the number of cells recorded per animal, we adopted two strategies. First, to minimize the time required to obtain data from each recorded cell, we measured electrophysiological features using a series of three short protocols following initiation of stable whole-cell recordings. We used responses to sub-threshold current steps to estimate passive membrane properties (<a href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2A</a>), a frequency modulated sinusoidal current waveform (ZAP waveform) to estimate impedance amplitude profiles (<a href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2B</a>), and a linear current ramp to estimate the action potential threshold and firing properties (<a href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2C</a>). From analysis of data obtained with these protocols, we obtained 12 quantitative measures that describe the sub- and supra-threshold integrative properties of each recorded cell (<a href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2A–C</a>). Second, for the majority of mice, two experimenters made recordings in parallel from neurons in two sagittal brain sections from the same hemisphere. The median dorsal-ventral extent of the recorded SCs was 1644 µm (range 0–2464 µm). Each experimenter aimed to sample recording locations evenly across the dorsoventral extent of the MEC, and for most animals, each experimenter recorded sequentially from opposite extremes of the dorsoventral axis. Each experimenter varied the starting location for recording between animals. For several features, the direction of recording affected their measured dependence on dorsoventral location, but the overall dependence of these features on dorsoventral location was robust to this effect (<a href="#supp9" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 9</a>).</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="measurement-of-electrophysiological-features-and-neuronal-location">Measurement of electrophysiological features and neuronal location</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Electrophysiological recordings were analyzed in Matlab (Mathworks) using a custom-written semi-automated pipeline. We defined each feature as follows (see also <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib53">Nolan et al., 2007</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib58">Pastoll et al., 2012</a></cite>): resting membrane potential was the mean of the membrane potential during the 1 s prior to injection of the current steps used to assess subthreshold properties; input resistance was the steady-state voltage response to the negative current steps divided by their amplitude; membrane time constant was the time constant of an exponential function fit to the initial phase of membrane potential responses to the negative current steps; the sag coefficient was the steady-state divided by the peak membrane potential response to the negative current steps; resonance frequency was the frequency at which the peak membrane potential impedance was found to occur; resonance magnitude was the ratio between the peak impedance and the impedance at a frequency of 1 Hz; action potential threshold was calculated from responses to positive current ramps as the membrane potential at which the first derivative of the membrane potential crossed 20 mv ms<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−1</sup> averaged across the first five spikes, or fewer if fewer spikes were triggered; rheobase was the ramp current at the point when the threshold was crossed on the first spike; spike maximum was the mean peak amplitude of the action potentials triggered by the positive current ramp; spike width was the duration of the action potentials measured at the voltage corresponding to the midpoint between the spike threshold and spike maximum; the AHP minimum was the negative peak membrane potential of the after hyperpolarization following the first action potential when a second action potential also occurred; and the F-I slope was the linear slope of the relationship between the spike rate and the injected ramp current over a 500 ms window.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The location of each recorded neuron was estimated as described previously (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib28">Garden et al., 2008</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib59">Pastoll et al., 2012</a></cite>). Following each recording, a low magnification image was taken of the slice with the patch-clamp electrode at the recording location. The image was calibrated and then the distance measured from the dorsal border of the MEC along the border of layers 1 and 2 to the location of the recorded cell.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="analysis-of-location-dependence-experience-dependence-and-inter-animal-differences"> Analysis of location-dependence, experience-dependence and inter-animal differences</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Analyses of location-dependence and inter-animal differences used R 3.4.3 (R Core Team, Vienna, Austria) and R Studio 1.1.383 (R Studio Inc, Boston, MA).</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To fit linear mixed effect models, we used the lme4 package (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib8">Bates et al., 2014</a></cite>). Features of interest were included as fixed effects and animal identity was included as a random effect. All reported analyses are for models with the minimal a priori random effect structure, in other words the random effect was specified with uncorrelated slope and intercept. We also evaluated models in which only the intercept, or correlated intercept and slope were specified as the random effect. Model assessment was performed using Akaike Information Criterion (AIC) scores. In general, models with either random slope and intercept, or correlated random slope and intercept, had lower AIC scores than random intercept only models, indicating a better fit to the data. We used the former set of models for all analyses of all properties for consistency and because a maximal effect structure may be preferable on theoretical grounds (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib5">Barr et al., 2013</a></cite>). We evaluated assumptions including linearity, normality, homoscedasticity and influential data points. For some features, we found modest deviations from these assumptions that could be remedied by handling non-linearity in the data using a copula transformation. Model fits were similar following transformation of the data. However, we focus here on analyses of the untransformed data because the physical interpretation of the resulting values for data points is clearer.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To evaluate the location-dependence of a given feature, p-values were calculated using a χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> test comparing models to null models with no location information but identical random effect specification. To calculate marginal and conditional R<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> of mixed effect models, we used the MuMin package (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib7">Bartoń, 2014</a></cite>). To evaluate additional fixed effects, we used Type II Wald χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> test tests provided by the car package (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib25">Fox and Weisberg, 2018</a></cite>). To compare mixed effect with equivalent linear models, we used a χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">2</sup> test to compare the calculated deviance for each model. For clarity, we have reported key statistics in the main text and provide full test statistics in the Supplemental Tables. In addition, the code from which the analyses can be fully reproduced is available at <a href="https://github.com/MattNolanLab/Inter_Intra_Variation" itemscope="" itemtype="http://schema.stenci.la/Link">https://github.com/MattNolanLab/Inter_Intra_Variation</a> (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib54">Nolan, 2020</a></cite>; copy archived at <a href="https://github.com/elifesciences-publications/Inter_Intra_Variation" itemscope="" itemtype="http://schema.stenci.la/Link">https://github.com/elifesciences-publications/Inter_Intra_Variation</a>). </p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To evaluate partial correlations between features, we used the function cor2pcor from the R package corpcor (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib67">Schafer et al., 2017</a></cite>). Principal components analysis used core R functions.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="implementation-of-tests-for-modularity">Implementation of tests for modularity</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To establish statistical tests to distinguish ‘modular’ from ‘continuous’ distributions given relatively few observations, we classified datasets as continuous or modular by modifying the gap statistic algorithm (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib75">Tibshirani et al., 2001</a></cite>). The gap statistic estimates the number of clusters (k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub>) that best account for the data in any given dataset (<a href="#fig1s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 1A-C</a>). However, this estimate may be prone to false positives, particularly where the numbers of observations are low. We therefore introduced a thresholding mechanism for tuning the sensitivity of the algorithm so that the false-positive rate, which is the rate of misclassifying datasets drawn from continuous (uniform) distributions as ‘modular’, is low, constant across different numbers of cluster modes and insensitive to dataset size (<a href="#fig1s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 1D-G</a>). With this approach, we are able to estimate whether a dataset is best described as lacking modularity (k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> = 1), or having a given number of modes (k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> > 1). Below, we describe tests carried out to validate the approach.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To illustrate the sensitivity and specificity of the modified gap statistic algorithm, we applied it to simulated datasets drawn either from a uniform distribution (k = 1, n = 40) or from a bimodal distribution with separation between the modes of five standard deviations (k = 2, n = 40, sigma = 5) (<a href="#fig1s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 2A</a>). We set the thresholding mechanism so that k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> for each distinct k (where k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> ≥2) has a false-positive rate of 0.01. In line with this, testing for 2 ≤ k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub> ≤ 8 (the maximum k expected to occur in grid spacing in the MEC), across multiple (N = 1000) simulated datasets drawn from the uniform distribution, produced a low false-positive rate (P(k<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">est</sub>)≥2 = <sub itemscope="" itemtype="http://schema.stenci.la/Subscript">0.07), whereas when the data were drawn from the bimodal distribution, the ability to detect modular organization (p</sub>detect<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">) was good (P[k</sub>est<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">]≥2 = </sub>0.8) (<a href="#fig1s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 2B</a>). The performance of the statistic improved with larger separation between clusters and with greater numbers of data points per dataset (<a href="#fig1s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 2C</a>) and is relatively insensitive to the numbers of clusters (<a href="#fig1s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 2D</a>). The algorithm maintains high rates of p<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">detect</sub> when modes have varying densities and when sigma between modes varies in a manner similar to grid spacing data (<a href="#fig1s3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 3</a>).</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="analysis-of-extracellular-recording-data-from-other-laboratories">Analysis of extracellular recording data from other laboratories</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Recently described algorithms (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib32">Giocomo et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>) address the problem of identifying modularity when data are sampled from multiple locations and data values vary as a function of location, as is the case for the mean spacing of grid fields for cells at different dorsoventral locations recorded in behaving animals using tetrodes (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib42">Hafting et al., 2005</a></cite>). They generate log-normalized discontinuity (which we refer to here as lnDS) or discreteness scores, which are the log of the ratio of discontinuity or discreteness scores for the data points of interest and for the sampling locations, with positive values interpreted as evidence for clustering (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib32">Giocomo et al., 2014</a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>). However, in simulations of datasets generated from a uniform distribution with evenly spaced recording locations, we find that the lnDS is always greater than zero (<a href="#fig1s4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 4A</a>). This is because evenly spaced locations result in a discontinuity score that approaches zero, and therefore the log ratio of the discontinuity of the data to this score will be positive. Thus, for evenly spaced data, the lnDS is guaranteed to produce false-positive results. When locations are instead sampled from a uniform distribution, approximately half of the simulated datasets have a log discontinuity ratio greater than 0 (<a href="#fig1s4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 4A</a>), which in previous studies would be interpreted as evidence of modularity (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib32">Giocomo et al., 2014</a></cite>). Similar discrepancies arise for the discreteness measure (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>). To address these issues, we introduced a log discontinuity ratio threshold, so that the discontinuity method could be matched to produce a similar false-positive rate to the adapted gap statistic algorithm used in the example above. After including this modification, we found that for a given false-positive rate, the adapted gap statistic is more sensitive at detecting modularity in the simulated datasets (<a href="#fig4s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 1B</a>).</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To establish whether the modified gap statistic detects clustering in experimental data, we applied it to previously published grid cell data recorded with tetrodes from awake behaving animals (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib71">Stensola et al., 2012</a></cite>). We find that the modified gap statistic identified clustered grid spacing for 6 of 7 animals previously identified as having grid modules and with n ≥ 20. For these animals, the number of modules was similar (but not always identical) to the number of previously identified modules (<a href="#fig1s5" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 5</a>). By contrast, the modified gap statistic does not identify clustering in five of six sets of recording locations, confirming that the grid clustering is likely not a result of uneven sampling of locations (we could not test the seventh as location data were not available). The thresholded discontinuity score also detects clustering in the same five of the six tested sets of grid data. From the six grid datasets detected as clustered with the modified gap statistic, we estimated the separation between clusters by fitting the data with a mixture of Gaussians, with the number of modes set by the value of k obtained with the modified gap statistic. This analysis suggested that the largest spacing between contiguous modules in each mouse is always >5.6 standard deviations (mean = 20.5 ± 5.0 standard deviations). Thus, the modified gap statistic detects modularity within the grid system and indicates that previous descriptions of grid modularity are, in general, robust to the possibility of false positives associated with the discreteness and discontinuity methods. </p> <section data-itemprop="references"> <h2 data-itemtype="http://schema.stenci.la/Heading">References</h2> <ol> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib1"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="CL Adamson"><span data-itemprop="givenNames"><span itemprop="givenName">CL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Adamson</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MA Reid"><span data-itemprop="givenNames"><span itemprop="givenName">MA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Reid</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ZL Mo"><span data-itemprop="givenNames"><span itemprop="givenName">ZL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Bowne-English"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bowne-English</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="RL Davis"><span data-itemprop="givenNames"><span itemprop="givenName">RL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Davis</span></span> </li> </ol><time itemprop="datePublished" datetime="2002">2002</time><span itemprop="headline">Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">447</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The Journal of Comparative Neurology</span></span></span><span itemprop="pageStart">331</span><span itemprop="pageEnd">350</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Firing%20features%20and%20potassium%20channel%20content%20of%20murine%20spiral%20ganglion%20neurons%20vary%20with%20cochlear%20location"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib2"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Alonso"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Alonso</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Klink"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Klink</span></span> </li> </ol><time itemprop="datePublished" datetime="1993">1993</time><span itemprop="headline">Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">70</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neurophysiology</span></span></span><span itemprop="pageStart">128</span><span itemprop="pageEnd">143</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Differential%20electroresponsiveness%20of%20stellate%20and%20pyramidal-like%20cells%20of%20medial%20entorhinal%20cortex%20layer%20II"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib3"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Angelo"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Angelo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EA Rancz"><span data-itemprop="givenNames"><span itemprop="givenName">EA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rancz</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="D Pimentel"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pimentel</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Hundahl"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hundahl</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Hannibal"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hannibal</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Fleischmann"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fleischmann</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Pichler"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pichler</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="TW Margrie"><span data-itemprop="givenNames"><span itemprop="givenName">TW</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Margrie</span></span> </li> </ol><time itemprop="datePublished" datetime="2012">2012</time><span itemprop="headline">A biophysical signature of network affiliation and sensory processing in mitral cells</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">488</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature</span></span></span><span itemprop="pageStart">375</span><span itemprop="pageEnd">378</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20biophysical%20signature%20of%20network%20affiliation%20and%20sensory%20processing%20in%20mitral%20cells"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib4"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="RH Baayen"><span data-itemprop="givenNames"><span itemprop="givenName">RH</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Baayen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DJ Davidson"><span data-itemprop="givenNames"><span itemprop="givenName">DJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Davidson</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DM Bates"><span data-itemprop="givenNames"><span itemprop="givenName">DM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bates</span></span> </li> </ol><time itemprop="datePublished" datetime="2008">2008</time><span itemprop="headline">Mixed-effects modeling with crossed random effects for subjects and items</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">59</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Memory and Language</span></span></span><span itemprop="pageStart">390</span><span itemprop="pageEnd">412</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Mixed-effects%20modeling%20with%20crossed%20random%20effects%20for%20subjects%20and%20items"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib5"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DJ Barr"><span data-itemprop="givenNames"><span itemprop="givenName">DJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Barr</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Levy"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Levy</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Scheepers"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Scheepers</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="HJ Tily"><span data-itemprop="givenNames"><span itemprop="givenName">HJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tily</span></span> </li> </ol><time itemprop="datePublished" datetime="2013">2013</time><span itemprop="headline">Random effects structure for confirmatory hypothesis testing: keep it maximal</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">68</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Memory and Language</span></span></span><span itemprop="pageStart">255</span><span itemprop="pageEnd">278</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Random%20effects%20structure%20for%20confirmatory%20hypothesis%20testing:%20keep%20it%20maximal"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib6"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Barry"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Barry</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Hayman"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hayman</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="N Burgess"><span data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burgess</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="KJ Jeffery"><span data-itemprop="givenNames"><span itemprop="givenName">KJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Jeffery</span></span> </li> </ol><time itemprop="datePublished" datetime="2007">2007</time><span itemprop="headline">Experience-dependent rescaling of entorhinal grids</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">10</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Neuroscience</span></span></span><span itemprop="pageStart">682</span><span itemprop="pageEnd">684</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Experience-dependent%20rescaling%20of%20entorhinal%20grids"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib7"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Bartoń"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bartoń</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">MuMIn: Multi-Model Inference</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=MuMIn:%20Multi-Model%20Inference"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib8"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="D Bates"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bates</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Mächler"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mächler</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Bolker"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bolker</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Walker"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Walker</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">Fitting linear Mixed-Effects models using lme4</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">arXiv</span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Fitting%20linear%20Mixed-Effects%20models%20using%20lme4"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib9"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Y Benjamini"><span data-itemprop="givenNames"><span itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Benjamini</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Y Hochberg"><span data-itemprop="givenNames"><span itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hochberg</span></span> </li> </ol><time itemprop="datePublished" datetime="1995">1995</time><span itemprop="headline">Controlling the false discovery rate: a practical and powerful approach to multiple testing</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">57</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of the Royal Statistical Society: Series B</span></span></span><span itemprop="pageStart">289</span><span itemprop="pageEnd">300</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Controlling%20the%20false%20discovery%20rate:%20a%20practical%20and%20powerful%20approach%20to%20multiple%20testing"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib10"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Boehlen"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Boehlen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="U Heinemann"><span data-itemprop="givenNames"><span itemprop="givenName">U</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Heinemann</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="I Erchova"><span data-itemprop="givenNames"><span itemprop="givenName">I</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Erchova</span></span> </li> </ol><time itemprop="datePublished" datetime="2010">2010</time><span itemprop="headline">The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">30</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">4585</span><span itemprop="pageEnd">4589</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20range%20of%20intrinsic%20frequencies%20represented%20by%20medial%20entorhinal%20cortex%20stellate%20cells%20extends%20with%20age"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib11"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="CA Booth"><span data-itemprop="givenNames"><span itemprop="givenName">CA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Booth</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Ridler"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ridler</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="TK Murray"><span data-itemprop="givenNames"><span itemprop="givenName">TK</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Murray</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MA Ward"><span data-itemprop="givenNames"><span itemprop="givenName">MA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ward</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Groot"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Groot</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Goodfellow"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Goodfellow</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="KG Phillips"><span data-itemprop="givenNames"><span itemprop="givenName">KG</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Phillips</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="AD Randall"><span data-itemprop="givenNames"><span itemprop="givenName">AD</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Randall</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JT Brown"><span data-itemprop="givenNames"><span itemprop="givenName">JT</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Brown</span></span> </li> </ol><time itemprop="datePublished" datetime="2016">2016</time><span itemprop="headline" content="Electrical and network neuronal properties are preferentially disrupted in Dorsal, but not ventral, medial en…">Electrical and network neuronal properties are preferentially disrupted in Dorsal, but not ventral, medial entorhinal cortex in a mouse model of tauopathy</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">36</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">312</span><span itemprop="pageEnd">324</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Electrical%20and%20network%20neuronal%20properties%20are%20preferentially%20disrupted%20in%20Dorsal,%20but%20not%20ventral,%20medial%20en%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib12"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="VH Brun"><span data-itemprop="givenNames"><span itemprop="givenName">VH</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Brun</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Solstad"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Solstad</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="KB Kjelstrup"><span data-itemprop="givenNames"><span itemprop="givenName">KB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kjelstrup</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Fyhn"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fyhn</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MP Witter"><span data-itemprop="givenNames"><span itemprop="givenName">MP</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Witter</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EI Moser"><span data-itemprop="givenNames"><span itemprop="givenName">EI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MB Moser"><span data-itemprop="givenNames"><span itemprop="givenName">MB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> </ol><time itemprop="datePublished" datetime="2008">2008</time><span itemprop="headline">Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">18</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Hippocampus</span></span></span><span itemprop="pageStart">1200</span><span itemprop="pageEnd">1212</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Progressive%20increase%20in%20grid%20scale%20from%20dorsal%20to%20ventral%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib13"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Y Burak"><span data-itemprop="givenNames"><span itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burak</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="IR Fiete"><span data-itemprop="givenNames"><span itemprop="givenName">IR</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fiete</span></span> </li> </ol><time itemprop="datePublished" datetime="2009">2009</time><span itemprop="headline">Accurate path integration in continuous attractor network models of grid cells</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">5</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">PLOS Computational Biology</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Accurate%20path%20integration%20in%20continuous%20attractor%20network%20models%20of%20grid%20cells"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib14"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="N Burgess"><span data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burgess</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Barry"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Barry</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J O'Keefe"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">O'Keefe</span></span> </li> </ol><time itemprop="datePublished" datetime="2007">2007</time><span itemprop="headline">An oscillatory interference model of grid cell firing</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">17</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Hippocampus</span></span></span><span itemprop="pageStart">801</span><span itemprop="pageEnd">812</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=An%20oscillatory%20interference%20model%20of%20grid%20cell%20firing"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib15"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="N Burgess"><span data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burgess</span></span> </li> </ol><time itemprop="datePublished" datetime="2008">2008</time><span itemprop="headline">Grid cells and theta as oscillatory interference: theory and predictions</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">18</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Hippocampus</span></span></span><span itemprop="pageStart">1157</span><span itemprop="pageEnd">1174</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Grid%20cells%20and%20theta%20as%20oscillatory%20interference:%20theory%20and%20predictions"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib16"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="BG Burton"><span data-itemprop="givenNames"><span itemprop="givenName">BG</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burton</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MN Economo"><span data-itemprop="givenNames"><span itemprop="givenName">MN</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Economo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="GJ Lee"><span data-itemprop="givenNames"><span itemprop="givenName">GJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lee</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JA White"><span data-itemprop="givenNames"><span itemprop="givenName">JA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">White</span></span> </li> </ol><time itemprop="datePublished" datetime="2008">2008</time><span itemprop="headline">Development of theta rhythmicity in entorhinal stellate cells of the juvenile rat</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">100</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neurophysiology</span></span></span><span itemprop="pageStart">3144</span><span itemprop="pageEnd">3157</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Development%20of%20theta%20rhythmicity%20in%20entorhinal%20stellate%20cells%20of%20the%20juvenile%20rat"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib17"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="D Bush"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bush</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="N Burgess"><span data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burgess</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">A hybrid oscillatory interference/continuous attractor network model of grid cell firing</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">34</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The Journal of Neuroscience</span></span></span><span itemprop="pageStart">5065</span><span itemprop="pageEnd">5079</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20hybrid%20oscillatory%20interference/continuous%20attractor%20network%20model%20of%20grid%20cell%20firing"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib18"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="CB Canto"><span data-itemprop="givenNames"><span itemprop="givenName">CB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Canto</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MP Witter"><span data-itemprop="givenNames"><span itemprop="givenName">MP</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Witter</span></span> </li> </ol><time itemprop="datePublished" datetime="2012">2012</time><span itemprop="headline">Cellular properties of principal neurons in the rat entorhinal cortex II the medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">22</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Hippocampus</span></span></span><span itemprop="pageStart">1277</span><span itemprop="pageEnd">1299</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Cellular%20properties%20of%20principal%20neurons%20in%20the%20rat%20entorhinal%20cortex%20II%20the%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib19"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MS Cembrowski"><span data-itemprop="givenNames"><span itemprop="givenName">MS</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Cembrowski</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="V Menon"><span data-itemprop="givenNames"><span itemprop="givenName">V</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Menon</span></span> </li> </ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline">Continuous variation within cell types of the nervous system</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">41</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Trends in Neurosciences</span></span></span><span itemprop="pageStart">337</span><span itemprop="pageEnd">348</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Continuous%20variation%20within%20cell%20types%20of%20the%20nervous%20system"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib20"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="GW Diehl"><span data-itemprop="givenNames"><span itemprop="givenName">GW</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Diehl</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="OJ Hon"><span data-itemprop="givenNames"><span itemprop="givenName">OJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hon</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Leutgeb"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Leutgeb</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JK Leutgeb"><span data-itemprop="givenNames"><span itemprop="givenName">JK</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Leutgeb</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline" content="Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with…">Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">94</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">83</span><span itemprop="pageEnd">92</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Grid%20and%20nongrid%20cells%20in%20medial%20entorhinal%20cortex%20represent%20spatial%20location%20and%20environmental%20features%20with%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib21"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="PD Dodson"><span data-itemprop="givenNames"><span itemprop="givenName">PD</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Dodson</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Pastoll"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pastoll</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2011">2011</time><span itemprop="headline" content="Dorsal-ventral organization of theta-like activity intrinsic to entorhinal stellate neurons is mediated by di…">Dorsal-ventral organization of theta-like activity intrinsic to entorhinal stellate neurons is mediated by differences in stochastic current fluctuations</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">589</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The Journal of Physiology</span></span></span><span itemprop="pageStart">2993</span><span itemprop="pageEnd">3008</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Dorsal-ventral%20organization%20of%20theta-like%20activity%20intrinsic%20to%20entorhinal%20stellate%20neurons%20is%20mediated%20by%20di%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib22"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Domnisoru"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Domnisoru</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="AA Kinkhabwala"><span data-itemprop="givenNames"><span itemprop="givenName">AA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kinkhabwala</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DW Tank"><span data-itemprop="givenNames"><span itemprop="givenName">DW</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tank</span></span> </li> </ol><time itemprop="datePublished" datetime="2013">2013</time><span itemprop="headline">Membrane potential dynamics of grid cells</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">495</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature</span></span></span><span itemprop="pageStart">199</span><span itemprop="pageEnd">204</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Membrane%20potential%20dynamics%20of%20grid%20cells"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib23"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="F Donato"><span data-itemprop="givenNames"><span itemprop="givenName">F</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Donato</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="RI Jacobsen"><span data-itemprop="givenNames"><span itemprop="givenName">RI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Jacobsen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MB Moser"><span data-itemprop="givenNames"><span itemprop="givenName">MB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EI Moser"><span data-itemprop="givenNames"><span itemprop="givenName">EI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Stellate cells drive maturation of the entorhinal-hippocampal circuit</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">355</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Science</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Stellate%20cells%20drive%20maturation%20of%20the%20entorhinal-hippocampal%20circuit"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib24"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LN Fletcher"><span data-itemprop="givenNames"><span itemprop="givenName">LN</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fletcher</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="SR Williams"><span data-itemprop="givenNames"><span itemprop="givenName">SR</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Williams</span></span> </li> </ol><time itemprop="datePublished" datetime="2019">2019</time><span itemprop="headline">Neocortical topology governs the dendritic integrative capacity of layer 5 pyramidal neurons</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">101</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">76</span><span itemprop="pageEnd">90</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Neocortical%20topology%20governs%20the%20dendritic%20integrative%20capacity%20of%20layer%205%20pyramidal%20neurons"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib25"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Fox"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fox</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Weisberg"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Weisberg</span></span> </li> </ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline">Untitled</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">An R Companion to Applied Regression</span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Untitled"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib26"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MC Fuhs"><span data-itemprop="givenNames"><span itemprop="givenName">MC</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fuhs</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DS Touretzky"><span data-itemprop="givenNames"><span itemprop="givenName">DS</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Touretzky</span></span> </li> </ol><time itemprop="datePublished" datetime="2006">2006</time><span itemprop="headline">A spin glass model of path integration in rat medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">26</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">4266</span><span itemprop="pageEnd">4276</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20spin%20glass%20model%20of%20path%20integration%20in%20rat%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib27"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Fyhn"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fyhn</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Molden"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Molden</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MP Witter"><span data-itemprop="givenNames"><span itemprop="givenName">MP</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Witter</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EI Moser"><span data-itemprop="givenNames"><span itemprop="givenName">EI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MB Moser"><span data-itemprop="givenNames"><span itemprop="givenName">MB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> </ol><time itemprop="datePublished" datetime="2004">2004</time><span itemprop="headline">Spatial representation in the entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">305</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Science</span></span></span><span itemprop="pageStart">1258</span><span itemprop="pageEnd">1264</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Spatial%20representation%20in%20the%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib28"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DL Garden"><span data-itemprop="givenNames"><span itemprop="givenName">DL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Garden</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="PD Dodson"><span data-itemprop="givenNames"><span itemprop="givenName">PD</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Dodson</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C O'Donnell"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">O'Donnell</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MD White"><span data-itemprop="givenNames"><span itemprop="givenName">MD</span></span><span data-itemprop="familyNames"><span itemprop="familyName">White</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2008">2008</time><span itemprop="headline">Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">60</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">875</span><span itemprop="pageEnd">889</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Tuning%20of%20synaptic%20integration%20in%20the%20medial%20entorhinal%20cortex%20to%20the%20organization%20of%20grid%20cell%20firing%20fields"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib29"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="KA Geiler-Samerotte"><span data-itemprop="givenNames"><span itemprop="givenName">KA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Geiler-Samerotte</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="CR Bauer"><span data-itemprop="givenNames"><span itemprop="givenName">CR</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bauer</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Li"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Li</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="N Ziv"><span data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ziv</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="D Gresham"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gresham</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ML Siegal"><span data-itemprop="givenNames"><span itemprop="givenName">ML</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Siegal</span></span> </li> </ol><time itemprop="datePublished" datetime="2013">2013</time><span itemprop="headline">The details in the distributions: why and how to study phenotypic variability</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">24</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Current Opinion in Biotechnology</span></span></span><span itemprop="pageStart">752</span><span itemprop="pageEnd">759</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20details%20in%20the%20distributions:%20why%20and%20how%20to%20study%20phenotypic%20variability"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib30"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LM Giocomo"><span data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Giocomo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EA Zilli"><span data-itemprop="givenNames"><span itemprop="givenName">EA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zilli</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Fransén"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fransén</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ME Hasselmo"><span data-itemprop="givenNames"><span itemprop="givenName">ME</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hasselmo</span></span> </li> </ol><time itemprop="datePublished" datetime="2007">2007</time><span itemprop="headline">Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">315</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Science</span></span></span><span itemprop="pageStart">1719</span><span itemprop="pageEnd">1722</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Temporal%20frequency%20of%20subthreshold%20oscillations%20scales%20with%20entorhinal%20grid%20cell%20field%20spacing"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib31"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LM Giocomo"><span data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Giocomo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="SA Hussaini"><span data-itemprop="givenNames"><span itemprop="givenName">SA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hussaini</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="F Zheng"><span data-itemprop="givenNames"><span itemprop="givenName">F</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zheng</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ER Kandel"><span data-itemprop="givenNames"><span itemprop="givenName">ER</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kandel</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MB Moser"><span data-itemprop="givenNames"><span itemprop="givenName">MB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EI Moser"><span data-itemprop="givenNames"><span itemprop="givenName">EI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> </ol><time itemprop="datePublished" datetime="2011">2011</time><span itemprop="headline">Grid cells use HCN1 channels for spatial scaling</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">147</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Cell</span></span></span><span itemprop="pageStart">1159</span><span itemprop="pageEnd">1170</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Grid%20cells%20use%20HCN1%20channels%20for%20spatial%20scaling"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib32"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LM Giocomo"><span data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Giocomo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Stensola"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Stensola</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Bonnevie"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bonnevie</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Van Cauter"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Van Cauter</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MB Moser"><span data-itemprop="givenNames"><span itemprop="givenName">MB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EI Moser"><span data-itemprop="givenNames"><span itemprop="givenName">EI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">Topography of head direction cells in medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">24</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Current Biology</span></span></span><span itemprop="pageStart">252</span><span itemprop="pageEnd">262</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Topography%20of%20head%20direction%20cells%20in%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib33"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LM Giocomo"><span data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Giocomo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ME Hasselmo"><span data-itemprop="givenNames"><span itemprop="givenName">ME</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hasselmo</span></span> </li> </ol><time itemprop="datePublished" datetime="2008">2008</time><span itemprop="headline" content="Time constants of h current in layer ii stellate cells differ along the dorsal to ventral Axis of medial ento…">Time constants of h current in layer ii stellate cells differ along the dorsal to ventral Axis of medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">28</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">9414</span><span itemprop="pageEnd">9425</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Time%20constants%20of%20h%20current%20in%20layer%20ii%20stellate%20cells%20differ%20along%20the%20dorsal%20to%20ventral%20Axis%20of%20medial%20ento%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib34"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LM Giocomo"><span data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Giocomo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ME Hasselmo"><span data-itemprop="givenNames"><span itemprop="givenName">ME</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hasselmo</span></span> </li> </ol><time itemprop="datePublished" datetime="2008">2008</time><span itemprop="headline">Computation by oscillations: implications of experimental data for theoretical models of grid cells</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">18</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Hippocampus</span></span></span><span itemprop="pageStart">1186</span><span itemprop="pageEnd">1199</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Computation%20by%20oscillations:%20implications%20of%20experimental%20data%20for%20theoretical%20models%20of%20grid%20cells"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib35"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LM Giocomo"><span data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Giocomo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ME Hasselmo"><span data-itemprop="givenNames"><span itemprop="givenName">ME</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hasselmo</span></span> </li> </ol><time itemprop="datePublished" datetime="2009">2009</time><span itemprop="headline" content="Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mi…">Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">29</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">7625</span><span itemprop="pageEnd">7630</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Knock-out%20of%20HCN1%20subunit%20flattens%20dorsal-ventral%20frequency%20gradient%20of%20medial%20entorhinal%20neurons%20in%20adult%20mi%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib36"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JM Goaillard"><span data-itemprop="givenNames"><span itemprop="givenName">JM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Goaillard</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="AL Taylor"><span data-itemprop="givenNames"><span itemprop="givenName">AL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Taylor</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DJ Schulz"><span data-itemprop="givenNames"><span itemprop="givenName">DJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Schulz</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Marder"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Marder</span></span> </li> </ol><time itemprop="datePublished" datetime="2009">2009</time><span itemprop="headline">Functional consequences of animal-to-animal variation in circuit parameters</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">12</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Neuroscience</span></span></span><span itemprop="pageStart">1424</span><span itemprop="pageEnd">1430</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Functional%20consequences%20of%20animal-to-animal%20variation%20in%20circuit%20parameters"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib37"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Gonzalez-Sulser"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gonzalez-Sulser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="D Parthier"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Parthier</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Candela"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Candela</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C McClure"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">McClure</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Pastoll"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pastoll</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="D Garden"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Garden</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="G Sürmeli"><span data-itemprop="givenNames"><span itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sürmeli</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">GABAergic projections from the medial septum selectively inhibit interneurons in the medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">34</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">16739</span><span itemprop="pageEnd">16743</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=GABAergic%20projections%20from%20the%20medial%20septum%20selectively%20inhibit%20interneurons%20in%20the%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib38"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EJ Green"><span data-itemprop="givenNames"><span itemprop="givenName">EJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Green</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="WT Greenough"><span data-itemprop="givenNames"><span itemprop="givenName">WT</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Greenough</span></span> </li> </ol><time itemprop="datePublished" datetime="1986">1986</time><span itemprop="headline" content="Altered synaptic transmission in Dentate Gyrus of rats reared in complex environments: evidence from hippocam…">Altered synaptic transmission in Dentate Gyrus of rats reared in complex environments: evidence from hippocampal slices maintained in vitro</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">55</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neurophysiology</span></span></span><span itemprop="pageStart">739</span><span itemprop="pageEnd">750</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Altered%20synaptic%20transmission%20in%20Dentate%20Gyrus%20of%20rats%20reared%20in%20complex%20environments:%20evidence%20from%20hippocam%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib39"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Grossberg"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Grossberg</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="PK Pilly"><span data-itemprop="givenNames"><span itemprop="givenName">PK</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pilly</span></span> </li> </ol><time itemprop="datePublished" datetime="2012">2012</time><span itemprop="headline" content="How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rat…">How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">8</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">PLOS Computational Biology</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=How%20entorhinal%20grid%20cells%20may%20learn%20multiple%20spatial%20scales%20from%20a%20dorsoventral%20gradient%20of%20cell%20response%20rat%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib40"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Y Gu"><span data-itemprop="givenNames"><span itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Lewallen"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lewallen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="AA Kinkhabwala"><span data-itemprop="givenNames"><span itemprop="givenName">AA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kinkhabwala</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Domnisoru"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Domnisoru</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Yoon"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Yoon</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JL Gauthier"><span data-itemprop="givenNames"><span itemprop="givenName">JL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gauthier</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="IR Fiete"><span data-itemprop="givenNames"><span itemprop="givenName">IR</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fiete</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DW Tank"><span data-itemprop="givenNames"><span itemprop="givenName">DW</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tank</span></span> </li> </ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline">A Map-like Micro-Organization of grid cells in the medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">175</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Cell</span></span></span><span itemprop="pageStart">736</span><span itemprop="pageEnd">750</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20Map-like%20Micro-Organization%20of%20grid%20cells%20in%20the%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib41"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Guanella"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Guanella</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="D Kiper"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kiper</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="P Verschure"><span data-itemprop="givenNames"><span itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Verschure</span></span> </li> </ol><time itemprop="datePublished" datetime="2007">2007</time><span itemprop="headline">A model of grid cells based on a twisted torus topology</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">17</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">International Journal of Neural Systems</span></span></span><span itemprop="pageStart">231</span><span itemprop="pageEnd">240</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20model%20of%20grid%20cells%20based%20on%20a%20twisted%20torus%20topology"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib42"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Hafting"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hafting</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Fyhn"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fyhn</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Molden"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Molden</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MB Moser"><span data-itemprop="givenNames"><span itemprop="givenName">MB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EI Moser"><span data-itemprop="givenNames"><span itemprop="givenName">EI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> </ol><time itemprop="datePublished" datetime="2005">2005</time><span itemprop="headline">Microstructure of a spatial map in the entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">436</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature</span></span></span><span itemprop="pageStart">801</span><span itemprop="pageEnd">806</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Microstructure%20of%20a%20spatial%20map%20in%20the%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib43"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Hardcastle"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hardcastle</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="N Maheswaranathan"><span data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Maheswaranathan</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Ganguli"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ganguli</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LM Giocomo"><span data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Giocomo</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">94</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">375</span><span itemprop="pageEnd">387</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20multiplexed,%20heterogeneous,%20and%20adaptive%20code%20for%20navigation%20in%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib44"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Kitamura"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kitamura</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Pignatelli"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pignatelli</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Suh"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Suh</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Kohara"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kohara</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Yoshiki"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Yoshiki</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Abe"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Abe</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Tonegawa"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tonegawa</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">Island cells control temporal association memory</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">343</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Science</span></span></span><span itemprop="pageStart">896</span><span itemprop="pageEnd">901</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Island%20cells%20control%20temporal%20association%20memory"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib45"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Kropff"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kropff</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Treves"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Treves</span></span> </li> </ol><time itemprop="datePublished" datetime="2008">2008</time><span itemprop="headline">The emergence of grid cells: intelligent design or just adaptation?</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">18</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Hippocampus</span></span></span><span itemprop="pageStart">1256</span><span itemprop="pageEnd">1269</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20emergence%20of%20grid%20cells:%20intelligent%20design%20or%20just%20adaptation?"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib46"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Kuba"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kuba</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Yamada"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Yamada</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="I Fukui"><span data-itemprop="givenNames"><span itemprop="givenName">I</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fukui</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Ohmori"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ohmori</span></span> </li> </ol><time itemprop="datePublished" datetime="2005">2005</time><span itemprop="headline">Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">25</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">1924</span><span itemprop="pageEnd">1934</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Tonotopic%20specialization%20of%20auditory%20coincidence%20detection%20in%20nucleus%20laminaris%20of%20the%20chick"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib47"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Liss"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Liss</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="O Franz"><span data-itemprop="givenNames"><span itemprop="givenName">O</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Franz</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Sewing"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sewing</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Bruns"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bruns</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Neuhoff"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Neuhoff</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Roeper"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Roeper</span></span> </li> </ol><time itemprop="datePublished" datetime="2001">2001</time><span itemprop="headline">Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">20</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The EMBO Journal</span></span></span><span itemprop="pageStart">5715</span><span itemprop="pageEnd">5724</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Tuning%20pacemaker%20frequency%20of%20individual%20dopaminergic%20neurons%20by%20Kv4.3L%20and%20KChip3.1%20transcription"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib48"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="CS Mallory"><span data-itemprop="givenNames"><span itemprop="givenName">CS</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mallory</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Hardcastle"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hardcastle</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JS Bant"><span data-itemprop="givenNames"><span itemprop="givenName">JS</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bant</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="LM Giocomo"><span data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Giocomo</span></span> </li> </ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline">Grid scale drives the scale and long-term stability of place maps</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">21</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Neuroscience</span></span></span><span itemprop="pageStart">270</span><span itemprop="pageEnd">282</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Grid%20scale%20drives%20the%20scale%20and%20long-term%20stability%20of%20place%20maps"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib49"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Marder"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Marder</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JM Goaillard"><span data-itemprop="givenNames"><span itemprop="givenName">JM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Goaillard</span></span> </li> </ol><time itemprop="datePublished" datetime="2006">2006</time><span itemprop="headline">Variability, compensation and homeostasis in neuron and network function</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">7</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Reviews Neuroscience</span></span></span><span itemprop="pageStart">563</span><span itemprop="pageEnd">574</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Variability,%20compensation%20and%20homeostasis%20in%20neuron%20and%20network%20function"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib50"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Marder"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Marder</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="AL Taylor"><span data-itemprop="givenNames"><span itemprop="givenName">AL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Taylor</span></span> </li> </ol><time itemprop="datePublished" datetime="2011">2011</time><span itemprop="headline">Multiple models to capture the variability in biological neurons and networks</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">14</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Neuroscience</span></span></span><span itemprop="pageStart">133</span><span itemprop="pageEnd">138</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Multiple%20models%20to%20capture%20the%20variability%20in%20biological%20neurons%20and%20networks"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib51"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="D Mittal"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mittal</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Narayanan"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Narayanan</span></span> </li> </ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline" content="Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations, and intrinsic excitab…">Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations, and intrinsic excitability of entorhinal stellate cells</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">120</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neurophysiology</span></span></span><span itemprop="pageStart">576</span><span itemprop="pageEnd">600</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Degeneracy%20in%20the%20robust%20expression%20of%20spectral%20selectivity,%20subthreshold%20oscillations,%20and%20intrinsic%20excitab%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib52"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="G Miyoshi"><span data-itemprop="givenNames"><span itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Miyoshi</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Hjerling-Leffler"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hjerling-Leffler</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Karayannis"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Karayannis</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="VH Sousa"><span data-itemprop="givenNames"><span itemprop="givenName">VH</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sousa</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="SJ Butt"><span data-itemprop="givenNames"><span itemprop="givenName">SJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Butt</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Battiste"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Battiste</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JE Johnson"><span data-itemprop="givenNames"><span itemprop="givenName">JE</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Johnson</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="RP Machold"><span data-itemprop="givenNames"><span itemprop="givenName">RP</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Machold</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="G Fishell"><span data-itemprop="givenNames"><span itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fishell</span></span> </li> </ol><time itemprop="datePublished" datetime="2010">2010</time><span itemprop="headline" content="Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of s…">Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">30</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">1582</span><span itemprop="pageEnd">1594</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Genetic%20fate%20mapping%20reveals%20that%20the%20caudal%20ganglionic%20eminence%20produces%20a%20large%20and%20diverse%20population%20of%20s%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib53"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JT Dudman"><span data-itemprop="givenNames"><span itemprop="givenName">JT</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Dudman</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="PD Dodson"><span data-itemprop="givenNames"><span itemprop="givenName">PD</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Dodson</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Santoro"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Santoro</span></span> </li> </ol><time itemprop="datePublished" datetime="2007">2007</time><span itemprop="headline" content="HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorh…">HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">27</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">12440</span><span itemprop="pageEnd">12451</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=HCN1%20channels%20control%20resting%20and%20active%20integrative%20properties%20of%20stellate%20cells%20from%20layer%20II%20of%20the%20entorh%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib54"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2020">2020</time><span itemprop="headline">Analyses for investigation of large scale organisation of stellate cell properties</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Analyses%20for%20investigation%20of%20large%20scale%20organisation%20of%20stellate%20cell%20properties"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib55"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C O'Donnell"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">O'Donnell</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2011">2011</time><span itemprop="headline">Tuning of synaptic responses: an organizing principle for optimization of neural circuits</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">34</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Trends in Neurosciences</span></span></span><span itemprop="pageStart">51</span><span itemprop="pageEnd">60</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Tuning%20of%20synaptic%20responses:%20an%20organizing%20principle%20for%20optimization%20of%20neural%20circuits"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib56"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T O'Leary"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">O'Leary</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="AH Williams"><span data-itemprop="givenNames"><span itemprop="givenName">AH</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Williams</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Franci"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Franci</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Marder"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Marder</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline" content="Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expr…">Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">82</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">809</span><span itemprop="pageEnd">821</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Cell%20types,%20network%20homeostasis,%20and%20pathological%20compensation%20from%20a%20biologically%20plausible%20ion%20channel%20expr%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib57"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="SM Ohline"><span data-itemprop="givenNames"><span itemprop="givenName">SM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ohline</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="WC Abraham"><span data-itemprop="givenNames"><span itemprop="givenName">WC</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Abraham</span></span> </li> </ol><time itemprop="datePublished" datetime="2019">2019</time><span itemprop="headline">Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">145</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuropharmacology</span></span></span><span itemprop="pageStart">3</span><span itemprop="pageEnd">12</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Environmental%20enrichment%20effects%20on%20synaptic%20and%20cellular%20physiology%20of%20hippocampal%20neurons"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib58"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Pastoll"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pastoll</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="HL Ramsden"><span data-itemprop="givenNames"><span itemprop="givenName">HL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ramsden</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2012">2012</time><span itemprop="headline" content="Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid …">Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">6</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Frontiers in Neural Circuits</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Intrinsic%20electrophysiological%20properties%20of%20entorhinal%20cortex%20stellate%20cells%20and%20their%20contribution%20to%20grid%20%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib59"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Pastoll"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pastoll</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M White"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">White</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2012">2012</time><span itemprop="headline" content="Preparation of parasagittal slices for the investigation of Dorsal-ventral organization of the rodent medial …">Preparation of parasagittal slices for the investigation of Dorsal-ventral organization of the rodent medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Visualized Experiments</span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Preparation%20of%20parasagittal%20slices%20for%20the%20investigation%20of%20Dorsal-ventral%20organization%20of%20the%20rodent%20medial%20%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib60"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Pastoll"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pastoll</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="L Solanka"><span data-itemprop="givenNames"><span itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Solanka</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MC Rossum"><span data-itemprop="givenNames"><span itemprop="givenName">MC</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rossum</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2013">2013</time><span itemprop="headline">Feedback inhibition enables θ-nested γ oscillations and grid firing fields</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">77</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">141</span><span itemprop="pageEnd">154</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Feedback%20inhibition%20enables%20%CE%B8-nested%20%CE%B3%20oscillations%20and%20grid%20firing%20fields"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib61"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Qin"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Qin</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="L Fu"><span data-itemprop="givenNames"><span itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Hu"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="X Liao"><span data-itemprop="givenNames"><span itemprop="givenName">X</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Liao</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Lu"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="W He"><span data-itemprop="givenNames"><span itemprop="givenName">W</span></span><span data-itemprop="familyNames"><span itemprop="familyName">He</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Liang"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Liang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Zhang"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Li"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Li</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Yao"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Yao</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Yan"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Yan</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Chen"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Chen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Jia"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Jia</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Zott"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zott</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Konnerth"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Konnerth</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="X Chen"><span data-itemprop="givenNames"><span itemprop="givenName">X</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Chen</span></span> </li> </ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline">A Visual-Cue-Dependent memory circuit for place navigation</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">99</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">47</span><span itemprop="pageEnd">55</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20Visual-Cue-Dependent%20memory%20circuit%20for%20place%20navigation"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib62"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="HL Ramsden"><span data-itemprop="givenNames"><span itemprop="givenName">HL</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ramsden</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="G Sürmeli"><span data-itemprop="givenNames"><span itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sürmeli</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="SG McDonagh"><span data-itemprop="givenNames"><span itemprop="givenName">SG</span></span><span data-itemprop="familyNames"><span itemprop="familyName">McDonagh</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2015">2015</time><span itemprop="headline" content="Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anato…">Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">11</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">PLOS Computational Biology</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Laminar%20and%20dorsoventral%20molecular%20organization%20of%20the%20medial%20entorhinal%20cortex%20revealed%20by%20large-scale%20anato%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib63"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Ray"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ray</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Naumann"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Naumann</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Burgalossi"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burgalossi</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Q Tang"><span data-itemprop="givenNames"><span itemprop="givenName">Q</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Schmidt"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Schmidt</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Brecht"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Brecht</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">343</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Science</span></span></span><span itemprop="pageStart">891</span><span itemprop="pageEnd">896</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Grid-layout%20and%20theta-modulation%20of%20layer%202%20pyramidal%20neurons%20in%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib64"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="S Ray"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ray</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Brecht"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Brecht</span></span> </li> </ol><time itemprop="datePublished" datetime="2016">2016</time><span itemprop="headline">Structural development and dorsoventral maturation of the medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">5</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">eLife</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Structural%20development%20and%20dorsoventral%20maturation%20of%20the%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib65"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Regev"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Regev</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="SA Teichmann"><span data-itemprop="givenNames"><span itemprop="givenName">SA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Teichmann</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ES Lander"><span data-itemprop="givenNames"><span itemprop="givenName">ES</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lander</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="I Amit"><span data-itemprop="givenNames"><span itemprop="givenName">I</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Amit</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Benoist"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Benoist</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Birney"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Birney</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Bodenmiller"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bodenmiller</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="P Campbell"><span data-itemprop="givenNames"><span itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Campbell</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="P Carninci"><span data-itemprop="givenNames"><span itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Carninci</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="O Clatworthy M"><span data-itemprop="givenNames"><span itemprop="givenName">O</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Clatworthy M</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Science forum: the human cell atlas</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">6</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">eLife</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Science%20forum:%20the%20human%20cell%20atlas"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib66"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DC Rowland"><span data-itemprop="givenNames"><span itemprop="givenName">DC</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rowland</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="HA Obenhaus"><span data-itemprop="givenNames"><span itemprop="givenName">HA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Obenhaus</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ER Skytøen"><span data-itemprop="givenNames"><span itemprop="givenName">ER</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Skytøen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Q Zhang"><span data-itemprop="givenNames"><span itemprop="givenName">Q</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="CG Kentros"><span data-itemprop="givenNames"><span itemprop="givenName">CG</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kentros</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EI Moser"><span data-itemprop="givenNames"><span itemprop="givenName">EI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MB Moser"><span data-itemprop="givenNames"><span itemprop="givenName">MB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> </ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline">Functional properties of stellate cells in medial entorhinal cortex layer II</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">7</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">eLife</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Functional%20properties%20of%20stellate%20cells%20in%20medial%20entorhinal%20cortex%20layer%20II"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib67"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Schafer"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Schafer</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Opgen-Rhein"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Opgen-Rhein</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="V Zuber"><span data-itemprop="givenNames"><span itemprop="givenName">V</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zuber</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Ahdesmaki"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ahdesmaki</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="APD Silva"><span data-itemprop="givenNames"><span itemprop="givenName">APD</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Silva</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Strimmer"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Strimmer</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">corpcor: Efficient estimation of covariance and (partial) correlation</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=corpcor:%20Efficient%20estimation%20of%20covariance%20and%20(partial)%20correlation"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib68"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Schmidt-Hieber"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Schmidt-Hieber</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Häusser"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Häusser</span></span> </li> </ol><time itemprop="datePublished" datetime="2013">2013</time><span itemprop="headline">Cellular mechanisms of spatial navigation in the medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">16</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Neuroscience</span></span></span><span itemprop="pageStart">325</span><span itemprop="pageEnd">331</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Cellular%20mechanisms%20of%20spatial%20navigation%20in%20the%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib69"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Schmidt-Hieber"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Schmidt-Hieber</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Synaptic integrative mechanisms for spatial cognition</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">20</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Neuroscience</span></span></span><span itemprop="pageStart">1483</span><span itemprop="pageEnd">1492</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Synaptic%20integrative%20mechanisms%20for%20spatial%20cognition"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib70"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="O Shipston-Sharman"><span data-itemprop="givenNames"><span itemprop="givenName">O</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Shipston-Sharman</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="L Solanka"><span data-itemprop="givenNames"><span itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Solanka</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2016">2016</time><span itemprop="headline">Continuous attractor network models of grid cell firing based on excitatory-inhibitory interactions</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">594</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The Journal of Physiology</span></span></span><span itemprop="pageStart">6547</span><span itemprop="pageEnd">6557</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Continuous%20attractor%20network%20models%20of%20grid%20cell%20firing%20based%20on%20excitatory-inhibitory%20interactions"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib71"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Stensola"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Stensola</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Stensola"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Stensola</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Solstad"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Solstad</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Frøland"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Frøland</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MB Moser"><span data-itemprop="givenNames"><span itemprop="givenName">MB</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="EI Moser"><span data-itemprop="givenNames"><span itemprop="givenName">EI</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moser</span></span> </li> </ol><time itemprop="datePublished" datetime="2012">2012</time><span itemprop="headline">The entorhinal grid map is discretized</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">492</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature</span></span></span><span itemprop="pageStart">72</span><span itemprop="pageEnd">78</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20entorhinal%20grid%20map%20is%20discretized"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib72"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="G Sürmeli"><span data-itemprop="givenNames"><span itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sürmeli</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DC Marcu"><span data-itemprop="givenNames"><span itemprop="givenName">DC</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Marcu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C McClure"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">McClure</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DLF Garden"><span data-itemprop="givenNames"><span itemprop="givenName">DLF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Garden</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Pastoll"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pastoll</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2015">2015</time><span itemprop="headline">Molecularly defined circuitry reveals Input-Output segregation in deep layers of the medial entorhinal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">88</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">1040</span><span itemprop="pageEnd">1053</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Molecularly%20defined%20circuitry%20reveals%20Input-Output%20segregation%20in%20deep%20layers%20of%20the%20medial%20entorhinal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib73"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="AM Swensen"><span data-itemprop="givenNames"><span itemprop="givenName">AM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Swensen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="BP Bean"><span data-itemprop="givenNames"><span itemprop="givenName">BP</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bean</span></span> </li> </ol><time itemprop="datePublished" datetime="2005">2005</time><span itemprop="headline" content="Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium condu…">Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">25</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Neuroscience</span></span></span><span itemprop="pageStart">3509</span><span itemprop="pageEnd">3520</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Robustness%20of%20burst%20firing%20in%20dissociated%20purkinje%20neurons%20with%20acute%20or%20long-term%20reductions%20in%20sodium%20condu%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib74"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="SA Tennant"><span data-itemprop="givenNames"><span itemprop="givenName">SA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tennant</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="L Fischer"><span data-itemprop="givenNames"><span itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fischer</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DLF Garden"><span data-itemprop="givenNames"><span itemprop="givenName">DLF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Garden</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="KZ Gerlei"><span data-itemprop="givenNames"><span itemprop="givenName">KZ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gerlei</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Martinez-Gonzalez"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Martinez-Gonzalez</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C McClure"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">McClure</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ER Wood"><span data-itemprop="givenNames"><span itemprop="givenName">ER</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Wood</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MF Nolan"><span data-itemprop="givenNames"><span itemprop="givenName">MF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nolan</span></span> </li> </ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline">Stellate cells in the medial entorhinal cortex are required for spatial learning</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">22</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Cell Reports</span></span></span><span itemprop="pageStart">1313</span><span itemprop="pageEnd">1324</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Stellate%20cells%20in%20the%20medial%20entorhinal%20cortex%20are%20required%20for%20spatial%20learning"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib75"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Tibshirani"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tibshirani</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="G Walther"><span data-itemprop="givenNames"><span itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Walther</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="T Hastie"><span data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hastie</span></span> </li> </ol><time itemprop="datePublished" datetime="2001">2001</time><span itemprop="headline">Estimating the number of clusters in a data set via the gap statistic</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">63</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of the Royal Statistical Society: Series B</span></span></span><span itemprop="pageStart">411</span><span itemprop="pageEnd">423</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Estimating%20the%20number%20of%20clusters%20in%20a%20data%20set%20via%20the%20gap%20statistic"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib76"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Urdapilleta"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Urdapilleta</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Si"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Si</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Treves"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Treves</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Selforganization of modular activity of grid cells</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">27</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Hippocampus</span></span></span><span itemprop="pageStart">1204</span><span itemprop="pageEnd">1213</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Selforganization%20of%20modular%20activity%20of%20grid%20cells"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib77"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="V Villette"><span data-itemprop="givenNames"><span itemprop="givenName">V</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Villette</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Levesque"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Levesque</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Miled"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Miled</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B Gosselin"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gosselin</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="L Topolnik"><span data-itemprop="givenNames"><span itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Topolnik</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Simple platform for chronic imaging of hippocampal activity during spontaneous behaviour in an awake mouse</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">7</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Scientific Reports</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Simple%20platform%20for%20chronic%20imaging%20of%20hippocampal%20activity%20during%20spontaneous%20behaviour%20in%20an%20awake%20mouse"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib78"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="F Wang"><span data-itemprop="givenNames"><span itemprop="givenName">F</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Wang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Zhu"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Zhu"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Q Zhang"><span data-itemprop="givenNames"><span itemprop="givenName">Q</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Z Lin"><span data-itemprop="givenNames"><span itemprop="givenName">Z</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lin</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Hu"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hu</span></span> </li> </ol><time itemprop="datePublished" datetime="2011">2011</time><span itemprop="headline">Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">334</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Science</span></span></span><span itemprop="pageStart">693</span><span itemprop="pageEnd">697</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Bidirectional%20control%20of%20social%20hierarchy%20by%20synaptic%20efficacy%20in%20medial%20prefrontal%20cortex"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib79"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Wang"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Wang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Zhang"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="L Xu"><span data-itemprop="givenNames"><span itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Xu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Wang"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Wang</span></span> </li> </ol><time itemprop="datePublished" datetime="2011">2011</time><span itemprop="headline">Quantifying the Waddington landscape and biological paths for development and differentiation</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">108</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">PNAS</span></span></span><span itemprop="pageStart">8257</span><span itemprop="pageEnd">8262</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Quantifying%20the%20Waddington%20landscape%20and%20biological%20paths%20for%20development%20and%20differentiation"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib80"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="F Wang"><span data-itemprop="givenNames"><span itemprop="givenName">F</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Wang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="HW Kessels"><span data-itemprop="givenNames"><span itemprop="givenName">HW</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kessels</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Hu"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hu</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">The mouse that roared: neural mechanisms of social hierarchy</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">37</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Trends in Neurosciences</span></span></span><span itemprop="pageStart">674</span><span itemprop="pageEnd">682</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20mouse%20that%20roared:%20neural%20mechanisms%20of%20social%20hierarchy"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib81"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="J Widloski"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Widloski</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="IR Fiete"><span data-itemprop="givenNames"><span itemprop="givenName">IR</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fiete</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><span itemprop="headline">A model of grid cell development through spatial exploration and spike time-dependent plasticity</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">83</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart">481</span><span itemprop="pageEnd">495</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20model%20of%20grid%20cell%20development%20through%20spatial%20exploration%20and%20spike%20time-dependent%20plasticity"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib82"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="K Yoon"><span data-itemprop="givenNames"><span itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Yoon</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="MA Buice"><span data-itemprop="givenNames"><span itemprop="givenName">MA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Buice</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="C Barry"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Barry</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="R Hayman"><span data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hayman</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="N Burgess"><span data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burgess</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="IR Fiete"><span data-itemprop="givenNames"><span itemprop="givenName">IR</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Fiete</span></span> </li> </ol><time itemprop="datePublished" datetime="2013">2013</time><span itemprop="headline">Specific evidence of low-dimensional continuous attractor dynamics in grid cells</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">16</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Neuroscience</span></span></span><span itemprop="pageStart">1077</span><span itemprop="pageEnd">1084</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Specific%20evidence%20of%20low-dimensional%20continuous%20attractor%20dynamics%20in%20grid%20cells"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib83"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M Yoshida"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Yoshida</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="A Jochems"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Jochems</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="ME Hasselmo"><span data-itemprop="givenNames"><span itemprop="givenName">ME</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hasselmo</span></span> </li> </ol><time itemprop="datePublished" datetime="2013">2013</time><span itemprop="headline" content="Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and w…">Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">8</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">PLOS ONE</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Comparison%20of%20properties%20of%20medial%20entorhinal%20cortex%20layer%20II%20neurons%20in%20two%20anatomical%20dimensions%20with%20and%20w%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib84"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="H Zeng"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zeng</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="JR Sanes"><span data-itemprop="givenNames"><span itemprop="givenName">JR</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sanes</span></span> </li> </ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Neuronal cell-type classification: challenges, opportunities and the path forward</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">18</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Reviews Neuroscience</span></span></span><span itemprop="pageStart">530</span><span itemprop="pageEnd">546</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Neuronal%20cell-type%20classification:%20challenges,%20opportunities%20and%20the%20path%20forward"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib85"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="W Zhang"><span data-itemprop="givenNames"><span itemprop="givenName">W</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="DJ Linden"><span data-itemprop="givenNames"><span itemprop="givenName">DJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Linden</span></span> </li> </ol><time itemprop="datePublished" datetime="2003">2003</time><span itemprop="headline">The other side of the Engram: experience-driven changes in neuronal intrinsic excitability</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber">4</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Reviews Neuroscience</span></span></span><span itemprop="pageStart">885</span><span itemprop="pageEnd">900</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20other%20side%20of%20the%20Engram:%20experience-driven%20changes%20in%20neuronal%20intrinsic%20excitability"> </li> </ol> </section> </article> </main> </body> </html>