<html lang="en">

  <head>
    <title>Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture
    </title>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta http-equiv="X-UA-Compatible" content="ie=edge">
    <link href="https://unpkg.com/@stencila/thema@2/dist/themes/elife/styles.css" rel="stylesheet">
    <script src="https://unpkg.com/@stencila/thema@2/dist/themes/elife/index.js"
      type="text/javascript"></script>
    <script
      src="https://unpkg.com/@stencila/components@&lt;=1/dist/stencila-components/stencila-components.esm.js"
      type="module"></script>
    <script
      src="https://unpkg.com/@stencila/components@&lt;=1/dist/stencila-components/stencila-components.js"
      type="text/javascript" nomodule=""></script>
  </head>

  <body>
    <main role="main">
      <article itemscope="" itemtype="http://schema.org/Article" data-itemscope="root">
        <h1 itemprop="headline">Neuronal timescales are functionally dynamic and shaped by cortical
          microarchitecture</h1>
        <meta itemprop="image"
          content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Neuronal%20timescales%20are%20functionally%20dynamic%20and%20shaped%20by%20cortical%20microarchitecture">
        <ol data-itemprop="authors">
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Richard Gao"><span data-itemprop="givenNames"><span
                itemprop="givenName">Richard</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Gao</span></span><span data-itemprop="emails"><a
                itemprop="email" href="mailto:r.dg.gao@gmail.com">r.dg.gao@gmail.com</a></span><span
              data-itemprop="affiliations"><a itemprop="affiliation"
                href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Ruud L van den Brink"><span
              data-itemprop="givenNames"><span itemprop="givenName">Ruud</span><span
                itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">van</span><span itemprop="familyName">den</span><span
                itemprop="familyName">Brink</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-2">2</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Thomas Pfeffer"><span data-itemprop="givenNames"><span
                itemprop="givenName">Thomas</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Pfeffer</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-3">3</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Bradley Voytek"><span data-itemprop="givenNames"><span
                itemprop="givenName">Bradley</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Voytek</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a><a itemprop="affiliation"
                href="#author-organization-4">4</a><a itemprop="affiliation"
                href="#author-organization-5">5</a><a itemprop="affiliation"
                href="#author-organization-6">6</a></span>
          </li>
        </ol>
        <ol data-itemprop="affiliations">
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-1"
            id="author-organization-1"><span itemprop="name">Department of Cognitive Science,
              University of California, San Diego</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">La Jolla</span><span itemprop="addressCountry">United
                States</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-2"
            id="author-organization-2"><span itemprop="name">Section Computational Cognitive
              Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical
              Center Hamburg-Eppendorf</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">Hamburg</span><span
                itemprop="addressCountry">Germany</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-3"
            id="author-organization-3"><span itemprop="name">Center for Brain and Cognition,
              Computational Neuroscience Group, Universitat Pompeu Fabra</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">Barcelona</span><span
                itemprop="addressCountry">Spain</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-4"
            id="author-organization-4"><span itemprop="name">Halıcıoğlu Data Science Institute,
              University of California, San Diego</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">La Jolla</span><span itemprop="addressCountry">United
                States</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-5"
            id="author-organization-5"><span itemprop="name">Neurosciences Graduate Program,
              University of California, San Diego</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">La Jolla</span><span itemprop="addressCountry">United
                States</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-6"
            id="author-organization-6"><span itemprop="name">Kavli Institute for Brain and Mind,
              University of California, San Diego</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">La Jolla</span><span itemprop="addressCountry">United
                States</span></address></li>
        </ol><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
          <meta itemprop="name" content="Unknown"><span itemscope=""
            itemtype="http://schema.org/ImageObject" itemprop="logo">
            <meta itemprop="url"
              content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
          </span>
        </span><time itemprop="datePublished" datetime="2020-11-23">2020-11-23</time>
        <ul data-itemprop="genre">
          <li itemprop="genre">Research Article</li>
        </ul>
        <ul data-itemprop="about">
          <li itemscope="" itemtype="http://schema.org/DefinedTerm" itemprop="about"><span
              itemprop="name">Computational and Systems Biology</span></li>
          <li itemscope="" itemtype="http://schema.org/DefinedTerm" itemprop="about"><span
              itemprop="name">Neuroscience</span></li>
        </ul>
        <ul data-itemprop="keywords">
          <li itemprop="keywords">neuronal timescales</li>
          <li itemprop="keywords">cortical gradients</li>
          <li itemprop="keywords">functional specialization</li>
          <li itemprop="keywords">transcriptomics</li>
          <li itemprop="keywords">spectral analysis</li>
          <li itemprop="keywords">Human</li>
          <li itemprop="keywords">Rhesus macaque</li>
        </ul>
        <ul data-itemprop="identifiers">
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID"
              content="https://registry.identifiers.org/registry/publisher-id"><span
              itemprop="name">publisher-id</span><span itemprop="value"
              data-itemtype="http://schema.org/Number">61277</span>
          </li>
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi">
            <span itemprop="name">doi</span><span itemprop="value">10.7554/eLife.61277</span>
          </li>
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID"
              content="https://registry.identifiers.org/registry/elocation-id"><span
              itemprop="name">elocation-id</span><span itemprop="value">e61277</span>
          </li>
        </ul>
        <section data-itemprop="description">
          <h2 data-itemtype="http://schema.stenci.la/Heading">Abstract</h2>
          <meta itemprop="description"
            content="Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex and are relevant for cognition in both short and long terms, bridging microcircuit physiology with macroscale dynamics and behavior.">
          <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Complex cognitive functions
            such as working memory and decision-making require information maintenance over seconds
            to years, from transient sensory stimuli to long-term contextual cues. While theoretical
            accounts predict the emergence of a corresponding hierarchy of neuronal timescales,
            direct electrophysiological evidence across the human cortex is lacking. Here, we infer
            neuronal timescales from invasive intracranial recordings. Timescales increase along the
            principal sensorimotor-to-association axis across the entire human cortex, and scale
            with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows
            direct alignment between timescales and expression of excitation- and inhibition-related
            genes, as well as genes specific to voltage-gated transmembrane ion transporters.
            Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales
            expand during working memory maintenance and predict individual performance, while
            cortex-wide timescales compress with aging. Thus, neuronal timescales follow
            cytoarchitectonic gradients across the human cortex and are relevant for cognition in
            both short and long terms, bridging microcircuit physiology with macroscale dynamics and
            behavior.</p>
        </section>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-execution="[object Object]" data-execution_count="1"
          data-programminglanguage="python">
          <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code># set up behind the scenes
%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
plt.style.use(&#39;./matplotlibrc_notebook&#39;)
import numpy as np
from scipy import stats
import pandas as pd
from fooof import FOOOF, FOOOFGroup
from neurodsp import sim, spectral
from statsmodels.tsa.stattools import acf
import altair as alt

# For compatability with Stencila output Altair plots
# using MIME type renderer
alt.renderers.enable(&#39;mimetype&#39;)

import warnings
warnings.filterwarnings(&#39;ignore&#39;)
C_ORD = plt.rcParams[&#39;axes.prop_cycle&#39;].by_key()[&#39;color&#39;]

import nibabel as ni
from surfer import Brain


def compute_perm_corr(x, y, y_nulls, corr_method=&#39;spearman&#39;):
    corr_func = stats.spearmanr if corr_method == &#39;spearman&#39; else stats.pearsonr
    rho, pv = corr_func(x,y)
    rho_null = np.array([corr_func(x, n_)[0] for n_ in y_nulls])
    pv_perm = (abs(rho)&lt;abs(rho_null)).sum()/y_nulls.shape[0]
    return rho, pv, pv_perm, rho_null

def convert_knee_val(knee, exponent=2.):
    &quot;&quot;&quot;
    Convert knee parameter to frequency and time-constant value.
    Can operate on array or float.

    Default exponent value of 2 means take the square-root, but simulation shows
    taking the exp-th root returns a more accurate drop-off frequency estimate
    when the PSD is actually Lorentzian.
    &quot;&quot;&quot;
    knee_freq = knee**(1./exponent)
    knee_tau = 1./(2*np.pi*knee_freq)
    return knee_freq, knee_tau

def sig_str(rho, pv, pv_thres=[0.05, 0.01, 0.005, 0.001], form=&#39;*&#39;, corr_letter=r&#39;$\rho$&#39;):
    &quot;&quot;&quot;Generates the string to print rho and p-value.

    Parameters
    ----------
    rho : float
    pv : float
    pv_thres : list
        P-value thresholds to for successive # of stars to print.
    form : str
        &#39;*&#39; to print stars after rho, otherwise print p-value on separate line.

    Returns
    -------
    str
    &quot;&quot;&quot;
    if form == &#39;*&#39;:
        s = corr_letter+&#39; = %.2f &#39;%rho + np.sum(pv&lt;=np.array(pv_thres))*&#39;*&#39;
    else:
        if pv&lt;pv_thres[-1]:
            s = corr_letter+&#39; = %.2f&#39;%rho+ &#39;\np &lt; %.3f&#39;%pv_thres[-1]
        else:
            s = corr_letter+&#39; = %.2f&#39;%rho+ &#39;\np = %.3f&#39;%pv
    return s</code></pre>
        </stencila-code-chunk>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="introduction">Introduction
        </h2>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Human brain regions are broadly
          specialized for different aspects of behavior and cognition, and the temporal dynamics of
          neuronal populations across the cortex are thought to be an intrinsic property (i.e.,
          neuronal timescale) that enables the representation of information over multiple durations
          in a hierarchically embedded environment <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib57"><span>57</span><span>Kiebel et
                al.</span><span>2008</span></a></cite>. For example, primary sensory neurons are
          tightly coupled to changes in the environment, firing rapidly to the onset and removal of
          a stimulus, and showing characteristically short intrinsic timescales <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib70"><span>70</span><span>Ogawa
                  and Komatsu</span><span>2010</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib76"><span>76</span><span>Runyan
                  et al.</span><span>2017</span></a></cite></span>. In contrast, neurons in cortical
          association (or transmodal) regions, such as the prefrontal cortex (PFC), can sustain
          their activity for many seconds when a person is engaged in working memory <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib105"><span>105</span><span>Zylberberg and
                Strowbridge</span><span>2017</span></a></cite>, decision-making <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib40"><span>40</span><span>Gold and
                Shadlen</span><span>2007</span></a></cite>, and hierarchical reasoning <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib77"><span>77</span><span>Sarafyazd and
                Jazayeri</span><span>2019</span></a></cite>. This persistent activity in the absence
          of immediate sensory stimuli reflects longer neuronal timescales, which is thought to
          result from neural attractor states <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib94"><span>94</span><span>Wang</span><span>2002</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib102"><span>102</span><span>Wimmer et
                  al.</span><span>2014</span></a></cite></span> shaped by N-methyl-D-aspartate
          receptor (NMDA)-mediated recurrent excitation and fast feedback inhibition <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib95"><span>95</span><span>Wang</span><span>2008</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib93"><span>93</span><span>Wang</span><span>1999</span></a></cite></span>,
          with contributions from other synaptic and cell-intrinsic properties <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib23"><span>23</span><span>Duarte
                  and Morrison</span><span>2019</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib37"><span>37</span><span>Gjorgjieva et
                  al.</span><span>2016</span></a></cite></span>. How connectivity and various
          cellular properties combine to shape neuronal dynamics across the cortex remains an open
          question.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Anatomical connectivity
          measures based on tract tracing data, such as laminar feedforward vs. feedback projection
          patterns, have classically defined a hierarchical organization of the cortex <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib26"><span>26</span><span>Felleman
                  and Van Essen</span><span>1991</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib46"><span>46</span><span>Hilgetag
                  and Goulas</span><span>2020</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib85"><span>85</span><span>Vezoli
                  et al.</span><span>2020</span></a></cite></span>. Recent studies have also shown
          that variations in many microarchitectural features follow continuous and coinciding
          gradients along a sensory-to-association axis across the cortex, including cortical
          thickness, cell density, and distribution of excitatory and inhibitory neurons <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib49"><span>49</span><span>Huntenburg et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib98"><span>98</span><span>Wang</span><span>2020</span></a></cite></span>.
          In particular, gray matter myelination <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib39"><span>39</span><span>Glasser
                and Van Essen</span><span>2011</span></a></cite>—a noninvasive proxy of anatomical
          hierarchy consistent with laminar projection data—varies with the expression of genes
          related to microcircuit function in the human brain, such as NMDA receptor and inhibitory
          cell-type marker genes <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib10"><span>10</span><span>Burt et al.</span><span>2018</span></a></cite>.
          Functionally, specialization of the human cortex, as well as structural and functional
          connectivity <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib64"><span>64</span><span>Margulies et
                al.</span><span>2016</span></a></cite>, also follow similar macroscopic gradients.
          Moreover, in addition to the broad differentiation between sensory and association
          cortices, there is evidence for an even finer hierarchical organization within the frontal
          cortex <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib77"><span>77</span><span>Sarafyazd and
                Jazayeri</span><span>2019</span></a></cite>. For example, the anterior-most parts of
          the PFC are responsible for long timescale goal-planning behavior <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib2"><span>2</span><span>Badre and
                  D'Esposito</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib88"><span>88</span><span>Voytek
                  et al.</span><span>2015</span></a></cite></span>, while healthy aging is
          associated with a shift in these gradients such that older adults become more reliant on
          higher-level association regions to compensate for altered lower-level cortical
          functioning <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib17"><span>17</span><span>Davis et al.</span><span>2008</span></a></cite>.
        </p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Despite convergent observations
          of cortical gradients in structural features and cognitive specialization, there is no
          direct evidence for a similar gradient of neuronal timescales across the human cortex.
          Such a gradient of neuronal dynamics is predicted to be a natural consequence of
          macroscopic variations in synaptic connectivity and microarchitectural features <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib13"><span>13</span><span>Chaudhuri et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib22"><span>22</span><span>Duarte
                  et al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib48"><span>48</span><span>Huang
                  and Doiron</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib49"><span>49</span><span>Huntenburg et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib98"><span>98</span><span>Wang</span><span>2020</span></a></cite></span>,
          and would be a primary candidate for how functional specialization emerges as a result of
          hierarchical temporal processing <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib57"><span>57</span><span>Kiebel et
                al.</span><span>2008</span></a></cite>. Single-unit recordings in rodents and
          non-human primates demonstrated a hierarchy of timescales that increase, or lengthen,
          progressively along a posterior-to-anterior axis <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib21"><span>21</span><span>Dotson
                  et al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib68"><span>68</span><span>Murray
                  et al.</span><span>2014</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib76"><span>76</span><span>Runyan
                  et al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib99"><span>99</span><span>Wasmuht
                  et al.</span><span>2018</span></a></cite></span>, while intracranial recordings
          and functional neuroimaging data collected during perceptual and cognitive tasks suggest
          likewise in humans <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib3"><span>3</span><span>Baldassano et
                  al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib47"><span>47</span><span>Honey et
                  al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib61"><span>61</span><span>Lerner
                  et al.</span><span>2011</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib100"><span>100</span><span>Watanabe et
                  al.</span><span>2019</span></a></cite></span>. However, these data are either
          sparsely sampled across the cortex or do not measure neuronal activity at the cellular and
          synaptic level directly, prohibiting the full construction of an electrophysiological
          timescale gradient across the human cortex. As a result, while whole-cortex data of
          transcriptomic and anatomical variations exist, we cannot take advantage of them to
          dissect the contributions of synaptic, cellular, and circuit connectivity in shaping fast
          neuronal timescales, nor ask whether regional timescales are dynamic and relevant for
          human cognition.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Here we combine several
          publicly available datasets to infer neuronal timescales from invasive human
          electrocorticography (ECoG) recordings and relate them to whole-cortex transcriptomic and
          anatomical data, as well as probe their functional relevance during behavior (<a
            href="#fig1A" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1A</a> for
          schematic of study; <a href="#table1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Tables 1</a> and <a href="#table2" itemscope=""
            itemtype="http://schema.stenci.la/Link"><span
              data-itemtype="http://schema.org/Number">2</span></a> for dataset information). Unless
          otherwise specified, (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">neuronal</em>) <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">timescale</em> in the following sections
          refers to ECoG-derived timescales, which are more reflective of fast synaptic and
          transmembrane current timescales than single-unit or population spiking timescales (<a
            href="#fig1A" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1A</a>, left
          box), though we demonstrate in macaques a close correspondence between the two. In humans,
          neuronal timescales increase along the principal sensorimotor-to-association axis across
          the cortex and align with macroscopic gradients of gray matter myelination (T1w/T2w ratio)
          and synaptic receptor and ion channel gene expression. Finally, we find that human
          PFC timescales expand during working memory maintenance and predict individual
          performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales
          follow cytoarchitectonic gradients across the human cortex and are relevant for cognition
          in both short and long terms, bridging microcircuit physiology with macroscale dynamics
          and behavior.</p>
        <table id="table1" itemscope="" itemtype="http://schema.org/Table">
          <caption><label data-itemprop="label">Table 1.</label>
            <div itemprop="caption">
              <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
                id="summary-of-open-access-datasets-used">Summary of open-access datasets used.</h3>
            </div>
          </caption>
          <thead>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Data</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Ref.</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Specific source/format
                used</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Participant info</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Relevant figures</th>
            </tr>
          </thead>
          <tbody>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">MNI Open iEEG Atlas</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib29"><span>29</span><span>Frauscher et
                      al.</span><span>2018</span></a></cite>; <cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib30"><span>30</span><span>Frauscher et
                      al.</span><span>2018</span></a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">N = 105 (48 females)
                Ages: 13–65, 33.4 ± 10.6</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><a href="#fig2"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2A–D</a>, <a
                  href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3</a>, <a
                  href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
                  4E and F</a></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">T1w/T2w and cortical
                thickness maps from Human Connectome Project</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib38"><span>38</span><span>Glasser et
                      al.</span><span>2016</span></a></cite>; <cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib39"><span>39</span><span>Glasser and Van
                      Essen</span><span>2011</span></a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Release S1200, March 1,
                2017</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">N = 1096 (596 females)
                Age: 22–36+ (details restricted due to identifiability)</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><a href="#fig2"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2C and D</a>, <a
                  href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3D–F</a>
              </td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Neurotycho macaque ECoG
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib69"><span>69</span><span>Nagasaka et
                      al.</span><span>2011</span></a></cite>; <cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib103"><span>103</span><span>Yanagawa et
                      al.</span><span>2013</span></a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Eyes-open state from
                anesthesia datasets (propofol and ketamine)</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Two animals (Chibi and
                George) four sessions each</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><a href="#fig2"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2E–G</a></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Macaque single-unit
                timescales</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib68"><span>68</span><span>Murray et
                      al.</span><span>2014</span></a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><a href="#fig1"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1</a> of reference
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><a href="#fig2"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2E–G</a></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Whole-cortex
                interpolated Allen Brain Atlas human gene expression</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib42"><span>42</span><span>Gryglewski et
                      al.</span><span>2018</span></a></cite>; <cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib43"><span>43</span><span>Hawrylycz et
                      al.</span><span>2012</span></a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Interpolated maps
                downloadable from <a href="http://www.meduniwien.ac.at/neuroimaging/mRNA.html"
                  itemscope=""
                  itemtype="http://schema.stenci.la/Link">http://www.meduniwien.ac.at/neuroimaging/mRNA.html</a>
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">N = 6 (one female) Age:
                24, 31, 39, 49, 55, 57 (42.5 ± 12.2)</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><a href="#fig3"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3</a></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Single-cell
                timescale-related genes</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib5"><span>5</span><span>Bomkamp et
                      al.</span><span>2019</span></a></cite>; <cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib81"><span>81</span><span>Tripathy et
                      al.</span><span>2017</span></a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Table S3 from <cite
                  itemscope="" itemtype="http://schema.stenci.la/Cite"
                  data-citationmode="Narrative"><a href="#bib81"><span>81</span><span>Tripathy et
                      al.</span><span>2017</span></a></cite>, Online Table 1 from <cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib5"><span>5</span><span>Bomkamp et
                      al.</span><span>2019</span></a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">N = 170 (<cite
                  itemscope="" itemtype="http://schema.stenci.la/Cite"
                  data-citationmode="Narrative"><a href="#bib81"><span>81</span><span>Tripathy et
                      al.</span><span>2017</span></a></cite>) and 4168 (<cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib5"><span>5</span><span>Bomkamp et
                      al.</span><span>2019</span></a></cite>) genes</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><a href="#fig3"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3C and D</a></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Human working memory
                ECoG</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib54"><span>54</span><span>Johnson</span><span>2019</span></a></cite>;
                <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
                  data-citationmode="Narrative"><a
                    href="#bib53"><span>53</span><span>Johnson</span><span>2018</span></a></cite>;
                <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
                  data-citationmode="Narrative"><a href="#bib51"><span>51</span><span>Johnson et
                      al.</span><span>2018</span></a></cite>, <cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib52"><span>52</span><span>Johnson et
                      al.</span><span>2018</span></a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">CRCNS fcx-2 and fcx-3
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">N = 14 (five females)
                Age: 22–50, 30.9 ± 7.8</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><a href="#fig4"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4A–D</a></td>
            </tr>
          </tbody>
        </table>
        <table id="table2" itemscope="" itemtype="http://schema.org/Table">
          <caption><label data-itemprop="label">Table 2.</label>
            <div itemprop="caption">
              <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
                id="reproducing-figures-from-code-repository">Reproducing figures from code
                repository.</h3>
              <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All IPython
                notebooks <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
                  data-citationmode="Narrative"><a
                    href="#bib35"><span>35</span><span>Gao</span><span>2020</span></a></cite>: <a
                  href="https://github.com/rdgao/field-echos/tree/master/notebooks" itemscope=""
                  itemtype="http://schema.stenci.la/Link">https://github.com/rdgao/field-echos/tree/master/notebooks</a>
              </p>
            </div>
          </caption>
          <thead>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Notebook</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Results</th>
            </tr>
          </thead>
          <tbody>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">
                1_sim_method_schematic.ipynb</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Simulations: <a
                  href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1B–E</a>
              </td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">
                2_viz_NeuroTycho-SU.ipynb</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Macaque timescales: <a
                  href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2E–G</a>,
                <a href="#fig2s4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
                  2—figure supplement 4</a></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">
                3_viz_human_structural.ipynb</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Human timescales vs.
                T1w/T2w and gene expression: <a href="#fig2" itemscope=""
                  itemtype="http://schema.stenci.la/Link">Figure 2A–D</a>, <a href="#fig2s1"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplements
                  1</a> and <a href="#fig2s3" itemscope=""
                  itemtype="http://schema.stenci.la/Link">3</a>, <a href="#fig3" itemscope=""
                  itemtype="http://schema.stenci.la/Link">Figure 3</a>, <a href="#fig3s1"
                  itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3—figure supplements
                  1</a> and <a href="#fig3s2" itemscope=""
                  itemtype="http://schema.stenci.la/Link">2</a>, <a href="#supp1" itemscope=""
                  itemtype="http://schema.stenci.la/Link">Supplementary file 1–</a><a
                  href="#supp2" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary
                  file 2</a><a href="#supp3" itemscope=""
                  itemtype="http://schema.stenci.la/Link">Supplementary file 3</a>.</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">4b_viz_human_wm.ipynb
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Human working memory: <a
                  href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4A–D</a>,
                <a href="#fig4s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
                  4—figure supplement 1</a></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">4a_viz_human_aging.ipynb
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Human aging: <a
                  href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
                  4E and F</a>, <a href="#fig4s2" itemscope=""
                  itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 2</a></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">
                 supp_spatialautocorr.ipynb</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Spatial
                autocorrelation-preserving nulls:</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">
                supp_spatialautocorr.ipynb</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Spatial
                autocorrelation-preserving nulls: <a href="#fig2s2" itemscope=""
                  itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a></td>
            </tr>
          </tbody>
        </table>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1" title="Figure 1.">
          <label data-itemprop="label">Figure 1.</label>
          <figcaption>
            <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="schematic-of-study-and-timescale-inference-technique">Schematic of study and
              timescale inference technique.</h3>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1A"
          title="Figure 1A."><label data-itemprop="label">Figure 1A.</label><img
            src="index.html.media/fig_1A.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) In this study, we infer
              neuronal timescales from intracranial field potential recordings, which reflect
              integrated synaptic and transmembrane current fluctuations over large neural
              populations <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                  href="#bib12"><span>12</span><span>Buzsáki et
                    al.</span><span>2012</span></a></cite>. Combining multiple open-access datasets
              (<a href="#table1" itemscope="" itemtype="http://schema.stenci.la/Link">Table 1</a>),
              we link timescales to known human anatomical hierarchy, dissect its cellular and
              physiological basis via transcriptomic analysis, and demonstrate its functional
              modulation during behavior and through aging.</p>
          </figcaption>
        </figure>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-execution="[object Object]" data-execution_count="2"
          data-programminglanguage="python">
          <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code># simulate noise
T = 240
fs = 2000.
t_ds = np.arange(0.005,0.08,0.01)
f_to_plot=100
noise, ac = [], []
for t_d in t_ds:
    noise.append(sim.sim_synaptic_current(T, fs, tau_d = t_d))
    ac.append(acf(noise[-1], nlags=int(fs), fft=True))

noise = np.vstack(noise)
ac = np.vstack(ac).T
f_axis, PSD = spectral.compute_spectrum(noise,fs)

# FOOOF PSDs without knee
fg = FOOOFGroup(aperiodic_mode=&#39;knee&#39;, max_n_peaks=0, verbose=False)
fg.fit(freqs=f_axis, power_spectra=PSD, freq_range=(2,200))
fit_knee = fg.get_params(&#39;aperiodic_params&#39;, &#39;knee&#39;)
fit_exp = fg.get_params(&#39;aperiodic_params&#39;, &#39;exponent&#39;)
knee_freq, taus = convert_knee_val(fit_knee, fit_exp)
P_knee = [PSD[i,np.argmin(np.abs((f_axis[:f_to_plot]-(knee_freq[i]))))] for i in range(len(t_ds))]</code></pre>
        </stencila-code-chunk>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1B" title="Figure 1B">
          <label data-itemprop="label">Figure 1B</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="3"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>### simulation data and analysis ###
color = plt.cm.inferno(np.linspace(0,1,len(t_ds)))
plt.rcParams[&#39;axes.prop_cycle&#39;] = plt.cycler(&#39;color&#39;, color)
i_plot = [0,3,7]
t = np.arange(0,T,1/fs)
labels = [&#39;fast&#39;, &#39;medium&#39;, &#39;slow&#39;]
plt.figure(figsize=(12,3))
for p in range(3):
    plt.subplot(3,1,p+1)
    plt.plot(t[:int(fs)], noise.T[:int(fs),i_plot[p]], alpha=0.9, color=np.array(plt.cycler(&#39;color&#39;, plt.cm.inferno(np.linspace(0,0.85,3))))[p][&#39;color&#39;])
    plt.xticks([]); plt.yticks([])
    plt.xlim([0,1]); plt.ylabel(labels[p])
    
    
plt.xlabel(&#39;time (s)&#39;, labelpad=-10)
plt.xticks([0,1], fontsize=15); 
plt.subplot(3,1,1)
plt.title(&#39;simulated data&#39;)
plt.tight_layout(pad=0)</code></pre>
            <figure slot="outputs"><img src="index.html.media/0" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Simulated time series...</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1C" title="Figure 1C">
          <label data-itemprop="label">Figure 1C</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="4" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>plt.figure(figsize=(4,4))
plt.rcParams[&#39;axes.prop_cycle&#39;] = plt.cycler(&#39;color&#39;, plt.cm.inferno(np.linspace(0,0.85,3)))
plt.plot(t[:500]*1000, ac[:500,i_plot]/ac[0,i_plot])
plt.xlim([-5,150]);
plt.yticks([0,np.exp(-1), 1], [&#39;0&#39;,&#39;e&#39;,&#39;1&#39;])
plt.xlabel(&#39;lag time (ms)&#39;); plt.ylabel(&#39;autocorrelation&#39;)
plt.legend([&#39;%i ms&#39;%np.round(tt) for tt in t_ds[i_plot]*1000], frameon=False, loc=&#39;upper right&#39;, title=&#39;decay time constant&#39;);</code></pre>
            <figure slot="outputs"><img src="index.html.media/1" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) ...and their autocorrelation
              functions (ACFs), with increasing (longer) decay time constant, <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">τ</em> (which neuronal timescale is
              defined to be).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1D" title="Figure 1D">
          <label data-itemprop="label">Figure 1D</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="5" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># load example macaque data
data_load = np.load(&#39;./data/fig1D_data.npz&#39;)
data, fs = data_load[&#39;data&#39;], data_load[&#39;fs&#39;]
data_load.close()

# compute autocorrelation function
max_lag=250
t_ac = np.arange(0,max_lag+1)/fs
ac = acf(data, nlags=max_lag, fft=True)
# compute psd
fit_range=[1,80]
plt_inds = np.arange(fit_range[0],fit_range[1]+1)
faxis, psd = spectral.compute_spectrum(data,fs,avg_type=&#39;median&#39;)
# fit fooof with knee
fok = FOOOF(max_n_peaks=2, aperiodic_mode=&#39;knee&#39;, verbose=False)
fok.fit(faxis, psd, fit_range)
offset, knee, exp = fok.get_params(&#39;aperiodic_params&#39;)
kfreq, tau = convert_knee_val(knee,exp)

# plot time series
plt.figure(figsize=(8,2))
plt.plot(np.arange(0,fs)/fs, data[int(fs*1):int(fs*2)])
plt.xlim([0,1]); 
plt.xlabel(&#39;time (s)&#39;);plt.ylabel(&#39;voltage (au)&#39;);
plt.title(&#39;example macaque ECoG&#39;)
plt.tight_layout()

plt.figure(figsize=(8,4))
# plot acf
plt.subplot(1,2,1)
plt.plot(t_ac*1000, ac, &#39;k&#39;, lw=2)
plt.axhline(0, lw=1, ls=&#39;--&#39;, color=&#39;k&#39;)
plt.xlim([0,250])
plt.xlabel(&#39;lag time (ms)&#39;); plt.ylabel(&#39;autocorrelation&#39;)
# plot psd
plt.subplot(1,2,2)
plt.loglog(faxis[plt_inds], psd[plt_inds], &#39;k&#39;, lw=5, alpha=0.3)
plt.loglog(faxis[plt_inds], 10**fok.fooofed_spectrum_, &#39;k-&#39;)
plt.loglog(faxis[plt_inds], 10**offset/(knee+faxis**exp)[plt_inds], &#39;--r&#39;, lw=2)
plt.xlim([1,100])
plt.xlabel(&#39;frequency (Hz)&#39;);plt.ylabel(&#39;power&#39;);
plt.xticks([1, 10, 100], [&#39;1&#39;,&#39;10&#39;, &#39;100&#39;]);plt.yticks([]);
plt.legend([&#39;data&#39;, &#39;full fit&#39;, &#39;aperiodic fit&#39;], frameon=False)
plt.yticks([]); plt.tick_params(&#39;y&#39;, which=&#39;minor&#39;, left=False, labelleft=False)
plt.xlabel(&#39;frequency (Hz)&#39;); plt.ylabel(r&#39;power ($V^2/Hz$)&#39;)
# plot dot at knee frequency
plt.plot(kfreq, 10**offset/(knee+faxis**exp)[np.where(faxis==np.round(kfreq))[0]], &#39;ro&#39;, ms=10, alpha=0.8)
plt.tight_layout()
# print(&#39;knee frequency: %.3fHz, time constant: %.3fms, exponent: %.3f&#39;%(kfreq, 1000*tau, exp))</code></pre>
            <figure slot="outputs"><img src="index.html.media/2" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"><img src="index.html.media/3" alt=""
                itemscope="" itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">D</strong>) Example human
              electrocorticography (ECoG) time series (top), autocorrelation function (bottom left),
              and power spectral density (PSD, bottom right) showing the aperiodic component fit
              (red dashed), and the ‘knee frequency’ at which power drops off (<span itemscope=""
                itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                    class="mjx-math" aria-label="{f}_{k}"><span class="mjx-mrow"
                      aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"
                          style="margin-right: -0.06em;"><span class="mjx-texatom"><span
                              class="mjx-mrow"><span class="mjx-mi"><span
                                  class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span></span></span></span><span
                          class="mjx-sub"
                          style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                            class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.446em; padding-bottom: 0.298em;">k</span></span></span></span></span></span></span></span></span></span>,
              red circle).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1E" title="Figure 1E">
          <label data-itemprop="label">Figure 1E</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="6" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>plt.figure(figsize=(8,4))
plt.rcParams[&#39;axes.prop_cycle&#39;] = plt.cycler(&#39;color&#39;,color)
plt.subplot(1,2,1)
plt.loglog(f_axis[:f_to_plot], PSD[:,:f_to_plot].T);
plt.scatter(knee_freq,P_knee, c=color, s=50, edgecolor=&#39;k&#39;, zorder=100)
plt.yticks([]); plt.tick_params(&#39;y&#39;, which=&#39;minor&#39;, left=False, labelleft=False)
plt.xlabel(&#39;frequency (Hz)&#39;); plt.ylabel(r&#39;power ($V^2/Hz$)&#39;)
plt.xticks([1, 10, 100], [&#39;1&#39;,&#39;10&#39;,&#39;100&#39;]); 
plt.xlim([1,200]);

plt.subplot(1,2,2)
plt.scatter(t_ds*1000,taus*1000, c=color, s=50, edgecolor=&#39;k&#39;, zorder=100)
plt.xlim([0,t_ds.max()*1200]);plt.ylim([0,t_ds.max()*1200])
plt.plot(plt.xlim(), plt.xlim(), &#39;k--&#39;, alpha=0.8);
plt.xlabel(&#39;simulated time constant (ms)&#39;); plt.ylabel(&#39;fit time constant (ms)&#39;)
plt.annotate(&#39;r = %.2f&#39;%stats.spearmanr(t_ds,taus)[0]**2, xy=(0.75, 0.25), xycoords=&#39;axes fraction&#39;)
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/4" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">E</strong>) Estimation of timescale from
              PSDs (left) of simulated time series in (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>), where the knee frequency,
              <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
                  class="mjx-chtml"><span class="mjx-math" aria-label="{f}_{k}"><span
                      class="mjx-mrow" aria-hidden="true"><span class="mjx-msubsup"><span
                          class="mjx-base" style="margin-right: -0.06em;"><span
                            class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                                  class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span></span></span></span><span
                          class="mjx-sub"
                          style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                            class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.446em; padding-bottom: 0.298em;">k</span></span></span></span></span></span></span></span></span></span>,
              is converted to timescale, <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">τ</em>. Right: correlation between
              ground truth and estimated timescale values.</p>
          </figcaption>
        </figure>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-execution="[object Object]" data-execution_count="7"
          data-programminglanguage="python">
          <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code># defining the simulation, analysis, and plotting function
def sim_timescale_schematic(tau_sim=0.025, osc_freq=10.5, rel_osc_amp=0.2):
    &quot;&quot;&quot;
    simulates the neural signal with a given decay timescale and oscillation
    
    &quot;&quot;&quot;    
    # set fit frequency range
    fit_range=[1,100]
    plt_inds = np.arange(fit_range[0],fit_range[1]+1)
    # simulation time and sampling frequency
    T, fs = 120, 2000
    # PSD parameters
    nperseg = int(fs)
    noverlap = int(0.5*nperseg)

    # simulate signal with given timescale and oscillation
    # Define the components of the combined signal to simulate
    components = {&#39;sim_synaptic_current&#39; : {&#39;tau_d&#39; : tau_sim},
              &#39;sim_bursty_oscillation&#39; : {&#39;freq&#39; : osc_freq}}
    component_variances = [1, rel_osc_amp]
    x = sim.sim_combined(T, fs, components, component_variances)
    t = np.arange(0,T, 1/fs)

    # compute autocorrelation function and PSD
    autocor = acf(x, nlags=int(fs), fft=True)
    f_axis, psd = spectral.compute_spectrum(x, fs, nperseg=nperseg, noverlap=noverlap)
    
    # fit with spectral parametrization and get fit values
    # and compute timescale
    ff = FOOOF(max_n_peaks=2, aperiodic_mode=&#39;knee&#39;, verbose=False)
    ff.fit(f_axis, psd, fit_range)
    offset, knee, exp = ff.get_params(&#39;aperiodic_params&#39;)
    knee_freq = knee**(1./exp)
    tau_fit = 1./(2*np.pi*knee_freq)
    knee_power = 10**offset/(knee+f_axis**exp)[np.where(f_axis==np.round(knee_freq))[0]]
    fit_spectrum = 10**offset/(knee+f_axis**exp)[plt_inds]

    ### plotting ###
    fig = plt.figure(figsize=(12,8))
    gs = GridSpec(3,2, figure=fig)

    # plot time series
    ax1 = fig.add_subplot(gs[0,:])
    ax1.plot(t[:1000],x[:1000])
    ax1.set_xlabel(&#39;time (s)&#39;); ax1.set_ylabel(&#39;voltage (au)&#39;);
    ax1.set_xlim([0,t[1000]])
    if tau_sim==0.042: print(&#39;you found easter egg! nice.&#39;)

    # plot autocorrelation
    ax2 = fig.add_subplot(gs[1:,0])
    ax2.plot(t[:1001], autocor[:1001], label=&#39;data autocorrelation&#39;, lw=2, alpha=0.8)
    ax2.axvline(tau_sim, ls=&#39;--&#39;, lw=2, label=&#39;true tau: %.2f ms&#39;%(tau_sim*1000))
    ax2.axvline(tau_fit, color=&#39;r&#39;, lw=4, alpha=0.5, label=&#39;fit tau: %.2f ms&#39;%(tau_fit*1000))
    ax2.set_xticks([0,tau_sim, 0.1,0.2]); ax2.set_xlim([0,0.2])
    ax2.set_ylim([autocor.min(),1])
    ax2.set_xlabel(&#39;lag time (s)&#39;); ax2.set_ylabel(&#39;acf&#39;);
    ax2.legend()

    # plot spectrum
    ax3 = fig.add_subplot(gs[1:,1])
    ax3.loglog(f_axis[plt_inds], psd[plt_inds], lw=2, label=&#39;data PSD&#39;)
    ax3.loglog(f_axis[plt_inds], 10**ff.fooofed_spectrum_, &#39;r-&#39;, alpha=0.4, lw=5, label=&#39;fit&#39;)
    ax3.plot(knee_freq, knee_power, &#39;ro&#39;, ms=20, mec=&#39;k&#39;, alpha=0.8, label=&#39;knee frequency&#39;)
    ax3.set_xlim([1,None])
    ax3.set_xlabel(&#39;frequency (Hz)&#39;); ax3.set_ylabel(&#39;power (V^2/Hz)&#39;);
    ax3.legend()

    plt.tight_layout()</code></pre>
        </stencila-code-chunk>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s1"
          title="Figure 1-figure supplement 1."><label data-itemprop="label">Figure 1-figure
            supplement 1.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="8"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># compute and plotting function is defined in the cell above
# here, try different timescale values for the simulation by changing `tau_sim`
# there is stochasticity in the simulation so run it multiple times
# try to stay within 0.005 to 0.15 seconds

# you can also change the frequency and relative power of the bursty oscillation
# to see how the autocorrelation is corrupted by the oscillatory component
sim_timescale_schematic(tau_sim = 0.02, osc_freq=22.5, rel_osc_amp=0.1)

# also see here for great autocorrelation gif: https://twitter.com/saydnay/status/1355228493089361921</code></pre>
            <figure slot="outputs"><img src="index.html.media/5" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">Interactive demo of timescale and fitting
                in spectral domain.</strong> Simulated time series (top), its autocorrelation
              function and fit time constant (bottom left), and the power spectral density. Edit the
              code above to vary the ground truth timescale and oscillation frequency, as well as
              the relative amplitude between the periodic and aperiodic components.</p>
          </figcaption>
        </figure>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="results">Results</h2>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="neuronal-timescale-can-be-inferred-from-the-frequency-domain">Neuronal timescale can
          be inferred from the frequency domain</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Neural time series often
          exhibit time-lagged correlation (i.e., autocorrelation), where future values are partially
          predictable from past values, and predictability decreases with increasing time lags. For
          demonstration, we simulate the aperiodic (non-rhythmic) component of ECoG recordings by
          convolving Poisson population spikes with exponentially decaying synaptic kernels with
          varying decay constant (<a href="#fig1B" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1B</a>). Empirically, the degree of
          self-similarity is characterized by the autocorrelation function (ACF), and ‘timescale’ is
          defined as the time constant (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">τ</em>) of an exponential decay function
          (<span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="{e}^{-\frac{t}{\tau }}"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-msubsup"><span
                      class="mjx-base"><span class="mjx-texatom"><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span></span></span></span><span
                      class="mjx-sup"
                      style="font-size: 70.7%; vertical-align: 0.545em; padding-left: 0px; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-mfrac"><span class="mjx-box MJXc-stacked"
                              style="width: 0.598em; padding: 0px 0.12em;"><span
                                class="mjx-numerator"
                                style="font-size: 83.3%; width: 0.717em; top: -1.259em;"><span
                                  class="mjx-mi" style=""><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.372em; padding-bottom: 0.298em;">t</span></span></span><span
                                class="mjx-denominator"
                                style="font-size: 83.3%; width: 0.717em; bottom: -0.466em;"><span
                                  class="mjx-mi" style=""><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span><span
                                style="border-bottom: 1px solid; top: -0.296em; width: 0.598em;"
                                class="mjx-line"></span></span><span
                              style="height: 1.437em; vertical-align: -0.388em;"
                              class="mjx-vsize"></span></span></span></span></span></span></span></span></span></span>)
          fit to the ACF, i.e., the time it takes for the autocorrelation to decrease by a factor of
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">e</em> (<a href="#fig1C"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1C</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Equivalently, we can estimate
          timescale in the frequency domain from the power spectral density (PSD). PSDs of neural
          time series often follow a Lorentzian function of the form <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\frac{1}{{f}_{k}{}^{2}+{f}^{2}}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mfrac"><span class="mjx-box MJXc-stacked"
                      style="width: 2.46em; padding: 0px 0.12em;"><span class="mjx-numerator"
                        style="font-size: 70.7%; width: 3.479em; top: -1.372em;"><span
                          class="mjx-mn" style=""><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span><span
                        class="mjx-denominator"
                        style="font-size: 70.7%; width: 3.479em; bottom: -1.235em;"><span
                          class="mjx-mrow" style=""><span class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.06em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 83.3%; vertical-align: -0.326em; padding-right: 0.06em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.446em; padding-bottom: 0.298em;">k</span></span></span></span></span></span><span
                            class="mjx-msubsup"><span class="mjx-base"><span
                                class="mjx-texatom"><span
                                  class="mjx-mrow"></span></span></span><span class="mjx-sup"
                              style="font-size: 83.3%; vertical-align: 0.347em; padding-left: 0px; padding-right: 0.06em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.06em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span></span></span></span><span
                              class="mjx-sup"
                              style="font-size: 83.3%; vertical-align: 0.49em; padding-left: 0.154em; padding-right: 0.06em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span></span></span><span
                        style="border-bottom: 1.3px solid; top: -0.296em; width: 2.46em;"
                        class="mjx-line"></span></span><span
                      style="height: 1.844em; vertical-align: -0.873em;"
                      class="mjx-vsize"></span></span></span></span></span></span>, where power is
          approximately constant until the ‘knee frequency’ (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">f<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">k</sub></em>, <a href="#fig1D"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1D</a>), then decays
          following a power law. This approach is similar to the one presented in <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib14"><span>14</span><span>Chaudhuri et
                al.</span><span>2017</span></a></cite>, but here we further allow the power law
          exponent (fixed at two in the equation above) to be a free parameter representing variable
          scale-free activity <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib45"><span>45</span><span>He et al.</span><span>2010</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib65"><span>65</span><span>Miller et
                  al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib75"><span>75</span><span>Podvalny
                  et al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib89"><span>89</span><span>Voytek
                  et al.</span><span>2015</span></a></cite></span>. We also simultaneously
          parameterize oscillatory components as Gaussians peaks, allowing us to remove their effect
          on the power spectrum, providing more accurate estimates of the knee frequency. From the
          knee frequency of the aperiodic component, neural timescale (decay constant) can then be
          computed exactly as <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\tau =\frac{1}{2\pi {f}_{k}}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-mfrac MJXc-space3"><span class="mjx-box MJXc-stacked"
                      style="width: 1.583em; padding: 0px 0.12em;"><span class="mjx-numerator"
                        style="font-size: 70.7%; width: 2.239em; top: -1.372em;"><span
                          class="mjx-mn" style=""><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span><span
                        class="mjx-denominator"
                        style="font-size: 70.7%; width: 2.239em; bottom: -0.981em;"><span
                          class="mjx-mrow" style=""><span class="mjx-mn"><span
                              class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.003em;">π</span></span><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.06em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 83.3%; vertical-align: -0.326em; padding-right: 0.06em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.446em; padding-bottom: 0.298em;">k</span></span></span></span></span></span></span></span><span
                        style="border-bottom: 1.3px solid; top: -0.296em; width: 1.583em;"
                        class="mjx-line"></span></span><span
                      style="height: 1.664em; vertical-align: -0.694em;"
                      class="mjx-vsize"></span></span></span></span></span></span>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Compared to fitting exponential
          decay functions in the time domain (e.g., <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib68"><span>68</span><span>Murray et
                al.</span><span>2014</span></a></cite>)—which can be biased even without the
          presence of additional components <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib104"><span>104</span><span>Zeraati
                et al.</span><span>2020</span></a></cite>—the frequency domain approach is
          advantageous when a variable power law exponent and strong oscillatory components are
          present, as is often the case for neural signals (example of real data in <a href="#fig1D"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1D</a>). While the
          oscillatory component can corrupt naive measurement of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">τ</em> as time for the ACF to reach 1/e (<a
            href="#fig1D" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1D</a>,
          inset), it can be more easily accounted for and removed in the frequency domain as
          Gaussian-like peaks. This is especially important considering neural oscillations with
          non-stationary frequencies. For example, a broad peak in the power spectrum (e.g., ~10 Hz
          in bandwidth in <a href="#fig1D" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1D</a>) represents drifts in the
          oscillation frequency over time, which is easily accounted for with a single Gaussian, but
          requires multiple cosine terms to capture well in the autocorrelation. Therefore, in this
          study, we apply spectral parameterization to extract timescales from intracranial
          recordings <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib20"><span>20</span><span>Donoghue et al.</span><span>2020</span></a></cite>.
          We validate this approach on PSDs computed from simulated neural time series and show that
          the extracted timescales closely match their ground-truth values (<a href="#fig1E"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1E</a>).</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="timescales-follow-anatomical-hierarchy-and-are-10-times-faster-than-spiking-timescales">
          Timescales follow anatomical hierarchy and are ~10 times faster than spiking timescales
        </h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Applying this technique, we
          infer a continuous gradient of neuronal timescales across the human cortex by analyzing a
          large dataset of human intracranial (ECoG) recordings of task-free brain activity <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib29"><span>29</span><span>Frauscher et
                al.</span><span>2018</span></a></cite>. The MNI-iEEG dataset contains 1 min of
          resting state data across 1772 channels from 106 patients (13–62 years old, 48 females)
          with variable coverages, recorded using either surface strip/grid or stereoEEG electrodes,
          and cleaned of visible artifacts. <a href="#fig2A" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2A</a> shows example data traces along
          the cortical hierarchy with increasing timescales estimated from their PSDs (<a
            href="#fig2B" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2B</a>;
          circles denote fitted knee frequency). Timescales from individual channels were extracted
          and projected from MNI coordinates onto the left hemisphere of HCP-MMP1.0 surface
          parcellation <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib38"><span>38</span><span>Glasser et al.</span><span>2016</span></a></cite>
          for each patient using a Gaussian-weighted mask centered on each electrode. While coverage
          is sparse and idiosyncratic in individual patients, it does not vary as a function of age,
          and when pooling across the entire population, 178 of 180 parcels have at least one
          patient with an electrode within 4 mm (<a href="#fig2s1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1A–F</a>).</p>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-execution="[object Object]" data-execution_count="9"
          data-programminglanguage="python">
          <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code># load data
# timescale data
df_tau = pd.read_csv(&#39;./data/df_tau.csv&#39;, index_col=0)
df_tau.columns=[&#39;timescale (ms)&#39;, &#39;log10 timescale (ms)&#39;]
# timescale SAP-surrogates
msr_nulls = pd.read_csv(&#39;./data/df_tau_shuffles.csv&#39;, index_col=0).values.T

# structural data
df_struct = pd.read_csv(&#39;./data/df_structural_avg.csv&#39;, index_col=0)
df_struct.columns = df_struct.columns.str.upper()

# load macroparcel data
df_macro = pd.read_csv(&#39;./data/df_human_features_macro.csv&#39;)
df_macro.columns = df_macro.columns.str.upper()
df_macro.columns = [&#39;index&#39;, &#39;timescale (ms)&#39;] + list(df_macro.columns[2:])
df_macro[&#39;timescale (ms)&#39;] = df_macro[&#39;timescale (ms)&#39;]*1000

## load example ECoG data
data_load = np.load(&#39;./data/fig2AB_data.npz&#39;)
fs, data, psds, f_axis = data_load[&#39;fs&#39;], data_load[&#39;data&#39;], data_load[&#39;psds&#39;], data_load[&#39;f_axis&#39;]
data_load.close()</code></pre>
        </stencila-code-chunk>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2" title="Figure 2.">
          <label data-itemprop="label">Figure 2.</label>
          <figcaption>
            <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="timescale-increases-along-the-anatomical-hierarchy-in-humans-and-macaques">
              Timescale increases along the anatomical hierarchy in humans and macaques.</h3>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2A" title="Figure 2A">
          <label data-itemprop="label">Figure 2A</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="10"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># plot example time series
labels = [&#39;M1&#39;, &#39;SMC&#39;, &#39;OFC&#39;, &#39;ACC&#39;, &#39;MTL&#39;]

# these are the indices of the channels in the MNI dataset
# but only these 5 are included here, you can find the whole .mat file online
plt_inds = [125, 220, 1123, 1666, 573] 
c_ord = [3, 2, 0, 4, 5]

plt.figure(figsize=(13.5,3))
for i, i_p in enumerate(plt_inds):
    plt.plot(stats.zscore(data[:, i])-4*i, color=C_ORD[c_ord[i]], label=labels[i])

plt.xticks([0, fs*5], [&#39;0&#39;, &#39;5&#39;]); plt.yticks([]);
plt.xlabel(&#39;time (s)&#39;);plt.ylabel(&#39;voltage (au)&#39;);
plt.xlim([0, fs*5])
plt.legend(loc=&#39;lower left&#39;, bbox_to_anchor= (1, 0), ncol=1, frameon=False, handletextpad=0.5)
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/6" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Example time series from five
              electrodes along the human cortical hierarchy (M1: primary motor cortex; SMC:
              supplementary motor cortex; OFC: orbitofrontal cortex; ACC: anterior cingulate cortex;
              MTL: medial temporal lobe).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2B" title="Figure 2B">
          <label data-itemprop="label">Figure 2B</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="11" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># plot example PSDs and fit
plt.figure(figsize=(8,4))
for i, i_p in enumerate(plt_inds):    
    fit_range=[1,70]
    fok = FOOOF(max_n_peaks=3, aperiodic_mode=&#39;knee&#39;, verbose=False)
    fok.fit(f_axis, psds[:,i], fit_range)
    offset, knee, exp = fok.get_params(&#39;aperiodic_params&#39;)
    kfreq, tau = convert_knee_val(knee,exp)
    ap_spectrum = (10**offset/(knee+f_axis**exp))
    
    color = C_ORD[c_ord[i]]

    plt.subplot(1,2,1)
    plt.loglog(f_axis[1:100], psds[1:100,i]/psds[2,i], lw=2, color=color)
    plt.axvline(kfreq, ls=&#39;--&#39;, color=color, lw=2, alpha=0.3)
    plt.plot(kfreq, 23, &#39;o&#39;, color=color, ms=10, label=labels[i])
    plt.xticks([1, 10, 100], [&#39;1&#39;, &#39;10&#39;,&#39;100&#39;]); plt.yticks([]); plt.xlabel(&#39;frequency (Hz)&#39;); plt.ylabel(r&#39;power ($V^2/Hz$)&#39;)
    plt.xlim([1,100]); plt.ylim([None,30])

    
    plt.subplot(1,2,2)
    plt.loglog(f_axis[2:100], ap_spectrum[2:100]/ap_spectrum[1], &#39;-&#39;, color=color, lw=4, alpha=0.8, label=labels[i])    
    plt.xticks([1, 10, 100], [&#39;1&#39;, &#39;10&#39;,&#39;100&#39;]); plt.yticks([]); plt.xlabel(&#39;frequency (Hz)&#39;); plt.ylabel(r&#39;power ($V^2/Hz$)&#39;)
    plt.xlim([2,100]);
    plt.legend(loc=&#39;lower left&#39;, bbox_to_anchor= (0, 0.01), ncol=1, frameon=False, handletextpad=1)
    
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/7" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) ...and their corresponding
              power spectral densities (PSDs, left) computed over 1 min. Circle and dashed line
              indicate the knee frequency for each PSD, derived from the aperiodic component fits
              (right). Data: MNI-iEEG database, N = 106 participants.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2" title="Figure 2C.">
          <label data-itemprop="label">Figure 2C.</label><img src="index.html.media/fig_2C.jpg"
            alt="" itemscope="" itemtype="http://schema.org/ImageObject">
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) Human cortical timescale
              gradient (left) falls predominantly along the rostrocaudal axis, similar to T1w/T2w
              ratio (right; z-scored, in units of standard deviation). Colored dots show electrode
              locations of example data.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2D" title="Figure 2D">
          <label data-itemprop="label">Figure 2D</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="12" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>plt.figure(figsize=(4,4))
x=stats.zscore(df_struct[&#39;T1T2&#39;])
y=df_tau[&#39;log10 timescale (ms)&#39;]
rho, pv, pv_perm, rho_null = compute_perm_corr(x,y.values,msr_nulls)
m,b,_,_,_ = stats.linregress(x,y)
plt.plot(x, y, &#39;o&#39;, color=C_ORD[3], alpha=0.5, ms=5)
XL= np.array(plt.xlim())
plt.plot(XL,XL*m+b, &#39;--&#39;, lw=2, color=C_ORD[3], alpha=0.8)
plt.xlabel(r&#39;z-scored T1w/T2w ($\sigma$)&#39;);  plt.ylabel(&#39;timescale (ms)&#39;);
plt.tick_params(&#39;y&#39;, which=&#39;minor&#39;, left=False, labelleft=False)
plt.yticks(np.log10(np.arange(10,60,10)), (np.arange(10, 60, 10)).astype(int))
s = sig_str(rho, pv_perm, form=&#39;text&#39;)
plt.annotate(s, xy=(0.55, 0.75), xycoords=&#39;axes fraction&#39;);</code></pre>
            <figure slot="outputs"><img src="index.html.media/8" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">D</strong>) Neuronal timescales are
              negatively correlated with cortical T1w/T2w, thus increasing along the anatomical
              hierarchy from sensory to association regions (Spearman correlation; p-value corrected
              for spatial autocorrelation, <a href="#fig2s2" itemscope=""
                itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2A–C</a>).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s1"
          title="Figure 2—figure supplement 1."><label data-itemprop="label">Figure 2—figure
            supplement 1.</label><img src="index.html.media/fig2-figsupp1.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="mni-ieeg-dataset-electrode-coverage">MNI-iEEG dataset electrode coverage.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Per-parcel Gaussian-weighted
              mask values showing how close the nearest electrode was to a given HCP-MMP1.0 parcel
              for each participant. Brighter means closer, 0.5 corresponds to the nearest electrode
              being 4 mm away. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Maximum mask weight for each
              parcel across all participants. Most parcels have electrodes very close by in at least
              one participant across the entire participant pool. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) The number of valid HCP-MMP
              parcels each participant has above the confidence threshold of 0.5 is uncorrelated
              with age. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D</strong>)
              Cortical map of the number of participants with confidence above threshold at each
              parcel. Sensorimotor, frontal, and lateral temporal regions have the highest coverage.
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">E</strong>) Cortical
              map of the average age of participants with confidence above threshold at each parcel.
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">F</strong>) Age
              distribution of participants with confidence above threshold at each parcel. Average
              age per parcel (red line) is relatively stable while age distribution varies from
              parcel to parcel (each subject is a black dot). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">G</strong>) Average neuronal timescale
              when further aggregating the 180 Glasser parcels into 21 macro-regions (mean ± s.e.m
              across parcels within the macro-region).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s2"
          title="Figure 2—figure supplement 2."><label data-itemprop="label">Figure 2—figure
            supplement 2.</label><img src="index.html.media/fig2-figsupp2.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="comparison-of-spatial-autocorrelation-preserving-null-map-generation-methods">
              Comparison of spatial autocorrelation-preserving null map generation methods.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Distributions of Spearman
              correlation values between empirical T1w/T2w map and 1000 spatial-autocorrelation
              preserving null timescale maps generated using Moran Spectral Randomization (MSR),
              spatial variogram fitting (VF), and spin permutation. Red dashed line denotes
              correlation between empirical timescale and T1w/T2w maps, p-values indicate two-tailed
              significance, i.e., proportion of distribution with values more extreme than empirical
              correlation. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Spatial variogram for
              empirical timescale map (black) and 10 null maps (blue) generated using MSR (left) and
              VF (right). Inset shows distribution of distances between pairs of HCP-MMP parcels.
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>)
              Distribution of Spearman correlations between empirical and 1000 null timescale maps
              generated using MSR (green) and VF (red), showing similar levels of correlation
              between empirical and null maps for both methods.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s3"
          title="Figure 2—figure supplement 3."><label data-itemprop="label">Figure 2—figure
            supplement 3.</label><img src="index.html.media/fig2-figsupp3.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="cortical-thickness">
              Cortical thickness.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Cortical thickness from the
              HCP dataset is positively correlated with neuronal timescale (left) and negatively
              correlated with T1w/T2w, i.e., thicker brain regions have longer (slower) timescales
              and less gray matter myelination, corresponding to higher-order association areas.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2E" title="Figure 2E">
          <label data-itemprop="label">Figure 2E</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="13"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># get mean population time constants, values grabbed from Murray et al., 2014
cell_ts = {&#39;MT&#39;:[77.,64.], &#39;LIP&#39;:[138., 91.], &#39;LPFC&#39;:[184.,180.,195.,162.], &#39;OFC&#39;:[176.,188.], &#39;ACC&#39;:[313.,340.,257.], &#39;S1&#39;:[65.], &#39;S2&#39;:[149.]}
cell_ts_avg = {k: np.array([np.mean(np.array(v)), stats.sem(np.array(v))]) for k,v in cell_ts.items()}

# electrode indices for each of the corresponding areas in each monkey
loc_inds_chibi = {&#39;MT&#39;:[3,4,109], &#39;LIP&#39;:[10,11], &#39;LPFC&#39;:[14,15,25,26], &#39;OFC&#39;:[23,34,45], &#39;ACC&#39;:[52,57,58,59], &#39;S1&#39;:[9,19], &#39;S2&#39;:[95,108]}
loc_inds_george = {&#39;MT&#39;:[4,13,22], &#39;LIP&#39;:[10,11,20,21], &#39;LPFC&#39;:[15,24,25,26], &#39;OFC&#39;:[45,66], &#39;ACC&#39;:[52,57,58,59], &#39;S1&#39;:[18,19,30], &#39;S2&#39;:[1,2,9,108]}
loc_inds = {&#39;Chibi&#39;: loc_inds_chibi, &#39;George&#39;: loc_inds_george}

area_ord = [3,1,2,0,4,6,5] # color order to match Murray figure

##### plot example PSDs ######
data_load = np.load(&#39;./data/fig2E_data.npz&#39;)
psds, f_axis = data_load[&#39;psds&#39;], data_load[&#39;f_axis&#39;]
data_load.close()
plt.figure(figsize=(8,4))
for i_r, (reg, inds) in enumerate(loc_inds_chibi.items()):
    
    psds_reg = np.mean(np.log10(psds[np.array(inds)-1]),0)
    psds_reg = psds_reg-psds_reg[40]
    fit_range=[1,70]
    plt_inds = np.arange(fit_range[0],fit_range[1]+1)
    fok = FOOOF(max_n_peaks=3, aperiodic_mode=&#39;knee&#39;, verbose=False)
    fok.fit(f_axis, 10**psds_reg, fit_range)
    offset, knee, exp = fok.get_params(&#39;aperiodic_params&#39;)
    kfreq, tau = convert_knee_val(knee,exp)
    ap_spectrum = np.log10((10**offset/(knee+f_axis**exp)))

    plt.subplot(1,2,1)    
    plt.semilogx(f_axis[3:100], psds_reg[3:100] , color=C_ORD[area_ord[i_r]], label=reg, lw=2)
    plt.axvline(kfreq, ls=&#39;--&#39;, color=C_ORD[area_ord[i_r]], lw=2, alpha=0.3)
    plt.plot(kfreq, 1.9, &#39;o&#39;, color=C_ORD[area_ord[i_r]], ms=10)
    plt.xticks([10, 100], [&#39;10&#39;,&#39;100&#39;]); plt.yticks([]); plt.xlabel(&#39;frequency (Hz)&#39;); plt.ylabel(r&#39;power ($V^2/Hz$)&#39;)
    plt.xlim([3,100]); plt.ylim([None,2])    

    plt.subplot(1,2,2)
    plt.semilogx(f_axis[3:100], ap_spectrum[3:100], &#39;-&#39;, color=C_ORD[area_ord[i_r]], lw=4, alpha=0.8)
    plt.xticks([10, 100], [&#39;10&#39;,&#39;100&#39;]); plt.yticks([]); plt.xlabel(&#39;frequency (Hz)&#39;); plt.ylabel(r&#39;power ($V^2/Hz$)&#39;)
    plt.xlim([3,100]); plt.ylim([None,2])
</code></pre>
            <figure slot="outputs"><img src="index.html.media/9" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">E</strong>) Example PSDs from macaque ECoG
              recordings (left) and aperiodic fit (right), similar to (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) (LIP: lateral intraparietal
              cortex; LPFC: lateral prefrontal cortex; S1 and S2: primary and secondary
              somatosensory cortex). PSDs are averaged over electrodes within each region. Data:
              Neurotycho, N = 8 sessions from two animals.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s4"
          title="Figure 2—figure supplement 4."><label data-itemprop="label">Figure 2—figure
            supplement 4.</label><img src="index.html.media/fig2-figsupp4.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="macaque-ecog-and-single-unit-coverage">Macaque ECoG and single-unit coverage.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Locations of 180-electrode
              ECoG grid from two animals in the Neurotycho dataset; colors correspond to locations
              used for comparison with single-unit timescales. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Electrode indices of the
              sampled areas from the two animals, corresponding to those colored in (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2F" title="Figure 2F">
          <label data-itemprop="label">Figure 2F</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="14" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>##### plot stats and results ######
# load ecog results dataframe
df_combined = pd.read_csv(&#39;./data/df_macaque.csv&#39;, index_col=0)

# define querying condition
feature = &#39;tau&#39;
cond_query = &#39;EyesOpen&#39;
df_cond = df_combined[df_combined[&#39;cond&#39;]==cond_query] 

# plot
plt.figure(figsize=(5,4))
ecog_ts_avg = {}

# plot per session average across electrodes
for i, k in enumerate(cell_ts.keys()):
    sesh_mkrs = [] # hack to save the session marker for next plot
    ecog_ts_avg[k] = []
    for s in df_cond[&#39;session_id&#39;].unique():
        df_sesh = df_cond[df_cond[&#39;session_id&#39;]==s]
        patient = df_sesh[&#39;patient&#39;].iloc[0]

        # loc_inds has the ecog electrode indices that fall into each area
        region_inds = loc_inds[patient][k] 
        marker = &#39;s&#39; if patient == &#39;George&#39; else &#39;^&#39;
        sesh_mkrs.append(marker)
        ecog_ts_sess_avg = df_sesh.loc[df_sesh[&#39;chan&#39;].isin(region_inds)].mean()[feature]*1e3 # use ms
        ecog_ts_avg[k].append(ecog_ts_sess_avg)

# plot grand average
for i,k in enumerate(cell_ts.keys()):
    plt.errorbar(cell_ts_avg[k][0], np.mean(ecog_ts_avg[k]), xerr=cell_ts_avg[k][1], yerr=stats.sem(ecog_ts_avg[k]), fmt=&#39;o&#39;, color=C_ORD[area_ord[i]], ms=10, label=k)
    
# fit &amp; plot line
ts_mat = np.array([(cell_ts_avg[k][0], np.mean(ecog_ts_avg[k])) for k in cell_ts.keys()])
m,b,r,pv,stderr = stats.linregress(ts_mat)
XL = np.array(plt.xlim())
plt.plot(XL, m*XL+b, &#39;k--&#39;, lw=1)

rho, pv = stats.spearmanr(ts_mat[:,0], ts_mat[:,1])
s = sig_str(rho, pv, form=&#39;text&#39;)
plt.annotate(s, xy=(0.05, 0.8), xycoords=&#39;axes fraction&#39;)

plt.tick_params(&#39;x&#39;, which=&#39;minor&#39;, bottom=False, labelbottom=False)
plt.tick_params(&#39;y&#39;, which=&#39;minor&#39;, left=False, labelleft=False)
plt.xlim([-10,400]);plt.ylim([8,50]);

plt.legend(loc=&#39;lower left&#39;, bbox_to_anchor= (0.9, 0), ncol=1, frameon=False, handletextpad=0.05)
plt.xlabel(r&#39;$\tau_{spiking}$ (ms)&#39;, fontsize=16);
plt.ylabel(r&#39;$\tau_{ECoG}$ (ms)&#39;, fontsize=16); #plt.title(cond_query)
plt.tight_layout();</code></pre>
            <figure slot="outputs"><img src="index.html.media/10" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">F</strong>) Macaque ECoG timescales track
              published single-unit spiking timescales <cite itemscope=""
                itemtype="http://schema.stenci.la/Cite"><a href="#bib68"><span>68</span><span>Murray
                    et al.</span><span>2014</span></a></cite> in corresponding regions (error bars
              represent mean ± s.e.m).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2G" title="Figure 2G">
          <label data-itemprop="label">Figure 2G</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="15" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>### compute and plot across-trial stats ###
ecog_ts_mat = np.array([ecog_ts_avg[k] for k in cell_ts.keys()])
cell_ts_mat = np.array([cell_ts_avg[k][0] for k in cell_ts.keys()])
session_stats = np.array([stats.linregress(cell_ts_mat, ecog_ts_mat[:,i]) for i in range(ecog_ts_mat.shape[1])])
session_rhos = np.array([stats.spearmanr(cell_ts_mat, ecog_ts_mat[:,i]) for i in range(ecog_ts_mat.shape[1])])

plt.figure(figsize=(4,4))
plt.subplot(1,2,1)
for s_i, s in enumerate(sesh_mkrs): plt.plot(np.random.randn(1)/10, session_rhos[s_i,0],mec=&#39;k&#39;, mfc=&#39;w&#39;, ms=6, marker=s, alpha=0.9)
plt.plot(0, rho,&#39;ko&#39;, ms=10, alpha=0.6)
plt.xlim([-0.5,1]); plt.ylim([0,1]);
plt.xticks([]); plt.ylabel(r&#39;Spearman $\rho$&#39;)

plt.subplot(1,2,2)
for s_i, s in enumerate(sesh_mkrs): plt.plot(np.random.randn(1)/10, session_stats[s_i,0]*100, mec=&#39;k&#39;, mfc=&#39;w&#39;, ms=6, marker=s)
plt.plot(0, m*100,&#39;ko&#39;, ms=12, alpha=0.6)
plt.xlim([-0.5,1]);
plt.yticks([0, 10, 20], [&#39;0%&#39;, &#39;10%&#39;, &#39;20%&#39;])
plt.xticks([]); plt.ylabel(r&#39;$\tau_{ECoG} : \tau_{spiking}$ (%)&#39;, fontsize=16)
plt.tight_layout(); </code></pre>
            <figure slot="outputs"><img src="index.html.media/11" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">G</strong>) ECoG-derived timescales are
              consistently correlated with (left), and ~10 times faster than (right), single-unit
              timescales across individual sessions. Hollow markers: individual sessions; shapes:
              animals; solid circles: grand average from (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">F</strong>).</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Across the human cortex,
          timescales of fast electrophysiological dynamics (~10–50 ms) predominantly follow a
          rostrocaudal gradient (<a href="#fig2C" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2C</a>, circles denote location of
          example data from 2A). Consistent with numerous accounts of a principal cortical axis
          spanning from primary sensory to association regions <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib46"><span>46</span><span>Hilgetag
                  and Goulas</span><span>2020</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib64"><span>64</span><span>Margulies et
                  al.</span><span>2016</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib98"><span>98</span><span>Wang</span><span>2020</span></a></cite></span>,
          timescales are shorter in sensorimotor and early visual areas, and longer in association
          regions, especially cingulate, ventral/medial frontal, and medial temporal lobe (MTL)
          regions (<a href="#fig2s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            2—figure supplement 1G</a> shows further pooling into 21 labeled macro-regions). We then
          compare the timescale gradient to the average T1w/T2w map from the Human Connectome
          Project, which captures gray matter myelination and indexes the proportion of feedforward
          vs. feedback connections between cortical regions, thus acting as a noninvasive proxy of
          connectivity-based anatomical hierarchy <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib10"><span>10</span><span>Burt et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib39"><span>39</span><span>Glasser
                  and Van Essen</span><span>2011</span></a></cite></span>. We find that neuronal
          timescales are negatively correlated with T1w/T2w across the entire cortex (<a
            href="#fig2D" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2D</a>, <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">ρ</em> = −0.47, p&lt;0.001;
          corrected for spatial autocorrelation [SA], see Materials and methods and <a
            href="#fig2s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure
            supplement 2A–C</a> for a comparison of correction methods), such that timescales are
          shorter in more heavily myelinated (i.e., lower-level, sensory) regions. Timescales are
          also positively correlated with cortical thickness (<a href="#fig2s3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 3</a>, <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">ρ</em> = 0.37, p=0.035)—another
          index of cortical hierarchy that is itself anti-correlated with T1w/T2w. Thus, we observe
          that neuronal timescales lengthen along the human cortical hierarchy, from sensorimotor to
          association regions.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">While surface ECoG recordings
          offer much broader spatial coverage than extracellular single-unit recordings, they are
          fundamentally different signals: ECoG and field potentials largely reflect integrated
          synaptic and other transmembrane currents across many neuronal and glial cells, rather
          than putative action potentials from single neurons (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib12"><span>12</span><span>Buzsáki et
                al.</span><span>2012</span></a></cite>; <a href="#fig1A" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1A</a>, yellow box). Considering this, we
          ask whether timescales measured from ECoG in this study (<span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle {\tau }_{\text{ECoG}}}"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                      class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.08em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.23em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mtext"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.446em; padding-bottom: 0.372em;">ECoG</span></span></span></span></span></span></span></span></span></span></span></span></span></span>)
          are related to single-unit spiking timescales along the cortical hierarchy (<span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math"
                aria-label="{\displaystyle {\tau }_{\text{spiking}}}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-msubsup"><span
                              class="mjx-base" style="margin-right: -0.08em;"><span
                                class="mjx-texatom"><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.219em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mtext"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.519em;">spiking</span></span></span></span></span></span></span></span></span></span></span></span></span></span>).
          To test this, we extract neuronal timescales from task-free ECoG recordings in macaques
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib69"><span>69</span><span>Nagasaka et al.</span><span>2011</span></a></cite>
          and compare them to a separate dataset of single-unit spiking timescales from a different
          group of macaques <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib68"><span>68</span><span>Murray et al.</span><span>2014</span></a></cite>
          (see <a href="#fig2s4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            2—figure supplement 4</a> for electrode locations). Consistent with <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle {\tau }_{\text{spiking}}}"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                      class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.08em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.219em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mtext"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.519em;">spiking</span></span></span></span></span></span></span></span></span></span></span></span></span></span>
          estimates <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib68"><span>68</span><span>Murray et
                  al.</span><span>2014</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib99"><span>99</span><span>Wasmuht
                  et al.</span><span>2018</span></a></cite></span>, <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle {\tau }_{\text{ECoG}}}"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                      class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.08em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.23em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mtext"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.446em; padding-bottom: 0.372em;">ECoG</span></span></span></span></span></span></span></span></span></span></span></span></span></span>
          also increase along the macaque cortical hierarchy. While there is a strong correspondence
          between spiking and ECoG timescales (<a href="#fig2F" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2F</a>; <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ρ</em> = 0.96, p&lt;0.001)—measured from
          independent datasets—across the macaque cortex, <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle {\tau }_{\text{ECoG}}}"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                      class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.08em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.23em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mtext"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.446em; padding-bottom: 0.372em;">ECoG</span></span></span></span></span></span></span></span></span></span></span></span></span></span>
          are ~10 times faster than <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle {\tau }_{\text{spiking}}}"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                      class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.08em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.219em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mtext"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.519em;">spiking</span></span></span></span></span></span></span></span></span></span></span></span></span></span>
          and are conserved across individual sessions (<a href="#fig2G" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2G</a>). This suggests that neuronal
          spiking and transmembrane currents have distinct but related timescales of fluctuations,
          and that both are hierarchically organized along the primate cortex.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="synaptic-and-ion-channel-genes-shape-timescales-of-neuronal-dynamics">Synaptic and ion
          channel genes shape timescales of neuronal dynamics</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Next, we identify potential
          cellular and synaptic mechanisms underlying timescale variations across the human cortex.
          Theoretical accounts posit that NMDA-mediated recurrent excitation coupled with fast
          inhibition <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib13"><span>13</span><span>Chaudhuri et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib95"><span>95</span><span>Wang</span><span>2008</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib93"><span>93</span><span>Wang</span><span>1999</span></a></cite></span>,
          as well as cell-intrinsic properties <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib23"><span>23</span><span>Duarte
                  and Morrison</span><span>2019</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib37"><span>37</span><span>Gjorgjieva et
                  al.</span><span>2016</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib59"><span>59</span><span>Koch et
                  al.</span><span>1996</span></a></cite></span>, are crucial for shaping neuronal
          timescales. While in vitro and in vivo studies in model organisms <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib83"><span>83</span><span>van Vugt
                  et al.</span><span>2020</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib97"><span>97</span><span>Wang et
                  al.</span><span>2013</span></a></cite></span> can test these hypotheses at the
          single-neuron level, causal manipulations and large-scale recordings of neuronal networks
          embedded in the human brain are severely limited. Here, we apply an approach analogous to
          multimodal single-cell profiling <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib5"><span>5</span><span>Bomkamp et
                al.</span><span>2019</span></a></cite> and examine the transcriptomic basis of
          neuronal dynamics at the macroscale.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Leveraging whole-cortex
          interpolation of the Allen Human Brain Atlas bulk mRNA expression <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib42"><span>42</span><span>Gryglewski et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib43"><span>43</span><span>Hawrylycz et
                  al.</span><span>2012</span></a></cite></span>, we project voxel-wise expression
          maps onto the HCP-MMP1.0 surface parcellation, and find that the neuronal timescale
          gradient overlaps with the dominant axis of gene expression (i.e., first principal
          component of 2429 brain-related genes) across the human cortex (<a href="#fig3A"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3A</a>, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ρ</em> = −0.60, p&lt;0.001; see <a
            href="#fig3s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3—figure
            supplement 1</a> for similar results with all 18,114 genes). Consistent with theoretical
          predictions (<a href="#fig3B" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            3B</a>), timescales significantly correlate with the expression of genes encoding for
          NMDA (GRIN2B) and GABA-A (GABRA3) receptor subunits, voltage-gated sodium (SCN1A) and
          potassium (KCNA3) ion channel subunits, as well as inhibitory cell-type markers
          (parvalbumin, PVALB), and genes previously identified to be associated with single-neuron
          membrane time constants (PRR5) <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib5"><span>5</span><span>Bomkamp et
                al.</span><span>2019</span></a></cite> (all Spearman correlations corrected for SA
          in gradients).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3" title="Figure 3.">
          <label data-itemprop="label">Figure 3.</label>
          <figcaption>
            <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="timescale-gradient-is-linked-to-expression-of-genes-related-to-synaptic-receptors-and-transmembrane-ion-channels-across-the-human-cortex">
              Timescale gradient is linked to expression of genes related to synaptic receptors and
              transmembrane ion channels across the human cortex.</h3>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3A" title="Figure 3A">
          <label data-itemprop="label">Figure 3A</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="16"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># perform PCA on brain genes
from sklearn.decomposition import PCA
brain_gene_symbols = pd.read_csv(&#39;./data/df_brain_genes_symbols.csv&#39;, index_col=0).values[:,1].tolist()
df_genes = df_struct[brain_gene_symbols]

n_pcs = 10
gene_pca = PCA(n_pcs)
gene_grad = gene_pca.fit_transform(df_genes.values)
df_pc_weights = pd.DataFrame(gene_pca.components_.T, index=df_genes.columns, columns=[&#39;pc%i&#39;%i for i in range(1, n_pcs+1)])

# compute correlation
x = stats.zscore(gene_grad[:,0])
y = df_tau[&#39;log10 timescale (ms)&#39;]
rho, pv, pv_perm, rho_null = compute_perm_corr(x,y.values,msr_nulls)
m,b,_,_,_ = stats.linregress(x,y.values)

plt.figure(figsize=(12,4))

plt.subplot(1,3,1)
plt.plot(x, y, &#39;o&#39;, color=C_ORD[0], alpha=0.5, ms=5)
plt.xlim([-2.75, 2.75]); 
XL= np.array([-2.5, 2.5])
plt.plot(XL,XL*m+b, &#39;--&#39;, lw=2, color=C_ORD[0], alpha=0.8)
plt.xlabel(r&#39;gene expression PC1 ($\sigma$)&#39;); plt.ylabel(&#39;timescale (ms)&#39;);
plt.yticks(np.log10(np.arange(10,60,10)), (np.arange(10, 60, 10)).astype(int))
plt.tick_params(&#39;y&#39;, which=&#39;minor&#39;, left=False, labelleft=False)
s = sig_str(rho, pv_perm, form=&#39;text&#39;)
plt.annotate(s, xy=(0.05, 0.05), xycoords=&#39;axes fraction&#39;)

plt.subplot(1,3,2)
plt.bar(range(1,n_pcs+1), gene_pca.explained_variance_ratio_, fc=&#39;k&#39;, alpha=0.5)
plt.xticks([1, 10], [&#39;1&#39;, &#39;10&#39;]);
plt.xlabel(&#39;principal component&#39;); plt.ylabel(&#39;proportion of var. explained&#39;);

plt.subplot(1,3,3)
all_pc_rhos = np.array([compute_perm_corr(x, y, msr_nulls)[:3] for x in gene_grad.T])
plt.bar(range(1,n_pcs+1), np.abs(all_pc_rhos[:,0]), fc=&#39;k&#39;, alpha=0.5)
for i in range(1,11):    
    plt.annotate(&#39;*&#39;*sum(all_pc_rhos[i-1,2]&lt;[0.05, 0.01, 0.005, 0.001]), (i, abs(all_pc_rhos[i-1,0])+0.005), horizontalalignment=&#39;center&#39;)
plt.xticks([1, 10], [&#39;1&#39;, &#39;10&#39;]);
plt.xlabel(&#39;principal component&#39;); plt.ylabel(r&#39;absolute $\rho$&#39;);
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/12" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Timescale gradient follows the
              dominant axis of gene expression variation across the cortex (left, z-scored PC1 of
              2429 brain-specific genes, arbitrary direction). Middle: proportion of variance
              explained by first 10 PCs. Right: absolute Spearman correlation between timescale and
              first 10 PCs.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3A_inset"
          title="Figure 3A."><label data-itemprop="label">Figure 3A.</label><img
            src="index.html.media/fig_3A_inset.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject"></figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3s1"
          title="Figure 3—figure supplement 1."><label data-itemprop="label">Figure 3—figure
            supplement 1.</label><img src="index.html.media/fig3-figsupp1.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="transcriptomic-principal-component-analysis-results">Transcriptomic principal
              component analysis results.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Proportion of variance
              explained by the top 10 principal components (PCs) of brain-specific genes (top) and
              all AHBA genes (bottom). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Absolute Spearman correlation
              between timescale map and top 10 PCs from brain-specific or full gene dataset.
              Asterisks indicate resampled significance while accounting for spatial
              autocorrelation; **** indicate p_&lt;_0.001. Top PCs explain similar amounts of
              variance, while only PC1 in both cases is significantly correlated with timescale.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3B" title="Figure 3B">
          <label data-itemprop="label">Figure 3B</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="17"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>xlb = [&#39;GRIN2B&#39;, &#39;GABRA3&#39;,&#39;SCN1A&#39;, &#39;KCNA3&#39;,&#39;PVALB&#39;, &#39;PRR5&#39;]

plt.figure(figsize=(4,6))
y = df_tau[&#39;log10 timescale (ms)&#39;]
xs = [df_struct[g] for g in xlb]

for i_x, x in enumerate(xs):
    rho, pv, pv_perm, rho_null = compute_perm_corr(x,y.values,msr_nulls)
    m,b,_,_,_ = stats.linregress(x,y.values)

    plt.subplot(3,2,i_x+1)
    plt.plot(x, y, &#39;.&#39;, color=C_ORD[0], alpha=0.5, ms=5);
    XL= np.array([-2.5, 2.5])
    plt.xlim([-2.75, 2.75]); 
    plt.plot(XL,XL*m+b, &#39;--&#39;, lw=2, color=C_ORD[0], alpha=0.8)    
    plt.gca().set_xticklabels([])
    plt.gca().set_yticklabels([])
    plt.annotate(sig_str(rho, pv_perm, form=&#39;*&#39;), xy=(0.02,0.05), xycoords=&#39;axes fraction&#39;, fontsize=14);
    plt.xlabel(xlb[i_x], fontsize=14, labelpad=0)
    
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/13" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Timescale gradient is
              significantly correlated with expression of genes known to alter synaptic and neuronal
              membrane time constants, as well as inhibitory cell-type markers, but...</p>
          </figcaption>
        </figure>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-execution="[object Object]" data-execution_count="18"
          data-programminglanguage="python">
          <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code>geneset_nmda = [&#39;GRIN1&#39;, &#39;GRINA&#39;, &#39;GRIN2A&#39;,&#39;GRIN2B&#39;,&#39;GRIN2C&#39;,&#39;GRIN2D&#39;,&#39;GRIN3A&#39;, &#39;GRIN3B&#39;] # nmda receptor
geneset_gabra = [&#39;GABRA1&#39;,&#39;GABRA2&#39;,&#39;GABRA3&#39;,&#39;GABRA4&#39;,&#39;GABRA5&#39;,&#39;GABRA6&#39;] # GABA-A alpha subchannels
geneset_sodium = [&#39;SCN1A&#39;,  &#39;SCN2A&#39;,  &#39;SCN3A&#39;, &#39;SCN4A&#39;,  &#39;SCN5A&#39;, &#39;SCN7A&#39;, &#39;SCN8A&#39;, &#39;SCN9A&#39;, &#39;SCN10A&#39;]#,&#39;SCN1B&#39;,&#39;SCN2B&#39;,&#39;SCN3B&#39;,SCN4B&#39;] # sodium ion channels
geneset_potassium = [&#39;KCNA1&#39;,&#39;KCNA2&#39;,&#39;KCNA3&#39;,&#39;KCNA4&#39;,&#39;KCNA5&#39;,&#39;KCNA6&#39;] # GABA-A alpha subchannels
geneset_inh = [&#39;CORT&#39;, &#39;CALB1&#39;, &#39;CALB2&#39;, &#39;SST&#39;, &#39;PVALB&#39;, &#39;CCK&#39;, &#39;NPY&#39;, &#39;PNOC&#39;, &#39;VIP&#39;] # inhibitory markers
geneset_sctau = [&#39;CELF6&#39;, &#39;PRR5&#39;, &#39;FAM81A&#39;, &#39;LRRC4C&#39;,&#39;OXTR&#39;, &#39;CTXN1&#39;, &#39;ENC1&#39;, &#39;AKAIN1&#39;] # single-cell membrane time constant
gene_families = [geneset_nmda, geneset_gabra, geneset_sodium, geneset_potassium, geneset_inh, geneset_sctau]

df_tau_gene_corrfam = pd.DataFrame([], index=sum(gene_families, []), columns=[&#39;rho&#39;, &#39;pv&#39;, &#39;pv_adj&#39;])
for i_g, g in df_tau_gene_corrfam.iterrows():
    df_tau_gene_corrfam.loc[i_g] = compute_perm_corr(df_struct[i_g].values, y.values, msr_nulls)[0:3]</code></pre>
        </stencila-code-chunk>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3C" title="Figure 3C">
          <label data-itemprop="label">Figure 3C</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="19"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># plot all correlations
plt.figure(figsize=(3,4))
plt.axvline(0, color=&#39;k&#39;, lw=1)
for i_g, gs in enumerate(gene_families):
    set_x = df_tau_gene_corrfam.loc[gs][&#39;rho&#39;]
    set_y = np.random.randn(len(gs))/15+(5-i_g)

    # color based on permutation significance
    set_color = [C_ORD[0] if p&lt;0.05 else &#39;w&#39; for p in df_tau_gene_corrfam.loc[gs][&#39;pv_adj&#39;]]
    plt.axhline(5-i_g, lw=0.2, color=&#39;k&#39;)
    plt.scatter(set_x, set_y, alpha=0.5, s=50, ec = C_ORD[0], c = set_color)
    
plt.xlabel(r&#39;$\rho$&#39;, labelpad=-15); plt.xticks([-0.5, 0.5])
plt.yticks(np.arange(len(gene_families)), [&#39;sc-tau&#39;,&#39;inhibitory&#39;,&#39;K+ chan.&#39;,&#39;Na+ chan.&#39;,&#39;GABAA&#39;, &#39;NMDA&#39;]); 
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/14" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) members within a gene family
              (e.g., NMDA receptor subunits) can be both positively and negatively associated with
              timescales, consistent with predictions from in vitro studies.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3s2"
          title="Figure 3-figure supplement 2."><label data-itemprop="label">Figure 3-figure
            supplement 2.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="20" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># another view, plot families of correlations as hbar
color = plt.cm.RdBu_r(np.linspace(0,1,200))
plt.figure(figsize=(18,4))
for i_g, g_subset in enumerate(gene_families):
    plt.subplot(1,len(gene_families),i_g+1)
    geneset_plot = df_tau_gene_corrfam.loc[g_subset]
    for i_p in range(len(geneset_plot)):
        rho, pv_perm = df_tau_gene_corrfam.loc[geneset_plot.iloc[i_p].name][[&#39;rho&#39;, &#39;pv_adj&#39;]]
        plt.barh(i_p, rho, ec=&#39;k&#39;, fc=color[int((1+rho*1.5)*100)])
        s = np.sum(pv_perm&lt;=np.array([0.05, 0.01, 0.005, 0.001]))*&#39;*&#39;
        plt.text(rho, i_p-0.4, s, fontsize=18, horizontalalignment=&#39;left&#39; if rho&gt;0 else &#39;right&#39;)

    plt.plot([0,0], plt.ylim(), &#39;k&#39;)
    plt.ylim([-0.5,len(geneset_plot)-0.5])
    plt.yticks(range(len(geneset_plot)), geneset_plot.index.values, rotation=0, ha=&#39;right&#39;, va=&#39;center&#39;, rotation_mode=&#39;anchor&#39;, fontsize=14)
    plt.tick_params(axis=&#39;y&#39;, which=u&#39;both&#39;,length=0)
    plt.xlim([-1,1]); plt.xlabel(r&#39;$\rho$&#39;, labelpad=-15); plt.xticks([-1,1])

plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/15" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">Individual timescale-gene correlations
                magnitudes.</strong> Correlation between timescale and expression of genes from <a
                href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3C</a>,
              with gene symbols labeled and grouped into functional families for ease of
              interpretation.</p>
          </figcaption>
        </figure>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-execution="[object Object]" data-execution_count="21"
          data-programminglanguage="python">
          <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code>def collect_micro_macro_corr(df_micro_corr, df_macro_corr, col_names):
    sc_feats, corr_metric,  prop_col, gene_col = col_names
    micro_macro_corr = []
    for i_f, feat in enumerate(sc_feats):
        match_genes = []
        for i_g, g in df_micro_corr[df_micro_corr[prop_col]==feat].iterrows():
            if g[gene_col].upper() in df_macro_corr.index:
                match_genes.append([i_g, g[gene_col].upper()])

        match_genes = np.array(match_genes, dtype=&#39;object&#39;)
        micro_macro_corr.append([match_genes[:,1], df_micro_corr.loc[match_genes[:,0]][corr_metric].values, df_macro_corr.loc[match_genes[:,1]][&#39;rho&#39;].values])

    return np.hstack(micro_macro_corr), micro_macro_corr

# collect micro/macro correlations of relevant genes
df_bomkamp = pd.read_csv(&#39;./data/bomkamp_online_table1.txt&#39;, index_col=0)
df_tripathy = pd.read_csv(&#39;./data/tripathy_tableS3.csv&#39;, index_col=0)

df_genes = df_struct[df_struct.columns[2:]]
df_tau_gene_corrall = pd.DataFrame([stats.spearmanr(g.values, y.values) for g_i, g in df_genes.iteritems()], columns=[&#39;rho&#39;,&#39;pv&#39;], index=df_genes.columns)
df_tau_gene_macro = df_tau_gene_corrall[df_tau_gene_corrall[&#39;pv&#39;]&lt;0.05]
#df_tau_gene_macro = df_tau_gene_corrall_rmvt1t2[df_tau_gene_corrall_rmvt1t2[&#39;pv&#39;]&lt;0.05]

col_names = [[&#39;tau&#39;, &#39;ri&#39;, &#39;cap&#39;], &#39;beta_gene&#39; , &#39;property&#39;, &#39;gene_symbol&#39;]
micro_macro_bomkamp, mmc_bomkamp_split = collect_micro_macro_corr(df_bomkamp, df_tau_gene_macro, col_names)

col_names = [[&#39;Tau&#39;, &#39;Rin&#39;, &#39;Cm&#39;], &#39;DiscCorr&#39;, &#39;EphysProp&#39;, &#39;GeneSymbol&#39;]
micro_macro_tripathy, mmc_tripathy_split = collect_micro_macro_corr(df_tripathy, df_tau_gene_macro, col_names)</code></pre>
        </stencila-code-chunk>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3D" title="Figure 3D">
          <label data-itemprop="label">Figure 3D</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="22"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>plt.figure(figsize=(4,4))
pct_bins = np.arange(0,100,20)
lss = [&#39;o-&#39;, &#39;^--&#39;]
labels=[&#39;Tripathy17&#39;, &#39;Bomkamp18&#39;]

for i_m, micro_macro in enumerate([micro_macro_tripathy, micro_macro_bomkamp]):
    meta_corr = []
    micro_macro_abscorr = abs(micro_macro[2].astype(float))
    bins = np.percentile(micro_macro_abscorr, pct_bins)
    corr_quant_inds = np.digitize(micro_macro_abscorr, bins)
    for i in np.unique(corr_quant_inds):
        meta_corr.append(stats.pearsonr(micro_macro[1,corr_quant_inds==i],micro_macro[2,corr_quant_inds==i]))
        
    meta_corr=np.array(meta_corr)
    r, pv = stats.pearsonr(micro_macro[1],micro_macro[2])
    plt.plot(pct_bins+pct_bins[1], meta_corr[:,0], lss[i_m], color=C_ORD[0], ms=8, mfc=&#39;w&#39;, alpha=0.8, label=labels[i_m])
    plt.plot(pct_bins[meta_corr[:,1]&lt;0.05]+pct_bins[1], meta_corr[meta_corr[:,1]&lt;0.05,0], lss[i_m][0], color=C_ORD[0], ms=8, alpha=0.8)
    plt.plot(pct_bins[[0,-1]]+pct_bins[1], [r, r], ls=lss[i_m][1:], color=&#39;k&#39;, alpha=0.7, zorder=-20)

plt.xticks([20,100],[&#39;1/5&#39;, &#39;5/5&#39;]); 
plt.yticks(np.arange(-0.25, 1, 0.25))
plt.legend(frameon=False, fontsize=14, loc=[0,0.8])
plt.xlabel(r&#39;macroscale absolute $\rho$ quintile&#39;); plt.ylabel(&#39;single-cell vs. macroscale\nassociation correlation (r)&#39;)
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/16" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">D</strong>) Macroscale
              timescale-transcriptomic correlation captures association between RNA-sequenced
              expression of the same genes and single-cell timescale properties fit to patch clamp
              data from two studies, and the correspondence improves for genes (separated by
              quintiles) that are more strongly correlated with timescale (solid: N = 170 <cite
                itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                  href="#bib81"><span>81</span><span>Tripathy et
                    al.</span><span>2017</span></a></cite>, dashed: N = 4168 genes <cite
                itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                  href="#bib5"><span>5</span><span>Bomkamp et
                    al.</span><span>2019</span></a></cite>; horizontal lines: correlation across all
              genes from the two studies, <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">ρ</em> = 0.36 and 0.25, p_&lt;_0.001 for
              both).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3s3"
          title="Figure 3-figure supplement 3."><label data-itemprop="label">Figure 3-figure
            supplement 3.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="23" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code># print(&#39;open to explore data!&#39;)
struct_query = &#39;PVALB&#39;

# make temp dataframe because loading the whole thing in altair is slow af
df_query = pd.concat([df_macro[&#39;index&#39;], df_macro[&#39;timescale (ms)&#39;], df_macro[struct_query]], axis=1)
rho, pv = stats.spearmanr(df_macro[&#39;timescale (ms)&#39;], df_macro[struct_query])

alt.Chart(df_query).mark_circle(size=200).encode(
    alt.X(struct_query, scale=alt.Scale(zero=False)),
    alt.Y(&#39;timescale (ms)&#39;, scale=alt.Scale(zero=False, domain=(10, 40))),
    color=alt.value(&#39;black&#39;),
    tooltip=[&#39;index&#39;]
).properties(
    width=600,
    height=600
).configure_axis(
    labelFontSize=20,
    titleFontSize=20
).configure_title(fontSize=24).interactive()</code></pre>
            <figure slot="outputs">
              <stencila-image-vega>
                <picture>
                  <script type="application/vnd.vega+json">
                    {"$schema":"https://vega.github.io/schema/vega-lite/v4.8.1.json","config":{"axis":{"labelFontSize":20,"titleFontSize":20},"title":{"fontSize":24},"view":{"continuousHeight":300,"continuousWidth":400}},"data":{"name":"data-0c24c940a531d49d4a553f18da809b0b"},"datasets":{"data-0c24c940a531d49d4a553f18da809b0b":[{"PVALB":-1.0739830000000004,"index":"ACC & mPFC","timescale (ms)":23.6646153617108},{"PVALB":-0.306959625,"index":"Auditory Association","timescale (ms)":21.1861655682381},{"PVALB":0.9218425,"index":"Dorsal Visual","timescale (ms)":13.873876458342},{"PVALB":0.5463709999999999,"index":"Early Auditory","timescale (ms)":20.428623012098498},{"PVALB":1.41386,"index":"Early Visual","timescale (ms)":18.063889477225},{"PVALB":0.46394075,"index":"Inferior Frontal","timescale (ms)":21.5522118232316},{"PVALB":0.5275494999999999,"index":"Inferior Parietal","timescale (ms)":18.198201173955},{"PVALB":-1.343027461538462,"index":"Insular","timescale (ms)":23.6355651986536},{"PVALB":-0.8478840000000001,"index":"Lateral Temporal","timescale (ms)":23.9869071053532},{"PVALB":-1.8474807142857144,"index":"Medial Temporal","timescale (ms)":36.966767574418},{"PVALB":-0.5927243181818181,"index":"Orbital Frontal","timescale (ms)":29.97419085284},{"PVALB":0.4159868125,"index":"Paracentral & Mid Cingulate","timescale (ms)":16.4674645323157},{"PVALB":0.4980633333333333,"index":"Post Operculum","timescale (ms)":18.9387602397144},{"PVALB":0.1066715821428571,"index":"Posterior Cingulate","timescale (ms)":21.0820832413214},{"PVALB":0.8282357142857142,"index":"Premotor","timescale (ms)":18.0559188563814},{"PVALB":0.963626,"index":"Sensorimotor","timescale (ms)":14.704584058618801},{"PVALB":0.6980194999999999,"index":"Superior Parietal","timescale (ms)":17.4078740509136},{"PVALB":0.3042686,"index":"Temporal-Parietal-Occipital Junction","timescale (ms)":18.6089681156172},{"PVALB":0.3512427857142858,"index":"Ventral Visual","timescale (ms)":18.770335978593},{"PVALB":0.7410799999999998,"index":"Visual (TPO)","timescale (ms)":18.9753226617018},{"PVALB":0.3190209230769231,"index":"dlPFC","timescale (ms)":19.2918549709602}]},"encoding":{"color":{"value":"black"},"tooltip":[{"field":"index","type":"nominal"}],"x":{"field":"PVALB","scale":{"zero":false},"type":"quantitative"},"y":{"field":"timescale (ms)","scale":{"domain":[10,40],"zero":false},"type":"quantitative"}},"height":600,"mark":{"size":200,"type":"circle"},"selection":{"selector001":{"bind":"scales","encodings":["x","y"],"type":"interval"}},"width":600}
                  </script><img src="index.html.media/17" alt="" itemscope=""
                    itemtype="http://schema.org/ImageObject">
                </picture>
              </stencila-image-vega>
            </figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">Interactive scatterplot of timescale and
                gene across brain macroparcels.</strong> Change <code itemscope=""
                itemtype="http://schema.stenci.la/CodeFragment">struct_query</code> to a different
              gene symbol, or &#39;T1T2&#39;. Hover over dots to see area name.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3EF"
          title="Figure 3E-F."><label data-itemprop="label">Figure 3E-F.</label><img
            src="index.html.media/fig_3EF.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">E</strong>) T1w/T2w gradient is regressed
              out from timescale and gene expression gradients, and a partial least squares (PLS)
              model is fit to the residual maps. Genes with significant PLS weights (filled blue
              boxes) compared to spatial autocorrelation (SA)-preserved null distributions are
              submitted for gene ontology enrichment analysis (GOEA), returning a set of significant
              GO terms that represent functional gene clusters (filled green boxes). (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">F</strong>) Enriched genes
              are primarily linked to potassium and chloride transmembrane transporters, and
              GABA-ergic synapses; genes specifically with strong negative associations further
              over-represent transmembrane ion exchange mechanisms, especially voltage-gated
              potassium and cation transporters. Branches indicate GO items that share higher-level
              (parent) items, e.g., <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">voltage-gated cation channel
                activity</em> is a child of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">cation channel activity</em> in the
              molecular functions (MF) ontology, and both are significantly associated with
              timescale. Color of lines indicate curated ontology (BP—biological process,
              CC—cellular components, or MF). Dotted, dashed, and solid lines correspond to analysis
              performed using all genes or only those with positive or negative PLS weights. Spatial
              correlation p-values in (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A–C</strong>) are corrected for SA (see
              Materials and methods; asterisks in (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B,D</strong>) indicate p&lt;0.05, 0.01,
              0.005, and 0.001 respectively; filled markers in (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C,D</strong>) indicate p&lt;0.05).</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">More specifically, in vitro
          electrophysiological studies have shown that, for example, increased expression of
          receptor subunit 2B extends the NMDA current time course <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib27"><span>27</span><span>Flint et
                al.</span><span>1997</span></a></cite>, while 2A expression shortens it <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib66"><span>66</span><span>Monyer et al.</span><span>1994</span></a></cite>.
          Similarly, the GABA-A receptor time constant lengthens with increasing a3:a1 subunit ratio
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib24"><span>24</span><span>Eyre et al.</span><span>2012</span></a></cite>. We
          show that these relationships are recapitulated at the macroscale, where neuronal
          timescales positively correlate with GRIN2B and GABRA3 expression and negatively correlate
          with GRIN2A and GABRA1 (<a href="#fig3C" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 3C</a>). These results demonstrate that
          timescales of neural dynamics depend on specific receptor subunit combinations with
          different (de)activation timescales <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib22"><span>22</span><span>Duarte
                  et al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib37"><span>37</span><span>Gjorgjieva et
                  al.</span><span>2016</span></a></cite></span>, in addition to broad
          excitation–inhibition interactions <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib34"><span>34</span><span>Gao et
                  al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib98"><span>98</span><span>Wang</span><span>2020</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib94"><span>94</span><span>Wang</span><span>2002</span></a></cite></span>.
          Notably, almost all genes related to voltage-gated sodium and potassium ion channel
          alpha-subunits—the main functional subunits—are correlated with timescale, while all
          inhibitory cell-type markers except parvalbumin have strong positive associations with
          timescale (<a href="#fig3C" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            3C</a> and <a href="#fig3s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            3—figure supplement 2</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We further test whether
          single-cell timescale-transcriptomic associations are captured at the macroscale as
          follows: for a given gene, we can measure how strongly its expression correlates with
          membrane time constant parameters at the single-cell level using patch-clamp and RNA
          sequencing (scRNASeq) data <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib5"><span>5</span><span>Bomkamp et
                  al.</span><span>2019</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib81"><span>81</span><span>Tripathy
                  et al.</span><span>2017</span></a></cite></span>. Analogously, we can measure its
          macroscopic transcriptomic-timescale correlation using the cortical gradients above. If
          the association between the expression of this gene and neuronal timescale is preserved at
          both levels, then the correlation across cells at the microscale should be similar to the
          correlation across cortical regions at the macroscale. Comparing across these two scales
          for all previously identified timescale-related genes in two studies (N = 170 <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib81"><span>81</span><span>Tripathy et al.</span><span>2017</span></a></cite>
          and 4168 <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib5"><span>5</span><span>Bomkamp et al.</span><span>2019</span></a></cite>
          genes), we find a significant correlation between the strength of association at the
          single-cell and macroscale levels (<a href="#fig3D" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 3D</a>, horizontal black lines; <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">ρ</em> = 0.36 and 0.25 for the
          two datasets, p&lt;0.001 for both). Furthermore, genes with stronger associations to
          timescale tend to conserve this relationship across single-cell and macroscale levels (<a
            href="#fig3D" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3D</a>,
          separated by macroscale correlation magnitude). Thus, the association between cellular
          variations in gene expression and cell-intrinsic temporal dynamics is captured at the
          macroscale, even though scRNAseq and microarray data represent entirely different
          measurements of gene expression.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">While we have shown
          associations between cortical timescales and genes suspected to influence neuronal
          dynamics, these data present an opportunity to discover additional novel genes that are
          functionally related to timescales through a data-driven approach. However, since
          transcriptomic variation and anatomical hierarchy overlap along a shared macroscopic
          gradient <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib10"><span>10</span><span>Burt et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib49"><span>49</span><span>Huntenburg et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib64"><span>64</span><span>Margulies et
                  al.</span><span>2016</span></a></cite></span>, we cannot specify the role certain
          genes play based on their level of association with timescale alone: gene expression
          differences across the cortex first result in cell-type and connectivity differences,
          sculpting the hierarchical organization of cortical anatomy. Consequently, anatomy and
          cell-intrinsic properties jointly shape neuronal dynamics through connectivity differences
          <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib13"><span>13</span><span>Chaudhuri et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib19"><span>19</span><span>Demirtaş
                  et al.</span><span>2019</span></a></cite></span> and expression of ion transport
          and receptor proteins with variable activation timescales, respectively. Therefore, we ask
          whether variation in gene expression still accounts for variation in timescale beyond the
          principal structural gradient, and if associated genes have known functional roles in
          biological processes (BP) (schematic in <a href="#fig3EF" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 3E</a>). To do this, we first remove the
          contribution of anatomical hierarchy by linearly regressing out the T1w/T2w gradient from
          both timescale and individual gene expression gradients. We then fit partial least squares
          (PLS) models to simultaneously estimate regression weights for all genes <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib101"><span>101</span><span>Whitaker et
                al.</span><span>2016</span></a></cite>, submitting those with significant
          associations for gene ontology enrichment analysis (GOEA) <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a
              href="#bib58"><span>58</span><span>Klopfenstein et
                al.</span><span>2018</span></a></cite>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We find that genes highly
          associated with neuronal timescales are preferentially related to transmembrane ion
          transporter complexes, as well as GABAergic synapses and chloride channels (see <a
            href="#fig3EF" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3F</a> and <a
            href="#supp1" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file
            1</a> for GOEA results with brain genes only, and <a href="#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2</a> for all genes). When
          restricted to positively associated genes only (expression increases with timescales), one
          functional group related to phosphatidate phosphatase activity is uncovered, including the
          gene PLPPR1, which has been linked to neuronal plasticity <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib78"><span>78</span><span>Savaskan
                et al.</span><span>2004</span></a></cite>—a much slower timescale physiological
          process. Conversely, genes that are negatively associated with timescale are related to
          numerous groups involved in the construction and functioning of transmembrane transporters
          and voltage-gated ion channels, especially potassium and other inorganic cation
          transporters. To further ensure that these genes specifically relate to neuronal
          timescale, we perform the same enrichment analysis with T1w/T2w vs. gene maps as a
          control. The control analysis yields no significant GO terms when restricted to
          brain-specific genes (in contrast to <a href="#fig3EF" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 3F</a>), while repeating the analysis
          with all genes does yield significant GO terms related to ion channels and synapses, but
          are much less specific to those (see <a href="#supp3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 3</a>), including a variety
          of other gene clusters associated with general metabolic processes, signaling pathways,
          and cellular components (CC). This further strengthens the point that removing the
          contribution of T1w/T2w aids in identifying genes that are more specifically associated
          with neurodynamics, suggesting that inhibition <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib80"><span>80</span><span>Teleńczuk
                et al.</span><span>2017</span></a></cite>—mediated by GABA and chloride channels—and
          voltage-gated potassium channels have prominent roles in shaping neuronal timescale
          dynamics at the macroscale level, beyond what is expected based on the anatomical
          hierarchy alone.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="timescales-lengthen-in-working-memory-and-shorten-in-aging">Timescales lengthen in
          working memory and shorten in aging</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Finally, having shown that
          neuronal timescales are associated with stable anatomical and gene expression gradients
          across the human cortex, we turn to the final question of the study: are cortical
          timescales relatively static, or are they functionally dynamic and relevant for human
          cognition? While previous studies have shown hierarchical segregation of task-relevant
          information corresponding to intrinsic timescales of different cortical regions <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib3"><span>3</span><span>Baldassano
                  et al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib15"><span>15</span><span>Chien
                  and Honey</span><span>2020</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib47"><span>47</span><span>Honey et
                  al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib76"><span>76</span><span>Runyan
                  et al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib77"><span>77</span><span>Sarafyazd and
                  Jazayeri</span><span>2019</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib99"><span>99</span><span>Wasmuht
                  et al.</span><span>2018</span></a></cite></span>, as well as optimal adaptation of
          behavioral timescales to match the environment <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib33"><span>33</span><span>Ganupuru
                  et al.</span><span>2019</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib71"><span>71</span><span>Ossmy et
                  al.</span><span>2013</span></a></cite></span>, evidence for functionally relevant
          changes in regional neuronal timescales is lacking. Here, we examine whether timescales
          undergo short- and long-term shifts during working memory maintenance and aging,
          respectively.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We first analyze human ECoG
          recordings from parietal, frontal (PFC and orbitofrontal cortex [OFC]), and medial
          temporal lobe (MTL) regions of patients (N = 14) performing a visuospatial working memory
          task that requires a delayed cued response (<a href="#fig4A" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4A</a>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib51"><span>51</span><span>Johnson et al.</span><span>2018</span></a></cite>).
          Neuronal timescales were extracted for pre-stimulus baseline and memory maintenance delay
          periods (900 ms, both stimulus-free). Replicating our previous result in <a href="#fig2s1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1G</a>,
          we observe that baseline neuronal timescales follow a hierarchical progression across
          association regions, where parietal cortex (PC), PFC, OFC, and MTL have gradually longer
          timescales (pairwise Mann–Whitney U-test, <a href="#fig4BC" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4B</a>). If neuronal timescales track the
          temporal persistence of information in a functional manner, then they should expand during
          delay periods. Consistent with our prediction, timescales in all regions are ~20% longer
          during delay periods (<a href="#fig4BC" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4C</a>; Wilcoxon rank-sum test).
          Moreover, only timescale changes in the PFC are significantly correlated with behavior
          across participants, where longer delay-period timescales relative to baseline are
          associated with better working memory performance (<a href="#fig4D" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4D</a>, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ρ</em> = 0.75, p=0.003). No other spectral
          features in the recorded brain regions show consistent changes from baseline to delay
          periods while also significantly correlating with individual performance, including the
          1/f-like spectral exponent, narrowband theta (3–8 Hz), and high-frequency (high gamma;
          70–100 Hz) activity power (<a href="#fig4s1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 1</a>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4" title="Figure 4.">
          <label data-itemprop="label">Figure 4.</label>
          <figcaption>
            <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="timescales-expand-during-working-memory-maintenance-while-tracking-performance-and-task-free-average-timescales-compress-in-older-adults">
              Timescales expand during working memory maintenance while tracking performance, and
              task-free average timescales compress in older adults.</h3>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4" title="Figure 4A.">
          <label data-itemprop="label">Figure 4A.</label><img src="index.html.media/fig_4A.jpg"
            alt="" itemscope="" itemtype="http://schema.org/ImageObject">
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Fourteen participants with
              overlapping intracranial coverage performed a visuospatial working memory task, with
              900 ms of baseline (pre-stimulus) and delay period data analyzed (PC: parietal, PFC:
              prefrontal, OFC: orbitofrontal, MTL: medial temporal lobe; n denotes number of
              subjects with electrodes in that region).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4BC"
          title="Figure 4B-C"><label data-itemprop="label">Figure 4B-C</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="24"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>df_patient_info = pd.read_csv(&#39;./data/fig4D_patientinfo.csv&#39;, index_col=0)
plt.figure(figsize=(8,4))
#### baseline timescale
df_mean = pd.read_csv(&#39;./data/fig4B.csv&#39;, index_col=0)
region_labels = [&#39;Parietal&#39;, &#39;PFC&#39;, &#39;OFC&#39;, &#39;MTL&#39;]
rl_short = [&#39;PC&#39;, &#39;PFC&#39;, &#39;OFC&#39;, &#39;MTL&#39;]
plt.subplot(1,2,1)
for i_r, reg in enumerate(region_labels):
    plt.plot([i_r]*len(df_mean)+np.random.randn(len(df_mean))/10, df_mean[reg].values, &#39;.&#39;, ms=5, alpha=0.7, color=C_ORD[i_r])
    plt.errorbar(i_r, df_mean[reg].mean(), df_mean[reg].sem(), color=C_ORD[i_r], fmt=&#39;o&#39;, ms=10, alpha=1)

plt.xticks(range(len(rl_short)), rl_short)
plt.yticks(np.arange(0.02,0.07, 0.01), (np.round(np.arange(0.02,0.07, 0.01)*1000)).astype(int))
plt.ylabel(&#39;baseline timescale (ms)&#39;)
plt.xlim([-0.5, 3.5])
plt.tight_layout()

# print(&#39;-----prestim-----&#39;)
# print(&#39;PC-OFC: &#39;, stats.mannwhitneyu(df_mean[&#39;Parietal&#39;], df_mean[&#39;OFC&#39;], alternative=&#39;two-sided&#39;))
# print(&#39;PC-PFC: &#39;, stats.mannwhitneyu(df_mean[&#39;Parietal&#39;], df_mean[&#39;PFC&#39;], alternative=&#39;two-sided&#39;))
# print(&#39;PC-MTL: &#39;, stats.mannwhitneyu(df_mean[&#39;Parietal&#39;], df_mean[&#39;MTL&#39;], alternative=&#39;two-sided&#39;))
# print(&#39;PFC-OFC: &#39;, stats.mannwhitneyu(df_mean[&#39;PFC&#39;], df_mean[&#39;OFC&#39;], alternative=&#39;two-sided&#39;))
# print(&#39;PFC-MTL: &#39;, stats.mannwhitneyu(df_mean[&#39;PFC&#39;], df_mean[&#39;MTL&#39;], alternative=&#39;two-sided&#39;))
# print(&#39;OFC-MTL: &#39;, stats.mannwhitneyu(df_mean[&#39;OFC&#39;], df_mean[&#39;MTL&#39;], alternative=&#39;two-sided&#39;))

#### pre-post change in timescale
# print(&#39;\n-----pre:post change-----&#39;)
df_mean = pd.read_csv(&#39;./data/fig4C_mean.csv&#39;, index_col=0)
df_sem = pd.read_csv(&#39;./data/fig4C_sem.csv&#39;, index_col=0)
plt.subplot(1,2,2)
for i_r, reg in enumerate(region_labels):
    plt.plot([i_r]*len(df_mean)+np.random.randn(len(df_mean))/10, df_mean[reg].values, &#39;.&#39;, ms=5, alpha=0.7, color=C_ORD[i_r])
    plt.errorbar(i_r, df_mean[reg].mean(), df_mean[reg].sem(), color=C_ORD[i_r], fmt=&#39;o&#39;, ms=10, alpha=1)
    pv = stats.wilcoxon(df_mean[reg][~np.isnan(df_mean[reg])])[1]
    # print(reg, pv)
    s = sig_str(0, pv)
    plt.annotate(s.split(&#39; &#39;)[-1], xy=(i_r, 0.145), horizontalalignment=&#39;center&#39;, fontsize=20)
    for j_r, reg2 in enumerate(region_labels):
        pass # print(reg, &#39;-&#39;, reg2, stats.mannwhitneyu(df_mean[reg][~np.isnan(df_mean[reg])], df_mean[reg2][~np.isnan(df_mean[reg2])], alternative=&#39;two-sided&#39;))
        
plt.xticks(range(len(rl_short)), rl_short)
# change axis to show percent change
yt = np.arange(1,1.41,0.2)
plt.yticks(np.log10(yt), [&#39;%i%%&#39;%int(yt_*100) for yt_ in yt]); plt.ylim(np.log10([yt[0], yt[-1]]))
plt.ylabel(&#39;delay period timescale\n(as % of baseline)&#39;)
plt.xlim([-0.5, 3.5])
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/18" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Baseline timescales follow
              hierarchical organization within association regions (*: p&lt;0.05, Mann–Whitney
              U-test; small dots represent individual participants, large dots and error bar for
              mean ± s.e.m. across participants). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) All regions show significant
              timescale increase during delay period compared to baseline (asterisks represent
              p&lt;0.05, 0.01, 0.005, 0.001, Wilcoxon signed-rank test).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4D" title="Figure 4D">
          <label data-itemprop="label">Figure 4D</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution_count="25" data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#### pre-post change per region
plt.figure(figsize=(8,4))
reg=&#39;PFC&#39;
df_mean = pd.read_csv(&#39;./data/fig4C_mean.csv&#39;, index_col=0)
df_sem = pd.read_csv(&#39;./data/fig4C_sem.csv&#39;, index_col=0)
y = df_mean[reg][~np.isnan(df_mean[reg])]
y_err = df_sem[reg][~np.isnan(df_sem[reg])]
x = df_patient_info[[&#39;acc_identity&#39;,&#39;acc_spatial&#39;,&#39;acc_temporal&#39;]].mean(1)
rho, pv = stats.spearmanr(x[y.index].values,y.values)

plt.subplot(1,2,1)
plt.errorbar(x[y.index].values, y.values, y_err.values, fmt=&#39;o&#39;, ms=8, alpha=0.8, color=C_ORD[1])
s = sig_str(rho, pv, form=&#39;text&#39;)
plt.annotate(s, xy=(0.7, 0.05), xycoords=&#39;axes fraction&#39;);
plt.yticks(np.log10(yt), [&#39;%i%%&#39;%int(yt_*100) for yt_ in yt]); plt.ylim(np.log10([yt[0], yt[-1]]))
plt.xticks()
plt.xlim(left=0.68);plt.ylim(bottom=-0.01);
plt.xlabel(&#39;working memory accuracy&#39;); plt.ylabel(&#39;PFC delay period timescale (%)&#39;)
plt.tight_layout()

# show all regions
plt.subplot(1,2,2)
for i_r, reg in enumerate(region_labels):
    y = df_mean[reg][~np.isnan(df_mean[reg])]
    rho, pv = stats.spearmanr(x[y.index].values,y.values)
    # print(reg, rho, pv)
    plt.barh(len(region_labels)-i_r, rho, fc=C_ORD[i_r], ec=&#39;k&#39;, lw=1, alpha=0.8)
    s = sig_str(rho, pv)

plt.xticks([-1,1]); plt.xlabel(r&#39;$\rho$&#39;, labelpad=-15)
plt.yticks(range(1,5), region_labels[::-1]);
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/19" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">D</strong>) PFC timescale expansion during
              delay periods predicts average working memory accuracy across participants (dot
              represents individual participants, mean ± s.e.m. across PFC electrodes within
              participant); inset: correlation between working memory accuracy and timescale change
              for all regions.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4s1"
          title="Figure 4—figure supplement 1."><label data-itemprop="label">Figure 4—figure
            supplement 1.</label><img src="index.html.media/fig4-figsupp1.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="spectral-correlates-of-working-memory-performance">Spectral correlates of working
              memory performance.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Difference between delay and
              baseline periods for 1/f-exponent, timescale (same as main <a href="#fig4BC"
                itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4C</a> but absolute
              units on y-axis, instead of percentage), theta power, and high-frequency power.
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Spearman
              correlation between spectral feature difference and working memory accuracy across
              participants, same features as in (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>). *p&lt;0.05, **p&lt;0.01,
              ***p&lt;0.005 in (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A,
                B</strong>). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) Scatter plot of other
              significantly correlated spectral features from (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4EF"
          title="Figure 4E-F"><label data-itemprop="label">Figure 4E-F</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-execution="[object Object]" data-execution_count="26"
            data-programminglanguage="python">
            <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>### normalized averages timescales over parcels per patient
df_patient = pd.read_csv(&#39;./data/fig4E_patient.csv&#39;, index_col=0)
tau_subj_normed = pd.read_csv(&#39;./data/fig4E.csv&#39;, index_col=0)
n_parcel_thresh = 10
n_main = n_parcel_thresh
x = df_patient[&#39;age&#39;][df_patient[&#39;coverage&#39;]&gt;=n_parcel_thresh]
y = tau_subj_normed[df_patient[&#39;coverage&#39;]&gt;=n_parcel_thresh]
rho, pv = stats.spearmanr(x,y)
s = sig_str(rho, pv, form=&#39;text&#39;) +&#39;\nn = %i&#39;%len(x)
m,b,_,_,_ = stats.linregress(x.values, y[&#39;0&#39;].values)

plt.figure(figsize=(8,4))
plt.subplot(1,2,1)
plt.plot(x, y, &#39;ok&#39;, alpha=0.5, ms=5);
XL= np.array(plt.xlim())
plt.plot(XL,XL*m+b, &#39;k--&#39;, lw=2, alpha=0.8) 
plt.xlabel(&#39;age (years)&#39;); plt.ylabel(&#39;parcel-normalized timescale&#39;);
plt.xticks([10, 35, 60],None); plt.yticks([0,1])
plt.annotate(s, xy=(0.05, 0.025), xycoords=&#39;axes fraction&#39;);

### distribution of correlations
parcel_corr = pd.read_csv(&#39;./data/fig4F.csv&#39;, index_col=0)
x = parcel_corr.values
# t-test on whether parcels have positive or negative correlation in aggregate
tval, tt_pv = stats.ttest_1samp(x, 0, nan_policy=&#39;omit&#39;)
plt.subplot(1,2,2)
plt.hist(x[~np.isnan(x)], bins=np.arange(-1,1.1,0.1), color=&#39;k&#39;, alpha=0.5)
plt.axvline(np.nanmean(x), color=C_ORD[3], ls=&#39;--&#39;)
plt.xlabel(r&#39;$\rho$&#39;);plt.ylabel(&#39;parcels (%)&#39;, labelpad=-15);
s = sig_str(np.nanmean(x), tt_pv, form=&#39;text&#39;, corr_letter=r&#39;$\bar{\rho}$&#39;)+&#39;\nn = %i&#39;%len(x[~np.isnan(x)])
plt.annotate(s, xy=(0.45, 0.8), xycoords=&#39;axes fraction&#39;)
plt.xticks([-1,0,1],None);plt.yticks(np.array([0,15])/100*sum(~np.isnan(x)), [&#39;0%&#39;, &#39;15%&#39;]);
plt.tight_layout()</code></pre>
            <figure slot="outputs"><img src="index.html.media/20" alt="" itemscope=""
                itemtype="http://schema.org/ImageObject"></figure>
          </stencila-code-chunk>
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">E</strong>) In the MNI-iEEG dataset,
              participant-average cortical timescales decrease (become faster) with age (n = 71
              participants with at least 10 valid parcels, see <a href="#fig4s2" itemscope=""
                itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 2B</a>). (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">F</strong>) Most cortical
              parcels show a negative relationship between timescales and age, with the exception
              being parts of the visual cortex and the temporal poles (one-sample t-test, <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">t</em> = −7.04, p&lt;0.001;
              n = 114 parcels where at least six participants have data, see <a href="#fig4s2"
                itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement
                2C</a>).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4s2"
          title="Figure 4F (inset)."><label data-itemprop="label">Figure 4F (inset).</label><img
            src="index.html.media/fig_4F_inset.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Timescale-age correlation
              across cortical parcels.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4s2"
          title="Figure 4—figure supplement 2."><label data-itemprop="label">Figure 4—figure
            supplement 2.</label><img src="index.html.media/fig4-figsupp2.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="parameter-sensitivity-for-timescale-aging-analysis">Parameter sensitivity for
              timescale-aging analysis.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Cortex-averaged timescale is
              independent of parcel coverage across participants. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Sensitivity analysis for the
              number of valid parcels a participant must have in order to be included in analysis
              for main <a href="#fig4EF" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
                4E</a> (red). As threshold increases (more stringent), fewer participants satisfy
              the criteria (right) but correlation between participant age and timescale remains
              robust (left). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) Sensitivity analysis for the
              number of valid participants a parcel must have in order to be included in analysis
              for main <a href="#fig4EF" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
                4F</a>. As threshold increases (more stringent), fewer parcels satisfy the criteria
              (right) but average correlation across all parcels remains robust (left, error bars
              denote s.e.m of distribution as in <a href="#fig4EF" itemscope=""
                itemtype="http://schema.stenci.la/Link">Figure 4F</a>).</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">While timescales are consistent
          with the anatomical and gene expression hierarchy at a snapshot, brain structure itself is
          not static over time, undergoing many slower, neuroplastic changes during early
          development and throughout aging in older populations. In particular, aging is associated
          with a broad range of functional and structural changes, such as working memory
          impairments <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib89"><span>89</span><span>Voytek et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib96"><span>96</span><span>Wang et
                  al.</span><span>2011</span></a></cite></span>, as well as changes in neuronal
          dynamics <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib89"><span>89</span><span>Voytek et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib90"><span>90</span><span>Voytek
                  and Knight</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib96"><span>96</span><span>Wang et
                  al.</span><span>2011</span></a></cite></span> and cortical structure <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib18"><span>18</span><span>de Villers-Sidani et
                al.</span><span>2010</span></a></cite>, such as the loss of slow-deactivating NMDA
          receptor subunits <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib73"><span>73</span><span>Pegasiou et al.</span><span>2020</span></a></cite>.
          Since neuronal timescales may support working memory maintenance, we predict that
          timescales would shorten across the lifespan, in agreement with the observed cognitive and
          structural deteriorations. To this end, we leverage the wide age range in the MNI-iEEG
          dataset (13–62 years old) and probe average cortical timescales for each participant as a
          function of age. Since ECoG coverage is sparse and nonuniform across participants, simply
          averaging across parcels within individual participants confounds the effect of aging with
          the spatial effect of cortical hierarchy. Instead, we first normalize each parcel by its
          max value across all participants before averaging within participants, excluding those
          with fewer than 10 valid parcels (N = 71 of 106 subjects remaining; results hold for a
          large range of threshold values, <a href="#fig4s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 2B</a>). We observe
          that older adults have faster neuronal timescales (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ρ</em> = −0.31, p=0.010; <a href="#fig4EF"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4E</a>), and that timescales
          shorten with age in most areas across the cortex (<a href="#fig4EF" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4F</a>, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">t</em> = −7.04, p&lt;0.001; 114 out of 189
          parcels where at least six participants have data, see <a href="#fig4s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 2C</a>). This
          timescale compression is especially prominent in sensorimotor, temporal, and medial
          frontal regions. These results support our hypothesis that neuronal timescales, estimated
          from transmembrane current fluctuations, can rapidly shift in a functionally relevant
          manner, as well as slowly—over decades—in healthy aging.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="discussion">Discussion</h2>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Theoretical accounts and
          converging empirical evidence predict a graded variation of neuronal timescales across the
          human cortex <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib13"><span>13</span><span>Chaudhuri et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib49"><span>49</span><span>Huntenburg et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib98"><span>98</span><span>Wang</span><span>2020</span></a></cite></span>,
          which reflects functional specialization and implements hierarchical temporal processing
          crucial for complex cognition <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib57"><span>57</span><span>Kiebel et
                al.</span><span>2008</span></a></cite>. This timescale gradient is thought to emerge
          as a consequence of cortical variations in cytoarchitecture, as well as both macroscale
          and microcircuit connectivity, thus serving as a bridge from brain structure to cognitive
          function <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib55"><span>55</span><span>Kanai and Rees</span><span>2011</span></a></cite>.
          In this work, we infer the timescale of non-rhythmic transmembrane current fluctuations
          from invasive human intracranial recordings and test those predictions explicitly. We
          discuss the implications and limitations of our findings below.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="multiple-quantities-for-neuronal-timescale-and-anatomical-hierarchy">Multiple
          quantities for neuronal timescale and anatomical hierarchy</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We first find that neuronal
          timescales vary continuously across the human cortex and coincide with the anatomical
          hierarchy, with timescales increasing from primary sensory and motor to association
          regions. While we use the continuous T1w/T2w gradient as a surrogate measure for
          anatomical hierarchy, there are multiple related but distinct perspectives on what
          ‘cortical hierarchy’ means, including, for example, laminar connectivity patterns from
          tract tracing data <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib26"><span>26</span><span>Felleman and Van
                  Essen</span><span>1991</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib85"><span>85</span><span>Vezoli
                  et al.</span><span>2020</span></a></cite></span>, continuous (and latent-space)
          gradients of gene expression and microarchitectural features <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib49"><span>49</span><span>Huntenburg
                et al.</span><span>2018</span></a></cite>, and network connectivity scales (see
          review of <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib46"><span>46</span><span>Hilgetag and
                Goulas</span><span>2020</span></a></cite>)—with most of these following a graded
          sensorimotor-to-association area progression. Similarly, it is important to note that
          there exist many different quantities that can be considered as characteristic neuronal
          timescales across several spatial scales, including membrane potential and synaptic
          current timescales <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib22"><span>22</span><span>Duarte et al.</span><span>2017</span></a></cite>,
          single-unit spike-train timescales <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib68"><span>68</span><span>Murray et
                al.</span><span>2014</span></a></cite>, population code timescales <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib76"><span>76</span><span>Runyan et al.</span><span>2017</span></a></cite>,
          and even large-scale circuit timescales measured from the fMRI BOLD signal <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib100"><span>100</span><span>Watanabe et
                al.</span><span>2019</span></a></cite>. We show here that timescales inferred from
          ECoG are consistently approximately 10 times faster than single-unit spiking timescales in
          macaques, corroborating the fact that field potential signals mainly reflect fast
          transmembrane and synaptic currents <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib12"><span>12</span><span>Buzsáki et
                al.</span><span>2012</span></a></cite>, whose timescales are related to, but
          distinct from, single-unit timescales measured in previous studies <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib21"><span>21</span><span>Dotson
                  et al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib70"><span>70</span><span>Ogawa
                  and Komatsu</span><span>2010</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib99"><span>99</span><span>Wasmuht
                  et al.</span><span>2018</span></a></cite></span>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Because field potential
          fluctuations are driven by currents from both locally generated and distal inputs, our
          results raise questions on how and when these timescales interact to shape downstream
          spiking dynamics. Furthermore, while we specifically investigate here the aperiodic
          timescale, which corresponds to the exponential decay timescale measured in previous
          studies, recent work has shown a similar gradient of oscillatory timescales (i.e.,
          frequency) along the anterior–posterior axis of the human cortex <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib63"><span>63</span><span>Mahjoory
                et al.</span><span>2020</span></a></cite>. Based on the similarity of these
          gradients and known mechanisms of asynchronous and oscillatory population dynamics (e.g.,
          balance of excitation and inhibition in generating gamma oscillations and the asynchronous
          irregular state in cortical circuits <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib8"><span>8</span><span>Brunel</span><span>2000</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib9"><span>9</span><span>Brunel and
                  Wang</span><span>2003</span></a></cite></span>), we speculate that timescales of
          oscillatory and aperiodic neural dynamics may share (at least partially) circuit
          mechanisms at different spatial scales, analogous to the relationship between
          characteristic frequency and decay constant in a damped harmonic oscillator model.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="collinearity-and-surrogate-nature-of-postmortem-gene-expression-gradients">
          Collinearity and surrogate nature of postmortem gene expression gradients</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Using postmortem gene
          expression data as a surrogate for protein density, transcriptomic analysis uncovers the
          potential roles that transmembrane ion transporters and synaptic receptors play in
          establishing the cortical gradient of neuronal timescales. The expression of voltage-gated
          potassium channel, chloride channel, and GABAergic receptor genes, in particular, are
          strongly associated with the spatial variation of neuronal timescale. Remarkably, we find
          that electrophysiology-transcriptomic relationships discovered at the single-cell level,
          through patch-clamp recordings and single-cell RNA sequencing, are recapitulated at the
          macroscale between bulk gene expression and timescales inferred from ECoG. That being
          said, it is impossible to make definitive causal claims with the data presented in this
          study, especially considering the fact that several microanatomical features, such as gray
          matter myelination and cortical thickness, follow similar gradients across the cortex
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib10"><span>10</span><span>Burt et al.</span><span>2018</span></a></cite>. To
          discover genes specifically associated with timescale while accounting for the
          contribution of the overlapping anatomical hierarchy, we linearly regress out the T1w/T2w
          gradient from both timescale and gene expression gradients. Although this procedure does
          not account for any nonlinear contributions from anatomy, gene enrichment control analysis
          using T1w/T2w instead of timescales further demonstrates that the discovered
          genes—transmembrane ion transporters and inhibitory synaptic receptors—are more
          specifically associated with the timescale gradient, over and above the level predicted by
          anatomical hierarchy alone. From these results, we infer that potassium and chloride ion
          channels, as well as GABAergic receptors, may play a mechanistic role in altering the
          timescale of transmembrane currents at the macroscopic level.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">However, this interpretation
          rests on the key assumption that mRNA expression level is a faithful representation of the
          amount of functional proteins in a given brain region. In general, gene expression levels
          are highly correlated with the percentage of cells expressing that gene within brain
          regions <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib60"><span>60</span><span>Lein et al.</span><span>2007</span></a></cite>.
          Therefore, on a population level, the regional density of a particular ion channel or
          receptor protein is high if bulk mRNA expression is high. Furthermore, recent works have
          shown that neurotransmitter receptor density measured via autoradiography in postmortem
          brains follows similar cortical gradients <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib41"><span>41</span><span>Goulas et
                al.</span><span>2020</span></a></cite>, and that gene expression levels of
          neurotransmitter receptors (e.g., 5HT) are strongly correlated with ligand binding
          potential measured via PET <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib42"><span>42</span><span>Gryglewski et
                al.</span><span>2018</span></a></cite>. Thus, as a first order approximation,
          receptor gene expression is an adequate surrogate for receptor protein density in the
          brain at the macroscale, though the relationship between mRNA expression and their
          transport and translation into channel proteins, the process of incorporating those
          proteins into membranes and synapses, and how these gene expression maps can be related to
          other overlapping macroscopic gradients are complex issues (see e.g., <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib28"><span>28</span><span>Fornito et al.</span><span>2019</span></a></cite>;
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib62"><span>62</span><span>Liu et
                al.</span><span>2016</span></a></cite>). Thus, our analyses represent an initial
          data-mining process at the macroscopic level, which should motivate further studies in
          investigating the precise roles voltage-gated ion channels and synaptic inhibition play in
          shaping functional neuronal timescales through causal manipulations, complementary to
          existing lines of research focusing on NMDA activation and recurrent circuit motifs.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="structural-constraints-vs-behaviorally-required-flexibility-in-timescale">Structural
          constraints vs. behaviorally required flexibility in timescale</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Finally, we show that neuronal
          timescales are not static, but can change both in the short and long terms. Transmembrane
          current timescales across multiple association regions, including parietal, frontal, and
          medial temporal cortices, increase during the delay period of a working memory task,
          consistent with the emergence of persistent spiking during working memory delay. Working
          memory performance across individuals, however, is predicted by the extent of timescale
          increase in the PFC only. This further suggests that behaviorally relevant neural activity
          may be localized despite widespread task-related modulation <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib74"><span>74</span><span>Pinto et
                al.</span><span>2019</span></a></cite>, even at the level of neuronal membrane
          fluctuations. In the long term, we find that neuronal timescale shortens with age in most
          cortical regions, linking age-related synaptic, cellular, and connectivity
          changes—particularly those that influence neuronal integration timescale—to the
          compensatory posterior-to-anterior shift of functional specialization in healthy aging
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib17"><span>17</span><span>Davis et al.</span><span>2008</span></a></cite>.
        </p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">These results raise further
          questions regarding contrasting, and potentially complementary, aspects of neuronal
          timescale: on the one hand, task-free timescales across the cortex are shaped by
          relatively static macro- and microarchitectural properties (<a href="#fig2D" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figures 2</a> and <a href="#fig3A" itemscope=""
            itemtype="http://schema.stenci.la/Link"><span
              data-itemtype="http://schema.org/Number">3</span></a>); on the other hand, timescales
          are dynamic and shift with behavioral demand (<a href="#fig4D" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4</a>). While long-term structural
          changes in the brain can explain shifts in neuronal timescales throughout the aging
          process, properties such as ion channel protein density probably do not change within
          seconds during a working memory task. We speculate that structural properties may
          constrain dynamical properties (such as timescale) to a possible range within a particular
          brain region and at different spatial scales, while task requirements, input statistics,
          short-term synaptic plasticity, and neuromodulation can then shift timescale within this
          range. We posit, then, that only shifts in dynamics within the area of relevance (i.e.,
          PFC for working memory) are indicative of task performance, consistent with recent ideas
          of computation-through-dynamics <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib91"><span>91</span><span>Vyas et
                al.</span><span>2020</span></a></cite>. Nevertheless, which neuromodulatory and
          circuit mechanisms are involved in shifting local timescales, and how timescales at
          different spatial scales (e.g., synaptic, neuronal, population) interact to influence each
          other remain open questions for future investigation <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib6"><span>6</span><span>Breakspear</span><span>2017</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib22"><span>22</span><span>Duarte et
                  al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib31"><span>31</span><span>Freeman</span><span>2000</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib32"><span>32</span><span>Freeman and
                  Erwin</span><span>2008</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib37"><span>37</span><span>Gjorgjieva et
                  al.</span><span>2016</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib79"><span>79</span><span>Shine et
                  al.</span><span>2019</span></a></cite></span>.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="conclusion">Conclusion</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In summary, we identify
          consistent and converging patterns between transcriptomics, anatomy, dynamics, and
          function across multiple datasets of different modalities from different individuals and
          multiple species. As a result, evidence for these relationships can be supplemented by
          more targeted approaches such as imaging of receptor metabolism. Furthermore, the
          introduction and validation of an open-source toolbox <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib20"><span>20</span><span>Donoghue
                et al.</span><span>2020</span></a></cite> for inferring timescales from macroscale
          electrophysiological recordings potentially allows for the noninvasive estimation of
          neuronal timescales, using widely accessible tools such as EEG and MEG. These results open
          up many avenues of research for discovering potential relationships between microscale
          gene expression and anatomy with the dynamics of neuronal population activity at the
          macroscale in humans.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="materials-and-methods">
          Materials and methods</h2>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="inferring-timescale-from-autocorrelation-and-psd">Inferring timescale from
          autocorrelation and PSD</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Consistent with previous
          studies, we define ‘neuronal timescale’ as the exponential decay time constant (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">τ</em>) of the empirical ACF,
          or lagged correlation <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib47"><span>47</span><span>Honey et
                  al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib68"><span>68</span><span>Murray
                  et al.</span><span>2014</span></a></cite></span>. <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">τ</em> can be naively estimated to be the
          time it takes for the ACF to decrease by a factor of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">e</em> when there are no additional
          long-term, scale-free, or oscillatory processes, or by fitting a function of the form
          <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math"
                aria-label="f\left(t\right)={e}^{-\frac{t}{\tau }}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.372em; padding-bottom: 0.298em;">t</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span></span></span></span><span
                      class="mjx-sup"
                      style="font-size: 70.7%; vertical-align: 0.545em; padding-left: 0px; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-mfrac"><span class="mjx-box MJXc-stacked"
                              style="width: 0.598em; padding: 0px 0.12em;"><span
                                class="mjx-numerator"
                                style="font-size: 83.3%; width: 0.717em; top: -1.259em;"><span
                                  class="mjx-mi" style=""><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.372em; padding-bottom: 0.298em;">t</span></span></span><span
                                class="mjx-denominator"
                                style="font-size: 83.3%; width: 0.717em; bottom: -0.466em;"><span
                                  class="mjx-mi" style=""><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span><span
                                style="border-bottom: 1px solid; top: -0.296em; width: 0.598em;"
                                class="mjx-line"></span></span><span
                              style="height: 1.437em; vertical-align: -0.388em;"
                              class="mjx-vsize"></span></span></span></span></span></span></span></span></span></span>
          and extracting the parameter <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">τ.</em> Equivalently, the PSD is the Fourier
          Transform of the ACF via Wiener–Khinchin theorem <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a
              href="#bib56"><span>56</span><span>Khintchine</span><span>1934</span></a></cite> and
          follows a Lorentzian function of the form <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="L\left(f\right)=\frac{A}{k+{f}^{\chi }}"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                      class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.446em; padding-bottom: 0.298em;">L</span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-mfrac MJXc-space3"><span class="mjx-box MJXc-stacked"
                      style="width: 1.895em; padding: 0px 0.12em;"><span class="mjx-numerator"
                        style="font-size: 70.7%; width: 2.68em; top: -1.422em;"><span class="mjx-mi"
                          style=""><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span></span><span
                        class="mjx-denominator"
                        style="font-size: 70.7%; width: 2.68em; bottom: -0.977em;"><span
                          class="mjx-mrow" style=""><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">k</span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.06em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span></span></span></span><span
                              class="mjx-sup"
                              style="font-size: 83.3%; vertical-align: 0.49em; padding-left: 0.154em; padding-right: 0.06em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.519em;">χ</span></span></span></span></span></span></span></span><span
                        style="border-bottom: 1.3px solid; top: -0.296em; width: 1.895em;"
                        class="mjx-line"></span></span><span
                      style="height: 1.696em; vertical-align: -0.691em;"
                      class="mjx-vsize"></span></span></span></span></span></span> for approximately
          exponential-decay processes, with <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\chi =2"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.519em;">χ</span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span>
          exactly when the ACF is solely composed of an exponential decay term, though it is often
          variable and in the range between 2 and 6 for neural time series <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib20"><span>20</span><span>Donoghue
                  et al.</span><span>2020</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib65"><span>65</span><span>Miller
                  et al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib75"><span>75</span><span>Podvalny
                  et al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib89"><span>89</span><span>Voytek
                  et al.</span><span>2015</span></a></cite></span>. Timescale can be computed from
          the parameter <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">k</em> as <span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math"
                aria-label="\tau =\frac{1}{2\pi {f}_{k}}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-mfrac MJXc-space3"><span class="mjx-box MJXc-stacked"
                      style="width: 1.583em; padding: 0px 0.12em;"><span class="mjx-numerator"
                        style="font-size: 70.7%; width: 2.239em; top: -1.372em;"><span
                          class="mjx-mn" style=""><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span><span
                        class="mjx-denominator"
                        style="font-size: 70.7%; width: 2.239em; bottom: -0.981em;"><span
                          class="mjx-mrow" style=""><span class="mjx-mn"><span
                              class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.003em;">π</span></span><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.06em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 83.3%; vertical-align: -0.326em; padding-right: 0.06em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.446em; padding-bottom: 0.298em;">k</span></span></span></span></span></span></span></span><span
                        style="border-bottom: 1.3px solid; top: -0.296em; width: 1.583em;"
                        class="mjx-line"></span></span><span
                      style="height: 1.664em; vertical-align: -0.694em;"
                      class="mjx-vsize"></span></span></span></span></span></span>, where <span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math"
                aria-label="{f}_{k}\approx {k}^{1/\chi }"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"
                      style="margin-right: -0.06em;"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">k</span></span></span></span></span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;"></span></span><span
                    class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">k</span></span></span></span></span><span
                      class="mjx-sup"
                      style="font-size: 70.7%; vertical-align: 0.631em; padding-left: 0px; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span><span
                            class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mo"><span
                                  class="mjx-char MJXc-TeX-main-R"
                                  style="padding-top: 0.446em; padding-bottom: 0.593em;">/</span></span></span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.519em;">χ</span></span></span></span></span></span></span></span></span></span> is
          approximated to be the ‘knee frequency’, at which a bend or knee in the power spectrum
          occurs, and equality holds when <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\chi =2"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.519em;">χ</span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span>.
        </p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="computing-psd">Computing PSD
        </h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">PSDs are estimated using a
          modified Welch’s method, where short-time windowed Fourier transforms (STFT) are computed
          from the time series, but the median is taken across time instead of the mean (in
          conventional Welch’s method) to minimize the effect of high-amplitude transients and
          artifacts <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib50"><span>50</span><span>Izhikevich et
                al.</span><span>2018</span></a></cite>. Custom functions for this can be found in
          NeuroDSP <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib16"><span>16</span><span>Cole et al.</span><span>2019</span></a></cite>, a
          published and open-source digital signal processing toolbox for neural time series (<a
            href="https://neurodsp-tools.github.io/neurodsp/generated/neurodsp.spectral.trim_spectrum.html"
            itemscope=""
            itemtype="http://schema.stenci.la/Link">neurodsp.spectral.compute_spectrum</a>). For
          simulated data, Neurotycho macaque ECoG, and MNI-iEEG datasets, we use 1 s long Hamming
          windows with 0.5 s overlap. To estimate single-trial PSDs for the working memory ECoG
          dataset (CRCNS Johnson-ECoG <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib51"><span>51</span><span>Johnson et
                al.</span><span>2018</span></a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib52"><span>52</span><span>Johnson et al.</span><span>2018</span></a></cite>),
          we simply apply Hamming window to 900 ms long epoched time series and compute the squared
          magnitude of the windowed Fourier transform.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="spectral-parametrization">
          Spectral parametrization</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We apply spectral
          parameterization <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib20"><span>20</span><span>Donoghue et al.</span><span>2020</span></a></cite>
          to extract timescales from PSDs. Briefly, we decompose log-power spectra into a summation
          of narrowband periodic components—modeled as Gaussians—and an aperiodic component—modeled
          as a generalized Lorentzian function centered at 0 Hz (<span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="L\left(f\right)"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.446em; padding-bottom: 0.298em;">L</span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.519em; padding-bottom: 0.519em; padding-right: 0.06em;">f</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span>
          above). For inferring decay timescale, this formalism can be practically advantageous when
          a strong oscillatory or variable power-law (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">χ</em>) component is present, as is often
          the case for neural signals. While oscillatory and power-law components can corrupt naive
          measurements of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">τ</em> as
          time for the ACF to reach 1/<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">e</em>, they can be easily accounted for and
          ignored in the frequency domain as narrowband peaks and 1/f-exponent fit. We discard the
          periodic components and infer timescale from the aperiodic component of the PSD. For a
          complete mathematical description of the model, see <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib20"><span>20</span><span>Donoghue et al.</span><span>2020</span></a></cite>.
        </p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="simulation-and-validation">
          Simulation and validation</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulate the aperiodic
          background component of neural field potential recordings as autocorrelated stochastic
          processes by convolving Poisson population spikes with exponentially decaying synaptic
          kernels with predefined decay time constants (neurodsp.sim.sim_synaptic_current). PSDs of
          the simulated data are computed and parameterized as described above, and we compare the
          fitted timescales with their ground-truth values.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="macaque-ecog-and-single-unit-timescales-data">Macaque ECoG and single-unit timescales
          data</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Macaque single-unit timescales
          are taken directly from values reported in Figure 1c of <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib68"><span>68</span><span>Murray et al.</span><span>2014</span></a></cite>.
          Whole-brain surface ECoG data (1000 Hz sampling rate) is taken from the Neurotycho
          repository <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib69"><span>69</span><span>Nagasaka et
                  al.</span><span>2011</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib103"><span>103</span><span>Yanagawa et
                  al.</span><span>2013</span></a></cite></span>, with eight sessions of 128-channel
          recordings from two animals (George and Chibi, four sessions each). Results reported in <a
            href="#fig2E" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2E–G</a> are
          from ~10 min eyes-open resting periods to match the pre-stimulus baseline condition of
          single-unit experiments. Timescales for individual ECoG channels are extracted and
          averaged over regions corresponding to single-unit recording areas from <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib68"><span>68</span><span>Murray et al.</span><span>2014</span></a></cite>;
          <a href="#fig2F" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2F</a> inset
          and <a href="#fig2s3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure
            supplement 3</a>, which are selected visually based on the overlapping cortical map and
          landmark sulci/gyri. Each region included between two and four electrodes (see <a
            href="#fig2s3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure
            supplement 3B</a> for selected ECoG channel indices for each region).</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="statistical-analysis-for-macaque-ecog-and-spiking-timescale">Statistical analysis for
          macaque ECoG and spiking timescale</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">For each individual recording
          session, as well as the grand average, Spearman rank correlation was computed between
          spiking and ECoG timescales. Linear regression models were fit using the python package
          scipy <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib86"><span>86</span><span>Virtanen et al.</span><span>2020</span></a></cite>
          (scipy.stats.linregress) and the linear slope was used to compute the scaling coefficient
          between spiking and ECoG timescales.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="variations-in-neuronal-timescale-t1t2-ratio-and-mrna-expression-across-human-cortex">
          Variations in neuronal timescale, T1/T2 ratio, and mRNA expression across human cortex
        </h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The following sections describe
          procedures for generating the average cortical gradient maps for neuronal timescale,
          MR-derived T1w/T2w ratio, and gene expression from the respective raw datasets. All maps
          were projected onto the 180 left hemisphere parcels of Human Connectome Project’s
          Multimodal Parcellation <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib38"><span>38</span><span>Glasser et al.</span><span>2016</span></a></cite>
          (HCP-MMP1.0) for comparison, described in the individual sections. Projection of T1w/T2w
          and gene expression maps from MNI volumetric coordinates to HCP-MMP1.0 can be found: <a
            href="https://github.com/rudyvdbrink/Surface_projection" itemscope=""
            itemtype="http://schema.stenci.la/Link">https://github.com/rudyvdbrink/Surface_projection</a>
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib82"><span>82</span><span>van den Brink</span><span>2020</span></a></cite>.
        </p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All spatial correlations are
          computed as Spearman rank correlations between maps. Procedure for computing statistical
          significance while accounting for SA is described in detail below under the sections
          &#39;Spatial statistics&#39; and &#39;SA modeling&#39;.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="neuronal-timescale-map">
          Neuronal timescale map</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The MNI Open iEEG dataset
          consists of 1 min of resting state data across 1772 channels from 106 epilepsy patients
          (13–62 years old, 58 males, and 48 females), recorded using either surface strip/grid or
          stereoEEG electrodes, and cleaned of visible artifacts <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib29"><span>29</span><span>Frauscher et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib30"><span>30</span><span>Frauscher et
                  al.</span><span>2018</span></a></cite></span>. Neuronal timescales were extracted
          from PSDs of individual channels, and projected from MNI voxel coordinates onto HCP-MMP1.0
          surface parcellation as follows.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">For each patient, timescale
          estimated from each electrode was extrapolated to the rest of the cortex in MNI
          coordinates using a Gaussian weighting function (confidence mask), <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math"
                aria-label="w\left(r\right)={e}^{-\left({r}^{2}/{\alpha }^{2}\right)}"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                      class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">w</span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.225em; padding-bottom: 0.298em;">r</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span></span></span></span><span
                      class="mjx-sup"
                      style="font-size: 70.7%; vertical-align: 0.83em; padding-left: 0px; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-mrow"><span class="mjx-mo"><span
                                class="mjx-char MJXc-TeX-size2-R"
                                style="padding-top: 0.961em; padding-bottom: 0.961em;">(</span></span><span
                              class="mjx-msubsup"><span class="mjx-base"><span
                                  class="mjx-texatom"><span class="mjx-mrow"><span
                                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                        style="padding-top: 0.225em; padding-bottom: 0.298em;">r</span></span></span></span></span><span
                                class="mjx-sup"
                                style="font-size: 83.3%; vertical-align: 0.435em; padding-left: 0px; padding-right: 0.06em;"><span
                                  class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                      class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                        style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span><span
                              class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mo"><span
                                    class="mjx-char MJXc-TeX-main-R"
                                    style="padding-top: 0.446em; padding-bottom: 0.593em;">/</span></span></span></span><span
                              class="mjx-msubsup"><span class="mjx-base"><span
                                  class="mjx-texatom"><span class="mjx-mrow"><span
                                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                        style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span><span
                                class="mjx-sup"
                                style="font-size: 83.3%; vertical-align: 0.435em; padding-left: 0px; padding-right: 0.06em;"><span
                                  class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                      class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                        style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span><span
                              class="mjx-mo"><span class="mjx-char MJXc-TeX-size2-R"
                                style="padding-top: 0.961em; padding-bottom: 0.961em;">)</span></span></span></span></span></span></span></span></span></span></span>,
          where <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">r</em> is the Euclidean
          distance between the electrode and a voxel, and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">α</em> is the distance scaling constant,
          chosen here such that a voxel 4 mm away has 50% weight (or confidence). Timescale at each
          voxel is computed as a weighted spatial average of timescales from all electrodes (i) of
          that patient:</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">i.e., <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math"
                aria-label="{\tau }_{voxel}=\frac{{{\displaystyle \sum }}_{i}^{}w{\left({r}_{i}\right)}_{}{\tau }_{i}}{{{\displaystyle \sum }}_{i}^{}w{\left({r}_{i}\right)}_{}}"><span class="mjx-mrow" aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base" style="margin-right: -0.08em;"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span></span></span><span class="mjx-sub" style="font-size: 70.7%; vertical-align: -0.219em; padding-right: 0.071em;"><span class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">v</span></span><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">o</span></span><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">x</span></span><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.446em; padding-bottom: 0.298em;">l</span></span></span></span></span></span><span class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span class="mjx-mfrac MJXc-space3"><span class="mjx-box MJXc-stacked" style="width: 3.968em; padding: 0px 0.12em;"><span class="mjx-numerator" style="font-size: 70.7%; width: 5.612em; top: -2.779em;"><span class="mjx-mrow" style=""><span class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mstyle" style="font-size: 141.4%;"><span class="mjx-mrow"><span class="mjx-mo"><span class="mjx-char MJXc-TeX-size2-R" style="padding-top: 0.74em; padding-bottom: 0.74em;"></span></span></span></span></span></span></span></span></span><span class="mjx-sub" style="font-size: 83.3%; vertical-align: -0.856em; padding-right: 0.06em;"><span class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">w</span></span><span class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mrow"><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">r</span></span></span></span></span><span class="mjx-sub" style="font-size: 83.3%; vertical-align: -0.262em; padding-right: 0.06em;"><span class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span><span class="mjx-msubsup"><span class="mjx-base" style="margin-right: -0.08em;"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.08em;">τ</span></span></span></span></span><span class="mjx-sub" style="font-size: 83.3%; vertical-align: -0.262em; padding-right: 0.06em;"><span class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span></span><span class="mjx-denominator" style="font-size: 70.7%; width: 5.612em; bottom: -2.072em;"><span class="mjx-mrow" style=""><span class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mstyle" style="font-size: 141.4%;"><span class="mjx-mrow"><span class="mjx-mo"><span class="mjx-char MJXc-TeX-size2-R" style="padding-top: 0.74em; padding-bottom: 0.74em;"></span></span></span></span></span></span></span></span></span><span class="mjx-sub" style="font-size: 83.3%; vertical-align: -0.856em; padding-right: 0.06em;"><span class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">w</span></span><span class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mrow"><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">r</span></span></span></span></span><span class="mjx-sub" style="font-size: 83.3%; vertical-align: -0.262em; padding-right: 0.06em;"><span class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span></span></span><span style="border-bottom: 1.3px solid; top: -0.296em; width: 3.968em;" class="mjx-line"></span></span><span style="height: 3.43em; vertical-align: -1.465em;" class="mjx-vsize"></span></span></span></span></span></span>.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Similarly, each voxel is assigned a confidence rating that is the maximum of weights over all electrodes (_w<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">voxel</sub>(r<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">min</sub>), _of the closest electrode), i.e., a voxel right under an electrode has a confidence of 1, while a voxel 4 mm away from the closest electrode has a confidence of 0.5, etc.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Timescales for each HCP-MMP parcel were then computed as the confidence-weighted arithmetic mean across all voxels that fall within the boundaries of that parcel. HCP-MMP boundary map is loaded and used for projection using NiBabel <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib7"><span>7</span><span>Brett et al.</span><span>2020</span></a></cite>. This results in a 180 parcels-by-106 patients timescale matrix. A per-parcel confidence matrix of the same dimensions was computed by taking the maximum confidence over all voxels for each parcel (<a href="#fig2s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1A</a>). The average cortical timescale map (gradient) is computed by taking the confidence-weighted average at each parcel across all participants. Note that this procedure for locally thresholded and weighted average is different from projection procedures used for the mRNA and T1w/T2w data due to region-constrained and heterogeneous ECoG electrode sites across participants. While coverage is sparse and idiosyncratic in individual participants, it does not vary as a function of age, and when pooling across the entire population, 178 of 180 parcels have at least one patient with an electrode within 4 mm, with the best coverage in sensorimotor, temporal, and frontal regions (<a href="#fig2s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1</a>).</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="t1wt2w-ratio-and-cortical-thickness-maps">T1w/T2w ratio and cortical thickness maps</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">As a measure of structural cortical hierarchy, we used the ratio between T1- and T2-weighted structural MRI, referred to as T1w/T2w map in main text, or the myelin map <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib10"><span>10</span><span>Burt et al.</span><span>2018</span></a></cite><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib39"><span>39</span><span>Glasser and Van Essen</span><span>2011</span></a></cite></span>. Since there is little variation in the myelin map across individuals, we used the group average myelin map of the WU-Minn HCP S1200 release (N = 1096, March 1, 2017 release) provided in HCP-MMP1.0 surface space. For correlation with other variables, we computed the median value per parcel, identical to the procedure for mRNA expression below. Cortical thickness map was similarly generated.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="mrna-expression-maps">mRNA expression maps</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We used the Allen Human Brain Atlas (AHBA) gene expression dataset <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib44"><span>44</span><span>Hawrylycz et al.</span><span>2015</span></a></cite><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib43"><span>43</span><span>Hawrylycz et al.</span><span>2012</span></a></cite></span> that comprised postmortem samples of six donors (one female and five males) that underwent microarray transcriptional profiling. Spatial maps of mRNA expression were available in volumetric 2 mm isotropic MNI space, following improved nonlinear registration and whole-brain prediction using variogram modeling as implemented by <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib42"><span>42</span><span>Gryglewski et al.</span><span>2018</span></a></cite>. We used whole-brain maps available from <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib42"><span>42</span><span>Gryglewski et al.</span><span>2018</span></a></cite> rather than the native sample-wise values in the AHBA database to prevent bias that could occur due to spatial inhomogeneity of the sampled locations. In total, 18,114 genes were included for analyses that related to the dominant axis of expression across the genome.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We projected the volumetric mRNA expression data onto the HCP-MMP cortical surface using the HCP workbench software (v1.3.1 running on Windows OS 10) with the ‘enclosing’ method and custom MATLAB code (<a href="https://github.com/rudyvdbrink/surface_projection" itemscope="" itemtype="http://schema.stenci.la/Link">github.com/rudyvdbrink/surface_projection</a><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib82"><span>82</span><span>van den Brink</span><span>2020</span></a></cite>. The enclosing method extracts for all vertices on the surface the value from enclosing voxels in the volumetric data. Alternative projection methods such as trilinear 3D linear interpolation of surrounding voxels, or ribbon mapping that constructs a polyhedron from each vertex&#39;s neighbors on the surface to compute a weighted mean for the respective vertices, yielded comparable values, but less complete cortical coverage. Moreover, the enclosing method ensured that no transformation of the data (nonlinear or otherwise) occurred during the projection process and thus the original values in the volumetric data were preserved.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Next, for each parcel of the left hemisphere in HCP-MMP, we extracted the median vertex-wise value. We used the median rather than the mean because it reduced the contribution of outliers in expression values within parcels. Vertices that were not enclosed by voxels that contained data in volumetric space were not included in the parcel-wise median. This was the case for 539 vertices (1.81% of total vertices). Linear interpolation across empty vertices prior to computing median parcel-wise values yielded near-identical results (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">r =</em> 0.95 for reconstructed surfaces). Lastly, expression values were mean and variance normalized across parcels to facilitate visualization. Normalization had no effect on spatial correlation between gene expression and other variables since the spatial distribution of gene expression was left unaltered.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="selection-of-brain-specific-genes">Selection of brain-specific genes</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Similar to <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib10"><span>10</span><span>Burt et al.</span><span>2018</span></a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib25"><span>25</span><span>Fagerberg et al.</span><span>2014</span></a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib36"><span>36</span><span>Genovese et al.</span><span>2016</span></a></cite>, N = 2429 brain-specific genes were selected based on the criteria that expression in brain tissues were four times higher than the median expression across all tissue types, using Supplementary Dataset 1 of <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib25"><span>25</span><span>Fagerberg et al.</span><span>2014</span></a></cite>. PC1 result shown in <a href="#fig3A" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3A</a> is computed from brain-specific genes, though findings are similar when using all genes (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ρ</em> = −0.56 with timescale map, <a href="#fig3s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3—figure supplement 1</a>).</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="spatial-statistics">Spatial statistics</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All correlations between spatial maps (timescale, T1w/T2w, gene principal component [PC], and individual gene expressions) were computed using Spearman rank correlation. As noted in <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib11"><span>11</span><span>Burt et al.</span><span>2020</span></a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib10"><span>10</span><span>Burt et al.</span><span>2018</span></a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib87"><span>87</span><span>Vos de Wael et al.</span><span>2020</span></a></cite>, neural variables vary smoothly and continuously across the cortical surface, violating the assumption of independent samples. As a result, when correlating two variables, each with nontrivial SA, the naive p-value is artificially lowered since it is compared against an inappropriate null hypothesis, i.e., randomly distributed or shuffled values across space. Instead, a more appropriate null hypothesis introduces SA-preserving null maps, which destroys any potential correlation between two maps while respecting their SAs. For all spatial correlation analyses, we generated N = 1000 null maps of one variable (timescale map unless otherwise noted), and the test statistic, Spearman correlation (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ρ</em>), is computed against the other variable of interest to build the null distribution. Two-tailed significance is then computed as the proportion of the null distribution that is less extreme than the empirical correlation value. All regression lines were computed by fitting a linear regression to log-timescale and the structural feature maps.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="sa-modeling">SA modeling</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To generate SA-preserving null maps, we used Moran Spectral Randomization (MSR) <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib92"><span>92</span><span>Wagner and Dray</span><span>2015</span></a></cite> from the python package BrainSpace <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib87"><span>87</span><span>Vos de Wael et al.</span><span>2020</span></a></cite>. Details of the algorithm can be found in the above references. Briefly, MSR performs eigendecomposition on a spatial weight matrix of choice, which is taken here to be the inverse average geodesic distance matrix between all pairs of parcels in HCP-MMP1.0. The eigenvectors of the weight matrix are then used to generate randomized null feature maps that preserves the autocorrelation of the empirical map. We used the singleton procedure for null map generation. All significance values reported (<a href="#fig2D" itemscope="" itemtype="http://schema.stenci.la/Link">Figures 2D</a><a href="#fig3A" itemscope="" itemtype="http://schema.stenci.la/Link"> and 3A–C</a>) were adjusted using the above procedure.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We also compare two other methods of generating null maps: spatial variogram fitting (VF) <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib11"><span>11</span><span>Burt et al.</span><span>2020</span></a></cite> and spin permutation <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib1"><span>1</span><span>Alexander-Bloch et al.</span><span>2018</span></a></cite>. Null maps were generated for timescale using spatial VF, while for spin permutation they were generated for vertex-wise T1w/T2w and gene PC1 maps before parcellation, so as to preserve surface locations of the parcellation itself. All methods perform similarly, producing comparable SA in the null maps, assessed using spatial variogram, as well as null distribution of spatial correlation coefficients between timescale and T1w/T2w (<a href="#fig2s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a>).</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="principal-component-analysis-pca-of-gene-expression">Principal component analysis (PCA) of gene expression</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We used scikit-learn <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib72"><span>72</span><span>Pedregosa</span><span>2011</span></a></cite> PCA (sklearn.decomposition.PCA) to identify the dominant axes of gene expression variation across the entire AHBA dataset, as well as for brain-specific genes. PCA was computed on the variance-normalized average gene expression maps, <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">X</em>, an N × P matrix where N = 18,114 (or N = 2429 brain-specific) genes, and P = 180 cortical parcels. Briefly, PCA factorizes <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">X</em> such that <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">X = USV<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">T</sup></em>, where <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">U</em> and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">V</em> are unitary matrices of dimensionality N × N and P × P, respectively. <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S</em> is the same dimensionality as <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">X</em> and contains non-negative descending eigenvalues on its main diagonal (Λ). Columns of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">V</em> are defined as the PCs, and the dominant axis of gene expression is then defined as the first column of V, whose proportion of variance explained in the data is the first element of Λ divided by the sum over Λ. Results for PC1 and PC2-10 are shown in <a href="#fig3A" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3A</a> and <a href="#fig3s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3—figure supplement 1</a>, respectively.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="comparison-of-timescale-transcriptomic-association-with-single-cell-timescale-genes">Comparison of timescale-transcriptomic association with single-cell timescale genes</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Single-cell timescale genes were selected based on data from Table S3 of <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib81"><span>81</span><span>Tripathy et al.</span><span>2017</span></a></cite> and Online Table 1 of <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib5"><span>5</span><span>Bomkamp et al.</span><span>2019</span></a></cite>. Using single-cell RNA sequencing data and patch-clamp recordings from transgenic mice cortical neurons, these studies identified genes whose expression significantly correlated with electrophysiological features derived from generalized linear integrate and fire (GLIF) model fits. We selected genes that were significantly correlated with membrane time constant (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">tau</em>), input resistance (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Rin</em> or <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ri</em>), or capacitance (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Cm</em> or <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">cap</em>) in the referenced data tables, and extracted the level of association between gene expression and those electrophysiological feature (correlation ‘DiscCorr’ in <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib81"><span>81</span><span>Tripathy et al.</span><span>2017</span></a></cite> and linear coefficient ‘beta_gene’ in <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib5"><span>5</span><span>Bomkamp et al.</span><span>2019</span></a></cite>).</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To compare timescale-gene expression association at the single-cell and macroscale level, we correlated the single-cell associations extracted above with the spatial correlation coefficient (macroscale <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ρ</em>) between ECoG timescale and AHBA microarray expression data for those same genes, restricting to genes with p&lt;0.05 for macroscale correlation (results identical for non-restrictive gene set). Overall association for all genes, as well as split by quintiles of their absolute macroscale correlation coefficient, are shown in <a href="#fig3D" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3D</a>. Example ‘single-cell timescale’ genes shown in <a href="#fig3B" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3B and C</a> are genes showing the highest correlations with those electrophysiology features reported in Table 2 of <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib5"><span>5</span><span>Bomkamp et al.</span><span>2019</span></a></cite>.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="t1wt2w-removed-timescale-and-gene-expression-residual-maps">T1w/T2w-removed timescale and gene expression residual maps</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To remove anatomical hierarchy as a potential mediating variable in timescale–gene expression relationships, we linearly regress out the T1w/T2w map from the (log) timescale map and individual gene expression maps. T1w/T2w was linearly fit to log-timescale, and the error between T1w/T2w-predicted timescale and empirical timescale was extracted (residual); this identical procedure was applied to every gene expression map to retrieve the gene residuals. SA-preserving null timescale residual maps were similarly created using MSR.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="pls-regression-model">PLS regression model</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Due to multicollinearity in the high-dimensional gene expression dataset (many more genes than parcels), we fit a PLS model to the timescale map with one output dimension (sklearn.cross_decomposition.PLSRegression) to estimate regression coefficient for all genes simultaneously, resulting in N = 18,114 (or N = 2429 brain-specific) PLS weights <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib84"><span>84</span><span>Vértes et al.</span><span>2016</span></a></cite><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib101"><span>101</span><span>Whitaker et al.</span><span>2016</span></a></cite></span>. To determine significantly associated (or ‘enriched’) genes, we repeated the above PLS-fitting procedure 1000 times but replaced the empirical timescale map (or residual map) with null timescale maps (or residual maps) that preserved its SA. Genes whose absolute empirical PLS weight was greater than 95% of its null weight distribution was deemed to be enriched, and submitted for GOEA.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="gene-ontology-enrichment-analysis">Gene ontology enrichment analysis</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The Gene Ontology (GO) captures hierarchically structured relationships between GO items representing aspects of biological processes (BP), cellular components (CC), or molecular functions (MF). For example, ‘synaptic signaling’, ‘chemical synaptic transmission’, and ‘glutamatergic synaptic transmission’ are GO items with increasing specificity, with smaller subsets of genes associated with each function. Each GO item is annotated with a list of genes that have been linked to that particular process or function. GOEA examines the list of enriched genes from above to identify GO items that are more associated with those genes than expected by chance. We used GOATOOLS <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib58"><span>58</span><span>Klopfenstein et al.</span><span>2018</span></a></cite> to perform GOEA programmatically in python.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The list of unranked genes with significant empirical PLS weights was submitted for GOEA as the ‘study set’, while either the full ABHA list or brain-specific gene list was used as the ‘reference set’. The output of GOEA is a list of GO terms with annotated genes that are enriched or purified (i.e., preferentially appearing or missing in the study list, respectively) more often than by chance, determined by Fisher’s exact test.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Enrichment ratio is defined as follows: given a reference set with <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">N</em> total genes, and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em> were found to be significantly associated with timescale (in the study set), for a single GO item with <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">B</em> total genes annotated to it, where <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">b</em> of them overlap with the study set, then. Statistical significance is adjusted for multiple comparisons following Benjamini–Hochberg procedure (false discovery rate q-value reported in <a href="#fig3EF" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3F</a>), and all significant GO items (q &lt; 0.05) are reported in <a href="#fig3EF" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3F</a>, in addition to some example items that did not pass significance threshold. For a detailed exposition, see <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib4"><span>4</span><span>Bauer et al.</span><span>2017</span></a></cite>. <a href="#fig3EF" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3F</a> shows results using brain-specific genes. The GO items that are significantly associated are similar when using the full gene set, but typically with larger q-values (<a href="#supp1" itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 1</a> and <a href="#supp2" itemscope="" itemtype="http://schema.stenci.la/Link"><span data-itemtype="http://schema.org/Number">2</span></a>) due to a much larger set of (non-brain-specific) genes. Control analysis was conducted using T1w/T2w, with 1000 similarly generated null maps, instead of timescale.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="working-memory-ecog-data-and-analysis">Working memory ECoG data and analysis</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The CRCNS fcx-2 and fcx-3 datasets include 17 intracranial ECoG recordings in total from epilepsy patients (10 and 7, respectively) performing the same visuospatial working memory task <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib54"><span>54</span><span>Johnson</span><span>2019</span></a></cite><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib53"><span>53</span><span>Johnson</span><span>2018</span></a></cite><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib51"><span>51</span><span>Johnson et al.</span><span>2018</span></a></cite><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib52"><span>52</span><span>Johnson et al.</span><span>2018</span></a></cite></span>. Subject 3 (s3) from fcx-2 was discarded due to poor data quality upon examination of trial-averaged PSDs (high noise floor near 20 Hz), while s5 and s7 from fcx-3 correspond to s5 and s8 in fcx-2 and were thus combined. Together, data from 14 unique participants (22–50 years old, five females) were analyzed, with variable and overlapping coverage in PC (n = 14), PFC (n = 13), OFC (n = 8), and MTL (n = 9). Each channel was annotated as belonging to one of the above macro regions.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Experimental setup is described in <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib54"><span>54</span><span>Johnson</span><span>2019</span></a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib53"><span>53</span><span>Johnson</span><span>2018</span></a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib51"><span>51</span><span>Johnson et al.</span><span>2018</span></a></cite>, <cite itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a href="#bib52"><span>52</span><span>Johnson et al.</span><span>2018</span></a></cite> in detail. Briefly, following a 1 s pre-trial fixation period (baseline), subjects were instructed to focus on one of two stimulus contexts (‘identity’ or ‘relation’ information). Then two shapes were presented in sequence for 200 ms each. After a 900 or 1150 ms jittered precue delay (delay1), the test cue appeared for 800 ms, followed by another post-cue delay period of the same length (delay2). Finally, the response period required participants to perform a 2-alternative forced choice test based on the test cue, which varied based on trial condition. For our analysis, we collapsed across the stimulus context conditions and compared neuronal timescales during the last 900 ms of baseline and delay periods from the epoched data, which were free of visual stimuli, in order to avoid stimulus-related event-related potential effects. Behavioral accuracy for each experimental condition was reported for each participant, and we average across both stimulus context conditions to produce a single working memory accuracy per participant.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Single-trial power spectra were computed for each channel as the squared magnitude of the Hamming-windowed Fourier Transform. We used 900 ms of data in all three periods (pre-trial, delay1, and delay2). Timescales were estimated by applying spectral parameterization as above, and the two delay-period estimates were averaged to produce a single delay period value. For comparison, we computed single-trial theta (3–8 Hz) and high-frequency activity (high gamma <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib67"><span>67</span><span>Mukamel et al.</span><span>2005</span></a></cite>, 70–100 Hz) powers as the mean log-power within those frequency bins, as well as spectral exponent (χ). Single-trial timescale difference between delay and baseline was calculated as the difference of the log timescales due to the non-normal distribution of single-trial timescale estimates. All other neural features were computed by subtracting baseline from the delay period.</p><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All neural features were then averaged across channels within the same regions, then trials, for each participant, to produce per-participant region-wise estimates, and finally averaged across all participants for the regional average in <a href="#fig4BC" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4B and C</a>. Two-sided Mann–Whitney U-tests were used to test for significant differences in baseline timescale between pairs of regions (<a href="#fig4BC" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4B</a>). Two-sided Wilcoxon rank-sum tests were used to determine the statistical significance of timescale change in each region (<a href="#fig4BC" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4C</a>), where the null hypothesis was no change between baseline and delay periods (i.e., delay is 100% of baseline). Spearman rank correlation was used to determine the relationship between neural activity (timescale; theta; high-frequency; χ) change and working memory accuracy across participants (<a href="#fig4D" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4D</a> and <a href="#fig4s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 1</a>).</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="per-subject-average-cortical-timescale-across-age">Per-subject average cortical timescale across age</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Since electrode coverage in the MNI-iEEG dataset is sparse and nonuniform across participants (<a href="#fig2s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1</a>), simply averaging across parcels within individuals to estimate an average cortical timescale per participant confounds the effect of age with the spatial effect of cortical hierarchy. Therefore, we instead first normalize each parcel by its max value across all participants before averaging within participants, excluding those with fewer than 10 valid parcels (71 of 106 subjects remaining; results hold for a range of threshold values; <a href="#fig4s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 2B</a>). Spearman rank correlation was used to compute the association between age and average cortical timescale.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="agetimescale-association-for-individual-parcels">Age–timescale association for individual parcels</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Each cortical parcel had a variable number of participants with valid timescale estimates above the consistency threshold, so we compute Spearman correlation between age and timescale for each parcel, but including only those with at least five participants (114 of 180 parcels, result holds for a range of threshold values; <a href="#fig4s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 2C</a>). Spatial effect of age-timescale variation is plotted in <a href="#fig4EF" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4F</a>, where parcels that did not meet the threshold criteria are grayed out. Mean age–timescale correlation from individual parcels was significantly negative under one-sample t-test.</p><h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="data-and-materials-availability">Data and materials’ availability</h3><p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All data analyzed in this manuscript are from open data sources. All code used for all analyses and plots are publicly available on GitHub at <a href="https://github.com/rdgao/field-echos" itemscope="" itemtype="http://schema.stenci.la/Link">https://github.com/rdgao/field-echos</a> <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib35"><span>35</span><span>Gao</span><span>2020</span></a></cite> and <a href="https://github.com/rudyvdbrink/surface_projection" itemscope="" itemtype="http://schema.stenci.la/Link">https://github.com/rudyvdbrink/surface_projection</a> <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#bib82"><span>82</span><span>van den Brink</span><span>2020</span></a></cite>. See <a href="#table1" itemscope="" itemtype="http://schema.stenci.la/Link">Tables 1</a> and <a href="#table2" itemscope="" itemtype="http://schema.stenci.la/Link"><span data-itemtype="http://schema.org/Number">2</span></a> for details.</p><section data-itemprop="references"><h2 data-itemtype="http://schema.stenci.la/Heading">References</h2><ol><li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib1"><ol data-itemprop="authors"><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="AF Alexander-Bloch"><span data-itemprop="givenNames"><span itemprop="givenName">AF</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Alexander-Bloch</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="H Shou"><span data-itemprop="givenNames"><span itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Shou</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="S Liu"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Liu</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="TD Satterthwaite"><span data-itemprop="givenNames"><span itemprop="givenName">TD</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Satterthwaite</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="DC Glahn"><span data-itemprop="givenNames"><span itemprop="givenName">DC</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Glahn</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="RT Shinohara"><span data-itemprop="givenNames"><span itemprop="givenName">RT</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Shinohara</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="SN Vandekar"><span data-itemprop="givenNames"><span itemprop="givenName">SN</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Vandekar</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="A Raznahan"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Raznahan</span></span></li></ol><time itemprop="datePublished" datetime="2018">2018</time><span itemprop="headline">On testing for spatial correspondence between maps of human brain structure and function</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">178</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">NeuroImage</span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">540</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">551</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"><meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"></span></span><meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=On%20testing%20for%20spatial%20correspondence%20between%20maps%20of%20human%20brain%20structure%20and%20function"><ul data-itemprop="identifiers"><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi"><span itemprop="name">doi</span><span itemprop="value">10.1016/j.neuroimage.2018.05.070</span></li><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/pmid"><span itemprop="name">pmid</span><span itemprop="value" data-itemtype="http://schema.org/Number">29860082</span></li></ul></li><li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib2"><ol data-itemprop="authors"><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="D Badre"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Badre</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="M D'Esposito"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">D'Esposito</span></span></li></ol><time itemprop="datePublished" datetime="2009">2009</time><span itemprop="headline">Is the rostro-caudal Axis of the frontal lobe hierarchical?</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">10</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Reviews Neuroscience</span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">659</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">669</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"><meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"></span></span><meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Is%20the%20rostro-caudal%20Axis%20of%20the%20frontal%20lobe%20hierarchical?"><ul data-itemprop="identifiers"><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi"><span itemprop="name">doi</span><span itemprop="value">10.1038/nrn2667</span></li><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/pmid"><span itemprop="name">pmid</span><span itemprop="value" data-itemtype="http://schema.org/Number">19672274</span></li></ul></li><li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib3"><ol data-itemprop="authors"><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="C Baldassano"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Baldassano</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="J Chen"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Chen</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="A Zadbood"><span data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zadbood</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="JW Pillow"><span data-itemprop="givenNames"><span itemprop="givenName">JW</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pillow</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="U Hasson"><span data-itemprop="givenNames"><span itemprop="givenName">U</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hasson</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="KA Norman"><span data-itemprop="givenNames"><span itemprop="givenName">KA</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Norman</span></span></li></ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Discovering event structure in continuous narrative perception and memory</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">95</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Neuron</span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">709</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">721</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"><meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"></span></span><meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Discovering%20event%20structure%20in%20continuous%20narrative%20perception%20and%20memory"><ul data-itemprop="identifiers"><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi"><span itemprop="name">doi</span><span itemprop="value">10.1016/j.neuron.2017.06.041</span></li><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/pmid"><span itemprop="name">pmid</span><span itemprop="value" data-itemtype="http://schema.org/Number">28772125</span></li></ul></li><li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib4"><ol data-itemprop="authors"><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="S Bauer"><span data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bauer</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="C Dessimoz"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Dessimoz</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="N Škunca"><span data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Škunca</span></span></li></ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Gene-Category Analysis</span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">175</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">188</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"><meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer"></span></span><meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Gene-Category%20Analysis"><ul data-itemprop="identifiers"><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi"><span itemprop="name">doi</span><span itemprop="value">10.1007/978-1-4939-3743-1</span></li></ul></li><li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib5"><ol data-itemprop="authors"><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="C Bomkamp"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bomkamp</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="SJ Tripathy"><span data-itemprop="givenNames"><span itemprop="givenName">SJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tripathy</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="C Bengtsson Gonzales"><span data-itemprop="givenNames"><span itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bengtsson</span><span itemprop="familyName">Gonzales</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="J Hjerling-Leffler"><span data-itemprop="givenNames"><span itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hjerling-Leffler</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="AM Craig"><span data-itemprop="givenNames"><span itemprop="givenName">AM</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Craig</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="P Pavlidis"><span data-itemprop="givenNames"><span itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pavlidis</span></span></li></ol><time itemprop="datePublished" datetime="2019">2019</time><span itemprop="headline" content="Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory an…">Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">15</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">PLOS Computational Biology</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"><meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"></span></span><meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Transcriptomic%20correlates%20of%20electrophysiological%20and%20morphological%20diversity%20within%20and%20across%20excitatory%20an%E2%80%A6"><ul data-itemprop="identifiers"><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi"><span itemprop="name">doi</span><span itemprop="value">10.1371/journal.pcbi.1007113</span></li><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/pmid"><span itemprop="name">pmid</span><span itemprop="value" data-itemtype="http://schema.org/Number">31211786</span></li></ul></li><li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib6"><ol data-itemprop="authors"><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="M Breakspear"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Breakspear</span></span></li></ol><time itemprop="datePublished" datetime="2017">2017</time><span itemprop="headline">Dynamic models of large-scale brain activity</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">20</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Neuroscience</span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">340</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">352</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"><meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"></span></span><meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Dynamic%20models%20of%20large-scale%20brain%20activity"><ul data-itemprop="identifiers"><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi"><span itemprop="name">doi</span><span itemprop="value">10.1038/nn.4497</span></li><li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier"><meta itemprop="propertyID" content="https://registry.identifiers.org/registry/pmid"><span itemprop="name">pmid</span><span itemprop="value" data-itemtype="http://schema.org/Number">28230845</span></li></ul></li><li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib7"><ol data-itemprop="authors"><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="M Brett"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Brett</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="CJ Markiewicz"><span data-itemprop="givenNames"><span itemprop="givenName">CJ</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Markiewicz</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="M Hanke"><span data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hanke</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="M-A Côté"><span data-itemprop="givenNames"><span itemprop="givenName">M-A</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Côté</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="B Cipollini"><span data-itemprop="givenNames"><span itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Cipollini</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="P McCarthy"><span data-itemprop="givenNames"><span itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span itemprop="familyName">McCarthy</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="D Jarecka"><span data-itemprop="givenNames"><span itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Jarecka</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name" content="CP Cheng"><span data-itemprop="givenNames"><span itemprop="givenName">CP</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Cheng</span></span></li><li itemscope="" itemtype="http://schema.org/Person" itemprop="author"><meta itemprop="name"