<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />


<meta name="author" content="Susanne Zajitschek, Felix Zajitschek, Russell Bonduriansky,Robert Brooks, Will Cornwell, Daniel Falster, Malgortaza Lagisz, Jeremy Mason, Daniel Noble, Alistair Senior &amp; Shinichi Nakagawa" />


<title>IMPC Mouse data - Variance in sex differences</title>

<script>/*! jQuery v1.11.3 | (c) 2005, 2015 jQuery Foundation, Inc. | jquery.org/license */
!function(a,b){"object"==typeof module&&"object"==typeof module.exports?module.exports=a.document?b(a,!0):function(a){if(!a.document)throw new Error("jQuery requires a window with a document");return b(a)}:b(a)}("undefined"!=typeof window?window:this,function(a,b){var c=[],d=c.slice,e=c.concat,f=c.push,g=c.indexOf,h={},i=h.toString,j=h.hasOwnProperty,k={},l="1.11.3",m=function(a,b){return new m.fn.init(a,b)},n=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,o=/^-ms-/,p=/-([\da-z])/gi,q=function(a,b){return b.toUpperCase()};m.fn=m.prototype={jquery:l,constructor:m,selector:"",length:0,toArray:function(){return d.call(this)},get:function(a){return null!=a?0>a?this[a+this.length]:this[a]:d.call(this)},pushStack:function(a){var b=m.merge(this.constructor(),a);return b.prevObject=this,b.context=this.context,b},each:function(a,b){return m.each(this,a,b)},map:function(a){return this.pushStack(m.map(this,function(b,c){return a.call(b,c,b)}))},slice:function(){return this.pushStack(d.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(a){var b=this.length,c=+a+(0>a?b:0);return this.pushStack(c>=0&&b>c?[this[c]]:[])},end:function(){return this.prevObject||this.constructor(null)},push:f,sort:c.sort,splice:c.splice},m.extend=m.fn.extend=function(){var a,b,c,d,e,f,g=arguments[0]||{},h=1,i=arguments.length,j=!1;for("boolean"==typeof g&&(j=g,g=arguments[h]||{},h++),"object"==typeof g||m.isFunction(g)||(g={}),h===i&&(g=this,h--);i>h;h++)if(null!=(e=arguments[h]))for(d in e)a=g[d],c=e[d],g!==c&&(j&&c&&(m.isPlainObject(c)||(b=m.isArray(c)))?(b?(b=!1,f=a&&m.isArray(a)?a:[]):f=a&&m.isPlainObject(a)?a:{},g[d]=m.extend(j,f,c)):void 0!==c&&(g[d]=c));return g},m.extend({expando:"jQuery"+(l+Math.random()).replace(/\D/g,""),isReady:!0,error:function(a){throw new Error(a)},noop:function(){},isFunction:function(a){return"function"===m.type(a)},isArray:Array.isArray||function(a){return"array"===m.type(a)},isWindow:function(a){return null!=a&&a==a.window},isNumeric:function(a){return!m.isArray(a)&&a-parseFloat(a)+1>=0},isEmptyObject:function(a){var b;for(b in a)return!1;return!0},isPlainObject:function(a){var b;if(!a||"object"!==m.type(a)||a.nodeType||m.isWindow(a))return!1;try{if(a.constructor&&!j.call(a,"constructor")&&!j.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}if(k.ownLast)for(b in a)return j.call(a,b);for(b in a);return void 0===b||j.call(a,b)},type:function(a){return null==a?a+"":"object"==typeof a||"function"==typeof a?h[i.call(a)]||"object":typeof a},globalEval:function(b){b&&m.trim(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(o,"ms-").replace(p,q)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toLowerCase()===b.toLowerCase()},each:function(a,b,c){var d,e=0,f=a.length,g=r(a);if(c){if(g){for(;f>e;e++)if(d=b.apply(a[e],c),d===!1)break}else for(e in a)if(d=b.apply(a[e],c),d===!1)break}else if(g){for(;f>e;e++)if(d=b.call(a[e],e,a[e]),d===!1)break}else for(e in a)if(d=b.call(a[e],e,a[e]),d===!1)break;return a},trim:function(a){return null==a?"":(a+"").replace(n,"")},makeArray:function(a,b){var c=b||[];return null!=a&&(r(Object(a))?m.merge(c,"string"==typeof a?[a]:a):f.call(c,a)),c},inArray:function(a,b,c){var d;if(b){if(g)return g.call(b,a,c);for(d=b.length,c=c?0>c?Math.max(0,d+c):c:0;d>c;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,b){var c=+b.length,d=0,e=a.length;while(c>d)a[e++]=b[d++];if(c!==c)while(void 0!==b[d])a[e++]=b[d++];return a.length=e,a},grep:function(a,b,c){for(var d,e=[],f=0,g=a.length,h=!c;g>f;f++)d=!b(a[f],f),d!==h&&e.push(a[f]);return e},map:function(a,b,c){var d,f=0,g=a.length,h=r(a),i=[];if(h)for(;g>f;f++)d=b(a[f],f,c),null!=d&&i.push(d);else for(f in a)d=b(a[f],f,c),null!=d&&i.push(d);return e.apply([],i)},guid:1,proxy:function(a,b){var c,e,f;return"string"==typeof b&&(f=a[b],b=a,a=f),m.isFunction(a)?(c=d.call(arguments,2),e=function(){return a.apply(b||this,c.concat(d.call(arguments)))},e.guid=a.guid=a.guid||m.guid++,e):void 0},now:function(){return+new Date},support:k}),m.each("Boolean Number String Function Array Date RegExp Object Error".split(" "),function(a,b){h["[object "+b+"]"]=b.toLowerCase()});function r(a){var b="length"in a&&a.length,c=m.type(a);return"function"===c||m.isWindow(a)?!1:1===a.nodeType&&b?!0:"array"===c||0===b||"number"==typeof b&&b>0&&b-1 in a}var s=function(a){var b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u="sizzle"+1*new Date,v=a.document,w=0,x=0,y=ha(),z=ha(),A=ha(),B=function(a,b){return a===b&&(l=!0),0},C=1<<31,D={}.hasOwnProperty,E=[],F=E.pop,G=E.push,H=E.push,I=E.slice,J=function(a,b){for(var c=0,d=a.length;d>c;c++)if(a[c]===b)return c;return-1},K="checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",L="[\\x20\\t\\r\\n\\f]",M="(?:\\\\.|[\\w-]|[^\\x00-\\xa0])+",N=M.replace("w","w#"),O="\\["+L+"*("+M+")(?:"+L+"*([*^$|!~]?=)"+L+"*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|("+N+"))|)"+L+"*\\]",P=":("+M+")(?:\\((('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|((?:\\\\.|[^\\\\()[\\]]|"+O+")*)|.*)\\)|)",Q=new RegExp(L+"+","g"),R=new RegExp("^"+L+"+|((?:^|[^\\\\])(?:\\\\.)*)"+L+"+$","g"),S=new RegExp("^"+L+"*,"+L+"*"),T=new RegExp("^"+L+"*([>+~]|"+L+")"+L+"*"),U=new RegExp("="+L+"*([^\\]'\"]*?)"+L+"*\\]","g"),V=new RegExp(P),W=new RegExp("^"+N+"$"),X={ID:new RegExp("^#("+M+")"),CLASS:new RegExp("^\\.("+M+")"),TAG:new RegExp("^("+M.replace("w","w*")+")"),ATTR:new RegExp("^"+O),PSEUDO:new RegExp("^"+P),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+L+"*(even|odd|(([+-]|)(\\d*)n|)"+L+"*(?:([+-]|)"+L+"*(\\d+)|))"+L+"*\\)|)","i"),bool:new RegExp("^(?:"+K+")$","i"),needsContext:new RegExp("^"+L+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+L+"*((?:-\\d)?\\d*)"+L+"*\\)|)(?=[^-]|$)","i")},Y=/^(?:input|select|textarea|button)$/i,Z=/^h\d$/i,$=/^[^{]+\{\s*\[native \w/,_=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,aa=/[+~]/,ba=/'|\\/g,ca=new RegExp("\\\\([\\da-f]{1,6}"+L+"?|("+L+")|.)","ig"),da=function(a,b,c){var d="0x"+b-65536;return d!==d||c?b:0>d?String.fromCharCode(d+65536):String.fromCharCode(d>>10|55296,1023&d|56320)},ea=function(){m()};try{H.apply(E=I.call(v.childNodes),v.childNodes),E[v.childNodes.length].nodeType}catch(fa){H={apply:E.length?function(a,b){G.apply(a,I.call(b))}:function(a,b){var c=a.length,d=0;while(a[c++]=b[d++]);a.length=c-1}}}function ga(a,b,d,e){var f,h,j,k,l,o,r,s,w,x;if((b?b.ownerDocument||b:v)!==n&&m(b),b=b||n,d=d||[],k=b.nodeType,"string"!=typeof a||!a||1!==k&&9!==k&&11!==k)return d;if(!e&&p){if(11!==k&&(f=_.exec(a)))if(j=f[1]){if(9===k){if(h=b.getElementById(j),!h||!h.parentNode)return d;if(h.id===j)return d.push(h),d}else if(b.ownerDocument&&(h=b.ownerDocument.getElementById(j))&&t(b,h)&&h.id===j)return d.push(h),d}else{if(f[2])return H.apply(d,b.getElementsByTagName(a)),d;if((j=f[3])&&c.getElementsByClassName)return H.apply(d,b.getElementsByClassName(j)),d}if(c.qsa&&(!q||!q.test(a))){if(s=r=u,w=b,x=1!==k&&a,1===k&&"object"!==b.nodeName.toLowerCase()){o=g(a),(r=b.getAttribute("id"))?s=r.replace(ba,"\\$&"):b.setAttribute("id",s),s="[id='"+s+"'] ",l=o.length;while(l--)o[l]=s+ra(o[l]);w=aa.test(a)&&pa(b.parentNode)||b,x=o.join(",")}if(x)try{return H.apply(d,w.querySelectorAll(x)),d}catch(y){}finally{r||b.removeAttribute("id")}}}return i(a.replace(R,"$1"),b,d,e)}function ha(){var a=[];function b(c,e){return a.push(c+" ")>d.cacheLength&&delete b[a.shift()],b[c+" "]=e}return b}function ia(a){return a[u]=!0,a}function ja(a){var b=n.createElement("div");try{return!!a(b)}catch(c){return!1}finally{b.parentNode&&b.parentNode.removeChild(b),b=null}}function ka(a,b){var c=a.split("|"),e=a.length;while(e--)d.attrHandle[c[e]]=b}function la(a,b){var c=b&&a,d=c&&1===a.nodeType&&1===b.nodeType&&(~b.sourceIndex||C)-(~a.sourceIndex||C);if(d)return d;if(c)while(c=c.nextSibling)if(c===b)return-1;return a?1:-1}function ma(a){return function(b){var c=b.nodeName.toLowerCase();return"input"===c&&b.type===a}}function na(a){return function(b){var c=b.nodeName.toLowerCase();return("input"===c||"button"===c)&&b.type===a}}function oa(a){return ia(function(b){return b=+b,ia(function(c,d){var e,f=a([],c.length,b),g=f.length;while(g--)c[e=f[g]]&&(c[e]=!(d[e]=c[e]))})})}function pa(a){return a&&"undefined"!=typeof a.getElementsByTagName&&a}c=ga.support={},f=ga.isXML=function(a){var b=a&&(a.ownerDocument||a).documentElement;return b?"HTML"!==b.nodeName:!1},m=ga.setDocument=function(a){var b,e,g=a?a.ownerDocument||a:v;return g!==n&&9===g.nodeType&&g.documentElement?(n=g,o=g.documentElement,e=g.defaultView,e&&e!==e.top&&(e.addEventListener?e.addEventListener("unload",ea,!1):e.attachEvent&&e.attachEvent("onunload",ea)),p=!f(g),c.attributes=ja(function(a){return a.className="i",!a.getAttribute("className")}),c.getElementsByTagName=ja(function(a){return a.appendChild(g.createComment("")),!a.getElementsByTagName("*").length}),c.getElementsByClassName=$.test(g.getElementsByClassName),c.getById=ja(function(a){return o.appendChild(a).id=u,!g.getElementsByName||!g.getElementsByName(u).length}),c.getById?(d.find.ID=function(a,b){if("undefined"!=typeof b.getElementById&&p){var c=b.getElementById(a);return c&&c.parentNode?[c]:[]}},d.filter.ID=function(a){var b=a.replace(ca,da);return function(a){return a.getAttribute("id")===b}}):(delete d.find.ID,d.filter.ID=function(a){var b=a.replace(ca,da);return function(a){var c="undefined"!=typeof a.getAttributeNode&&a.getAttributeNode("id");return c&&c.value===b}}),d.find.TAG=c.getElementsByTagName?function(a,b){return"undefined"!=typeof b.getElementsByTagName?b.getElementsByTagName(a):c.qsa?b.querySelectorAll(a):void 0}:function(a,b){var c,d=[],e=0,f=b.getElementsByTagName(a);if("*"===a){while(c=f[e++])1===c.nodeType&&d.push(c);return d}return f},d.find.CLASS=c.getElementsByClassName&&function(a,b){return p?b.getElementsByClassName(a):void 0},r=[],q=[],(c.qsa=$.test(g.querySelectorAll))&&(ja(function(a){o.appendChild(a).innerHTML="<a id='"+u+"'></a><select id='"+u+"-\f]' msallowcapture=''><option selected=''></option></select>",a.querySelectorAll("[msallowcapture^='']").length&&q.push("[*^$]="+L+"*(?:''|\"\")"),a.querySelectorAll("[selected]").length||q.push("\\["+L+"*(?:value|"+K+")"),a.querySelectorAll("[id~="+u+"-]").length||q.push("~="),a.querySelectorAll(":checked").length||q.push(":checked"),a.querySelectorAll("a#"+u+"+*").length||q.push(".#.+[+~]")}),ja(function(a){var b=g.createElement("input");b.setAttribute("type","hidden"),a.appendChild(b).setAttribute("name","D"),a.querySelectorAll("[name=d]").length&&q.push("name"+L+"*[*^$|!~]?="),a.querySelectorAll(":enabled").length||q.push(":enabled",":disabled"),a.querySelectorAll("*,:x"),q.push(",.*:")})),(c.matchesSelector=$.test(s=o.matches||o.webkitMatchesSelector||o.mozMatchesSelector||o.oMatchesSelector||o.msMatchesSelector))&&ja(function(a){c.disconnectedMatch=s.call(a,"div"),s.call(a,"[s!='']:x"),r.push("!=",P)}),q=q.length&&new RegExp(q.join("|")),r=r.length&&new RegExp(r.join("|")),b=$.test(o.compareDocumentPosition),t=b||$.test(o.contains)?function(a,b){var c=9===a.nodeType?a.documentElement:a,d=b&&b.parentNode;return a===d||!(!d||1!==d.nodeType||!(c.contains?c.contains(d):a.compareDocumentPosition&&16&a.compareDocumentPosition(d)))}:function(a,b){if(b)while(b=b.parentNode)if(b===a)return!0;return!1},B=b?function(a,b){if(a===b)return l=!0,0;var d=!a.compareDocumentPosition-!b.compareDocumentPosition;return d?d:(d=(a.ownerDocument||a)===(b.ownerDocument||b)?a.compareDocumentPosition(b):1,1&d||!c.sortDetached&&b.compareDocumentPosition(a)===d?a===g||a.ownerDocument===v&&t(v,a)?-1:b===g||b.ownerDocument===v&&t(v,b)?1:k?J(k,a)-J(k,b):0:4&d?-1:1)}:function(a,b){if(a===b)return l=!0,0;var c,d=0,e=a.parentNode,f=b.parentNode,h=[a],i=[b];if(!e||!f)return a===g?-1:b===g?1:e?-1:f?1:k?J(k,a)-J(k,b):0;if(e===f)return la(a,b);c=a;while(c=c.parentNode)h.unshift(c);c=b;while(c=c.parentNode)i.unshift(c);while(h[d]===i[d])d++;return d?la(h[d],i[d]):h[d]===v?-1:i[d]===v?1:0},g):n},ga.matches=function(a,b){return ga(a,null,null,b)},ga.matchesSelector=function(a,b){if((a.ownerDocument||a)!==n&&m(a),b=b.replace(U,"='$1']"),!(!c.matchesSelector||!p||r&&r.test(b)||q&&q.test(b)))try{var d=s.call(a,b);if(d||c.disconnectedMatch||a.document&&11!==a.document.nodeType)return d}catch(e){}return ga(b,n,null,[a]).length>0},ga.contains=function(a,b){return(a.ownerDocument||a)!==n&&m(a),t(a,b)},ga.attr=function(a,b){(a.ownerDocument||a)!==n&&m(a);var e=d.attrHandle[b.toLowerCase()],f=e&&D.call(d.attrHandle,b.toLowerCase())?e(a,b,!p):void 0;return void 0!==f?f:c.attributes||!p?a.getAttribute(b):(f=a.getAttributeNode(b))&&f.specified?f.value:null},ga.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)},ga.uniqueSort=function(a){var b,d=[],e=0,f=0;if(l=!c.detectDuplicates,k=!c.sortStable&&a.slice(0),a.sort(B),l){while(b=a[f++])b===a[f]&&(e=d.push(f));while(e--)a.splice(d[e],1)}return k=null,a},e=ga.getText=function(a){var b,c="",d=0,f=a.nodeType;if(f){if(1===f||9===f||11===f){if("string"==typeof a.textContent)return a.textContent;for(a=a.firstChild;a;a=a.nextSibling)c+=e(a)}else if(3===f||4===f)return a.nodeValue}else while(b=a[d++])c+=e(b);return c},d=ga.selectors={cacheLength:50,createPseudo:ia,match:X,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(a){return a[1]=a[1].replace(ca,da),a[3]=(a[3]||a[4]||a[5]||"").replace(ca,da),"~="===a[2]&&(a[3]=" "+a[3]+" "),a.slice(0,4)},CHILD:function(a){return a[1]=a[1].toLowerCase(),"nth"===a[1].slice(0,3)?(a[3]||ga.error(a[0]),a[4]=+(a[4]?a[5]+(a[6]||1):2*("even"===a[3]||"odd"===a[3])),a[5]=+(a[7]+a[8]||"odd"===a[3])):a[3]&&ga.error(a[0]),a},PSEUDO:function(a){var b,c=!a[6]&&a[2];return X.CHILD.test(a[0])?null:(a[3]?a[2]=a[4]||a[5]||"":c&&V.test(c)&&(b=g(c,!0))&&(b=c.indexOf(")",c.length-b)-c.length)&&(a[0]=a[0].slice(0,b),a[2]=c.slice(0,b)),a.slice(0,3))}},filter:{TAG:function(a){var b=a.replace(ca,da).toLowerCase();return"*"===a?function(){return!0}:function(a){return a.nodeName&&a.nodeName.toLowerCase()===b}},CLASS:function(a){var b=y[a+" "];return b||(b=new RegExp("(^|"+L+")"+a+"("+L+"|$)"))&&y(a,function(a){return b.test("string"==typeof a.className&&a.className||"undefined"!=typeof a.getAttribute&&a.getAttribute("class")||"")})},ATTR:function(a,b,c){return function(d){var e=ga.attr(d,a);return null==e?"!="===b:b?(e+="","="===b?e===c:"!="===b?e!==c:"^="===b?c&&0===e.indexOf(c):"*="===b?c&&e.indexOf(c)>-1:"$="===b?c&&e.slice(-c.length)===c:"~="===b?(" "+e.replace(Q," ")+" ").indexOf(c)>-1:"|="===b?e===c||e.slice(0,c.length+1)===c+"-":!1):!0}},CHILD:function(a,b,c,d,e){var f="nth"!==a.slice(0,3),g="last"!==a.slice(-4),h="of-type"===b;return 1===d&&0===e?function(a){return!!a.parentNode}:function(b,c,i){var j,k,l,m,n,o,p=f!==g?"nextSibling":"previousSibling",q=b.parentNode,r=h&&b.nodeName.toLowerCase(),s=!i&&!h;if(q){if(f){while(p){l=b;while(l=l[p])if(h?l.nodeName.toLowerCase()===r:1===l.nodeType)return!1;o=p="only"===a&&!o&&"nextSibling"}return!0}if(o=[g?q.firstChild:q.lastChild],g&&s){k=q[u]||(q[u]={}),j=k[a]||[],n=j[0]===w&&j[1],m=j[0]===w&&j[2],l=n&&q.childNodes[n];while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if(1===l.nodeType&&++m&&l===b){k[a]=[w,n,m];break}}else if(s&&(j=(b[u]||(b[u]={}))[a])&&j[0]===w)m=j[1];else while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if((h?l.nodeName.toLowerCase()===r:1===l.nodeType)&&++m&&(s&&((l[u]||(l[u]={}))[a]=[w,m]),l===b))break;return m-=e,m===d||m%d===0&&m/d>=0}}},PSEUDO:function(a,b){var c,e=d.pseudos[a]||d.setFilters[a.toLowerCase()]||ga.error("unsupported pseudo: "+a);return e[u]?e(b):e.length>1?(c=[a,a,"",b],d.setFilters.hasOwnProperty(a.toLowerCase())?ia(function(a,c){var d,f=e(a,b),g=f.length;while(g--)d=J(a,f[g]),a[d]=!(c[d]=f[g])}):function(a){return e(a,0,c)}):e}},pseudos:{not:ia(function(a){var b=[],c=[],d=h(a.replace(R,"$1"));return d[u]?ia(function(a,b,c,e){var f,g=d(a,null,e,[]),h=a.length;while(h--)(f=g[h])&&(a[h]=!(b[h]=f))}):function(a,e,f){return b[0]=a,d(b,null,f,c),b[0]=null,!c.pop()}}),has:ia(function(a){return function(b){return ga(a,b).length>0}}),contains:ia(function(a){return a=a.replace(ca,da),function(b){return(b.textContent||b.innerText||e(b)).indexOf(a)>-1}}),lang:ia(function(a){return W.test(a||"")||ga.error("unsupported lang: "+a),a=a.replace(ca,da).toLowerCase(),function(b){var c;do if(c=p?b.lang:b.getAttribute("xml:lang")||b.getAttribute("lang"))return c=c.toLowerCase(),c===a||0===c.indexOf(a+"-");while((b=b.parentNode)&&1===b.nodeType);return!1}}),target:function(b){var c=a.location&&a.location.hash;return c&&c.slice(1)===b.id},root:function(a){return a===o},focus:function(a){return a===n.activeElement&&(!n.hasFocus||n.hasFocus())&&!!(a.type||a.href||~a.tabIndex)},enabled:function(a){return a.disabled===!1},disabled:function(a){return a.disabled===!0},checked:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&!!a.checked||"option"===b&&!!a.selected},selected:function(a){return a.parentNode&&a.parentNode.selectedIndex,a.selected===!0},empty:function(a){for(a=a.firstChild;a;a=a.nextSibling)if(a.nodeType<6)return!1;return!0},parent:function(a){return!d.pseudos.empty(a)},header:function(a){return Z.test(a.nodeName)},input:function(a){return Y.test(a.nodeName)},button:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&"button"===a.type||"button"===b},text:function(a){var b;return"input"===a.nodeName.toLowerCase()&&"text"===a.type&&(null==(b=a.getAttribute("type"))||"text"===b.toLowerCase())},first:oa(function(){return[0]}),last:oa(function(a,b){return[b-1]}),eq:oa(function(a,b,c){return[0>c?c+b:c]}),even:oa(function(a,b){for(var c=0;b>c;c+=2)a.push(c);return a}),odd:oa(function(a,b){for(var c=1;b>c;c+=2)a.push(c);return a}),lt:oa(function(a,b,c){for(var d=0>c?c+b:c;--d>=0;)a.push(d);return a}),gt:oa(function(a,b,c){for(var d=0>c?c+b:c;++d<b;)a.push(d);return a})}},d.pseudos.nth=d.pseudos.eq;for(b in{radio:!0,checkbox:!0,file:!0,password:!0,image:!0})d.pseudos[b]=ma(b);for(b in{submit:!0,reset:!0})d.pseudos[b]=na(b);function qa(){}qa.prototype=d.filters=d.pseudos,d.setFilters=new qa,g=ga.tokenize=function(a,b){var c,e,f,g,h,i,j,k=z[a+" "];if(k)return b?0:k.slice(0);h=a,i=[],j=d.preFilter;while(h){(!c||(e=S.exec(h)))&&(e&&(h=h.slice(e[0].length)||h),i.push(f=[])),c=!1,(e=T.exec(h))&&(c=e.shift(),f.push({value:c,type:e[0].replace(R," ")}),h=h.slice(c.length));for(g in d.filter)!(e=X[g].exec(h))||j[g]&&!(e=j[g](e))||(c=e.shift(),f.push({value:c,type:g,matches:e}),h=h.slice(c.length));if(!c)break}return b?h.length:h?ga.error(a):z(a,i).slice(0)};function ra(a){for(var b=0,c=a.length,d="";c>b;b++)d+=a[b].value;return d}function sa(a,b,c){var d=b.dir,e=c&&"parentNode"===d,f=x++;return b.first?function(b,c,f){while(b=b[d])if(1===b.nodeType||e)return a(b,c,f)}:function(b,c,g){var h,i,j=[w,f];if(g){while(b=b[d])if((1===b.nodeType||e)&&a(b,c,g))return!0}else while(b=b[d])if(1===b.nodeType||e){if(i=b[u]||(b[u]={}),(h=i[d])&&h[0]===w&&h[1]===f)return j[2]=h[2];if(i[d]=j,j[2]=a(b,c,g))return!0}}}function ta(a){return a.length>1?function(b,c,d){var e=a.length;while(e--)if(!a[e](b,c,d))return!1;return!0}:a[0]}function ua(a,b,c){for(var d=0,e=b.length;e>d;d++)ga(a,b[d],c);return c}function va(a,b,c,d,e){for(var f,g=[],h=0,i=a.length,j=null!=b;i>h;h++)(f=a[h])&&(!c||c(f,d,e))&&(g.push(f),j&&b.push(h));return g}function wa(a,b,c,d,e,f){return d&&!d[u]&&(d=wa(d)),e&&!e[u]&&(e=wa(e,f)),ia(function(f,g,h,i){var j,k,l,m=[],n=[],o=g.length,p=f||ua(b||"*",h.nodeType?[h]:h,[]),q=!a||!f&&b?p:va(p,m,a,h,i),r=c?e||(f?a:o||d)?[]:g:q;if(c&&c(q,r,h,i),d){j=va(r,n),d(j,[],h,i),k=j.length;while(k--)(l=j[k])&&(r[n[k]]=!(q[n[k]]=l))}if(f){if(e||a){if(e){j=[],k=r.length;while(k--)(l=r[k])&&j.push(q[k]=l);e(null,r=[],j,i)}k=r.length;while(k--)(l=r[k])&&(j=e?J(f,l):m[k])>-1&&(f[j]=!(g[j]=l))}}else r=va(r===g?r.splice(o,r.length):r),e?e(null,g,r,i):H.apply(g,r)})}function xa(a){for(var b,c,e,f=a.length,g=d.relative[a[0].type],h=g||d.relative[" "],i=g?1:0,k=sa(function(a){return a===b},h,!0),l=sa(function(a){return J(b,a)>-1},h,!0),m=[function(a,c,d){var e=!g&&(d||c!==j)||((b=c).nodeType?k(a,c,d):l(a,c,d));return b=null,e}];f>i;i++)if(c=d.relative[a[i].type])m=[sa(ta(m),c)];else{if(c=d.filter[a[i].type].apply(null,a[i].matches),c[u]){for(e=++i;f>e;e++)if(d.relative[a[e].type])break;return wa(i>1&&ta(m),i>1&&ra(a.slice(0,i-1).concat({value:" "===a[i-2].type?"*":""})).replace(R,"$1"),c,e>i&&xa(a.slice(i,e)),f>e&&xa(a=a.slice(e)),f>e&&ra(a))}m.push(c)}return ta(m)}function ya(a,b){var c=b.length>0,e=a.length>0,f=function(f,g,h,i,k){var l,m,o,p=0,q="0",r=f&&[],s=[],t=j,u=f||e&&d.find.TAG("*",k),v=w+=null==t?1:Math.random()||.1,x=u.length;for(k&&(j=g!==n&&g);q!==x&&null!=(l=u[q]);q++){if(e&&l){m=0;while(o=a[m++])if(o(l,g,h)){i.push(l);break}k&&(w=v)}c&&((l=!o&&l)&&p--,f&&r.push(l))}if(p+=q,c&&q!==p){m=0;while(o=b[m++])o(r,s,g,h);if(f){if(p>0)while(q--)r[q]||s[q]||(s[q]=F.call(i));s=va(s)}H.apply(i,s),k&&!f&&s.length>0&&p+b.length>1&&ga.uniqueSort(i)}return k&&(w=v,j=t),r};return c?ia(f):f}return h=ga.compile=function(a,b){var c,d=[],e=[],f=A[a+" "];if(!f){b||(b=g(a)),c=b.length;while(c--)f=xa(b[c]),f[u]?d.push(f):e.push(f);f=A(a,ya(e,d)),f.selector=a}return f},i=ga.select=function(a,b,e,f){var i,j,k,l,m,n="function"==typeof a&&a,o=!f&&g(a=n.selector||a);if(e=e||[],1===o.length){if(j=o[0]=o[0].slice(0),j.length>2&&"ID"===(k=j[0]).type&&c.getById&&9===b.nodeType&&p&&d.relative[j[1].type]){if(b=(d.find.ID(k.matches[0].replace(ca,da),b)||[])[0],!b)return e;n&&(b=b.parentNode),a=a.slice(j.shift().value.length)}i=X.needsContext.test(a)?0:j.length;while(i--){if(k=j[i],d.relative[l=k.type])break;if((m=d.find[l])&&(f=m(k.matches[0].replace(ca,da),aa.test(j[0].type)&&pa(b.parentNode)||b))){if(j.splice(i,1),a=f.length&&ra(j),!a)return H.apply(e,f),e;break}}}return(n||h(a,o))(f,b,!p,e,aa.test(a)&&pa(b.parentNode)||b),e},c.sortStable=u.split("").sort(B).join("")===u,c.detectDuplicates=!!l,m(),c.sortDetached=ja(function(a){return 1&a.compareDocumentPosition(n.createElement("div"))}),ja(function(a){return a.innerHTML="<a href='#'></a>","#"===a.firstChild.getAttribute("href")})||ka("type|href|height|width",function(a,b,c){return c?void 0:a.getAttribute(b,"type"===b.toLowerCase()?1:2)}),c.attributes&&ja(function(a){return a.innerHTML="<input/>",a.firstChild.setAttribute("value",""),""===a.firstChild.getAttribute("value")})||ka("value",function(a,b,c){return c||"input"!==a.nodeName.toLowerCase()?void 0:a.defaultValue}),ja(function(a){return null==a.getAttribute("disabled")})||ka(K,function(a,b,c){var d;return c?void 0:a[b]===!0?b.toLowerCase():(d=a.getAttributeNode(b))&&d.specified?d.value:null}),ga}(a);m.find=s,m.expr=s.selectors,m.expr[":"]=m.expr.pseudos,m.unique=s.uniqueSort,m.text=s.getText,m.isXMLDoc=s.isXML,m.contains=s.contains;var t=m.expr.match.needsContext,u=/^<(\w+)\s*\/?>(?:<\/\1>|)$/,v=/^.[^:#\[\.,]*$/;function w(a,b,c){if(m.isFunction(b))return m.grep(a,function(a,d){return!!b.call(a,d,a)!==c});if(b.nodeType)return m.grep(a,function(a){return a===b!==c});if("string"==typeof b){if(v.test(b))return m.filter(b,a,c);b=m.filter(b,a)}return m.grep(a,function(a){return m.inArray(a,b)>=0!==c})}m.filter=function(a,b,c){var d=b[0];return c&&(a=":not("+a+")"),1===b.length&&1===d.nodeType?m.find.matchesSelector(d,a)?[d]:[]:m.find.matches(a,m.grep(b,function(a){return 1===a.nodeType}))},m.fn.extend({find:function(a){var b,c=[],d=this,e=d.length;if("string"!=typeof a)return this.pushStack(m(a).filter(function(){for(b=0;e>b;b++)if(m.contains(d[b],this))return!0}));for(b=0;e>b;b++)m.find(a,d[b],c);return c=this.pushStack(e>1?m.unique(c):c),c.selector=this.selector?this.selector+" "+a:a,c},filter:function(a){return this.pushStack(w(this,a||[],!1))},not:function(a){return this.pushStack(w(this,a||[],!0))},is:function(a){return!!w(this,"string"==typeof a&&t.test(a)?m(a):a||[],!1).length}});var x,y=a.document,z=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,A=m.fn.init=function(a,b){var c,d;if(!a)return this;if("string"==typeof a){if(c="<"===a.charAt(0)&&">"===a.charAt(a.length-1)&&a.length>=3?[null,a,null]:z.exec(a),!c||!c[1]&&b)return!b||b.jquery?(b||x).find(a):this.constructor(b).find(a);if(c[1]){if(b=b instanceof m?b[0]:b,m.merge(this,m.parseHTML(c[1],b&&b.nodeType?b.ownerDocument||b:y,!0)),u.test(c[1])&&m.isPlainObject(b))for(c in b)m.isFunction(this[c])?this[c](b[c]):this.attr(c,b[c]);return this}if(d=y.getElementById(c[2]),d&&d.parentNode){if(d.id!==c[2])return x.find(a);this.length=1,this[0]=d}return this.context=y,this.selector=a,this}return a.nodeType?(this.context=this[0]=a,this.length=1,this):m.isFunction(a)?"undefined"!=typeof x.ready?x.ready(a):a(m):(void 0!==a.selector&&(this.selector=a.selector,this.context=a.context),m.makeArray(a,this))};A.prototype=m.fn,x=m(y);var B=/^(?:parents|prev(?:Until|All))/,C={children:!0,contents:!0,next:!0,prev:!0};m.extend({dir:function(a,b,c){var d=[],e=a[b];while(e&&9!==e.nodeType&&(void 0===c||1!==e.nodeType||!m(e).is(c)))1===e.nodeType&&d.push(e),e=e[b];return d},sibling:function(a,b){for(var c=[];a;a=a.nextSibling)1===a.nodeType&&a!==b&&c.push(a);return c}}),m.fn.extend({has:function(a){var b,c=m(a,this),d=c.length;return this.filter(function(){for(b=0;d>b;b++)if(m.contains(this,c[b]))return!0})},closest:function(a,b){for(var c,d=0,e=this.length,f=[],g=t.test(a)||"string"!=typeof a?m(a,b||this.context):0;e>d;d++)for(c=this[d];c&&c!==b;c=c.parentNode)if(c.nodeType<11&&(g?g.index(c)>-1:1===c.nodeType&&m.find.matchesSelector(c,a))){f.push(c);break}return this.pushStack(f.length>1?m.unique(f):f)},index:function(a){return a?"string"==typeof a?m.inArray(this[0],m(a)):m.inArray(a.jquery?a[0]:a,this):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(a,b){return this.pushStack(m.unique(m.merge(this.get(),m(a,b))))},addBack:function(a){return this.add(null==a?this.prevObject:this.prevObject.filter(a))}});function D(a,b){do a=a[b];while(a&&1!==a.nodeType);return a}m.each({parent:function(a){var b=a.parentNode;return b&&11!==b.nodeType?b:null},parents:function(a){return m.dir(a,"parentNode")},parentsUntil:function(a,b,c){return m.dir(a,"parentNode",c)},next:function(a){return D(a,"nextSibling")},prev:function(a){return D(a,"previousSibling")},nextAll:function(a){return m.dir(a,"nextSibling")},prevAll:function(a){return m.dir(a,"previousSibling")},nextUntil:function(a,b,c){return m.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return m.dir(a,"previousSibling",c)},siblings:function(a){return m.sibling((a.parentNode||{}).firstChild,a)},children:function(a){return m.sibling(a.firstChild)},contents:function(a){return m.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:m.merge([],a.childNodes)}},function(a,b){m.fn[a]=function(c,d){var e=m.map(this,b,c);return"Until"!==a.slice(-5)&&(d=c),d&&"string"==typeof d&&(e=m.filter(d,e)),this.length>1&&(C[a]||(e=m.unique(e)),B.test(a)&&(e=e.reverse())),this.pushStack(e)}});var E=/\S+/g,F={};function G(a){var b=F[a]={};return m.each(a.match(E)||[],function(a,c){b[c]=!0}),b}m.Callbacks=function(a){a="string"==typeof a?F[a]||G(a):m.extend({},a);var b,c,d,e,f,g,h=[],i=!a.once&&[],j=function(l){for(c=a.memory&&l,d=!0,f=g||0,g=0,e=h.length,b=!0;h&&e>f;f++)if(h[f].apply(l[0],l[1])===!1&&a.stopOnFalse){c=!1;break}b=!1,h&&(i?i.length&&j(i.shift()):c?h=[]:k.disable())},k={add:function(){if(h){var d=h.length;!function f(b){m.each(b,function(b,c){var d=m.type(c);"function"===d?a.unique&&k.has(c)||h.push(c):c&&c.length&&"string"!==d&&f(c)})}(arguments),b?e=h.length:c&&(g=d,j(c))}return this},remove:function(){return h&&m.each(arguments,function(a,c){var d;while((d=m.inArray(c,h,d))>-1)h.splice(d,1),b&&(e>=d&&e--,f>=d&&f--)}),this},has:function(a){return a?m.inArray(a,h)>-1:!(!h||!h.length)},empty:function(){return h=[],e=0,this},disable:function(){return h=i=c=void 0,this},disabled:function(){return!h},lock:function(){return i=void 0,c||k.disable(),this},locked:function(){return!i},fireWith:function(a,c){return!h||d&&!i||(c=c||[],c=[a,c.slice?c.slice():c],b?i.push(c):j(c)),this},fire:function(){return k.fireWith(this,arguments),this},fired:function(){return!!d}};return k},m.extend({Deferred:function(a){var b=[["resolve","done",m.Callbacks("once memory"),"resolved"],["reject","fail",m.Callbacks("once memory"),"rejected"],["notify","progress",m.Callbacks("memory")]],c="pending",d={state:function(){return c},always:function(){return e.done(arguments).fail(arguments),this},then:function(){var a=arguments;return m.Deferred(function(c){m.each(b,function(b,f){var g=m.isFunction(a[b])&&a[b];e[f[1]](function(){var a=g&&g.apply(this,arguments);a&&m.isFunction(a.promise)?a.promise().done(c.resolve).fail(c.reject).progress(c.notify):c[f[0]+"With"](this===d?c.promise():this,g?[a]:arguments)})}),a=null}).promise()},promise:function(a){return null!=a?m.extend(a,d):d}},e={};return d.pipe=d.then,m.each(b,function(a,f){var g=f[2],h=f[3];d[f[1]]=g.add,h&&g.add(function(){c=h},b[1^a][2].disable,b[2][2].lock),e[f[0]]=function(){return e[f[0]+"With"](this===e?d:this,arguments),this},e[f[0]+"With"]=g.fireWith}),d.promise(e),a&&a.call(e,e),e},when:function(a){var b=0,c=d.call(arguments),e=c.length,f=1!==e||a&&m.isFunction(a.promise)?e:0,g=1===f?a:m.Deferred(),h=function(a,b,c){return function(e){b[a]=this,c[a]=arguments.length>1?d.call(arguments):e,c===i?g.notifyWith(b,c):--f||g.resolveWith(b,c)}},i,j,k;if(e>1)for(i=new Array(e),j=new Array(e),k=new Array(e);e>b;b++)c[b]&&m.isFunction(c[b].promise)?c[b].promise().done(h(b,k,c)).fail(g.reject).progress(h(b,j,i)):--f;return f||g.resolveWith(k,c),g.promise()}});var H;m.fn.ready=function(a){return m.ready.promise().done(a),this},m.extend({isReady:!1,readyWait:1,holdReady:function(a){a?m.readyWait++:m.ready(!0)},ready:function(a){if(a===!0?!--m.readyWait:!m.isReady){if(!y.body)return setTimeout(m.ready);m.isReady=!0,a!==!0&&--m.readyWait>0||(H.resolveWith(y,[m]),m.fn.triggerHandler&&(m(y).triggerHandler("ready"),m(y).off("ready")))}}});function I(){y.addEventListener?(y.removeEventListener("DOMContentLoaded",J,!1),a.removeEventListener("load",J,!1)):(y.detachEvent("onreadystatechange",J),a.detachEvent("onload",J))}function J(){(y.addEventListener||"load"===event.type||"complete"===y.readyState)&&(I(),m.ready())}m.ready.promise=function(b){if(!H)if(H=m.Deferred(),"complete"===y.readyState)setTimeout(m.ready);else if(y.addEventListener)y.addEventListener("DOMContentLoaded",J,!1),a.addEventListener("load",J,!1);else{y.attachEvent("onreadystatechange",J),a.attachEvent("onload",J);var c=!1;try{c=null==a.frameElement&&y.documentElement}catch(d){}c&&c.doScroll&&!function e(){if(!m.isReady){try{c.doScroll("left")}catch(a){return setTimeout(e,50)}I(),m.ready()}}()}return H.promise(b)};var K="undefined",L;for(L in m(k))break;k.ownLast="0"!==L,k.inlineBlockNeedsLayout=!1,m(function(){var a,b,c,d;c=y.getElementsByTagName("body")[0],c&&c.style&&(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),typeof b.style.zoom!==K&&(b.style.cssText="display:inline;margin:0;border:0;padding:1px;width:1px;zoom:1",k.inlineBlockNeedsLayout=a=3===b.offsetWidth,a&&(c.style.zoom=1)),c.removeChild(d))}),function(){var a=y.createElement("div");if(null==k.deleteExpando){k.deleteExpando=!0;try{delete a.test}catch(b){k.deleteExpando=!1}}a=null}(),m.acceptData=function(a){var b=m.noData[(a.nodeName+" ").toLowerCase()],c=+a.nodeType||1;return 1!==c&&9!==c?!1:!b||b!==!0&&a.getAttribute("classid")===b};var M=/^(?:\{[\w\W]*\}|\[[\w\W]*\])$/,N=/([A-Z])/g;function O(a,b,c){if(void 0===c&&1===a.nodeType){var d="data-"+b.replace(N,"-$1").toLowerCase();if(c=a.getAttribute(d),"string"==typeof c){try{c="true"===c?!0:"false"===c?!1:"null"===c?null:+c+""===c?+c:M.test(c)?m.parseJSON(c):c}catch(e){}m.data(a,b,c)}else c=void 0}return c}function P(a){var b;for(b in a)if(("data"!==b||!m.isEmptyObject(a[b]))&&"toJSON"!==b)return!1;

return!0}function Q(a,b,d,e){if(m.acceptData(a)){var f,g,h=m.expando,i=a.nodeType,j=i?m.cache:a,k=i?a[h]:a[h]&&h;if(k&&j[k]&&(e||j[k].data)||void 0!==d||"string"!=typeof b)return k||(k=i?a[h]=c.pop()||m.guid++:h),j[k]||(j[k]=i?{}:{toJSON:m.noop}),("object"==typeof b||"function"==typeof b)&&(e?j[k]=m.extend(j[k],b):j[k].data=m.extend(j[k].data,b)),g=j[k],e||(g.data||(g.data={}),g=g.data),void 0!==d&&(g[m.camelCase(b)]=d),"string"==typeof b?(f=g[b],null==f&&(f=g[m.camelCase(b)])):f=g,f}}function R(a,b,c){if(m.acceptData(a)){var d,e,f=a.nodeType,g=f?m.cache:a,h=f?a[m.expando]:m.expando;if(g[h]){if(b&&(d=c?g[h]:g[h].data)){m.isArray(b)?b=b.concat(m.map(b,m.camelCase)):b in d?b=[b]:(b=m.camelCase(b),b=b in d?[b]:b.split(" ")),e=b.length;while(e--)delete d[b[e]];if(c?!P(d):!m.isEmptyObject(d))return}(c||(delete g[h].data,P(g[h])))&&(f?m.cleanData([a],!0):k.deleteExpando||g!=g.window?delete g[h]:g[h]=null)}}}m.extend({cache:{},noData:{"applet ":!0,"embed ":!0,"object ":"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"},hasData:function(a){return a=a.nodeType?m.cache[a[m.expando]]:a[m.expando],!!a&&!P(a)},data:function(a,b,c){return Q(a,b,c)},removeData:function(a,b){return R(a,b)},_data:function(a,b,c){return Q(a,b,c,!0)},_removeData:function(a,b){return R(a,b,!0)}}),m.fn.extend({data:function(a,b){var c,d,e,f=this[0],g=f&&f.attributes;if(void 0===a){if(this.length&&(e=m.data(f),1===f.nodeType&&!m._data(f,"parsedAttrs"))){c=g.length;while(c--)g[c]&&(d=g[c].name,0===d.indexOf("data-")&&(d=m.camelCase(d.slice(5)),O(f,d,e[d])));m._data(f,"parsedAttrs",!0)}return e}return"object"==typeof a?this.each(function(){m.data(this,a)}):arguments.length>1?this.each(function(){m.data(this,a,b)}):f?O(f,a,m.data(f,a)):void 0},removeData:function(a){return this.each(function(){m.removeData(this,a)})}}),m.extend({queue:function(a,b,c){var d;return a?(b=(b||"fx")+"queue",d=m._data(a,b),c&&(!d||m.isArray(c)?d=m._data(a,b,m.makeArray(c)):d.push(c)),d||[]):void 0},dequeue:function(a,b){b=b||"fx";var c=m.queue(a,b),d=c.length,e=c.shift(),f=m._queueHooks(a,b),g=function(){m.dequeue(a,b)};"inprogress"===e&&(e=c.shift(),d--),e&&("fx"===b&&c.unshift("inprogress"),delete f.stop,e.call(a,g,f)),!d&&f&&f.empty.fire()},_queueHooks:function(a,b){var c=b+"queueHooks";return m._data(a,c)||m._data(a,c,{empty:m.Callbacks("once memory").add(function(){m._removeData(a,b+"queue"),m._removeData(a,c)})})}}),m.fn.extend({queue:function(a,b){var c=2;return"string"!=typeof a&&(b=a,a="fx",c--),arguments.length<c?m.queue(this[0],a):void 0===b?this:this.each(function(){var c=m.queue(this,a,b);m._queueHooks(this,a),"fx"===a&&"inprogress"!==c[0]&&m.dequeue(this,a)})},dequeue:function(a){return this.each(function(){m.dequeue(this,a)})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,b){var c,d=1,e=m.Deferred(),f=this,g=this.length,h=function(){--d||e.resolveWith(f,[f])};"string"!=typeof a&&(b=a,a=void 0),a=a||"fx";while(g--)c=m._data(f[g],a+"queueHooks"),c&&c.empty&&(d++,c.empty.add(h));return h(),e.promise(b)}});var S=/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/.source,T=["Top","Right","Bottom","Left"],U=function(a,b){return a=b||a,"none"===m.css(a,"display")||!m.contains(a.ownerDocument,a)},V=m.access=function(a,b,c,d,e,f,g){var h=0,i=a.length,j=null==c;if("object"===m.type(c)){e=!0;for(h in c)m.access(a,b,h,c[h],!0,f,g)}else if(void 0!==d&&(e=!0,m.isFunction(d)||(g=!0),j&&(g?(b.call(a,d),b=null):(j=b,b=function(a,b,c){return j.call(m(a),c)})),b))for(;i>h;h++)b(a[h],c,g?d:d.call(a[h],h,b(a[h],c)));return e?a:j?b.call(a):i?b(a[0],c):f},W=/^(?:checkbox|radio)$/i;!function(){var a=y.createElement("input"),b=y.createElement("div"),c=y.createDocumentFragment();if(b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",k.leadingWhitespace=3===b.firstChild.nodeType,k.tbody=!b.getElementsByTagName("tbody").length,k.htmlSerialize=!!b.getElementsByTagName("link").length,k.html5Clone="<:nav></:nav>"!==y.createElement("nav").cloneNode(!0).outerHTML,a.type="checkbox",a.checked=!0,c.appendChild(a),k.appendChecked=a.checked,b.innerHTML="<textarea>x</textarea>",k.noCloneChecked=!!b.cloneNode(!0).lastChild.defaultValue,c.appendChild(b),b.innerHTML="<input type='radio' checked='checked' name='t'/>",k.checkClone=b.cloneNode(!0).cloneNode(!0).lastChild.checked,k.noCloneEvent=!0,b.attachEvent&&(b.attachEvent("onclick",function(){k.noCloneEvent=!1}),b.cloneNode(!0).click()),null==k.deleteExpando){k.deleteExpando=!0;try{delete b.test}catch(d){k.deleteExpando=!1}}}(),function(){var b,c,d=y.createElement("div");for(b in{submit:!0,change:!0,focusin:!0})c="on"+b,(k[b+"Bubbles"]=c in a)||(d.setAttribute(c,"t"),k[b+"Bubbles"]=d.attributes[c].expando===!1);d=null}();var X=/^(?:input|select|textarea)$/i,Y=/^key/,Z=/^(?:mouse|pointer|contextmenu)|click/,$=/^(?:focusinfocus|focusoutblur)$/,_=/^([^.]*)(?:\.(.+)|)$/;function aa(){return!0}function ba(){return!1}function ca(){try{return y.activeElement}catch(a){}}m.event={global:{},add:function(a,b,c,d,e){var f,g,h,i,j,k,l,n,o,p,q,r=m._data(a);if(r){c.handler&&(i=c,c=i.handler,e=i.selector),c.guid||(c.guid=m.guid++),(g=r.events)||(g=r.events={}),(k=r.handle)||(k=r.handle=function(a){return typeof m===K||a&&m.event.triggered===a.type?void 0:m.event.dispatch.apply(k.elem,arguments)},k.elem=a),b=(b||"").match(E)||[""],h=b.length;while(h--)f=_.exec(b[h])||[],o=q=f[1],p=(f[2]||"").split(".").sort(),o&&(j=m.event.special[o]||{},o=(e?j.delegateType:j.bindType)||o,j=m.event.special[o]||{},l=m.extend({type:o,origType:q,data:d,handler:c,guid:c.guid,selector:e,needsContext:e&&m.expr.match.needsContext.test(e),namespace:p.join(".")},i),(n=g[o])||(n=g[o]=[],n.delegateCount=0,j.setup&&j.setup.call(a,d,p,k)!==!1||(a.addEventListener?a.addEventListener(o,k,!1):a.attachEvent&&a.attachEvent("on"+o,k))),j.add&&(j.add.call(a,l),l.handler.guid||(l.handler.guid=c.guid)),e?n.splice(n.delegateCount++,0,l):n.push(l),m.event.global[o]=!0);a=null}},remove:function(a,b,c,d,e){var f,g,h,i,j,k,l,n,o,p,q,r=m.hasData(a)&&m._data(a);if(r&&(k=r.events)){b=(b||"").match(E)||[""],j=b.length;while(j--)if(h=_.exec(b[j])||[],o=q=h[1],p=(h[2]||"").split(".").sort(),o){l=m.event.special[o]||{},o=(d?l.delegateType:l.bindType)||o,n=k[o]||[],h=h[2]&&new RegExp("(^|\\.)"+p.join("\\.(?:.*\\.|)")+"(\\.|$)"),i=f=n.length;while(f--)g=n[f],!e&&q!==g.origType||c&&c.guid!==g.guid||h&&!h.test(g.namespace)||d&&d!==g.selector&&("**"!==d||!g.selector)||(n.splice(f,1),g.selector&&n.delegateCount--,l.remove&&l.remove.call(a,g));i&&!n.length&&(l.teardown&&l.teardown.call(a,p,r.handle)!==!1||m.removeEvent(a,o,r.handle),delete k[o])}else for(o in k)m.event.remove(a,o+b[j],c,d,!0);m.isEmptyObject(k)&&(delete r.handle,m._removeData(a,"events"))}},trigger:function(b,c,d,e){var f,g,h,i,k,l,n,o=[d||y],p=j.call(b,"type")?b.type:b,q=j.call(b,"namespace")?b.namespace.split("."):[];if(h=l=d=d||y,3!==d.nodeType&&8!==d.nodeType&&!$.test(p+m.event.triggered)&&(p.indexOf(".")>=0&&(q=p.split("."),p=q.shift(),q.sort()),g=p.indexOf(":")<0&&"on"+p,b=b[m.expando]?b:new m.Event(p,"object"==typeof b&&b),b.isTrigger=e?2:3,b.namespace=q.join("."),b.namespace_re=b.namespace?new RegExp("(^|\\.)"+q.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,b.result=void 0,b.target||(b.target=d),c=null==c?[b]:m.makeArray(c,[b]),k=m.event.special[p]||{},e||!k.trigger||k.trigger.apply(d,c)!==!1)){if(!e&&!k.noBubble&&!m.isWindow(d)){for(i=k.delegateType||p,$.test(i+p)||(h=h.parentNode);h;h=h.parentNode)o.push(h),l=h;l===(d.ownerDocument||y)&&o.push(l.defaultView||l.parentWindow||a)}n=0;while((h=o[n++])&&!b.isPropagationStopped())b.type=n>1?i:k.bindType||p,f=(m._data(h,"events")||{})[b.type]&&m._data(h,"handle"),f&&f.apply(h,c),f=g&&h[g],f&&f.apply&&m.acceptData(h)&&(b.result=f.apply(h,c),b.result===!1&&b.preventDefault());if(b.type=p,!e&&!b.isDefaultPrevented()&&(!k._default||k._default.apply(o.pop(),c)===!1)&&m.acceptData(d)&&g&&d[p]&&!m.isWindow(d)){l=d[g],l&&(d[g]=null),m.event.triggered=p;try{d[p]()}catch(r){}m.event.triggered=void 0,l&&(d[g]=l)}return b.result}},dispatch:function(a){a=m.event.fix(a);var b,c,e,f,g,h=[],i=d.call(arguments),j=(m._data(this,"events")||{})[a.type]||[],k=m.event.special[a.type]||{};if(i[0]=a,a.delegateTarget=this,!k.preDispatch||k.preDispatch.call(this,a)!==!1){h=m.event.handlers.call(this,a,j),b=0;while((f=h[b++])&&!a.isPropagationStopped()){a.currentTarget=f.elem,g=0;while((e=f.handlers[g++])&&!a.isImmediatePropagationStopped())(!a.namespace_re||a.namespace_re.test(e.namespace))&&(a.handleObj=e,a.data=e.data,c=((m.event.special[e.origType]||{}).handle||e.handler).apply(f.elem,i),void 0!==c&&(a.result=c)===!1&&(a.preventDefault(),a.stopPropagation()))}return k.postDispatch&&k.postDispatch.call(this,a),a.result}},handlers:function(a,b){var c,d,e,f,g=[],h=b.delegateCount,i=a.target;if(h&&i.nodeType&&(!a.button||"click"!==a.type))for(;i!=this;i=i.parentNode||this)if(1===i.nodeType&&(i.disabled!==!0||"click"!==a.type)){for(e=[],f=0;h>f;f++)d=b[f],c=d.selector+" ",void 0===e[c]&&(e[c]=d.needsContext?m(c,this).index(i)>=0:m.find(c,this,null,[i]).length),e[c]&&e.push(d);e.length&&g.push({elem:i,handlers:e})}return h<b.length&&g.push({elem:this,handlers:b.slice(h)}),g},fix:function(a){if(a[m.expando])return a;var b,c,d,e=a.type,f=a,g=this.fixHooks[e];g||(this.fixHooks[e]=g=Z.test(e)?this.mouseHooks:Y.test(e)?this.keyHooks:{}),d=g.props?this.props.concat(g.props):this.props,a=new m.Event(f),b=d.length;while(b--)c=d[b],a[c]=f[c];return a.target||(a.target=f.srcElement||y),3===a.target.nodeType&&(a.target=a.target.parentNode),a.metaKey=!!a.metaKey,g.filter?g.filter(a,f):a},props:"altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){return null==a.which&&(a.which=null!=b.charCode?b.charCode:b.keyCode),a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,b){var c,d,e,f=b.button,g=b.fromElement;return null==a.pageX&&null!=b.clientX&&(d=a.target.ownerDocument||y,e=d.documentElement,c=d.body,a.pageX=b.clientX+(e&&e.scrollLeft||c&&c.scrollLeft||0)-(e&&e.clientLeft||c&&c.clientLeft||0),a.pageY=b.clientY+(e&&e.scrollTop||c&&c.scrollTop||0)-(e&&e.clientTop||c&&c.clientTop||0)),!a.relatedTarget&&g&&(a.relatedTarget=g===a.target?b.toElement:g),a.which||void 0===f||(a.which=1&f?1:2&f?3:4&f?2:0),a}},special:{load:{noBubble:!0},focus:{trigger:function(){if(this!==ca()&&this.focus)try{return this.focus(),!1}catch(a){}},delegateType:"focusin"},blur:{trigger:function(){return this===ca()&&this.blur?(this.blur(),!1):void 0},delegateType:"focusout"},click:{trigger:function(){return m.nodeName(this,"input")&&"checkbox"===this.type&&this.click?(this.click(),!1):void 0},_default:function(a){return m.nodeName(a.target,"a")}},beforeunload:{postDispatch:function(a){void 0!==a.result&&a.originalEvent&&(a.originalEvent.returnValue=a.result)}}},simulate:function(a,b,c,d){var e=m.extend(new m.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?m.event.trigger(e,null,b):m.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},m.removeEvent=y.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){var d="on"+b;a.detachEvent&&(typeof a[d]===K&&(a[d]=null),a.detachEvent(d,c))},m.Event=function(a,b){return this instanceof m.Event?(a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||void 0===a.defaultPrevented&&a.returnValue===!1?aa:ba):this.type=a,b&&m.extend(this,b),this.timeStamp=a&&a.timeStamp||m.now(),void(this[m.expando]=!0)):new m.Event(a,b)},m.Event.prototype={isDefaultPrevented:ba,isPropagationStopped:ba,isImmediatePropagationStopped:ba,preventDefault:function(){var a=this.originalEvent;this.isDefaultPrevented=aa,a&&(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){var a=this.originalEvent;this.isPropagationStopped=aa,a&&(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){var a=this.originalEvent;this.isImmediatePropagationStopped=aa,a&&a.stopImmediatePropagation&&a.stopImmediatePropagation(),this.stopPropagation()}},m.each({mouseenter:"mouseover",mouseleave:"mouseout",pointerenter:"pointerover",pointerleave:"pointerout"},function(a,b){m.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c,d=this,e=a.relatedTarget,f=a.handleObj;return(!e||e!==d&&!m.contains(d,e))&&(a.type=f.origType,c=f.handler.apply(this,arguments),a.type=b),c}}}),k.submitBubbles||(m.event.special.submit={setup:function(){return m.nodeName(this,"form")?!1:void m.event.add(this,"click._submit keypress._submit",function(a){var b=a.target,c=m.nodeName(b,"input")||m.nodeName(b,"button")?b.form:void 0;c&&!m._data(c,"submitBubbles")&&(m.event.add(c,"submit._submit",function(a){a._submit_bubble=!0}),m._data(c,"submitBubbles",!0))})},postDispatch:function(a){a._submit_bubble&&(delete a._submit_bubble,this.parentNode&&!a.isTrigger&&m.event.simulate("submit",this.parentNode,a,!0))},teardown:function(){return m.nodeName(this,"form")?!1:void m.event.remove(this,"._submit")}}),k.changeBubbles||(m.event.special.change={setup:function(){return X.test(this.nodeName)?(("checkbox"===this.type||"radio"===this.type)&&(m.event.add(this,"propertychange._change",function(a){"checked"===a.originalEvent.propertyName&&(this._just_changed=!0)}),m.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1),m.event.simulate("change",this,a,!0)})),!1):void m.event.add(this,"beforeactivate._change",function(a){var b=a.target;X.test(b.nodeName)&&!m._data(b,"changeBubbles")&&(m.event.add(b,"change._change",function(a){!this.parentNode||a.isSimulated||a.isTrigger||m.event.simulate("change",this.parentNode,a,!0)}),m._data(b,"changeBubbles",!0))})},handle:function(a){var b=a.target;return this!==b||a.isSimulated||a.isTrigger||"radio"!==b.type&&"checkbox"!==b.type?a.handleObj.handler.apply(this,arguments):void 0},teardown:function(){return m.event.remove(this,"._change"),!X.test(this.nodeName)}}),k.focusinBubbles||m.each({focus:"focusin",blur:"focusout"},function(a,b){var c=function(a){m.event.simulate(b,a.target,m.event.fix(a),!0)};m.event.special[b]={setup:function(){var d=this.ownerDocument||this,e=m._data(d,b);e||d.addEventListener(a,c,!0),m._data(d,b,(e||0)+1)},teardown:function(){var d=this.ownerDocument||this,e=m._data(d,b)-1;e?m._data(d,b,e):(d.removeEventListener(a,c,!0),m._removeData(d,b))}}}),m.fn.extend({on:function(a,b,c,d,e){var f,g;if("object"==typeof a){"string"!=typeof b&&(c=c||b,b=void 0);for(f in a)this.on(f,b,c,a[f],e);return this}if(null==c&&null==d?(d=b,c=b=void 0):null==d&&("string"==typeof b?(d=c,c=void 0):(d=c,c=b,b=void 0)),d===!1)d=ba;else if(!d)return this;return 1===e&&(g=d,d=function(a){return m().off(a),g.apply(this,arguments)},d.guid=g.guid||(g.guid=m.guid++)),this.each(function(){m.event.add(this,a,d,c,b)})},one:function(a,b,c,d){return this.on(a,b,c,d,1)},off:function(a,b,c){var d,e;if(a&&a.preventDefault&&a.handleObj)return d=a.handleObj,m(a.delegateTarget).off(d.namespace?d.origType+"."+d.namespace:d.origType,d.selector,d.handler),this;if("object"==typeof a){for(e in a)this.off(e,b,a[e]);return this}return(b===!1||"function"==typeof b)&&(c=b,b=void 0),c===!1&&(c=ba),this.each(function(){m.event.remove(this,a,c,b)})},trigger:function(a,b){return this.each(function(){m.event.trigger(a,b,this)})},triggerHandler:function(a,b){var c=this[0];return c?m.event.trigger(a,b,c,!0):void 0}});function da(a){var b=ea.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}var ea="abbr|article|aside|audio|bdi|canvas|data|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",fa=/ jQuery\d+="(?:null|\d+)"/g,ga=new RegExp("<(?:"+ea+")[\\s/>]","i"),ha=/^\s+/,ia=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/gi,ja=/<([\w:]+)/,ka=/<tbody/i,la=/<|&#?\w+;/,ma=/<(?:script|style|link)/i,na=/checked\s*(?:[^=]|=\s*.checked.)/i,oa=/^$|\/(?:java|ecma)script/i,pa=/^true\/(.*)/,qa=/^\s*<!(?:\[CDATA\[|--)|(?:\]\]|--)>\s*$/g,ra={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],area:[1,"<map>","</map>"],param:[1,"<object>","</object>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],_default:k.htmlSerialize?[0,"",""]:[1,"X<div>","</div>"]},sa=da(y),ta=sa.appendChild(y.createElement("div"));ra.optgroup=ra.option,ra.tbody=ra.tfoot=ra.colgroup=ra.caption=ra.thead,ra.th=ra.td;function ua(a,b){var c,d,e=0,f=typeof a.getElementsByTagName!==K?a.getElementsByTagName(b||"*"):typeof a.querySelectorAll!==K?a.querySelectorAll(b||"*"):void 0;if(!f)for(f=[],c=a.childNodes||a;null!=(d=c[e]);e++)!b||m.nodeName(d,b)?f.push(d):m.merge(f,ua(d,b));return void 0===b||b&&m.nodeName(a,b)?m.merge([a],f):f}function va(a){W.test(a.type)&&(a.defaultChecked=a.checked)}function wa(a,b){return m.nodeName(a,"table")&&m.nodeName(11!==b.nodeType?b:b.firstChild,"tr")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function xa(a){return a.type=(null!==m.find.attr(a,"type"))+"/"+a.type,a}function ya(a){var b=pa.exec(a.type);return b?a.type=b[1]:a.removeAttribute("type"),a}function za(a,b){for(var c,d=0;null!=(c=a[d]);d++)m._data(c,"globalEval",!b||m._data(b[d],"globalEval"))}function Aa(a,b){if(1===b.nodeType&&m.hasData(a)){var c,d,e,f=m._data(a),g=m._data(b,f),h=f.events;if(h){delete g.handle,g.events={};for(c in h)for(d=0,e=h[c].length;e>d;d++)m.event.add(b,c,h[c][d])}g.data&&(g.data=m.extend({},g.data))}}function Ba(a,b){var c,d,e;if(1===b.nodeType){if(c=b.nodeName.toLowerCase(),!k.noCloneEvent&&b[m.expando]){e=m._data(b);for(d in e.events)m.removeEvent(b,d,e.handle);b.removeAttribute(m.expando)}"script"===c&&b.text!==a.text?(xa(b).text=a.text,ya(b)):"object"===c?(b.parentNode&&(b.outerHTML=a.outerHTML),k.html5Clone&&a.innerHTML&&!m.trim(b.innerHTML)&&(b.innerHTML=a.innerHTML)):"input"===c&&W.test(a.type)?(b.defaultChecked=b.checked=a.checked,b.value!==a.value&&(b.value=a.value)):"option"===c?b.defaultSelected=b.selected=a.defaultSelected:("input"===c||"textarea"===c)&&(b.defaultValue=a.defaultValue)}}m.extend({clone:function(a,b,c){var d,e,f,g,h,i=m.contains(a.ownerDocument,a);if(k.html5Clone||m.isXMLDoc(a)||!ga.test("<"+a.nodeName+">")?f=a.cloneNode(!0):(ta.innerHTML=a.outerHTML,ta.removeChild(f=ta.firstChild)),!(k.noCloneEvent&&k.noCloneChecked||1!==a.nodeType&&11!==a.nodeType||m.isXMLDoc(a)))for(d=ua(f),h=ua(a),g=0;null!=(e=h[g]);++g)d[g]&&Ba(e,d[g]);if(b)if(c)for(h=h||ua(a),d=d||ua(f),g=0;null!=(e=h[g]);g++)Aa(e,d[g]);else Aa(a,f);return d=ua(f,"script"),d.length>0&&za(d,!i&&ua(a,"script")),d=h=e=null,f},buildFragment:function(a,b,c,d){for(var e,f,g,h,i,j,l,n=a.length,o=da(b),p=[],q=0;n>q;q++)if(f=a[q],f||0===f)if("object"===m.type(f))m.merge(p,f.nodeType?[f]:f);else if(la.test(f)){h=h||o.appendChild(b.createElement("div")),i=(ja.exec(f)||["",""])[1].toLowerCase(),l=ra[i]||ra._default,h.innerHTML=l[1]+f.replace(ia,"<$1></$2>")+l[2],e=l[0];while(e--)h=h.lastChild;if(!k.leadingWhitespace&&ha.test(f)&&p.push(b.createTextNode(ha.exec(f)[0])),!k.tbody){f="table"!==i||ka.test(f)?"<table>"!==l[1]||ka.test(f)?0:h:h.firstChild,e=f&&f.childNodes.length;while(e--)m.nodeName(j=f.childNodes[e],"tbody")&&!j.childNodes.length&&f.removeChild(j)}m.merge(p,h.childNodes),h.textContent="";while(h.firstChild)h.removeChild(h.firstChild);h=o.lastChild}else p.push(b.createTextNode(f));h&&o.removeChild(h),k.appendChecked||m.grep(ua(p,"input"),va),q=0;while(f=p[q++])if((!d||-1===m.inArray(f,d))&&(g=m.contains(f.ownerDocument,f),h=ua(o.appendChild(f),"script"),g&&za(h),c)){e=0;while(f=h[e++])oa.test(f.type||"")&&c.push(f)}return h=null,o},cleanData:function(a,b){for(var d,e,f,g,h=0,i=m.expando,j=m.cache,l=k.deleteExpando,n=m.event.special;null!=(d=a[h]);h++)if((b||m.acceptData(d))&&(f=d[i],g=f&&j[f])){if(g.events)for(e in g.events)n[e]?m.event.remove(d,e):m.removeEvent(d,e,g.handle);j[f]&&(delete j[f],l?delete d[i]:typeof d.removeAttribute!==K?d.removeAttribute(i):d[i]=null,c.push(f))}}}),m.fn.extend({text:function(a){return V(this,function(a){return void 0===a?m.text(this):this.empty().append((this[0]&&this[0].ownerDocument||y).createTextNode(a))},null,a,arguments.length)},append:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=wa(this,a);b.appendChild(a)}})},prepend:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=wa(this,a);b.insertBefore(a,b.firstChild)}})},before:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this)})},after:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this.nextSibling)})},remove:function(a,b){for(var c,d=a?m.filter(a,this):this,e=0;null!=(c=d[e]);e++)b||1!==c.nodeType||m.cleanData(ua(c)),c.parentNode&&(b&&m.contains(c.ownerDocument,c)&&za(ua(c,"script")),c.parentNode.removeChild(c));return this},empty:function(){for(var a,b=0;null!=(a=this[b]);b++){1===a.nodeType&&m.cleanData(ua(a,!1));while(a.firstChild)a.removeChild(a.firstChild);a.options&&m.nodeName(a,"select")&&(a.options.length=0)}return this},clone:function(a,b){return a=null==a?!1:a,b=null==b?a:b,this.map(function(){return m.clone(this,a,b)})},html:function(a){return V(this,function(a){var b=this[0]||{},c=0,d=this.length;if(void 0===a)return 1===b.nodeType?b.innerHTML.replace(fa,""):void 0;if(!("string"!=typeof a||ma.test(a)||!k.htmlSerialize&&ga.test(a)||!k.leadingWhitespace&&ha.test(a)||ra[(ja.exec(a)||["",""])[1].toLowerCase()])){a=a.replace(ia,"<$1></$2>");try{for(;d>c;c++)b=this[c]||{},1===b.nodeType&&(m.cleanData(ua(b,!1)),b.innerHTML=a);b=0}catch(e){}}b&&this.empty().append(a)},null,a,arguments.length)},replaceWith:function(){var a=arguments[0];return this.domManip(arguments,function(b){a=this.parentNode,m.cleanData(ua(this)),a&&a.replaceChild(b,this)}),a&&(a.length||a.nodeType)?this:this.remove()},detach:function(a){return this.remove(a,!0)},domManip:function(a,b){a=e.apply([],a);var c,d,f,g,h,i,j=0,l=this.length,n=this,o=l-1,p=a[0],q=m.isFunction(p);if(q||l>1&&"string"==typeof p&&!k.checkClone&&na.test(p))return this.each(function(c){var d=n.eq(c);q&&(a[0]=p.call(this,c,d.html())),d.domManip(a,b)});if(l&&(i=m.buildFragment(a,this[0].ownerDocument,!1,this),c=i.firstChild,1===i.childNodes.length&&(i=c),c)){for(g=m.map(ua(i,"script"),xa),f=g.length;l>j;j++)d=i,j!==o&&(d=m.clone(d,!0,!0),f&&m.merge(g,ua(d,"script"))),b.call(this[j],d,j);if(f)for(h=g[g.length-1].ownerDocument,m.map(g,ya),j=0;f>j;j++)d=g[j],oa.test(d.type||"")&&!m._data(d,"globalEval")&&m.contains(h,d)&&(d.src?m._evalUrl&&m._evalUrl(d.src):m.globalEval((d.text||d.textContent||d.innerHTML||"").replace(qa,"")));i=c=null}return this}}),m.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){m.fn[a]=function(a){for(var c,d=0,e=[],g=m(a),h=g.length-1;h>=d;d++)c=d===h?this:this.clone(!0),m(g[d])[b](c),f.apply(e,c.get());return this.pushStack(e)}});var Ca,Da={};function Ea(b,c){var d,e=m(c.createElement(b)).appendTo(c.body),f=a.getDefaultComputedStyle&&(d=a.getDefaultComputedStyle(e[0]))?d.display:m.css(e[0],"display");return e.detach(),f}function Fa(a){var b=y,c=Da[a];return c||(c=Ea(a,b),"none"!==c&&c||(Ca=(Ca||m("<iframe frameborder='0' width='0' height='0'/>")).appendTo(b.documentElement),b=(Ca[0].contentWindow||Ca[0].contentDocument).document,b.write(),b.close(),c=Ea(a,b),Ca.detach()),Da[a]=c),c}!function(){var a;k.shrinkWrapBlocks=function(){if(null!=a)return a;a=!1;var b,c,d;return c=y.getElementsByTagName("body")[0],c&&c.style?(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),typeof b.style.zoom!==K&&(b.style.cssText="-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:1px;width:1px;zoom:1",b.appendChild(y.createElement("div")).style.width="5px",a=3!==b.offsetWidth),c.removeChild(d),a):void 0}}();var Ga=/^margin/,Ha=new RegExp("^("+S+")(?!px)[a-z%]+$","i"),Ia,Ja,Ka=/^(top|right|bottom|left)$/;a.getComputedStyle?(Ia=function(b){return b.ownerDocument.defaultView.opener?b.ownerDocument.defaultView.getComputedStyle(b,null):a.getComputedStyle(b,null)},Ja=function(a,b,c){var d,e,f,g,h=a.style;return c=c||Ia(a),g=c?c.getPropertyValue(b)||c[b]:void 0,c&&(""!==g||m.contains(a.ownerDocument,a)||(g=m.style(a,b)),Ha.test(g)&&Ga.test(b)&&(d=h.width,e=h.minWidth,f=h.maxWidth,h.minWidth=h.maxWidth=h.width=g,g=c.width,h.width=d,h.minWidth=e,h.maxWidth=f)),void 0===g?g:g+""}):y.documentElement.currentStyle&&(Ia=function(a){return a.currentStyle},Ja=function(a,b,c){var d,e,f,g,h=a.style;return c=c||Ia(a),g=c?c[b]:void 0,null==g&&h&&h[b]&&(g=h[b]),Ha.test(g)&&!Ka.test(b)&&(d=h.left,e=a.runtimeStyle,f=e&&e.left,f&&(e.left=a.currentStyle.left),h.left="fontSize"===b?"1em":g,g=h.pixelLeft+"px",h.left=d,f&&(e.left=f)),void 0===g?g:g+""||"auto"});function La(a,b){return{get:function(){var c=a();if(null!=c)return c?void delete this.get:(this.get=b).apply(this,arguments)}}}!function(){var b,c,d,e,f,g,h;if(b=y.createElement("div"),b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=d&&d.style){c.cssText="float:left;opacity:.5",k.opacity="0.5"===c.opacity,k.cssFloat=!!c.cssFloat,b.style.backgroundClip="content-box",b.cloneNode(!0).style.backgroundClip="",k.clearCloneStyle="content-box"===b.style.backgroundClip,k.boxSizing=""===c.boxSizing||""===c.MozBoxSizing||""===c.WebkitBoxSizing,m.extend(k,{reliableHiddenOffsets:function(){return null==g&&i(),g},boxSizingReliable:function(){return null==f&&i(),f},pixelPosition:function(){return null==e&&i(),e},reliableMarginRight:function(){return null==h&&i(),h}});function i(){var b,c,d,i;c=y.getElementsByTagName("body")[0],c&&c.style&&(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),b.style.cssText="-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;display:block;margin-top:1%;top:1%;border:1px;padding:1px;width:4px;position:absolute",e=f=!1,h=!0,a.getComputedStyle&&(e="1%"!==(a.getComputedStyle(b,null)||{}).top,f="4px"===(a.getComputedStyle(b,null)||{width:"4px"}).width,i=b.appendChild(y.createElement("div")),i.style.cssText=b.style.cssText="-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:0",i.style.marginRight=i.style.width="0",b.style.width="1px",h=!parseFloat((a.getComputedStyle(i,null)||{}).marginRight),b.removeChild(i)),b.innerHTML="<table><tr><td></td><td>t</td></tr></table>",i=b.getElementsByTagName("td"),i[0].style.cssText="margin:0;border:0;padding:0;display:none",g=0===i[0].offsetHeight,g&&(i[0].style.display="",i[1].style.display="none",g=0===i[0].offsetHeight),c.removeChild(d))}}}(),m.swap=function(a,b,c,d){var e,f,g={};for(f in b)g[f]=a.style[f],a.style[f]=b[f];e=c.apply(a,d||[]);for(f in b)a.style[f]=g[f];return e};var Ma=/alpha\([^)]*\)/i,Na=/opacity\s*=\s*([^)]*)/,Oa=/^(none|table(?!-c[ea]).+)/,Pa=new RegExp("^("+S+")(.*)$","i"),Qa=new RegExp("^([+-])=("+S+")","i"),Ra={position:"absolute",visibility:"hidden",display:"block"},Sa={letterSpacing:"0",fontWeight:"400"},Ta=["Webkit","O","Moz","ms"];function Ua(a,b){if(b in a)return b;var c=b.charAt(0).toUpperCase()+b.slice(1),d=b,e=Ta.length;while(e--)if(b=Ta[e]+c,b in a)return b;return d}function Va(a,b){for(var c,d,e,f=[],g=0,h=a.length;h>g;g++)d=a[g],d.style&&(f[g]=m._data(d,"olddisplay"),c=d.style.display,b?(f[g]||"none"!==c||(d.style.display=""),""===d.style.display&&U(d)&&(f[g]=m._data(d,"olddisplay",Fa(d.nodeName)))):(e=U(d),(c&&"none"!==c||!e)&&m._data(d,"olddisplay",e?c:m.css(d,"display"))));for(g=0;h>g;g++)d=a[g],d.style&&(b&&"none"!==d.style.display&&""!==d.style.display||(d.style.display=b?f[g]||"":"none"));return a}function Wa(a,b,c){var d=Pa.exec(b);return d?Math.max(0,d[1]-(c||0))+(d[2]||"px"):b}function Xa(a,b,c,d,e){for(var f=c===(d?"border":"content")?4:"width"===b?1:0,g=0;4>f;f+=2)"margin"===c&&(g+=m.css(a,c+T[f],!0,e)),d?("content"===c&&(g-=m.css(a,"padding"+T[f],!0,e)),"margin"!==c&&(g-=m.css(a,"border"+T[f]+"Width",!0,e))):(g+=m.css(a,"padding"+T[f],!0,e),"padding"!==c&&(g+=m.css(a,"border"+T[f]+"Width",!0,e)));return g}function Ya(a,b,c){var d=!0,e="width"===b?a.offsetWidth:a.offsetHeight,f=Ia(a),g=k.boxSizing&&"border-box"===m.css(a,"boxSizing",!1,f);if(0>=e||null==e){if(e=Ja(a,b,f),(0>e||null==e)&&(e=a.style[b]),Ha.test(e))return e;d=g&&(k.boxSizingReliable()||e===a.style[b]),e=parseFloat(e)||0}return e+Xa(a,b,c||(g?"border":"content"),d,f)+"px"}m.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=Ja(a,"opacity");return""===c?"1":c}}}},cssNumber:{columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":k.cssFloat?"cssFloat":"styleFloat"},style:function(a,b,c,d){if(a&&3!==a.nodeType&&8!==a.nodeType&&a.style){var e,f,g,h=m.camelCase(b),i=a.style;if(b=m.cssProps[h]||(m.cssProps[h]=Ua(i,h)),g=m.cssHooks[b]||m.cssHooks[h],void 0===c)return g&&"get"in g&&void 0!==(e=g.get(a,!1,d))?e:i[b];if(f=typeof c,"string"===f&&(e=Qa.exec(c))&&(c=(e[1]+1)*e[2]+parseFloat(m.css(a,b)),f="number"),null!=c&&c===c&&("number"!==f||m.cssNumber[h]||(c+="px"),k.clearCloneStyle||""!==c||0!==b.indexOf("background")||(i[b]="inherit"),!(g&&"set"in g&&void 0===(c=g.set(a,c,d)))))try{i[b]=c}catch(j){}}},css:function(a,b,c,d){var e,f,g,h=m.camelCase(b);return b=m.cssProps[h]||(m.cssProps[h]=Ua(a.style,h)),g=m.cssHooks[b]||m.cssHooks[h],g&&"get"in g&&(f=g.get(a,!0,c)),void 0===f&&(f=Ja(a,b,d)),"normal"===f&&b in Sa&&(f=Sa[b]),""===c||c?(e=parseFloat(f),c===!0||m.isNumeric(e)?e||0:f):f}}),m.each(["height","width"],function(a,b){m.cssHooks[b]={get:function(a,c,d){return c?Oa.test(m.css(a,"display"))&&0===a.offsetWidth?m.swap(a,Ra,function(){return Ya(a,b,d)}):Ya(a,b,d):void 0},set:function(a,c,d){var e=d&&Ia(a);return Wa(a,c,d?Xa(a,b,d,k.boxSizing&&"border-box"===m.css(a,"boxSizing",!1,e),e):0)}}}),k.opacity||(m.cssHooks.opacity={get:function(a,b){return Na.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?.01*parseFloat(RegExp.$1)+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=m.isNumeric(b)?"alpha(opacity="+100*b+")":"",f=d&&d.filter||c.filter||"";c.zoom=1,(b>=1||""===b)&&""===m.trim(f.replace(Ma,""))&&c.removeAttribute&&(c.removeAttribute("filter"),""===b||d&&!d.filter)||(c.filter=Ma.test(f)?f.replace(Ma,e):f+" "+e)}}),m.cssHooks.marginRight=La(k.reliableMarginRight,function(a,b){return b?m.swap(a,{display:"inline-block"},Ja,[a,"marginRight"]):void 0}),m.each({margin:"",padding:"",border:"Width"},function(a,b){m.cssHooks[a+b]={expand:function(c){for(var d=0,e={},f="string"==typeof c?c.split(" "):[c];4>d;d++)e[a+T[d]+b]=f[d]||f[d-2]||f[0];return e}},Ga.test(a)||(m.cssHooks[a+b].set=Wa)}),m.fn.extend({css:function(a,b){return V(this,function(a,b,c){var d,e,f={},g=0;if(m.isArray(b)){for(d=Ia(a),e=b.length;e>g;g++)f[b[g]]=m.css(a,b[g],!1,d);return f}return void 0!==c?m.style(a,b,c):m.css(a,b)},a,b,arguments.length>1)},show:function(){return Va(this,!0)},hide:function(){return Va(this)},toggle:function(a){return"boolean"==typeof a?a?this.show():this.hide():this.each(function(){U(this)?m(this).show():m(this).hide()})}});function Za(a,b,c,d,e){
return new Za.prototype.init(a,b,c,d,e)}m.Tween=Za,Za.prototype={constructor:Za,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||"swing",this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(m.cssNumber[c]?"":"px")},cur:function(){var a=Za.propHooks[this.prop];return a&&a.get?a.get(this):Za.propHooks._default.get(this)},run:function(a){var b,c=Za.propHooks[this.prop];return this.options.duration?this.pos=b=m.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):this.pos=b=a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):Za.propHooks._default.set(this),this}},Za.prototype.init.prototype=Za.prototype,Za.propHooks={_default:{get:function(a){var b;return null==a.elem[a.prop]||a.elem.style&&null!=a.elem.style[a.prop]?(b=m.css(a.elem,a.prop,""),b&&"auto"!==b?b:0):a.elem[a.prop]},set:function(a){m.fx.step[a.prop]?m.fx.step[a.prop](a):a.elem.style&&(null!=a.elem.style[m.cssProps[a.prop]]||m.cssHooks[a.prop])?m.style(a.elem,a.prop,a.now+a.unit):a.elem[a.prop]=a.now}}},Za.propHooks.scrollTop=Za.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},m.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2}},m.fx=Za.prototype.init,m.fx.step={};var $a,_a,ab=/^(?:toggle|show|hide)$/,bb=new RegExp("^(?:([+-])=|)("+S+")([a-z%]*)$","i"),cb=/queueHooks$/,db=[ib],eb={"*":[function(a,b){var c=this.createTween(a,b),d=c.cur(),e=bb.exec(b),f=e&&e[3]||(m.cssNumber[a]?"":"px"),g=(m.cssNumber[a]||"px"!==f&&+d)&&bb.exec(m.css(c.elem,a)),h=1,i=20;if(g&&g[3]!==f){f=f||g[3],e=e||[],g=+d||1;do h=h||".5",g/=h,m.style(c.elem,a,g+f);while(h!==(h=c.cur()/d)&&1!==h&&--i)}return e&&(g=c.start=+g||+d||0,c.unit=f,c.end=e[1]?g+(e[1]+1)*e[2]:+e[2]),c}]};function fb(){return setTimeout(function(){$a=void 0}),$a=m.now()}function gb(a,b){var c,d={height:a},e=0;for(b=b?1:0;4>e;e+=2-b)c=T[e],d["margin"+c]=d["padding"+c]=a;return b&&(d.opacity=d.width=a),d}function hb(a,b,c){for(var d,e=(eb[b]||[]).concat(eb["*"]),f=0,g=e.length;g>f;f++)if(d=e[f].call(c,b,a))return d}function ib(a,b,c){var d,e,f,g,h,i,j,l,n=this,o={},p=a.style,q=a.nodeType&&U(a),r=m._data(a,"fxshow");c.queue||(h=m._queueHooks(a,"fx"),null==h.unqueued&&(h.unqueued=0,i=h.empty.fire,h.empty.fire=function(){h.unqueued||i()}),h.unqueued++,n.always(function(){n.always(function(){h.unqueued--,m.queue(a,"fx").length||h.empty.fire()})})),1===a.nodeType&&("height"in b||"width"in b)&&(c.overflow=[p.overflow,p.overflowX,p.overflowY],j=m.css(a,"display"),l="none"===j?m._data(a,"olddisplay")||Fa(a.nodeName):j,"inline"===l&&"none"===m.css(a,"float")&&(k.inlineBlockNeedsLayout&&"inline"!==Fa(a.nodeName)?p.zoom=1:p.display="inline-block")),c.overflow&&(p.overflow="hidden",k.shrinkWrapBlocks()||n.always(function(){p.overflow=c.overflow[0],p.overflowX=c.overflow[1],p.overflowY=c.overflow[2]}));for(d in b)if(e=b[d],ab.exec(e)){if(delete b[d],f=f||"toggle"===e,e===(q?"hide":"show")){if("show"!==e||!r||void 0===r[d])continue;q=!0}o[d]=r&&r[d]||m.style(a,d)}else j=void 0;if(m.isEmptyObject(o))"inline"===("none"===j?Fa(a.nodeName):j)&&(p.display=j);else{r?"hidden"in r&&(q=r.hidden):r=m._data(a,"fxshow",{}),f&&(r.hidden=!q),q?m(a).show():n.done(function(){m(a).hide()}),n.done(function(){var b;m._removeData(a,"fxshow");for(b in o)m.style(a,b,o[b])});for(d in o)g=hb(q?r[d]:0,d,n),d in r||(r[d]=g.start,q&&(g.end=g.start,g.start="width"===d||"height"===d?1:0))}}function jb(a,b){var c,d,e,f,g;for(c in a)if(d=m.camelCase(c),e=b[d],f=a[c],m.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=m.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function kb(a,b,c){var d,e,f=0,g=db.length,h=m.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=$a||fb(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;i>g;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),1>f&&i?c:(h.resolveWith(a,[j]),!1)},j=h.promise({elem:a,props:m.extend({},b),opts:m.extend(!0,{specialEasing:{}},c),originalProperties:b,originalOptions:c,startTime:$a||fb(),duration:c.duration,tweens:[],createTween:function(b,c){var d=m.Tween(a,j.opts,b,c,j.opts.specialEasing[b]||j.opts.easing);return j.tweens.push(d),d},stop:function(b){var c=0,d=b?j.tweens.length:0;if(e)return this;for(e=!0;d>c;c++)j.tweens[c].run(1);return b?h.resolveWith(a,[j,b]):h.rejectWith(a,[j,b]),this}}),k=j.props;for(jb(k,j.opts.specialEasing);g>f;f++)if(d=db[f].call(j,a,k,j.opts))return d;return m.map(k,hb,j),m.isFunction(j.opts.start)&&j.opts.start.call(a,j),m.fx.timer(m.extend(i,{elem:a,anim:j,queue:j.opts.queue})),j.progress(j.opts.progress).done(j.opts.done,j.opts.complete).fail(j.opts.fail).always(j.opts.always)}m.Animation=m.extend(kb,{tweener:function(a,b){m.isFunction(a)?(b=a,a=["*"]):a=a.split(" ");for(var c,d=0,e=a.length;e>d;d++)c=a[d],eb[c]=eb[c]||[],eb[c].unshift(b)},prefilter:function(a,b){b?db.unshift(a):db.push(a)}}),m.speed=function(a,b,c){var d=a&&"object"==typeof a?m.extend({},a):{complete:c||!c&&b||m.isFunction(a)&&a,duration:a,easing:c&&b||b&&!m.isFunction(b)&&b};return d.duration=m.fx.off?0:"number"==typeof d.duration?d.duration:d.duration in m.fx.speeds?m.fx.speeds[d.duration]:m.fx.speeds._default,(null==d.queue||d.queue===!0)&&(d.queue="fx"),d.old=d.complete,d.complete=function(){m.isFunction(d.old)&&d.old.call(this),d.queue&&m.dequeue(this,d.queue)},d},m.fn.extend({fadeTo:function(a,b,c,d){return this.filter(U).css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=m.isEmptyObject(a),f=m.speed(b,c,d),g=function(){var b=kb(this,m.extend({},a),f);(e||m._data(this,"finish"))&&b.stop(!0)};return g.finish=g,e||f.queue===!1?this.each(g):this.queue(f.queue,g)},stop:function(a,b,c){var d=function(a){var b=a.stop;delete a.stop,b(c)};return"string"!=typeof a&&(c=b,b=a,a=void 0),b&&a!==!1&&this.queue(a||"fx",[]),this.each(function(){var b=!0,e=null!=a&&a+"queueHooks",f=m.timers,g=m._data(this);if(e)g[e]&&g[e].stop&&d(g[e]);else for(e in g)g[e]&&g[e].stop&&cb.test(e)&&d(g[e]);for(e=f.length;e--;)f[e].elem!==this||null!=a&&f[e].queue!==a||(f[e].anim.stop(c),b=!1,f.splice(e,1));(b||!c)&&m.dequeue(this,a)})},finish:function(a){return a!==!1&&(a=a||"fx"),this.each(function(){var b,c=m._data(this),d=c[a+"queue"],e=c[a+"queueHooks"],f=m.timers,g=d?d.length:0;for(c.finish=!0,m.queue(this,a,[]),e&&e.stop&&e.stop.call(this,!0),b=f.length;b--;)f[b].elem===this&&f[b].queue===a&&(f[b].anim.stop(!0),f.splice(b,1));for(b=0;g>b;b++)d[b]&&d[b].finish&&d[b].finish.call(this);delete c.finish})}}),m.each(["toggle","show","hide"],function(a,b){var c=m.fn[b];m.fn[b]=function(a,d,e){return null==a||"boolean"==typeof a?c.apply(this,arguments):this.animate(gb(b,!0),a,d,e)}}),m.each({slideDown:gb("show"),slideUp:gb("hide"),slideToggle:gb("toggle"),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){m.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),m.timers=[],m.fx.tick=function(){var a,b=m.timers,c=0;for($a=m.now();c<b.length;c++)a=b[c],a()||b[c]!==a||b.splice(c--,1);b.length||m.fx.stop(),$a=void 0},m.fx.timer=function(a){m.timers.push(a),a()?m.fx.start():m.timers.pop()},m.fx.interval=13,m.fx.start=function(){_a||(_a=setInterval(m.fx.tick,m.fx.interval))},m.fx.stop=function(){clearInterval(_a),_a=null},m.fx.speeds={slow:600,fast:200,_default:400},m.fn.delay=function(a,b){return a=m.fx?m.fx.speeds[a]||a:a,b=b||"fx",this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},function(){var a,b,c,d,e;b=y.createElement("div"),b.setAttribute("className","t"),b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=y.createElement("select"),e=c.appendChild(y.createElement("option")),a=b.getElementsByTagName("input")[0],d.style.cssText="top:1px",k.getSetAttribute="t"!==b.className,k.style=/top/.test(d.getAttribute("style")),k.hrefNormalized="/a"===d.getAttribute("href"),k.checkOn=!!a.value,k.optSelected=e.selected,k.enctype=!!y.createElement("form").enctype,c.disabled=!0,k.optDisabled=!e.disabled,a=y.createElement("input"),a.setAttribute("value",""),k.input=""===a.getAttribute("value"),a.value="t",a.setAttribute("type","radio"),k.radioValue="t"===a.value}();var lb=/\r/g;m.fn.extend({val:function(a){var b,c,d,e=this[0];{if(arguments.length)return d=m.isFunction(a),this.each(function(c){var e;1===this.nodeType&&(e=d?a.call(this,c,m(this).val()):a,null==e?e="":"number"==typeof e?e+="":m.isArray(e)&&(e=m.map(e,function(a){return null==a?"":a+""})),b=m.valHooks[this.type]||m.valHooks[this.nodeName.toLowerCase()],b&&"set"in b&&void 0!==b.set(this,e,"value")||(this.value=e))});if(e)return b=m.valHooks[e.type]||m.valHooks[e.nodeName.toLowerCase()],b&&"get"in b&&void 0!==(c=b.get(e,"value"))?c:(c=e.value,"string"==typeof c?c.replace(lb,""):null==c?"":c)}}}),m.extend({valHooks:{option:{get:function(a){var b=m.find.attr(a,"value");return null!=b?b:m.trim(m.text(a))}},select:{get:function(a){for(var b,c,d=a.options,e=a.selectedIndex,f="select-one"===a.type||0>e,g=f?null:[],h=f?e+1:d.length,i=0>e?h:f?e:0;h>i;i++)if(c=d[i],!(!c.selected&&i!==e||(k.optDisabled?c.disabled:null!==c.getAttribute("disabled"))||c.parentNode.disabled&&m.nodeName(c.parentNode,"optgroup"))){if(b=m(c).val(),f)return b;g.push(b)}return g},set:function(a,b){var c,d,e=a.options,f=m.makeArray(b),g=e.length;while(g--)if(d=e[g],m.inArray(m.valHooks.option.get(d),f)>=0)try{d.selected=c=!0}catch(h){d.scrollHeight}else d.selected=!1;return c||(a.selectedIndex=-1),e}}}}),m.each(["radio","checkbox"],function(){m.valHooks[this]={set:function(a,b){return m.isArray(b)?a.checked=m.inArray(m(a).val(),b)>=0:void 0}},k.checkOn||(m.valHooks[this].get=function(a){return null===a.getAttribute("value")?"on":a.value})});var mb,nb,ob=m.expr.attrHandle,pb=/^(?:checked|selected)$/i,qb=k.getSetAttribute,rb=k.input;m.fn.extend({attr:function(a,b){return V(this,m.attr,a,b,arguments.length>1)},removeAttr:function(a){return this.each(function(){m.removeAttr(this,a)})}}),m.extend({attr:function(a,b,c){var d,e,f=a.nodeType;if(a&&3!==f&&8!==f&&2!==f)return typeof a.getAttribute===K?m.prop(a,b,c):(1===f&&m.isXMLDoc(a)||(b=b.toLowerCase(),d=m.attrHooks[b]||(m.expr.match.bool.test(b)?nb:mb)),void 0===c?d&&"get"in d&&null!==(e=d.get(a,b))?e:(e=m.find.attr(a,b),null==e?void 0:e):null!==c?d&&"set"in d&&void 0!==(e=d.set(a,c,b))?e:(a.setAttribute(b,c+""),c):void m.removeAttr(a,b))},removeAttr:function(a,b){var c,d,e=0,f=b&&b.match(E);if(f&&1===a.nodeType)while(c=f[e++])d=m.propFix[c]||c,m.expr.match.bool.test(c)?rb&&qb||!pb.test(c)?a[d]=!1:a[m.camelCase("default-"+c)]=a[d]=!1:m.attr(a,c,""),a.removeAttribute(qb?c:d)},attrHooks:{type:{set:function(a,b){if(!k.radioValue&&"radio"===b&&m.nodeName(a,"input")){var c=a.value;return a.setAttribute("type",b),c&&(a.value=c),b}}}}}),nb={set:function(a,b,c){return b===!1?m.removeAttr(a,c):rb&&qb||!pb.test(c)?a.setAttribute(!qb&&m.propFix[c]||c,c):a[m.camelCase("default-"+c)]=a[c]=!0,c}},m.each(m.expr.match.bool.source.match(/\w+/g),function(a,b){var c=ob[b]||m.find.attr;ob[b]=rb&&qb||!pb.test(b)?function(a,b,d){var e,f;return d||(f=ob[b],ob[b]=e,e=null!=c(a,b,d)?b.toLowerCase():null,ob[b]=f),e}:function(a,b,c){return c?void 0:a[m.camelCase("default-"+b)]?b.toLowerCase():null}}),rb&&qb||(m.attrHooks.value={set:function(a,b,c){return m.nodeName(a,"input")?void(a.defaultValue=b):mb&&mb.set(a,b,c)}}),qb||(mb={set:function(a,b,c){var d=a.getAttributeNode(c);return d||a.setAttributeNode(d=a.ownerDocument.createAttribute(c)),d.value=b+="","value"===c||b===a.getAttribute(c)?b:void 0}},ob.id=ob.name=ob.coords=function(a,b,c){var d;return c?void 0:(d=a.getAttributeNode(b))&&""!==d.value?d.value:null},m.valHooks.button={get:function(a,b){var c=a.getAttributeNode(b);return c&&c.specified?c.value:void 0},set:mb.set},m.attrHooks.contenteditable={set:function(a,b,c){mb.set(a,""===b?!1:b,c)}},m.each(["width","height"],function(a,b){m.attrHooks[b]={set:function(a,c){return""===c?(a.setAttribute(b,"auto"),c):void 0}}})),k.style||(m.attrHooks.style={get:function(a){return a.style.cssText||void 0},set:function(a,b){return a.style.cssText=b+""}});var sb=/^(?:input|select|textarea|button|object)$/i,tb=/^(?:a|area)$/i;m.fn.extend({prop:function(a,b){return V(this,m.prop,a,b,arguments.length>1)},removeProp:function(a){return a=m.propFix[a]||a,this.each(function(){try{this[a]=void 0,delete this[a]}catch(b){}})}}),m.extend({propFix:{"for":"htmlFor","class":"className"},prop:function(a,b,c){var d,e,f,g=a.nodeType;if(a&&3!==g&&8!==g&&2!==g)return f=1!==g||!m.isXMLDoc(a),f&&(b=m.propFix[b]||b,e=m.propHooks[b]),void 0!==c?e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:a[b]=c:e&&"get"in e&&null!==(d=e.get(a,b))?d:a[b]},propHooks:{tabIndex:{get:function(a){var b=m.find.attr(a,"tabindex");return b?parseInt(b,10):sb.test(a.nodeName)||tb.test(a.nodeName)&&a.href?0:-1}}}}),k.hrefNormalized||m.each(["href","src"],function(a,b){m.propHooks[b]={get:function(a){return a.getAttribute(b,4)}}}),k.optSelected||(m.propHooks.selected={get:function(a){var b=a.parentNode;return b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex),null}}),m.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){m.propFix[this.toLowerCase()]=this}),k.enctype||(m.propFix.enctype="encoding");var ub=/[\t\r\n\f]/g;m.fn.extend({addClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j="string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).addClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(ub," "):" ")){f=0;while(e=b[f++])d.indexOf(" "+e+" ")<0&&(d+=e+" ");g=m.trim(d),c.className!==g&&(c.className=g)}return this},removeClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j=0===arguments.length||"string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).removeClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(ub," "):"")){f=0;while(e=b[f++])while(d.indexOf(" "+e+" ")>=0)d=d.replace(" "+e+" "," ");g=a?m.trim(d):"",c.className!==g&&(c.className=g)}return this},toggleClass:function(a,b){var c=typeof a;return"boolean"==typeof b&&"string"===c?b?this.addClass(a):this.removeClass(a):this.each(m.isFunction(a)?function(c){m(this).toggleClass(a.call(this,c,this.className,b),b)}:function(){if("string"===c){var b,d=0,e=m(this),f=a.match(E)||[];while(b=f[d++])e.hasClass(b)?e.removeClass(b):e.addClass(b)}else(c===K||"boolean"===c)&&(this.className&&m._data(this,"__className__",this.className),this.className=this.className||a===!1?"":m._data(this,"__className__")||"")})},hasClass:function(a){for(var b=" "+a+" ",c=0,d=this.length;d>c;c++)if(1===this[c].nodeType&&(" "+this[c].className+" ").replace(ub," ").indexOf(b)>=0)return!0;return!1}}),m.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){m.fn[b]=function(a,c){return arguments.length>0?this.on(b,null,a,c):this.trigger(b)}}),m.fn.extend({hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return 1===arguments.length?this.off(a,"**"):this.off(b,a||"**",c)}});var vb=m.now(),wb=/\?/,xb=/(,)|(\[|{)|(}|])|"(?:[^"\\\r\n]|\\["\\\/bfnrt]|\\u[\da-fA-F]{4})*"\s*:?|true|false|null|-?(?!0\d)\d+(?:\.\d+|)(?:[eE][+-]?\d+|)/g;m.parseJSON=function(b){if(a.JSON&&a.JSON.parse)return a.JSON.parse(b+"");var c,d=null,e=m.trim(b+"");return e&&!m.trim(e.replace(xb,function(a,b,e,f){return c&&b&&(d=0),0===d?a:(c=e||b,d+=!f-!e,"")}))?Function("return "+e)():m.error("Invalid JSON: "+b)},m.parseXML=function(b){var c,d;if(!b||"string"!=typeof b)return null;try{a.DOMParser?(d=new DOMParser,c=d.parseFromString(b,"text/xml")):(c=new ActiveXObject("Microsoft.XMLDOM"),c.async="false",c.loadXML(b))}catch(e){c=void 0}return c&&c.documentElement&&!c.getElementsByTagName("parsererror").length||m.error("Invalid XML: "+b),c};var yb,zb,Ab=/#.*$/,Bb=/([?&])_=[^&]*/,Cb=/^(.*?):[ \t]*([^\r\n]*)\r?$/gm,Db=/^(?:about|app|app-storage|.+-extension|file|res|widget):$/,Eb=/^(?:GET|HEAD)$/,Fb=/^\/\//,Gb=/^([\w.+-]+:)(?:\/\/(?:[^\/?#]*@|)([^\/?#:]*)(?::(\d+)|)|)/,Hb={},Ib={},Jb="*/".concat("*");try{zb=location.href}catch(Kb){zb=y.createElement("a"),zb.href="",zb=zb.href}yb=Gb.exec(zb.toLowerCase())||[];function Lb(a){return function(b,c){"string"!=typeof b&&(c=b,b="*");var d,e=0,f=b.toLowerCase().match(E)||[];if(m.isFunction(c))while(d=f[e++])"+"===d.charAt(0)?(d=d.slice(1)||"*",(a[d]=a[d]||[]).unshift(c)):(a[d]=a[d]||[]).push(c)}}function Mb(a,b,c,d){var e={},f=a===Ib;function g(h){var i;return e[h]=!0,m.each(a[h]||[],function(a,h){var j=h(b,c,d);return"string"!=typeof j||f||e[j]?f?!(i=j):void 0:(b.dataTypes.unshift(j),g(j),!1)}),i}return g(b.dataTypes[0])||!e["*"]&&g("*")}function Nb(a,b){var c,d,e=m.ajaxSettings.flatOptions||{};for(d in b)void 0!==b[d]&&((e[d]?a:c||(c={}))[d]=b[d]);return c&&m.extend(!0,a,c),a}function Ob(a,b,c){var d,e,f,g,h=a.contents,i=a.dataTypes;while("*"===i[0])i.shift(),void 0===e&&(e=a.mimeType||b.getResponseHeader("Content-Type"));if(e)for(g in h)if(h[g]&&h[g].test(e)){i.unshift(g);break}if(i[0]in c)f=i[0];else{for(g in c){if(!i[0]||a.converters[g+" "+i[0]]){f=g;break}d||(d=g)}f=f||d}return f?(f!==i[0]&&i.unshift(f),c[f]):void 0}function Pb(a,b,c,d){var e,f,g,h,i,j={},k=a.dataTypes.slice();if(k[1])for(g in a.converters)j[g.toLowerCase()]=a.converters[g];f=k.shift();while(f)if(a.responseFields[f]&&(c[a.responseFields[f]]=b),!i&&d&&a.dataFilter&&(b=a.dataFilter(b,a.dataType)),i=f,f=k.shift())if("*"===f)f=i;else if("*"!==i&&i!==f){if(g=j[i+" "+f]||j["* "+f],!g)for(e in j)if(h=e.split(" "),h[1]===f&&(g=j[i+" "+h[0]]||j["* "+h[0]])){g===!0?g=j[e]:j[e]!==!0&&(f=h[0],k.unshift(h[1]));break}if(g!==!0)if(g&&a["throws"])b=g(b);else try{b=g(b)}catch(l){return{state:"parsererror",error:g?l:"No conversion from "+i+" to "+f}}}return{state:"success",data:b}}m.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:zb,type:"GET",isLocal:Db.test(yb[1]),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":Jb,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":m.parseJSON,"text xml":m.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(a,b){return b?Nb(Nb(a,m.ajaxSettings),b):Nb(m.ajaxSettings,a)},ajaxPrefilter:Lb(Hb),ajaxTransport:Lb(Ib),ajax:function(a,b){"object"==typeof a&&(b=a,a=void 0),b=b||{};var c,d,e,f,g,h,i,j,k=m.ajaxSetup({},b),l=k.context||k,n=k.context&&(l.nodeType||l.jquery)?m(l):m.event,o=m.Deferred(),p=m.Callbacks("once memory"),q=k.statusCode||{},r={},s={},t=0,u="canceled",v={readyState:0,getResponseHeader:function(a){var b;if(2===t){if(!j){j={};while(b=Cb.exec(f))j[b[1].toLowerCase()]=b[2]}b=j[a.toLowerCase()]}return null==b?null:b},getAllResponseHeaders:function(){return 2===t?f:null},setRequestHeader:function(a,b){var c=a.toLowerCase();return t||(a=s[c]=s[c]||a,r[a]=b),this},overrideMimeType:function(a){return t||(k.mimeType=a),this},statusCode:function(a){var b;if(a)if(2>t)for(b in a)q[b]=[q[b],a[b]];else v.always(a[v.status]);return this},abort:function(a){var b=a||u;return i&&i.abort(b),x(0,b),this}};if(o.promise(v).complete=p.add,v.success=v.done,v.error=v.fail,k.url=((a||k.url||zb)+"").replace(Ab,"").replace(Fb,yb[1]+"//"),k.type=b.method||b.type||k.method||k.type,k.dataTypes=m.trim(k.dataType||"*").toLowerCase().match(E)||[""],null==k.crossDomain&&(c=Gb.exec(k.url.toLowerCase()),k.crossDomain=!(!c||c[1]===yb[1]&&c[2]===yb[2]&&(c[3]||("http:"===c[1]?"80":"443"))===(yb[3]||("http:"===yb[1]?"80":"443")))),k.data&&k.processData&&"string"!=typeof k.data&&(k.data=m.param(k.data,k.traditional)),Mb(Hb,k,b,v),2===t)return v;h=m.event&&k.global,h&&0===m.active++&&m.event.trigger("ajaxStart"),k.type=k.type.toUpperCase(),k.hasContent=!Eb.test(k.type),e=k.url,k.hasContent||(k.data&&(e=k.url+=(wb.test(e)?"&":"?")+k.data,delete k.data),k.cache===!1&&(k.url=Bb.test(e)?e.replace(Bb,"$1_="+vb++):e+(wb.test(e)?"&":"?")+"_="+vb++)),k.ifModified&&(m.lastModified[e]&&v.setRequestHeader("If-Modified-Since",m.lastModified[e]),m.etag[e]&&v.setRequestHeader("If-None-Match",m.etag[e])),(k.data&&k.hasContent&&k.contentType!==!1||b.contentType)&&v.setRequestHeader("Content-Type",k.contentType),v.setRequestHeader("Accept",k.dataTypes[0]&&k.accepts[k.dataTypes[0]]?k.accepts[k.dataTypes[0]]+("*"!==k.dataTypes[0]?", "+Jb+"; q=0.01":""):k.accepts["*"]);for(d in k.headers)v.setRequestHeader(d,k.headers[d]);if(k.beforeSend&&(k.beforeSend.call(l,v,k)===!1||2===t))return v.abort();u="abort";for(d in{success:1,error:1,complete:1})v[d](k[d]);if(i=Mb(Ib,k,b,v)){v.readyState=1,h&&n.trigger("ajaxSend",[v,k]),k.async&&k.timeout>0&&(g=setTimeout(function(){v.abort("timeout")},k.timeout));try{t=1,i.send(r,x)}catch(w){if(!(2>t))throw w;x(-1,w)}}else x(-1,"No Transport");function x(a,b,c,d){var j,r,s,u,w,x=b;2!==t&&(t=2,g&&clearTimeout(g),i=void 0,f=d||"",v.readyState=a>0?4:0,j=a>=200&&300>a||304===a,c&&(u=Ob(k,v,c)),u=Pb(k,u,v,j),j?(k.ifModified&&(w=v.getResponseHeader("Last-Modified"),w&&(m.lastModified[e]=w),w=v.getResponseHeader("etag"),w&&(m.etag[e]=w)),204===a||"HEAD"===k.type?x="nocontent":304===a?x="notmodified":(x=u.state,r=u.data,s=u.error,j=!s)):(s=x,(a||!x)&&(x="error",0>a&&(a=0))),v.status=a,v.statusText=(b||x)+"",j?o.resolveWith(l,[r,x,v]):o.rejectWith(l,[v,x,s]),v.statusCode(q),q=void 0,h&&n.trigger(j?"ajaxSuccess":"ajaxError",[v,k,j?r:s]),p.fireWith(l,[v,x]),h&&(n.trigger("ajaxComplete",[v,k]),--m.active||m.event.trigger("ajaxStop")))}return v},getJSON:function(a,b,c){return m.get(a,b,c,"json")},getScript:function(a,b){return m.get(a,void 0,b,"script")}}),m.each(["get","post"],function(a,b){m[b]=function(a,c,d,e){return m.isFunction(c)&&(e=e||d,d=c,c=void 0),m.ajax({url:a,type:b,dataType:e,data:c,success:d})}}),m._evalUrl=function(a){return m.ajax({url:a,type:"GET",dataType:"script",async:!1,global:!1,"throws":!0})},m.fn.extend({wrapAll:function(a){if(m.isFunction(a))return this.each(function(b){m(this).wrapAll(a.call(this,b))});if(this[0]){var b=m(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&1===a.firstChild.nodeType)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){return this.each(m.isFunction(a)?function(b){m(this).wrapInner(a.call(this,b))}:function(){var b=m(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=m.isFunction(a);return this.each(function(c){m(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){m.nodeName(this,"body")||m(this).replaceWith(this.childNodes)}).end()}}),m.expr.filters.hidden=function(a){return a.offsetWidth<=0&&a.offsetHeight<=0||!k.reliableHiddenOffsets()&&"none"===(a.style&&a.style.display||m.css(a,"display"))},m.expr.filters.visible=function(a){return!m.expr.filters.hidden(a)};var Qb=/%20/g,Rb=/\[\]$/,Sb=/\r?\n/g,Tb=/^(?:submit|button|image|reset|file)$/i,Ub=/^(?:input|select|textarea|keygen)/i;function Vb(a,b,c,d){var e;if(m.isArray(b))m.each(b,function(b,e){c||Rb.test(a)?d(a,e):Vb(a+"["+("object"==typeof e?b:"")+"]",e,c,d)});else if(c||"object"!==m.type(b))d(a,b);else for(e in b)Vb(a+"["+e+"]",b[e],c,d)}m.param=function(a,b){var c,d=[],e=function(a,b){b=m.isFunction(b)?b():null==b?"":b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};if(void 0===b&&(b=m.ajaxSettings&&m.ajaxSettings.traditional),m.isArray(a)||a.jquery&&!m.isPlainObject(a))m.each(a,function(){e(this.name,this.value)});else for(c in a)Vb(c,a[c],b,e);return d.join("&").replace(Qb,"+")},m.fn.extend({serialize:function(){return m.param(this.serializeArray())},serializeArray:function(){return this.map(function(){var a=m.prop(this,"elements");return a?m.makeArray(a):this}).filter(function(){var a=this.type;return this.name&&!m(this).is(":disabled")&&Ub.test(this.nodeName)&&!Tb.test(a)&&(this.checked||!W.test(a))}).map(function(a,b){var c=m(this).val();return null==c?null:m.isArray(c)?m.map(c,function(a){return{name:b.name,value:a.replace(Sb,"\r\n")}}):{name:b.name,value:c.replace(Sb,"\r\n")}}).get()}}),m.ajaxSettings.xhr=void 0!==a.ActiveXObject?function(){return!this.isLocal&&/^(get|post|head|put|delete|options)$/i.test(this.type)&&Zb()||$b()}:Zb;var Wb=0,Xb={},Yb=m.ajaxSettings.xhr();a.attachEvent&&a.attachEvent("onunload",function(){for(var a in Xb)Xb[a](void 0,!0)}),k.cors=!!Yb&&"withCredentials"in Yb,Yb=k.ajax=!!Yb,Yb&&m.ajaxTransport(function(a){if(!a.crossDomain||k.cors){var b;return{send:function(c,d){var e,f=a.xhr(),g=++Wb;if(f.open(a.type,a.url,a.async,a.username,a.password),a.xhrFields)for(e in a.xhrFields)f[e]=a.xhrFields[e];a.mimeType&&f.overrideMimeType&&f.overrideMimeType(a.mimeType),a.crossDomain||c["X-Requested-With"]||(c["X-Requested-With"]="XMLHttpRequest");for(e in c)void 0!==c[e]&&f.setRequestHeader(e,c[e]+"");f.send(a.hasContent&&a.data||null),b=function(c,e){var h,i,j;if(b&&(e||4===f.readyState))if(delete Xb[g],b=void 0,f.onreadystatechange=m.noop,e)4!==f.readyState&&f.abort();else{j={},h=f.status,"string"==typeof f.responseText&&(j.text=f.responseText);try{i=f.statusText}catch(k){i=""}h||!a.isLocal||a.crossDomain?1223===h&&(h=204):h=j.text?200:404}j&&d(h,i,j,f.getAllResponseHeaders())},a.async?4===f.readyState?setTimeout(b):f.onreadystatechange=Xb[g]=b:b()},abort:function(){b&&b(void 0,!0)}}}});function Zb(){try{return new a.XMLHttpRequest}catch(b){}}function $b(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}m.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/(?:java|ecma)script/},converters:{"text script":function(a){return m.globalEval(a),a}}}),m.ajaxPrefilter("script",function(a){void 0===a.cache&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),m.ajaxTransport("script",function(a){if(a.crossDomain){var b,c=y.head||m("head")[0]||y.documentElement;return{send:function(d,e){b=y.createElement("script"),b.async=!0,a.scriptCharset&&(b.charset=a.scriptCharset),b.src=a.url,b.onload=b.onreadystatechange=function(a,c){(c||!b.readyState||/loaded|complete/.test(b.readyState))&&(b.onload=b.onreadystatechange=null,b.parentNode&&b.parentNode.removeChild(b),b=null,c||e(200,"success"))},c.insertBefore(b,c.firstChild)},abort:function(){b&&b.onload(void 0,!0)}}}});var _b=[],ac=/(=)\?(?=&|$)|\?\?/;m.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var a=_b.pop()||m.expando+"_"+vb++;return this[a]=!0,a}}),m.ajaxPrefilter("json jsonp",function(b,c,d){var e,f,g,h=b.jsonp!==!1&&(ac.test(b.url)?"url":"string"==typeof b.data&&!(b.contentType||"").indexOf("application/x-www-form-urlencoded")&&ac.test(b.data)&&"data");return h||"jsonp"===b.dataTypes[0]?(e=b.jsonpCallback=m.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,h?b[h]=b[h].replace(ac,"$1"+e):b.jsonp!==!1&&(b.url+=(wb.test(b.url)?"&":"?")+b.jsonp+"="+e),b.converters["script json"]=function(){return g||m.error(e+" was not called"),g[0]},b.dataTypes[0]="json",f=a[e],a[e]=function(){g=arguments},d.always(function(){a[e]=f,b[e]&&(b.jsonpCallback=c.jsonpCallback,_b.push(e)),g&&m.isFunction(f)&&f(g[0]),g=f=void 0}),"script"):void 0}),m.parseHTML=function(a,b,c){if(!a||"string"!=typeof a)return null;"boolean"==typeof b&&(c=b,b=!1),b=b||y;var d=u.exec(a),e=!c&&[];return d?[b.createElement(d[1])]:(d=m.buildFragment([a],b,e),e&&e.length&&m(e).remove(),m.merge([],d.childNodes))};var bc=m.fn.load;m.fn.load=function(a,b,c){if("string"!=typeof a&&bc)return bc.apply(this,arguments);var d,e,f,g=this,h=a.indexOf(" ");return h>=0&&(d=m.trim(a.slice(h,a.length)),a=a.slice(0,h)),m.isFunction(b)?(c=b,b=void 0):b&&"object"==typeof b&&(f="POST"),g.length>0&&m.ajax({url:a,type:f,dataType:"html",data:b}).done(function(a){e=arguments,g.html(d?m("<div>").append(m.parseHTML(a)).find(d):a)}).complete(c&&function(a,b){g.each(c,e||[a.responseText,b,a])}),this},m.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(a,b){m.fn[b]=function(a){return this.on(b,a)}}),m.expr.filters.animated=function(a){return m.grep(m.timers,function(b){return a===b.elem}).length};var cc=a.document.documentElement;function dc(a){return m.isWindow(a)?a:9===a.nodeType?a.defaultView||a.parentWindow:!1}m.offset={setOffset:function(a,b,c){var d,e,f,g,h,i,j,k=m.css(a,"position"),l=m(a),n={};"static"===k&&(a.style.position="relative"),h=l.offset(),f=m.css(a,"top"),i=m.css(a,"left"),j=("absolute"===k||"fixed"===k)&&m.inArray("auto",[f,i])>-1,j?(d=l.position(),g=d.top,e=d.left):(g=parseFloat(f)||0,e=parseFloat(i)||0),m.isFunction(b)&&(b=b.call(a,c,h)),null!=b.top&&(n.top=b.top-h.top+g),null!=b.left&&(n.left=b.left-h.left+e),"using"in b?b.using.call(a,n):l.css(n)}},m.fn.extend({offset:function(a){if(arguments.length)return void 0===a?this:this.each(function(b){m.offset.setOffset(this,a,b)});var b,c,d={top:0,left:0},e=this[0],f=e&&e.ownerDocument;if(f)return b=f.documentElement,m.contains(b,e)?(typeof e.getBoundingClientRect!==K&&(d=e.getBoundingClientRect()),c=dc(f),{top:d.top+(c.pageYOffset||b.scrollTop)-(b.clientTop||0),left:d.left+(c.pageXOffset||b.scrollLeft)-(b.clientLeft||0)}):d},position:function(){if(this[0]){var a,b,c={top:0,left:0},d=this[0];return"fixed"===m.css(d,"position")?b=d.getBoundingClientRect():(a=this.offsetParent(),b=this.offset(),m.nodeName(a[0],"html")||(c=a.offset()),c.top+=m.css(a[0],"borderTopWidth",!0),c.left+=m.css(a[0],"borderLeftWidth",!0)),{top:b.top-c.top-m.css(d,"marginTop",!0),left:b.left-c.left-m.css(d,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||cc;while(a&&!m.nodeName(a,"html")&&"static"===m.css(a,"position"))a=a.offsetParent;return a||cc})}}),m.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(a,b){var c=/Y/.test(b);m.fn[a]=function(d){return V(this,function(a,d,e){var f=dc(a);return void 0===e?f?b in f?f[b]:f.document.documentElement[d]:a[d]:void(f?f.scrollTo(c?m(f).scrollLeft():e,c?e:m(f).scrollTop()):a[d]=e)},a,d,arguments.length,null)}}),m.each(["top","left"],function(a,b){m.cssHooks[b]=La(k.pixelPosition,function(a,c){return c?(c=Ja(a,b),Ha.test(c)?m(a).position()[b]+"px":c):void 0})}),m.each({Height:"height",Width:"width"},function(a,b){m.each({padding:"inner"+a,content:b,"":"outer"+a},function(c,d){m.fn[d]=function(d,e){var f=arguments.length&&(c||"boolean"!=typeof d),g=c||(d===!0||e===!0?"margin":"border");return V(this,function(b,c,d){var e;return m.isWindow(b)?b.document.documentElement["client"+a]:9===b.nodeType?(e=b.documentElement,Math.max(b.body["scroll"+a],e["scroll"+a],b.body["offset"+a],e["offset"+a],e["client"+a])):void 0===d?m.css(b,c,g):m.style(b,c,d,g)},b,f?d:void 0,f,null)}})}),m.fn.size=function(){return this.length},m.fn.andSelf=m.fn.addBack,"function"==typeof define&&define.amd&&define("jquery",[],function(){return m});var ec=a.jQuery,fc=a.$;return m.noConflict=function(b){return a.$===m&&(a.$=fc),b&&a.jQuery===m&&(a.jQuery=ec),m},typeof b===K&&(a.jQuery=a.$=m),m});
</script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style type="text/css">html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}article,aside,details,figcaption,figure,footer,header,hgroup,main,menu,nav,section,summary{display:block}audio,canvas,progress,video{display:inline-block;vertical-align:baseline}audio:not([controls]){display:none;height:0}[hidden],template{display:none}a{background-color:transparent}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}dfn{font-style:italic}h1{margin:.67em 0;font-size:2em}mark{color:#000;background:#ff0}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}img{border:0}svg:not(:root){overflow:hidden}figure{margin:1em 40px}hr{height:0;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box}pre{overflow:auto}code,kbd,pre,samp{font-family:monospace,monospace;font-size:1em}button,input,optgroup,select,textarea{margin:0;font:inherit;color:inherit}button{overflow:visible}button,select{text-transform:none}button,html input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer}button[disabled],html input[disabled]{cursor:default}button::-moz-focus-inner,input::-moz-focus-inner{padding:0;border:0}input{line-height:normal}input[type=checkbox],input[type=radio]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0}input[type=number]::-webkit-inner-spin-button,input[type=number]::-webkit-outer-spin-button{height:auto}input[type=search]{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;-webkit-appearance:textfield}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}fieldset{padding:.35em .625em .75em;margin:0 2px;border:1px solid silver}legend{padding:0;border:0}textarea{overflow:auto}optgroup{font-weight:700}table{border-spacing:0;border-collapse:collapse}td,th{padding:0}@media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}abbr[title]:after{content:" (" attr(title) ")"}a[href^="javascript:"]:after,a[href^="#"]:after{content:""}blockquote,pre{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}.navbar{display:none}.btn>.caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #ddd!important}}@font-face{font-family:'Glyphicons Halflings';src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B/EnCYu/TgCGmr7bMh8GfYL+BfcLvB0gRagC09w9elfldaIy/hNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4/BO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r+vnsV+372uf1xBLq4qU/45fTuqaAP+pssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ+Azok7B7O/f6J8AzYBySZQB/QHYUSA+EeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ+PKRWyFHHmg1Wi/6xzUgA0LREoKJChwnQa9B+5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl+KdDPbI6Ag4vLr+hjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq+MhrGxDLak0PrwYzSXtcuyhXEhwOYofiW+EcI/jw8P6IY6ed+etAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji+zDbo8x8HyIRUbXnwUcklFv51fvTymiV+MXLSmGH9d9+aXpD5X6lao41anWGig7IwIdnoBY2ht/pO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi+7u/jpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf+61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP/OfKnlk/Lkaid/O2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu/gFtuW0wR4cgd+ZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ+HW06H+tx+bQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543/FV6klQ6Tv1OoZGXLv0igKrl/CmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF/0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5/xTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ/1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb/Veyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6/xM+4Y67ngNBknxIPwuppgIhFcwJyr6EIj+LzNj/mfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h/C/PkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn/pdpgHKNGrGIdkRK+KPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho+EIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA+q/j9m3LM/O7WJka4tSidVCjsvo2lQ/2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3/5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho/bcwQdeboqfQartuU3CsCf+cXkgYAqp/0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid/NIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A+TRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC+JE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW/WDHA60cYFaI/PjpzquUqdaYGcIq+mLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC+1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A+P/oFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E/vwOiKxRtCWsDM+eTHUrmwrCK5BIfMzGkD+0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3/kFutpQGNc3pCR7gvC4sgwbupDu3DyEN+W6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc+h1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0+bC5zgpGz7Io+mjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO/ENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn+3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif+pZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx/k3QgnAFSq27/2i4GEBA+UvTJKK/9eISNvG46Em5RZfjTYLdeD8kdXHyrwId/DQZUaMCY4gGbke2C8vfjgV/Y9kkRQOJIn/xM9INZSpiBnqX0Q9GlQPpPKAyO5y+W5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W/N6l54qOynCqD3DpWQ+mpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE+7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv/8lbTIkkYpqKM9VOhp65ktYk+Q46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI+ejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5+7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu+vtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY/iOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v+6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ/qDQK+bfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam+WpHG+0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3+J1eCBay8IYZ0wQRKGAqvCuZ/UgbQPyllosq+XtfKIZOzmeJqRazpmmoP/76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t/I4Jktu0XSgifO2ozFOiwd/0SssJDn0dn4xqk4GDTTKX73/wQyBLdqgJ+Wx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy/qqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh/wkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml/R4yrzow1Q2A5G+kzo/RhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj/UMMc34IBqTKLDTp76WzL/dMjCxK7MjhiGjeYAC/kj/jY/Rde7hpSM1xChrog6yZ7OWTuD56xBJnGFE+pT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G+9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36/dBySis4m9/DR8izaLJW6bWCkVgm5T+ius3ZXq4xI+GnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te/r4dPYMCl5qtiHNTn+TPbh1jCBHH+dMJNhwNgs3nT+OhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF+uRIWyXjQMAs2chdpaKPNaB+kSezYt0+CA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6/TzoA1/ZBG9bIUVHLAbi/kdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh+epgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF+zkJHIA7PwCDk1gGVmGUZSSoPhNf+Tklauz98QofOlCIQ/tCD4dosHYPqtPCXB3agggQQIqQJsSkB+qn0rkQ1toJjON/OtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU+TQ6NIw3ej+AtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb++W6Uk4q6F7/rg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK+EfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l+wM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l+DMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg+EWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb+Mw76Qy29iQ5up/X7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa/xnsMYcIO/vEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz/Chp/Vlpj2P7jJQmQRwGnltkTV5dbF9fE3/fxoSqTROgq9wFUlbuYzYcasE0ouzBo+dDCDzxKAfhbAZYxQiHrLzV2iVexnDX/QnT1fsT/xuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR+CtGdkPwYN2o7DOw/VGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO/f9Qua+pDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD/prQ84B1pVGkIpVUAHCG+iz3Bn3qm2AVrYcYWhock4jso5+J7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk+UILT7+VoX5mdxxA5fS42gISQVi/HTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8/6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk/wdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt+Su9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ/BfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk/gc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B//lHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO+CvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd/p1gi/07h8qfwHrByuSxglc9cI4QIg2oqvC/qm0i7tjPLTgDhoWTAKDO2ONW5oe+/eKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2/j4ODUwRkqrtBBCrDsDpt8jhZdXoy/1BCqw3sSGhgGGy0a5Jw6BP/TExoCmNFYjZl248A0osgPyGEmRA+fAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd/ocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE/EZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ/Ugd/JZQK8lvAm43uDRAbyW8gZ+ZGq0EVerVGUKUSm/Idn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ+QATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm+oOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724+zUQ7+vkCpZB+pGA562hYQiDxHVWOq0oDQl/QsoiY+cuI7iWq/ZIBtHcXJ7kks+h2fCNUPA82BzjnqktNts+RLdk1VSu+tqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy/44XYXdI5noQoRcvjZ1RMPACRqYg2V1+OwOepcOknRLLFdYgTkT5UApt/JhLM3jeFYprZV+Zow2g8fP+U68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr/A1SY9dXFz4RjzoU9ExfJCmx/I9FKEGT3n2cmzl2X42L3Jh+AbQq6sA+Ss1kitoa4TAYgKHaoybHUDJ51oETdeI/9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB+Un44zExFE4vLytcu5NwpWrUxO/0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL+BDqMyaN3RJPh/anbx+Iv+qgQdAa3M9Z5JmvYlh4qop+Ho1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs+gs37sFvi0PPVvA5dnCBgILTwoKd/+DoL9F6inlM7H4rOTzD79KJgKlZO/Zgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno+gBoKVXgIL/VI8dB1O5o/R3Suez/gD7M781ShjKpIIORM/nxG+jjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4/QftDbEn+AucIr1oxrLabRj9q4ae0+fXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd+eNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz/6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT+mAUmiYbV3YQVqFVp9dorv+TsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp+xJyYLv1OsxQCZwTB4a8BZ/5EdxTBJthApqyfd9u3ifr/WILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj/qn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9+W8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4/YtowhEmTs0vrvlD/CrisnoBNDAcUi/teY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O/4DcgV/dZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk+tgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb/n7qwhvGnrHuf5bX6Vh/n3xffU3PeHdR+FA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E+YbfL0adwNtHP7dT7t7b46DVZIkzaRJOM+S6KcrzYVg+T3wSRFRQashjfU18NutrKa/7PXbtuJvpIjbgPeqd+pjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir/8tNXJ/OsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG+FZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx/GdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD/Qi/EmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4/asthNMK5UQKCOhU97oaOYNGsTah+jfCKsZnTRn5TbhFX8ghg8CBYt/BjeYYYUrtUZ5jVij/op7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM+3SW6Opll/wgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy+QbSKVJcqkia+GvDefFwMOmgnD7h81TUtMn+mRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d/QK7Cr4uoCeOQ7/8JfKT77KiDzLImESHw/0wf73QeHu74hxv7uihi4fTX+XEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo/oVH5ww5OzLFsiTPDns7fS6EURSSWd/92BxMYQ8sBaH+j+wthQPdVgDGpTfi+JQIWMD8xKqULliRH01rTeyF8x8q/GBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE+/7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV/yTDRRP8Y2ww5RO6d2D94o+6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt+kqdae76ViWe3STan69yaF9+fESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw/A1zEdjWquIsQXXGIVEH0thC5M+W9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF+RVmI8L4HUYk4x+67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8/p5qIQrEo/H+1l/0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud+tJUfdaZ4CWNijzZtlRa8+CkmO/EwHYfPZFU/hzjFWH7vnzHRMo+aF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce/+/9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs/GWJS6SwEN/ULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e+G2zor8l+YaMxSEomDdLHGcD6YVQPegTaA74H8+V4WvJkFUrjMLGLlvSZQWvi8/QA7yzQ8GPno//5SJHRP/OqKObPCo81s/+6WgLqykYpGAgQZhVDEBPXWgU/WzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M+GWn6ASobIWC+LbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg/kpf3+CnAXKiMgIE8Jk/Mhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo+RJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B+SkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE+VMd3b1fhCynD0pQNhCG6/WCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp/YbHjo++7/Wj8S4YNa+ZdqAw1hDrKWFXv9+zaXpf8ZTDSbiqsxnwN/CzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m/NCW/HILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO+5EJ7Z6bCiRoPedRZ/P0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn/LvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl+11PoFYnNv2HwAODeNRkHj+8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij+bsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur/eWHjiB7SOVdqMAVmpBvfRiebsFjger7DC+8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l+kXRZ0KLZaGsFSIdQz/HXDxf3/TE30+DgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH+RptvRMVRaahu4cySjS3P5wxAUCPkmn+rhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik/zbrTQk5KmgxCg/f45L0jywebOWUYFJQAJia7XzCV0x89rpp/f3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl+5tfUWZNwBpEPXghzbBggYCw/dhy0ntds2yeHCDKkF/YxQjNIL/F/37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD+qNOhwMlfARQUdJ2tUX+MNJqOwIciWalZsmEjt07tfa8ma4cji9sqz+Q9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe+jGDiNJQLWnfx+drTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf/bkvo8PLVBsZl152y5S8+HRDfZIMCbYZ1WDp4yrdchOJw8k6R+/2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB+M4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5/iYp3ZdrCf7fL+en+sIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv+NRiJc8JAKqqgCA/PNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN/hCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj+bYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5/zBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8/i+jHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2+JrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk+Mz7wwstg6RFZb+TZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm/7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk+9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx+whVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC+XYuqMBMUun5YezKbRKmEPwuK+CLzijPEQgfhahQswBBLfg/GBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX+RCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk/4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug/AbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM+Zu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX/pcsfwXbLze2+D+u33OGBoJyAAL3jn3RuEcdp5If8O+a4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT++tm+haBCikRUUMrMhYKZJKYoVuv/bsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV/DMUxd9uFZmBfKXMCn/SqkWJyKPnT6lq+4zBZni6fYRByJn6OK+OgPBGRAJluwGSk4wxjOOzyce/PKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO/cEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm+bddRQu5F9s0XftGEJ9JSuSk+ZachCbdU45fEqbugzTIUokwoAKvpUQF/CvLbWW5BNQFqFkJg2f30E/48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J+1pT0tLkvFVZaNzfhs/Kd3+A9YsImlO4XK4vpCo/elHQi/9gkFg07xxnuXLt21unCIpDV+bbRxb7FC6nWYTsMFF8+1LUg4JFjVt3vqbuhHmDKbgQ4e+RGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB/KVijd1ARWkFEf3yiUw1v/WaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G+ZManTqDLPjyrOse7WiiwOJCG+J0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj/6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j/N46f+S2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb/0jQbaHJ2YRK8A+ls6WMhWmpCXYG5jqapGs5/eOJErxi2/2KWVHiPellTgh/fNl/2KYPKb7DUcAg+mCOPQFCiU9Mq/WLcU1xxC8aLePFZZlE+PCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh/nFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW+oKFLvpyvTBMM69tN1Ydwv1LIEhHsC+ueVG+w+kyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw+H/AuOx+aH+tBL88H57D0MsqyiZxhOEQkF/8DR1d2hSPMj/sNOa5rxcUnBgH8ictv2J+cb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd/PjMMtQfyDNZsOPd6XcAsnBE/mRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl/XPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG/VanIvcwycVA7+BE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP/MVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX/5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c/F1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J/5wkjpkre727p5PTRX5FGrSBIfJqhJE/IS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug+oRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U/5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7/BQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN+nA7pvF78/RII5ZHA09OAiE/66MF6HQ+qVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe+hXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz+JV/4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB+K3wBP/ineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q/9uocGsx41O4IZhViw/2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY/cQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE/om7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi/caHSM3FPRGRf7dB7YC+cD2ho6oL2zGDCkjlf/DFoQVl8GS/56wur3rdV6ggtzZW60MRB3g+U1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg/gBQIZMG/YcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK/G7F3mUc3GOAKqh60zM0v34v+ELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND+/GTk6M56Ig4yMsU6LUW1EWE+fIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP/IoRIZ/F6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg/RrPD/d3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl+Mu4xf0ezqeXD2PtPDnwMPo86sbwDV+9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD/OwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d/UfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH+14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC+OA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6+vAUUBoGhY3CT2tgwehdPqU/4Q7ZLYvhRl/ogOvR9O2+wkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn/dFSWBWzQ/VYk+Gezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n/yJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET/Hh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j+DXfpi12m1RbzYLg9J2wFergEwOxFyD0/JstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT/cUP6pE/mujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB+HEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu+vqQ02+KpJBjaLt9ye1Ab+BbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC+UwkXOoAjneU/xHplMQo2cXUlrVNqJYczgYlaOEczVCs/OCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38+xsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9+b8fH6+b8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj/0Q7PFUcC8hDrxESWdfgFRm+7vvWbkEppHB4T/1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y+g3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR/Rrs/JLKXgEx+qkmeDlFOD1/yTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW+xz+5FElFxWB28VjYIGZ0Yd+5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ+lT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ+2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1+JpI9psyNYIFuJogZa0/1AhOWdlHQxdAgbwacsHqPZo8u/ngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2+RdM+MAaYaZ0Y/ADkbNCZuAyAVQa2OcXOeICmDn9Q/eFkDeFQg5MgHEDXq/tVjj+jtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2/Bc0UxvseQCO2pQ2i+Krfhu/WeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt/U0Wf+phiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7+ExseJauyqo30hs+1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j/e1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la/QCTiVelFnU6O/GCvykqS/wZJDhKN9gBtSOp/1SP5VRgJcoVj+kmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn+8p6+vBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H+gDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D/GvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P+jAgN5TB3haSifDcApp6yymEi6Ij/GsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x/pChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11/yxyw0UnGig3MFdZklN5FI/qiT65T+jOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5+bqWiAYiAv6Jsf79/VUs4cIl+n6+WOjcgB/2l5TreoAV2717JzZbQIR0W1cl/dEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW/PhoawJDrGAP0JYWHgAVUByo/bGdiv2T2EMg8gsS14/rAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq+SCcTSx5NDtbFwNlh8VhjGGDu7JG5/TAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9+ogD8Kk/W7QoRN1UWPqM4+xdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c+4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS+o3F8YVVeikw13w+OEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX++7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9/O53DYi/5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD+P8sNh6e+XYHJXT/lkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp+pT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS/2ToPjqkaq62/7WFG8advGlRRqxB9diP07JrXowKR9tpRa+jGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq+nsp3YMuXt/GkXxLx/P6+ZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar+gMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud+YlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl/zh575R5rsrmRnKAzq4POFdgbYBuEviM4+LVC15ssLNFghbTtHWerS1hDt5s4qkLUha/qpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI+yjEldJfSo4y0QhG4i4IwkRFGcjWY8+EzgYYJUK7BXQksLxAww/YYWBMhJILB9e8ePEJ4OP7z+4/wOQDl64iOYDp26DaONPxpKtBxq/aTzRGarm3VkPYTLJKx6Z/Mw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ+lPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k/UuGkNpP1DBI5ch/EehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv+J41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI+HYexTUevLUeta4/DqKrbMVS+Yqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ++KkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9/Wx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k/90B8+yRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB/mQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go/n6j0cS+a2gEU8gIHJ+BwfgZX4GL+Bd/gW34FZ+BS/gUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh/F062yJ7AAAAEDAWAAABWhJ+KPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg);src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B/EnCYu/TgCGmr7bMh8GfYL+BfcLvB0gRagC09w9elfldaIy/hNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4/BO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r+vnsV+372uf1xBLq4qU/45fTuqaAP+pssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ+Azok7B7O/f6J8AzYBySZQB/QHYUSA+EeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ+PKRWyFHHmg1Wi/6xzUgA0LREoKJChwnQa9B+5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl+KdDPbI6Ag4vLr+hjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq+MhrGxDLak0PrwYzSXtcuyhXEhwOYofiW+EcI/jw8P6IY6ed+etAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji+zDbo8x8HyIRUbXnwUcklFv51fvTymiV+MXLSmGH9d9+aXpD5X6lao41anWGig7IwIdnoBY2ht/pO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi+7u/jpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf+61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP/OfKnlk/Lkaid/O2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu/gFtuW0wR4cgd+ZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ+HW06H+tx+bQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543/FV6klQ6Tv1OoZGXLv0igKrl/CmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF/0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5/xTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ/1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb/Veyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6/xM+4Y67ngNBknxIPwuppgIhFcwJyr6EIj+LzNj/mfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h/C/PkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn/pdpgHKNGrGIdkRK+KPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho+EIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA+q/j9m3LM/O7WJka4tSidVCjsvo2lQ/2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3/5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho/bcwQdeboqfQartuU3CsCf+cXkgYAqp/0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid/NIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A+TRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC+JE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW/WDHA60cYFaI/PjpzquUqdaYGcIq+mLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC+1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A+P/oFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E/vwOiKxRtCWsDM+eTHUrmwrCK5BIfMzGkD+0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3/kFutpQGNc3pCR7gvC4sgwbupDu3DyEN+W6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc+h1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0+bC5zgpGz7Io+mjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO/ENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn+3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif+pZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx/k3QgnAFSq27/2i4GEBA+UvTJKK/9eISNvG46Em5RZfjTYLdeD8kdXHyrwId/DQZUaMCY4gGbke2C8vfjgV/Y9kkRQOJIn/xM9INZSpiBnqX0Q9GlQPpPKAyO5y+W5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W/N6l54qOynCqD3DpWQ+mpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE+7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv/8lbTIkkYpqKM9VOhp65ktYk+Q46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI+ejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5+7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu+vtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY/iOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v+6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ/qDQK+bfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam+WpHG+0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3+J1eCBay8IYZ0wQRKGAqvCuZ/UgbQPyllosq+XtfKIZOzmeJqRazpmmoP/76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t/I4Jktu0XSgifO2ozFOiwd/0SssJDn0dn4xqk4GDTTKX73/wQyBLdqgJ+Wx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy/qqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh/wkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml/R4yrzow1Q2A5G+kzo/RhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj/UMMc34IBqTKLDTp76WzL/dMjCxK7MjhiGjeYAC/kj/jY/Rde7hpSM1xChrog6yZ7OWTuD56xBJnGFE+pT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G+9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36/dBySis4m9/DR8izaLJW6bWCkVgm5T+ius3ZXq4xI+GnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te/r4dPYMCl5qtiHNTn+TPbh1jCBHH+dMJNhwNgs3nT+OhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF+uRIWyXjQMAs2chdpaKPNaB+kSezYt0+CA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6/TzoA1/ZBG9bIUVHLAbi/kdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh+epgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF+zkJHIA7PwCDk1gGVmGUZSSoPhNf+Tklauz98QofOlCIQ/tCD4dosHYPqtPCXB3agggQQIqQJsSkB+qn0rkQ1toJjON/OtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU+TQ6NIw3ej+AtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb++W6Uk4q6F7/rg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK+EfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l+wM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l+DMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg+EWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb+Mw76Qy29iQ5up/X7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa/xnsMYcIO/vEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz/Chp/Vlpj2P7jJQmQRwGnltkTV5dbF9fE3/fxoSqTROgq9wFUlbuYzYcasE0ouzBo+dDCDzxKAfhbAZYxQiHrLzV2iVexnDX/QnT1fsT/xuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR+CtGdkPwYN2o7DOw/VGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO/f9Qua+pDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD/prQ84B1pVGkIpVUAHCG+iz3Bn3qm2AVrYcYWhock4jso5+J7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk+UILT7+VoX5mdxxA5fS42gISQVi/HTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8/6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk/wdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt+Su9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ/BfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk/gc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B//lHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO+CvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd/p1gi/07h8qfwHrByuSxglc9cI4QIg2oqvC/qm0i7tjPLTgDhoWTAKDO2ONW5oe+/eKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2/j4ODUwRkqrtBBCrDsDpt8jhZdXoy/1BCqw3sSGhgGGy0a5Jw6BP/TExoCmNFYjZl248A0osgPyGEmRA+fAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd/ocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE/EZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ/Ugd/JZQK8lvAm43uDRAbyW8gZ+ZGq0EVerVGUKUSm/Idn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ+QATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm+oOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724+zUQ7+vkCpZB+pGA562hYQiDxHVWOq0oDQl/QsoiY+cuI7iWq/ZIBtHcXJ7kks+h2fCNUPA82BzjnqktNts+RLdk1VSu+tqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy/44XYXdI5noQoRcvjZ1RMPACRqYg2V1+OwOepcOknRLLFdYgTkT5UApt/JhLM3jeFYprZV+Zow2g8fP+U68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr/A1SY9dXFz4RjzoU9ExfJCmx/I9FKEGT3n2cmzl2X42L3Jh+AbQq6sA+Ss1kitoa4TAYgKHaoybHUDJ51oETdeI/9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB+Un44zExFE4vLytcu5NwpWrUxO/0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL+BDqMyaN3RJPh/anbx+Iv+qgQdAa3M9Z5JmvYlh4qop+Ho1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs+gs37sFvi0PPVvA5dnCBgILTwoKd/+DoL9F6inlM7H4rOTzD79KJgKlZO/Zgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno+gBoKVXgIL/VI8dB1O5o/R3Suez/gD7M781ShjKpIIORM/nxG+jjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4/QftDbEn+AucIr1oxrLabRj9q4ae0+fXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd+eNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz/6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT+mAUmiYbV3YQVqFVp9dorv+TsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp+xJyYLv1OsxQCZwTB4a8BZ/5EdxTBJthApqyfd9u3ifr/WILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj/qn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9+W8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4/YtowhEmTs0vrvlD/CrisnoBNDAcUi/teY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O/4DcgV/dZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk+tgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb/n7qwhvGnrHuf5bX6Vh/n3xffU3PeHdR+FA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E+YbfL0adwNtHP7dT7t7b46DVZIkzaRJOM+S6KcrzYVg+T3wSRFRQashjfU18NutrKa/7PXbtuJvpIjbgPeqd+pjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir/8tNXJ/OsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG+FZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx/GdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD/Qi/EmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4/asthNMK5UQKCOhU97oaOYNGsTah+jfCKsZnTRn5TbhFX8ghg8CBYt/BjeYYYUrtUZ5jVij/op7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM+3SW6Opll/wgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy+QbSKVJcqkia+GvDefFwMOmgnD7h81TUtMn+mRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d/QK7Cr4uoCeOQ7/8JfKT77KiDzLImESHw/0wf73QeHu74hxv7uihi4fTX+XEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo/oVH5ww5OzLFsiTPDns7fS6EURSSWd/92BxMYQ8sBaH+j+wthQPdVgDGpTfi+JQIWMD8xKqULliRH01rTeyF8x8q/GBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE+/7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV/yTDRRP8Y2ww5RO6d2D94o+6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt+kqdae76ViWe3STan69yaF9+fESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw/A1zEdjWquIsQXXGIVEH0thC5M+W9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF+RVmI8L4HUYk4x+67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8/p5qIQrEo/H+1l/0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud+tJUfdaZ4CWNijzZtlRa8+CkmO/EwHYfPZFU/hzjFWH7vnzHRMo+aF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce/+/9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs/GWJS6SwEN/ULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e+G2zor8l+YaMxSEomDdLHGcD6YVQPegTaA74H8+V4WvJkFUrjMLGLlvSZQWvi8/QA7yzQ8GPno//5SJHRP/OqKObPCo81s/+6WgLqykYpGAgQZhVDEBPXWgU/WzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M+GWn6ASobIWC+LbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg/kpf3+CnAXKiMgIE8Jk/Mhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo+RJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B+SkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE+VMd3b1fhCynD0pQNhCG6/WCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp/YbHjo++7/Wj8S4YNa+ZdqAw1hDrKWFXv9+zaXpf8ZTDSbiqsxnwN/CzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m/NCW/HILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO+5EJ7Z6bCiRoPedRZ/P0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn/LvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl+11PoFYnNv2HwAODeNRkHj+8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij+bsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur/eWHjiB7SOVdqMAVmpBvfRiebsFjger7DC+8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l+kXRZ0KLZaGsFSIdQz/HXDxf3/TE30+DgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH+RptvRMVRaahu4cySjS3P5wxAUCPkmn+rhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik/zbrTQk5KmgxCg/f45L0jywebOWUYFJQAJia7XzCV0x89rpp/f3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl+5tfUWZNwBpEPXghzbBggYCw/dhy0ntds2yeHCDKkF/YxQjNIL/F/37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD+qNOhwMlfARQUdJ2tUX+MNJqOwIciWalZsmEjt07tfa8ma4cji9sqz+Q9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe+jGDiNJQLWnfx+drTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf/bkvo8PLVBsZl152y5S8+HRDfZIMCbYZ1WDp4yrdchOJw8k6R+/2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB+M4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5/iYp3ZdrCf7fL+en+sIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv+NRiJc8JAKqqgCA/PNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN/hCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj+bYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5/zBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8/i+jHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2+JrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk+Mz7wwstg6RFZb+TZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm/7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk+9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx+whVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC+XYuqMBMUun5YezKbRKmEPwuK+CLzijPEQgfhahQswBBLfg/GBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX+RCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk/4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug/AbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM+Zu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX/pcsfwXbLze2+D+u33OGBoJyAAL3jn3RuEcdp5If8O+a4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT++tm+haBCikRUUMrMhYKZJKYoVuv/bsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV/DMUxd9uFZmBfKXMCn/SqkWJyKPnT6lq+4zBZni6fYRByJn6OK+OgPBGRAJluwGSk4wxjOOzyce/PKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO/cEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm+bddRQu5F9s0XftGEJ9JSuSk+ZachCbdU45fEqbugzTIUokwoAKvpUQF/CvLbWW5BNQFqFkJg2f30E/48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J+1pT0tLkvFVZaNzfhs/Kd3+A9YsImlO4XK4vpCo/elHQi/9gkFg07xxnuXLt21unCIpDV+bbRxb7FC6nWYTsMFF8+1LUg4JFjVt3vqbuhHmDKbgQ4e+RGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB/KVijd1ARWkFEf3yiUw1v/WaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G+ZManTqDLPjyrOse7WiiwOJCG+J0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj/6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j/N46f+S2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb/0jQbaHJ2YRK8A+ls6WMhWmpCXYG5jqapGs5/eOJErxi2/2KWVHiPellTgh/fNl/2KYPKb7DUcAg+mCOPQFCiU9Mq/WLcU1xxC8aLePFZZlE+PCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh/nFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW+oKFLvpyvTBMM69tN1Ydwv1LIEhHsC+ueVG+w+kyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw+H/AuOx+aH+tBL88H57D0MsqyiZxhOEQkF/8DR1d2hSPMj/sNOa5rxcUnBgH8ictv2J+cb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd/PjMMtQfyDNZsOPd6XcAsnBE/mRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl/XPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG/VanIvcwycVA7+BE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP/MVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX/5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c/F1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J/5wkjpkre727p5PTRX5FGrSBIfJqhJE/IS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug+oRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U/5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7/BQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN+nA7pvF78/RII5ZHA09OAiE/66MF6HQ+qVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe+hXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz+JV/4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB+K3wBP/ineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q/9uocGsx41O4IZhViw/2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY/cQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE/om7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi/caHSM3FPRGRf7dB7YC+cD2ho6oL2zGDCkjlf/DFoQVl8GS/56wur3rdV6ggtzZW60MRB3g+U1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg/gBQIZMG/YcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK/G7F3mUc3GOAKqh60zM0v34v+ELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND+/GTk6M56Ig4yMsU6LUW1EWE+fIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP/IoRIZ/F6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg/RrPD/d3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl+Mu4xf0ezqeXD2PtPDnwMPo86sbwDV+9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD/OwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d/UfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH+14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC+OA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6+vAUUBoGhY3CT2tgwehdPqU/4Q7ZLYvhRl/ogOvR9O2+wkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn/dFSWBWzQ/VYk+Gezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n/yJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET/Hh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j+DXfpi12m1RbzYLg9J2wFergEwOxFyD0/JstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT/cUP6pE/mujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB+HEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu+vqQ02+KpJBjaLt9ye1Ab+BbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC+UwkXOoAjneU/xHplMQo2cXUlrVNqJYczgYlaOEczVCs/OCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38+xsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9+b8fH6+b8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj/0Q7PFUcC8hDrxESWdfgFRm+7vvWbkEppHB4T/1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y+g3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR/Rrs/JLKXgEx+qkmeDlFOD1/yTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW+xz+5FElFxWB28VjYIGZ0Yd+5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ+lT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ+2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1+JpI9psyNYIFuJogZa0/1AhOWdlHQxdAgbwacsHqPZo8u/ngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2+RdM+MAaYaZ0Y/ADkbNCZuAyAVQa2OcXOeICmDn9Q/eFkDeFQg5MgHEDXq/tVjj+jtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2/Bc0UxvseQCO2pQ2i+Krfhu/WeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt/U0Wf+phiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7+ExseJauyqo30hs+1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j/e1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la/QCTiVelFnU6O/GCvykqS/wZJDhKN9gBtSOp/1SP5VRgJcoVj+kmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn+8p6+vBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H+gDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D/GvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P+jAgN5TB3haSifDcApp6yymEi6Ij/GsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x/pChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11/yxyw0UnGig3MFdZklN5FI/qiT65T+jOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5+bqWiAYiAv6Jsf79/VUs4cIl+n6+WOjcgB/2l5TreoAV2717JzZbQIR0W1cl/dEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW/PhoawJDrGAP0JYWHgAVUByo/bGdiv2T2EMg8gsS14/rAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq+SCcTSx5NDtbFwNlh8VhjGGDu7JG5/TAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9+ogD8Kk/W7QoRN1UWPqM4+xdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c+4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS+o3F8YVVeikw13w+OEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX++7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9/O53DYi/5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD+P8sNh6e+XYHJXT/lkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp+pT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS/2ToPjqkaq62/7WFG8advGlRRqxB9diP07JrXowKR9tpRa+jGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq+nsp3YMuXt/GkXxLx/P6+ZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar+gMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud+YlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl/zh575R5rsrmRnKAzq4POFdgbYBuEviM4+LVC15ssLNFghbTtHWerS1hDt5s4qkLUha/qpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI+yjEldJfSo4y0QhG4i4IwkRFGcjWY8+EzgYYJUK7BXQksLxAww/YYWBMhJILB9e8ePEJ4OP7z+4/wOQDl64iOYDp26DaONPxpKtBxq/aTzRGarm3VkPYTLJKx6Z/Mw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ+lPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k/UuGkNpP1DBI5ch/EehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv+J41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI+HYexTUevLUeta4/DqKrbMVS+Yqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ++KkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9/Wx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k/90B8+yRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB/mQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go/n6j0cS+a2gEU8gIHJ+BwfgZX4GL+Bd/gW34FZ+BS/gUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh/F062yJ7AAAAEDAWAAABWhJ+KPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg) format('embedded-opentype'),url(data:application/font-woff;base64,d09GRgABAAAAAFuAAA8AAAAAsVwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAABWAAAABwAAAAcbSqX3EdERUYAAAF0AAAAHwAAACABRAAET1MvMgAAAZQAAABFAAAAYGe5a4ljbWFwAAAB3AAAAsAAAAZy2q3jgWN2dCAAAAScAAAABAAAAAQAKAL4Z2FzcAAABKAAAAAIAAAACP//AANnbHlmAAAEqAAATRcAAJSkfV3Cb2hlYWQAAFHAAAAANAAAADYFTS/YaGhlYQAAUfQAAAAcAAAAJApEBBFobXR4AABSEAAAAU8AAAN00scgYGxvY2EAAFNgAAACJwAAAjBv+5XObWF4cAAAVYgAAAAgAAAAIAFqANhuYW1lAABVqAAAAZ4AAAOisyygm3Bvc3QAAFdIAAAELQAACtG6o+U1d2ViZgAAW3gAAAAGAAAABsMYVFAAAAABAAAAAMw9os8AAAAA0HaBdQAAAADQdnOXeNpjYGRgYOADYgkGEGBiYGRgZBQDkixgHgMABUgASgB42mNgZulmnMDAysDCzMN0gYGBIQpCMy5hMGLaAeQDpRCACYkd6h3ux+DAoPD/P/OB/wJAdSIM1UBhRiQlCgyMADGWCwwAAAB42u2UP2hTQRzHf5ekaVPExv6JjW3fvTQ0sa3QLA5xylBLgyBx0gzSWEUaXbIoBBQyCQGHLqXUqYNdtIIgIg5FHJxEtwqtpbnfaV1E1KFaSvX5vVwGEbW6OPngk8/vvXfv7pt3v4SImojIDw6BViKxRgIVBaZwVdSv+xvXA+Iuzqcog2cOkkvDNE8Lbqs74k64i+5Sf3u8Z2AnIRLbyVCyTflVSEXVoEqrrMqrgiqqsqqqWQ5xlAc5zWOc5TwXucxVnuE5HdQhHdFRHdNJndZZndeFLc/zsKJLQ/WV6BcrCdWkwspVKZVROaw0qUqqoqZZcJhdTnGGxznHBS5xhad5VhNWCuturBTXKZ3RObuS98pb9c57k6ql9rp2v1as5deb1r6s9q1GV2IrHSt73T631424YXzjgPwqt+Rn+VG+lRvyirwsS/KCPCfPytPypDwhj8mjctRZd9acF86y89x55jxxHjkPnXstXfbt/pNjj/nwXW+cHa6/SYvZ7yEwbDYazDcIgoUGzY3h2HtqgUcs1AFPWKgTXrRQF7xkoQhRf7uF9hPFeyzUTTSwY6EoUUJY6AC8bSGMS4Ys1Au3WaiPSGGsMtkdGH2rzJgYHAaYjxIwQqtB1CnYkEZ9BM6ALOpROAfyqI/DBQudgidBETXuqRIooz4DV0AV9UV4GsyivkTEyMMmw1UYGdhkuAYjA5sMGMvIwCbDDRgZeAz1TXgcmDy3YeRhk+cOjCxsMjyAkYFNhscwMrDJ8BQ2886gXoaRhedQvyTSkDZ7uA6HLLQBI5vGntAbGHugTc53cMxC7+E4SKL+ACOzNpk3YWTWJid+iRo5NXIKM3fBItAPW55FdJLY3FeHBDr90606JCIU9Jk+Ms3/Y/8L8jUq3y79bJ/0/+ROoP4v9v/4/mj+i7HBXUd0/elU6IHfHt8Aj9EPGAAoAvgAAAAB//8AAnjaxb0JfBvVtTA+dxaN1hltI1m2ZVuSJVneLVlSHCdy9oTEWchqtrBEJRAgCYEsQNhC2EsbWmpI2dqkQBoSYgKlpaQthVL0yusrpW77aEubfq/ly+ujvJampSTW5Dvnzmi1E+jr//3+Xmbu3Llz77nnbuece865DMu0MAy5jGtiOEZkOp8lTNeUwyLP/DH+rEH41ZTDHAtB5lkOowWMPiwayNiUwwTjE46AI5xwhFrINPXYn/7ENY0dbWHfZAiTZbL8ID/InAd5xz2NpIH4STpDGonHIJNE3OP1KG4ISaSNeBuITAyRLgIxoiEUhFAnmUpEiXSRSGqAQEw0kuyFUIb0k2gnGSApyBFi0il2SI5YLGb5MdFjXCey4mNHzQ7WwLGEdZiPPgYR64we8THZHAt+wnT84D/x8YTpGPgheKH4CMEDVF9xBOIeP3EbQgGH29BGgpGkIxCMTCW9qUTA0Zsir+QUP1mt+P2KusevwIO6Bx/Iaj8/OD5O0VNrZW2EsqZBWbO1skRiEKE0DdlKKaSVO5VAuRpqk8VQJAqY7ydxaK44YJvrO2EWjOoDBoFYzQbDNkON+UbiKoRkywMWWf1j4bEY2iIY1AeMgvmEz/kVo9v4FSc/aMZMrFbjl4zWLL0+Y5FlyzNlEVYDudJohg8gPUP7kcB/mn+G6cd+5PV4Q72dXCgocWJADBgUuDTwiXiGSyZo14HOEQ2lE6k0XDIEusexDzZOMXwt1Dutz+tqmxTvlskNWXXUQIbhaurum9GrePqm9Yaeabjkiqf+bUvzDOvb2Y1E+EX2DnemcTP/zLcuu7xjQXdAtjR0Lo5n4/Hs/GtntMlysHt+29NXbH6se//WbFcyu+r28H0MwzI30DYeYTLMXIA2EG8QlHpAsyS0EfEToR0a3utIxFPJ3kiIHCCrZ66b0e2xEmL1dM9YN/MwS5p01N5jMX/BLKt/1R83l0LyC29M6+iYxo/UNg/EF7c2WyyW5tYl8WnhWg2/hyySbD5UhnDyS7OcU0dnrFw+DfGdI7v4QfYIIzOMq9hFtY55gmvC7jZ2FK7sEdrn6IXBuucYhjsGdQ8z0yEbWkkczjjsE5hNAIZrPx2zOLZDmKNXcXtg7EMqidAEEWg+SJCBBNwxvxJfc/bZa+KKf+xoKZybnq5vaqpPTye7CiF+ZFjxZ8/7Qij0hfOG/cowPA1rT1l4ymWnrKmxxqfErTVrpgwPlz1kC+Oy8NMDz6c+IO38K/x0xkPnLW8Kx6qGAoQdL+TD9V9rb+/ctn//trxz8dUrZrD/zk/ferF0cNt1BzctmX2FZPXt/jnFCQNz4Ah/iKllGiCMs1w5Lkg0kiEwj6VTXCDKsX9rMpnvIj9pcDecXAIXMnqn2dTUbN6w0XQ9ue6FV/nnXCH7S3lPWGltVcLsH75ub3ab7A8M28caNrIeOr3o5Q0yFsYL80xaa0EY/UEczV7icUMY5pnelAkmUAXmHYjvFWFGxuqlSaow3OM+/iYY7/l/hVELF4EjRqNR/bvRbOY+DUGzGR/Oh3EqmE/ugIQQguGt/eMYz/+L0cimjeZfQDI3phXMbMQsqH+CjwVz/hf4idHovgVmB8gLvjbicDcC/NypP536E/9N/puMibExdohBmNwyiaZdJGoigos7GpF222xrfnZhML/7Z+ylaqP63Hr+m7bdUkQ6/2cXqdfmvwixY+s2ksXFeXcE+iX0Z+Iow76DBNgjJ7TOdUK18iPsPflfQD+DPsZG2Aj9VmKMMJ4fYRrhIaxhTDR0Elh2vA6h/AE6xUb29mj3sjmL72petXjejPy+oel60M99tFduCI59N3221xe7apOvxs6aHs7vab1IqY2tv7q2xsHeHGml/cV06u/8S/xTjJ+JYc0bWEX0ukW6YmIbGkJRMdjJ9mYIH5QIdJF4hvRGyK7cC7ctImQRcUET99fGXOoft35GYLMQu+g2smnkgZUrH8AL/9Si217IssJ916nv14ZrJrvdxLkQvrvtBcjgPC0NXOicO8Qf4mcxPqh3hgUw3DDfdvLJXngg7N3dN2zbPJSaed3OfZnMU7dvmznp3C3bruO+Nmue0LFsy7S+6265+fCKFYdvvuW6vmlblnUI8xCXp37CrOZv4B9gauDBlYp7adcUXB5DNCwYImlXOJJKkAdvExXxVvKEYnCo+3eIskP9qrrfIYs71CccBjfXRC52udTHHdaP1A1ui/VvH1otbrLrpNXBsGX5B89QghDyimlvNB2KfkxZ5C9/em3+d1+d//IfFp2+2Oxn/s+9n/79p39S3s8idN6g0yZObwJOgKUpNB3GyU0Ls0PbRzIRq4lcarLKOJBkLRzJQD4j2090XrbA7DW8K3jNF5hlGS5e4V2D17zgss4T20egOJte5iD0bReM9yjTxnQxCRj3c5kFzGJmGbNKmwGw39IJDJcXJZGMkaAB4jyJAKw0jt5IAuIE+A+U3cVAZZrq9zhDyBrU8oosuxcGNTzCKJfla7JjNVmuSb/+tuzN2H+X4vlB+PpdfMXXmuVsNiub1T34SFbjYw5itEvVi0K0Nt9pNJUMI7SLGRhf2xipfCYf8z5OdlGKayOucFeVPeS/dbo3lBrbSMmwUiQN5/ed7g0Ds1s17IuZC5kNzM3MZ6EWCa0DtekdJfAxz+R/OX28sND7yRMTBcf++s8mQCQWHya4qBv/ufeMoWyslPA9DtMxUknxkH/yfTnm2CMYzs+Cq3r7PxY/MXomrvTEsRpfEGHa+WN8E1AHjElb7d06ddA7oK/+5Mdsv9EtPms0jv0Z5kf1FqPxWdFtfFr0kHfgDX0Y+5PRSG7RUj0tQr7rmfX8DH4G5W28kKeJLtmQsQkuwMP1pk16EV4sl7vrMJATfyUWo/GwEco4rh4XFQgaiUX9qxZHrMQqKnz/c2d8b9TysYrAuXpP/Rf/Gr8b1qwwc5a+euLa6S6sneNXToG2XrEJi4R5SGs8Sq2S3d97bsfCRaTdaLwKClRHt37mkudvXbjwVrLhuYeGhh56bvfQkHpk2CwvwClqgWwuBfndC3c8dwmstj81KkagcUgbfPY8Zje0W/82VPWJHmSq6pP8hPWpotc/EexDOK3qU+wngPhOCiO9MJRm8TJefjelrzoKnG2Bn+1NCUmPE4gHFmBN9jrTigRIpsACrc9Gstg58ULkp9467+Gf/eFnD5/31lNrt2967dhrm7bzI+VT5m+fzKhvf2MzpICEm79Bopkn07lt1762adNr127LwVqQLdJ5+lpQDcvHPQtVY5knhYrK6q8/JsiP6EuhGZdFdaNszjvpqvc+PI0CdjN0AXsFOC3ZfALDJwr4q2Xq+GF+GNbsxUg5NLLIEXi8otcDQcUts0D8eQ1iVDRAMBTsYiNdRIxE09EIBJO9A2xqgERTaW86BUFn0OD2xFO97FAgFhF6OoQ7prYt4XwSeUgQHiJyDbeke9IdQntciLQ1FlJMaYcUNvZBg+FB1ubjlnRNvl3o6IEU2w7fdNPhm/hh+FLysUu6++DLHkOkrSHYEjH0tEPe7WdD3uyDgvAgK/m4szFFR7ch0toUgBTdWHr7EpaWru6+6dmbbnqWEbV2EtxAsXiZAPTtGPSbHsotI2leoM8TePEqgSQprs7AGFf8kuOkPdZPXGb55POAW1d/jLST9v5YflasP6v/CO7+GNAPC2BMZWmsOjp2NNbfHwMCJD+LPVL+D/OYlWEEI/9jpPddOFkB5d1GSuKZYggmCCd7JUxD7EXAzxyirYnNDLdDZoFdx14kivkvGc3579Jm36reTTvDgBnaO6vzyQ6chQmlsMoIkIQ2+bBDWBud1Va4pcCn8CPqxlh/fgtG8IPaPH8C5wk6/nZDv69jurV5QhtwE0x2iqOsj9Mx8B9/0EaUdiPfOYYDCi/q9jhWRuupMDEU0+CtX0sDFxv07T/K5niBPqN9+tQjgEc31NGCXFeMcCEuQBIc/BK4CO78u7EPYvl3yaEfK3vcb6qP1R2tI7vUjVDDUdKubsSrNjYKY1qBEa2P50SJoaXiksIoLiCwnxS6EBuBde87botNfdEWwYvF/R0/u5yCqhGeEOR2ynSeyXjt6ka7neyye8kryBSWE52y+RBgogrXPZ8E1yIHoHIFUM+AbJhE7lbMtt8ApL+xmZW7PwbjAO0fAVoXQOuiSP/ksIVdFZ0aulsamKUzwPZ/NYDMJRBPCxsBqLzqHyneXF6Ej9HlIFo7+pg+jUb3unRmGpstGkm6etOuDBGA5wCMefp1gTHcdZlvPBXlOslvYTp1cd8UjYLVd/J5awNrIOKLnIt9MD9qdrKrWCvA6ALm3QV9VrsPm60Q7+RHJHP+2hqfugo/MvI2H/mqr4b9tFnKSRY1Y5Ek80Nm/WIhr1ikKnxGz9TWXrokf9xwujfvcOTtNTWnxd0F37Y2W79tteBqZ4G5qLCuomw+nSr28QESCRVLTyYKILGJOPfcnaIFOsewhRdvv+rWa/Wih0vlbX6Zb75T5C0qNKVFvH1QL/vazSWgC2s6oWXXIuUxQelKiJbowuJDQViatLmLijg9CQBMg8WiPgiw3LEeYRmm5f+XdnvkDnxLLjMLxtvX74C3OlwPQqx4xwIdpPx38LrlDphiyWUWHWKAzzxurS/xTo+P5wGFak62ap1PVFFN4v/y+xuR39WnIO7lsWfwgVsK17wxrs9K8ltIKuhkw7f/6dhK6gQokFKhWX3urrjk/rnI0pgfpGMeuQIUaEM7+GF5q2iMkCaMQwxxOzcvU0eXbsnS9XknXvP7Gtw5dwPXlFu2ecvSHEZgNDsU6x/GdXBYXyOQjzZReSedeEPY6nEv9gJR4oBQJtFO6Kd0fwC6BO4LNHDeBujB6dSNcUQC9zIv2LnAzGk99bUDrdFY+9yGFQtEo0GQPNv6vS2drj4+1jHbv3aJSMUWP+QTZrmbNTjU8wyG/iXNNpskybLcJ3CiTF5Ir+JYzmJwE0mSVhlxbtbmvweB3ulB6Til5UuUZydpgiFVeobhU0WaBqpJ198d+/XeNRTZ9/1OPfG7+2hwzd5W3D+hmyjsRcUg/+Cavb++Vh2ls3L7zT/etOnHNxeerv313vzLVqPai4nJv+K1FC6040/4udw7sAb3laSg0XCkAAs0npBO6VJabS4Elk/U+D4gTXW+j0wnrMlqNamq4tMIYB87tE10i0FR3LZNhJsb7/R561btmes8YBCRkhYNByRtKd55mqTas9FYhJnbRGHuOh3M4QTdgQSqmgRxuzGdSvZGcbMxNQGk5C3ebLjoXIOFM4l+WKHmLTJwRv9E8GWJ6dYvf/FmEyEGr+gyrr1p5zrgkz0Cw2j94Hv8Jdx7dIVegBSNtgsqGsRQEYiIBoXwD0LNvQ5d7s5Z00QzwNhqZA0b+tMG1tQq5nd84uq8R0zPvX35G8uRaze4jcOHzz0w1+Q2BIRvf6J6Kgatnrbiem+CFvAxfkrndzD9MFPP1GWTUHclpASUkCNAQkpCCcCgDSUDAhDZ+CuEkgn8J7i9nMA7pA4lISappxILKfAeSAbIcSDuN2bJcfZILqeO5rLs0MnngSHYRdrHjmaz7JEsEPw51ZqDJDmUIOZIe34WaQeegNsJn1qz8AIpT3yCjyEih/xELkuJ0lEMYTLVCiWpo5oYMleMH6USyYJcD+uOe+kWKpn1Qns34iyYDjkSLvgnZXcgVQNeqINXr48m3iS7cjm8tedyY0f1QvTnHHdsrKby/+SSbPY8/NH6vpl/Esq3Ae4ZU1HC44KFiI9o7CEgab/RqHbj7s5KAg06s39ZP/zxI/mVuF/TbTSy+3Fb8If9/cv7+wt91yy8RfP1QXtW5RzQn7qIiZyuFM5QfJ5E9uVnqT85TanFx0lkP3ukBAMprvsRyi/C8NAJL1xbIIirSvnSj4O5netb4JxmNANHPssHAcHMHsFRgEug816gDBeMbdfiuRcghqYcm0+Xxx/5IAEtN3fqFF3LzAXqwoT0PN0OVTNqxo8sxMkd5Ig6k79Zk7VxxX6gMLOZFQgvpW2RrMW1D0BDihaXQ9wVRoBxPLfpknmkeMtoB/qM9cRc9IqmMD2XUmdZ7GSRKPUZvChf8BoykriM2MnKYbOHX8R7cLdNCxSFFVQqoYswnlWtlFS2mNkhswVpZiQW1J/UKFfipHGlUkM6UKBhMz1istELIHJLMSctu3ugzfaVSOjKvUgc/THK4Sdg2Wscz69leKIkkrwuuWiOe9yGYKQXRumkC3qbRcMwrvhjNXgdZk3RxAUEhuSPvn3nnd++U/3vlVOmrJzCD8JLxV1OHRjrZifbcFDOuRNTGqdgQm1tSNJ2OcQ04YiEXuxtII1ECSQRoQGYioEsgCfchB4ghAtw7FfJre4WZ9hkVi9MtjuWqtdNDlpMrfEG9fOT6q21okg+e4As38MfGquNt7oUws6Ysarj1/efE+yst86YUVNvDdts3Pv5c8m/aP0C+f8/Qb+IMnGq09BgwN01oIOAnAdagI8mBSrqk1gxTDUBOtk2ousEtBH2z4Ir2d3f6k8PXXVlt2qN9RODxRuoJT/v27wm09jRYVc/e++iyx2tyzJb/n3J0htXP87eSsQaf2Ly0s6Zmxela88REy1cf4273mI3iXNJ7KxrZibOm9xm6rl4fqy/t27smU8tOfdW2ucBzg2UfmOIVyLIl3kpYlwphDISTXJXsctmiDtN7fNV6zelgxwnWxsVr83Aj/S5ki1jL/a0GC6+2L6Um+aoddlNFuj+bJ8mH/iaLh8I0/U51NspIEfq0dohwyFXKgm4NggwQ4rRhCOUFtxxo8XnitT4cnGfT93IS8FaT85XE3H5LMY4zIEPL1hw443wz+1UmhTJyJGxZzw+wsKkKZgUiVtKOKMEb2AKHTv61FNc01PQFwKnvsZ/9pPA4RKTASWahmh+8MxwzHxKy74IRn5LGRjsPUUwTu64UYNY38caqd7HKucZ/tHnODtENw/2UfHRMaq1UUPDJQ0OKkWCeet5fYOhII1VRz8+/Elg5j4Gxur3J8o2PJ4rg+2d08T/fwEzSVbyZ9XPro95T477lRKqUSRXQnauHNsISAl27oWi6Fv9z48JMv8r/aMMj8onCP/DuDZOuN+GPPr/+p7bx+7JlbYdppcNhzKU/1Px5aiaGDn/s1iGMaBcleKUo/v9rcxkZj7DBEKOfrayytXNLYiUdBY+pleQXdnscKlQcpzuWluxsieeyuXIK6SdxozitWyGOV3vOHHjguyCQ6fpIYy2JwvrQEF/Qa9Pdf/QqOSqCiE/EE1/XIVKTc2tzWbHnimrEd+Vyz311Ml3P0GVTj7PD5aDnsvCvH36alEaPMePcMegXs7x8igTu4B9v7G9vTHvhCu/kzIdx+BxC0ay9zRSvoS0F2lIxI+X7klU63I40gLQ3w5ep5na+SFnba3z5D64zv+QtM4n4ffG3tq4aNHGRfxgrXPMim+5487abL7xhdseIRn1KDl+7aINixdv0OD+JSPwKf5+xoP6aiTeQIDVlIhMcL1H5R9PYXvprs3fv2bO7MOplCmweuiq2JRZ1zz+9a/v2PH1Hfz9236w+ZrPXvWfAxlj4NLLHpq3c/PQ3uvmvbrjG7fe+o2y/cLdtE6VUlXi0ASb1VLUBVSUWSU4HdvAraTyS8xzM8NxvxFkXV6pUVRiJwcgC5zEeht4rwcp7ki0k41G0qlQhG1Vzlq8alEmnFi58caB5Q9vn988MLhqyVlHvLEWjtQFeupdiocF/tkkOGPW2ibWaBTkeZ/dvPWazXfOnnvL6jkRXpi85sFzZt+55ZptW3bl1cCCHZPD06MhySha7UFzjcjbp8fOecFCirzAG/yVjBX6OFIaadSjQq1nNhyIe8tVbaaSdHlXIWKacMeuZA1uxS95zILhyrxAdsXTL6m7kNQlx2P9uZf2qhufePFFbpI6/OU0WcP99RrCsrwseVot5mtytpf6Y0gm9sdeyKnPQ7onyK4nXlR/rg7H95M1upzu89DH6pgUcikoiihJ6NJKmRxV1x+MJiOA3YwhDRQrWU0u/0rvq0VYXnyCwsLeTJYBq3dAtJDavuzyoVpzZ99Z0+a0uoiFH/xcqgDR7rUFeOrUn6Cywb8ZeNMbhLV5ugP9l0zv9UN5b5mFkjzxUcpPJCn3V402pRxtJd2GrnLdhtVk9ZSZh9W91fCSH5B7ofxPiWL+j3D/uwhBRdyAyozeZwvQzs79soi+BKSnafLviZCcfrpBpLyimfLfTyJtbyruIQKD01tUwJyKEo/ybaxkSNFUMdMkhQoJyRBQFhnUkDQSXhTM+3NmY0EDM7ffLIjqWEGt8lCO6mLia3PukFnghosJD5p5SIho/VDkzQfLE+IrYoJXkD19pdP7OwG/voIUtagiWiZ4PAFTHHlTVhRZ7dYmPar+NJ+8JhmR6DFK5DV1foHoLNO/pHrvZfmWZ15RQlwvoVDKhCWNK3CCch9lfFBuAqUgpFSShmNaPj+i5++WZfKeViJfW5HnUakVL4UCNVkA4+ETfIqx4B5xSaP2L1yn0zn2ltPn4+OqZGmwwEVCaCSqG53ldtL1oLGAhdMLd09MpCCF6tD6ZnAZBY9hDaYsP0jzZ0j5ZjKsF4i1UmLuhbJMCnYJPt5VwFNvmZawXjEvLJqIH8STonZjq7BZ8gKgR20C9MDFqJAX1H64QW2NEup6qgzLP8cvppL/NNTOBTCJABOHeWoXzLhw4Wuy7gaBtjKr9kgKq8ZlRYBS32Lpxc8vIhpNDTfyNXWybMJbn2RyQ5EmWc2QF9wmSZ0KYCE+cPuYO6b15Uotj2Kd4MItLS7gtFbkTdrFND6pvEZqv5Yv7jXAus7Pg7avo7KDot50NX3CPkP+Kps8J9/3mGQIteY/LGPC+L7872SPR2br5fy8MtKBMHedGuM28/MZmPJMrGgi3Gb1S+Si1/L/zrZwO9XH1ce/z7ZQ1WSoY/+pMb5FT4ua0Wm+Jf/298nFmChEQ+Ti71est4mq9VYI6RsymoRJKYidElT2FGnDTZvqtfhGAFTbeqEw68GqtfmbVa/1IFO1/jdWr/8BDRRtQh9XNjubEm4aWVpVonpTGR7PVGc+KJNoBIWF7kYi4gUV3r1U6723i6TxUl3n3/tM27aZfKb7THiHW9VzFSwHJ05VfK6Ar7kaB0XgPPE0BSkSFKsBUpaLihEWoA9wBt8qirh2VSOkZwXEwyrxZ5jyt2rJmSo9gX7cg6jsEUGJU9z9xJPOEM3uQQxKgkh35DNATnVyrmJ3mbCNyIB/yox4wH1bg2DwN7q9kov4pFqny8oSm3RQbGgJ1QQTs6ZMLilOVYJ9v6Wha3HcJ9jddsXp9YhGUXLXt/qMDnvLpPNTXfNa60z5/yjXQOMq+lNmwh5egpYrdfZQZV9rI47xlRkuyTjpzsmCBSWNkAXVoK8sgYWqQJWbo1RLo6QH0YW6pxqfCnRgkd+RiFjUQUQ7poIaYoakgXxwFd9BuuI38H1xBxXSFb/pBDIKQFn7YB3dB36l7sG1FLaKiBdp1KxLvfswap/30lnVESgNnvjbUoT6w9N+Xoio0qcYOIM+heg940YimsucQVvli9NEcft2UZwGQwLuilj1fFr1i3NP94X+PE7Hpvtj6lBJfJ4R6NvWiaL6MgzWHxiN66DExa+dAdAbMYX6HVF8A+7rjEZIXAVbDe7PVI9rmN69JOLV1DOSvRPxWNPZBZf/Nf+Ny65BhYxxxV+77XJ2wfQ389/IQPgajXbwMsuAz/0IaQcXJavKbRqR2IqyZruXjVC2+hdee/5vdnYOedpmVtR3NGXldxSzDSIiBVpkGb9by89UpEPKrSLZmyFDzMab/wXl2CNe7s/qCtTvWgG5kpBmCBlSzDS/r8N4uwBwohRW63JTS1y32f0TQsPfXVGEHQrV8/NCfiOUVirYcBbIeA2+iF68rQIo3B/S628vYESr79ehzS7Q9LEL9UXmik9XVHb1yBO3Ngvt5935+k1efkV51mzzrM0LL3/20avnwMeKuWyOUZg2TasSqZ+KcZQiOn1Iu2Vh497ALUVZiCKt/gh6IvTIj1ZLRjWAkpHKOKovNwp00eqPROiAbiNEKieXwMLcXhVJ1/uzmLP4tfxaHR59cBdJVG1kTAgl9ze9QKUEQ946Hkb+okJ5JRDyf54Axur1D+WS49cLr0tTPEu7UmXrxcSr3XNvumv4yXzInXKH4F7Tc7p17Zt+t/qW2+93k063X7VW6lALxTY7i1nBXMxcxmzQbabxz+tJo+wijYaIGMNS8AoSMgAPt84DdHOoMPfjXhF+kuH1tZvuFQrRCN07xGcXRX9MYxYchDe5BcHj+Z4i+42WyPc8Xofi7bbZJN5nJLJ5qr6IqRtzqNlM17SpFsnkEyTWoABEjz4JXOQvzWYuwdnV5LNGOwTM5v9r4RpQ8ZXsYodks3o31JBlzbYtNotisnm22MxiwGFXam5oN1n0TA/hRvshvTSDwHff4nNzRo9Dum6PaJbMXzDz+x+Fkj4L4bFNBb1asqsgH7Dyh4DvbkPtf5yMDKzEwyoaESMSNS9P9gJVA3/RTlwoMwZvxECFWxIPNw9gi01nOHjP32esZTtmXHnxvZd8ZtakqQ7ekajbXetpNa6ocTVxJtY+uSe69OLz77zh5bDR3xjZMzUz6fxrz1nqrZGcHQHfPVefN+fiK86LeXj+Sc5lPKy+k/vCUI/DaLFYCWHr6nbXuILTIsb5imNKY/rCm28fSMxPhkN1XbNMNZGuqwOBhtTSxWuTk6bw0ZaG86b1hKddePOKuBvmiguYBn4T/yOqOyGRBt7bKUI1GjioBC8aUKwF7Q319UgcmtFGIzCJGBqwQij0ynDsfdFGc3TS3BlNfJ25xmzniMkpXXTPvCaD3ZaZvyzjmZdudBostmhb0ORZNN2sJBeed1HXkrUsywueQH+L0eCPxmsa5ZpgRJSDZ11yDv+jmbd86vxZfc1WcZJ3UkMq1BOOOVtvu/+pB+en186d3GTwWAw2jheaJs09/+LNfZft37DALyrNj1wABMuUKbODyTVnT/KYbJ3Tpq8IrNh92dkxOj5P/YpZx4/ycyiVcDYdn4JbEoKdQi9054iBKsygLW46FRGxAb0NPNCm8BSNCPjoKcj6EAus4SuP3rB+cV99/eTF6294dA8+TK6v74MHVpYNRt/I30e8QGTOOdfGWzzxcy+87a7bLjw37rHw1nPzp0KyyRSeZO+QQhInt3dYgvycjrPOv+T8s1rptaP84VeywdWX2T4ysr0/7TLIs6+x9zib56ye1dM9e/XsZmePY3NDs9zlnNVt4+WgHJbbz3Livg4P9WWgviOMm4kCRT6I8vw0NbUUEnFvOuFKoxQW1gTsvFirsF5pb7qTUCx4i7VmtToveaDxvK9uOaedVvPRpVOnNz0Q6bry7uiSdQ8t7Vy4JQKVS+XPplV2ts4bvCwZu+KzgITtxepaPRzWdpv74muvv6RO0SorX6cu/dqKn/XWnrtp/Zragz13DUCl5myiFW2Ycvb0PtsXnU+tx8pvLFbUspLX68mdegwmOif/NPDONajTGoUh6tU56HBJCTBASVvNUB5VIiKpc9kd7kludodSFz7xQbiOmMk5dOYk56gzL6uaf7N8a6MQOHm0ae6snZpFDfuT3/jdYzjzwkXXIVHoXNuCfQslQZqBZjTsoHMqrkE4jaYdgkGz2ATOgB3cPkSukD01DnV3ttb1wx+6arPqbkcNAHoFPzKUUQ+qL0k97pjbZv1I/egC9zTFbrrlFpNdmea+gIgfWW3wqkcis8ky5FAcRd1If5nNZrl2FFpungc8wpoCl1BpQV/ScS+zjlASyUTVv/AJ46gkJI4bHX4lTnloctxPZE1ckS3+jG2fKIjkQFyzuo8jvYQG1OrGvJPSTu/nSp9PHNTl4z5hK/8gtXVKF6gEKiglgcKiRlCESsQCV5QIlKWKpr34lt/wkSx/JCmP5/cBKQfl/5gd+rOS/+p91/+YCg5CXK2W4M9fu+/6xxX+vnelVuldIDCG0VQTpU9Dw4pRfei+6zWx0MLie0gPbyrkmRU7OwT16JGeyXLHqOLqAfVN1GPlBzWtFNzj0TRTCjogtP1NjIvu5habN5Aoa1k66wGpqriVetJgiGdwDZtKhnN0y4n9sXYnsqGmZfDSR15+5NLBlhoDaedEm7sxmpqRija6ZEEg2EAnTiAC8IrmFbGz1q08P9PSkjl/5bqzYqT9hMmptEXDgTqP3Wiye+sD4Wir4jCeoHbbp5hRfpB7BakUIppIlPCD30dR1GtslDz8OsqbXmejFC/v8wu5X2myq7SJ8Avzv9DFUJySf5uNvq4+Ti7W9D/OZrLChdwxmPNiBRqVjnpK/aGxRCDspVYKAW9AN1JANoo8wP4BJUlGqdgw6m1qPQ2QW3+OfU5/ieLS/NuKpDU3uf8bcAXyBal5jMR2NEAbPAZt0K3hvxHBEDlUxfIGcD+N2gNSNx36nfqlAYow0puatNpRz0e4W2oahKzQHsjf2c16ad/3t2KTtPobnX6D8C8pd0MDP+Kx7wnXqGGlLQcvikMErm6TmfsuxJXbSAxqNjOogJLQBLiKEHAE+JGTS3JoEhTrz8/CB+5YlupJ58aOat8Kv4JvregxwcU5Cp8GFAFm1FyOfto6GS2m1NGTS6CPNKkbsTdCBlnN9onMho55BX8IJZtEQ35lk+htwN5A0V3RCPoD/yXAcv6pAtbZczRUA64JmcUf4q7Q89ZHLeJVZ5D1Ps/t+0iCT3AHVtZC7JDCXfR7OSb/Xja5H3zQbZL1B+ULX1BMTEk3AseSpmnKEK4T9ekMIidUCRQFfcbj7z8gNLvzF7mbhQN8h6ZbRset+nQWdS/ZX3k7WpS8P9sfo0iGS64wV516pOhjI6TZ2dApgI5+LhxywYoWxKUrykKJsIoDsR4mSrCTg0egMPnLW/3Q5Nn8BZEuzqEI7HK3n0+zFmuO3TtWQ5WJoG9YqCD6Gc32SxnbnVPfsxvrFXK2dILl7bLthDp6glhcsfp4bYvbSmj/mQ94uBTw0E73x2jbNRCvC6VL6GCFDwU7eWQDcC5FY5s0slieRDwtAbRsbLXbaXAuu14e2OJw1dc6jQ3ZdY8v7rv2/BWZLqvFWVvvcmwZkK9f5jS4muO9yR5res4kfkRxhV03L1RfPOiPtYi8pd7jNEsOpyTwxpaY/yCZu/Amd5Or9uS3DYaeqVOhH7gZN/8I/wi1fEuLXvyNivibjuKvN+1Nc01HF/3h+ef/sOhox8MPd5SFucPjorQwXT+ytA8EmA5mamHNFDVhBI5pjZbQpugBNkO8MvRub8KVDKST1Wag7D3xlin1ZF7LFP/79nbvCXFOY+PUjrT7/otsPXXZ4exdPzuhZuL5LUXVAn7k7PbhG89uz3b41X01gbjP1xwlu5rrvvf9+pbs6E/Vu7Nk642/PYRaAiUBdrmO6CDTBLPQFA1ur0uXoBR1INDMkypKpoTqnSMx5GiEdTEaSHLs0Alvu/19/5QW9Rv1U1ridT22i+53pzumbs+XFFXYC++CGsTj5JUT/GCgRt3n78i2n71FHG4/u6X++9+raya7os3ZbDmgWfXun44e+u2NZKuGZ0HiF8M4TlMPR+EU6rPKRJ8wOU2RFUFLex3egEsz3YqEAq0cqhAAW19dBZIlVzR61tuIdTnpXH7l+uXrbjPUyep+8cl6aXKWhPHpDcXl9KiTWDNr4mBQc8Tq+NzK/OKSbsfl79o9G20R+brBXYvUg0rLHhtrc4TN81TTOWSZ0gL1ZVlOYH2ery/7XVUjFMbzYpg7UswcqJPQwBd0LKLabJ8IaCr2otcjSkIrGwootKECaUd4XH1+SdazRrfddkBU98t1htvWrbjqSqjaCguxrffM/5zDCpBALUycmajhd+R6ww4SWafuZ5eU+tPid4lgd3gt+b/Y9rQoZNmiXYPXyRHbRs8zX/f4WIFjWZJtUdSD55AP3xtXH+ZipC0EqdBGDA4CoYEU6gRLGPU11QhkLTBiEYPiqOeQgwTCl9aok1Qr5pFf71qEeNxjy/8F0GoqYPv75Yh9j3x4DuJ+uEzHRpAq2lMqb+qfTdiq6kGtzfOWsv0c7lSeMXDHBDe1MT+LUgx0Pg/p87u2UicdIvqQi8DkxhcUwUXCedMpb4NQjwY3npTmgsURJavLwCRyEcN2HfWsDVGfv/u9ZUWUx+PYFueUKwaNvbtu+Xps3eVWbN1GcgVrdMnWJ7WmJz9SD66EBidag0NF1Ukep0t5A7sFCWdhzvYwHv6L/BehXuHqfaBwBEU7hfVLcXvS4VQv+T/vaSIl7cbeMc7ekv9i8S3e1L5xxpvMGcu1EYPbKyCiijjGXcDKckm43PqU2qNWlXusZMiqF82cuVzolUHN9NNR0HZPxFPV9V0wLtvq+k4DqOwVWDlzuQLVdqFiP08cRX7aRlBVfR8cb55bWe5LExnlcsDp1vAP8Q9BucPMk1Ulh4GnN0SAdxcNHv3q9ohx1Ati4S/tkWjIDe3hQdkUGrGRaFBiUdiTSkI41UkMuuQHP+EaSQYlPQTFWJF03BNPpTu5KFAdkWgDukzsZKMG0Q1TAQQglScOaP/dsZ8+fP75D/9Uu5Gs3FY/2SxPld0DHOciXI9gqjcEidXjE+3BLosy0OcX3T7O5g65ROGyzQ2BZs7WbZVnO5ydLe32hMwTQ4wnnKXW6XW5LAa7oaXOIHoUl0FgLQLH2by8wSTWeAx2Y5PDazK3BqZbeJZwXGPaYhX87ZNszoDdaRxotXO1nNlpdvAPFWHDm8PqEE0sZxDEqGzxisFNnuCWetPcGrObN0p23tTZwMuRVodSV8+LTrOV3eRvzjQZiSjaLYS1WEJe0kNsJlZu9LFun7++wW4gRDRbaxw2nrOGm+xOj9cmtbp9ZqeTM1m8UXfQQCSTVSQox6pvtjot/FpHvIUjJovFEoYvHYV9C5Y/xN9OfcalvII37UEhTbTg/AQIaPb4Vz6j5u8/aViycMod/fkDcpu8QZbZoeBi/vbzP3XPsZvOubMtaPHkD9jt6+U2O7vqU/9C9SMvgrXpQNG/E0oJxun+CiElUa0IKQSUwERxOntKSV7ekcuh9VBZBBo3VUcB58ofKBHCwLyf9qFosz9Ibf8dGqwaBMjRig4SGOZ2UkWI7UiO9OfUPdxOYFApUZyfpY7mgEc5rtNGGk2H1lPhAk1Hp/VAMqQEHEUfEYkkUQq1JMdzsX7kklRrTrUi1wMcDjmu1YYfATj7Y+pGpPEBXuoQIj8rR9mgCl4C9yqmF7xnVWxGVniNqtpVmXBvQ6iwni5YQ8a1jYrXtc2J13HvgkvqWxuva1sbr+P2S5ceKGyBwDv2DbrToe1u6BkAJV7xnVLUaq0sJB8pFqcUIPi3yuwxi4JuLr+P30f3OkPQ72aO0xYo3/EsmO3QO5qEF8S0qQH0UsKXv0brnl9+8M7jF174+DsfvPOl1au/RL5/9DsbNnwHL2pHR1NTRxMZhJtHktOOxLxErPF6YlLvpC9YP73x+4ofw+3xVdrHcDE0dQQCmCRgvt9b35xINDf1CDcRSfJ+pYl+Sf8YcurfmXP5F/kj6J82jNsrkWiEuhVlgFfyNkB3S5MUzLhoNiwSCYcxQ7Ui4J0Xh7fmqRbaPa1tzujxkBRlsEHy0/OM4pYLPb7g9O6BQJN6l9zQ0OGyCaZz0vMTbHOzXfQ7a2tsterTcqxeInODoemdktw+1SbVhKwtW9ffe8VKadK0OVuC3bWzyKm5LeddsWTeorWyY9IMtUFutdu5g+Rn533qkocdvLs2HmhU75br/MmWtD8zA3OP2t1ea636jEzqYxJZGAwFiDEd61oTsrRuW3/3pYNi3bS+Rd+GjOfVpAPNd6y64Gsz1GaZleWIPoYL/v9mTeQBENVEguiF1aC4YeXxFETw6QyPfn0m9g8IrMFAvKM1EI11DARnbqibHk/Iojy5rSdgCyZi06y8sS024PeuO4MfwQ5Y9yKRZCqyYaF30vzeHlmUprR21tR0t0yz8KZY66zWuGvxVQB/36kP+K38t2Hu6NQ9SFJfw0AdpqPEK2qTMpf2VCqJwqPoJezTL824b8akoL+x03nhh+oNo5e77psxg9Q5LzebIKD+fsY34f2MtB9fk9v5b8PT6tYrgv4kRPwd0q9z3gdJSJ0653KjCYPwCaR5aUY63eW48O/kdo33yxX9wCiMv2QTrk8eGSI6Ag6moG9t2P/F7GRNlDjl0gw7pJ5aOXXqyqn8SENnXBmbSwUYLyqJjv3UmY1nKr4t80no0faXsaIEiF/BRaIBnItSce4OUif7W6Vm9T9H1X9Vj71BEm+RdmIJQST/ZfVdudUvh9S/qqNvqT98g9SQ3lHibZY0mRVHooyDN/FHmTgzjdozKw28NwQ0hwN6BCoPKaEk3YtKwNhwRLXuk076CGoZNXDQcRwZvreTZY9EZi+d0s4+ztv8iei04JQl6ZbDD2eHV7X4uHuFVfPrOmcs6m6Kr7hssr+1VZFcEZ/PdJkn1hOs8SXS/NFFgqt94PIZzZ3tdaL6Q5vo6piSzdy737pwsX1VyxUrF15iJ4uNkq+rbyg1Z+O8VsNC1UmcvORPRfxtPrfRwL2p/oA1eZp6Z/aGffoewaXcA/xBlKlQLfhQL/oPgBGP3qsA7IQS8qDVNswHKRSheDUvA3Q7MZoRcJMxlEygujn1QdyzfPfq3dEp/bXh5e5YXW2Ngfvza0ZF6UgFL/E0fTq4LBlvTE2qb/KuuzYSXVnjTfM1osvqMHVbm9950quIZlbqaL6YP7jk3kUtA0GnX2nvq53f3WoSsvEdDRnULgo2fN7lNZJgI8/VWi33c3bBZnGY05+dm+3qc7fNmj4YGKLj2nfqFP+g7jdDlxEV5XsJQZP6hYrS1l0VQr4c69Xueixp90gnZPmE5OF22j+SYEWHlZ0K/Hgsh/Ztsbh6h2DNRlvv6jJh9XaJaHCZDiUDKNTMkvb8vsqCyf3ZNdSmO0fa0Y4baJTtpbKzuVzeeSI7fCKr2Z0WypapnXJ4gnoWy3PoUIlIQ1TXdqhQJIXp9Wx5fYdpeWh2TY5D+YVyKd0jw3iumwi/BC3cEy4o83QlZnW79MrCgCjbhWXBlRZVVZZv4rIKpXC01HFlHdHLoeWVl6UVc/J5uGm6CViW5mulYMk+HqNYr0AyUPivLg2oMs2MPqtuhHyRyiwvNJej1Br+fcLyoAyu8D9B7bgmzUqfFobF5nKnK4+t8MPJkI/xHUNWk117jugWF+xazTAALQn6+UE9lhoI5ApGA/iuJOsrlNP28SVVuBVajXmircLel46w2bJS1Q0Ft0KDuikDFL/3pYrid1Q4FvofwRIo4R9h2ftSwc6jHAMqLcCql8YPHtlzGoByNXYN6v8hXnRaOhUvx0sVLCexwupGDR4NOYC7PePa5keIPACnuAdD7dEadRuTIiS6Lb7uskb381My5yjzF8lGCjBRqdwrWJCagfB3yCy7XT1i92hbcZ5Ci1FJkgYMDf6n+jspIsHFjJrTOdzSMuOa9DbDcj/nH9N9bIoGVgzHPWIQuFuYtaMRaq8eCKI0gEF6lPOZjBz3EEvaaxwSUT9U/8JbJZPJJLBLolH1La/RbF9AbC8JJjv/mMnssKjLRBJyqj9QXxNko0Ux/X79epfiXkm6fmKwF/en1HLc6LxloXWKvGa5rVCVL83VuiPcDEX/K5pTXOxHfx6HHB0t2FI0qI2rCZFTrvPWU67zVuS/kTsLnc7IKhFg30e4FOkqNSfH5PtkmUy6Cpiv/36k2sbqCeCFNa+URpoY0sZoYmCgCr3qgZz6s8I0gP1bYiR+D79H56NOz0EVWCTy2/fffvSCCx59W7uRV9995eqrX8GLesOXNm360iZ+T/El3uZqL+FyzSZ8XxpTiI/G0nkT4zznFZ0t4ipMz5v4q9ssqbdKUZt6u82knPCrt6PZwsnn0XySVnyPR1ZXAn72yx48bWJsu7apnI3Hy8bygUK5Js32qcytapqgmn95uexccj205vGgJ+euOeG2SORmKZr/qKzcx9SFctMJdwMUFZDJITs7dnOp1EKZCxg304Cevyfya+vlKqv6aXK1qIj3imL+L6hL+yvUlFfE0VKZ7E8gBY3M/8VoJCFgizH1W6VyC76nH6b7jiibYVxUmVIEspry/LgZIlCeP11Z4zs/AwvVwtGFEut5S1JY4lfyT0N/evOLo+rUEgjcqc9IkGpQbv3iW7Co5b+KgjvpzYdH85PLcc4X21ouwEGl/S4qnUAvoSlXUUhR1eKr2VWFTB+GMl6FsiQsVD1R3urlAAIoSn7JQkmiVVCHSpCwDH/qPepXQ0Db77CJOAImohB+RPWr31ev5g/kE+zTa4lbvZo8xdWPffQu9yJTPCNB66s+zXoJt/0L6hSoCuBIoK8fnBGG87OoRckJpLqyWe4YbpGi50g0+3I3UD85Oa0fzubfoXxPLbW3FDWzigmyJeM0tQkax7PqTy80+UxfUHPlBZIRVNQ+v0xRm8REKPoLmNr0+Uo48v9GFbXPKylqQ2IKm00QddgyWGMROCTxdLB9nCY8P7j2DjlsV/+mfr0C0r/NkeXbbpPlOTBBwT0mVz1zx9S/wJecBF9Wgv3p032iP2v4VSgfgW2G+HUEdEXU6iq4CtpLJfIN9XQG8dwa1VoO8XC2SrPDDyCOQptXgbcPvlAgBfxBoGwftQKeKFrNTASPt3pGGqDt/QRasn2kri+H6L80MJRsmVYJrAKyDItpJUy3/15WYIJqcJ9Q5N/LFJ4c3dc1URpWl9hW6mu50MUIelg4ucTPf15zs5DFo1c0VSp1tKB9jkwIyuM45kb+IP8gHed+6jO3v0KbIknzLy636E8KPTdCuUpB0wLo9JKnAO6pv0vS31EtBha/fJemkgLVVnd8KCk4qBTpQ5m7FbifBKrPJcq0pZAFVG/XbOFz+Tcq2MLrcmV28Nmi/OHskh82bau0k8eWCaPijQPWQ5lUvslwVCfHkXBMIehqUgtDNLeauH1huvZTbYmw+luPjyWoNGEuxRLR7LK5fSyXFUyK7PURQv2v8D3XOt2NJ6liBbmPGOsakw1kbeOs+31Wm5qpH+iJWSzqdPr2O7zc2TmtnrzCig6bBd/vgQmzOlz0STWIlmZEQfupogOZFHUZ7EkUnMn0RrpIMqAgHRJAOjIJ3yGw1I/MAp9q9S3Q/clADNm1wEeO+xbwg5OIYHZLY3ehG5lJk2xhco+6JWybpEVz2wrR6hZyD0QXZbeDVB+onmlimpkWprdAs4WEZDSQppsDlcdCBJJESIYFuAtUnC4GIF2C3Uu2Kv7L1bdz6FxtqxpG4TqQOqOUNAJ2HLvPWA2GgDy4O4vaDrtyl6P+1fAll+SyFcQ28GHqh7fvvf37udylf0fNwhzgz87Y+cf5x9GnF6ygHu18sAbipWeF0YPBgp2GaKeQduxxdEr3SgbH1kvH7tvqSLhedomOvZyts2dw8acu3dY/f+ucuMtCuP/e4zC4XnH3OLZ8ZuxTWxy8dJfU5dhDeKPSlJy5pn/+7u3XrJhmr9C5CuleGflGQocKnlAUaRKp0BAHV0ZwUt9VCqk6zYOgRIuMfePJzdmBdpPJ7/6B23+f+sp9NMDZevovvfYHG5dGPISQq1DojqNckchVrCcCYz/Q0hI0m3NKDRfkgsrnamo+p0CAq1FyvC3a3Nak/s5VX282x9Ufy3E39VAx6o7LpCvO2wK+ch9jNqpJCutcIOooKnYWtDK8gTRVYygRQfwgzKM5+jP2jOZdx3r32Py7rQUPOzAnoRs95NvRAR0qLGU11Taqu1bUYSzMcWjMEir067JQQHfIrLBHsrgv00/Wavd8HRLMEEYFSW3HCSNQehnrHztKqHcDyo4VfZ6gPKCR+gufwA8GegxUEo4A+gd0BASHiH6jYMLIsUdQJTs/C641KN4oCHWolCMLlMfIdtWKScjx7SM5LD9HnfmhrGI0S139UWfUnxgOXdJFW+AMcGjKr6eHAttHF5sUoeArYKDcxMSYcKA/xUDhPiEOEAPafSIUFArN0r24ynI91EPARDXvIDYyvqZaWeroBOUABQA/E+DXC7PWafDLQY2oiwpUEyj4RQtVlUp1GrM7In2p2A7VuiOW6otMiGOo5Mrp05ejVuTy6dNX/k/7mybZQ0nUmfrbx3U4KueDnlHm5wdh8FFeKnoaKKh/TK18StOPhwG9Xo5mqXAxvw/79YQwwDR+nAKQQ4izVXioB84qcppWB7IqjU45z4CE17OvF1Dw+oTFqxtz8dxwtogBnF9MjIl/in+K8s3hM9laIn0TiCbTAXL0T798bPXqx36p3chrv0O+GC9Xaj48Ecv8U8UEeBvUEsDlTepiU5OvlpeNGvpnKF0RvUooWhIjnx6GeBapXCQYTw9DNg6/OC3gZjp76oNTj9Kz6Jqobxb9NDqc08vcKReOpcsQV2K8InXFaXW3aI6Ofr1k48rp7CX7rx+v1UKPsfvzQU0Kc83i2VdILmd2/yX55zT9luN2+Cu4nKfwPcK/CvDVU+pHh8+LaldIf1fA5h3ndT6Fln9/W/9Ce1vndfvJtnPVO2xhm3qbafHVCN1X363UXHq9xuVD8OSD29Z8pZ5cZrern9cAdGW/uib/ud+VK0L9a42r6C90kL8KzxwLQw9NkIQJL0ASU8M+VG0KsUdgdvpgP/6NqqP0/gHZFUfGEijZLHpiIgvV5/Bltrj8Qd7XQd5p4P+7tJo30NMO6VGBwahSPMYiaaBYoLY6uEnciyhhh1Z/vvacG/rjpsvnpzs0B1Id6fmX8119l88XnOxe/uGrzzHcdu7UtY3+2vmXN5zUyj3ZcPl8p1sZSs6/nGXtwrV7Ka0XZdz83fwjjINpZWYw85lL8BRK4nGyIir2RiOsEyipuEcIakpGjWgBjLiHWOgj0Yi34gW1kKPxHt2Na5q+lwg1RdRSpFDNzosb44YJXnAfoEOpZW//6u1lhYA6leevezbI26zNHO811M2dc5HFxpk4i1jPC0s21/BWW5DnPQbn2X1WK43/aM2n18DfSoybbNHijFpamzXI31eRibGUOxSu/lT96YZlq1Yt20DaSBuG6knw2eusHs5EPBfNmVvHKdaQzcDfz9ZsXmLDWGXy2U5OsYSsIn8CS12jQIyD12KKqZrLPy7mSPdICmd6WGHG8NDZkkHuE4h9TU8FpmUO/VjC/EinToFyoNDz2p9XD6g78WgQdPG7Z3R0T/Z5dTM9lsL8Ktek7szl2L+gQwGgwkZHc2g5Su7NvVqwGy2Ua4KSXUwt1X4PaM5paaEu6jQ5zVFyNabxvUksVt2T/4VeamYPlLtffdQsk+2sUTY/zDXl/05W53/Bz9UK3p7LjapZ2ZxOm+UlZXrL3HHGqO8+wVroDaCTTnTxitMxmiAAYQzVJQH+nj3oIHnPaN6Zq6sNSLjBl8tKgVr2mj/9CWi9dnKca8rBQBsd5R1tzVlgrl5pbnPw6kZclCr2CHxMnHohLz+3KRQokzALyeIKFU1TNCiayJdoHvDYe7K6mZLm8S3uJ9dojuaJ62/qN/tjQxnSnhnKPw+LNrLi8ZKyJ3x1YhiI1aNAtP6NzCGzYv3DmaGh/LvQZnt0evgIhTFV0kE/PYxAnOHhCQUZdCWY5JWJwMzlAGl1mpNbDU7yyGnhRMILsYhH3VRAijrPcBU8/Cj1Y9NY6cnGVW0CjTLaz7E3epvaT/LtTV72Rs+0WVVmd0dz/MGTI5F0OsIviaqDlbbO5X6xT3PeXbXHRtf/z+fdka+eKPr8KF7IF4vBsT9MFPuPJMBTBMq9hQxXelQ+bewnf18ap4Ib+mSMrtDU5zqlD8QANa5MBGh/OwOvSDfcV2d66mfEWsbGWmIz6nsyZDWQSmqmxDneYyvjHPmRXHZxeueyRGLZzvRioKnGto9nIPkibAJA16adcOZRQr1iAP3bUyBR7T4RgAWTKxhkCYFwshq+7iV9r0whk50cmRcTg4fy5x4OmmNkHndIA2+YuMbmE9dwGYB4KFTsvnDE6Ah47r/fE3AYI+oXADpkdlENcZ8OZEEf8FFGZNxMs6ZLpG3SUFLL7Q2kcFU/A/Jsw+vWDa/7emewLaoeibaF1B9qUNnuqWK3+UfXYVL1v/omD15xxeDkPnXTOKSVcCbDGtOu0YQNpGAP7U1HU58UrqGu8xIbHtkQ3LVhb7Dx46ET3Ffcm1q0YcOizNmf3bC3VjWfAcpSv3MyTlgJ23FHQgmgvk+gk8pL0mcCDOn08MDAQlf+/SlTZ1z12fnqntOhbOTL9/ZdevbAPN+yby1f/uUtC/ixm8ZBo59LTXEW060hGrTDplNprWd58fwB/b/E27BdS/s7U+rGVCeQ46nzaw9QccnmZerGZZs3Yw9aVHt+Kh6HN4ti6lxIhT/wahnZtWwzlY9QHQ2c79C+dxzvVDKy8GqKWQERO9YAKbpsDUTLdWV5dE8PVPjvj9pqw7ah/PFVtkit7aj6G5xY9mfJrCz1j1e0BcnPol4UjtrCdbahIVtd2HaURujnFJR8CuOuUUfhrGhgKKgjCYNSvCc1WKlEp8wHUaAYynFNyzZn+2MnYv36dbMDBTonl/T/ma5IKAyEGz+4eRnVtaX6tss2o34u8mWorFtuFgm4A6qK/yp/gLEBVat5WnPDdKA574ubuFJ/IUfZ/Y2Nt6mN+ZNNTSTaeI56gKwkXerTe9DDHUw8/H35FY3nNN7GGuBKWhrV9ep+0k1WjNWVaHkW1yA+QHWNu8rtBw2a5YXuE40rs7/GA+j09V3hA98yRnFPOGr8ltGlsFdD/7tRce3LH6Trcneuiy7K7J3khKu+3qUaXPWaX7T6/Kfj9BX2eZq2XAcZT79u1ClJzUtHUqfqSMWBcZS43Ena0cUGLgpkKxB1QM+0Fxz10wgg6r5rltnFpH05pepUq3Y2HfYqeKRntmUFNz+XmcOs1H31U6cC6RTVLfCg7RNBF1UF2/wBgu0fFQtPEU1sSg3VcNsR7dWq3af87tUFn1l3ltXpaJxpNvtcZkH2WmMst3JqRpxUH+WC0E1qOGtP66s1MYv+VLu8/XFXvV/ZbunYYBeVN64ls0ur6NzpV9xzlmQwB5qC4Tq70WC0tk8dWJXeHvkD0h9zJOM0vD86/1NJMaIAolctvlByferCsqOKDKceOfUu1PsmoFCamV5mCrMUOCi6V6FJosMF22AcrKJgQDVhfYh6tepp/lYgvnCEAbJQ1L0rOpajEmRcasMiPfxhgGoVo4rwreQpV6fUJHH2e8fa1s2c13Apl1b89a58ozdoap2sjgLN9uISl7P1DrulyeIkt0zr6JjWocoPOZsaXPb6jtqBblsgsaRre2xHi4nELm0MhG1+x1SXwLpFi53b+aHRYo/IrbZtuWAKu5cSEXfybnnmUCaXGTpQr0xK2O2WWY76f+nAjNVf7nCZHU5XqIkTnpt6VtvsFlPXg1031g/VRdpkkyVpD7jnmax88QwDvg/66NnMRdRXTcGTmQc3cuINwN5IQqi0yzb+YFVHuVqI5s4ADfg5oE4ybDLd28mFSFmYvRoomsWXEdLU2Wl3GJy93ZNb/d5gqmNaqJZSO1l6PVRy0nZIj/45EetjLguh1rLqR+SK0hO6NrsqcNX8zoUdjQYDJ7tb4os6+i+Y0qpY2AWlnLRDWdGFTfGY1gV0zNAtJ7pdo24se0D88AwLY/gZmE9iuP4V5v7CSR/RThaHLh+UeBkXwU6BC7lGOevK65udTv+tS/PfW7qj3ljTcj3b9OkbV85t8xsMj7Ddj7DGpthZKwKPvso/c/1K9aLE12fMWLV1y1D9ua8lyJdWXr/bG+noCFutf/mLILe39ITUV4igr3876fpX5g2zeB52sWnIL4fXHlgeUzOx5QfIvJQyrKQE9wHUqVq+PEaOrz0wVvNbJZVSfsuMzxN4l9PkedFzw9V5Dj+nzpgoT4ZxCxJfC5RWLc74YVHxKlExCYt0JAOMatREhHBSCAtSfod6x6Ls8HCWECLwXZ9nd5Dz1T24JUdWs6fU3++fcnT49Qe+kBs+wdsMZgPXMp3U5S958snPP/EE7bvkOPCuTUDTUQ/UzirLhML9yPahoe1D5Fj5jWsaoveyP00PehdUAHk/seDVWsvDWXXXsyn/4wfpXc2V3/Qxli3jl/5hj/83avSCfpTNxOEKLmTjxOEKuxgNlsQn0xgct724mhynupNW1Ph6o3RYS3/+2TJrzLlkFz+ip3qCHKf6eqW02QJLjBYuuj4sobhCWqa/YHGEHpcnumuWSOhxeaL7sOakNR6vvmo+YcfFA8UFXEPZf9UjyudIOyNwx/i90DdsujS/FX2UAwvWSVK4NxaMhAGw3oowp/uc8CTi7D2rBgZWwb/60faR7SPsEbjkXy4G0XaqhXPwe2cePjxjxuHD6ssQuR1fq6PF0E+o2t1nePTn8TUmxz/A3crMoCc7egESuoTHYc7mYdg6etORoOhR7BBGD+qJopELrl4S6cJNRtEAsLP/OdvnJq0Wo0GolY2Et9VFB2Kf+4bZvVyxfOMz3WdFfSIryj6DwWghre7aQbdiDrkTL3A3vNDuDpk93HqXwam+bWmUJZfNn5ozKV5Pmmq8PF/jVY+2Tlk2M2RzSXKjmbQ4RZcQavEYrN/9rlXwtIQqzxQNMzPPfHYLvuPoO9TbT8bpGw5CQPGd+SyX/Cyf0Vxjd2R9NmsunnXYa8xGHzn+sSfM5J0y0DZEXWWxkXjcR75KBLNLHi7XvX2G8VOrf4Ykg0AMdBESIpo7MgAfyakA6rkqpI6UjNs0px7cMV+D5BF49Tez1VGnYmq0WIijp985m4Sn2gJR9b07riPPFo97OYbUZbxJCpot7H/lpZBicglCPN7WOfJkcHqc3ElWqvvz/1E6bIQrG+tz6WkM1SM9FBTR7FSs8KyBBytSmNEoquJNFN5EQyTiCrnKDx1h58yxCepPHU5nxGoxEQeeOZi2m80DxNxncVhr6BmEfUarxejw+WSiHhWk19bSY7aKR5MsteblJpfTLtjimBouXsm3d3djjYM+wEW0El9dM/ueVRWIsXwe43R7SgbVZqrnqoJ1X/kuF7pcgf8duv4q6vayV5U9zMV91GxO59UUjW8rHV6u799WzKMT7umRCXbYUKM+foaCcwgaoqZUtmodV3p+X7akb4dnU9B9La38RPFUG2SCC90tVA4XwEFhyOpZZrUCsgWYHsczLFBBVGNtstoN1bw0Z+O4fYIbvZVt4EUcJEKOhHeincWqONw+q6w5Go+WGOSR7LhKV+KBqbBPpfUvOf9QqkpDyVhBeyyZQGMsdA5FBUqvFMtUyGq9vjnsAJU4UcrxldP1CCaofyDkSAifoP5QwWx+SyUGxp75BzGAvtG7uQ38LehlyEQMeh0TeE6Bm7tYdXqdkt0uOb3kfYlNwmOdDyacOq/qlFo1v+PTmTi3E/glC9W11b34A22zmLzvb231Q0L2Bgg60OTW4YdstO+YOJnO38TtpH7zy9ymokWyA79qlVSn38HtpFlImFnhu3b4boNWXklOXV0Iwo7lQ1hrZyPFcwtjwFP7iEKSHSSJw509kh8kj6pr+H1jR7km9vcvqN9657vffefkv+fKxge1X+7RdjYUPIESN7gTvRkB/RMYtEkaVkdHApmdBPpnKmz0n1xSWFOyVIuLrinZwpoCRe6kyiVZoHX088F+UX4+WKS4iBTP0IWxGtZgOdMaV4KTayqHQF/VihBwTbgDXTCmKoOBJeNhwJMzEVjtjIFLuU38fPR7hqNG1JS7g/qRCuy3vmQ3W9Vu8qbVbP+SzazGRJH83MzP90Ck2m31mMjP8TiLn5uwD2Ugr2PFvPQjB5BnSJvQxGQZZEB+LopqzGzDbMmbkAPkZVJjeO5FzOSBKCgJze2ZS4Gemc9twrwY6u9H61iUQTcRvtdT9RW3tRxAWwFs2tcuJRnI6xjmBdWjbgFNRHMHiF1uHYBfUR/ut5Ug2jXAaT96+9RH/FToRwIzGbKmVJ1AZQnoabSB1yyIg7ByAridHApPMjyw0OiV6RjSbCuzwLAvFizBliWJua1tsuAgvNPbmljYbpt8lkWam7b3XZiOiKJskMOtmfScnsbPW208knwjuXrXK4Q1iKIgNyYXXDVT9C2Ye/78GQ5BEEXfFdde2RwauOysdJNL5AzCy84ard/nGAVN8alecnFdgu5Gbd5DJTL+hHZK0vApVy3OfU8XTSJg1TlssivsPYUlIqvn66PzrVTymCc4wgF6SDNR0pDf+9Gp+VnsUH5WtpHYsuhOaey8zdwLN47V8MTbm78g687+P3cx6tcAeNpjYGRgYGBk8s0/zBIfz2/zlUGeZQNQhOFCWfF0GP0/8P8c1jusIkAuBwMTSBQAYwQM6HjaY2BkYGAV+d8KJgP/XWG9wwAUQQGLAYqPBl942n1TvUoDQRCe1VM8kWARjNrZGIurBAsRBIuA2vkAFsJiKTYW4guIjT5ARMgTxCLoA1hcb5OgDyGHrY7f7M65e8fpLF++2W/nZ2eTmGfaIJi5I0qGDlZZcD51QzTTJirZPAI9JIwVA+wT8L5nOdMaV0AuMJ+icRHq8of6LSD18fzq8ds7xjpwBnQiSI9V5QVl6NwPvgM15NXn/AtWZyj3W0HjEXitOc/dIdbetPdFTZ+P6t+X7xU0/k6GJtOe1/B3arN0/pmz1J4UZc+D6ExwjD7vioeGd5HvhvU+R+DZcGZ6YBPNfAi0G97iBPwFXqph2cW8+D7kjMfwtinHb6kLb6Wygk3cZytSEoptGrlScdHtLPeri1JKueACMZfU1ViJG1Sq5E43dIt7SZZFl1zuRhb/GOs44xFVDbrJzB5tYs35OmaXTrEmkv0DajnMWQB42mNgYNCCwk0MLxheMPrhgUuY2JiUmOqY2pjWMD1hdmPOY+5hPsLCwWLEksSyiOUOawzrLrYiti/sCuxJ7Kc45DiSOPZxmnG2cG7jvMelweXDNYXrEbcBdxf3KR4OngheLd443g18fHwZfFv4NfiX8T8TEBIIEZggsEpQS7BMcJsQl5CFUI3QAWEp4RLhCyJaIldEbURXiJ4RYxEzE0sQ2yD2TzxIfJkEk4SeRJbENIkNEg8k/klqSGZITpE8InlL8p2UmVSG1A6pb9Jx0ltkjGSmyDySlZF1kc2RnSK7R/aZnJ5cmdwB+ST5SwpuCvsUjRTLFHcoOShNU9qhzKespGyhXKV8SPmBCpOKgUqcyjSVR6omqgmqe9RE1OrUnqkHqO9R/6FholGgsUZzgeYZLTUtL60WbS7tKh0OnQydXTpvdGV0O3S/6Gnopekt0ruhz6fvpl+nv0n/h4GdQYvBJUMhwwTDdYYvjFSM4oxmGd0zVjK2M84w3mYiYZJgssLkkqmO6TzTF2Z2ZjVmd8ylzP3MJ5lfsRCwcLJoszhhyWXpZdlhecZKxirHapbVPesF1ndsJGwCbBbZ/LA1sn1jZ2XXY3fFXsM+z36V/S8HD4cGh2OOTI51ThJOK5zeOUs4OzmXOS9wPuUi4JLgss7lm2uU6zY3NrcSty1u39zN3Mvct7l/8xDzMPLw88jyaPM44ynkaeEZ59niucqLyUvPKwgAn3OqOQAAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAHjarZK9TgJBEMf/d6CRaAyRhMLqCgsbL4ciglTGRPEjSiSKlnLycXJ86CEniU/hM9jYWPgIFkYfwd6nsDD+d1mBIIUx3mZnfzs3MzszuwDCeIYG8UUwQxmAFgxxPeeuyxrmcaNYxzTuFAewi0fFQSTxqXgM11pC8TgS2oPiCUS1d8Uh8ofiSczpYcVT5LjiCPlY8Qui+ncOr7D02y6/BTCrP/m+b5bdTrPi2I26Z9qNGtbRQBMdXMJBGRW0YOCecxEWYoiTCvxrYBunqHPdoX2bLOyrMKlZg8thDETw5K7Itci1TXlGy0124QRZZLDFU/exhxztMozlosTpMH6ZPge0L+OKGnFKjJ4WRwppHPL0PP3SI2P9jLQwFOu3GRhDfkeyDo//G7IHgzllZQxLdquvrdCyBVvat3seJlYo06gxapUxhU2JWnFygR03sSxnEkvcpf5Y5eibGq315TDp7fKWm8zbUVl71Aqq/ZtNnlkWmLnQtno9ycvXYbA6W2pF3aKfCayyC0Ja7Fr/PW70/HO4YM0OKxFvzf0C1MyPjwAAeNpt1VWUU2cYRuHsgxenQt1d8/3JOUnqAyR1d/cCLQVKO22pu7tQd3d3d3d3d3cXmGzumrWy3pWLs/NdPDMpZaWu1783l1Lpf14MnfzO6FbqVupfGkD30iR60JNe9KYP09CXfvRnAAMZxGCGMG3pW6ZjemZgKDMyEzMzC7MyG7MzB3MyF3MzD/MyH/OzAAuyEAuzCIuyGIuzBGWCRIUqOQU16jRYkqVYmmVYluVYng6GMZwRNGmxAiuyEiuzCquyGquzBmuyFmuzDuuyHuuzARuyERuzCZuyGZuzBVuyFVuzDduyHdszklGMZgd2ZAw7MZZxjGdnJrALu9LJbuzOHkxkT/Zib/ZhX/Zjfw7gQA7iYA7hUA7jcI7gSI7iaI7hWI7jeE7gRE7iZE5hEqdyGqdzBmdyFmdzDudyHudzARdyERdzCZdyGZdzBVdyFVdzDddyHddzAzdyEzdzC7dyG7dzB3dyF3dzD/dyH/fzAA/yEA/zCI/yGI/zBE/yFE/zDM/yHM/zAi/yEi/zCq/yGq/zBm/yFm/zDu/yHu/zAR/yER/zCZ/yGZ/zBV/yFV/zDd/yHd/zAz/yEz/zC7/yG7/zB3/yF3/zD/9mpYwsy7pl3bMeWc+sV9Y765NNk/XN+mX9swHZwGxQNjgb0nPkmInjR0V7Uq/OsaPL5Y7ylE3l8tQNN7kVt+rmbuHW3LrbcDvam1rtzVvdm50TxrU/DBvRtZUY1rV5a3jXFn550Wo/XDNWK3dFmh7X9LimxzU9qulRTY9qelTTo5rlKLt2wk7YiaprL+yFvbAX9pK9ZC/ZS/aSvWQv2Uv2kr1kr2KvYq9ir2KvYq9ir2KvYq9ir2Kvaq9qr2qvaq9qr2qvaq9qr2qvai+3l9vL7eX2cnu5vdxebi+3l9sr7BV2CjuFncJOYaewU9gp7NTs1LyrZq9mr2avZq9mr2avZq9mr26vbq9ur26vbq9ur26vbq9ur26vYa9hr2GvYa9hr2GvYa/R7oXuQ/eh+2j/UU7e3C3cqc/V3fYdof/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D92H7kP3ofvQfeg+dB+6D92H7kP3ofvQfRT29B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6j6nuG3Ya7U5q/0hN3nCTW3Grbu4Wrs/rP+k/6T/pP+k/6T/pP+k+6T7pPek86TzpPOk86TzpOuk66TrpOuk66TrpOlWmPu/36zrpOuk66TrpOuk66TrpOvl/Pek76TvpO+k76TvpO+k76TvpO+k76TvpO7V9t+qtVs/OaOURU6bo6PgPt6rZbwAAAAABVFDDFwAA) format('woff'),url(data:application/x-font-truetype;base64,AAEAAAAPAIAAAwBwRkZUTW0ql9wAAAD8AAAAHEdERUYBRAAEAAABGAAAACBPUy8yZ7lriQAAATgAAABgY21hcNqt44EAAAGYAAAGcmN2dCAAKAL4AAAIDAAAAARnYXNw//8AAwAACBAAAAAIZ2x5Zn1dwm8AAAgYAACUpGhlYWQFTS/YAACcvAAAADZoaGVhCkQEEQAAnPQAAAAkaG10eNLHIGAAAJ0YAAADdGxvY2Fv+5XOAACgjAAAAjBtYXhwAWoA2AAAorwAAAAgbmFtZbMsoJsAAKLcAAADonBvc3S6o+U1AACmgAAACtF3ZWJmwxhUUAAAsVQAAAAGAAAAAQAAAADMPaLPAAAAANB2gXUAAAAA0HZzlwABAAAADgAAABgAAAAAAAIAAQABARYAAQAEAAAAAgAAAAMEiwGQAAUABAMMAtAAAABaAwwC0AAAAaQAMgK4AAAAAAUAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAFVLV04AQAAg//8DwP8QAAAFFAB7AAAAAQAAAAAAAAAAAAAAIAABAAAABQAAAAMAAAAsAAAACgAAAdwAAQAAAAAEaAADAAEAAAAsAAMACgAAAdwABAGwAAAAaABAAAUAKAAgACsAoAClIAogLyBfIKwgvSISIxsl/CYBJvonCScP4APgCeAZ4CngOeBJ4FngYOBp4HngieCX4QnhGeEp4TnhRuFJ4VnhaeF54YnhleGZ4gbiCeIW4hniIeIn4jniSeJZ4mD4////AAAAIAAqAKAApSAAIC8gXyCsIL0iEiMbJfwmASb6JwknD+AB4AXgEOAg4DDgQOBQ4GDgYuBw4IDgkOEB4RDhIOEw4UDhSOFQ4WDhcOGA4ZDhl+IA4gniEOIY4iHiI+Iw4kDiUOJg+P/////j/9r/Zv9i4Ajf5N+132nfWd4F3P3aHdoZ2SHZE9kOIB0gHCAWIBAgCiAEH/4f+B/3H/Ef6x/lH3wfdh9wH2ofZB9jH10fVx9RH0sfRR9EHt4e3B7WHtUezh7NHsUevx65HrMIFQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAACjAAAAAAAAAA1AAAAIAAAACAAAAADAAAAKgAAACsAAAAEAAAAoAAAAKAAAAAGAAAApQAAAKUAAAAHAAAgAAAAIAoAAAAIAAAgLwAAIC8AAAATAAAgXwAAIF8AAAAUAAAgrAAAIKwAAAAVAAAgvQAAIL0AAAAWAAAiEgAAIhIAAAAXAAAjGwAAIxsAAAAYAAAl/AAAJfwAAAAZAAAmAQAAJgEAAAAaAAAm+gAAJvoAAAAbAAAnCQAAJwkAAAAcAAAnDwAAJw8AAAAdAADgAQAA4AMAAAAeAADgBQAA4AkAAAAhAADgEAAA4BkAAAAmAADgIAAA4CkAAAAwAADgMAAA4DkAAAA6AADgQAAA4EkAAABEAADgUAAA4FkAAABOAADgYAAA4GAAAABYAADgYgAA4GkAAABZAADgcAAA4HkAAABhAADggAAA4IkAAABrAADgkAAA4JcAAAB1AADhAQAA4QkAAAB9AADhEAAA4RkAAACGAADhIAAA4SkAAACQAADhMAAA4TkAAACaAADhQAAA4UYAAACkAADhSAAA4UkAAACrAADhUAAA4VkAAACtAADhYAAA4WkAAAC3AADhcAAA4XkAAADBAADhgAAA4YkAAADLAADhkAAA4ZUAAADVAADhlwAA4ZkAAADbAADiAAAA4gYAAADeAADiCQAA4gkAAADlAADiEAAA4hYAAADmAADiGAAA4hkAAADtAADiIQAA4iEAAADvAADiIwAA4icAAADwAADiMAAA4jkAAAD1AADiQAAA4kkAAAD/AADiUAAA4lkAAAEJAADiYAAA4mAAAAETAAD4/wAA+P8AAAEUAAH1EQAB9REAAAEVAAH2qgAB9qoAAAEWAAYCCgAAAAABAAABAAAAAAAAAAAAAAAAAAAAAQACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAEAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAL4AAAAAf//AAIAAgAoAAABaAMgAAMABwAusQEALzyyBwQA7TKxBgXcPLIDAgDtMgCxAwAvPLIFBADtMrIHBgH8PLIBAgDtMjMRIRElMxEjKAFA/ujw8AMg/OAoAtAAAQBkAGQETARMAFsAAAEyFh8BHgEdATc+AR8BFgYPATMyFhcWFRQGDwEOASsBFx4BDwEGJi8BFRQGBwYjIiYvAS4BPQEHDgEvASY2PwEjIiYnJjU0Nj8BPgE7AScuAT8BNhYfATU0Njc2AlgPJgsLCg+eBxYIagcCB57gChECBgMCAQIRCuCeBwIHaggWB54PCikiDyYLCwoPngcWCGoHAgee4AoRAgYDAgECEQrgngcCB2oIFgeeDwopBEwDAgECEQrgngcCB2oIFgeeDwopIg8mCwsKD54HFghqBwIHnuAKEQIGAwIBAhEK4J4HAgdqCBYHng8KKSIPJgsLCg+eBxYIagcCB57gChECBgAAAAABAAAAAARMBEwAIwAAATMyFhURITIWHQEUBiMhERQGKwEiJjURISImPQE0NjMhETQ2AcLIFR0BXhUdHRX+oh0VyBUd/qIVHR0VAV4dBEwdFf6iHRXIFR3+ohUdHRUBXh0VyBUdAV4VHQAAAAABAHAAAARABEwARQAAATMyFgcBBgchMhYPAQ4BKwEVITIWDwEOASsBFRQGKwEiJj0BISImPwE+ATsBNSEiJj8BPgE7ASYnASY2OwEyHwEWMj8BNgM5+goFCP6UBgUBDAoGBngGGAp9ARMKBgZ4BhgKfQ8LlAsP/u0KBgZ4BhgKff7tCgYGeAYYCnYFBv6UCAUK+hkSpAgUCKQSBEwKCP6UBgwMCKAIDGQMCKAIDK4LDw8LrgwIoAgMZAwIoAgMDAYBbAgKEqQICKQSAAABAGQABQSMBK4AOwAAATIXFhcjNC4DIyIOAwchByEGFSEHIR4EMzI+AzUzBgcGIyInLgEnIzczNjcjNzM+ATc2AujycDwGtSM0QDkXEys4MjAPAXtk/tQGAZZk/tQJMDlCNBUWOUA0I64eYmunznYkQgzZZHABBdpkhhQ+H3UErr1oaS1LMCEPCx4uTzJkMjJkSnRCKw8PIjBKK6trdZ4wqndkLzVkV4UljQAAAgB7AAAETASwAD4ARwAAASEyHgUVHAEVFA4FKwEHITIWDwEOASsBFRQGKwEiJj0BISImPwE+ATsBNSEiJj8BPgE7ARE0NhcRMzI2NTQmIwGsAV5DakIwFgwBAQwWMEJqQ7ICASAKBgZ4BhgKigsKlQoP/vUKBgZ4BhgKdf71CgYGeAYYCnUPtstALS1ABLAaJD8yTyokCwsLJCpQMkAlGmQMCKAIDK8LDg8KrwwIoAgMZAwIoAgMAdsKD8j+1EJWVEAAAAEAyAGQBEwCvAAPAAATITIWHQEUBiMhIiY9ATQ2+gMgFR0dFfzgFR0dArwdFcgVHR0VyBUdAAAAAgDIAAAD6ASwACUAQQAAARUUBisBFRQGBx4BHQEzMhYdASE1NDY7ATU0NjcuAT0BIyImPQEXFRQWFx4BFAYHDgEdASE1NCYnLgE0Njc+AT0BA+gdFTJjUVFjMhUd/OAdFTJjUVFjMhUdyEE3HCAgHDdBAZBBNxwgIBw3QQSwlhUdZFuVIyOVW5YdFZaWFR2WW5UjI5VbZB0VlshkPGMYDDI8MgwYYzyWljxjGAwyPDIMGGM8ZAAAAAEAAAAAAAAAAAAAAAAxAAAB//IBLATCBEEAFgAAATIWFzYzMhYVFAYjISImNTQ2NyY1NDYB9261LCwueKqqeP0ST3FVQgLYBEF3YQ6teHmtclBFaw4MGZnXAAAAAgAAAGQEsASvABoAHgAAAB4BDwEBMzIWHQEhNTQ2OwEBJyY+ARYfATc2AyEnAwL2IAkKiAHTHhQe+1AeFB4B1IcKCSAkCm9wCXoBebbDBLMTIxC7/RYlFSoqFSUC6rcQJBQJEJSWEPwecAIWAAAAAAQAAABkBLAETAALABcAIwA3AAATITIWBwEGIicBJjYXARYUBwEGJjURNDYJATYWFREUBicBJjQHARYGIyEiJjcBNjIfARYyPwE2MhkEfgoFCP3MCBQI/cwIBQMBCAgI/vgICgoDjAEICAoKCP74CFwBbAgFCvuCCgUIAWwIFAikCBQIpAgUBEwKCP3JCAgCNwgK2v74CBQI/vgIBQoCJgoF/vABCAgFCv3aCgUIAQgIFID+lAgKCggBbAgIpAgIpAgAAAAD//D/8AS6BLoACQANABAAAAAyHwEWFA8BJzcTAScJAQUTA+AmDpkNDWPWXyL9mdYCZv4f/rNuBLoNmQ4mDlzWYP50/ZrWAmb8anABTwAAAAEAAAAABLAEsAAPAAABETMyFh0BITU0NjsBEQEhArz6FR384B0V+v4MBLACiv3aHRUyMhUdAiYCJgAAAAEADgAIBEwEnAAfAAABJTYWFREUBgcGLgE2NzYXEQURFAYHBi4BNjc2FxE0NgFwAoUnMFNGT4gkV09IQv2oWEFPiCRXT0hCHQP5ow8eIvzBN1EXGSltchkYEAIJm/2iKmAVGilucRoYEQJ/JioAAAACAAn/+AS7BKcAHQApAAAAMh4CFQcXFAcBFgYPAQYiJwEGIycHIi4CND4BBCIOARQeATI+ATQmAZDItoNOAQFOARMXARY7GikT/u13jgUCZLaDTk6DAXKwlFZWlLCUVlYEp06DtmQCBY15/u4aJRg6FBQBEk0BAU6Dtsi2g1tWlLCUVlaUsJQAAQBkAFgErwREABkAAAE+Ah4CFRQOAwcuBDU0PgIeAQKJMHt4dVg2Q3mEqD4+p4V4Qzhadnh5A7VESAUtU3ZAOXmAf7JVVbJ/gHk5QHZTLQVIAAAAAf/TAF4EewSUABgAAAETNjIXEyEyFgcFExYGJyUFBiY3EyUmNjMBl4MHFQeBAaUVBhH+qoIHDxH+qf6qEQ8Hgv6lEQYUAyABYRMT/p8RDPn+bxQLDPb3DAsUAZD7DBEAAv/TAF4EewSUABgAIgAAARM2MhcTITIWBwUTFgYnJQUGJjcTJSY2MwUjFwc3Fyc3IycBl4MHFQeBAaUVBhH+qoIHDxH+qf6qEQ8Hgv6lEQYUAfPwxUrBw0rA6k4DIAFhExP+nxEM+f5vFAsM9vcMCxQBkPsMEWSO4ouM5YzTAAABAAAAAASwBLAAJgAAATIWHQEUBiMVFBYXBR4BHQEUBiMhIiY9ATQ2NyU+AT0BIiY9ATQ2Alh8sD4mDAkBZgkMDwr7ggoPDAkBZgkMJj6wBLCwfPouaEsKFwbmBRcKXQoPDwpdChcF5gYXCktoLvp8sAAAAA0AAAAABLAETAAPABMAIwAnACsALwAzADcARwBLAE8AUwBXAAATITIWFREUBiMhIiY1ETQ2FxUzNSkBIgYVERQWMyEyNjURNCYzFTM1BRUzNSEVMzUFFTM1IRUzNQchIgYVERQWMyEyNjURNCYFFTM1IRUzNQUVMzUhFTM1GQR+Cg8PCvuCCg8PVWQCo/3aCg8PCgImCg8Pc2T8GGQDIGT8GGQDIGTh/doKDw8KAiYKDw/872QDIGT8GGQDIGQETA8K++YKDw8KBBoKD2RkZA8K/qIKDw8KAV4KD2RkyGRkZGTIZGRkZGQPCv6iCg8PCgFeCg9kZGRkZMhkZGRkAAAEAAAAAARMBEwADwAfAC8APwAAEyEyFhURFAYjISImNRE0NikBMhYVERQGIyEiJjURNDYBITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NjIBkBUdHRX+cBUdHQJtAZAVHR0V/nAVHR39vQGQFR0dFf5wFR0dAm0BkBUdHRX+cBUdHQRMHRX+cBUdHRUBkBUdHRX+cBUdHRUBkBUd/agdFf5wFR0dFQGQFR0dFf5wFR0dFQGQFR0AAAkAAAAABEwETAAPAB8ALwA/AE8AXwBvAH8AjwAAEzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2MsgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR0ETB0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHf5wHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUd/nAdFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0ABgAAAAAEsARMAA8AHwAvAD8ATwBfAAATMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYyyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHQRMHRXIFR0dFcgVHR0VyBUdHRXIFR3+cB0VyBUdHRXIFR0dFcgVHR0VyBUd/nAdFcgVHR0VyBUdHRXIFR0dFcgVHQAAAAABACYALAToBCAAFwAACQE2Mh8BFhQHAQYiJwEmND8BNjIfARYyAdECOwgUB7EICPzxBxUH/oAICLEHFAirBxYB3QI7CAixBxQI/PAICAGACBQHsQgIqwcAAQBuAG4EQgRCACMAAAEXFhQHCQEWFA8BBiInCQEGIi8BJjQ3CQEmND8BNjIXCQE2MgOIsggI/vUBCwgIsggVB/70/vQHFQiyCAgBC/71CAiyCBUHAQwBDAcVBDuzCBUH/vT+9AcVCLIICAEL/vUICLIIFQcBDAEMBxUIsggI/vUBDAcAAwAX/+sExQSZABkAJQBJAAAAMh4CFRQHARYUDwEGIicBBiMiLgI0PgEEIg4BFB4BMj4BNCYFMzIWHQEzMhYdARQGKwEVFAYrASImPQEjIiY9ATQ2OwE1NDYBmcSzgk1OASwICG0HFQj+1HeOYrSBTU2BAW+zmFhYmLOZWFj+vJYKD0sKDw8KSw8KlgoPSwoPDwpLDwSZTYKzYo15/tUIFQhsCAgBK01NgbTEs4JNWJmzmFhYmLOZIw8KSw8KlgoPSwoPDwpLDwqWCg9LCg8AAAMAF//rBMUEmQAZACUANQAAADIeAhUUBwEWFA8BBiInAQYjIi4CND4BBCIOARQeATI+ATQmBSEyFh0BFAYjISImPQE0NgGZxLOCTU4BLAgIbQcVCP7Ud45itIFNTYEBb7OYWFiYs5lYWP5YAV4KDw8K/qIKDw8EmU2Cs2KNef7VCBUIbAgIAStNTYG0xLOCTViZs5hYWJizmYcPCpYKDw8KlgoPAAAAAAIAFwAXBJkEsAAPAC0AAAEzMhYVERQGKwEiJjURNDYFNRYSFRQOAiIuAjU0EjcVDgEVFB4BMj4BNTQmAiZkFR0dFWQVHR0BD6fSW5vW6tabW9KnZ3xyxejFcnwEsB0V/nAVHR0VAZAVHeGmPv7ZuHXWm1tbm9Z1uAEnPqY3yHh0xXJyxXR4yAAEAGQAAASwBLAADwAfAC8APwAAATMyFhURFAYrASImNRE0NgEzMhYVERQGKwEiJjURNDYBMzIWFREUBisBIiY1ETQ2BTMyFh0BFAYrASImPQE0NgQBlgoPDwqWCg8P/t6WCg8PCpYKDw/+3pYKDw8KlgoPD/7elgoPDwqWCg8PBLAPCvuCCg8PCgR+Cg/+cA8K/RIKDw8KAu4KD/7UDwr+PgoPDwoBwgoPyA8K+goPDwr6Cg8AAAAAAgAaABsElgSWAEcATwAAATIfAhYfATcWFwcXFh8CFhUUDwIGDwEXBgcnBwYPAgYjIi8CJi8BByYnNycmLwImNTQ/AjY/ASc2Nxc3Nj8CNhIiBhQWMjY0AlghKSYFMS0Fhj0rUAMZDgGYBQWYAQ8YA1AwOIYFLDIFJisfISkmBTEtBYY8LFADGQ0ClwYGlwINGQNQLzqFBS0xBSYreLJ+frJ+BJYFmAEOGQJQMDmGBSwxBiYrHiIoJgYxLAWGPSxRAxkOApcFBZcCDhkDUTA5hgUtMAYmKiAhKCYGMC0Fhj0sUAIZDgGYBf6ZfrF+frEABwBkAAAEsAUUABMAFwAhACUAKQAtADEAAAEhMhYdASEyFh0BITU0NjMhNTQ2FxUhNQERFAYjISImNREXETMRMxEzETMRMxEzETMRAfQBLCk7ARMKD/u0DwoBEzspASwBLDsp/UQpO2RkZGRkZGRkBRQ7KWQPCktLCg9kKTtkZGT+1PzgKTs7KQMgZP1EArz9RAK8/UQCvP1EArwAAQAMAAAFCATRAB8AABMBNjIXARYGKwERFAYrASImNREhERQGKwEiJjURIyImEgJsCBUHAmAIBQqvDwr6Cg/+1A8K+goPrwoFAmoCYAcH/aAICv3BCg8PCgF3/okKDw8KAj8KAAIAZAAAA+gEsAARABcAAAERFBYzIREUBiMhIiY1ETQ2MwEjIiY9AQJYOykBLB0V/OAVHR0VA1L6FR0EsP5wKTv9dhUdHRUETBUd/nAdFfoAAwAXABcEmQSZAA8AGwAwAAAAMh4CFA4CIi4CND4BBCIOARQeATI+ATQmBTMyFhURMzIWHQEUBisBIiY1ETQ2AePq1ptbW5vW6tabW1ubAb/oxXJyxejFcnL+fDIKD68KDw8K+goPDwSZW5vW6tabW1ub1urWmztyxejFcnLF6MUNDwr+7Q8KMgoPDwoBXgoPAAAAAAL/nAAABRQEsAALAA8AACkBAyMDIQEzAzMDMwEDMwMFFP3mKfIp/eYBr9EVohTQ/p4b4BsBkP5wBLD+1AEs/nD+1AEsAAAAAAIAZAAABLAEsAAVAC8AAAEzMhYVETMyFgcBBiInASY2OwERNDYBMzIWFREUBiMhIiY1ETQ2OwEyFh0BITU0NgImyBUdvxQLDf65DSYN/rkNCxS/HQJUMgoPDwr75goPDwoyCg8DhA8EsB0V/j4XEP5wEBABkBAXAcIVHfzgDwr+ogoPDwoBXgoPDwqvrwoPAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgUzMhYVETMyFgcDBiInAyY2OwERNDYB4+rWm1tbm9bq1ptbW5sBv+jFcnLF6MVycv58lgoPiRUKDd8NJg3fDQoViQ8EmVub1urWm1tbm9bq1ps7csXoxXJyxejFDQ8K/u0XEP7tEBABExAXARMKDwAAAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JiUTFgYrAREUBisBIiY1ESMiJjcTNjIB4+rWm1tbm9bq1ptbW5sBv+jFcnLF6MVycv7n3w0KFYkPCpYKD4kVCg3fDSYEmVub1urWm1tbm9bq1ps7csXoxXJyxejFAf7tEBf+7QoPDwoBExcQARMQAAAAAAIAAAAABLAEsAAZADkAABMhMhYXExYVERQGBwYjISImJyY1EzQ3Ez4BBSEiBgcDBhY7ATIWHwEeATsBMjY/AT4BOwEyNicDLgHhAu4KEwO6BwgFDBn7tAweAgYBB7kDEwKX/dQKEgJXAgwKlgoTAiYCEwr6ChMCJgITCpYKDAJXAhIEsA4K/XQYGf5XDB4CBggEDRkBqRkYAowKDsgOC/4+Cw4OCpgKDg4KmAoODgsBwgsOAAMAFwAXBJkEmQAPABsAJwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgUXFhQPAQYmNRE0NgHj6tabW1ub1urWm1tbmwG/6MVycsXoxXJy/ov9ERH9EBgYBJlbm9bq1ptbW5vW6tabO3LF6MVycsXoxV2+DCQMvgwLFQGQFQsAAQAXABcEmQSwACgAAAE3NhYVERQGIyEiJj8BJiMiDgEUHgEyPgE1MxQOAiIuAjQ+AjMyA7OHBwsPCv6WCwQHhW2BdMVycsXoxXKWW5vW6tabW1ub1nXABCSHBwQL/pYKDwsHhUxyxejFcnLFdHXWm1tbm9bq1ptbAAAAAAIAFwABBJkEsAAaADUAAAE3NhYVERQGIyEiJj8BJiMiDgEVIzQ+AjMyEzMUDgIjIicHBiY1ETQ2MyEyFg8BFjMyPgEDs4cHCw8L/pcLBAeGboF0xXKWW5vWdcDrllub1nXAnIYHCw8LAWgKBQiFboJ0xXIEJIcHBAv+lwsPCweGS3LFdHXWm1v9v3XWm1t2hggFCgFoCw8LB4VMcsUAAAAKAGQAAASwBLAADwAfAC8APwBPAF8AbwB/AI8AnwAAEyEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0NgczMhYdARQGKwEiJj0BNDYzITIWHQEUBiMhIiY9ATQ2BzMyFh0BFAYrASImPQE0NjMhMhYdARQGIyEiJj0BNDYHMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0Nn0EGgoPDwr75goPDwPA/K4KDw8KA1IKDw/9CDIKDw8KMgoPD9IBwgoPDwr+PgoPD74yCg8PCjIKDw/SAcIKDw8K/j4KDw++MgoPDwoyCg8P0gHCCg8PCv4+Cg8PvjIKDw8KMgoPD9IBwgoPDwr+PgoPDwSwDwr7ggoPDwoEfgoPyA8K/K4KDw8KA1IKD2QPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKDwAAAAACAAAAAARMBLAAGQAjAAABNTQmIyEiBh0BIyIGFREUFjMhMjY1ETQmIyE1NDY7ATIWHQEDhHVT/tRSdmQpOzspA4QpOzsp/ageFMgUHgMgyFN1dlLIOyn9qCk7OykCWCk7lhUdHRWWAAIAZAAABEwETAAJADcAABMzMhYVESMRNDYFMhcWFREUBw4DIyIuAScuAiMiBwYjIicmNRE+ATc2HgMXHgIzMjc2fTIKD2QPA8AEBRADIUNAMRwaPyonKSxHHlVLBwgGBQ4WeDsXKC4TOQQpLUUdZ1AHBEwPCvvNBDMKDzACBhH+WwYGO1AkDQ0ODg8PDzkFAwcPAbY3VwMCAwsGFAEODg5XCAAAAwAAAAAEsASXACEAMQBBAAAAMh4CFREUBisBIiY1ETQuASAOARURFAYrASImNRE0PgEDMzIWFREUBisBIiY1ETQ2ITMyFhURFAYrASImNRE0NgHk6N6jYw8KMgoPjeT++uSNDwoyCg9joyqgCAwMCKAIDAwCYKAIDAwIoAgMDASXY6PedP7UCg8PCgEsf9FyctF//tQKDw8KASx03qP9wAwI/jQIDAwIAcwIDAwI/jQIDAwIAcwIDAAAAAACAAAA0wRHA90AFQA5AAABJTYWFREUBiclJisBIiY1ETQ2OwEyBTc2Mh8BFhQPARcWFA8BBiIvAQcGIi8BJjQ/AScmND8BNjIXAUEBAgkMDAn+/hUZ+goPDwr6GQJYeAcUByIHB3h4BwciBxQHeHgHFAciBwd3dwcHIgcUBwMurAYHCv0SCgcGrA4PCgFeCg+EeAcHIgcUB3h4BxQHIgcHd3cHByIHFAd4eAcUByIICAAAAAACAAAA0wNyA90AFQAvAAABJTYWFREUBiclJisBIiY1ETQ2OwEyJTMWFxYVFAcGDwEiLwEuATc2NTQnJjY/ATYBQQECCQwMCf7+FRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcDLqwGBwr9EgoHBqwODwoBXgoPZAEJgaGafwkBAQYXBxMIZ36EaggUBxYFAAAAAAMAAADEBGID7AAbADEASwAAATMWFxYVFAYHBgcjIi8BLgE3NjU0JicmNj8BNgUlNhYVERQGJyUmKwEiJjURNDY7ATIlMxYXFhUUBwYPASIvAS4BNzY1NCcmNj8BNgPHAwsGh0RABwoDCQcqCAIGbzs3BgIJKgf9ggECCQwMCf7+FRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcD7AEJs9lpy1QJAQYiBhQIlrJarEcJFAYhBb6sBgcK/RIKBwasDg8KAV4KD2QBCYGhmn8JAQEGFwcTCGd+hGoIFQYWBQAAAAANAAAAAASwBLAACQAVABkAHQAhACUALQA7AD8AQwBHAEsATwAAATMVIxUhFSMRIQEjFTMVIREjESM1IQURIREhESERBSM1MwUjNTMBMxEhETM1MwEzFSMVIzUjNTM1IzUhBREhEQcjNTMFIzUzASM1MwUhNSEB9GRk/nBkAfQCvMjI/tTIZAJY+7QBLAGQASz84GRkArxkZP1EyP4MyGQB9MhkyGRkyAEs/UQBLGRkZAOEZGT+DGRkAfT+1AEsA4RkZGQCWP4MZMgBLAEsyGT+1AEs/tQBLMhkZGT+DP4MAfRk/tRkZGRkyGTI/tQBLMhkZGT+1GRkZAAAAAAJAAAAAASwBLAAAwAHAAsADwATABcAGwAfACMAADcjETMTIxEzASMRMxMjETMBIxEzASE1IRcjNTMXIzUzBSM1M2RkZMhkZAGQyMjIZGQBLMjI/OD+1AEsyGRkyGRkASzIyMgD6PwYA+j8GAPo/BgD6PwYA+j7UGRkW1tbW1sAAAIAAAAKBKYEsAANABUAAAkBFhQHAQYiJwETNDYzBCYiBhQWMjYB9AKqCAj+MAgUCP1WAQ8KAUM7Uzs7UzsEsP1WCBQI/jAICAKqAdsKD807O1Q7OwAAAAADAAAACgXSBLAADQAZACEAAAkBFhQHAQYiJwETNDYzIQEWFAcBBiIvAQkBBCYiBhQWMjYB9AKqCAj+MAgUCP1WAQ8KAwYCqggI/jAIFAg4Aaj9RP7TO1M7O1M7BLD9VggUCP4wCAgCqgHbCg/9VggUCP4wCAg4AaoCvM07O1Q7OwAAAAABAGQAAASwBLAAJgAAASEyFREUDwEGJjURNCYjISIPAQYWMyEyFhURFAYjISImNRE0PwE2ASwDOUsSQAgKDwr9RBkSQAgFCgK8Cg8PCvyuCg8SixIEsEv8fBkSQAgFCgO2Cg8SQAgKDwr8SgoPDwoDzxkSixIAAAABAMj//wRMBLAACgAAEyEyFhURCQERNDb6AyAVHf4+/j4dBLAdFfuCAbz+QwR/FR0AAAAAAwAAAAAEsASwABUARQBVAAABISIGBwMGHwEeATMhMjY/ATYnAy4BASMiBg8BDgEjISImLwEuASsBIgYVERQWOwEyNj0BNDYzITIWHQEUFjsBMjY1ETQmASEiBg8BBhYzITI2LwEuAQM2/kQLEAFOBw45BhcKAcIKFwY+DgdTARABVpYKFgROBBYK/doKFgROBBYKlgoPDwqWCg8PCgLuCg8PCpYKDw/+sf4MChMCJgILCgJYCgsCJgITBLAPCv7TGBVsCQwMCWwVGAEtCg/+cA0JnAkNDQmcCQ0PCv12Cg8PCpYKDw8KlgoPDwoCigoP/agOCpgKDg4KmAoOAAAAAAQAAABkBLAETAAdACEAKQAxAAABMzIeAh8BMzIWFREUBiMhIiY1ETQ2OwE+BAEVMzUEIgYUFjI2NCQyFhQGIiY0AfTIOF00JAcGlik7Oyn8GCk7OymWAgknM10ByGT+z76Hh76H/u9WPDxWPARMKTs7FRQ7Kf2oKTs7KQJYKTsIG0U1K/7UZGRGh76Hh74IPFY8PFYAAAAAAgA1AAAEsASvACAAIwAACQEWFx4BHwEVITUyNi8BIQYHBh4CMxUhNTY3PgE/AQEDIQMCqQGBFCgSJQkK/l81LBFS/nk6IgsJKjIe/pM4HAwaBwcBj6wBVKIEr/waMioTFQECQkJXLd6RWSIuHAxCQhgcDCUNDQPu/VoByQAAAAADAGQAAAPwBLAAJwAyADsAAAEeBhUUDgMjITU+ATURNC4EJzUFMh4CFRQOAgclMzI2NTQuAisBETMyNjU0JisBAvEFEzUwOyodN1htbDD+DCk7AQYLFyEaAdc5dWM+Hy0tEP6Pi05pESpTPnbYUFJ9Xp8CgQEHGB0zOlIuQ3VONxpZBzMoAzsYFBwLEAkHRwEpSXNDM1s6KwkxYUopOzQb/K5lUFqBAAABAMgAAANvBLAAGQAAARcOAQcDBhYXFSE1NjcTNjQuBCcmJzUDbQJTQgeECSxK/gy6Dq0DAw8MHxUXDQYEsDkTNSj8uTEoBmFhEFIDQBEaExAJCwYHAwI5AAAAAAL/tQAABRQEsAAlAC8AAAEjNC4FKwERFBYfARUhNTI+AzURIyIOBRUjESEFIxEzByczESM3BRQyCAsZEyYYGcgyGRn+cAQOIhoWyBkYJhMZCwgyA+j7m0tLfX1LS30DhBUgFQ4IAwH8rhYZAQJkZAEFCRUOA1IBAwgOFSAVASzI/OCnpwMgpwACACH/tQSPBLAAJQAvAAABIzQuBSsBERQWHwEVITUyPgM1ESMiDgUVIxEhEwc1IRUnNxUhNQRMMggLGRMmGBnIMhkZ/nAEDiIaFsgZGCYTGQsIMgPoQ6f84KenAyADhBUgFQ4IAwH9dhYZAQJkZAEFCRUOAooBAwgOFSAVASz7gn1LS319S0sABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyAlgVHR0V/agVHR0VA+gVHR0V/BgVHR0VAyAVHR0V/OAVHR0VBEwVHR0V+7QVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYDITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NgMhMhYdARQGIyEiJj0BNDb6ArwVHR0V/UQVHR2zBEwVHR0V+7QVHR3dArwVHR0V/UQVHR2zBEwVHR0V+7QVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AAAE1NDYzITIWHQEUBiMhIiYBNTQ2MyEyFh0BFAYjISImEzU0NjMhMhYdARQGIyEiJgE1NDYzITIWHQEUBiMhIiYB9B0VAlgVHR0V/agVHf5wHRUD6BUdHRX8GBUdyB0VAyAVHR0V/OAVHf7UHRUETBUdHRX7tBUdA7ZkFR0dFWQVHR3+6WQVHR0VZBUdHf7pZBUdHRVkFR0d/ulkFR0dFWQVHR0AAAQAAAAABLAETAAPAB8ALwA/AAATITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2MgRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dBEwdFWQVHR0VZBUd/tQdFWQVHR0VZBUd/tQdFWQVHR0VZBUd/tQdFWQVHR0VZBUdAAgAAAAABLAETAAPAB8ALwA/AE8AXwBvAH8AABMzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2MmQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR0ETB0VZBUdHRVkFR0dFWQVHR0VZBUd/tQdFWQVHR0VZBUdHRVkFR0dFWQVHf7UHRVkFR0dFWQVHR0VZBUdHRVkFR3+1B0VZBUdHRVkFR0dFWQVHR0VZBUdAAAG/5wAAASwBEwAAwATACMAKgA6AEoAACEjETsCMhYdARQGKwEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2BQc1IzUzNQUhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2AZBkZJZkFR0dFWQVHR0VAfQVHR0V/gwVHR3++qfIyAHCASwVHR0V/tQVHR0VAlgVHR0V/agVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR36fUtkS68dFWQVHR0VZBUd/tQdFWQVHR0VZBUdAAAABgAAAAAFFARMAA8AEwAjACoAOgBKAAATMzIWHQEUBisBIiY9ATQ2ASMRMwEhMhYdARQGIyEiJj0BNDYFMxUjFSc3BSEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyZBUdHRVkFR0dA2dkZPyuAfQVHR0V/gwVHR0EL8jIp6f75gEsFR0dFf7UFR0dFQJYFR0dFf2oFR0dBEwdFWQVHR0VZBUd+7QETP7UHRVkFR0dFWQVHchkS319rx0VZBUdHRVkFR3+1B0VZBUdHRVkFR0AAAAAAgAAAMgEsAPoAA8AEgAAEyEyFhURFAYjISImNRE0NgkCSwLuHywsH/0SHywsBIT+1AEsA+gsH/12HywsHwKKHyz9RAEsASwAAwAAAAAEsARMAA8AFwAfAAATITIWFREUBiMhIiY1ETQ2FxE3BScBExEEMhYUBiImNCwEWBIaGhL7qBIaGkr3ASpKASXs/NJwTk5wTgRMGhL8DBIaGhID9BIaZP0ftoOcAT7+4AH0dE5vT09vAAAAAAIA2wAFBDYEkQAWAB4AAAEyHgEVFAcOAQ8BLgQnJjU0PgIWIgYUFjI2NAKIdcZzRkWyNjYJIV5YbSk8RHOft7eCgreCBJF4ynVzj23pPz4IIWZomEiEdVijeUjDgriBgbgAAAACABcAFwSZBJkADwAXAAAAMh4CFA4CIi4CND4BAREiDgEUHgEB4+rWm1tbm9bq1ptbW5sBS3TFcnLFBJlbm9bq1ptbW5vW6tab/G8DVnLF6MVyAAACAHUAAwPfBQ8AGgA1AAABHgYVFA4DBy4DNTQ+BQMOAhceBBcWNj8BNiYnLgInJjc2IyYCKhVJT1dOPiUzVnB9P1SbfEokP0xXUEm8FykoAwEbITEcExUWAgYCCQkFEikMGiACCAgFD0iPdXdzdYdFR4BeRiYEBTpjl1lFh3ZzeHaQ/f4hS4I6JUEnIw4IBwwQIgoYBwQQQSlZtgsBAAAAAwAAAAAEywRsAAwAKgAvAAABNz4CHgEXHgEPAiUhMhcHISIGFREUFjMhMjY9ATcRFAYjISImNRE0NgkBBzcBA+hsAgYUFR0OFgoFBmz9BQGQMje7/pApOzspAfQpO8i7o/5wpbm5Azj+lqE3AWMD9XMBAgIEDw4WKgsKc8gNuzsp/gwpOzsptsj+tKW5uaUBkKW5/tf+ljKqAWMAAgAAAAAEkwRMABsANgAAASEGByMiBhURFBYzITI2NTcVFAYjISImNRE0NgUBFhQHAQYmJzUmDgMHPgY3NT4BAV4BaaQ0wyk7OykB9Ck7yLml/nClubkCfwFTCAj+rAcLARo5ZFRYGgouOUlARioTAQsETJI2Oyn+DCk7OymZZ6W5uaUBkKW5G/7TBxUH/s4GBAnLAQINFjAhO2JBNB0UBwHSCgUAAAAAAgAAAAAEnQRMAB0ANQAAASEyFwchIgYVERQWMyEyNj0BNxUUBiMhIiY1ETQ2CQE2Mh8BFhQHAQYiLwEmND8BNjIfARYyAV4BXjxDsv6jKTs7KQH0KTvIuaX+cKW5uQHKAYsHFQdlBwf97QcVB/gHB2UHFQdvCBQETBexOyn+DCk7OylFyNulubmlAZCluf4zAYsHB2UHFQf97AcH+AcVB2UHB28HAAAAAQAKAAoEpgSmADsAAAkBNjIXARYGKwEVMzU0NhcBFhQHAQYmPQEjFTMyFgcBBiInASY2OwE1IxUUBicBJjQ3ATYWHQEzNSMiJgE+AQgIFAgBBAcFCqrICggBCAgI/vgICsiqCgUH/vwIFAj++AgFCq/ICgj++AgIAQgICsivCgUDlgEICAj++AgKyK0KBAf+/AcVB/73BwQKrcgKCP74CAgBCAgKyK0KBAcBCQcVBwEEBwQKrcgKAAEAyAAAA4QETAAZAAATMzIWFREBNhYVERQGJwERFAYrASImNRE0NvpkFR0B0A8VFQ/+MB0VZBUdHQRMHRX+SgHFDggV/BgVCA4Bxf5KFR0dFQPoFR0AAAABAAAAAASwBEwAIwAAEzMyFhURATYWFREBNhYVERQGJwERFAYnAREUBisBIiY1ETQ2MmQVHQHQDxUB0A8VFQ/+MBUP/jAdFWQVHR0ETB0V/koBxQ4IFf5KAcUOCBX8GBUIDgHF/koVCA4Bxf5KFR0dFQPoFR0AAAABAJ0AGQSwBDMAFQAAAREUBicBERQGJwEmNDcBNhYVEQE2FgSwFQ/+MBUP/hQPDwHsDxUB0A8VBBr8GBUIDgHF/koVCA4B4A4qDgHgDggV/koBxQ4IAAAAAQDIABYEMwQ2AAsAABMBFhQHAQYmNRE0NvMDLhIS/NISGRkEMv4OCx4L/g4LDhUD6BUOAAIAyABkA4QD6AAPAB8AABMzMhYVERQGKwEiJjURNDYhMzIWFREUBisBIiY1ETQ2+sgVHR0VyBUdHQGlyBUdHRXIFR0dA+gdFfzgFR0dFQMgFR0dFfzgFR0dFQMgFR0AAAEAyABkBEwD6AAPAAABERQGIyEiJjURNDYzITIWBEwdFfzgFR0dFQMgFR0DtvzgFR0dFQMgFR0dAAAAAAEAAAAZBBMEMwAVAAABETQ2FwEWFAcBBiY1EQEGJjURNDYXAfQVDwHsDw/+FA8V/jAPFRUPAmQBthUIDv4gDioO/iAOCBUBtv47DggVA+gVCA4AAAH//gACBLMETwAjAAABNzIWFRMUBiMHIiY1AwEGJjUDAQYmNQM0NhcBAzQ2FwEDNDYEGGQUHgUdFWQVHQL+MQ4VAv4yDxUFFQ8B0gIVDwHSAh0ETgEdFfwYFR0BHRUBtf46DwkVAbX+OQ4JFAPoFQkP/j4BthQJDv49AbYVHQAAAQEsAAAD6ARMABkAAAEzMhYVERQGKwEiJjURAQYmNRE0NhcBETQ2A1JkFR0dFWQVHf4wDxUVDwHQHQRMHRX8GBUdHRUBtv47DggVA+gVCA7+OwG2FR0AAAIAZADIBLAESAALABsAAAkBFgYjISImNwE2MgEhMhYdARQGIyEiJj0BNDYCrgH1DwkW++4WCQ8B9Q8q/fcD6BUdHRX8GBUdHQQ5/eQPFhYPAhwP/UgdFWQVHR0VZBUdAAEAiP/8A3UESgAFAAAJAgcJAQN1/qABYMX92AIoA4T+n/6fxgIoAiYAAAAAAQE7//wEKARKAAUAAAkBJwkBNwQo/dnGAWH+n8YCI/3ZxgFhAWHGAAIAFwAXBJkEmQAPADMAAAAyHgIUDgIiLgI0PgEFIyIGHQEjIgYdARQWOwEVFBY7ATI2PQEzMjY9ATQmKwE1NCYB4+rWm1tbm9bq1ptbW5sBfWQVHZYVHR0Vlh0VZBUdlhUdHRWWHQSZW5vW6tabW1ub1urWm7odFZYdFWQVHZYVHR0Vlh0VZBUdlhUdAAAAAAIAFwAXBJkEmQAPAB8AAAAyHgIUDgIiLgI0PgEBISIGHQEUFjMhMjY9ATQmAePq1ptbW5vW6tabW1ubAkX+DBUdHRUB9BUdHQSZW5vW6tabW1ub1urWm/5+HRVkFR0dFWQVHQACABcAFwSZBJkADwAzAAAAMh4CFA4CIi4CND4BBCIPAScmIg8BBhQfAQcGFB8BFjI/ARcWMj8BNjQvATc2NC8BAePq1ptbW5vW6tabW1ubAeUZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0JCXh4CQmNBJlbm9bq1ptbW5vW6tabrQl4eAkJjQkZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0AAgAXABcEmQSZAA8AJAAAADIeAhQOAiIuAjQ+AQEnJiIPAQYUHwEWMjcBNjQvASYiBwHj6tabW1ub1urWm1tbmwEVVAcVCIsHB/IHFQcBdwcHiwcVBwSZW5vW6tabW1ub1urWm/4xVQcHiwgUCPEICAF3BxUIiwcHAAAAAAMAFwAXBJkEmQAPADsASwAAADIeAhQOAiIuAjQ+AQUiDgMVFDsBFjc+ATMyFhUUBgciDgUHBhY7ATI+AzU0LgMTIyIGHQEUFjsBMjY9ATQmAePq1ptbW5vW6tabW1ubAT8dPEIyIRSDHgUGHR8UFw4TARkOGhITDAIBDQ6tBx4oIxgiM0Q8OpYKDw8KlgoPDwSZW5vW6tabW1ub1urWm5ELHi9PMhkFEBQQFRIXFgcIBw4UHCoZCBEQKDhcNi9IKhsJ/eMPCpYKDw8KlgoPAAADABcAFwSZBJkADwAfAD4AAAAyHgIUDgIiLgI0PgEFIyIGHQEUFjsBMjY9ATQmAyMiBh0BFBY7ARUjIgYdARQWMyEyNj0BNCYrARE0JgHj6tabW1ub1urWm1tbmwGWlgoPDwqWCg8PCvoKDw8KS0sKDw8KAV4KDw8KSw8EmVub1urWm1tbm9bq1ptWDwqWCg8PCpYKD/7UDwoyCg/IDwoyCg8PCjIKDwETCg8AAgAAAAAEsASwAC8AXwAAATMyFh0BHgEXMzIWHQEUBisBDgEHFRQGKwEiJj0BLgEnIyImPQE0NjsBPgE3NTQ2ExUUBisBIiY9AQ4BBzMyFh0BFAYrAR4BFzU0NjsBMhYdAT4BNyMiJj0BNDY7AS4BAg2WCg9nlxvCCg8PCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw+5DwqWCg9EZheoCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmBLAPCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw8KlgoPZ5cbwgoP/s2oCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmRA8KlgoPRGYAAwAXABcEmQSZAA8AGwA/AAAAMh4CFA4CIi4CND4BBCIOARQeATI+ATQmBxcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyAePq1ptbW5vW6tabW1ubAb/oxXJyxejFcnKaQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwdABxUHfHwHFQSZW5vW6tabW1ub1urWmztyxejFcnLF6MVaQAcVB3x8BxUHQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwAAAAMAFwAXBJkEmQAPABsAMAAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgcXFhQHAQYiLwEmND8BNjIfATc2MgHj6tabW1ub1urWm1tbmwG/6MVycsXoxXJyg2oHB/7ACBQIyggIagcVB0/FBxUEmVub1urWm1tbm9bq1ps7csXoxXJyxejFfWoHFQf+vwcHywcVB2oICE/FBwAAAAMAFwAXBJkEmQAPABgAIQAAADIeAhQOAiIuAjQ+AQUiDgEVFBcBJhcBFjMyPgE1NAHj6tabW1ub1urWm1tbmwFLdMVyQQJLafX9uGhzdMVyBJlbm9bq1ptbW5vW6tabO3LFdHhpAktB0P24PnLFdHMAAAAAAQAXAFMEsAP5ABUAABMBNhYVESEyFh0BFAYjIREUBicBJjQnAgoQFwImFR0dFf3aFxD99hACRgGrDQoV/t0dFcgVHf7dFQoNAasNJgAAAAABAAAAUwSZA/kAFQAACQEWFAcBBiY1ESEiJj0BNDYzIRE0NgJ/AgoQEP32EBf92hUdHRUCJhcD8f5VDSYN/lUNChUBIx0VyBUdASMVCgAAAAEAtwAABF0EmQAVAAAJARYGIyERFAYrASImNREhIiY3ATYyAqoBqw0KFf7dHRXIFR3+3RUKDQGrDSYEif32EBf92hUdHRUCJhcQAgoQAAAAAQC3ABcEXQSwABUAAAEzMhYVESEyFgcBBiInASY2MyERNDYCJsgVHQEjFQoN/lUNJg3+VQ0KFQEjHQSwHRX92hcQ/fYQEAIKEBcCJhUdAAABAAAAtwSZBF0AFwAACQEWFAcBBiY1EQ4DBz4ENxE0NgJ/AgoQEP32EBdesKWBJAUsW4fHfhcEVf5VDSYN/lUNChUBIwIkRHVNabGdcUYHAQYVCgACAAAAAASwBLAAFQArAAABITIWFREUBi8BBwYiLwEmND8BJyY2ASEiJjURNDYfATc2Mh8BFhQPARcWBgNSASwVHRUOXvkIFAhqBwf5Xg4I/iH+1BUdFQ5e+QgUCGoHB/leDggEsB0V/tQVCA5e+QcHaggUCPleDhX7UB0VASwVCA5e+QcHaggUCPleDhUAAAACAEkASQRnBGcAFQArAAABFxYUDwEXFgYjISImNRE0Nh8BNzYyASEyFhURFAYvAQcGIi8BJjQ/AScmNgP2agcH+V4OCBX+1BUdFQ5e+QgU/QwBLBUdFQ5e+QgUCGoHB/leDggEYGoIFAj5Xg4VHRUBLBUIDl75B/3xHRX+1BUIDl75BwdqCBQI+V4OFQAAAAADABcAFwSZBJkADwAfAC8AAAAyHgIUDgIiLgI0PgEFIyIGFxMeATsBMjY3EzYmAyMiBh0BFBY7ATI2PQE0JgHj6tabW1ub1urWm1tbmwGz0BQYBDoEIxQ2FCMEOgQYMZYKDw8KlgoPDwSZW5vW6tabW1ub1urWm7odFP7SFB0dFAEuFB3+DA8KlgoPDwqWCg8AAAAABQAAAAAEsASwAEkAVQBhAGgAbwAAATIWHwEWHwEWFxY3Nj8BNjc2MzIWHwEWHwIeATsBMhYdARQGKwEiBh0BIREjESE1NCYrASImPQE0NjsBMjY1ND8BNjc+BAUHBhY7ATI2LwEuAQUnJgYPAQYWOwEyNhMhIiY1ESkBERQGIyERAQQJFAUFFhbEFQ8dCAsmxBYXERUXMA0NDgQZCAEPCj0KDw8KMgoP/nDI/nAPCjIKDw8KPQsOCRkFDgIGFRYfAp2mBwQK2woKAzMDEP41sQgQAzMDCgrnCwMe/okKDwGQAlgPCv6JBLAEAgIKDXYNCxUJDRZ2DQoHIREQFRh7LAkLDwoyCg8PCq8BLP7UrwoPDwoyCg8GBQQwgBkUAwgWEQ55ogcKDgqVCgSqnQcECo8KDgr8cg8KAXf+iQoPAZAAAAAAAgAAAAwErwSmACsASQAAATYWFQYCDgQuAScmByYOAQ8BBiY1NDc+ATc+AScuAT4BNz4GFyYGBw4BDwEOBAcOARY2Nz4CNz4DNz4BBI0IGgItQmxhi2KORDg9EQQRMxuZGhYqCFUYEyADCQIQOjEnUmFch3vAJQgdHyaiPT44XHRZUhcYDhItIRmKcVtGYWtbKRYEBKYDEwiy/t3IlVgxEQgLCwwBAQIbG5kYEyJAJghKFRE8Hzdff4U/M0o1JSMbL0QJGCYvcSEhHjZST2c1ODwEJygeW0AxJUBff1UyFAABAF0AHgRyBM8ATwAAAQ4BHgQXLgc+ATceAwYHDgQHBicmNzY3PgQuAScWDgMmJy4BJyY+BDcGHgM3PgEuAicmPgMCjScfCic4R0IgBBsKGAoQAwEJEg5gikggBhANPkpTPhZINx8SBgsNJysiCRZOQQoVNU1bYC9QZwICBAUWITsoCAYdJzIYHw8YIiYHDyJJYlkEz0OAZVxEOSQMBzgXOB42IzElKRIqg5Gnl0o3Z0c6IAYWCwYNAwQFIDhHXGF1OWiqb0sdBxUknF0XNTQ8PEUiNWNROBYJDS5AQVUhVZloUSkAAAAAA//cAGoE1ARGABsAPwBRAAAAMh4FFA4FIi4FND4EBSYGFxYVFAYiJjU0NzYmBwYHDgEXHgQyPgM3NiYnJgUHDgEXFhcWNj8BNiYnJicuAQIGpJ17bk85HBw6T257naKde25POhwcOU9uewIPDwYIGbD4sBcIBw5GWg0ECxYyWl+DiINfWjIWCwQMWv3/Iw8JCSU4EC0OIw4DDywtCyIERi1JXGJcSSpJXGJcSS0tSVxiXEkqSVxiXEncDwYTOT58sLB8OzcTBg9FcxAxEiRGXkQxMEVeRSQSMRF1HiQPLxJEMA0EDyIPJQ8sSRIEAAAABP/cAAAE1ASwABQAJwA7AEwAACEjNy4ENTQ+BTMyFzczEzceARUUDgMHNz4BNzYmJyYlBgcOARceBBc3LgE1NDc2JhcHDgEXFhcWNj8CJyYnLgECUJQfW6l2WSwcOU9ue51SPUEglCYvbIknUGqYUi5NdiYLBAw2/VFGWg0ECxIqSExoNSlrjxcIB3wjDwkJJTgQLQ4MFgMsLQsieBRhdHpiGxVJXGJcSS0Pef5StVXWNBpacm5jGq0xiD8SMRFGckVzEDESHjxRQTkNmhKnbjs3EwZwJA8vEkQwDQQPC1YELEkSBAAAAAP/ngAABRIEqwALABgAKAAAJwE2FhcBFgYjISImJSE1NDY7ATIWHQEhAQczMhYPAQ4BKwEiJi8BJjZaAoIUOBQCghUbJfryJRsBCgFZDwqWCg8BWf5DaNAUGAQ6BCMUNhQjBDoEGGQEKh8FIfvgIEdEhEsKDw8KSwLT3x0U/BQdHRT8FB0AAAABAGQAFQSwBLAAKAAAADIWFREBHgEdARQGJyURFh0BFAYvAQcGJj0BNDcRBQYmPQE0NjcBETQCTHxYAWsPFhgR/plkGhPNzRMaZP6ZERgWDwFrBLBYPv6t/rsOMRQpFA0M+f75XRRAFRAJgIAJEBVAFF0BB/kMDRQpFDEOAUUBUz4AAAARAAAAAARMBLAAHQAnACsALwAzADcAOwA/AEMARwBLAE8AUwBXAFsAXwBjAAABMzIWHQEzMhYdASE1NDY7ATU0NjsBMhYdASE1NDYBERQGIyEiJjURFxUzNTMVMzUzFTM1MxUzNTMVMzUFFTM1MxUzNTMVMzUzFTM1MxUzNQUVMzUzFTM1MxUzNTMVMzUzFTM1A1JkFR0yFR37tB0VMh0VZBUdAfQdAQ8dFfwYFR1kZGRkZGRkZGRk/HxkZGRkZGRkZGT8fGRkZGRkZGRkZASwHRUyHRWWlhUdMhUdHRUyMhUd/nD9EhUdHRUC7shkZGRkZGRkZGRkyGRkZGRkZGRkZGTIZGRkZGRkZGRkZAAAAAMAAAAZBXcElwAZACUANwAAARcWFA8BBiY9ASMBISImPQE0NjsBATM1NDYBBycjIiY9ATQ2MyEBFxYUDwEGJj0BIyc3FzM1NDYEb/kPD/kOFZ/9qP7dFR0dFdECWPEV/amNetEVHR0VASMDGvkPD/kOFfG1jXqfFQSN5g4qDuYOCBWW/agdFWQVHQJYlhUI/piNeh0VZBUd/k3mDioO5g4IFZa1jXqWFQgAAAABAAAAAASwBEwAEgAAEyEyFhURFAYjIQERIyImNRE0NmQD6Ck7Oyn9rP7QZCk7OwRMOyn9qCk7/tQBLDspAlgpOwAAAAMAZAAABEwEsAAJABMAPwAAEzMyFh0BITU0NiEzMhYdASE1NDYBERQOBSIuBTURIRUUFRwBHgYyPgYmNTQ9AZbIFR3+1B0C0cgVHf7UHQEPBhgoTGacwJxmTCgYBgEsAwcNFB8nNkI2Jx8TDwUFAQSwHRX6+hUdHRX6+hUd/nD+1ClJalZcPigoPlxWakkpASz6CRIVKyclIRsWEAgJEBccISUnKhURCPoAAAAB//8A1ARMA8IABQAAAQcJAScBBEzG/p/+n8UCJwGbxwFh/p/HAicAAQAAAO4ETQPcAAUAAAkCNwkBBE392v3ZxgFhAWEDFf3ZAifH/p8BYQAAAAAC/1EAZAVfA+gAFAApAAABITIWFREzMhYPAQYiLwEmNjsBESElFxYGKwERIRchIiY1ESMiJj8BNjIBlALqFR2WFQgO5g4qDuYOCBWW/oP+HOYOCBWWAYHX/RIVHZYVCA7mDioD6B0V/dkVDvkPD/kOFQGRuPkOFf5wyB0VAiYVDvkPAAABAAYAAASeBLAAMAAAEzMyFh8BITIWBwMOASMhFyEyFhQGKwEVFAYiJj0BIRUUBiImPQEjIiYvAQMjIiY0NjheERwEJgOAGB4FZAUsIf2HMAIXFR0dFTIdKh3+1B0qHR8SHQYFyTYUHh4EsBYQoiUY/iUVK8gdKh0yFR0dFTIyFR0dFTIUCQoDwR0qHQAAAAACAAAAAASwBEwACwAPAAABFSE1MzQ2MyEyFhUFIREhBLD7UMg7KQEsKTv9RASw+1AD6GRkKTs7Kcj84AACAAAAAAXcBEwADAAQAAATAxEzNDYzITIWFSEVBQEhAcjIyDspASwqOgH0ASz+1PtQASwDIP5wAlgpOzspyGT9RAK8AAEBRQAAA2sErwAbAAABFxYGKwERMzIWDwEGIi8BJjY7AREjIiY/ATYyAnvmDggVlpYVCA7mDioO5g4IFZaWFQgO5g4qBKD5DhX9pxUO+Q8P+Q4VAlkVDvkPAAAAAQABAUQErwNrABsAAAEXFhQPAQYmPQEhFRQGLwEmND8BNhYdASE1NDYDqPkODvkPFf2oFQ/5Dg75DxUCWBUDYOUPKQ/lDwkUl5cUCQ/lDykP5Q8JFZWVFQkAAAAEAAAAAASwBLAACQAZAB0AIQAAAQMuASMhIgYHAwUhIgYdARQWMyEyNj0BNCYFNTMVMzUzFQSRrAUkFP1gFCQFrAQt/BgpOzspA+gpOzv+q2RkZAGQAtwXLSgV/R1kOylkKTs7KWQpO8hkZGRkAAAAA/+cAGQEsARMAAsAIwAxAAAAMhYVERQGIiY1ETQDJSMTFgYjIisBIiYnAj0BNDU0PgE7ASUBFSIuAz0BND4CNwRpKh0dKh1k/V0mLwMRFQUCVBQdBDcCCwzIAqP8GAQOIhoWFR0dCwRMHRX8rhUdHRUDUhX8mcj+7BAIHBUBUQ76AgQQDw36/tT6AQsTKRwyGigUDAEAAAACAEoAAARmBLAALAA1AAABMzIWDwEeARcTFzMyFhQGBw4EIyIuBC8BLgE0NjsBNxM+ATcnJjYDFjMyNw4BIiYCKV4UEgYSU3oPP3YRExwaEggeZGqfTzl0XFU+LwwLEhocExF2Pw96UxIGEyQyNDUxDDdGOASwFRMlE39N/rmtHSkoBwQLHBYSCg4REg4FBAgoKR2tAUdNfhQgExr7vgYGMT09AAEAFAAUBJwEnAAXAAABNwcXBxcHFycHJwcnBzcnNyc3Jxc3FzcDIOBO6rS06k7gLZubLeBO6rS06k7gLZubA7JO4C2bmy3gTuq0tOpO4C2bmy3gTuq0tAADAAAAZASwBLAAIQAtAD0AAAEzMhYdAQchMhYdARQHAw4BKwEiJi8BIyImNRE0PwI+ARcPAREzFzMTNSE3NQEzMhYVERQGKwEiJjURNDYCijIoPBwBSCg8He4QLBf6B0YfHz0tNxSRYA0xG2SWZIjW+v4+Mv12ZBUdHRVkFR0dBLBRLJZ9USxkLR3+qBghMhkZJCcBkCQbxMYcKGTU1f6JZAF3feGv/tQdFf4MFR0dFQH0FR0AAAAAAwAAAAAEsARMACAAMAA8AAABMzIWFxMWHQEUBiMhFh0BFAYrASImLwImNRE0NjsBNgUzMhYVERQGKwEiJjURNDYhByMRHwEzNSchNQMCWPoXLBDuHTwo/rgcPCgyGzENYJEUNy09fP3pZBUdHRVkFR0dAl+IZJZkMjIBwvoETCEY/qgdLWQsUXYHlixRKBzGxBskAZAnJGRkHRX+DBUdHRUB9BUdZP6J1dSv4X0BdwADAAAAZAUOBE8AGwA3AEcAAAElNh8BHgEPASEyFhQGKwEDDgEjISImNRE0NjcXERchEz4BOwEyNiYjISoDLgQnJj8BJwUzMhYVERQGKwEiJjURNDYBZAFrHxZuDQEMVAEuVGxuVGqDBhsP/qoHphwOOmQBJYMGGw/LFRMSFv44AgoCCQMHAwUDAQwRklb9T2QVHR0VZBUdHQNp5hAWcA0mD3lMkE7+rRUoog0CDRElCkj+CVkBUxUoMjIBAgIDBQIZFrdT5B0V/gwVHR0VAfQVHQAAAAP/nABkBLAETwAdADYARgAAAQUeBBURFAYjISImJwMjIiY0NjMhJyY2PwE2BxcWBw4FKgIjIRUzMhYXEyE3ESUFMzIWFREUBisBIiY1ETQ2AdsBbgIIFBANrAf+qg8bBoNqVW1sVAEuVQsBDW4WSpIRDAIDBQMHAwkDCgH+Jd0PHAaCASZq/qoCUGQVHR0VZBUdHQRP5gEFEBEXC/3zDaIoFQFTTpBMeQ8mDXAWrrcWGQIFAwICAWQoFf6tWQH37OQdFf4MFR0dFQH0FR0AAAADAGEAAARMBQ4AGwA3AEcAAAAyFh0BBR4BFREUBiMhIiYvAQMmPwE+AR8BETQXNTQmBhURHAMOBAcGLwEHEyE3ESUuAQMhMhYdARQGIyEiJj0BNDYB3pBOAVMVKKIN/fMRJQoJ5hAWcA0mD3nGMjIBAgIDBQIZFrdT7AH3Wf6tFSiWAfQVHR0V/gwVHR0FDm5UaoMGGw/+qgemHA4OAWsfFm4NAQxUAS5U1ssVExIW/jgCCgIJAwcDBQMBDBGSVv6tZAElgwYb/QsdFWQVHR0VZBUdAAP//QAGA+gFFAAPAC0ASQAAASEyNj0BNCYjISIGHQEUFgEVFAYiJjURBwYmLwEmNxM+BDMhMhYVERQGBwEDFzc2Fx4FHAIVERQWNj0BNDY3JREnAV4B9BUdHRX+DBUdHQEPTpBMeQ8mDXAWEOYBBRARFwsCDQ2iKBX9iexTtxYZAgUDAgIBMjIoFQFTWQRMHRVkFR0dFWQVHfzmalRubFQBLlQMAQ1uFh8BawIIEw8Mpgf+qg8bBgHP/q1WkhEMAQMFAwcDCQIKAv44FhITFcsPGwaDASVkAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBJSYGHQEhIgYdARQWMyEVFBY3JTY0AeLs1ptbW5vW7NabW1ubAob+7RAX/u0KDw8KARMXEAETEASaW5vW7NabW1ub1uzWm/453w0KFYkPCpYKD4kVCg3fDSYAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgENAQYUFwUWNj0BITI2PQE0JiMhNTQmAeLs1ptbW5vW7NabW1ubASX+7RAQARMQFwETCg8PCv7tFwSaW5vW7NabW1ub1uzWm+jfDSYN3w0KFYkPCpYKD4kVCgAAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBAyYiBwMGFjsBERQWOwEyNjURMzI2AeLs1ptbW5vW7NabW1ubAkvfDSYN3w0KFYkPCpYKD4kVCgSaW5vW7NabW1ub1uzWm/5AARMQEP7tEBf+7QoPDwoBExcAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEFIyIGFREjIgYXExYyNxM2JisBETQmAeLs1ptbW5vW7NabW1ubAZeWCg+JFQoN3w0mDd8NChWJDwSaW5vW7NabW1ub1uzWm7sPCv7tFxD+7RAQARMQFwETCg8AAAMAGAAYBJgEmAAPAJYApgAAADIeAhQOAiIuAjQ+ASUOAwcGJgcOAQcGFgcOAQcGFgcUFgcyHgEXHgIXHgI3Fg4BFx4CFxQGFBcWNz4CNy4BJy4BJyIOAgcGJyY2NS4BJzYuAQYHBicmNzY3HgIXHgMfAT4CJyY+ATc+AzcmNzIWMjY3LgMnND4CJiceAT8BNi4CJwYHFB4BFS4CJz4BNxYyPgEB5OjVm1xcm9Xo1ZtcXJsBZA8rHDoKDz0PFD8DAxMBAzEFCRwGIgEMFhkHECIvCxU/OR0HFBkDDRQjEwcFaHUeISQDDTAMD0UREi4oLBAzDwQBBikEAQMLGhIXExMLBhAGKBsGBxYVEwYFAgsFAwMNFwQGCQcYFgYQCCARFwkKKiFBCwQCAQMDHzcLDAUdLDgNEiEQEgg/KhADGgMKEgoRBJhcm9Xo1ZtcXJvV6NWbEQwRBwkCAwYFBycPCxcHInIWInYcCUcYChQECA4QBAkuHgQPJioRFRscBAcSCgwCch0kPiAIAQcHEAsBAgsLIxcBMQENCQIPHxkCFBkdHB4QBgEBBwoMGBENBAMMJSAQEhYXDQ4qFBkKEhIDCQsXJxQiBgEOCQwHAQ0DBAUcJAwSCwRnETIoAwEJCwsLJQcKDBEAAAAAAQAAAAIErwSFABYAAAE2FwUXNxYGBw4BJwEGIi8BJjQ3ASY2AvSkjv79kfsGUE08hjv9rA8rD28PDwJYIk8EhVxliuh+WYcrIgsW/awQEG4PKxACV2XJAAYAAABgBLAErAAPABMAIwAnADcAOwAAEyEyFh0BFAYjISImPQE0NgUjFTMFITIWHQEUBiMhIiY9ATQ2BSEVIQUhMhYdARQGIyEiJj0BNDYFIRUhZAPoKTs7KfwYKTs7BBHIyPwYA+gpOzsp/BgpOzsEEf4MAfT8GAPoKTs7KfwYKTs7BBH+1AEsBKw7KWQpOzspZCk7ZGTIOylkKTs7KWQpO2RkyDspZCk7OylkKTtkZAAAAAIAZAAABEwEsAALABEAABMhMhYUBiMhIiY0NgERBxEBIZYDhBUdHRX8fBUdHQI7yP6iA4QEsB0qHR0qHf1E/tTIAfQB9AAAAAMAAABkBLAEsAAXABsAJQAAATMyFh0BITIWFREhNSMVIRE0NjMhNTQ2FxUzNQEVFAYjISImPQEB9MgpOwEsKTv+DMj+DDspASw7KcgB9Dsp/BgpOwSwOylkOyn+cGRkAZApO2QpO2RkZP1EyCk7OynIAAAABAAAAAAEsASwABUAKwBBAFcAABMhMhYPARcWFA8BBiIvAQcGJjURNDYpATIWFREUBi8BBwYiLwEmND8BJyY2ARcWFA8BFxYGIyEiJjURNDYfATc2MgU3NhYVERQGIyEiJj8BJyY0PwE2MhcyASwVCA5exwcHaggUCMdeDhUdAzUBLBUdFQ5exwgUCGoHB8deDgj+L2oHB8deDggV/tQVHRUOXscIFALLXg4VHRX+1BUIDl7HBwdqCBQIBLAVDl7HCBQIagcHx14OCBUBLBUdHRX+1BUIDl7HBwdqCBQIx14OFf0maggUCMdeDhUdFQEsFQgOXscHzl4OCBX+1BUdFQ5exwgUCGoHBwAAAAYAAAAABKgEqAAPABsAIwA7AEMASwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JiQyFhQGIiY0JDIWFAYjIicHFhUUBiImNTQ2PwImNTQEMhYUBiImNCQyFhQGIiY0Advy3Z9fX5/d8t2gXl6gAcbgv29vv+C/b2/+LS0gIC0gAUwtICAWDg83ETNIMykfegEJ/octICAtIAIdLSAgLSAEqF+f3fLdoF5eoN3y3Z9Xb7/gv29vv+C/BiAtISEtICAtIQqRFxwkMzMkIDEFfgEODhekIC0gIC0gIC0gIC0AAf/YAFoEuQS8AFsAACUBNjc2JicmIyIOAwcABw4EFx4BMzI3ATYnLgEjIgcGBwEOASY0NwA3PgEzMhceARcWBgcOBgcGIyImJyY2NwE2NzYzMhceARcWBgcBDgEnLgECIgHVWwgHdl8WGSJBMD8hIP6IDx4eLRMNBQlZN0ozAiQkEAcdEhoYDRr+qw8pHA4BRyIjQS4ODyw9DQ4YIwwod26La1YOOEBGdiIwGkQB/0coW2tQSE5nDxE4Qv4eDyoQEAOtAdZbZWKbEQQUGjIhH/6JDxsdNSg3HT5CMwIkJCcQFBcMGv6uDwEcKQ4BTSIjIQEINykvYyMLKnhuiWZMBxtAOU6+RAH/SBg3ISSGV121Qv4kDwIPDyYAAAACAGQAWASvBEQAGQBEAAABPgIeAhUUDgMHLgQ1ND4CHgEFIg4DIi4DIyIGFRQeAhcWFx4EMj4DNzY3PgQ1NCYCiTB7eHVYNkN5hKg+PqeFeEM4WnZ4eQEjIT8yLSohJyktPyJDbxtBMjMPBw86KzEhDSIzKUAMBAgrKT8dF2oDtURIBS1TdkA5eYB/slVVsn+AeTlAdlMtBUgtJjY1JiY1NiZvTRc4SjQxDwcOPCouGBgwKEALBAkpKkQqMhNPbQACADn/8gR3BL4AFwAuAAAAMh8BFhUUBg8BJi8BNycBFwcvASY0NwEDNxYfARYUBwEGIi8BJjQ/ARYfAQcXAQKru0KNQjgiHR8uEl/3/nvUaRONQkIBGxJpCgmNQkL+5UK6Qo1CQjcdLhJf9wGFBL5CjUJeKmsiHTUuEl/4/nvUahKNQrpCARv+RmkICY1CukL+5UJCjUK7Qjc3LxFf+AGFAAAAAAMAyAAAA+gEsAARABUAHQAAADIeAhURFAYjISImNRE0PgEHESERACIGFBYyNjQCBqqaZDo7Kf2oKTs8Zj4CWP7/Vj09Vj0EsB4uMhX8Ryk7OykDuRUzLar9RAK8/RY9Vj09VgABAAAAAASwBLAAFgAACQEWFAYiLwEBEScBBRMBJyEBJyY0NjIDhgEbDx0qDiT+6dT+zP7oywEz0gEsAQsjDx0qBKH+5g8qHQ8j/vX+1NL+zcsBGAE01AEXJA4qHQAAAAADAScAEQQJBOAAMgBAAEsAAAEVHgQXIy4DJxEXHgQVFAYHFSM1JicuASczHgEXEScuBDU0PgI3NRkBDgMVFB4DFxYXET4ENC4CArwmRVI8LAKfBA0dMydAIjxQNyiym2SWVygZA4sFV0obLkJOMCAyVWg6HSoqFQ4TJhkZCWgWKTEiGBkzNwTgTgUTLD9pQiQuLBsH/s0NBxMtPGQ+i6oMTU8QVyhrVk1iEAFPCA4ZLzlYNkZwSCoGTf4SARIEDh02Jh0rGRQIBgPQ/soCCRYgNEM0JRkAAAABAGQAZgOUBK0ASgAAATIeARUjNC4CIyIGBwYVFB4BFxYXMxUjFgYHBgc+ATM2FjMyNxcOAyMiLgEHDgEPASc+BTc+AScjNTMmJy4CPgE3NgIxVJlemSc8OxolVBQpGxoYBgPxxQgVFS02ImIWIIwiUzUyHzY4HCAXanQmJ1YYFzcEGAcTDBEJMAwk3aYXFQcKAg4tJGEErVCLTig/IhIdFSw5GkowKgkFZDKCHj4yCg8BIh6TExcIASIfBAMaDAuRAxAFDQsRCjePR2QvORQrREFMIVgAAAACABn//wSXBLAADwAfAAABMzIWDwEGIi8BJjY7AREzBRcWBisBESMRIyImPwE2MgGQlhUIDuYOKg7mDggVlsgCF+YOCBWWyJYVCA7mDioBLBYO+g8P+g4WA4QQ+Q4V/HwDhBUO+Q8AAAQAGf//A+gEsAAHABcAGwAlAAABIzUjFSMRIQEzMhYPAQYiLwEmNjsBETMFFTM1EwczFSE1NyM1IQPoZGRkASz9qJYVCA7mDioO5g4IFZbIAZFkY8jI/tTIyAEsArxkZAH0/HwWDvoPD/oOFgOEZMjI/RL6ZJb6ZAAAAAAEABn//wPoBLAADwAZACEAJQAAATMyFg8BBiIvASY2OwERMwUHMxUhNTcjNSERIzUjFSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAljIyP7UyMgBLGRkZAEsx2QBLBYO+g8P+g4WA4SW+mSW+mT7UGRkAfRkyMgAAAAEABn//wRMBLAADwAVABsAHwAAATMyFg8BBiIvASY2OwERMwEjESM1MxMjNSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAlhkZMhkZMgBLMdkASwWDvoPD/oOFgOE/gwBkGT7UGQBkGTIyAAAAAAEABn//wRMBLAADwAVABkAHwAAATMyFg8BBiIvASY2OwERMwEjNSMRIQcVMzUDIxEjNTMBkJYVCA7mDioO5g4IFZbIArxkyAEsx2QBZGTIASwWDvoPD/oOFgOE/gxkAZBkyMj7tAGQZAAAAAAFABn//wSwBLAADwATABcAGwAfAAABMzIWDwEGIi8BJjY7AREzBSM1MxMhNSETITUhEyE1IQGQlhUIDuYOKg7mDggVlsgB9MjIZP7UASxk/nABkGT+DAH0ASwWDvoPD/oOFgOEyMj+DMj+DMj+DMgABQAZ//8EsASwAA8AEwAXABsAHwAAATMyFg8BBiIvASY2OwERMwUhNSEDITUhAyE1IQMjNTMBkJYVCA7mDioO5g4IFZbIAyD+DAH0ZP5wAZBk/tQBLGTIyAEsFg76Dw/6DhYDhMjI/gzI/gzI/gzIAAIAAAAABEwETAAPAB8AAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmAV4BkKK8u6P+cKW5uQJn/gwpOzspAfQpOzsETLuj/nClubmlAZClucg7Kf4MKTs7KQH0KTsAAAAAAwAAAAAETARMAA8AHwArAAABITIWFREUBiMhIiY1ETQ2BSEiBhURFBYzITI2NRE0JgUXFhQPAQYmNRE0NgFeAZClubml/nCju7wCZP4MKTs7KQH0KTs7/m/9ERH9EBgYBEy5pf5wpbm5pQGQo7vIOyn+DCk7OykB9Ck7gr4MJAy+DAsVAZAVCwAAAAADAAAAAARMBEwADwAfACsAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFg8BBiIvASY2AV4BkKO7uaX+cKW5uQJn/gwpOzspAfQpOzv+FQGQFQsMvgwkDL4MCwRMvKL+cKW5uaUBkKO7yDsp/gwpOzspAfQpO8gYEP0REf0QGAAAAAMAAAAABEwETAAPAB8AKwAAASEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFFxYGIyEiJj8BNjIBXgGQpbm5pf5wo7u5Amf+DCk7OykB9Ck7O/77vgwLFf5wFQsMvgwkBEy5pf5wo7u8ogGQpbnIOyn+DCk7OykB9Ck7z/0QGBgQ/REAAAAAAgAAAAAFFARMAB8ANQAAASEyFhURFAYjISImPQE0NjMhMjY1ETQmIyEiJj0BNDYHARYUBwEGJj0BIyImPQE0NjsBNTQ2AiYBkKW5uaX+cBUdHRUBwik7Oyn+PhUdHb8BRBAQ/rwQFvoVHR0V+hYETLml/nCluR0VZBUdOykB9Ck7HRVkFR3p/uQOJg7+5A4KFZYdFcgVHZYVCgAAAQDZAAID1wSeACMAAAEXFgcGAgclMhYHIggBBwYrAScmNz4BPwEhIicmNzYANjc2MwMZCQgDA5gCASwYEQ4B/vf+8wQMDgkJCQUCUCcn/tIXCAoQSwENuwUJEASeCQoRC/5TBwEjEv7K/sUFDwgLFQnlbm4TFRRWAS/TBhAAAAACAAAAAAT+BEwAHwA1AAABITIWHQEUBiMhIgYVERQWMyEyFh0BFAYjISImNRE0NgUBFhQHAQYmPQEjIiY9ATQ2OwE1NDYBXgGQFR0dFf4+KTs7KQHCFR0dFf5wpbm5AvEBRBAQ/rwQFvoVHR0V+hYETB0VZBUdOyn+DCk7HRVkFR25pQGQpbnp/uQOJg7+5A4KFZYdFcgVHZYVCgACAAAAAASwBLAAFQAxAAABITIWFREUBi8BAQYiLwEmNDcBJyY2ASMiBhURFBYzITI2PQE3ERQGIyEiJjURNDYzIQLuAZAVHRUObf7IDykPjQ8PAThtDgj+75wpOzspAfQpO8i7o/5wpbm5pQEsBLAdFf5wFQgObf7IDw+NDykPAThtDhX+1Dsp/gwpOzsplMj+1qW5uaUBkKW5AAADAA4ADgSiBKIADwAbACMAAAAyHgIUDgIiLgI0PgEEIg4BFB4BMj4BNCYEMhYUBiImNAHh7tmdXV2d2e7ZnV1dnQHD5sJxccLmwnFx/nugcnKgcgSiXZ3Z7tmdXV2d2e7ZnUdxwubCcXHC5sJzcqBycqAAAAMAAAAABEwEsAAVAB8AIwAAATMyFhURMzIWBwEGIicBJjY7ARE0NgEhMhYdASE1NDYFFTM1AcLIFR31FAoO/oEOJw3+hQ0JFfod/oUD6BUd+7QdA2dkBLAdFf6iFg/+Vg8PAaoPFgFeFR38fB0V+voVHWQyMgAAAAMAAAAABEwErAAVAB8AIwAACQEWBisBFRQGKwEiJj0BIyImNwE+AQEhMhYdASE1NDYFFTM1AkcBeg4KFfQiFsgUGPoUCw4Bfw4n/fkD6BUd+7QdA2dkBJ7+TQ8g+hQeHRX6IQ8BrxAC/H8dFfr6FR1kMjIAAwAAAAAETARLABQAHgAiAAAJATYyHwEWFAcBBiInASY0PwE2MhcDITIWHQEhNTQ2BRUzNQGMAXEHFQeLBwf98wcVB/7cBweLCBUH1APoFR37tB0DZ2QC0wFxBweLCBUH/fMICAEjCBQIiwcH/dIdFfr6FR1kMjIABAAAAAAETASbAAkAGQAjACcAABM3NjIfAQcnJjQFNzYWFQMOASMFIiY/ASc3ASEyFh0BITU0NgUVMzWHjg4qDk3UTQ4CFtIOFQIBHRX9qxUIDtCa1P49A+gVHfu0HQNnZAP/jg4OTdRMDyqa0g4IFf2pFB4BFQ7Qm9T9Oh0V+voVHWQyMgAAAAQAAAAABEwEsAAPABkAIwAnAAABBR4BFRMUBi8BByc3JyY2EwcGIi8BJjQ/AQEhMhYdASE1NDYFFTM1AV4CVxQeARUO0JvUm9IOCMNMDyoOjg4OTf76A+gVHfu0HQNnZASwAgEdFf2rFQgO0JrUmtIOFf1QTQ4Ojg4qDk3+WB0V+voVHWQyMgACAAT/7ASwBK8ABQAIAAAlCQERIQkBFQEEsP4d/sb+cQSs/TMCq2cBFP5xAacDHPz55gO5AAAAAAIAAABkBEwEsAAVABkAAAERFAYrAREhESMiJjURNDY7AREhETMHIzUzBEwdFZb9RJYVHR0V+gH0ZMhkZAPo/K4VHQGQ/nAdFQPoFB7+1AEsyMgAAAMAAABFBN0EsAAWABoALwAAAQcBJyYiDwEhESMiJjURNDY7AREhETMHIzUzARcWFAcBBiIvASY0PwE2Mh8BATYyBEwC/tVfCRkJlf7IlhUdHRX6AfRkyGRkAbBqBwf+XAgUCMoICGoHFQdPASkHFQPolf7VXwkJk/5wHRUD6BQe/tQBLMjI/c5qBxUH/lsHB8sHFQdqCAhPASkHAAMAAAANBQcEsAAWABoAPgAAAREHJy4BBwEhESMiJjURNDY7AREhETMHIzUzARcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyBExnhg8lEP72/reWFR0dFfoB9GTIZGQB9kYPD4ODDw9GDykPg4MPKQ9GDw+Dgw8PRg8pD4ODDykD6P7zZ4YPAw7+9v5wHRUD6BQe/tQBLMjI/YxGDykPg4MPKQ9GDw+Dgw8PRg8pD4ODDykPRg8Pg4MPAAADAAAAFQSXBLAAFQAZAC8AAAERISIGHQEhESMiJjURNDY7AREhETMHIzUzEzMyFh0BMzIWDwEGIi8BJjY7ATU0NgRM/qIVHf4MlhUdHRX6AfRkyGRklmQVHZYVCA7mDioO5g4IFZYdA+j+1B0Vlv5wHRUD6BQe/tQBLMjI/agdFfoVDuYODuYOFfoVHQAAAAADAAAAAASXBLAAFQAZAC8AAAERJyYiBwEhESMiJjURNDY7AREhETMHIzUzExcWBisBFRQGKwEiJj0BIyImPwE2MgRMpQ4qDv75/m6WFR0dFfoB9GTIZGTr5g4IFZYdFWQVHZYVCA7mDioD6P5wpQ8P/vf+cB0VA+gUHv7UASzIyP2F5Q8V+hQeHhT6FQ/lDwADAAAAyASwBEwACQATABcAABMhMhYdASE1NDYBERQGIyEiJjURExUhNTIETBUd+1AdBJMdFfu0FR1kAZAETB0VlpYVHf7U/doVHR0VAib+1MjIAAAGAAMAfQStBJcADwAZAB0ALQAxADsAAAEXFhQPAQYmPQEhNSE1NDYBIyImPQE0NjsBFyM1MwE3NhYdASEVIRUUBi8BJjQFIzU7AjIWHQEUBisBA6f4Dg74DhX+cAGQFf0vMhUdHRUyyGRk/oL3DhUBkP5wFQ73DwOBZGRkMxQdHRQzBI3mDioO5g4IFZbIlhUI/oUdFWQVHcjI/cvmDggVlsiWFQgO5g4qecgdFWQVHQAAAAACAGQAAASwBLAAFgBRAAABJTYWFREUBisBIiY1ES4ENRE0NiUyFh8BERQOAg8BERQGKwEiJjURLgQ1ETQ+AzMyFh8BETMRPAE+AjMyFh8BETMRND4DA14BFBklHRXIFR0EDiIaFiX+4RYZAgEVHR0LCh0VyBUdBA4iGhYBBwoTDRQZAgNkBQkVDxcZAQFkAQUJFQQxdBIUH/uuFR0dFQGNAQgbHzUeAWcfRJEZDA3+Phw/MSkLC/5BFR0dFQG/BA8uLkAcAcICBxENCxkMDf6iAV4CBxENCxkMDf6iAV4CBxENCwABAGQAAASwBEwAMwAAARUiDgMVERQWHwEVITUyNjURIREUFjMVITUyPgM1ETQmLwE1IRUiBhURIRE0JiM1BLAEDiIaFjIZGf5wSxn+DBlL/nAEDiIaFjIZGQGQSxkB9BlLBEw4AQUKFA78iBYZAQI4OA0lAYr+diUNODgBBQoUDgN4FhkBAjg4DSX+dgGKJQ04AAAABgAAAAAETARMAAwAHAAgACQAKAA0AAABITIWHQEjBTUnITchBSEyFhURFAYjISImNRE0NhcVITUBBTUlBRUhNQUVFAYjIQchJyE3MwKjAXcVHWn+2cj+cGQBd/4lASwpOzsp/tQpOzspASwCvP5wAZD8GAEsArwdFf6JZP6JZAGQyGkD6B0VlmJiyGTIOyn+DCk7OykB9Ck7ZMjI/veFo4XGyMhm+BUdZGTIAAEAEAAQBJ8EnwAmAAATNzYWHwEWBg8BHgEXNz4BHwEeAQ8BBiIuBicuBTcRohEuDosOBhF3ZvyNdxEzE8ATBxGjAw0uMUxPZWZ4O0p3RjITCwED76IRBhPCFDERdo78ZXYRBA6IDi8RogEECBUgNUNjO0qZfHNVQBAAAAACAAAAAASwBEwAIwBBAAAAMh4EHwEVFAYvAS4BPQEmIAcVFAYPAQYmPQE+BRIyHgIfARUBHgEdARQGIyEiJj0BNDY3ATU0PgIB/LimdWQ/LAkJHRTKFB2N/sKNHRTKFB0DDTE7ZnTKcFImFgEBAW0OFR0V+7QVHRUOAW0CFiYETBUhKCgiCgrIFRgDIgMiFZIYGJIVIgMiAxgVyAQNJyQrIP7kExwcCgoy/tEPMhTUFR0dFdQUMg8BLzIEDSEZAAADAAAAAASwBLAADQAdACcAAAEHIScRMxUzNTMVMzUzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYETMj9qMjIyMjIyPyuArwVHR0VDIn8SokMFR0dswRMFR37UB0CvMjIAfTIyMjI/OAdKh1kZB0qHf7UHRUyMhUdAAAAAwBkAAAEsARMAAkAEwAdAAABIyIGFREhETQmASMiBhURIRE0JgEhETQ2OwEyFhUCvGQpOwEsOwFnZCk7ASw7/Rv+1DspZCk7BEw7KfwYA+gpO/7UOyn9RAK8KTv84AGQKTs7KQAAAAAF/5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQURByMRMwcRMxHIArx8sLB8/UR8sLAYA4T+DMjI/tTIyAEsAZBkyMhkZARMsHz+DHywsHwB9HywyP1EArzIZP7UZGQBLGT+1GQB9GT+1AEsAAAABf+cAAAEsARMAA8AEwAfACUAKQAAEyEyFhURFAYjISImNRE0NhcRIREBIzUjFSMRMxUzNTMFEQcjETMHETMRyAK8fLCwfP1EfLCwGAOE/gxkZGRkZGQBkGTIyGRkBEywfP4MfLCwfAH0fLDI/UQCvP2oyMgB9MjIZP7UZAH0ZP7UASwABP+cAAAEsARMAA8AEwAbACMAABMhMhYVERQGIyEiJjURNDYXESERBSMRMxUhESEFIxEzFSERIcgCvHywsHz9RHywsBgDhP4MyMj+1AEsAZDIyP7UASwETLB8/gx8sLB8AfR8sMj9RAK8yP7UZAH0ZP7UZAH0AAAABP+cAAAEsARMAA8AEwAWABkAABMhMhYVERQGIyEiJjURNDYXESERAS0BDQERyAK8fLCwfP1EfLCwGAOE/gz+1AEsAZD+1ARMsHz+DHywsHwB9HywyP1EArz+DJaWlpYBLAAAAAX/nAAABLAETAAPABMAFwAgACkAABMhMhYVERQGIyEiJjURNDYXESERAyERIQcjIgYVFBY7AQERMzI2NTQmI8gCvHywsHz9RHywsBgDhGT9RAK8ZIImOTYpgv4Mgik2OSYETLB8/gx8sLB8AfR8sMj9RAK8/agB9GRWQUFUASz+1FRBQVYAAAAF/5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQEjESM1MwMjNTPIArx8sLB8/UR8sLAYA4T+DMjI/tTIyAEsAZBkZMjIZGQETLB8/gx8sLB8AfR8sMj9RAK8yGT+1GRkASz+DAGQZP4MZAAG/5wAAASwBEwADwATABkAHwAjACcAABMhMhYVERQGIyEiJjURNDYXESERBTMRIREzASMRIzUzBRUzNQEjNTPIArx8sLB8/UR8sLAYA4T9RMj+1GQCWGRkyP2oZAEsZGQETLB8/gx8sLB8AfR8sMj9RAK8yP5wAfT+DAGQZMjIyP7UZAAF/5wAAASwBEwADwATABwAIgAmAAATITIWFREUBiMhIiY1ETQ2FxEhEQEHIzU3NSM1IQEjESM1MwMjNTPIArx8sLB8/UR8sLAYA4T+DMdkx8gBLAGQZGTIx2RkBEywfP4MfLCwfAH0fLDI/UQCvP5wyDLIlmT+DAGQZP4MZAAAAAMACQAJBKcEpwAPABsAJQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgchFSEVISc1NyEB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWz+1AEs/tRkZAEsBKdentvw255eXp7b8NueTHHC5MJxccLkwtDIZGTIZAAAAAAEAAkACQSnBKcADwAbACcAKwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgcVBxcVIycjFSMRIQcVMzUB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWwyZGRklmQBLMjIBKdentvw255eXp7b8NueTHHC5MJxccLkwtBkMmQyZGQBkGRkZAAAAv/y/50EwgRBACAANgAAATIWFzYzMhYUBisBNTQmIyEiBh0BIyImNTQ2NyY1ND4BEzMyFhURMzIWDwEGIi8BJjY7ARE0NgH3brUsLC54qqp4gB0V/tQVHd5QcFZBAmKqepYKD4kVCg3fDSYN3w0KFYkPBEF3YQ6t8a36FR0dFfpzT0VrDhMSZKpi/bMPCv7tFxD0EBD0EBcBEwoPAAAAAAL/8v+cBMMEQQAcADMAAAEyFhc2MzIWFxQGBwEmIgcBIyImNTQ2NyY1ND4BExcWBisBERQGKwEiJjURIyImNzY3NjIB9m62LCsueaoBeFr+hg0lDf6DCU9xVkECYqnm3w0KFYkPCpYKD4kVCg3HGBMZBEF3YQ+teGOkHAFoEBD+k3NPRWsOExNkqWP9kuQQF/7tCg8PCgETFxDMGBMAAAABAGQAAARMBG0AGAAAJTUhATMBMwkBMwEzASEVIyIGHQEhNTQmIwK8AZD+8qr+8qr+1P7Uqv7yqv7yAZAyFR0BkB0VZGQBLAEsAU3+s/7U/tRkHRUyMhUdAAAAAAEAeQAABDcEmwAvAAABMhYXHgEVFAYHFhUUBiMiJxUyFh0BITU0NjM1BiMiJjU0Ny4BNTQ2MzIXNCY1NDYCWF6TGll7OzIJaUo3LRUd/tQdFS03SmkELzlpSgUSAqMEm3FZBoNaPWcfHRpKaR77HRUyMhUd+x5pShIUFVg1SmkCAhAFdKMAAAAGACcAFASJBJwAEQAqAEIASgBiAHsAAAEWEgIHDgEiJicmAhI3PgEyFgUiBw4BBwYWHwEWMzI3Njc2Nz4BLwEmJyYXIgcOAQcGFh8BFjMyNz4BNz4BLwEmJyYWJiIGFBYyNjciBw4BBw4BHwEWFxYzMjc+ATc2Ji8BJhciBwYHBgcOAR8BFhcWMzI3PgE3NiYvASYD8m9PT29T2dzZU29PT29T2dzZ/j0EBHmxIgQNDCQDBBcGG0dGYAsNAwkDCwccBAVQdRgEDA0iBAQWBhJROQwMAwkDCwf5Y4xjY4xjVhYGElE6CwwDCQMLBwgEBVB1GAQNDCIEjRcGG0dGYAsNAwkDCwcIBAR5sSIEDQwkAwPyb/7V/tVvU1dXU28BKwErb1NXVxwBIrF5DBYDCQEWYEZHGwMVDCMNBgSRAhh1UA0WAwkBFTpREgMVCyMMBwT6Y2OMY2MVFTpREQQVCyMMBwQCGHVQDRYDCQEkFmBGRxsDFQwjDQYEASKxeQwWAwkBAAAABQBkAAAD6ASwAAwADwAWABwAIgAAASERIzUhFSERNDYzIQEjNQMzByczNTMDISImNREFFRQGKwECvAEstP6s/oQPCgI/ASzIZKLU1KJktP51Cg8DhA8KwwMg/oTIyALzCg/+1Mj84NTUyP4MDwoBi8jDCg8AAAAABQBkAAAD6ASwAAkADAATABoAIQAAASERCQERNDYzIQEjNRMjFSM1IzcDISImPQEpARUUBisBNQK8ASz+ov3aDwoCPwEsyD6iZKLUqv6dCg8BfAIIDwqbAyD9+AFe/doERwoP/tTI/HzIyNT+ZA8KNzcKD1AAAAAAAwAAAAAEsAP0AAgAGQAfAAABIxUzFyERIzcFMzIeAhUhFSEDETM0PgIBMwMhASEEiqJkZP7UotT9EsgbGiEOASz9qMhkDiEaAnPw8PzgASwB9AMgyGQBLNTUBBErJGT+ogHCJCsRBP5w/nAB9AAAAAMAAAAABEwETAAZADIAOQAAATMyFh0BMzIWHQEUBiMhIiY9ATQ2OwE1NDYFNTIWFREUBiMhIic3ARE0NjMVFBYzITI2AQc1IzUzNQKKZBUdMhUdHRX+1BUdHRUyHQFzKTs7Kf2oARP2/ro7KVg+ASw+WP201MjIBEwdFTIdFWQVHR0VZBUdMhUd+pY7KfzgKTsE9gFGAUQpO5Y+WFj95tSiZKIAAwBkAAAEvARMABkANgA9AAABMzIWHQEzMhYdARQGIyEiJj0BNDY7ATU0NgU1MhYVESMRMxQOAiMhIiY1ETQ2MxUUFjMhMjYBBzUjNTM1AcJkFR0yFR0dFf7UFR0dFTIdAXMpO8jIDiEaG/2oKTs7KVg+ASw+WAGc1MjIBEwdFTIdFWQVHR0VZBUdMhUd+pY7Kf4M/tQkKxEEOykDICk7lj5YWP3m1KJkogAAAAP/ogAABRYE1AALABsAHwAACQEWBiMhIiY3ATYyEyMiBhcTHgE7ATI2NxM2JgMVMzUCkgJ9FyAs+wQsIBcCfRZARNAUGAQ6BCMUNhQjBDoEGODIBK37sCY3NyYEUCf+TB0U/tIUHR0UAS4UHf4MZGQAAAAACQAAAAAETARMAA8AHwAvAD8ATwBfAG8AfwCPAAABMzIWHQEUBisBIiY9ATQ2EzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBqfoKDw8K+goPDwr6Cg8PCvoKDw8BmvoKDw8K+goPD/zq+goPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K+goPD/zq+goPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K+goPDwRMDwqWCg8PCpYKD/7UDwqWCg8PCpYKDw8KlgoPDwqWCg/+1A8KlgoPDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKD/7UDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKDw8KlgoPAAAAAwAAAAAEsAUUABkAKQAzAAABMxUjFSEyFg8BBgchJi8BJjYzITUjNTM1MwEhMhYUBisBFyE3IyImNDYDITIWHQEhNTQ2ArxkZAFePjEcQiko/PwoKUIcMT4BXmRkyP4+ArwVHR0VDIn8SooNFR0dswRMFR37UB0EsMhkTzeEUzMzU4Q3T2TIZPx8HSodZGQdKh3+1B0VMjIVHQAABAAAAAAEsAUUAAUAGQArADUAAAAyFhUjNAchFhUUByEyFg8BIScmNjMhJjU0AyEyFhQGKwEVBSElNSMiJjQ2AyEyFh0BITU0NgIwUDnCPAE6EgMBSCkHIq/9WrIiCikBSAOvArwVHR0VlgET/EoBE5YVHR2zBEwVHftQHQUUOykpjSUmCBEhFpGRFiERCCb+lR0qHcjIyMgdKh39qB0VMjIVHQAEAAAAAASwBJ0ABwAUACQALgAAADIWFAYiJjQTMzIWFRQXITY1NDYzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYCDZZqapZqty4iKyf+vCcrI/7NArwVHR0VDYr8SokMFR0dswRMFR37UB0EnWqWamqW/us5Okxra0w6Of5yHSodZGQdKh3+1B0VMjIVHQAEAAAAAASwBRQADwAcACwANgAAATIeARUUBiImNTQ3FzcnNhMzMhYVFBchNjU0NjMBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYL1szb5xvIpBvoyIfLiIrJ/68Jysj/s0CvBUdHRUNivxKiQwVHR2zBEwVHftQHQUUa4s2Tm9vTj5Rj2+jGv4KOTpMa2tMOjn+ch0qHWRkHSod/tQdFTIyFR0AAAADAAAAAASwBRIAEgAiACwAAAEFFSEUHgMXIS4BNTQ+AjcBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYASz+1CU/P00T/e48PUJtj0r+ogK8FR0dFQ2K/EqJDBUdHbMETBUd+1AdBLChizlmUT9IGVO9VFShdksE/H4dKh1kZB0qHf7UHRUyMhUdAAIAyAAAA+gFFAAPACkAAAAyFh0BHgEdASE1NDY3NTQDITIWFyMVMxUjFTMVIxUzFAYjISImNRE0NgIvUjsuNv5wNi5kAZA2XBqsyMjIyMh1U/5wU3V1BRQ7KU4aXDYyMjZcGk4p/kc2LmRkZGRkU3V1UwGQU3UAAAMAZP//BEwETAAPAC8AMwAAEyEyFhURFAYjISImNRE0NgMhMhYdARQGIyEXFhQGIi8BIQcGIiY0PwEhIiY9ATQ2BQchJ5YDhBUdHRX8fBUdHQQDtgoPDwr+5eANGiUNWP30Vw0mGg3g/t8KDw8BqmQBRGQETB0V/gwVHR0VAfQVHf1EDwoyCg/gDSUbDVhYDRslDeAPCjIKD2RkZAAAAAAEAAAAAASwBEwAGQAjAC0ANwAAEyEyFh0BIzQmKwEiBhUjNCYrASIGFSM1NDYDITIWFREhETQ2ExUUBisBIiY9ASEVFAYrASImPQHIAyBTdWQ7KfopO2Q7KfopO2R1EQPoKTv7UDvxHRVkFR0D6B0VZBUdBEx1U8gpOzspKTs7KchTdf4MOyn+1AEsKTv+DDIVHR0VMjIVHR0VMgADAAEAAASpBKwADQARABsAAAkBFhQPASEBJjQ3ATYyCQMDITIWHQEhNTQ2AeACqh8fg/4f/fsgIAEnH1n+rAFWAS/+q6IDIBUd/HwdBI39VR9ZH4MCBh9ZHwEoH/5u/qoBMAFV/BsdFTIyFR0AAAAAAgCPAAAEIQSwABcALwAAAQMuASMhIgYHAwYWMyEVFBYyNj0BMzI2AyE1NDY7ATU0NjsBETMRMzIWHQEzMhYVBCG9CCcV/nAVJwi9CBMVAnEdKh19FROo/a0dFTIdFTDILxUdMhUdAocB+hMcHBP+BhMclhUdHRWWHP2MMhUdMhUdASz+1B0VMh0VAAAEAAAAAASwBLAADQAQAB8AIgAAASERFAYjIREBNTQ2MyEBIzUBIREUBiMhIiY1ETQ2MyEBIzUDhAEsDwr+if7UDwoBdwEsyP2oASwPCv12Cg8PCgF3ASzIAyD9wQoPAk8BLFQKD/7UyP4M/cEKDw8KA7YKD/7UyAAC/5wAZAUUBEcARgBWAAABMzIeAhcWFxY2NzYnJjc+ARYXFgcOASsBDgEPAQ4BKwEiJj8BBisBIicHDgErASImPwEmLwEuAT0BNDY7ATY3JyY2OwE2BSMiBh0BFBY7ATI2PQE0JgHkw0uOakkMEhEfQwoKGRMKBQ8XDCkCA1Y9Pgc4HCcDIhVkFRgDDDEqwxgpCwMiFWQVGAMaVCyfExwdFXwLLW8QBxXLdAFF+goPDwr6Cg8PBEdBa4pJDgYKISAiJRsQCAYIDCw9P1c3fCbqFB0dFEYOCEAUHR0UnUplNQcmFTIVHVdPXw4TZV8PCjIKDw8KMgoPAAb/nP/mBRQEfgAJACQANAA8AFIAYgAAASU2Fh8BFgYPASUzMhYfASEyFh0BFAYHBQYmJyYjISImPQE0NhcjIgYdARQ7ATI2NTQmJyYEIgYUFjI2NAE3PgEeARceAT8BFxYGDwEGJi8BJjYlBwYfAR4BPwE2Jy4BJy4BAoEBpxMuDiAOAxCL/CtqQ0geZgM3FR0cE/0fFyIJKjr+1D5YWLlQExIqhhALIAsSAYBALS1ALf4PmBIgHhMQHC0aPzANITNQL3wpgigJASlmHyElDR0RPRMFAhQHCxADhPcICxAmDyoNeMgiNtQdFTIVJgeEBBQPQ1g+yD5YrBwVODMQEAtEERzJLUAtLUD+24ITChESEyMgAwWzPUkrRSgJL5cvfRxYGyYrDwkLNRAhFEgJDAQAAAAAAwBkAAAEOQSwAFEAYABvAAABMzIWHQEeARcWDgIPATIeBRUUDgUjFRQGKwEiJj0BIxUUBisBIiY9ASMiJj0BNDY7AREjIiY9ATQ2OwE1NDY7ATIWHQEzNTQ2AxUhMj4CNTc0LgMjARUhMj4CNTc0LgMjAnGWCg9PaAEBIC4uEBEGEjQwOiodFyI2LUAjGg8KlgoPZA8KlgoPrwoPDwpLSwoPDwqvDwqWCg9kD9cBBxwpEwsBAQsTKRz++QFrHCkTCwEBCxMpHASwDwptIW1KLk0tHwYGAw8UKDJOLTtdPCoVCwJLCg8PCktLCg8PCksPCpYKDwJYDwqWCg9LCg8PCktLCg/+1MgVHR0LCgQOIhoW/nDIFR0dCwoEDiIaFgAAAwAEAAIEsASuABcAKQAsAAATITIWFREUBg8BDgEjISImJy4CNRE0NgQiDgQPARchNy4FAyMT1AMMVnokEhIdgVL9xFKCHAgYKHoCIIx9VkcrHQYGnAIwnAIIIClJVSGdwwSuelb+YDO3QkJXd3ZYHFrFMwGgVnqZFyYtLSUMDPPzBQ8sKDEj/sIBBQACAMgAAAOEBRQADwAZAAABMzIWFREUBiMhIiY1ETQ2ARUUBisBIiY9AQHblmesVCn+PilUrAFINhWWFTYFFKxn/gwpVFQpAfRnrPwY4RU2NhXhAAACAMgAAAOEBRQADwAZAAABMxQWMxEUBiMhIiY1ETQ2ARUUBisBIiY9AQHbYLOWVCn+PilUrAFINhWWFTYFFJaz/kIpVFQpAfRnrPwY4RU2NhXhAAACAAAAFAUOBBoAFAAaAAAJASUHFRcVJwc1NzU0Jj4CPwEnCQEFJTUFJQUO/YL+hk5klpZkAQEBBQQvkwKCAVz+ov6iAV4BXgL//uWqPOCWx5SVyJb6BA0GCgYDKEEBG/1ipqaTpaUAAAMAZAH0BLADIAAHAA8AFwAAEjIWFAYiJjQkMhYUBiImNCQyFhQGIiY0vHxYWHxYAeh8WFh8WAHofFhYfFgDIFh8WFh8WFh8WFh8WFh8WFh8AAAAAAMBkAAAArwETAAHAA8AFwAAADIWFAYiJjQSMhYUBiImNBIyFhQGIiY0Aeh8WFh8WFh8WFh8WFh8WFh8WARMWHxYWHz+yFh8WFh8/shYfFhYfAAAAAMAZABkBEwETAAPAB8ALwAAEyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2fQO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PBEwPCpYKDw8KlgoP/nAPCpYKDw8KlgoP/nAPCpYKDw8KlgoPAAAABAAAAAAEsASwAA8AHwAvADMAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFhURFAYjISImNRE0NhcVITUBXgH0ory7o/4Mpbm5Asv9qCk7OykCWCk7O/2xAfQVHR0V/gwVHR1HAZAEsLuj/gylubmlAfSlucg7Kf2oKTs7KQJYKTtkHRX+1BUdHRUBLBUdZMjIAAAAAAEAZABkBLAETAA7AAATITIWFAYrARUzMhYUBisBFTMyFhQGKwEVMzIWFAYjISImNDY7ATUjIiY0NjsBNSMiJjQ2OwE1IyImNDaWA+gVHR0VMjIVHR0VMjIVHR0VMjIVHR0V/BgVHR0VMjIVHR0VMjIVHR0VMjIVHR0ETB0qHcgdKh3IHSodyB0qHR0qHcgdKh3IHSodyB0qHQAAAAYBLAAFA+gEowAHAA0AEwAZAB8AKgAAAR4BBgcuATYBMhYVIiYlFAYjNDYBMhYVIiYlFAYjNDYDFRQGIiY9ARYzMgKKVz8/V1c/P/75fLB8sAK8sHyw/cB8sHywArywfLCwHSodKAMRBKNDsrJCQrKy/sCwfLB8fLB8sP7UsHywfHywfLD+05AVHR0VjgQAAAH/tQDIBJQDgQBCAAABNzYXAR4BBw4BKwEyFRQOBCsBIhE0NyYiBxYVECsBIi4DNTQzIyImJyY2NwE2HwEeAQ4BLwEHIScHBi4BNgLpRRkUASoLCAYFGg8IAQQNGyc/KZK4ChRUFQu4jjBJJxkHAgcPGQYGCAsBKhQaTBQVCiMUM7YDe7YsFCMKFgNuEwYS/tkLHw8OEw0dNkY4MhwBIBgXBAQYF/7gKjxTQyMNEw4PHwoBKBIHEwUjKBYGDMHBDAUWKCMAAAAAAgAAAAAEsASwACUAQwAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjNC4DKwERFBYXMxUjNTI1ESMiDgMVIzUhBLAyCAsZEyYYGcgyGRn+cAQOIhoWyBkYJhMZCwgyA+j9RBkIChgQEWQZDQzIMmQREBgKCBkB9AOEFSAVDggDAfyuFhkBAmRkAQUJFQ4DUgEDCA4VIBUBLP0SDxMKBQH+VwsNATIyGQGpAQUKEw+WAAAAAAMAAAAABEwErgAdACAAMAAAATUiJy4BLwEBIwEGBw4BDwEVITUiJj8BIRcWBiMVARsBARUUBiMhIiY9ATQ2MyEyFgPoGR4OFgUE/t9F/tQSFQkfCwsBETE7EkUBJT0NISf+7IZ5AbEdFfwYFR0dFQPoFR0BLDIgDiIKCwLr/Q4jFQkTBQUyMisusKYiQTIBhwFW/qr942QVHR0VZBUdHQADAAAAAASwBLAADwBHAEoAABMhMhYVERQGIyEiJjURNDYFIyIHAQYHBgcGHQEUFjMhMjY9ATQmIyInJj8BIRcWBwYjIgYdARQWMyEyNj0BNCYnIicmJyMBJhMjEzIETBUdHRX7tBUdHQJGRg0F/tUREhImDAsJAREIDAwINxAKCj8BCjkLEQwYCAwMCAE5CAwLCBEZGQ8B/uAFDsVnBLAdFfu0FR0dFQRMFR1SDP0PIBMSEAUNMggMDAgyCAwXDhmjmR8YEQwIMggMDAgyBwwBGRskAuwM/gUBCAAABAAAAAAEsASwAAMAEwAjACcAAAEhNSEFITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NhcRIREEsPtQBLD7ggGQFR0dFf5wFR0dAm0BkBUdHRX+cBUdHUcBLARMZMgdFfx8FR0dFQOEFR0dFf5wFR0dFQGQFR1k/tQBLAAEAAAAAASwBLAADwAfACMAJwAAEyEyFhURFAYjISImNRE0NgEhMhYVERQGIyEiJjURNDYXESEREyE1ITIBkBUdHRX+cBUdHQJtAZAVHR0V/nAVHR1HASzI+1AEsASwHRX8fBUdHRUDhBUd/gwdFf5wFR0dFQGQFR1k/tQBLP2oZAAAAAACAAAAZASwA+gAJwArAAATITIWFREzNTQ2MyEyFh0BMxUjFRQGIyEiJj0BIxEUBiMhIiY1ETQ2AREhETIBkBUdZB0VAZAVHWRkHRX+cBUdZB0V/nAVHR0CnwEsA+gdFf6ilhUdHRWWZJYVHR0Vlv6iFR0dFQMgFR3+1P7UASwAAAQAAAAABLAEsAADABMAFwAnAAAzIxEzFyEyFhURFAYjISImNRE0NhcRIREBITIWFREUBiMhIiY1ETQ2ZGRklgGQFR0dFf5wFR0dRwEs/qIDhBUdHRX8fBUdHQSwZB0V/nAVHR0VAZAVHWT+1AEs/gwdFf5wFR0dFQGQFR0AAAAAAgBkAAAETASwACcAKwAAATMyFhURFAYrARUhMhYVERQGIyEiJjURNDYzITUjIiY1ETQ2OwE1MwcRIRECWJYVHR0VlgHCFR0dFfx8FR0dFQFelhUdHRWWZMgBLARMHRX+cBUdZB0V/nAVHR0VAZAVHWQdFQGQFR1kyP7UASwAAAAEAAAAAASwBLAAAwATABcAJwAAISMRMwUhMhYVERQGIyEiJjURNDYXESERASEyFhURFAYjISImNRE0NgSwZGT9dgGQFR0dFf5wFR0dRwEs/K4DhBUdHRX8fBUdHQSwZB0V/nAVHR0VAZAVHWT+1AEs/gwdFf5wFR0dFQGQFR0AAAEBLAAwA28EgAAPAAAJAQYjIiY1ETQ2MzIXARYUA2H+EhcSDhAQDhIXAe4OAjX+EhcbGQPoGRsX/hIOKgAAAAABAUEAMgOEBH4ACwAACQE2FhURFAYnASY0AU8B7h0qKh3+Eg4CewHuHREp/BgpER0B7g4qAAAAAAEAMgFBBH4DhAALAAATITIWBwEGIicBJjZkA+gpER3+Eg4qDv4SHREDhCod/hIODgHuHSoAAAAAAQAyASwEfgNvAAsAAAkBFgYjISImNwE2MgJ7Ae4dESn8GCkRHQHuDioDYf4SHSoqHQHuDgAAAAACAAgAAASwBCgABgAKAAABFQE1LQE1ASE1IQK8/UwBnf5jBKj84AMgAuW2/r3dwcHd+9jIAAAAAAIAAABkBLAEsAALADEAAAEjFTMVIREzNSM1IQEzND4FOwERFAYPARUhNSIuAzURMzIeBRUzESEEsMjI/tTIyAEs+1AyCAsZEyYYGWQyGRkBkAQOIhoWZBkYJhMZCwgy/OADhGRkASxkZP4MFSAVDggDAf3aFhkBAmRkAQUJFQ4CJgEDCA4VIBUBLAAAAgAAAAAETAPoACUAMQAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjFTMVIREzNSM1IQMgMggLGRMmGBlkMhkZ/nAEDiIaFmQZGCYTGQsIMgMgASzIyP7UyMgBLAK8FSAVDggDAf3aFhkCAWRkAQUJFQ4CJgEDCA4VIBUBLPzgZGQBLGRkAAABAMgAZgNyBEoAEgAAATMyFgcJARYGKwEiJwEmNDcBNgK9oBAKDP4wAdAMChCgDQr+KQcHAdcKBEoWDP4w/jAMFgkB1wgUCAHXCQAAAQE+AGYD6ARKABIAAAEzMhcBFhQHAQYrASImNwkBJjYBU6ANCgHXBwf+KQoNoBAKDAHQ/jAMCgRKCf4pCBQI/ikJFgwB0AHQDBYAAAEAZgDIBEoDcgASAAAAFh0BFAcBBiInASY9ATQ2FwkBBDQWCf4pCBQI/ikJFgwB0AHQA3cKEKANCv4pBwcB1woNoBAKDP4wAdAAAAABAGYBPgRKA+gAEgAACQEWHQEUBicJAQYmPQE0NwE2MgJqAdcJFgz+MP4wDBYJAdcIFAPh/ikKDaAQCgwB0P4wDAoQoA0KAdcHAAAAAgDZ//kEPQSwAAUAOgAAARQGIzQ2BTMyFh8BNjc+Ah4EBgcOBgcGIiYjIgYiJy4DLwEuAT4EHgEXJyY2A+iwfLD+VmQVJgdPBQsiKFAzRyorDwURAQQSFyozTSwNOkkLDkc3EDlfNyYHBw8GDyUqPjdGMR+TDA0EsHywfLDIHBPCAQIGBwcFDx81S21DBxlLR1xKQhEFBQcHGWt0bCQjP2hJNyATBwMGBcASGAAAAAACAMgAFQOEBLAAFgAaAAATITIWFREUBisBEQcGJjURIyImNRE0NhcVITX6AlgVHR0Vlv8TGpYVHR2rASwEsB0V/nAVHf4MsgkQFQKKHRUBkBUdZGRkAAAAAgDIABkETASwAA4AEgAAEyEyFhURBRElIREjETQ2ARU3NfoC7ic9/UQCWP1EZB8BDWQEsFEs/Ft1A7Z9/BgEARc0/V1kFGQAAQAAAAECTW/DBF9fDzz1AB8EsAAAAADQdnOXAAAAANB2c5f/Uf+cBdwFFAAAAAgAAgAAAAAAAAABAAAFFP+FAAAFFP9R/tQF3AABAAAAAAAAAAAAAAAAAAAAowG4ACgAAAAAAZAAAASwAAAEsABkBLAAAASwAAAEsABwAooAAAUUAAACigAABRQAAAGxAAABRQAAANgAAADYAAAAogAAAQQAAABIAAABBAAAAUUAAASwAGQEsAB7BLAAyASwAMgB9AAABLD/8gSwAAAEsAAABLD/8ASwAAAEsAAOBLAACQSwAGQEsP/TBLD/0wSwAAAEsAAABLAAAASwAAAEsAAABLAAJgSwAG4EsAAXBLAAFwSwABcEsABkBLAAGgSwAGQEsAAMBLAAZASwABcEsP+cBLAAZASwABcEsAAXBLAAAASwABcEsAAXBLAAFwSwAGQEsAAABLAAZASwAAAEsAAABLAAAASwAAAEsAAABLAAAASwAAAEsAAABLAAZASwAMgEsAAABLAAAASwADUEsABkBLAAyASw/7UEsAAhBLAAAASwAAAEsAAABLAAAASwAAAEsP+cBLAAAASwAAAEsAAABLAA2wSwABcEsAB1BLAAAASwAAAEsAAABLAACgSwAMgEsAAABLAAnQSwAMgEsADIBLAAyASwAAAEsP/+BLABLASwAGQEsACIBLABOwSwABcEsAAXBLAAFwSwABcEsAAXBLAAFwSwAAAEsAAXBLAAFwSwABcEsAAXBLAAAASwALcEsAC3BLAAAASwAAAEsABJBLAAFwSwAAAEsAAABLAAXQSw/9wEsP/cBLD/nwSwAGQEsAAABLAAAASwAAAEsABkBLD//wSwAAAEsP9RBLAABgSwAAAEsAAABLABRQSwAAEEsAAABLD/nASwAEoEsAAUBLAAAASwAAAEsAAABLD/nASwAGEEsP/9BLAAFgSwABYEsAAWBLAAFgSwABgEsAAABMQAAASwAGQAAAAAAAD/2ABkADkAyAAAAScAZAAZABkAGQAZABkAGQAZAAAAAAAAAAAAAADZAAAAAAAOAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAMAZABkAAAAEAAAAAAAZP+c/5z/nP+c/5z/nP+c/5wACQAJ//L/8gBkAHkAJwBkAGQAAAAAAGT/ogAAAAAAAAAAAAAAAADIAGQAAAABAI8AAP+c/5wAZAAEAMgAyAAAAGQBkABkAAAAZAEs/7UAAAAAAAAAAAAAAAAAAABkAAABLAFBADIAMgAIAAAAAADIAT4AZgBmANkAyADIAAAAKgAqACoAKgCyAOgA6AFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BpAIGAiICfgKGAqwC5ANGA24DjAPEBAgEMgRiBKIE3AVcBboGcgb0ByAHYgfKCB4IYgi+CTYJhAm2Cd4KKApMCpQK4gswC4oLygwIDFgNKg1eDbAODg5oDrQPKA+mD+YQEhBUEJAQqhEqEXYRthIKEjgSfBLAExoTdBPQFCoU1BU8FagVzBYEFjYWYBawFv4XUhemGAIYLhhqGJYYsBjgGP4ZKBloGZQZxBnaGe4aNhpoGrga9hteG7QcMhyUHOIdHB1EHWwdlB28HeYeLh52HsAfYh/SIEYgviEyIXYhuCJAIpYiuCMOIyIjOCN6I8Ij4CQCJDAkXiSWJOIlNCVgJbwmFCZ+JuYnUCe8J/goNChwKKwpoCnMKiYqSiqEKworeiwILGgsuizsLRwtiC30LiguZi6iLtgvDi9GL34vsi/4MD4whDDSMRIxYDGuMegyJDJeMpoy3jMiMz4zaDO2NBg0YDSoNNI1LDWeNeg2PjZ8Ntw3GjdON5I31DgQOEI4hjjIOQo5SjmIOcw6HDpsOpo63jugO9w8GDxQPKI8+D0yPew+Oj6MPtQ/KD9uP6o/+kBIQIBAxkECQX5CGEKoQu5DGENCQ3ZDoEPKRBBEYESuRPZFWkW2RgZGdEa0RvZHNkd2R7ZH9kgWSDJITkhqSIZIzEkSSThJXkmESapKAkouSlIAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAAAAABAAxgABAAAAAAATABIAAAADAAEECQAAAGoAEgADAAEECQABACgAfAADAAEECQACAA4ApAADAAEECQADAEwAsgADAAEECQAEADgA/gADAAEECQAFAHgBNgADAAEECQAGADYBrgADAAEECQAIABYB5AADAAEECQAJABYB+gADAAEECQALACQCEAADAAEECQAMACQCNAADAAEECQATACQCWAADAAEECQDIABYCfAADAAEECQDJADACkgADAAEECdkDABoCwnd3dy5nbHlwaGljb25zLmNvbQBDAG8AcAB5AHIAaQBnAGgAdAAgAKkAIAAyADAAMQA0ACAAYgB5ACAASgBhAG4AIABLAG8AdgBhAHIAaQBrAC4AIABBAGwAbAAgAHIAaQBnAGgAdABzACAAcgBlAHMAZQByAHYAZQBkAC4ARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAFIAZQBnAHUAbABhAHIAMQAuADAAMAA5ADsAVQBLAFcATgA7AEcATABZAFAASABJAEMATwBOAFMASABhAGwAZgBsAGkAbgBnAHMALQBSAGUAZwB1AGwAYQByAEcATABZAFAASABJAEMATwBOAFMAIABIAGEAbABmAGwAaQBuAGcAcwAgAFIAZQBnAHUAbABhAHIAVgBlAHIAcwBpAG8AbgAgADEALgAwADAAOQA7AFAAUwAgADAAMAAxAC4AMAAwADkAOwBoAG8AdABjAG8AbgB2ACAAMQAuADAALgA3ADAAOwBtAGEAawBlAG8AdABmAC4AbABpAGIAMgAuADUALgA1ADgAMwAyADkARwBMAFkAUABIAEkAQwBPAE4AUwBIAGEAbABmAGwAaQBuAGcAcwAtAFIAZQBnAHUAbABhAHIASgBhAG4AIABLAG8AdgBhAHIAaQBrAEoAYQBuACAASwBvAHYAYQByAGkAawB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQBXAGUAYgBmAG8AbgB0ACAAMQAuADAAVwBlAGQAIABPAGMAdAAgADIAOQAgADAANgA6ADMANgA6ADAANwAgADIAMAAxADQARgBvAG4AdAAgAFMAcQB1AGkAcgByAGUAbAAAAAIAAAAAAAD/tQAyAAAAAAAAAAAAAAAAAAAAAAAAAAABFwAAAQIBAwADAA0ADgEEAJYBBQEGAQcBCAEJAQoBCwEMAQ0BDgEPARABEQESARMA7wEUARUBFgEXARgBGQEaARsBHAEdAR4BHwEgASEBIgEjASQBJQEmAScBKAEpASoBKwEsAS0BLgEvATABMQEyATMBNAE1ATYBNwE4ATkBOgE7ATwBPQE+AT8BQAFBAUIBQwFEAUUBRgFHAUgBSQFKAUsBTAFNAU4BTwFQAVEBUgFTAVQBVQFWAVcBWAFZAVoBWwFcAV0BXgFfAWABYQFiAWMBZAFlAWYBZwFoAWkBagFrAWwBbQFuAW8BcAFxAXIBcwF0AXUBdgF3AXgBeQF6AXsBfAF9AX4BfwGAAYEBggGDAYQBhQGGAYcBiAGJAYoBiwGMAY0BjgGPAZABkQGSAZMBlAGVAZYBlwGYAZkBmgGbAZwBnQGeAZ8BoAGhAaIBowGkAaUBpgGnAagBqQGqAasBrAGtAa4BrwGwAbEBsgGzAbQBtQG2AbcBuAG5AboBuwG8Ab0BvgG/AcABwQHCAcMBxAHFAcYBxwHIAckBygHLAcwBzQHOAc8B0AHRAdIB0wHUAdUB1gHXAdgB2QHaAdsB3AHdAd4B3wHgAeEB4gHjAeQB5QHmAecB6AHpAeoB6wHsAe0B7gHvAfAB8QHyAfMB9AH1AfYB9wH4AfkB+gH7AfwB/QH+Af8CAAIBAgICAwIEAgUCBgIHAggCCQIKAgsCDAINAg4CDwIQAhECEgZnbHlwaDEGZ2x5cGgyB3VuaTAwQTAHdW5pMjAwMAd1bmkyMDAxB3VuaTIwMDIHdW5pMjAwMwd1bmkyMDA0B3VuaTIwMDUHdW5pMjAwNgd1bmkyMDA3B3VuaTIwMDgHdW5pMjAwOQd1bmkyMDBBB3VuaTIwMkYHdW5pMjA1RgRFdXJvB3VuaTIwQkQHdW5pMjMxQgd1bmkyNUZDB3VuaTI2MDEHdW5pMjZGQQd1bmkyNzA5B3VuaTI3MEYHdW5pRTAwMQd1bmlFMDAyB3VuaUUwMDMHdW5pRTAwNQd1bmlFMDA2B3VuaUUwMDcHdW5pRTAwOAd1bmlFMDA5B3VuaUUwMTAHdW5pRTAxMQd1bmlFMDEyB3VuaUUwMTMHdW5pRTAxNAd1bmlFMDE1B3VuaUUwMTYHdW5pRTAxNwd1bmlFMDE4B3VuaUUwMTkHdW5pRTAyMAd1bmlFMDIxB3VuaUUwMjIHdW5pRTAyMwd1bmlFMDI0B3VuaUUwMjUHdW5pRTAyNgd1bmlFMDI3B3VuaUUwMjgHdW5pRTAyOQd1bmlFMDMwB3VuaUUwMzEHdW5pRTAzMgd1bmlFMDMzB3VuaUUwMzQHdW5pRTAzNQd1bmlFMDM2B3VuaUUwMzcHdW5pRTAzOAd1bmlFMDM5B3VuaUUwNDAHdW5pRTA0MQd1bmlFMDQyB3VuaUUwNDMHdW5pRTA0NAd1bmlFMDQ1B3VuaUUwNDYHdW5pRTA0Nwd1bmlFMDQ4B3VuaUUwNDkHdW5pRTA1MAd1bmlFMDUxB3VuaUUwNTIHdW5pRTA1Mwd1bmlFMDU0B3VuaUUwNTUHdW5pRTA1Ngd1bmlFMDU3B3VuaUUwNTgHdW5pRTA1OQd1bmlFMDYwB3VuaUUwNjIHdW5pRTA2Mwd1bmlFMDY0B3VuaUUwNjUHdW5pRTA2Ngd1bmlFMDY3B3VuaUUwNjgHdW5pRTA2OQd1bmlFMDcwB3VuaUUwNzEHdW5pRTA3Mgd1bmlFMDczB3VuaUUwNzQHdW5pRTA3NQd1bmlFMDc2B3VuaUUwNzcHdW5pRTA3OAd1bmlFMDc5B3VuaUUwODAHdW5pRTA4MQd1bmlFMDgyB3VuaUUwODMHdW5pRTA4NAd1bmlFMDg1B3VuaUUwODYHdW5pRTA4Nwd1bmlFMDg4B3VuaUUwODkHdW5pRTA5MAd1bmlFMDkxB3VuaUUwOTIHdW5pRTA5Mwd1bmlFMDk0B3VuaUUwOTUHdW5pRTA5Ngd1bmlFMDk3B3VuaUUxMDEHdW5pRTEwMgd1bmlFMTAzB3VuaUUxMDQHdW5pRTEwNQd1bmlFMTA2B3VuaUUxMDcHdW5pRTEwOAd1bmlFMTA5B3VuaUUxMTAHdW5pRTExMQd1bmlFMTEyB3VuaUUxMTMHdW5pRTExNAd1bmlFMTE1B3VuaUUxMTYHdW5pRTExNwd1bmlFMTE4B3VuaUUxMTkHdW5pRTEyMAd1bmlFMTIxB3VuaUUxMjIHdW5pRTEyMwd1bmlFMTI0B3VuaUUxMjUHdW5pRTEyNgd1bmlFMTI3B3VuaUUxMjgHdW5pRTEyOQd1bmlFMTMwB3VuaUUxMzEHdW5pRTEzMgd1bmlFMTMzB3VuaUUxMzQHdW5pRTEzNQd1bmlFMTM2B3VuaUUxMzcHdW5pRTEzOAd1bmlFMTM5B3VuaUUxNDAHdW5pRTE0MQd1bmlFMTQyB3VuaUUxNDMHdW5pRTE0NAd1bmlFMTQ1B3VuaUUxNDYHdW5pRTE0OAd1bmlFMTQ5B3VuaUUxNTAHdW5pRTE1MQd1bmlFMTUyB3VuaUUxNTMHdW5pRTE1NAd1bmlFMTU1B3VuaUUxNTYHdW5pRTE1Nwd1bmlFMTU4B3VuaUUxNTkHdW5pRTE2MAd1bmlFMTYxB3VuaUUxNjIHdW5pRTE2Mwd1bmlFMTY0B3VuaUUxNjUHdW5pRTE2Ngd1bmlFMTY3B3VuaUUxNjgHdW5pRTE2OQd1bmlFMTcwB3VuaUUxNzEHdW5pRTE3Mgd1bmlFMTczB3VuaUUxNzQHdW5pRTE3NQd1bmlFMTc2B3VuaUUxNzcHdW5pRTE3OAd1bmlFMTc5B3VuaUUxODAHdW5pRTE4MQd1bmlFMTgyB3VuaUUxODMHdW5pRTE4NAd1bmlFMTg1B3VuaUUxODYHdW5pRTE4Nwd1bmlFMTg4B3VuaUUxODkHdW5pRTE5MAd1bmlFMTkxB3VuaUUxOTIHdW5pRTE5Mwd1bmlFMTk0B3VuaUUxOTUHdW5pRTE5Nwd1bmlFMTk4B3VuaUUxOTkHdW5pRTIwMAd1bmlFMjAxB3VuaUUyMDIHdW5pRTIwMwd1bmlFMjA0B3VuaUUyMDUHdW5pRTIwNgd1bmlFMjA5B3VuaUUyMTAHdW5pRTIxMQd1bmlFMjEyB3VuaUUyMTMHdW5pRTIxNAd1bmlFMjE1B3VuaUUyMTYHdW5pRTIxOAd1bmlFMjE5B3VuaUUyMjEHdW5pRTIyMwd1bmlFMjI0B3VuaUUyMjUHdW5pRTIyNgd1bmlFMjI3B3VuaUUyMzAHdW5pRTIzMQd1bmlFMjMyB3VuaUUyMzMHdW5pRTIzNAd1bmlFMjM1B3VuaUUyMzYHdW5pRTIzNwd1bmlFMjM4B3VuaUUyMzkHdW5pRTI0MAd1bmlFMjQxB3VuaUUyNDIHdW5pRTI0Mwd1bmlFMjQ0B3VuaUUyNDUHdW5pRTI0Ngd1bmlFMjQ3B3VuaUUyNDgHdW5pRTI0OQd1bmlFMjUwB3VuaUUyNTEHdW5pRTI1Mgd1bmlFMjUzB3VuaUUyNTQHdW5pRTI1NQd1bmlFMjU2B3VuaUUyNTcHdW5pRTI1OAd1bmlFMjU5B3VuaUUyNjAHdW5pRjhGRgZ1MUY1MTEGdTFGNkFBAAAAAAFUUMMXAAA=) format('truetype'),url() format('svg')}.glyphicon{position:relative;top:1px;display:inline-block;font-family:'Glyphicons Halflings';font-style:normal;font-weight:400;line-height:1;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.glyphicon-asterisk:before{content:"\2a"}.glyphicon-plus:before{content:"\2b"}.glyphicon-eur:before,.glyphicon-euro:before{content:"\20ac"}.glyphicon-minus:before{content:"\2212"}.glyphicon-cloud:before{content:"\2601"}.glyphicon-envelope:before{content:"\2709"}.glyphicon-pencil:before{content:"\270f"}.glyphicon-glass:before{content:"\e001"}.glyphicon-music:before{content:"\e002"}.glyphicon-search:before{content:"\e003"}.glyphicon-heart:before{content:"\e005"}.glyphicon-star:before{content:"\e006"}.glyphicon-star-empty:before{content:"\e007"}.glyphicon-user:before{content:"\e008"}.glyphicon-film:before{content:"\e009"}.glyphicon-th-large:before{content:"\e010"}.glyphicon-th:before{content:"\e011"}.glyphicon-th-list:before{content:"\e012"}.glyphicon-ok:before{content:"\e013"}.glyphicon-remove:before{content:"\e014"}.glyphicon-zoom-in:before{content:"\e015"}.glyphicon-zoom-out:before{content:"\e016"}.glyphicon-off:before{content:"\e017"}.glyphicon-signal:before{content:"\e018"}.glyphicon-cog:before{content:"\e019"}.glyphicon-trash:before{content:"\e020"}.glyphicon-home:before{content:"\e021"}.glyphicon-file:before{content:"\e022"}.glyphicon-time:before{content:"\e023"}.glyphicon-road:before{content:"\e024"}.glyphicon-download-alt:before{content:"\e025"}.glyphicon-download:before{content:"\e026"}.glyphicon-upload:before{content:"\e027"}.glyphicon-inbox:before{content:"\e028"}.glyphicon-play-circle:before{content:"\e029"}.glyphicon-repeat:before{content:"\e030"}.glyphicon-refresh:before{content:"\e031"}.glyphicon-list-alt:before{content:"\e032"}.glyphicon-lock:before{content:"\e033"}.glyphicon-flag:before{content:"\e034"}.glyphicon-headphones:before{content:"\e035"}.glyphicon-volume-off:before{content:"\e036"}.glyphicon-volume-down:before{content:"\e037"}.glyphicon-volume-up:before{content:"\e038"}.glyphicon-qrcode:before{content:"\e039"}.glyphicon-barcode:before{content:"\e040"}.glyphicon-tag:before{content:"\e041"}.glyphicon-tags:before{content:"\e042"}.glyphicon-book:before{content:"\e043"}.glyphicon-bookmark:before{content:"\e044"}.glyphicon-print:before{content:"\e045"}.glyphicon-camera:before{content:"\e046"}.glyphicon-font:before{content:"\e047"}.glyphicon-bold:before{content:"\e048"}.glyphicon-italic:before{content:"\e049"}.glyphicon-text-height:before{content:"\e050"}.glyphicon-text-width:before{content:"\e051"}.glyphicon-align-left:before{content:"\e052"}.glyphicon-align-center:before{content:"\e053"}.glyphicon-align-right:before{content:"\e054"}.glyphicon-align-justify:before{content:"\e055"}.glyphicon-list:before{content:"\e056"}.glyphicon-indent-left:before{content:"\e057"}.glyphicon-indent-right:before{content:"\e058"}.glyphicon-facetime-video:before{content:"\e059"}.glyphicon-picture:before{content:"\e060"}.glyphicon-map-marker:before{content:"\e062"}.glyphicon-adjust:before{content:"\e063"}.glyphicon-tint:before{content:"\e064"}.glyphicon-edit:before{content:"\e065"}.glyphicon-share:before{content:"\e066"}.glyphicon-check:before{content:"\e067"}.glyphicon-move:before{content:"\e068"}.glyphicon-step-backward:before{content:"\e069"}.glyphicon-fast-backward:before{content:"\e070"}.glyphicon-backward:before{content:"\e071"}.glyphicon-play:before{content:"\e072"}.glyphicon-pause:before{content:"\e073"}.glyphicon-stop:before{content:"\e074"}.glyphicon-forward:before{content:"\e075"}.glyphicon-fast-forward:before{content:"\e076"}.glyphicon-step-forward:before{content:"\e077"}.glyphicon-eject:before{content:"\e078"}.glyphicon-chevron-left:before{content:"\e079"}.glyphicon-chevron-right:before{content:"\e080"}.glyphicon-plus-sign:before{content:"\e081"}.glyphicon-minus-sign:before{content:"\e082"}.glyphicon-remove-sign:before{content:"\e083"}.glyphicon-ok-sign:before{content:"\e084"}.glyphicon-question-sign:before{content:"\e085"}.glyphicon-info-sign:before{content:"\e086"}.glyphicon-screenshot:before{content:"\e087"}.glyphicon-remove-circle:before{content:"\e088"}.glyphicon-ok-circle:before{content:"\e089"}.glyphicon-ban-circle:before{content:"\e090"}.glyphicon-arrow-left:before{content:"\e091"}.glyphicon-arrow-right:before{content:"\e092"}.glyphicon-arrow-up:before{content:"\e093"}.glyphicon-arrow-down:before{content:"\e094"}.glyphicon-share-alt:before{content:"\e095"}.glyphicon-resize-full:before{content:"\e096"}.glyphicon-resize-small:before{content:"\e097"}.glyphicon-exclamation-sign:before{content:"\e101"}.glyphicon-gift:before{content:"\e102"}.glyphicon-leaf:before{content:"\e103"}.glyphicon-fire:before{content:"\e104"}.glyphicon-eye-open:before{content:"\e105"}.glyphicon-eye-close:before{content:"\e106"}.glyphicon-warning-sign:before{content:"\e107"}.glyphicon-plane:before{content:"\e108"}.glyphicon-calendar:before{content:"\e109"}.glyphicon-random:before{content:"\e110"}.glyphicon-comment:before{content:"\e111"}.glyphicon-magnet:before{content:"\e112"}.glyphicon-chevron-up:before{content:"\e113"}.glyphicon-chevron-down:before{content:"\e114"}.glyphicon-retweet:before{content:"\e115"}.glyphicon-shopping-cart:before{content:"\e116"}.glyphicon-folder-close:before{content:"\e117"}.glyphicon-folder-open:before{content:"\e118"}.glyphicon-resize-vertical:before{content:"\e119"}.glyphicon-resize-horizontal:before{content:"\e120"}.glyphicon-hdd:before{content:"\e121"}.glyphicon-bullhorn:before{content:"\e122"}.glyphicon-bell:before{content:"\e123"}.glyphicon-certificate:before{content:"\e124"}.glyphicon-thumbs-up:before{content:"\e125"}.glyphicon-thumbs-down:before{content:"\e126"}.glyphicon-hand-right:before{content:"\e127"}.glyphicon-hand-left:before{content:"\e128"}.glyphicon-hand-up:before{content:"\e129"}.glyphicon-hand-down:before{content:"\e130"}.glyphicon-circle-arrow-right:before{content:"\e131"}.glyphicon-circle-arrow-left:before{content:"\e132"}.glyphicon-circle-arrow-up:before{content:"\e133"}.glyphicon-circle-arrow-down:before{content:"\e134"}.glyphicon-globe:before{content:"\e135"}.glyphicon-wrench:before{content:"\e136"}.glyphicon-tasks:before{content:"\e137"}.glyphicon-filter:before{content:"\e138"}.glyphicon-briefcase:before{content:"\e139"}.glyphicon-fullscreen:before{content:"\e140"}.glyphicon-dashboard:before{content:"\e141"}.glyphicon-paperclip:before{content:"\e142"}.glyphicon-heart-empty:before{content:"\e143"}.glyphicon-link:before{content:"\e144"}.glyphicon-phone:before{content:"\e145"}.glyphicon-pushpin:before{content:"\e146"}.glyphicon-usd:before{content:"\e148"}.glyphicon-gbp:before{content:"\e149"}.glyphicon-sort:before{content:"\e150"}.glyphicon-sort-by-alphabet:before{content:"\e151"}.glyphicon-sort-by-alphabet-alt:before{content:"\e152"}.glyphicon-sort-by-order:before{content:"\e153"}.glyphicon-sort-by-order-alt:before{content:"\e154"}.glyphicon-sort-by-attributes:before{content:"\e155"}.glyphicon-sort-by-attributes-alt:before{content:"\e156"}.glyphicon-unchecked:before{content:"\e157"}.glyphicon-expand:before{content:"\e158"}.glyphicon-collapse-down:before{content:"\e159"}.glyphicon-collapse-up:before{content:"\e160"}.glyphicon-log-in:before{content:"\e161"}.glyphicon-flash:before{content:"\e162"}.glyphicon-log-out:before{content:"\e163"}.glyphicon-new-window:before{content:"\e164"}.glyphicon-record:before{content:"\e165"}.glyphicon-save:before{content:"\e166"}.glyphicon-open:before{content:"\e167"}.glyphicon-saved:before{content:"\e168"}.glyphicon-import:before{content:"\e169"}.glyphicon-export:before{content:"\e170"}.glyphicon-send:before{content:"\e171"}.glyphicon-floppy-disk:before{content:"\e172"}.glyphicon-floppy-saved:before{content:"\e173"}.glyphicon-floppy-remove:before{content:"\e174"}.glyphicon-floppy-save:before{content:"\e175"}.glyphicon-floppy-open:before{content:"\e176"}.glyphicon-credit-card:before{content:"\e177"}.glyphicon-transfer:before{content:"\e178"}.glyphicon-cutlery:before{content:"\e179"}.glyphicon-header:before{content:"\e180"}.glyphicon-compressed:before{content:"\e181"}.glyphicon-earphone:before{content:"\e182"}.glyphicon-phone-alt:before{content:"\e183"}.glyphicon-tower:before{content:"\e184"}.glyphicon-stats:before{content:"\e185"}.glyphicon-sd-video:before{content:"\e186"}.glyphicon-hd-video:before{content:"\e187"}.glyphicon-subtitles:before{content:"\e188"}.glyphicon-sound-stereo:before{content:"\e189"}.glyphicon-sound-dolby:before{content:"\e190"}.glyphicon-sound-5-1:before{content:"\e191"}.glyphicon-sound-6-1:before{content:"\e192"}.glyphicon-sound-7-1:before{content:"\e193"}.glyphicon-copyright-mark:before{content:"\e194"}.glyphicon-registration-mark:before{content:"\e195"}.glyphicon-cloud-download:before{content:"\e197"}.glyphicon-cloud-upload:before{content:"\e198"}.glyphicon-tree-conifer:before{content:"\e199"}.glyphicon-tree-deciduous:before{content:"\e200"}.glyphicon-cd:before{content:"\e201"}.glyphicon-save-file:before{content:"\e202"}.glyphicon-open-file:before{content:"\e203"}.glyphicon-level-up:before{content:"\e204"}.glyphicon-copy:before{content:"\e205"}.glyphicon-paste:before{content:"\e206"}.glyphicon-alert:before{content:"\e209"}.glyphicon-equalizer:before{content:"\e210"}.glyphicon-king:before{content:"\e211"}.glyphicon-queen:before{content:"\e212"}.glyphicon-pawn:before{content:"\e213"}.glyphicon-bishop:before{content:"\e214"}.glyphicon-knight:before{content:"\e215"}.glyphicon-baby-formula:before{content:"\e216"}.glyphicon-tent:before{content:"\26fa"}.glyphicon-blackboard:before{content:"\e218"}.glyphicon-bed:before{content:"\e219"}.glyphicon-apple:before{content:"\f8ff"}.glyphicon-erase:before{content:"\e221"}.glyphicon-hourglass:before{content:"\231b"}.glyphicon-lamp:before{content:"\e223"}.glyphicon-duplicate:before{content:"\e224"}.glyphicon-piggy-bank:before{content:"\e225"}.glyphicon-scissors:before{content:"\e226"}.glyphicon-bitcoin:before{content:"\e227"}.glyphicon-btc:before{content:"\e227"}.glyphicon-xbt:before{content:"\e227"}.glyphicon-yen:before{content:"\00a5"}.glyphicon-jpy:before{content:"\00a5"}.glyphicon-ruble:before{content:"\20bd"}.glyphicon-rub:before{content:"\20bd"}.glyphicon-scale:before{content:"\e230"}.glyphicon-ice-lolly:before{content:"\e231"}.glyphicon-ice-lolly-tasted:before{content:"\e232"}.glyphicon-education:before{content:"\e233"}.glyphicon-option-horizontal:before{content:"\e234"}.glyphicon-option-vertical:before{content:"\e235"}.glyphicon-menu-hamburger:before{content:"\e236"}.glyphicon-modal-window:before{content:"\e237"}.glyphicon-oil:before{content:"\e238"}.glyphicon-grain:before{content:"\e239"}.glyphicon-sunglasses:before{content:"\e240"}.glyphicon-text-size:before{content:"\e241"}.glyphicon-text-color:before{content:"\e242"}.glyphicon-text-background:before{content:"\e243"}.glyphicon-object-align-top:before{content:"\e244"}.glyphicon-object-align-bottom:before{content:"\e245"}.glyphicon-object-align-horizontal:before{content:"\e246"}.glyphicon-object-align-left:before{content:"\e247"}.glyphicon-object-align-vertical:before{content:"\e248"}.glyphicon-object-align-right:before{content:"\e249"}.glyphicon-triangle-right:before{content:"\e250"}.glyphicon-triangle-left:before{content:"\e251"}.glyphicon-triangle-bottom:before{content:"\e252"}.glyphicon-triangle-top:before{content:"\e253"}.glyphicon-console:before{content:"\e254"}.glyphicon-superscript:before{content:"\e255"}.glyphicon-subscript:before{content:"\e256"}.glyphicon-menu-left:before{content:"\e257"}.glyphicon-menu-right:before{content:"\e258"}.glyphicon-menu-down:before{content:"\e259"}.glyphicon-menu-up:before{content:"\e260"}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:rgba(0,0,0,0)}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}button,input,select,textarea{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}figure{margin:0}img{vertical-align:middle}.carousel-inner>.item>a>img,.carousel-inner>.item>img,.img-responsive,.thumbnail a>img,.thumbnail>img{display:block;max-width:100%;height:auto}.img-rounded{border-radius:6px}.img-thumbnail{display:inline-block;max-width:100%;height:auto;padding:4px;line-height:1.42857143;background-color:#fff;border:1px solid #ddd;border-radius:4px;-webkit-transition:all .2s ease-in-out;-o-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.img-circle{border-radius:50%}hr{margin-top:20px;margin-bottom:20px;border:0;border-top:1px solid #eee}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}[role=button]{cursor:pointer}.h1,.h2,.h3,.h4,.h5,.h6,h1,h2,h3,h4,h5,h6{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}.h1 .small,.h1 small,.h2 .small,.h2 small,.h3 .small,.h3 small,.h4 .small,.h4 small,.h5 .small,.h5 small,.h6 .small,.h6 small,h1 .small,h1 small,h2 .small,h2 small,h3 .small,h3 small,h4 .small,h4 small,h5 .small,h5 small,h6 .small,h6 small{font-weight:400;line-height:1;color:#777}.h1,.h2,.h3,h1,h2,h3{margin-top:20px;margin-bottom:10px}.h1 .small,.h1 small,.h2 .small,.h2 small,.h3 .small,.h3 small,h1 .small,h1 small,h2 .small,h2 small,h3 .small,h3 small{font-size:65%}.h4,.h5,.h6,h4,h5,h6{margin-top:10px;margin-bottom:10px}.h4 .small,.h4 small,.h5 .small,.h5 small,.h6 .small,.h6 small,h4 .small,h4 small,h5 .small,h5 small,h6 .small,h6 small{font-size:75%}.h1,h1{font-size:36px}.h2,h2{font-size:30px}.h3,h3{font-size:24px}.h4,h4{font-size:18px}.h5,h5{font-size:14px}.h6,h6{font-size:12px}p{margin:0 0 10px}.lead{margin-bottom:20px;font-size:16px;font-weight:300;line-height:1.4}@media (min-width:768px){.lead{font-size:21px}}.small,small{font-size:85%}.mark,mark{padding:.2em;background-color:#fcf8e3}.text-left{text-align:left}.text-right{text-align:right}.text-center{text-align:center}.text-justify{text-align:justify}.text-nowrap{white-space:nowrap}.text-lowercase{text-transform:lowercase}.text-uppercase{text-transform:uppercase}.text-capitalize{text-transform:capitalize}.text-muted{color:#777}.text-primary{color:#337ab7}a.text-primary:focus,a.text-primary:hover{color:#286090}.text-success{color:#3c763d}a.text-success:focus,a.text-success:hover{color:#2b542c}.text-info{color:#31708f}a.text-info:focus,a.text-info:hover{color:#245269}.text-warning{color:#8a6d3b}a.text-warning:focus,a.text-warning:hover{color:#66512c}.text-danger{color:#a94442}a.text-danger:focus,a.text-danger:hover{color:#843534}.bg-primary{color:#fff;background-color:#337ab7}a.bg-primary:focus,a.bg-primary:hover{background-color:#286090}.bg-success{background-color:#dff0d8}a.bg-success:focus,a.bg-success:hover{background-color:#c1e2b3}.bg-info{background-color:#d9edf7}a.bg-info:focus,a.bg-info:hover{background-color:#afd9ee}.bg-warning{background-color:#fcf8e3}a.bg-warning:focus,a.bg-warning:hover{background-color:#f7ecb5}.bg-danger{background-color:#f2dede}a.bg-danger:focus,a.bg-danger:hover{background-color:#e4b9b9}.page-header{padding-bottom:9px;margin:40px 0 20px;border-bottom:1px solid #eee}ol,ul{margin-top:0;margin-bottom:10px}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;margin-left:-5px;list-style:none}.list-inline>li{display:inline-block;padding-right:5px;padding-left:5px}dl{margin-top:0;margin-bottom:20px}dd,dt{line-height:1.42857143}dt{font-weight:700}dd{margin-left:0}@media (min-width:768px){.dl-horizontal dt{float:left;width:160px;overflow:hidden;clear:left;text-align:right;text-overflow:ellipsis;white-space:nowrap}.dl-horizontal dd{margin-left:180px}}abbr[data-original-title],abbr[title]{cursor:help;border-bottom:1px dotted #777}.initialism{font-size:90%;text-transform:uppercase}blockquote{padding:10px 20px;margin:0 0 20px;font-size:17.5px;border-left:5px solid #eee}blockquote ol:last-child,blockquote p:last-child,blockquote ul:last-child{margin-bottom:0}blockquote .small,blockquote footer,blockquote small{display:block;font-size:80%;line-height:1.42857143;color:#777}blockquote .small:before,blockquote footer:before,blockquote small:before{content:'\2014 \00A0'}.blockquote-reverse,blockquote.pull-right{padding-right:15px;padding-left:0;text-align:right;border-right:5px solid #eee;border-left:0}.blockquote-reverse .small:before,.blockquote-reverse footer:before,.blockquote-reverse small:before,blockquote.pull-right .small:before,blockquote.pull-right footer:before,blockquote.pull-right small:before{content:''}.blockquote-reverse .small:after,.blockquote-reverse footer:after,.blockquote-reverse small:after,blockquote.pull-right .small:after,blockquote.pull-right footer:after,blockquote.pull-right small:after{content:'\00A0 \2014'}address{margin-bottom:20px;font-style:normal;line-height:1.42857143}code,kbd,pre,samp{font-family:monospace}code{padding:2px 4px;font-size:90%;color:#c7254e;background-color:#f9f2f4;border-radius:4px}kbd{padding:2px 4px;font-size:90%;color:#fff;background-color:#333;border-radius:3px;-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,.25);box-shadow:inset 0 -1px 0 rgba(0,0,0,.25)}kbd kbd{padding:0;font-size:100%;font-weight:700;-webkit-box-shadow:none;box-shadow:none}pre{display:block;padding:9.5px;margin:0 0 10px;font-size:13px;line-height:1.42857143;color:#333;word-break:break-all;word-wrap:break-word;background-color:#f5f5f5;border:1px solid #ccc;border-radius:4px}pre code{padding:0;font-size:inherit;color:inherit;white-space:pre-wrap;background-color:transparent;border-radius:0}.pre-scrollable{max-height:340px;overflow-y:scroll}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.container-fluid{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}.row{margin-right:-15px;margin-left:-15px}.col-lg-1,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-md-1,.col-md-10,.col-md-11,.col-md-12,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-sm-1,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-xs-1,.col-xs-10,.col-xs-11,.col-xs-12,.col-xs-2,.col-xs-3,.col-xs-4,.col-xs-5,.col-xs-6,.col-xs-7,.col-xs-8,.col-xs-9{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-1,.col-xs-10,.col-xs-11,.col-xs-12,.col-xs-2,.col-xs-3,.col-xs-4,.col-xs-5,.col-xs-6,.col-xs-7,.col-xs-8,.col-xs-9{float:left}.col-xs-12{width:100%}.col-xs-11{width:91.66666667%}.col-xs-10{width:83.33333333%}.col-xs-9{width:75%}.col-xs-8{width:66.66666667%}.col-xs-7{width:58.33333333%}.col-xs-6{width:50%}.col-xs-5{width:41.66666667%}.col-xs-4{width:33.33333333%}.col-xs-3{width:25%}.col-xs-2{width:16.66666667%}.col-xs-1{width:8.33333333%}.col-xs-pull-12{right:100%}.col-xs-pull-11{right:91.66666667%}.col-xs-pull-10{right:83.33333333%}.col-xs-pull-9{right:75%}.col-xs-pull-8{right:66.66666667%}.col-xs-pull-7{right:58.33333333%}.col-xs-pull-6{right:50%}.col-xs-pull-5{right:41.66666667%}.col-xs-pull-4{right:33.33333333%}.col-xs-pull-3{right:25%}.col-xs-pull-2{right:16.66666667%}.col-xs-pull-1{right:8.33333333%}.col-xs-pull-0{right:auto}.col-xs-push-12{left:100%}.col-xs-push-11{left:91.66666667%}.col-xs-push-10{left:83.33333333%}.col-xs-push-9{left:75%}.col-xs-push-8{left:66.66666667%}.col-xs-push-7{left:58.33333333%}.col-xs-push-6{left:50%}.col-xs-push-5{left:41.66666667%}.col-xs-push-4{left:33.33333333%}.col-xs-push-3{left:25%}.col-xs-push-2{left:16.66666667%}.col-xs-push-1{left:8.33333333%}.col-xs-push-0{left:auto}.col-xs-offset-12{margin-left:100%}.col-xs-offset-11{margin-left:91.66666667%}.col-xs-offset-10{margin-left:83.33333333%}.col-xs-offset-9{margin-left:75%}.col-xs-offset-8{margin-left:66.66666667%}.col-xs-offset-7{margin-left:58.33333333%}.col-xs-offset-6{margin-left:50%}.col-xs-offset-5{margin-left:41.66666667%}.col-xs-offset-4{margin-left:33.33333333%}.col-xs-offset-3{margin-left:25%}.col-xs-offset-2{margin-left:16.66666667%}.col-xs-offset-1{margin-left:8.33333333%}.col-xs-offset-0{margin-left:0}@media (min-width:768px){.col-sm-1,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9{float:left}.col-sm-12{width:100%}.col-sm-11{width:91.66666667%}.col-sm-10{width:83.33333333%}.col-sm-9{width:75%}.col-sm-8{width:66.66666667%}.col-sm-7{width:58.33333333%}.col-sm-6{width:50%}.col-sm-5{width:41.66666667%}.col-sm-4{width:33.33333333%}.col-sm-3{width:25%}.col-sm-2{width:16.66666667%}.col-sm-1{width:8.33333333%}.col-sm-pull-12{right:100%}.col-sm-pull-11{right:91.66666667%}.col-sm-pull-10{right:83.33333333%}.col-sm-pull-9{right:75%}.col-sm-pull-8{right:66.66666667%}.col-sm-pull-7{right:58.33333333%}.col-sm-pull-6{right:50%}.col-sm-pull-5{right:41.66666667%}.col-sm-pull-4{right:33.33333333%}.col-sm-pull-3{right:25%}.col-sm-pull-2{right:16.66666667%}.col-sm-pull-1{right:8.33333333%}.col-sm-pull-0{right:auto}.col-sm-push-12{left:100%}.col-sm-push-11{left:91.66666667%}.col-sm-push-10{left:83.33333333%}.col-sm-push-9{left:75%}.col-sm-push-8{left:66.66666667%}.col-sm-push-7{left:58.33333333%}.col-sm-push-6{left:50%}.col-sm-push-5{left:41.66666667%}.col-sm-push-4{left:33.33333333%}.col-sm-push-3{left:25%}.col-sm-push-2{left:16.66666667%}.col-sm-push-1{left:8.33333333%}.col-sm-push-0{left:auto}.col-sm-offset-12{margin-left:100%}.col-sm-offset-11{margin-left:91.66666667%}.col-sm-offset-10{margin-left:83.33333333%}.col-sm-offset-9{margin-left:75%}.col-sm-offset-8{margin-left:66.66666667%}.col-sm-offset-7{margin-left:58.33333333%}.col-sm-offset-6{margin-left:50%}.col-sm-offset-5{margin-left:41.66666667%}.col-sm-offset-4{margin-left:33.33333333%}.col-sm-offset-3{margin-left:25%}.col-sm-offset-2{margin-left:16.66666667%}.col-sm-offset-1{margin-left:8.33333333%}.col-sm-offset-0{margin-left:0}}@media (min-width:992px){.col-md-1,.col-md-10,.col-md-11,.col-md-12,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9{float:left}.col-md-12{width:100%}.col-md-11{width:91.66666667%}.col-md-10{width:83.33333333%}.col-md-9{width:75%}.col-md-8{width:66.66666667%}.col-md-7{width:58.33333333%}.col-md-6{width:50%}.col-md-5{width:41.66666667%}.col-md-4{width:33.33333333%}.col-md-3{width:25%}.col-md-2{width:16.66666667%}.col-md-1{width:8.33333333%}.col-md-pull-12{right:100%}.col-md-pull-11{right:91.66666667%}.col-md-pull-10{right:83.33333333%}.col-md-pull-9{right:75%}.col-md-pull-8{right:66.66666667%}.col-md-pull-7{right:58.33333333%}.col-md-pull-6{right:50%}.col-md-pull-5{right:41.66666667%}.col-md-pull-4{right:33.33333333%}.col-md-pull-3{right:25%}.col-md-pull-2{right:16.66666667%}.col-md-pull-1{right:8.33333333%}.col-md-pull-0{right:auto}.col-md-push-12{left:100%}.col-md-push-11{left:91.66666667%}.col-md-push-10{left:83.33333333%}.col-md-push-9{left:75%}.col-md-push-8{left:66.66666667%}.col-md-push-7{left:58.33333333%}.col-md-push-6{left:50%}.col-md-push-5{left:41.66666667%}.col-md-push-4{left:33.33333333%}.col-md-push-3{left:25%}.col-md-push-2{left:16.66666667%}.col-md-push-1{left:8.33333333%}.col-md-push-0{left:auto}.col-md-offset-12{margin-left:100%}.col-md-offset-11{margin-left:91.66666667%}.col-md-offset-10{margin-left:83.33333333%}.col-md-offset-9{margin-left:75%}.col-md-offset-8{margin-left:66.66666667%}.col-md-offset-7{margin-left:58.33333333%}.col-md-offset-6{margin-left:50%}.col-md-offset-5{margin-left:41.66666667%}.col-md-offset-4{margin-left:33.33333333%}.col-md-offset-3{margin-left:25%}.col-md-offset-2{margin-left:16.66666667%}.col-md-offset-1{margin-left:8.33333333%}.col-md-offset-0{margin-left:0}}@media (min-width:1200px){.col-lg-1,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9{float:left}.col-lg-12{width:100%}.col-lg-11{width:91.66666667%}.col-lg-10{width:83.33333333%}.col-lg-9{width:75%}.col-lg-8{width:66.66666667%}.col-lg-7{width:58.33333333%}.col-lg-6{width:50%}.col-lg-5{width:41.66666667%}.col-lg-4{width:33.33333333%}.col-lg-3{width:25%}.col-lg-2{width:16.66666667%}.col-lg-1{width:8.33333333%}.col-lg-pull-12{right:100%}.col-lg-pull-11{right:91.66666667%}.col-lg-pull-10{right:83.33333333%}.col-lg-pull-9{right:75%}.col-lg-pull-8{right:66.66666667%}.col-lg-pull-7{right:58.33333333%}.col-lg-pull-6{right:50%}.col-lg-pull-5{right:41.66666667%}.col-lg-pull-4{right:33.33333333%}.col-lg-pull-3{right:25%}.col-lg-pull-2{right:16.66666667%}.col-lg-pull-1{right:8.33333333%}.col-lg-pull-0{right:auto}.col-lg-push-12{left:100%}.col-lg-push-11{left:91.66666667%}.col-lg-push-10{left:83.33333333%}.col-lg-push-9{left:75%}.col-lg-push-8{left:66.66666667%}.col-lg-push-7{left:58.33333333%}.col-lg-push-6{left:50%}.col-lg-push-5{left:41.66666667%}.col-lg-push-4{left:33.33333333%}.col-lg-push-3{left:25%}.col-lg-push-2{left:16.66666667%}.col-lg-push-1{left:8.33333333%}.col-lg-push-0{left:auto}.col-lg-offset-12{margin-left:100%}.col-lg-offset-11{margin-left:91.66666667%}.col-lg-offset-10{margin-left:83.33333333%}.col-lg-offset-9{margin-left:75%}.col-lg-offset-8{margin-left:66.66666667%}.col-lg-offset-7{margin-left:58.33333333%}.col-lg-offset-6{margin-left:50%}.col-lg-offset-5{margin-left:41.66666667%}.col-lg-offset-4{margin-left:33.33333333%}.col-lg-offset-3{margin-left:25%}.col-lg-offset-2{margin-left:16.66666667%}.col-lg-offset-1{margin-left:8.33333333%}.col-lg-offset-0{margin-left:0}}table{background-color:transparent}caption{padding-top:8px;padding-bottom:8px;color:#777;text-align:left}th{}.table{width:100%;max-width:100%;margin-bottom:20px}.table>tbody>tr>td,.table>tbody>tr>th,.table>tfoot>tr>td,.table>tfoot>tr>th,.table>thead>tr>td,.table>thead>tr>th{padding:8px;line-height:1.42857143;vertical-align:top;border-top:1px solid #ddd}.table>thead>tr>th{vertical-align:bottom;border-bottom:2px solid #ddd}.table>caption+thead>tr:first-child>td,.table>caption+thead>tr:first-child>th,.table>colgroup+thead>tr:first-child>td,.table>colgroup+thead>tr:first-child>th,.table>thead:first-child>tr:first-child>td,.table>thead:first-child>tr:first-child>th{border-top:0}.table>tbody+tbody{border-top:2px solid #ddd}.table .table{background-color:#fff}.table-condensed>tbody>tr>td,.table-condensed>tbody>tr>th,.table-condensed>tfoot>tr>td,.table-condensed>tfoot>tr>th,.table-condensed>thead>tr>td,.table-condensed>thead>tr>th{padding:5px}.table-bordered{border:1px solid #ddd}.table-bordered>tbody>tr>td,.table-bordered>tbody>tr>th,.table-bordered>tfoot>tr>td,.table-bordered>tfoot>tr>th,.table-bordered>thead>tr>td,.table-bordered>thead>tr>th{border:1px solid #ddd}.table-bordered>thead>tr>td,.table-bordered>thead>tr>th{border-bottom-width:2px}.table-striped>tbody>tr:nth-of-type(odd){background-color:#f9f9f9}.table-hover>tbody>tr:hover{background-color:#f5f5f5}table col[class*=col-]{position:static;display:table-column;float:none}table td[class*=col-],table th[class*=col-]{position:static;display:table-cell;float:none}.table>tbody>tr.active>td,.table>tbody>tr.active>th,.table>tbody>tr>td.active,.table>tbody>tr>th.active,.table>tfoot>tr.active>td,.table>tfoot>tr.active>th,.table>tfoot>tr>td.active,.table>tfoot>tr>th.active,.table>thead>tr.active>td,.table>thead>tr.active>th,.table>thead>tr>td.active,.table>thead>tr>th.active{background-color:#f5f5f5}.table-hover>tbody>tr.active:hover>td,.table-hover>tbody>tr.active:hover>th,.table-hover>tbody>tr:hover>.active,.table-hover>tbody>tr>td.active:hover,.table-hover>tbody>tr>th.active:hover{background-color:#e8e8e8}.table>tbody>tr.success>td,.table>tbody>tr.success>th,.table>tbody>tr>td.success,.table>tbody>tr>th.success,.table>tfoot>tr.success>td,.table>tfoot>tr.success>th,.table>tfoot>tr>td.success,.table>tfoot>tr>th.success,.table>thead>tr.success>td,.table>thead>tr.success>th,.table>thead>tr>td.success,.table>thead>tr>th.success{background-color:#dff0d8}.table-hover>tbody>tr.success:hover>td,.table-hover>tbody>tr.success:hover>th,.table-hover>tbody>tr:hover>.success,.table-hover>tbody>tr>td.success:hover,.table-hover>tbody>tr>th.success:hover{background-color:#d0e9c6}.table>tbody>tr.info>td,.table>tbody>tr.info>th,.table>tbody>tr>td.info,.table>tbody>tr>th.info,.table>tfoot>tr.info>td,.table>tfoot>tr.info>th,.table>tfoot>tr>td.info,.table>tfoot>tr>th.info,.table>thead>tr.info>td,.table>thead>tr.info>th,.table>thead>tr>td.info,.table>thead>tr>th.info{background-color:#d9edf7}.table-hover>tbody>tr.info:hover>td,.table-hover>tbody>tr.info:hover>th,.table-hover>tbody>tr:hover>.info,.table-hover>tbody>tr>td.info:hover,.table-hover>tbody>tr>th.info:hover{background-color:#c4e3f3}.table>tbody>tr.warning>td,.table>tbody>tr.warning>th,.table>tbody>tr>td.warning,.table>tbody>tr>th.warning,.table>tfoot>tr.warning>td,.table>tfoot>tr.warning>th,.table>tfoot>tr>td.warning,.table>tfoot>tr>th.warning,.table>thead>tr.warning>td,.table>thead>tr.warning>th,.table>thead>tr>td.warning,.table>thead>tr>th.warning{background-color:#fcf8e3}.table-hover>tbody>tr.warning:hover>td,.table-hover>tbody>tr.warning:hover>th,.table-hover>tbody>tr:hover>.warning,.table-hover>tbody>tr>td.warning:hover,.table-hover>tbody>tr>th.warning:hover{background-color:#faf2cc}.table>tbody>tr.danger>td,.table>tbody>tr.danger>th,.table>tbody>tr>td.danger,.table>tbody>tr>th.danger,.table>tfoot>tr.danger>td,.table>tfoot>tr.danger>th,.table>tfoot>tr>td.danger,.table>tfoot>tr>th.danger,.table>thead>tr.danger>td,.table>thead>tr.danger>th,.table>thead>tr>td.danger,.table>thead>tr>th.danger{background-color:#f2dede}.table-hover>tbody>tr.danger:hover>td,.table-hover>tbody>tr.danger:hover>th,.table-hover>tbody>tr:hover>.danger,.table-hover>tbody>tr>td.danger:hover,.table-hover>tbody>tr>th.danger:hover{background-color:#ebcccc}.table-responsive{min-height:.01%;overflow-x:auto}@media screen and (max-width:767px){.table-responsive{width:100%;margin-bottom:15px;overflow-y:hidden;-ms-overflow-style:-ms-autohiding-scrollbar;border:1px solid #ddd}.table-responsive>.table{margin-bottom:0}.table-responsive>.table>tbody>tr>td,.table-responsive>.table>tbody>tr>th,.table-responsive>.table>tfoot>tr>td,.table-responsive>.table>tfoot>tr>th,.table-responsive>.table>thead>tr>td,.table-responsive>.table>thead>tr>th{white-space:nowrap}.table-responsive>.table-bordered{border:0}.table-responsive>.table-bordered>tbody>tr>td:first-child,.table-responsive>.table-bordered>tbody>tr>th:first-child,.table-responsive>.table-bordered>tfoot>tr>td:first-child,.table-responsive>.table-bordered>tfoot>tr>th:first-child,.table-responsive>.table-bordered>thead>tr>td:first-child,.table-responsive>.table-bordered>thead>tr>th:first-child{border-left:0}.table-responsive>.table-bordered>tbody>tr>td:last-child,.table-responsive>.table-bordered>tbody>tr>th:last-child,.table-responsive>.table-bordered>tfoot>tr>td:last-child,.table-responsive>.table-bordered>tfoot>tr>th:last-child,.table-responsive>.table-bordered>thead>tr>td:last-child,.table-responsive>.table-bordered>thead>tr>th:last-child{border-right:0}.table-responsive>.table-bordered>tbody>tr:last-child>td,.table-responsive>.table-bordered>tbody>tr:last-child>th,.table-responsive>.table-bordered>tfoot>tr:last-child>td,.table-responsive>.table-bordered>tfoot>tr:last-child>th{border-bottom:0}}fieldset{min-width:0;padding:0;margin:0;border:0}legend{display:block;width:100%;padding:0;margin-bottom:20px;font-size:21px;line-height:inherit;color:#333;border:0;border-bottom:1px solid #e5e5e5}label{display:inline-block;max-width:100%;margin-bottom:5px;font-weight:700}input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=checkbox],input[type=radio]{margin:4px 0 0;margin-top:1px\9;line-height:normal}input[type=file]{display:block}input[type=range]{display:block;width:100%}select[multiple],select[size]{height:auto}input[type=file]:focus,input[type=checkbox]:focus,input[type=radio]:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}output{display:block;padding-top:7px;font-size:14px;line-height:1.42857143;color:#555}.form-control{display:block;width:100%;height:34px;padding:6px 12px;font-size:14px;line-height:1.42857143;color:#555;background-color:#fff;background-image:none;border:1px solid #ccc;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-webkit-transition:border-color ease-in-out .15s,-webkit-box-shadow ease-in-out .15s;-o-transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s;transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s}.form-control:focus{border-color:#66afe9;outline:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 8px rgba(102,175,233,.6);box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 8px rgba(102,175,233,.6)}.form-control::-moz-placeholder{color:#999;opacity:1}.form-control:-ms-input-placeholder{color:#999}.form-control::-webkit-input-placeholder{color:#999}.form-control[disabled],.form-control[readonly],fieldset[disabled] .form-control{background-color:#eee;opacity:1}.form-control[disabled],fieldset[disabled] .form-control{cursor:not-allowed}textarea.form-control{height:auto}input[type=search]{-webkit-appearance:none}@media screen and (-webkit-min-device-pixel-ratio:0){input[type=date].form-control,input[type=time].form-control,input[type=datetime-local].form-control,input[type=month].form-control{line-height:34px}.input-group-sm input[type=date],.input-group-sm input[type=time],.input-group-sm input[type=datetime-local],.input-group-sm input[type=month],input[type=date].input-sm,input[type=time].input-sm,input[type=datetime-local].input-sm,input[type=month].input-sm{line-height:30px}.input-group-lg input[type=date],.input-group-lg input[type=time],.input-group-lg input[type=datetime-local],.input-group-lg input[type=month],input[type=date].input-lg,input[type=time].input-lg,input[type=datetime-local].input-lg,input[type=month].input-lg{line-height:46px}}.form-group{margin-bottom:15px}.checkbox,.radio{position:relative;display:block;margin-top:10px;margin-bottom:10px}.checkbox label,.radio label{min-height:20px;padding-left:20px;margin-bottom:0;font-weight:400;cursor:pointer}.checkbox input[type=checkbox],.checkbox-inline input[type=checkbox],.radio input[type=radio],.radio-inline input[type=radio]{position:absolute;margin-top:4px\9;margin-left:-20px}.checkbox+.checkbox,.radio+.radio{margin-top:-5px}.checkbox-inline,.radio-inline{position:relative;display:inline-block;padding-left:20px;margin-bottom:0;font-weight:400;vertical-align:middle;cursor:pointer}.checkbox-inline+.checkbox-inline,.radio-inline+.radio-inline{margin-top:0;margin-left:10px}fieldset[disabled] input[type=checkbox],fieldset[disabled] input[type=radio],input[type=checkbox].disabled,input[type=checkbox][disabled],input[type=radio].disabled,input[type=radio][disabled]{cursor:not-allowed}.checkbox-inline.disabled,.radio-inline.disabled,fieldset[disabled] .checkbox-inline,fieldset[disabled] .radio-inline{cursor:not-allowed}.checkbox.disabled label,.radio.disabled label,fieldset[disabled] .checkbox label,fieldset[disabled] .radio label{cursor:not-allowed}.form-control-static{min-height:34px;padding-top:7px;padding-bottom:7px;margin-bottom:0}.form-control-static.input-lg,.form-control-static.input-sm{padding-right:0;padding-left:0}.input-sm{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}select.input-sm{height:30px;line-height:30px}select[multiple].input-sm,textarea.input-sm{height:auto}.form-group-sm .form-control{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}.form-group-sm select.form-control{height:30px;line-height:30px}.form-group-sm select[multiple].form-control,.form-group-sm textarea.form-control{height:auto}.form-group-sm .form-control-static{height:30px;min-height:32px;padding:6px 10px;font-size:12px;line-height:1.5}.input-lg{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}select.input-lg{height:46px;line-height:46px}select[multiple].input-lg,textarea.input-lg{height:auto}.form-group-lg .form-control{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}.form-group-lg select.form-control{height:46px;line-height:46px}.form-group-lg select[multiple].form-control,.form-group-lg textarea.form-control{height:auto}.form-group-lg .form-control-static{height:46px;min-height:38px;padding:11px 16px;font-size:18px;line-height:1.3333333}.has-feedback{position:relative}.has-feedback .form-control{padding-right:42.5px}.form-control-feedback{position:absolute;top:0;right:0;z-index:2;display:block;width:34px;height:34px;line-height:34px;text-align:center;pointer-events:none}.form-group-lg .form-control+.form-control-feedback,.input-group-lg+.form-control-feedback,.input-lg+.form-control-feedback{width:46px;height:46px;line-height:46px}.form-group-sm .form-control+.form-control-feedback,.input-group-sm+.form-control-feedback,.input-sm+.form-control-feedback{width:30px;height:30px;line-height:30px}.has-success .checkbox,.has-success .checkbox-inline,.has-success .control-label,.has-success .help-block,.has-success .radio,.has-success .radio-inline,.has-success.checkbox label,.has-success.checkbox-inline label,.has-success.radio label,.has-success.radio-inline label{color:#3c763d}.has-success .form-control{border-color:#3c763d;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-success .form-control:focus{border-color:#2b542c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #67b168;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #67b168}.has-success .input-group-addon{color:#3c763d;background-color:#dff0d8;border-color:#3c763d}.has-success .form-control-feedback{color:#3c763d}.has-warning .checkbox,.has-warning .checkbox-inline,.has-warning .control-label,.has-warning .help-block,.has-warning .radio,.has-warning .radio-inline,.has-warning.checkbox label,.has-warning.checkbox-inline label,.has-warning.radio label,.has-warning.radio-inline label{color:#8a6d3b}.has-warning .form-control{border-color:#8a6d3b;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-warning .form-control:focus{border-color:#66512c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #c0a16b;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #c0a16b}.has-warning .input-group-addon{color:#8a6d3b;background-color:#fcf8e3;border-color:#8a6d3b}.has-warning .form-control-feedback{color:#8a6d3b}.has-error .checkbox,.has-error .checkbox-inline,.has-error .control-label,.has-error .help-block,.has-error .radio,.has-error .radio-inline,.has-error.checkbox label,.has-error.checkbox-inline label,.has-error.radio label,.has-error.radio-inline label{color:#a94442}.has-error .form-control{border-color:#a94442;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-error .form-control:focus{border-color:#843534;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #ce8483;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #ce8483}.has-error .input-group-addon{color:#a94442;background-color:#f2dede;border-color:#a94442}.has-error .form-control-feedback{color:#a94442}.has-feedback label~.form-control-feedback{top:25px}.has-feedback label.sr-only~.form-control-feedback{top:0}.help-block{display:block;margin-top:5px;margin-bottom:10px;color:#737373}@media (min-width:768px){.form-inline .form-group{display:inline-block;margin-bottom:0;vertical-align:middle}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-static{display:inline-block}.form-inline .input-group{display:inline-table;vertical-align:middle}.form-inline .input-group .form-control,.form-inline .input-group .input-group-addon,.form-inline .input-group .input-group-btn{width:auto}.form-inline .input-group>.form-control{width:100%}.form-inline .control-label{margin-bottom:0;vertical-align:middle}.form-inline .checkbox,.form-inline .radio{display:inline-block;margin-top:0;margin-bottom:0;vertical-align:middle}.form-inline .checkbox label,.form-inline .radio label{padding-left:0}.form-inline .checkbox input[type=checkbox],.form-inline .radio input[type=radio]{position:relative;margin-left:0}.form-inline .has-feedback .form-control-feedback{top:0}}.form-horizontal .checkbox,.form-horizontal .checkbox-inline,.form-horizontal .radio,.form-horizontal .radio-inline{padding-top:7px;margin-top:0;margin-bottom:0}.form-horizontal .checkbox,.form-horizontal .radio{min-height:27px}.form-horizontal .form-group{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.form-horizontal .control-label{padding-top:7px;margin-bottom:0;text-align:right}}.form-horizontal .has-feedback .form-control-feedback{right:15px}@media (min-width:768px){.form-horizontal .form-group-lg .control-label{padding-top:14.33px;font-size:18px}}@media (min-width:768px){.form-horizontal .form-group-sm .control-label{padding-top:6px;font-size:12px}}.btn{display:inline-block;padding:6px 12px;margin-bottom:0;font-size:14px;font-weight:400;line-height:1.42857143;text-align:center;white-space:nowrap;vertical-align:middle;-ms-touch-action:manipulation;touch-action:manipulation;cursor:pointer;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;background-image:none;border:1px solid transparent;border-radius:4px}.btn.active.focus,.btn.active:focus,.btn.focus,.btn:active.focus,.btn:active:focus,.btn:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}.btn.focus,.btn:focus,.btn:hover{color:#333;text-decoration:none}.btn.active,.btn:active{background-image:none;outline:0;-webkit-box-shadow:inset 0 3px 5px rgba(0,0,0,.125);box-shadow:inset 0 3px 5px rgba(0,0,0,.125)}.btn.disabled,.btn[disabled],fieldset[disabled] .btn{cursor:not-allowed;filter:alpha(opacity=65);-webkit-box-shadow:none;box-shadow:none;opacity:.65}a.btn.disabled,fieldset[disabled] a.btn{pointer-events:none}.btn-default{color:#333;background-color:#fff;border-color:#ccc}.btn-default.focus,.btn-default:focus{color:#333;background-color:#e6e6e6;border-color:#8c8c8c}.btn-default:hover{color:#333;background-color:#e6e6e6;border-color:#adadad}.btn-default.active,.btn-default:active,.open>.dropdown-toggle.btn-default{color:#333;background-color:#e6e6e6;border-color:#adadad}.btn-default.active.focus,.btn-default.active:focus,.btn-default.active:hover,.btn-default:active.focus,.btn-default:active:focus,.btn-default:active:hover,.open>.dropdown-toggle.btn-default.focus,.open>.dropdown-toggle.btn-default:focus,.open>.dropdown-toggle.btn-default:hover{color:#333;background-color:#d4d4d4;border-color:#8c8c8c}.btn-default.active,.btn-default:active,.open>.dropdown-toggle.btn-default{background-image:none}.btn-default.disabled,.btn-default.disabled.active,.btn-default.disabled.focus,.btn-default.disabled:active,.btn-default.disabled:focus,.btn-default.disabled:hover,.btn-default[disabled],.btn-default[disabled].active,.btn-default[disabled].focus,.btn-default[disabled]:active,.btn-default[disabled]:focus,.btn-default[disabled]:hover,fieldset[disabled] .btn-default,fieldset[disabled] .btn-default.active,fieldset[disabled] .btn-default.focus,fieldset[disabled] .btn-default:active,fieldset[disabled] .btn-default:focus,fieldset[disabled] .btn-default:hover{background-color:#fff;border-color:#ccc}.btn-default .badge{color:#fff;background-color:#333}.btn-primary{color:#fff;background-color:#337ab7;border-color:#2e6da4}.btn-primary.focus,.btn-primary:focus{color:#fff;background-color:#286090;border-color:#122b40}.btn-primary:hover{color:#fff;background-color:#286090;border-color:#204d74}.btn-primary.active,.btn-primary:active,.open>.dropdown-toggle.btn-primary{color:#fff;background-color:#286090;border-color:#204d74}.btn-primary.active.focus,.btn-primary.active:focus,.btn-primary.active:hover,.btn-primary:active.focus,.btn-primary:active:focus,.btn-primary:active:hover,.open>.dropdown-toggle.btn-primary.focus,.open>.dropdown-toggle.btn-primary:focus,.open>.dropdown-toggle.btn-primary:hover{color:#fff;background-color:#204d74;border-color:#122b40}.btn-primary.active,.btn-primary:active,.open>.dropdown-toggle.btn-primary{background-image:none}.btn-primary.disabled,.btn-primary.disabled.active,.btn-primary.disabled.focus,.btn-primary.disabled:active,.btn-primary.disabled:focus,.btn-primary.disabled:hover,.btn-primary[disabled],.btn-primary[disabled].active,.btn-primary[disabled].focus,.btn-primary[disabled]:active,.btn-primary[disabled]:focus,.btn-primary[disabled]:hover,fieldset[disabled] .btn-primary,fieldset[disabled] .btn-primary.active,fieldset[disabled] .btn-primary.focus,fieldset[disabled] .btn-primary:active,fieldset[disabled] .btn-primary:focus,fieldset[disabled] .btn-primary:hover{background-color:#337ab7;border-color:#2e6da4}.btn-primary .badge{color:#337ab7;background-color:#fff}.btn-success{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.btn-success.focus,.btn-success:focus{color:#fff;background-color:#449d44;border-color:#255625}.btn-success:hover{color:#fff;background-color:#449d44;border-color:#398439}.btn-success.active,.btn-success:active,.open>.dropdown-toggle.btn-success{color:#fff;background-color:#449d44;border-color:#398439}.btn-success.active.focus,.btn-success.active:focus,.btn-success.active:hover,.btn-success:active.focus,.btn-success:active:focus,.btn-success:active:hover,.open>.dropdown-toggle.btn-success.focus,.open>.dropdown-toggle.btn-success:focus,.open>.dropdown-toggle.btn-success:hover{color:#fff;background-color:#398439;border-color:#255625}.btn-success.active,.btn-success:active,.open>.dropdown-toggle.btn-success{background-image:none}.btn-success.disabled,.btn-success.disabled.active,.btn-success.disabled.focus,.btn-success.disabled:active,.btn-success.disabled:focus,.btn-success.disabled:hover,.btn-success[disabled],.btn-success[disabled].active,.btn-success[disabled].focus,.btn-success[disabled]:active,.btn-success[disabled]:focus,.btn-success[disabled]:hover,fieldset[disabled] .btn-success,fieldset[disabled] .btn-success.active,fieldset[disabled] .btn-success.focus,fieldset[disabled] .btn-success:active,fieldset[disabled] .btn-success:focus,fieldset[disabled] .btn-success:hover{background-color:#5cb85c;border-color:#4cae4c}.btn-success .badge{color:#5cb85c;background-color:#fff}.btn-info{color:#fff;background-color:#5bc0de;border-color:#46b8da}.btn-info.focus,.btn-info:focus{color:#fff;background-color:#31b0d5;border-color:#1b6d85}.btn-info:hover{color:#fff;background-color:#31b0d5;border-color:#269abc}.btn-info.active,.btn-info:active,.open>.dropdown-toggle.btn-info{color:#fff;background-color:#31b0d5;border-color:#269abc}.btn-info.active.focus,.btn-info.active:focus,.btn-info.active:hover,.btn-info:active.focus,.btn-info:active:focus,.btn-info:active:hover,.open>.dropdown-toggle.btn-info.focus,.open>.dropdown-toggle.btn-info:focus,.open>.dropdown-toggle.btn-info:hover{color:#fff;background-color:#269abc;border-color:#1b6d85}.btn-info.active,.btn-info:active,.open>.dropdown-toggle.btn-info{background-image:none}.btn-info.disabled,.btn-info.disabled.active,.btn-info.disabled.focus,.btn-info.disabled:active,.btn-info.disabled:focus,.btn-info.disabled:hover,.btn-info[disabled],.btn-info[disabled].active,.btn-info[disabled].focus,.btn-info[disabled]:active,.btn-info[disabled]:focus,.btn-info[disabled]:hover,fieldset[disabled] .btn-info,fieldset[disabled] .btn-info.active,fieldset[disabled] .btn-info.focus,fieldset[disabled] .btn-info:active,fieldset[disabled] .btn-info:focus,fieldset[disabled] .btn-info:hover{background-color:#5bc0de;border-color:#46b8da}.btn-info .badge{color:#5bc0de;background-color:#fff}.btn-warning{color:#fff;background-color:#f0ad4e;border-color:#eea236}.btn-warning.focus,.btn-warning:focus{color:#fff;background-color:#ec971f;border-color:#985f0d}.btn-warning:hover{color:#fff;background-color:#ec971f;border-color:#d58512}.btn-warning.active,.btn-warning:active,.open>.dropdown-toggle.btn-warning{color:#fff;background-color:#ec971f;border-color:#d58512}.btn-warning.active.focus,.btn-warning.active:focus,.btn-warning.active:hover,.btn-warning:active.focus,.btn-warning:active:focus,.btn-warning:active:hover,.open>.dropdown-toggle.btn-warning.focus,.open>.dropdown-toggle.btn-warning:focus,.open>.dropdown-toggle.btn-warning:hover{color:#fff;background-color:#d58512;border-color:#985f0d}.btn-warning.active,.btn-warning:active,.open>.dropdown-toggle.btn-warning{background-image:none}.btn-warning.disabled,.btn-warning.disabled.active,.btn-warning.disabled.focus,.btn-warning.disabled:active,.btn-warning.disabled:focus,.btn-warning.disabled:hover,.btn-warning[disabled],.btn-warning[disabled].active,.btn-warning[disabled].focus,.btn-warning[disabled]:active,.btn-warning[disabled]:focus,.btn-warning[disabled]:hover,fieldset[disabled] .btn-warning,fieldset[disabled] .btn-warning.active,fieldset[disabled] .btn-warning.focus,fieldset[disabled] .btn-warning:active,fieldset[disabled] .btn-warning:focus,fieldset[disabled] .btn-warning:hover{background-color:#f0ad4e;border-color:#eea236}.btn-warning .badge{color:#f0ad4e;background-color:#fff}.btn-danger{color:#fff;background-color:#d9534f;border-color:#d43f3a}.btn-danger.focus,.btn-danger:focus{color:#fff;background-color:#c9302c;border-color:#761c19}.btn-danger:hover{color:#fff;background-color:#c9302c;border-color:#ac2925}.btn-danger.active,.btn-danger:active,.open>.dropdown-toggle.btn-danger{color:#fff;background-color:#c9302c;border-color:#ac2925}.btn-danger.active.focus,.btn-danger.active:focus,.btn-danger.active:hover,.btn-danger:active.focus,.btn-danger:active:focus,.btn-danger:active:hover,.open>.dropdown-toggle.btn-danger.focus,.open>.dropdown-toggle.btn-danger:focus,.open>.dropdown-toggle.btn-danger:hover{color:#fff;background-color:#ac2925;border-color:#761c19}.btn-danger.active,.btn-danger:active,.open>.dropdown-toggle.btn-danger{background-image:none}.btn-danger.disabled,.btn-danger.disabled.active,.btn-danger.disabled.focus,.btn-danger.disabled:active,.btn-danger.disabled:focus,.btn-danger.disabled:hover,.btn-danger[disabled],.btn-danger[disabled].active,.btn-danger[disabled].focus,.btn-danger[disabled]:active,.btn-danger[disabled]:focus,.btn-danger[disabled]:hover,fieldset[disabled] .btn-danger,fieldset[disabled] .btn-danger.active,fieldset[disabled] .btn-danger.focus,fieldset[disabled] .btn-danger:active,fieldset[disabled] .btn-danger:focus,fieldset[disabled] .btn-danger:hover{background-color:#d9534f;border-color:#d43f3a}.btn-danger .badge{color:#d9534f;background-color:#fff}.btn-link{font-weight:400;color:#337ab7;border-radius:0}.btn-link,.btn-link.active,.btn-link:active,.btn-link[disabled],fieldset[disabled] .btn-link{background-color:transparent;-webkit-box-shadow:none;box-shadow:none}.btn-link,.btn-link:active,.btn-link:focus,.btn-link:hover{border-color:transparent}.btn-link:focus,.btn-link:hover{color:#23527c;text-decoration:underline;background-color:transparent}.btn-link[disabled]:focus,.btn-link[disabled]:hover,fieldset[disabled] .btn-link:focus,fieldset[disabled] .btn-link:hover{color:#777;text-decoration:none}.btn-group-lg>.btn,.btn-lg{padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}.btn-group-sm>.btn,.btn-sm{padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}.btn-group-xs>.btn,.btn-xs{padding:1px 5px;font-size:12px;line-height:1.5;border-radius:3px}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:5px}input[type=button].btn-block,input[type=reset].btn-block,input[type=submit].btn-block{width:100%}.fade{opacity:0;-webkit-transition:opacity .15s linear;-o-transition:opacity .15s linear;transition:opacity .15s linear}.fade.in{opacity:1}.collapse{display:none}.collapse.in{display:block}tr.collapse.in{display:table-row}tbody.collapse.in{display:table-row-group}.collapsing{position:relative;height:0;overflow:hidden;-webkit-transition-timing-function:ease;-o-transition-timing-function:ease;transition-timing-function:ease;-webkit-transition-duration:.35s;-o-transition-duration:.35s;transition-duration:.35s;-webkit-transition-property:height,visibility;-o-transition-property:height,visibility;transition-property:height,visibility}.caret{display:inline-block;width:0;height:0;margin-left:2px;vertical-align:middle;border-top:4px dashed;border-top:4px solid\9;border-right:4px solid transparent;border-left:4px solid transparent}.dropdown,.dropup{position:relative}.dropdown-toggle:focus{outline:0}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:160px;padding:5px 0;margin:2px 0 0;font-size:14px;text-align:left;list-style:none;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #ccc;border:1px solid rgba(0,0,0,.15);border-radius:4px;-webkit-box-shadow:0 6px 12px rgba(0,0,0,.175);box-shadow:0 6px 12px rgba(0,0,0,.175)}.dropdown-menu.pull-right{right:0;left:auto}.dropdown-menu .divider{height:1px;margin:9px 0;overflow:hidden;background-color:#e5e5e5}.dropdown-menu>li>a{display:block;padding:3px 20px;clear:both;font-weight:400;line-height:1.42857143;color:#333;white-space:nowrap}.dropdown-menu>li>a:focus,.dropdown-menu>li>a:hover{color:#262626;text-decoration:none;background-color:#f5f5f5}.dropdown-menu>.active>a,.dropdown-menu>.active>a:focus,.dropdown-menu>.active>a:hover{color:#fff;text-decoration:none;background-color:#337ab7;outline:0}.dropdown-menu>.disabled>a,.dropdown-menu>.disabled>a:focus,.dropdown-menu>.disabled>a:hover{color:#777}.dropdown-menu>.disabled>a:focus,.dropdown-menu>.disabled>a:hover{text-decoration:none;cursor:not-allowed;background-color:transparent;background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.open>.dropdown-menu{display:block}.open>a{outline:0}.dropdown-menu-right{right:0;left:auto}.dropdown-menu-left{right:auto;left:0}.dropdown-header{display:block;padding:3px 20px;font-size:12px;line-height:1.42857143;color:#777;white-space:nowrap}.dropdown-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:990}.pull-right>.dropdown-menu{right:0;left:auto}.dropup .caret,.navbar-fixed-bottom .dropdown .caret{content:"";border-top:0;border-bottom:4px dashed;border-bottom:4px solid\9}.dropup .dropdown-menu,.navbar-fixed-bottom .dropdown .dropdown-menu{top:auto;bottom:100%;margin-bottom:2px}@media (min-width:768px){.navbar-right .dropdown-menu{right:0;left:auto}.navbar-right .dropdown-menu-left{right:auto;left:0}}.btn-group,.btn-group-vertical{position:relative;display:inline-block;vertical-align:middle}.btn-group-vertical>.btn,.btn-group>.btn{position:relative;float:left}.btn-group-vertical>.btn.active,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:hover,.btn-group>.btn.active,.btn-group>.btn:active,.btn-group>.btn:focus,.btn-group>.btn:hover{z-index:2}.btn-group .btn+.btn,.btn-group .btn+.btn-group,.btn-group .btn-group+.btn,.btn-group .btn-group+.btn-group{margin-left:-1px}.btn-toolbar{margin-left:-5px}.btn-toolbar .btn,.btn-toolbar .btn-group,.btn-toolbar .input-group{float:left}.btn-toolbar>.btn,.btn-toolbar>.btn-group,.btn-toolbar>.input-group{margin-left:5px}.btn-group>.btn:not(:first-child):not(:last-child):not(.dropdown-toggle){border-radius:0}.btn-group>.btn:first-child{margin-left:0}.btn-group>.btn:first-child:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn:last-child:not(:first-child),.btn-group>.dropdown-toggle:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.btn-group>.btn-group{float:left}.btn-group>.btn-group:not(:first-child):not(:last-child)>.btn{border-radius:0}.btn-group>.btn-group:first-child:not(:last-child)>.btn:last-child,.btn-group>.btn-group:first-child:not(:last-child)>.dropdown-toggle{border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn-group:last-child:not(:first-child)>.btn:first-child{border-top-left-radius:0;border-bottom-left-radius:0}.btn-group .dropdown-toggle:active,.btn-group.open .dropdown-toggle{outline:0}.btn-group>.btn+.dropdown-toggle{padding-right:8px;padding-left:8px}.btn-group>.btn-lg+.dropdown-toggle{padding-right:12px;padding-left:12px}.btn-group.open .dropdown-toggle{-webkit-box-shadow:inset 0 3px 5px rgba(0,0,0,.125);box-shadow:inset 0 3px 5px rgba(0,0,0,.125)}.btn-group.open .dropdown-toggle.btn-link{-webkit-box-shadow:none;box-shadow:none}.btn .caret{margin-left:0}.btn-lg .caret{border-width:5px 5px 0;border-bottom-width:0}.dropup .btn-lg .caret{border-width:0 5px 5px}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group,.btn-group-vertical>.btn-group>.btn{display:block;float:none;width:100%;max-width:100%}.btn-group-vertical>.btn-group>.btn{float:none}.btn-group-vertical>.btn+.btn,.btn-group-vertical>.btn+.btn-group,.btn-group-vertical>.btn-group+.btn,.btn-group-vertical>.btn-group+.btn-group{margin-top:-1px;margin-left:0}.btn-group-vertical>.btn:not(:first-child):not(:last-child){border-radius:0}.btn-group-vertical>.btn:first-child:not(:last-child){border-top-right-radius:4px;border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn:last-child:not(:first-child){border-top-left-radius:0;border-top-right-radius:0;border-bottom-left-radius:4px}.btn-group-vertical>.btn-group:not(:first-child):not(:last-child)>.btn{border-radius:0}.btn-group-vertical>.btn-group:first-child:not(:last-child)>.btn:last-child,.btn-group-vertical>.btn-group:first-child:not(:last-child)>.dropdown-toggle{border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn-group:last-child:not(:first-child)>.btn:first-child{border-top-left-radius:0;border-top-right-radius:0}.btn-group-justified{display:table;width:100%;table-layout:fixed;border-collapse:separate}.btn-group-justified>.btn,.btn-group-justified>.btn-group{display:table-cell;float:none;width:1%}.btn-group-justified>.btn-group .btn{width:100%}.btn-group-justified>.btn-group .dropdown-menu{left:auto}[data-toggle=buttons]>.btn input[type=checkbox],[data-toggle=buttons]>.btn input[type=radio],[data-toggle=buttons]>.btn-group>.btn input[type=checkbox],[data-toggle=buttons]>.btn-group>.btn input[type=radio]{position:absolute;clip:rect(0,0,0,0);pointer-events:none}.input-group{position:relative;display:table;border-collapse:separate}.input-group[class*=col-]{float:none;padding-right:0;padding-left:0}.input-group .form-control{position:relative;z-index:2;float:left;width:100%;margin-bottom:0}.input-group-lg>.form-control,.input-group-lg>.input-group-addon,.input-group-lg>.input-group-btn>.btn{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}select.input-group-lg>.form-control,select.input-group-lg>.input-group-addon,select.input-group-lg>.input-group-btn>.btn{height:46px;line-height:46px}select[multiple].input-group-lg>.form-control,select[multiple].input-group-lg>.input-group-addon,select[multiple].input-group-lg>.input-group-btn>.btn,textarea.input-group-lg>.form-control,textarea.input-group-lg>.input-group-addon,textarea.input-group-lg>.input-group-btn>.btn{height:auto}.input-group-sm>.form-control,.input-group-sm>.input-group-addon,.input-group-sm>.input-group-btn>.btn{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}select.input-group-sm>.form-control,select.input-group-sm>.input-group-addon,select.input-group-sm>.input-group-btn>.btn{height:30px;line-height:30px}select[multiple].input-group-sm>.form-control,select[multiple].input-group-sm>.input-group-addon,select[multiple].input-group-sm>.input-group-btn>.btn,textarea.input-group-sm>.form-control,textarea.input-group-sm>.input-group-addon,textarea.input-group-sm>.input-group-btn>.btn{height:auto}.input-group .form-control,.input-group-addon,.input-group-btn{display:table-cell}.input-group .form-control:not(:first-child):not(:last-child),.input-group-addon:not(:first-child):not(:last-child),.input-group-btn:not(:first-child):not(:last-child){border-radius:0}.input-group-addon,.input-group-btn{width:1%;white-space:nowrap;vertical-align:middle}.input-group-addon{padding:6px 12px;font-size:14px;font-weight:400;line-height:1;color:#555;text-align:center;background-color:#eee;border:1px solid #ccc;border-radius:4px}.input-group-addon.input-sm{padding:5px 10px;font-size:12px;border-radius:3px}.input-group-addon.input-lg{padding:10px 16px;font-size:18px;border-radius:6px}.input-group-addon input[type=checkbox],.input-group-addon input[type=radio]{margin-top:0}.input-group .form-control:first-child,.input-group-addon:first-child,.input-group-btn:first-child>.btn,.input-group-btn:first-child>.btn-group>.btn,.input-group-btn:first-child>.dropdown-toggle,.input-group-btn:last-child>.btn-group:not(:last-child)>.btn,.input-group-btn:last-child>.btn:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.input-group-addon:first-child{border-right:0}.input-group .form-control:last-child,.input-group-addon:last-child,.input-group-btn:first-child>.btn-group:not(:first-child)>.btn,.input-group-btn:first-child>.btn:not(:first-child),.input-group-btn:last-child>.btn,.input-group-btn:last-child>.btn-group>.btn,.input-group-btn:last-child>.dropdown-toggle{border-top-left-radius:0;border-bottom-left-radius:0}.input-group-addon:last-child{border-left:0}.input-group-btn{position:relative;font-size:0;white-space:nowrap}.input-group-btn>.btn{position:relative}.input-group-btn>.btn+.btn{margin-left:-1px}.input-group-btn>.btn:active,.input-group-btn>.btn:focus,.input-group-btn>.btn:hover{z-index:2}.input-group-btn:first-child>.btn,.input-group-btn:first-child>.btn-group{margin-right:-1px}.input-group-btn:last-child>.btn,.input-group-btn:last-child>.btn-group{z-index:2;margin-left:-1px}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.nav>li.disabled>a{color:#777}.nav>li.disabled>a:focus,.nav>li.disabled>a:hover{color:#777;text-decoration:none;cursor:not-allowed;background-color:transparent}.nav .open>a,.nav .open>a:focus,.nav .open>a:hover{background-color:#eee;border-color:#337ab7}.nav .nav-divider{height:1px;margin:9px 0;overflow:hidden;background-color:#e5e5e5}.nav>li>a>img{max-width:none}.nav-tabs{border-bottom:1px solid #ddd}.nav-tabs>li{float:left;margin-bottom:-1px}.nav-tabs>li>a{margin-right:2px;line-height:1.42857143;border:1px solid transparent;border-radius:4px 4px 0 0}.nav-tabs>li>a:hover{border-color:#eee #eee #ddd}.nav-tabs>li.active>a,.nav-tabs>li.active>a:focus,.nav-tabs>li.active>a:hover{color:#555;cursor:default;background-color:#fff;border:1px solid #ddd;border-bottom-color:transparent}.nav-tabs.nav-justified{width:100%;border-bottom:0}.nav-tabs.nav-justified>li{float:none}.nav-tabs.nav-justified>li>a{margin-bottom:5px;text-align:center}.nav-tabs.nav-justified>.dropdown .dropdown-menu{top:auto;left:auto}@media (min-width:768px){.nav-tabs.nav-justified>li{display:table-cell;width:1%}.nav-tabs.nav-justified>li>a{margin-bottom:0}}.nav-tabs.nav-justified>li>a{margin-right:0;border-radius:4px}.nav-tabs.nav-justified>.active>a,.nav-tabs.nav-justified>.active>a:focus,.nav-tabs.nav-justified>.active>a:hover{border:1px solid #ddd}@media (min-width:768px){.nav-tabs.nav-justified>li>a{border-bottom:1px solid #ddd;border-radius:4px 4px 0 0}.nav-tabs.nav-justified>.active>a,.nav-tabs.nav-justified>.active>a:focus,.nav-tabs.nav-justified>.active>a:hover{border-bottom-color:#fff}}.nav-pills>li{float:left}.nav-pills>li>a{border-radius:4px}.nav-pills>li+li{margin-left:2px}.nav-pills>li.active>a,.nav-pills>li.active>a:focus,.nav-pills>li.active>a:hover{color:#fff;background-color:#337ab7}.nav-stacked>li{float:none}.nav-stacked>li+li{margin-top:2px;margin-left:0}.nav-justified{width:100%}.nav-justified>li{float:none}.nav-justified>li>a{margin-bottom:5px;text-align:center}.nav-justified>.dropdown .dropdown-menu{top:auto;left:auto}@media (min-width:768px){.nav-justified>li{display:table-cell;width:1%}.nav-justified>li>a{margin-bottom:0}}.nav-tabs-justified{border-bottom:0}.nav-tabs-justified>li>a{margin-right:0;border-radius:4px}.nav-tabs-justified>.active>a,.nav-tabs-justified>.active>a:focus,.nav-tabs-justified>.active>a:hover{border:1px solid #ddd}@media (min-width:768px){.nav-tabs-justified>li>a{border-bottom:1px solid #ddd;border-radius:4px 4px 0 0}.nav-tabs-justified>.active>a,.nav-tabs-justified>.active>a:focus,.nav-tabs-justified>.active>a:hover{border-bottom-color:#fff}}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.nav-tabs .dropdown-menu{margin-top:-1px;border-top-left-radius:0;border-top-right-radius:0}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}.navbar-collapse.in{overflow-y:auto}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}.navbar-collapse.in{overflow-y:visible}.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse,.navbar-static-top .navbar-collapse{padding-right:0;padding-left:0}}.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse{max-height:340px}@media (max-device-width:480px) and (orientation:landscape){.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse{max-height:200px}}.container-fluid>.navbar-collapse,.container-fluid>.navbar-header,.container>.navbar-collapse,.container>.navbar-header{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container-fluid>.navbar-collapse,.container-fluid>.navbar-header,.container>.navbar-collapse,.container>.navbar-header{margin-right:0;margin-left:0}}.navbar-static-top{z-index:1000;border-width:0 0 1px}@media (min-width:768px){.navbar-static-top{border-radius:0}}.navbar-fixed-bottom,.navbar-fixed-top{position:fixed;right:0;left:0;z-index:1030}@media (min-width:768px){.navbar-fixed-bottom,.navbar-fixed-top{border-radius:0}}.navbar-fixed-top{top:0;border-width:0 0 1px}.navbar-fixed-bottom{bottom:0;margin-bottom:0;border-width:1px 0 0}.navbar-brand{float:left;height:50px;padding:15px 15px;font-size:18px;line-height:20px}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}.navbar-brand>img{display:block}@media (min-width:768px){.navbar>.container .navbar-brand,.navbar>.container-fluid .navbar-brand{margin-left:-15px}}.navbar-toggle{position:relative;float:right;padding:9px 10px;margin-top:8px;margin-right:15px;margin-bottom:8px;background-color:transparent;background-image:none;border:1px solid transparent;border-radius:4px}.navbar-toggle:focus{outline:0}.navbar-toggle .icon-bar{display:block;width:22px;height:2px;border-radius:1px}.navbar-toggle .icon-bar+.icon-bar{margin-top:4px}@media (min-width:768px){.navbar-toggle{display:none}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (max-width:767px){.navbar-nav .open .dropdown-menu{position:static;float:none;width:auto;margin-top:0;background-color:transparent;border:0;-webkit-box-shadow:none;box-shadow:none}.navbar-nav .open .dropdown-menu .dropdown-header,.navbar-nav .open .dropdown-menu>li>a{padding:5px 15px 5px 25px}.navbar-nav .open .dropdown-menu>li>a{line-height:20px}.navbar-nav .open .dropdown-menu>li>a:focus,.navbar-nav .open .dropdown-menu>li>a:hover{background-image:none}}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-form{padding:10px 15px;margin-top:8px;margin-right:-15px;margin-bottom:8px;margin-left:-15px;border-top:1px solid transparent;border-bottom:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1),0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1),0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-form .form-group{display:inline-block;margin-bottom:0;vertical-align:middle}.navbar-form .form-control{display:inline-block;width:auto;vertical-align:middle}.navbar-form .form-control-static{display:inline-block}.navbar-form .input-group{display:inline-table;vertical-align:middle}.navbar-form .input-group .form-control,.navbar-form .input-group .input-group-addon,.navbar-form .input-group .input-group-btn{width:auto}.navbar-form .input-group>.form-control{width:100%}.navbar-form .control-label{margin-bottom:0;vertical-align:middle}.navbar-form .checkbox,.navbar-form .radio{display:inline-block;margin-top:0;margin-bottom:0;vertical-align:middle}.navbar-form .checkbox label,.navbar-form .radio label{padding-left:0}.navbar-form .checkbox input[type=checkbox],.navbar-form .radio input[type=radio]{position:relative;margin-left:0}.navbar-form .has-feedback .form-control-feedback{top:0}}@media (max-width:767px){.navbar-form .form-group{margin-bottom:5px}.navbar-form .form-group:last-child{margin-bottom:0}}@media (min-width:768px){.navbar-form{width:auto;padding-top:0;padding-bottom:0;margin-right:0;margin-left:0;border:0;-webkit-box-shadow:none;box-shadow:none}}.navbar-nav>li>.dropdown-menu{margin-top:0;border-top-left-radius:0;border-top-right-radius:0}.navbar-fixed-bottom .navbar-nav>li>.dropdown-menu{margin-bottom:0;border-top-left-radius:4px;border-top-right-radius:4px;border-bottom-right-radius:0;border-bottom-left-radius:0}.navbar-btn{margin-top:8px;margin-bottom:8px}.navbar-btn.btn-sm{margin-top:10px;margin-bottom:10px}.navbar-btn.btn-xs{margin-top:14px;margin-bottom:14px}.navbar-text{margin-top:15px;margin-bottom:15px}@media (min-width:768px){.navbar-text{float:left;margin-right:15px;margin-left:15px}}@media (min-width:768px){.navbar-left{float:left!important}.navbar-right{float:right!important;margin-right:-15px}.navbar-right~.navbar-right{margin-right:0}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-brand{color:#777}.navbar-default .navbar-brand:focus,.navbar-default .navbar-brand:hover{color:#5e5e5e;background-color:transparent}.navbar-default .navbar-text{color:#777}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-nav>.active>a,.navbar-default .navbar-nav>.active>a:focus,.navbar-default .navbar-nav>.active>a:hover{color:#555;background-color:#e7e7e7}.navbar-default .navbar-nav>.disabled>a,.navbar-default .navbar-nav>.disabled>a:focus,.navbar-default .navbar-nav>.disabled>a:hover{color:#ccc;background-color:transparent}.navbar-default .navbar-toggle{border-color:#ddd}.navbar-default .navbar-toggle:focus,.navbar-default .navbar-toggle:hover{background-color:#ddd}.navbar-default .navbar-toggle .icon-bar{background-color:#888}.navbar-default .navbar-collapse,.navbar-default .navbar-form{border-color:#e7e7e7}.navbar-default .navbar-nav>.open>a,.navbar-default .navbar-nav>.open>a:focus,.navbar-default .navbar-nav>.open>a:hover{color:#555;background-color:#e7e7e7}@media (max-width:767px){.navbar-default .navbar-nav .open .dropdown-menu>li>a{color:#777}.navbar-default .navbar-nav .open .dropdown-menu>li>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-nav .open .dropdown-menu>.active>a,.navbar-default .navbar-nav .open .dropdown-menu>.active>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>.active>a:hover{color:#555;background-color:#e7e7e7}.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a,.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a:hover{color:#ccc;background-color:transparent}}.navbar-default .navbar-link{color:#777}.navbar-default .navbar-link:hover{color:#333}.navbar-default .btn-link{color:#777}.navbar-default .btn-link:focus,.navbar-default .btn-link:hover{color:#333}.navbar-default .btn-link[disabled]:focus,.navbar-default .btn-link[disabled]:hover,fieldset[disabled] .navbar-default .btn-link:focus,fieldset[disabled] .navbar-default .btn-link:hover{color:#ccc}.navbar-inverse{background-color:#222;border-color:#080808}.navbar-inverse .navbar-brand{color:#9d9d9d}.navbar-inverse .navbar-brand:focus,.navbar-inverse .navbar-brand:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-text{color:#9d9d9d}.navbar-inverse .navbar-nav>li>a{color:#9d9d9d}.navbar-inverse .navbar-nav>li>a:focus,.navbar-inverse .navbar-nav>li>a:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-nav>.active>a,.navbar-inverse .navbar-nav>.active>a:focus,.navbar-inverse .navbar-nav>.active>a:hover{color:#fff;background-color:#080808}.navbar-inverse .navbar-nav>.disabled>a,.navbar-inverse .navbar-nav>.disabled>a:focus,.navbar-inverse .navbar-nav>.disabled>a:hover{color:#444;background-color:transparent}.navbar-inverse .navbar-toggle{border-color:#333}.navbar-inverse .navbar-toggle:focus,.navbar-inverse .navbar-toggle:hover{background-color:#333}.navbar-inverse .navbar-toggle .icon-bar{background-color:#fff}.navbar-inverse .navbar-collapse,.navbar-inverse .navbar-form{border-color:#101010}.navbar-inverse .navbar-nav>.open>a,.navbar-inverse .navbar-nav>.open>a:focus,.navbar-inverse .navbar-nav>.open>a:hover{color:#fff;background-color:#080808}@media (max-width:767px){.navbar-inverse .navbar-nav .open .dropdown-menu>.dropdown-header{border-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu .divider{background-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu>li>a{color:#9d9d9d}.navbar-inverse .navbar-nav .open .dropdown-menu>li>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>li>a:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a,.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a:hover{color:#fff;background-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a,.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a:hover{color:#444;background-color:transparent}}.navbar-inverse .navbar-link{color:#9d9d9d}.navbar-inverse .navbar-link:hover{color:#fff}.navbar-inverse .btn-link{color:#9d9d9d}.navbar-inverse .btn-link:focus,.navbar-inverse .btn-link:hover{color:#fff}.navbar-inverse .btn-link[disabled]:focus,.navbar-inverse .btn-link[disabled]:hover,fieldset[disabled] .navbar-inverse .btn-link:focus,fieldset[disabled] .navbar-inverse .btn-link:hover{color:#444}.breadcrumb{padding:8px 15px;margin-bottom:20px;list-style:none;background-color:#f5f5f5;border-radius:4px}.breadcrumb>li{display:inline-block}.breadcrumb>li+li:before{padding:0 5px;color:#ccc;content:"/\00a0"}.breadcrumb>.active{color:#777}.pagination{display:inline-block;padding-left:0;margin:20px 0;border-radius:4px}.pagination>li{display:inline}.pagination>li>a,.pagination>li>span{position:relative;float:left;padding:6px 12px;margin-left:-1px;line-height:1.42857143;color:#337ab7;text-decoration:none;background-color:#fff;border:1px solid #ddd}.pagination>li:first-child>a,.pagination>li:first-child>span{margin-left:0;border-top-left-radius:4px;border-bottom-left-radius:4px}.pagination>li:last-child>a,.pagination>li:last-child>span{border-top-right-radius:4px;border-bottom-right-radius:4px}.pagination>li>a:focus,.pagination>li>a:hover,.pagination>li>span:focus,.pagination>li>span:hover{z-index:3;color:#23527c;background-color:#eee;border-color:#ddd}.pagination>.active>a,.pagination>.active>a:focus,.pagination>.active>a:hover,.pagination>.active>span,.pagination>.active>span:focus,.pagination>.active>span:hover{z-index:2;color:#fff;cursor:default;background-color:#337ab7;border-color:#337ab7}.pagination>.disabled>a,.pagination>.disabled>a:focus,.pagination>.disabled>a:hover,.pagination>.disabled>span,.pagination>.disabled>span:focus,.pagination>.disabled>span:hover{color:#777;cursor:not-allowed;background-color:#fff;border-color:#ddd}.pagination-lg>li>a,.pagination-lg>li>span{padding:10px 16px;font-size:18px;line-height:1.3333333}.pagination-lg>li:first-child>a,.pagination-lg>li:first-child>span{border-top-left-radius:6px;border-bottom-left-radius:6px}.pagination-lg>li:last-child>a,.pagination-lg>li:last-child>span{border-top-right-radius:6px;border-bottom-right-radius:6px}.pagination-sm>li>a,.pagination-sm>li>span{padding:5px 10px;font-size:12px;line-height:1.5}.pagination-sm>li:first-child>a,.pagination-sm>li:first-child>span{border-top-left-radius:3px;border-bottom-left-radius:3px}.pagination-sm>li:last-child>a,.pagination-sm>li:last-child>span{border-top-right-radius:3px;border-bottom-right-radius:3px}.pager{padding-left:0;margin:20px 0;text-align:center;list-style:none}.pager li{display:inline}.pager li>a,.pager li>span{display:inline-block;padding:5px 14px;background-color:#fff;border:1px solid #ddd;border-radius:15px}.pager li>a:focus,.pager li>a:hover{text-decoration:none;background-color:#eee}.pager .next>a,.pager .next>span{float:right}.pager .previous>a,.pager .previous>span{float:left}.pager .disabled>a,.pager .disabled>a:focus,.pager .disabled>a:hover,.pager .disabled>span{color:#777;cursor:not-allowed;background-color:#fff}.label{display:inline;padding:.2em .6em .3em;font-size:75%;font-weight:700;line-height:1;color:#fff;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25em}a.label:focus,a.label:hover{color:#fff;text-decoration:none;cursor:pointer}.label:empty{display:none}.btn .label{position:relative;top:-1px}.label-default{background-color:#777}.label-default[href]:focus,.label-default[href]:hover{background-color:#5e5e5e}.label-primary{background-color:#337ab7}.label-primary[href]:focus,.label-primary[href]:hover{background-color:#286090}.label-success{background-color:#5cb85c}.label-success[href]:focus,.label-success[href]:hover{background-color:#449d44}.label-info{background-color:#5bc0de}.label-info[href]:focus,.label-info[href]:hover{background-color:#31b0d5}.label-warning{background-color:#f0ad4e}.label-warning[href]:focus,.label-warning[href]:hover{background-color:#ec971f}.label-danger{background-color:#d9534f}.label-danger[href]:focus,.label-danger[href]:hover{background-color:#c9302c}.badge{display:inline-block;min-width:10px;padding:3px 7px;font-size:12px;font-weight:700;line-height:1;color:#fff;text-align:center;white-space:nowrap;vertical-align:middle;background-color:#777;border-radius:10px}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.btn-group-xs>.btn .badge,.btn-xs .badge{top:0;padding:1px 5px}a.badge:focus,a.badge:hover{color:#fff;text-decoration:none;cursor:pointer}.list-group-item.active>.badge,.nav-pills>.active>a>.badge{color:#337ab7;background-color:#fff}.list-group-item>.badge{float:right}.list-group-item>.badge+.badge{margin-right:5px}.nav-pills>li>a>.badge{margin-left:3px}.jumbotron{padding-top:30px;padding-bottom:30px;margin-bottom:30px;color:inherit;background-color:#eee}.jumbotron .h1,.jumbotron h1{color:inherit}.jumbotron p{margin-bottom:15px;font-size:21px;font-weight:200}.jumbotron>hr{border-top-color:#d5d5d5}.container .jumbotron,.container-fluid .jumbotron{border-radius:6px}.jumbotron .container{max-width:100%}@media screen and (min-width:768px){.jumbotron{padding-top:48px;padding-bottom:48px}.container .jumbotron,.container-fluid .jumbotron{padding-right:60px;padding-left:60px}.jumbotron .h1,.jumbotron h1{font-size:63px}}.thumbnail{display:block;padding:4px;margin-bottom:20px;line-height:1.42857143;background-color:#fff;border:1px solid #ddd;border-radius:4px;-webkit-transition:border .2s ease-in-out;-o-transition:border .2s ease-in-out;transition:border .2s ease-in-out}.thumbnail a>img,.thumbnail>img{margin-right:auto;margin-left:auto}a.thumbnail.active,a.thumbnail:focus,a.thumbnail:hover{border-color:#337ab7}.thumbnail .caption{padding:9px;color:#333}.alert{padding:15px;margin-bottom:20px;border:1px solid transparent;border-radius:4px}.alert h4{margin-top:0;color:inherit}.alert .alert-link{font-weight:700}.alert>p,.alert>ul{margin-bottom:0}.alert>p+p{margin-top:5px}.alert-dismissable,.alert-dismissible{padding-right:35px}.alert-dismissable .close,.alert-dismissible .close{position:relative;top:-2px;right:-21px;color:inherit}.alert-success{color:#3c763d;background-color:#dff0d8;border-color:#d6e9c6}.alert-success hr{border-top-color:#c9e2b3}.alert-success .alert-link{color:#2b542c}.alert-info{color:#31708f;background-color:#d9edf7;border-color:#bce8f1}.alert-info hr{border-top-color:#a6e1ec}.alert-info .alert-link{color:#245269}.alert-warning{color:#8a6d3b;background-color:#fcf8e3;border-color:#faebcc}.alert-warning hr{border-top-color:#f7e1b5}.alert-warning .alert-link{color:#66512c}.alert-danger{color:#a94442;background-color:#f2dede;border-color:#ebccd1}.alert-danger hr{border-top-color:#e4b9c0}.alert-danger .alert-link{color:#843534}@-webkit-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-o-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}.progress{height:20px;margin-bottom:20px;overflow:hidden;background-color:#f5f5f5;border-radius:4px;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,.1);box-shadow:inset 0 1px 2px rgba(0,0,0,.1)}.progress-bar{float:left;width:0;height:100%;font-size:12px;line-height:20px;color:#fff;text-align:center;background-color:#337ab7;-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,.15);box-shadow:inset 0 -1px 0 rgba(0,0,0,.15);-webkit-transition:width .6s ease;-o-transition:width .6s ease;transition:width .6s ease}.progress-bar-striped,.progress-striped .progress-bar{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);-webkit-background-size:40px 40px;background-size:40px 40px}.progress-bar.active,.progress.active .progress-bar{-webkit-animation:progress-bar-stripes 2s linear infinite;-o-animation:progress-bar-stripes 2s linear infinite;animation:progress-bar-stripes 2s linear infinite}.progress-bar-success{background-color:#5cb85c}.progress-striped .progress-bar-success{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-info{background-color:#5bc0de}.progress-striped .progress-bar-info{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-warning{background-color:#f0ad4e}.progress-striped .progress-bar-warning{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-danger{background-color:#d9534f}.progress-striped .progress-bar-danger{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.media{margin-top:15px}.media:first-child{margin-top:0}.media,.media-body{overflow:hidden;zoom:1}.media-body{width:10000px}.media-object{display:block}.media-object.img-thumbnail{max-width:none}.media-right,.media>.pull-right{padding-left:10px}.media-left,.media>.pull-left{padding-right:10px}.media-body,.media-left,.media-right{display:table-cell;vertical-align:top}.media-middle{vertical-align:middle}.media-bottom{vertical-align:bottom}.media-heading{margin-top:0;margin-bottom:5px}.media-list{padding-left:0;list-style:none}.list-group{padding-left:0;margin-bottom:20px}.list-group-item{position:relative;display:block;padding:10px 15px;margin-bottom:-1px;background-color:#fff;border:1px solid #ddd}.list-group-item:first-child{border-top-left-radius:4px;border-top-right-radius:4px}.list-group-item:last-child{margin-bottom:0;border-bottom-right-radius:4px;border-bottom-left-radius:4px}a.list-group-item,button.list-group-item{color:#555}a.list-group-item .list-group-item-heading,button.list-group-item .list-group-item-heading{color:#333}a.list-group-item:focus,a.list-group-item:hover,button.list-group-item:focus,button.list-group-item:hover{color:#555;text-decoration:none;background-color:#f5f5f5}button.list-group-item{width:100%;text-align:left}.list-group-item.disabled,.list-group-item.disabled:focus,.list-group-item.disabled:hover{color:#777;cursor:not-allowed;background-color:#eee}.list-group-item.disabled .list-group-item-heading,.list-group-item.disabled:focus .list-group-item-heading,.list-group-item.disabled:hover .list-group-item-heading{color:inherit}.list-group-item.disabled .list-group-item-text,.list-group-item.disabled:focus .list-group-item-text,.list-group-item.disabled:hover .list-group-item-text{color:#777}.list-group-item.active,.list-group-item.active:focus,.list-group-item.active:hover{z-index:2;color:#fff;background-color:#337ab7;border-color:#337ab7}.list-group-item.active .list-group-item-heading,.list-group-item.active .list-group-item-heading>.small,.list-group-item.active .list-group-item-heading>small,.list-group-item.active:focus .list-group-item-heading,.list-group-item.active:focus .list-group-item-heading>.small,.list-group-item.active:focus .list-group-item-heading>small,.list-group-item.active:hover .list-group-item-heading,.list-group-item.active:hover .list-group-item-heading>.small,.list-group-item.active:hover .list-group-item-heading>small{color:inherit}.list-group-item.active .list-group-item-text,.list-group-item.active:focus .list-group-item-text,.list-group-item.active:hover .list-group-item-text{color:#c7ddef}.list-group-item-success{color:#3c763d;background-color:#dff0d8}a.list-group-item-success,button.list-group-item-success{color:#3c763d}a.list-group-item-success .list-group-item-heading,button.list-group-item-success .list-group-item-heading{color:inherit}a.list-group-item-success:focus,a.list-group-item-success:hover,button.list-group-item-success:focus,button.list-group-item-success:hover{color:#3c763d;background-color:#d0e9c6}a.list-group-item-success.active,a.list-group-item-success.active:focus,a.list-group-item-success.active:hover,button.list-group-item-success.active,button.list-group-item-success.active:focus,button.list-group-item-success.active:hover{color:#fff;background-color:#3c763d;border-color:#3c763d}.list-group-item-info{color:#31708f;background-color:#d9edf7}a.list-group-item-info,button.list-group-item-info{color:#31708f}a.list-group-item-info .list-group-item-heading,button.list-group-item-info .list-group-item-heading{color:inherit}a.list-group-item-info:focus,a.list-group-item-info:hover,button.list-group-item-info:focus,button.list-group-item-info:hover{color:#31708f;background-color:#c4e3f3}a.list-group-item-info.active,a.list-group-item-info.active:focus,a.list-group-item-info.active:hover,button.list-group-item-info.active,button.list-group-item-info.active:focus,button.list-group-item-info.active:hover{color:#fff;background-color:#31708f;border-color:#31708f}.list-group-item-warning{color:#8a6d3b;background-color:#fcf8e3}a.list-group-item-warning,button.list-group-item-warning{color:#8a6d3b}a.list-group-item-warning .list-group-item-heading,button.list-group-item-warning .list-group-item-heading{color:inherit}a.list-group-item-warning:focus,a.list-group-item-warning:hover,button.list-group-item-warning:focus,button.list-group-item-warning:hover{color:#8a6d3b;background-color:#faf2cc}a.list-group-item-warning.active,a.list-group-item-warning.active:focus,a.list-group-item-warning.active:hover,button.list-group-item-warning.active,button.list-group-item-warning.active:focus,button.list-group-item-warning.active:hover{color:#fff;background-color:#8a6d3b;border-color:#8a6d3b}.list-group-item-danger{color:#a94442;background-color:#f2dede}a.list-group-item-danger,button.list-group-item-danger{color:#a94442}a.list-group-item-danger .list-group-item-heading,button.list-group-item-danger .list-group-item-heading{color:inherit}a.list-group-item-danger:focus,a.list-group-item-danger:hover,button.list-group-item-danger:focus,button.list-group-item-danger:hover{color:#a94442;background-color:#ebcccc}a.list-group-item-danger.active,a.list-group-item-danger.active:focus,a.list-group-item-danger.active:hover,button.list-group-item-danger.active,button.list-group-item-danger.active:focus,button.list-group-item-danger.active:hover{color:#fff;background-color:#a94442;border-color:#a94442}.list-group-item-heading{margin-top:0;margin-bottom:5px}.list-group-item-text{margin-bottom:0;line-height:1.3}.panel{margin-bottom:20px;background-color:#fff;border:1px solid transparent;border-radius:4px;-webkit-box-shadow:0 1px 1px rgba(0,0,0,.05);box-shadow:0 1px 1px rgba(0,0,0,.05)}.panel-body{padding:15px}.panel-heading{padding:10px 15px;border-bottom:1px solid transparent;border-top-left-radius:3px;border-top-right-radius:3px}.panel-heading>.dropdown .dropdown-toggle{color:inherit}.panel-title{margin-top:0;margin-bottom:0;font-size:16px;color:inherit}.panel-title>.small,.panel-title>.small>a,.panel-title>a,.panel-title>small,.panel-title>small>a{color:inherit}.panel-footer{padding:10px 15px;background-color:#f5f5f5;border-top:1px solid #ddd;border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.list-group,.panel>.panel-collapse>.list-group{margin-bottom:0}.panel>.list-group .list-group-item,.panel>.panel-collapse>.list-group .list-group-item{border-width:1px 0;border-radius:0}.panel>.list-group:first-child .list-group-item:first-child,.panel>.panel-collapse>.list-group:first-child .list-group-item:first-child{border-top:0;border-top-left-radius:3px;border-top-right-radius:3px}.panel>.list-group:last-child .list-group-item:last-child,.panel>.panel-collapse>.list-group:last-child .list-group-item:last-child{border-bottom:0;border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.panel-heading+.panel-collapse>.list-group .list-group-item:first-child{border-top-left-radius:0;border-top-right-radius:0}.panel-heading+.list-group .list-group-item:first-child{border-top-width:0}.list-group+.panel-footer{border-top-width:0}.panel>.panel-collapse>.table,.panel>.table,.panel>.table-responsive>.table{margin-bottom:0}.panel>.panel-collapse>.table caption,.panel>.table caption,.panel>.table-responsive>.table caption{padding-right:15px;padding-left:15px}.panel>.table-responsive:first-child>.table:first-child,.panel>.table:first-child{border-top-left-radius:3px;border-top-right-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child,.panel>.table:first-child>thead:first-child>tr:first-child{border-top-left-radius:3px;border-top-right-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:first-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child td:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child th:first-child,.panel>.table:first-child>thead:first-child>tr:first-child td:first-child,.panel>.table:first-child>thead:first-child>tr:first-child th:first-child{border-top-left-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:last-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:last-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:last-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:last-child,.panel>.table:first-child>tbody:first-child>tr:first-child td:last-child,.panel>.table:first-child>tbody:first-child>tr:first-child th:last-child,.panel>.table:first-child>thead:first-child>tr:first-child td:last-child,.panel>.table:first-child>thead:first-child>tr:first-child th:last-child{border-top-right-radius:3px}.panel>.table-responsive:last-child>.table:last-child,.panel>.table:last-child{border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child{border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:first-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:first-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:first-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:first-child,.panel>.table:last-child>tbody:last-child>tr:last-child td:first-child,.panel>.table:last-child>tbody:last-child>tr:last-child th:first-child,.panel>.table:last-child>tfoot:last-child>tr:last-child td:first-child,.panel>.table:last-child>tfoot:last-child>tr:last-child th:first-child{border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:last-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child td:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child th:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child td:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child th:last-child{border-bottom-right-radius:3px}.panel>.panel-body+.table,.panel>.panel-body+.table-responsive,.panel>.table+.panel-body,.panel>.table-responsive+.panel-body{border-top:1px solid #ddd}.panel>.table>tbody:first-child>tr:first-child td,.panel>.table>tbody:first-child>tr:first-child th{border-top:0}.panel>.table-bordered,.panel>.table-responsive>.table-bordered{border:0}.panel>.table-bordered>tbody>tr>td:first-child,.panel>.table-bordered>tbody>tr>th:first-child,.panel>.table-bordered>tfoot>tr>td:first-child,.panel>.table-bordered>tfoot>tr>th:first-child,.panel>.table-bordered>thead>tr>td:first-child,.panel>.table-bordered>thead>tr>th:first-child,.panel>.table-responsive>.table-bordered>tbody>tr>td:first-child,.panel>.table-responsive>.table-bordered>tbody>tr>th:first-child,.panel>.table-responsive>.table-bordered>tfoot>tr>td:first-child,.panel>.table-responsive>.table-bordered>tfoot>tr>th:first-child,.panel>.table-responsive>.table-bordered>thead>tr>td:first-child,.panel>.table-responsive>.table-bordered>thead>tr>th:first-child{border-left:0}.panel>.table-bordered>tbody>tr>td:last-child,.panel>.table-bordered>tbody>tr>th:last-child,.panel>.table-bordered>tfoot>tr>td:last-child,.panel>.table-bordered>tfoot>tr>th:last-child,.panel>.table-bordered>thead>tr>td:last-child,.panel>.table-bordered>thead>tr>th:last-child,.panel>.table-responsive>.table-bordered>tbody>tr>td:last-child,.panel>.table-responsive>.table-bordered>tbody>tr>th:last-child,.panel>.table-responsive>.table-bordered>tfoot>tr>td:last-child,.panel>.table-responsive>.table-bordered>tfoot>tr>th:last-child,.panel>.table-responsive>.table-bordered>thead>tr>td:last-child,.panel>.table-responsive>.table-bordered>thead>tr>th:last-child{border-right:0}.panel>.table-bordered>tbody>tr:first-child>td,.panel>.table-bordered>tbody>tr:first-child>th,.panel>.table-bordered>thead>tr:first-child>td,.panel>.table-bordered>thead>tr:first-child>th,.panel>.table-responsive>.table-bordered>tbody>tr:first-child>td,.panel>.table-responsive>.table-bordered>tbody>tr:first-child>th,.panel>.table-responsive>.table-bordered>thead>tr:first-child>td,.panel>.table-responsive>.table-bordered>thead>tr:first-child>th{border-bottom:0}.panel>.table-bordered>tbody>tr:last-child>td,.panel>.table-bordered>tbody>tr:last-child>th,.panel>.table-bordered>tfoot>tr:last-child>td,.panel>.table-bordered>tfoot>tr:last-child>th,.panel>.table-responsive>.table-bordered>tbody>tr:last-child>td,.panel>.table-responsive>.table-bordered>tbody>tr:last-child>th,.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>td,.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>th{border-bottom:0}.panel>.table-responsive{margin-bottom:0;border:0}.panel-group{margin-bottom:20px}.panel-group .panel{margin-bottom:0;border-radius:4px}.panel-group .panel+.panel{margin-top:5px}.panel-group .panel-heading{border-bottom:0}.panel-group .panel-heading+.panel-collapse>.list-group,.panel-group .panel-heading+.panel-collapse>.panel-body{border-top:1px solid #ddd}.panel-group .panel-footer{border-top:0}.panel-group .panel-footer+.panel-collapse .panel-body{border-bottom:1px solid #ddd}.panel-default{border-color:#ddd}.panel-default>.panel-heading{color:#333;background-color:#f5f5f5;border-color:#ddd}.panel-default>.panel-heading+.panel-collapse>.panel-body{border-top-color:#ddd}.panel-default>.panel-heading .badge{color:#f5f5f5;background-color:#333}.panel-default>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#ddd}.panel-primary{border-color:#337ab7}.panel-primary>.panel-heading{color:#fff;background-color:#337ab7;border-color:#337ab7}.panel-primary>.panel-heading+.panel-collapse>.panel-body{border-top-color:#337ab7}.panel-primary>.panel-heading .badge{color:#337ab7;background-color:#fff}.panel-primary>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#337ab7}.panel-success{border-color:#d6e9c6}.panel-success>.panel-heading{color:#3c763d;background-color:#dff0d8;border-color:#d6e9c6}.panel-success>.panel-heading+.panel-collapse>.panel-body{border-top-color:#d6e9c6}.panel-success>.panel-heading .badge{color:#dff0d8;background-color:#3c763d}.panel-success>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#d6e9c6}.panel-info{border-color:#bce8f1}.panel-info>.panel-heading{color:#31708f;background-color:#d9edf7;border-color:#bce8f1}.panel-info>.panel-heading+.panel-collapse>.panel-body{border-top-color:#bce8f1}.panel-info>.panel-heading .badge{color:#d9edf7;background-color:#31708f}.panel-info>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#bce8f1}.panel-warning{border-color:#faebcc}.panel-warning>.panel-heading{color:#8a6d3b;background-color:#fcf8e3;border-color:#faebcc}.panel-warning>.panel-heading+.panel-collapse>.panel-body{border-top-color:#faebcc}.panel-warning>.panel-heading .badge{color:#fcf8e3;background-color:#8a6d3b}.panel-warning>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#faebcc}.panel-danger{border-color:#ebccd1}.panel-danger>.panel-heading{color:#a94442;background-color:#f2dede;border-color:#ebccd1}.panel-danger>.panel-heading+.panel-collapse>.panel-body{border-top-color:#ebccd1}.panel-danger>.panel-heading .badge{color:#f2dede;background-color:#a94442}.panel-danger>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#ebccd1}.embed-responsive{position:relative;display:block;height:0;padding:0;overflow:hidden}.embed-responsive .embed-responsive-item,.embed-responsive embed,.embed-responsive iframe,.embed-responsive object,.embed-responsive video{position:absolute;top:0;bottom:0;left:0;width:100%;height:100%;border:0}.embed-responsive-16by9{padding-bottom:56.25%}.embed-responsive-4by3{padding-bottom:75%}.well{min-height:20px;padding:19px;margin-bottom:20px;background-color:#f5f5f5;border:1px solid #e3e3e3;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.05);box-shadow:inset 0 1px 1px rgba(0,0,0,.05)}.well blockquote{border-color:#ddd;border-color:rgba(0,0,0,.15)}.well-lg{padding:24px;border-radius:6px}.well-sm{padding:9px;border-radius:3px}.close{float:right;font-size:21px;font-weight:700;line-height:1;color:#000;text-shadow:0 1px 0 #fff;filter:alpha(opacity=20);opacity:.2}.close:focus,.close:hover{color:#000;text-decoration:none;cursor:pointer;filter:alpha(opacity=50);opacity:.5}button.close{-webkit-appearance:none;padding:0;cursor:pointer;background:0 0;border:0}.modal-open{overflow:hidden}.modal{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1050;display:none;overflow:hidden;-webkit-overflow-scrolling:touch;outline:0}.modal.fade .modal-dialog{-webkit-transition:-webkit-transform .3s ease-out;-o-transition:-o-transform .3s ease-out;transition:transform .3s ease-out;-webkit-transform:translate(0,-25%);-ms-transform:translate(0,-25%);-o-transform:translate(0,-25%);transform:translate(0,-25%)}.modal.in .modal-dialog{-webkit-transform:translate(0,0);-ms-transform:translate(0,0);-o-transform:translate(0,0);transform:translate(0,0)}.modal-open .modal{overflow-x:hidden;overflow-y:auto}.modal-dialog{position:relative;width:auto;margin:10px}.modal-content{position:relative;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #999;border:1px solid rgba(0,0,0,.2);border-radius:6px;outline:0;-webkit-box-shadow:0 3px 9px rgba(0,0,0,.5);box-shadow:0 3px 9px rgba(0,0,0,.5)}.modal-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1040;background-color:#000}.modal-backdrop.fade{filter:alpha(opacity=0);opacity:0}.modal-backdrop.in{filter:alpha(opacity=50);opacity:.5}.modal-header{min-height:16.43px;padding:15px;border-bottom:1px solid #e5e5e5}.modal-header .close{margin-top:-2px}.modal-title{margin:0;line-height:1.42857143}.modal-body{position:relative;padding:15px}.modal-footer{padding:15px;text-align:right;border-top:1px solid #e5e5e5}.modal-footer .btn+.btn{margin-bottom:0;margin-left:5px}.modal-footer .btn-group .btn+.btn{margin-left:-1px}.modal-footer .btn-block+.btn-block{margin-left:0}.modal-scrollbar-measure{position:absolute;top:-9999px;width:50px;height:50px;overflow:scroll}@media (min-width:768px){.modal-dialog{width:600px;margin:30px auto}.modal-content{-webkit-box-shadow:0 5px 15px rgba(0,0,0,.5);box-shadow:0 5px 15px rgba(0,0,0,.5)}.modal-sm{width:300px}}@media (min-width:992px){.modal-lg{width:900px}}.tooltip{position:absolute;z-index:1070;display:block;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:12px;font-style:normal;font-weight:400;line-height:1.42857143;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;word-wrap:normal;white-space:normal;filter:alpha(opacity=0);opacity:0;line-break:auto}.tooltip.in{filter:alpha(opacity=90);opacity:.9}.tooltip.top{padding:5px 0;margin-top:-3px}.tooltip.right{padding:0 5px;margin-left:3px}.tooltip.bottom{padding:5px 0;margin-top:3px}.tooltip.left{padding:0 5px;margin-left:-3px}.tooltip-inner{max-width:200px;padding:3px 8px;color:#fff;text-align:center;background-color:#000;border-radius:4px}.tooltip-arrow{position:absolute;width:0;height:0;border-color:transparent;border-style:solid}.tooltip.top .tooltip-arrow{bottom:0;left:50%;margin-left:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.top-left .tooltip-arrow{right:5px;bottom:0;margin-bottom:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.top-right .tooltip-arrow{bottom:0;left:5px;margin-bottom:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.right .tooltip-arrow{top:50%;left:0;margin-top:-5px;border-width:5px 5px 5px 0;border-right-color:#000}.tooltip.left .tooltip-arrow{top:50%;right:0;margin-top:-5px;border-width:5px 0 5px 5px;border-left-color:#000}.tooltip.bottom .tooltip-arrow{top:0;left:50%;margin-left:-5px;border-width:0 5px 5px;border-bottom-color:#000}.tooltip.bottom-left .tooltip-arrow{top:0;right:5px;margin-top:-5px;border-width:0 5px 5px;border-bottom-color:#000}.tooltip.bottom-right .tooltip-arrow{top:0;left:5px;margin-top:-5px;border-width:0 5px 5px;border-bottom-color:#000}.popover{position:absolute;top:0;left:0;z-index:1060;display:none;max-width:276px;padding:1px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;font-style:normal;font-weight:400;line-height:1.42857143;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;word-wrap:normal;white-space:normal;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #ccc;border:1px solid rgba(0,0,0,.2);border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,.2);box-shadow:0 5px 10px rgba(0,0,0,.2);line-break:auto}.popover.top{margin-top:-10px}.popover.right{margin-left:10px}.popover.bottom{margin-top:10px}.popover.left{margin-left:-10px}.popover-title{padding:8px 14px;margin:0;font-size:14px;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-radius:5px 5px 0 0}.popover-content{padding:9px 14px}.popover>.arrow,.popover>.arrow:after{position:absolute;display:block;width:0;height:0;border-color:transparent;border-style:solid}.popover>.arrow{border-width:11px}.popover>.arrow:after{content:"";border-width:10px}.popover.top>.arrow{bottom:-11px;left:50%;margin-left:-11px;border-top-color:#999;border-top-color:rgba(0,0,0,.25);border-bottom-width:0}.popover.top>.arrow:after{bottom:1px;margin-left:-10px;content:" ";border-top-color:#fff;border-bottom-width:0}.popover.right>.arrow{top:50%;left:-11px;margin-top:-11px;border-right-color:#999;border-right-color:rgba(0,0,0,.25);border-left-width:0}.popover.right>.arrow:after{bottom:-10px;left:1px;content:" ";border-right-color:#fff;border-left-width:0}.popover.bottom>.arrow{top:-11px;left:50%;margin-left:-11px;border-top-width:0;border-bottom-color:#999;border-bottom-color:rgba(0,0,0,.25)}.popover.bottom>.arrow:after{top:1px;margin-left:-10px;content:" ";border-top-width:0;border-bottom-color:#fff}.popover.left>.arrow{top:50%;right:-11px;margin-top:-11px;border-right-width:0;border-left-color:#999;border-left-color:rgba(0,0,0,.25)}.popover.left>.arrow:after{right:1px;bottom:-10px;content:" ";border-right-width:0;border-left-color:#fff}.carousel{position:relative}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner>.item{position:relative;display:none;-webkit-transition:.6s ease-in-out left;-o-transition:.6s ease-in-out left;transition:.6s ease-in-out left}.carousel-inner>.item>a>img,.carousel-inner>.item>img{line-height:1}@media all and (transform-3d),(-webkit-transform-3d){.carousel-inner>.item{-webkit-transition:-webkit-transform .6s ease-in-out;-o-transition:-o-transform .6s ease-in-out;transition:transform .6s ease-in-out;-webkit-backface-visibility:hidden;backface-visibility:hidden;-webkit-perspective:1000px;perspective:1000px}.carousel-inner>.item.active.right,.carousel-inner>.item.next{left:0;-webkit-transform:translate3d(100%,0,0);transform:translate3d(100%,0,0)}.carousel-inner>.item.active.left,.carousel-inner>.item.prev{left:0;-webkit-transform:translate3d(-100%,0,0);transform:translate3d(-100%,0,0)}.carousel-inner>.item.active,.carousel-inner>.item.next.left,.carousel-inner>.item.prev.right{left:0;-webkit-transform:translate3d(0,0,0);transform:translate3d(0,0,0)}}.carousel-inner>.active,.carousel-inner>.next,.carousel-inner>.prev{display:block}.carousel-inner>.active{left:0}.carousel-inner>.next,.carousel-inner>.prev{position:absolute;top:0;width:100%}.carousel-inner>.next{left:100%}.carousel-inner>.prev{left:-100%}.carousel-inner>.next.left,.carousel-inner>.prev.right{left:0}.carousel-inner>.active.left{left:-100%}.carousel-inner>.active.right{left:100%}.carousel-control{position:absolute;top:0;bottom:0;left:0;width:15%;font-size:20px;color:#fff;text-align:center;text-shadow:0 1px 2px rgba(0,0,0,.6);filter:alpha(opacity=50);opacity:.5}.carousel-control.left{background-image:-webkit-linear-gradient(left,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);background-image:-o-linear-gradient(left,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);background-image:-webkit-gradient(linear,left top,right top,from(rgba(0,0,0,.5)),to(rgba(0,0,0,.0001)));background-image:linear-gradient(to right,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#80000000', endColorstr='#00000000', GradientType=1);background-repeat:repeat-x}.carousel-control.right{right:0;left:auto;background-image:-webkit-linear-gradient(left,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);background-image:-o-linear-gradient(left,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);background-image:-webkit-gradient(linear,left top,right top,from(rgba(0,0,0,.0001)),to(rgba(0,0,0,.5)));background-image:linear-gradient(to right,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#00000000', endColorstr='#80000000', GradientType=1);background-repeat:repeat-x}.carousel-control:focus,.carousel-control:hover{color:#fff;text-decoration:none;filter:alpha(opacity=90);outline:0;opacity:.9}.carousel-control .glyphicon-chevron-left,.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next,.carousel-control .icon-prev{position:absolute;top:50%;z-index:5;display:inline-block;margin-top:-10px}.carousel-control .glyphicon-chevron-left,.carousel-control .icon-prev{left:50%;margin-left:-10px}.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next{right:50%;margin-right:-10px}.carousel-control .icon-next,.carousel-control .icon-prev{width:20px;height:20px;font-family:serif;line-height:1}.carousel-control .icon-prev:before{content:'\2039'}.carousel-control .icon-next:before{content:'\203a'}.carousel-indicators{position:absolute;bottom:10px;left:50%;z-index:15;width:60%;padding-left:0;margin-left:-30%;text-align:center;list-style:none}.carousel-indicators li{display:inline-block;width:10px;height:10px;margin:1px;text-indent:-999px;cursor:pointer;background-color:#000\9;background-color:rgba(0,0,0,0);border:1px solid #fff;border-radius:10px}.carousel-indicators .active{width:12px;height:12px;margin:0;background-color:#fff}.carousel-caption{position:absolute;right:15%;bottom:20px;left:15%;z-index:10;padding-top:20px;padding-bottom:20px;color:#fff;text-align:center;text-shadow:0 1px 2px rgba(0,0,0,.6)}.carousel-caption .btn{text-shadow:none}@media screen and (min-width:768px){.carousel-control .glyphicon-chevron-left,.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next,.carousel-control .icon-prev{width:30px;height:30px;margin-top:-15px;font-size:30px}.carousel-control .glyphicon-chevron-left,.carousel-control .icon-prev{margin-left:-15px}.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next{margin-right:-15px}.carousel-caption{right:20%;left:20%;padding-bottom:30px}.carousel-indicators{bottom:20px}}.btn-group-vertical>.btn-group:after,.btn-group-vertical>.btn-group:before,.btn-toolbar:after,.btn-toolbar:before,.clearfix:after,.clearfix:before,.container-fluid:after,.container-fluid:before,.container:after,.container:before,.dl-horizontal dd:after,.dl-horizontal dd:before,.form-horizontal .form-group:after,.form-horizontal .form-group:before,.modal-footer:after,.modal-footer:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.pager:after,.pager:before,.panel-body:after,.panel-body:before,.row:after,.row:before{display:table;content:" "}.btn-group-vertical>.btn-group:after,.btn-toolbar:after,.clearfix:after,.container-fluid:after,.container:after,.dl-horizontal dd:after,.form-horizontal .form-group:after,.modal-footer:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.pager:after,.panel-body:after,.row:after{clear:both}.center-block{display:block;margin-right:auto;margin-left:auto}.pull-right{float:right!important}.pull-left{float:left!important}.hide{display:none!important}.show{display:block!important}.invisible{visibility:hidden}.text-hide{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.hidden{display:none!important}.affix{position:fixed}@-ms-viewport{width:device-width}.visible-lg,.visible-md,.visible-sm,.visible-xs{display:none!important}.visible-lg-block,.visible-lg-inline,.visible-lg-inline-block,.visible-md-block,.visible-md-inline,.visible-md-inline-block,.visible-sm-block,.visible-sm-inline,.visible-sm-inline-block,.visible-xs-block,.visible-xs-inline,.visible-xs-inline-block{display:none!important}@media (max-width:767px){.visible-xs{display:block!important}table.visible-xs{display:table!important}tr.visible-xs{display:table-row!important}td.visible-xs,th.visible-xs{display:table-cell!important}}@media (max-width:767px){.visible-xs-block{display:block!important}}@media (max-width:767px){.visible-xs-inline{display:inline!important}}@media (max-width:767px){.visible-xs-inline-block{display:inline-block!important}}@media (min-width:768px) and (max-width:991px){.visible-sm{display:block!important}table.visible-sm{display:table!important}tr.visible-sm{display:table-row!important}td.visible-sm,th.visible-sm{display:table-cell!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-block{display:block!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-inline{display:inline!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-inline-block{display:inline-block!important}}@media (min-width:992px) and (max-width:1199px){.visible-md{display:block!important}table.visible-md{display:table!important}tr.visible-md{display:table-row!important}td.visible-md,th.visible-md{display:table-cell!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-block{display:block!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-inline{display:inline!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-inline-block{display:inline-block!important}}@media (min-width:1200px){.visible-lg{display:block!important}table.visible-lg{display:table!important}tr.visible-lg{display:table-row!important}td.visible-lg,th.visible-lg{display:table-cell!important}}@media (min-width:1200px){.visible-lg-block{display:block!important}}@media (min-width:1200px){.visible-lg-inline{display:inline!important}}@media (min-width:1200px){.visible-lg-inline-block{display:inline-block!important}}@media (max-width:767px){.hidden-xs{display:none!important}}@media (min-width:768px) and (max-width:991px){.hidden-sm{display:none!important}}@media (min-width:992px) and (max-width:1199px){.hidden-md{display:none!important}}@media (min-width:1200px){.hidden-lg{display:none!important}}.visible-print{display:none!important}@media print{.visible-print{display:block!important}table.visible-print{display:table!important}tr.visible-print{display:table-row!important}td.visible-print,th.visible-print{display:table-cell!important}}.visible-print-block{display:none!important}@media print{.visible-print-block{display:block!important}}.visible-print-inline{display:none!important}@media print{.visible-print-inline{display:inline!important}}.visible-print-inline-block{display:none!important}@media print{.visible-print-inline-block{display:inline-block!important}}@media print{.hidden-print{display:none!important}}
</style>
<script>/*!
 * Bootstrap v3.3.5 (http://getbootstrap.com)
 * Copyright 2011-2015 Twitter, Inc.
 * Licensed under the MIT license
 */
if("undefined"==typeof jQuery)throw new Error("Bootstrap's JavaScript requires jQuery");+function(a){"use strict";var b=a.fn.jquery.split(" ")[0].split(".");if(b[0]<2&&b[1]<9||1==b[0]&&9==b[1]&&b[2]<1)throw new Error("Bootstrap's JavaScript requires jQuery version 1.9.1 or higher")}(jQuery),+function(a){"use strict";function b(){var a=document.createElement("bootstrap"),b={WebkitTransition:"webkitTransitionEnd",MozTransition:"transitionend",OTransition:"oTransitionEnd otransitionend",transition:"transitionend"};for(var c in b)if(void 0!==a.style[c])return{end:b[c]};return!1}a.fn.emulateTransitionEnd=function(b){var c=!1,d=this;a(this).one("bsTransitionEnd",function(){c=!0});var e=function(){c||a(d).trigger(a.support.transition.end)};return setTimeout(e,b),this},a(function(){a.support.transition=b(),a.support.transition&&(a.event.special.bsTransitionEnd={bindType:a.support.transition.end,delegateType:a.support.transition.end,handle:function(b){return a(b.target).is(this)?b.handleObj.handler.apply(this,arguments):void 0}})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var c=a(this),e=c.data("bs.alert");e||c.data("bs.alert",e=new d(this)),"string"==typeof b&&e[b].call(c)})}var c='[data-dismiss="alert"]',d=function(b){a(b).on("click",c,this.close)};d.VERSION="3.3.5",d.TRANSITION_DURATION=150,d.prototype.close=function(b){function c(){g.detach().trigger("closed.bs.alert").remove()}var e=a(this),f=e.attr("data-target");f||(f=e.attr("href"),f=f&&f.replace(/.*(?=#[^\s]*$)/,""));var g=a(f);b&&b.preventDefault(),g.length||(g=e.closest(".alert")),g.trigger(b=a.Event("close.bs.alert")),b.isDefaultPrevented()||(g.removeClass("in"),a.support.transition&&g.hasClass("fade")?g.one("bsTransitionEnd",c).emulateTransitionEnd(d.TRANSITION_DURATION):c())};var e=a.fn.alert;a.fn.alert=b,a.fn.alert.Constructor=d,a.fn.alert.noConflict=function(){return a.fn.alert=e,this},a(document).on("click.bs.alert.data-api",c,d.prototype.close)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.button"),f="object"==typeof b&&b;e||d.data("bs.button",e=new c(this,f)),"toggle"==b?e.toggle():b&&e.setState(b)})}var c=function(b,d){this.$element=a(b),this.options=a.extend({},c.DEFAULTS,d),this.isLoading=!1};c.VERSION="3.3.5",c.DEFAULTS={loadingText:"loading..."},c.prototype.setState=function(b){var c="disabled",d=this.$element,e=d.is("input")?"val":"html",f=d.data();b+="Text",null==f.resetText&&d.data("resetText",d[e]()),setTimeout(a.proxy(function(){d[e](null==f[b]?this.options[b]:f[b]),"loadingText"==b?(this.isLoading=!0,d.addClass(c).attr(c,c)):this.isLoading&&(this.isLoading=!1,d.removeClass(c).removeAttr(c))},this),0)},c.prototype.toggle=function(){var a=!0,b=this.$element.closest('[data-toggle="buttons"]');if(b.length){var c=this.$element.find("input");"radio"==c.prop("type")?(c.prop("checked")&&(a=!1),b.find(".active").removeClass("active"),this.$element.addClass("active")):"checkbox"==c.prop("type")&&(c.prop("checked")!==this.$element.hasClass("active")&&(a=!1),this.$element.toggleClass("active")),c.prop("checked",this.$element.hasClass("active")),a&&c.trigger("change")}else this.$element.attr("aria-pressed",!this.$element.hasClass("active")),this.$element.toggleClass("active")};var d=a.fn.button;a.fn.button=b,a.fn.button.Constructor=c,a.fn.button.noConflict=function(){return a.fn.button=d,this},a(document).on("click.bs.button.data-api",'[data-toggle^="button"]',function(c){var d=a(c.target);d.hasClass("btn")||(d=d.closest(".btn")),b.call(d,"toggle"),a(c.target).is('input[type="radio"]')||a(c.target).is('input[type="checkbox"]')||c.preventDefault()}).on("focus.bs.button.data-api blur.bs.button.data-api",'[data-toggle^="button"]',function(b){a(b.target).closest(".btn").toggleClass("focus",/^focus(in)?$/.test(b.type))})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.carousel"),f=a.extend({},c.DEFAULTS,d.data(),"object"==typeof b&&b),g="string"==typeof b?b:f.slide;e||d.data("bs.carousel",e=new c(this,f)),"number"==typeof b?e.to(b):g?e[g]():f.interval&&e.pause().cycle()})}var c=function(b,c){this.$element=a(b),this.$indicators=this.$element.find(".carousel-indicators"),this.options=c,this.paused=null,this.sliding=null,this.interval=null,this.$active=null,this.$items=null,this.options.keyboard&&this.$element.on("keydown.bs.carousel",a.proxy(this.keydown,this)),"hover"==this.options.pause&&!("ontouchstart"in document.documentElement)&&this.$element.on("mouseenter.bs.carousel",a.proxy(this.pause,this)).on("mouseleave.bs.carousel",a.proxy(this.cycle,this))};c.VERSION="3.3.5",c.TRANSITION_DURATION=600,c.DEFAULTS={interval:5e3,pause:"hover",wrap:!0,keyboard:!0},c.prototype.keydown=function(a){if(!/input|textarea/i.test(a.target.tagName)){switch(a.which){case 37:this.prev();break;case 39:this.next();break;default:return}a.preventDefault()}},c.prototype.cycle=function(b){return b||(this.paused=!1),this.interval&&clearInterval(this.interval),this.options.interval&&!this.paused&&(this.interval=setInterval(a.proxy(this.next,this),this.options.interval)),this},c.prototype.getItemIndex=function(a){return this.$items=a.parent().children(".item"),this.$items.index(a||this.$active)},c.prototype.getItemForDirection=function(a,b){var c=this.getItemIndex(b),d="prev"==a&&0===c||"next"==a&&c==this.$items.length-1;if(d&&!this.options.wrap)return b;var e="prev"==a?-1:1,f=(c+e)%this.$items.length;return this.$items.eq(f)},c.prototype.to=function(a){var b=this,c=this.getItemIndex(this.$active=this.$element.find(".item.active"));return a>this.$items.length-1||0>a?void 0:this.sliding?this.$element.one("slid.bs.carousel",function(){b.to(a)}):c==a?this.pause().cycle():this.slide(a>c?"next":"prev",this.$items.eq(a))},c.prototype.pause=function(b){return b||(this.paused=!0),this.$element.find(".next, .prev").length&&a.support.transition&&(this.$element.trigger(a.support.transition.end),this.cycle(!0)),this.interval=clearInterval(this.interval),this},c.prototype.next=function(){return this.sliding?void 0:this.slide("next")},c.prototype.prev=function(){return this.sliding?void 0:this.slide("prev")},c.prototype.slide=function(b,d){var e=this.$element.find(".item.active"),f=d||this.getItemForDirection(b,e),g=this.interval,h="next"==b?"left":"right",i=this;if(f.hasClass("active"))return this.sliding=!1;var j=f[0],k=a.Event("slide.bs.carousel",{relatedTarget:j,direction:h});if(this.$element.trigger(k),!k.isDefaultPrevented()){if(this.sliding=!0,g&&this.pause(),this.$indicators.length){this.$indicators.find(".active").removeClass("active");var l=a(this.$indicators.children()[this.getItemIndex(f)]);l&&l.addClass("active")}var m=a.Event("slid.bs.carousel",{relatedTarget:j,direction:h});return a.support.transition&&this.$element.hasClass("slide")?(f.addClass(b),f[0].offsetWidth,e.addClass(h),f.addClass(h),e.one("bsTransitionEnd",function(){f.removeClass([b,h].join(" ")).addClass("active"),e.removeClass(["active",h].join(" ")),i.sliding=!1,setTimeout(function(){i.$element.trigger(m)},0)}).emulateTransitionEnd(c.TRANSITION_DURATION)):(e.removeClass("active"),f.addClass("active"),this.sliding=!1,this.$element.trigger(m)),g&&this.cycle(),this}};var d=a.fn.carousel;a.fn.carousel=b,a.fn.carousel.Constructor=c,a.fn.carousel.noConflict=function(){return a.fn.carousel=d,this};var e=function(c){var d,e=a(this),f=a(e.attr("data-target")||(d=e.attr("href"))&&d.replace(/.*(?=#[^\s]+$)/,""));if(f.hasClass("carousel")){var g=a.extend({},f.data(),e.data()),h=e.attr("data-slide-to");h&&(g.interval=!1),b.call(f,g),h&&f.data("bs.carousel").to(h),c.preventDefault()}};a(document).on("click.bs.carousel.data-api","[data-slide]",e).on("click.bs.carousel.data-api","[data-slide-to]",e),a(window).on("load",function(){a('[data-ride="carousel"]').each(function(){var c=a(this);b.call(c,c.data())})})}(jQuery),+function(a){"use strict";function b(b){var c,d=b.attr("data-target")||(c=b.attr("href"))&&c.replace(/.*(?=#[^\s]+$)/,"");return a(d)}function c(b){return this.each(function(){var c=a(this),e=c.data("bs.collapse"),f=a.extend({},d.DEFAULTS,c.data(),"object"==typeof b&&b);!e&&f.toggle&&/show|hide/.test(b)&&(f.toggle=!1),e||c.data("bs.collapse",e=new d(this,f)),"string"==typeof b&&e[b]()})}var d=function(b,c){this.$element=a(b),this.options=a.extend({},d.DEFAULTS,c),this.$trigger=a('[data-toggle="collapse"][href="#'+b.id+'"],[data-toggle="collapse"][data-target="#'+b.id+'"]'),this.transitioning=null,this.options.parent?this.$parent=this.getParent():this.addAriaAndCollapsedClass(this.$element,this.$trigger),this.options.toggle&&this.toggle()};d.VERSION="3.3.5",d.TRANSITION_DURATION=350,d.DEFAULTS={toggle:!0},d.prototype.dimension=function(){var a=this.$element.hasClass("width");return a?"width":"height"},d.prototype.show=function(){if(!this.transitioning&&!this.$element.hasClass("in")){var b,e=this.$parent&&this.$parent.children(".panel").children(".in, .collapsing");if(!(e&&e.length&&(b=e.data("bs.collapse"),b&&b.transitioning))){var f=a.Event("show.bs.collapse");if(this.$element.trigger(f),!f.isDefaultPrevented()){e&&e.length&&(c.call(e,"hide"),b||e.data("bs.collapse",null));var g=this.dimension();this.$element.removeClass("collapse").addClass("collapsing")[g](0).attr("aria-expanded",!0),this.$trigger.removeClass("collapsed").attr("aria-expanded",!0),this.transitioning=1;var h=function(){this.$element.removeClass("collapsing").addClass("collapse in")[g](""),this.transitioning=0,this.$element.trigger("shown.bs.collapse")};if(!a.support.transition)return h.call(this);var i=a.camelCase(["scroll",g].join("-"));this.$element.one("bsTransitionEnd",a.proxy(h,this)).emulateTransitionEnd(d.TRANSITION_DURATION)[g](this.$element[0][i])}}}},d.prototype.hide=function(){if(!this.transitioning&&this.$element.hasClass("in")){var b=a.Event("hide.bs.collapse");if(this.$element.trigger(b),!b.isDefaultPrevented()){var c=this.dimension();this.$element[c](this.$element[c]())[0].offsetHeight,this.$element.addClass("collapsing").removeClass("collapse in").attr("aria-expanded",!1),this.$trigger.addClass("collapsed").attr("aria-expanded",!1),this.transitioning=1;var e=function(){this.transitioning=0,this.$element.removeClass("collapsing").addClass("collapse").trigger("hidden.bs.collapse")};return a.support.transition?void this.$element[c](0).one("bsTransitionEnd",a.proxy(e,this)).emulateTransitionEnd(d.TRANSITION_DURATION):e.call(this)}}},d.prototype.toggle=function(){this[this.$element.hasClass("in")?"hide":"show"]()},d.prototype.getParent=function(){return a(this.options.parent).find('[data-toggle="collapse"][data-parent="'+this.options.parent+'"]').each(a.proxy(function(c,d){var e=a(d);this.addAriaAndCollapsedClass(b(e),e)},this)).end()},d.prototype.addAriaAndCollapsedClass=function(a,b){var c=a.hasClass("in");a.attr("aria-expanded",c),b.toggleClass("collapsed",!c).attr("aria-expanded",c)};var e=a.fn.collapse;a.fn.collapse=c,a.fn.collapse.Constructor=d,a.fn.collapse.noConflict=function(){return a.fn.collapse=e,this},a(document).on("click.bs.collapse.data-api",'[data-toggle="collapse"]',function(d){var e=a(this);e.attr("data-target")||d.preventDefault();var f=b(e),g=f.data("bs.collapse"),h=g?"toggle":e.data();c.call(f,h)})}(jQuery),+function(a){"use strict";function b(b){var c=b.attr("data-target");c||(c=b.attr("href"),c=c&&/#[A-Za-z]/.test(c)&&c.replace(/.*(?=#[^\s]*$)/,""));var d=c&&a(c);return d&&d.length?d:b.parent()}function c(c){c&&3===c.which||(a(e).remove(),a(f).each(function(){var d=a(this),e=b(d),f={relatedTarget:this};e.hasClass("open")&&(c&&"click"==c.type&&/input|textarea/i.test(c.target.tagName)&&a.contains(e[0],c.target)||(e.trigger(c=a.Event("hide.bs.dropdown",f)),c.isDefaultPrevented()||(d.attr("aria-expanded","false"),e.removeClass("open").trigger("hidden.bs.dropdown",f))))}))}function d(b){return this.each(function(){var c=a(this),d=c.data("bs.dropdown");d||c.data("bs.dropdown",d=new g(this)),"string"==typeof b&&d[b].call(c)})}var e=".dropdown-backdrop",f='[data-toggle="dropdown"]',g=function(b){a(b).on("click.bs.dropdown",this.toggle)};g.VERSION="3.3.5",g.prototype.toggle=function(d){var e=a(this);if(!e.is(".disabled, :disabled")){var f=b(e),g=f.hasClass("open");if(c(),!g){"ontouchstart"in document.documentElement&&!f.closest(".navbar-nav").length&&a(document.createElement("div")).addClass("dropdown-backdrop").insertAfter(a(this)).on("click",c);var h={relatedTarget:this};if(f.trigger(d=a.Event("show.bs.dropdown",h)),d.isDefaultPrevented())return;e.trigger("focus").attr("aria-expanded","true"),f.toggleClass("open").trigger("shown.bs.dropdown",h)}return!1}},g.prototype.keydown=function(c){if(/(38|40|27|32)/.test(c.which)&&!/input|textarea/i.test(c.target.tagName)){var d=a(this);if(c.preventDefault(),c.stopPropagation(),!d.is(".disabled, :disabled")){var e=b(d),g=e.hasClass("open");if(!g&&27!=c.which||g&&27==c.which)return 27==c.which&&e.find(f).trigger("focus"),d.trigger("click");var h=" li:not(.disabled):visible a",i=e.find(".dropdown-menu"+h);if(i.length){var j=i.index(c.target);38==c.which&&j>0&&j--,40==c.which&&j<i.length-1&&j++,~j||(j=0),i.eq(j).trigger("focus")}}}};var h=a.fn.dropdown;a.fn.dropdown=d,a.fn.dropdown.Constructor=g,a.fn.dropdown.noConflict=function(){return a.fn.dropdown=h,this},a(document).on("click.bs.dropdown.data-api",c).on("click.bs.dropdown.data-api",".dropdown form",function(a){a.stopPropagation()}).on("click.bs.dropdown.data-api",f,g.prototype.toggle).on("keydown.bs.dropdown.data-api",f,g.prototype.keydown).on("keydown.bs.dropdown.data-api",".dropdown-menu",g.prototype.keydown)}(jQuery),+function(a){"use strict";function b(b,d){return this.each(function(){var e=a(this),f=e.data("bs.modal"),g=a.extend({},c.DEFAULTS,e.data(),"object"==typeof b&&b);f||e.data("bs.modal",f=new c(this,g)),"string"==typeof b?f[b](d):g.show&&f.show(d)})}var c=function(b,c){this.options=c,this.$body=a(document.body),this.$element=a(b),this.$dialog=this.$element.find(".modal-dialog"),this.$backdrop=null,this.isShown=null,this.originalBodyPad=null,this.scrollbarWidth=0,this.ignoreBackdropClick=!1,this.options.remote&&this.$element.find(".modal-content").load(this.options.remote,a.proxy(function(){this.$element.trigger("loaded.bs.modal")},this))};c.VERSION="3.3.5",c.TRANSITION_DURATION=300,c.BACKDROP_TRANSITION_DURATION=150,c.DEFAULTS={backdrop:!0,keyboard:!0,show:!0},c.prototype.toggle=function(a){return this.isShown?this.hide():this.show(a)},c.prototype.show=function(b){var d=this,e=a.Event("show.bs.modal",{relatedTarget:b});this.$element.trigger(e),this.isShown||e.isDefaultPrevented()||(this.isShown=!0,this.checkScrollbar(),this.setScrollbar(),this.$body.addClass("modal-open"),this.escape(),this.resize(),this.$element.on("click.dismiss.bs.modal",'[data-dismiss="modal"]',a.proxy(this.hide,this)),this.$dialog.on("mousedown.dismiss.bs.modal",function(){d.$element.one("mouseup.dismiss.bs.modal",function(b){a(b.target).is(d.$element)&&(d.ignoreBackdropClick=!0)})}),this.backdrop(function(){var e=a.support.transition&&d.$element.hasClass("fade");d.$element.parent().length||d.$element.appendTo(d.$body),d.$element.show().scrollTop(0),d.adjustDialog(),e&&d.$element[0].offsetWidth,d.$element.addClass("in"),d.enforceFocus();var f=a.Event("shown.bs.modal",{relatedTarget:b});e?d.$dialog.one("bsTransitionEnd",function(){d.$element.trigger("focus").trigger(f)}).emulateTransitionEnd(c.TRANSITION_DURATION):d.$element.trigger("focus").trigger(f)}))},c.prototype.hide=function(b){b&&b.preventDefault(),b=a.Event("hide.bs.modal"),this.$element.trigger(b),this.isShown&&!b.isDefaultPrevented()&&(this.isShown=!1,this.escape(),this.resize(),a(document).off("focusin.bs.modal"),this.$element.removeClass("in").off("click.dismiss.bs.modal").off("mouseup.dismiss.bs.modal"),this.$dialog.off("mousedown.dismiss.bs.modal"),a.support.transition&&this.$element.hasClass("fade")?this.$element.one("bsTransitionEnd",a.proxy(this.hideModal,this)).emulateTransitionEnd(c.TRANSITION_DURATION):this.hideModal())},c.prototype.enforceFocus=function(){a(document).off("focusin.bs.modal").on("focusin.bs.modal",a.proxy(function(a){this.$element[0]===a.target||this.$element.has(a.target).length||this.$element.trigger("focus")},this))},c.prototype.escape=function(){this.isShown&&this.options.keyboard?this.$element.on("keydown.dismiss.bs.modal",a.proxy(function(a){27==a.which&&this.hide()},this)):this.isShown||this.$element.off("keydown.dismiss.bs.modal")},c.prototype.resize=function(){this.isShown?a(window).on("resize.bs.modal",a.proxy(this.handleUpdate,this)):a(window).off("resize.bs.modal")},c.prototype.hideModal=function(){var a=this;this.$element.hide(),this.backdrop(function(){a.$body.removeClass("modal-open"),a.resetAdjustments(),a.resetScrollbar(),a.$element.trigger("hidden.bs.modal")})},c.prototype.removeBackdrop=function(){this.$backdrop&&this.$backdrop.remove(),this.$backdrop=null},c.prototype.backdrop=function(b){var d=this,e=this.$element.hasClass("fade")?"fade":"";if(this.isShown&&this.options.backdrop){var f=a.support.transition&&e;if(this.$backdrop=a(document.createElement("div")).addClass("modal-backdrop "+e).appendTo(this.$body),this.$element.on("click.dismiss.bs.modal",a.proxy(function(a){return this.ignoreBackdropClick?void(this.ignoreBackdropClick=!1):void(a.target===a.currentTarget&&("static"==this.options.backdrop?this.$element[0].focus():this.hide()))},this)),f&&this.$backdrop[0].offsetWidth,this.$backdrop.addClass("in"),!b)return;f?this.$backdrop.one("bsTransitionEnd",b).emulateTransitionEnd(c.BACKDROP_TRANSITION_DURATION):b()}else if(!this.isShown&&this.$backdrop){this.$backdrop.removeClass("in");var g=function(){d.removeBackdrop(),b&&b()};a.support.transition&&this.$element.hasClass("fade")?this.$backdrop.one("bsTransitionEnd",g).emulateTransitionEnd(c.BACKDROP_TRANSITION_DURATION):g()}else b&&b()},c.prototype.handleUpdate=function(){this.adjustDialog()},c.prototype.adjustDialog=function(){var a=this.$element[0].scrollHeight>document.documentElement.clientHeight;this.$element.css({paddingLeft:!this.bodyIsOverflowing&&a?this.scrollbarWidth:"",paddingRight:this.bodyIsOverflowing&&!a?this.scrollbarWidth:""})},c.prototype.resetAdjustments=function(){this.$element.css({paddingLeft:"",paddingRight:""})},c.prototype.checkScrollbar=function(){var a=window.innerWidth;if(!a){var b=document.documentElement.getBoundingClientRect();a=b.right-Math.abs(b.left)}this.bodyIsOverflowing=document.body.clientWidth<a,this.scrollbarWidth=this.measureScrollbar()},c.prototype.setScrollbar=function(){var a=parseInt(this.$body.css("padding-right")||0,10);this.originalBodyPad=document.body.style.paddingRight||"",this.bodyIsOverflowing&&this.$body.css("padding-right",a+this.scrollbarWidth)},c.prototype.resetScrollbar=function(){this.$body.css("padding-right",this.originalBodyPad)},c.prototype.measureScrollbar=function(){var a=document.createElement("div");a.className="modal-scrollbar-measure",this.$body.append(a);var b=a.offsetWidth-a.clientWidth;return this.$body[0].removeChild(a),b};var d=a.fn.modal;a.fn.modal=b,a.fn.modal.Constructor=c,a.fn.modal.noConflict=function(){return a.fn.modal=d,this},a(document).on("click.bs.modal.data-api",'[data-toggle="modal"]',function(c){var d=a(this),e=d.attr("href"),f=a(d.attr("data-target")||e&&e.replace(/.*(?=#[^\s]+$)/,"")),g=f.data("bs.modal")?"toggle":a.extend({remote:!/#/.test(e)&&e},f.data(),d.data());d.is("a")&&c.preventDefault(),f.one("show.bs.modal",function(a){a.isDefaultPrevented()||f.one("hidden.bs.modal",function(){d.is(":visible")&&d.trigger("focus")})}),b.call(f,g,this)})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.tooltip"),f="object"==typeof b&&b;(e||!/destroy|hide/.test(b))&&(e||d.data("bs.tooltip",e=new c(this,f)),"string"==typeof b&&e[b]())})}var c=function(a,b){this.type=null,this.options=null,this.enabled=null,this.timeout=null,this.hoverState=null,this.$element=null,this.inState=null,this.init("tooltip",a,b)};c.VERSION="3.3.5",c.TRANSITION_DURATION=150,c.DEFAULTS={animation:!0,placement:"top",selector:!1,template:'<div class="tooltip" role="tooltip"><div class="tooltip-arrow"></div><div class="tooltip-inner"></div></div>',trigger:"hover focus",title:"",delay:0,html:!1,container:!1,viewport:{selector:"body",padding:0}},c.prototype.init=function(b,c,d){if(this.enabled=!0,this.type=b,this.$element=a(c),this.options=this.getOptions(d),this.$viewport=this.options.viewport&&a(a.isFunction(this.options.viewport)?this.options.viewport.call(this,this.$element):this.options.viewport.selector||this.options.viewport),this.inState={click:!1,hover:!1,focus:!1},this.$element[0]instanceof document.constructor&&!this.options.selector)throw new Error("`selector` option must be specified when initializing "+this.type+" on the window.document object!");for(var e=this.options.trigger.split(" "),f=e.length;f--;){var g=e[f];if("click"==g)this.$element.on("click."+this.type,this.options.selector,a.proxy(this.toggle,this));else if("manual"!=g){var h="hover"==g?"mouseenter":"focusin",i="hover"==g?"mouseleave":"focusout";this.$element.on(h+"."+this.type,this.options.selector,a.proxy(this.enter,this)),this.$element.on(i+"."+this.type,this.options.selector,a.proxy(this.leave,this))}}this.options.selector?this._options=a.extend({},this.options,{trigger:"manual",selector:""}):this.fixTitle()},c.prototype.getDefaults=function(){return c.DEFAULTS},c.prototype.getOptions=function(b){return b=a.extend({},this.getDefaults(),this.$element.data(),b),b.delay&&"number"==typeof b.delay&&(b.delay={show:b.delay,hide:b.delay}),b},c.prototype.getDelegateOptions=function(){var b={},c=this.getDefaults();return this._options&&a.each(this._options,function(a,d){c[a]!=d&&(b[a]=d)}),b},c.prototype.enter=function(b){var c=b instanceof this.constructor?b:a(b.currentTarget).data("bs."+this.type);return c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c)),b instanceof a.Event&&(c.inState["focusin"==b.type?"focus":"hover"]=!0),c.tip().hasClass("in")||"in"==c.hoverState?void(c.hoverState="in"):(clearTimeout(c.timeout),c.hoverState="in",c.options.delay&&c.options.delay.show?void(c.timeout=setTimeout(function(){"in"==c.hoverState&&c.show()},c.options.delay.show)):c.show())},c.prototype.isInStateTrue=function(){for(var a in this.inState)if(this.inState[a])return!0;return!1},c.prototype.leave=function(b){var c=b instanceof this.constructor?b:a(b.currentTarget).data("bs."+this.type);return c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c)),b instanceof a.Event&&(c.inState["focusout"==b.type?"focus":"hover"]=!1),c.isInStateTrue()?void 0:(clearTimeout(c.timeout),c.hoverState="out",c.options.delay&&c.options.delay.hide?void(c.timeout=setTimeout(function(){"out"==c.hoverState&&c.hide()},c.options.delay.hide)):c.hide())},c.prototype.show=function(){var b=a.Event("show.bs."+this.type);if(this.hasContent()&&this.enabled){this.$element.trigger(b);var d=a.contains(this.$element[0].ownerDocument.documentElement,this.$element[0]);if(b.isDefaultPrevented()||!d)return;var e=this,f=this.tip(),g=this.getUID(this.type);this.setContent(),f.attr("id",g),this.$element.attr("aria-describedby",g),this.options.animation&&f.addClass("fade");var h="function"==typeof this.options.placement?this.options.placement.call(this,f[0],this.$element[0]):this.options.placement,i=/\s?auto?\s?/i,j=i.test(h);j&&(h=h.replace(i,"")||"top"),f.detach().css({top:0,left:0,display:"block"}).addClass(h).data("bs."+this.type,this),this.options.container?f.appendTo(this.options.container):f.insertAfter(this.$element),this.$element.trigger("inserted.bs."+this.type);var k=this.getPosition(),l=f[0].offsetWidth,m=f[0].offsetHeight;if(j){var n=h,o=this.getPosition(this.$viewport);h="bottom"==h&&k.bottom+m>o.bottom?"top":"top"==h&&k.top-m<o.top?"bottom":"right"==h&&k.right+l>o.width?"left":"left"==h&&k.left-l<o.left?"right":h,f.removeClass(n).addClass(h)}var p=this.getCalculatedOffset(h,k,l,m);this.applyPlacement(p,h);var q=function(){var a=e.hoverState;e.$element.trigger("shown.bs."+e.type),e.hoverState=null,"out"==a&&e.leave(e)};a.support.transition&&this.$tip.hasClass("fade")?f.one("bsTransitionEnd",q).emulateTransitionEnd(c.TRANSITION_DURATION):q()}},c.prototype.applyPlacement=function(b,c){var d=this.tip(),e=d[0].offsetWidth,f=d[0].offsetHeight,g=parseInt(d.css("margin-top"),10),h=parseInt(d.css("margin-left"),10);isNaN(g)&&(g=0),isNaN(h)&&(h=0),b.top+=g,b.left+=h,a.offset.setOffset(d[0],a.extend({using:function(a){d.css({top:Math.round(a.top),left:Math.round(a.left)})}},b),0),d.addClass("in");var i=d[0].offsetWidth,j=d[0].offsetHeight;"top"==c&&j!=f&&(b.top=b.top+f-j);var k=this.getViewportAdjustedDelta(c,b,i,j);k.left?b.left+=k.left:b.top+=k.top;var l=/top|bottom/.test(c),m=l?2*k.left-e+i:2*k.top-f+j,n=l?"offsetWidth":"offsetHeight";d.offset(b),this.replaceArrow(m,d[0][n],l)},c.prototype.replaceArrow=function(a,b,c){this.arrow().css(c?"left":"top",50*(1-a/b)+"%").css(c?"top":"left","")},c.prototype.setContent=function(){var a=this.tip(),b=this.getTitle();a.find(".tooltip-inner")[this.options.html?"html":"text"](b),a.removeClass("fade in top bottom left right")},c.prototype.hide=function(b){function d(){"in"!=e.hoverState&&f.detach(),e.$element.removeAttr("aria-describedby").trigger("hidden.bs."+e.type),b&&b()}var e=this,f=a(this.$tip),g=a.Event("hide.bs."+this.type);return this.$element.trigger(g),g.isDefaultPrevented()?void 0:(f.removeClass("in"),a.support.transition&&f.hasClass("fade")?f.one("bsTransitionEnd",d).emulateTransitionEnd(c.TRANSITION_DURATION):d(),this.hoverState=null,this)},c.prototype.fixTitle=function(){var a=this.$element;(a.attr("title")||"string"!=typeof a.attr("data-original-title"))&&a.attr("data-original-title",a.attr("title")||"").attr("title","")},c.prototype.hasContent=function(){return this.getTitle()},c.prototype.getPosition=function(b){b=b||this.$element;var c=b[0],d="BODY"==c.tagName,e=c.getBoundingClientRect();null==e.width&&(e=a.extend({},e,{width:e.right-e.left,height:e.bottom-e.top}));var f=d?{top:0,left:0}:b.offset(),g={scroll:d?document.documentElement.scrollTop||document.body.scrollTop:b.scrollTop()},h=d?{width:a(window).width(),height:a(window).height()}:null;return a.extend({},e,g,h,f)},c.prototype.getCalculatedOffset=function(a,b,c,d){return"bottom"==a?{top:b.top+b.height,left:b.left+b.width/2-c/2}:"top"==a?{top:b.top-d,left:b.left+b.width/2-c/2}:"left"==a?{top:b.top+b.height/2-d/2,left:b.left-c}:{top:b.top+b.height/2-d/2,left:b.left+b.width}},c.prototype.getViewportAdjustedDelta=function(a,b,c,d){var e={top:0,left:0};if(!this.$viewport)return e;var f=this.options.viewport&&this.options.viewport.padding||0,g=this.getPosition(this.$viewport);if(/right|left/.test(a)){var h=b.top-f-g.scroll,i=b.top+f-g.scroll+d;h<g.top?e.top=g.top-h:i>g.top+g.height&&(e.top=g.top+g.height-i)}else{var j=b.left-f,k=b.left+f+c;j<g.left?e.left=g.left-j:k>g.right&&(e.left=g.left+g.width-k)}return e},c.prototype.getTitle=function(){var a,b=this.$element,c=this.options;return a=b.attr("data-original-title")||("function"==typeof c.title?c.title.call(b[0]):c.title)},c.prototype.getUID=function(a){do a+=~~(1e6*Math.random());while(document.getElementById(a));return a},c.prototype.tip=function(){if(!this.$tip&&(this.$tip=a(this.options.template),1!=this.$tip.length))throw new Error(this.type+" `template` option must consist of exactly 1 top-level element!");return this.$tip},c.prototype.arrow=function(){return this.$arrow=this.$arrow||this.tip().find(".tooltip-arrow")},c.prototype.enable=function(){this.enabled=!0},c.prototype.disable=function(){this.enabled=!1},c.prototype.toggleEnabled=function(){this.enabled=!this.enabled},c.prototype.toggle=function(b){var c=this;b&&(c=a(b.currentTarget).data("bs."+this.type),c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c))),b?(c.inState.click=!c.inState.click,c.isInStateTrue()?c.enter(c):c.leave(c)):c.tip().hasClass("in")?c.leave(c):c.enter(c)},c.prototype.destroy=function(){var a=this;clearTimeout(this.timeout),this.hide(function(){a.$element.off("."+a.type).removeData("bs."+a.type),a.$tip&&a.$tip.detach(),a.$tip=null,a.$arrow=null,a.$viewport=null})};var d=a.fn.tooltip;a.fn.tooltip=b,a.fn.tooltip.Constructor=c,a.fn.tooltip.noConflict=function(){return a.fn.tooltip=d,this}}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.popover"),f="object"==typeof b&&b;(e||!/destroy|hide/.test(b))&&(e||d.data("bs.popover",e=new c(this,f)),"string"==typeof b&&e[b]())})}var c=function(a,b){this.init("popover",a,b)};if(!a.fn.tooltip)throw new Error("Popover requires tooltip.js");c.VERSION="3.3.5",c.DEFAULTS=a.extend({},a.fn.tooltip.Constructor.DEFAULTS,{placement:"right",trigger:"click",content:"",template:'<div class="popover" role="tooltip"><div class="arrow"></div><h3 class="popover-title"></h3><div class="popover-content"></div></div>'}),c.prototype=a.extend({},a.fn.tooltip.Constructor.prototype),c.prototype.constructor=c,c.prototype.getDefaults=function(){return c.DEFAULTS},c.prototype.setContent=function(){var a=this.tip(),b=this.getTitle(),c=this.getContent();a.find(".popover-title")[this.options.html?"html":"text"](b),a.find(".popover-content").children().detach().end()[this.options.html?"string"==typeof c?"html":"append":"text"](c),a.removeClass("fade top bottom left right in"),a.find(".popover-title").html()||a.find(".popover-title").hide()},c.prototype.hasContent=function(){return this.getTitle()||this.getContent()},c.prototype.getContent=function(){var a=this.$element,b=this.options;return a.attr("data-content")||("function"==typeof b.content?b.content.call(a[0]):b.content)},c.prototype.arrow=function(){return this.$arrow=this.$arrow||this.tip().find(".arrow")};var d=a.fn.popover;a.fn.popover=b,a.fn.popover.Constructor=c,a.fn.popover.noConflict=function(){return a.fn.popover=d,this}}(jQuery),+function(a){"use strict";function b(c,d){this.$body=a(document.body),this.$scrollElement=a(a(c).is(document.body)?window:c),this.options=a.extend({},b.DEFAULTS,d),this.selector=(this.options.target||"")+" .nav li > a",this.offsets=[],this.targets=[],this.activeTarget=null,this.scrollHeight=0,this.$scrollElement.on("scroll.bs.scrollspy",a.proxy(this.process,this)),this.refresh(),this.process()}function c(c){return this.each(function(){var d=a(this),e=d.data("bs.scrollspy"),f="object"==typeof c&&c;e||d.data("bs.scrollspy",e=new b(this,f)),"string"==typeof c&&e[c]()})}b.VERSION="3.3.5",b.DEFAULTS={offset:10},b.prototype.getScrollHeight=function(){return this.$scrollElement[0].scrollHeight||Math.max(this.$body[0].scrollHeight,document.documentElement.scrollHeight)},b.prototype.refresh=function(){var b=this,c="offset",d=0;this.offsets=[],this.targets=[],this.scrollHeight=this.getScrollHeight(),a.isWindow(this.$scrollElement[0])||(c="position",d=this.$scrollElement.scrollTop()),this.$body.find(this.selector).map(function(){var b=a(this),e=b.data("target")||b.attr("href"),f=/^#./.test(e)&&a(e);return f&&f.length&&f.is(":visible")&&[[f[c]().top+d,e]]||null}).sort(function(a,b){return a[0]-b[0]}).each(function(){b.offsets.push(this[0]),b.targets.push(this[1])})},b.prototype.process=function(){var a,b=this.$scrollElement.scrollTop()+this.options.offset,c=this.getScrollHeight(),d=this.options.offset+c-this.$scrollElement.height(),e=this.offsets,f=this.targets,g=this.activeTarget;if(this.scrollHeight!=c&&this.refresh(),b>=d)return g!=(a=f[f.length-1])&&this.activate(a);if(g&&b<e[0])return this.activeTarget=null,this.clear();for(a=e.length;a--;)g!=f[a]&&b>=e[a]&&(void 0===e[a+1]||b<e[a+1])&&this.activate(f[a])},b.prototype.activate=function(b){this.activeTarget=b,this.clear();var c=this.selector+'[data-target="'+b+'"],'+this.selector+'[href="'+b+'"]',d=a(c).parents("li").addClass("active");d.parent(".dropdown-menu").length&&(d=d.closest("li.dropdown").addClass("active")),
d.trigger("activate.bs.scrollspy")},b.prototype.clear=function(){a(this.selector).parentsUntil(this.options.target,".active").removeClass("active")};var d=a.fn.scrollspy;a.fn.scrollspy=c,a.fn.scrollspy.Constructor=b,a.fn.scrollspy.noConflict=function(){return a.fn.scrollspy=d,this},a(window).on("load.bs.scrollspy.data-api",function(){a('[data-spy="scroll"]').each(function(){var b=a(this);c.call(b,b.data())})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.tab");e||d.data("bs.tab",e=new c(this)),"string"==typeof b&&e[b]()})}var c=function(b){this.element=a(b)};c.VERSION="3.3.5",c.TRANSITION_DURATION=150,c.prototype.show=function(){var b=this.element,c=b.closest("ul:not(.dropdown-menu)"),d=b.data("target");if(d||(d=b.attr("href"),d=d&&d.replace(/.*(?=#[^\s]*$)/,"")),!b.parent("li").hasClass("active")){var e=c.find(".active:last a"),f=a.Event("hide.bs.tab",{relatedTarget:b[0]}),g=a.Event("show.bs.tab",{relatedTarget:e[0]});if(e.trigger(f),b.trigger(g),!g.isDefaultPrevented()&&!f.isDefaultPrevented()){var h=a(d);this.activate(b.closest("li"),c),this.activate(h,h.parent(),function(){e.trigger({type:"hidden.bs.tab",relatedTarget:b[0]}),b.trigger({type:"shown.bs.tab",relatedTarget:e[0]})})}}},c.prototype.activate=function(b,d,e){function f(){g.removeClass("active").find("> .dropdown-menu > .active").removeClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!1),b.addClass("active").find('[data-toggle="tab"]').attr("aria-expanded",!0),h?(b[0].offsetWidth,b.addClass("in")):b.removeClass("fade"),b.parent(".dropdown-menu").length&&b.closest("li.dropdown").addClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!0),e&&e()}var g=d.find("> .active"),h=e&&a.support.transition&&(g.length&&g.hasClass("fade")||!!d.find("> .fade").length);g.length&&h?g.one("bsTransitionEnd",f).emulateTransitionEnd(c.TRANSITION_DURATION):f(),g.removeClass("in")};var d=a.fn.tab;a.fn.tab=b,a.fn.tab.Constructor=c,a.fn.tab.noConflict=function(){return a.fn.tab=d,this};var e=function(c){c.preventDefault(),b.call(a(this),"show")};a(document).on("click.bs.tab.data-api",'[data-toggle="tab"]',e).on("click.bs.tab.data-api",'[data-toggle="pill"]',e)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.affix"),f="object"==typeof b&&b;e||d.data("bs.affix",e=new c(this,f)),"string"==typeof b&&e[b]()})}var c=function(b,d){this.options=a.extend({},c.DEFAULTS,d),this.$target=a(this.options.target).on("scroll.bs.affix.data-api",a.proxy(this.checkPosition,this)).on("click.bs.affix.data-api",a.proxy(this.checkPositionWithEventLoop,this)),this.$element=a(b),this.affixed=null,this.unpin=null,this.pinnedOffset=null,this.checkPosition()};c.VERSION="3.3.5",c.RESET="affix affix-top affix-bottom",c.DEFAULTS={offset:0,target:window},c.prototype.getState=function(a,b,c,d){var e=this.$target.scrollTop(),f=this.$element.offset(),g=this.$target.height();if(null!=c&&"top"==this.affixed)return c>e?"top":!1;if("bottom"==this.affixed)return null!=c?e+this.unpin<=f.top?!1:"bottom":a-d>=e+g?!1:"bottom";var h=null==this.affixed,i=h?e:f.top,j=h?g:b;return null!=c&&c>=e?"top":null!=d&&i+j>=a-d?"bottom":!1},c.prototype.getPinnedOffset=function(){if(this.pinnedOffset)return this.pinnedOffset;this.$element.removeClass(c.RESET).addClass("affix");var a=this.$target.scrollTop(),b=this.$element.offset();return this.pinnedOffset=b.top-a},c.prototype.checkPositionWithEventLoop=function(){setTimeout(a.proxy(this.checkPosition,this),1)},c.prototype.checkPosition=function(){if(this.$element.is(":visible")){var b=this.$element.height(),d=this.options.offset,e=d.top,f=d.bottom,g=Math.max(a(document).height(),a(document.body).height());"object"!=typeof d&&(f=e=d),"function"==typeof e&&(e=d.top(this.$element)),"function"==typeof f&&(f=d.bottom(this.$element));var h=this.getState(g,b,e,f);if(this.affixed!=h){null!=this.unpin&&this.$element.css("top","");var i="affix"+(h?"-"+h:""),j=a.Event(i+".bs.affix");if(this.$element.trigger(j),j.isDefaultPrevented())return;this.affixed=h,this.unpin="bottom"==h?this.getPinnedOffset():null,this.$element.removeClass(c.RESET).addClass(i).trigger(i.replace("affix","affixed")+".bs.affix")}"bottom"==h&&this.$element.offset({top:g-b-f})}};var d=a.fn.affix;a.fn.affix=b,a.fn.affix.Constructor=c,a.fn.affix.noConflict=function(){return a.fn.affix=d,this},a(window).on("load",function(){a('[data-spy="affix"]').each(function(){var c=a(this),d=c.data();d.offset=d.offset||{},null!=d.offsetBottom&&(d.offset.bottom=d.offsetBottom),null!=d.offsetTop&&(d.offset.top=d.offsetTop),b.call(c,d)})})}(jQuery);</script>
<script>/**
* @preserve HTML5 Shiv 3.7.2 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
*/
// Only run this code in IE 8
if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.2",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b)}(this,document);
};
</script>
<script>/*! Respond.js v1.4.2: min/max-width media query polyfill * Copyright 2013 Scott Jehl
 * Licensed under https://github.com/scottjehl/Respond/blob/master/LICENSE-MIT
 *  */

// Only run this code in IE 8
if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a){"use strict";a.matchMedia=a.matchMedia||function(a){var b,c=a.documentElement,d=c.firstElementChild||c.firstChild,e=a.createElement("body"),f=a.createElement("div");return f.id="mq-test-1",f.style.cssText="position:absolute;top:-100em",e.style.background="none",e.appendChild(f),function(a){return f.innerHTML='&shy;<style media="'+a+'"> #mq-test-1 { width: 42px; }</style>',c.insertBefore(e,d),b=42===f.offsetWidth,c.removeChild(e),{matches:b,media:a}}}(a.document)}(this),function(a){"use strict";function b(){u(!0)}var c={};a.respond=c,c.update=function(){};var d=[],e=function(){var b=!1;try{b=new a.XMLHttpRequest}catch(c){b=new a.ActiveXObject("Microsoft.XMLHTTP")}return function(){return b}}(),f=function(a,b){var c=e();c&&(c.open("GET",a,!0),c.onreadystatechange=function(){4!==c.readyState||200!==c.status&&304!==c.status||b(c.responseText)},4!==c.readyState&&c.send(null))};if(c.ajax=f,c.queue=d,c.regex={media:/@media[^\{]+\{([^\{\}]*\{[^\}\{]*\})+/gi,keyframes:/@(?:\-(?:o|moz|webkit)\-)?keyframes[^\{]+\{(?:[^\{\}]*\{[^\}\{]*\})+[^\}]*\}/gi,urls:/(url\()['"]?([^\/\)'"][^:\)'"]+)['"]?(\))/g,findStyles:/@media *([^\{]+)\{([\S\s]+?)$/,only:/(only\s+)?([a-zA-Z]+)\s?/,minw:/\([\s]*min\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/,maxw:/\([\s]*max\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/},c.mediaQueriesSupported=a.matchMedia&&null!==a.matchMedia("only all")&&a.matchMedia("only all").matches,!c.mediaQueriesSupported){var g,h,i,j=a.document,k=j.documentElement,l=[],m=[],n=[],o={},p=30,q=j.getElementsByTagName("head")[0]||k,r=j.getElementsByTagName("base")[0],s=q.getElementsByTagName("link"),t=function(){var a,b=j.createElement("div"),c=j.body,d=k.style.fontSize,e=c&&c.style.fontSize,f=!1;return b.style.cssText="position:absolute;font-size:1em;width:1em",c||(c=f=j.createElement("body"),c.style.background="none"),k.style.fontSize="100%",c.style.fontSize="100%",c.appendChild(b),f&&k.insertBefore(c,k.firstChild),a=b.offsetWidth,f?k.removeChild(c):c.removeChild(b),k.style.fontSize=d,e&&(c.style.fontSize=e),a=i=parseFloat(a)},u=function(b){var c="clientWidth",d=k[c],e="CSS1Compat"===j.compatMode&&d||j.body[c]||d,f={},o=s[s.length-1],r=(new Date).getTime();if(b&&g&&p>r-g)return a.clearTimeout(h),h=a.setTimeout(u,p),void 0;g=r;for(var v in l)if(l.hasOwnProperty(v)){var w=l[v],x=w.minw,y=w.maxw,z=null===x,A=null===y,B="em";x&&(x=parseFloat(x)*(x.indexOf(B)>-1?i||t():1)),y&&(y=parseFloat(y)*(y.indexOf(B)>-1?i||t():1)),w.hasquery&&(z&&A||!(z||e>=x)||!(A||y>=e))||(f[w.media]||(f[w.media]=[]),f[w.media].push(m[w.rules]))}for(var C in n)n.hasOwnProperty(C)&&n[C]&&n[C].parentNode===q&&q.removeChild(n[C]);n.length=0;for(var D in f)if(f.hasOwnProperty(D)){var E=j.createElement("style"),F=f[D].join("\n");E.type="text/css",E.media=D,q.insertBefore(E,o.nextSibling),E.styleSheet?E.styleSheet.cssText=F:E.appendChild(j.createTextNode(F)),n.push(E)}},v=function(a,b,d){var e=a.replace(c.regex.keyframes,"").match(c.regex.media),f=e&&e.length||0;b=b.substring(0,b.lastIndexOf("/"));var g=function(a){return a.replace(c.regex.urls,"$1"+b+"$2$3")},h=!f&&d;b.length&&(b+="/"),h&&(f=1);for(var i=0;f>i;i++){var j,k,n,o;h?(j=d,m.push(g(a))):(j=e[i].match(c.regex.findStyles)&&RegExp.$1,m.push(RegExp.$2&&g(RegExp.$2))),n=j.split(","),o=n.length;for(var p=0;o>p;p++)k=n[p],l.push({media:k.split("(")[0].match(c.regex.only)&&RegExp.$2||"all",rules:m.length-1,hasquery:k.indexOf("(")>-1,minw:k.match(c.regex.minw)&&parseFloat(RegExp.$1)+(RegExp.$2||""),maxw:k.match(c.regex.maxw)&&parseFloat(RegExp.$1)+(RegExp.$2||"")})}u()},w=function(){if(d.length){var b=d.shift();f(b.href,function(c){v(c,b.href,b.media),o[b.href]=!0,a.setTimeout(function(){w()},0)})}},x=function(){for(var b=0;b<s.length;b++){var c=s[b],e=c.href,f=c.media,g=c.rel&&"stylesheet"===c.rel.toLowerCase();e&&g&&!o[e]&&(c.styleSheet&&c.styleSheet.rawCssText?(v(c.styleSheet.rawCssText,e,f),o[e]=!0):(!/^([a-zA-Z:]*\/\/)/.test(e)&&!r||e.replace(RegExp.$1,"").split("/")[0]===a.location.host)&&("//"===e.substring(0,2)&&(e=a.location.protocol+e),d.push({href:e,media:f})))}w()};x(),c.update=x,c.getEmValue=t,a.addEventListener?a.addEventListener("resize",b,!1):a.attachEvent&&a.attachEvent("onresize",b)}}(this);
};
</script>
<style type="text/css">.pagedtable {
overflow: auto;
padding-left: 8px;
padding-right: 8px;
}
.pagedtable-wrapper {
border: 1px solid #ccc;
border-radius: 4px;
margin-bottom: 10px;
}
.pagedtable table {
width: 100%;
max-width: 100%;
margin: 0;
}
.pagedtable th {
padding: 0 5px 0 5px;
border: none;
border-bottom: 2px solid #dddddd;
min-width: 45px;
}
.pagedtable-empty th {
display: none;
}
.pagedtable td {
padding: 0 4px 0 4px;
}
.pagedtable .even {
background-color: rgba(140, 140, 140, 0.1);
}
.pagedtable-padding-col {
display: none;
}
.pagedtable a {
-webkit-touch-callout: none;
-webkit-user-select: none;
-khtml-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.pagedtable-index-nav {
cursor: pointer;
padding: 0 5px 0 5px;
float: right;
border: 0;
}
.pagedtable-index-nav-disabled {
cursor: default;
text-decoration: none;
color: #999;
}
a.pagedtable-index-nav-disabled:hover {
text-decoration: none;
color: #999;
}
.pagedtable-indexes {
cursor: pointer;
float: right;
border: 0;
}
.pagedtable-index-current {
cursor: default;
text-decoration: none;
font-weight: bold;
color: #333;
border: 0;
}
a.pagedtable-index-current:hover {
text-decoration: none;
font-weight: bold;
color: #333;
}
.pagedtable-index {
width: 30px;
display: inline-block;
text-align: center;
border: 0;
}
.pagedtable-index-separator-left {
display: inline-block;
color: #333;
font-size: 9px;
padding: 0 0 0 0;
cursor: default;
}
.pagedtable-index-separator-right {
display: inline-block;
color: #333;
font-size: 9px;
padding: 0 4px 0 0;
cursor: default;
}
.pagedtable-footer {
padding-top: 4px;
padding-bottom: 5px;
}
.pagedtable-not-empty .pagedtable-footer {
border-top: 2px solid #dddddd;
}
.pagedtable-info {
overflow: hidden;
color: #999;
white-space: nowrap;
text-overflow: ellipsis;
}
.pagedtable-header-name {
overflow: hidden;
text-overflow: ellipsis;
}
.pagedtable-header-type {
color: #999;
font-weight: 400;
}
.pagedtable-na-cell {
font-style: italic;
opacity: 0.3;
}
</style>
<script>// Production steps of ECMA-262, Edition 5, 15.4.4.18
// Reference: http://es5.github.io/#x15.4.4.18
if (!Array.prototype.forEach) {

  Array.prototype.forEach = function(callback, thisArg) {

    var T, k;

    if (this === null) {
      throw new TypeError(' this is null or not defined');
    }

    // 1. Let O be the result of calling toObject() passing the
    // |this| value as the argument.
    var O = Object(this);

    // 2. Let lenValue be the result of calling the Get() internal
    // method of O with the argument "length".
    // 3. Let len be toUint32(lenValue).
    var len = O.length >>> 0;

    // 4. If isCallable(callback) is false, throw a TypeError exception.
    // See: http://es5.github.com/#x9.11
    if (typeof callback !== "function") {
      throw new TypeError(callback + ' is not a function');
    }

    // 5. If thisArg was supplied, let T be thisArg; else let
    // T be undefined.
    if (arguments.length > 1) {
      T = thisArg;
    }

    // 6. Let k be 0
    k = 0;

    // 7. Repeat, while k < len
    while (k < len) {

      var kValue;

      // a. Let Pk be ToString(k).
      //    This is implicit for LHS operands of the in operator
      // b. Let kPresent be the result of calling the HasProperty
      //    internal method of O with argument Pk.
      //    This step can be combined with c
      // c. If kPresent is true, then
      if (k in O) {

        // i. Let kValue be the result of calling the Get internal
        // method of O with argument Pk.
        kValue = O[k];

        // ii. Call the Call internal method of callback with T as
        // the this value and argument list containing kValue, k, and O.
        callback.call(T, kValue, k, O);
      }
      // d. Increase k by 1.
      k++;
    }
    // 8. return undefined
  };
}

// Production steps of ECMA-262, Edition 5, 15.4.4.19
// Reference: http://es5.github.io/#x15.4.4.19
if (!Array.prototype.map) {

  Array.prototype.map = function(callback, thisArg) {

    var T, A, k;

    if (this == null) {
      throw new TypeError(' this is null or not defined');
    }

    // 1. Let O be the result of calling ToObject passing the |this|
    //    value as the argument.
    var O = Object(this);

    // 2. Let lenValue be the result of calling the Get internal
    //    method of O with the argument "length".
    // 3. Let len be ToUint32(lenValue).
    var len = O.length >>> 0;

    // 4. If IsCallable(callback) is false, throw a TypeError exception.
    // See: http://es5.github.com/#x9.11
    if (typeof callback !== 'function') {
      throw new TypeError(callback + ' is not a function');
    }

    // 5. If thisArg was supplied, let T be thisArg; else let T be undefined.
    if (arguments.length > 1) {
      T = thisArg;
    }

    // 6. Let A be a new array created as if by the expression new Array(len)
    //    where Array is the standard built-in constructor with that name and
    //    len is the value of len.
    A = new Array(len);

    // 7. Let k be 0
    k = 0;

    // 8. Repeat, while k < len
    while (k < len) {

      var kValue, mappedValue;

      // a. Let Pk be ToString(k).
      //   This is implicit for LHS operands of the in operator
      // b. Let kPresent be the result of calling the HasProperty internal
      //    method of O with argument Pk.
      //   This step can be combined with c
      // c. If kPresent is true, then
      if (k in O) {

        // i. Let kValue be the result of calling the Get internal
        //    method of O with argument Pk.
        kValue = O[k];

        // ii. Let mappedValue be the result of calling the Call internal
        //     method of callback with T as the this value and argument
        //     list containing kValue, k, and O.
        mappedValue = callback.call(T, kValue, k, O);

        // iii. Call the DefineOwnProperty internal method of A with arguments
        // Pk, Property Descriptor
        // { Value: mappedValue,
        //   Writable: true,
        //   Enumerable: true,
        //   Configurable: true },
        // and false.

        // In browsers that support Object.defineProperty, use the following:
        // Object.defineProperty(A, k, {
        //   value: mappedValue,
        //   writable: true,
        //   enumerable: true,
        //   configurable: true
        // });

        // For best browser support, use the following:
        A[k] = mappedValue;
      }
      // d. Increase k by 1.
      k++;
    }

    // 9. return A
    return A;
  };
}

var PagedTable = function (pagedTable) {
  var me = this;

  var source = function(pagedTable) {
    var sourceElems = [].slice.call(pagedTable.children).filter(function(e) {
      return e.hasAttribute("data-pagedtable-source");
    });

    if (sourceElems === null || sourceElems.length !== 1) {
      throw("A single data-pagedtable-source was not found");
    }

    return JSON.parse(sourceElems[0].innerHTML);
  }(pagedTable);

  var options = function(source) {
    var options = typeof(source.options) !== "undefined" &&
      source.options !== null ? source.options : {};

    var columns = typeof(options.columns) !== "undefined" ? options.columns : {};
    var rows = typeof(options.rows) !== "undefined" ? options.rows : {};

    var positiveIntOrNull = function(value) {
      return parseInt(value) >= 0 ? parseInt(value) : null;
    };

    return {
      pages: positiveIntOrNull(options.pages),
      rows: {
        min: positiveIntOrNull(rows.min),
        max: positiveIntOrNull(rows.max),
        total: positiveIntOrNull(rows.total)
      },
      columns: {
        min: positiveIntOrNull(columns.min),
        max: positiveIntOrNull(columns.max),
        total: positiveIntOrNull(columns.total)
      }
    };
  }(source);

  var Measurer = function() {

    // set some default initial values that will get adjusted in runtime
    me.measures = {
      padding: 12,
      character: 8,
      height: 15,
      defaults: true
    };

    me.calculate = function(measuresCell) {
      if (!me.measures.defaults)
        return;

      var measuresCellStyle = window.getComputedStyle(measuresCell, null);

      var newPadding = parsePadding(measuresCellStyle.paddingLeft) +
            parsePadding(measuresCellStyle.paddingRight);

      var sampleString = "ABCDEFGHIJ0123456789";
      var newCharacter = Math.ceil(measuresCell.clientWidth / sampleString.length);

      if (newPadding <= 0 || newCharacter <= 0)
        return;

      me.measures.padding = newPadding;
      me.measures.character = newCharacter;
      me.measures.height = measuresCell.clientHeight;
      me.measures.defaults = false;
    };

    return me;
  };

  var Page = function(data, options) {
    var me = this;

    var defaults = {
      max: 7,
      rows: 10
    };

    var totalPages = function() {
      return Math.ceil(data.length / me.rows);
    };

    me.number = 0;
    me.max = options.pages !== null ? options.pages : defaults.max;
    me.visible = me.max;
    me.rows = options.rows.min !== null ? options.rows.min : defaults.rows;
    me.total = totalPages();

    me.setRows = function(newRows) {
      me.rows = newRows;
      me.total = totalPages();
    };

    me.setPageNumber = function(newPageNumber) {
      if (newPageNumber < 0) newPageNumber = 0;
      if (newPageNumber >= me.total) newPageNumber = me.total - 1;

      me.number = newPageNumber;
    };

    me.setVisiblePages = function(visiblePages) {
      me.visible = Math.min(me.max, visiblePages);
      me.setPageNumber(me.number);
    };

    me.getVisiblePageRange = function() {
      var start = me.number - Math.max(Math.floor((me.visible - 1) / 2), 0);
      var end = me.number + Math.floor(me.visible / 2) + 1;
      var pageCount = me.total;

      if (start < 0) {
        var diffToStart = 0 - start;
        start += diffToStart;
        end += diffToStart;
      }

      if (end > pageCount) {
        var diffToEnd = end - pageCount;
        start -= diffToEnd;
        end -= diffToEnd;
      }

      start = start < 0 ? 0 : start;
      end = end >= pageCount ? pageCount : end;

      var first = false;
      var last = false;

      if (start > 0 && me.visible > 1) {
        start = start + 1;
        first = true;
      }

      if (end < pageCount && me.visible > 2) {
        end = end - 1;
        last = true;
      }

      return {
        first: first,
        start: start,
        end: end,
        last: last
      };
    };

    me.getRowStart = function() {
      var rowStart = page.number * page.rows;
      if (rowStart < 0)
        rowStart = 0;

      return rowStart;
    };

    me.getRowEnd = function() {
      var rowStart = me.getRowStart();
      return Math.min(rowStart + me.rows, data.length);
    };

    me.getPaddingRows = function() {
      var rowStart = me.getRowStart();
      var rowEnd = me.getRowEnd();
      return data.length > me.rows ? me.rows - (rowEnd - rowStart) : 0;
    };
  };

  var Columns = function(data, columns, options) {
    var me = this;

    me.defaults = {
      min: 5
    };

    me.number = 0;
    me.visible = 0;
    me.total = columns.length;
    me.subset = [];
    me.padding = 0;
    me.min = options.columns.min !== null ? options.columns.min : me.defaults.min;
    me.max = options.columns.max !== null ? options.columns.max : null;
    me.widths = {};

    var widthsLookAhead = Math.max(100, options.rows.min);
    var paddingColChars = 10;

    me.emptyNames = function() {
      columns.forEach(function(column) {
        if (columns.label !== null && columns.label !== "")
          return false;
      });

      return true;
    };

    var parsePadding = function(value) {
      return parseInt(value) >= 0 ? parseInt(value) : 0;
    };

    me.calculateWidths = function(measures) {
      columns.forEach(function(column) {
        var maxChars = Math.max(
          column.label.toString().length,
          column.type.toString().length
        );

        for (var idxRow = 0; idxRow < Math.min(widthsLookAhead, data.length); idxRow++) {
          maxChars = Math.max(maxChars, data[idxRow][column.name.toString()].length);
        }

        me.widths[column.name] = {
          // width in characters
          chars: maxChars,
          // width for the inner html columns
          inner: maxChars * measures.character,
          // width adding outer styles like padding
          outer: maxChars * measures.character + measures.padding
        };
      });
    };

    me.getWidth = function() {
      var widthOuter = 0;
      for (var idxCol = 0; idxCol < me.subset.length; idxCol++) {
        var columnName = me.subset[idxCol].name;
        widthOuter = widthOuter + me.widths[columnName].outer;
      }

      widthOuter = widthOuter + me.padding * paddingColChars * measurer.measures.character;

      if (me.hasMoreLeftColumns()) {
        widthOuter = widthOuter + columnNavigationWidthPX + measurer.measures.padding;
      }

      if (me.hasMoreRightColumns()) {
        widthOuter = widthOuter + columnNavigationWidthPX + measurer.measures.padding;
      }

      return widthOuter;
    };

    me.updateSlice = function() {
      if (me.number + me.visible >= me.total)
        me.number = me.total - me.visible;

      if (me.number < 0) me.number = 0;

      me.subset = columns.slice(me.number, Math.min(me.number + me.visible, me.total));

      me.subset = me.subset.map(function(column) {
        Object.keys(column).forEach(function(colKey) {
          column[colKey] = column[colKey] === null ? "" : column[colKey].toString();
        });

        column.width = null;
        return column;
      });
    };

    me.setVisibleColumns = function(columnNumber, newVisibleColumns, paddingCount) {
      me.number = columnNumber;
      me.visible = newVisibleColumns;
      me.padding = paddingCount;

      me.updateSlice();
    };

    me.incColumnNumber = function(increment) {
      me.number = me.number + increment;
    };

    me.setColumnNumber = function(newNumber) {
      me.number = newNumber;
    };

    me.setPaddingCount = function(newPadding) {
      me.padding = newPadding;
    };

    me.getPaddingCount = function() {
      return me.padding;
    };

    me.hasMoreLeftColumns = function() {
      return me.number > 0;
    };

    me.hasMoreRightColumns = function() {
      return me.number + me.visible < me.total;
    };

    me.updateSlice(0);
    return me;
  };

  var data = source.data;
  var page = new Page(data, options);
  var measurer = new Measurer(data, options);
  var columns = new Columns(data, source.columns, options);

  var table = null;
  var tableDiv = null;
  var header = null;
  var footer = null;
  var tbody = null;

  // Caches pagedTable.clientWidth, specially for webkit
  var cachedPagedTableClientWidth = null;

  var onChangeCallbacks = [];

  var clearSelection = function() {
    if(document.selection && document.selection.empty) {
      document.selection.empty();
    } else if(window.getSelection) {
      var sel = window.getSelection();
      sel.removeAllRanges();
    }
  };

  var columnNavigationWidthPX = 5;

  var renderColumnNavigation = function(increment, backwards) {
    var arrow = document.createElement("div");
    arrow.setAttribute("style",
      "border-top: " + columnNavigationWidthPX + "px solid transparent;" +
      "border-bottom: " + columnNavigationWidthPX + "px solid transparent;" +
      "border-" + (backwards ? "right" : "left") + ": " + columnNavigationWidthPX + "px solid;");

    var header = document.createElement("th");
    header.appendChild(arrow);
    header.setAttribute("style",
      "cursor: pointer;" +
      "vertical-align: middle;" +
      "min-width: " + columnNavigationWidthPX + "px;" +
      "width: " + columnNavigationWidthPX + "px;");

    header.onclick = function() {
      columns.incColumnNumber(backwards ? -1 : increment);

      me.animateColumns(backwards);
      renderFooter();

      clearSelection();
      triggerOnChange();
    };

    return header;
  };

  var maxColumnWidth = function(width) {
    var padding = 80;
    var columnMax = Math.max(cachedPagedTableClientWidth - padding, 0);

    return parseInt(width) > 0 ?
      Math.min(columnMax, parseInt(width)) + "px" :
      columnMax + "px";
  };

  var clearHeader = function() {
    var thead = pagedTable.querySelectorAll("thead")[0];
    thead.innerHTML = "";
  };

  var renderHeader = function(clear) {
    cachedPagedTableClientWidth = pagedTable.clientWidth;

    var fragment = document.createDocumentFragment();

    header = document.createElement("tr");
    fragment.appendChild(header);

    if (columns.number > 0)
      header.appendChild(renderColumnNavigation(-columns.visible, true));

    columns.subset = columns.subset.map(function(columnData) {
      var column = document.createElement("th");
      column.setAttribute("align", columnData.align);
      column.style.textAlign = columnData.align;

      column.style.maxWidth = maxColumnWidth(null);
      if (columnData.width) {
        column.style.minWidth =
          column.style.maxWidth = maxColumnWidth(columnData.width);
      }

      var columnName = document.createElement("div");
      columnName.setAttribute("class", "pagedtable-header-name");
      if (columnData.label === "") {
        columnName.innerHTML = "&nbsp;";
      }
      else {
        columnName.appendChild(document.createTextNode(columnData.label));
      }
      column.appendChild(columnName);

      var columnType = document.createElement("div");
      columnType.setAttribute("class", "pagedtable-header-type");
      if (columnData.type === "") {
        columnType.innerHTML = "&nbsp;";
      }
      else {
        columnType.appendChild(document.createTextNode("<" + columnData.type + ">"));
      }
      column.appendChild(columnType);

      header.appendChild(column);

      columnData.element = column;

      return columnData;
    });

    for (var idx = 0; idx < columns.getPaddingCount(); idx++) {
      var paddingCol = document.createElement("th");
      paddingCol.setAttribute("class", "pagedtable-padding-col");
      header.appendChild(paddingCol);
    }

    if (columns.number + columns.visible < columns.total)
      header.appendChild(renderColumnNavigation(columns.visible, false));

    if (typeof(clear) == "undefined" || clear) clearHeader();
    var thead = pagedTable.querySelectorAll("thead")[0];
    thead.appendChild(fragment);
  };

  me.animateColumns = function(backwards) {
    var thead = pagedTable.querySelectorAll("thead")[0];

    var headerOld = thead.querySelectorAll("tr")[0];
    var tbodyOld = table.querySelectorAll("tbody")[0];

    me.fitColumns(backwards);

    renderHeader(false);

    header.style.opacity = "0";
    header.style.transform = backwards ? "translateX(-30px)" : "translateX(30px)";
    header.style.transition = "transform 200ms linear, opacity 200ms";
    header.style.transitionDelay = "0";

    renderBody(false);

    if (headerOld) {
      headerOld.style.position = "absolute";
      headerOld.style.transform = "translateX(0px)";
      headerOld.style.opacity = "1";
      headerOld.style.transition = "transform 100ms linear, opacity 100ms";
      headerOld.setAttribute("class", "pagedtable-remove-head");
      if (headerOld.style.transitionEnd) {
        headerOld.addEventListener("transitionend", function() {
          var headerOldByClass = thead.querySelector(".pagedtable-remove-head");
          if (headerOldByClass) thead.removeChild(headerOldByClass);
        });
      }
      else {
        thead.removeChild(headerOld);
      }
    }

    if (tbodyOld) table.removeChild(tbodyOld);

    tbody.style.opacity = "0";
    tbody.style.transition = "transform 200ms linear, opacity 200ms";
    tbody.style.transitionDelay = "0ms";

    // force relayout
    window.getComputedStyle(header).opacity;
    window.getComputedStyle(tbody).opacity;

    if (headerOld) {
      headerOld.style.transform = backwards ? "translateX(20px)" : "translateX(-30px)";
      headerOld.style.opacity = "0";
    }

    header.style.transform = "translateX(0px)";
    header.style.opacity = "1";

    tbody.style.opacity = "1";
  }

  me.onChange = function(callback) {
    onChangeCallbacks.push(callback);
  };

  var triggerOnChange = function() {
    onChangeCallbacks.forEach(function(onChange) {
      onChange();
    });
  };

  var clearBody = function() {
    if (tbody) {
      table.removeChild(tbody);
      tbody = null;
    }
  };

  var renderBody = function(clear) {
    cachedPagedTableClientWidth = pagedTable.clientWidth

    var fragment = document.createDocumentFragment();

    var pageData = data.slice(page.getRowStart(), page.getRowEnd());

    pageData.forEach(function(dataRow, idxRow) {
      var htmlRow = document.createElement("tr");
      htmlRow.setAttribute("class", (idxRow % 2 !==0) ? "even" : "odd");

      if (columns.hasMoreLeftColumns())
        htmlRow.appendChild(document.createElement("td"));

      columns.subset.forEach(function(columnData) {
        var cellName = columnData.name;
        var dataCell = dataRow[cellName];
        var htmlCell = document.createElement("td");

        if (dataCell === "NA") htmlCell.setAttribute("class", "pagedtable-na-cell");
        if (dataCell === "__NA__") dataCell = "NA";

        var cellText = document.createTextNode(dataCell);
        htmlCell.appendChild(cellText);
        if (dataCell.length > 50) {
          htmlCell.setAttribute("title", dataCell);
        }
        htmlCell.setAttribute("align", columnData.align);
        htmlCell.style.textAlign = columnData.align;
        htmlCell.style.maxWidth = maxColumnWidth(null);
        if (columnData.width) {
          htmlCell.style.minWidth = htmlCell.style.maxWidth = maxColumnWidth(columnData.width);
        }
        htmlRow.appendChild(htmlCell);
      });

      for (var idx = 0; idx < columns.getPaddingCount(); idx++) {
        var paddingCol = document.createElement("td");
        paddingCol.setAttribute("class", "pagedtable-padding-col");
        htmlRow.appendChild(paddingCol);
      }

      if (columns.hasMoreRightColumns())
        htmlRow.appendChild(document.createElement("td"));

      fragment.appendChild(htmlRow);
    });

    for (var idxPadding = 0; idxPadding < page.getPaddingRows(); idxPadding++) {
      var paddingRow = document.createElement("tr");

      var paddingCellRow = document.createElement("td");
      paddingCellRow.innerHTML = "&nbsp;";
      paddingCellRow.setAttribute("colspan", "100%");
      paddingRow.appendChild(paddingCellRow);

      fragment.appendChild(paddingRow);
    }

    if (typeof(clear) == "undefined" || clear) clearBody();
    tbody = document.createElement("tbody");
    tbody.appendChild(fragment);

    table.appendChild(tbody);
  };

  var getLabelInfo = function() {
    var pageStart = page.getRowStart();
    var pageEnd = page.getRowEnd();
    var totalRows = data.length;

    var totalRowsLabel = options.rows.total ? options.rows.total : totalRows;
    var totalRowsLabelFormat = totalRowsLabel.toString().replace(/(\d)(?=(\d\d\d)+(?!\d))/g, '$1,');

    var infoText = (pageStart + 1) + "-" + pageEnd + " of " + totalRowsLabelFormat + " rows";
    if (totalRows < page.rows) {
      infoText = totalRowsLabel + " row" + (totalRows != 1 ? "s" : "");
    }
    if (columns.total > columns.visible) {
      var totalColumnsLabel = options.columns.total ? options.columns.total : columns.total;

      infoText = infoText + " | " + (columns.number + 1) + "-" +
        (Math.min(columns.number + columns.visible, columns.total)) +
        " of " + totalColumnsLabel + " columns";
    }

    return infoText;
  };

  var clearFooter = function() {
    footer = pagedTable.querySelectorAll("div.pagedtable-footer")[0];
    footer.innerHTML = "";

    return footer;
  };

  var createPageLink = function(idxPage) {
    var pageLink = document.createElement("a");
    pageLinkClass = idxPage === page.number ? "pagedtable-index pagedtable-index-current" : "pagedtable-index";
    pageLink.setAttribute("class", pageLinkClass);
    pageLink.setAttribute("data-page-index", idxPage);
    pageLink.onclick = function() {
      page.setPageNumber(parseInt(this.getAttribute("data-page-index")));
      renderBody();
      renderFooter();

      triggerOnChange();
    };

    pageLink.appendChild(document.createTextNode(idxPage + 1));

    return pageLink;
  }

  var renderFooter = function() {
    footer = clearFooter();

    var next = document.createElement("a");
    next.appendChild(document.createTextNode("Next"));
    next.onclick = function() {
      page.setPageNumber(page.number + 1);
      renderBody();
      renderFooter();

      triggerOnChange();
    };
    if (data.length > page.rows) footer.appendChild(next);

    var pageNumbers = document.createElement("div");
    pageNumbers.setAttribute("class", "pagedtable-indexes");

    var pageRange = page.getVisiblePageRange();

    if (pageRange.first) {
      var pageLink = createPageLink(0);
      pageNumbers.appendChild(pageLink);

      var pageSeparator = document.createElement("div");
      pageSeparator.setAttribute("class", "pagedtable-index-separator-left");
      pageSeparator.appendChild(document.createTextNode("..."))
      pageNumbers.appendChild(pageSeparator);
    }

    for (var idxPage = pageRange.start; idxPage < pageRange.end; idxPage++) {
      var pageLink = createPageLink(idxPage);

      pageNumbers.appendChild(pageLink);
    }

    if (pageRange.last) {
      var pageSeparator = document.createElement("div");
      pageSeparator.setAttribute("class", "pagedtable-index-separator-right");
      pageSeparator.appendChild(document.createTextNode("..."))
      pageNumbers.appendChild(pageSeparator);

      var pageLink = createPageLink(page.total - 1);
      pageNumbers.appendChild(pageLink);
    }

    if (data.length > page.rows) footer.appendChild(pageNumbers);

    var previous = document.createElement("a");
    previous.appendChild(document.createTextNode("Previous"));
    previous.onclick = function() {
      page.setPageNumber(page.number - 1);
      renderBody();
      renderFooter();

      triggerOnChange();
    };
    if (data.length > page.rows) footer.appendChild(previous);

    var infoLabel = document.createElement("div");
    infoLabel.setAttribute("class", "pagedtable-info");
    infoLabel.setAttribute("title", getLabelInfo());
    infoLabel.appendChild(document.createTextNode(getLabelInfo()));
    footer.appendChild(infoLabel);

    var enabledClass = "pagedtable-index-nav";
    var disabledClass = "pagedtable-index-nav pagedtable-index-nav-disabled";
    previous.setAttribute("class", page.number <= 0 ? disabledClass : enabledClass);
    next.setAttribute("class", (page.number + 1) * page.rows >= data.length ? disabledClass : enabledClass);
  };

  var measuresCell = null;

  var renderMeasures = function() {
    var measuresTable = document.createElement("table");
    measuresTable.style.visibility = "hidden";
    measuresTable.style.position = "absolute";
    measuresTable.style.whiteSpace = "nowrap";
    measuresTable.style.height = "auto";
    measuresTable.style.width = "auto";

    var measuresRow = document.createElement("tr");
    measuresTable.appendChild(measuresRow);

    measuresCell = document.createElement("td");
    var sampleString = "ABCDEFGHIJ0123456789";
    measuresCell.appendChild(document.createTextNode(sampleString));

    measuresRow.appendChild(measuresCell);

    tableDiv.appendChild(measuresTable);
  }

  me.init = function() {
    tableDiv = document.createElement("div");
    pagedTable.appendChild(tableDiv);
    var pagedTableClass = data.length > 0 ?
      "pagedtable pagedtable-not-empty" :
      "pagedtable pagedtable-empty";

    if (columns.total == 0 || (columns.emptyNames() && data.length == 0)) {
      pagedTableClass = pagedTableClass + " pagedtable-empty-columns";
    }

    tableDiv.setAttribute("class", pagedTableClass);

    renderMeasures();
    measurer.calculate(measuresCell);
    columns.calculateWidths(measurer.measures);

    table = document.createElement("table");
    table.setAttribute("cellspacing", "0");
    table.setAttribute("class", "table table-condensed");
    tableDiv.appendChild(table);

    table.appendChild(document.createElement("thead"));

    var footerDiv = document.createElement("div");
    footerDiv.setAttribute("class", "pagedtable-footer");
    tableDiv.appendChild(footerDiv);

    // if the host has not yet provided horizontal space, render hidden
    if (tableDiv.clientWidth <= 0) {
      tableDiv.style.opacity = "0";
    }

    me.render();

    // retry seizing columns later if the host has not provided space
    function retryFit() {
      if (tableDiv.clientWidth <= 0) {
        setTimeout(retryFit, 100);
      } else {
        me.render();
        triggerOnChange();
      }
    }
    if (tableDiv.clientWidth <= 0) {
      retryFit();
    }
  };

  var registerWidths = function() {
    columns.subset = columns.subset.map(function(column) {
      column.width = columns.widths[column.name].inner;
      return column;
    });
  };

  var parsePadding = function(value) {
    return parseInt(value) >= 0 ? parseInt(value) : 0;
  };

  me.fixedHeight = function() {
    return options.rows.max != null;
  }

  me.fitRows = function() {
    if (me.fixedHeight())
      return;

    measurer.calculate(measuresCell);

    var rows = options.rows.min !== null ? options.rows.min : 0;
    var headerHeight = header !== null && header.offsetHeight > 0 ? header.offsetHeight : 0;
    var footerHeight = footer !== null && footer.offsetHeight > 0 ? footer.offsetHeight : 0;

    if (pagedTable.offsetHeight > 0) {
      var availableHeight = pagedTable.offsetHeight - headerHeight - footerHeight;
      rows = Math.floor((availableHeight) / measurer.measures.height);
    }

    rows = options.rows.min !== null ? Math.max(options.rows.min, rows) : rows;

    page.setRows(rows);
  }

  // The goal of this function is to add as many columns as possible
  // starting from left-to-right, when the right most limit is reached
  // it tries to add columns from the left as well.
  //
  // When startBackwards is true columns are added from right-to-left
  me.fitColumns = function(startBackwards) {
    measurer.calculate(measuresCell);
    columns.calculateWidths(measurer.measures);

    if (tableDiv.clientWidth > 0) {
      tableDiv.style.opacity = 1;
    }

    var visibleColumns = tableDiv.clientWidth <= 0 ? Math.max(columns.min, 1) : 1;
    var columnNumber = columns.number;
    var paddingCount = 0;

    // track a list of added columns as we build the visible ones to allow us
    // to remove columns when they don't fit anymore.
    var columnHistory = [];

    var lastTableHeight = 0;
    var backwards = startBackwards;

    var tableDivStyle = window.getComputedStyle(tableDiv, null);
    var tableDivPadding = parsePadding(tableDivStyle.paddingLeft) +
      parsePadding(tableDivStyle.paddingRight);

    var addPaddingCol = false;
    var currentWidth = 0;

    while (true) {
      columns.setVisibleColumns(columnNumber, visibleColumns, paddingCount);
      currentWidth = columns.getWidth();

      if (tableDiv.clientWidth - tableDivPadding < currentWidth) {
        break;
      }

      columnHistory.push({
        columnNumber: columnNumber,
        visibleColumns: visibleColumns,
        paddingCount: paddingCount
      });

      if (columnHistory.length > 100) {
        console.error("More than 100 tries to fit columns, aborting");
        break;
      }

      if (columns.max !== null &&
        columns.visible + columns.getPaddingCount() >= columns.max) {
        break;
      }

      // if we run out of right-columns
      if (!backwards && columnNumber + columns.visible >= columns.total) {
        // if we started adding right-columns, try adding left-columns
        if (!startBackwards && columnNumber > 0) {
          backwards = true;
        }
        else if (columns.min === null || visibleColumns + columns.getPaddingCount() >= columns.min) {
          break;
        }
        else {
          paddingCount = paddingCount + 1;
        }
      }

      // if we run out of left-columns
      if (backwards && columnNumber == 0) {
        // if we started adding left-columns, try adding right-columns
        if (startBackwards && columnNumber + columns.visible < columns.total) {
          backwards = false;
        }
        else if (columns.min === null || visibleColumns + columns.getPaddingCount() >= columns.min) {
          break;
        }
        else {
          paddingCount = paddingCount + 1;
        }
      }

      // when moving backwards try fitting left columns first
      if (backwards && columnNumber > 0) {
        columnNumber = columnNumber - 1;
      }

      if (columnNumber + visibleColumns < columns.total) {
        visibleColumns = visibleColumns + 1;
      }
    }

    var lastRenderableColumn = {
        columnNumber: columnNumber,
        visibleColumns: visibleColumns,
        paddingCount: paddingCount
    };

    if (columnHistory.length > 0) {
      lastRenderableColumn = columnHistory[columnHistory.length - 1];
    }

    columns.setVisibleColumns(
      lastRenderableColumn.columnNumber,
      lastRenderableColumn.visibleColumns,
      lastRenderableColumn.paddingCount);

    if (pagedTable.offsetWidth > 0) {
      page.setVisiblePages(Math.max(Math.ceil(1.0 * (pagedTable.offsetWidth - 250) / 40), 2));
    }

    registerWidths();
  };

  me.fit = function(startBackwards) {
    me.fitRows();
    me.fitColumns(startBackwards);
  }

  me.render = function() {
    me.fitColumns(false);

    // render header/footer to measure height accurately
    renderHeader();
    renderFooter();

    me.fitRows();
    renderBody();

    // re-render footer to match new rows
    renderFooter();
  }

  var resizeLastWidth = -1;
  var resizeLastHeight = -1;
  var resizeNewWidth = -1;
  var resizeNewHeight = -1;
  var resizePending = false;

  me.resize = function(newWidth, newHeight) {

    function resizeDelayed() {
      resizePending = false;

      if (
        (resizeNewWidth !== resizeLastWidth) ||
        (!me.fixedHeight() && resizeNewHeight !== resizeLastHeight)
      ) {
        resizeLastWidth = resizeNewWidth;
        resizeLastHeight = resizeNewHeight;

        setTimeout(resizeDelayed, 200);
        resizePending = true;
      } else {
        me.render();
        triggerOnChange();

        resizeLastWidth = -1;
        resizeLastHeight = -1;
      }
    }

    resizeNewWidth = newWidth;
    resizeNewHeight = newHeight;

    if (!resizePending) resizeDelayed();
  };
};

var PagedTableDoc;
(function (PagedTableDoc) {
  var allPagedTables = [];

  PagedTableDoc.initAll = function() {
    allPagedTables = [];

    var pagedTables = [].slice.call(document.querySelectorAll('[data-pagedtable="false"],[data-pagedtable=""]'));
    pagedTables.forEach(function(pagedTable, idx) {
      pagedTable.setAttribute("data-pagedtable", "true");
      pagedTable.setAttribute("pagedtable-page", 0);
      pagedTable.setAttribute("class", "pagedtable-wrapper");

      var pagedTableInstance = new PagedTable(pagedTable);
      pagedTableInstance.init();

      allPagedTables.push(pagedTableInstance);
    });
  };

  PagedTableDoc.resizeAll = function() {
    allPagedTables.forEach(function(pagedTable) {
      pagedTable.render();
    });
  };

  window.addEventListener("resize", PagedTableDoc.resizeAll);

  return PagedTableDoc;
})(PagedTableDoc || (PagedTableDoc = {}));

window.onload = function() {
  PagedTableDoc.initAll();
};
</script>
<script>

/**
 * jQuery Plugin: Sticky Tabs
 *
 * @author Aidan Lister <aidan@php.net>
 * adapted by Ruben Arslan to activate parent tabs too
 * http://www.aidanlister.com/2014/03/persisting-the-tab-state-in-bootstrap/
 */
(function($) {
  "use strict";
  $.fn.rmarkdownStickyTabs = function() {
    var context = this;
    // Show the tab corresponding with the hash in the URL, or the first tab
    var showStuffFromHash = function() {
      var hash = window.location.hash;
      var selector = hash ? 'a[href="' + hash + '"]' : 'li.active > a';
      var $selector = $(selector, context);
      if($selector.data('toggle') === "tab") {
        $selector.tab('show');
        // walk up the ancestors of this element, show any hidden tabs
        $selector.parents('.section.tabset').each(function(i, elm) {
          var link = $('a[href="#' + $(elm).attr('id') + '"]');
          if(link.data('toggle') === "tab") {
            link.tab("show");
          }
        });
      }
    };


    // Set the correct tab when the page loads
    showStuffFromHash(context);

    // Set the correct tab when a user uses their back/forward button
    $(window).on('hashchange', function() {
      showStuffFromHash(context);
    });

    // Change the URL when tabs are clicked
    $('a', context).on('click', function(e) {
      history.pushState(null, null, this.href);
      showStuffFromHash(context);
    });

    return this;
  };
}(jQuery));

window.buildTabsets = function(tocID) {

  // build a tabset from a section div with the .tabset class
  function buildTabset(tabset) {

    // check for fade and pills options
    var fade = tabset.hasClass("tabset-fade");
    var pills = tabset.hasClass("tabset-pills");
    var navClass = pills ? "nav-pills" : "nav-tabs";

    // determine the heading level of the tabset and tabs
    var match = tabset.attr('class').match(/level(\d) /);
    if (match === null)
      return;
    var tabsetLevel = Number(match[1]);
    var tabLevel = tabsetLevel + 1;

    // find all subheadings immediately below
    var tabs = tabset.find("div.section.level" + tabLevel);
    if (!tabs.length)
      return;

    // create tablist and tab-content elements
    var tabList = $('<ul class="nav ' + navClass + '" role="tablist"></ul>');
    $(tabs[0]).before(tabList);
    var tabContent = $('<div class="tab-content"></div>');
    $(tabs[0]).before(tabContent);

    // build the tabset
    var activeTab = 0;
    tabs.each(function(i) {

      // get the tab div
      var tab = $(tabs[i]);

      // get the id then sanitize it for use with bootstrap tabs
      var id = tab.attr('id');

      // see if this is marked as the active tab
      if (tab.hasClass('active'))
        activeTab = i;

      // remove any table of contents entries associated with
      // this ID (since we'll be removing the heading element)
      $("div#" + tocID + " li a[href='#" + id + "']").parent().remove();

      // sanitize the id for use with bootstrap tabs
      id = id.replace(/[.\/?&!#<>]/g, '').replace(/\s/g, '_');
      tab.attr('id', id);

      // get the heading element within it, grab it's text, then remove it
      var heading = tab.find('h' + tabLevel + ':first');
      var headingText = heading.html();
      heading.remove();

      // build and append the tab list item
      var a = $('<a role="tab" data-toggle="tab">' + headingText + '</a>');
      a.attr('href', '#' + id);
      a.attr('aria-controls', id);
      var li = $('<li role="presentation"></li>');
      li.append(a);
      tabList.append(li);

      // set it's attributes
      tab.attr('role', 'tabpanel');
      tab.addClass('tab-pane');
      tab.addClass('tabbed-pane');
      if (fade)
        tab.addClass('fade');

      // move it into the tab content div
      tab.detach().appendTo(tabContent);
    });

    // set active tab
    $(tabList.children('li')[activeTab]).addClass('active');
    var active = $(tabContent.children('div.section')[activeTab]);
    active.addClass('active');
    if (fade)
      active.addClass('in');

    if (tabset.hasClass("tabset-sticky"))
      tabset.rmarkdownStickyTabs();
  }

  // convert section divs with the .tabset class to tabsets
  var tabsets = $("div.section.tabset");
  tabsets.each(function(i) {
    buildTabset($(tabsets[i]));
  });
};

</script>
<script>
window.initializeCodeFolding = function(show) {

  // handlers for show-all and hide all
  $("#rmd-show-all-code").click(function() {
    $('div.r-code-collapse').each(function() {
      $(this).collapse('show');
    });
  });
  $("#rmd-hide-all-code").click(function() {
    $('div.r-code-collapse').each(function() {
      $(this).collapse('hide');
    });
  });

  // index for unique code element ids
  var currentIndex = 1;

  // select all R code blocks
  var rCodeBlocks = $('pre.r, pre.python, pre.bash, pre.sql, pre.cpp, pre.stan, pre.julia');
  rCodeBlocks.each(function() {

    // create a collapsable div to wrap the code in
    var div = $('<div class="collapse r-code-collapse"></div>');
    if (show)
      div.addClass('in');
    var id = 'rcode-643E0F36' + currentIndex++;
    div.attr('id', id);
    $(this).before(div);
    $(this).detach().appendTo(div);

    // add a show code button right above
    var showCodeText = $('<span>' + (show ? 'Hide' : 'Code') + '</span>');
    var showCodeButton = $('<button type="button" class="btn btn-default btn-xs code-folding-btn pull-right"></button>');
    showCodeButton.append(showCodeText);
    showCodeButton
        .attr('data-toggle', 'collapse')
        .attr('data-target', '#' + id)
        .attr('aria-expanded', show)
        .attr('aria-controls', id);

    var buttonRow = $('<div class="row"></div>');
    var buttonCol = $('<div class="col-md-12"></div>');

    buttonCol.append(showCodeButton);
    buttonRow.append(buttonCol);

    div.before(buttonRow);

    // update state of button on show/hide
    div.on('hidden.bs.collapse', function () {
      showCodeText.text('Code');
    });
    div.on('show.bs.collapse', function () {
      showCodeText.text('Hide');
    });
  });

}
</script>
<script>
window.initializeSourceEmbed = function(filename) {
  $("#rmd-download-source").click(function() {
    var src = $("#rmd-source-code").html();
    var a = document.createElement('a');
    a.href = "data:text/x-r-markdown;base64," + src;
    a.download = filename;
    document.body.appendChild(a);
    a.click();
    document.body.removeChild(a);
  });
};
</script>
<style type="text/css">.hljs-literal {
color: rgb(88, 72, 246);
}
.hljs-number {
color: rgb(0, 0, 205);
}
.hljs-comment {
color: rgb(76, 136, 107);
}
.hljs-keyword {
color: rgb(0, 0, 255);
}
.hljs-string {
color: rgb(3, 106, 7);
}
</style>
<script src="data:application/javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0KyspaWYocihuLmNbdF0uYlIsZSkpcmV0dXJuIG4uY1t0XX1mdW5jdGlvbiB1KGUsbil7aWYocihlLmVSLG4pKXtmb3IoO2UuZW5kc1BhcmVudCYmZS5wYXJlbnQ7KWU9ZS5wYXJlbnQ7cmV0dXJuIGV9cmV0dXJuIGUuZVc/dShlLnBhcmVudCxuKTp2b2lkIDB9ZnVuY3Rpb24gYyhlLG4pe3JldHVybiFhJiZyKG4uaVIsZSl9ZnVuY3Rpb24gbChlLG4pe3ZhciB0PU4uY0k/blswXS50b0xvd2VyQ2FzZSgpOm5bMF07cmV0dXJuIGUuay5oYXNPd25Qcm9wZXJ0eSh0KSYmZS5rW3RdfWZ1bmN0aW9uIHAoZSxuLHQscil7dmFyIGE9cj8iIjpJLmNsYXNzUHJlZml4LGk9JzxzcGFuIGNsYXNzPSInK2Esbz10PyIiOkM7cmV0dXJuIGkrPWUrJyI+JyxpK24rb31mdW5jdGlvbiBoKCl7dmFyIGUsdCxyLGE7aWYoIUUuaylyZXR1cm4gbihrKTtmb3IoYT0iIix0PTAsRS5sUi5sYXN0SW5kZXg9MCxyPUUubFIuZXhlYyhrKTtyOylhKz1uKGsuc3Vic3RyaW5nKHQsci5pbmRleCkpLGU9bChFLHIpLGU/KEIrPWVbMV0sYSs9cChlWzBdLG4oclswXSkpKTphKz1uKHJbMF0pLHQ9RS5sUi5sYXN0SW5kZXgscj1FLmxSLmV4ZWMoayk7cmV0dXJuIGErbihrLnN1YnN0cih0KSl9ZnVuY3Rpb24gZCgpe3ZhciBlPSJzdHJpbmciPT10eXBlb2YgRS5zTDtpZihlJiYheVtFLnNMXSlyZXR1cm4gbihrKTt2YXIgdD1lP2YoRS5zTCxrLCEwLHhbRS5zTF0pOmcoayxFLnNMLmxlbmd0aD9FLnNMOnZvaWQgMCk7cmV0dXJuIEUucj4wJiYoQis9dC5yKSxlJiYoeFtFLnNMXT10LnRvcCkscCh0Lmxhbmd1YWdlLHQudmFsdWUsITEsITApfWZ1bmN0aW9uIGIoKXtMKz1udWxsIT1FLnNMP2QoKTpoKCksaz0iIn1mdW5jdGlvbiB2KGUpe0wrPWUuY04/cChlLmNOLCIiLCEwKToiIixFPU9iamVjdC5jcmVhdGUoZSx7cGFyZW50Ont2YWx1ZTpFfX0pfWZ1bmN0aW9uIG0oZSxuKXtpZihrKz1lLG51bGw9PW4pcmV0dXJuIGIoKSwwO3ZhciB0PW8obixFKTtpZih0KXJldHVybiB0LnNraXA/ays9bjoodC5lQiYmKGsrPW4pLGIoKSx0LnJCfHx0LmVCfHwoaz1uKSksdih0LG4pLHQuckI/MDpuLmxlbmd0aDt2YXIgcj11KEUsbik7aWYocil7dmFyIGE9RTthLnNraXA/ays9bjooYS5yRXx8YS5lRXx8KGsrPW4pLGIoKSxhLmVFJiYoaz1uKSk7ZG8gRS5jTiYmKEwrPUMpLEUuc2tpcHx8KEIrPUUuciksRT1FLnBhcmVudDt3aGlsZShFIT09ci5wYXJlbnQpO3JldHVybiByLnN0YXJ0cyYmdihyLnN0YXJ0cywiIiksYS5yRT8wOm4ubGVuZ3RofWlmKGMobixFKSl0aHJvdyBuZXcgRXJyb3IoJ0lsbGVnYWwgbGV4ZW1lICInK24rJyIgZm9yIG1vZGUgIicrKEUuY058fCI8dW5uYW1lZD4iKSsnIicpO3JldHVybiBrKz1uLG4ubGVuZ3RofHwxfXZhciBOPXcoZSk7aWYoIU4pdGhyb3cgbmV3IEVycm9yKCdVbmtub3duIGxhbmd1YWdlOiAiJytlKyciJyk7cyhOKTt2YXIgUixFPWl8fE4seD17fSxMPSIiO2ZvcihSPUU7UiE9PU47Uj1SLnBhcmVudClSLmNOJiYoTD1wKFIuY04sIiIsITApK0wpO3ZhciBrPSIiLEI9MDt0cnl7Zm9yKHZhciBNLGosTz0wOzspe2lmKEUudC5sYXN0SW5kZXg9TyxNPUUudC5leGVjKHQpLCFNKWJyZWFrO2o9bSh0LnN1YnN0cmluZyhPLE0uaW5kZXgpLE1bMF0pLE89TS5pbmRleCtqfWZvcihtKHQuc3Vic3RyKE8pKSxSPUU7Ui5wYXJlbnQ7Uj1SLnBhcmVudClSLmNOJiYoTCs9Qyk7cmV0dXJue3I6Qix2YWx1ZTpMLGxhbmd1YWdlOmUsdG9wOkV9fWNhdGNoKFQpe2lmKFQubWVzc2FnZSYmLTEhPT1ULm1lc3NhZ2UuaW5kZXhPZigiSWxsZWdhbCIpKXJldHVybntyOjAsdmFsdWU6bih0KX07dGhyb3cgVH19ZnVuY3Rpb24gZyhlLHQpe3Q9dHx8SS5sYW5ndWFnZXN8fHgoeSk7dmFyIHI9e3I6MCx2YWx1ZTpuKGUpfSxhPXI7cmV0dXJuIHQuZmlsdGVyKHcpLmZvckVhY2goZnVuY3Rpb24obil7dmFyIHQ9ZihuLGUsITEpO3QubGFuZ3VhZ2U9bix0LnI+YS5yJiYoYT10KSx0LnI+ci5yJiYoYT1yLHI9dCl9KSxhLmxhbmd1YWdlJiYoci5zZWNvbmRfYmVzdD1hKSxyfWZ1bmN0aW9uIHAoZSl7cmV0dXJuIEkudGFiUmVwbGFjZXx8SS51c2VCUj9lLnJlcGxhY2UoTSxmdW5jdGlvbihlLG4pe3JldHVybiBJLnVzZUJSJiYiXG4iPT09ZT8iPGJyPiI6SS50YWJSZXBsYWNlP24ucmVwbGFjZSgvXHQvZyxJLnRhYlJlcGxhY2UpOiIifSk6ZX1mdW5jdGlvbiBoKGUsbix0KXt2YXIgcj1uP0xbbl06dCxhPVtlLnRyaW0oKV07cmV0dXJuIGUubWF0Y2goL1xiaGxqc1xiLyl8fGEucHVzaCgiaGxqcyIpLC0xPT09ZS5pbmRleE9mKHIpJiZhLnB1c2gociksYS5qb2luKCIgIikudHJpbSgpfWZ1bmN0aW9uIGQoZSl7dmFyIG4sdCxyLG8sbCxzPWkoZSk7YShzKXx8KEkudXNlQlI/KG49ZG9jdW1lbnQuY3JlYXRlRWxlbWVudE5TKCJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hodG1sIiwiZGl2Iiksbi5pbm5lckhUTUw9ZS5pbm5lckhUTUwucmVwbGFjZSgvXG4vZywiIikucmVwbGFjZSgvPGJyWyBcL10qPi9nLCJcbiIpKTpuPWUsbD1uLnRleHRDb250ZW50LHI9cz9mKHMsbCwhMCk6ZyhsKSx0PXUobiksdC5sZW5ndGgmJihvPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnROUygiaHR0cDovL3d3dy53My5vcmcvMTk5OS94aHRtbCIsImRpdiIpLG8uaW5uZXJIVE1MPXIudmFsdWUsci52YWx1ZT1jKHQsdShvKSxsKSksci52YWx1ZT1wKHIudmFsdWUpLGUuaW5uZXJIVE1MPXIudmFsdWUsZS5jbGFzc05hbWU9aChlLmNsYXNzTmFtZSxzLHIubGFuZ3VhZ2UpLGUucmVzdWx0PXtsYW5ndWFnZTpyLmxhbmd1YWdlLHJlOnIucn0sci5zZWNvbmRfYmVzdCYmKGUuc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnIuc2Vjb25kX2Jlc3QubGFuZ3VhZ2UscmU6ci5zZWNvbmRfYmVzdC5yfSkpfWZ1bmN0aW9uIGIoZSl7ST1vKEksZSl9ZnVuY3Rpb24gdigpe2lmKCF2LmNhbGxlZCl7di5jYWxsZWQ9ITA7dmFyIGU9ZG9jdW1lbnQucXVlcnlTZWxlY3RvckFsbCgicHJlIGNvZGUiKTtFLmZvckVhY2guY2FsbChlLGQpfX1mdW5jdGlvbiBtKCl7YWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsdiwhMSksYWRkRXZlbnRMaXN0ZW5lcigibG9hZCIsdiwhMSl9ZnVuY3Rpb24gTihuLHQpe3ZhciByPXlbbl09dChlKTtyLmFsaWFzZXMmJnIuYWxpYXNlcy5mb3JFYWNoKGZ1bmN0aW9uKGUpe0xbZV09bn0pfWZ1bmN0aW9uIFIoKXtyZXR1cm4geCh5KX1mdW5jdGlvbiB3KGUpe3JldHVybiBlPShlfHwiIikudG9Mb3dlckNhc2UoKSx5W2VdfHx5W0xbZV1dfXZhciBFPVtdLHg9T2JqZWN0LmtleXMseT17fSxMPXt9LGs9L14obm8tP2hpZ2hsaWdodHxwbGFpbnx0ZXh0KSQvaSxCPS9cYmxhbmcoPzp1YWdlKT8tKFtcdy1dKylcYi9pLE09LygoXig8W14+XSs+fFx0fCkrfCg/OlxuKSkpL2dtLEM9Ijwvc3Bhbj4iLEk9e2NsYXNzUHJlZml4OiJobGpzLSIsdGFiUmVwbGFjZTpudWxsLHVzZUJSOiExLGxhbmd1YWdlczp2b2lkIDB9O3JldHVybiBlLmhpZ2hsaWdodD1mLGUuaGlnaGxpZ2h0QXV0bz1nLGUuZml4TWFya3VwPXAsZS5oaWdobGlnaHRCbG9jaz1kLGUuY29uZmlndXJlPWIsZS5pbml0SGlnaGxpZ2h0aW5nPXYsZS5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPW0sZS5yZWdpc3Rlckxhbmd1YWdlPU4sZS5saXN0TGFuZ3VhZ2VzPVIsZS5nZXRMYW5ndWFnZT13LGUuaW5oZXJpdD1vLGUuSVI9IlthLXpBLVpdXFx3KiIsZS5VSVI9IlthLXpBLVpfXVxcdyoiLGUuTlI9IlxcYlxcZCsoXFwuXFxkKyk/IixlLkNOUj0iKC0/KShcXGIwW3hYXVthLWZBLUYwLTldK3woXFxiXFxkKyhcXC5cXGQqKT98XFwuXFxkKykoW2VFXVstK10/XFxkKyk/KSIsZS5CTlI9IlxcYigwYlswMV0rKSIsZS5SU1I9IiF8IT18IT09fCV8JT18JnwmJnwmPXxcXCp8XFwqPXxcXCt8XFwrPXwsfC18LT18Lz18L3w6fDt8PDx8PDw9fDw9fDx8PT09fD09fD18Pj4+PXw+Pj18Pj18Pj4+fD4+fD58XFw/fFxcW3xcXHt8XFwofFxcXnxcXF49fFxcfHxcXHw9fFxcfFxcfHx+IixlLkJFPXtiOiJcXFxcW1xcc1xcU10iLHI6MH0sZS5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbZS5CRV19LGUuUVNNPXtjTjoic3RyaW5nIixiOiciJyxlOiciJyxpOiJcXG4iLGM6W2UuQkVdfSxlLlBXTT17YjovXGIoYXxhbnx0aGV8YXJlfEknbXxpc24ndHxkb24ndHxkb2Vzbid0fHdvbid0fGJ1dHxqdXN0fHNob3VsZHxwcmV0dHl8c2ltcGx5fGVub3VnaHxnb25uYXxnb2luZ3x3dGZ8c298c3VjaHx3aWxsfHlvdXx5b3VyfHRoZXl8bGlrZXxtb3JlKVxiL30sZS5DPWZ1bmN0aW9uKG4sdCxyKXt2YXIgYT1lLmluaGVyaXQoe2NOOiJjb21tZW50IixiOm4sZTp0LGM6W119LHJ8fHt9KTtyZXR1cm4gYS5jLnB1c2goZS5QV00pLGEuYy5wdXNoKHtjTjoiZG9jdGFnIixiOiIoPzpUT0RPfEZJWE1FfE5PVEV8QlVHfFhYWCk6IixyOjB9KSxhfSxlLkNMQ009ZS5DKCIvLyIsIiQiKSxlLkNCQ009ZS5DKCIvXFwqIiwiXFwqLyIpLGUuSENNPWUuQygiIyIsIiQiKSxlLk5NPXtjTjoibnVtYmVyIixiOmUuTlIscjowfSxlLkNOTT17Y046Im51bWJlciIsYjplLkNOUixyOjB9LGUuQk5NPXtjTjoibnVtYmVyIixiOmUuQk5SLHI6MH0sZS5DU1NOTT17Y046Im51bWJlciIsYjplLk5SKyIoJXxlbXxleHxjaHxyZW18dnd8dmh8dm1pbnx2bWF4fGNtfG1tfGlufHB0fHBjfHB4fGRlZ3xncmFkfHJhZHx0dXJufHN8bXN8SHp8a0h6fGRwaXxkcGNtfGRwcHgpPyIscjowfSxlLlJNPXtjTjoicmVnZXhwIixiOi9cLy8sZTovXC9bZ2ltdXldKi8saTovXG4vLGM6W2UuQkUse2I6L1xbLyxlOi9cXS8scjowLGM6W2UuQkVdfV19LGUuVE09e2NOOiJ0aXRsZSIsYjplLklSLHI6MH0sZS5VVE09e2NOOiJ0aXRsZSIsYjplLlVJUixyOjB9LGUuTUVUSE9EX0dVQVJEPXtiOiJcXC5cXHMqIitlLlVJUixyOjB9LGV9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInNxbCIsZnVuY3Rpb24oZSl7dmFyIHQ9ZS5DKCItLSIsIiQiKTtyZXR1cm57Y0k6ITAsaTovWzw+e30qI10vLGM6W3tiSzoiYmVnaW4gZW5kIHN0YXJ0IGNvbW1pdCByb2xsYmFjayBzYXZlcG9pbnQgbG9jayBhbHRlciBjcmVhdGUgZHJvcCByZW5hbWUgY2FsbCBkZWxldGUgZG8gaGFuZGxlciBpbnNlcnQgbG9hZCByZXBsYWNlIHNlbGVjdCB0cnVuY2F0ZSB1cGRhdGUgc2V0IHNob3cgcHJhZ21hIGdyYW50IG1lcmdlIGRlc2NyaWJlIHVzZSBleHBsYWluIGhlbHAgZGVjbGFyZSBwcmVwYXJlIGV4ZWN1dGUgZGVhbGxvY2F0ZSByZWxlYXNlIHVubG9jayBwdXJnZSByZXNldCBjaGFuZ2Ugc3RvcCBhbmFseXplIGNhY2hlIGZsdXNoIG9wdGltaXplIHJlcGFpciBraWxsIGluc3RhbGwgdW5pbnN0YWxsIGNoZWNrc3VtIHJlc3RvcmUgY2hlY2sgYmFja3VwIHJldm9rZSBjb21tZW50IixlOi87LyxlVzohMCxsOi9bXHdcLl0rLyxrOntrZXl3b3JkOiJhYm9ydCBhYnMgYWJzb2x1dGUgYWNjIGFjY2UgYWNjZXAgYWNjZXB0IGFjY2VzcyBhY2Nlc3NlZCBhY2Nlc3NpYmxlIGFjY291bnQgYWNvcyBhY3Rpb24gYWN0aXZhdGUgYWRkIGFkZHRpbWUgYWRtaW4gYWRtaW5pc3RlciBhZHZhbmNlZCBhZHZpc2UgYWVzX2RlY3J5cHQgYWVzX2VuY3J5cHQgYWZ0ZXIgYWdlbnQgYWdncmVnYXRlIGFsaSBhbGlhIGFsaWFzIGFsbG9jYXRlIGFsbG93IGFsdGVyIGFsd2F5cyBhbmFseXplIGFuY2lsbGFyeSBhbmQgYW55IGFueWRhdGEgYW55ZGF0YXNldCBhbnlzY2hlbWEgYW55dHlwZSBhcHBseSBhcmNoaXZlIGFyY2hpdmVkIGFyY2hpdmVsb2cgYXJlIGFzIGFzYyBhc2NpaSBhc2luIGFzc2VtYmx5IGFzc2VydGlvbiBhc3NvY2lhdGUgYXN5bmNocm9ub3VzIGF0IGF0YW4gYXRuMiBhdHRyIGF0dHJpIGF0dHJpYiBhdHRyaWJ1IGF0dHJpYnV0IGF0dHJpYnV0ZSBhdHRyaWJ1dGVzIGF1ZGl0IGF1dGhlbnRpY2F0ZWQgYXV0aGVudGljYXRpb24gYXV0aGlkIGF1dGhvcnMgYXV0byBhdXRvYWxsb2NhdGUgYXV0b2RibGluayBhdXRvZXh0ZW5kIGF1dG9tYXRpYyBhdmFpbGFiaWxpdHkgYXZnIGJhY2t1cCBiYWRmaWxlIGJhc2ljZmlsZSBiZWZvcmUgYmVnaW4gYmVnaW5uaW5nIGJlbmNobWFyayBiZXR3ZWVuIGJmaWxlIGJmaWxlX2Jhc2UgYmlnIGJpZ2ZpbGUgYmluIGJpbmFyeV9kb3VibGUgYmluYXJ5X2Zsb2F0IGJpbmxvZyBiaXRfYW5kIGJpdF9jb3VudCBiaXRfbGVuZ3RoIGJpdF9vciBiaXRfeG9yIGJpdG1hcCBibG9iX2Jhc2UgYmxvY2sgYmxvY2tzaXplIGJvZHkgYm90aCBib3VuZCBidWZmZXJfY2FjaGUgYnVmZmVyX3Bvb2wgYnVpbGQgYnVsayBieSBieXRlIGJ5dGVvcmRlcm1hcmsgYnl0ZXMgY2FjaGUgY2FjaGluZyBjYWxsIGNhbGxpbmcgY2FuY2VsIGNhcGFjaXR5IGNhc2NhZGUgY2FzY2FkZWQgY2FzZSBjYXN0IGNhdGFsb2cgY2F0ZWdvcnkgY2VpbCBjZWlsaW5nIGNoYWluIGNoYW5nZSBjaGFuZ2VkIGNoYXJfYmFzZSBjaGFyX2xlbmd0aCBjaGFyYWN0ZXJfbGVuZ3RoIGNoYXJhY3RlcnMgY2hhcmFjdGVyc2V0IGNoYXJpbmRleCBjaGFyc2V0IGNoYXJzZXRmb3JtIGNoYXJzZXRpZCBjaGVjayBjaGVja3N1bSBjaGVja3N1bV9hZ2cgY2hpbGQgY2hvb3NlIGNociBjaHVuayBjbGFzcyBjbGVhbnVwIGNsZWFyIGNsaWVudCBjbG9iIGNsb2JfYmFzZSBjbG9uZSBjbG9zZSBjbHVzdGVyX2lkIGNsdXN0ZXJfcHJvYmFiaWxpdHkgY2x1c3Rlcl9zZXQgY2x1c3RlcmluZyBjb2FsZXNjZSBjb2VyY2liaWxpdHkgY29sIGNvbGxhdGUgY29sbGF0aW9uIGNvbGxlY3QgY29sdSBjb2x1bSBjb2x1bW4gY29sdW1uX3ZhbHVlIGNvbHVtbnMgY29sdW1uc191cGRhdGVkIGNvbW1lbnQgY29tbWl0IGNvbXBhY3QgY29tcGF0aWJpbGl0eSBjb21waWxlZCBjb21wbGV0ZSBjb21wb3NpdGVfbGltaXQgY29tcG91bmQgY29tcHJlc3MgY29tcHV0ZSBjb25jYXQgY29uY2F0X3dzIGNvbmN1cnJlbnQgY29uZmlybSBjb25uIGNvbm5lYyBjb25uZWN0IGNvbm5lY3RfYnlfaXNjeWNsZSBjb25uZWN0X2J5X2lzbGVhZiBjb25uZWN0X2J5X3Jvb3QgY29ubmVjdF90aW1lIGNvbm5lY3Rpb24gY29uc2lkZXIgY29uc2lzdGVudCBjb25zdGFudCBjb25zdHJhaW50IGNvbnN0cmFpbnRzIGNvbnN0cnVjdG9yIGNvbnRhaW5lciBjb250ZW50IGNvbnRlbnRzIGNvbnRleHQgY29udHJpYnV0b3JzIGNvbnRyb2xmaWxlIGNvbnYgY29udmVydCBjb252ZXJ0X3R6IGNvcnIgY29ycl9rIGNvcnJfcyBjb3JyZXNwb25kaW5nIGNvcnJ1cHRpb24gY29zIGNvc3QgY291bnQgY291bnRfYmlnIGNvdW50ZWQgY292YXJfcG9wIGNvdmFyX3NhbXAgY3B1X3Blcl9jYWxsIGNwdV9wZXJfc2Vzc2lvbiBjcmMzMiBjcmVhdGUgY3JlYXRpb24gY3JpdGljYWwgY3Jvc3MgY3ViZSBjdW1lX2Rpc3QgY3VyZGF0ZSBjdXJyZW50IGN1cnJlbnRfZGF0ZSBjdXJyZW50X3RpbWUgY3VycmVudF90aW1lc3RhbXAgY3VycmVudF91c2VyIGN1cnNvciBjdXJ0aW1lIGN1c3RvbWRhdHVtIGN5Y2xlIGRhdGEgZGF0YWJhc2UgZGF0YWJhc2VzIGRhdGFmaWxlIGRhdGFmaWxlcyBkYXRhbGVuZ3RoIGRhdGVfYWRkIGRhdGVfY2FjaGUgZGF0ZV9mb3JtYXQgZGF0ZV9zdWIgZGF0ZWFkZCBkYXRlZGlmZiBkYXRlZnJvbXBhcnRzIGRhdGVuYW1lIGRhdGVwYXJ0IGRhdGV0aW1lMmZyb21wYXJ0cyBkYXkgZGF5X3RvX3NlY29uZCBkYXluYW1lIGRheW9mbW9udGggZGF5b2Z3ZWVrIGRheW9meWVhciBkYXlzIGRiX3JvbGVfY2hhbmdlIGRidGltZXpvbmUgZGRsIGRlYWxsb2NhdGUgZGVjbGFyZSBkZWNvZGUgZGVjb21wb3NlIGRlY3JlbWVudCBkZWNyeXB0IGRlZHVwbGljYXRlIGRlZiBkZWZhIGRlZmF1IGRlZmF1bCBkZWZhdWx0IGRlZmF1bHRzIGRlZmVycmVkIGRlZmkgZGVmaW4gZGVmaW5lIGRlZ3JlZXMgZGVsYXllZCBkZWxlZ2F0ZSBkZWxldGUgZGVsZXRlX2FsbCBkZWxpbWl0ZWQgZGVtYW5kIGRlbnNlX3JhbmsgZGVwdGggZGVxdWV1ZSBkZXNfZGVjcnlwdCBkZXNfZW5jcnlwdCBkZXNfa2V5X2ZpbGUgZGVzYyBkZXNjciBkZXNjcmkgZGVzY3JpYiBkZXNjcmliZSBkZXNjcmlwdG9yIGRldGVybWluaXN0aWMgZGlhZ25vc3RpY3MgZGlmZmVyZW5jZSBkaW1lbnNpb24gZGlyZWN0X2xvYWQgZGlyZWN0b3J5IGRpc2FibGUgZGlzYWJsZV9hbGwgZGlzYWxsb3cgZGlzYXNzb2NpYXRlIGRpc2NhcmRmaWxlIGRpc2Nvbm5lY3QgZGlza2dyb3VwIGRpc3RpbmN0IGRpc3RpbmN0cm93IGRpc3RyaWJ1dGUgZGlzdHJpYnV0ZWQgZGl2IGRvIGRvY3VtZW50IGRvbWFpbiBkb3RuZXQgZG91YmxlIGRvd25ncmFkZSBkcm9wIGR1bXBmaWxlIGR1cGxpY2F0ZSBkdXJhdGlvbiBlYWNoIGVkaXRpb24gZWRpdGlvbmFibGUgZWRpdGlvbnMgZWxlbWVudCBlbGxpcHNpcyBlbHNlIGVsc2lmIGVsdCBlbXB0eSBlbmFibGUgZW5hYmxlX2FsbCBlbmNsb3NlZCBlbmNvZGUgZW5jb2RpbmcgZW5jcnlwdCBlbmQgZW5kLWV4ZWMgZW5kaWFuIGVuZm9yY2VkIGVuZ2luZSBlbmdpbmVzIGVucXVldWUgZW50ZXJwcmlzZSBlbnRpdHllc2NhcGluZyBlb21vbnRoIGVycm9yIGVycm9ycyBlc2NhcGVkIGV2YWxuYW1lIGV2YWx1YXRlIGV2ZW50IGV2ZW50ZGF0YSBldmVudHMgZXhjZXB0IGV4Y2VwdGlvbiBleGNlcHRpb25zIGV4Y2hhbmdlIGV4Y2x1ZGUgZXhjbHVkaW5nIGV4ZWN1IGV4ZWN1dCBleGVjdXRlIGV4ZW1wdCBleGlzdHMgZXhpdCBleHAgZXhwaXJlIGV4cGxhaW4gZXhwb3J0IGV4cG9ydF9zZXQgZXh0ZW5kZWQgZXh0ZW50IGV4dGVybmFsIGV4dGVybmFsXzEgZXh0ZXJuYWxfMiBleHRlcm5hbGx5IGV4dHJhY3QgZmFpbGVkIGZhaWxlZF9sb2dpbl9hdHRlbXB0cyBmYWlsb3ZlciBmYWlsdXJlIGZhciBmYXN0IGZlYXR1cmVfc2V0IGZlYXR1cmVfdmFsdWUgZmV0Y2ggZmllbGQgZmllbGRzIGZpbGUgZmlsZV9uYW1lX2NvbnZlcnQgZmlsZXN5c3RlbV9saWtlX2xvZ2dpbmcgZmluYWwgZmluaXNoIGZpcnN0IGZpcnN0X3ZhbHVlIGZpeGVkIGZsYXNoX2NhY2hlIGZsYXNoYmFjayBmbG9vciBmbHVzaCBmb2xsb3dpbmcgZm9sbG93cyBmb3IgZm9yYWxsIGZvcmNlIGZvcm0gZm9ybWEgZm9ybWF0IGZvdW5kIGZvdW5kX3Jvd3MgZnJlZWxpc3QgZnJlZWxpc3RzIGZyZWVwb29scyBmcmVzaCBmcm9tIGZyb21fYmFzZTY0IGZyb21fZGF5cyBmdHAgZnVsbCBmdW5jdGlvbiBnZW5lcmFsIGdlbmVyYXRlZCBnZXQgZ2V0X2Zvcm1hdCBnZXRfbG9jayBnZXRkYXRlIGdldHV0Y2RhdGUgZ2xvYmFsIGdsb2JhbF9uYW1lIGdsb2JhbGx5IGdvIGdvdG8gZ3JhbnQgZ3JhbnRzIGdyZWF0ZXN0IGdyb3VwIGdyb3VwX2NvbmNhdCBncm91cF9pZCBncm91cGluZyBncm91cGluZ19pZCBncm91cHMgZ3RpZF9zdWJ0cmFjdCBndWFyYW50ZWUgZ3VhcmQgaGFuZGxlciBoYXNoIGhhc2hrZXlzIGhhdmluZyBoZWEgaGVhZCBoZWFkaSBoZWFkaW4gaGVhZGluZyBoZWFwIGhlbHAgaGV4IGhpZXJhcmNoeSBoaWdoIGhpZ2hfcHJpb3JpdHkgaG9zdHMgaG91ciBodHRwIGlkIGlkZW50X2N1cnJlbnQgaWRlbnRfaW5jciBpZGVudF9zZWVkIGlkZW50aWZpZWQgaWRlbnRpdHkgaWRsZV90aW1lIGlmIGlmbnVsbCBpZ25vcmUgaWlmIGlsaWtlIGlsbSBpbW1lZGlhdGUgaW1wb3J0IGluIGluY2x1ZGUgaW5jbHVkaW5nIGluY3JlbWVudCBpbmRleCBpbmRleGVzIGluZGV4aW5nIGluZGV4dHlwZSBpbmRpY2F0b3IgaW5kaWNlcyBpbmV0Nl9hdG9uIGluZXQ2X250b2EgaW5ldF9hdG9uIGluZXRfbnRvYSBpbmZpbGUgaW5pdGlhbCBpbml0aWFsaXplZCBpbml0aWFsbHkgaW5pdHJhbnMgaW5tZW1vcnkgaW5uZXIgaW5ub2RiIGlucHV0IGluc2VydCBpbnN0YWxsIGluc3RhbmNlIGluc3RhbnRpYWJsZSBpbnN0ciBpbnRlcmZhY2UgaW50ZXJsZWF2ZWQgaW50ZXJzZWN0IGludG8gaW52YWxpZGF0ZSBpbnZpc2libGUgaXMgaXNfZnJlZV9sb2NrIGlzX2lwdjQgaXNfaXB2NF9jb21wYXQgaXNfbm90IGlzX25vdF9udWxsIGlzX3VzZWRfbG9jayBpc2RhdGUgaXNudWxsIGlzb2xhdGlvbiBpdGVyYXRlIGphdmEgam9pbiBqc29uIGpzb25fZXhpc3RzIGtlZXAga2VlcF9kdXBsaWNhdGVzIGtleSBrZXlzIGtpbGwgbGFuZ3VhZ2UgbGFyZ2UgbGFzdCBsYXN0X2RheSBsYXN0X2luc2VydF9pZCBsYXN0X3ZhbHVlIGxheCBsY2FzZSBsZWFkIGxlYWRpbmcgbGVhc3QgbGVhdmVzIGxlZnQgbGVuIGxlbmdodCBsZW5ndGggbGVzcyBsZXZlbCBsZXZlbHMgbGlicmFyeSBsaWtlIGxpa2UyIGxpa2U0IGxpa2VjIGxpbWl0IGxpbmVzIGxpbmsgbGlzdCBsaXN0YWdnIGxpdHRsZSBsbiBsb2FkIGxvYWRfZmlsZSBsb2IgbG9icyBsb2NhbCBsb2NhbHRpbWUgbG9jYWx0aW1lc3RhbXAgbG9jYXRlIGxvY2F0b3IgbG9jayBsb2NrZWQgbG9nIGxvZzEwIGxvZzIgbG9nZmlsZSBsb2dmaWxlcyBsb2dnaW5nIGxvZ2ljYWwgbG9naWNhbF9yZWFkc19wZXJfY2FsbCBsb2dvZmYgbG9nb24gbG9ncyBsb25nIGxvb3AgbG93IGxvd19wcmlvcml0eSBsb3dlciBscGFkIGxydHJpbSBsdHJpbSBtYWluIG1ha2Vfc2V0IG1ha2VkYXRlIG1ha2V0aW1lIG1hbmFnZWQgbWFuYWdlbWVudCBtYW51YWwgbWFwIG1hcHBpbmcgbWFzayBtYXN0ZXIgbWFzdGVyX3Bvc193YWl0IG1hdGNoIG1hdGNoZWQgbWF0ZXJpYWxpemVkIG1heCBtYXhleHRlbnRzIG1heGltaXplIG1heGluc3RhbmNlcyBtYXhsZW4gbWF4bG9nZmlsZXMgbWF4bG9naGlzdG9yeSBtYXhsb2dtZW1iZXJzIG1heHNpemUgbWF4dHJhbnMgbWQ1IG1lYXN1cmVzIG1lZGlhbiBtZWRpdW0gbWVtYmVyIG1lbWNvbXByZXNzIG1lbW9yeSBtZXJnZSBtaWNyb3NlY29uZCBtaWQgbWlncmF0aW9uIG1pbiBtaW5leHRlbnRzIG1pbmltdW0gbWluaW5nIG1pbnVzIG1pbnV0ZSBtaW52YWx1ZSBtaXNzaW5nIG1vZCBtb2RlIG1vZGVsIG1vZGlmaWNhdGlvbiBtb2RpZnkgbW9kdWxlIG1vbml0b3JpbmcgbW9udGggbW9udGhzIG1vdW50IG1vdmUgbW92ZW1lbnQgbXVsdGlzZXQgbXV0ZXggbmFtZSBuYW1lX2NvbnN0IG5hbWVzIG5hbiBuYXRpb25hbCBuYXRpdmUgbmF0dXJhbCBuYXYgbmNoYXIgbmNsb2IgbmVzdGVkIG5ldmVyIG5ldyBuZXdsaW5lIG5leHQgbmV4dHZhbCBubyBub193cml0ZV90b19iaW5sb2cgbm9hcmNoaXZlbG9nIG5vYXVkaXQgbm9iYWRmaWxlIG5vY2hlY2sgbm9jb21wcmVzcyBub2NvcHkgbm9jeWNsZSBub2RlbGF5IG5vZGlzY2FyZGZpbGUgbm9lbnRpdHllc2NhcGluZyBub2d1YXJhbnRlZSBub2tlZXAgbm9sb2dmaWxlIG5vbWFwcGluZyBub21heHZhbHVlIG5vbWluaW1pemUgbm9taW52YWx1ZSBub21vbml0b3Jpbmcgbm9uZSBub25lZGl0aW9uYWJsZSBub25zY2hlbWEgbm9vcmRlciBub3ByIG5vcHJvIG5vcHJvbSBub3Byb21wIG5vcHJvbXB0IG5vcmVseSBub3Jlc2V0bG9ncyBub3JldmVyc2Ugbm9ybWFsIG5vcm93ZGVwZW5kZW5jaWVzIG5vc2NoZW1hY2hlY2sgbm9zd2l0Y2ggbm90IG5vdGhpbmcgbm90aWNlIG5vdHJpbSBub3ZhbGlkYXRlIG5vdyBub3dhaXQgbnRoX3ZhbHVlIG51bGxpZiBudWxscyBudW0gbnVtYiBudW1iZSBudmFyY2hhciBudmFyY2hhcjIgb2JqZWN0IG9jaWNvbGwgb2NpZGF0ZSBvY2lkYXRldGltZSBvY2lkdXJhdGlvbiBvY2lpbnRlcnZhbCBvY2lsb2Jsb2NhdG9yIG9jaW51bWJlciBvY2lyZWYgb2NpcmVmY3Vyc29yIG9jaXJvd2lkIG9jaXN0cmluZyBvY2l0eXBlIG9jdCBvY3RldF9sZW5ndGggb2Ygb2ZmIG9mZmxpbmUgb2Zmc2V0IG9pZCBvaWRpbmRleCBvbGQgb24gb25saW5lIG9ubHkgb3BhcXVlIG9wZW4gb3BlcmF0aW9ucyBvcGVyYXRvciBvcHRpbWFsIG9wdGltaXplIG9wdGlvbiBvcHRpb25hbGx5IG9yIG9yYWNsZSBvcmFjbGVfZGF0ZSBvcmFkYXRhIG9yZCBvcmRhdWRpbyBvcmRkaWNvbSBvcmRkb2Mgb3JkZXIgb3JkaW1hZ2Ugb3JkaW5hbGl0eSBvcmR2aWRlbyBvcmdhbml6YXRpb24gb3JsYW55IG9ybHZhcnkgb3V0IG91dGVyIG91dGZpbGUgb3V0bGluZSBvdXRwdXQgb3ZlciBvdmVyZmxvdyBvdmVycmlkaW5nIHBhY2thZ2UgcGFkIHBhcmFsbGVsIHBhcmFsbGVsX2VuYWJsZSBwYXJhbWV0ZXJzIHBhcmVudCBwYXJzZSBwYXJ0aWFsIHBhcnRpdGlvbiBwYXJ0aXRpb25zIHBhc2NhbCBwYXNzaW5nIHBhc3N3b3JkIHBhc3N3b3JkX2dyYWNlX3RpbWUgcGFzc3dvcmRfbG9ja190aW1lIHBhc3N3b3JkX3JldXNlX21heCBwYXNzd29yZF9yZXVzZV90aW1lIHBhc3N3b3JkX3ZlcmlmeV9mdW5jdGlvbiBwYXRjaCBwYXRoIHBhdGluZGV4IHBjdGluY3JlYXNlIHBjdHRocmVzaG9sZCBwY3R1c2VkIHBjdHZlcnNpb24gcGVyY2VudCBwZXJjZW50X3JhbmsgcGVyY2VudGlsZV9jb250IHBlcmNlbnRpbGVfZGlzYyBwZXJmb3JtYW5jZSBwZXJpb2QgcGVyaW9kX2FkZCBwZXJpb2RfZGlmZiBwZXJtYW5lbnQgcGh5c2ljYWwgcGkgcGlwZSBwaXBlbGluZWQgcGl2b3QgcGx1Z2dhYmxlIHBsdWdpbiBwb2xpY3kgcG9zaXRpb24gcG9zdF90cmFuc2FjdGlvbiBwb3cgcG93ZXIgcHJhZ21hIHByZWJ1aWx0IHByZWNlZGVzIHByZWNlZGluZyBwcmVjaXNpb24gcHJlZGljdGlvbiBwcmVkaWN0aW9uX2Nvc3QgcHJlZGljdGlvbl9kZXRhaWxzIHByZWRpY3Rpb25fcHJvYmFiaWxpdHkgcHJlZGljdGlvbl9zZXQgcHJlcGFyZSBwcmVzZW50IHByZXNlcnZlIHByaW9yIHByaW9yaXR5IHByaXZhdGUgcHJpdmF0ZV9zZ2EgcHJpdmlsZWdlcyBwcm9jZWR1cmFsIHByb2NlZHVyZSBwcm9jZWR1cmVfYW5hbHl6ZSBwcm9jZXNzbGlzdCBwcm9maWxlcyBwcm9qZWN0IHByb21wdCBwcm90ZWN0aW9uIHB1YmxpYyBwdWJsaXNoaW5nc2VydmVybmFtZSBwdXJnZSBxdWFydGVyIHF1ZXJ5IHF1aWNrIHF1aWVzY2UgcXVvdGEgcXVvdGVuYW1lIHJhZGlhbnMgcmFpc2UgcmFuZCByYW5nZSByYW5rIHJhdyByZWFkIHJlYWRzIHJlYWRzaXplIHJlYnVpbGQgcmVjb3JkIHJlY29yZHMgcmVjb3ZlciByZWNvdmVyeSByZWN1cnNpdmUgcmVjeWNsZSByZWRvIHJlZHVjZWQgcmVmIHJlZmVyZW5jZSByZWZlcmVuY2VkIHJlZmVyZW5jZXMgcmVmZXJlbmNpbmcgcmVmcmVzaCByZWdleHBfbGlrZSByZWdpc3RlciByZWdyX2F2Z3ggcmVncl9hdmd5IHJlZ3JfY291bnQgcmVncl9pbnRlcmNlcHQgcmVncl9yMiByZWdyX3Nsb3BlIHJlZ3Jfc3h4IHJlZ3Jfc3h5IHJlamVjdCByZWtleSByZWxhdGlvbmFsIHJlbGF0aXZlIHJlbGF5bG9nIHJlbGVhc2UgcmVsZWFzZV9sb2NrIHJlbGllc19vbiByZWxvY2F0ZSByZWx5IHJlbSByZW1haW5kZXIgcmVuYW1lIHJlcGFpciByZXBlYXQgcmVwbGFjZSByZXBsaWNhdGUgcmVwbGljYXRpb24gcmVxdWlyZWQgcmVzZXQgcmVzZXRsb2dzIHJlc2l6ZSByZXNvdXJjZSByZXNwZWN0IHJlc3RvcmUgcmVzdHJpY3RlZCByZXN1bHQgcmVzdWx0X2NhY2hlIHJlc3VtYWJsZSByZXN1bWUgcmV0ZW50aW9uIHJldHVybiByZXR1cm5pbmcgcmV0dXJucyByZXVzZSByZXZlcnNlIHJldm9rZSByaWdodCBybGlrZSByb2xlIHJvbGVzIHJvbGxiYWNrIHJvbGxpbmcgcm9sbHVwIHJvdW5kIHJvdyByb3dfY291bnQgcm93ZGVwZW5kZW5jaWVzIHJvd2lkIHJvd251bSByb3dzIHJ0cmltIHJ1bGVzIHNhZmUgc2FsdCBzYW1wbGUgc2F2ZSBzYXZlcG9pbnQgc2IxIHNiMiBzYjQgc2NhbiBzY2hlbWEgc2NoZW1hY2hlY2sgc2NuIHNjb3BlIHNjcm9sbCBzZG9fZ2VvcmFzdGVyIHNkb190b3BvX2dlb21ldHJ5IHNlYXJjaCBzZWNfdG9fdGltZSBzZWNvbmQgc2VjdGlvbiBzZWN1cmVmaWxlIHNlY3VyaXR5IHNlZWQgc2VnbWVudCBzZWxlY3Qgc2VsZiBzZXF1ZW5jZSBzZXF1ZW50aWFsIHNlcmlhbGl6YWJsZSBzZXJ2ZXIgc2VydmVyZXJyb3Igc2Vzc2lvbiBzZXNzaW9uX3VzZXIgc2Vzc2lvbnNfcGVyX3VzZXIgc2V0IHNldHMgc2V0dGluZ3Mgc2hhIHNoYTEgc2hhMiBzaGFyZSBzaGFyZWQgc2hhcmVkX3Bvb2wgc2hvcnQgc2hvdyBzaHJpbmsgc2h1dGRvd24gc2lfYXZlcmFnZWNvbG9yIHNpX2NvbG9yaGlzdG9ncmFtIHNpX2ZlYXR1cmVsaXN0IHNpX3Bvc2l0aW9uYWxjb2xvciBzaV9zdGlsbGltYWdlIHNpX3RleHR1cmUgc2libGluZ3Mgc2lkIHNpZ24gc2luIHNpemUgc2l6ZV90IHNpemVzIHNraXAgc2xhdmUgc2xlZXAgc21hbGxkYXRldGltZWZyb21wYXJ0cyBzbWFsbGZpbGUgc25hcHNob3Qgc29tZSBzb25hbWUgc29ydCBzb3VuZGV4IHNvdXJjZSBzcGFjZSBzcGFyc2Ugc3BmaWxlIHNwbGl0IHNxbCBzcWxfYmlnX3Jlc3VsdCBzcWxfYnVmZmVyX3Jlc3VsdCBzcWxfY2FjaGUgc3FsX2NhbGNfZm91bmRfcm93cyBzcWxfc21hbGxfcmVzdWx0IHNxbF92YXJpYW50X3Byb3BlcnR5IHNxbGNvZGUgc3FsZGF0YSBzcWxlcnJvciBzcWxuYW1lIHNxbHN0YXRlIHNxcnQgc3F1YXJlIHN0YW5kYWxvbmUgc3RhbmRieSBzdGFydCBzdGFydGluZyBzdGFydHVwIHN0YXRlbWVudCBzdGF0aWMgc3RhdGlzdGljcyBzdGF0c19iaW5vbWlhbF90ZXN0IHN0YXRzX2Nyb3NzdGFiIHN0YXRzX2tzX3Rlc3Qgc3RhdHNfbW9kZSBzdGF0c19td190ZXN0IHN0YXRzX29uZV93YXlfYW5vdmEgc3RhdHNfdF90ZXN0XyBzdGF0c190X3Rlc3RfaW5kZXAgc3RhdHNfdF90ZXN0X29uZSBzdGF0c190X3Rlc3RfcGFpcmVkIHN0YXRzX3dzcl90ZXN0IHN0YXR1cyBzdGQgc3RkZGV2IHN0ZGRldl9wb3Agc3RkZGV2X3NhbXAgc3RkZXYgc3RvcCBzdG9yYWdlIHN0b3JlIHN0b3JlZCBzdHIgc3RyX3RvX2RhdGUgc3RyYWlnaHRfam9pbiBzdHJjbXAgc3RyaWN0IHN0cmluZyBzdHJ1Y3Qgc3R1ZmYgc3R5bGUgc3ViZGF0ZSBzdWJwYXJ0aXRpb24gc3VicGFydGl0aW9ucyBzdWJzdGl0dXRhYmxlIHN1YnN0ciBzdWJzdHJpbmcgc3VidGltZSBzdWJ0cmluZ19pbmRleCBzdWJ0eXBlIHN1Y2Nlc3Mgc3VtIHN1c3BlbmQgc3dpdGNoIHN3aXRjaG9mZnNldCBzd2l0Y2hvdmVyIHN5bmMgc3luY2hyb25vdXMgc3lub255bSBzeXMgc3lzX3htbGFnZyBzeXNhc20gc3lzYXV4IHN5c2RhdGUgc3lzZGF0ZXRpbWVvZmZzZXQgc3lzZGJhIHN5c29wZXIgc3lzdGVtIHN5c3RlbV91c2VyIHN5c3V0Y2RhdGV0aW1lIHRhYmxlIHRhYmxlcyB0YWJsZXNwYWNlIHRhbiB0ZG8gdGVtcGxhdGUgdGVtcG9yYXJ5IHRlcm1pbmF0ZWQgdGVydGlhcnlfd2VpZ2h0cyB0ZXN0IHRoYW4gdGhlbiB0aHJlYWQgdGhyb3VnaCB0aWVyIHRpZXMgdGltZSB0aW1lX2Zvcm1hdCB0aW1lX3pvbmUgdGltZWRpZmYgdGltZWZyb21wYXJ0cyB0aW1lb3V0IHRpbWVzdGFtcCB0aW1lc3RhbXBhZGQgdGltZXN0YW1wZGlmZiB0aW1lem9uZV9hYmJyIHRpbWV6b25lX21pbnV0ZSB0aW1lem9uZV9yZWdpb24gdG8gdG9fYmFzZTY0IHRvX2RhdGUgdG9fZGF5cyB0b19zZWNvbmRzIHRvZGF0ZXRpbWVvZmZzZXQgdHJhY2UgdHJhY2tpbmcgdHJhbnNhY3Rpb24gdHJhbnNhY3Rpb25hbCB0cmFuc2xhdGUgdHJhbnNsYXRpb24gdHJlYXQgdHJpZ2dlciB0cmlnZ2VyX25lc3RsZXZlbCB0cmlnZ2VycyB0cmltIHRydW5jYXRlIHRyeV9jYXN0IHRyeV9jb252ZXJ0IHRyeV9wYXJzZSB0eXBlIHViMSB1YjIgdWI0IHVjYXNlIHVuYXJjaGl2ZWQgdW5ib3VuZGVkIHVuY29tcHJlc3MgdW5kZXIgdW5kbyB1bmhleCB1bmljb2RlIHVuaWZvcm0gdW5pbnN0YWxsIHVuaW9uIHVuaXF1ZSB1bml4X3RpbWVzdGFtcCB1bmtub3duIHVubGltaXRlZCB1bmxvY2sgdW5waXZvdCB1bnJlY292ZXJhYmxlIHVuc2FmZSB1bnNpZ25lZCB1bnRpbCB1bnRydXN0ZWQgdW51c2FibGUgdW51c2VkIHVwZGF0ZSB1cGRhdGVkIHVwZ3JhZGUgdXBwZWQgdXBwZXIgdXBzZXJ0IHVybCB1cm93aWQgdXNhYmxlIHVzYWdlIHVzZSB1c2Vfc3RvcmVkX291dGxpbmVzIHVzZXIgdXNlcl9kYXRhIHVzZXJfcmVzb3VyY2VzIHVzZXJzIHVzaW5nIHV0Y19kYXRlIHV0Y190aW1lc3RhbXAgdXVpZCB1dWlkX3Nob3J0IHZhbGlkYXRlIHZhbGlkYXRlX3Bhc3N3b3JkX3N0cmVuZ3RoIHZhbGlkYXRpb24gdmFsaXN0IHZhbHVlIHZhbHVlcyB2YXIgdmFyX3NhbXAgdmFyY2hhcmMgdmFyaSB2YXJpYSB2YXJpYWIgdmFyaWFibCB2YXJpYWJsZSB2YXJpYWJsZXMgdmFyaWFuY2UgdmFycCB2YXJyYXcgdmFycmF3YyB2YXJyYXkgdmVyaWZ5IHZlcnNpb24gdmVyc2lvbnMgdmlldyB2aXJ0dWFsIHZpc2libGUgdm9pZCB3YWl0IHdhbGxldCB3YXJuaW5nIHdhcm5pbmdzIHdlZWsgd2Vla2RheSB3ZWVrb2Z5ZWFyIHdlbGxmb3JtZWQgd2hlbiB3aGVuZSB3aGVuZXYgd2hlbmV2ZSB3aGVuZXZlciB3aGVyZSB3aGlsZSB3aGl0ZXNwYWNlIHdpdGggd2l0aGluIHdpdGhvdXQgd29yayB3cmFwcGVkIHhkYiB4bWwgeG1sYWdnIHhtbGF0dHJpYnV0ZXMgeG1sY2FzdCB4bWxjb2xhdHR2YWwgeG1sZWxlbWVudCB4bWxleGlzdHMgeG1sZm9yZXN0IHhtbGluZGV4IHhtbG5hbWVzcGFjZXMgeG1scGkgeG1scXVlcnkgeG1scm9vdCB4bWxzY2hlbWEgeG1sc2VyaWFsaXplIHhtbHRhYmxlIHhtbHR5cGUgeG9yIHllYXIgeWVhcl90b19tb250aCB5ZWFycyB5ZWFyd2VlayIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSBudWxsIixidWlsdF9pbjoiYXJyYXkgYmlnaW50IGJpbmFyeSBiaXQgYmxvYiBib29sZWFuIGNoYXIgY2hhcmFjdGVyIGRhdGUgZGVjIGRlY2ltYWwgZmxvYXQgaW50IGludDggaW50ZWdlciBpbnRlcnZhbCBudW1iZXIgbnVtZXJpYyByZWFsIHJlY29yZCBzZXJpYWwgc2VyaWFsOCBzbWFsbGludCB0ZXh0IHZhcmNoYXIgdmFyeWluZyB2b2lkIn0sYzpbe2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGM6W2UuQkUse2I6IicnIn1dfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbZS5CRSx7YjonIiInfV19LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFXX0sZS5DTk0sZS5DQkNNLHRdfSxlLkNCQ00sdF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJyIixmdW5jdGlvbihlKXt2YXIgcj0iKFthLXpBLVpdfFxcLlthLXpBLVouXSlbYS16QS1aMC05Ll9dKiI7cmV0dXJue2M6W2UuSENNLHtiOnIsbDpyLGs6e2tleXdvcmQ6ImZ1bmN0aW9uIGlmIGluIGJyZWFrIG5leHQgcmVwZWF0IGVsc2UgZm9yIHJldHVybiBzd2l0Y2ggd2hpbGUgdHJ5IHRyeUNhdGNoIHN0b3Agd2FybmluZyByZXF1aXJlIGxpYnJhcnkgYXR0YWNoIGRldGFjaCBzb3VyY2Ugc2V0TWV0aG9kIHNldEdlbmVyaWMgc2V0R3JvdXBHZW5lcmljIHNldENsYXNzIC4uLiIsbGl0ZXJhbDoiTlVMTCBOQSBUUlVFIEZBTFNFIFQgRiBJbmYgTmFOIE5BX2ludGVnZXJffDEwIE5BX3JlYWxffDEwIE5BX2NoYXJhY3Rlcl98MTAgTkFfY29tcGxleF98MTAifSxyOjB9LHtjTjoibnVtYmVyIixiOiIwW3hYXVswLTlhLWZBLUZdK1tMaV0/XFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9MXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIscjowfSx7Y046Im51bWJlciIsYjoiXFxkKyg/OlxcLlxcZCopPyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcLlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP2k/XFxiIixyOjB9LHtiOiJgIixlOiJgIixyOjB9LHtjTjoic3RyaW5nIixjOltlLkJFXSx2Olt7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJwZXJsIixmdW5jdGlvbihlKXt2YXIgdD0iZ2V0cHdlbnQgZ2V0c2VydmVudCBxdW90ZW1ldGEgbXNncmN2IHNjYWxhciBraWxsIGRibWNsb3NlIHVuZGVmIGxjIG1hIHN5c3dyaXRlIHRyIHNlbmQgdW1hc2sgc3lzb3BlbiBzaG13cml0ZSB2ZWMgcXggdXRpbWUgbG9jYWwgb2N0IHNlbWN0bCBsb2NhbHRpbWUgcmVhZHBpcGUgZG8gcmV0dXJuIGZvcm1hdCByZWFkIHNwcmludGYgZGJtb3BlbiBwb3AgZ2V0cGdycCBub3QgZ2V0cHduYW0gcmV3aW5kZGlyIHFxZmlsZW5vIHF3IGVuZHByb3RvZW50IHdhaXQgc2V0aG9zdGVudCBibGVzcyBzfDAgb3BlbmRpciBjb250aW51ZSBlYWNoIHNsZWVwIGVuZGdyZW50IHNodXRkb3duIGR1bXAgY2hvbXAgY29ubmVjdCBnZXRzb2NrbmFtZSBkaWUgc29ja2V0cGFpciBjbG9zZSBmbG9jayBleGlzdHMgaW5kZXggc2htZ2V0c3ViIGZvciBlbmRwd2VudCByZWRvIGxzdGF0IG1zZ2N0bCBzZXRwZ3JwIGFicyBleGl0IHNlbGVjdCBwcmludCByZWYgZ2V0aG9zdGJ5YWRkciB1bnNoaWZ0IGZjbnRsIHN5c2NhbGwgZ290byBnZXRuZXRieWFkZHIgam9pbiBnbXRpbWUgc3ltbGluayBzZW1nZXQgc3BsaWNlIHh8MCBnZXRwZWVybmFtZSByZWN2IGxvZyBzZXRzb2Nrb3B0IGNvcyBsYXN0IHJldmVyc2UgZ2V0aG9zdGJ5bmFtZSBnZXRncm5hbSBzdHVkeSBmb3JtbGluZSBlbmRob3N0ZW50IHRpbWVzIGNob3AgbGVuZ3RoIGdldGhvc3RlbnQgZ2V0bmV0ZW50IHBhY2sgZ2V0cHJvdG9lbnQgZ2V0c2VydmJ5bmFtZSByYW5kIG1rZGlyIHBvcyBjaG1vZCB5fDAgc3Vic3RyIGVuZG5ldGVudCBwcmludGYgbmV4dCBvcGVuIG1zZ3NuZCByZWFkZGlyIHVzZSB1bmxpbmsgZ2V0c29ja29wdCBnZXRwcmlvcml0eSByaW5kZXggd2FudGFycmF5IGhleCBzeXN0ZW0gZ2V0c2VydmJ5cG9ydCBlbmRzZXJ2ZW50IGludCBjaHIgdW50aWUgcm1kaXIgcHJvdG90eXBlIHRlbGwgbGlzdGVuIGZvcmsgc2htcmVhZCB1Y2ZpcnN0IHNldHByb3RvZW50IGVsc2Ugc3lzc2VlayBsaW5rIGdldGdyZ2lkIHNobWN0bCB3YWl0cGlkIHVucGFjayBnZXRuZXRieW5hbWUgcmVzZXQgY2hkaXIgZ3JlcCBzcGxpdCByZXF1aXJlIGNhbGxlciBsY2ZpcnN0IHVudGlsIHdhcm4gd2hpbGUgdmFsdWVzIHNoaWZ0IHRlbGxkaXIgZ2V0cHd1aWQgbXkgZ2V0cHJvdG9ieW51bWJlciBkZWxldGUgYW5kIHNvcnQgdWMgZGVmaW5lZCBzcmFuZCBhY2NlcHQgcGFja2FnZSBzZWVrZGlyIGdldHByb3RvYnluYW1lIHNlbW9wIG91ciByZW5hbWUgc2VlayBpZiBxfDAgY2hyb290IHN5c3JlYWQgc2V0cHdlbnQgbm8gY3J5cHQgZ2V0YyBjaG93biBzcXJ0IHdyaXRlIHNldG5ldGVudCBzZXRwcmlvcml0eSBmb3JlYWNoIHRpZSBzaW4gbXNnZ2V0IG1hcCBzdGF0IGdldGxvZ2luIHVubGVzcyBlbHNpZiB0cnVuY2F0ZSBleGVjIGtleXMgZ2xvYiB0aWVkIGNsb3NlZGlyaW9jdGwgc29ja2V0IHJlYWRsaW5rIGV2YWwgeG9yIHJlYWRsaW5lIGJpbm1vZGUgc2V0c2VydmVudCBlb2Ygb3JkIGJpbmQgYWxhcm0gcGlwZSBhdGFuMiBnZXRncmVudCBleHAgdGltZSBwdXNoIHNldGdyZW50IGd0IGx0IG9yIG5lIG18MCBicmVhayBnaXZlbiBzYXkgc3RhdGUgd2hlbiIscj17Y046InN1YnN0IixiOiJbJEBdXFx7IixlOiJcXH0iLGs6dH0scz17YjoiLT57IixlOiJ9In0sbj17djpbe2I6L1wkXGQvfSx7YjovW1wkJUBdKFxeXHdcYnwjXHcrKDo6XHcrKSp8e1x3K318XHcrKDo6XHcqKSopL30se2I6L1tcJCVAXVteXHNcd3tdLyxyOjB9XX0saT1bZS5CRSxyLG5dLG89W24sZS5IQ00sZS5DKCJeXFw9XFx3IiwiXFw9Y3V0Iix7ZVc6ITB9KSxzLHtjTjoic3RyaW5nIixjOmksdjpbe2I6InFbcXd4cl0/XFxzKlxcKCIsZToiXFwpIixyOjV9LHtiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIscjo1fSx7YjoicVtxd3hyXT9cXHMqXFx7IixlOiJcXH0iLHI6NX0se2I6InFbcXd4cl0/XFxzKlxcfCIsZToiXFx8IixyOjV9LHtiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIscjo1fSx7YjoicXdcXHMrcSIsZToicSIscjo1fSx7YjoiJyIsZToiJyIsYzpbZS5CRV19LHtiOiciJyxlOiciJ30se2I6ImAiLGU6ImAiLGM6W2UuQkVdfSx7Yjoie1xcdyt9IixjOltdLHI6MH0se2I6Ii0/XFx3K1xccypcXD1cXD4iLGM6W10scjowfV19LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtiOiIoXFwvXFwvfCIrZS5SU1IrInxcXGIoc3BsaXR8cmV0dXJufHByaW50fHJldmVyc2V8Z3JlcClcXGIpXFxzKiIsazoic3BsaXQgcmV0dXJuIHByaW50IHJldmVyc2UgZ3JlcCIscjowLGM6W2UuSENNLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2UuQkVdLHI6MH1dfSx7Y046ImZ1bmN0aW9uIixiSzoic3ViIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsZUU6ITAscjo1LGM6W2UuVE1dfSx7YjoiLVxcd1xcYiIscjowfSx7YjoiXl9fREFUQV9fJCIsZToiXl9fRU5EX18kIixzTDoibW9qb2xpY2lvdXMiLGM6W3tiOiJeQEAuKiIsZToiJCIsY046ImNvbW1lbnQifV19XTtyZXR1cm4gci5jPW8scy5jPW8se2FsaWFzZXM6WyJwbCIsInBtIl0sbDovW1x3XC5dKy8sazp0LGM6b319KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImluaSIsZnVuY3Rpb24oZSl7dmFyIGI9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOiInJyciLGU6IicnJyIscjoxMH0se2I6JyIiIicsZTonIiIiJyxyOjEwfSx7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfTtyZXR1cm57YWxpYXNlczpbInRvbWwiXSxjSTohMCxpOi9cUy8sYzpbZS5DKCI7IiwiJCIpLGUuSENNLHtjTjoic2VjdGlvbiIsYjovXlxzKlxbKy8sZTovXF0rL30se2I6L15bYS16MC05XFtcXV8tXStccyo9XHMqLyxlOiIkIixyQjohMCxjOlt7Y046ImF0dHIiLGI6L1thLXowLTlcW1xdXy1dKy99LHtiOi89LyxlVzohMCxyOjAsYzpbe2NOOiJsaXRlcmFsIixiOi9cYm9ufG9mZnx0cnVlfGZhbHNlfHllc3xub1xiL30se2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQiXVtcd1xkX10qL30se2I6L1wkXHsoLio/KX0vfV19LGIse2NOOiJudW1iZXIiLGI6LyhbXCtcLV0rKT9bXGRdK19bXGRfXSsvfSxlLk5NXX1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJkaWZmIixmdW5jdGlvbihlKXtyZXR1cm57YWxpYXNlczpbInBhdGNoIl0sYzpbe2NOOiJtZXRhIixyOjEwLHY6W3tiOi9eQEAgK1wtXGQrLFxkKyArXCtcZCssXGQrICtAQCQvfSx7YjovXlwqXCpcKiArXGQrLFxkKyArXCpcKlwqXCokL30se2I6L15cLVwtXC0gK1xkKyxcZCsgK1wtXC1cLVwtJC99XX0se2NOOiJjb21tZW50Iix2Olt7YjovSW5kZXg6IC8sZTovJC99LHtiOi89ezMsfS8sZTovJC99LHtiOi9eXC17M30vLGU6LyQvfSx7YjovXlwqezN9IC8sZTovJC99LHtiOi9eXCt7M30vLGU6LyQvfSx7YjovXCp7NX0vLGU6L1wqezV9JC99XX0se2NOOiJhZGRpdGlvbiIsYjoiXlxcKyIsZToiJCJ9LHtjTjoiZGVsZXRpb24iLGI6Il5cXC0iLGU6IiQifSx7Y046ImFkZGl0aW9uIixiOiJeXFwhIixlOiIkIn1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiZ28iLGZ1bmN0aW9uKGUpe3ZhciB0PXtrZXl3b3JkOiJicmVhayBkZWZhdWx0IGZ1bmMgaW50ZXJmYWNlIHNlbGVjdCBjYXNlIG1hcCBzdHJ1Y3QgY2hhbiBlbHNlIGdvdG8gcGFja2FnZSBzd2l0Y2ggY29uc3QgZmFsbHRocm91Z2ggaWYgcmFuZ2UgdHlwZSBjb250aW51ZSBmb3IgaW1wb3J0IHJldHVybiB2YXIgZ28gZGVmZXIgYm9vbCBieXRlIGNvbXBsZXg2NCBjb21wbGV4MTI4IGZsb2F0MzIgZmxvYXQ2NCBpbnQ4IGludDE2IGludDMyIGludDY0IHN0cmluZyB1aW50OCB1aW50MTYgdWludDMyIHVpbnQ2NCBpbnQgdWludCB1aW50cHRyIHJ1bmUiLGxpdGVyYWw6InRydWUgZmFsc2UgaW90YSBuaWwiLGJ1aWx0X2luOiJhcHBlbmQgY2FwIGNsb3NlIGNvbXBsZXggY29weSBpbWFnIGxlbiBtYWtlIG5ldyBwYW5pYyBwcmludCBwcmludGxuIHJlYWwgcmVjb3ZlciBkZWxldGUifTtyZXR1cm57YWxpYXNlczpbImdvbGFuZyJdLGs6dCxpOiI8LyIsYzpbZS5DTENNLGUuQ0JDTSx7Y046InN0cmluZyIsdjpbZS5RU00se2I6IiciLGU6IlteXFxcXF0nIn0se2I6ImAiLGU6ImAifV19LHtjTjoibnVtYmVyIix2Olt7YjplLkNOUisiW2RmbHNpXSIscjoxfSxlLkNOTV19LHtiOi86PS99LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jIixlOi9ccypcey8sZUU6ITAsYzpbZS5UTSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnQsaTovWyInXS99XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiYmFzaCIsZnVuY3Rpb24oZSl7dmFyIHQ9e2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQjQF1bXHdcZF9dKi99LHtiOi9cJFx7KC4qPyl9L31dfSxzPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLHQse2NOOiJ2YXJpYWJsZSIsYjovXCRcKC8sZTovXCkvLGM6W2UuQkVdfV19LGE9e2NOOiJzdHJpbmciLGI6LycvLGU6LycvfTtyZXR1cm57YWxpYXNlczpbInNoIiwienNoIl0sbDovXGItP1thLXpcLl9dK1xiLyxrOntrZXl3b3JkOiJpZiB0aGVuIGVsc2UgZWxpZiBmaSBmb3Igd2hpbGUgaW4gZG8gZG9uZSBjYXNlIGVzYWMgZnVuY3Rpb24iLGxpdGVyYWw6InRydWUgZmFsc2UiLGJ1aWx0X2luOiJicmVhayBjZCBjb250aW51ZSBldmFsIGV4ZWMgZXhpdCBleHBvcnQgZ2V0b3B0cyBoYXNoIHB3ZCByZWFkb25seSByZXR1cm4gc2hpZnQgdGVzdCB0aW1lcyB0cmFwIHVtYXNrIHVuc2V0IGFsaWFzIGJpbmQgYnVpbHRpbiBjYWxsZXIgY29tbWFuZCBkZWNsYXJlIGVjaG8gZW5hYmxlIGhlbHAgbGV0IGxvY2FsIGxvZ291dCBtYXBmaWxlIHByaW50ZiByZWFkIHJlYWRhcnJheSBzb3VyY2UgdHlwZSB0eXBlc2V0IHVsaW1pdCB1bmFsaWFzIHNldCBzaG9wdCBhdXRvbG9hZCBiZyBiaW5ka2V5IGJ5ZSBjYXAgY2hkaXIgY2xvbmUgY29tcGFyZ3VtZW50cyBjb21wY2FsbCBjb21wY3RsIGNvbXBkZXNjcmliZSBjb21wZmlsZXMgY29tcGdyb3VwcyBjb21wcXVvdGUgY29tcHRhZ3MgY29tcHRyeSBjb21wdmFsdWVzIGRpcnMgZGlzYWJsZSBkaXNvd24gZWNob3RjIGVjaG90aSBlbXVsYXRlIGZjIGZnIGZsb2F0IGZ1bmN0aW9ucyBnZXRjYXAgZ2V0bG4gaGlzdG9yeSBpbnRlZ2VyIGpvYnMga2lsbCBsaW1pdCBsb2cgbm9nbG9iIHBvcGQgcHJpbnQgcHVzaGQgcHVzaGxuIHJlaGFzaCBzY2hlZCBzZXRjYXAgc2V0b3B0IHN0YXQgc3VzcGVuZCB0dHljdGwgdW5mdW5jdGlvbiB1bmhhc2ggdW5saW1pdCB1bnNldG9wdCB2YXJlZCB3YWl0IHdoZW5jZSB3aGVyZSB3aGljaCB6Y29tcGlsZSB6Zm9ybWF0IHpmdHAgemxlIHptb2Rsb2FkIHpwYXJzZW9wdHMgenByb2YgenB0eSB6cmVnZXhwYXJzZSB6c29ja2V0IHpzdHlsZSB6dGNwIixfOiItbmUgLWVxIC1sdCAtZ3QgLWYgLWQgLWUgLXMgLWwgLWEifSxjOlt7Y046Im1ldGEiLGI6L14jIVteXG5dK3NoXHMqJC8scjoxMH0se2NOOiJmdW5jdGlvbiIsYjovXHdbXHdcZF9dKlxzKlwoXHMqXClccypcey8sckI6ITAsYzpbZS5pbmhlcml0KGUuVE0se2I6L1x3W1x3XGRfXSovfSldLHI6MH0sZS5IQ00scyxhLHRdfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicHl0aG9uIixmdW5jdGlvbihlKXt2YXIgcj17a2V5d29yZDoiYW5kIGVsaWYgaXMgZ2xvYmFsIGFzIGluIGlmIGZyb20gcmFpc2UgZm9yIGV4Y2VwdCBmaW5hbGx5IHByaW50IGltcG9ydCBwYXNzIHJldHVybiBleGVjIGVsc2UgYnJlYWsgbm90IHdpdGggY2xhc3MgYXNzZXJ0IHlpZWxkIHRyeSB3aGlsZSBjb250aW51ZSBkZWwgb3IgZGVmIGxhbWJkYSBhc3luYyBhd2FpdCBub25sb2NhbHwxMCBOb25lIFRydWUgRmFsc2UiLGJ1aWx0X2luOiJFbGxpcHNpcyBOb3RJbXBsZW1lbnRlZCJ9LGI9e2NOOiJtZXRhIixiOi9eKD4+PnxcLlwuXC4pIC99LGM9e2NOOiJzdWJzdCIsYjovXHsvLGU6L1x9LyxrOnIsaTovIy99LGE9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOi8odXxiKT9yPycnJy8sZTovJycnLyxjOltiXSxyOjEwfSx7YjovKHV8Yik/cj8iIiIvLGU6LyIiIi8sYzpbYl0scjoxMH0se2I6LyhmcnxyZnxmKScnJy8sZTovJycnLyxjOltiLGNdfSx7YjovKGZyfHJmfGYpIiIiLyxlOi8iIiIvLGM6W2IsY119LHtiOi8odXxyfHVyKScvLGU6LycvLHI6MTB9LHtiOi8odXxyfHVyKSIvLGU6LyIvLHI6MTB9LHtiOi8oYnxiciknLyxlOi8nL30se2I6LyhifGJyKSIvLGU6LyIvfSx7YjovKGZyfHJmfGYpJy8sZTovJy8sYzpbY119LHtiOi8oZnJ8cmZ8ZikiLyxlOi8iLyxjOltjXX0sZS5BU00sZS5RU01dfSxzPXtjTjoibnVtYmVyIixyOjAsdjpbe2I6ZS5CTlIrIltsTGpKXT8ifSx7YjoiXFxiKDBvWzAtN10rKVtsTGpKXT8ifSx7YjplLkNOUisiW2xMakpdPyJ9XX0saT17Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxjOlsic2VsZiIsYixzLGFdfTtyZXR1cm4gYy5jPVthLHMsYl0se2FsaWFzZXM6WyJweSIsImd5cCJdLGs6cixpOi8oPFwvfC0+fFw/KXw9Pi8sYzpbYixzLGEsZS5IQ00se3Y6W3tjTjoiZnVuY3Rpb24iLGJLOiJkZWYifSx7Y046ImNsYXNzIixiSzoiY2xhc3MifV0sZTovOi8saTovWyR7PTtcbixdLyxjOltlLlVUTSxpLHtiOi8tPi8sZVc6ITAsazoiTm9uZSJ9XX0se2NOOiJtZXRhIixiOi9eW1x0IF0qQC8sZTovJC99LHtiOi9cYihwcmludHxleGVjKVwoL31dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianVsaWEiLGZ1bmN0aW9uKGUpe3ZhciByPXtrZXl3b3JkOiJpbiBpc2Egd2hlcmUgYmFyZW1vZHVsZSBiZWdpbiBicmVhayBjYXRjaCBjY2FsbCBjb25zdCBjb250aW51ZSBkbyBlbHNlIGVsc2VpZiBlbmQgZXhwb3J0IGZhbHNlIGZpbmFsbHkgZm9yIGZ1bmN0aW9uIGdsb2JhbCBpZiBpbXBvcnQgaW1wb3J0YWxsIGxldCBsb2NhbCBtYWNybyBtb2R1bGUgcXVvdGUgcmV0dXJuIHRydWUgdHJ5IHVzaW5nIHdoaWxlIHR5cGUgaW1tdXRhYmxlIGFic3RyYWN0IGJpdHN0eXBlIHR5cGVhbGlhcyAiLGxpdGVyYWw6InRydWUgZmFsc2UgQVJHUyBDX05VTEwgRGV2TnVsbCBFTkRJQU5fQk9NIEVOViBJIEluZiBJbmYxNiBJbmYzMiBJbmY2NCBJbnNlcnRpb25Tb3J0IEpVTElBX0hPTUUgTE9BRF9QQVRIIE1lcmdlU29ydCBOYU4gTmFOMTYgTmFOMzIgTmFONjQgUFJPR1JBTV9GSUxFIFF1aWNrU29ydCBSb3VuZERvd24gUm91bmRGcm9tWmVybyBSb3VuZE5lYXJlc3QgUm91bmROZWFyZXN0VGllc0F3YXkgUm91bmROZWFyZXN0VGllc1VwIFJvdW5kVG9aZXJvIFJvdW5kVXAgU1RERVJSIFNURElOIFNURE9VVCBWRVJTSU9OIGNhdGFsYW4gZXwwIGV1fDAgZXVsZXJnYW1tYSBnb2xkZW4gaW0gbm90aGluZyBwaSDOsyDPgCDPhiAiLGJ1aWx0X2luOiJBTlkgQWJzdHJhY3RBcnJheSBBYnN0cmFjdENoYW5uZWwgQWJzdHJhY3RGbG9hdCBBYnN0cmFjdE1hdHJpeCBBYnN0cmFjdFJORyBBYnN0cmFjdFNlcmlhbGl6ZXIgQWJzdHJhY3RTZXQgQWJzdHJhY3RTcGFyc2VBcnJheSBBYnN0cmFjdFNwYXJzZU1hdHJpeCBBYnN0cmFjdFNwYXJzZVZlY3RvciBBYnN0cmFjdFN0cmluZyBBYnN0cmFjdFVuaXRSYW5nZSBBYnN0cmFjdFZlY09yTWF0IEFic3RyYWN0VmVjdG9yIEFueSBBcmd1bWVudEVycm9yIEFycmF5IEFzc2VydGlvbkVycm9yIEFzc29jaWF0aXZlIEJhc2U2NERlY29kZVBpcGUgQmFzZTY0RW5jb2RlUGlwZSBCaWRpYWdvbmFsIEJpZ0Zsb2F0IEJpZ0ludCBCaXRBcnJheSBCaXRNYXRyaXggQml0VmVjdG9yIEJvb2wgQm91bmRzRXJyb3IgQnVmZmVyU3RyZWFtIENhY2hpbmdQb29sIENhcHR1cmVkRXhjZXB0aW9uIENhcnRlc2lhbkluZGV4IENhcnRlc2lhblJhbmdlIENjaGFyIENkb3VibGUgQ2Zsb2F0IENoYW5uZWwgQ2hhciBDaW50IENpbnRtYXhfdCBDbG9uZyBDbG9uZ2xvbmcgQ2x1c3Rlck1hbmFnZXIgQ21kIENvZGVJbmZvIENvbG9uIENvbXBsZXggQ29tcGxleDEyOCBDb21wbGV4MzIgQ29tcGxleDY0IENvbXBvc2l0ZUV4Y2VwdGlvbiBDb25kaXRpb24gQ29uakFycmF5IENvbmpNYXRyaXggQ29ualZlY3RvciBDcHRyZGlmZl90IENzaG9ydCBDc2l6ZV90IENzc2l6ZV90IENzdHJpbmcgQ3VjaGFyIEN1aW50IEN1aW50bWF4X3QgQ3Vsb25nIEN1bG9uZ2xvbmcgQ3VzaG9ydCBDd2NoYXJfdCBDd3N0cmluZyBEYXRhVHlwZSBEYXRlIERhdGVGb3JtYXQgRGF0ZVRpbWUgRGVuc2VBcnJheSBEZW5zZU1hdHJpeCBEZW5zZVZlY09yTWF0IERlbnNlVmVjdG9yIERpYWdvbmFsIERpY3QgRGltZW5zaW9uTWlzbWF0Y2ggRGltcyBEaXJlY3RJbmRleFN0cmluZyBEaXNwbGF5IERpdmlkZUVycm9yIERvbWFpbkVycm9yIEVPRkVycm9yIEVhY2hMaW5lIEVudW0gRW51bWVyYXRlIEVycm9yRXhjZXB0aW9uIEV4Y2VwdGlvbiBFeHBvbmVudGlhbEJhY2tPZmYgRXhwciBGYWN0b3JpemF0aW9uIEZpbGVNb25pdG9yIEZsb2F0MTYgRmxvYXQzMiBGbG9hdDY0IEZ1bmN0aW9uIEZ1dHVyZSBHbG9iYWxSZWYgR290b05vZGUgSFRNTCBIZXJtaXRpYW4gSU8gSU9CdWZmZXIgSU9Db250ZXh0IElPU3RyZWFtIElQQWRkciBJUHY0IElQdjYgSW5kZXhDYXJ0ZXNpYW4gSW5kZXhMaW5lYXIgSW5kZXhTdHlsZSBJbmV4YWN0RXJyb3IgSW5pdEVycm9yIEludCBJbnQxMjggSW50MTYgSW50MzIgSW50NjQgSW50OCBJbnRTZXQgSW50ZWdlciBJbnRlcnJ1cHRFeGNlcHRpb24gSW52YWxpZFN0YXRlRXhjZXB0aW9uIElycmF0aW9uYWwgS2V5RXJyb3IgTGFiZWxOb2RlIExpblNwYWNlIExpbmVOdW1iZXJOb2RlIExvYWRFcnJvciBMb3dlclRyaWFuZ3VsYXIgTUlNRSBNYXRyaXggTWVyc2VubmVUd2lzdGVyIE1ldGhvZCBNZXRob2RFcnJvciBNZXRob2RUYWJsZSBNb2R1bGUgTlR1cGxlIE5ld3Zhck5vZGUgTnVsbEV4Y2VwdGlvbiBOdWxsYWJsZSBOdW1iZXIgT2JqZWN0SWREaWN0IE9yZGluYWxSYW5nZSBPdXRPZk1lbW9yeUVycm9yIE92ZXJmbG93RXJyb3IgUGFpciBQYXJzZUVycm9yIFBhcnRpYWxRdWlja1NvcnQgUGVybXV0ZWREaW1zQXJyYXkgUGlwZSBQb2xsaW5nRmlsZVdhdGNoZXIgUHJvY2Vzc0V4aXRlZEV4Y2VwdGlvbiBQdHIgUXVvdGVOb2RlIFJhbmRvbURldmljZSBSYW5nZSBSYW5nZUluZGV4IFJhdGlvbmFsIFJhd0ZEIFJlYWRPbmx5TWVtb3J5RXJyb3IgUmVhbCBSZWVudHJhbnRMb2NrIFJlZiBSZWdleCBSZWdleE1hdGNoIFJlbW90ZUNoYW5uZWwgUmVtb3RlRXhjZXB0aW9uIFJldlN0cmluZyBSb3VuZGluZ01vZGUgUm93VmVjdG9yIFNTQVZhbHVlIFNlZ21lbnRhdGlvbkZhdWx0IFNlcmlhbGl6YXRpb25TdGF0ZSBTZXQgU2hhcmVkQXJyYXkgU2hhcmVkTWF0cml4IFNoYXJlZFZlY3RvciBTaWduZWQgU2ltcGxlVmVjdG9yIFNsb3QgU2xvdE51bWJlciBTcGFyc2VNYXRyaXhDU0MgU3BhcnNlVmVjdG9yIFN0YWNrRnJhbWUgU3RhY2tPdmVyZmxvd0Vycm9yIFN0YWNrVHJhY2UgU3RlcFJhbmdlIFN0ZXBSYW5nZUxlbiBTdHJpZGVkQXJyYXkgU3RyaWRlZE1hdHJpeCBTdHJpZGVkVmVjT3JNYXQgU3RyaWRlZFZlY3RvciBTdHJpbmcgU3ViQXJyYXkgU3ViU3RyaW5nIFN5bVRyaWRpYWdvbmFsIFN5bWJvbCBTeW1tZXRyaWMgU3lzdGVtRXJyb3IgVENQU29ja2V0IFRhc2sgVGV4dCBUZXh0RGlzcGxheSBUaW1lciBUcmlkaWFnb25hbCBUdXBsZSBUeXBlIFR5cGVFcnJvciBUeXBlTWFwRW50cnkgVHlwZU1hcExldmVsIFR5cGVOYW1lIFR5cGVWYXIgVHlwZWRTbG90IFVEUFNvY2tldCBVSW50IFVJbnQxMjggVUludDE2IFVJbnQzMiBVSW50NjQgVUludDggVW5kZWZSZWZFcnJvciBVbmRlZlZhckVycm9yIFVuaWNvZGVFcnJvciBVbmlmb3JtU2NhbGluZyBVbmlvbiBVbmlvbkFsbCBVbml0UmFuZ2UgVW5zaWduZWQgVXBwZXJUcmlhbmd1bGFyIFZhbCBWYXJhcmcgVmVjRWxlbWVudCBWZWNPck1hdCBWZWN0b3IgVmVyc2lvbk51bWJlciBWb2lkIFdlYWtLZXlEaWN0IFdlYWtSZWYgV29ya2VyQ29uZmlnIFdvcmtlclBvb2wgIn0sdD0iW0EtWmEtel9cXHUwMEExLVxcdUZGRkZdW0EtWmEtel8wLTlcXHUwMEExLVxcdUZGRkZdKiIsYT17bDp0LGs6cixpOi88XC8vfSxuPXtjTjoibnVtYmVyIixiOi8oXGIweFtcZF9dKihcLltcZF9dKik/fDB4XC5cZFtcZF9dKilwWy0rXT9cZCt8XGIwW2JveF1bYS1mQS1GMC05XVthLWZBLUYwLTlfXSp8KFxiXGRbXGRfXSooXC5bXGRfXSopP3xcLlxkW1xkX10qKShbZUVmRl1bLStdP1xkKyk/LyxyOjB9LG89e2NOOiJzdHJpbmciLGI6LycoLnxcXFt4WHVVXVthLXpBLVowLTldKyknL30saT17Y046InN1YnN0IixiOi9cJFwoLyxlOi9cKS8sazpyfSxsPXtjTjoidmFyaWFibGUiLGI6IlxcJCIrdH0sYz17Y046InN0cmluZyIsYzpbZS5CRSxpLGxdLHY6W3tiOi9cdyoiIiIvLGU6LyIiIlx3Ki8scjoxMH0se2I6L1x3KiIvLGU6LyJcdyovfV19LHM9e2NOOiJzdHJpbmciLGM6W2UuQkUsaSxsXSxiOiJgIixlOiJgIn0sZD17Y046Im1ldGEiLGI6IkAiK3R9LHU9e2NOOiJjb21tZW50Iix2Olt7YjoiIz0iLGU6Ij0jIixyOjEwfSx7YjoiIyIsZToiJCJ9XX07cmV0dXJuIGEuYz1bbixvLGMscyxkLHUsZS5IQ00se2NOOiJrZXl3b3JkIixiOiJcXGIoKChhYnN0cmFjdHxwcmltaXRpdmUpXFxzKyl0eXBlfChtdXRhYmxlXFxzKyk/c3RydWN0KVxcYiJ9LHtiOi88Oi99XSxpLmM9YS5jLGF9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImNvZmZlZXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIGM9e2tleXdvcmQ6ImluIGlmIGZvciB3aGlsZSBmaW5hbGx5IG5ldyBkbyByZXR1cm4gZWxzZSBicmVhayBjYXRjaCBpbnN0YW5jZW9mIHRocm93IHRyeSB0aGlzIHN3aXRjaCBjb250aW51ZSB0eXBlb2YgZGVsZXRlIGRlYnVnZ2VyIHN1cGVyIHlpZWxkIGltcG9ydCBleHBvcnQgZnJvbSBhcyBkZWZhdWx0IGF3YWl0IHRoZW4gdW5sZXNzIHVudGlsIGxvb3Agb2YgYnkgd2hlbiBhbmQgb3IgaXMgaXNudCBub3QiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgeWVzIG5vIG9uIG9mZiIsYnVpbHRfaW46Im5wbSByZXF1aXJlIGNvbnNvbGUgcHJpbnQgbW9kdWxlIGdsb2JhbCB3aW5kb3cgZG9jdW1lbnQifSxuPSJbQS1aYS16JF9dWzAtOUEtWmEteiRfXSoiLHI9e2NOOiJzdWJzdCIsYjovI1x7LyxlOi99LyxrOmN9LGk9W2UuQk5NLGUuaW5oZXJpdChlLkNOTSx7c3RhcnRzOntlOiIoXFxzKi8pPyIscjowfX0pLHtjTjoic3RyaW5nIix2Olt7YjovJycnLyxlOi8nJycvLGM6W2UuQkVdfSx7YjovJy8sZTovJy8sYzpbZS5CRV19LHtiOi8iIiIvLGU6LyIiIi8sYzpbZS5CRSxyXX0se2I6LyIvLGU6LyIvLGM6W2UuQkUscl19XX0se2NOOiJyZWdleHAiLHY6W3tiOiIvLy8iLGU6Ii8vLyIsYzpbcixlLkhDTV19LHtiOiIvL1tnaW1dKiIscjowfSx7YjovXC8oPyFbICpdKShcXFwvfC4pKj9cL1tnaW1dKig/PVxXfCQpL31dfSx7YjoiQCIrbn0se3NMOiJqYXZhc2NyaXB0IixlQjohMCxlRTohMCx2Olt7YjoiYGBgIixlOiJgYGAifSx7YjoiYCIsZToiYCJ9XX1dO3IuYz1pO3ZhciBzPWUuaW5oZXJpdChlLlRNLHtiOm59KSx0PSIoXFwoLipcXCkpP1xccypcXEJbLT1dPiIsbz17Y046InBhcmFtcyIsYjoiXFwoW15cXChdIixyQjohMCxjOlt7YjovXCgvLGU6L1wpLyxrOmMsYzpbInNlbGYiXS5jb25jYXQoaSl9XX07cmV0dXJue2FsaWFzZXM6WyJjb2ZmZWUiLCJjc29uIiwiaWNlZCJdLGs6YyxpOi9cL1wqLyxjOmkuY29uY2F0KFtlLkMoIiMjIyIsIiMjIyIpLGUuSENNLHtjTjoiZnVuY3Rpb24iLGI6Il5cXHMqIituKyJcXHMqPVxccyoiK3QsZToiWy09XT4iLHJCOiEwLGM6W3Msb119LHtiOi9bOlwoLD1dXHMqLyxyOjAsYzpbe2NOOiJmdW5jdGlvbiIsYjp0LGU6IlstPV0+IixyQjohMCxjOltvXX1dfSx7Y046ImNsYXNzIixiSzoiY2xhc3MiLGU6IiQiLGk6L1s6PSJcW1xdXS8sYzpbe2JLOiJleHRlbmRzIixlVzohMCxpOi9bOj0iXFtcXV0vLGM6W3NdfSxzXX0se2I6bisiOiIsZToiOiIsckI6ITAsckU6ITAscjowfV0pfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiY3BwIixmdW5jdGlvbih0KXt2YXIgZT17Y046ImtleXdvcmQiLGI6IlxcYlthLXpcXGRfXSpfdFxcYiJ9LHI9e2NOOiJzdHJpbmciLHY6W3tiOicodTg/fFUpP0w/IicsZTonIicsaToiXFxuIixjOlt0LkJFXX0se2I6Jyh1OD98VSk/UiInLGU6JyInLGM6W3QuQkVdfSx7YjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9XX0scz17Y046Im51bWJlciIsdjpbe2I6IlxcYigwYlswMSddKykifSx7YjoiKC0/KVxcYihbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKSh1fFV8bHxMfHVsfFVMfGZ8RnxifEIpIn0se2I6IigtPykoXFxiMFt4WF1bYS1mQS1GMC05J10rfChcXGJbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKShbZUVdWy0rXT9bXFxkJ10rKT8pIn1dLHI6MH0saT17Y046Im1ldGEiLGI6LyNccypbYS16XStcYi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6ImlmIGVsc2UgZWxpZiBlbmRpZiBkZWZpbmUgdW5kZWYgd2FybmluZyBlcnJvciBsaW5lIHByYWdtYSBpZmRlZiBpZm5kZWYgaW5jbHVkZSJ9LGM6W3tiOi9cXFxuLyxyOjB9LHQuaW5oZXJpdChyLHtjTjoibWV0YS1zdHJpbmcifSkse2NOOiJtZXRhLXN0cmluZyIsYjovPFteXG4+XSo+LyxlOi8kLyxpOiJcXG4ifSx0LkNMQ00sdC5DQkNNXX0sYT10LklSKyJcXHMqXFwoIixjPXtrZXl3b3JkOiJpbnQgZmxvYXQgd2hpbGUgcHJpdmF0ZSBjaGFyIGNhdGNoIGltcG9ydCBtb2R1bGUgZXhwb3J0IHZpcnR1YWwgb3BlcmF0b3Igc2l6ZW9mIGR5bmFtaWNfY2FzdHwxMCB0eXBlZGVmIGNvbnN0X2Nhc3R8MTAgY29uc3QgZm9yIHN0YXRpY19jYXN0fDEwIHVuaW9uIG5hbWVzcGFjZSB1bnNpZ25lZCBsb25nIHZvbGF0aWxlIHN0YXRpYyBwcm90ZWN0ZWQgYm9vbCB0ZW1wbGF0ZSBtdXRhYmxlIGlmIHB1YmxpYyBmcmllbmQgZG8gZ290byBhdXRvIHZvaWQgZW51bSBlbHNlIGJyZWFrIGV4dGVybiB1c2luZyBhc20gY2FzZSB0eXBlaWQgc2hvcnQgcmVpbnRlcnByZXRfY2FzdHwxMCBkZWZhdWx0IGRvdWJsZSByZWdpc3RlciBleHBsaWNpdCBzaWduZWQgdHlwZW5hbWUgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIGlubGluZSBkZWxldGUgYWxpZ25vZiBjb25zdGV4cHIgZGVjbHR5cGUgbm9leGNlcHQgc3RhdGljX2Fzc2VydCB0aHJlYWRfbG9jYWwgcmVzdHJpY3QgX0Jvb2wgY29tcGxleCBfQ29tcGxleCBfSW1hZ2luYXJ5IGF0b21pY19ib29sIGF0b21pY19jaGFyIGF0b21pY19zY2hhciBhdG9taWNfdWNoYXIgYXRvbWljX3Nob3J0IGF0b21pY191c2hvcnQgYXRvbWljX2ludCBhdG9taWNfdWludCBhdG9taWNfbG9uZyBhdG9taWNfdWxvbmcgYXRvbWljX2xsb25nIGF0b21pY191bGxvbmcgbmV3IHRocm93IHJldHVybiBhbmQgb3Igbm90IixidWlsdF9pbjoic3RkIHN0cmluZyBjaW4gY291dCBjZXJyIGNsb2cgc3RkaW4gc3Rkb3V0IHN0ZGVyciBzdHJpbmdzdHJlYW0gaXN0cmluZ3N0cmVhbSBvc3RyaW5nc3RyZWFtIGF1dG9fcHRyIGRlcXVlIGxpc3QgcXVldWUgc3RhY2sgdmVjdG9yIG1hcCBzZXQgYml0c2V0IG11bHRpc2V0IG11bHRpbWFwIHVub3JkZXJlZF9zZXQgdW5vcmRlcmVkX21hcCB1bm9yZGVyZWRfbXVsdGlzZXQgdW5vcmRlcmVkX211bHRpbWFwIGFycmF5IHNoYXJlZF9wdHIgYWJvcnQgYWJzIGFjb3MgYXNpbiBhdGFuMiBhdGFuIGNhbGxvYyBjZWlsIGNvc2ggY29zIGV4aXQgZXhwIGZhYnMgZmxvb3IgZm1vZCBmcHJpbnRmIGZwdXRzIGZyZWUgZnJleHAgZnNjYW5mIGlzYWxudW0gaXNhbHBoYSBpc2NudHJsIGlzZGlnaXQgaXNncmFwaCBpc2xvd2VyIGlzcHJpbnQgaXNwdW5jdCBpc3NwYWNlIGlzdXBwZXIgaXN4ZGlnaXQgdG9sb3dlciB0b3VwcGVyIGxhYnMgbGRleHAgbG9nMTAgbG9nIG1hbGxvYyByZWFsbG9jIG1lbWNociBtZW1jbXAgbWVtY3B5IG1lbXNldCBtb2RmIHBvdyBwcmludGYgcHV0Y2hhciBwdXRzIHNjYW5mIHNpbmggc2luIHNucHJpbnRmIHNwcmludGYgc3FydCBzc2NhbmYgc3RyY2F0IHN0cmNociBzdHJjbXAgc3RyY3B5IHN0cmNzcG4gc3RybGVuIHN0cm5jYXQgc3RybmNtcCBzdHJuY3B5IHN0cnBicmsgc3RycmNociBzdHJzcG4gc3Ryc3RyIHRhbmggdGFuIHZmcHJpbnRmIHZwcmludGYgdnNwcmludGYgZW5kbCBpbml0aWFsaXplcl9saXN0IHVuaXF1ZV9wdHIiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbHB0ciBOVUxMIn0sbj1bZSx0LkNMQ00sdC5DQkNNLHMscl07cmV0dXJue2FsaWFzZXM6WyJjIiwiY2MiLCJoIiwiYysrIiwiaCsrIiwiaHBwIl0sazpjLGk6IjwvIixjOm4uY29uY2F0KFtpLHtiOiJcXGIoZGVxdWV8bGlzdHxxdWV1ZXxzdGFja3x2ZWN0b3J8bWFwfHNldHxiaXRzZXR8bXVsdGlzZXR8bXVsdGltYXB8dW5vcmRlcmVkX21hcHx1bm9yZGVyZWRfc2V0fHVub3JkZXJlZF9tdWx0aXNldHx1bm9yZGVyZWRfbXVsdGltYXB8YXJyYXkpXFxzKjwiLGU6Ij4iLGs6YyxjOlsic2VsZiIsZV19LHtiOnQuSVIrIjo6IixrOmN9LHt2Olt7YjovPS8sZTovOy99LHtiOi9cKC8sZTovXCkvfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIsZTovOy99XSxrOmMsYzpuLmNvbmNhdChbe2I6L1woLyxlOi9cKS8sazpjLGM6bi5jb25jYXQoWyJzZWxmIl0pLHI6MH1dKSxyOjB9LHtjTjoiZnVuY3Rpb24iLGI6IigiK3QuSVIrIltcXComXFxzXSspKyIrYSxyQjohMCxlOi9bezs9XS8sZUU6ITAsazpjLGk6L1teXHdcc1wqJl0vLGM6W3tiOmEsckI6ITAsYzpbdC5UTV0scjowfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOmMscjowLGM6W3QuQ0xDTSx0LkNCQ00scixzLGVdfSx0LkNMQ00sdC5DQkNNLGldfSx7Y046ImNsYXNzIixiSzoiY2xhc3Mgc3RydWN0IixlOi9bezs6XS8sYzpbe2I6LzwvLGU6Lz4vLGM6WyJzZWxmIl19LHQuVE1dfV0pLGV4cG9ydHM6e3ByZXByb2Nlc3NvcjppLHN0cmluZ3M6cixrOmN9fX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicnVieSIsZnVuY3Rpb24oZSl7dmFyIGI9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iLHI9e2tleXdvcmQ6ImFuZCB0aGVuIGRlZmluZWQgbW9kdWxlIGluIHJldHVybiByZWRvIGlmIEJFR0lOIHJldHJ5IGVuZCBmb3Igc2VsZiB3aGVuIG5leHQgdW50aWwgZG8gYmVnaW4gdW5sZXNzIEVORCByZXNjdWUgZWxzZSBicmVhayB1bmRlZiBub3Qgc3VwZXIgY2xhc3MgY2FzZSByZXF1aXJlIHlpZWxkIGFsaWFzIHdoaWxlIGVuc3VyZSBlbHNpZiBvciBpbmNsdWRlIGF0dHJfcmVhZGVyIGF0dHJfd3JpdGVyIGF0dHJfYWNjZXNzb3IiLGxpdGVyYWw6InRydWUgZmFsc2UgbmlsIn0sYz17Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9LGE9e2I6IiM8IixlOiI+In0scz1bZS5DKCIjIiwiJCIse2M6W2NdfSksZS5DKCJeXFw9YmVnaW4iLCJeXFw9ZW5kIix7YzpbY10scjoxMH0pLGUuQygiXl9fRU5EX18iLCJcXG4kIildLG49e2NOOiJzdWJzdCIsYjoiI1xceyIsZToifSIsazpyfSx0PXtjTjoic3RyaW5nIixjOltlLkJFLG5dLHY6W3tiOi8nLyxlOi8nL30se2I6LyIvLGU6LyIvfSx7YjovYC8sZTovYC99LHtiOiIlW3FRd1d4XT9cXCgiLGU6IlxcKSJ9LHtiOiIlW3FRd1d4XT9cXFsiLGU6IlxcXSJ9LHtiOiIlW3FRd1d4XT97IixlOiJ9In0se2I6IiVbcVF3V3hdPzwiLGU6Ij4ifSx7YjoiJVtxUXdXeF0/LyIsZToiLyJ9LHtiOiIlW3FRd1d4XT8lIixlOiIlIn0se2I6IiVbcVF3V3hdPy0iLGU6Ii0ifSx7YjoiJVtxUXdXeF0/XFx8IixlOiJcXHwifSx7YjovXEJcPyhcXFxkezEsM318XFx4W0EtRmEtZjAtOV17MSwyfXxcXHVbQS1GYS1mMC05XXs0fXxcXD9cUylcYi99LHtiOi88PCgtPylcdyskLyxlOi9eXHMqXHcrJC99XX0saT17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGVuZHNQYXJlbnQ6ITAsazpyfSxkPVt0LGEse2NOOiJjbGFzcyIsYks6ImNsYXNzIG1vZHVsZSIsZToiJHw7IixpOi89LyxjOltlLmluaGVyaXQoZS5UTSx7YjoiW0EtWmEtel9dXFx3Kig6OlxcdyspKihcXD98XFwhKT8ifSkse2I6IjxcXHMqIixjOlt7YjoiKCIrZS5JUisiOjopPyIrZS5JUn1dfV0uY29uY2F0KHMpfSx7Y046ImZ1bmN0aW9uIixiSzoiZGVmIixlOiIkfDsiLGM6W2UuaW5oZXJpdChlLlRNLHtiOmJ9KSxpXS5jb25jYXQocyl9LHtiOmUuSVIrIjo6In0se2NOOiJzeW1ib2wiLGI6ZS5VSVIrIihcXCF8XFw/KT86IixyOjB9LHtjTjoic3ltYm9sIixiOiI6KD8hXFxzKSIsYzpbdCx7YjpifV0scjowfSx7Y046Im51bWJlciIsYjoiKFxcYjBbMC03X10rKXwoXFxiMHhbMC05YS1mQS1GX10rKXwoXFxiWzEtOV1bMC05X10qKFxcLlswLTlfXSspPyl8WzBfXVxcYiIscjowfSx7YjoiKFxcJFxcVyl8KChcXCR8XFxAXFxAPykoXFx3KykpIn0se2NOOiJwYXJhbXMiLGI6L1x8LyxlOi9cfC8sazpyfSx7YjoiKCIrZS5SU1IrInx1bmxlc3MpXFxzKiIsazoidW5sZXNzIixjOlthLHtjTjoicmVnZXhwIixjOltlLkJFLG5dLGk6L1xuLyx2Olt7YjoiLyIsZToiL1thLXpdKiJ9LHtiOiIlcnsiLGU6In1bYS16XSoifSx7YjoiJXJcXCgiLGU6IlxcKVthLXpdKiJ9LHtiOiIlciEiLGU6IiFbYS16XSoifSx7YjoiJXJcXFsiLGU6IlxcXVthLXpdKiJ9XX1dLmNvbmNhdChzKSxyOjB9XS5jb25jYXQocyk7bi5jPWQsaS5jPWQ7dmFyIGw9Ils+P10+IixvPSJbXFx3I10rXFwoXFx3K1xcKTpcXGQrOlxcZCs+Iix1PSIoXFx3Ky0pP1xcZCtcXC5cXGQrXFwuXFxkKHBcXGQrKT9bXj5dKz4iLHc9W3tiOi9eXHMqPT4vLHN0YXJ0czp7ZToiJCIsYzpkfX0se2NOOiJtZXRhIixiOiJeKCIrbCsifCIrbysifCIrdSsiKSIsc3RhcnRzOntlOiIkIixjOmR9fV07cmV0dXJue2FsaWFzZXM6WyJyYiIsImdlbXNwZWMiLCJwb2RzcGVjIiwidGhvciIsImlyYiJdLGs6cixpOi9cL1wqLyxjOnMuY29uY2F0KHcpLmNvbmNhdChkKX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInlhbWwiLGZ1bmN0aW9uKGUpe3ZhciBiPSJ0cnVlIGZhbHNlIHllcyBubyBudWxsIixhPSJeWyBcXC1dKiIscj0iW2EtekEtWl9dW1xcd1xcLV0qIix0PXtjTjoiYXR0ciIsdjpbe2I6YStyKyI6In0se2I6YSsnIicrcisnIjonfSx7YjphKyInIityKyInOiJ9XX0sYz17Y046InRlbXBsYXRlLXZhcmlhYmxlIix2Olt7Yjoie3siLGU6In19In0se2I6IiV7IixlOiJ9In1dfSxsPXtjTjoic3RyaW5nIixyOjAsdjpbe2I6LycvLGU6LycvfSx7YjovIi8sZTovIi99LHtiOi9cUysvfV0sYzpbZS5CRSxjXX07cmV0dXJue2NJOiEwLGFsaWFzZXM6WyJ5bWwiLCJZQU1MIiwieWFtbCJdLGM6W3Qse2NOOiJtZXRhIixiOiJeLS0tcyokIixyOjEwfSx7Y046InN0cmluZyIsYjoiW1xcfD5dICokIixyRTohMCxjOmwuYyxlOnQudlswXS5ifSx7YjoiPCVbJT0tXT8iLGU6IlslLV0/JT4iLHNMOiJydWJ5IixlQjohMCxlRTohMCxyOjB9LHtjTjoidHlwZSIsYjoiISEiK2UuVUlSfSx7Y046Im1ldGEiLGI6IiYiK2UuVUlSKyIkIn0se2NOOiJtZXRhIixiOiJcXCoiK2UuVUlSKyIkIn0se2NOOiJidWxsZXQiLGI6Il4gKi0iLHI6MH0sZS5IQ00se2JLOmIsazp7bGl0ZXJhbDpifX0sZS5DTk0sbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJjc3MiLGZ1bmN0aW9uKGUpe3ZhciBjPSJbYS16QS1aLV1bYS16QS1aMC05Xy1dKiIsdD17YjovW0EtWlxfXC5cLV0rXHMqOi8sckI6ITAsZToiOyIsZVc6ITAsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6L1xTLyxlOiI6IixlRTohMCxzdGFydHM6e2VXOiEwLGVFOiEwLGM6W3tiOi9bXHctXStcKC8sckI6ITAsYzpbe2NOOiJidWlsdF9pbiIsYjovW1x3LV0rL30se2I6L1woLyxlOi9cKS8sYzpbZS5BU00sZS5RU01dfV19LGUuQ1NTTk0sZS5RU00sZS5BU00sZS5DQkNNLHtjTjoibnVtYmVyIixiOiIjWzAtOUEtRmEtZl0rIn0se2NOOiJtZXRhIixiOiIhaW1wb3J0YW50In1dfX1dfTtyZXR1cm57Y0k6ITAsaTovWz1cL3wnXCRdLyxjOltlLkNCQ00se2NOOiJzZWxlY3Rvci1pZCIsYjovI1tBLVphLXowLTlfLV0rL30se2NOOiJzZWxlY3Rvci1jbGFzcyIsYjovXC5bQS1aYS16MC05Xy1dKy99LHtjTjoic2VsZWN0b3ItYXR0ciIsYjovXFsvLGU6L1xdLyxpOiIkIn0se2NOOiJzZWxlY3Rvci1wc2V1ZG8iLGI6LzooOik/W2EtekEtWjAtOVxfXC1cK1woXCkiJy5dKy99LHtiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazoiZm9udC1mYWNlIHBhZ2UifSx7YjoiQCIsZToiW3s7XSIsaTovOi8sYzpbe2NOOiJrZXl3b3JkIixiOi9cdysvfSx7YjovXHMvLGVXOiEwLGVFOiEwLHI6MCxjOltlLkFTTSxlLlFTTSxlLkNTU05NXX1dfSx7Y046InNlbGVjdG9yLXRhZyIsYjpjLHI6MH0se2I6InsiLGU6In0iLGk6L1xTLyxjOltlLkNCQ00sdF19XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImZvcnRyYW4iLGZ1bmN0aW9uKGUpe3ZhciB0PXtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSJ9LG49e2xpdGVyYWw6Ii5GYWxzZS4gLlRydWUuIixrZXl3b3JkOiJraW5kIGRvIHdoaWxlIHByaXZhdGUgY2FsbCBpbnRyaW5zaWMgd2hlcmUgZWxzZXdoZXJlIHR5cGUgZW5kdHlwZSBlbmRtb2R1bGUgZW5kc2VsZWN0IGVuZGludGVyZmFjZSBlbmQgZW5kZG8gZW5kaWYgaWYgZm9yYWxsIGVuZGZvcmFsbCBvbmx5IGNvbnRhaW5zIGRlZmF1bHQgcmV0dXJuIHN0b3AgdGhlbiBwdWJsaWMgc3Vicm91dGluZXwxMCBmdW5jdGlvbiBwcm9ncmFtIC5hbmQuIC5vci4gLm5vdC4gLmxlLiAuZXEuIC5nZS4gLmd0LiAubHQuIGdvdG8gc2F2ZSBlbHNlIHVzZSBtb2R1bGUgc2VsZWN0IGNhc2UgYWNjZXNzIGJsYW5rIGRpcmVjdCBleGlzdCBmaWxlIGZtdCBmb3JtIGZvcm1hdHRlZCBpb3N0YXQgbmFtZSBuYW1lZCBuZXh0cmVjIG51bWJlciBvcGVuZWQgcmVjIHJlY2wgc2VxdWVudGlhbCBzdGF0dXMgdW5mb3JtYXR0ZWQgdW5pdCBjb250aW51ZSBmb3JtYXQgcGF1c2UgY3ljbGUgZXhpdCBjX251bGxfY2hhciBjX2FsZXJ0IGNfYmFja3NwYWNlIGNfZm9ybV9mZWVkIGZsdXNoIHdhaXQgZGVjaW1hbCByb3VuZCBpb21zZyBzeW5jaHJvbm91cyBub3Bhc3Mgbm9uX292ZXJyaWRhYmxlIHBhc3MgcHJvdGVjdGVkIHZvbGF0aWxlIGFic3RyYWN0IGV4dGVuZHMgaW1wb3J0IG5vbl9pbnRyaW5zaWMgdmFsdWUgZGVmZXJyZWQgZ2VuZXJpYyBmaW5hbCBlbnVtZXJhdG9yIGNsYXNzIGFzc29jaWF0ZSBiaW5kIGVudW0gY19pbnQgY19zaG9ydCBjX2xvbmcgY19sb25nX2xvbmcgY19zaWduZWRfY2hhciBjX3NpemVfdCBjX2ludDhfdCBjX2ludDE2X3QgY19pbnQzMl90IGNfaW50NjRfdCBjX2ludF9sZWFzdDhfdCBjX2ludF9sZWFzdDE2X3QgY19pbnRfbGVhc3QzMl90IGNfaW50X2xlYXN0NjRfdCBjX2ludF9mYXN0OF90IGNfaW50X2Zhc3QxNl90IGNfaW50X2Zhc3QzMl90IGNfaW50X2Zhc3Q2NF90IGNfaW50bWF4X3QgQ19pbnRwdHJfdCBjX2Zsb2F0IGNfZG91YmxlIGNfbG9uZ19kb3VibGUgY19mbG9hdF9jb21wbGV4IGNfZG91YmxlX2NvbXBsZXggY19sb25nX2RvdWJsZV9jb21wbGV4IGNfYm9vbCBjX2NoYXIgY19udWxsX3B0ciBjX251bGxfZnVucHRyIGNfbmV3X2xpbmUgY19jYXJyaWFnZV9yZXR1cm4gY19ob3Jpem9udGFsX3RhYiBjX3ZlcnRpY2FsX3RhYiBpc29fY19iaW5kaW5nIGNfbG9jIGNfZnVubG9jIGNfYXNzb2NpYXRlZCAgY19mX3BvaW50ZXIgY19wdHIgY19mdW5wdHIgaXNvX2ZvcnRyYW5fZW52IGNoYXJhY3Rlcl9zdG9yYWdlX3NpemUgZXJyb3JfdW5pdCBmaWxlX3N0b3JhZ2Vfc2l6ZSBpbnB1dF91bml0IGlvc3RhdF9lbmQgaW9zdGF0X2VvciBudW1lcmljX3N0b3JhZ2Vfc2l6ZSBvdXRwdXRfdW5pdCBjX2ZfcHJvY3BvaW50ZXIgaWVlZV9hcml0aG1ldGljIGllZWVfc3VwcG9ydF91bmRlcmZsb3dfY29udHJvbCBpZWVlX2dldF91bmRlcmZsb3dfbW9kZSBpZWVlX3NldF91bmRlcmZsb3dfbW9kZSBuZXd1bml0IGNvbnRpZ3VvdXMgcmVjdXJzaXZlIHBhZCBwb3NpdGlvbiBhY3Rpb24gZGVsaW0gcmVhZHdyaXRlIGVvciBhZHZhbmNlIG5tbCBpbnRlcmZhY2UgcHJvY2VkdXJlIG5hbWVsaXN0IGluY2x1ZGUgc2VxdWVuY2UgZWxlbWVudGFsIHB1cmUgaW50ZWdlciByZWFsIGNoYXJhY3RlciBjb21wbGV4IGxvZ2ljYWwgZGltZW5zaW9uIGFsbG9jYXRhYmxlfDEwIHBhcmFtZXRlciBleHRlcm5hbCBpbXBsaWNpdHwxMCBub25lIGRvdWJsZSBwcmVjaXNpb24gYXNzaWduIGludGVudCBvcHRpb25hbCBwb2ludGVyIHRhcmdldCBpbiBvdXQgY29tbW9uIGVxdWl2YWxlbmNlIGRhdGEiLGJ1aWx0X2luOiJhbG9nIGFsb2cxMCBhbWF4MCBhbWF4MSBhbWluMCBhbWluMSBhbW9kIGNhYnMgY2NvcyBjZXhwIGNsb2cgY3NpbiBjc3FydCBkYWJzIGRhY29zIGRhc2luIGRhdGFuIGRhdGFuMiBkY29zIGRjb3NoIGRkaW0gZGV4cCBkaW50IGRsb2cgZGxvZzEwIGRtYXgxIGRtaW4xIGRtb2QgZG5pbnQgZHNpZ24gZHNpbiBkc2luaCBkc3FydCBkdGFuIGR0YW5oIGZsb2F0IGlhYnMgaWRpbSBpZGludCBpZG5pbnQgaWZpeCBpc2lnbiBtYXgwIG1heDEgbWluMCBtaW4xIHNuZ2wgYWxnYW1hIGNkYWJzIGNkY29zIGNkZXhwIGNkbG9nIGNkc2luIGNkc3FydCBjcWFicyBjcWNvcyBjcWV4cCBjcWxvZyBjcXNpbiBjcXNxcnQgZGNtcGx4IGRjb25qZyBkZXJmIGRlcmZjIGRmbG9hdCBkZ2FtbWEgZGltYWcgZGxnYW1hIGlxaW50IHFhYnMgcWFjb3MgcWFzaW4gcWF0YW4gcWF0YW4yIHFjbXBseCBxY29uamcgcWNvcyBxY29zaCBxZGltIHFlcmYgcWVyZmMgcWV4cCBxZ2FtbWEgcWltYWcgcWxnYW1hIHFsb2cgcWxvZzEwIHFtYXgxIHFtaW4xIHFtb2QgcW5pbnQgcXNpZ24gcXNpbiBxc2luaCBxc3FydCBxdGFuIHF0YW5oIGFicyBhY29zIGFpbWFnIGFpbnQgYW5pbnQgYXNpbiBhdGFuIGF0YW4yIGNoYXIgY21wbHggY29uamcgY29zIGNvc2ggZXhwIGljaGFyIGluZGV4IGludCBsb2cgbG9nMTAgbWF4IG1pbiBuaW50IHNpZ24gc2luIHNpbmggc3FydCB0YW4gdGFuaCBwcmludCB3cml0ZSBkaW0gbGdlIGxndCBsbGUgbGx0IG1vZCBudWxsaWZ5IGFsbG9jYXRlIGRlYWxsb2NhdGUgYWRqdXN0bCBhZGp1c3RyIGFsbCBhbGxvY2F0ZWQgYW55IGFzc29jaWF0ZWQgYml0X3NpemUgYnRlc3QgY2VpbGluZyBjb3VudCBjc2hpZnQgZGF0ZV9hbmRfdGltZSBkaWdpdHMgZG90X3Byb2R1Y3QgZW9zaGlmdCBlcHNpbG9uIGV4cG9uZW50IGZsb29yIGZyYWN0aW9uIGh1Z2UgaWFuZCBpYmNsciBpYml0cyBpYnNldCBpZW9yIGlvciBpc2hmdCBpc2hmdGMgbGJvdW5kIGxlbl90cmltIG1hdG11bCBtYXhleHBvbmVudCBtYXhsb2MgbWF4dmFsIG1lcmdlIG1pbmV4cG9uZW50IG1pbmxvYyBtaW52YWwgbW9kdWxvIG12Yml0cyBuZWFyZXN0IHBhY2sgcHJlc2VudCBwcm9kdWN0IHJhZGl4IHJhbmRvbV9udW1iZXIgcmFuZG9tX3NlZWQgcmFuZ2UgcmVwZWF0IHJlc2hhcGUgcnJzcGFjaW5nIHNjYWxlIHNjYW4gc2VsZWN0ZWRfaW50X2tpbmQgc2VsZWN0ZWRfcmVhbF9raW5kIHNldF9leHBvbmVudCBzaGFwZSBzaXplIHNwYWNpbmcgc3ByZWFkIHN1bSBzeXN0ZW1fY2xvY2sgdGlueSB0cmFuc3Bvc2UgdHJpbSB1Ym91bmQgdW5wYWNrIHZlcmlmeSBhY2hhciBpYWNoYXIgdHJhbnNmZXIgZGJsZSBlbnRyeSBkcHJvZCBjcHVfdGltZSBjb21tYW5kX2FyZ3VtZW50X2NvdW50IGdldF9jb21tYW5kIGdldF9jb21tYW5kX2FyZ3VtZW50IGdldF9lbnZpcm9ubWVudF92YXJpYWJsZSBpc19pb3N0YXRfZW5kIGllZWVfYXJpdGhtZXRpYyBpZWVlX3N1cHBvcnRfdW5kZXJmbG93X2NvbnRyb2wgaWVlZV9nZXRfdW5kZXJmbG93X21vZGUgaWVlZV9zZXRfdW5kZXJmbG93X21vZGUgaXNfaW9zdGF0X2VvciBtb3ZlX2FsbG9jIG5ld19saW5lIHNlbGVjdGVkX2NoYXJfa2luZCBzYW1lX3R5cGVfYXMgZXh0ZW5kc190eXBlX29mYWNvc2ggYXNpbmggYXRhbmggYmVzc2VsX2owIGJlc3NlbF9qMSBiZXNzZWxfam4gYmVzc2VsX3kwIGJlc3NlbF95MSBiZXNzZWxfeW4gZXJmIGVyZmMgZXJmY19zY2FsZWQgZ2FtbWEgbG9nX2dhbW1hIGh5cG90IG5vcm0yIGF0b21pY19kZWZpbmUgYXRvbWljX3JlZiBleGVjdXRlX2NvbW1hbmRfbGluZSBsZWFkeiB0cmFpbHogc3RvcmFnZV9zaXplIG1lcmdlX2JpdHMgYmdlIGJndCBibGUgYmx0IGRzaGlmdGwgZHNoaWZ0ciBmaW5kbG9jIGlhbGwgaWFueSBpcGFyaXR5IGltYWdlX2luZGV4IGxjb2JvdW5kIHVjb2JvdW5kIG1hc2tsIG1hc2tyIG51bV9pbWFnZXMgcGFyaXR5IHBvcGNudCBwb3BwYXIgc2hpZnRhIHNoaWZ0bCBzaGlmdHIgdGhpc19pbWFnZSJ9O3JldHVybntjSTohMCxhbGlhc2VzOlsiZjkwIiwiZjk1Il0sazpuLGk6L1wvXCovLGM6W2UuaW5oZXJpdChlLkFTTSx7Y046InN0cmluZyIscjowfSksZS5pbmhlcml0KGUuUVNNLHtjTjoic3RyaW5nIixyOjB9KSx7Y046ImZ1bmN0aW9uIixiSzoic3Vicm91dGluZSBmdW5jdGlvbiBwcm9ncmFtIixpOiJbJHs9XFxuXSIsYzpbZS5VVE0sdF19LGUuQygiISIsIiQiLHtyOjB9KSx7Y046Im51bWJlciIsYjoiKD89XFxifFxcK3xcXC18XFwuKSg/PVxcLlxcZHxcXGQpKD86XFxkKyk/KD86XFwuP1xcZCopKD86W2RlXVsrLV0/XFxkKyk/XFxiXFwuPyIscjowfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJhd2siLGZ1bmN0aW9uKGUpe3ZhciByPXtjTjoidmFyaWFibGUiLHY6W3tiOi9cJFtcd1xkI0BdW1x3XGRfXSovfSx7YjovXCRceyguKj8pfS99XX0sYj0iQkVHSU4gRU5EIGlmIGVsc2Ugd2hpbGUgZG8gZm9yIGluIGJyZWFrIGNvbnRpbnVlIGRlbGV0ZSBuZXh0IG5leHRmaWxlIGZ1bmN0aW9uIGZ1bmMgZXhpdHwxMCIsbj17Y046InN0cmluZyIsYzpbZS5CRV0sdjpbe2I6Lyh1fGIpP3I/JycnLyxlOi8nJycvLHI6MTB9LHtiOi8odXxiKT9yPyIiIi8sZTovIiIiLyxyOjEwfSx7YjovKHV8cnx1ciknLyxlOi8nLyxyOjEwfSx7YjovKHV8cnx1cikiLyxlOi8iLyxyOjEwfSx7YjovKGJ8YnIpJy8sZTovJy99LHtiOi8oYnxicikiLyxlOi8iL30sZS5BU00sZS5RU01dfTtyZXR1cm57azp7a2V5d29yZDpifSxjOltyLG4sZS5STSxlLkhDTSxlLk5NXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoIm1ha2VmaWxlIixmdW5jdGlvbihlKXt2YXIgaT17Y046InZhcmlhYmxlIix2Olt7YjoiXFwkXFwoIitlLlVJUisiXFwpIixjOltlLkJFXX0se2I6L1wkW0AlPD9cXlwrXCpdL31dfSxyPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLGldfSxhPXtjTjoidmFyaWFibGUiLGI6L1wkXChbXHctXStccy8sZTovXCkvLGs6e2J1aWx0X2luOiJzdWJzdCBwYXRzdWJzdCBzdHJpcCBmaW5kc3RyaW5nIGZpbHRlciBmaWx0ZXItb3V0IHNvcnQgd29yZCB3b3JkbGlzdCBmaXJzdHdvcmQgbGFzdHdvcmQgZGlyIG5vdGRpciBzdWZmaXggYmFzZW5hbWUgYWRkc3VmZml4IGFkZHByZWZpeCBqb2luIHdpbGRjYXJkIHJlYWxwYXRoIGFic3BhdGggZXJyb3Igd2FybmluZyBzaGVsbCBvcmlnaW4gZmxhdm9yIGZvcmVhY2ggaWYgb3IgYW5kIGNhbGwgZXZhbCBmaWxlIHZhbHVlIn0sYzpbaV19LG49e2I6Il4iK2UuVUlSKyJcXHMqWzorP10/PSIsaToiXFxuIixyQjohMCxjOlt7YjoiXiIrZS5VSVIsZToiWzorP10/PSIsZUU6ITB9XX0sdD17Y046Im1ldGEiLGI6L15cLlBIT05ZOi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6Ii5QSE9OWSJ9LGw6L1tcLlx3XSsvfSxsPXtjTjoic2VjdGlvbiIsYjovXlteXHNdKzovLGU6LyQvLGM6W2ldfTtyZXR1cm57YWxpYXNlczpbIm1rIiwibWFrIl0sazoiZGVmaW5lIGVuZGVmIHVuZGVmaW5lIGlmZGVmIGlmbmRlZiBpZmVxIGlmbmVxIGVsc2UgZW5kaWYgaW5jbHVkZSAtaW5jbHVkZSBzaW5jbHVkZSBvdmVycmlkZSBleHBvcnQgdW5leHBvcnQgcHJpdmF0ZSB2cGF0aCIsbDovW1x3LV0rLyxjOltlLkhDTSxpLHIsYSxuLHQsbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJqYXZhIixmdW5jdGlvbihlKXt2YXIgYT0iW8OALcq4YS16QS1aXyRdW8OALcq4YS16QS1aXyQwLTldKiIsdD1hKyIoPCIrYSsiKFxccyosXFxzKiIrYSsiKSo+KT8iLHI9ImZhbHNlIHN5bmNocm9uaXplZCBpbnQgYWJzdHJhY3QgZmxvYXQgcHJpdmF0ZSBjaGFyIGJvb2xlYW4gc3RhdGljIG51bGwgaWYgY29uc3QgZm9yIHRydWUgd2hpbGUgbG9uZyBzdHJpY3RmcCBmaW5hbGx5IHByb3RlY3RlZCBpbXBvcnQgbmF0aXZlIGZpbmFsIHZvaWQgZW51bSBlbHNlIGJyZWFrIHRyYW5zaWVudCBjYXRjaCBpbnN0YW5jZW9mIGJ5dGUgc3VwZXIgdm9sYXRpbGUgY2FzZSBhc3NlcnQgc2hvcnQgcGFja2FnZSBkZWZhdWx0IGRvdWJsZSBwdWJsaWMgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHRocm93cyBwcm90ZWN0ZWQgcHVibGljIHByaXZhdGUgbW9kdWxlIHJlcXVpcmVzIGV4cG9ydHMgZG8iLHM9IlxcYigwW2JCXShbMDFdK1swMV9dK1swMV0rfFswMV0rKXwwW3hYXShbYS1mQS1GMC05XStbYS1mQS1GMC05X10rW2EtZkEtRjAtOV0rfFthLWZBLUYwLTldKyl8KChbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykoXFwuKFtcXGRdK1tcXGRfXStbXFxkXSt8W1xcZF0rKSk/fFxcLihbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykpKFtlRV1bLStdP1xcZCspPylbbExmRl0/IixjPXtjTjoibnVtYmVyIixiOnMscjowfTtyZXR1cm57YWxpYXNlczpbImpzcCJdLGs6cixpOi88XC98Iy8sYzpbZS5DKCIvXFwqXFwqIiwiXFwqLyIse3I6MCxjOlt7YjovXHcrQC8scjowfSx7Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9XX0pLGUuQ0xDTSxlLkNCQ00sZS5BU00sZS5RU00se2NOOiJjbGFzcyIsYks6ImNsYXNzIGludGVyZmFjZSIsZTovW3s7PV0vLGVFOiEwLGs6ImNsYXNzIGludGVyZmFjZSIsaTovWzoiXFtcXV0vLGM6W3tiSzoiZXh0ZW5kcyBpbXBsZW1lbnRzIn0sZS5VVE1dfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIscjowfSx7Y046ImZ1bmN0aW9uIixiOiIoIit0KyJcXHMrKSsiK2UuVUlSKyJcXHMqXFwoIixyQjohMCxlOi9bezs9XS8sZUU6ITAsazpyLGM6W3tiOmUuVUlSKyJcXHMqXFwoIixyQjohMCxyOjAsYzpbZS5VVE1dfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnIscjowLGM6W2UuQVNNLGUuUVNNLGUuQ05NLGUuQ0JDTV19LGUuQ0xDTSxlLkNCQ01dfSxjLHtjTjoibWV0YSIsYjoiQFtBLVphLXpdKyJ9XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInN0YW4iLGZ1bmN0aW9uKGUpe3JldHVybntjOltlLkhDTSxlLkNMQ00sZS5DQkNNLHtiOmUuVUlSLGw6ZS5VSVIsazp7bmFtZToiZm9yIGluIHdoaWxlIHJlcGVhdCB1bnRpbCBpZiB0aGVuIGVsc2UiLHN5bWJvbDoiYmVybm91bGxpIGJlcm5vdWxsaV9sb2dpdCBiaW5vbWlhbCBiaW5vbWlhbF9sb2dpdCBiZXRhX2Jpbm9taWFsIGh5cGVyZ2VvbWV0cmljIGNhdGVnb3JpY2FsIGNhdGVnb3JpY2FsX2xvZ2l0IG9yZGVyZWRfbG9naXN0aWMgbmVnX2Jpbm9taWFsIG5lZ19iaW5vbWlhbF8yIG5lZ19iaW5vbWlhbF8yX2xvZyBwb2lzc29uIHBvaXNzb25fbG9nIG11bHRpbm9taWFsIG5vcm1hbCBleHBfbW9kX25vcm1hbCBza2V3X25vcm1hbCBzdHVkZW50X3QgY2F1Y2h5IGRvdWJsZV9leHBvbmVudGlhbCBsb2dpc3RpYyBndW1iZWwgbG9nbm9ybWFsIGNoaV9zcXVhcmUgaW52X2NoaV9zcXVhcmUgc2NhbGVkX2ludl9jaGlfc3F1YXJlIGV4cG9uZW50aWFsIGludl9nYW1tYSB3ZWlidWxsIGZyZWNoZXQgcmF5bGVpZ2ggd2llbmVyIHBhcmV0byBwYXJldG9fdHlwZV8yIHZvbl9taXNlcyB1bmlmb3JtIG11bHRpX25vcm1hbCBtdWx0aV9ub3JtYWxfcHJlYyBtdWx0aV9ub3JtYWxfY2hvbGVza3kgbXVsdGlfZ3AgbXVsdGlfZ3BfY2hvbGVza3kgbXVsdGlfc3R1ZGVudF90IGdhdXNzaWFuX2RsbV9vYnMgZGlyaWNobGV0IGxral9jb3JyIGxral9jb3JyX2Nob2xlc2t5IHdpc2hhcnQgaW52X3dpc2hhcnQiLCJzZWxlY3Rvci10YWciOiJpbnQgcmVhbCB2ZWN0b3Igc2ltcGxleCB1bml0X3ZlY3RvciBvcmRlcmVkIHBvc2l0aXZlX29yZGVyZWQgcm93X3ZlY3RvciBtYXRyaXggY2hvbGVza3lfZmFjdG9yX2NvcnIgY2hvbGVza3lfZmFjdG9yX2NvdiBjb3JyX21hdHJpeCBjb3ZfbWF0cml4Iix0aXRsZToiZnVuY3Rpb25zIG1vZGVsIGRhdGEgcGFyYW1ldGVycyBxdWFudGl0aWVzIHRyYW5zZm9ybWVkIGdlbmVyYXRlZCIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSJ9LHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP0xcXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCtcXC4oPyFcXGQpKD86aVxcYik/IixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIscjowfSx7Y046Im51bWJlciIsYjoiXFwuXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiamF2YXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIHI9IltBLVphLXokX11bMC05QS1aYS16JF9dKiIsdD17a2V5d29yZDoiaW4gb2YgaWYgZm9yIHdoaWxlIGZpbmFsbHkgdmFyIG5ldyBmdW5jdGlvbiBkbyByZXR1cm4gdm9pZCBlbHNlIGJyZWFrIGNhdGNoIGluc3RhbmNlb2Ygd2l0aCB0aHJvdyBjYXNlIGRlZmF1bHQgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHR5cGVvZiBkZWxldGUgbGV0IHlpZWxkIGNvbnN0IGV4cG9ydCBzdXBlciBkZWJ1Z2dlciBhcyBhc3luYyBhd2FpdCBzdGF0aWMgaW1wb3J0IGZyb20gYXMiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgTmFOIEluZmluaXR5IixidWlsdF9pbjoiZXZhbCBpc0Zpbml0ZSBpc05hTiBwYXJzZUZsb2F0IHBhcnNlSW50IGRlY29kZVVSSSBkZWNvZGVVUklDb21wb25lbnQgZW5jb2RlVVJJIGVuY29kZVVSSUNvbXBvbmVudCBlc2NhcGUgdW5lc2NhcGUgT2JqZWN0IEZ1bmN0aW9uIEJvb2xlYW4gRXJyb3IgRXZhbEVycm9yIEludGVybmFsRXJyb3IgUmFuZ2VFcnJvciBSZWZlcmVuY2VFcnJvciBTdG9wSXRlcmF0aW9uIFN5bnRheEVycm9yIFR5cGVFcnJvciBVUklFcnJvciBOdW1iZXIgTWF0aCBEYXRlIFN0cmluZyBSZWdFeHAgQXJyYXkgRmxvYXQzMkFycmF5IEZsb2F0NjRBcnJheSBJbnQxNkFycmF5IEludDMyQXJyYXkgSW50OEFycmF5IFVpbnQxNkFycmF5IFVpbnQzMkFycmF5IFVpbnQ4QXJyYXkgVWludDhDbGFtcGVkQXJyYXkgQXJyYXlCdWZmZXIgRGF0YVZpZXcgSlNPTiBJbnRsIGFyZ3VtZW50cyByZXF1aXJlIG1vZHVsZSBjb25zb2xlIHdpbmRvdyBkb2N1bWVudCBTeW1ib2wgU2V0IE1hcCBXZWFrU2V0IFdlYWtNYXAgUHJveHkgUmVmbGVjdCBQcm9taXNlIn0sYT17Y046Im51bWJlciIsdjpbe2I6IlxcYigwW2JCXVswMV0rKSJ9LHtiOiJcXGIoMFtvT11bMC03XSspIn0se2I6ZS5DTlJ9XSxyOjB9LG49e2NOOiJzdWJzdCIsYjoiXFwkXFx7IixlOiJcXH0iLGs6dCxjOltdfSxjPXtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFLG5dfTtuLmM9W2UuQVNNLGUuUVNNLGMsYSxlLlJNXTt2YXIgcz1uLmMuY29uY2F0KFtlLkNCQ00sZS5DTENNXSk7cmV0dXJue2FsaWFzZXM6WyJqcyIsImpzeCJdLGs6dCxjOlt7Y046Im1ldGEiLHI6MTAsYjovXlxzKlsnIl11c2UgKHN0cmljdHxhc20pWyciXS99LHtjTjoibWV0YSIsYjovXiMhLyxlOi8kL30sZS5BU00sZS5RU00sYyxlLkNMQ00sZS5DQkNNLGEse2I6L1t7LF1ccyovLHI6MCxjOlt7YjpyKyJcXHMqOiIsckI6ITAscjowLGM6W3tjTjoiYXR0ciIsYjpyLHI6MH1dfV19LHtiOiIoIitlLlJTUisifFxcYihjYXNlfHJldHVybnx0aHJvdylcXGIpXFxzKiIsazoicmV0dXJuIHRocm93IGNhc2UiLGM6W2UuQ0xDTSxlLkNCQ00sZS5STSx7Y046ImZ1bmN0aW9uIixiOiIoXFwoLio/XFwpfCIrcisiKVxccyo9PiIsckI6ITAsZToiXFxzKj0+IixjOlt7Y046InBhcmFtcyIsdjpbe2I6cn0se2I6L1woXHMqXCkvfSx7YjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxrOnQsYzpzfV19XX0se2I6LzwvLGU6LyhcL1x3K3xcdytcLyk+LyxzTDoieG1sIixjOlt7YjovPFx3K1xzKlwvPi8sc2tpcDohMH0se2I6LzxcdysvLGU6LyhcL1x3K3xcdytcLyk+Lyxza2lwOiEwLGM6W3tiOi88XHcrXHMqXC8+Lyxza2lwOiEwfSwic2VsZiJdfV19XSxyOjB9LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jdGlvbiIsZTovXHsvLGVFOiEwLGM6W2UuaW5oZXJpdChlLlRNLHtiOnJ9KSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxjOnN9XSxpOi9cW3wlL30se2I6L1wkWyguXS99LGUuTUVUSE9EX0dVQVJELHtjTjoiY2xhc3MiLGJLOiJjbGFzcyIsZTovW3s7PV0vLGVFOiEwLGk6L1s6IlxbXF1dLyxjOlt7Yks6ImV4dGVuZHMifSxlLlVUTV19LHtiSzoiY29uc3RydWN0b3IiLGU6L1x7LyxlRTohMH1dLGk6LyMoPyEhKS99fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJ0ZXgiLGZ1bmN0aW9uKGMpe3ZhciBlPXtjTjoidGFnIixiOi9cXC8scjowLGM6W3tjTjoibmFtZSIsdjpbe2I6L1thLXpBLVrQsC3Rj9CQLdGPXStbKl0/L30se2I6L1teYS16QS1a0LAt0Y/QkC3RjzAtOV0vfV0sc3RhcnRzOntlVzohMCxyOjAsYzpbe2NOOiJzdHJpbmciLHY6W3tiOi9cWy8sZTovXF0vfSx7YjovXHsvLGU6L1x9L31dfSx7YjovXHMqPVxzKi8sZVc6ITAscjowLGM6W3tjTjoibnVtYmVyIixiOi8tP1xkKlwuP1xkKyhwdHxwY3xtbXxjbXxpbnxkZHxjY3xleHxlbSk/L31dfV19fV19O3JldHVybntjOltlLHtjTjoiZm9ybXVsYSIsYzpbZV0scjowLHY6W3tiOi9cJFwkLyxlOi9cJFwkL30se2I6L1wkLyxlOi9cJC99XX0sYy5DKCIlIiwiJCIse3I6MH0pXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInhtbCIsZnVuY3Rpb24ocyl7dmFyIGU9IltBLVphLXowLTlcXC5fOi1dKyIsdD17ZVc6ITAsaTovPC8scjowLGM6W3tjTjoiYXR0ciIsYjplLHI6MH0se2I6Lz1ccyovLHI6MCxjOlt7Y046InN0cmluZyIsZW5kc1BhcmVudDohMCx2Olt7YjovIi8sZTovIi99LHtiOi8nLyxlOi8nL30se2I6L1teXHMiJz08PmBdKy99XX1dfV19O3JldHVybnthbGlhc2VzOlsiaHRtbCIsInhodG1sIiwicnNzIiwiYXRvbSIsInhqYiIsInhzZCIsInhzbCIsInBsaXN0Il0sY0k6ITAsYzpbe2NOOiJtZXRhIixiOiI8IURPQ1RZUEUiLGU6Ij4iLHI6MTAsYzpbe2I6IlxcWyIsZToiXFxdIn1dfSxzLkMoIjwhLS0iLCItLT4iLHtyOjEwfSkse2I6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2I6LzxcPyhwaHApPy8sZTovXD8+LyxzTDoicGhwIixjOlt7YjoiL1xcKiIsZToiXFwqLyIsc2tpcDohMH1dfSx7Y046InRhZyIsYjoiPHN0eWxlKD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InN0eWxlIn0sYzpbdF0sc3RhcnRzOntlOiI8L3N0eWxlPiIsckU6ITAsc0w6WyJjc3MiLCJ4bWwiXX19LHtjTjoidGFnIixiOiI8c2NyaXB0KD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InNjcmlwdCJ9LGM6W3RdLHN0YXJ0czp7ZToiPC9zY3JpcHQ+IixyRTohMCxzTDpbImFjdGlvbnNjcmlwdCIsImphdmFzY3JpcHQiLCJoYW5kbGViYXJzIiwieG1sIl19fSx7Y046Im1ldGEiLHY6W3tiOi88XD94bWwvLGU6L1w/Pi8scjoxMH0se2I6LzxcP1x3Ky8sZTovXD8+L31dfSx7Y046InRhZyIsYjoiPC8/IixlOiIvPz4iLGM6W3tjTjoibmFtZSIsYjovW15cLz48XHNdKy8scjowfSx0XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgibWFya2Rvd24iLGZ1bmN0aW9uKGUpe3JldHVybnthbGlhc2VzOlsibWQiLCJta2Rvd24iLCJta2QiXSxjOlt7Y046InNlY3Rpb24iLHY6W3tiOiJeI3sxLDZ9IixlOiIkIn0se2I6Il4uKz9cXG5bPS1dezIsfSQifV19LHtiOiI8IixlOiI+IixzTDoieG1sIixyOjB9LHtjTjoiYnVsbGV0IixiOiJeKFsqKy1dfChcXGQrXFwuKSlcXHMrIn0se2NOOiJzdHJvbmciLGI6IlsqX117Mn0uKz9bKl9dezJ9In0se2NOOiJlbXBoYXNpcyIsdjpbe2I6IlxcKi4rP1xcKiJ9LHtiOiJfLis/XyIscjowfV19LHtjTjoicXVvdGUiLGI6Il4+XFxzKyIsZToiJCJ9LHtjTjoiY29kZSIsdjpbe2I6Il5gYGB3KnMqJCIsZToiXmBgYHMqJCJ9LHtiOiJgLis/YCJ9LHtiOiJeKCB7NH18CSkiLGU6IiQiLHI6MH1dfSx7YjoiXlstXFwqXXszLH0iLGU6IiQifSx7YjoiXFxbLis/XFxdW1xcKFxcW10uKj9bXFwpXFxdXSIsckI6ITAsYzpbe2NOOiJzdHJpbmciLGI6IlxcWyIsZToiXFxdIixlQjohMCxyRTohMCxyOjB9LHtjTjoibGluayIsYjoiXFxdXFwoIixlOiJcXCkiLGVCOiEwLGVFOiEwfSx7Y046InN5bWJvbCIsYjoiXFxdXFxbIixlOiJcXF0iLGVCOiEwLGVFOiEwfV0scjoxMH0se2I6L15cW1teXG5dK1xdOi8sckI6ITAsYzpbe2NOOiJzeW1ib2wiLGI6L1xbLyxlOi9cXS8sZUI6ITAsZUU6ITB9LHtjTjoibGluayIsYjovOlxzKi8sZTovJC8sZUI6ITB9XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianNvbiIsZnVuY3Rpb24oZSl7dmFyIGk9e2xpdGVyYWw6InRydWUgZmFsc2UgbnVsbCJ9LG49W2UuUVNNLGUuQ05NXSxyPXtlOiIsIixlVzohMCxlRTohMCxjOm4sazppfSx0PXtiOiJ7IixlOiJ9IixjOlt7Y046ImF0dHIiLGI6LyIvLGU6LyIvLGM6W2UuQkVdLGk6IlxcbiJ9LGUuaW5oZXJpdChyLHtiOi86L30pXSxpOiJcXFMifSxjPXtiOiJcXFsiLGU6IlxcXSIsYzpbZS5pbmhlcml0KHIpXSxpOiJcXFMifTtyZXR1cm4gbi5zcGxpY2Uobi5sZW5ndGgsMCx0LGMpLHtjOm4sazppLGk6IlxcUyJ9fSk7"></script>
<script>$(document).ready(function(){
    if (typeof $('[data-toggle="tooltip"]').tooltip === 'function') {
        $('[data-toggle="tooltip"]').tooltip();
    }
    if ($('[data-toggle="popover"]').popover === 'function') {
        $('[data-toggle="popover"]').popover();
    }
});
</script>

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
#rmd-source-code {
  display: none;
}
</style>




<style type="text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
.html-widget {
  margin-bottom: 20px;
}
button.code-folding-btn:focus {
  outline: none;
}
summary {
  display: list-item;
}
</style>

<style type="text/css">
.kable-table {
  border: 1px solid #ccc;
  border-radius: 4px;
  overflow: auto;
  padding-left: 8px;
  padding-right: 8px;
  margin-bottom: 20px;
  max-height: 350px;
}

.kable-table table {
  margin-bottom: 0px;
}

.kable-table table>thead>tr>th {
  border: none;
  border-bottom: 2px solid #dddddd;
}

.kable-table table>thead {
  background-color: #fff;
}
</style>


<!-- tabsets -->

<style type="text/css">
.tabset-dropdown > .nav-tabs {
  display: inline-table;
  max-height: 500px;
  min-height: 44px;
  overflow-y: auto;
  background: white;
  border: 1px solid #ddd;
  border-radius: 4px;
}

.tabset-dropdown > .nav-tabs > li.active:before {
  content: "";
  font-family: 'Glyphicons Halflings';
  display: inline-block;
  padding: 10px;
  border-right: 1px solid #ddd;
}

.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
  content: "";
  border: none;
}

.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
  content: "";
  font-family: 'Glyphicons Halflings';
  display: inline-block;
  padding: 10px;
  border-right: 1px solid #ddd;
}

.tabset-dropdown > .nav-tabs > li.active {
  display: block;
}

.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
  border: none;
  display: inline-block;
  border-radius: 4px;
}

.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
  display: block;
  float: none;
}

.tabset-dropdown > .nav-tabs > li {
  display: none;
}
</style>

<!-- code folding -->
<style type="text/css">
.code-folding-btn { margin-bottom: 4px; }
</style>




</head>

<body>


<div class="container-fluid main-container">




<div class="fluid-row" id="header">

<div class="btn-group pull-right">
<button type="button" class="btn btn-default btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><span>Code</span> <span class="caret"></span></button>
<ul class="dropdown-menu" style="min-width: 50px;">
<li><a id="rmd-show-all-code" href="#">Show All Code</a></li>
<li><a id="rmd-hide-all-code" href="#">Hide All Code</a></li>
<li role="separator" class="divider"></li>
<li><a id="rmd-download-source" href="#">Download Rmd</a></li>
</ul>
</div>



<h1 class="title toc-ignore">IMPC Mouse data - Variance in sex differences</h1>
<h3 class="subtitle">Electronic Supplementary Material</h3>
<h4 class="author">Susanne Zajitschek, Felix Zajitschek, Russell Bonduriansky,Robert Brooks, Will Cornwell, Daniel Falster, Malgortaza Lagisz, Jeremy Mason, Daniel Noble, Alistair Senior &amp; Shinichi Nakagawa</h4>
<h4 class="date">August 2019</h4>

</div>

<div id="TOC">
<ul>
<li><a href="#set-up">Set-up</a><ul>
<li><a href="#loading-packages-custom-functions">Loading packages &amp; custom functions</a></li>
<li><a href="#functions">Functions</a><ul>
<li><a href="#subsetting-data">1) Subsetting data</a></li>
<li><a href="#population-statistics">2) “Population statistics”</a></li>
<li><a href="#extraction-of-effect-sizes-and-sample-variances">3) Extraction of effect sizes and sample variances</a></li>
<li><a href="#calculate-meta-analysis-statistics">4) Calculate meta-analysis statistics</a></li>
</ul></li>
<li><a href="#load-clean-data">Load &amp; clean data</a><ul>
<li><a href="#data-loading-and-cleaning-of-the-csv-file">1) Data loading and cleaning of the csv file</a></li>
<li><a href="#table-1-strains-and-center-sample-sizes">Table 1: “Strains and Center Sample Sizes”</a></li>
</ul></li>
</ul></li>
<li><a href="#meta-analyses">Meta-analyses</a><ul>
<li><a href="#population-as-analysis-unit">1. Population as analysis unit</a><ul>
<li><a href="#loop-meta-analyses-on-all-traits">Loop: Meta-analyses on all traits</a></li>
<li><a href="#merging-datasets-removal-of-non-converged-traits">Merging datasets &amp; removal of non-converged traits</a></li>
<li><a href="#removal-of-traits">Removal of traits</a></li>
</ul></li>
<li><a href="#meta-analysis-condensing-non-independent-traits">2. Meta-analysis: condensing non-independent traits</a><ul>
<li><a href="#dealing-with-correlated-parameters-preparation">Dealing with Correlated Parameters, preparation</a></li>
<li><a href="#table-2-numbers-of-correlated-and-uncorrelated-traits">Table 2: Numbers of correlated and uncorrelated traits</a></li>
<li><a href="#table-3-full-corrected-dataset">Table 3: Full corrected dataset</a></li>
</ul></li>
<li><a href="#second-order-meta-analysis-for-functional-groups">3. Second-order meta-analysis for functional groups</a><ul>
<li><a href="#performing-meta-analyses-3-for-each-of-the-9-grouping-terms-lncvr-lnvr-lnrr">Performing meta-analyses (3 for each of the 9 grouping terms: lnCVR, lnVR, lnRR)</a></li>
<li><a href="#re-structuring-the-data-for-each-grouping-term">Re-structuring the data for each grouping term</a></li>
</ul></li>
</ul></li>
<li><a href="#visualisation">Visualisation</a><ul>
<li><a href="#figure-4">Figure 4</a><ul>
<li><a href="#overall-results-of-second-order-meta-analysis-figure-4-panel-b">Overall results of second order meta-analysis (Figure 4, Panel B)</a></li>
<li><a href="#fig-4-sz-still-to-do">Fig 4 # SZ STILL TO DO</a></li>
<li><a href="#figure-4-1">Figure 4</a></li>
</ul></li>
<li><a href="#figure-5">Figure 5</a><ul>
<li><a href="#preparation-for-plots-on-significant-sex-bias-second-order-meta-analysis-results">Preparation for Plots on significant sex-bias (Second-order meta analysis results)</a></li>
</ul></li>
<li><a href="#join-code-missing">JOIN!!! CODE MISSING??</a></li>
</ul></li>
<li><a href="#supplemental-plots">Supplemental Plots</a><ul>
<li><a href="#figure-s1">Figure S1</a><ul>
<li><a href="#including-lnvr">Including lnVR</a></li>
<li><a href="#count-data-including-lnvr-fig-s1-panel-a">Count data, including lnVR (Fig S1 panel A)</a></li>
<li><a href="#overall-results-of-second-order-meta-analysis-including-vr">Overall results of second order meta analysis, INCLUDING VR</a></li>
<li><a href="#heterogeneity">Heterogeneity</a></li>
</ul></li>
<li><a href="#figure-s2">Figure S2</a><ul>
<li><a href="#prepare-data-for-traits-with-effect-size-ratios-10-larger-in-males-supplemental-figure-s2">Prepare data for traits with effect size ratios &gt; 10% larger in males, supplemental Figure S2</a></li>
<li><a href="#felix-all-missing.-felix-added-1122020-done">FELIX: “ALL” missing. Felix added 11/2/2020: done</a></li>
<li><a href="#over-10-male-bias-count-data-first--order-metanalysis">Over 10% male bias, count data (first- order metanalysis)</a></li>
</ul></li>
<li><a href="#not-sure-what-this-below-is-felix-added-1122020-ich-glaube-dass-das-von-vorher-war.-wenn-wir-alles-oben-haben-dann-unten-loeschen">NOT SURE WHAT THIS BELOW IS?? Felix added 11/2/2020: Ich glaube, dass das von vorher war. wenn wir alles oben haben, dann unten loeschen</a></li>
<li><a href="#figure-s2-sex-bias-including-vr">Figure S2: sex-bias, including VR</a><ul>
<li><a href="#perc-sex-difference-male-bias">10 % Perc sex difference, male bias</a></li>
</ul></li>
<li><a href="#acknowledgements">Acknowledgements</a></li>
<li><a href="#r-session-information">R Session Information</a></li>
</ul></li>
</ul>
</div>

<!-- rnb-text-begin -->
<div id="set-up" class="section level1">
<h1>Set-up</h1>
<div id="loading-packages-custom-functions" class="section level2">
<h2>Loading packages &amp; custom functions</h2>
<!-- rnb-text-end -->
<!-- rnb-text-begin -->
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGlicmFyeShyZWFkcilcbmxpYnJhcnkoZHBseXIpXG5gYGAifQ== -->
<pre class="r"><code>library(readr)
library(dplyr)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiXG5BdHRhY2hpbmcgcGFja2FnZTog4oCYZHBseXLigJlcblxuVGhlIGZvbGxvd2luZyBvYmplY3RzIGFyZSBtYXNrZWQgZnJvbSDigJhwYWNrYWdlOnN0YXRz4oCZOlxuXG4gICAgZmlsdGVyLCBsYWdcblxuVGhlIGZvbGxvd2luZyBvYmplY3RzIGFyZSBtYXNrZWQgZnJvbSDigJhwYWNrYWdlOmJhc2XigJk6XG5cbiAgICBpbnRlcnNlY3QsIHNldGRpZmYsIHNldGVxdWFsLCB1bmlvblxuIn0= -->
<pre><code>
Attaching package: ‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGlicmFyeShtZXRhZm9yKVxuYGBgIn0= -->
<pre class="r"><code>library(metafor)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiTG9hZGluZyByZXF1aXJlZCBwYWNrYWdlOiBNYXRyaXhcbkxvYWRpbmcgJ21ldGFmb3InIHBhY2thZ2UgKHZlcnNpb24gMi4xLTApLiBGb3IgYW4gb3ZlcnZpZXcgXG5hbmQgaW50cm9kdWN0aW9uIHRvIHRoZSBwYWNrYWdlIHBsZWFzZSB0eXBlOiBoZWxwKG1ldGFmb3IpLlxuIn0= -->
<pre><code>Loading required package: Matrix
Loading 'metafor' package (version 2.1-0). For an overview 
and introduction to the package please type: help(metafor).</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGlicmFyeShkZXZ0b29scylcbmBgYCJ9 -->
<pre class="r"><code>library(devtools)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiTG9hZGluZyByZXF1aXJlZCBwYWNrYWdlOiB1c2V0aGlzXG4ifQ== -->
<pre><code>Loading required package: usethis</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGlicmFyeShwdXJycilcbmxpYnJhcnkodGlkeXZlcnNlKVxuYGBgIn0= -->
<pre class="r"><code>library(purrr)
library(tidyverse)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiXHUwMDFiWzMwbeKUgOKUgCBcdTAwMWJbMW1BdHRhY2hpbmcgcGFja2FnZXNcdTAwMWJbMjJtIOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgOKUgCB0aWR5dmVyc2UgMS4yLjEg4pSA4pSAXHUwMDFiWzM5bVxuXHUwMDFiWzMwbVx1MDAxYlszMm3inJRcdTAwMWJbMzBtIFx1MDAxYlszNG1nZ3Bsb3QyXHUwMDFiWzMwbSAzLjIuMCAgICAgXHUwMDFiWzMybeKclFx1MDAxYlszMG0gXHUwMDFiWzM0bXRpZHlyICBcdTAwMWJbMzBtIDEuMC4yXG5cdTAwMWJbMzJt4pyUXHUwMDFiWzMwbSBcdTAwMWJbMzRtdGliYmxlIFx1MDAxYlszMG0gMi4xLjMgICAgIFx1MDAxYlszMm3inJRcdTAwMWJbMzBtIFx1MDAxYlszNG1zdHJpbmdyXHUwMDFiWzMwbSAxLjQuMFxuXHUwMDFiWzMybeKclFx1MDAxYlszMG0gXHUwMDFiWzM0bWdncGxvdDJcdTAwMWJbMzBtIDMuMi4wICAgICBcdTAwMWJbMzJt4pyUXHUwMDFiWzMwbSBcdTAwMWJbMzRtZm9yY2F0c1x1MDAxYlszMG0gMC40LjBcdTAwMWJbMzltXG5cdTAwMWJbMzBt4pSA4pSAIFx1MDAxYlsxbUNvbmZsaWN0c1x1MDAxYlsyMm0g4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSA4pSAIHRpZHl2ZXJzZV9jb25mbGljdHMoKSDilIDilIBcblx1MDAxYlszMW3inJZcdTAwMWJbMzBtIFx1MDAxYlszNG10aWR5clx1MDAxYlszMG06Olx1MDAxYlszMm1leHBhbmQoKVx1MDAxYlszMG0gbWFza3MgXHUwMDFiWzM0bU1hdHJpeFx1MDAxYlszMG06OmV4cGFuZCgpXG5cdTAwMWJbMzFt4pyWXHUwMDFiWzMwbSBcdTAwMWJbMzRtZHBseXJcdTAwMWJbMzBtOjpcdTAwMWJbMzJtZmlsdGVyKClcdTAwMWJbMzBtIG1hc2tzIFx1MDAxYlszNG1zdGF0c1x1MDAxYlszMG06OmZpbHRlcigpXG5cdTAwMWJbMzFt4pyWXHUwMDFiWzMwbSBcdTAwMWJbMzRtZHBseXJcdTAwMWJbMzBtOjpcdTAwMWJbMzJtbGFnKClcdTAwMWJbMzBtICAgIG1hc2tzIFx1MDAxYlszNG1zdGF0c1x1MDAxYlszMG06OmxhZygpXG5cdTAwMWJbMzFt4pyWXHUwMDFiWzMwbSBcdTAwMWJbMzRtdGlkeXJcdTAwMWJbMzBtOjpcdTAwMWJbMzJtcGFjaygpXHUwMDFiWzMwbSAgIG1hc2tzIFx1MDAxYlszNG1NYXRyaXhcdTAwMWJbMzBtOjpwYWNrKClcblx1MDAxYlszMW3inJZcdTAwMWJbMzBtIFx1MDAxYlszNG10aWR5clx1MDAxYlszMG06Olx1MDAxYlszMm11bnBhY2soKVx1MDAxYlszMG0gbWFza3MgXHUwMDFiWzM0bU1hdHJpeFx1MDAxYlszMG06OnVucGFjaygpXHUwMDFiWzM5bVxuIn0= -->
<pre><code>── Attaching packages ────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.2.0     ✔ tidyr   1.0.2
✔ tibble  2.1.3     ✔ stringr 1.4.0
✔ ggplot2 3.2.0     ✔ forcats 0.4.0
── Conflicts ───────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ tidyr::expand() masks Matrix::expand()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
✖ tidyr::pack()   masks Matrix::pack()
✖ tidyr::unpack() masks Matrix::unpack()</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGlicmFyeSh0aWR5cilcbmxpYnJhcnkodGliYmxlKVxubGlicmFyeShrYWJsZUV4dHJhKVxuYGBgIn0= -->
<pre class="r"><code>library(tidyr)
library(tibble)
library(kableExtra)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiXG5BdHRhY2hpbmcgcGFja2FnZTog4oCYa2FibGVFeHRyYeKAmVxuXG5UaGUgZm9sbG93aW5nIG9iamVjdCBpcyBtYXNrZWQgZnJvbSDigJhwYWNrYWdlOmRwbHly4oCZOlxuXG4gICAgZ3JvdXBfcm93c1xuIn0= -->
<pre><code>
Attaching package: ‘kableExtra’

The following object is masked from ‘package:dplyr’:

    group_rows</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGlicmFyeShyb2J1bWV0YSlcbmxpYnJhcnkoZ2dwdWJyKVxuYGBgIn0= -->
<pre class="r"><code>library(robumeta)
library(ggpubr)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiTG9hZGluZyByZXF1aXJlZCBwYWNrYWdlOiBtYWdyaXR0clxuXG5BdHRhY2hpbmcgcGFja2FnZTog4oCYbWFncml0dHLigJlcblxuVGhlIGZvbGxvd2luZyBvYmplY3QgaXMgbWFza2VkIGZyb20g4oCYcGFja2FnZTp0aWR5cuKAmTpcblxuICAgIGV4dHJhY3RcblxuVGhlIGZvbGxvd2luZyBvYmplY3QgaXMgbWFza2VkIGZyb20g4oCYcGFja2FnZTpwdXJycuKAmTpcblxuICAgIHNldF9uYW1lc1xuIn0= -->
<pre><code>Loading required package: magrittr

Attaching package: ‘magrittr’

The following object is masked from ‘package:tidyr’:

    extract

The following object is masked from ‘package:purrr’:

    set_names</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGlicmFyeShnZ3Bsb3QyKVxubGlicmFyeShoZXJlKVxuYGBgIn0= -->
<pre class="r"><code>library(ggplot2)
library(here)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiaGVyZSgpIHN0YXJ0cyBhdCAvVXNlcnMvc3ovc3VzaS9nYXJ2YW4vR2l0aHViL0lNUEMgc2V4RGlmZnMvbWljZV9zZXhfZGlmZl9zeWRcbiJ9 -->
<pre><code>here() starts at /Users/sz/susi/garvan/Github/IMPC sexDiffs/mice_sex_diff_syd</code></pre>
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="functions" class="section level2">
<h2>Functions</h2>
<p>for preparing the data for meta analyses</p>
<div id="subsetting-data" class="section level3">
<h3>1) Subsetting data</h3>
<p>Create function for sub-setting the data to choose only one data point per individual per trait: “data_subset_parameterid_individual_by_age”</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuZGF0YV9zdWJzZXRfcGFyYW1ldGVyaWRfaW5kaXZpZHVhbF9ieV9hZ2UgPC0gZnVuY3Rpb24obXlkYXRhLCBwYXJhbWV0ZXIsIGFnZV9taW49MCwgYWdlX2NlbnRlcj0xMDApIHtcbiAgdG1wIDwtIG15ZGF0YSAlPiVcbiAgICBmaWx0ZXIoXG4gICAgICBhZ2VfaW5fZGF5cyA+PSBhZ2VfbWluLFxuICAgICAgaWQgPT0gcGFyYW1ldGVyXG4gICAgKSAlPiVcbiAgICAjIHRha2UgcmVzdWx0cyBmb3Igc2luZ2xlIGluZGl2aWR1YWwgY2xvc2VzdCB0byBhZ2VfY2VudGVyXG4gICAgbXV0YXRlKGFnZV9kaWZmID0gYWJzKGFnZV9jZW50ZXIgLSBhZ2VfaW5fZGF5cykpICU+JVxuICAgIGdyb3VwX2J5KGJpb2xvZ2ljYWxfc2FtcGxlX2lkKSAlPiVcbiAgICBmaWx0ZXIoYWdlX2RpZmYgPT0gbWluKGFnZV9kaWZmKSkgJT4lXG4gICAgc2VsZWN0KC1hZ2VfZGlmZikjICU+JSBcbiMgICAgZmlsdGVyKCFkdXBsaWNhdGVkKGJpb2xvZ2ljYWxfc2FtcGxlX2lkKSkgICNGZWxpeCA2LzIvMjAyMDogdGhpcyBsaW5lIGNhbiBiZSBkZWxldGVkXG4gICAgXG4gICMgc3RpbGwgc29tZSBpbmRpdmlkdWFscyB3aXRoIG11bHRpcGxlIHJlY29yZHMgKGJlY2F1c2Ugc2FtZSBpbmRpdmlkdWFsIGFwcGVhciB1bmRlciBkaWZmZXJlbnQgcHJvY2VkdXJlcywgc28gZmlsdGVyIHRvIG9uZSByZWNvcmQpXG4gIGogPC0gbWF0Y2godW5pcXVlKHRtcCRiaW9sb2dpY2FsX3NhbXBsZV9pZCksIHRtcCRiaW9sb2dpY2FsX3NhbXBsZV9pZClcbiAgdG1wW2osIF0gXG4gIH1cbmBgYCJ9 -->
<pre class="r"><code>data_subset_parameterid_individual_by_age &lt;- function(mydata, parameter, age_min=0, age_center=100) {
  tmp &lt;- mydata %&gt;%
    filter(
      age_in_days &gt;= age_min,
      id == parameter
    ) %&gt;%
    # take results for single individual closest to age_center
    mutate(age_diff = abs(age_center - age_in_days)) %&gt;%
    group_by(biological_sample_id) %&gt;%
    filter(age_diff == min(age_diff)) %&gt;%
    select(-age_diff)# %&gt;% 
#    filter(!duplicated(biological_sample_id))  #Felix 6/2/2020: this line can be deleted
    
  # still some individuals with multiple records (because same individual appear under different procedures, so filter to one record)
  j &lt;- match(unique(tmp$biological_sample_id), tmp$biological_sample_id)
  tmp[j, ] 
  }</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="population-statistics" class="section level3">
<h3>2) “Population statistics”</h3>
<p>Create function called: “calculate_population_stats” This function groups animals from the same strain and same insitiution together. This is done for each trait seoarately, and only for traits that have been measured in both sexes. Any group containing fewer than 5 individuals is excluded.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuY2FsY3VsYXRlX3BvcHVsYXRpb25fc3RhdHMgPC0gZnVuY3Rpb24obXlkYXRhLCBtaW5faW5kaXZpZHVhbHMgPSA1KSB7XG4gIG15ZGF0YSAlPiVcbiAgICBncm91cF9ieShwb3B1bGF0aW9uLCBzdHJhaW5fbmFtZSwgcHJvZHVjdGlvbl9jZW50ZXIsIHNleCkgJT4lXG4gICAgc3VtbWFyaXNlKFxuICAgICAgdHJhaXQgPSBwYXJhbWV0ZXJfbmFtZVsxXSxcbiAgICAgIHhfYmFyID0gbWVhbihkYXRhX3BvaW50KSxcbiAgICAgIHhfc2QgPSBzZChkYXRhX3BvaW50KSxcbiAgICAgIG5faW5kID0gbigpXG4gICAgKSAlPiVcbiAgICB1bmdyb3VwKCkgJT4lXG4gICAgZmlsdGVyKG5faW5kID4gbWluX2luZGl2aWR1YWxzKSAlPiVcbiAgICAjIENoZWNrIGJvdGggc2V4ZXMgcHJlc2VudCAmIGZpbHRlciB0aG9zZSBtaXNzaW5nXG4gICAgZ3JvdXBfYnkocG9wdWxhdGlvbikgJT4lXG4gICAgbXV0YXRlKFxuICAgICAgbl9zZXggPSBuX2Rpc3RpbmN0KHNleClcbiAgICApICU+JVxuICAgIHVuZ3JvdXAoKSAlPiVcbiAgICBmaWx0ZXIobl9zZXggPT0gMikgJT4lXG4gICAgc2VsZWN0KC1uX3NleCkgJT4lXG4gICAgYXJyYW5nZShwcm9kdWN0aW9uX2NlbnRlciwgc3RyYWluX25hbWUsIHBvcHVsYXRpb24sIHNleClcbn1cbmBgYCJ9 -->
<pre class="r"><code>calculate_population_stats &lt;- function(mydata, min_individuals = 5) {
  mydata %&gt;%
    group_by(population, strain_name, production_center, sex) %&gt;%
    summarise(
      trait = parameter_name[1],
      x_bar = mean(data_point),
      x_sd = sd(data_point),
      n_ind = n()
    ) %&gt;%
    ungroup() %&gt;%
    filter(n_ind &gt; min_individuals) %&gt;%
    # Check both sexes present &amp; filter those missing
    group_by(population) %&gt;%
    mutate(
      n_sex = n_distinct(sex)
    ) %&gt;%
    ungroup() %&gt;%
    filter(n_sex == 2) %&gt;%
    select(-n_sex) %&gt;%
    arrange(production_center, strain_name, population, sex)
}</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="extraction-of-effect-sizes-and-sample-variances" class="section level3">
<h3>3) Extraction of effect sizes and sample variances</h3>
<p>Function: “create_meta_analysis_effect_sizes”</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuY3JlYXRlX21ldGFfYW5hbHlzaXNfZWZmZWN0X3NpemVzIDwtIGZ1bmN0aW9uKG15ZGF0YSkge1xuICBpIDwtIHNlcSgxLCBucm93KG15ZGF0YSksIGJ5ID0gMilcbiAgaW5wdXQgPC0gZGF0YS5mcmFtZShcbiAgICBuMWkgPSBteWRhdGEkbl9pbmRbaV0sXG4gICAgbjJpID0gbXlkYXRhJG5faW5kW2kgKyAxXSxcbiAgICB4MWkgPSBteWRhdGEkeF9iYXJbaV0sXG4gICAgeDJpID0gbXlkYXRhJHhfYmFyW2kgKyAxXSxcbiAgICBzZDFpID0gbXlkYXRhJHhfc2RbaV0sXG4gICAgc2QyaSA9IG15ZGF0YSR4X3NkW2kgKyAxXVxuICApXG5cbiAgbXlkYXRhW2ksIF0gJT4lXG4gICAgc2VsZWN0KHN0cmFpbl9uYW1lLCBwcm9kdWN0aW9uX2NlbnRlciwgdHJhaXQpICU+JVxuICAgIG11dGF0ZShcbiAgICAgIGVmZmVjdF9zaXplX0NWUiA9IGNhbGN1bGF0ZV9sbkNWUihDTWVhbiA9IGlucHV0JHgxaSwgQ1NEID0gaW5wdXQkc2QxaSwgQ04gPSBpbnB1dCRuMWksIEVNZWFuID0gaW5wdXQkeDJpLCBFU0QgPSBpbnB1dCRzZDJpLCBFTiA9IGlucHV0JG4yaSksXG4gICAgICBzYW1wbGVfdmFyaWFuY2VfQ1ZSID0gY2FsY3VsYXRlX3Zhcl9sbkNWUihDTWVhbiA9IGlucHV0JHgxaSwgQ1NEID0gaW5wdXQkc2QxaSwgQ04gPSBpbnB1dCRuMWksIEVNZWFuID0gaW5wdXQkeDJpLCBFU0QgPSBpbnB1dCRzZDJpLCBFTiA9IGlucHV0JG4yaSksXG4gICAgICBlZmZlY3Rfc2l6ZV9WUiA9IGNhbGN1bGF0ZV9sblZSKENTRCA9IGlucHV0JHNkMWksIENOID0gaW5wdXQkbjFpLCBFU0QgPSBpbnB1dCRzZDJpLCBFTiA9IGlucHV0JG4yaSksXG4gICAgICBzYW1wbGVfdmFyaWFuY2VfVlIgPSBjYWxjdWxhdGVfdmFyX2xuVlIoQ04gPSBpbnB1dCRuMWksIEVOID0gaW5wdXQkbjJpKSxcbiAgICAgIGVmZmVjdF9zaXplX1JSID0gY2FsY3VsYXRlX2xuUlIoQ01lYW4gPSBpbnB1dCR4MWksIENTRCA9IGlucHV0JHNkMWksIENOID0gaW5wdXQkbjFpLCBFTWVhbiA9IGlucHV0JHgyaSwgRVNEID0gaW5wdXQkc2QyaSwgRU4gPSBpbnB1dCRuMmkpLFxuICAgICAgc2FtcGxlX3ZhcmlhbmNlX1JSID0gY2FsY3VsYXRlX3Zhcl9sblJSKENNZWFuID0gaW5wdXQkeDFpLCBDU0QgPSBpbnB1dCRzZDFpLCBDTiA9IGlucHV0JG4xaSwgRU1lYW4gPSBpbnB1dCR4MmksIEVTRCA9IGlucHV0JHNkMmksIEVOID0gaW5wdXQkbjJpKSxcbiAgICAgIGVyciA9IGFzLmZhY3RvcihzZXFfbGVuKG4oKSkpXG4gICAgKVxufVxuYGBgIn0= -->
<pre class="r"><code>create_meta_analysis_effect_sizes &lt;- function(mydata) {
  i &lt;- seq(1, nrow(mydata), by = 2)
  input &lt;- data.frame(
    n1i = mydata$n_ind[i],
    n2i = mydata$n_ind[i + 1],
    x1i = mydata$x_bar[i],
    x2i = mydata$x_bar[i + 1],
    sd1i = mydata$x_sd[i],
    sd2i = mydata$x_sd[i + 1]
  )

  mydata[i, ] %&gt;%
    select(strain_name, production_center, trait) %&gt;%
    mutate(
      effect_size_CVR = calculate_lnCVR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_CVR = calculate_var_lnCVR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      effect_size_VR = calculate_lnVR(CSD = input$sd1i, CN = input$n1i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_VR = calculate_var_lnVR(CN = input$n1i, EN = input$n2i),
      effect_size_RR = calculate_lnRR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_RR = calculate_var_lnRR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      err = as.factor(seq_len(n()))
    )
}</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="calculate-meta-analysis-statistics" class="section level3">
<h3>4) Calculate meta-analysis statistics</h3>
<p>Based on a function created by A M Senior @ the University of Otago NZ 03/01/2014:</p>
<ul>
<li>Calculates effect sizes for meta-analysis of variance. All functions take the mean, sd and n from the control and experimental groups.</li>
<li>The first function, calculate_lnCVR, calculates the the log response-ratio of the coefficient of variance (lnCVR) - see Nakagawa et al 2015.</li>
<li>The second function calculates the measurement error variance for lnCVR. As well as the aforementioned parameters, this function also takes Equal_E_C_Corr (default = T), which must be True or False. If true, the function assumes that the correlation between mean and sd (Taylor’s Law) is equal for the mean and control groups, and, thus these data are pooled. If False the mean-SD correlation for the experimental and control groups are calculated separately from one another.</li>
<li>Similar functions are then implemented for lnVR (for comparison of standard deviations) and ln RR (for comparison of means)</li>
</ul>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG5jYWxjdWxhdGVfbG5DVlIgPC0gZnVuY3Rpb24oQ01lYW4sIENTRCwgQ04sIEVNZWFuLCBFU0QsIEVOKSB7XG4gIGxvZyhFU0QpIC0gbG9nKEVNZWFuKSArIDEgLyAoMiAqIChFTiAtIDEpKSAtIChsb2coQ1NEKSAtIGxvZyhDTWVhbikgKyAxIC8gKDIgKiAoQ04gLSAxKSkpXG59XG5cbmNhbGN1bGF0ZV92YXJfbG5DVlIgPC0gZnVuY3Rpb24oQ01lYW4sIENTRCwgQ04sIEVNZWFuLCBFU0QsIEVOLCBFcXVhbF9FX0NfQ29yciA9IFQpIHtcbiAgaWYgKEVxdWFsX0VfQ19Db3JyID09IFQpIHtcbiAgICBtdmNvcnIgPC0gMCAjIGNvci50ZXN0KGxvZyhjKENNZWFuLCBFTWVhbikpLCBsb2coYyhDU0QsIEVTRCkpKSRlc3RpbWF0ZSAgIG9sZCwgc2xpZ2h0bHkgaW5jb3JyZWN0XG4gICAgUzIgPC0gQ1NEXjIgLyAoQ04gKiAoQ01lYW5eMikpICsgMSAvICgyICogKENOIC0gMSkpIC0gMiAqIG12Y29yciAqIHNxcnQoKENTRF4yIC8gKENOICogKENNZWFuXjIpKSkgKiAoMSAvICgyICogKENOIC0gMSkpKSkgKyBFU0ReMiAvIChFTiAqIChFTWVhbl4yKSkgKyAxIC8gKDIgKiAoRU4gLSAxKSkgLSAyICogbXZjb3JyICogc3FydCgoRVNEXjIgLyAoRU4gKiAoRU1lYW5eMikpKSAqICgxIC8gKDIgKiAoRU4gLSAxKSkpKVxuICB9XG4gIGVsc2Uge1xuICAgIENtdmNvcnIgPC0gY29yLnRlc3QobG9nKENNZWFuKSwgbG9nKENTRCkpJGVzdGltYXRlXG4gICAgRW12Y29yciA8LSBjb3IudGVzdChsb2coRU1lYW4pLCAoRVNEKSkkZXN0aW1hdGVcbiAgICBTMiA8LSBDU0ReMiAvIChDTiAqIChDTWVhbl4yKSkgKyAxIC8gKDIgKiAoQ04gLSAxKSkgLSAyICogQ212Y29yciAqIHNxcnQoKENTRF4yIC8gKENOICogKENNZWFuXjIpKSkgKiAoMSAvICgyICogKENOIC0gMSkpKSkgKyBFU0ReMiAvIChFTiAqIChFTWVhbl4yKSkgKyAxIC8gKDIgKiAoRU4gLSAxKSkgLSAyICogRW12Y29yciAqIHNxcnQoKEVTRF4yIC8gKEVOICogKEVNZWFuXjIpKSkgKiAoMSAvICgyICogKEVOIC0gMSkpKSlcbiAgfVxuICBTMlxufVxuXG5jYWxjdWxhdGVfbG5WUiA8LSBmdW5jdGlvbihDU0QsIENOLCBFU0QsIEVOKSB7XG4gIGxvZyhFU0QpIC0gbG9nKENTRCkgKyAxIC8gKDIgKiAoRU4gLSAxKSkgLSAxIC8gKDIgKiAoQ04gLSAxKSlcbn1cblxuY2FsY3VsYXRlX3Zhcl9sblZSIDwtIGZ1bmN0aW9uKENOLCBFTikge1xuICAxIC8gKDIgKiAoRU4gLSAxKSkgKyAxIC8gKDIgKiAoQ04gLSAxKSlcbn1cblxuY2FsY3VsYXRlX2xuUlIgPC0gZnVuY3Rpb24oQ01lYW4sIENTRCwgQ04sIEVNZWFuLCBFU0QsIEVOKSB7XG4gIGxvZyhFTWVhbikgLSBsb2coQ01lYW4pXG59XG5cbmNhbGN1bGF0ZV92YXJfbG5SUiA8LSBmdW5jdGlvbihDTWVhbiwgQ1NELCBDTiwgRU1lYW4sIEVTRCwgRU4pIHtcbiAgQ1NEXjIgLyAoQ04gKiBDTWVhbl4yKSArIEVTRF4yIC8gKEVOICogRU1lYW5eMilcbn1cbmBgYCJ9 -->
<pre class="r"><code>
calculate_lnCVR &lt;- function(CMean, CSD, CN, EMean, ESD, EN) {
  log(ESD) - log(EMean) + 1 / (2 * (EN - 1)) - (log(CSD) - log(CMean) + 1 / (2 * (CN - 1)))
}

calculate_var_lnCVR &lt;- function(CMean, CSD, CN, EMean, ESD, EN, Equal_E_C_Corr = T) {
  if (Equal_E_C_Corr == T) {
    mvcorr &lt;- 0 # cor.test(log(c(CMean, EMean)), log(c(CSD, ESD)))$estimate   old, slightly incorrect
    S2 &lt;- CSD^2 / (CN * (CMean^2)) + 1 / (2 * (CN - 1)) - 2 * mvcorr * sqrt((CSD^2 / (CN * (CMean^2))) * (1 / (2 * (CN - 1)))) + ESD^2 / (EN * (EMean^2)) + 1 / (2 * (EN - 1)) - 2 * mvcorr * sqrt((ESD^2 / (EN * (EMean^2))) * (1 / (2 * (EN - 1))))
  }
  else {
    Cmvcorr &lt;- cor.test(log(CMean), log(CSD))$estimate
    Emvcorr &lt;- cor.test(log(EMean), (ESD))$estimate
    S2 &lt;- CSD^2 / (CN * (CMean^2)) + 1 / (2 * (CN - 1)) - 2 * Cmvcorr * sqrt((CSD^2 / (CN * (CMean^2))) * (1 / (2 * (CN - 1)))) + ESD^2 / (EN * (EMean^2)) + 1 / (2 * (EN - 1)) - 2 * Emvcorr * sqrt((ESD^2 / (EN * (EMean^2))) * (1 / (2 * (EN - 1))))
  }
  S2
}

calculate_lnVR &lt;- function(CSD, CN, ESD, EN) {
  log(ESD) - log(CSD) + 1 / (2 * (EN - 1)) - 1 / (2 * (CN - 1))
}

calculate_var_lnVR &lt;- function(CN, EN) {
  1 / (2 * (EN - 1)) + 1 / (2 * (CN - 1))
}

calculate_lnRR &lt;- function(CMean, CSD, CN, EMean, ESD, EN) {
  log(EMean) - log(CMean)
}

calculate_var_lnRR &lt;- function(CMean, CSD, CN, EMean, ESD, EN) {
  CSD^2 / (CN * CMean^2) + ESD^2 / (EN * EMean^2)
}</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="load-clean-data" class="section level2">
<h2>Load &amp; clean data</h2>
<div id="data-loading-and-cleaning-of-the-csv-file" class="section level3">
<h3>1) Data loading and cleaning of the csv file</h3>
<p>This step we have already done and provide a cleaned up file which is less computing intensive and which we have saved in a folder called <code>export</code>. However, the cvs is provided in case this is preferred to be attempted, following the steps below:</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjpbIiMgbG9hZHMgdGhlIHJhdyBkYXRhLCBzZXR0aW5nIHNvbWUgZGVmYXVsdCB0eXBlcyBmb3IgdmFyaW91cyBjb2x1bW5zIiwiIiwibG9hZF9yYXcgPC0gZnVuY3Rpb24oZmlsZW5hbWUpIHsiLCIgIHJlYWRfY3N2KGZpbGVuYW1lLCIsIiAgICBjb2xfdHlwZXMgPSBjb2xzKCIsIiAgICAgIC5kZWZhdWx0ID0gY29sX2NoYXJhY3RlcigpLCIsIiAgICAgIHByb2plY3RfaWQgPSBjb2xfY2hhcmFjdGVyKCksIiwiICAgICAgaWQgPSBjb2xfY2hhcmFjdGVyKCksIiwiICAgICAgcGFyYW1ldGVyX2lkID0gY29sX2NoYXJhY3RlcigpLCIsIiAgICAgIGFnZV9pbl9kYXlzID0gY29sX2ludGVnZXIoKSwiLCIgICAgICBkYXRlX29mX2V4cGVyaW1lbnQgPSBjb2xfZGF0ZXRpbWUoZm9ybWF0ID0gXCJcIiksIiwiICAgICAgd2VpZ2h0ID0gY29sX2RvdWJsZSgpLCIsIiAgICAgIHBoZW5vdHlwaW5nX2NlbnRlcl9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwiLCIgICAgICBwcm9kdWN0aW9uX2NlbnRlcl9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwiLCIgICAgICB3ZWlnaHRfZGF0ZSA9IGNvbF9kYXRldGltZShmb3JtYXQgPSBcIlwiKSwiLCIgICAgICBkYXRlX29mX2JpcnRoID0gY29sX2RhdGV0aW1lKGZvcm1hdCA9IFwiXCIpLCIsIiAgICAgIHByb2NlZHVyZV9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwiLCIgICAgICBwaXBlbGluZV9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwiLCIgICAgICBiaW9sb2dpY2FsX3NhbXBsZV9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwiLCIgICAgICBiaW9sb2dpY2FsX21vZGVsX2lkID0gY29sX2NoYXJhY3RlcigpLCIsIiAgICAgIHdlaWdodF9kYXlzX29sZCA9IGNvbF9pbnRlZ2VyKCksIiwiICAgICAgZGF0YXNvdXJjZV9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwiLCIgICAgICBleHBlcmltZW50X2lkID0gY29sX2NoYXJhY3RlcigpLCIsIiAgICAgIGRhdGFfcG9pbnQgPSBjb2xfZG91YmxlKCksIiwiICAgICAgYWdlX2luX3dlZWtzID0gY29sX2ludGVnZXIoKSwiLCIgICAgICBgX3ZlcnNpb25fYCA9IGNvbF9jaGFyYWN0ZXIoKSIsIiAgICApIiwiICApIiwifSIsIiIsIiMgQXBwbHkgc29tZSBzdGFuZGFyZCBjbGVhbmluZyB0byB0aGUgZGF0YSIsImNsZWFuX3Jhd19kYXRhIDwtIGZ1bmN0aW9uKG15ZGF0YSkgeyIsIiAgIiwiICBncm91cCA8LSByZWFkX2NzdihoZXJlKFwiZGF0YVwiLCBcIlBhcmFtZXRlckdyb3VwaW5nLmNzdlwiKSkiLCIgICIsIiAgdG1wIDwtICIsIiAgICBteWRhdGEgJT4lIiwiIiwiICAgICMgRmlsdGVyIHRvIElNUEMgc291cmNlIChyZWNvbW1lbmQgYnkgSmVyZW1leSBpbiBlbWFpbCB0byBTdXNpIG9uIDIwIEF1ZyAyMDE4KSIsIiAgICBmaWx0ZXIoZGF0YXNvdXJjZV9uYW1lID09IFwiSU1QQ1wiKSAlPiUiLCIiLCIgICAgIyBzdGFuZGFyZGlzZSB0cmFpdCBuYW1lcyIsIiAgICBtdXRhdGUocGFyYW1ldGVyX25hbWUgPSB0b2xvd2VyKHBhcmFtZXRlcl9uYW1lKSkgJT4lIiwiIiwiICAgICMgcmVtb3ZlIGV4dHJlbWUgYWdlcyIsIiAgICBmaWx0ZXIoYWdlX2luX2RheXMgPiAwICYgYWdlX2luX2RheXMgPCA1MDApICU+JSIsIiIsIiAgICAjIHJlbW92ZSBOQXMiLCIgICAgZmlsdGVyKCFpcy5uYShkYXRhX3BvaW50KSkgJT4lIiwiIiwiICAgICMgc3Vic2V0IHRvIHJlYXNvbmFibGUgc2V0IG9mIHZhcmlhYmxlcywgZGF0ZV9vZl9leHBlcmltZW50IHVzZWQgYXMgYW4gaW5kaWNhdG9yIG9mIGJhdGNoLWxldmVsIGVmZmVjdHMiLCIgICAgc2VsZWN0KHByb2R1Y3Rpb25fY2VudGVyLCBzdHJhaW5fbmFtZSwgc3RyYWluX2FjY2Vzc2lvbl9pZCwgYmlvbG9naWNhbF9zYW1wbGVfaWQsIHBpcGVsaW5lX3N0YWJsZV9pZCwgcHJvY2VkdXJlX2dyb3VwLCBwcm9jZWR1cmVfbmFtZSwgc2V4LCBkYXRlX29mX2V4cGVyaW1lbnQsIGFnZV9pbl9kYXlzLCB3ZWlnaHQsIHBhcmFtZXRlcl9uYW1lLCBkYXRhX3BvaW50KSAlPiUgIiwiIiwiICAgICMgc29ydCIsIiAgICBhcnJhbmdlKHByb2R1Y3Rpb25fY2VudGVyLCBiaW9sb2dpY2FsX3NhbXBsZV9pZCwgYWdlX2luX2RheXMpIiwiICAgICAgIiwiICAgICMgZmlsdGVyIHRvIGdyb3VwcyB3aXRoID4gMSBjZW50cmUgICIsIiAgICBtZXJnZSh0bXAsICIsIiAgICAgICAgICB0bXAgJT4lIGdyb3VwX2J5KHBhcmFtZXRlcl9uYW1lKSAlPiUiLCIgICAgc3VtbWFyaXNlKGNlbnRlcl9wZXJfdHJhaXQgPSBsZW5ndGgodW5pcXVlKHByb2R1Y3Rpb25fY2VudGVyLCBuYS5ybSA9IFRSVUUpKSkiLCIgICAgICAgICklPiUiLCIgICAgZmlsdGVyKGNlbnRlcl9wZXJfdHJhaXQgPj0gMikgJT4lICIsIiIsIiAgICAjIERlZmluZSBwb3B1bGF0aW9uIHZhcmlhYmxlIiwiICAgIG11dGF0ZShwb3B1bGF0aW9uID0gc3ByaW50ZihcIiVzLSVzXCIsIHByb2R1Y3Rpb25fY2VudGVyLCBzdHJhaW5fbmFtZSkpICU+JSAiLCIiLCIgICAgIyBhZGQgZ3JvdXBpbmcgdmFyaWFibGU6IHRoZXNlIHdlcmUgZGVjaWRlZCBiYXNlZCBvbiBmdW5jdGlvbmFsIGdyb3VwcyBhbmQgcHJvY2VkdXJlcyAiLCIgICAgbXV0YXRlKHBhcmFtZXRlcl9ncm91cCA9IGdyb3VwJHBhcmFtZXRlclttYXRjaChwYXJhbWV0ZXJfbmFtZSwgZ3JvdXAkcGFyYW1ldGVyX25hbWUpXSApICU+JSIsIiAgICAiLCIgICAgIyBBc3NpZ24gdW5pcXVlIElEcyAocGVyIHRyYWl0KSIsIiAgICAjIGVhY2ggdW5pcXVlIHBhcmFtZXRlcl9uYW1lICg9dHJhaXQsdXNlIHRyYWl0IHZhcmlhYmxlKSBnZXRzIGEgdW5pcXVlIG51bWJlciAoJ2lkJykiLCIiLCIgICAgIyBXZSBhZGQgYSBuZXcgdmFyaWFibGUsIHdoZXJlIHJlZHVuZGFudCB0cmFpdHMgYXJlIGNvbWJpbmVkIiwiICAgICNbbm90ZSBob3dldmVyLCBhdCB0aGlzIHN0YWdlIHRoZSBkYXRhc2V0IHN0aWxsIGNvbnRhaW5zIG5vbnNlbnNpY2FsIHRyYWl0cywgaS5lLiB0cmFpdHMgdGhhdCBtYXkgbm90IGNvbnRhaW4gYW55IGluZm9ybWF0aW9uIG9uIHZhcmlhbmNlXSIsIiAgICBtdXRhdGUoaWQgPSBtYXRjaChwYXJhbWV0ZXJfbmFtZSwgdW5pcXVlKHBhcmFtZXRlcl9uYW1lKSkpICU+JSAiLCIgICAgYXNfdGliYmxlKCkiLCJ9IiwiIiwiIyBMb2FkIHJhdyBkYXRhIC0gc2F2ZSBjbGVhbmVkIGRhdGFzZXQgYXMgUkRTIGZvciByZXVzZSIsImRhdGFfcmF3IDwtIGxvYWRfcmF3KGhlcmUoXCJkYXRhXCIsXCJkcjcuMF9hbGxfY29udHJvbF9kYXRhLmNzdi5nelwiKSkiLCJkaXIuY3JlYXRlKFwiZXhwb3J0XCIsIEYsIEYpIiwiIiwiZGF0YSA8LSBkYXRhX3JhdyAlPiUgIiwiICBjbGVhbl9yYXdfZGF0YSgpICIsInNhdmVSRFMoZGF0YSwgXCJleHBvcnQvZGF0YV9jbGVhbi5yZHNcIikiXX0= -->
<pre class="r"><code># loads the raw data, setting some default types for various columns

load_raw &lt;- function(filename) {
  read_csv(filename,
    col_types = cols(
      .default = col_character(),
      project_id = col_character(),
      id = col_character(),
      parameter_id = col_character(),
      age_in_days = col_integer(),
      date_of_experiment = col_datetime(format = &quot;&quot;),
      weight = col_double(),
      phenotyping_center_id = col_character(),
      production_center_id = col_character(),
      weight_date = col_datetime(format = &quot;&quot;),
      date_of_birth = col_datetime(format = &quot;&quot;),
      procedure_id = col_character(),
      pipeline_id = col_character(),
      biological_sample_id = col_character(),
      biological_model_id = col_character(),
      weight_days_old = col_integer(),
      datasource_id = col_character(),
      experiment_id = col_character(),
      data_point = col_double(),
      age_in_weeks = col_integer(),
      `_version_` = col_character()
    )
  )
}

# Apply some standard cleaning to the data
clean_raw_data &lt;- function(mydata) {
  
  group &lt;- read_csv(here(&quot;data&quot;, &quot;ParameterGrouping.csv&quot;))
  
  tmp &lt;- 
    mydata %&gt;%

    # Filter to IMPC source (recommend by Jeremey in email to Susi on 20 Aug 2018)
    filter(datasource_name == &quot;IMPC&quot;) %&gt;%

    # standardise trait names
    mutate(parameter_name = tolower(parameter_name)) %&gt;%

    # remove extreme ages
    filter(age_in_days &gt; 0 &amp; age_in_days &lt; 500) %&gt;%

    # remove NAs
    filter(!is.na(data_point)) %&gt;%

    # subset to reasonable set of variables, date_of_experiment used as an indicator of batch-level effects
    select(production_center, strain_name, strain_accession_id, biological_sample_id, pipeline_stable_id, procedure_group, procedure_name, sex, date_of_experiment, age_in_days, weight, parameter_name, data_point) %&gt;% 

    # sort
    arrange(production_center, biological_sample_id, age_in_days)
      
    # filter to groups with &gt; 1 centre  
    merge(tmp, 
          tmp %&gt;% group_by(parameter_name) %&gt;%
    summarise(center_per_trait = length(unique(production_center, na.rm = TRUE)))
        )%&gt;%
    filter(center_per_trait &gt;= 2) %&gt;% 

    # Define population variable
    mutate(population = sprintf(&quot;%s-%s&quot;, production_center, strain_name)) %&gt;% 

    # add grouping variable: these were decided based on functional groups and procedures 
    mutate(parameter_group = group$parameter[match(parameter_name, group$parameter_name)] ) %&gt;%
    
    # Assign unique IDs (per trait)
    # each unique parameter_name (=trait,use trait variable) gets a unique number ('id')

    # We add a new variable, where redundant traits are combined
    #[note however, at this stage the dataset still contains nonsensical traits, i.e. traits that may not contain any information on variance]
    mutate(id = match(parameter_name, unique(parameter_name))) %&gt;% 
    as_tibble()
}

# Load raw data - save cleaned dataset as RDS for reuse
data_raw &lt;- load_raw(here(&quot;data&quot;,&quot;dr7.0_all_control_data.csv.gz&quot;))
dir.create(&quot;export&quot;, F, F)

data &lt;- data_raw %&gt;% 
  clean_raw_data() 
saveRDS(data, &quot;export/data_clean.rds&quot;)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>For analysis we load the RDS created above and other datasets:</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuZGF0YSA8LSByZWFkUkRTKGhlcmUoXCJleHBvcnRcIiwgXCJkYXRhX2NsZWFuLnJkc1wiKSkgXG5cbnByb2NlZHVyZXMgPC0gcmVhZF9jc3YoaGVyZShcImRhdGFcIiwgXCJwcm9jZWR1cmVzLmNzdlwiKSlcbmBgYCJ9 -->
<pre class="r"><code>data &lt;- readRDS(here(&quot;export&quot;, &quot;data_clean.rds&quot;)) 

procedures &lt;- read_csv(here(&quot;data&quot;, &quot;procedures.csv&quot;))</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUGFyc2VkIHdpdGggY29sdW1uIHNwZWNpZmljYXRpb246XG5jb2xzKFxuICBwcm9jZWR1cmUgPSBcdTAwMWJbMzFtY29sX2NoYXJhY3RlcigpXHUwMDFiWzM5bSxcbiAgR3JvdXBpbmdUZXJtID0gXHUwMDFiWzMxbWNvbF9jaGFyYWN0ZXIoKVx1MDAxYlszOW1cbilcbiJ9 -->
<pre><code>Parsed with column specification:
cols(
  procedure = col_character(),
  GroupingTerm = col_character()
)</code></pre>
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Checking length of different variables and sample sizes.</p>
</div>
<div id="table-1-strains-and-center-sample-sizes" class="section level3">
<h3>Table 1: “Strains and Center Sample Sizes”</h3>
<p>This table summarises the available numbers of male and female mice from each strain and originating institution.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-frame-begin eyJtZXRhZGF0YSI6eyJjbGFzc2VzIjpbImdyb3VwZWRfZGYiLCJ0YmxfZGYiLCJ0YmwiLCJkYXRhLmZyYW1lIl0sIm5jb2wiOjQsIm5yb3ciOjQ2fSwicmRmIjoiSDRzSUFBQUFBQUFBQSsxV3kyN1RRQlFkMjVPa2NXZ0xLbXk2aWxoVXNMQWpCQ1NnSXFUWUViU0JsQ29QTmJ0bzZreEpWSGNjalIxYVZpQWhzZU1YWU12M3NHTEZFb21mYUxoT1prVHE1dUVnRkZpd09KTXo1K1krZkQyVDNHcXBlVmR2NmdnaERXbEpXQk5BVWFKUmYySThRQWlyc0ZFUVJ1bnc4d3pNRzBBdzRDckFGQWJOc2l2TG8zaW44clN4QU5kMjdkb0VXaTQyTDFQOHJMSnZUK0tWWW5VU3oxU3FkbmFIOEZQcXVndEp1R3I5Q2hpRGEzVjdQeTVkYWRqWkVublY5V1B1OFVHOXRydFVmdkg0ck5qM0M5YnpYSDV2eXY2NjNHOUxVaWRPREZ0R1NqWjNwMHRwS1pXbkNaa1pvUmZORmkvV3ZJN01yL2wzZXpZdjg0SzltQ0NWblV1OW1DRDlzVmJuYzdPbHFRODRNL2FtbGJkNGU5dktsOWd4ckh0Ry9UVi81QmlnUFk3OWpTMFJ0anhteW5vOE8vYTh1VWF0K0JjdnlaU1hjUEgySm8vb0NYR3B2TjlqL0w5bGxpWEZ2RmFiQkdUSmFmOTFmNFJXaDRjTHFSOEFiNERuQVBmUWFPb0l4NUdrZ0FLQVlVVjVDQ2lBK1FaZ0N3QTYzb1QrL2dCOEI5czZBT1liN1RQZ0kwTDZDMENZUndOOEcwRmRBMlFBdHdCWFJKN1I2SVB3TzhCNzRBUndNUEpMZlFKOEJYNDdmSkdpNWp1QW01R1JLY0hJQ2ZYRmpjRkN2TmJqWHJ2dkJGMlB0UnpLQXNybExmTURUcnFzRlRySnYzV2ZuZ21xc0Vqd05QZE9UWmtnckVCOUM4dGdNUGdTcmNKeGlTK3JrS0llSGo3emlJZTVFRHFQdUtTOFhsZ2ZPS2tiNGhsMTBYTVVDYVR3aUxEZVoyRlZiY1BwOU5teFVZaVljY2R6MjVGNHE0S2JZeHlQU2xJSHdqOGwvYW5UOGVRSm91eGxsOGxtSlZ4eVNPV3ZXSXBUdis4R2NzaFpnMllOZTJYMmVKY0ZzZ21nK21iZ0JVUzY2WTduU21YWUZuVCtFOEltMEo0akN3QUEifQ== -->
<div data-pagedtable="false">
<script data-pagedtable-source type="application/json">
{"columns":[{"label":["production_center"],"name":[1],"type":["chr"],"align":["left"]},{"label":["strain_name"],"name":[2],"type":["chr"],"align":["left"]},{"label":["sex"],"name":[3],"type":["chr"],"align":["left"]},{"label":["n"],"name":[4],"type":["int"],"align":["right"]}],"data":[{"1":"BCM","2":"C57BL/6N","3":"female","4":"653"},{"1":"BCM","2":"C57BL/6N","3":"male","4":"639"},{"1":"BCM","2":"C57BL/6N;C57BL/6NTac","3":"female","4":"47"},{"1":"BCM","2":"C57BL/6N;C57BL/6NTac","3":"male","4":"52"},{"1":"BCM","2":"C57BL/6NCrl","3":"female","4":"4"},{"1":"BCM","2":"C57BL/6NCrl","3":"male","4":"2"},{"1":"BCM","2":"C57BL/6NJ","3":"female","4":"6"},{"1":"BCM","2":"C57BL/6NJ","3":"male","4":"6"},{"1":"BCM","2":"C57BL/6NTac","3":"female","4":"1"},{"1":"BCM","2":"C57BL/6NTac","3":"male","4":"5"},{"1":"HMGU","2":"C57BL/6NCrl","3":"female","4":"313"},{"1":"HMGU","2":"C57BL/6NCrl","3":"male","4":"311"},{"1":"HMGU","2":"C57BL/6NTac","3":"female","4":"1045"},{"1":"HMGU","2":"C57BL/6NTac","3":"male","4":"1062"},{"1":"ICS","2":"C57BL/6N","3":"female","4":"1025"},{"1":"ICS","2":"C57BL/6N","3":"male","4":"1050"},{"1":"JAX","2":"C57BL/6NJ","3":"female","4":"2025"},{"1":"JAX","2":"C57BL/6NJ","3":"male","4":"2022"},{"1":"KMPC","2":"C57BL/6N;C57BL/6NTac","3":"female","4":"271"},{"1":"KMPC","2":"C57BL/6N;C57BL/6NTac","3":"male","4":"266"},{"1":"MARC","2":"C57BL/6N","3":"female","4":"936"},{"1":"MARC","2":"C57BL/6N","3":"male","4":"926"},{"1":"MRC Harwell","2":"C57BL/6NTac","3":"female","4":"2639"},{"1":"MRC Harwell","2":"C57BL/6NTac","3":"male","4":"2661"},{"1":"MRC Harwell","2":"C57BL/6NTac","3":"no_data","4":"3"},{"1":"RBRC","2":"C57BL/6NJcl","3":"female","4":"222"},{"1":"RBRC","2":"C57BL/6NJcl","3":"male","4":"222"},{"1":"RBRC","2":"C57BL/6NTac","3":"female","4":"526"},{"1":"RBRC","2":"C57BL/6NTac","3":"male","4":"523"},{"1":"TCP","2":"C57BL/6NCrl","3":"female","4":"552"},{"1":"TCP","2":"C57BL/6NCrl","3":"male","4":"524"},{"1":"TCP","2":"C57BL6/NCrl","3":"female","4":"2"},{"1":"TCP","2":"C57BL6/NCrl","3":"male","4":"2"},{"1":"UC Davis","2":"C57BL/6N","3":"male","4":"1"},{"1":"UC Davis","2":"C57BL/6NCrl","3":"female","4":"1155"},{"1":"UC Davis","2":"C57BL/6NCrl","3":"male","4":"1158"},{"1":"WTSI","2":"B6Brd;B6Dnk;B6N-Tyr<c-Brd>","3":"female","4":"97"},{"1":"WTSI","2":"B6Brd;B6Dnk;B6N-Tyr<c-Brd>","3":"male","4":"87"},{"1":"WTSI","2":"C57BL/6J-Tyr<c-Brd> or C57BL/6NTac/USA","3":"male","4":"3"},{"1":"WTSI","2":"C57BL/6N","3":"female","4":"1951"},{"1":"WTSI","2":"C57BL/6N","3":"male","4":"2008"},{"1":"WTSI","2":"C57BL/6N;C57BL/6NTac","3":"female","4":"41"},{"1":"WTSI","2":"C57BL/6N;C57BL/6NTac","3":"male","4":"7"},{"1":"WTSI","2":"C57BL/6NCrl","3":"male","4":"13"},{"1":"WTSI","2":"C57BL/6NTac","3":"female","4":"49"},{"1":"WTSI","2":"C57BL/6NTac","3":"male","4":"34"}],"options":{"columns":{"min":{},"max":[10],"total":[4]},"rows":{"min":[10],"max":[10],"total":[46]},"pages":{}}}
  </script>
</div>
<!-- rnb-frame-end -->

<!-- rnb-htmlwidget-begin eyJkZXBlbmRlbmNpZXMiOlt7ImFsbF9maWxlcyI6dHJ1ZSwiYXR0YWNobWVudCI6W10sImhlYWQiOltdLCJtZXRhIjpbXSwibmFtZSI6ImpxdWVyeSIsInBhY2thZ2UiOltdLCJzY3JpcHQiOiJqcXVlcnkubWluLmpzIiwic3JjIjp7ImZpbGUiOiIvTGlicmFyeS9GcmFtZXdvcmtzL1IuZnJhbWV3b3JrL1ZlcnNpb25zLzMuNi9SZXNvdXJjZXMvbGlicmFyeS9ybWFya2Rvd24vcm1kL2gvanF1ZXJ5In0sInN0eWxlc2hlZXQiOltdLCJ2ZXJzaW9uIjoiMS4xMS4zIn0seyJhbGxfZmlsZXMiOnRydWUsImF0dGFjaG1lbnQiOltdLCJoZWFkIjpbXSwibWV0YSI6eyJ2aWV3cG9ydCI6IndpZHRoPWRldmljZS13aWR0aCwgaW5pdGlhbC1zY2FsZT0xIn0sIm5hbWUiOiJib290c3RyYXAiLCJwYWNrYWdlIjpbXSwic2NyaXB0IjpbImpzL2Jvb3RzdHJhcC5taW4uanMiLCJzaGltL2h0bWw1c2hpdi5taW4uanMiLCJzaGltL3Jlc3BvbmQubWluLmpzIl0sInNyYyI6eyJmaWxlIjoiL0xpYnJhcnkvRnJhbWV3b3Jrcy9SLmZyYW1ld29yay9WZXJzaW9ucy8zLjYvUmVzb3VyY2VzL2xpYnJhcnkvcm1hcmtkb3duL3JtZC9oL2Jvb3RzdHJhcCJ9LCJzdHlsZXNoZWV0IjoiY3NzL3NpbXBsZXgubWluLmNzcyIsInZlcnNpb24iOiIzLjMuNSJ9LHsiYWxsX2ZpbGVzIjp0cnVlLCJhdHRhY2htZW50IjpbXSwiaGVhZCI6W10sIm1ldGEiOltdLCJuYW1lIjoia2VQcmludCIsInBhY2thZ2UiOltdLCJzY3JpcHQiOiJrZVByaW50LmpzIiwic3JjIjp7ImZpbGUiOiIvVXNlcnMvc3ovTGlicmFyeS9SLzMuNi9saWJyYXJ5L2thYmxlRXh0cmEva2VQcmludC0wLjAuMSJ9LCJzdHlsZXNoZWV0IjpbXSwidmVyc2lvbiI6IjAuMC4xIn1dLCJtZXRhZGF0YSI6eyJjbGFzc2VzIjpbInNoaW55LnRhZy5saXN0IiwibGlzdCJdLCJzaXppbmdQb2xpY3kiOltdfX0= -->

<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:70%; "><table class="table" style="margin-left: auto; margin-right: auto;">
 <thead>
  <tr>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> production_center </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> strain_name </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> sex </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> n </th>
  </tr>
 </thead>
<tbody>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 653 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 639 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6N;C57BL/6NTac </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 47 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6N;C57BL/6NTac </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 52 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 4 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 2 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6NJ </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 6 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6NJ </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 6 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> BCM </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 5 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> HMGU </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 313 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> HMGU </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 311 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> HMGU </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 1045 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> HMGU </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 1062 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> ICS </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 1025 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> ICS </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 1050 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> JAX </td>
   <td style="text-align:left;"> C57BL/6NJ </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 2025 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> JAX </td>
   <td style="text-align:left;"> C57BL/6NJ </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 2022 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> KMPC </td>
   <td style="text-align:left;"> C57BL/6N;C57BL/6NTac </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 271 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> KMPC </td>
   <td style="text-align:left;"> C57BL/6N;C57BL/6NTac </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 266 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> MARC </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 936 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> MARC </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 926 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> MRC Harwell </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 2639 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> MRC Harwell </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 2661 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> MRC Harwell </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> no_data </td>
   <td style="text-align:right;"> 3 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> RBRC </td>
   <td style="text-align:left;"> C57BL/6NJcl </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 222 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> RBRC </td>
   <td style="text-align:left;"> C57BL/6NJcl </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 222 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> RBRC </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 526 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> RBRC </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 523 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> TCP </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 552 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> TCP </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 524 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> TCP </td>
   <td style="text-align:left;"> C57BL6/NCrl </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 2 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> TCP </td>
   <td style="text-align:left;"> C57BL6/NCrl </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 2 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> UC Davis </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> UC Davis </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 1155 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> UC Davis </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 1158 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> B6Brd;B6Dnk;B6N-Tyr&lt;c-Brd&gt; </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 97 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> B6Brd;B6Dnk;B6N-Tyr&lt;c-Brd&gt; </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 87 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> C57BL/6J-Tyr&lt;c-Brd&gt; or C57BL/6NTac/USA </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 3 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 1951 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> C57BL/6N </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 2008 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> C57BL/6N;C57BL/6NTac </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 41 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> C57BL/6N;C57BL/6NTac </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 7 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> C57BL/6NCrl </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 13 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> female </td>
   <td style="text-align:right;"> 49 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> WTSI </td>
   <td style="text-align:left;"> C57BL/6NTac </td>
   <td style="text-align:left;"> male </td>
   <td style="text-align:right;"> 34 </td>
  </tr>
</tbody>
</table></div>

<!-- rnb-htmlwidget-end -->

<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
</div>
<div id="meta-analyses" class="section level1">
<h1>Meta-analyses</h1>
<div id="population-as-analysis-unit" class="section level2">
<h2>1. Population as analysis unit</h2>
<p>(Step C, Figure 3 in main document)</p>
<div id="loop-meta-analyses-on-all-traits" class="section level3">
<h3>Loop: Meta-analyses on all traits</h3>
<ul>
<li>The loop combines the functions mentioned above and fills the data matrix with results from our meta analysis.</li>
<li>Error messages indicate traits that either did not reach convergence, or that did not return meaningful results in the meta-analysis, due to absence of variance. Those traits will be removed in later steps, outlined below.</li>
</ul>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG5uIDwtIGxlbmd0aCh1bmlxdWUoZGF0YSRpZCkpXG5cbiMgQ3JlYXRlIGRhdGFmcmFtZSB0byBzdG9yZSByZXN1bHRzXG5yZXN1bHRzX2FsbHRyYWl0c19ncm91cGluZyA8LSBcbiAgICB0aWJibGUoaWQgPSAxOm4sIGxuQ1ZSPTAsIGxuQ1ZSX2xvd2VyPTAsIGxuQ1ZSX3VwcGVyPTAsIFxuICAgICAgICAgICBsbkNWUl9zZT0wLCBsblZSPTAsIGxuVlJfbG93ZXI9MCwgbG5WUl91cHBlcj0wLCBcbiAgICAgICAgICAgbG5WUl9zZT0wLCBsblJSPTAsIGxuUlJfbG93ZXI9MCwgbG5SUl91cHBlcj0wLCBsblJSX3NlPTAsIHNhbXBsZVNpemU9MCwgdHJhaXQ9MClcblxuZm9yICh0IGluIDE6bikge1xuICB0cnlDYXRjaChcbiAgICB7XG4gICAgICByZXN1bHRzIDwtIGRhdGEgJT4lIFxuICAgICAgICBkYXRhX3N1YnNldF9wYXJhbWV0ZXJpZF9pbmRpdmlkdWFsX2J5X2FnZSh0KSAlPiVcbiAgICAgICAgY2FsY3VsYXRlX3BvcHVsYXRpb25fc3RhdHMoKSAlPiVcbiAgICAgICAgY3JlYXRlX21ldGFfYW5hbHlzaXNfZWZmZWN0X3NpemVzKClcblxuICAgICAgIyBsbkNWUiwgIGxvZyByZXBzb25zZS1yYXRpbyBvZiB0aGUgY29lZmZpY2llbnQgb2YgdmFyaWFuY2VcbiAgICAgIGN2ciA8LSBtZXRhZm9yOjpybWEubXYoeWkgPSBlZmZlY3Rfc2l6ZV9DVlIsIFYgPSBzYW1wbGVfdmFyaWFuY2VfQ1ZSLCBcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmFuZG9tID0gbGlzdCh+IDEgfCBzdHJhaW5fbmFtZSwgfiAxIHwgcHJvZHVjdGlvbl9jZW50ZXIsIH4gMSB8IGVyciksIFxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGLCBkYXRhID0gcmVzdWx0cylcblxuICAgICAgIyBsblZSLCBjb21wYXJpc29uIG9mIHN0YW5kYXJkIGRldmlhdGlvbnNcbiAgICAgIGN2IDwtIG1ldGFmb3I6OnJtYS5tdih5aSA9IGVmZmVjdF9zaXplX1ZSLCBWID0gc2FtcGxlX3ZhcmlhbmNlX1ZSLFxuICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJhbmRvbSA9IGxpc3QofiAxIHwgc3RyYWluX25hbWUsIH4gMSB8IHByb2R1Y3Rpb25fY2VudGVyLCB+IDEgfCBlcnIpLCBcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEYsIGRhdGEgPSByZXN1bHRzKVxuXG4gICAgICAjIGZvciBtZWFucywgbG5SUlxuICAgICAgbWVhbnMgPC0gbWV0YWZvcjo6cm1hLm12KHlpID0gZWZmZWN0X3NpemVfUlIsIFYgPSBzYW1wbGVfdmFyaWFuY2VfUlIsIFxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJhbmRvbSA9IGxpc3QofiAxIHwgc3RyYWluX25hbWUsIH4gMSB8IHByb2R1Y3Rpb25fY2VudGVyLCB+IDEgfCBlcnIpLCBcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEYsIGRhdGEgPSByZXN1bHRzKVxuICAgICAgXG4gICAgICBmIDwtIGZ1bmN0aW9uKHgpIHVubGlzdCh4W2MoXCJiXCIsIFwiY2kubGJcIiwgXCJjaS51YlwiLCBcInNlXCIpXSlcblxuICAgICAgcmVzdWx0c19hbGx0cmFpdHNfZ3JvdXBpbmdbdCwgMjoxNF0gPC0gYyhmKGN2ciksIGYoY3YpLCBmKG1lYW5zKSwgbWVhbnMkaylcbiAgICAgIHJlc3VsdHNfYWxsdHJhaXRzX2dyb3VwaW5nW3QsIDE1XSA8LSB1bmlxdWUocmVzdWx0cyR0cmFpdClcbiAgICB9LFxuICAgIGVycm9yID0gZnVuY3Rpb24oZSkge1xuICAgICAgY2F0KFwiRVJST1IgOlwiLCB0LCBjb25kaXRpb25NZXNzYWdlKGUpLCBcIlxcblwiKVxuICAgIH1cbiAgKVxufVxuYGBgIn0= -->
<pre class="r"><code>
n &lt;- length(unique(data$id))

# Create dataframe to store results
results_alltraits_grouping &lt;- 
    tibble(id = 1:n, lnCVR=0, lnCVR_lower=0, lnCVR_upper=0, 
           lnCVR_se=0, lnVR=0, lnVR_lower=0, lnVR_upper=0, 
           lnVR_se=0, lnRR=0, lnRR_lower=0, lnRR_upper=0, lnRR_se=0, sampleSize=0, trait=0)

for (t in 1:n) {
  tryCatch(
    {
      results &lt;- data %&gt;% 
        data_subset_parameterid_individual_by_age(t) %&gt;%
        calculate_population_stats() %&gt;%
        create_meta_analysis_effect_sizes()

      # lnCVR,  log repsonse-ratio of the coefficient of variance
      cvr &lt;- metafor::rma.mv(yi = effect_size_CVR, V = sample_variance_CVR, 
                             random = list(~ 1 | strain_name, ~ 1 | production_center, ~ 1 | err), 
                             control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, 
                                            maxit = 1000), verbose = F, data = results)

      # lnVR, comparison of standard deviations
      cv &lt;- metafor::rma.mv(yi = effect_size_VR, V = sample_variance_VR,
                            random = list(~ 1 | strain_name, ~ 1 | production_center, ~ 1 | err), 
                            control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, 
                                           maxit = 1000), verbose = F, data = results)

      # for means, lnRR
      means &lt;- metafor::rma.mv(yi = effect_size_RR, V = sample_variance_RR, 
                               random = list(~ 1 | strain_name, ~ 1 | production_center, ~ 1 | err), 
                               control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, 
                                              maxit = 1000), verbose = F, data = results)
      
      f &lt;- function(x) unlist(x[c(&quot;b&quot;, &quot;ci.lb&quot;, &quot;ci.ub&quot;, &quot;se&quot;)])

      results_alltraits_grouping[t, 2:14] &lt;- c(f(cvr), f(cv), f(means), means$k)
      results_alltraits_grouping[t, 15] &lt;- unique(results$trait)
    },
    error = function(e) {
      cat(&quot;ERROR :&quot;, t, conditionMessage(e), &quot;\n&quot;)
    }
  )
}</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiA4NCBPcHRpbWl6ZXIgKG9wdGltKSBkaWQgbm90IGFjaGlldmUgY29udmVyZ2VuY2UgKGNvbnZlcmdlbmNlID0gMTApLiBcbiJ9 -->
<pre><code>ERROR : 84 Optimizer (optim) did not achieve convergence (convergence = 10). </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5Sb3dzIHdpdGggTkFzIG9taXR0ZWQgZnJvbSBtb2RlbCBmaXR0aW5nLlJvd3Mgd2l0aCBOQXMgb21pdHRlZCBmcm9tIG1vZGVsIGZpdHRpbmcuUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5Sb3dzIHdpdGggTkFzIG9taXR0ZWQgZnJvbSBtb2RlbCBmaXR0aW5nLlRoZXJlIGFyZSBvdXRjb21lcyB3aXRoIG5vbi1wb3NpdGl2ZSBzYW1wbGluZyB2YXJpYW5jZXMuJ1YnIGFwcGVhcnMgdG8gYmUgbm90IHBvc2l0aXZlIGRlZmluaXRlLlxuIn0= -->
<pre><code>Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Rows with NAs omitted from model fitting.Rows with NAs omitted from model fitting.Rows with NAs omitted from model fitting.Rows with NAs omitted from model fitting.Rows with NAs omitted from model fitting.There are outcomes with non-positive sampling variances.'V' appears to be not positive definite.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAxNTggT3B0aW1pemVyIChvcHRpbSkgZGlkIG5vdCBhY2hpZXZlIGNvbnZlcmdlbmNlIChjb252ZXJnZW5jZSA9IDEwKS4gXG4ifQ== -->
<pre><code>ERROR : 158 Optimizer (optim) did not achieve convergence (convergence = 10). </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5cbiJ9 -->
<pre><code>Rows with NAs omitted from model fitting.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAxNjAgTkEvTmFOL0luZiBpbiAneScgXG4ifQ== -->
<pre><code>ERROR : 160 NA/NaN/Inf in 'y' </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5cbiJ9 -->
<pre><code>Rows with NAs omitted from model fitting.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAxNjEgTkEvTmFOL0luZiBpbiAneScgXG4ifQ== -->
<pre><code>ERROR : 161 NA/NaN/Inf in 'y' </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5cbiJ9 -->
<pre><code>Rows with NAs omitted from model fitting.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAxNjIgTkEvTmFOL0luZiBpbiAneScgXG4ifQ== -->
<pre><code>ERROR : 162 NA/NaN/Inf in 'y' </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5cbiJ9 -->
<pre><code>Rows with NAs omitted from model fitting.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAxNjMgTkEvTmFOL0luZiBpbiAneScgXG4ifQ== -->
<pre><code>ERROR : 163 NA/NaN/Inf in 'y' </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5cbiJ9 -->
<pre><code>Rows with NAs omitted from model fitting.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAxNjUgTkEvTmFOL0luZiBpbiAneScgXG4ifQ== -->
<pre><code>ERROR : 165 NA/NaN/Inf in 'y' </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5cbiJ9 -->
<pre><code>Rows with NAs omitted from model fitting.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAxNjYgTkEvTmFOL0luZiBpbiAneScgXG4ifQ== -->
<pre><code>ERROR : 166 NA/NaN/Inf in 'y' </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5Sb3dzIHdpdGggTkFzIG9taXR0ZWQgZnJvbSBtb2RlbCBmaXR0aW5nLlRoZXJlIGFyZSBvdXRjb21lcyB3aXRoIG5vbi1wb3NpdGl2ZSBzYW1wbGluZyB2YXJpYW5jZXMuJ1YnIGFwcGVhcnMgdG8gYmUgbm90IHBvc2l0aXZlIGRlZmluaXRlLlJvd3Mgd2l0aCBOQXMgb21pdHRlZCBmcm9tIG1vZGVsIGZpdHRpbmcuXG4ifQ== -->
<pre><code>Rows with NAs omitted from model fitting.Rows with NAs omitted from model fitting.There are outcomes with non-positive sampling variances.'V' appears to be not positive definite.Rows with NAs omitted from model fitting.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAxNjggTkEvTmFOL0luZiBpbiAneScgXG4ifQ== -->
<pre><code>ERROR : 168 NA/NaN/Inf in 'y' </code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuU2luZ2xlLWxldmVsIGZhY3RvcihzKSBmb3VuZCBpbiAncmFuZG9tJyBhcmd1bWVudC4gQ29ycmVzcG9uZGluZyAnc2lnbWEyJyB2YWx1ZShzKSBmaXhlZCB0byAwLlNpbmdsZS1sZXZlbCBmYWN0b3IocykgZm91bmQgaW4gJ3JhbmRvbScgYXJndW1lbnQuIENvcnJlc3BvbmRpbmcgJ3NpZ21hMicgdmFsdWUocykgZml4ZWQgdG8gMC5TaW5nbGUtbGV2ZWwgZmFjdG9yKHMpIGZvdW5kIGluICdyYW5kb20nIGFyZ3VtZW50LiBDb3JyZXNwb25kaW5nICdzaWdtYTInIHZhbHVlKHMpIGZpeGVkIHRvIDAuUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5Sb3dzIHdpdGggTkFzIG9taXR0ZWQgZnJvbSBtb2RlbCBmaXR0aW5nLlRoZXJlIGFyZSBvdXRjb21lcyB3aXRoIG5vbi1wb3NpdGl2ZSBzYW1wbGluZyB2YXJpYW5jZXMuJ1YnIGFwcGVhcnMgdG8gYmUgbm90IHBvc2l0aXZlIGRlZmluaXRlLlJvd3Mgd2l0aCBOQXMgb21pdHRlZCBmcm9tIG1vZGVsIGZpdHRpbmcuUm93cyB3aXRoIE5BcyBvbWl0dGVkIGZyb20gbW9kZWwgZml0dGluZy5UaGVyZSBhcmUgb3V0Y29tZXMgd2l0aCBub24tcG9zaXRpdmUgc2FtcGxpbmcgdmFyaWFuY2VzLidWJyBhcHBlYXJzIHRvIGJlIG5vdCBwb3NpdGl2ZSBkZWZpbml0ZS5Sb3dzIHdpdGggTkFzIG9taXR0ZWQgZnJvbSBtb2RlbCBmaXR0aW5nLlxuIn0= -->
<pre><code>Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0.Rows with NAs omitted from model fitting.Rows with NAs omitted from model fitting.There are outcomes with non-positive sampling variances.'V' appears to be not positive definite.Rows with NAs omitted from model fitting.Rows with NAs omitted from model fitting.There are outcomes with non-positive sampling variances.'V' appears to be not positive definite.Rows with NAs omitted from model fitting.</code></pre>
<!-- rnb-output-end -->
<!-- rnb-output-begin eyJkYXRhIjoiRVJST1IgOiAyMzEgTkEvTmFOL0luZiBpbiAneScgXG4ifQ== -->
<pre><code>ERROR : 231 NA/NaN/Inf in 'y' </code></pre>
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>In the above function, we use ‘tryCatch’ and ‘conditionMessage’ to prevent the loop from aborting when the first error at row 84 is produced. As convergence in the two listed non-converging cases can’t be achieved by sensibly tweaking (other optim etc.), and we only learn about non-convergence in the loop, it is not possible to exclude the traits (N=2) beforehand. Similarly, there are 8 traits with very low variation, which can not be excluded prior to running the loop.</p>
<p>The produced “Warnings” indicate cases where variance components are set to zero during likelihood optimization.</p>
</div>
<div id="merging-datasets-removal-of-non-converged-traits" class="section level3">
<h3>Merging datasets &amp; removal of non-converged traits</h3>
<p>Procedure names, grouping variables and trait names (“parameter_names”) are merged back together with the results from the metafor analysis above.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucmVzdWx0c19hbGx0cmFpdHNfZ3JvdXBpbmcyIDwtIFxuICByZXN1bHRzX2FsbHRyYWl0c19ncm91cGluZyAlPiUgXG4gIGxlZnRfam9pbihieT1cImlkXCIsXG4gICAgICAgICAgICAgZGF0YSAlPiUgc2VsZWN0KGlkLCBwYXJhbWV0ZXJfZ3JvdXAsIHByb2NlZHVyZSA9IHByb2NlZHVyZV9uYW1lLCBwcm9jZWR1cmVfbmFtZSwgcGFyYW1ldGVyX25hbWUpICU+JSAgICMgV2UgZmlsdGVyIGR1cGxpY2F0ZWQgaWQncyB0byBnZXQgb25seSBvbmUgdW5pcXVlIHJvdyBwZXIgaWQgKGFuZCB0aGVyZSBpcyBvbmUgaWQgcGVyIHBhcmFtZXRlcl9uYW1lKVxuICAgICAgICAgICAgICBmaWx0ZXIoIWR1cGxpY2F0ZWQoaWQpKVxuICAgICAgICAgICAgKSAlPiVcbiAgIyBCZWxvdyB3ZSBhZGQgJ3Byb2NlZHVyZScgKGZyb20gdGhlIHByZXZpb3VzbHkgbG9hZGVkICdwcm9jZWR1cmVzLmNzdicpIGFzIGEgdmFyaWFibGVcbiAgbGVmdF9qb2luKGJ5PVwicHJvY2VkdXJlXCIsIFxuICAgICAgICAgICAgcHJvY2VkdXJlcyAlPiUgZGlzdGluY3QoKVxuICAgICAgICAgICAgKVxuXG4jKG4gPC0gbGVuZ3RoKHVuaXF1ZShyZXN1bHRzX2FsbHRyYWl0c19ncm91cGluZzIkcGFyYW1ldGVyX25hbWUpKSkgIyAyMzJcbmBgYCJ9 -->
<pre class="r"><code>results_alltraits_grouping2 &lt;- 
  results_alltraits_grouping %&gt;% 
  left_join(by=&quot;id&quot;,
             data %&gt;% select(id, parameter_group, procedure = procedure_name, procedure_name, parameter_name) %&gt;%   # We filter duplicated id's to get only one unique row per id (and there is one id per parameter_name)
              filter(!duplicated(id))
            ) %&gt;%
  # Below we add 'procedure' (from the previously loaded 'procedures.csv') as a variable
  left_join(by=&quot;procedure&quot;, 
            procedures %&gt;% distinct()
            )

#(n &lt;- length(unique(results_alltraits_grouping2$parameter_name))) # 232</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="removal-of-traits" class="section level3">
<h3>Removal of traits</h3>
<p>14 traits from the originally 232 that had been included are removed because they either did not achieve convergence or are nonsensical for analysis of variance (such as traits that show no variation, see list below).</p>
<p>Not converged: “dp t cells”, “mzb (cd21/35 high)”</p>
<p>Not enough variation: “number of caudal vertebrae”, “number of cervical vertebrae”, “number of digits”, “number of lumbar vertebrae”, “number of pelvic vertebrae”, “number of ribs left”,“number of ribs right”, “number of signals”, “number of thoracic vertebrae”, “total number of acquired events in panel a”,“total number of acquired events in panel b”, “whole arena permanence”.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuIyBXZSBleGNsdWRlIDE0IHBhcmFtZXRlciBuYW1lcyBmb3Igd2hpY2ggbWV0YWZvciBtb2RlbHMgZGlkbid0IGNvbnZlcmdlIChcImRwIHQgY2VsbHNcIiwgXCJtemIgKGNkMjEvMzUgaGlnaClcIiksIGFuZCBvZiBwYXJhbWV0ZXJzIHRoYXQgZG9uJ3QgaGFyYm91ciBlbm91Z2ggdmFyaWF0aW9uXG5tZXRhX2NsZWFuIDwtIHJlc3VsdHNfYWxsdHJhaXRzX2dyb3VwaW5nMiAlPiUgXG5cdCAgZmlsdGVyKCFwYXJhbWV0ZXJfbmFtZSAlaW4lIGMoXCJkcCB0IGNlbGxzXCIsIFwibXpiIChjZDIxLzM1IGhpZ2gpXCIsIFwibnVtYmVyIG9mIGNhdWRhbCB2ZXJ0ZWJyYWVcIiwgXG5cdCAgXCJudW1iZXIgb2YgY2VydmljYWwgdmVydGVicmFlXCIsIFwibnVtYmVyIG9mIGRpZ2l0c1wiLCBcIm51bWJlciBvZiBsdW1iYXIgdmVydGVicmFlXCIsIFwibnVtYmVyIG9mIHBlbHZpYyB2ZXJ0ZWJyYWVcIiwgXCJudW1iZXIgb2YgcmlicyBsZWZ0XCIsICAgICAgICAgICAgICAgICAgICAgICBcbiAgICAgICAgXCJudW1iZXIgb2YgcmlicyByaWdodFwiLCBcIm51bWJlciBvZiBzaWduYWxzXCIsIFwibnVtYmVyIG9mIHRob3JhY2ljIHZlcnRlYnJhZVwiLCBcInRvdGFsIG51bWJlciBvZiBhY3F1aXJlZCBldmVudHMgaW4gcGFuZWwgYVwiLFxuICAgICAgICBcInRvdGFsIG51bWJlciBvZiBhY3F1aXJlZCBldmVudHMgaW4gcGFuZWwgYlwiLCBcIndob2xlIGFyZW5hIHBlcm1hbmVuY2VcIikpXG5cbmBgYCJ9 -->
<pre class="r"><code># We exclude 14 parameter names for which metafor models didn't converge (&quot;dp t cells&quot;, &quot;mzb (cd21/35 high)&quot;), and of parameters that don't harbour enough variation
meta_clean &lt;- results_alltraits_grouping2 %&gt;% 
      filter(!parameter_name %in% c(&quot;dp t cells&quot;, &quot;mzb (cd21/35 high)&quot;, &quot;number of caudal vertebrae&quot;, 
      &quot;number of cervical vertebrae&quot;, &quot;number of digits&quot;, &quot;number of lumbar vertebrae&quot;, &quot;number of pelvic vertebrae&quot;, &quot;number of ribs left&quot;,                       
        &quot;number of ribs right&quot;, &quot;number of signals&quot;, &quot;number of thoracic vertebrae&quot;, &quot;total number of acquired events in panel a&quot;,
        &quot;total number of acquired events in panel b&quot;, &quot;whole arena permanence&quot;))
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="meta-analysis-condensing-non-independent-traits" class="section level2">
<h2>2. Meta-analysis: condensing non-independent traits</h2>
<p>(Step F in Figure 3 in main article)</p>
<div id="dealing-with-correlated-parameters-preparation" class="section level3">
<h3>Dealing with Correlated Parameters, preparation</h3>
<p>This dataset contained a number of highly correlated traits, such as different kinds of cell counts (for example hierarchical parameterization within immunological assays). As those data-points are not independent of each other, we conducted meta analyses on these correlated parameters to collapse the number of levels.</p>
<div id="collapsing-and-merging-correlated-parameters" class="section level4">
<h4>Collapsing and merging correlated parameters</h4>
<p>Here we double check numbers of trait parameters in the dataset</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG5tZXRhMSA8LSBtZXRhX2NsZWFuIFxubGVuZ3RoKHVuaXF1ZShtZXRhMSRwcm9jZWR1cmUpKSAjMThcbmBgYCJ9 -->
<pre class="r"><code>
meta1 &lt;- meta_clean 
length(unique(meta1$procedure)) #18</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiWzFdIDE4XG4ifQ== -->
<pre><code>[1] 18</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGVuZ3RoKHVuaXF1ZShtZXRhMSRHcm91cGluZ1Rlcm0pKSAjOVxuYGBgIn0= -->
<pre class="r"><code>length(unique(meta1$GroupingTerm)) #9</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiWzFdIDlcbiJ9 -->
<pre><code>[1] 9</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGVuZ3RoKHVuaXF1ZShtZXRhMSRwYXJhbWV0ZXJfZ3JvdXApKSAjIDE0OCBsZXZlbHMuIFRvIGJlIHVzZWQgYXMgZ3JvdXBpbmcgZmFjdG9yIGZvciBtZXRhLW1ldGEtYW5hbHlzaXMgLyBjb2xsYXBzaW5nIGRvd24gYmFzZWQgb24gdGhpbmdzIHRoYXQgYXJlIGNsYXNzaWZpZWQgaWRlbnRpY2FsbHkgaW4gXCJwYXJhbWV0ZXJfZ3JvdXBcIiBidXQgaGF2ZSBkaWZmZXJlbnQgXCJwYXJhbWV0ZXJfbmFtZVwiXG5gYGAifQ== -->
<pre class="r"><code>length(unique(meta1$parameter_group)) # 148 levels. To be used as grouping factor for meta-meta-analysis / collapsing down based on things that are classified identically in &quot;parameter_group&quot; but have different &quot;parameter_name&quot;</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiWzFdIDE0OFxuIn0= -->
<pre><code>[1] 148</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGVuZ3RoKHVuaXF1ZShtZXRhMSRwYXJhbWV0ZXJfbmFtZSkpICMyMThcbmBgYCJ9 -->
<pre class="r"><code>length(unique(meta1$parameter_name)) #218</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiWzFdIDIxOFxuIn0= -->
<pre><code>[1] 218</code></pre>
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="count-of-number-of-parameter-names-correlated-sub-traits-in-each-parameter-group-par_group_size" class="section level4">
<h4>Count of number of parameter names (correlated sub-traits) in each parameter group (par_group_size)</h4>
</div>
</div>
<div id="table-2-numbers-of-correlated-and-uncorrelated-traits" class="section level3">
<h3>Table 2: Numbers of correlated and uncorrelated traits</h3>
<p>This serves to identify and separate the traits that are correlated from the full dataset that can be processed as is. If the sample size (n) for a given “parameter group” equals 1, the trait is unique and uncorrelated. All instances, where there are 2 or more traits associated with the same parameter group (90 cases), are selected for a “mini-meta analysis”, which removes the issue of correlation.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxua2FibGUoY2JpbmQobWV0YTEgJT4lIGNvdW50KHBhcmFtZXRlcl9ncm91cCkpKSAlPiVcbiAga2FibGVfc3R5bGluZygpICU+JVxuICBzY3JvbGxfYm94KHdpZHRoID0gXCI2MCVcIiwgaGVpZ2h0ID0gXCIyMDBweFwiKVxuYGBgIn0= -->
<pre class="r"><code>kable(cbind(meta1 %&gt;% count(parameter_group))) %&gt;%
  kable_styling() %&gt;%
  scroll_box(width = &quot;60%&quot;, height = &quot;200px&quot;)</code></pre>
<!-- rnb-source-end -->

<!-- rnb-htmlwidget-begin eyJkZXBlbmRlbmNpZXMiOlt7ImFsbF9maWxlcyI6dHJ1ZSwiYXR0YWNobWVudCI6W10sImhlYWQiOltdLCJtZXRhIjpbXSwibmFtZSI6ImpxdWVyeSIsInBhY2thZ2UiOltdLCJzY3JpcHQiOiJqcXVlcnkubWluLmpzIiwic3JjIjp7ImZpbGUiOiIvTGlicmFyeS9GcmFtZXdvcmtzL1IuZnJhbWV3b3JrL1ZlcnNpb25zLzMuNi9SZXNvdXJjZXMvbGlicmFyeS9ybWFya2Rvd24vcm1kL2gvanF1ZXJ5In0sInN0eWxlc2hlZXQiOltdLCJ2ZXJzaW9uIjoiMS4xMS4zIn0seyJhbGxfZmlsZXMiOnRydWUsImF0dGFjaG1lbnQiOltdLCJoZWFkIjpbXSwibWV0YSI6eyJ2aWV3cG9ydCI6IndpZHRoPWRldmljZS13aWR0aCwgaW5pdGlhbC1zY2FsZT0xIn0sIm5hbWUiOiJib290c3RyYXAiLCJwYWNrYWdlIjpbXSwic2NyaXB0IjpbImpzL2Jvb3RzdHJhcC5taW4uanMiLCJzaGltL2h0bWw1c2hpdi5taW4uanMiLCJzaGltL3Jlc3BvbmQubWluLmpzIl0sInNyYyI6eyJmaWxlIjoiL0xpYnJhcnkvRnJhbWV3b3Jrcy9SLmZyYW1ld29yay9WZXJzaW9ucy8zLjYvUmVzb3VyY2VzL2xpYnJhcnkvcm1hcmtkb3duL3JtZC9oL2Jvb3RzdHJhcCJ9LCJzdHlsZXNoZWV0IjoiY3NzL3NpbXBsZXgubWluLmNzcyIsInZlcnNpb24iOiIzLjMuNSJ9LHsiYWxsX2ZpbGVzIjp0cnVlLCJhdHRhY2htZW50IjpbXSwiaGVhZCI6W10sIm1ldGEiOltdLCJuYW1lIjoia2VQcmludCIsInBhY2thZ2UiOltdLCJzY3JpcHQiOiJrZVByaW50LmpzIiwic3JjIjp7ImZpbGUiOiIvVXNlcnMvc3ovTGlicmFyeS9SLzMuNi9saWJyYXJ5L2thYmxlRXh0cmEva2VQcmludC0wLjAuMSJ9LCJzdHlsZXNoZWV0IjpbXSwidmVyc2lvbiI6IjAuMC4xIn1dLCJtZXRhZGF0YSI6eyJjbGFzc2VzIjpbInNoaW55LnRhZy5saXN0IiwibGlzdCJdLCJzaXppbmdQb2xpY3kiOltdfX0= -->

<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:60%; "><table class="table" style="margin-left: auto; margin-right: auto;">
 <thead>
  <tr>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> parameter_group </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> n </th>
  </tr>
 </thead>
<tbody>
  <tr>
   <td style="text-align:left;"> 12khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 18khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 24khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 30khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 6khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> alanine aminotransferase </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> albumin </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> alkaline phosphatase </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> alpha-amylase </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> area under glucose response curve </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> aspartate aminotransferase </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> B cells </td>
   <td style="text-align:right;"> 4 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> basophil cell count </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> basophil differential count </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> bmc/body weight </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body length </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body temp </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body weight </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body weight after experiment </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body weight before experiment </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> bone area </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> bone mineral content (excluding skull) </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> bone mineral density (excluding skull) </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> calcium </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cardiac output </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cd4 nkt </td>
   <td style="text-align:right;"> 6 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cd4 t </td>
   <td style="text-align:right;"> 7 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cd8 nkt </td>
   <td style="text-align:right;"> 6 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cd8 t </td>
   <td style="text-align:right;"> 7 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cdcs </td>
   <td style="text-align:right;"> 2 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> center average speed </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> center distance travelled </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> center permanence time </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> center resting time </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> chloride </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> click-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> creatine kinase </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> creatinine </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cv </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> distance travelled - total </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> dn nkt </td>
   <td style="text-align:right;"> 6 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> dn t </td>
   <td style="text-align:right;"> 7 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> ejection fraction </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> end-diastolic diameter </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> end-systolic diameter </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> eosinophils </td>
   <td style="text-align:right;"> 3 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fasted blood glucose concentration </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fat mass </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fat/body weight </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> follicular b cells </td>
   <td style="text-align:right;"> 2 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> forelimb and hindlimb grip strength measurement mean </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> forelimb grip strength measurement mean </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fractional shortening </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> free fatty acids </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fructosamine </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> glucose </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hdl-cholesterol </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> heart weight </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> heart weight normalised against body weight </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hematocrit </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hemoglobin </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hr </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hrv </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> initial response to glucose challenge </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> insulin </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> iron </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lactate dehydrogenase </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> latency to center entry </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> ldl-cholesterol </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lean mass </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lean/body weight </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left anterior chamber depth </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left corneal thickness </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left inner nuclear layer </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left outer nuclear layer </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left posterior chamber depth </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left total retinal thickness </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> locomotor activity </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> luc </td>
   <td style="text-align:right;"> 2 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvawd </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvaws </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvidd </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvids </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvpwd </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvpws </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lymphocytes </td>
   <td style="text-align:right;"> 2 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> magnesium </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean cell hemoglobin concentration </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean cell volume </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean corpuscular hemoglobin </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean platelet volume </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean r amplitude </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean sr amplitude </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> monocytes </td>
   <td style="text-align:right;"> 3 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> neutrophils </td>
   <td style="text-align:right;"> 3 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> nk cells </td>
   <td style="text-align:right;"> 6 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> nkt cells </td>
   <td style="text-align:right;"> 4 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> number of center entries </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> number of rears - total </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> others </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pdcs </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> percentage center time </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> percentage of live gated events </td>
   <td style="text-align:right;"> 2 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> periphery average speed </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> periphery distance travelled </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> periphery permanence time </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> periphery resting time </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> phosphorus </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> platelet count </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pnn5(6&gt;ms) </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> potassium </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pq </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pr </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pre-pulse inhibition </td>
   <td style="text-align:right;"> 5 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> qrs </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> qtc </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> qtc dispersion </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> red blood cell count </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> red blood cell distribution width </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> respiration rate </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> respiratory exchange ratio </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> response amplitude </td>
   <td style="text-align:right;"> 10 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right anterior chamber depth </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right corneal thickness </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right inner nuclear layer </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right outer nuclear layer </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right posterior chamber depth </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right total retinal thickness </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> rmssd </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> rp macrophage (cd19-  cd11c-) </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> rr </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> sodium </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> spleen weight </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> st </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> stroke volume </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> t cells </td>
   <td style="text-align:right;"> 3 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> tibia length </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total bilirubin </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total cholesterol </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total food intake </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total protein </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total water intake </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> triglycerides </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> urea (blood urea nitrogen - bun) </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> uric acid </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> white blood cell count </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> whole arena average speed </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> whole arena resting time </td>
   <td style="text-align:right;"> 1 </td>
  </tr>
</tbody>
</table></div>

<!-- rnb-htmlwidget-end -->

<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YTFfc3ViIDwtIG1ldGExICU+JVxuICAjIEFkZCBzdW1tYXJ5IG9mIG51bWJlciBvZiBwYXJhbWV0ZXIgbmFtZXMgaW4gZWFjaCBwYXJhbWV0ZXIgZ3JvdXBcbiAgZ3JvdXBfYnkocGFyYW1ldGVyX2dyb3VwKSAlPiVcbiAgbXV0YXRlKHBhcl9ncm91cF9zaXplID0gbGVuZ3RoKHVuaXF1ZShwYXJhbWV0ZXJfbmFtZSkpLCBcbiAgICAgICAgIHNhbXBsZVNpemUgPSBhcy5udW1lcmljKHNhbXBsZVNpemUpKSAlPiUgXG4gIHVuZ3JvdXAoKSAlPiUgXG4gICMgQ3JlYXRlIHN1YnNldHMgd2l0aCA+IDEgY291bnQgKHBhcl9ncm91cF9zaXplID4gMSlcbiAgZmlsdGVyKHBhcl9ncm91cF9zaXplID4gMSkgIyA5MCBvYnNlcnZhdGlvbnNcbmBgYCJ9 -->
<pre class="r"><code>meta1_sub &lt;- meta1 %&gt;%
  # Add summary of number of parameter names in each parameter group
  group_by(parameter_group) %&gt;%
  mutate(par_group_size = length(unique(parameter_name)), 
         sampleSize = as.numeric(sampleSize)) %&gt;% 
  ungroup() %&gt;% 
  # Create subsets with &gt; 1 count (par_group_size &gt; 1)
  filter(par_group_size &gt; 1) # 90 observations</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<div id="meta-analyses-on-correlated-sub-traits-using-robumeta" class="section level4">
<h4>Meta-analyses on correlated (sub-)traits, using robumeta`</h4>
<p>Here we pepare the subset of the data (using nest()), and in this first step the model of the meta-analysis effect sizes are calculated</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG4jIENyZWF0ZSBzdW1tYXJ5IG9mIG51bWJlciBvZiBwYXJhbWV0ZXIgbmFtZXMgaW4gZWFjaCBwYXJhbWV0ZXIgZ3JvdXAsIGFuZCBtZXJnZSBiYWNrIHRvZ2V0aGVyXG5cbm1ldGExYiA8LVxuICBtZXRhMSAlPiVcbiAgZ3JvdXBfYnkocGFyYW1ldGVyX2dyb3VwKSAlPiUgXG4gIHN1bW1hcml6ZShwYXJfZ3JvdXBfc2l6ZSA9IGxlbmd0aCh1bmlxdWUocGFyYW1ldGVyX25hbWUsIG5hLnJtID0gVFJVRSkpKVxuXG5tZXRhMSRwYXJfZ3JvdXBfc2l6ZSA8LSBtZXRhMWIkcGFyX2dyb3VwX3NpemVbbWF0Y2gobWV0YTEkcGFyYW1ldGVyX2dyb3VwLCBtZXRhMWIkcGFyYW1ldGVyX2dyb3VwKV1cblxuIyBDcmVhdGUgc3Vic2V0cyB3aXRoID4gMSBjb3VudCAocGFyX2dyb3VwX3NpemUgPiAxKSBcblxubWV0YTFfc3ViIDwtIHN1YnNldChtZXRhMSxwYXJfZ3JvdXBfc2l6ZSA+MSkgIyA5MCBvYnNlcnZhdGlvbnMgICBcbm1ldGExX3N1YiRzYW1wbGVTaXplIDwtIGFzLm51bWVyaWMobWV0YTFfc3ViJHNhbXBsZVNpemUpXG5cbiMgTmVzdGluZyBhbmQgbWV0YS1hbmFseXNlcyBvbiBjb3JyZWxhdGVkIHRyYWl0cywgdXNpbmcgcm9idW1ldGFcblxubl9jb3VudCA8LSBtZXRhMV9zdWIgJT4lXG4gIGdyb3VwX2J5KHBhcmFtZXRlcl9ncm91cCkgJT4lXG4gIG11dGF0ZShyYXdfTiA9IHN1bShzYW1wbGVTaXplKSkgJT4lXG4gIG5lc3QoKSAlPiVcbiAgdW5ncm91cCgpXG5cbm1vZGVsX2NvdW50IDwtIG5fY291bnQgJT4lXG4gIG11dGF0ZShcbiAgICBtb2RlbF9sblJSID0gbWFwKGRhdGEsIH4gcm9idSgueCRsblJSIH4gMSwgZGF0YSA9IC54LCBzdHVkeW51bSA9IC54JGlkLCBtb2RlbHdlaWdodHMgPSBjKFwiQ09SUlwiKSwgcmhvID0gMC44LCBzbWFsbCA9IFRSVUUsIHZhci5lZmYuc2l6ZSA9ICgueCRsblJSX3NlKV4yKSksXG4gICAgbW9kZWxfbG5WUiA9IG1hcChkYXRhLCB+IHJvYnUoLngkbG5WUiB+IDEsIGRhdGEgPSAueCwgc3R1ZHludW0gPSAueCRpZCwgbW9kZWx3ZWlnaHRzID0gYyhcIkNPUlJcIiksIHJobyA9IDAuOCwgc21hbGwgPSBUUlVFLCB2YXIuZWZmLnNpemUgPSAoLngkbG5WUl9zZSleMikpLFxuICAgIG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gcm9idSgueCRsbkNWUiB+IDEsIGRhdGEgPSAueCwgc3R1ZHludW0gPSAueCRpZCwgbW9kZWx3ZWlnaHRzID0gYyhcIkNPUlJcIiksIHJobyA9IDAuOCwgc21hbGwgPSBUUlVFLCB2YXIuZWZmLnNpemUgPSAoLngkbG5DVlJfc2UpXjIpKVxuICApXG5gYGAifQ== -->
<pre class="r"><code>
# Create summary of number of parameter names in each parameter group, and merge back together

meta1b &lt;-
  meta1 %&gt;%
  group_by(parameter_group) %&gt;% 
  summarize(par_group_size = length(unique(parameter_name, na.rm = TRUE)))

meta1$par_group_size &lt;- meta1b$par_group_size[match(meta1$parameter_group, meta1b$parameter_group)]

# Create subsets with &gt; 1 count (par_group_size &gt; 1) 

meta1_sub &lt;- subset(meta1,par_group_size &gt;1) # 90 observations   
meta1_sub$sampleSize &lt;- as.numeric(meta1_sub$sampleSize)

# Nesting and meta-analyses on correlated traits, using robumeta

n_count &lt;- meta1_sub %&gt;%
  group_by(parameter_group) %&gt;%
  mutate(raw_N = sum(sampleSize)) %&gt;%
  nest() %&gt;%
  ungroup()

model_count &lt;- n_count %&gt;%
  mutate(
    model_lnRR = map(data, ~ robu(.x$lnRR ~ 1, data = .x, studynum = .x$id, modelweights = c(&quot;CORR&quot;), rho = 0.8, small = TRUE, var.eff.size = (.x$lnRR_se)^2)),
    model_lnVR = map(data, ~ robu(.x$lnVR ~ 1, data = .x, studynum = .x$id, modelweights = c(&quot;CORR&quot;), rho = 0.8, small = TRUE, var.eff.size = (.x$lnVR_se)^2)),
    model_lnCVR = map(data, ~ robu(.x$lnCVR ~ 1, data = .x, studynum = .x$id, modelweights = c(&quot;CORR&quot;), rho = 0.8, small = TRUE, var.eff.size = (.x$lnCVR_se)^2))
  )</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="extracting-and-save-parameter-estimates" class="section level4">
<h4>Extracting and save parameter estimates</h4>
<p>Here we apply an additional Function to collect the outcomes of the ‘mini-meta-analysis’ that has ondensed our non-independent traits.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuY291bnRfZnVuIDwtIGZ1bmN0aW9uKG1vZF9zdWIpIHtcbiAgcmV0dXJuKGMobW9kX3N1YiRyZWdfdGFibGUkYi5yLCBtb2Rfc3ViJHJlZ190YWJsZSRDSS5MLCBtb2Rfc3ViJHJlZ190YWJsZSRDSS5VLCBtb2Rfc3ViJHJlZ190YWJsZSRTRSkpXG59ICMgZXN0aW1hdGUsIGxvd2VyIGNpLCB1cHBlciBjaSwgU0VcbmBgYCJ9 -->
<pre class="r"><code>count_fun &lt;- function(mod_sub) {
  return(c(mod_sub$reg_table$b.r, mod_sub$reg_table$CI.L, mod_sub$reg_table$CI.U, mod_sub$reg_table$SE))
} # estimate, lower ci, upper ci, SE</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Extraction of values created during meta-analyses using robumeta</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucm9idXN1Yl9SUiA8LSBtb2RlbF9jb3VudCAlPiVcbiAgdHJhbnNtdXRlKHBhcmFtZXRlcl9ncm91cCwgZXN0aW1hdGVsblJSID0gbWFwKG1vZGVsX2xuUlIsIGNvdW50X2Z1bikpICU+JVxuICBtdXRhdGUociA9IG1hcChlc3RpbWF0ZWxuUlIsIH4gZGF0YS5mcmFtZSh0KC4pKSkpICU+JVxuICB1bm5lc3QocikgJT4lXG4gIHNlbGVjdCgtZXN0aW1hdGVsblJSKSAlPiVcbiAgcHVycnI6OnNldF9uYW1lcyhjKFwicGFyYW1ldGVyX2dyb3VwXCIsIFwibG5SUlwiLCBcImxuUlJfbG93ZXJcIiwgXCJsblJSX3VwcGVyXCIsIFwibG5SUl9zZVwiKSlcblxucm9idXN1Yl9DVlIgPC0gbW9kZWxfY291bnQgJT4lXG4gIHRyYW5zbXV0ZShwYXJhbWV0ZXJfZ3JvdXAsIGVzdGltYXRlbG5DVlIgPSBtYXAobW9kZWxfbG5DVlIsIGNvdW50X2Z1bikpICU+JVxuICBtdXRhdGUociA9IG1hcChlc3RpbWF0ZWxuQ1ZSLCB+IGRhdGEuZnJhbWUodCguKSkpKSAlPiVcbiAgdW5uZXN0KHIpICU+JVxuICBzZWxlY3QoLWVzdGltYXRlbG5DVlIpICU+JVxuICBwdXJycjo6c2V0X25hbWVzKGMoXCJwYXJhbWV0ZXJfZ3JvdXBcIiwgXCJsbkNWUlwiLCBcImxuQ1ZSX2xvd2VyXCIsIFwibG5DVlJfdXBwZXJcIiwgXCJsbkNWUl9zZVwiKSlcblxucm9idXN1Yl9WUiA8LSBtb2RlbF9jb3VudCAlPiVcbiAgdHJhbnNtdXRlKHBhcmFtZXRlcl9ncm91cCwgZXN0aW1hdGVsblZSID0gbWFwKG1vZGVsX2xuVlIsIGNvdW50X2Z1bikpICU+JVxuICBtdXRhdGUociA9IG1hcChlc3RpbWF0ZWxuVlIsIH4gZGF0YS5mcmFtZSh0KC4pKSkpICU+JVxuICB1bm5lc3QocikgJT4lXG4gIHNlbGVjdCgtZXN0aW1hdGVsblZSKSAlPiVcbiAgcHVycnI6OnNldF9uYW1lcyhjKFwicGFyYW1ldGVyX2dyb3VwXCIsIFwibG5WUlwiLCBcImxuVlJfbG93ZXJcIiwgXCJsblZSX3VwcGVyXCIsIFwibG5WUl9zZVwiKSlcblxucm9idV9hbGwgPC0gZnVsbF9qb2luKHJvYnVzdWJfQ1ZSLCByb2J1c3ViX1ZSKSAlPiUgZnVsbF9qb2luKC4sIHJvYnVzdWJfUlIpXG5gYGAifQ== -->
<pre class="r"><code>robusub_RR &lt;- model_count %&gt;%
  transmute(parameter_group, estimatelnRR = map(model_lnRR, count_fun)) %&gt;%
  mutate(r = map(estimatelnRR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnRR) %&gt;%
  purrr::set_names(c(&quot;parameter_group&quot;, &quot;lnRR&quot;, &quot;lnRR_lower&quot;, &quot;lnRR_upper&quot;, &quot;lnRR_se&quot;))

robusub_CVR &lt;- model_count %&gt;%
  transmute(parameter_group, estimatelnCVR = map(model_lnCVR, count_fun)) %&gt;%
  mutate(r = map(estimatelnCVR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnCVR) %&gt;%
  purrr::set_names(c(&quot;parameter_group&quot;, &quot;lnCVR&quot;, &quot;lnCVR_lower&quot;, &quot;lnCVR_upper&quot;, &quot;lnCVR_se&quot;))

robusub_VR &lt;- model_count %&gt;%
  transmute(parameter_group, estimatelnVR = map(model_lnVR, count_fun)) %&gt;%
  mutate(r = map(estimatelnVR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnVR) %&gt;%
  purrr::set_names(c(&quot;parameter_group&quot;, &quot;lnVR&quot;, &quot;lnVR_lower&quot;, &quot;lnVR_upper&quot;, &quot;lnVR_se&quot;))

robu_all &lt;- full_join(robusub_CVR, robusub_VR) %&gt;% full_join(., robusub_RR)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiSm9pbmluZywgYnkgPSBcInBhcmFtZXRlcl9ncm91cFwiXG5Kb2luaW5nLCBieSA9IFwicGFyYW1ldGVyX2dyb3VwXCJcbiJ9 -->
<pre><code>Joining, by = &quot;parameter_group&quot;
Joining, by = &quot;parameter_group&quot;</code></pre>
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="combining-data" class="section level4">
<h4>Combining data</h4>
<p>Merge the two data sets (the new [robu_all] and the initial [uncorrelated sub-traits with count = 1])</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YV9hbGwgPC0gbWV0YTEgJT4lXG4gIGZpbHRlcihwYXJfZ3JvdXBfc2l6ZSA9PSAxKSAlPiVcbiAgYXNfdGliYmxlKClcbiMgZ2xpbXBzZShtZXRhX2FsbClcbiMgZ2xpbXBzZShyb2J1X2FsbClcblxuIyBTdGVwIDE6ICBDb2x1bW5zIGFyZSBtYXRjaGVkIGJ5IG5hbWUgKGluIG91ciBjYXNlLCAncGFyYW1ldGVyX2dyb3VwJyksIGFuZCBhbnkgbWlzc2luZyBjb2x1bW5zIHdpbGwgYmUgZmlsbGVkIHdpdGggTkFcbmNvbWJpbmVkbWV0YSA8LSBiaW5kX3Jvd3Mocm9idV9hbGwsIG1ldGFfYWxsKVxuIyBnbGltcHNlKGNvbWJpbmVkbWV0YSlcblxuIyBTdGVwcyAyJjM6IEFkZCBpbmZvcm1hdGlvbiBhYm91dCBudW1iZXIgb2YgdHJhaXRzIGluIGEgcGFyYW1ldGVyIGdyb3VwLCBwcm9jZWR1cmUsIGFuZCBncm91cGluZyB0ZXJtXG5tZXRhY29tYm8gPC0gY29tYmluZWRtZXRhXG5tZXRhY29tYm8kY291bnRzIDwtIG1ldGExJHBhcl9ncm91cF9zaXplW21hdGNoKG1ldGFjb21ibyRwYXJhbWV0ZXJfZ3JvdXAsIG1ldGExJHBhcmFtZXRlcl9ncm91cCldIFxubWV0YWNvbWJvJHByb2NlZHVyZTIgPC0gbWV0YTEkcHJvY2VkdXJlW21hdGNoKG1ldGFjb21ibyRwYXJhbWV0ZXJfZ3JvdXAsIG1ldGExJHBhcmFtZXRlcl9ncm91cCldXG5tZXRhY29tYm8kR3JvdXBpbmdUZXJtMiA8LSBtZXRhMSRHcm91cGluZ1Rlcm1bbWF0Y2gobWV0YWNvbWJvJHBhcmFtZXRlcl9ncm91cCwgbWV0YTEkcGFyYW1ldGVyX2dyb3VwKV1cblxuYGBgIn0= -->
<pre class="r"><code>meta_all &lt;- meta1 %&gt;%
  filter(par_group_size == 1) %&gt;%
  as_tibble()
# glimpse(meta_all)
# glimpse(robu_all)

# Step 1:  Columns are matched by name (in our case, 'parameter_group'), and any missing columns will be filled with NA
combinedmeta &lt;- bind_rows(robu_all, meta_all)
# glimpse(combinedmeta)

# Steps 2&amp;3: Add information about number of traits in a parameter group, procedure, and grouping term
metacombo &lt;- combinedmeta
metacombo$counts &lt;- meta1$par_group_size[match(metacombo$parameter_group, meta1$parameter_group)] 
metacombo$procedure2 &lt;- meta1$procedure[match(metacombo$parameter_group, meta1$parameter_group)]
metacombo$GroupingTerm2 &lt;- meta1$GroupingTerm[match(metacombo$parameter_group, meta1$parameter_group)]
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Clean-up, reorder, and rename</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YWNvbWJvIDwtIG1ldGFjb21ib1tjKFwicGFyYW1ldGVyX2dyb3VwXCIsIFwiY291bnRzXCIsXCJwcm9jZWR1cmUyXCIsXCJHcm91cGluZ1Rlcm0yXCIsIFwibG5DVlJcIixcImxuQ1ZSX2xvd2VyXCIsXCJsbkNWUl91cHBlclwiLFwibG5DVlJfc2VcIixcImxuVlJcIixcImxuVlJfbG93ZXJcIixcImxuVlJfdXBwZXJcIixcImxuVlJfc2VcIixcImxuUlJcIixcImxuUlJfbG93ZXJcIixcImxuUlJfdXBwZXJcIixcImxuUlJfc2VcIildIFxuXG5uYW1lcyhtZXRhY29tYm8pW25hbWVzKG1ldGFjb21ibyk9PVwicHJvY2VkdXJlMlwiXSA8LSBcInByb2NlZHVyZVwiIFxubmFtZXMobWV0YWNvbWJvKVtuYW1lcyhtZXRhY29tYm8pPT1cIkdyb3VwaW5nVGVybTJcIl0gPC0gXCJHcm91cGluZ1Rlcm1cIiBcblxuIyBRdWljayBwcmUtY2hlY2sgYmVmb3JlIGRvaW5nIHBsb3RzXG5tZXRhY29tYm8gJT4lXG4gIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lXG4gIGRwbHlyOjpzdW1tYXJpemUoTWVhbkNWUiA9IG1lYW4obG5DVlIpLCBNZWFuVlIgPSBtZWFuKGxuVlIpLCBNZWFuUlIgPSBtZWFuKGxuUlIpKVxuYGBgIn0= -->
<pre class="r"><code>metacombo &lt;- metacombo[c(&quot;parameter_group&quot;, &quot;counts&quot;,&quot;procedure2&quot;,&quot;GroupingTerm2&quot;, &quot;lnCVR&quot;,&quot;lnCVR_lower&quot;,&quot;lnCVR_upper&quot;,&quot;lnCVR_se&quot;,&quot;lnVR&quot;,&quot;lnVR_lower&quot;,&quot;lnVR_upper&quot;,&quot;lnVR_se&quot;,&quot;lnRR&quot;,&quot;lnRR_lower&quot;,&quot;lnRR_upper&quot;,&quot;lnRR_se&quot;)] 

names(metacombo)[names(metacombo)==&quot;procedure2&quot;] &lt;- &quot;procedure&quot; 
names(metacombo)[names(metacombo)==&quot;GroupingTerm2&quot;] &lt;- &quot;GroupingTerm&quot; 

# Quick pre-check before doing plots
metacombo %&gt;%
  group_by(GroupingTerm) %&gt;%
  dplyr::summarize(MeanCVR = mean(lnCVR), MeanVR = mean(lnVR), MeanRR = mean(lnRR))</code></pre>
<!-- rnb-source-end -->
<!-- rnb-frame-begin eyJtZXRhZGF0YSI6eyJjbGFzc2VzIjpbInRibF9kZiIsInRibCIsImRhdGEuZnJhbWUiXSwibmNvbCI6NCwibnJvdyI6OX0sInJkZiI6Ikg0c0lBQUFBQUFBQUF3dHlpVERtaXVCaVlHQmdabUJtQTVLc1FDWURhMmlJbTY0RkF3TUxFNUREeU1EQ3dBbWlLNERTd2tBR0N4QUxBREVuVklMVEtUVWpzU3d6djdRSUtzRHNXcGtLWmJKN3BDWVdaZWFsUTdtc0lHNEpsTVBsa1pxYldKS2ZrNTllQ1JQeHpNMHR6VU1SOFUwdFNVekt6OGtzem9XTDVCY1ZaS0NvQ2Npb0xNNkVpREF3OElGY1pPL1QrNWF6S3Zibi9zT1plbjJ5MnJyMnZRRTluMWRJeWR0UEY0aEx1bVdZYmo5UFkrS2NzcFcvOW0rcVgyNVlvaHV4ZitYUmdwQ0x1cy90TjIyb1BCdkNLMm8vUXoyazNKakxDV2JlL3RwVE5RMTlWNHoySDFyNFVYaXRtdGIrSnE4YnZudVhIOW5mZWYvbXhaMkc0dmE3T2NLV09OYisyNzg3ejZ1cG1qL1VmdnNsdjFDN21JdjJoenduSFQzQXlHSy9ZdnI1MGhDV1UzRHpHczhHaFJodnlMV3Z1aitoMUwzczAvN2VwWUpTSi90RDlzOS9WNlJ6N0kyNC9VYm0zZUlScjZidVg4MDVXNk5vNVVyN0l5dnFWblNjK1dXL3NkRXY1Y3pFZFB2cE5nL3ZidnZZaVJaRnJIbUp1YW5GME9oaGdRcnl1QmZsbHhZQTR5QWt0UWdXaU95K3FZbDV6bUZCVUM0YmlJdktDd3BDTTV1ektMOWNEMlkrTHhBek5RQ0ovLy8vZjBkM1JISk9ZakhNRVRCQnJwVEVra1M5dENLZ2ZpRHZINW9XOXZ5Q2tzejhQS0FtSmxBQ1kwWFR6RmlFSmlCUW1nZHlTWXB1Y2tacFhyYXVvUVhJQnJBOEJQQkMyWnhJYkJhSW5Vei9vV2F4d255Ym1wZWVtUWRMcjZ3NWlVbXBPVkFPSDlETFlCL3JGUURUTUR6WkFrV0w5VXJ5U3hKaDZyaVM4M05nSW1EUE1md0RBR3UwVE9aWUF3QUEifQ== -->
<div data-pagedtable="false">
<script data-pagedtable-source type="application/json">
{"columns":[{"label":["GroupingTerm"],"name":[1],"type":["chr"],"align":["left"]},{"label":["MeanCVR"],"name":[2],"type":["dbl"],"align":["right"]},{"label":["MeanVR"],"name":[3],"type":["dbl"],"align":["right"]},{"label":["MeanRR"],"name":[4],"type":["dbl"],"align":["right"]}],"data":[{"1":"Behaviour","2":"0.0008714111","3":"-0.007273184","4":"-0.008692401"},{"1":"Eye","2":"-0.1516473955","3":"-0.145567069","4":"0.006560864"},{"1":"Hearing","2":"0.0143137943","3":"-0.008931818","4":"-0.014474996"},{"1":"Heart","2":"0.0225233791","3":"-0.012633993","4":"-0.031183037"},{"1":"Hematology","2":"0.0294516327","3":"0.105595985","4":"0.066463178"},{"1":"Immunology","2":"-0.0722603317","3":"-0.107151658","4":"-0.052807664"},{"1":"Metabolism","2":"-0.0503344635","3":"0.093052765","4":"0.161392052"},{"1":"Morphology","2":"0.0730053068","3":"0.142870280","4":"0.068379306"},{"1":"Physiology","2":"0.0235875318","3":"0.048033221","4":"0.022693185"}],"options":{"columns":{"min":{},"max":[10],"total":[4]},"rows":{"min":[10],"max":[10],"total":[9]},"pages":{}}}
  </script>
</div>
<!-- rnb-frame-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="table-3-full-corrected-dataset" class="section level3">
<h3>Table 3: Full corrected dataset</h3>
<p>We use this corrected (for correlated traits) “results” table, which contains each of the meta-analytic means for all effect sizes of interest, for further analyses. We further use this table as part of the Shiny App, which is able to provide the percentage differences between males and females for mean, variance and coefficient of variance.</p>
<p>This is the full result dataset</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxua2FibGUobWV0YWNvbWJvKSAlPiVcbiAga2FibGVfc3R5bGluZygpICU+JVxuICBzY3JvbGxfYm94KHdpZHRoID0gXCIxMDAlXCIsIGhlaWdodCA9IFwiMjAwcHhcIilcbmBgYCJ9 -->
<pre class="r"><code>kable(metacombo) %&gt;%
  kable_styling() %&gt;%
  scroll_box(width = &quot;100%&quot;, height = &quot;200px&quot;)</code></pre>
<!-- rnb-source-end -->
<p>
<!-- rnb-htmlwidget-begin eyJkZXBlbmRlbmNpZXMiOlt7ImFsbF9maWxlcyI6dHJ1ZSwiYXR0YWNobWVudCI6W10sImhlYWQiOltdLCJtZXRhIjpbXSwibmFtZSI6ImpxdWVyeSIsInBhY2thZ2UiOltdLCJzY3JpcHQiOiJqcXVlcnkubWluLmpzIiwic3JjIjp7ImZpbGUiOiIvTGlicmFyeS9GcmFtZXdvcmtzL1IuZnJhbWV3b3JrL1ZlcnNpb25zLzMuNi9SZXNvdXJjZXMvbGlicmFyeS9ybWFya2Rvd24vcm1kL2gvanF1ZXJ5In0sInN0eWxlc2hlZXQiOltdLCJ2ZXJzaW9uIjoiMS4xMS4zIn0seyJhbGxfZmlsZXMiOnRydWUsImF0dGFjaG1lbnQiOltdLCJoZWFkIjpbXSwibWV0YSI6eyJ2aWV3cG9ydCI6IndpZHRoPWRldmljZS13aWR0aCwgaW5pdGlhbC1zY2FsZT0xIn0sIm5hbWUiOiJib290c3RyYXAiLCJwYWNrYWdlIjpbXSwic2NyaXB0IjpbImpzL2Jvb3RzdHJhcC5taW4uanMiLCJzaGltL2h0bWw1c2hpdi5taW4uanMiLCJzaGltL3Jlc3BvbmQubWluLmpzIl0sInNyYyI6eyJmaWxlIjoiL0xpYnJhcnkvRnJhbWV3b3Jrcy9SLmZyYW1ld29yay9WZXJzaW9ucy8zLjYvUmVzb3VyY2VzL2xpYnJhcnkvcm1hcmtkb3duL3JtZC9oL2Jvb3RzdHJhcCJ9LCJzdHlsZXNoZWV0IjoiY3NzL3NpbXBsZXgubWluLmNzcyIsInZlcnNpb24iOiIzLjMuNSJ9LHsiYWxsX2ZpbGVzIjp0cnVlLCJhdHRhY2htZW50IjpbXSwiaGVhZCI6W10sIm1ldGEiOltdLCJuYW1lIjoia2VQcmludCIsInBhY2thZ2UiOltdLCJzY3JpcHQiOiJrZVByaW50LmpzIiwic3JjIjp7ImZpbGUiOiIvVXNlcnMvc3ovTGlicmFyeS9SLzMuNi9saWJyYXJ5L2thYmxlRXh0cmEva2VQcmludC0wLjAuMSJ9LCJzdHlsZXNoZWV0IjpbXSwidmVyc2lvbiI6IjAuMC4xIn1dLCJtZXRhZGF0YSI6eyJjbGFzc2VzIjpbInNoaW55LnRhZy5saXN0IiwibGlzdCJdLCJzaXppbmdQb2xpY3kiOltdfX0= -->

<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:100%; "><table class="table" style="margin-left: auto; margin-right: auto;">
 <thead>
  <tr>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> parameter_group </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> counts </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> procedure </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> GroupingTerm </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnCVR </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnCVR_lower </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnCVR_upper </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnCVR_se </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnVR </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnVR_lower </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnVR_upper </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnVR_se </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnRR </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnRR_lower </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnRR_upper </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> lnRR_se </th>
  </tr>
 </thead>
<tbody>
  <tr>
   <td style="text-align:left;"> pre-pulse inhibition </td>
   <td style="text-align:right;"> 5 </td>
   <td style="text-align:left;"> Acoustic Startle and Pre-pulse Inhibition (PPI) </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> 0.0232963 </td>
   <td style="text-align:right;"> -0.0802563 </td>
   <td style="text-align:right;"> 0.1268488 </td>
   <td style="text-align:right;"> 0.0370507 </td>
   <td style="text-align:right;"> 0.0091028 </td>
   <td style="text-align:right;"> -0.0364640 </td>
   <td style="text-align:right;"> 0.0546695 </td>
   <td style="text-align:right;"> 0.0143431 </td>
   <td style="text-align:right;"> -0.0052156 </td>
   <td style="text-align:right;"> -0.0427126 </td>
   <td style="text-align:right;"> 0.0322815 </td>
   <td style="text-align:right;"> 0.0128092 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> B cells </td>
   <td style="text-align:right;"> 4 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0938959 </td>
   <td style="text-align:right;"> -0.2500020 </td>
   <td style="text-align:right;"> 0.0622103 </td>
   <td style="text-align:right;"> 0.0426972 </td>
   <td style="text-align:right;"> -0.0995337 </td>
   <td style="text-align:right;"> -0.2068001 </td>
   <td style="text-align:right;"> 0.0077328 </td>
   <td style="text-align:right;"> 0.0250132 </td>
   <td style="text-align:right;"> -0.0026281 </td>
   <td style="text-align:right;"> -0.1298230 </td>
   <td style="text-align:right;"> 0.1245668 </td>
   <td style="text-align:right;"> 0.0393018 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cd4 nkt </td>
   <td style="text-align:right;"> 6 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0287688 </td>
   <td style="text-align:right;"> -0.0566987 </td>
   <td style="text-align:right;"> -0.0008389 </td>
   <td style="text-align:right;"> 0.0101634 </td>
   <td style="text-align:right;"> -0.2018746 </td>
   <td style="text-align:right;"> -0.3102294 </td>
   <td style="text-align:right;"> -0.0935198 </td>
   <td style="text-align:right;"> 0.0331161 </td>
   <td style="text-align:right;"> -0.2344450 </td>
   <td style="text-align:right;"> -0.4005266 </td>
   <td style="text-align:right;"> -0.0683635 </td>
   <td style="text-align:right;"> 0.0633501 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cd4 t </td>
   <td style="text-align:right;"> 7 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.1507387 </td>
   <td style="text-align:right;"> -0.2427976 </td>
   <td style="text-align:right;"> -0.0586798 </td>
   <td style="text-align:right;"> 0.0360690 </td>
   <td style="text-align:right;"> -0.1699213 </td>
   <td style="text-align:right;"> -0.2629450 </td>
   <td style="text-align:right;"> -0.0768975 </td>
   <td style="text-align:right;"> 0.0348324 </td>
   <td style="text-align:right;"> -0.0031242 </td>
   <td style="text-align:right;"> -0.0411564 </td>
   <td style="text-align:right;"> 0.0349081 </td>
   <td style="text-align:right;"> 0.0148989 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cd8 nkt </td>
   <td style="text-align:right;"> 6 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0424402 </td>
   <td style="text-align:right;"> -0.0782046 </td>
   <td style="text-align:right;"> -0.0066759 </td>
   <td style="text-align:right;"> 0.0119223 </td>
   <td style="text-align:right;"> -0.0300442 </td>
   <td style="text-align:right;"> -0.1823594 </td>
   <td style="text-align:right;"> 0.1222710 </td>
   <td style="text-align:right;"> 0.0533765 </td>
   <td style="text-align:right;"> 0.0035372 </td>
   <td style="text-align:right;"> -0.0573749 </td>
   <td style="text-align:right;"> 0.0644494 </td>
   <td style="text-align:right;"> 0.0205272 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cd8 t </td>
   <td style="text-align:right;"> 7 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.1223681 </td>
   <td style="text-align:right;"> -0.2179976 </td>
   <td style="text-align:right;"> -0.0267387 </td>
   <td style="text-align:right;"> 0.0358727 </td>
   <td style="text-align:right;"> -0.1581698 </td>
   <td style="text-align:right;"> -0.2342579 </td>
   <td style="text-align:right;"> -0.0820816 </td>
   <td style="text-align:right;"> 0.0270229 </td>
   <td style="text-align:right;"> -0.0415806 </td>
   <td style="text-align:right;"> -0.0510391 </td>
   <td style="text-align:right;"> -0.0321221 </td>
   <td style="text-align:right;"> 0.0023119 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cdcs </td>
   <td style="text-align:right;"> 2 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0362947 </td>
   <td style="text-align:right;"> -0.3588637 </td>
   <td style="text-align:right;"> 0.2862742 </td>
   <td style="text-align:right;"> 0.0253867 </td>
   <td style="text-align:right;"> 0.1080248 </td>
   <td style="text-align:right;"> -0.0565718 </td>
   <td style="text-align:right;"> 0.2726213 </td>
   <td style="text-align:right;"> 0.0129540 </td>
   <td style="text-align:right;"> 0.1642541 </td>
   <td style="text-align:right;"> -0.1701520 </td>
   <td style="text-align:right;"> 0.4986601 </td>
   <td style="text-align:right;"> 0.0263183 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> dn nkt </td>
   <td style="text-align:right;"> 6 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0619371 </td>
   <td style="text-align:right;"> -0.1359380 </td>
   <td style="text-align:right;"> 0.0120637 </td>
   <td style="text-align:right;"> 0.0257746 </td>
   <td style="text-align:right;"> -0.1572129 </td>
   <td style="text-align:right;"> -0.2814342 </td>
   <td style="text-align:right;"> -0.0329915 </td>
   <td style="text-align:right;"> 0.0447163 </td>
   <td style="text-align:right;"> -0.1727105 </td>
   <td style="text-align:right;"> -0.2906356 </td>
   <td style="text-align:right;"> -0.0547854 </td>
   <td style="text-align:right;"> 0.0441034 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> dn t </td>
   <td style="text-align:right;"> 7 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0796127 </td>
   <td style="text-align:right;"> -0.1844481 </td>
   <td style="text-align:right;"> 0.0252227 </td>
   <td style="text-align:right;"> 0.0420063 </td>
   <td style="text-align:right;"> -0.2421038 </td>
   <td style="text-align:right;"> -0.3431678 </td>
   <td style="text-align:right;"> -0.1410397 </td>
   <td style="text-align:right;"> 0.0406314 </td>
   <td style="text-align:right;"> -0.2298147 </td>
   <td style="text-align:right;"> -0.2519708 </td>
   <td style="text-align:right;"> -0.2076586 </td>
   <td style="text-align:right;"> 0.0072373 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> eosinophils </td>
   <td style="text-align:right;"> 3 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> -0.0662225 </td>
   <td style="text-align:right;"> -0.2806631 </td>
   <td style="text-align:right;"> 0.1482181 </td>
   <td style="text-align:right;"> 0.0325859 </td>
   <td style="text-align:right;"> -0.0154112 </td>
   <td style="text-align:right;"> -0.4051652 </td>
   <td style="text-align:right;"> 0.3743427 </td>
   <td style="text-align:right;"> 0.0865366 </td>
   <td style="text-align:right;"> -0.0042422 </td>
   <td style="text-align:right;"> -0.2409206 </td>
   <td style="text-align:right;"> 0.2324362 </td>
   <td style="text-align:right;"> 0.0508093 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> follicular b cells </td>
   <td style="text-align:right;"> 2 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.1160077 </td>
   <td style="text-align:right;"> -0.7256692 </td>
   <td style="text-align:right;"> 0.4936538 </td>
   <td style="text-align:right;"> 0.0479814 </td>
   <td style="text-align:right;"> -0.1050194 </td>
   <td style="text-align:right;"> -0.6946364 </td>
   <td style="text-align:right;"> 0.4845977 </td>
   <td style="text-align:right;"> 0.0464039 </td>
   <td style="text-align:right;"> 0.0052427 </td>
   <td style="text-align:right;"> -0.1872381 </td>
   <td style="text-align:right;"> 0.1977236 </td>
   <td style="text-align:right;"> 0.0151486 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> luc </td>
   <td style="text-align:right;"> 2 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0180436 </td>
   <td style="text-align:right;"> -0.2038464 </td>
   <td style="text-align:right;"> 0.2399336 </td>
   <td style="text-align:right;"> 0.0174631 </td>
   <td style="text-align:right;"> 0.2657035 </td>
   <td style="text-align:right;"> -1.2251358 </td>
   <td style="text-align:right;"> 1.7565428 </td>
   <td style="text-align:right;"> 0.1173316 </td>
   <td style="text-align:right;"> 0.2215497 </td>
   <td style="text-align:right;"> -1.4136389 </td>
   <td style="text-align:right;"> 1.8567382 </td>
   <td style="text-align:right;"> 0.1286921 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lymphocytes </td>
   <td style="text-align:right;"> 2 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0805230 </td>
   <td style="text-align:right;"> -2.2618128 </td>
   <td style="text-align:right;"> 2.4228588 </td>
   <td style="text-align:right;"> 0.1843458 </td>
   <td style="text-align:right;"> 0.1550159 </td>
   <td style="text-align:right;"> -1.0892706 </td>
   <td style="text-align:right;"> 1.3993024 </td>
   <td style="text-align:right;"> 0.0979275 </td>
   <td style="text-align:right;"> 0.0602144 </td>
   <td style="text-align:right;"> -1.0131287 </td>
   <td style="text-align:right;"> 1.1335576 </td>
   <td style="text-align:right;"> 0.0844739 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> monocytes </td>
   <td style="text-align:right;"> 3 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> -0.0214677 </td>
   <td style="text-align:right;"> -0.2033706 </td>
   <td style="text-align:right;"> 0.1604352 </td>
   <td style="text-align:right;"> 0.0420605 </td>
   <td style="text-align:right;"> 0.0784876 </td>
   <td style="text-align:right;"> -0.1811005 </td>
   <td style="text-align:right;"> 0.3380757 </td>
   <td style="text-align:right;"> 0.0585593 </td>
   <td style="text-align:right;"> 0.1025193 </td>
   <td style="text-align:right;"> -0.1483375 </td>
   <td style="text-align:right;"> 0.3533762 </td>
   <td style="text-align:right;"> 0.0571438 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> neutrophils </td>
   <td style="text-align:right;"> 3 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.2587446 </td>
   <td style="text-align:right;"> 0.0130803 </td>
   <td style="text-align:right;"> 0.5044089 </td>
   <td style="text-align:right;"> 0.0557516 </td>
   <td style="text-align:right;"> 0.3799805 </td>
   <td style="text-align:right;"> -0.2060446 </td>
   <td style="text-align:right;"> 0.9660057 </td>
   <td style="text-align:right;"> 0.1317980 </td>
   <td style="text-align:right;"> 0.1319372 </td>
   <td style="text-align:right;"> -0.2669324 </td>
   <td style="text-align:right;"> 0.5308068 </td>
   <td style="text-align:right;"> 0.0924336 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> nk cells </td>
   <td style="text-align:right;"> 6 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0414772 </td>
   <td style="text-align:right;"> -0.0960406 </td>
   <td style="text-align:right;"> 0.0130862 </td>
   <td style="text-align:right;"> 0.0200411 </td>
   <td style="text-align:right;"> 0.0156533 </td>
   <td style="text-align:right;"> -0.0703789 </td>
   <td style="text-align:right;"> 0.1016856 </td>
   <td style="text-align:right;"> 0.0315487 </td>
   <td style="text-align:right;"> 0.0471757 </td>
   <td style="text-align:right;"> -0.0162213 </td>
   <td style="text-align:right;"> 0.1105728 </td>
   <td style="text-align:right;"> 0.0231831 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> nkt cells </td>
   <td style="text-align:right;"> 4 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> 0.0033757 </td>
   <td style="text-align:right;"> -0.1069890 </td>
   <td style="text-align:right;"> 0.1137404 </td>
   <td style="text-align:right;"> 0.0294661 </td>
   <td style="text-align:right;"> -0.2458705 </td>
   <td style="text-align:right;"> -0.4452333 </td>
   <td style="text-align:right;"> -0.0465077 </td>
   <td style="text-align:right;"> 0.0426738 </td>
   <td style="text-align:right;"> -0.1823355 </td>
   <td style="text-align:right;"> -0.3233946 </td>
   <td style="text-align:right;"> -0.0412763 </td>
   <td style="text-align:right;"> 0.0314580 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> percentage of live gated events </td>
   <td style="text-align:right;"> 2 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0934933 </td>
   <td style="text-align:right;"> -0.3037340 </td>
   <td style="text-align:right;"> 0.1167473 </td>
   <td style="text-align:right;"> 0.0165463 </td>
   <td style="text-align:right;"> -0.0412606 </td>
   <td style="text-align:right;"> -0.1414443 </td>
   <td style="text-align:right;"> 0.0589231 </td>
   <td style="text-align:right;"> 0.0078846 </td>
   <td style="text-align:right;"> 0.0500941 </td>
   <td style="text-align:right;"> 0.0081191 </td>
   <td style="text-align:right;"> 0.0920690 </td>
   <td style="text-align:right;"> 0.0033035 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> response amplitude </td>
   <td style="text-align:right;"> 10 </td>
   <td style="text-align:left;"> Acoustic Startle and Pre-pulse Inhibition (PPI) </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> 0.0333147 </td>
   <td style="text-align:right;"> -0.0127585 </td>
   <td style="text-align:right;"> 0.0793879 </td>
   <td style="text-align:right;"> 0.0202947 </td>
   <td style="text-align:right;"> 0.2549274 </td>
   <td style="text-align:right;"> 0.1969787 </td>
   <td style="text-align:right;"> 0.3128761 </td>
   <td style="text-align:right;"> 0.0255003 </td>
   <td style="text-align:right;"> 0.2016062 </td>
   <td style="text-align:right;"> 0.1108136 </td>
   <td style="text-align:right;"> 0.2923987 </td>
   <td style="text-align:right;"> 0.0401164 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> t cells </td>
   <td style="text-align:right;"> 3 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.1338701 </td>
   <td style="text-align:right;"> -0.2750284 </td>
   <td style="text-align:right;"> 0.0072883 </td>
   <td style="text-align:right;"> 0.0326594 </td>
   <td style="text-align:right;"> -0.1240786 </td>
   <td style="text-align:right;"> -0.4120104 </td>
   <td style="text-align:right;"> 0.1638531 </td>
   <td style="text-align:right;"> 0.0668611 </td>
   <td style="text-align:right;"> -0.0005749 </td>
   <td style="text-align:right;"> -0.1663201 </td>
   <td style="text-align:right;"> 0.1651702 </td>
   <td style="text-align:right;"> 0.0374233 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 12khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Auditory Brain Stem Response </td>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:right;"> 0.0538655 </td>
   <td style="text-align:right;"> -0.0056830 </td>
   <td style="text-align:right;"> 0.1134139 </td>
   <td style="text-align:right;"> 0.0303824 </td>
   <td style="text-align:right;"> 0.0869649 </td>
   <td style="text-align:right;"> 0.0065802 </td>
   <td style="text-align:right;"> 0.1673497 </td>
   <td style="text-align:right;"> 0.0410134 </td>
   <td style="text-align:right;"> 0.0024851 </td>
   <td style="text-align:right;"> -0.0214504 </td>
   <td style="text-align:right;"> 0.0264205 </td>
   <td style="text-align:right;"> 0.0122122 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 18khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Auditory Brain Stem Response </td>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:right;"> 0.0238241 </td>
   <td style="text-align:right;"> -0.0331809 </td>
   <td style="text-align:right;"> 0.0808292 </td>
   <td style="text-align:right;"> 0.0290848 </td>
   <td style="text-align:right;"> 0.0250266 </td>
   <td style="text-align:right;"> -0.0488450 </td>
   <td style="text-align:right;"> 0.0988982 </td>
   <td style="text-align:right;"> 0.0376903 </td>
   <td style="text-align:right;"> -0.0200763 </td>
   <td style="text-align:right;"> -0.0431508 </td>
   <td style="text-align:right;"> 0.0029982 </td>
   <td style="text-align:right;"> 0.0117729 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 24khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Auditory Brain Stem Response </td>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:right;"> 0.0518127 </td>
   <td style="text-align:right;"> -0.0148242 </td>
   <td style="text-align:right;"> 0.1184497 </td>
   <td style="text-align:right;"> 0.0339991 </td>
   <td style="text-align:right;"> -0.0891510 </td>
   <td style="text-align:right;"> -0.3321998 </td>
   <td style="text-align:right;"> 0.1538977 </td>
   <td style="text-align:right;"> 0.1240067 </td>
   <td style="text-align:right;"> -0.0224536 </td>
   <td style="text-align:right;"> -0.0444163 </td>
   <td style="text-align:right;"> -0.0004910 </td>
   <td style="text-align:right;"> 0.0112057 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 30khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Auditory Brain Stem Response </td>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:right;"> 0.0170933 </td>
   <td style="text-align:right;"> -0.0533187 </td>
   <td style="text-align:right;"> 0.0875053 </td>
   <td style="text-align:right;"> 0.0359252 </td>
   <td style="text-align:right;"> -0.0344797 </td>
   <td style="text-align:right;"> -0.1017901 </td>
   <td style="text-align:right;"> 0.0328306 </td>
   <td style="text-align:right;"> 0.0343426 </td>
   <td style="text-align:right;"> -0.0497874 </td>
   <td style="text-align:right;"> -0.0748197 </td>
   <td style="text-align:right;"> -0.0247550 </td>
   <td style="text-align:right;"> 0.0127718 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> 6khz-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Auditory Brain Stem Response </td>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:right;"> -0.0077678 </td>
   <td style="text-align:right;"> -0.0418582 </td>
   <td style="text-align:right;"> 0.0263226 </td>
   <td style="text-align:right;"> 0.0173934 </td>
   <td style="text-align:right;"> 0.0141682 </td>
   <td style="text-align:right;"> -0.0189973 </td>
   <td style="text-align:right;"> 0.0473337 </td>
   <td style="text-align:right;"> 0.0169215 </td>
   <td style="text-align:right;"> 0.0184043 </td>
   <td style="text-align:right;"> 0.0056897 </td>
   <td style="text-align:right;"> 0.0311189 </td>
   <td style="text-align:right;"> 0.0064872 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> alanine aminotransferase </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.0684217 </td>
   <td style="text-align:right;"> -0.1895020 </td>
   <td style="text-align:right;"> 0.0526586 </td>
   <td style="text-align:right;"> 0.0617768 </td>
   <td style="text-align:right;"> 0.0585179 </td>
   <td style="text-align:right;"> -0.1322507 </td>
   <td style="text-align:right;"> 0.2492866 </td>
   <td style="text-align:right;"> 0.0973327 </td>
   <td style="text-align:right;"> 0.1069442 </td>
   <td style="text-align:right;"> 0.0319934 </td>
   <td style="text-align:right;"> 0.1818950 </td>
   <td style="text-align:right;"> 0.0382409 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> albumin </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.1133080 </td>
   <td style="text-align:right;"> 0.0451475 </td>
   <td style="text-align:right;"> 0.1814685 </td>
   <td style="text-align:right;"> 0.0347764 </td>
   <td style="text-align:right;"> 0.0559995 </td>
   <td style="text-align:right;"> -0.0080678 </td>
   <td style="text-align:right;"> 0.1200668 </td>
   <td style="text-align:right;"> 0.0326880 </td>
   <td style="text-align:right;"> -0.0567840 </td>
   <td style="text-align:right;"> -0.0732083 </td>
   <td style="text-align:right;"> -0.0403597 </td>
   <td style="text-align:right;"> 0.0083799 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> alkaline phosphatase </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.1043649 </td>
   <td style="text-align:right;"> 0.0451585 </td>
   <td style="text-align:right;"> 0.1635713 </td>
   <td style="text-align:right;"> 0.0302079 </td>
   <td style="text-align:right;"> -0.3112471 </td>
   <td style="text-align:right;"> -0.3980164 </td>
   <td style="text-align:right;"> -0.2244778 </td>
   <td style="text-align:right;"> 0.0442709 </td>
   <td style="text-align:right;"> -0.4216032 </td>
   <td style="text-align:right;"> -0.4694832 </td>
   <td style="text-align:right;"> -0.3737231 </td>
   <td style="text-align:right;"> 0.0244290 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> alpha-amylase </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0383407 </td>
   <td style="text-align:right;"> -0.0423419 </td>
   <td style="text-align:right;"> 0.1190232 </td>
   <td style="text-align:right;"> 0.0411653 </td>
   <td style="text-align:right;"> 0.2795566 </td>
   <td style="text-align:right;"> 0.1615777 </td>
   <td style="text-align:right;"> 0.3975355 </td>
   <td style="text-align:right;"> 0.0601944 </td>
   <td style="text-align:right;"> 0.2246987 </td>
   <td style="text-align:right;"> 0.1793151 </td>
   <td style="text-align:right;"> 0.2700822 </td>
   <td style="text-align:right;"> 0.0231553 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> area under glucose response curve </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Intraperitoneal glucose tolerance test (IPGTT) </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> -0.1531723 </td>
   <td style="text-align:right;"> -0.2210551 </td>
   <td style="text-align:right;"> -0.0852895 </td>
   <td style="text-align:right;"> 0.0346347 </td>
   <td style="text-align:right;"> 0.2748396 </td>
   <td style="text-align:right;"> 0.1950895 </td>
   <td style="text-align:right;"> 0.3545898 </td>
   <td style="text-align:right;"> 0.0406896 </td>
   <td style="text-align:right;"> 0.4357738 </td>
   <td style="text-align:right;"> 0.3655882 </td>
   <td style="text-align:right;"> 0.5059595 </td>
   <td style="text-align:right;"> 0.0358097 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> aspartate aminotransferase </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0119165 </td>
   <td style="text-align:right;"> -0.1228287 </td>
   <td style="text-align:right;"> 0.1466617 </td>
   <td style="text-align:right;"> 0.0687488 </td>
   <td style="text-align:right;"> -0.0566968 </td>
   <td style="text-align:right;"> -0.2457779 </td>
   <td style="text-align:right;"> 0.1323843 </td>
   <td style="text-align:right;"> 0.0964717 </td>
   <td style="text-align:right;"> -0.0585577 </td>
   <td style="text-align:right;"> -0.1331777 </td>
   <td style="text-align:right;"> 0.0160624 </td>
   <td style="text-align:right;"> 0.0380722 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> basophil cell count </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> -0.0917931 </td>
   <td style="text-align:right;"> -0.2022487 </td>
   <td style="text-align:right;"> 0.0186624 </td>
   <td style="text-align:right;"> 0.0563559 </td>
   <td style="text-align:right;"> 0.2031265 </td>
   <td style="text-align:right;"> -0.0131549 </td>
   <td style="text-align:right;"> 0.4194079 </td>
   <td style="text-align:right;"> 0.1103497 </td>
   <td style="text-align:right;"> 0.2675772 </td>
   <td style="text-align:right;"> 0.0643028 </td>
   <td style="text-align:right;"> 0.4708516 </td>
   <td style="text-align:right;"> 0.1037133 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> basophil differential count </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> -0.0934739 </td>
   <td style="text-align:right;"> -0.1787512 </td>
   <td style="text-align:right;"> -0.0081966 </td>
   <td style="text-align:right;"> 0.0435096 </td>
   <td style="text-align:right;"> -0.0639511 </td>
   <td style="text-align:right;"> -0.2828066 </td>
   <td style="text-align:right;"> 0.1549044 </td>
   <td style="text-align:right;"> 0.1116630 </td>
   <td style="text-align:right;"> -0.0156339 </td>
   <td style="text-align:right;"> -0.1102310 </td>
   <td style="text-align:right;"> 0.0789633 </td>
   <td style="text-align:right;"> 0.0482647 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> bmc/body weight </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.1314998 </td>
   <td style="text-align:right;"> 0.0329846 </td>
   <td style="text-align:right;"> 0.2300151 </td>
   <td style="text-align:right;"> 0.0502638 </td>
   <td style="text-align:right;"> -0.0448684 </td>
   <td style="text-align:right;"> -0.1340146 </td>
   <td style="text-align:right;"> 0.0442777 </td>
   <td style="text-align:right;"> 0.0454836 </td>
   <td style="text-align:right;"> -0.1722378 </td>
   <td style="text-align:right;"> -0.2207030 </td>
   <td style="text-align:right;"> -0.1237726 </td>
   <td style="text-align:right;"> 0.0247276 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body length </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> -0.0347988 </td>
   <td style="text-align:right;"> -0.0824528 </td>
   <td style="text-align:right;"> 0.0128552 </td>
   <td style="text-align:right;"> 0.0243137 </td>
   <td style="text-align:right;"> -0.0059677 </td>
   <td style="text-align:right;"> -0.0526221 </td>
   <td style="text-align:right;"> 0.0406866 </td>
   <td style="text-align:right;"> 0.0238037 </td>
   <td style="text-align:right;"> 0.0282722 </td>
   <td style="text-align:right;"> 0.0233254 </td>
   <td style="text-align:right;"> 0.0332189 </td>
   <td style="text-align:right;"> 0.0025239 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body temp </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0325368 </td>
   <td style="text-align:right;"> -0.1066429 </td>
   <td style="text-align:right;"> 0.0415693 </td>
   <td style="text-align:right;"> 0.0378099 </td>
   <td style="text-align:right;"> -0.0303742 </td>
   <td style="text-align:right;"> -0.1044537 </td>
   <td style="text-align:right;"> 0.0437054 </td>
   <td style="text-align:right;"> 0.0377964 </td>
   <td style="text-align:right;"> 0.0018532 </td>
   <td style="text-align:right;"> -0.0005002 </td>
   <td style="text-align:right;"> 0.0042066 </td>
   <td style="text-align:right;"> 0.0012008 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body weight </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Weight </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.0245675 </td>
   <td style="text-align:right;"> -0.0420402 </td>
   <td style="text-align:right;"> 0.0911752 </td>
   <td style="text-align:right;"> 0.0339841 </td>
   <td style="text-align:right;"> 0.2335793 </td>
   <td style="text-align:right;"> 0.1694979 </td>
   <td style="text-align:right;"> 0.2976607 </td>
   <td style="text-align:right;"> 0.0326952 </td>
   <td style="text-align:right;"> 0.2096770 </td>
   <td style="text-align:right;"> 0.1938727 </td>
   <td style="text-align:right;"> 0.2254813 </td>
   <td style="text-align:right;"> 0.0080636 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body weight after experiment </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Indirect Calorimetry </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> 0.0853708 </td>
   <td style="text-align:right;"> 0.0299665 </td>
   <td style="text-align:right;"> 0.1407751 </td>
   <td style="text-align:right;"> 0.0282680 </td>
   <td style="text-align:right;"> 0.2849370 </td>
   <td style="text-align:right;"> 0.2328875 </td>
   <td style="text-align:right;"> 0.3369866 </td>
   <td style="text-align:right;"> 0.0265564 </td>
   <td style="text-align:right;"> 0.2030973 </td>
   <td style="text-align:right;"> 0.1864076 </td>
   <td style="text-align:right;"> 0.2197871 </td>
   <td style="text-align:right;"> 0.0085153 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> body weight before experiment </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Indirect Calorimetry </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> 0.1053511 </td>
   <td style="text-align:right;"> 0.0412461 </td>
   <td style="text-align:right;"> 0.1694562 </td>
   <td style="text-align:right;"> 0.0327073 </td>
   <td style="text-align:right;"> 0.3038998 </td>
   <td style="text-align:right;"> 0.2435428 </td>
   <td style="text-align:right;"> 0.3642568 </td>
   <td style="text-align:right;"> 0.0307949 </td>
   <td style="text-align:right;"> 0.2008638 </td>
   <td style="text-align:right;"> 0.1816362 </td>
   <td style="text-align:right;"> 0.2200914 </td>
   <td style="text-align:right;"> 0.0098102 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> bone area </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.0981587 </td>
   <td style="text-align:right;"> 0.0272824 </td>
   <td style="text-align:right;"> 0.1690349 </td>
   <td style="text-align:right;"> 0.0361620 </td>
   <td style="text-align:right;"> 0.1286546 </td>
   <td style="text-align:right;"> 0.0533659 </td>
   <td style="text-align:right;"> 0.2039432 </td>
   <td style="text-align:right;"> 0.0384133 </td>
   <td style="text-align:right;"> 0.0315241 </td>
   <td style="text-align:right;"> 0.0003806 </td>
   <td style="text-align:right;"> 0.0626676 </td>
   <td style="text-align:right;"> 0.0158898 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> bone mineral content (excluding skull) </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.1709230 </td>
   <td style="text-align:right;"> 0.0625642 </td>
   <td style="text-align:right;"> 0.2792818 </td>
   <td style="text-align:right;"> 0.0552861 </td>
   <td style="text-align:right;"> 0.2091372 </td>
   <td style="text-align:right;"> 0.1015600 </td>
   <td style="text-align:right;"> 0.3167143 </td>
   <td style="text-align:right;"> 0.0548873 </td>
   <td style="text-align:right;"> 0.0372537 </td>
   <td style="text-align:right;"> -0.0130828 </td>
   <td style="text-align:right;"> 0.0875902 </td>
   <td style="text-align:right;"> 0.0256824 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> bone mineral density (excluding skull) </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.0542638 </td>
   <td style="text-align:right;"> -0.0881612 </td>
   <td style="text-align:right;"> 0.1966887 </td>
   <td style="text-align:right;"> 0.0726671 </td>
   <td style="text-align:right;"> 0.0492830 </td>
   <td style="text-align:right;"> -0.1087868 </td>
   <td style="text-align:right;"> 0.2073528 </td>
   <td style="text-align:right;"> 0.0806494 </td>
   <td style="text-align:right;"> 0.0012286 </td>
   <td style="text-align:right;"> -0.0187942 </td>
   <td style="text-align:right;"> 0.0212514 </td>
   <td style="text-align:right;"> 0.0102159 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> calcium </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0097946 </td>
   <td style="text-align:right;"> -0.0464600 </td>
   <td style="text-align:right;"> 0.0660492 </td>
   <td style="text-align:right;"> 0.0287018 </td>
   <td style="text-align:right;"> 0.0135683 </td>
   <td style="text-align:right;"> -0.0424600 </td>
   <td style="text-align:right;"> 0.0695966 </td>
   <td style="text-align:right;"> 0.0285864 </td>
   <td style="text-align:right;"> 0.0036564 </td>
   <td style="text-align:right;"> -0.0000609 </td>
   <td style="text-align:right;"> 0.0073737 </td>
   <td style="text-align:right;"> 0.0018966 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cardiac output </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0133816 </td>
   <td style="text-align:right;"> -0.0797535 </td>
   <td style="text-align:right;"> 0.1065166 </td>
   <td style="text-align:right;"> 0.0475188 </td>
   <td style="text-align:right;"> 0.1017991 </td>
   <td style="text-align:right;"> 0.0206287 </td>
   <td style="text-align:right;"> 0.1829694 </td>
   <td style="text-align:right;"> 0.0414142 </td>
   <td style="text-align:right;"> 0.0934439 </td>
   <td style="text-align:right;"> 0.0580233 </td>
   <td style="text-align:right;"> 0.1288645 </td>
   <td style="text-align:right;"> 0.0180721 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> center average speed </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> 0.0167300 </td>
   <td style="text-align:right;"> -0.0404735 </td>
   <td style="text-align:right;"> 0.0739335 </td>
   <td style="text-align:right;"> 0.0291860 </td>
   <td style="text-align:right;"> -0.0588515 </td>
   <td style="text-align:right;"> -0.1004209 </td>
   <td style="text-align:right;"> -0.0172820 </td>
   <td style="text-align:right;"> 0.0212093 </td>
   <td style="text-align:right;"> -0.0724619 </td>
   <td style="text-align:right;"> -0.1149622 </td>
   <td style="text-align:right;"> -0.0299616 </td>
   <td style="text-align:right;"> 0.0216842 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> center distance travelled </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0162603 </td>
   <td style="text-align:right;"> -0.0733243 </td>
   <td style="text-align:right;"> 0.0408038 </td>
   <td style="text-align:right;"> 0.0291149 </td>
   <td style="text-align:right;"> -0.1060637 </td>
   <td style="text-align:right;"> -0.2023343 </td>
   <td style="text-align:right;"> -0.0097930 </td>
   <td style="text-align:right;"> 0.0491186 </td>
   <td style="text-align:right;"> -0.0940204 </td>
   <td style="text-align:right;"> -0.1945774 </td>
   <td style="text-align:right;"> 0.0065366 </td>
   <td style="text-align:right;"> 0.0513055 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> center permanence time </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0253715 </td>
   <td style="text-align:right;"> -0.0826435 </td>
   <td style="text-align:right;"> 0.0319004 </td>
   <td style="text-align:right;"> 0.0292209 </td>
   <td style="text-align:right;"> -0.0255734 </td>
   <td style="text-align:right;"> -0.1014389 </td>
   <td style="text-align:right;"> 0.0502922 </td>
   <td style="text-align:right;"> 0.0387076 </td>
   <td style="text-align:right;"> -0.0035151 </td>
   <td style="text-align:right;"> -0.0902886 </td>
   <td style="text-align:right;"> 0.0832585 </td>
   <td style="text-align:right;"> 0.0442730 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> center resting time </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> 0.0244492 </td>
   <td style="text-align:right;"> -0.0737922 </td>
   <td style="text-align:right;"> 0.1226906 </td>
   <td style="text-align:right;"> 0.0501241 </td>
   <td style="text-align:right;"> -0.0228690 </td>
   <td style="text-align:right;"> -0.1548339 </td>
   <td style="text-align:right;"> 0.1090960 </td>
   <td style="text-align:right;"> 0.0673303 </td>
   <td style="text-align:right;"> -0.0630751 </td>
   <td style="text-align:right;"> -0.2215457 </td>
   <td style="text-align:right;"> 0.0953955 </td>
   <td style="text-align:right;"> 0.0808538 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> chloride </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0321555 </td>
   <td style="text-align:right;"> -0.1270972 </td>
   <td style="text-align:right;"> 0.1914083 </td>
   <td style="text-align:right;"> 0.0812529 </td>
   <td style="text-align:right;"> 0.0241491 </td>
   <td style="text-align:right;"> -0.1438502 </td>
   <td style="text-align:right;"> 0.1921485 </td>
   <td style="text-align:right;"> 0.0857155 </td>
   <td style="text-align:right;"> -0.0127047 </td>
   <td style="text-align:right;"> -0.0177349 </td>
   <td style="text-align:right;"> -0.0076745 </td>
   <td style="text-align:right;"> 0.0025665 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> click-evoked abr threshold </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Auditory Brain Stem Response </td>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:right;"> -0.0529450 </td>
   <td style="text-align:right;"> -0.1534816 </td>
   <td style="text-align:right;"> 0.0475915 </td>
   <td style="text-align:right;"> 0.0512951 </td>
   <td style="text-align:right;"> -0.0561198 </td>
   <td style="text-align:right;"> -0.1827679 </td>
   <td style="text-align:right;"> 0.0705282 </td>
   <td style="text-align:right;"> 0.0646176 </td>
   <td style="text-align:right;"> -0.0154221 </td>
   <td style="text-align:right;"> -0.0577200 </td>
   <td style="text-align:right;"> 0.0268757 </td>
   <td style="text-align:right;"> 0.0215809 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> creatine kinase </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0241232 </td>
   <td style="text-align:right;"> -0.1071457 </td>
   <td style="text-align:right;"> 0.1553920 </td>
   <td style="text-align:right;"> 0.0669751 </td>
   <td style="text-align:right;"> -0.1318792 </td>
   <td style="text-align:right;"> -0.3968974 </td>
   <td style="text-align:right;"> 0.1331390 </td>
   <td style="text-align:right;"> 0.1352159 </td>
   <td style="text-align:right;"> -0.1344413 </td>
   <td style="text-align:right;"> -0.3838303 </td>
   <td style="text-align:right;"> 0.1149476 </td>
   <td style="text-align:right;"> 0.1272416 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> creatinine </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0352315 </td>
   <td style="text-align:right;"> -0.0229205 </td>
   <td style="text-align:right;"> 0.0933835 </td>
   <td style="text-align:right;"> 0.0296699 </td>
   <td style="text-align:right;"> 0.1066373 </td>
   <td style="text-align:right;"> -0.2200831 </td>
   <td style="text-align:right;"> 0.4333578 </td>
   <td style="text-align:right;"> 0.1666972 </td>
   <td style="text-align:right;"> -0.0844078 </td>
   <td style="text-align:right;"> -0.1320251 </td>
   <td style="text-align:right;"> -0.0367905 </td>
   <td style="text-align:right;"> 0.0242950 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> cv </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.1874544 </td>
   <td style="text-align:right;"> 0.0716631 </td>
   <td style="text-align:right;"> 0.3032457 </td>
   <td style="text-align:right;"> 0.0590783 </td>
   <td style="text-align:right;"> -0.0895722 </td>
   <td style="text-align:right;"> -0.2484833 </td>
   <td style="text-align:right;"> 0.0693388 </td>
   <td style="text-align:right;"> 0.0810786 </td>
   <td style="text-align:right;"> -0.2401301 </td>
   <td style="text-align:right;"> -0.3410322 </td>
   <td style="text-align:right;"> -0.1392280 </td>
   <td style="text-align:right;"> 0.0514816 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> distance travelled - total </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0187819 </td>
   <td style="text-align:right;"> -0.0858957 </td>
   <td style="text-align:right;"> 0.0483318 </td>
   <td style="text-align:right;"> 0.0342423 </td>
   <td style="text-align:right;"> -0.1272582 </td>
   <td style="text-align:right;"> -0.1997426 </td>
   <td style="text-align:right;"> -0.0547738 </td>
   <td style="text-align:right;"> 0.0369825 </td>
   <td style="text-align:right;"> -0.1121373 </td>
   <td style="text-align:right;"> -0.1816322 </td>
   <td style="text-align:right;"> -0.0426424 </td>
   <td style="text-align:right;"> 0.0354572 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> ejection fraction </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0300111 </td>
   <td style="text-align:right;"> -0.1345066 </td>
   <td style="text-align:right;"> 0.0744844 </td>
   <td style="text-align:right;"> 0.0533150 </td>
   <td style="text-align:right;"> -0.0525735 </td>
   <td style="text-align:right;"> -0.1483174 </td>
   <td style="text-align:right;"> 0.0431705 </td>
   <td style="text-align:right;"> 0.0488499 </td>
   <td style="text-align:right;"> -0.0284086 </td>
   <td style="text-align:right;"> -0.0492579 </td>
   <td style="text-align:right;"> -0.0075592 </td>
   <td style="text-align:right;"> 0.0106376 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> end-diastolic diameter </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.1120972 </td>
   <td style="text-align:right;"> 0.0431489 </td>
   <td style="text-align:right;"> 0.1810454 </td>
   <td style="text-align:right;"> 0.0351783 </td>
   <td style="text-align:right;"> 0.1743929 </td>
   <td style="text-align:right;"> 0.0875252 </td>
   <td style="text-align:right;"> 0.2612607 </td>
   <td style="text-align:right;"> 0.0443211 </td>
   <td style="text-align:right;"> 0.0600907 </td>
   <td style="text-align:right;"> 0.0354923 </td>
   <td style="text-align:right;"> 0.0846891 </td>
   <td style="text-align:right;"> 0.0125504 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> end-systolic diameter </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0084176 </td>
   <td style="text-align:right;"> -0.0780811 </td>
   <td style="text-align:right;"> 0.0612459 </td>
   <td style="text-align:right;"> 0.0355433 </td>
   <td style="text-align:right;"> 0.0668966 </td>
   <td style="text-align:right;"> -0.0016692 </td>
   <td style="text-align:right;"> 0.1354624 </td>
   <td style="text-align:right;"> 0.0349832 </td>
   <td style="text-align:right;"> 0.0763195 </td>
   <td style="text-align:right;"> 0.0451136 </td>
   <td style="text-align:right;"> 0.1075254 </td>
   <td style="text-align:right;"> 0.0159217 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fasted blood glucose concentration </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Intraperitoneal glucose tolerance test (IPGTT) </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> -0.0177245 </td>
   <td style="text-align:right;"> -0.1256855 </td>
   <td style="text-align:right;"> 0.0902366 </td>
   <td style="text-align:right;"> 0.0550832 </td>
   <td style="text-align:right;"> 0.0702824 </td>
   <td style="text-align:right;"> -0.0302439 </td>
   <td style="text-align:right;"> 0.1708087 </td>
   <td style="text-align:right;"> 0.0512899 </td>
   <td style="text-align:right;"> 0.0868420 </td>
   <td style="text-align:right;"> 0.0493007 </td>
   <td style="text-align:right;"> 0.1243832 </td>
   <td style="text-align:right;"> 0.0191541 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fat mass </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.0408799 </td>
   <td style="text-align:right;"> -0.0430149 </td>
   <td style="text-align:right;"> 0.1247746 </td>
   <td style="text-align:right;"> 0.0428042 </td>
   <td style="text-align:right;"> 0.3714313 </td>
   <td style="text-align:right;"> 0.2698790 </td>
   <td style="text-align:right;"> 0.4729837 </td>
   <td style="text-align:right;"> 0.0518134 </td>
   <td style="text-align:right;"> 0.3282080 </td>
   <td style="text-align:right;"> 0.2669032 </td>
   <td style="text-align:right;"> 0.3895129 </td>
   <td style="text-align:right;"> 0.0312786 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fat/body weight </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.0777327 </td>
   <td style="text-align:right;"> -0.0119735 </td>
   <td style="text-align:right;"> 0.1674390 </td>
   <td style="text-align:right;"> 0.0457693 </td>
   <td style="text-align:right;"> 0.2020776 </td>
   <td style="text-align:right;"> 0.1083557 </td>
   <td style="text-align:right;"> 0.2957996 </td>
   <td style="text-align:right;"> 0.0478182 </td>
   <td style="text-align:right;"> 0.1235292 </td>
   <td style="text-align:right;"> 0.0638629 </td>
   <td style="text-align:right;"> 0.1831955 </td>
   <td style="text-align:right;"> 0.0304425 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> forelimb and hindlimb grip strength measurement mean </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Grip Strength </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.0578158 </td>
   <td style="text-align:right;"> 0.0039998 </td>
   <td style="text-align:right;"> 0.1116318 </td>
   <td style="text-align:right;"> 0.0274577 </td>
   <td style="text-align:right;"> 0.1145986 </td>
   <td style="text-align:right;"> 0.0530521 </td>
   <td style="text-align:right;"> 0.1761451 </td>
   <td style="text-align:right;"> 0.0314018 </td>
   <td style="text-align:right;"> 0.0541888 </td>
   <td style="text-align:right;"> 0.0294838 </td>
   <td style="text-align:right;"> 0.0788938 </td>
   <td style="text-align:right;"> 0.0126048 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> forelimb grip strength measurement mean </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Grip Strength </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.0265051 </td>
   <td style="text-align:right;"> -0.0187240 </td>
   <td style="text-align:right;"> 0.0717341 </td>
   <td style="text-align:right;"> 0.0230765 </td>
   <td style="text-align:right;"> 0.0995076 </td>
   <td style="text-align:right;"> 0.0539740 </td>
   <td style="text-align:right;"> 0.1450413 </td>
   <td style="text-align:right;"> 0.0232319 </td>
   <td style="text-align:right;"> 0.0697061 </td>
   <td style="text-align:right;"> 0.0438625 </td>
   <td style="text-align:right;"> 0.0955496 </td>
   <td style="text-align:right;"> 0.0131857 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fractional shortening </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0148852 </td>
   <td style="text-align:right;"> -0.1161666 </td>
   <td style="text-align:right;"> 0.0863961 </td>
   <td style="text-align:right;"> 0.0516751 </td>
   <td style="text-align:right;"> -0.0575326 </td>
   <td style="text-align:right;"> -0.1558559 </td>
   <td style="text-align:right;"> 0.0407907 </td>
   <td style="text-align:right;"> 0.0501659 </td>
   <td style="text-align:right;"> -0.0413498 </td>
   <td style="text-align:right;"> -0.0567105 </td>
   <td style="text-align:right;"> -0.0259891 </td>
   <td style="text-align:right;"> 0.0078372 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> free fatty acids </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0281576 </td>
   <td style="text-align:right;"> -0.1002531 </td>
   <td style="text-align:right;"> 0.1565683 </td>
   <td style="text-align:right;"> 0.0655169 </td>
   <td style="text-align:right;"> 0.0554109 </td>
   <td style="text-align:right;"> -0.0736861 </td>
   <td style="text-align:right;"> 0.1845079 </td>
   <td style="text-align:right;"> 0.0658670 </td>
   <td style="text-align:right;"> 0.0193783 </td>
   <td style="text-align:right;"> -0.0093700 </td>
   <td style="text-align:right;"> 0.0481266 </td>
   <td style="text-align:right;"> 0.0146678 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> fructosamine </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.0397864 </td>
   <td style="text-align:right;"> -0.1198801 </td>
   <td style="text-align:right;"> 0.0403073 </td>
   <td style="text-align:right;"> 0.0408649 </td>
   <td style="text-align:right;"> -0.0678231 </td>
   <td style="text-align:right;"> -0.1513538 </td>
   <td style="text-align:right;"> 0.0157075 </td>
   <td style="text-align:right;"> 0.0426184 </td>
   <td style="text-align:right;"> -0.0283579 </td>
   <td style="text-align:right;"> -0.0692447 </td>
   <td style="text-align:right;"> 0.0125289 </td>
   <td style="text-align:right;"> 0.0208610 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> glucose </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0692601 </td>
   <td style="text-align:right;"> 0.0184025 </td>
   <td style="text-align:right;"> 0.1201176 </td>
   <td style="text-align:right;"> 0.0259482 </td>
   <td style="text-align:right;"> 0.1279473 </td>
   <td style="text-align:right;"> 0.0423001 </td>
   <td style="text-align:right;"> 0.2135946 </td>
   <td style="text-align:right;"> 0.0436984 </td>
   <td style="text-align:right;"> 0.0650887 </td>
   <td style="text-align:right;"> 0.0218496 </td>
   <td style="text-align:right;"> 0.1083279 </td>
   <td style="text-align:right;"> 0.0220612 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hdl-cholesterol </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.0650177 </td>
   <td style="text-align:right;"> -0.1255786 </td>
   <td style="text-align:right;"> -0.0044568 </td>
   <td style="text-align:right;"> 0.0308990 </td>
   <td style="text-align:right;"> 0.1724354 </td>
   <td style="text-align:right;"> 0.0701062 </td>
   <td style="text-align:right;"> 0.2747646 </td>
   <td style="text-align:right;"> 0.0522097 </td>
   <td style="text-align:right;"> 0.2606961 </td>
   <td style="text-align:right;"> 0.2180421 </td>
   <td style="text-align:right;"> 0.3033501 </td>
   <td style="text-align:right;"> 0.0217626 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> heart weight </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Heart Weight </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.1766832 </td>
   <td style="text-align:right;"> 0.0672843 </td>
   <td style="text-align:right;"> 0.2860820 </td>
   <td style="text-align:right;"> 0.0558168 </td>
   <td style="text-align:right;"> 0.3651806 </td>
   <td style="text-align:right;"> 0.2169840 </td>
   <td style="text-align:right;"> 0.5133772 </td>
   <td style="text-align:right;"> 0.0756119 </td>
   <td style="text-align:right;"> 0.1737615 </td>
   <td style="text-align:right;"> 0.1409037 </td>
   <td style="text-align:right;"> 0.2066193 </td>
   <td style="text-align:right;"> 0.0167645 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> heart weight normalised against body weight </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Heart Weight </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.0794303 </td>
   <td style="text-align:right;"> -0.0060591 </td>
   <td style="text-align:right;"> 0.1649198 </td>
   <td style="text-align:right;"> 0.0436179 </td>
   <td style="text-align:right;"> 0.0355574 </td>
   <td style="text-align:right;"> -0.0973272 </td>
   <td style="text-align:right;"> 0.1684419 </td>
   <td style="text-align:right;"> 0.0677995 </td>
   <td style="text-align:right;"> -0.0495578 </td>
   <td style="text-align:right;"> -0.0835809 </td>
   <td style="text-align:right;"> -0.0155346 </td>
   <td style="text-align:right;"> 0.0173591 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hematocrit </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0566356 </td>
   <td style="text-align:right;"> -0.0516862 </td>
   <td style="text-align:right;"> 0.1649575 </td>
   <td style="text-align:right;"> 0.0552673 </td>
   <td style="text-align:right;"> 0.0737071 </td>
   <td style="text-align:right;"> -0.0328632 </td>
   <td style="text-align:right;"> 0.1802774 </td>
   <td style="text-align:right;"> 0.0543736 </td>
   <td style="text-align:right;"> 0.0173967 </td>
   <td style="text-align:right;"> 0.0035179 </td>
   <td style="text-align:right;"> 0.0312754 </td>
   <td style="text-align:right;"> 0.0070811 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hemoglobin </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0867000 </td>
   <td style="text-align:right;"> 0.0269936 </td>
   <td style="text-align:right;"> 0.1464064 </td>
   <td style="text-align:right;"> 0.0304630 </td>
   <td style="text-align:right;"> 0.0867345 </td>
   <td style="text-align:right;"> 0.0194022 </td>
   <td style="text-align:right;"> 0.1540668 </td>
   <td style="text-align:right;"> 0.0343538 </td>
   <td style="text-align:right;"> 0.0051992 </td>
   <td style="text-align:right;"> -0.0080216 </td>
   <td style="text-align:right;"> 0.0184199 </td>
   <td style="text-align:right;"> 0.0067454 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hr </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0634490 </td>
   <td style="text-align:right;"> -0.1734699 </td>
   <td style="text-align:right;"> 0.0465718 </td>
   <td style="text-align:right;"> 0.0561341 </td>
   <td style="text-align:right;"> -0.0140315 </td>
   <td style="text-align:right;"> -0.1488474 </td>
   <td style="text-align:right;"> 0.1207843 </td>
   <td style="text-align:right;"> 0.0687849 </td>
   <td style="text-align:right;"> 0.0406617 </td>
   <td style="text-align:right;"> -0.0139214 </td>
   <td style="text-align:right;"> 0.0952448 </td>
   <td style="text-align:right;"> 0.0278490 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> hrv </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.1722593 </td>
   <td style="text-align:right;"> 0.1094294 </td>
   <td style="text-align:right;"> 0.2350892 </td>
   <td style="text-align:right;"> 0.0320567 </td>
   <td style="text-align:right;"> -0.0813225 </td>
   <td style="text-align:right;"> -0.2125462 </td>
   <td style="text-align:right;"> 0.0499011 </td>
   <td style="text-align:right;"> 0.0669521 </td>
   <td style="text-align:right;"> -0.2504990 </td>
   <td style="text-align:right;"> -0.3657436 </td>
   <td style="text-align:right;"> -0.1352545 </td>
   <td style="text-align:right;"> 0.0587993 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> initial response to glucose challenge </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Intraperitoneal glucose tolerance test (IPGTT) </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> -0.0968821 </td>
   <td style="text-align:right;"> -0.1503780 </td>
   <td style="text-align:right;"> -0.0433861 </td>
   <td style="text-align:right;"> 0.0272943 </td>
   <td style="text-align:right;"> 0.0429971 </td>
   <td style="text-align:right;"> 0.0141807 </td>
   <td style="text-align:right;"> 0.0718136 </td>
   <td style="text-align:right;"> 0.0147026 </td>
   <td style="text-align:right;"> 0.1183626 </td>
   <td style="text-align:right;"> 0.0853242 </td>
   <td style="text-align:right;"> 0.1514009 </td>
   <td style="text-align:right;"> 0.0168566 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> insulin </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Insulin Blood Level </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> -0.0993292 </td>
   <td style="text-align:right;"> -0.3721975 </td>
   <td style="text-align:right;"> 0.1735391 </td>
   <td style="text-align:right;"> 0.1392211 </td>
   <td style="text-align:right;"> 0.1774003 </td>
   <td style="text-align:right;"> -0.1938091 </td>
   <td style="text-align:right;"> 0.5486096 </td>
   <td style="text-align:right;"> 0.1893960 </td>
   <td style="text-align:right;"> 0.4445455 </td>
   <td style="text-align:right;"> 0.0944498 </td>
   <td style="text-align:right;"> 0.7946412 </td>
   <td style="text-align:right;"> 0.1786236 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> iron </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.0974214 </td>
   <td style="text-align:right;"> -0.2141737 </td>
   <td style="text-align:right;"> 0.0193310 </td>
   <td style="text-align:right;"> 0.0595686 </td>
   <td style="text-align:right;"> -0.2534898 </td>
   <td style="text-align:right;"> -0.3963648 </td>
   <td style="text-align:right;"> -0.1106147 </td>
   <td style="text-align:right;"> 0.0728968 </td>
   <td style="text-align:right;"> -0.1527977 </td>
   <td style="text-align:right;"> -0.1930307 </td>
   <td style="text-align:right;"> -0.1125646 </td>
   <td style="text-align:right;"> 0.0205274 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lactate dehydrogenase </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0941249 </td>
   <td style="text-align:right;"> -0.0214022 </td>
   <td style="text-align:right;"> 0.2096519 </td>
   <td style="text-align:right;"> 0.0589435 </td>
   <td style="text-align:right;"> 0.1409270 </td>
   <td style="text-align:right;"> -0.0620594 </td>
   <td style="text-align:right;"> 0.3439133 </td>
   <td style="text-align:right;"> 0.1035664 </td>
   <td style="text-align:right;"> 0.0318801 </td>
   <td style="text-align:right;"> -0.1412218 </td>
   <td style="text-align:right;"> 0.2049819 </td>
   <td style="text-align:right;"> 0.0883189 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> latency to center entry </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> 0.1254239 </td>
   <td style="text-align:right;"> 0.0330185 </td>
   <td style="text-align:right;"> 0.2178293 </td>
   <td style="text-align:right;"> 0.0471465 </td>
   <td style="text-align:right;"> 0.3641221 </td>
   <td style="text-align:right;"> 0.2056000 </td>
   <td style="text-align:right;"> 0.5226441 </td>
   <td style="text-align:right;"> 0.0808801 </td>
   <td style="text-align:right;"> 0.2734519 </td>
   <td style="text-align:right;"> 0.0739366 </td>
   <td style="text-align:right;"> 0.4729672 </td>
   <td style="text-align:right;"> 0.1017954 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> ldl-cholesterol </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.4231644 </td>
   <td style="text-align:right;"> 0.1551776 </td>
   <td style="text-align:right;"> 0.6911512 </td>
   <td style="text-align:right;"> 0.1367305 </td>
   <td style="text-align:right;"> 0.2669283 </td>
   <td style="text-align:right;"> -0.0956833 </td>
   <td style="text-align:right;"> 0.6295400 </td>
   <td style="text-align:right;"> 0.1850093 </td>
   <td style="text-align:right;"> -0.1615499 </td>
   <td style="text-align:right;"> -0.6010478 </td>
   <td style="text-align:right;"> 0.2779480 </td>
   <td style="text-align:right;"> 0.2242378 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lean mass </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.1435756 </td>
   <td style="text-align:right;"> 0.0759342 </td>
   <td style="text-align:right;"> 0.2112170 </td>
   <td style="text-align:right;"> 0.0345115 </td>
   <td style="text-align:right;"> 0.3382447 </td>
   <td style="text-align:right;"> 0.2664863 </td>
   <td style="text-align:right;"> 0.4100031 </td>
   <td style="text-align:right;"> 0.0366121 </td>
   <td style="text-align:right;"> 0.1928945 </td>
   <td style="text-align:right;"> 0.1752425 </td>
   <td style="text-align:right;"> 0.2105465 </td>
   <td style="text-align:right;"> 0.0090063 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lean/body weight </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Body Composition (DEXA lean/fat) </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> 0.1953833 </td>
   <td style="text-align:right;"> 0.0912480 </td>
   <td style="text-align:right;"> 0.2995186 </td>
   <td style="text-align:right;"> 0.0531312 </td>
   <td style="text-align:right;"> 0.1840786 </td>
   <td style="text-align:right;"> 0.0863764 </td>
   <td style="text-align:right;"> 0.2817807 </td>
   <td style="text-align:right;"> 0.0498490 </td>
   <td style="text-align:right;"> -0.0122785 </td>
   <td style="text-align:right;"> -0.0257504 </td>
   <td style="text-align:right;"> 0.0011934 </td>
   <td style="text-align:right;"> 0.0068736 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left anterior chamber depth </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.1854856 </td>
   <td style="text-align:right;"> -0.4305058 </td>
   <td style="text-align:right;"> 0.0595347 </td>
   <td style="text-align:right;"> 0.1250126 </td>
   <td style="text-align:right;"> -0.1534983 </td>
   <td style="text-align:right;"> -0.4007283 </td>
   <td style="text-align:right;"> 0.0937316 </td>
   <td style="text-align:right;"> 0.1261401 </td>
   <td style="text-align:right;"> 0.0331746 </td>
   <td style="text-align:right;"> 0.0284172 </td>
   <td style="text-align:right;"> 0.0379321 </td>
   <td style="text-align:right;"> 0.0024273 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left corneal thickness </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.1446634 </td>
   <td style="text-align:right;"> -0.2339950 </td>
   <td style="text-align:right;"> -0.0553319 </td>
   <td style="text-align:right;"> 0.0455782 </td>
   <td style="text-align:right;"> -0.1352252 </td>
   <td style="text-align:right;"> -0.2234178 </td>
   <td style="text-align:right;"> -0.0470327 </td>
   <td style="text-align:right;"> 0.0449970 </td>
   <td style="text-align:right;"> 0.0075283 </td>
   <td style="text-align:right;"> -0.0057082 </td>
   <td style="text-align:right;"> 0.0207648 </td>
   <td style="text-align:right;"> 0.0067535 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left inner nuclear layer </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> 0.0480458 </td>
   <td style="text-align:right;"> -0.0360706 </td>
   <td style="text-align:right;"> 0.1321622 </td>
   <td style="text-align:right;"> 0.0429173 </td>
   <td style="text-align:right;"> 0.0487217 </td>
   <td style="text-align:right;"> -0.0347622 </td>
   <td style="text-align:right;"> 0.1322057 </td>
   <td style="text-align:right;"> 0.0425946 </td>
   <td style="text-align:right;"> 0.0006956 </td>
   <td style="text-align:right;"> -0.0095012 </td>
   <td style="text-align:right;"> 0.0108923 </td>
   <td style="text-align:right;"> 0.0052025 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left outer nuclear layer </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.0675012 </td>
   <td style="text-align:right;"> -0.1511666 </td>
   <td style="text-align:right;"> 0.0161641 </td>
   <td style="text-align:right;"> 0.0426872 </td>
   <td style="text-align:right;"> -0.0618025 </td>
   <td style="text-align:right;"> -0.1452865 </td>
   <td style="text-align:right;"> 0.0216814 </td>
   <td style="text-align:right;"> 0.0425946 </td>
   <td style="text-align:right;"> 0.0063811 </td>
   <td style="text-align:right;"> 0.0011702 </td>
   <td style="text-align:right;"> 0.0115921 </td>
   <td style="text-align:right;"> 0.0026587 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left posterior chamber depth </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.2631046 </td>
   <td style="text-align:right;"> -0.4734756 </td>
   <td style="text-align:right;"> -0.0527336 </td>
   <td style="text-align:right;"> 0.1073341 </td>
   <td style="text-align:right;"> -0.2687360 </td>
   <td style="text-align:right;"> -0.4790035 </td>
   <td style="text-align:right;"> -0.0584686 </td>
   <td style="text-align:right;"> 0.1072813 </td>
   <td style="text-align:right;"> -0.0026027 </td>
   <td style="text-align:right;"> -0.0146655 </td>
   <td style="text-align:right;"> 0.0094600 </td>
   <td style="text-align:right;"> 0.0061546 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> left total retinal thickness </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.1975770 </td>
   <td style="text-align:right;"> -0.4386627 </td>
   <td style="text-align:right;"> 0.0435087 </td>
   <td style="text-align:right;"> 0.1230052 </td>
   <td style="text-align:right;"> -0.1932648 </td>
   <td style="text-align:right;"> -0.4269751 </td>
   <td style="text-align:right;"> 0.0404456 </td>
   <td style="text-align:right;"> 0.1192422 </td>
   <td style="text-align:right;"> 0.0027995 </td>
   <td style="text-align:right;"> -0.0034907 </td>
   <td style="text-align:right;"> 0.0090898 </td>
   <td style="text-align:right;"> 0.0032094 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> locomotor activity </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Combined SHIRPA and Dysmorphology </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> 0.0960106 </td>
   <td style="text-align:right;"> 0.0224214 </td>
   <td style="text-align:right;"> 0.1695997 </td>
   <td style="text-align:right;"> 0.0375462 </td>
   <td style="text-align:right;"> -0.0159064 </td>
   <td style="text-align:right;"> -0.0579694 </td>
   <td style="text-align:right;"> 0.0261566 </td>
   <td style="text-align:right;"> 0.0214611 </td>
   <td style="text-align:right;"> -0.1105803 </td>
   <td style="text-align:right;"> -0.1761043 </td>
   <td style="text-align:right;"> -0.0450562 </td>
   <td style="text-align:right;"> 0.0334313 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvawd </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0228924 </td>
   <td style="text-align:right;"> -0.0247048 </td>
   <td style="text-align:right;"> 0.0704896 </td>
   <td style="text-align:right;"> 0.0242847 </td>
   <td style="text-align:right;"> 0.0454075 </td>
   <td style="text-align:right;"> -0.0013249 </td>
   <td style="text-align:right;"> 0.0921399 </td>
   <td style="text-align:right;"> 0.0238435 </td>
   <td style="text-align:right;"> 0.0246614 </td>
   <td style="text-align:right;"> 0.0114095 </td>
   <td style="text-align:right;"> 0.0379132 </td>
   <td style="text-align:right;"> 0.0067613 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvaws </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0017749 </td>
   <td style="text-align:right;"> -0.2517581 </td>
   <td style="text-align:right;"> 0.2482083 </td>
   <td style="text-align:right;"> 0.1275448 </td>
   <td style="text-align:right;"> 0.0232601 </td>
   <td style="text-align:right;"> -0.1776617 </td>
   <td style="text-align:right;"> 0.2241819 </td>
   <td style="text-align:right;"> 0.1025130 </td>
   <td style="text-align:right;"> 0.0112569 </td>
   <td style="text-align:right;"> -0.0306073 </td>
   <td style="text-align:right;"> 0.0531211 </td>
   <td style="text-align:right;"> 0.0213597 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvidd </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0453256 </td>
   <td style="text-align:right;"> -0.0241892 </td>
   <td style="text-align:right;"> 0.1148405 </td>
   <td style="text-align:right;"> 0.0354674 </td>
   <td style="text-align:right;"> 0.0981450 </td>
   <td style="text-align:right;"> 0.0208146 </td>
   <td style="text-align:right;"> 0.1754754 </td>
   <td style="text-align:right;"> 0.0394550 </td>
   <td style="text-align:right;"> 0.0528053 </td>
   <td style="text-align:right;"> 0.0378669 </td>
   <td style="text-align:right;"> 0.0677436 </td>
   <td style="text-align:right;"> 0.0076218 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvids </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0635228 </td>
   <td style="text-align:right;"> -0.1990947 </td>
   <td style="text-align:right;"> 0.0720491 </td>
   <td style="text-align:right;"> 0.0691706 </td>
   <td style="text-align:right;"> 0.0083352 </td>
   <td style="text-align:right;"> -0.1335894 </td>
   <td style="text-align:right;"> 0.1502598 </td>
   <td style="text-align:right;"> 0.0724118 </td>
   <td style="text-align:right;"> 0.0756177 </td>
   <td style="text-align:right;"> 0.0525777 </td>
   <td style="text-align:right;"> 0.0986576 </td>
   <td style="text-align:right;"> 0.0117553 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvpwd </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0317376 </td>
   <td style="text-align:right;"> -0.1258062 </td>
   <td style="text-align:right;"> 0.0623311 </td>
   <td style="text-align:right;"> 0.0479951 </td>
   <td style="text-align:right;"> -0.0104248 </td>
   <td style="text-align:right;"> -0.1271922 </td>
   <td style="text-align:right;"> 0.1063426 </td>
   <td style="text-align:right;"> 0.0595763 </td>
   <td style="text-align:right;"> 0.0302674 </td>
   <td style="text-align:right;"> 0.0131900 </td>
   <td style="text-align:right;"> 0.0473448 </td>
   <td style="text-align:right;"> 0.0087131 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> lvpws </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0190522 </td>
   <td style="text-align:right;"> -0.1014670 </td>
   <td style="text-align:right;"> 0.0633627 </td>
   <td style="text-align:right;"> 0.0420492 </td>
   <td style="text-align:right;"> 0.0089592 </td>
   <td style="text-align:right;"> -0.0823356 </td>
   <td style="text-align:right;"> 0.1002540 </td>
   <td style="text-align:right;"> 0.0465798 </td>
   <td style="text-align:right;"> 0.0268487 </td>
   <td style="text-align:right;"> 0.0063146 </td>
   <td style="text-align:right;"> 0.0473828 </td>
   <td style="text-align:right;"> 0.0104768 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> magnesium </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Urinalysis </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0161699 </td>
   <td style="text-align:right;"> -0.0231196 </td>
   <td style="text-align:right;"> 0.0554593 </td>
   <td style="text-align:right;"> 0.0200460 </td>
   <td style="text-align:right;"> -0.0513056 </td>
   <td style="text-align:right;"> -0.1167021 </td>
   <td style="text-align:right;"> 0.0140909 </td>
   <td style="text-align:right;"> 0.0333662 </td>
   <td style="text-align:right;"> -0.0413354 </td>
   <td style="text-align:right;"> -0.1135580 </td>
   <td style="text-align:right;"> 0.0308871 </td>
   <td style="text-align:right;"> 0.0368489 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean cell hemoglobin concentration </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0378015 </td>
   <td style="text-align:right;"> -0.0880637 </td>
   <td style="text-align:right;"> 0.1636666 </td>
   <td style="text-align:right;"> 0.0642181 </td>
   <td style="text-align:right;"> 0.0253063 </td>
   <td style="text-align:right;"> -0.1086076 </td>
   <td style="text-align:right;"> 0.1592202 </td>
   <td style="text-align:right;"> 0.0683247 </td>
   <td style="text-align:right;"> -0.0113450 </td>
   <td style="text-align:right;"> -0.0150702 </td>
   <td style="text-align:right;"> -0.0076199 </td>
   <td style="text-align:right;"> 0.0019006 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean cell volume </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0039175 </td>
   <td style="text-align:right;"> -0.0957495 </td>
   <td style="text-align:right;"> 0.1035845 </td>
   <td style="text-align:right;"> 0.0508514 </td>
   <td style="text-align:right;"> -0.0030447 </td>
   <td style="text-align:right;"> -0.0961742 </td>
   <td style="text-align:right;"> 0.0900848 </td>
   <td style="text-align:right;"> 0.0475159 </td>
   <td style="text-align:right;"> -0.0063502 </td>
   <td style="text-align:right;"> -0.0099649 </td>
   <td style="text-align:right;"> -0.0027355 </td>
   <td style="text-align:right;"> 0.0018443 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean corpuscular hemoglobin </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> -0.0025833 </td>
   <td style="text-align:right;"> -0.0653065 </td>
   <td style="text-align:right;"> 0.0601398 </td>
   <td style="text-align:right;"> 0.0320022 </td>
   <td style="text-align:right;"> -0.0193465 </td>
   <td style="text-align:right;"> -0.0824670 </td>
   <td style="text-align:right;"> 0.0437741 </td>
   <td style="text-align:right;"> 0.0322049 </td>
   <td style="text-align:right;"> -0.0169768 </td>
   <td style="text-align:right;"> -0.0197231 </td>
   <td style="text-align:right;"> -0.0142305 </td>
   <td style="text-align:right;"> 0.0014012 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean platelet volume </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0487366 </td>
   <td style="text-align:right;"> -0.0044688 </td>
   <td style="text-align:right;"> 0.1019419 </td>
   <td style="text-align:right;"> 0.0271461 </td>
   <td style="text-align:right;"> 0.0353913 </td>
   <td style="text-align:right;"> -0.0210323 </td>
   <td style="text-align:right;"> 0.0918150 </td>
   <td style="text-align:right;"> 0.0287881 </td>
   <td style="text-align:right;"> -0.0174066 </td>
   <td style="text-align:right;"> -0.0276044 </td>
   <td style="text-align:right;"> -0.0072089 </td>
   <td style="text-align:right;"> 0.0052030 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean r amplitude </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0084703 </td>
   <td style="text-align:right;"> -0.0282092 </td>
   <td style="text-align:right;"> 0.0451499 </td>
   <td style="text-align:right;"> 0.0187144 </td>
   <td style="text-align:right;"> -0.0948208 </td>
   <td style="text-align:right;"> -0.1630495 </td>
   <td style="text-align:right;"> -0.0265922 </td>
   <td style="text-align:right;"> 0.0348112 </td>
   <td style="text-align:right;"> -0.0835612 </td>
   <td style="text-align:right;"> -0.1503108 </td>
   <td style="text-align:right;"> -0.0168116 </td>
   <td style="text-align:right;"> 0.0340565 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> mean sr amplitude </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0284617 </td>
   <td style="text-align:right;"> -0.0131943 </td>
   <td style="text-align:right;"> 0.0701178 </td>
   <td style="text-align:right;"> 0.0212535 </td>
   <td style="text-align:right;"> -0.0876811 </td>
   <td style="text-align:right;"> -0.1270777 </td>
   <td style="text-align:right;"> -0.0482845 </td>
   <td style="text-align:right;"> 0.0201007 </td>
   <td style="text-align:right;"> -0.1130259 </td>
   <td style="text-align:right;"> -0.1558048 </td>
   <td style="text-align:right;"> -0.0702470 </td>
   <td style="text-align:right;"> 0.0218264 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> number of center entries </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> 0.0150703 </td>
   <td style="text-align:right;"> -0.0534907 </td>
   <td style="text-align:right;"> 0.0836313 </td>
   <td style="text-align:right;"> 0.0349807 </td>
   <td style="text-align:right;"> -0.0361259 </td>
   <td style="text-align:right;"> -0.0952472 </td>
   <td style="text-align:right;"> 0.0229955 </td>
   <td style="text-align:right;"> 0.0301645 </td>
   <td style="text-align:right;"> -0.0588092 </td>
   <td style="text-align:right;"> -0.1679907 </td>
   <td style="text-align:right;"> 0.0503723 </td>
   <td style="text-align:right;"> 0.0557059 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> number of rears - total </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0011326 </td>
   <td style="text-align:right;"> -0.1141113 </td>
   <td style="text-align:right;"> 0.1118461 </td>
   <td style="text-align:right;"> 0.0576432 </td>
   <td style="text-align:right;"> 0.1869490 </td>
   <td style="text-align:right;"> -0.0392422 </td>
   <td style="text-align:right;"> 0.4131402 </td>
   <td style="text-align:right;"> 0.1154058 </td>
   <td style="text-align:right;"> 0.1794328 </td>
   <td style="text-align:right;"> 0.0568682 </td>
   <td style="text-align:right;"> 0.3019974 </td>
   <td style="text-align:right;"> 0.0625341 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> others </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.1684902 </td>
   <td style="text-align:right;"> -0.2596648 </td>
   <td style="text-align:right;"> -0.0773156 </td>
   <td style="text-align:right;"> 0.0465185 </td>
   <td style="text-align:right;"> -0.1515195 </td>
   <td style="text-align:right;"> -0.2435956 </td>
   <td style="text-align:right;"> -0.0594434 </td>
   <td style="text-align:right;"> 0.0469785 </td>
   <td style="text-align:right;"> 0.0196158 </td>
   <td style="text-align:right;"> 0.0049349 </td>
   <td style="text-align:right;"> 0.0342967 </td>
   <td style="text-align:right;"> 0.0074904 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pdcs </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.1732553 </td>
   <td style="text-align:right;"> -0.4003845 </td>
   <td style="text-align:right;"> 0.0538738 </td>
   <td style="text-align:right;"> 0.1158844 </td>
   <td style="text-align:right;"> -0.2572491 </td>
   <td style="text-align:right;"> -0.7186201 </td>
   <td style="text-align:right;"> 0.2041219 </td>
   <td style="text-align:right;"> 0.2353977 </td>
   <td style="text-align:right;"> -0.0915619 </td>
   <td style="text-align:right;"> -0.2522236 </td>
   <td style="text-align:right;"> 0.0690997 </td>
   <td style="text-align:right;"> 0.0819717 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> percentage center time </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0219679 </td>
   <td style="text-align:right;"> -0.0863184 </td>
   <td style="text-align:right;"> 0.0423826 </td>
   <td style="text-align:right;"> 0.0328325 </td>
   <td style="text-align:right;"> -0.0188907 </td>
   <td style="text-align:right;"> -0.0912088 </td>
   <td style="text-align:right;"> 0.0534274 </td>
   <td style="text-align:right;"> 0.0368977 </td>
   <td style="text-align:right;"> -0.0061802 </td>
   <td style="text-align:right;"> -0.0972542 </td>
   <td style="text-align:right;"> 0.0848938 </td>
   <td style="text-align:right;"> 0.0464672 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> periphery average speed </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0444272 </td>
   <td style="text-align:right;"> -0.1082870 </td>
   <td style="text-align:right;"> 0.0194327 </td>
   <td style="text-align:right;"> 0.0325822 </td>
   <td style="text-align:right;"> -0.1401304 </td>
   <td style="text-align:right;"> -0.2117709 </td>
   <td style="text-align:right;"> -0.0684898 </td>
   <td style="text-align:right;"> 0.0365520 </td>
   <td style="text-align:right;"> -0.0963838 </td>
   <td style="text-align:right;"> -0.1446043 </td>
   <td style="text-align:right;"> -0.0481633 </td>
   <td style="text-align:right;"> 0.0246028 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> periphery distance travelled </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0313217 </td>
   <td style="text-align:right;"> -0.0918314 </td>
   <td style="text-align:right;"> 0.0291879 </td>
   <td style="text-align:right;"> 0.0308728 </td>
   <td style="text-align:right;"> -0.1342236 </td>
   <td style="text-align:right;"> -0.1874097 </td>
   <td style="text-align:right;"> -0.0810376 </td>
   <td style="text-align:right;"> 0.0271362 </td>
   <td style="text-align:right;"> -0.1037239 </td>
   <td style="text-align:right;"> -0.1714836 </td>
   <td style="text-align:right;"> -0.0359643 </td>
   <td style="text-align:right;"> 0.0345719 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> periphery permanence time </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0369177 </td>
   <td style="text-align:right;"> -0.1277076 </td>
   <td style="text-align:right;"> 0.0538721 </td>
   <td style="text-align:right;"> 0.0463222 </td>
   <td style="text-align:right;"> -0.0294978 </td>
   <td style="text-align:right;"> -0.1006346 </td>
   <td style="text-align:right;"> 0.0416390 </td>
   <td style="text-align:right;"> 0.0362950 </td>
   <td style="text-align:right;"> 0.0077038 </td>
   <td style="text-align:right;"> -0.0137850 </td>
   <td style="text-align:right;"> 0.0291927 </td>
   <td style="text-align:right;"> 0.0109639 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> periphery resting time </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0536346 </td>
   <td style="text-align:right;"> -0.1266045 </td>
   <td style="text-align:right;"> 0.0193353 </td>
   <td style="text-align:right;"> 0.0372302 </td>
   <td style="text-align:right;"> -0.0572459 </td>
   <td style="text-align:right;"> -0.1071515 </td>
   <td style="text-align:right;"> -0.0073404 </td>
   <td style="text-align:right;"> 0.0254625 </td>
   <td style="text-align:right;"> 0.0026007 </td>
   <td style="text-align:right;"> -0.0558538 </td>
   <td style="text-align:right;"> 0.0610552 </td>
   <td style="text-align:right;"> 0.0298243 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> phosphorus </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.0485897 </td>
   <td style="text-align:right;"> -0.0839101 </td>
   <td style="text-align:right;"> -0.0132693 </td>
   <td style="text-align:right;"> 0.0180209 </td>
   <td style="text-align:right;"> -0.0826120 </td>
   <td style="text-align:right;"> -0.1576473 </td>
   <td style="text-align:right;"> -0.0075767 </td>
   <td style="text-align:right;"> 0.0382840 </td>
   <td style="text-align:right;"> -0.0420616 </td>
   <td style="text-align:right;"> -0.0813582 </td>
   <td style="text-align:right;"> -0.0027650 </td>
   <td style="text-align:right;"> 0.0200497 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> platelet count </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0737198 </td>
   <td style="text-align:right;"> 0.0205862 </td>
   <td style="text-align:right;"> 0.1268534 </td>
   <td style="text-align:right;"> 0.0271095 </td>
   <td style="text-align:right;"> 0.2415135 </td>
   <td style="text-align:right;"> 0.1865330 </td>
   <td style="text-align:right;"> 0.2964940 </td>
   <td style="text-align:right;"> 0.0280518 </td>
   <td style="text-align:right;"> 0.1642192 </td>
   <td style="text-align:right;"> 0.1369820 </td>
   <td style="text-align:right;"> 0.1914563 </td>
   <td style="text-align:right;"> 0.0138968 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pnn5(6&gt;ms) </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.2906905 </td>
   <td style="text-align:right;"> 0.1716202 </td>
   <td style="text-align:right;"> 0.4097607 </td>
   <td style="text-align:right;"> 0.0607512 </td>
   <td style="text-align:right;"> -0.2926013 </td>
   <td style="text-align:right;"> -0.5272121 </td>
   <td style="text-align:right;"> -0.0579905 </td>
   <td style="text-align:right;"> 0.1197016 </td>
   <td style="text-align:right;"> -0.6004767 </td>
   <td style="text-align:right;"> -0.9244113 </td>
   <td style="text-align:right;"> -0.2765420 </td>
   <td style="text-align:right;"> 0.1652758 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> potassium </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.0705522 </td>
   <td style="text-align:right;"> -0.2214989 </td>
   <td style="text-align:right;"> 0.0803945 </td>
   <td style="text-align:right;"> 0.0770150 </td>
   <td style="text-align:right;"> -0.0074675 </td>
   <td style="text-align:right;"> -0.1729366 </td>
   <td style="text-align:right;"> 0.1580015 </td>
   <td style="text-align:right;"> 0.0844245 </td>
   <td style="text-align:right;"> 0.0704162 </td>
   <td style="text-align:right;"> 0.0476647 </td>
   <td style="text-align:right;"> 0.0931676 </td>
   <td style="text-align:right;"> 0.0116081 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pq </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0650960 </td>
   <td style="text-align:right;"> -0.1538776 </td>
   <td style="text-align:right;"> 0.0236857 </td>
   <td style="text-align:right;"> 0.0452976 </td>
   <td style="text-align:right;"> -0.0648322 </td>
   <td style="text-align:right;"> -0.1270688 </td>
   <td style="text-align:right;"> -0.0025955 </td>
   <td style="text-align:right;"> 0.0317540 </td>
   <td style="text-align:right;"> 0.0015656 </td>
   <td style="text-align:right;"> -0.0259865 </td>
   <td style="text-align:right;"> 0.0291178 </td>
   <td style="text-align:right;"> 0.0140575 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> pr </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0564860 </td>
   <td style="text-align:right;"> -0.1048371 </td>
   <td style="text-align:right;"> -0.0081349 </td>
   <td style="text-align:right;"> 0.0246694 </td>
   <td style="text-align:right;"> -0.0754718 </td>
   <td style="text-align:right;"> -0.1235224 </td>
   <td style="text-align:right;"> -0.0274213 </td>
   <td style="text-align:right;"> 0.0245160 </td>
   <td style="text-align:right;"> -0.0183785 </td>
   <td style="text-align:right;"> -0.0319887 </td>
   <td style="text-align:right;"> -0.0047684 </td>
   <td style="text-align:right;"> 0.0069441 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> qrs </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0725454 </td>
   <td style="text-align:right;"> 0.0354722 </td>
   <td style="text-align:right;"> 0.1096185 </td>
   <td style="text-align:right;"> 0.0189152 </td>
   <td style="text-align:right;"> 0.0681074 </td>
   <td style="text-align:right;"> 0.0300869 </td>
   <td style="text-align:right;"> 0.1061278 </td>
   <td style="text-align:right;"> 0.0193986 </td>
   <td style="text-align:right;"> -0.0054233 </td>
   <td style="text-align:right;"> -0.0154885 </td>
   <td style="text-align:right;"> 0.0046418 </td>
   <td style="text-align:right;"> 0.0051354 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> qtc </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0328106 </td>
   <td style="text-align:right;"> -0.0101032 </td>
   <td style="text-align:right;"> 0.0757244 </td>
   <td style="text-align:right;"> 0.0218952 </td>
   <td style="text-align:right;"> 0.0310473 </td>
   <td style="text-align:right;"> -0.0207365 </td>
   <td style="text-align:right;"> 0.0828310 </td>
   <td style="text-align:right;"> 0.0264208 </td>
   <td style="text-align:right;"> -0.0005046 </td>
   <td style="text-align:right;"> -0.0085696 </td>
   <td style="text-align:right;"> 0.0075604 </td>
   <td style="text-align:right;"> 0.0041149 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> qtc dispersion </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0031258 </td>
   <td style="text-align:right;"> -0.0523919 </td>
   <td style="text-align:right;"> 0.0586435 </td>
   <td style="text-align:right;"> 0.0283259 </td>
   <td style="text-align:right;"> -0.0046501 </td>
   <td style="text-align:right;"> -0.1060530 </td>
   <td style="text-align:right;"> 0.0967528 </td>
   <td style="text-align:right;"> 0.0517371 </td>
   <td style="text-align:right;"> -0.0077373 </td>
   <td style="text-align:right;"> -0.0510162 </td>
   <td style="text-align:right;"> 0.0355416 </td>
   <td style="text-align:right;"> 0.0220815 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> red blood cell count </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.0773455 </td>
   <td style="text-align:right;"> 0.0071933 </td>
   <td style="text-align:right;"> 0.1474977 </td>
   <td style="text-align:right;"> 0.0357926 </td>
   <td style="text-align:right;"> 0.0997278 </td>
   <td style="text-align:right;"> 0.0316996 </td>
   <td style="text-align:right;"> 0.1677560 </td>
   <td style="text-align:right;"> 0.0347089 </td>
   <td style="text-align:right;"> 0.0228493 </td>
   <td style="text-align:right;"> 0.0088583 </td>
   <td style="text-align:right;"> 0.0368404 </td>
   <td style="text-align:right;"> 0.0071384 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> red blood cell distribution width </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> 0.1248464 </td>
   <td style="text-align:right;"> -0.0035148 </td>
   <td style="text-align:right;"> 0.2532076 </td>
   <td style="text-align:right;"> 0.0654916 </td>
   <td style="text-align:right;"> 0.1353460 </td>
   <td style="text-align:right;"> -0.0035862 </td>
   <td style="text-align:right;"> 0.2742782 </td>
   <td style="text-align:right;"> 0.0708851 </td>
   <td style="text-align:right;"> 0.0104789 </td>
   <td style="text-align:right;"> -0.0032056 </td>
   <td style="text-align:right;"> 0.0241635 </td>
   <td style="text-align:right;"> 0.0069821 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> respiration rate </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.1384843 </td>
   <td style="text-align:right;"> -0.2178736 </td>
   <td style="text-align:right;"> -0.0590950 </td>
   <td style="text-align:right;"> 0.0405055 </td>
   <td style="text-align:right;"> -0.0703570 </td>
   <td style="text-align:right;"> -0.1795875 </td>
   <td style="text-align:right;"> 0.0388735 </td>
   <td style="text-align:right;"> 0.0557309 </td>
   <td style="text-align:right;"> 0.0611034 </td>
   <td style="text-align:right;"> 0.0227141 </td>
   <td style="text-align:right;"> 0.0994926 </td>
   <td style="text-align:right;"> 0.0195867 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> respiratory exchange ratio </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Indirect Calorimetry </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> -0.0116565 </td>
   <td style="text-align:right;"> -0.0896490 </td>
   <td style="text-align:right;"> 0.0663361 </td>
   <td style="text-align:right;"> 0.0397928 </td>
   <td style="text-align:right;"> -0.0106530 </td>
   <td style="text-align:right;"> -0.0878483 </td>
   <td style="text-align:right;"> 0.0665424 </td>
   <td style="text-align:right;"> 0.0393861 </td>
   <td style="text-align:right;"> 0.0017027 </td>
   <td style="text-align:right;"> -0.0057348 </td>
   <td style="text-align:right;"> 0.0091402 </td>
   <td style="text-align:right;"> 0.0037947 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right anterior chamber depth </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.4491432 </td>
   <td style="text-align:right;"> -1.3293546 </td>
   <td style="text-align:right;"> 0.4310682 </td>
   <td style="text-align:right;"> 0.4490957 </td>
   <td style="text-align:right;"> -0.4157377 </td>
   <td style="text-align:right;"> -1.2918620 </td>
   <td style="text-align:right;"> 0.4603867 </td>
   <td style="text-align:right;"> 0.4470104 </td>
   <td style="text-align:right;"> 0.0316098 </td>
   <td style="text-align:right;"> 0.0264512 </td>
   <td style="text-align:right;"> 0.0367685 </td>
   <td style="text-align:right;"> 0.0026320 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right corneal thickness </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.0355898 </td>
   <td style="text-align:right;"> -0.2280522 </td>
   <td style="text-align:right;"> 0.1568726 </td>
   <td style="text-align:right;"> 0.0981969 </td>
   <td style="text-align:right;"> -0.0306550 </td>
   <td style="text-align:right;"> -0.1963692 </td>
   <td style="text-align:right;"> 0.1350592 </td>
   <td style="text-align:right;"> 0.0845496 </td>
   <td style="text-align:right;"> -0.0013855 </td>
   <td style="text-align:right;"> -0.0237830 </td>
   <td style="text-align:right;"> 0.0210121 </td>
   <td style="text-align:right;"> 0.0114275 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right inner nuclear layer </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.2545083 </td>
   <td style="text-align:right;"> -0.7633116 </td>
   <td style="text-align:right;"> 0.2542949 </td>
   <td style="text-align:right;"> 0.2595983 </td>
   <td style="text-align:right;"> -0.2785114 </td>
   <td style="text-align:right;"> -0.8373133 </td>
   <td style="text-align:right;"> 0.2802906 </td>
   <td style="text-align:right;"> 0.2851083 </td>
   <td style="text-align:right;"> -0.0175090 </td>
   <td style="text-align:right;"> -0.0664158 </td>
   <td style="text-align:right;"> 0.0313978 </td>
   <td style="text-align:right;"> 0.0249529 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right outer nuclear layer </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> 0.0061253 </td>
   <td style="text-align:right;"> -0.0781241 </td>
   <td style="text-align:right;"> 0.0903746 </td>
   <td style="text-align:right;"> 0.0429851 </td>
   <td style="text-align:right;"> 0.0109098 </td>
   <td style="text-align:right;"> -0.0731427 </td>
   <td style="text-align:right;"> 0.0949622 </td>
   <td style="text-align:right;"> 0.0428847 </td>
   <td style="text-align:right;"> 0.0055513 </td>
   <td style="text-align:right;"> 0.0000519 </td>
   <td style="text-align:right;"> 0.0110508 </td>
   <td style="text-align:right;"> 0.0028059 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right posterior chamber depth </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.0775673 </td>
   <td style="text-align:right;"> -0.2905688 </td>
   <td style="text-align:right;"> 0.1354341 </td>
   <td style="text-align:right;"> 0.1086762 </td>
   <td style="text-align:right;"> -0.0764571 </td>
   <td style="text-align:right;"> -0.2893152 </td>
   <td style="text-align:right;"> 0.1364010 </td>
   <td style="text-align:right;"> 0.1086031 </td>
   <td style="text-align:right;"> 0.0071990 </td>
   <td style="text-align:right;"> -0.0178434 </td>
   <td style="text-align:right;"> 0.0322413 </td>
   <td style="text-align:right;"> 0.0127769 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> right total retinal thickness </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Eye Morphology </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:right;"> -0.1987993 </td>
   <td style="text-align:right;"> -0.6457320 </td>
   <td style="text-align:right;"> 0.2481333 </td>
   <td style="text-align:right;"> 0.2280310 </td>
   <td style="text-align:right;"> -0.1925482 </td>
   <td style="text-align:right;"> -0.6285715 </td>
   <td style="text-align:right;"> 0.2434750 </td>
   <td style="text-align:right;"> 0.2224649 </td>
   <td style="text-align:right;"> 0.0052882 </td>
   <td style="text-align:right;"> -0.0045957 </td>
   <td style="text-align:right;"> 0.0151720 </td>
   <td style="text-align:right;"> 0.0050429 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> rmssd </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.1800273 </td>
   <td style="text-align:right;"> -0.0882317 </td>
   <td style="text-align:right;"> 0.4482864 </td>
   <td style="text-align:right;"> 0.1368694 </td>
   <td style="text-align:right;"> -0.0161048 </td>
   <td style="text-align:right;"> -0.4112809 </td>
   <td style="text-align:right;"> 0.3790712 </td>
   <td style="text-align:right;"> 0.2016241 </td>
   <td style="text-align:right;"> -0.1178703 </td>
   <td style="text-align:right;"> -0.2449843 </td>
   <td style="text-align:right;"> 0.0092436 </td>
   <td style="text-align:right;"> 0.0648552 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> rp macrophage (cd19-  cd11c-) </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> -0.0765771 </td>
   <td style="text-align:right;"> -0.3398075 </td>
   <td style="text-align:right;"> 0.1866533 </td>
   <td style="text-align:right;"> 0.1343037 </td>
   <td style="text-align:right;"> -0.0747691 </td>
   <td style="text-align:right;"> -0.3351316 </td>
   <td style="text-align:right;"> 0.1855933 </td>
   <td style="text-align:right;"> 0.1328404 </td>
   <td style="text-align:right;"> -0.0746396 </td>
   <td style="text-align:right;"> -0.2072980 </td>
   <td style="text-align:right;"> 0.0580188 </td>
   <td style="text-align:right;"> 0.0676841 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> rr </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> -0.0761505 </td>
   <td style="text-align:right;"> -0.1876687 </td>
   <td style="text-align:right;"> 0.0353678 </td>
   <td style="text-align:right;"> 0.0568981 </td>
   <td style="text-align:right;"> -0.0896869 </td>
   <td style="text-align:right;"> -0.2063458 </td>
   <td style="text-align:right;"> 0.0269721 </td>
   <td style="text-align:right;"> 0.0595210 </td>
   <td style="text-align:right;"> -0.0125023 </td>
   <td style="text-align:right;"> -0.0214082 </td>
   <td style="text-align:right;"> -0.0035963 </td>
   <td style="text-align:right;"> 0.0045440 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> sodium </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0262100 </td>
   <td style="text-align:right;"> -0.1171674 </td>
   <td style="text-align:right;"> 0.1695873 </td>
   <td style="text-align:right;"> 0.0731531 </td>
   <td style="text-align:right;"> 0.0338228 </td>
   <td style="text-align:right;"> -0.1337162 </td>
   <td style="text-align:right;"> 0.2013618 </td>
   <td style="text-align:right;"> 0.0854806 </td>
   <td style="text-align:right;"> 0.0099680 </td>
   <td style="text-align:right;"> 0.0065815 </td>
   <td style="text-align:right;"> 0.0133545 </td>
   <td style="text-align:right;"> 0.0017278 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> spleen weight </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Immunophenotyping </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:right;"> 0.1874259 </td>
   <td style="text-align:right;"> -0.0500875 </td>
   <td style="text-align:right;"> 0.4249393 </td>
   <td style="text-align:right;"> 0.1211825 </td>
   <td style="text-align:right;"> 0.1133706 </td>
   <td style="text-align:right;"> -0.1604807 </td>
   <td style="text-align:right;"> 0.3872220 </td>
   <td style="text-align:right;"> 0.1397227 </td>
   <td style="text-align:right;"> -0.1542349 </td>
   <td style="text-align:right;"> -0.2104415 </td>
   <td style="text-align:right;"> -0.0980283 </td>
   <td style="text-align:right;"> 0.0286774 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> st </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Electrocardiogram (ECG) </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0032888 </td>
   <td style="text-align:right;"> -0.0544512 </td>
   <td style="text-align:right;"> 0.0610288 </td>
   <td style="text-align:right;"> 0.0294597 </td>
   <td style="text-align:right;"> -0.0054976 </td>
   <td style="text-align:right;"> -0.0811810 </td>
   <td style="text-align:right;"> 0.0701858 </td>
   <td style="text-align:right;"> 0.0386147 </td>
   <td style="text-align:right;"> -0.0034902 </td>
   <td style="text-align:right;"> -0.0175917 </td>
   <td style="text-align:right;"> 0.0106113 </td>
   <td style="text-align:right;"> 0.0071948 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> stroke volume </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Echo </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:right;"> 0.0594276 </td>
   <td style="text-align:right;"> -0.0782445 </td>
   <td style="text-align:right;"> 0.1970997 </td>
   <td style="text-align:right;"> 0.0702422 </td>
   <td style="text-align:right;"> 0.1574330 </td>
   <td style="text-align:right;"> 0.0091891 </td>
   <td style="text-align:right;"> 0.3056769 </td>
   <td style="text-align:right;"> 0.0756360 </td>
   <td style="text-align:right;"> 0.0937375 </td>
   <td style="text-align:right;"> 0.0775587 </td>
   <td style="text-align:right;"> 0.1099162 </td>
   <td style="text-align:right;"> 0.0082546 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> tibia length </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Heart Weight </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:right;"> -0.1475403 </td>
   <td style="text-align:right;"> -0.4396127 </td>
   <td style="text-align:right;"> 0.1445320 </td>
   <td style="text-align:right;"> 0.1490192 </td>
   <td style="text-align:right;"> -0.1374401 </td>
   <td style="text-align:right;"> -0.4261352 </td>
   <td style="text-align:right;"> 0.1512551 </td>
   <td style="text-align:right;"> 0.1472961 </td>
   <td style="text-align:right;"> 0.0095199 </td>
   <td style="text-align:right;"> 0.0059199 </td>
   <td style="text-align:right;"> 0.0131200 </td>
   <td style="text-align:right;"> 0.0018368 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total bilirubin </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0605449 </td>
   <td style="text-align:right;"> -0.0097669 </td>
   <td style="text-align:right;"> 0.1308567 </td>
   <td style="text-align:right;"> 0.0358740 </td>
   <td style="text-align:right;"> 0.0022671 </td>
   <td style="text-align:right;"> -0.0859910 </td>
   <td style="text-align:right;"> 0.0905252 </td>
   <td style="text-align:right;"> 0.0450305 </td>
   <td style="text-align:right;"> -0.0550333 </td>
   <td style="text-align:right;"> -0.0979518 </td>
   <td style="text-align:right;"> -0.0121148 </td>
   <td style="text-align:right;"> 0.0218976 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total cholesterol </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0942595 </td>
   <td style="text-align:right;"> -0.0751596 </td>
   <td style="text-align:right;"> 0.2636786 </td>
   <td style="text-align:right;"> 0.0864399 </td>
   <td style="text-align:right;"> 0.3142208 </td>
   <td style="text-align:right;"> 0.1125613 </td>
   <td style="text-align:right;"> 0.5158803 </td>
   <td style="text-align:right;"> 0.1028894 </td>
   <td style="text-align:right;"> 0.2027583 </td>
   <td style="text-align:right;"> 0.1750477 </td>
   <td style="text-align:right;"> 0.2304688 </td>
   <td style="text-align:right;"> 0.0141383 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total food intake </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Indirect Calorimetry </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> -0.1192293 </td>
   <td style="text-align:right;"> -0.2542902 </td>
   <td style="text-align:right;"> 0.0158316 </td>
   <td style="text-align:right;"> 0.0689099 </td>
   <td style="text-align:right;"> -0.0964842 </td>
   <td style="text-align:right;"> -0.2564912 </td>
   <td style="text-align:right;"> 0.0635228 </td>
   <td style="text-align:right;"> 0.0816377 </td>
   <td style="text-align:right;"> 0.0267691 </td>
   <td style="text-align:right;"> -0.0233285 </td>
   <td style="text-align:right;"> 0.0768667 </td>
   <td style="text-align:right;"> 0.0255605 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total protein </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.0422347 </td>
   <td style="text-align:right;"> -0.0623878 </td>
   <td style="text-align:right;"> -0.0220816 </td>
   <td style="text-align:right;"> 0.0102824 </td>
   <td style="text-align:right;"> -0.0355909 </td>
   <td style="text-align:right;"> -0.0619127 </td>
   <td style="text-align:right;"> -0.0092692 </td>
   <td style="text-align:right;"> 0.0134297 </td>
   <td style="text-align:right;"> 0.0092660 </td>
   <td style="text-align:right;"> -0.0008158 </td>
   <td style="text-align:right;"> 0.0193478 </td>
   <td style="text-align:right;"> 0.0051439 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> total water intake </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Indirect Calorimetry </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:right;"> -0.1457383 </td>
   <td style="text-align:right;"> -0.2373165 </td>
   <td style="text-align:right;"> -0.0541601 </td>
   <td style="text-align:right;"> 0.0467244 </td>
   <td style="text-align:right;"> -0.2097443 </td>
   <td style="text-align:right;"> -0.2681948 </td>
   <td style="text-align:right;"> -0.1512937 </td>
   <td style="text-align:right;"> 0.0298223 </td>
   <td style="text-align:right;"> -0.0654284 </td>
   <td style="text-align:right;"> -0.1374220 </td>
   <td style="text-align:right;"> 0.0065653 </td>
   <td style="text-align:right;"> 0.0367321 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> triglycerides </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.0320020 </td>
   <td style="text-align:right;"> -0.1233659 </td>
   <td style="text-align:right;"> 0.0593619 </td>
   <td style="text-align:right;"> 0.0466151 </td>
   <td style="text-align:right;"> 0.3268957 </td>
   <td style="text-align:right;"> 0.2087111 </td>
   <td style="text-align:right;"> 0.4450803 </td>
   <td style="text-align:right;"> 0.0602994 </td>
   <td style="text-align:right;"> 0.3473552 </td>
   <td style="text-align:right;"> 0.2592006 </td>
   <td style="text-align:right;"> 0.4355098 </td>
   <td style="text-align:right;"> 0.0449777 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> urea (blood urea nitrogen - bun) </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> -0.1405306 </td>
   <td style="text-align:right;"> -0.2664120 </td>
   <td style="text-align:right;"> -0.0146491 </td>
   <td style="text-align:right;"> 0.0642264 </td>
   <td style="text-align:right;"> -0.0950040 </td>
   <td style="text-align:right;"> -0.2507897 </td>
   <td style="text-align:right;"> 0.0607817 </td>
   <td style="text-align:right;"> 0.0794840 </td>
   <td style="text-align:right;"> 0.0403162 </td>
   <td style="text-align:right;"> 0.0051883 </td>
   <td style="text-align:right;"> 0.0754441 </td>
   <td style="text-align:right;"> 0.0179227 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> uric acid </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Clinical Chemistry </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:right;"> 0.0367062 </td>
   <td style="text-align:right;"> -0.0660619 </td>
   <td style="text-align:right;"> 0.1394744 </td>
   <td style="text-align:right;"> 0.0524337 </td>
   <td style="text-align:right;"> 0.3626957 </td>
   <td style="text-align:right;"> 0.0914512 </td>
   <td style="text-align:right;"> 0.6339402 </td>
   <td style="text-align:right;"> 0.1383926 </td>
   <td style="text-align:right;"> 0.4472349 </td>
   <td style="text-align:right;"> -0.0801891 </td>
   <td style="text-align:right;"> 0.9746588 </td>
   <td style="text-align:right;"> 0.2690988 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> white blood cell count </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:right;"> -0.0907957 </td>
   <td style="text-align:right;"> -0.1703063 </td>
   <td style="text-align:right;"> -0.0112852 </td>
   <td style="text-align:right;"> 0.0405673 </td>
   <td style="text-align:right;"> 0.1168446 </td>
   <td style="text-align:right;"> -0.0023934 </td>
   <td style="text-align:right;"> 0.2360826 </td>
   <td style="text-align:right;"> 0.0608368 </td>
   <td style="text-align:right;"> 0.1978876 </td>
   <td style="text-align:right;"> 0.1368305 </td>
   <td style="text-align:right;"> 0.2589447 </td>
   <td style="text-align:right;"> 0.0311521 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> whole arena average speed </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0156634 </td>
   <td style="text-align:right;"> -0.0857564 </td>
   <td style="text-align:right;"> 0.0544296 </td>
   <td style="text-align:right;"> 0.0357624 </td>
   <td style="text-align:right;"> -0.1140149 </td>
   <td style="text-align:right;"> -0.1840029 </td>
   <td style="text-align:right;"> -0.0440269 </td>
   <td style="text-align:right;"> 0.0357088 </td>
   <td style="text-align:right;"> -0.0997437 </td>
   <td style="text-align:right;"> -0.1519566 </td>
   <td style="text-align:right;"> -0.0475307 </td>
   <td style="text-align:right;"> 0.0266397 </td>
  </tr>
  <tr>
   <td style="text-align:left;"> whole arena resting time </td>
   <td style="text-align:right;"> 1 </td>
   <td style="text-align:left;"> Open Field </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:right;"> -0.0531307 </td>
   <td style="text-align:right;"> -0.1011672 </td>
   <td style="text-align:right;"> -0.0050941 </td>
   <td style="text-align:right;"> 0.0245089 </td>
   <td style="text-align:right;"> -0.0593672 </td>
   <td style="text-align:right;"> -0.1076067 </td>
   <td style="text-align:right;"> -0.0111276 </td>
   <td style="text-align:right;"> 0.0246125 </td>
   <td style="text-align:right;"> 0.0045878 </td>
   <td style="text-align:right;"> -0.0513396 </td>
   <td style="text-align:right;"> 0.0605152 </td>
   <td style="text-align:right;"> 0.0285349 </td>
  </tr>
</tbody>
</table></div>

<!-- rnb-htmlwidget-end -->
 <!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG4jIHRyYWl0X21ldGFfcmVzdWx0cyA8LSB3cml0ZS5jc3YobWV0YWNvbWJvLCBmaWxlID0gXCJleHBvcnQvdHJhaXRfbWV0YV9yZXN1bHRzLmNzdlwiKSAgI0ZlbGl4IDcvMi8yMDIwOiBJIHRoaW5rIHRoaXMgY2FuIGJlIGRlbGV0ZWQgZm9yIHB1YmxpY2F0aW9uIVxuYGBgIn0= --></p>
<pre class="r"><code>
# trait_meta_results &lt;- write.csv(metacombo, file = &quot;export/trait_meta_results.csv&quot;)  #Felix 7/2/2020: I think this can be deleted for publication!</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="second-order-meta-analysis-for-functional-groups" class="section level2">
<h2>3. Second-order meta-analysis for functional groups</h2>
<p>(Section H in Figure 3 in main article)</p>
<div id="performing-meta-analyses-3-for-each-of-the-9-grouping-terms-lncvr-lnvr-lnrr" class="section level3">
<h3>Performing meta-analyses (3 for each of the 9 grouping terms: lnCVR, lnVR, lnRR)</h3>
<div id="preparation-of-data" class="section level4">
<h4>Preparation of data</h4>
<p>Nesting, calculating the number of parameters within each grouping term, and running the meta-analyses</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YWNvbWJvX2ZpbmFsIDwtIG1ldGFjb21ibyAlPiVcbiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgIG5lc3QoKVxuXG4jICoqY2FsY3VsYXRlIG51bWJlciBvZiBwYXJhbWV0ZXJzIHBlciBncm91cGluZyB0ZXJtXG5cbm1ldGFjb21ib19maW5hbCA8LSBtZXRhY29tYm9fZmluYWwgJT4lIG11dGF0ZShwYXJhX3Blcl9Hcm91cGluZ1Rlcm0gPSBtYXBfZGJsKGRhdGEsIG5yb3cpKVxuXG4jIEZvciBhbGwgZ3JvdXBpbmcgdGVybXNcbm1ldGFjb21ib19maW5hbF9hbGwgPC0gbWV0YWNvbWJvICU+JVxuICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpXG5cblxuIyAqKkZpbmFsIGZpeGVkIGVmZmVjdHMgbWV0YS1hbmFseXNlcyB3aXRoaW4gZ3JvdXBpbmcgdGVybXMsIHdpdGggU0Ugb2YgdGhlIGVzdGltYXRlXG5cbm92ZXJhbGwxIDwtIG1ldGFjb21ib19maW5hbCAlPiVcblxuICBtdXRhdGUoXG4gICAgbW9kZWxfbG5DVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICAgICkpLFxuICAgIG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICAgICkpLFxuICAgIG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgICAgeWkgPSAueCRsblJSLCBzZWkgPSAoLngkbG5SUl91cHBlciAtIC54JGxuUlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICAgICkpXG4gIClcblxuIyAqKkZpbmFsIGZpeGVkIGVmZmVjdHMgbWV0YS1hbmFseXNlcyBBQ1JPU1MgZ3JvdXBpbmcgdGVybXMsIHdpdGggU0Ugb2YgdGhlIGVzdGltYXRlXG5cbm92ZXJhbGxfYWxsMSA8LSBtZXRhY29tYm9fZmluYWxfYWxsICU+JVxuXG4gIG11dGF0ZShcbiAgICBtb2RlbF9sbkNWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgICB5aSA9IC54JGxuQ1ZSLCBzZWkgPSAoLngkbG5DVlJfdXBwZXIgLSAueCRsbkNWUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICAgKSksXG4gICAgbW9kZWxfbG5WUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgICB5aSA9IC54JGxuVlIsIHNlaSA9ICgueCRsblZSX3VwcGVyIC0gLngkbG5WUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICAgKSksXG4gICAgbW9kZWxfbG5SUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgICB5aSA9IC54JGxuUlIsIHNlaSA9ICgueCRsblJSX3VwcGVyIC0gLngkbG5SUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICAgKSlcbiAgKVxuYGBgIn0= -->
<pre class="r"><code>metacombo_final &lt;- metacombo %&gt;%
  group_by(GroupingTerm) %&gt;%
   nest()

# **calculate number of parameters per grouping term

metacombo_final &lt;- metacombo_final %&gt;% mutate(para_per_GroupingTerm = map_dbl(data, nrow))

# For all grouping terms
metacombo_final_all &lt;- metacombo %&gt;%
  nest(data = everything())


# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate

overall1 &lt;- metacombo_final %&gt;%

  mutate(
    model_lnCVR = map(data, ~ metafor::rma.uni(
      yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
    )),
    model_lnVR = map(data, ~ metafor::rma.uni(
      yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
    )),
    model_lnRR = map(data, ~ metafor::rma.uni(
      yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
    ))
  )

# **Final fixed effects meta-analyses ACROSS grouping terms, with SE of the estimate

overall_all1 &lt;- metacombo_final_all %&gt;%

  mutate(
    model_lnCVR = map(data, ~ metafor::rma.uni(
      yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
    )),
    model_lnVR = map(data, ~ metafor::rma.uni(
      yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
    )),
    model_lnRR = map(data, ~ metafor::rma.uni(
      yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
    ))
  )</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="re-structuring-the-data-for-each-grouping-term" class="section level3">
<h3>Re-structuring the data for each grouping term</h3>
<p>We here delete unused variables, and select the respective effect sizes. Please note - the referencing of the cells does NOT depend on previous ordering of the data. This would only be affected if the output structure from metafor::rma.uni changes.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuQmVoYXZpb3VyIDwtIG92ZXJhbGwxICU+JSBcbiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSBcIkJlaGF2aW91clwiKSAlPiUgXG4gIG11dGF0ZShcbiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsXG4gICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsXG4gICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2VcbiAgKSAgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpXG5cbkltbXVub2xvZ3kgPC0gb3ZlcmFsbDEgJT4lIFxuICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09IFwiSW1tdW5vbG9neVwiKSAlPiUgXG4gIG11dGF0ZShcbiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsXG4gICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsXG4gICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2VcbiAgKSAgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpXG5cbkhlbWF0b2xvZ3kgPC0gb3ZlcmFsbDEgJT4lIFxuICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09IFwiSGVtYXRvbG9neVwiKSAlPiUgXG4gIG11dGF0ZShcbiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsXG4gICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsXG4gICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2VcbiAgKSAgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpXG5cbkhlYXJpbmcgPC0gb3ZlcmFsbDEgJT4lIFxuICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09IFwiSGVhcmluZ1wiKSAlPiUgXG4gIG11dGF0ZShcbiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsXG4gICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsXG4gICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2VcbiAgKSAgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpXG5cblBoeXNpb2xvZ3kgPC0gb3ZlcmFsbDEgJT4lIFxuICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09IFwiUGh5c2lvbG9neVwiKSAlPiUgXG4gIG11dGF0ZShcbiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsXG4gICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsXG4gICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2VcbiAgKSAgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpXG5cbk1ldGFib2xpc20gPC0gb3ZlcmFsbDEgJT4lIFxuICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09IFwiTWV0YWJvbGlzbVwiKSAlPiUgXG4gIG11dGF0ZShcbiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsXG4gICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsXG4gICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2VcbiAgKSAgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpXG5cbk1vcnBob2xvZ3kgPC0gb3ZlcmFsbDEgJT4lIFxuICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09IFwiTW9ycGhvbG9neVwiKSAlPiVcbiAgbXV0YXRlKFxuICAgIGxuQ1ZSID0gLltbNF1dW1sxXV0kYiwgbG5DVlJfbG93ZXIgPSAuW1s0XV1bWzFdXSRjaS5sYiwgbG5DVlJfdXBwZXIgPSAuW1s0XV1bWzFdXSRjaS51YiwgbG5DVlJfc2UgPSAuW1s0XV1bWzFdXSRzZSxcbiAgICBsblZSID0gLltbNV1dW1sxXV0kYiwgbG5WUl9sb3dlciA9IC5bWzVdXVtbMV1dJGNpLmxiLCBsblZSX3VwcGVyID0gLltbNV1dW1sxXV0kY2kudWIsIGxuVlJfc2UgPSAuW1s1XV1bWzFdXSRzZSxcbiAgICBsblJSID0gLltbNl1dW1sxXV0kYiwgbG5SUl9sb3dlciA9IC5bWzZdXVtbMV1dJGNpLmxiLCBsblJSX3VwcGVyID0gLltbNl1dW1sxXV0kY2kudWIsIGxuUlJfc2UgPSAuW1s2XV1bWzFdXSRzZVxuICApICAlPiVcbiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgbG5DVlI6bG5SUl9zZSlcbiAgXG5IZWFydCA8LSBvdmVyYWxsMSAlPiUgXG4gIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gXCJIZWFydFwiKSAlPiUgXG4gIG11dGF0ZShcbiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsXG4gICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsXG4gICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2VcbiAgKSAgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpXG5cbkV5ZSA8LSBvdmVyYWxsMSAlPiUgXG4gIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gXCJFeWVcIikgJT4lIFxuICBtdXRhdGUoXG4gICAgbG5DVlIgPSAuW1s0XV1bWzFdXSRiLCBsbkNWUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBsbkNWUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBsbkNWUl9zZSA9IC5bWzRdXVtbMV1dJHNlLFxuICAgIGxuVlIgPSAuW1s1XV1bWzFdXSRiLCBsblZSX2xvd2VyID0gLltbNV1dW1sxXV0kY2kubGIsIGxuVlJfdXBwZXIgPSAuW1s1XV1bWzFdXSRjaS51YiwgbG5WUl9zZSA9IC5bWzVdXVtbMV1dJHNlLFxuICAgIGxuUlIgPSAuW1s2XV1bWzFdXSRiLCBsblJSX2xvd2VyID0gLltbNl1dW1sxXV0kY2kubGIsIGxuUlJfdXBwZXIgPSAuW1s2XV1bWzFdXSRjaS51YiwgbG5SUl9zZSA9IC5bWzZdXVtbMV1dJHNlXG4gICkgICU+JVxuICAgIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpXG5cbkFsbCA8LSBvdmVyYWxsX2FsbDEgJT4lIFxuICBtdXRhdGUoXG4gICAgbG5DVlIgPSAuW1syXV1bWzFdXSRiLCBsbkNWUl9sb3dlciA9IC5bWzJdXVtbMV1dJGNpLmxiLCBsbkNWUl91cHBlciA9IC5bWzJdXVtbMV1dJGNpLnViLCBsbkNWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLCBcbiAgICBsblZSID0gLltbM11dW1sxXV0kYiwgbG5WUl9sb3dlciA9IC5bWzNdXVtbMV1dJGNpLmxiLCBsblZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGxuVlJfc2UgPSAuW1szXV1bWzFdXSRzZSxcbiAgICBsblJSID0gLltbNF1dW1sxXV0kYiwgbG5SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBsblJSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuUlJfc2UgPSAuW1s0XV1bWzFdXSRzZVxuICApICAlPiVcbiAgICBzZWxlY3QoLiwgbG5DVlI6bG5SUl9zZSlcblxuQWxsIDwtIEFsbCAlPiUgbXV0YXRlKEdyb3VwaW5nVGVybSA9IFwiQWxsXCIpXG5cbm92ZXJhbGwyIDwtIGJpbmRfcm93cyhCZWhhdmlvdXIsIE1vcnBob2xvZ3ksIE1ldGFib2xpc20sIFBoeXNpb2xvZ3ksIEltbXVub2xvZ3ksIEhlbWF0b2xvZ3ksIEhlYXJ0LCBIZWFyaW5nLCBFeWUsIEFsbCkgXG5gYGAifQ== -->
<pre class="r"><code>Behaviour &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Behaviour&quot;) %&gt;% 
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
  select(., GroupingTerm, lnCVR:lnRR_se)

Immunology &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Immunology&quot;) %&gt;% 
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
  select(., GroupingTerm, lnCVR:lnRR_se)

Hematology &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Hematology&quot;) %&gt;% 
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
  select(., GroupingTerm, lnCVR:lnRR_se)

Hearing &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Hearing&quot;) %&gt;% 
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
  select(., GroupingTerm, lnCVR:lnRR_se)

Physiology &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Physiology&quot;) %&gt;% 
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
  select(., GroupingTerm, lnCVR:lnRR_se)

Metabolism &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Metabolism&quot;) %&gt;% 
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
  select(., GroupingTerm, lnCVR:lnRR_se)

Morphology &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Morphology&quot;) %&gt;%
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
  select(., GroupingTerm, lnCVR:lnRR_se)
  
Heart &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Heart&quot;) %&gt;% 
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
  select(., GroupingTerm, lnCVR:lnRR_se)

Eye &lt;- overall1 %&gt;% 
  filter(., GroupingTerm == &quot;Eye&quot;) %&gt;% 
  mutate(
    lnCVR = .[[4]][[1]]$b, lnCVR_lower = .[[4]][[1]]$ci.lb, lnCVR_upper = .[[4]][[1]]$ci.ub, lnCVR_se = .[[4]][[1]]$se,
    lnVR = .[[5]][[1]]$b, lnVR_lower = .[[5]][[1]]$ci.lb, lnVR_upper = .[[5]][[1]]$ci.ub, lnVR_se = .[[5]][[1]]$se,
    lnRR = .[[6]][[1]]$b, lnRR_lower = .[[6]][[1]]$ci.lb, lnRR_upper = .[[6]][[1]]$ci.ub, lnRR_se = .[[6]][[1]]$se
  )  %&gt;%
    select(., GroupingTerm, lnCVR:lnRR_se)

All &lt;- overall_all1 %&gt;% 
  mutate(
    lnCVR = .[[2]][[1]]$b, lnCVR_lower = .[[2]][[1]]$ci.lb, lnCVR_upper = .[[2]][[1]]$ci.ub, lnCVR_se = .[[2]][[1]]$se, 
    lnVR = .[[3]][[1]]$b, lnVR_lower = .[[3]][[1]]$ci.lb, lnVR_upper = .[[3]][[1]]$ci.ub, lnVR_se = .[[3]][[1]]$se,
    lnRR = .[[4]][[1]]$b, lnRR_lower = .[[4]][[1]]$ci.lb, lnRR_upper = .[[4]][[1]]$ci.ub, lnRR_se = .[[4]][[1]]$se
  )  %&gt;%
    select(., lnCVR:lnRR_se)

All &lt;- All %&gt;% mutate(GroupingTerm = &quot;All&quot;)

overall2 &lt;- bind_rows(Behaviour, Morphology, Metabolism, Physiology, Immunology, Hematology, Heart, Hearing, Eye, All) </code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
</div>
<div id="visualisation" class="section level1">
<h1>Visualisation</h1>
<div id="figure-4" class="section level2">
<h2>Figure 4</h2>
<div id="preparation-for-plots-count-data-based-on-first-order-metamanalysis-results" class="section level4">
<h4>Preparation for plots: Count data, based on First-order metamanalysis results</h4>
<p>This includes all separate eligible traits. Re-ordering of grouping terms</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG5tZXRhX2NsZWFuJEdyb3VwaW5nVGVybSA8LSBmYWN0b3IobWV0YV9jbGVhbiRHcm91cGluZ1Rlcm0sIGxldmVscyA9IGMoXCJCZWhhdmlvdXJcIiwgXCJNb3JwaG9sb2d5XCIsIFwiTWV0YWJvbGlzbVwiLCBcIlBoeXNpb2xvZ3lcIiwgXCJJbW11bm9sb2d5XCIsIFwiSGVtYXRvbG9neVwiLCBcIkhlYXJ0XCIsIFwiSGVhcmluZ1wiLCBcIkV5ZVwiKSlcbm1ldGFfY2xlYW4kR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihtZXRhX2NsZWFuJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhtZXRhX2NsZWFuJEdyb3VwaW5nVGVybSkpKVxuXG4jICpQcmVwYXJpbmcgZGF0YSBmb3IgYWxsIHRyYWl0c1xuXG5tZXRhLnBsb3QyLmFsbCA8LSBtZXRhX2NsZWFuICU+JVxuICBzZWxlY3QobG5DVlIsIGxuVlIsIGxuUlIsIEdyb3VwaW5nVGVybSkgJT4lXG4gIGFycmFuZ2UoR3JvdXBpbmdUZXJtKVxuXG5tZXRhLnBsb3QyLmFsbC5iIDwtIGdhdGhlcihtZXRhLnBsb3QyLmFsbCwgdHJhaXQsIHZhbHVlLCBjKGxuQ1ZSLCBsblJSKSkgIyBsblZSIGhhcyBiZWVuIHJlbW92ZWQgaGVyZSBhbmQgaW4gdGhlIHN0ZXBzIGJlbG93LCBhcyB0aGlzIGlzIG9ubHkgaW5jbHVkZWQgaW4gdGhlIHN1cHBsZW1lbnRhbCBmaWd1cmVcblxubWV0YS5wbG90Mi5hbGwuYiR0cmFpdCA8LSBmYWN0b3IobWV0YS5wbG90Mi5hbGwuYiR0cmFpdCwgbGV2ZWxzID0gYyhcImxuQ1ZSXCIsIFwibG5SUlwiKSkgXG5tZXRhLnBsb3QyLmFsbC5jIDwtIG1ldGEucGxvdDIuYWxsLmIgJT4lXG4gIGdyb3VwX2J5X2F0KHZhcnModHJhaXQsIEdyb3VwaW5nVGVybSkpICU+JVxuICBzdW1tYXJpc2UoXG4gICAgbWFsZWJpYXMgPSBzdW0odmFsdWUgPiAwKSwgZmVtYWxlYmlhcyA9IHN1bSh2YWx1ZSA8PSAwKSwgdG90YWwgPSBtYWxlYmlhcyArIGZlbWFsZWJpYXMsXG4gICAgbWFsZXBlcmNlbnQgPSBtYWxlYmlhcyAqIDEwMCAvIHRvdGFsLCBmZW1hbGVwZXJjZW50ID0gZmVtYWxlYmlhcyAqIDEwMCAvIHRvdGFsXG4gIClcblxubWV0YS5wbG90Mi5hbGwuYyRsYWJlbCA8LSBcIkFsbCB0cmFpdHNcIlxuXG4jIFJlLXN0cnVjdHVyZSB0byBjcmVhdGUgc3RhY2tlZCBiYXIgcGxvdHNcblxubWV0YS5wbG90Mi5hbGwuZCA8LSBhcy5kYXRhLmZyYW1lKG1ldGEucGxvdDIuYWxsLmMpXG5tZXRhLnBsb3QyLmFsbC5lIDwtIGdhdGhlcihtZXRhLnBsb3QyLmFsbC5kLCBrZXkgPSBzZXgsIHZhbHVlID0gcGVyY2VudCwgbWFsZXBlcmNlbnQ6ZmVtYWxlcGVyY2VudCwgZmFjdG9yX2tleSA9IFRSVUUpXG5cbiMgQ3JlYXRlIG5ldyBzYW1wbGUgc2l6ZSB2YXJpYWJsZVxuXG5tZXRhLnBsb3QyLmFsbC5lJHNhbXBsZXNpemUgPC0gd2l0aChtZXRhLnBsb3QyLmFsbC5lLCBpZmVsc2Uoc2V4ID09IFwibWFsZXBlcmNlbnRcIiwgbWFsZWJpYXMsIGZlbWFsZWJpYXMpKVxuXG4jIEFkZCBzdW1tYXJ5IHJvdyAoJ0FsbCcpIGFuZCByZS1hcnJhbmdlIHJvd3MgaW50byBjb3JyZWN0IG9yZGVyIGZvciBwbG90dGluZyAod2FybmluZ3MgYWJvdXQgY29lcmNpbmcgJ2lkJyBpbnRvIGNoYXJhY3RlciB2ZWN0b3IgYXJlIG9rKVxuXG5tZXRhLnBsb3QyLmFsbC5mIDwtIG1ldGEucGxvdDIuYWxsLmUgJT4lIGdyb3VwX2J5KHRyYWl0LCBzZXgpICU+JSBcblx0c3VtbWFyaXNlKEdyb3VwaW5nVGVybSA9IFwiQWxsXCIsIG1hbGViaWFzID0gc3VtKG1hbGViaWFzKSwgZmVtYWxlYmlhcyA9IHN1bShmZW1hbGViaWFzKSwgdG90YWwgPSBtYWxlYmlhcyArIGZlbWFsZWJpYXMsIFxuXHRsYWJlbCA9IFwiQWxsIHRyYWl0c1wiLCBzYW1wbGVzaXplID0gc3VtKHNhbXBsZXNpemUpKSAlPiVcblx0bXV0YXRlKHBlcmNlbnQgPSBpZmVsc2Uoc2V4ID09IFwiZmVtYWxlcGVyY2VudFwiLCBmZW1hbGViaWFzKjEwMC8obWFsZWJpYXMrZmVtYWxlYmlhcyksIG1hbGViaWFzKjEwMC8obWFsZWJpYXMrZmVtYWxlYmlhcykpKSAlPiVcblx0YmluZF9yb3dzKG1ldGEucGxvdDIuYWxsLmUsIC4pICU+JVxuXHRtdXRhdGUocm93bnVtYmVyID0gcm93X251bWJlcigpKSAlPiVcblx0LltjKDM3LCAxOjksIDM5LCAxMDoxOCwgMzgsIDE5OjI3LCA0MCwgMjg6MzYpLCBdIFxuYGBgIn0= -->
<pre class="r"><code>
meta_clean$GroupingTerm &lt;- factor(meta_clean$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;))
meta_clean$GroupingTerm &lt;- factor(meta_clean$GroupingTerm, rev(levels(meta_clean$GroupingTerm)))

# *Preparing data for all traits

meta.plot2.all &lt;- meta_clean %&gt;%
  select(lnCVR, lnVR, lnRR, GroupingTerm) %&gt;%
  arrange(GroupingTerm)

meta.plot2.all.b &lt;- gather(meta.plot2.all, trait, value, c(lnCVR, lnRR)) # lnVR has been removed here and in the steps below, as this is only included in the supplemental figure

meta.plot2.all.b$trait &lt;- factor(meta.plot2.all.b$trait, levels = c(&quot;lnCVR&quot;, &quot;lnRR&quot;)) 
meta.plot2.all.c &lt;- meta.plot2.all.b %&gt;%
  group_by_at(vars(trait, GroupingTerm)) %&gt;%
  summarise(
    malebias = sum(value &gt; 0), femalebias = sum(value &lt;= 0), total = malebias + femalebias,
    malepercent = malebias * 100 / total, femalepercent = femalebias * 100 / total
  )

meta.plot2.all.c$label &lt;- &quot;All traits&quot;

# Re-structure to create stacked bar plots

meta.plot2.all.d &lt;- as.data.frame(meta.plot2.all.c)
meta.plot2.all.e &lt;- gather(meta.plot2.all.d, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)

# Create new sample size variable

meta.plot2.all.e$samplesize &lt;- with(meta.plot2.all.e, ifelse(sex == &quot;malepercent&quot;, malebias, femalebias))

# Add summary row ('All') and re-arrange rows into correct order for plotting (warnings about coercing 'id' into character vector are ok)

meta.plot2.all.f &lt;- meta.plot2.all.e %&gt;% group_by(trait, sex) %&gt;% 
    summarise(GroupingTerm = &quot;All&quot;, malebias = sum(malebias), femalebias = sum(femalebias), total = malebias + femalebias, 
    label = &quot;All traits&quot;, samplesize = sum(samplesize)) %&gt;%
    mutate(percent = ifelse(sex == &quot;femalepercent&quot;, femalebias*100/(malebias+femalebias), malebias*100/(malebias+femalebias))) %&gt;%
    bind_rows(meta.plot2.all.e, .) %&gt;%
    mutate(rownumber = row_number()) %&gt;%
    .[c(37, 1:9, 39, 10:18, 38, 19:27, 40, 28:36), ] </code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiYmluZGluZyBmYWN0b3IgYW5kIGNoYXJhY3RlciB2ZWN0b3IsIGNvZXJjaW5nIGludG8gY2hhcmFjdGVyIHZlY3RvcmJpbmRpbmcgY2hhcmFjdGVyIGFuZCBmYWN0b3IgdmVjdG9yLCBjb2VyY2luZyBpbnRvIGNoYXJhY3RlciB2ZWN0b3JcbiJ9 -->
<pre><code>binding factor and character vector, coercing into character vectorbinding character and factor vector, coercing into character vector</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuICAjbGluZSByZWZlcmVuY2VzIGluIHByZXZpb3VzIGNvZGUgbGluZSBjb3JyZXNwb25kaW5nIHRvOiBcbiAgIydsbkNWUihtYWxlKEFsbCkpLCBsbkNWUihtYWxlKCdzaW5nbGUgZ3JvdXBpbmcgdGVybXMnKSwgbG5SUihtYWxlKEFsbCkpLCBsblJSKG1hbGUoJ3NpbmdsZSBncm91cGluZyB0ZXJtcycpKSxcbiAgI2xuQ1ZSKGZlbWFsZShBbGwpKSwgbG5DVlIoZmVtYWxlKCdzaW5nbGUgZ3JvdXBpbmcgdGVybXMnKSwgbG5SUihmZW1hbGUoQWxsKSksIGxuUlIoZmVtYWxlKCdzaW5nbGUgZ3JvdXBpbmcgdGVybXMnKSknXG5cbm1ldGEucGxvdDIuYWxsLmYkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihtZXRhLnBsb3QyLmFsbC5mJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYyhcIkJlaGF2aW91clwiLCBcIk1vcnBob2xvZ3lcIiwgXCJNZXRhYm9saXNtXCIsIFwiUGh5c2lvbG9neVwiLCBcIkltbXVub2xvZ3lcIiwgXCJIZW1hdG9sb2d5XCIsIFwiSGVhcnRcIiwgXCJIZWFyaW5nXCIsIFwiRXllXCIsIFwiQWxsXCIpKSBcbm1ldGEucGxvdDIuYWxsLmYkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihtZXRhLnBsb3QyLmFsbC5mJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhtZXRhLnBsb3QyLmFsbC5mJEdyb3VwaW5nVGVybSkpKVxuXG5tYWxlYmlhc19GaWcyX2FsbHRyYWl0cyA8LVxuICBnZ3Bsb3QobWV0YS5wbG90Mi5hbGwuZikgK1xuICBhZXMoeCA9IEdyb3VwaW5nVGVybSwgeSA9IHBlcmNlbnQsIGZpbGwgPSBzZXgpICtcbiAgZ2VvbV9jb2woKSArXG4gIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDUwLCBsaW5ldHlwZSA9IFwiZGFzaGVkXCIsIGNvbG9yID0gXCJncmF5NDBcIikgK1xuICBnZW9tX3RleHQoXG4gICAgZGF0YSA9IHN1YnNldChtZXRhLnBsb3QyLmFsbC5mLCBzYW1wbGVzaXplICE9IDApLCBhZXMobGFiZWwgPSBzYW1wbGVzaXplKSwgcG9zaXRpb24gPSBwb3NpdGlvbl9zdGFjayh2anVzdCA9IC41KSxcbiAgICBjb2xvciA9IFwid2hpdGVcIiwgc2l6ZSA9IDMuNVxuICApICtcbiAgZmFjZXRfZ3JpZChcbiAgICBjb2xzID0gdmFycyh0cmFpdCksIHJvd3MgPSB2YXJzKGxhYmVsKSwgbGFiZWxsZXIgPSBsYWJlbF93cmFwX2dlbih3aWR0aCA9IDE4KSxcbiAgICBzY2FsZXMgPSBcImZyZWVcIiwgc3BhY2UgPSBcImZyZWVcIlxuICApICtcbiAgc2NhbGVfZmlsbF9icmV3ZXIocGFsZXR0ZSA9IFwiU2V0MlwiKSArXG4gIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE4KSArXG4gIHRoZW1lKFxuICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksXG4gICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksXG4gICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9IFwiYmxhbmtcIiwgZmlsbCA9IFwiZ3JheTkwXCIpLFxuICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSxcbiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsIFwibGluZXNcIiksXG4gICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3VyID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksXG4gICAgbGVnZW5kLnBvc2l0aW9uID0gXCJub25lXCIsXG4gICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKVxuICApICtcbiAgY29vcmRfZmxpcCgpXG5cbiMgbWFsZWJpYXNfRmlnMl9hbGx0cmFpdHMgICAgICMocGFuZWwgQSBpbiBGaWd1cmUgNCBpbiBtcylcbmBgYCJ9 -->
<pre class="r"><code>  #line references in previous code line corresponding to: 
  #'lnCVR(male(All)), lnCVR(male('single grouping terms'), lnRR(male(All)), lnRR(male('single grouping terms')),
  #lnCVR(female(All)), lnCVR(female('single grouping terms'), lnRR(female(All)), lnRR(female('single grouping terms'))'

meta.plot2.all.f$GroupingTerm &lt;- factor(meta.plot2.all.f$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;)) 
meta.plot2.all.f$GroupingTerm &lt;- factor(meta.plot2.all.f$GroupingTerm, rev(levels(meta.plot2.all.f$GroupingTerm)))

malebias_Fig2_alltraits &lt;-
  ggplot(meta.plot2.all.f) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = 50, linetype = &quot;dashed&quot;, color = &quot;gray40&quot;) +
  geom_text(
    data = subset(meta.plot2.all.f, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5),
    color = &quot;white&quot;, size = 3.5
  ) +
  facet_grid(
    cols = vars(trait), rows = vars(label), labeller = label_wrap_gen(width = 18),
    scales = &quot;free&quot;, space = &quot;free&quot;
  ) +
  scale_fill_brewer(palette = &quot;Set2&quot;) +
  theme_bw(base_size = 18) +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_text(size = 12),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.position = &quot;none&quot;,
    axis.title.x = element_blank(),
    axis.title.y = element_blank()
  ) +
  coord_flip()

# malebias_Fig2_alltraits     #(panel A in Figure 4 in ms)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="overall-results-of-second-order-meta-analysis-figure-4-panel-b" class="section level3">
<h3>Overall results of second order meta-analysis (Figure 4, Panel B)</h3>
<div id="re-structure-data-for-plotting" class="section level4">
<h4>Re-structure data for plotting</h4>
<p>Data are re-structured, and grouping terms are being re-ordered</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDMgPC0gZ2F0aGVyKG92ZXJhbGwyLCBwYXJhbWV0ZXIsIHZhbHVlLCBjKGxuQ1ZSLCBsblJSKSwgZmFjdG9yX2tleSA9IFRSVUUpIFxuXG5sbkNWUi5jaSA8LSBvdmVyYWxsMyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuQ1ZSXCIpICU+JVxuICBtdXRhdGUoY2kubG93ID0gbG5DVlJfbG93ZXIsIGNpLmhpZ2ggPSBsbkNWUl91cHBlcilcbmxuVlIuY2kgPC0gb3ZlcmFsbDMgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsblZSXCIpICU+JVxuICBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpXG5sblJSLmNpIDwtIG92ZXJhbGwzICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5SUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuUlJfbG93ZXIsIGNpLmhpZ2ggPSBsblJSX3VwcGVyKVxuXG5vdmVyYWxsNCA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpIFxuXG4jIFJlLW9yZGVyIGdyb3VwaW5nIHRlcm1zXG5cbm92ZXJhbGw0JEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbDQkR3JvdXBpbmdUZXJtLCBsZXZlbHMgPSBjKFwiQmVoYXZpb3VyXCIsIFwiTW9ycGhvbG9neVwiLCBcIk1ldGFib2xpc21cIiwgXCJQaHlzaW9sb2d5XCIsIFwiSW1tdW5vbG9neVwiLCBcIkhlbWF0b2xvZ3lcIiwgXCJIZWFydFwiLCBcIkhlYXJpbmdcIiwgXCJFeWVcIiwgXCJBbGxcIikpXG5vdmVyYWxsNCRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGw0JEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhvdmVyYWxsNCRHcm91cGluZ1Rlcm0pKSlcbm92ZXJhbGw0JGxhYmVsIDwtIFwiQWxsIHRyYWl0c1wiXG5cbmthYmxlKGNiaW5kKG92ZXJhbGw0LCBvdmVyYWxsNCkpICU+JVxuICBrYWJsZV9zdHlsaW5nKCkgJT4lXG4gIHNjcm9sbF9ib3god2lkdGggPSBcIjEwMCVcIiwgaGVpZ2h0ID0gXCIyMDBweFwiKVxuYGBgIn0= -->
<pre class="r"><code>overall3 &lt;- gather(overall2, parameter, value, c(lnCVR, lnRR), factor_key = TRUE) 

lnCVR.ci &lt;- overall3 %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3 %&gt;%
  filter(parameter == &quot;lnVR&quot;) %&gt;%
  mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3 %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4 &lt;- bind_rows(lnCVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high) 

# Re-order grouping terms

overall4$GroupingTerm &lt;- factor(overall4$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;))
overall4$GroupingTerm &lt;- factor(overall4$GroupingTerm, rev(levels(overall4$GroupingTerm)))
overall4$label &lt;- &quot;All traits&quot;

kable(cbind(overall4, overall4)) %&gt;%
  kable_styling() %&gt;%
  scroll_box(width = &quot;100%&quot;, height = &quot;200px&quot;)</code></pre>
<!-- rnb-source-end -->

<!-- rnb-htmlwidget-begin eyJkZXBlbmRlbmNpZXMiOlt7ImFsbF9maWxlcyI6dHJ1ZSwiYXR0YWNobWVudCI6W10sImhlYWQiOltdLCJtZXRhIjpbXSwibmFtZSI6ImpxdWVyeSIsInBhY2thZ2UiOltdLCJzY3JpcHQiOiJqcXVlcnkubWluLmpzIiwic3JjIjp7ImZpbGUiOiIvTGlicmFyeS9GcmFtZXdvcmtzL1IuZnJhbWV3b3JrL1ZlcnNpb25zLzMuNi9SZXNvdXJjZXMvbGlicmFyeS9ybWFya2Rvd24vcm1kL2gvanF1ZXJ5In0sInN0eWxlc2hlZXQiOltdLCJ2ZXJzaW9uIjoiMS4xMS4zIn0seyJhbGxfZmlsZXMiOnRydWUsImF0dGFjaG1lbnQiOltdLCJoZWFkIjpbXSwibWV0YSI6eyJ2aWV3cG9ydCI6IndpZHRoPWRldmljZS13aWR0aCwgaW5pdGlhbC1zY2FsZT0xIn0sIm5hbWUiOiJib290c3RyYXAiLCJwYWNrYWdlIjpbXSwic2NyaXB0IjpbImpzL2Jvb3RzdHJhcC5taW4uanMiLCJzaGltL2h0bWw1c2hpdi5taW4uanMiLCJzaGltL3Jlc3BvbmQubWluLmpzIl0sInNyYyI6eyJmaWxlIjoiL0xpYnJhcnkvRnJhbWV3b3Jrcy9SLmZyYW1ld29yay9WZXJzaW9ucy8zLjYvUmVzb3VyY2VzL2xpYnJhcnkvcm1hcmtkb3duL3JtZC9oL2Jvb3RzdHJhcCJ9LCJzdHlsZXNoZWV0IjoiY3NzL3NpbXBsZXgubWluLmNzcyIsInZlcnNpb24iOiIzLjMuNSJ9LHsiYWxsX2ZpbGVzIjp0cnVlLCJhdHRhY2htZW50IjpbXSwiaGVhZCI6W10sIm1ldGEiOltdLCJuYW1lIjoia2VQcmludCIsInBhY2thZ2UiOltdLCJzY3JpcHQiOiJrZVByaW50LmpzIiwic3JjIjp7ImZpbGUiOiIvVXNlcnMvc3ovTGlicmFyeS9SLzMuNi9saWJyYXJ5L2thYmxlRXh0cmEva2VQcmludC0wLjAuMSJ9LCJzdHlsZXNoZWV0IjpbXSwidmVyc2lvbiI6IjAuMC4xIn1dLCJtZXRhZGF0YSI6eyJjbGFzc2VzIjpbInNoaW55LnRhZy5saXN0IiwibGlzdCJdLCJzaXppbmdQb2xpY3kiOltdfX0= -->

<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:100%; "><table class="table" style="margin-left: auto; margin-right: auto;">
 <thead>
  <tr>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> GroupingTerm </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> parameter </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> value </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> ci.low </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> ci.high </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> label </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> GroupingTerm1 </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> parameter1 </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> value1 </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> ci.low1 </th>
   <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> ci.high1 </th>
   <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> label1 </th>
  </tr>
 </thead>
<tbody>
  <tr>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> -0.0035049 </td>
   <td style="text-align:right;"> -0.0240688 </td>
   <td style="text-align:right;"> 0.0170591 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> -0.0035049 </td>
   <td style="text-align:right;"> -0.0240688 </td>
   <td style="text-align:right;"> 0.0170591 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0774453 </td>
   <td style="text-align:right;"> 0.0414171 </td>
   <td style="text-align:right;"> 0.1134734 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0774453 </td>
   <td style="text-align:right;"> 0.0414171 </td>
   <td style="text-align:right;"> 0.1134734 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> -0.0430831 </td>
   <td style="text-align:right;"> -0.1125945 </td>
   <td style="text-align:right;"> 0.0264283 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> -0.0430831 </td>
   <td style="text-align:right;"> -0.1125945 </td>
   <td style="text-align:right;"> 0.0264283 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0126792 </td>
   <td style="text-align:right;"> -0.0140094 </td>
   <td style="text-align:right;"> 0.0393678 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0126792 </td>
   <td style="text-align:right;"> -0.0140094 </td>
   <td style="text-align:right;"> 0.0393678 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> -0.0681817 </td>
   <td style="text-align:right;"> -0.0980135 </td>
   <td style="text-align:right;"> -0.0383499 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> -0.0681817 </td>
   <td style="text-align:right;"> -0.0980135 </td>
   <td style="text-align:right;"> -0.0383499 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0217865 </td>
   <td style="text-align:right;"> -0.0165045 </td>
   <td style="text-align:right;"> 0.0600776 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0217865 </td>
   <td style="text-align:right;"> -0.0165045 </td>
   <td style="text-align:right;"> 0.0600776 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0183839 </td>
   <td style="text-align:right;"> -0.0128375 </td>
   <td style="text-align:right;"> 0.0496053 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0183839 </td>
   <td style="text-align:right;"> -0.0128375 </td>
   <td style="text-align:right;"> 0.0496053 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0157302 </td>
   <td style="text-align:right;"> -0.0111999 </td>
   <td style="text-align:right;"> 0.0426603 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0157302 </td>
   <td style="text-align:right;"> -0.0111999 </td>
   <td style="text-align:right;"> 0.0426603 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> -0.0817932 </td>
   <td style="text-align:right;"> -0.1476821 </td>
   <td style="text-align:right;"> -0.0159043 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> -0.0817932 </td>
   <td style="text-align:right;"> -0.1476821 </td>
   <td style="text-align:right;"> -0.0159043 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> All </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0046553 </td>
   <td style="text-align:right;"> -0.0086242 </td>
   <td style="text-align:right;"> 0.0179348 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> All </td>
   <td style="text-align:left;"> lnCVR </td>
   <td style="text-align:right;"> 0.0046553 </td>
   <td style="text-align:right;"> -0.0086242 </td>
   <td style="text-align:right;"> 0.0179348 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> -0.0199206 </td>
   <td style="text-align:right;"> -0.0634388 </td>
   <td style="text-align:right;"> 0.0235976 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Behaviour </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> -0.0199206 </td>
   <td style="text-align:right;"> -0.0634388 </td>
   <td style="text-align:right;"> 0.0235976 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0678160 </td>
   <td style="text-align:right;"> 0.0072225 </td>
   <td style="text-align:right;"> 0.1284095 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Morphology </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0678160 </td>
   <td style="text-align:right;"> 0.0072225 </td>
   <td style="text-align:right;"> 0.1284095 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.1422577 </td>
   <td style="text-align:right;"> 0.0364352 </td>
   <td style="text-align:right;"> 0.2480801 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Metabolism </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.1422577 </td>
   <td style="text-align:right;"> 0.0364352 </td>
   <td style="text-align:right;"> 0.2480801 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0163695 </td>
   <td style="text-align:right;"> -0.0443364 </td>
   <td style="text-align:right;"> 0.0770753 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Physiology </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0163695 </td>
   <td style="text-align:right;"> -0.0443364 </td>
   <td style="text-align:right;"> 0.0770753 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> -0.0574840 </td>
   <td style="text-align:right;"> -0.1074213 </td>
   <td style="text-align:right;"> -0.0075466 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Immunology </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> -0.0574840 </td>
   <td style="text-align:right;"> -0.1074213 </td>
   <td style="text-align:right;"> -0.0075466 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0388537 </td>
   <td style="text-align:right;"> -0.0024274 </td>
   <td style="text-align:right;"> 0.0801348 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Hematology </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0388537 </td>
   <td style="text-align:right;"> -0.0024274 </td>
   <td style="text-align:right;"> 0.0801348 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> -0.0048933 </td>
   <td style="text-align:right;"> -0.0324240 </td>
   <td style="text-align:right;"> 0.0226374 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Heart </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> -0.0048933 </td>
   <td style="text-align:right;"> -0.0324240 </td>
   <td style="text-align:right;"> 0.0226374 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> -0.0132366 </td>
   <td style="text-align:right;"> -0.0335982 </td>
   <td style="text-align:right;"> 0.0071251 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Hearing </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> -0.0132366 </td>
   <td style="text-align:right;"> -0.0335982 </td>
   <td style="text-align:right;"> 0.0071251 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0091186 </td>
   <td style="text-align:right;"> 0.0012071 </td>
   <td style="text-align:right;"> 0.0170302 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> Eye </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0091186 </td>
   <td style="text-align:right;"> 0.0012071 </td>
   <td style="text-align:right;"> 0.0170302 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
  <tr>
   <td style="text-align:left;"> All </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0124332 </td>
   <td style="text-align:right;"> -0.0061474 </td>
   <td style="text-align:right;"> 0.0310138 </td>
   <td style="text-align:left;"> All traits </td>
   <td style="text-align:left;"> All </td>
   <td style="text-align:left;"> lnRR </td>
   <td style="text-align:right;"> 0.0124332 </td>
   <td style="text-align:right;"> -0.0061474 </td>
   <td style="text-align:right;"> 0.0310138 </td>
   <td style="text-align:left;"> All traits </td>
  </tr>
</tbody>
</table></div>

<!-- rnb-htmlwidget-end -->

<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuTWV0YW1ldGFfRmlnM19hbGx0cmFpdHMgPC0gb3ZlcmFsbDQgJT4lXG5cbiAgZ2dwbG90KGFlcyh5ID0gR3JvdXBpbmdUZXJtLCB4ID0gdmFsdWUpKSArXG4gIGdlb21fZXJyb3JiYXJoKGFlcyhcbiAgICB4bWluID0gY2kubG93LFxuICAgIHhtYXggPSBjaS5oaWdoXG4gICksXG4gIGhlaWdodCA9IDAuMSwgc2hvdy5sZWdlbmQgPSBGQUxTRVxuICApICtcbiAgZ2VvbV9wb2ludChhZXMoc2hhcGUgPSBwYXJhbWV0ZXIpLFxuICAgIGZpbGwgPSBcImJsYWNrXCIsXG4gICAgY29sb3IgPSBcImJsYWNrXCIsIHNpemUgPSAyLjIsXG4gICAgc2hvdy5sZWdlbmQgPSBGQUxTRVxuICApICtcbiAgc2NhbGVfeF9jb250aW51b3VzKFxuICAgIGxpbWl0cyA9IGMoLTAuMjQsIDAuMjUpLFxuICAgIGJyZWFrcyA9IGMoLTAuMiwgLTAuMSwgMCwgMC4xLCAwLjIpLFxuICAgIG5hbWUgPSBcIkVmZmVjdCBzaXplXCJcbiAgKSArXG4gIGdlb21fdmxpbmUoXG4gICAgeGludGVyY2VwdCA9IDAsXG4gICAgY29sb3IgPSBcImJsYWNrXCIsXG4gICAgbGluZXR5cGUgPSBcImRhc2hlZFwiXG4gICkgK1xuICBmYWNldF9ncmlkKFxuICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksIHJvd3MgPSB2YXJzKGxhYmVsKSxcbiAgICBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLFxuICAgIHNjYWxlcyA9IFwiZnJlZVwiLFxuICAgIHNwYWNlID0gXCJmcmVlXCJcbiAgKSArXG4gIHRoZW1lX2J3KCkgK1xuICB0aGVtZShcbiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLFxuICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLFxuICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSBcImJsYW5rXCIsIGZpbGwgPSBcImdyYXk5MFwiKSxcbiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksXG4gICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCBcImxpbmVzXCIpLFxuICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSxcbiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSBcInNvbGlkXCIsIGNvbG91ciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3IgPSBcImdyYXk5NVwiKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUsIHNpemUgPSAxNCksXG4gICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpXG4gIClcblxuIyBNZXRhbWV0YV9GaWczX2FsbHRyYWl0c1xuYGBgIn0= -->
<pre class="r"><code>Metameta_Fig3_alltraits &lt;- overall4 %&gt;%

  ggplot(aes(y = GroupingTerm, x = value)) +
  geom_errorbarh(aes(
    xmin = ci.low,
    xmax = ci.high
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(shape = parameter),
    fill = &quot;black&quot;,
    color = &quot;black&quot;, size = 2.2,
    show.legend = FALSE
  ) +
  scale_x_continuous(
    limits = c(-0.24, 0.25),
    breaks = c(-0.2, -0.1, 0, 0.1, 0.2),
    name = &quot;Effect size&quot;
  ) +
  geom_vline(
    xintercept = 0,
    color = &quot;black&quot;,
    linetype = &quot;dashed&quot;
  ) +
  facet_grid(
    cols = vars(parameter), rows = vars(label),
    labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_text(size = 12),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_text(hjust = 0.5, size = 14),
    axis.title.y = element_blank()
  )

# Metameta_Fig3_alltraits</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="fig-4-sz-still-to-do" class="section level3">
<h3>Fig 4 # SZ STILL TO DO</h3>
<p>Join the different parts and #TO DO!! add M / F symbols in Metameta_Fig3_alltraits</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuI1Rlc3RcbiNtYWxlIDwtIHJlYWRQTkcoc3lzdGVtLmZpbGUoXCJpbWdcIiwgXCJtYWxlXCIpKVxuI3Rlc3QgPC0gTWV0YW1ldGFfRmlnM19hbGx0cmFpdHMgXG5cbiNsaWJyYXJ5KHBuZylcbmBgYCJ9 -->
<pre class="r"><code>#Test
#male &lt;- readPNG(system.file(&quot;img&quot;, &quot;male&quot;))
#test &lt;- Metameta_Fig3_alltraits 

#library(png)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="figure-4-1" class="section level3">
<h3>Figure 4</h3>
<p>Panel A shows the numbers of traits across functional groups that are either male-biased (blue-green) or female-biased (orange-red), as calculated in Step D (figure 3). Panel B shows effect sizes and 95% CI from separate meta-analysis for each functional group (step H in Figure 3). Both panels represent results evaluated across all traits (Phase 3, Figure 3). Traits that are male biased is shown in blue, whereas female bias data is represented in orange.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuRmlnNCA8LSBnZ2FycmFuZ2UobWFsZWJpYXNfRmlnMl9hbGx0cmFpdHMsIE1ldGFtZXRhX0ZpZzNfYWxsdHJhaXRzLCAgbnJvdyA9IDIsIGFsaWduID0gXCJ2XCIsIGhlaWdodHMgPSBjKDEsIDEpLCBsYWJlbHMgPSBjKFwiQVwiLCBcIkJcIikpXG5GaWc0XG5gYGAifQ== -->
<pre class="r"><code>Fig4 &lt;- ggarrange(malebias_Fig2_alltraits, Metameta_Fig3_alltraits,  nrow = 2, align = &quot;v&quot;, heights = c(1, 1), labels = c(&quot;A&quot;, &quot;B&quot;))
Fig4</code></pre>
<!-- rnb-source-end -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbXSwiaGVpZ2h0Ijo0MzIuNjMyOSwic2l6ZV9iZWhhdmlvciI6MCwid2lkdGgiOjcwMH0= -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="figure-5" class="section level2">
<h2>Figure 5</h2>
<div id="preparing-data-for-traits-with-ci-not-overlapping-0" class="section level4">
<h4>Preparing data for traits with CI not overlapping 0</h4>
<p>To further investigate sex bias in this dataset, and in particular if the extent of sex bias differs between traits, we investigate the magnitude of male- and female bias in significantly different traits on (both for means and variability)</p>
<p>To do this, we select only traits that have CIs that do not overlap with zero. The code below creates Figure 5A.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbWzEsIlJlbW92ZWQgMiByb3dzIGNvbnRhaW5pbmcgbWlzc2luZyB2YWx1ZXMgKHBvc2l0aW9uX3N0YWNrKS4iXV0sImhlaWdodCI6NDMyLjYzMjksInNpemVfYmVoYXZpb3IiOjAsIndpZHRoIjo3MDB9 -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="preparation-for-plots-on-significant-sex-bias-second-order-meta-analysis-results" class="section level3">
<h3>Preparation for Plots on significant sex-bias (Second-order meta analysis results)</h3>
<div id="figure-5-b---traits-with-ci-not-overlapping-0" class="section level4">
<h4>Figure 5 B - traits with CI not overlapping 0</h4>
<p>Prepare data create column with 1= different from zero, 0= zero included in CI #### Male-biased (significant) traits</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YS5tYWxlLnBsb3QzLnNpZyA8LSBtZXRhY29tYm8gJT4lXG4gIG11dGF0ZShcbiAgICBzaWdDVlIgPSBpZmVsc2UobG5DVlJfbG93ZXIgPiAwLCAxLCAwKSxcbiAgICBzaWdWUiA9IGlmZWxzZShsblZSX2xvd2VyID4gMCwgMSwgMCksXG4gICAgc2lnUlIgPSBpZmVsc2UobG5SUl9sb3dlciA+IDAsIDEsIDApXG4gIClcblxuIyBTaWduaWZpY2FudCBzdWJzZXQgZm9yIGxuQ1ZSXG5tZXRhY29tYm9fbWFsZS5wbG90My5DVlIgPC0gbWV0YS5tYWxlLnBsb3QzLnNpZyAlPiVcbiAgZmlsdGVyKHNpZ0NWUiA9PSAxKSAlPiVcbiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbmVzdCgpXG5cbm1ldGFjb21ib19tYWxlLnBsb3QzLkNWUi5hbGwgPC0gbWV0YS5tYWxlLnBsb3QzLnNpZyAlPiVcbiAgZmlsdGVyKHNpZ0NWUiA9PSAxKSAlPiVcbiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKSAgICAjRmVsaXggYWRkZWQgJ2RhdGEgPSBldmVyeXRoaW5nKCknIG9uIDQvMi8yMDIwXG5cbiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsblZSXG5tZXRhY29tYm9fbWFsZS5wbG90My5WUiA8LSBtZXRhLm1hbGUucGxvdDMuc2lnICU+JVxuICBmaWx0ZXIoc2lnVlIgPT0gMSkgJT4lXG4gIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lXG4gIG5lc3QoKVxuXG5tZXRhY29tYm9fbWFsZS5wbG90My5WUi5hbGwgPC0gbWV0YS5tYWxlLnBsb3QzLnNpZyAlPiVcbiAgZmlsdGVyKHNpZ1ZSID09IDEpICU+JVxuICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpICAgIFxuXG4jIFNpZ25pZmljYW50IHN1YnNldCBmb3IgbG5SUlxubWV0YWNvbWJvX21hbGUucGxvdDMuUlIgPC0gbWV0YS5tYWxlLnBsb3QzLnNpZyAlPiVcbiAgZmlsdGVyKHNpZ1JSID09IDEpICU+JVxuICBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JVxuICBuZXN0KClcblxubWV0YWNvbWJvX21hbGUucGxvdDMuUlIuYWxsIDwtIG1ldGEubWFsZS5wbG90My5zaWcgJT4lXG4gIGZpbHRlcihzaWdSUiA9PSAxKSAlPiVcbiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKSAgIFxuXG4jICoqRmluYWwgZml4ZWQgZWZmZWN0cyBtZXRhLWFuYWx5c2VzIHdpdGhpbiBncm91cGluZyB0ZXJtcywgd2l0aCBTRSBvZiB0aGUgZXN0aW1hdGVcblxucGxvdDMubWFsZS5tZXRhLkNWUiA8LSBtZXRhY29tYm9fbWFsZS5wbG90My5DVlIgJT4lXG4gIG11dGF0ZShtb2RlbF9sbkNWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEZcbiAgKSkpXG5cbnBsb3QzLm1hbGUubWV0YS5WUiA8LSBtZXRhY29tYm9fbWFsZS5wbG90My5WUiAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgIHlpID0gLngkbG5WUiwgc2VpID0gKC54JGxuVlJfdXBwZXIgLSAueCRsblZSX2xvd2VyKSAvICgyICogMS45NiksXG4gICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICkpKVxuXG5wbG90My5tYWxlLm1ldGEuUlIgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuUlIgJT4lXG4gIG11dGF0ZShtb2RlbF9sblJSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuUlIsIHNlaSA9ICgueCRsblJSX3VwcGVyIC0gLngkbG5SUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxuIyBBY3Jvc3MgYWxsIGdyb3VwaW5nIHRlcm1zICNcblxucGxvdDMubWFsZS5tZXRhLkNWUi5hbGwgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuQ1ZSLmFsbCAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuQ1ZSLCBzZWkgPSAoLngkbG5DVlJfdXBwZXIgLSAueCRsbkNWUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxucGxvdDMubWFsZS5tZXRhLkNWUi5hbGwgPC0gcGxvdDMubWFsZS5tZXRhLkNWUi5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKVxuXG5wbG90My5tYWxlLm1ldGEuVlIuYWxsIDwtIG1ldGFjb21ib19tYWxlLnBsb3QzLlZSLmFsbCAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgIHlpID0gLngkbG5WUiwgc2VpID0gKC54JGxuVlJfdXBwZXIgLSAueCRsblZSX2xvd2VyKSAvICgyICogMS45NiksXG4gICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICkpKVxuXG5wbG90My5tYWxlLm1ldGEuVlIuYWxsIDwtIHBsb3QzLm1hbGUubWV0YS5WUi5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKVxuXG5wbG90My5tYWxlLm1ldGEuUlIuYWxsIDwtIG1ldGFjb21ib19tYWxlLnBsb3QzLlJSLmFsbCAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgIHlpID0gLngkbG5SUiwgc2VpID0gKC54JGxuUlJfdXBwZXIgLSAueCRsblJSX2xvd2VyKSAvICgyICogMS45NiksXG4gICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICkpKVxuXG5wbG90My5tYWxlLm1ldGEuUlIuYWxsIDwtIHBsb3QzLm1hbGUubWV0YS5SUi5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKVxuXG4jIENvbWJpbmUgd2l0aCBzZXBhcmF0ZSBncm91cGluZyB0ZXJtIHJlc3VsdHNcblxucGxvdDMubWFsZS5tZXRhLkNWUiA8LSBiaW5kX3Jvd3MocGxvdDMubWFsZS5tZXRhLkNWUiwgcGxvdDMubWFsZS5tZXRhLkNWUi5hbGwpXG5gYGAifQ== -->
<pre class="r"><code>meta.male.plot3.sig &lt;- metacombo %&gt;%
  mutate(
    sigCVR = ifelse(lnCVR_lower &gt; 0, 1, 0),
    sigVR = ifelse(lnVR_lower &gt; 0, 1, 0),
    sigRR = ifelse(lnRR_lower &gt; 0, 1, 0)
  )

# Significant subset for lnCVR
metacombo_male.plot3.CVR &lt;- meta.male.plot3.sig %&gt;%
  filter(sigCVR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_male.plot3.CVR.all &lt;- meta.male.plot3.sig %&gt;%
  filter(sigCVR == 1) %&gt;%
  nest(data = everything())    #Felix added 'data = everything()' on 4/2/2020

# Significant subset for lnVR
metacombo_male.plot3.VR &lt;- meta.male.plot3.sig %&gt;%
  filter(sigVR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_male.plot3.VR.all &lt;- meta.male.plot3.sig %&gt;%
  filter(sigVR == 1) %&gt;%
  nest(data = everything())    

# Significant subset for lnRR
metacombo_male.plot3.RR &lt;- meta.male.plot3.sig %&gt;%
  filter(sigRR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_male.plot3.RR.all &lt;- meta.male.plot3.sig %&gt;%
  filter(sigRR == 1) %&gt;%
  nest(data = everything())   

# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate

plot3.male.meta.CVR &lt;- metacombo_male.plot3.CVR %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.VR &lt;- metacombo_male.plot3.VR %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.RR &lt;- metacombo_male.plot3.RR %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(
    yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

# Across all grouping terms #

plot3.male.meta.CVR.all &lt;- metacombo_male.plot3.CVR.all %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.CVR.all &lt;- plot3.male.meta.CVR.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

plot3.male.meta.VR.all &lt;- metacombo_male.plot3.VR.all %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.VR.all &lt;- plot3.male.meta.VR.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

plot3.male.meta.RR.all &lt;- metacombo_male.plot3.RR.all %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(
    yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.RR.all &lt;- plot3.male.meta.RR.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

# Combine with separate grouping term results

plot3.male.meta.CVR &lt;- bind_rows(plot3.male.meta.CVR, plot3.male.meta.CVR.all)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiVmVjdG9yaXppbmcgJ3ZjdHJzX2xpc3Rfb2YnIGVsZW1lbnRzIG1heSBub3QgcHJlc2VydmUgdGhlaXIgYXR0cmlidXRlc1ZlY3Rvcml6aW5nICd2Y3Ryc19saXN0X29mJyBlbGVtZW50cyBtYXkgbm90IHByZXNlcnZlIHRoZWlyIGF0dHJpYnV0ZXNcbiJ9 -->
<pre><code>Vectorizing 'vctrs_list_of' elements may not preserve their attributesVectorizing 'vctrs_list_of' elements may not preserve their attributes</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucGxvdDMubWFsZS5tZXRhLlZSIDwtIGJpbmRfcm93cyhwbG90My5tYWxlLm1ldGEuVlIsIHBsb3QzLm1hbGUubWV0YS5WUi5hbGwpXG5gYGAifQ== -->
<pre class="r"><code>plot3.male.meta.VR &lt;- bind_rows(plot3.male.meta.VR, plot3.male.meta.VR.all)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiVmVjdG9yaXppbmcgJ3ZjdHJzX2xpc3Rfb2YnIGVsZW1lbnRzIG1heSBub3QgcHJlc2VydmUgdGhlaXIgYXR0cmlidXRlc1ZlY3Rvcml6aW5nICd2Y3Ryc19saXN0X29mJyBlbGVtZW50cyBtYXkgbm90IHByZXNlcnZlIHRoZWlyIGF0dHJpYnV0ZXNcbiJ9 -->
<pre><code>Vectorizing 'vctrs_list_of' elements may not preserve their attributesVectorizing 'vctrs_list_of' elements may not preserve their attributes</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucGxvdDMubWFsZS5tZXRhLlJSIDwtIGJpbmRfcm93cyhwbG90My5tYWxlLm1ldGEuUlIsIHBsb3QzLm1hbGUubWV0YS5SUi5hbGwpXG5gYGAifQ== -->
<pre class="r"><code>plot3.male.meta.RR &lt;- bind_rows(plot3.male.meta.RR, plot3.male.meta.RR.all)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiVmVjdG9yaXppbmcgJ3ZjdHJzX2xpc3Rfb2YnIGVsZW1lbnRzIG1heSBub3QgcHJlc2VydmUgdGhlaXIgYXR0cmlidXRlc1ZlY3Rvcml6aW5nICd2Y3Ryc19saXN0X29mJyBlbGVtZW50cyBtYXkgbm90IHByZXNlcnZlIHRoZWlyIGF0dHJpYnV0ZXNcbiJ9 -->
<pre><code>Vectorizing 'vctrs_list_of' elements may not preserve their attributesVectorizing 'vctrs_list_of' elements may not preserve their attributes</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuIyAqKlJlLXN0cnVjdHVyZSBkYXRhIGZvciBlYWNoIGdyb3VwaW5nIHRlcm07IGRlbGV0ZSB1bi11c2VkIHZhcmlhYmxlc1xuXG5wbG90My5tYWxlLm1ldGEuQ1ZSLmIgPC0gYXMuZGF0YS5mcmFtZShwbG90My5tYWxlLm1ldGEuQ1ZSICU+JSBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JVxuICBtdXRhdGUoXG4gICAgbG5DVlIgPSBtYXBfZGJsKG1vZGVsX2xuQ1ZSLCBwbHVjaygyKSksIGxuQ1ZSX2xvd2VyID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soNikpLFxuICAgIGxuQ1ZSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soNykpLCBsbkNWUl9zZSA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDMpKVxuICApKVssIGMoMSwgNDo3KV1cbmFkZC5yb3cuaGVhcmluZyA8LSBhcy5kYXRhLmZyYW1lKHQoYyhcIkhlYXJpbmdcIiwgTkEsIE5BLCBOQSwgTkEpKSkgJT4lIHNldE5hbWVzKG5hbWVzKHBsb3QzLm1hbGUubWV0YS5DVlIuYikpXG5cbnBsb3QzLm1hbGUubWV0YS5DVlIuYiA8LSBiaW5kX3Jvd3MocGxvdDMubWFsZS5tZXRhLkNWUi5iLCBhZGQucm93LmhlYXJpbmcpXG5gYGAifQ== -->
<pre class="r"><code># **Re-structure data for each grouping term; delete un-used variables

plot3.male.meta.CVR.b &lt;- as.data.frame(plot3.male.meta.CVR %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
    lnCVR_upper = map_dbl(model_lnCVR, pluck(7)), lnCVR_se = map_dbl(model_lnCVR, pluck(3))
  ))[, c(1, 4:7)]
add.row.hearing &lt;- as.data.frame(t(c(&quot;Hearing&quot;, NA, NA, NA, NA))) %&gt;% setNames(names(plot3.male.meta.CVR.b))

plot3.male.meta.CVR.b &lt;- bind_rows(plot3.male.meta.CVR.b, add.row.hearing)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiYmluZGluZyBjaGFyYWN0ZXIgYW5kIGZhY3RvciB2ZWN0b3IsIGNvZXJjaW5nIGludG8gY2hhcmFjdGVyIHZlY3RvclxuIn0= -->
<pre><code>binding character and factor vector, coercing into character vector</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucGxvdDMubWFsZS5tZXRhLkNWUi5iIDwtIHBsb3QzLm1hbGUubWV0YS5DVlIuYltvcmRlcihwbG90My5tYWxlLm1ldGEuQ1ZSLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5wbG90My5tYWxlLm1ldGEuVlIuYiA8LSBhcy5kYXRhLmZyYW1lKHBsb3QzLm1hbGUubWV0YS5WUiAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbXV0YXRlKFxuICAgIGxuVlIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDIpKSwgbG5WUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soNikpLFxuICAgIGxuVlJfdXBwZXIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDcpKSwgbG5WUl9zZSA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soMykpXG4gICkpWywgYygxLCA0OjcpXVxucGxvdDMubWFsZS5tZXRhLlZSLmIgPC0gcGxvdDMubWFsZS5tZXRhLlZSLmJbb3JkZXIocGxvdDMubWFsZS5tZXRhLlZSLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5wbG90My5tYWxlLm1ldGEuUlIuYiA8LSBhcy5kYXRhLmZyYW1lKHBsb3QzLm1hbGUubWV0YS5SUiAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbXV0YXRlKFxuICAgIGxuUlIgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDIpKSwgbG5SUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5SUiwgcGx1Y2soNikpLFxuICAgIGxuUlJfdXBwZXIgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDcpKSwgbG5SUl9zZSA9IG1hcF9kYmwobW9kZWxfbG5SUiwgcGx1Y2soMykpXG4gICkpWywgYygxLCA0OjcpXVxucGxvdDMubWFsZS5tZXRhLlJSLmIgPC0gcGxvdDMubWFsZS5tZXRhLlJSLmJbb3JkZXIocGxvdDMubWFsZS5tZXRhLlJSLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5vdmVyYWxsLm1hbGUucGxvdDMgPC0gZnVsbF9qb2luKHBsb3QzLm1hbGUubWV0YS5DVlIuYiwgcGxvdDMubWFsZS5tZXRhLlZSLmIpXG5gYGAifQ== -->
<pre class="r"><code>plot3.male.meta.CVR.b &lt;- plot3.male.meta.CVR.b[order(plot3.male.meta.CVR.b$GroupingTerm), ]

plot3.male.meta.VR.b &lt;- as.data.frame(plot3.male.meta.VR %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
    lnVR_upper = map_dbl(model_lnVR, pluck(7)), lnVR_se = map_dbl(model_lnVR, pluck(3))
  ))[, c(1, 4:7)]
plot3.male.meta.VR.b &lt;- plot3.male.meta.VR.b[order(plot3.male.meta.VR.b$GroupingTerm), ]

plot3.male.meta.RR.b &lt;- as.data.frame(plot3.male.meta.RR %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
    lnRR_upper = map_dbl(model_lnRR, pluck(7)), lnRR_se = map_dbl(model_lnRR, pluck(3))
  ))[, c(1, 4:7)]
plot3.male.meta.RR.b &lt;- plot3.male.meta.RR.b[order(plot3.male.meta.RR.b$GroupingTerm), ]

overall.male.plot3 &lt;- full_join(plot3.male.meta.CVR.b, plot3.male.meta.VR.b)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiSm9pbmluZywgYnkgPSBcIkdyb3VwaW5nVGVybVwiXG4ifQ== -->
<pre><code>Joining, by = &quot;GroupingTerm&quot;</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbC5tYWxlLnBsb3QzIDwtIGZ1bGxfam9pbihvdmVyYWxsLm1hbGUucGxvdDMsIHBsb3QzLm1hbGUubWV0YS5SUi5iKVxuYGBgIn0= -->
<pre class="r"><code>overall.male.plot3 &lt;- full_join(overall.male.plot3, plot3.male.meta.RR.b)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiSm9pbmluZywgYnkgPSBcIkdyb3VwaW5nVGVybVwiXG4ifQ== -->
<pre><code>Joining, by = &quot;GroupingTerm&quot;</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYyhcIkJlaGF2aW91clwiLCBcIk1vcnBob2xvZ3lcIiwgXCJNZXRhYm9saXNtXCIsIFwiUGh5c2lvbG9neVwiLCBcIkltbXVub2xvZ3lcIiwgXCJIZW1hdG9sb2d5XCIsIFwiSGVhcnRcIiwgXCJIZWFyaW5nXCIsIFwiRXllXCIsIFwiQWxsXCIpKVxub3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhvdmVyYWxsLm1hbGUucGxvdDMkR3JvdXBpbmdUZXJtKSkpXG5cbm92ZXJhbGwubWFsZS5wbG90MyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwubWFsZS5wbG90MyRHcm91cGluZ1Rlcm0sIGxldmVscyA9IGMoXCJCZWhhdmlvdXJcIiwgXCJNb3JwaG9sb2d5XCIsIFwiTWV0YWJvbGlzbVwiLCBcIlBoeXNpb2xvZ3lcIiwgXCJJbW11bm9sb2d5XCIsIFwiSGVtYXRvbG9neVwiLCBcIkhlYXJ0XCIsIFwiSGVhcmluZ1wiLCBcIkV5ZVwiLCBcIkFsbFwiKSlcbm92ZXJhbGwubWFsZS5wbG90MyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwubWFsZS5wbG90MyRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMob3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSkpKVxuXG4jIHN0cihvdmVyYWxsLm1hbGUucGxvdDMpXG5gYGAifQ== -->
<pre class="r"><code>overall.male.plot3$GroupingTerm &lt;- factor(overall.male.plot3$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;))
overall.male.plot3$GroupingTerm &lt;- factor(overall.male.plot3$GroupingTerm, rev(levels(overall.male.plot3$GroupingTerm)))

overall.male.plot3$GroupingTerm &lt;- factor(overall.male.plot3$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;))
overall.male.plot3$GroupingTerm &lt;- factor(overall.male.plot3$GroupingTerm, rev(levels(overall.male.plot3$GroupingTerm)))

# str(overall.male.plot3)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Restructure MALE data for plotting</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDMubWFsZS5zaWcgPC0gZ2F0aGVyKG92ZXJhbGwubWFsZS5wbG90MywgcGFyYW1ldGVyLCB2YWx1ZSwgYyhsbkNWUiwgbG5SUiksIGZhY3Rvcl9rZXkgPSBUUlVFKSBcblxubG5DVlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWcgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsbkNWUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpXG4jIGxuVlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWcgICU+JSBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5WUlwiKSAlPiUgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKVxubG5SUi5jaSA8LSBvdmVyYWxsMy5tYWxlLnNpZyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuUlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsblJSX2xvd2VyLCBjaS5oaWdoID0gbG5SUl91cHBlcilcblxub3ZlcmFsbDQubWFsZS5zaWcgPC0gYmluZF9yb3dzKGxuQ1ZSLmNpLCBsblJSLmNpKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgcGFyYW1ldGVyLCB2YWx1ZSwgY2kubG93LCBjaS5oaWdoKSBcblxub3ZlcmFsbDQubWFsZS5zaWckbGFiZWwgPC0gXCJDSSBub3Qgb3ZlcmxhcHBpbmcgemVyb1wiXG5gYGAifQ== -->
<pre class="r"><code>overall3.male.sig &lt;- gather(overall.male.plot3, parameter, value, c(lnCVR, lnRR), factor_key = TRUE) 

lnCVR.ci &lt;- overall3.male.sig %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
# lnVR.ci &lt;- overall3.male.sig  %&gt;% filter(parameter == &quot;lnVR&quot;) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.male.sig %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4.male.sig &lt;- bind_rows(lnCVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high) 

overall4.male.sig$label &lt;- &quot;CI not overlapping zero&quot;</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Plot Fig 5B all significant results (CI not overlapping zero) for males. This is the right panel in Figure 5B.</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbWzEsIlJlbW92ZWQgMyByb3dzIGNvbnRhaW5pbmcgbWlzc2luZyB2YWx1ZXMgKGdlb21fZXJyb3JiYXJoKS4iXSxbMSwiUmVtb3ZlZCAzIHJvd3MgY29udGFpbmluZyBtaXNzaW5nIHZhbHVlcyAoZ2VvbV9wb2ludCkuIl1dLCJoZWlnaHQiOjQzMi42MzI5LCJzaXplX2JlaGF2aW9yIjowLCJ3aWR0aCI6NzAwfQ== -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="female-part-significant-traits" class="section level4">
<h4>Female part, significant traits</h4>
<p>Female Fig5B sig</p>
<p>Prepare data for traits with CI not overlapping 0 create column with 1= different from zero, 0= zero included in CI</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG4jIEZlbWFsZS1iaWFzZWQgdHJhaXRzXG5cbm1ldGEuZmVtYWxlLnBsb3QzLnNpZyA8LSBtZXRhY29tYm8gJT4lXG4gIG11dGF0ZShcbiAgICBzaWdDVlIgPSBpZmVsc2UobG5DVlJfdXBwZXIgPCAwLCAxLCAwKSxcbiAgICBzaWdWUiA9IGlmZWxzZShsblZSX3VwcGVyIDwgMCwgMSwgMCksXG4gICAgc2lnUlIgPSBpZmVsc2UobG5SUl91cHBlciA8IDAsIDEsIDApXG4gIClcblxuIyBTaWduaWZpY2FudCBzdWJzZXQgZm9yIGxuQ1ZSXG5cbm1ldGFjb21ib19mZW1hbGUucGxvdDMuQ1ZSIDwtIG1ldGEuZmVtYWxlLnBsb3QzLnNpZyAlPiVcbiAgZmlsdGVyKHNpZ0NWUiA9PSAxKSAlPiVcbiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbmVzdCgpXG5cbm1ldGFjb21ib19mZW1hbGUucGxvdDMuQ1ZSLmFsbCA8LSBtZXRhLmZlbWFsZS5wbG90My5zaWcgJT4lXG4gIGZpbHRlcihzaWdDVlIgPT0gMSkgJT4lXG4gIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSkgICBcblxuIyBTaWduaWZpY2FudCBzdWJzZXQgZm9yIGxuVlJcblxubWV0YWNvbWJvX2ZlbWFsZS5wbG90My5WUiA8LSBtZXRhLmZlbWFsZS5wbG90My5zaWcgJT4lXG4gIGZpbHRlcihzaWdWUiA9PSAxKSAlPiVcbiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbmVzdCgpXG5cbm1ldGFjb21ib19mZW1hbGUucGxvdDMuVlIuYWxsIDwtIG1ldGEuZmVtYWxlLnBsb3QzLnNpZyAlPiVcbiAgZmlsdGVyKHNpZ1ZSID09IDEpICU+JVxuICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpICAgXG5cbiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsblJSXG5cbm1ldGFjb21ib19mZW1hbGUucGxvdDMuUlIgPC0gbWV0YS5mZW1hbGUucGxvdDMuc2lnICU+JVxuICBmaWx0ZXIoc2lnUlIgPT0gMSkgJT4lXG4gIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lXG4gIG5lc3QoKVxuXG4jRmVsaXggYWRkZWQgNy8yLzIwMjA6IG1ldGFjb21ib19mZW1hbGUucGxvdDMuUlJbNCwyXVtbMV1dIFtbMV1dJGxuUlJfdXBwZXI7ICNvbmx5IHR3byBkYXRhIHBvaW50czogLTAuMTIzNzcyNjMgLTAuMDE1NTM0NjI7IHNob3VsZCBwcm9iYWJseSBiZSBleGNsdWRlZD8hXG5cbm1ldGFjb21ib19mZW1hbGUucGxvdDMuUlIuYWxsIDwtIG1ldGEuZmVtYWxlLnBsb3QzLnNpZyAlPiVcbiAgZmlsdGVyKHNpZ1JSID09IDEpICU+JVxuICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpICAgXG5cbiMgKipGaW5hbCBmaXhlZCBlZmZlY3RzIG1ldGEtYW5hbHlzZXMgd2l0aGluIGdyb3VwaW5nIHRlcm1zLCB3aXRoIFNFIG9mIHRoZSBlc3RpbWF0ZVxuXG5wbG90My5mZW1hbGUubWV0YS5DVlIgPC0gbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5DVlIgJT4lXG4gIG11dGF0ZShtb2RlbF9sbkNWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEZcbiAgKSkpXG5cbnBsb3QzLmZlbWFsZS5tZXRhLlZSIDwtIG1ldGFjb21ib19mZW1hbGUucGxvdDMuVlIgJT4lXG4gIG11dGF0ZShtb2RlbF9sblZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuVlIsIHNlaSA9ICgueCRsblZSX3VwcGVyIC0gLngkbG5WUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxucGxvdDMuZmVtYWxlLm1ldGEuUlIgPC0gbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5SUiAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgIHlpID0gLngkbG5SUiwgc2VpID0gKC54JGxuUlJfdXBwZXIgLSAueCRsblJSX2xvd2VyKSAvICgyICogMS45NiksXG4gICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICkpKVxuXG4jIEFjcm9zcyBhbGwgZ3JvdXBpbmcgdGVybXMgI1xuXG5wbG90My5mZW1hbGUubWV0YS5DVlIuYWxsIDwtIG1ldGFjb21ib19mZW1hbGUucGxvdDMuQ1ZSLmFsbCAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuQ1ZSLCBzZWkgPSAoLngkbG5DVlJfdXBwZXIgLSAueCRsbkNWUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxucGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmFsbCA8LSBwbG90My5mZW1hbGUubWV0YS5DVlIuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gXCJBbGxcIilcblxucGxvdDMuZmVtYWxlLm1ldGEuVlIuYWxsIDwtIG1ldGFjb21ib19mZW1hbGUucGxvdDMuVlIuYWxsICU+JVxuICBtdXRhdGUobW9kZWxfbG5WUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEZcbiAgKSkpXG5cbnBsb3QzLmZlbWFsZS5tZXRhLlZSLmFsbCA8LSBwbG90My5mZW1hbGUubWV0YS5WUi5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKVxuXG5wbG90My5mZW1hbGUubWV0YS5SUi5hbGwgPC0gbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5SUi5hbGwgJT4lXG4gIG11dGF0ZShtb2RlbF9sblJSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuUlIsIHNlaSA9ICgueCRsblJSX3VwcGVyIC0gLngkbG5SUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxucGxvdDMuZmVtYWxlLm1ldGEuUlIuYWxsIDwtIHBsb3QzLmZlbWFsZS5tZXRhLlJSLmFsbCAlPiUgbXV0YXRlKEdyb3VwaW5nVGVybSA9IFwiQWxsXCIpXG5cbiMgQ29tYmluZSB3aXRoIHNlcGFyYXRlIGdyb3VwaW5nIHRlcm0gcmVzdWx0c1xuXG5wbG90My5mZW1hbGUubWV0YS5DVlIgPC0gYmluZF9yb3dzKHBsb3QzLmZlbWFsZS5tZXRhLkNWUiwgcGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmFsbClcbmBgYCJ9 -->
<pre class="r"><code>
# Female-biased traits

meta.female.plot3.sig &lt;- metacombo %&gt;%
  mutate(
    sigCVR = ifelse(lnCVR_upper &lt; 0, 1, 0),
    sigVR = ifelse(lnVR_upper &lt; 0, 1, 0),
    sigRR = ifelse(lnRR_upper &lt; 0, 1, 0)
  )

# Significant subset for lnCVR

metacombo_female.plot3.CVR &lt;- meta.female.plot3.sig %&gt;%
  filter(sigCVR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_female.plot3.CVR.all &lt;- meta.female.plot3.sig %&gt;%
  filter(sigCVR == 1) %&gt;%
  nest(data = everything())   

# Significant subset for lnVR

metacombo_female.plot3.VR &lt;- meta.female.plot3.sig %&gt;%
  filter(sigVR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_female.plot3.VR.all &lt;- meta.female.plot3.sig %&gt;%
  filter(sigVR == 1) %&gt;%
  nest(data = everything())   

# Significant subset for lnRR

metacombo_female.plot3.RR &lt;- meta.female.plot3.sig %&gt;%
  filter(sigRR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

#Felix added 7/2/2020: metacombo_female.plot3.RR[4,2][[1]] [[1]]$lnRR_upper; #only two data points: -0.12377263 -0.01553462; should probably be excluded?!

metacombo_female.plot3.RR.all &lt;- meta.female.plot3.sig %&gt;%
  filter(sigRR == 1) %&gt;%
  nest(data = everything())   

# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate

plot3.female.meta.CVR &lt;- metacombo_female.plot3.CVR %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.female.meta.VR &lt;- metacombo_female.plot3.VR %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.female.meta.RR &lt;- metacombo_female.plot3.RR %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(
    yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

# Across all grouping terms #

plot3.female.meta.CVR.all &lt;- metacombo_female.plot3.CVR.all %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.female.meta.CVR.all &lt;- plot3.female.meta.CVR.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

plot3.female.meta.VR.all &lt;- metacombo_female.plot3.VR.all %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.female.meta.VR.all &lt;- plot3.female.meta.VR.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

plot3.female.meta.RR.all &lt;- metacombo_female.plot3.RR.all %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(
    yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.female.meta.RR.all &lt;- plot3.female.meta.RR.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

# Combine with separate grouping term results

plot3.female.meta.CVR &lt;- bind_rows(plot3.female.meta.CVR, plot3.female.meta.CVR.all)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiVmVjdG9yaXppbmcgJ3ZjdHJzX2xpc3Rfb2YnIGVsZW1lbnRzIG1heSBub3QgcHJlc2VydmUgdGhlaXIgYXR0cmlidXRlc1ZlY3Rvcml6aW5nICd2Y3Ryc19saXN0X29mJyBlbGVtZW50cyBtYXkgbm90IHByZXNlcnZlIHRoZWlyIGF0dHJpYnV0ZXNcbiJ9 -->
<pre><code>Vectorizing 'vctrs_list_of' elements may not preserve their attributesVectorizing 'vctrs_list_of' elements may not preserve their attributes</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucGxvdDMuZmVtYWxlLm1ldGEuVlIgPC0gYmluZF9yb3dzKHBsb3QzLmZlbWFsZS5tZXRhLlZSLCBwbG90My5mZW1hbGUubWV0YS5WUi5hbGwpXG5gYGAifQ== -->
<pre class="r"><code>plot3.female.meta.VR &lt;- bind_rows(plot3.female.meta.VR, plot3.female.meta.VR.all)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiVmVjdG9yaXppbmcgJ3ZjdHJzX2xpc3Rfb2YnIGVsZW1lbnRzIG1heSBub3QgcHJlc2VydmUgdGhlaXIgYXR0cmlidXRlc1ZlY3Rvcml6aW5nICd2Y3Ryc19saXN0X29mJyBlbGVtZW50cyBtYXkgbm90IHByZXNlcnZlIHRoZWlyIGF0dHJpYnV0ZXNcbiJ9 -->
<pre><code>Vectorizing 'vctrs_list_of' elements may not preserve their attributesVectorizing 'vctrs_list_of' elements may not preserve their attributes</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucGxvdDMuZmVtYWxlLm1ldGEuUlIgPC0gYmluZF9yb3dzKHBsb3QzLmZlbWFsZS5tZXRhLlJSLCBwbG90My5mZW1hbGUubWV0YS5SUi5hbGwpXG5gYGAifQ== -->
<pre class="r"><code>plot3.female.meta.RR &lt;- bind_rows(plot3.female.meta.RR, plot3.female.meta.RR.all)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiVmVjdG9yaXppbmcgJ3ZjdHJzX2xpc3Rfb2YnIGVsZW1lbnRzIG1heSBub3QgcHJlc2VydmUgdGhlaXIgYXR0cmlidXRlc1ZlY3Rvcml6aW5nICd2Y3Ryc19saXN0X29mJyBlbGVtZW50cyBtYXkgbm90IHByZXNlcnZlIHRoZWlyIGF0dHJpYnV0ZXNcbiJ9 -->
<pre><code>Vectorizing 'vctrs_list_of' elements may not preserve their attributesVectorizing 'vctrs_list_of' elements may not preserve their attributes</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuIyAqKlJlLXN0cnVjdHVyZSBkYXRhIGZvciBlYWNoIGdyb3VwaW5nIHRlcm07IGRlbGV0ZSB1bi11c2VkIHZhcmlhYmxlc1xuXG5wbG90My5mZW1hbGUubWV0YS5DVlIuYiA8LSBhcy5kYXRhLmZyYW1lKHBsb3QzLmZlbWFsZS5tZXRhLkNWUiAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbXV0YXRlKFxuICAgIGxuQ1ZSID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soMikpLCBsbkNWUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDYpKSxcbiAgICBsbkNWUl91cHBlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDcpKSwgbG5DVlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuQ1ZSLCBwbHVjaygzKSlcbiAgKSlbLCBjKDEsIDQ6NyldXG5cbmFkZC5yb3cuaGVhcmluZyA8LSBhcy5kYXRhLmZyYW1lKHQoYyhcIkhlYXJpbmdcIiwgTkEsIE5BLCBOQSwgTkEpKSkgJT4lIHNldE5hbWVzKG5hbWVzKHBsb3QzLmZlbWFsZS5tZXRhLkNWUi5iKSlcblxucGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmIgPC0gYmluZF9yb3dzKHBsb3QzLmZlbWFsZS5tZXRhLkNWUi5iLCBhZGQucm93LmhlYXJpbmcpXG5gYGAifQ== -->
<pre class="r"><code># **Re-structure data for each grouping term; delete un-used variables

plot3.female.meta.CVR.b &lt;- as.data.frame(plot3.female.meta.CVR %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
    lnCVR_upper = map_dbl(model_lnCVR, pluck(7)), lnCVR_se = map_dbl(model_lnCVR, pluck(3))
  ))[, c(1, 4:7)]

add.row.hearing &lt;- as.data.frame(t(c(&quot;Hearing&quot;, NA, NA, NA, NA))) %&gt;% setNames(names(plot3.female.meta.CVR.b))

plot3.female.meta.CVR.b &lt;- bind_rows(plot3.female.meta.CVR.b, add.row.hearing)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiYmluZGluZyBjaGFyYWN0ZXIgYW5kIGZhY3RvciB2ZWN0b3IsIGNvZXJjaW5nIGludG8gY2hhcmFjdGVyIHZlY3RvclxuIn0= -->
<pre><code>binding character and factor vector, coercing into character vector</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmIgPC0gcGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmJbb3JkZXIocGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5wbG90My5mZW1hbGUubWV0YS5WUi5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMuZmVtYWxlLm1ldGEuVlIgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lXG4gIG11dGF0ZShcbiAgICBsblZSID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjaygyKSksIGxuVlJfbG93ZXIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDYpKSxcbiAgICBsblZSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjayg3KSksIGxuVlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDMpKVxuICApKVssIGMoMSwgNDo3KV1cblxucGxvdDMuZmVtYWxlLm1ldGEuVlIuYiA8LSBwbG90My5mZW1hbGUubWV0YS5WUi5iW29yZGVyKHBsb3QzLmZlbWFsZS5tZXRhLlZSLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5wbG90My5mZW1hbGUubWV0YS5SUi5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMuZmVtYWxlLm1ldGEuUlIgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lXG4gIG11dGF0ZShcbiAgICBsblJSID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjaygyKSksIGxuUlJfbG93ZXIgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDYpKSxcbiAgICBsblJSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjayg3KSksIGxuUlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDMpKVxuICApKVssIGMoMSwgNDo3KV1cblxucGxvdDMuZmVtYWxlLm1ldGEuUlIuYiA8LSBwbG90My5mZW1hbGUubWV0YS5SUi5iW29yZGVyKHBsb3QzLmZlbWFsZS5tZXRhLlJSLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5vdmVyYWxsLmZlbWFsZS5wbG90MyA8LSBmdWxsX2pvaW4ocGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmIsIHBsb3QzLmZlbWFsZS5tZXRhLlZSLmIpXG5gYGAifQ== -->
<pre class="r"><code>plot3.female.meta.CVR.b &lt;- plot3.female.meta.CVR.b[order(plot3.female.meta.CVR.b$GroupingTerm), ]

plot3.female.meta.VR.b &lt;- as.data.frame(plot3.female.meta.VR %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
    lnVR_upper = map_dbl(model_lnVR, pluck(7)), lnVR_se = map_dbl(model_lnVR, pluck(3))
  ))[, c(1, 4:7)]

plot3.female.meta.VR.b &lt;- plot3.female.meta.VR.b[order(plot3.female.meta.VR.b$GroupingTerm), ]

plot3.female.meta.RR.b &lt;- as.data.frame(plot3.female.meta.RR %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
    lnRR_upper = map_dbl(model_lnRR, pluck(7)), lnRR_se = map_dbl(model_lnRR, pluck(3))
  ))[, c(1, 4:7)]

plot3.female.meta.RR.b &lt;- plot3.female.meta.RR.b[order(plot3.female.meta.RR.b$GroupingTerm), ]

overall.female.plot3 &lt;- full_join(plot3.female.meta.CVR.b, plot3.female.meta.VR.b)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiSm9pbmluZywgYnkgPSBcIkdyb3VwaW5nVGVybVwiXG4ifQ== -->
<pre><code>Joining, by = &quot;GroupingTerm&quot;</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbC5mZW1hbGUucGxvdDMgPC0gZnVsbF9qb2luKG92ZXJhbGwuZmVtYWxlLnBsb3QzLCBwbG90My5mZW1hbGUubWV0YS5SUi5iKVxuYGBgIn0= -->
<pre class="r"><code>overall.female.plot3 &lt;- full_join(overall.female.plot3, plot3.female.meta.RR.b)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiSm9pbmluZywgYnkgPSBcIkdyb3VwaW5nVGVybVwiXG4ifQ== -->
<pre><code>Joining, by = &quot;GroupingTerm&quot;</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbC5mZW1hbGUucGxvdDMkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihvdmVyYWxsLmZlbWFsZS5wbG90MyRHcm91cGluZ1Rlcm0sIGxldmVscyA9IGMoXCJCZWhhdmlvdXJcIiwgXCJNb3JwaG9sb2d5XCIsIFwiTWV0YWJvbGlzbVwiLCBcIlBoeXNpb2xvZ3lcIiwgXCJJbW11bm9sb2d5XCIsIFwiSGVtYXRvbG9neVwiLCBcIkhlYXJ0XCIsIFwiSGVhcmluZ1wiLCBcIkV5ZVwiLCBcIkFsbFwiKSlcbm92ZXJhbGwuZmVtYWxlLnBsb3QzJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5mZW1hbGUucGxvdDMkR3JvdXBpbmdUZXJtLCByZXYobGV2ZWxzKG92ZXJhbGwuZmVtYWxlLnBsb3QzJEdyb3VwaW5nVGVybSkpKVxuXG5gYGAifQ== -->
<pre class="r"><code>overall.female.plot3$GroupingTerm &lt;- factor(overall.female.plot3$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;))
overall.female.plot3$GroupingTerm &lt;- factor(overall.female.plot3$GroupingTerm, rev(levels(overall.female.plot3$GroupingTerm)))
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Re-structure data for plotting</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDMuZmVtYWxlLnNpZyA8LSBnYXRoZXIob3ZlcmFsbC5mZW1hbGUucGxvdDMsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSkgXG5cbmxuQ1ZSLmNpIDwtIG92ZXJhbGwzLmZlbWFsZS5zaWcgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsbkNWUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpXG4jIGxuVlIuY2kgPC0gb3ZlcmFsbDMuZmVtYWxlLnNpZyAgJT4lIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsblZSXCIpICU+JSBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpXG5sblJSLmNpIDwtIG92ZXJhbGwzLmZlbWFsZS5zaWcgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsblJSXCIpICU+JVxuICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpXG5cbm92ZXJhbGw0LmZlbWFsZS5zaWcgPC0gYmluZF9yb3dzKGxuQ1ZSLmNpLCBsblJSLmNpKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgcGFyYW1ldGVyLCB2YWx1ZSwgY2kubG93LCBjaS5oaWdoKSAjIGxuVlIuY2ksXG5cbm92ZXJhbGw0LmZlbWFsZS5zaWckbGFiZWwgPC0gXCJDSSBub3Qgb3ZlcmxhcHBpbmcgemVyb1wiXG5cbmBgYCJ9 -->
<pre class="r"><code>overall3.female.sig &lt;- gather(overall.female.plot3, parameter, value, c(lnCVR, lnRR), factor_key = TRUE) 

lnCVR.ci &lt;- overall3.female.sig %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
# lnVR.ci &lt;- overall3.female.sig  %&gt;% filter(parameter == &quot;lnVR&quot;) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.female.sig %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4.female.sig &lt;- bind_rows(lnCVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high) # lnVR.ci,

overall4.female.sig$label &lt;- &quot;CI not overlapping zero&quot;
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Plotting Fig5B all significant results (CI not overlapping zero, female )</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG5NZXRhbWV0YV9GaWczX2ZlbWFsZS5zaWcgIDwtIG92ZXJhbGw0LmZlbWFsZS5zaWcgJT4lXG4gIGdncGxvdChhZXMoeSA9IEdyb3VwaW5nVGVybSwgeCA9IHZhbHVlKSkgK1xuICBnZW9tX2Vycm9yYmFyaChhZXMoXG4gICAgeG1pbiA9IGNpLmxvdyxcbiAgICB4bWF4ID0gY2kuaGlnaFxuICApLFxuICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0VcbiAgKSArXG4gIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSxcbiAgICBmaWxsID0gXCJzYWxtb24xXCIsIGNvbG9yID0gXCJzYWxtb24xXCIsIHNpemUgPSAyLjIsXG4gICAgc2hvdy5sZWdlbmQgPSBGQUxTRVxuICApICtcbiAgc2NhbGVfeF9jb250aW51b3VzKFxuICAgIGxpbWl0cyA9IGMoLTAuNCwgMCksXG4gICAgYnJlYWtzID0gYygtMC4zLCAwKSxcbiAgICBuYW1lID0gXCJFZmZlY3Qgc2l6ZVwiXG4gICkgK1xuICBnZW9tX3ZsaW5lKFxuICAgIHhpbnRlcmNlcHQgPSAwLFxuICAgIGNvbG9yID0gXCJibGFja1wiLFxuICAgIGxpbmV0eXBlID0gXCJkYXNoZWRcIlxuICApICtcbiAgZmFjZXRfZ3JpZChcbiAgICBjb2xzID0gdmFycyhwYXJhbWV0ZXIpLCAjIHJvd3MgPSB2YXJzKGxhYmVsKSxcbiAgICAjIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAyMyksXG4gICAgc2NhbGVzID0gXCJmcmVlXCIsXG4gICAgc3BhY2UgPSBcImZyZWVcIlxuICApICtcbiAgdGhlbWVfYncoKSArXG4gIHRoZW1lKFxuICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksXG4gICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksXG4gICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9IFwiYmxhbmtcIiwgZmlsbCA9IFwiZ3JheTkwXCIpLFxuICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSxcbiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsIFwibGluZXNcIiksXG4gICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3VyID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksXG4gICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKClcbiAgKVxuXG4jIE1ldGFtZXRhX0ZpZzNfZmVtYWxlLnNpZyAjKEZpZ3VyZSA1QiBsZWZ0IHBhbmVsKVxuYGBgIn0= -->
<pre class="r"><code>
Metameta_Fig3_female.sig  &lt;- overall4.female.sig %&gt;%
  ggplot(aes(y = GroupingTerm, x = value)) +
  geom_errorbarh(aes(
    xmin = ci.low,
    xmax = ci.high
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(shape = parameter),
    fill = &quot;salmon1&quot;, color = &quot;salmon1&quot;, size = 2.2,
    show.legend = FALSE
  ) +
  scale_x_continuous(
    limits = c(-0.4, 0),
    breaks = c(-0.3, 0),
    name = &quot;Effect size&quot;
  ) +
  geom_vline(
    xintercept = 0,
    color = &quot;black&quot;,
    linetype = &quot;dashed&quot;
  ) +
  facet_grid(
    cols = vars(parameter), # rows = vars(label),
    # labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_text(size = 12),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_blank()
  )

# Metameta_Fig3_female.sig #(Figure 5B left panel)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
</div>
<div id="join-code-missing" class="section level2">
<h2>JOIN!!! CODE MISSING??</h2>
<p>malebias_Fig2_sigtraits Metameta_Fig3_female.sig #(Figure 5B left panel) Metameta_Fig3_male.sig</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuRmlnNSA8LSBnZ2FycmFuZ2UobWFsZWJpYXNfRmlnMl9zaWd0cmFpdHMsIEZpZzVCLFxuICBuY29sID0gMSwgbnJvdyA9IDIsIHdpZHRocyA9IGMoMSwgMS4xMCksIGhlaWdodHMgPSBjKDEuMTAsIDEpLCAgbGFiZWxzID0gYyhcIkFcIiwgXCJCXCIpXG4pXG5cbmBgYCJ9 -->
<pre class="r"><code>Fig5 &lt;- ggarrange(malebias_Fig2_sigtraits, Fig5B,
  ncol = 1, nrow = 2, widths = c(1, 1.10), heights = c(1.10, 1),  labels = c(&quot;A&quot;, &quot;B&quot;)
)
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUmVtb3ZlZCAyIHJvd3MgY29udGFpbmluZyBtaXNzaW5nIHZhbHVlcyAocG9zaXRpb25fc3RhY2spLlxuIn0= -->
<pre><code>Removed 2 rows containing missing values (position_stack).</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuRmlnNVxuYGBgIn0= -->
<pre class="r"><code>Fig5</code></pre>
<!-- rnb-source-end -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbXSwiaGVpZ2h0Ijo0MzIuNjMyOSwic2l6ZV9iZWhhdmlvciI6MCwid2lkdGgiOjcwMH0= -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="supplemental-plots" class="section level1">
<h1>Supplemental Plots</h1>
<div id="figure-s1" class="section level2">
<h2>Figure S1</h2>
<div id="including-lnvr" class="section level3">
<h3>Including lnVR</h3>
</div>
<div id="count-data-including-lnvr-fig-s1-panel-a" class="section level3">
<h3>Count data, including lnVR (Fig S1 panel A)</h3>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbXSwiaGVpZ2h0Ijo0MzIuNjMyOSwic2l6ZV9iZWhhdmlvciI6MCwid2lkdGgiOjcwMH0= -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="overall-results-of-second-order-meta-analysis-including-vr" class="section level3">
<h3>Overall results of second order meta analysis, INCLUDING VR</h3>
<div id="re-structure-data-for-plotting-1" class="section level4">
<h4>Re-structure data for plotting</h4>
<p>Restructure MALE data for plotting</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDMubWFsZS5zaWdTIDwtIGdhdGhlcihvdmVyYWxsLm1hbGUucGxvdDMsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSlcblxubG5DVlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5DVlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsbkNWUl9sb3dlciwgY2kuaGlnaCA9IGxuQ1ZSX3VwcGVyKVxubG5WUi5jaSA8LSBvdmVyYWxsMy5tYWxlLnNpZ1MgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsblZSXCIpICU+JVxuICBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpXG5sblJSLmNpIDwtIG92ZXJhbGwzLm1hbGUuc2lnUyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuUlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsblJSX2xvd2VyLCBjaS5oaWdoID0gbG5SUl91cHBlcilcblxub3ZlcmFsbDQubWFsZS5zaWdTIDwtIGJpbmRfcm93cyhsbkNWUi5jaSwgbG5WUi5jaSwgbG5SUi5jaSkgJT4lIHNlbGVjdChHcm91cGluZ1Rlcm0sIHBhcmFtZXRlciwgdmFsdWUsIGNpLmxvdywgY2kuaGlnaClcblxub3ZlcmFsbDQubWFsZS5zaWdTJGxhYmVsIDwtIFwiQ0kgbm90IG92ZXJsYXBwaW5nIHplcm9cIlxuXG4jIERhdGEgYXJlIHJlLXN0cnVjdHVyZWQsIGFuZCBncm91cGluZyB0ZXJtcyBhcmUgYmVpbmcgcmUtb3JkZXJlZFxuXG5vdmVyYWxsM1MgPC0gZ2F0aGVyKG92ZXJhbGwyLCBwYXJhbWV0ZXIsIHZhbHVlLCBjKGxuQ1ZSLCBsblZSLCBsblJSKSwgZmFjdG9yX2tleSA9IFRSVUUpXG5cbmxuQ1ZSLmNpIDwtIG92ZXJhbGwzUyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuQ1ZSXCIpICU+JVxuICBtdXRhdGUoY2kubG93ID0gbG5DVlJfbG93ZXIsIGNpLmhpZ2ggPSBsbkNWUl91cHBlcilcbmxuVlIuY2kgPC0gb3ZlcmFsbDNTICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5WUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKVxubG5SUi5jaSA8LSBvdmVyYWxsM1MgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsblJSXCIpICU+JVxuICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpXG5cbm92ZXJhbGw0UyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpXG5cbiMgUmUtb3JkZXIgZ3JvdXBpbmcgdGVybXNcblxub3ZlcmFsbDRTJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbDRTJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYyhcIkJlaGF2aW91clwiLCBcIk1vcnBob2xvZ3lcIiwgXCJNZXRhYm9saXNtXCIsIFwiUGh5c2lvbG9neVwiLCBcIkltbXVub2xvZ3lcIiwgXCJIZW1hdG9sb2d5XCIsIFwiSGVhcnRcIiwgXCJIZWFyaW5nXCIsIFwiRXllXCIsIFwiQWxsXCIpKVxub3ZlcmFsbDRTJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbDRTJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhvdmVyYWxsNFMkR3JvdXBpbmdUZXJtKSkpXG5vdmVyYWxsNFMkbGFiZWwgPC0gXCJBbGwgdHJhaXRzXCJcbmBgYCJ9 -->
<pre class="r"><code>overall3.male.sigS &lt;- gather(overall.male.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key = TRUE)

lnCVR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnVR&quot;) %&gt;%
  mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4.male.sigS &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.male.sigS$label &lt;- &quot;CI not overlapping zero&quot;

# Data are re-structured, and grouping terms are being re-ordered

overall3S &lt;- gather(overall2, parameter, value, c(lnCVR, lnVR, lnRR), factor_key = TRUE)

lnCVR.ci &lt;- overall3S %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3S %&gt;%
  filter(parameter == &quot;lnVR&quot;) %&gt;%
  mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3S %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4S &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

# Re-order grouping terms

overall4S$GroupingTerm &lt;- factor(overall4S$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;))
overall4S$GroupingTerm &lt;- factor(overall4S$GroupingTerm, rev(levels(overall4S$GroupingTerm)))
overall4S$label &lt;- &quot;All traits&quot;</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="preparation-for-plot-including-lnvr" class="section level4">
<h4>Preparation for plot, including lnVR</h4>
<p>Preparation: Sub-Plot for Figure S1: all traits (S1 B)</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuTWV0YW1ldGFfRmlnUzFfYWxsdHJhaXRzIDwtIG92ZXJhbGw0UyAlPiVcblxuICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICtcbiAgZ2VvbV9lcnJvcmJhcmgoYWVzKFxuICAgIHhtaW4gPSBjaS5sb3csXG4gICAgeG1heCA9IGNpLmhpZ2hcbiAgKSxcbiAgaGVpZ2h0ID0gMC4xLCBzaG93LmxlZ2VuZCA9IEZBTFNFXG4gICkgK1xuICBnZW9tX3BvaW50KGFlcyhzaGFwZSA9IHBhcmFtZXRlciksXG4gICAgZmlsbCA9IFwiYmxhY2tcIixcbiAgICBjb2xvciA9IFwiYmxhY2tcIiwgc2l6ZSA9IDIuMixcbiAgICBzaG93LmxlZ2VuZCA9IEZBTFNFXG4gICkgK1xuICBzY2FsZV94X2NvbnRpbnVvdXMoXG4gICAgbGltaXRzID0gYygtMC4yNCwgMC4yNSksXG4gICAgYnJlYWtzID0gYygtMC4yLCAtMC4xLCAwLCAwLjEsIDAuMiksXG4gICAgbmFtZSA9IFwiRWZmZWN0IHNpemVcIlxuICApICtcbiAgZ2VvbV92bGluZShcbiAgICB4aW50ZXJjZXB0ID0gMCxcbiAgICBjb2xvciA9IFwiYmxhY2tcIixcbiAgICBsaW5ldHlwZSA9IFwiZGFzaGVkXCJcbiAgKSArXG4gIGZhY2V0X2dyaWQoXG4gICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgcm93cyA9IHZhcnMobGFiZWwpLFxuICAgIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAyMyksXG4gICAgc2NhbGVzID0gXCJmcmVlXCIsXG4gICAgc3BhY2UgPSBcImZyZWVcIlxuICApICtcbiAgdGhlbWVfYncoKSArXG4gIHRoZW1lKFxuICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksXG4gICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksXG4gICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9IFwiYmxhbmtcIiwgZmlsbCA9IFwiZ3JheTkwXCIpLFxuICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSxcbiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsIFwibGluZXNcIiksXG4gICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3VyID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksXG4gICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSwgc2l6ZSA9IDE0KSxcbiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKClcbiAgKVxuXG4jIE1ldGFtZXRhX0ZpZ1MxX2FsbHRyYWl0c1xuYGBgIn0= -->
<pre class="r"><code>Metameta_FigS1_alltraits &lt;- overall4S %&gt;%

  ggplot(aes(y = GroupingTerm, x = value)) +
  geom_errorbarh(aes(
    xmin = ci.low,
    xmax = ci.high
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(shape = parameter),
    fill = &quot;black&quot;,
    color = &quot;black&quot;, size = 2.2,
    show.legend = FALSE
  ) +
  scale_x_continuous(
    limits = c(-0.24, 0.25),
    breaks = c(-0.2, -0.1, 0, 0.1, 0.2),
    name = &quot;Effect size&quot;
  ) +
  geom_vline(
    xintercept = 0,
    color = &quot;black&quot;,
    linetype = &quot;dashed&quot;
  ) +
  facet_grid(
    cols = vars(parameter), rows = vars(label),
    labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_text(size = 12),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_text(hjust = 0.5, size = 14),
    axis.title.y = element_blank()
  )

# Metameta_FigS1_alltraits</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="heterogeneity" class="section level3">
<h3>Heterogeneity</h3>
<p>The analysis for heterogeneity follows the workflow of the above steps for the different meta-analyses. However, in the initial meta-analysis we extract sigma^2 and errors for mouse strains and centers (Institutions).</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuIyBDcmVhdGUgZGF0YWZyYW1lIHRvIHN0b3JlIHJlc3VsdHNcbnJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nIDwtIGFzLmRhdGEuZnJhbWUoY2JpbmQoYygxOm4pLCBtYXRyaXgocmVwKDAsIG4gKiAzMCksIG5jb2wgPSAzMCkpKVxubmFtZXMocmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcpIDwtIGMoXG4gIFwiaWRcIiwgXCJzaWdtYTJfc3RyYWluLkNWUlwiLCBcInNpZ21hMl9jZW50ZXIuQ1ZSXCIsIFwic2lnbWEyX2Vycm9yLkNWUlwiLCBcInMubmxldmVscy5zdHJhaW4uQ1ZSXCIsXG4gIFwicy5ubGV2ZWxzLmNlbnRlci5DVlJcIiwgXCJzLm5sZXZlbHMuZXJyb3IuQ1ZSXCIsIFwic2lnbWEyX3N0cmFpbi5WUlwiLCBcInNpZ21hMl9jZW50ZXIuVlJcIiwgXCJzaWdtYTJfZXJyb3IuVlJcIiwgXCJzLm5sZXZlbHMuc3RyYWluLlZSXCIsXG4gIFwicy5ubGV2ZWxzLmNlbnRlci5WUlwiLCBcInMubmxldmVscy5lcnJvci5WUlwiLCBcInNpZ21hMl9zdHJhaW4uUlJcIiwgXCJzaWdtYTJfY2VudGVyLlJSXCIsIFwic2lnbWEyX2Vycm9yLlJSXCIsIFwicy5ubGV2ZWxzLnN0cmFpbi5SUlwiLFxuICBcInMubmxldmVscy5jZW50ZXIuUlJcIiwgXCJzLm5sZXZlbHMuZXJyb3IuUlJcIiwgXCJsbkNWUlwiLCBcImxuQ1ZSX2xvd2VyXCIsIFwibG5DVlJfdXBwZXJcIiwgXCJsbkNWUl9zZVwiLCBcImxuVlJcIiwgXCJsblZSX2xvd2VyXCIsIFwibG5WUl91cHBlclwiLFxuICBcImxuVlJfc2VcIiwgXCJsblJSXCIsIFwibG5SUl9sb3dlclwiLCBcImxuUlJfdXBwZXJcIiwgXCJsblJSX3NlXCJcbilcblxuYGBgIn0= -->
<pre class="r"><code># Create dataframe to store results
results.allhetero.grouping &lt;- as.data.frame(cbind(c(1:n), matrix(rep(0, n * 30), ncol = 30)))
names(results.allhetero.grouping) &lt;- c(
  &quot;id&quot;, &quot;sigma2_strain.CVR&quot;, &quot;sigma2_center.CVR&quot;, &quot;sigma2_error.CVR&quot;, &quot;s.nlevels.strain.CVR&quot;,
  &quot;s.nlevels.center.CVR&quot;, &quot;s.nlevels.error.CVR&quot;, &quot;sigma2_strain.VR&quot;, &quot;sigma2_center.VR&quot;, &quot;sigma2_error.VR&quot;, &quot;s.nlevels.strain.VR&quot;,
  &quot;s.nlevels.center.VR&quot;, &quot;s.nlevels.error.VR&quot;, &quot;sigma2_strain.RR&quot;, &quot;sigma2_center.RR&quot;, &quot;sigma2_error.RR&quot;, &quot;s.nlevels.strain.RR&quot;,
  &quot;s.nlevels.center.RR&quot;, &quot;s.nlevels.error.RR&quot;, &quot;lnCVR&quot;, &quot;lnCVR_lower&quot;, &quot;lnCVR_upper&quot;, &quot;lnCVR_se&quot;, &quot;lnVR&quot;, &quot;lnVR_lower&quot;, &quot;lnVR_upper&quot;,
  &quot;lnVR_se&quot;, &quot;lnRR&quot;, &quot;lnRR_lower&quot;, &quot;lnRR_upper&quot;, &quot;lnRR_se&quot;
)
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>LOOP Parameters to extract from metafor (sigma2’s, s.nlevels)</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG5mb3IgKHQgaW4gMTpuKSB7XG4gIHRyeUNhdGNoKFxuICAgIHtcbiAgICAgIGRhdGFfcGFyX2FnZSA8LSBkYXRhX3N1YnNldF9wYXJhbWV0ZXJpZF9pbmRpdmlkdWFsX2J5X2FnZShkYXRhLCB0LCBhZ2VfbWluID0gMCwgYWdlX2NlbnRlciA9IDEwMClcblxuICAgICAgcG9wdWxhdGlvbl9zdGF0cyA8LSBjYWxjdWxhdGVfcG9wdWxhdGlvbl9zdGF0cyhkYXRhX3Bhcl9hZ2UpXG5cbiAgICAgIHJlc3VsdHMgPC0gY3JlYXRlX21ldGFfYW5hbHlzaXNfZWZmZWN0X3NpemVzKHBvcHVsYXRpb25fc3RhdHMpXG5cbiAgICAgICMgbG5DVlIsIGxvZ2FyaXRtIG9mIHRoZSByYXRpbyBvZiBtYWxlIGFuZCBmZW1hbGUgY29lZmZpY2llbnRzIG9mIHZhcmlhbmNlXG5cbiAgICAgIGN2ci4gPC0gbWV0YWZvcjo6cm1hLm12KHlpID0gZWZmZWN0X3NpemVfQ1ZSLCBWID0gc2FtcGxlX3ZhcmlhbmNlX0NWUiwgcmFuZG9tID0gbGlzdChcbiAgICAgICAgfiAxIHwgc3RyYWluX25hbWUsIH4gMSB8IHByb2R1Y3Rpb25fY2VudGVyLFxuICAgICAgICB+IDEgfCBlcnJcbiAgICAgICksIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCBkYXRhID0gcmVzdWx0cylcbiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDJdIDwtIGN2ci4kc2lnbWEyWzFdXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAzXSA8LSBjdnIuJHNpZ21hMlsyXVxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgNF0gPC0gY3ZyLiRzaWdtYTJbM11cbiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDVdIDwtIGN2ci4kcy5ubGV2ZWxzWzFdXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCA2XSA8LSBjdnIuJHMubmxldmVsc1syXVxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgN10gPC0gY3ZyLiRzLm5sZXZlbHNbM11cbiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDIwXSA8LSBjdnIuJGJcbiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDIxXSA8LSBjdnIuJGNpLmxiXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyMl0gPC0gY3ZyLiRjaS51YlxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMjNdIDwtIGN2ci4kc2VcblxuICAgICAgIyBsblZSLCBtYWxlIHRvIGZlbWFsZSB2YXJpYWJpbGl0eSByYXRpbyAobG9nYXJpdGhtIG9mIG1hbGUgYW5kIGZlbWFsZSBzdGFuZGFyZCBkZXZpYXRpb25zKVxuXG4gICAgICB2ci4gPC0gbWV0YWZvcjo6cm1hLm12KHlpID0gZWZmZWN0X3NpemVfVlIsIFYgPSBzYW1wbGVfdmFyaWFuY2VfVlIsIHJhbmRvbSA9IGxpc3QoXG4gICAgICAgIH4gMSB8IHN0cmFpbl9uYW1lLCB+IDEgfCBwcm9kdWN0aW9uX2NlbnRlcixcbiAgICAgICAgfiAxIHwgZXJyXG4gICAgICApLCBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwKSwgZGF0YSA9IHJlc3VsdHMpXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCA4XSA8LSB2ci4kc2lnbWEyWzFdXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCA5XSA8LSB2ci4kc2lnbWEyWzJdXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAxMF0gPC0gdnIuJHNpZ21hMlszXVxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMTFdIDwtIHZyLiRzLm5sZXZlbHNbMV1cbiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDEyXSA8LSB2ci4kcy5ubGV2ZWxzWzJdXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAxM10gPC0gdnIuJHMubmxldmVsc1szXVxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMjRdIDwtIHZyLiRiXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyNV0gPC0gdnIuJGNpLmxiXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyNl0gPC0gdnIuJGNpLnViXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyN10gPC0gdnIuJHNlXG5cbiAgICAgICMgbG5SUiwgcmVzcG9uc2UgcmF0aW8gKGxvZ2FyaXRobSBvZiBtYWxlIGFuZCBmZW1hbGUgbWVhbnMpXG5cbiAgICAgIHJyLiA8LSBtZXRhZm9yOjpybWEubXYoeWkgPSBlZmZlY3Rfc2l6ZV9SUiwgViA9IHNhbXBsZV92YXJpYW5jZV9SUiwgcmFuZG9tID0gbGlzdChcbiAgICAgICAgfiAxIHwgc3RyYWluX25hbWUsIH4gMSB8IHByb2R1Y3Rpb25fY2VudGVyLFxuICAgICAgICB+IDEgfCBlcnJcbiAgICAgICksIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCBkYXRhID0gcmVzdWx0cylcbiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDE0XSA8LSByci4kc2lnbWEyWzFdXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAxNV0gPC0gcnIuJHNpZ21hMlsyXVxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMTZdIDwtIHJyLiRzaWdtYTJbM11cbiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDE3XSA8LSByci4kcy5ubGV2ZWxzWzFdXG4gICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAxOF0gPC0gcnIuJHMubmxldmVsc1syXVxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMTldIDwtIHJyLiRzLm5sZXZlbHNbM11cbiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDI4XSA8LSByci4kYlxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMjldIDwtIHJyLiRjaS5sYlxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMzBdIDwtIHJyLiRjaS51YlxuICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMzFdIDwtIHJyLiRzZVxuICAgIH0sXG4gICAgZXJyb3IgPSBmdW5jdGlvbihlKSB7XG4gICAgICBjYXQoXCJFUlJPUiA6XCIsIGNvbmRpdGlvbk1lc3NhZ2UoZSksIFwiXFxuXCIpXG4gICAgfVxuICApXG59XG5gYGAifQ== -->
<pre class="r"><code>
for (t in 1:n) {
  tryCatch(
    {
      data_par_age &lt;- data_subset_parameterid_individual_by_age(data, t, age_min = 0, age_center = 100)

      population_stats &lt;- calculate_population_stats(data_par_age)

      results &lt;- create_meta_analysis_effect_sizes(population_stats)

      # lnCVR, logaritm of the ratio of male and female coefficients of variance

      cvr. &lt;- metafor::rma.mv(yi = effect_size_CVR, V = sample_variance_CVR, random = list(
        ~ 1 | strain_name, ~ 1 | production_center,
        ~ 1 | err
      ), control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), data = results)
      results.allhetero.grouping[t, 2] &lt;- cvr.$sigma2[1]
      results.allhetero.grouping[t, 3] &lt;- cvr.$sigma2[2]
      results.allhetero.grouping[t, 4] &lt;- cvr.$sigma2[3]
      results.allhetero.grouping[t, 5] &lt;- cvr.$s.nlevels[1]
      results.allhetero.grouping[t, 6] &lt;- cvr.$s.nlevels[2]
      results.allhetero.grouping[t, 7] &lt;- cvr.$s.nlevels[3]
      results.allhetero.grouping[t, 20] &lt;- cvr.$b
      results.allhetero.grouping[t, 21] &lt;- cvr.$ci.lb
      results.allhetero.grouping[t, 22] &lt;- cvr.$ci.ub
      results.allhetero.grouping[t, 23] &lt;- cvr.$se

      # lnVR, male to female variability ratio (logarithm of male and female standard deviations)

      vr. &lt;- metafor::rma.mv(yi = effect_size_VR, V = sample_variance_VR, random = list(
        ~ 1 | strain_name, ~ 1 | production_center,
        ~ 1 | err
      ), control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), data = results)
      results.allhetero.grouping[t, 8] &lt;- vr.$sigma2[1]
      results.allhetero.grouping[t, 9] &lt;- vr.$sigma2[2]
      results.allhetero.grouping[t, 10] &lt;- vr.$sigma2[3]
      results.allhetero.grouping[t, 11] &lt;- vr.$s.nlevels[1]
      results.allhetero.grouping[t, 12] &lt;- vr.$s.nlevels[2]
      results.allhetero.grouping[t, 13] &lt;- vr.$s.nlevels[3]
      results.allhetero.grouping[t, 24] &lt;- vr.$b
      results.allhetero.grouping[t, 25] &lt;- vr.$ci.lb
      results.allhetero.grouping[t, 26] &lt;- vr.$ci.ub
      results.allhetero.grouping[t, 27] &lt;- vr.$se

      # lnRR, response ratio (logarithm of male and female means)

      rr. &lt;- metafor::rma.mv(yi = effect_size_RR, V = sample_variance_RR, random = list(
        ~ 1 | strain_name, ~ 1 | production_center,
        ~ 1 | err
      ), control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), data = results)
      results.allhetero.grouping[t, 14] &lt;- rr.$sigma2[1]
      results.allhetero.grouping[t, 15] &lt;- rr.$sigma2[2]
      results.allhetero.grouping[t, 16] &lt;- rr.$sigma2[3]
      results.allhetero.grouping[t, 17] &lt;- rr.$s.nlevels[1]
      results.allhetero.grouping[t, 18] &lt;- rr.$s.nlevels[2]
      results.allhetero.grouping[t, 19] &lt;- rr.$s.nlevels[3]
      results.allhetero.grouping[t, 28] &lt;- rr.$b
      results.allhetero.grouping[t, 29] &lt;- rr.$ci.lb
      results.allhetero.grouping[t, 30] &lt;- rr.$ci.ub
      results.allhetero.grouping[t, 31] &lt;- rr.$se
    },
    error = function(e) {
      cat(&quot;ERROR :&quot;, conditionMessage(e), &quot;\n&quot;)
    }
  )
}</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<div id="exclude-traits-without-variation-between-mouse-strains-merge-datasets-felix-added-622020" class="section level4">
<h4>Exclude traits without variation between mouse strains; merge datasets #Felix added 6/2/2020</h4>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxucmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyIDwtIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3Jlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nJHMubmxldmVscy5zdHJhaW4uVlIgIT0gMCwgXVxuIyBucm93KHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nKSAjMjIzICBGZWxpeCA3LzIvMjAyMCBhZGRlZDogbm90IHN1cmUuIFJ1biBhZ2FpbiBhbmQgaXQgd2FzIDIzMj8hXG5gYGAifQ== -->
<pre class="r"><code>results.allhetero.grouping2 &lt;- results.allhetero.grouping[results.allhetero.grouping$s.nlevels.strain.VR != 0, ]
# nrow(results.allhetero.grouping) #223  Felix 7/2/2020 added: not sure. Run again and it was 232?!</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Merge data sets containing metafor results with procedure etc. names</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuIyBwcm9jZWR1cmVzIDwtIHJlYWQuY3N2KGhlcmUoXCJleHBvcnRcIiwgXCJwcm9jZWR1cmVzLmNzdlwiKSlcblxucmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJHBhcmFtZXRlcl9ncm91cCA8LSBkYXRhJHBhcmFtZXRlcl9ncm91cFttYXRjaChyZXN1bHRzLmFsbGhldGVyby5ncm91cGluZzIkaWQsIGRhdGEkaWQpXVxucmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJHByb2NlZHVyZSA8LSBkYXRhJHByb2NlZHVyZV9uYW1lW21hdGNoKHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nMiRpZCwgZGF0YSRpZCldXG5cbnJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nMiRHcm91cGluZ1Rlcm0gPC0gcHJvY2VkdXJlcyRHcm91cGluZ1Rlcm1bbWF0Y2gocmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJHByb2NlZHVyZSwgcHJvY2VkdXJlcyRwcm9jZWR1cmUpXVxucmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJHBhcmFtZXRlcl9uYW1lIDwtIGRhdGEkcGFyYW1ldGVyX25hbWVbbWF0Y2gocmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJGlkLCBkYXRhJGlkKV1cbmBgYCJ9 -->
<pre class="r"><code># procedures &lt;- read.csv(here(&quot;export&quot;, &quot;procedures.csv&quot;))

results.allhetero.grouping2$parameter_group &lt;- data$parameter_group[match(results.allhetero.grouping2$id, data$id)]
results.allhetero.grouping2$procedure &lt;- data$procedure_name[match(results.allhetero.grouping2$id, data$id)]

results.allhetero.grouping2$GroupingTerm &lt;- procedures$GroupingTerm[match(results.allhetero.grouping2$procedure, procedures$procedure)]
results.allhetero.grouping2$parameter_name &lt;- data$parameter_name[match(results.allhetero.grouping2$id, data$id)]</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="correlated-parameters" class="section level4">
<h4>Correlated parameters</h4>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YWhldGVybzEgPC0gcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyXG4jIGxlbmd0aCh1bmlxdWUobWV0YWhldGVybzEkcHJvY2VkdXJlKSkgIzE5XG4jIGxlbmd0aCh1bmlxdWUobWV0YWhldGVybzEkR3JvdXBpbmdUZXJtKSkgIzkgXG4jIGxlbmd0aCh1bmlxdWUobWV0YWhldGVybzEkcGFyYW1ldGVyX2dyb3VwKSkgIzE1MlxuIyBsZW5ndGgodW5pcXVlKG1ldGFoZXRlcm8xJHBhcmFtZXRlcl9uYW1lKSkgIzIyM1xuXG4jIENvdW50IG9mIG51bWJlciBvZiBwYXJhbWV0ZXIgbmFtZXMgKGNvcnJlbGF0ZWQgc3ViLXRyYWl0cykgaW4gZWFjaCBwYXJhbWV0ZXIgZ3JvdXAgKHBhcl9ncm91cF9zaXplKVxuXG5tZXRhaGV0ZXJvMWIgPC1cbiAgbWV0YWhldGVybzEgJT4lXG4gIGdyb3VwX2J5KHBhcmFtZXRlcl9ncm91cCkgJT4lXG4gIG11dGF0ZShwYXJfZ3JvdXBfc2l6ZSA9IG5fZGlzdGluY3QocGFyYW1ldGVyX25hbWUpKVxuXG5tZXRhaGV0ZXJvMSRwYXJfZ3JvdXBfc2l6ZSA8LSBtZXRhaGV0ZXJvMWIkcGFyX2dyb3VwX3NpemVbbWF0Y2gobWV0YWhldGVybzEkcGFyYW1ldGVyX2dyb3VwLCBtZXRhaGV0ZXJvMWIkcGFyYW1ldGVyX2dyb3VwKV1cblxuIyBDcmVhdGUgc3Vic2V0cyB3aXRoID4gMSBjb3VudCAocGFyX2dyb3VwX3NpemUgPiAxKVxuXG5tZXRhaGV0ZXJvMV9zdWIgPC0gc3Vic2V0KG1ldGFoZXRlcm8xLCBwYXJfZ3JvdXBfc2l6ZSA+IDEpICMgOTIgb2JzZXJ2YXRpb25zXG4jIHN0cihtZXRhaGV0ZXJvMV9zdWIpXG4jIG1ldGFoZXRlcm8xX3N1YiRzYW1wbGVTaXplIDwtIGFzLm51bWVyaWMobWV0YWhldGVybzFfc3ViJHNhbXBsZVNpemUpICNmcm9tIHByZXZpb3VzIGFuYWx5c2lzPyBkb24ndCB0aGluayBpcyB1c2VkOiA6IGRlbGV0ZSBpbiBmaW5hbCB2ZXJzaW9uXG5cbiMgTmVzdCBkYXRhXG5cbm5fY291bnQuIDwtIG1ldGFoZXRlcm8xX3N1YiAlPiVcbiAgZ3JvdXBfYnkocGFyYW1ldGVyX2dyb3VwKSAlPiVcbiAgIyBtdXRhdGUocmF3X04gPSBzdW0oc2FtcGxlU2l6ZSkpICU+JSAgI0ZlbGl4IGFkZGVkOiBkb24ndCB0aGluayBpcyBuZWNlc3Nhcnk6IGRlbGV0ZSBpbiBmaW5hbCB2ZXJzaW9uXG4gIG5lc3QoKVxuXG4jIG1ldGEtYW5hbHlzaXMgcHJlcGFyYXRpb25cblxubW9kZWxfY291bnQuIDwtIG5fY291bnQuICU+JVxuICBtdXRhdGUoXG4gICAgbW9kZWxfbG5SUiA9IG1hcChkYXRhLCB+IHJvYnUoLngkbG5SUiB+IDEsXG4gICAgICBkYXRhID0gLngsIHN0dWR5bnVtID0gLngkaWQsIG1vZGVsd2VpZ2h0cyA9IGMoXCJDT1JSXCIpLCByaG8gPSAwLjgsXG4gICAgICBzbWFsbCA9IFRSVUUsIHZhci5lZmYuc2l6ZSA9ICgueCRsblJSX3NlKV4yXG4gICAgKSksXG4gICAgbW9kZWxfbG5WUiA9IG1hcChkYXRhLCB+IHJvYnUoLngkbG5WUiB+IDEsXG4gICAgICBkYXRhID0gLngsIHN0dWR5bnVtID0gLngkaWQsIG1vZGVsd2VpZ2h0cyA9IGMoXCJDT1JSXCIpLCByaG8gPSAwLjgsXG4gICAgICBzbWFsbCA9IFRSVUUsIHZhci5lZmYuc2l6ZSA9ICgueCRsblZSX3NlKV4yXG4gICAgKSksXG4gICAgbW9kZWxfbG5DVlIgPSBtYXAoZGF0YSwgfiByb2J1KC54JGxuQ1ZSIH4gMSxcbiAgICAgIGRhdGEgPSAueCwgc3R1ZHludW0gPSAueCRpZCwgbW9kZWx3ZWlnaHRzID0gYyhcIkNPUlJcIiksIHJobyA9IDAuOCxcbiAgICAgIHNtYWxsID0gVFJVRSwgdmFyLmVmZi5zaXplID0gKC54JGxuQ1ZSX3NlKV4yXG4gICAgKSlcbiAgKVxuXG5cbiMgUm9idW1ldGEgb2JqZWN0IGRldGFpbHM6XG4jIHN0cihtb2RlbF9jb3VudC4kbW9kZWxfbG5DVlJbWzFdXSlcblxuIyMgKlBlcmZvcm0gbWV0YS1hbmFseXNlcyBvbiBjb3JyZWxhdGVkIHN1Yi10cmFpdHMsIHVzaW5nIHJvYnVtZXRhXG4gIyBTdXNpIC8gRkVMSVg6IHdoYXQncyB0aGlzIGJlbG93P1xuIyBTaGluaWNoaTogV2UgdGhpbmsgd2Ugd2FudCB0byB1c2UgdGhlc2UgZm9yIGZ1cnRoZXIgYW5hbHlzZXM6XG4jIHJlc2lkdWFsIHZhcmlhbmNlOiBhcy5udW1lcmljKHJvYnVfZml0JG1vZF9pbmZvJHRlcm0xKSAgICAgKHNhbWUgYXMgJ21vZF9pbmZvJHRhdS5zcScpXG4jIHNhbXBsZSBzaXplOiByb2J1X2ZpdCROXG5cbiMjICoqRXh0cmFjdCBhbmQgc2F2ZSBwYXJhbWV0ZXIgZXN0aW1hdGVzXG5cbiMgRmVsaXg6IGRvZXNuJ3Qgd29yayAsIGVycm9yIG1lc3NhZ2U6XG4jISEhISEhISEhISEgRVJST1IhISEhISEhISEhISEhISEhISEhIVxuI0Vycm9yOiBDb2x1bW4gYHBhcmFtZXRlcl9ncm91cGAgY2FuJ3QgYmUgbW9kaWZpZWQgYmVjYXVzZSBpdCdzIGEgZ3JvdXBpbmcgdmFyaWFibGVcblxuY291bnRfZnVuLiA8LSBmdW5jdGlvbihtb2Rfc3ViKSB7XG4gIHJldHVybihjKGFzLm51bWVyaWMobW9kX3N1YiRtb2RfaW5mbyR0ZXJtMSksIG1vZF9zdWIkTikpXG59XG5cbnJvYnVzdWJfUlIuIDwtIG1vZGVsX2NvdW50LiAlPiVcbiAgdHJhbnNtdXRlKGVzdGltYXRlbG5SUiA9IG1hcChtb2RlbF9sblJSLCBjb3VudF9mdW4uKSkgJT4lICAgICNGZWxpeCA0LzIvMjAyMDogZGVsZXRlZDogJ3BhcmFtZXRlcl9ncm91cCcgKGluIGJyYWNrZXRzLCBhZnRlciAndHJhbnNtdXRlJylcbiAgbXV0YXRlKHIgPSBtYXAoZXN0aW1hdGVsblJSLCB+IGRhdGEuZnJhbWUodCguKSkpKSAlPiVcbiAgdW5uZXN0KHIpICU+JVxuICBzZWxlY3QoLWVzdGltYXRlbG5SUikgJT4lXG4gIHB1cnJyOjpzZXRfbmFtZXMoYyhcInBhcmFtZXRlcl9ncm91cFwiLCBcInZhci5SUlwiLCBcIk4uUlJcIikpXG5cbnJvYnVzdWJfQ1ZSLiA8LSBtb2RlbF9jb3VudC4gJT4lXG4gIHRyYW5zbXV0ZShlc3RpbWF0ZWxuQ1ZSID0gbWFwKG1vZGVsX2xuQ1ZSLCBjb3VudF9mdW4uKSkgJT4lXG4gIG11dGF0ZShyID0gbWFwKGVzdGltYXRlbG5DVlIsIH4gZGF0YS5mcmFtZSh0KC4pKSkpICU+JVxuICB1bm5lc3QocikgJT4lXG4gIHNlbGVjdCgtZXN0aW1hdGVsbkNWUikgJT4lXG4gIHB1cnJyOjpzZXRfbmFtZXMoYyhcInBhcmFtZXRlcl9ncm91cFwiLCBcInZhci5DVlJcIiwgXCJOLkNWUlwiKSlcblxucm9idXN1Yl9WUi4gPC0gbW9kZWxfY291bnQuICU+JVxuICB0cmFuc211dGUoZXN0aW1hdGVsblZSID0gbWFwKG1vZGVsX2xuVlIsIGNvdW50X2Z1bi4pKSAlPiVcbiAgbXV0YXRlKHIgPSBtYXAoZXN0aW1hdGVsblZSLCB+IGRhdGEuZnJhbWUodCguKSkpKSAlPiVcbiAgdW5uZXN0KHIpICU+JVxuICBzZWxlY3QoLWVzdGltYXRlbG5WUikgJT4lXG4gIHB1cnJyOjpzZXRfbmFtZXMoYyhcInBhcmFtZXRlcl9ncm91cFwiLCBcInZhci5WUlwiLCBcIk4uVlJcIikpXG5cbnJvYnVfYWxsLiA8LSBmdWxsX2pvaW4ocm9idXN1Yl9DVlIuLCByb2J1c3ViX1ZSLikgJT4lIGZ1bGxfam9pbiguLCByb2J1c3ViX1JSLilcbmBgYCJ9 -->
<pre class="r"><code>metahetero1 &lt;- results.allhetero.grouping2
# length(unique(metahetero1$procedure)) #19
# length(unique(metahetero1$GroupingTerm)) #9 
# length(unique(metahetero1$parameter_group)) #152
# length(unique(metahetero1$parameter_name)) #223

# Count of number of parameter names (correlated sub-traits) in each parameter group (par_group_size)

metahetero1b &lt;-
  metahetero1 %&gt;%
  group_by(parameter_group) %&gt;%
  mutate(par_group_size = n_distinct(parameter_name))

metahetero1$par_group_size &lt;- metahetero1b$par_group_size[match(metahetero1$parameter_group, metahetero1b$parameter_group)]

# Create subsets with &gt; 1 count (par_group_size &gt; 1)

metahetero1_sub &lt;- subset(metahetero1, par_group_size &gt; 1) # 92 observations
# str(metahetero1_sub)
# metahetero1_sub$sampleSize &lt;- as.numeric(metahetero1_sub$sampleSize) #from previous analysis? don't think is used: : delete in final version

# Nest data

n_count. &lt;- metahetero1_sub %&gt;%
  group_by(parameter_group) %&gt;%
  # mutate(raw_N = sum(sampleSize)) %&gt;%  #Felix added: don't think is necessary: delete in final version
  nest()

# meta-analysis preparation

model_count. &lt;- n_count. %&gt;%
  mutate(
    model_lnRR = map(data, ~ robu(.x$lnRR ~ 1,
      data = .x, studynum = .x$id, modelweights = c(&quot;CORR&quot;), rho = 0.8,
      small = TRUE, var.eff.size = (.x$lnRR_se)^2
    )),
    model_lnVR = map(data, ~ robu(.x$lnVR ~ 1,
      data = .x, studynum = .x$id, modelweights = c(&quot;CORR&quot;), rho = 0.8,
      small = TRUE, var.eff.size = (.x$lnVR_se)^2
    )),
    model_lnCVR = map(data, ~ robu(.x$lnCVR ~ 1,
      data = .x, studynum = .x$id, modelweights = c(&quot;CORR&quot;), rho = 0.8,
      small = TRUE, var.eff.size = (.x$lnCVR_se)^2
    ))
  )


# Robumeta object details:
# str(model_count.$model_lnCVR[[1]])

## *Perform meta-analyses on correlated sub-traits, using robumeta
 # Susi / FELIX: what's this below?
# Shinichi: We think we want to use these for further analyses:
# residual variance: as.numeric(robu_fit$mod_info$term1)     (same as 'mod_info$tau.sq')
# sample size: robu_fit$N

## **Extract and save parameter estimates

# Felix: doesn't work , error message:
#!!!!!!!!!!! ERROR!!!!!!!!!!!!!!!!!!!!
#Error: Column `parameter_group` can't be modified because it's a grouping variable

count_fun. &lt;- function(mod_sub) {
  return(c(as.numeric(mod_sub$mod_info$term1), mod_sub$N))
}

robusub_RR. &lt;- model_count. %&gt;%
  transmute(estimatelnRR = map(model_lnRR, count_fun.)) %&gt;%    #Felix 4/2/2020: deleted: 'parameter_group' (in brackets, after 'transmute')
  mutate(r = map(estimatelnRR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnRR) %&gt;%
  purrr::set_names(c(&quot;parameter_group&quot;, &quot;var.RR&quot;, &quot;N.RR&quot;))

robusub_CVR. &lt;- model_count. %&gt;%
  transmute(estimatelnCVR = map(model_lnCVR, count_fun.)) %&gt;%
  mutate(r = map(estimatelnCVR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnCVR) %&gt;%
  purrr::set_names(c(&quot;parameter_group&quot;, &quot;var.CVR&quot;, &quot;N.CVR&quot;))

robusub_VR. &lt;- model_count. %&gt;%
  transmute(estimatelnVR = map(model_lnVR, count_fun.)) %&gt;%
  mutate(r = map(estimatelnVR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnVR) %&gt;%
  purrr::set_names(c(&quot;parameter_group&quot;, &quot;var.VR&quot;, &quot;N.VR&quot;))

robu_all. &lt;- full_join(robusub_CVR., robusub_VR.) %&gt;% full_join(., robusub_RR.)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Merge the two data sets (the new [robu_all.] and the initial [uncorrelated sub-traits with count = 1])</p>
<p>In this step, we<br />
1) merge the N from robumeta and the N from metafor (s.nlevels.error) together into the same columns (N.RR, N.VR, N.CVR) 2) calculate the total variance for metafor models as the sum of random effect variances and the residual error, then add in the same columns together with the residual variances from robumeta</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YWhldGVyb19hbGwgPC0gbWV0YWhldGVybzEgJT4lXG4gIGZpbHRlcihwYXJfZ3JvdXBfc2l6ZSA9PSAxKSAlPiVcbiAgYXNfdGliYmxlKClcbm1ldGFoZXRlcm9fYWxsJE4uUlIgPC0gbWV0YWhldGVyb19hbGwkcy5ubGV2ZWxzLmVycm9yLlJSXG5tZXRhaGV0ZXJvX2FsbCROLkNWUiA8LSBtZXRhaGV0ZXJvX2FsbCRzLm5sZXZlbHMuZXJyb3IuQ1ZSXG5tZXRhaGV0ZXJvX2FsbCROLlZSIDwtIG1ldGFoZXRlcm9fYWxsJHMubmxldmVscy5lcnJvci5WUlxubWV0YWhldGVyb19hbGwkdmFyLlJSIDwtIGxvZyhzcXJ0KG1ldGFoZXRlcm9fYWxsJHNpZ21hMl9zdHJhaW4uUlIgKyBtZXRhaGV0ZXJvX2FsbCRzaWdtYTJfY2VudGVyLlJSICsgbWV0YWhldGVyb19hbGwkc2lnbWEyX2Vycm9yLlJSKSlcbm1ldGFoZXRlcm9fYWxsJHZhci5WUiA8LSBsb2coc3FydChtZXRhaGV0ZXJvX2FsbCRzaWdtYTJfc3RyYWluLlZSICsgbWV0YWhldGVyb19hbGwkc2lnbWEyX2NlbnRlci5WUiArIG1ldGFoZXRlcm9fYWxsJHNpZ21hMl9lcnJvci5WUikpXG5tZXRhaGV0ZXJvX2FsbCR2YXIuQ1ZSIDwtIGxvZyhzcXJ0KG1ldGFoZXRlcm9fYWxsJHNpZ21hMl9zdHJhaW4uQ1ZSICsgbWV0YWhldGVyb19hbGwkc2lnbWEyX2NlbnRlci5DVlIgKyBtZXRhaGV0ZXJvX2FsbCRzaWdtYTJfZXJyb3IuQ1ZSKSlcbiMgc3RyKG1ldGFoZXRlcm9fYWxsKVxuIyBzdHIocm9idV9hbGwuKVxuXG5tZXRhaGV0ZXJvX2FsbCA8LSBtZXRhaGV0ZXJvX2FsbCAlPiUgbXV0YXRlKFxuICB2YXIuUlIgPSBpZl9lbHNlKHZhci5SUiA9PSAtSW5mLCAtNywgdmFyLlJSKSwgICAjRmVsaXggY29tbWVudGVkIDYvMi8yMDIwOiBjYW4ndCByZW1tZWJlciwgd2h5IC03LCAtNiwgLTUgaW4gdGhpcyBzZWN0aW9uIVxuICB2YXIuVlIgPSBpZl9lbHNlKHZhci5WUiA9PSAtSW5mLCAtNSwgdmFyLlZSKSxcbiAgdmFyLkNWUiA9IGlmX2Vsc2UodmFyLkNWUiA9PSAtSW5mLCAtNiwgdmFyLkNWUilcbilcblxuIyAqKkNvbWJpbmUgZGF0YVxuIyMgU3RlcDFcbmNvbWJpbmVkbWV0YWhldGVybyA8LSBiaW5kX3Jvd3Mocm9idV9hbGwuLCBtZXRhaGV0ZXJvX2FsbClcbiMgZ2xpbXBzZShjb21iaW5lZG1ldGFoZXRlcm8pXG5cbiMgU3RlcHMgMiYzXG5cbm1ldGFjb21ib2hldGVybyA8LSBjb21iaW5lZG1ldGFoZXRlcm9cbm1ldGFjb21ib2hldGVybyRjb3VudHMgPC0gbWV0YWhldGVybzEkcGFyX2dyb3VwX3NpemVbbWF0Y2gobWV0YWNvbWJvaGV0ZXJvJHBhcmFtZXRlcl9ncm91cCwgbWV0YWhldGVybzEkcGFyYW1ldGVyX2dyb3VwKV1cbm1ldGFjb21ib2hldGVybyRwcm9jZWR1cmUyIDwtIG1ldGFoZXRlcm8xJHByb2NlZHVyZVttYXRjaChtZXRhY29tYm9oZXRlcm8kcGFyYW1ldGVyX2dyb3VwLCBtZXRhaGV0ZXJvMSRwYXJhbWV0ZXJfZ3JvdXApXVxubWV0YWNvbWJvaGV0ZXJvJEdyb3VwaW5nVGVybTIgPC0gbWV0YWhldGVybzEkR3JvdXBpbmdUZXJtW21hdGNoKG1ldGFjb21ib2hldGVybyRwYXJhbWV0ZXJfZ3JvdXAsIG1ldGFoZXRlcm8xJHBhcmFtZXRlcl9ncm91cCldXG5cbiMgKipDbGVhbi11cCBhbmQgcmVuYW1lXG5cbm1ldGFjb21ib2hldGVybyA8LSBtZXRhY29tYm9oZXRlcm8gJT4lIHNlbGVjdChwYXJhbWV0ZXJfZ3JvdXAsIHZhci5DVlIsIE4uQ1ZSLCB2YXIuVlIsIE4uVlIsIHZhci5SUiwgTi5SUiwgY291bnRzLCBwcm9jZWR1cmUgPSBwcm9jZWR1cmUyLCBHcm91cGluZ1Rlcm0gPSBHcm91cGluZ1Rlcm0yKSAgI0ZlbGl4IGNoYW5nZWQgNi8yLzIwMjA6IHdhczogYygxOjcsIDQzOjQ1LCBhbmQgMiByZW5hbWluZyBsaW5lcylcblxuYGBgIn0= -->
<pre class="r"><code>metahetero_all &lt;- metahetero1 %&gt;%
  filter(par_group_size == 1) %&gt;%
  as_tibble()
metahetero_all$N.RR &lt;- metahetero_all$s.nlevels.error.RR
metahetero_all$N.CVR &lt;- metahetero_all$s.nlevels.error.CVR
metahetero_all$N.VR &lt;- metahetero_all$s.nlevels.error.VR
metahetero_all$var.RR &lt;- log(sqrt(metahetero_all$sigma2_strain.RR + metahetero_all$sigma2_center.RR + metahetero_all$sigma2_error.RR))
metahetero_all$var.VR &lt;- log(sqrt(metahetero_all$sigma2_strain.VR + metahetero_all$sigma2_center.VR + metahetero_all$sigma2_error.VR))
metahetero_all$var.CVR &lt;- log(sqrt(metahetero_all$sigma2_strain.CVR + metahetero_all$sigma2_center.CVR + metahetero_all$sigma2_error.CVR))
# str(metahetero_all)
# str(robu_all.)

metahetero_all &lt;- metahetero_all %&gt;% mutate(
  var.RR = if_else(var.RR == -Inf, -7, var.RR),   #Felix commented 6/2/2020: can't remmeber, why -7, -6, -5 in this section!
  var.VR = if_else(var.VR == -Inf, -5, var.VR),
  var.CVR = if_else(var.CVR == -Inf, -6, var.CVR)
)

# **Combine data
## Step1
combinedmetahetero &lt;- bind_rows(robu_all., metahetero_all)
# glimpse(combinedmetahetero)

# Steps 2&amp;3

metacombohetero &lt;- combinedmetahetero
metacombohetero$counts &lt;- metahetero1$par_group_size[match(metacombohetero$parameter_group, metahetero1$parameter_group)]
metacombohetero$procedure2 &lt;- metahetero1$procedure[match(metacombohetero$parameter_group, metahetero1$parameter_group)]
metacombohetero$GroupingTerm2 &lt;- metahetero1$GroupingTerm[match(metacombohetero$parameter_group, metahetero1$parameter_group)]

# **Clean-up and rename

metacombohetero &lt;- metacombohetero %&gt;% select(parameter_group, var.CVR, N.CVR, var.VR, N.VR, var.RR, N.RR, counts, procedure = procedure2, GroupingTerm = GroupingTerm2)  #Felix changed 6/2/2020: was: c(1:7, 43:45, and 2 renaming lines)
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="meta-analysis-of-heterogeneity" class="section level4">
<h4>Meta-analysis of heterogeneity</h4>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuIyMgUGVyZm9ybSBtZXRhLW1ldGEtYW5hbHlzaXMgKDMgZm9yIGVhY2ggb2YgdGhlIDkgZ3JvdXBpbmcgdGVybXM6IHZhci5DVlIsIHZhci5WUiwgdmFyLlJSKVxuXG5tZXRhY29tYm9oZXRlcm9fZmluYWwgPC0gbWV0YWNvbWJvaGV0ZXJvICU+JVxuICBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JVxuICBuZXN0KClcblxuIyBGaW5hbCBmaXhlZCBlZmZlY3RzIG1ldGEtYW5hbHlzZXMgd2l0aGluIGdyb3VwaW5nIHRlcm1zLCB3aXRoIFNFIG9mIHRoZSBlc3RpbWF0ZVxuXG5oZXRlcm9nMSA8LSBtZXRhY29tYm9oZXRlcm9fZmluYWwgJT4lXG5cbiAgbXV0YXRlKFxuICAgIG1vZGVsX2hldGVyb0NWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgICB5aSA9IC54JHZhci5DVlIsIHNlaSA9IHNxcnQoMSAvIDIgKiAoLngkTi5DVlIgLSAxKSksXG4gICAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwMCwgc3RlcGFkaiA9IDAuNSksIHZlcmJvc2UgPSBGXG4gICAgKSksXG4gICAgbW9kZWxfaGV0ZXJvVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgICAgeWkgPSAueCR2YXIuVlIsIHNlaSA9IHNxcnQoMSAvIDIgKiAoLngkTi5WUiAtIDEpKSxcbiAgICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDAwLCBzdGVwYWRqID0gMC41KSwgdmVyYm9zZSA9IEZcbiAgICApKSxcbiAgICBtb2RlbF9oZXRlcm9SUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgICB5aSA9IC54JHZhci5SUiwgc2VpID0gc3FydCgxIC8gMiAqICgueCROLlJSIC0gMSkpLFxuICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMDAsIHN0ZXBhZGogPSAwLjUpLCB2ZXJib3NlID0gRlxuICAgICkpXG4gIClcblxuIyBBY3Jvc3MgYWxsIGdyb3VwaW5nIHRlcm1zICAgXG5cbm1ldGFjb21ib2hldGVyb19hbGxfZmluYWwgPC0gbWV0YWNvbWJvaGV0ZXJvICU+JVxuICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpIFxuXG4jIEZpbmFsIGZpeGVkIGVmZmVjdHMgbWV0YS1hbmFseXNlcyBBQ1JPU1MgZ3JvdXBpbmcgdGVybXMsIHdpdGggU0Ugb2YgdGhlIGVzdGltYXRlXG5cbmhldGVyb2cxX2FsbCA8LSBtZXRhY29tYm9oZXRlcm9fYWxsX2ZpbmFsICU+JVxuICBcbiAgbXV0YXRlKFxuICAgIG1vZGVsX2hldGVyb0NWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgICB5aSA9IC54JHZhci5DVlIsIHNlaSA9IHNxcnQoMSAvIDIgKiAoLngkTi5DVlIgLSAxKSksXG4gICAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwMCwgc3RlcGFkaiA9IDAuNSksIHZlcmJvc2UgPSBGXG4gICAgKSksXG4gICAgbW9kZWxfaGV0ZXJvVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgICAgeWkgPSAueCR2YXIuVlIsIHNlaSA9IHNxcnQoMSAvIDIgKiAoLngkTi5WUiAtIDEpKSxcbiAgICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDAwLCBzdGVwYWRqID0gMC41KSwgdmVyYm9zZSA9IEZcbiAgICApKSxcbiAgICBtb2RlbF9oZXRlcm9SUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgICB5aSA9IC54JHZhci5SUiwgc2VpID0gc3FydCgxIC8gMiAqICgueCROLlJSIC0gMSkpLFxuICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMDAsIHN0ZXBhZGogPSAwLjUpLCB2ZXJib3NlID0gRlxuICAgICkpXG4gIClcblxuXG4jIFJlLXN0cnVjdHVyZSBkYXRhIGZvciBlYWNoIGdyb3VwaW5nIHRlcm07IGV4dHJhY3QgaGV0ZXJvZ2VuZW5pdHkvdmFyaWFuY2UgdGVybXM7IGRlbGV0ZSB1bi11c2VkIHZhcmlhYmxlc1xuXG5CZWhhdmlvdXIuIDwtIGhldGVyb2cxICU+JVxuICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09IFwiQmVoYXZpb3VyXCIpICU+JVxuICBzZWxlY3QoLiwgLWRhdGEpICU+JVxuICBtdXRhdGUoXG4gICAgaGV0ZXJvQ1ZSID0gLltbMl1dW1sxXV0kYiwgaGV0ZXJvQ1ZSX2xvd2VyID0gLltbMl1dW1sxXV0kY2kubGIsIGhldGVyb0NWUl91cHBlciA9IC5bWzJdXVtbMV1dJGNpLnViLCBoZXRlcm9DVlJfc2UgPSAuW1syXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9WUiA9IC5bWzNdXVtbMV1dJGIsIGhldGVyb1ZSX2xvd2VyID0gLltbM11dW1sxXV0kY2kubGIsIGhldGVyb1ZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGhldGVyb1ZSX3NlID0gLltbM11dW1sxXV0kc2UsXG4gICAgaGV0ZXJvUlIgPSAuW1s0XV1bWzFdXSRiLCBoZXRlcm9SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBoZXRlcm9SUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBoZXRlcm9SUl9zZSA9IC5bWzRdXVtbMV1dJHNlXG4gICkgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGhldGVyb0NWUjpoZXRlcm9SUl9zZSlcblxuSW1tdW5vbG9neS4gPC0gaGV0ZXJvZzEgJT4lXG4gIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gXCJJbW11bm9sb2d5XCIpICU+JVxuICBzZWxlY3QoLiwgLWRhdGEpICU+JVxuICBtdXRhdGUoXG4gICAgaGV0ZXJvQ1ZSID0gLltbMl1dW1sxXV0kYiwgaGV0ZXJvQ1ZSX2xvd2VyID0gLltbMl1dW1sxXV0kY2kubGIsIGhldGVyb0NWUl91cHBlciA9IC5bWzJdXVtbMV1dJGNpLnViLCBoZXRlcm9DVlJfc2UgPSAuW1syXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9WUiA9IC5bWzNdXVtbMV1dJGIsIGhldGVyb1ZSX2xvd2VyID0gLltbM11dW1sxXV0kY2kubGIsIGhldGVyb1ZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGhldGVyb1ZSX3NlID0gLltbM11dW1sxXV0kc2UsXG4gICAgaGV0ZXJvUlIgPSAuW1s0XV1bWzFdXSRiLCBoZXRlcm9SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBoZXRlcm9SUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBoZXRlcm9SUl9zZSA9IC5bWzRdXVtbMV1dJHNlXG4gICkgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGhldGVyb0NWUjpoZXRlcm9SUl9zZSlcblxuSGVtYXRvbG9neS4gPC0gaGV0ZXJvZzEgJT4lXG4gIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gXCJIZW1hdG9sb2d5XCIpICU+JVxuICBzZWxlY3QoLiwgLWRhdGEpICU+JVxuICBtdXRhdGUoXG4gICAgaGV0ZXJvQ1ZSID0gLltbMl1dW1sxXV0kYiwgaGV0ZXJvQ1ZSX2xvd2VyID0gLltbMl1dW1sxXV0kY2kubGIsIGhldGVyb0NWUl91cHBlciA9IC5bWzJdXVtbMV1dJGNpLnViLCBoZXRlcm9DVlJfc2UgPSAuW1syXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9WUiA9IC5bWzNdXVtbMV1dJGIsIGhldGVyb1ZSX2xvd2VyID0gLltbM11dW1sxXV0kY2kubGIsIGhldGVyb1ZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGhldGVyb1ZSX3NlID0gLltbM11dW1sxXV0kc2UsXG4gICAgaGV0ZXJvUlIgPSAuW1s0XV1bWzFdXSRiLCBoZXRlcm9SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBoZXRlcm9SUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBoZXRlcm9SUl9zZSA9IC5bWzRdXVtbMV1dJHNlXG4gICkgJT4lXG4gIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGhldGVyb0NWUjpoZXRlcm9SUl9zZSlcblxuXG5IZWFyaW5nLiA8LSBoZXRlcm9nMSAlPiVcbiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSBcIkhlYXJpbmdcIikgJT4lXG4gIHNlbGVjdCguLCAtZGF0YSkgJT4lXG4gIG11dGF0ZShcbiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLFxuICAgIGhldGVyb1ZSID0gLltbM11dW1sxXV0kYiwgaGV0ZXJvVlJfbG93ZXIgPSAuW1szXV1bWzFdXSRjaS5sYiwgaGV0ZXJvVlJfdXBwZXIgPSAuW1szXV1bWzFdXSRjaS51YiwgaGV0ZXJvVlJfc2UgPSAuW1szXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2VcbiAgKSAlPiVcbiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgaGV0ZXJvQ1ZSOmhldGVyb1JSX3NlKVxuXG5QaHlzaW9sb2d5LiA8LSBoZXRlcm9nMSAlPiVcbiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSBcIlBoeXNpb2xvZ3lcIikgJT4lXG4gIHNlbGVjdCguLCAtZGF0YSkgJT4lXG4gIG11dGF0ZShcbiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLFxuICAgIGhldGVyb1ZSID0gLltbM11dW1sxXV0kYiwgaGV0ZXJvVlJfbG93ZXIgPSAuW1szXV1bWzFdXSRjaS5sYiwgaGV0ZXJvVlJfdXBwZXIgPSAuW1szXV1bWzFdXSRjaS51YiwgaGV0ZXJvVlJfc2UgPSAuW1szXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2VcbiAgKSAlPiVcbiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgaGV0ZXJvQ1ZSOmhldGVyb1JSX3NlKVxuXG5NZXRhYm9saXNtLiA8LSBoZXRlcm9nMSAlPiVcbiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSBcIk1ldGFib2xpc21cIikgJT4lXG4gIHNlbGVjdCguLCAtZGF0YSkgJT4lXG4gIG11dGF0ZShcbiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLFxuICAgIGhldGVyb1ZSID0gLltbM11dW1sxXV0kYiwgaGV0ZXJvVlJfbG93ZXIgPSAuW1szXV1bWzFdXSRjaS5sYiwgaGV0ZXJvVlJfdXBwZXIgPSAuW1szXV1bWzFdXSRjaS51YiwgaGV0ZXJvVlJfc2UgPSAuW1szXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2VcbiAgKSAlPiVcbiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgaGV0ZXJvQ1ZSOmhldGVyb1JSX3NlKVxuXG5Nb3JwaG9sb2d5LiA8LSBoZXRlcm9nMSAlPiVcbiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSBcIk1vcnBob2xvZ3lcIikgJT4lXG4gIHNlbGVjdCguLCAtZGF0YSkgJT4lXG4gIG11dGF0ZShcbiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLFxuICAgIGhldGVyb1ZSID0gLltbM11dW1sxXV0kYiwgaGV0ZXJvVlJfbG93ZXIgPSAuW1szXV1bWzFdXSRjaS5sYiwgaGV0ZXJvVlJfdXBwZXIgPSAuW1szXV1bWzFdXSRjaS51YiwgaGV0ZXJvVlJfc2UgPSAuW1szXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2VcbiAgKSAlPiVcbiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgaGV0ZXJvQ1ZSOmhldGVyb1JSX3NlKVxuXG5IZWFydC4gPC0gaGV0ZXJvZzEgJT4lXG4gIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gXCJIZWFydFwiKSAlPiVcbiAgc2VsZWN0KC4sIC1kYXRhKSAlPiVcbiAgbXV0YXRlKFxuICAgIGhldGVyb0NWUiA9IC5bWzJdXVtbMV1dJGIsIGhldGVyb0NWUl9sb3dlciA9IC5bWzJdXVtbMV1dJGNpLmxiLCBoZXRlcm9DVlJfdXBwZXIgPSAuW1syXV1bWzFdXSRjaS51YiwgaGV0ZXJvQ1ZSX3NlID0gLltbMl1dW1sxXV0kc2UsXG4gICAgaGV0ZXJvVlIgPSAuW1szXV1bWzFdXSRiLCBoZXRlcm9WUl9sb3dlciA9IC5bWzNdXVtbMV1dJGNpLmxiLCBoZXRlcm9WUl91cHBlciA9IC5bWzNdXVtbMV1dJGNpLnViLCBoZXRlcm9WUl9zZSA9IC5bWzNdXVtbMV1dJHNlLFxuICAgIGhldGVyb1JSID0gLltbNF1dW1sxXV0kYiwgaGV0ZXJvUlJfbG93ZXIgPSAuW1s0XV1bWzFdXSRjaS5sYiwgaGV0ZXJvUlJfdXBwZXIgPSAuW1s0XV1bWzFdXSRjaS51YiwgaGV0ZXJvUlJfc2UgPSAuW1s0XV1bWzFdXSRzZVxuICApICU+JVxuICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBoZXRlcm9DVlI6aGV0ZXJvUlJfc2UpXG5cbkV5ZS4gPC0gaGV0ZXJvZzEgJT4lXG4gIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gXCJFeWVcIikgJT4lXG4gIHNlbGVjdCguLCAtZGF0YSkgJT4lXG4gIG11dGF0ZShcbiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLFxuICAgIGhldGVyb1ZSID0gLltbM11dW1sxXV0kYiwgaGV0ZXJvVlJfbG93ZXIgPSAuW1szXV1bWzFdXSRjaS5sYiwgaGV0ZXJvVlJfdXBwZXIgPSAuW1szXV1bWzFdXSRjaS51YiwgaGV0ZXJvVlJfc2UgPSAuW1szXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2VcbiAgKSAlPiVcbiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgaGV0ZXJvQ1ZSOmhldGVyb1JSX3NlKVxuXG4jUmVvcmRlciB0byBiZSBhYmxlIHRvIGtlZXAgY2VsbCByZWZlcmVuY2luZyBcbmhldGVyb2cxX2FsbCA8LSBoZXRlcm9nMV9hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgZXZlcnl0aGluZygpKVxuXG5BbGwuIDwtIGhldGVyb2cxX2FsbCAlPiUgXG4gIHNlbGVjdCguLCAtZGF0YSkgJT4lXG4gIG11dGF0ZShcbiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLFxuICAgIGhldGVyb1ZSID0gLltbM11dW1sxXV0kYiwgaGV0ZXJvVlJfbG93ZXIgPSAuW1szXV1bWzFdXSRjaS5sYiwgaGV0ZXJvVlJfdXBwZXIgPSAuW1szXV1bWzFdXSRjaS51YiwgaGV0ZXJvVlJfc2UgPSAuW1szXV1bWzFdXSRzZSxcbiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2VcbiAgKSAlPiVcbiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgaGV0ZXJvQ1ZSOmhldGVyb1JSX3NlKVxuXG5oZXRlcm9nMiA8LSBiaW5kX3Jvd3MoQmVoYXZpb3VyLiwgTW9ycGhvbG9neS4sIE1ldGFib2xpc20uLCBQaHlzaW9sb2d5LiwgSW1tdW5vbG9neS4sIEhlbWF0b2xvZ3kuLCBIZWFydC4sIEhlYXJpbmcuLCBFeWUuLCBBbGwuKVxuIyBzdHIoaGV0ZXJvZzIpXG5gYGAifQ== -->
<pre class="r"><code>## Perform meta-meta-analysis (3 for each of the 9 grouping terms: var.CVR, var.VR, var.RR)

metacombohetero_final &lt;- metacombohetero %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

# Final fixed effects meta-analyses within grouping terms, with SE of the estimate

heterog1 &lt;- metacombohetero_final %&gt;%

  mutate(
    model_heteroCVR = map(data, ~ metafor::rma.uni(
      yi = .x$var.CVR, sei = sqrt(1 / 2 * (.x$N.CVR - 1)),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 10000, stepadj = 0.5), verbose = F
    )),
    model_heteroVR = map(data, ~ metafor::rma.uni(
      yi = .x$var.VR, sei = sqrt(1 / 2 * (.x$N.VR - 1)),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 10000, stepadj = 0.5), verbose = F
    )),
    model_heteroRR = map(data, ~ metafor::rma.uni(
      yi = .x$var.RR, sei = sqrt(1 / 2 * (.x$N.RR - 1)),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 10000, stepadj = 0.5), verbose = F
    ))
  )

# Across all grouping terms   

metacombohetero_all_final &lt;- metacombohetero %&gt;%
  nest(data = everything()) 

# Final fixed effects meta-analyses ACROSS grouping terms, with SE of the estimate

heterog1_all &lt;- metacombohetero_all_final %&gt;%
  
  mutate(
    model_heteroCVR = map(data, ~ metafor::rma.uni(
      yi = .x$var.CVR, sei = sqrt(1 / 2 * (.x$N.CVR - 1)),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 10000, stepadj = 0.5), verbose = F
    )),
    model_heteroVR = map(data, ~ metafor::rma.uni(
      yi = .x$var.VR, sei = sqrt(1 / 2 * (.x$N.VR - 1)),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 10000, stepadj = 0.5), verbose = F
    )),
    model_heteroRR = map(data, ~ metafor::rma.uni(
      yi = .x$var.RR, sei = sqrt(1 / 2 * (.x$N.RR - 1)),
      control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 10000, stepadj = 0.5), verbose = F
    ))
  )


# Re-structure data for each grouping term; extract heterogenenity/variance terms; delete un-used variables

Behaviour. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Behaviour&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

Immunology. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Immunology&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

Hematology. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Hematology&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)


Hearing. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Hearing&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

Physiology. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Physiology&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

Metabolism. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Metabolism&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

Morphology. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Morphology&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

Heart. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Heart&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

Eye. &lt;- heterog1 %&gt;%
  filter(., GroupingTerm == &quot;Eye&quot;) %&gt;%
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

#Reorder to be able to keep cell referencing 
heterog1_all &lt;- heterog1_all %&gt;% mutate(GroupingTerm = &quot;All&quot;) %&gt;% select(GroupingTerm, everything())

All. &lt;- heterog1_all %&gt;% 
  select(., -data) %&gt;%
  mutate(
    heteroCVR = .[[2]][[1]]$b, heteroCVR_lower = .[[2]][[1]]$ci.lb, heteroCVR_upper = .[[2]][[1]]$ci.ub, heteroCVR_se = .[[2]][[1]]$se,
    heteroVR = .[[3]][[1]]$b, heteroVR_lower = .[[3]][[1]]$ci.lb, heteroVR_upper = .[[3]][[1]]$ci.ub, heteroVR_se = .[[3]][[1]]$se,
    heteroRR = .[[4]][[1]]$b, heteroRR_lower = .[[4]][[1]]$ci.lb, heteroRR_upper = .[[4]][[1]]$ci.ub, heteroRR_se = .[[4]][[1]]$se
  ) %&gt;%
  select(., GroupingTerm, heteroCVR:heteroRR_se)

heterog2 &lt;- bind_rows(Behaviour., Morphology., Metabolism., Physiology., Immunology., Hematology., Heart., Hearing., Eye., All.)
# str(heterog2)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="heterogeneity-plot" class="section level4">
<h4>Heterogeneity PLOT</h4>
<p>Restructure data for plotting</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuaGV0ZXJvZzMgPC0gZ2F0aGVyKGhldGVyb2cyLCBwYXJhbWV0ZXIsIHZhbHVlLCBjKGhldGVyb0NWUiwgaGV0ZXJvVlIsIGhldGVyb1JSKSwgZmFjdG9yX2tleSA9IFRSVUUpXG5cbmhldGVyb0NWUi5jaSA8LSBoZXRlcm9nMyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImhldGVyb0NWUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGhldGVyb0NWUl9sb3dlciwgY2kuaGlnaCA9IGhldGVyb0NWUl91cHBlcilcbmhldGVyb1ZSLmNpIDwtIGhldGVyb2czICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwiaGV0ZXJvVlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBoZXRlcm9WUl9sb3dlciwgY2kuaGlnaCA9IGhldGVyb1ZSX3VwcGVyKVxuaGV0ZXJvUlIuY2kgPC0gaGV0ZXJvZzMgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJoZXRlcm9SUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGhldGVyb1JSX2xvd2VyLCBjaS5oaWdoID0gaGV0ZXJvUlJfdXBwZXIpXG5cbmhldGVyb2c0IDwtIGJpbmRfcm93cyhoZXRlcm9DVlIuY2ksIGhldGVyb1ZSLmNpLCBoZXRlcm9SUi5jaSkgJT4lIHNlbGVjdChHcm91cGluZ1Rlcm0sIHBhcmFtZXRlciwgdmFsdWUsIGNpLmxvdywgY2kuaGlnaClcblxuIyAqKlJlLW9yZGVyIGdyb3VwaW5nIHRlcm1zXG5cbmhldGVyb2c0JEdyb3VwaW5nVGVybSA8LSBmYWN0b3IoaGV0ZXJvZzQkR3JvdXBpbmdUZXJtLCBsZXZlbHMgPSBjKFwiQmVoYXZpb3VyXCIsIFwiTW9ycGhvbG9neVwiLCBcIk1ldGFib2xpc21cIiwgXCJQaHlzaW9sb2d5XCIsIFwiSW1tdW5vbG9neVwiLCBcIkhlbWF0b2xvZ3lcIiwgXCJIZWFydFwiLCBcIkhlYXJpbmdcIiwgXCJFeWVcIiwgXCJBbGxcIikpXG5oZXRlcm9nNCRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKGhldGVyb2c0JEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhoZXRlcm9nNCRHcm91cGluZ1Rlcm0pKSlcbmhldGVyb2c0JGxhYmVsIDwtIFwiQWxsIHRyYWl0c1wiXG4jIHdyaXRlLmNzdihoZXRlcm9nNCwgXCJoZXRlcm9nNC5jc3ZcIilcbmBgYCJ9 -->
<pre class="r"><code>heterog3 &lt;- gather(heterog2, parameter, value, c(heteroCVR, heteroVR, heteroRR), factor_key = TRUE)

heteroCVR.ci &lt;- heterog3 %&gt;%
  filter(parameter == &quot;heteroCVR&quot;) %&gt;%
  mutate(ci.low = heteroCVR_lower, ci.high = heteroCVR_upper)
heteroVR.ci &lt;- heterog3 %&gt;%
  filter(parameter == &quot;heteroVR&quot;) %&gt;%
  mutate(ci.low = heteroVR_lower, ci.high = heteroVR_upper)
heteroRR.ci &lt;- heterog3 %&gt;%
  filter(parameter == &quot;heteroRR&quot;) %&gt;%
  mutate(ci.low = heteroRR_lower, ci.high = heteroRR_upper)

heterog4 &lt;- bind_rows(heteroCVR.ci, heteroVR.ci, heteroRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

# **Re-order grouping terms

heterog4$GroupingTerm &lt;- factor(heterog4$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;))
heterog4$GroupingTerm &lt;- factor(heterog4$GroupingTerm, rev(levels(heterog4$GroupingTerm)))
heterog4$label &lt;- &quot;All traits&quot;
# write.csv(heterog4, &quot;heterog4.csv&quot;)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="plot-s1-c-second-order-meta-analysis-on-heterogeneity" class="section level4">
<h4>Plot S1 C (Second-order meta analysis on heterogeneity)</h4>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuaGV0ZXJvZzUgPC0gaGV0ZXJvZzRcbmhldGVyb2c1JG1lYW4gPC0gYXMubnVtZXJpYyhleHAoaGV0ZXJvZzUkdmFsdWUpKVxuaGV0ZXJvZzUkY2kubCA8LSBhcy5udW1lcmljKGV4cChoZXRlcm9nNSRjaS5sb3cpKVxuaGV0ZXJvZzUkY2kuaCA8LSBhcy5udW1lcmljKGV4cChoZXRlcm9nNSRjaS5oaWdoKSlcblxuaGV0ZXJvZzYgPC0gaGV0ZXJvZzVcblxuSGV0ZXJvUzEgPC1cbiAgaGV0ZXJvZzYgJT4lXG4gIGdncGxvdChhZXMoeSA9IEdyb3VwaW5nVGVybSwgeCA9IG1lYW4pKSArXG4gIGdlb21fZXJyb3JiYXJoKGFlcyhcbiAgICB4bWluID0gY2kubCxcbiAgICB4bWF4ID0gY2kuaFxuICApLFxuICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0VcbiAgKSArXG4gIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSxcbiAgICBmaWxsID0gXCJibGFja1wiLFxuICAgIGNvbG9yID0gXCJibGFja1wiLCBzaXplID0gMi4yLFxuICAgIHNob3cubGVnZW5kID0gRkFMU0VcbiAgKSArXG4gIHNjYWxlX3hfY29udGludW91cyhcbiAgICBsaW1pdHMgPSBjKC0wLjEsIDEuNCksXG4gICAgIyBicmVha3MgPSBjKDAsIDAuMSwgMC4yKSxcbiAgICBuYW1lID0gXCJzaWdtYV4yXCJcbiAgKSArXG4gICMgZ2VvbV92bGluZSh4aW50ZXJjZXB0PTAsXG4gICMgY29sb3I9J2JsYWNrJyxcbiAgIyBsaW5ldHlwZT0nZGFzaGVkJykrXG4gIGZhY2V0X2dyaWQoXG4gICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgcm93cyA9IHZhcnMobGFiZWwpLFxuICAgIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAyMyksXG4gICAgc2NhbGVzID0gXCJmcmVlXCIsXG4gICAgc3BhY2UgPSBcImZyZWVcIlxuICApICtcbiAgdGhlbWVfYncoKSArXG4gIHRoZW1lKFxuICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksXG4gICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksXG4gICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9IFwiYmxhbmtcIiwgZmlsbCA9IFwiZ3JheTkwXCIpLFxuICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSxcbiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsIFwibGluZXNcIiksXG4gICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3VyID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksXG4gICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSwgc2l6ZSA9IDE0KSxcbiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKClcbiAgKVxuXG4jSGV0ZXJvUzFcblxuYGBgIn0= -->
<pre class="r"><code>heterog5 &lt;- heterog4
heterog5$mean &lt;- as.numeric(exp(heterog5$value))
heterog5$ci.l &lt;- as.numeric(exp(heterog5$ci.low))
heterog5$ci.h &lt;- as.numeric(exp(heterog5$ci.high))

heterog6 &lt;- heterog5

HeteroS1 &lt;-
  heterog6 %&gt;%
  ggplot(aes(y = GroupingTerm, x = mean)) +
  geom_errorbarh(aes(
    xmin = ci.l,
    xmax = ci.h
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(shape = parameter),
    fill = &quot;black&quot;,
    color = &quot;black&quot;, size = 2.2,
    show.legend = FALSE
  ) +
  scale_x_continuous(
    limits = c(-0.1, 1.4),
    # breaks = c(0, 0.1, 0.2),
    name = &quot;sigma^2&quot;
  ) +
  # geom_vline(xintercept=0,
  # color='black',
  # linetype='dashed')+
  facet_grid(
    cols = vars(parameter), rows = vars(label),
    labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_text(size = 12),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_text(hjust = 0.5, size = 14),
    axis.title.y = element_blank()
  )

#HeteroS1
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="combined-figure-s1-overall-count-data-meta-anlysis-results-heterogeneity" class="section level4">
<h4>Combined Figure S1: overall Count data, Meta anlysis results, Heterogeneity)</h4>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbXSwiaGVpZ2h0Ijo0MzIuNjMyOSwic2l6ZV9iZWhhdmlvciI6MCwid2lkdGgiOjcwMH0= -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
</div>
<div id="figure-s2" class="section level2">
<h2>Figure S2</h2>
<p>Plot FigS2 all significant results (CI not overlapping zero) for males ### FELIX: “ALL” missing. Felix added 11/2/2020: done</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YS5wbG90Mi5zaWcuYlMgPC0gbWV0YS5wbG90Mi5zaWdbLCBjKFwibG5DVlJcIiwgXCJsblZSXCIsIFwibG5SUlwiLCBcImxuQ1ZSc2lnXCIsIFwibG5WUnNpZ1wiLCBcImxuUlJzaWdcIiwgXCJHcm91cGluZ1Rlcm1cIildXG5cbm1ldGEucGxvdDIuc2lnLmNTIDwtIGdhdGhlcihtZXRhLnBsb3QyLnNpZy5iUywgdHJhaXQsIHZhbHVlLCBsbkNWUjpsblJSKVxubWV0YS5wbG90Mi5zaWcuY1Mkc2lnIDwtIFwicGxhY2Vob2xkZXJcIlxuXG5tZXRhLnBsb3QyLnNpZy5jUyR0cmFpdCA8LSBmYWN0b3IobWV0YS5wbG90Mi5zaWcuY1MkdHJhaXQsIGxldmVscyA9IGMoXCJsbkNWUlwiLCBcImxuVlJcIiwgXCJsblJSXCIpKVxuXG5tZXRhLnBsb3QyLnNpZy5jUyRzaWcgPC0gaWZlbHNlKG1ldGEucGxvdDIuc2lnLmNTJHRyYWl0ID09IFwibG5DVlJcIiwgbWV0YS5wbG90Mi5zaWcuY1MkbG5DVlJzaWcsXG4gIGlmZWxzZShtZXRhLnBsb3QyLnNpZy5jUyR0cmFpdCA9PSBcImxuVlJcIiwgbWV0YS5wbG90Mi5zaWcuY1MkbG5WUnNpZywgbWV0YS5wbG90Mi5zaWcuY1MkbG5SUnNpZylcbilcblxuIyBjaG9vc2luZyBzZXggYmlhc2VkIGxuLXJhdGlvcyBzaWduaWZpY2FudGx5IGxhcmdlciB0aGFuIDBcbm1ldGEucGxvdFMyLnNpZy5tYWxlYmlhcyA8LSBtZXRhLnBsb3QyLnNpZy5jUyAlPiVcbiAgZ3JvdXBfYnlfYXQodmFycyh0cmFpdCwgR3JvdXBpbmdUZXJtKSkgJT4lXG4gIGZpbHRlcihzaWcgPT0gMSkgJT4lXG4gIHN1bW1hcmlzZShtYWxlX3NpZyA9IHN1bSh2YWx1ZSA+IDApLCBmZW1hbGVfc2lnID0gc3VtKHZhbHVlIDwgMCksIHRvdGFsID0gbWFsZV9zaWcgKyBmZW1hbGVfc2lnKVxuXG5tZXRhLnBsb3RTMi5zaWcubWFsZWJpYXMgPC0gdW5ncm91cChtZXRhLnBsb3RTMi5zaWcubWFsZWJpYXMpICU+JVxuICBhZGRfcm93KHRyYWl0ID0gXCJsbkNWUlwiLCBHcm91cGluZ1Rlcm0gPSBcIkhlYXJpbmdcIiwgbWFsZV9zaWcgPSAwLCBmZW1hbGVfc2lnID0gMCwgLmJlZm9yZSA9IDQpICU+JSAjIGFkZCBcIkhlYXJpbmdcIiBmb3IgbG5DVlIgKG5vdCBmaWx0ZXJlZCBhcyBvbmx5IHplcm9zKVxuICBtdXRhdGUobWFsZXBlcmNlbnQgPSBtYWxlX3NpZyAqIDEwMCAvIHRvdGFsLCBmZW1hbGVwZXJjZW50ID0gZmVtYWxlX3NpZyAqIDEwMCAvIHRvdGFsKVxuXG5tZXRhLnBsb3RTMi5zaWcubWFsZWJpYXMkbGFiZWwgPC0gXCJDSSBub3Qgb3ZlcmxhcHBpbmcgemVyb1wiXG5cbiMgcmVzdHJ1Y3R1cmUgdG8gY3JlYXRlIHN0YWNrZWQgYmFyIHBsb3RzXG5cbm1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMgPC0gYXMuZGF0YS5mcmFtZShtZXRhLnBsb3RTMi5zaWcubWFsZWJpYXMpXG5tZXRhLnBsb3RTMi5zaWcuYm90aHNleGVzLmIgPC0gZ2F0aGVyKG1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMsIGtleSA9IHNleCwgdmFsdWUgPSBwZXJjZW50LCBtYWxlcGVyY2VudDpmZW1hbGVwZXJjZW50LCBmYWN0b3Jfa2V5ID0gVFJVRSlcblxuIyBjcmVhdGUgbmV3IHNhbXBsZSBzaXplIHZhcmlhYmxlXG5cbm1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMuYiRzYW1wbGVzaXplIDwtIHdpdGgobWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5iLCBpZmVsc2Uoc2V4ID09IFwibWFsZXBlcmNlbnRcIiwgbWFsZV9zaWcsIGZlbWFsZV9zaWcpKVxuXG4jIEFkZCBzdW1tYXJ5IHJvdyAoJ0FsbCcpIGFuZCByZS1hcnJhbmdlIHJvd3MgaW50byBjb3JyZWN0IG9yZGVyIGZvciBwbG90dGluZyAod2FybmluZ3MgYWJvdXQgY29lcmNpbmcgJ2lkJyBpbnRvIGNoYXJhY3RlciB2ZWN0b3IgYXJlIG9rKVxuXG5tZXRhLnBsb3RTMi5zaWcuYm90aHNleGVzLmMgPC0gbWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5iICU+JSBncm91cF9ieSh0cmFpdCwgc2V4KSAlPiUgXG4gIHN1bW1hcmlzZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiLCBtYWxlX3NpZyA9IHN1bShtYWxlX3NpZyksIGZlbWFsZV9zaWcgPSBzdW0oZmVtYWxlX3NpZyksIHRvdGFsID0gbWFsZV9zaWcgKyBmZW1hbGVfc2lnLCBcbiAgICAgICAgICAgIGxhYmVsID0gXCJDSSBub3Qgb3ZlcmxhcHBpbmcgemVyb1wiLCBzYW1wbGVzaXplID0gc3VtKHNhbXBsZXNpemUpKSAlPiVcbiAgbXV0YXRlKHBlcmNlbnQgPSBpZmVsc2Uoc2V4ID09IFwiZmVtYWxlcGVyY2VudFwiLCBmZW1hbGVfc2lnKjEwMC8obWFsZV9zaWcgKyBmZW1hbGVfc2lnKSwgbWFsZV9zaWcqMTAwLyhtYWxlX3NpZyArIGZlbWFsZV9zaWcpKSkgJT4lXG4gIGJpbmRfcm93cyhtZXRhLnBsb3RTMi5zaWcuYm90aHNleGVzLmIsIC4pICU+JVxuICBtdXRhdGUocm93bnVtYmVyID0gcm93X251bWJlcigpKSAlPiVcbiAgLltjKDU1LCAxOjksIDU3LCAxMDoxOCwgNTksIDE5OjI3LCA1NiwgMjg6MzYsIDU4LCAzNzo0NSwgNjAsIDQ2OjU0KSwgXSBcblxubWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5jJEdyb3VwaW5nVGVybSA8LSBmYWN0b3IobWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5jJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYyhcIkJlaGF2aW91clwiLCBcIk1vcnBob2xvZ3lcIiwgXCJNZXRhYm9saXNtXCIsIFwiUGh5c2lvbG9neVwiLCBcIkltbXVub2xvZ3lcIiwgXCJIZW1hdG9sb2d5XCIsIFwiSGVhcnRcIiwgXCJIZWFyaW5nXCIsIFwiRXllXCIsIFwiQWxsXCIpKSBcbm1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMuYyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMuYyRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMobWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5jJEdyb3VwaW5nVGVybSkpKVxuXG4jICpQbG90IEZpZzIgYWxsIHNpZ25pZmljYW50IHJlc3VsdHMgKENJIG5vdCBvdmVybGFwcGluZyB6ZXJvKTpcbiMgICAgIG5vIHNpZy4gbG5DVlIgZm9yICdIZWFyaW5nJyBpbiBlaXRoZXIgc2V4OyBubyBzaWcuIG1hbGUtYmlhc2VkIGxuQ1ZSIGZvciAnSW1tdW5vbG9neScgYW5kICdFeWUsIGFuZCBubyBzaWcuIG1hbGUtYmlhc2VkIGxuVlIgZm9yICdFeWUnXG5cbm1hbGViaWFzX0ZpZ1MyX3NpZ3RyYWl0cyA8LVxuICBnZ3Bsb3QobWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5jKSArXG4gIGFlcyh4ID0gR3JvdXBpbmdUZXJtLCB5ID0gcGVyY2VudCwgZmlsbCA9IHNleCkgK1xuICBnZW9tX2NvbCgpICtcbiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gNTAsIGxpbmV0eXBlID0gXCJkYXNoZWRcIiwgY29sb3IgPSBcImdyYXk0MFwiKSArXG4gIGdlb21fdGV4dChcbiAgICBkYXRhID0gc3Vic2V0KG1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMuYywgc2FtcGxlc2l6ZSAhPSAwKSwgYWVzKGxhYmVsID0gc2FtcGxlc2l6ZSksIHBvc2l0aW9uID0gcG9zaXRpb25fc3RhY2sodmp1c3QgPSAuNSksXG4gICAgY29sb3IgPSBcIndoaXRlXCIsIHNpemUgPSAzLjVcbiAgKSArXG4gIGZhY2V0X2dyaWQoXG4gICAgY29scyA9IHZhcnModHJhaXQpLCByb3dzID0gdmFycyhsYWJlbCksIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAxOCksXG4gICAgc2NhbGVzID0gXCJmcmVlXCIsIHNwYWNlID0gXCJmcmVlXCJcbiAgKSArXG4gIHNjYWxlX2ZpbGxfYnJld2VyKHBhbGV0dGUgPSBcIlNldDJcIikgK1xuICB0aGVtZV9idyhiYXNlX3NpemUgPSAxOCkgK1xuICB0aGVtZShcbiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLFxuICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLFxuICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSBcImJsYW5rXCIsIGZpbGwgPSBcImdyYXk5MFwiKSxcbiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksXG4gICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCBcImxpbmVzXCIpLFxuICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSxcbiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSBcInNvbGlkXCIsIGNvbG91ciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3IgPSBcImdyYXk5NVwiKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGxlZ2VuZC5wb3NpdGlvbiA9IFwibm9uZVwiLFxuICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKClcbiAgKSArXG4gIGNvb3JkX2ZsaXAoKVxuXG4jIG1hbGViaWFzX0ZpZ1MyX3NpZ3RyYWl0cyAjIHRoaXMgaXMgRmlndXJlIFMyIEFcbmBgYCJ9 -->
<pre class="r"><code>meta.plot2.sig.bS &lt;- meta.plot2.sig[, c(&quot;lnCVR&quot;, &quot;lnVR&quot;, &quot;lnRR&quot;, &quot;lnCVRsig&quot;, &quot;lnVRsig&quot;, &quot;lnRRsig&quot;, &quot;GroupingTerm&quot;)]

meta.plot2.sig.cS &lt;- gather(meta.plot2.sig.bS, trait, value, lnCVR:lnRR)
meta.plot2.sig.cS$sig &lt;- &quot;placeholder&quot;

meta.plot2.sig.cS$trait &lt;- factor(meta.plot2.sig.cS$trait, levels = c(&quot;lnCVR&quot;, &quot;lnVR&quot;, &quot;lnRR&quot;))

meta.plot2.sig.cS$sig &lt;- ifelse(meta.plot2.sig.cS$trait == &quot;lnCVR&quot;, meta.plot2.sig.cS$lnCVRsig,
  ifelse(meta.plot2.sig.cS$trait == &quot;lnVR&quot;, meta.plot2.sig.cS$lnVRsig, meta.plot2.sig.cS$lnRRsig)
)

# choosing sex biased ln-ratios significantly larger than 0
meta.plotS2.sig.malebias &lt;- meta.plot2.sig.cS %&gt;%
  group_by_at(vars(trait, GroupingTerm)) %&gt;%
  filter(sig == 1) %&gt;%
  summarise(male_sig = sum(value &gt; 0), female_sig = sum(value &lt; 0), total = male_sig + female_sig)

meta.plotS2.sig.malebias &lt;- ungroup(meta.plotS2.sig.malebias) %&gt;%
  add_row(trait = &quot;lnCVR&quot;, GroupingTerm = &quot;Hearing&quot;, male_sig = 0, female_sig = 0, .before = 4) %&gt;% # add &quot;Hearing&quot; for lnCVR (not filtered as only zeros)
  mutate(malepercent = male_sig * 100 / total, femalepercent = female_sig * 100 / total)

meta.plotS2.sig.malebias$label &lt;- &quot;CI not overlapping zero&quot;

# restructure to create stacked bar plots

meta.plotS2.sig.bothsexes &lt;- as.data.frame(meta.plotS2.sig.malebias)
meta.plotS2.sig.bothsexes.b &lt;- gather(meta.plotS2.sig.bothsexes, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)

# create new sample size variable

meta.plotS2.sig.bothsexes.b$samplesize &lt;- with(meta.plotS2.sig.bothsexes.b, ifelse(sex == &quot;malepercent&quot;, male_sig, female_sig))

# Add summary row ('All') and re-arrange rows into correct order for plotting (warnings about coercing 'id' into character vector are ok)

meta.plotS2.sig.bothsexes.c &lt;- meta.plotS2.sig.bothsexes.b %&gt;% group_by(trait, sex) %&gt;% 
  summarise(GroupingTerm = &quot;All&quot;, male_sig = sum(male_sig), female_sig = sum(female_sig), total = male_sig + female_sig, 
            label = &quot;CI not overlapping zero&quot;, samplesize = sum(samplesize)) %&gt;%
  mutate(percent = ifelse(sex == &quot;femalepercent&quot;, female_sig*100/(male_sig + female_sig), male_sig*100/(male_sig + female_sig))) %&gt;%
  bind_rows(meta.plotS2.sig.bothsexes.b, .) %&gt;%
  mutate(rownumber = row_number()) %&gt;%
  .[c(55, 1:9, 57, 10:18, 59, 19:27, 56, 28:36, 58, 37:45, 60, 46:54), ] 

meta.plotS2.sig.bothsexes.c$GroupingTerm &lt;- factor(meta.plotS2.sig.bothsexes.c$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;)) 
meta.plotS2.sig.bothsexes.c$GroupingTerm &lt;- factor(meta.plotS2.sig.bothsexes.c$GroupingTerm, rev(levels(meta.plotS2.sig.bothsexes.c$GroupingTerm)))

# *Plot Fig2 all significant results (CI not overlapping zero):
#     no sig. lnCVR for 'Hearing' in either sex; no sig. male-biased lnCVR for 'Immunology' and 'Eye, and no sig. male-biased lnVR for 'Eye'

malebias_FigS2_sigtraits &lt;-
  ggplot(meta.plotS2.sig.bothsexes.c) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = 50, linetype = &quot;dashed&quot;, color = &quot;gray40&quot;) +
  geom_text(
    data = subset(meta.plotS2.sig.bothsexes.c, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5),
    color = &quot;white&quot;, size = 3.5
  ) +
  facet_grid(
    cols = vars(trait), rows = vars(label), labeller = label_wrap_gen(width = 18),
    scales = &quot;free&quot;, space = &quot;free&quot;
  ) +
  scale_fill_brewer(palette = &quot;Set2&quot;) +
  theme_bw(base_size = 18) +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_text(size = 12),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.position = &quot;none&quot;,
    axis.title.x = element_blank(),
    axis.title.y = element_blank()
  ) +
  coord_flip()

# malebias_FigS2_sigtraits # this is Figure S2 A</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<div id="prepare-data-for-traits-with-effect-size-ratios-10-larger-in-males-supplemental-figure-s2" class="section level3">
<h3>Prepare data for traits with effect size ratios &gt; 10% larger in males, supplemental Figure S2</h3>
</div>
<div id="felix-all-missing.-felix-added-1122020-done" class="section level3">
<h3>FELIX: “ALL” missing. Felix added 11/2/2020: done</h3>
<p>This Figure extends Figure 4, as it includes results not only for lnCVR and lnRR but also lnCVR. In addition, we compare two different assessments of sex-bias, significance (CI not overlapping zero) and sex differences in male / female ratios &gt; 10%</p>
</div>
<div id="over-10-male-bias-count-data-first--order-metanalysis" class="section level3">
<h3>Over 10% male bias, count data (first- order metanalysis)</h3>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YS5wbG90Mi5vdmVyMTAgPC0gbWV0YV9jbGVhbiAlPiVcbiAgc2VsZWN0KGxuQ1ZSLCBsblZSLCBsblJSLCBHcm91cGluZ1Rlcm0pICU+JVxuICBhcnJhbmdlKEdyb3VwaW5nVGVybSkgXG5cbm1ldGEucGxvdDIub3ZlcjEwLmIgPC0gZ2F0aGVyKG1ldGEucGxvdDIub3ZlcjEwLCB0cmFpdCwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpKSBcblxubWV0YS5wbG90Mi5vdmVyMTAuYiR0cmFpdCA8LSBmYWN0b3IobWV0YS5wbG90Mi5vdmVyMTAuYiR0cmFpdCwgbGV2ZWxzID0gYyhcImxuQ1ZSXCIsIFwibG5WUlwiLCBcImxuUlJcIikpIFxuXG5tZXRhLnBsb3QyLm92ZXIxMC5jIDwtIG1ldGEucGxvdDIub3ZlcjEwLmIgJT4lXG4gIGdyb3VwX2J5X2F0KHZhcnModHJhaXQsIEdyb3VwaW5nVGVybSkpICU+JVxuICBzdW1tYXJpc2UoXG4gICAgbWFsZWJpYXMgPSBzdW0odmFsdWUgPiBsb2coMTEgLyAxMCkpLCBmZW1hbGViaWFzID0gc3VtKHZhbHVlIDwgbG9nKDkgLyAxMCkpLCB0b3RhbCA9IG1hbGViaWFzICsgZmVtYWxlYmlhcyxcbiAgICBtYWxlcGVyY2VudCA9IG1hbGViaWFzICogMTAwIC8gdG90YWwsIGZlbWFsZXBlcmNlbnQgPSBmZW1hbGViaWFzICogMTAwIC8gdG90YWxcbiAgKVxuXG5tZXRhLnBsb3QyLm92ZXIxMC5jJGxhYmVsIDwtIFwiU2V4IGRpZmZlcmVuY2UgaW4gbS9mIHJhdGlvcyA+IDEwJVwiXG5cbiMgcmVzdHJ1Y3R1cmUgdG8gY3JlYXRlIHN0YWNrZWQgYmFyIHBsb3RzXG5cbm1ldGEucGxvdDIub3ZlcjEwLmMgPC0gYXMuZGF0YS5mcmFtZShtZXRhLnBsb3QyLm92ZXIxMC5jKVxubWV0YS5wbG90Mi5vdmVyMTAuZCA8LSBnYXRoZXIobWV0YS5wbG90Mi5vdmVyMTAuYywga2V5ID0gc2V4LCB2YWx1ZSA9IHBlcmNlbnQsIG1hbGVwZXJjZW50OmZlbWFsZXBlcmNlbnQsIGZhY3Rvcl9rZXkgPSBUUlVFKVxuXG4jIGNyZWF0ZSBuZXcgc2FtcGxlIHNpemUgdmFyaWFibGVcblxubWV0YS5wbG90Mi5vdmVyMTAuZCRzYW1wbGVzaXplIDwtIHdpdGgobWV0YS5wbG90Mi5vdmVyMTAuZCwgaWZlbHNlKHNleCA9PSBcIm1hbGVwZXJjZW50XCIsIG1hbGViaWFzLCBmZW1hbGViaWFzKSlcblxuIyBBZGQgc3VtbWFyeSByb3cgKCdBbGwnKSBhbmQgcmUtYXJyYW5nZSByb3dzIGludG8gY29ycmVjdCBvcmRlciBmb3IgcGxvdHRpbmcgKHdhcm5pbmdzIGFib3V0IGNvZXJjaW5nICdpZCcgaW50byBjaGFyYWN0ZXIgdmVjdG9yIGFyZSBvaylcblxubWV0YS5wbG90Mi5vdmVyMTAuZSA8LSBtZXRhLnBsb3QyLm92ZXIxMC5kICU+JSBncm91cF9ieSh0cmFpdCwgc2V4KSAlPiUgXG4gIHN1bW1hcmlzZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiLCBtYWxlYmlhcyA9IHN1bShtYWxlYmlhcyksIGZlbWFsZWJpYXMgPSBzdW0oZmVtYWxlYmlhcyksIHRvdGFsID0gbWFsZWJpYXMgKyBmZW1hbGViaWFzLCBcbiAgICAgICAgICAgIGxhYmVsID0gXCJTZXggZGlmZmVyZW5jZSBpbiBtL2YgcmF0aW9zID4gMTAlXCIsIHNhbXBsZXNpemUgPSBzdW0oc2FtcGxlc2l6ZSkpICU+JVxuICBtdXRhdGUocGVyY2VudCA9IGlmZWxzZShzZXggPT0gXCJmZW1hbGVwZXJjZW50XCIsIGZlbWFsZWJpYXMqMTAwLyhtYWxlYmlhcyArIGZlbWFsZWJpYXMpLCBtYWxlYmlhcyoxMDAvKG1hbGViaWFzICsgZmVtYWxlYmlhcykpKSAlPiVcbiAgYmluZF9yb3dzKG1ldGEucGxvdDIub3ZlcjEwLmQsIC4pICU+JVxuICBtdXRhdGUocm93bnVtYmVyID0gcm93X251bWJlcigpKSAlPiVcbiAgLltjKDU1LCAxOjksIDU3LCAxMDoxOCwgNTksIDE5OjI3LCA1NiwgMjg6MzYsIDU4LCAzNzo0NSwgNjAsIDQ2OjU0KSwgXSBcblxubWV0YS5wbG90Mi5vdmVyMTAuZSRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG1ldGEucGxvdDIub3ZlcjEwLmUkR3JvdXBpbmdUZXJtLCBsZXZlbHMgPSBjKFwiQmVoYXZpb3VyXCIsIFwiTW9ycGhvbG9neVwiLCBcIk1ldGFib2xpc21cIiwgXCJQaHlzaW9sb2d5XCIsIFwiSW1tdW5vbG9neVwiLCBcIkhlbWF0b2xvZ3lcIiwgXCJIZWFydFwiLCBcIkhlYXJpbmdcIiwgXCJFeWVcIiwgXCJBbGxcIikpIFxubWV0YS5wbG90Mi5vdmVyMTAuZSRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG1ldGEucGxvdDIub3ZlcjEwLmUkR3JvdXBpbmdUZXJtLCByZXYobGV2ZWxzKG1ldGEucGxvdDIub3ZlcjEwLmUkR3JvdXBpbmdUZXJtKSkpXG5cblxuIyAqUGxvdCBGaWcyIFNleCBkaWZmZXJlbmNlIGluIG0vZiByYXRpbyA+IDEwJVxubWFsZWJpYXNfRmlnMl9vdmVyMTAgPC1cbiAgZ2dwbG90KG1ldGEucGxvdDIub3ZlcjEwLmUpICtcbiAgYWVzKHggPSBHcm91cGluZ1Rlcm0sIHkgPSBwZXJjZW50LCBmaWxsID0gc2V4KSArXG4gIGdlb21fY29sKCkgK1xuICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSA1MCwgbGluZXR5cGUgPSBcImRhc2hlZFwiLCBjb2xvciA9IFwiZ3JheTQwXCIpICtcbiAgZ2VvbV90ZXh0KFxuICAgIGRhdGEgPSBzdWJzZXQobWV0YS5wbG90Mi5vdmVyMTAuZSwgc2FtcGxlc2l6ZSAhPSAwKSwgYWVzKGxhYmVsID0gc2FtcGxlc2l6ZSksIHBvc2l0aW9uID0gcG9zaXRpb25fc3RhY2sodmp1c3QgPSAuNSksXG4gICAgY29sb3IgPSBcIndoaXRlXCIsIHNpemUgPSAzLjVcbiAgKSArXG4gIGZhY2V0X2dyaWQoXG4gICAgY29scyA9IHZhcnModHJhaXQpLCByb3dzID0gdmFycyhsYWJlbCksIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAxOCksXG4gICAgc2NhbGVzID0gXCJmcmVlXCIsIHNwYWNlID0gXCJmcmVlXCJcbiAgKSArXG4gIHNjYWxlX2ZpbGxfYnJld2VyKHBhbGV0dGUgPSBcIlNldDJcIikgK1xuICB0aGVtZV9idyhiYXNlX3NpemUgPSAxOCkgK1xuICB0aGVtZShcbiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLFxuICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gXCJibGFua1wiLCBmaWxsID0gXCJncmF5OTBcIiksXG4gICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLFxuICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgXCJsaW5lc1wiKSxcbiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvdXIgPSBcImdyYXk5NVwiKSxcbiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSBcInNvbGlkXCIsIGNvbG9yID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBsZWdlbmQucG9zaXRpb24gPSBcIm5vbmVcIixcbiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpXG4gICkgK1xuICBjb29yZF9mbGlwKClcblxuIyBtYWxlYmlhc19GaWcyX292ZXIxMCAgKHN1cHBsZW1lbnRhbCBGaWd1cmUgUzIpXG5gYGAifQ== -->
<pre class="r"><code>meta.plot2.over10 &lt;- meta_clean %&gt;%
  select(lnCVR, lnVR, lnRR, GroupingTerm) %&gt;%
  arrange(GroupingTerm) 

meta.plot2.over10.b &lt;- gather(meta.plot2.over10, trait, value, c(lnCVR, lnVR, lnRR)) 

meta.plot2.over10.b$trait &lt;- factor(meta.plot2.over10.b$trait, levels = c(&quot;lnCVR&quot;, &quot;lnVR&quot;, &quot;lnRR&quot;)) 

meta.plot2.over10.c &lt;- meta.plot2.over10.b %&gt;%
  group_by_at(vars(trait, GroupingTerm)) %&gt;%
  summarise(
    malebias = sum(value &gt; log(11 / 10)), femalebias = sum(value &lt; log(9 / 10)), total = malebias + femalebias,
    malepercent = malebias * 100 / total, femalepercent = femalebias * 100 / total
  )

meta.plot2.over10.c$label &lt;- &quot;Sex difference in m/f ratios &gt; 10%&quot;

# restructure to create stacked bar plots

meta.plot2.over10.c &lt;- as.data.frame(meta.plot2.over10.c)
meta.plot2.over10.d &lt;- gather(meta.plot2.over10.c, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)

# create new sample size variable

meta.plot2.over10.d$samplesize &lt;- with(meta.plot2.over10.d, ifelse(sex == &quot;malepercent&quot;, malebias, femalebias))

# Add summary row ('All') and re-arrange rows into correct order for plotting (warnings about coercing 'id' into character vector are ok)

meta.plot2.over10.e &lt;- meta.plot2.over10.d %&gt;% group_by(trait, sex) %&gt;% 
  summarise(GroupingTerm = &quot;All&quot;, malebias = sum(malebias), femalebias = sum(femalebias), total = malebias + femalebias, 
            label = &quot;Sex difference in m/f ratios &gt; 10%&quot;, samplesize = sum(samplesize)) %&gt;%
  mutate(percent = ifelse(sex == &quot;femalepercent&quot;, femalebias*100/(malebias + femalebias), malebias*100/(malebias + femalebias))) %&gt;%
  bind_rows(meta.plot2.over10.d, .) %&gt;%
  mutate(rownumber = row_number()) %&gt;%
  .[c(55, 1:9, 57, 10:18, 59, 19:27, 56, 28:36, 58, 37:45, 60, 46:54), ] 

meta.plot2.over10.e$GroupingTerm &lt;- factor(meta.plot2.over10.e$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;)) 
meta.plot2.over10.e$GroupingTerm &lt;- factor(meta.plot2.over10.e$GroupingTerm, rev(levels(meta.plot2.over10.e$GroupingTerm)))


# *Plot Fig2 Sex difference in m/f ratio &gt; 10%
malebias_Fig2_over10 &lt;-
  ggplot(meta.plot2.over10.e) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = 50, linetype = &quot;dashed&quot;, color = &quot;gray40&quot;) +
  geom_text(
    data = subset(meta.plot2.over10.e, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5),
    color = &quot;white&quot;, size = 3.5
  ) +
  facet_grid(
    cols = vars(trait), rows = vars(label), labeller = label_wrap_gen(width = 18),
    scales = &quot;free&quot;, space = &quot;free&quot;
  ) +
  scale_fill_brewer(palette = &quot;Set2&quot;) +
  theme_bw(base_size = 18) +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_blank(),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.position = &quot;none&quot;,
    axis.title.x = element_blank(),
    axis.title.y = element_blank()
  ) +
  coord_flip()

# malebias_Fig2_over10  (supplemental Figure S2)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<div id="fig-s2-second-order-meta-analysis-male-traits" class="section level4">
<h4>Fig S2, second-order meta-analysis, male traits</h4>
</div>
<div id="female-figure-significant-traits" class="section level4">
<h4>Female Figure, significant traits</h4>
<p>Female FigS2 B sig</p>
<p>Prepare data for traits with CI not overlapping 0 create column with 1= different from zero, 0= zero included in CI</p>
<p>Restructure data for plotting</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbWzEsIlJlbW92ZWQgOCByb3dzIGNvbnRhaW5pbmcgbWlzc2luZyB2YWx1ZXMgKGdlb21fZXJyb3JiYXJoKS4iXSxbMSwiUmVtb3ZlZCA3IHJvd3MgY29udGFpbmluZyBtaXNzaW5nIHZhbHVlcyAoZ2VvbV9wb2ludCkuIl1dLCJoZWlnaHQiOjQzMi42MzI5LCJzaXplX2JlaGF2aW9yIjowLCJ3aWR0aCI6NzAwfQ== -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Prepare data for traits with m/f difference &gt; 10%</p>
<p>Create column with 1= larger, 0= difference not larger than 10% between male/female ratios</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YS5tYWxlLnBsb3QzLnBlcmMgPC0gbWV0YWNvbWJvICU+JVxuICBtdXRhdGUoXG4gICAgcGVyY0NWUiA9IGlmZWxzZShsbkNWUiA+IGxvZygxMSAvIDEwKSwgMSwgMCksXG4gICAgcGVyY1ZSID0gaWZlbHNlKGxuVlIgPiBsb2coMTEgLyAxMCksIDEsIDApLFxuICAgIHBlcmNSUiA9IGlmZWxzZShsblJSID4gbG9nKDExIC8gMTApLCAxLCAwKVxuICApXG5cbiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsbkNWUlxubWV0YWNvbWJvX21hbGUucGxvdDMuQ1ZSLnBlcmMgPC0gbWV0YS5tYWxlLnBsb3QzLnBlcmMgJT4lXG4gIGZpbHRlcihwZXJjQ1ZSID09IDEpICU+JVxuICBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JVxuICBuZXN0KClcblxubWV0YWNvbWJvX21hbGUucGxvdDMuQ1ZSLnBlcmMuYWxsIDwtIG1ldGEubWFsZS5wbG90My5wZXJjICU+JVxuICBmaWx0ZXIocGVyY0NWUiA9PSAxKSAlPiVcbiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKVxuXG4jIFNpZ25pZmljYW50IHN1YnNldCBmb3IgbG5WUlxubWV0YWNvbWJvX21hbGUucGxvdDMuVlIucGVyYyA8LSBtZXRhLm1hbGUucGxvdDMucGVyYyAlPiVcbiAgZmlsdGVyKHBlcmNWUiA9PSAxKSAlPiVcbiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbmVzdCgpXG5cbm1ldGFjb21ib19tYWxlLnBsb3QzLlZSLnBlcmMuYWxsIDwtIG1ldGEubWFsZS5wbG90My5wZXJjICU+JVxuICBmaWx0ZXIocGVyY1ZSID09IDEpICU+JVxuICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpXG5cbiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsblJSXG5tZXRhY29tYm9fbWFsZS5wbG90My5SUi5wZXJjIDwtIG1ldGEubWFsZS5wbG90My5wZXJjICU+JVxuICBmaWx0ZXIocGVyY1JSID09IDEpICU+JVxuICBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JVxuICBuZXN0KClcblxubWV0YWNvbWJvX21hbGUucGxvdDMuUlIucGVyYy5hbGwgPC0gbWV0YS5tYWxlLnBsb3QzLnBlcmMgJT4lXG4gIGZpbHRlcihwZXJjUlIgPT0gMSkgJT4lXG4gIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSlcblxuXG4jICoqRmluYWwgZml4ZWQgZWZmZWN0cyBtZXRhLWFuYWx5c2VzIHdpdGhpbiBncm91cGluZyB0ZXJtcyBhbmQgYWNyb3NzIGdyb3VwaW5nIHRlcm1zLCB3aXRoIFNFIG9mIHRoZSBlc3RpbWF0ZVxuXG5wbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuQ1ZSLnBlcmMgJT4lXG4gIG11dGF0ZShtb2RlbF9sbkNWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEZcbiAgKSkpXG5cbnBsb3QzLm1hbGUubWV0YS5WUi5wZXJjIDwtIG1ldGFjb21ib19tYWxlLnBsb3QzLlZSLnBlcmMgJT4lXG4gIG11dGF0ZShtb2RlbF9sblZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuVlIsIHNlaSA9ICgueCRsblZSX3VwcGVyIC0gLngkbG5WUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxucGxvdDMubWFsZS5tZXRhLlJSLnBlcmMgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuUlIucGVyYyAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgIHlpID0gLngkbG5SUiwgc2VpID0gKC54JGxuUlJfdXBwZXIgLSAueCRsblJSX2xvd2VyKSAvICgyICogMS45NiksXG4gICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICkpKVxuXG4jIEFjcm9zcyBhbGwgZ3JvdXBpbmcgdGVybXMgI1xuXG5wbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYWxsIDwtIG1ldGFjb21ib19tYWxlLnBsb3QzLkNWUi5wZXJjLmFsbCAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuQ1ZSLCBzZWkgPSAoLngkbG5DVlJfdXBwZXIgLSAueCRsbkNWUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxucGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLmFsbCA8LSBwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gXCJBbGxcIilcblxucGxvdDMubWFsZS5tZXRhLlZSLnBlcmMuYWxsIDwtIG1ldGFjb21ib19tYWxlLnBsb3QzLlZSLnBlcmMuYWxsICU+JVxuICBtdXRhdGUobW9kZWxfbG5WUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEZcbiAgKSkpXG5cbnBsb3QzLm1hbGUubWV0YS5WUi5wZXJjLmFsbCA8LSBwbG90My5tYWxlLm1ldGEuVlIucGVyYy5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKVxuXG5wbG90My5tYWxlLm1ldGEuUlIucGVyYy5hbGwgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuUlIucGVyYy5hbGwgJT4lXG4gIG11dGF0ZShtb2RlbF9sblJSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuUlIsIHNlaSA9ICgueCRsblJSX3VwcGVyIC0gLngkbG5SUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxucGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYWxsIDwtIHBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLmFsbCAlPiUgbXV0YXRlKEdyb3VwaW5nVGVybSA9IFwiQWxsXCIpXG5cbiMgQ29tYmluZSB3aXRoIHNlcGFyYXRlIGdyb3VwaW5nIHRlcm0gcmVzdWx0c1xuXG5wbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMgPC0gYmluZF9yb3dzKHBsb3QzLm1hbGUubWV0YS5DVlIucGVyYywgcGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLmFsbClcbnBsb3QzLm1hbGUubWV0YS5WUi5wZXJjIDwtIGJpbmRfcm93cyhwbG90My5tYWxlLm1ldGEuVlIucGVyYywgcGxvdDMubWFsZS5tZXRhLlZSLnBlcmMuYWxsKVxucGxvdDMubWFsZS5tZXRhLlJSLnBlcmMgPC0gYmluZF9yb3dzKHBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLCBwbG90My5tYWxlLm1ldGEuUlIucGVyYy5hbGwpXG5cblxuIyAqKlJlLXN0cnVjdHVyZSBkYXRhIGZvciBlYWNoIGdyb3VwaW5nIHRlcm07IGRlbGV0ZSB1bi11c2VkIHZhcmlhYmxlczogXCJIZWFyaW5nIG1pc3NpbmcgZm9yIGFsbCAzIHBhcmFtZXRlcnNcIlxuXG5wbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYiA8LSBhcy5kYXRhLmZyYW1lKHBsb3QzLm1hbGUubWV0YS5DVlIucGVyYyAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbXV0YXRlKFxuICAgIGxuQ1ZSID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soMikpLCBsbkNWUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDYpKSxcbiAgICBsbkNWUl91cHBlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDcpKSwgbG5DVlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuQ1ZSLCBwbHVjaygzKSlcbiAgKSlbLCBjKDEsIDQ6NyldXG5hZGQucm93LmhlYXJpbmcgPC0gYXMuZGF0YS5mcmFtZSh0KGMoXCJIZWFyaW5nXCIsIE5BLCBOQSwgTkEsIE5BKSkpICU+JSBzZXROYW1lcyhuYW1lcyhwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYikpXG5wbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYiA8LSByYmluZChwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYiwgYWRkLnJvdy5oZWFyaW5nKVxucGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLmIgPC0gcGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLmJbb3JkZXIocGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5wbG90My5tYWxlLm1ldGEuVlIucGVyYy5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMubWFsZS5tZXRhLlZSLnBlcmMgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lXG4gIG11dGF0ZShcbiAgICBsblZSID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjaygyKSksIGxuVlJfbG93ZXIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDYpKSxcbiAgICBsblZSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjayg3KSksIGxuVlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDMpKVxuICApKVssIGMoMSwgNDo3KV1cbmFkZC5yb3cuaGVhcmluZyA8LSBhcy5kYXRhLmZyYW1lKHQoYyhcIkhlYXJpbmdcIiwgTkEsIE5BLCBOQSwgTkEpKSkgJT4lIHNldE5hbWVzKG5hbWVzKHBsb3QzLm1hbGUubWV0YS5WUi5wZXJjLmIpKVxucGxvdDMubWFsZS5tZXRhLlZSLnBlcmMuYiA8LSByYmluZChwbG90My5tYWxlLm1ldGEuVlIucGVyYy5iLCBhZGQucm93LmhlYXJpbmcpXG5wbG90My5tYWxlLm1ldGEuVlIucGVyYy5iIDwtIHBsb3QzLm1hbGUubWV0YS5WUi5wZXJjLmJbb3JkZXIocGxvdDMubWFsZS5tZXRhLlZSLnBlcmMuYiRHcm91cGluZ1Rlcm0pLCBdXG5cbnBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLmIgPC0gYXMuZGF0YS5mcmFtZShwbG90My5tYWxlLm1ldGEuUlIucGVyYyAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbXV0YXRlKFxuICAgIGxuUlIgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDIpKSwgbG5SUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5SUiwgcGx1Y2soNikpLFxuICAgIGxuUlJfdXBwZXIgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDcpKSwgbG5SUl9zZSA9IG1hcF9kYmwobW9kZWxfbG5SUiwgcGx1Y2soMykpXG4gICkpWywgYygxLCA0OjcpXVxuYWRkLnJvdy5oZWFyaW5nIDwtIGFzLmRhdGEuZnJhbWUodChjKFwiSGVhcmluZ1wiLCBOQSwgTkEsIE5BLCBOQSkpKSAlPiVcbiAgc2V0TmFtZXMobmFtZXMocGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYikpXG5wbG90My5tYWxlLm1ldGEuUlIucGVyYy5iIDwtIHJiaW5kKHBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLmIsIGFkZC5yb3cuaGVhcmluZylcblxuYWRkLnJvdy5leWUgPC0gYXMuZGF0YS5mcmFtZSh0KGMoXCJFeWVcIiwgTkEsIE5BLCBOQSwgTkEpKSkgJT4lXG4gIHNldE5hbWVzKG5hbWVzKHBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLmIpKVxucGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYiA8LSByYmluZChwbG90My5tYWxlLm1ldGEuUlIucGVyYy5iLCBhZGQucm93LmV5ZSlcblxucGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYiA8LSBwbG90My5tYWxlLm1ldGEuUlIucGVyYy5iW29yZGVyKHBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5wbG90My5tYWxlLm1ldGEuQ1ZSLlZyLnBlcmMgPC0gZnVsbF9qb2luKHBsb3QzLm1hbGUubWV0YS5DVlIucGVyYy5iLCBwbG90My5tYWxlLm1ldGEuVlIucGVyYy5iKVxub3ZlcmFsbC5tYWxlLnBsb3QzLnBlcmMgPC0gZnVsbF9qb2luKHBsb3QzLm1hbGUubWV0YS5DVlIuVnIucGVyYywgcGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYilcblxuXG5vdmVyYWxsLm1hbGUucGxvdDMucGVyYyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwubWFsZS5wbG90My5wZXJjJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYyhcIkJlaGF2aW91clwiLCBcIk1vcnBob2xvZ3lcIiwgXCJNZXRhYm9saXNtXCIsIFwiUGh5c2lvbG9neVwiLCBcIkltbXVub2xvZ3lcIiwgXCJIZW1hdG9sb2d5XCIsIFwiSGVhcnRcIiwgXCJIZWFyaW5nXCIsIFwiRXllXCIsIFwiQWxsXCIpKVxub3ZlcmFsbC5tYWxlLnBsb3QzLnBlcmMkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihvdmVyYWxsLm1hbGUucGxvdDMucGVyYyRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMob3ZlcmFsbC5tYWxlLnBsb3QzLnBlcmMkR3JvdXBpbmdUZXJtKSkpXG5cbmBgYCJ9 -->
<pre class="r"><code>meta.male.plot3.perc &lt;- metacombo %&gt;%
  mutate(
    percCVR = ifelse(lnCVR &gt; log(11 / 10), 1, 0),
    percVR = ifelse(lnVR &gt; log(11 / 10), 1, 0),
    percRR = ifelse(lnRR &gt; log(11 / 10), 1, 0)
  )

# Significant subset for lnCVR
metacombo_male.plot3.CVR.perc &lt;- meta.male.plot3.perc %&gt;%
  filter(percCVR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_male.plot3.CVR.perc.all &lt;- meta.male.plot3.perc %&gt;%
  filter(percCVR == 1) %&gt;%
  nest(data = everything())

# Significant subset for lnVR
metacombo_male.plot3.VR.perc &lt;- meta.male.plot3.perc %&gt;%
  filter(percVR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_male.plot3.VR.perc.all &lt;- meta.male.plot3.perc %&gt;%
  filter(percVR == 1) %&gt;%
  nest(data = everything())

# Significant subset for lnRR
metacombo_male.plot3.RR.perc &lt;- meta.male.plot3.perc %&gt;%
  filter(percRR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_male.plot3.RR.perc.all &lt;- meta.male.plot3.perc %&gt;%
  filter(percRR == 1) %&gt;%
  nest(data = everything())


# **Final fixed effects meta-analyses within grouping terms and across grouping terms, with SE of the estimate

plot3.male.meta.CVR.perc &lt;- metacombo_male.plot3.CVR.perc %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.VR.perc &lt;- metacombo_male.plot3.VR.perc %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.RR.perc &lt;- metacombo_male.plot3.RR.perc %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(
    yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

# Across all grouping terms #

plot3.male.meta.CVR.perc.all &lt;- metacombo_male.plot3.CVR.perc.all %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.CVR.perc.all &lt;- plot3.male.meta.CVR.perc.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

plot3.male.meta.VR.perc.all &lt;- metacombo_male.plot3.VR.perc.all %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.VR.perc.all &lt;- plot3.male.meta.VR.perc.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

plot3.male.meta.RR.perc.all &lt;- metacombo_male.plot3.RR.perc.all %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(
    yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.male.meta.RR.perc.all &lt;- plot3.male.meta.RR.perc.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

# Combine with separate grouping term results

plot3.male.meta.CVR.perc &lt;- bind_rows(plot3.male.meta.CVR.perc, plot3.male.meta.CVR.perc.all)
plot3.male.meta.VR.perc &lt;- bind_rows(plot3.male.meta.VR.perc, plot3.male.meta.VR.perc.all)
plot3.male.meta.RR.perc &lt;- bind_rows(plot3.male.meta.RR.perc, plot3.male.meta.RR.perc.all)


# **Re-structure data for each grouping term; delete un-used variables: &quot;Hearing missing for all 3 parameters&quot;

plot3.male.meta.CVR.perc.b &lt;- as.data.frame(plot3.male.meta.CVR.perc %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
    lnCVR_upper = map_dbl(model_lnCVR, pluck(7)), lnCVR_se = map_dbl(model_lnCVR, pluck(3))
  ))[, c(1, 4:7)]
add.row.hearing &lt;- as.data.frame(t(c(&quot;Hearing&quot;, NA, NA, NA, NA))) %&gt;% setNames(names(plot3.male.meta.CVR.perc.b))
plot3.male.meta.CVR.perc.b &lt;- rbind(plot3.male.meta.CVR.perc.b, add.row.hearing)
plot3.male.meta.CVR.perc.b &lt;- plot3.male.meta.CVR.perc.b[order(plot3.male.meta.CVR.perc.b$GroupingTerm), ]

plot3.male.meta.VR.perc.b &lt;- as.data.frame(plot3.male.meta.VR.perc %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
    lnVR_upper = map_dbl(model_lnVR, pluck(7)), lnVR_se = map_dbl(model_lnVR, pluck(3))
  ))[, c(1, 4:7)]
add.row.hearing &lt;- as.data.frame(t(c(&quot;Hearing&quot;, NA, NA, NA, NA))) %&gt;% setNames(names(plot3.male.meta.VR.perc.b))
plot3.male.meta.VR.perc.b &lt;- rbind(plot3.male.meta.VR.perc.b, add.row.hearing)
plot3.male.meta.VR.perc.b &lt;- plot3.male.meta.VR.perc.b[order(plot3.male.meta.VR.perc.b$GroupingTerm), ]

plot3.male.meta.RR.perc.b &lt;- as.data.frame(plot3.male.meta.RR.perc %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
    lnRR_upper = map_dbl(model_lnRR, pluck(7)), lnRR_se = map_dbl(model_lnRR, pluck(3))
  ))[, c(1, 4:7)]
add.row.hearing &lt;- as.data.frame(t(c(&quot;Hearing&quot;, NA, NA, NA, NA))) %&gt;%
  setNames(names(plot3.male.meta.RR.perc.b))
plot3.male.meta.RR.perc.b &lt;- rbind(plot3.male.meta.RR.perc.b, add.row.hearing)

add.row.eye &lt;- as.data.frame(t(c(&quot;Eye&quot;, NA, NA, NA, NA))) %&gt;%
  setNames(names(plot3.male.meta.RR.perc.b))
plot3.male.meta.RR.perc.b &lt;- rbind(plot3.male.meta.RR.perc.b, add.row.eye)

plot3.male.meta.RR.perc.b &lt;- plot3.male.meta.RR.perc.b[order(plot3.male.meta.RR.perc.b$GroupingTerm), ]

plot3.male.meta.CVR.Vr.perc &lt;- full_join(plot3.male.meta.CVR.perc.b, plot3.male.meta.VR.perc.b)
overall.male.plot3.perc &lt;- full_join(plot3.male.meta.CVR.Vr.perc, plot3.male.meta.RR.perc.b)


overall.male.plot3.perc$GroupingTerm &lt;- factor(overall.male.plot3.perc$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;))
overall.male.plot3.perc$GroupingTerm &lt;- factor(overall.male.plot3.perc$GroupingTerm, rev(levels(overall.male.plot3.perc$GroupingTerm)))
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Restructure data for plotting : Male biased, 10% difference</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDMucGVyYyA8LSBnYXRoZXIob3ZlcmFsbC5tYWxlLnBsb3QzLnBlcmMsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSkgXG5cbmxuQ1ZSLmNpIDwtIG92ZXJhbGwzLnBlcmMgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsbkNWUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpXG5sblZSLmNpIDwtIG92ZXJhbGwzLnBlcmMgICU+JSBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5WUlwiKSAlPiUgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKVxubG5SUi5jaSA8LSBvdmVyYWxsMy5wZXJjICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5SUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuUlJfbG93ZXIsIGNpLmhpZ2ggPSBsblJSX3VwcGVyKVxuXG5vdmVyYWxsNC5tYWxlLnBlcmMgPC0gYmluZF9yb3dzKGxuQ1ZSLmNpLGxuVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpIFxuXG5vdmVyYWxsNC5tYWxlLnBlcmMkbGFiZWwgPC0gXCJTZXggZGlmZmVyZW5jZSBpbiBtL2YgcmF0aW9zID4gMTAlXCJcblxub3ZlcmFsbDQubWFsZS5wZXJjJHZhbHVlIDwtIGFzLm51bWVyaWMob3ZlcmFsbDQubWFsZS5wZXJjJHZhbHVlKVxub3ZlcmFsbDQubWFsZS5wZXJjJGNpLmxvdyA8LSBhcy5udW1lcmljKG92ZXJhbGw0Lm1hbGUucGVyYyRjaS5sb3cpXG5vdmVyYWxsNC5tYWxlLnBlcmMkY2kuaGlnaCA8LSBhcy5udW1lcmljKG92ZXJhbGw0Lm1hbGUucGVyYyRjaS5oaWdoKVxuYGBgIn0= -->
<pre class="r"><code>overall3.perc &lt;- gather(overall.male.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key = TRUE) 

lnCVR.ci &lt;- overall3.perc %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.perc  %&gt;% filter(parameter == &quot;lnVR&quot;) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.perc %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4.male.perc &lt;- bind_rows(lnCVR.ci,lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high) 

overall4.male.perc$label &lt;- &quot;Sex difference in m/f ratios &gt; 10%&quot;

overall4.male.perc$value &lt;- as.numeric(overall4.male.perc$value)
overall4.male.perc$ci.low &lt;- as.numeric(overall4.male.perc$ci.low)
overall4.male.perc$ci.high &lt;- as.numeric(overall4.male.perc$ci.high)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Plot Fig S2 all &gt;10% difference (male bias) S2 B, bottom right</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG5NZXRhbWV0YV9GaWczX21hbGUucGVyYyA8LSBvdmVyYWxsNC5tYWxlLnBlcmMgJT4lICMgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSAhPSBcIkhlYXJpbmdcIikgJT4lXG4gIGdncGxvdChhZXMoeSA9IEdyb3VwaW5nVGVybSwgeCA9IHZhbHVlKSkgK1xuICBnZW9tX2Vycm9yYmFyaChhZXMoXG4gICAgeG1pbiA9IGNpLmxvdyxcbiAgICB4bWF4ID0gY2kuaGlnaFxuICApLFxuICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0VcbiAgKSArXG4gIGdlb21fcG9pbnQoYWVzKFxuICAgIHNoYXBlID0gcGFyYW1ldGVyLFxuICAgIGZpbGwgPSBwYXJhbWV0ZXJcbiAgKSxcbiAgY29sb3IgPSBcIm1lZGl1bWFxdWFtYXJpbmVcIiwgc2l6ZSA9IDIuMixcbiAgc2hvdy5sZWdlbmQgPSBGQUxTRVxuICApICtcbiAgc2NhbGVfeF9jb250aW51b3VzKFxuICAgIGxpbWl0cyA9IGMoLTAuMiwgMC42MiksXG4gICAgYnJlYWtzID0gYygwLCAwLjMpLFxuICAgIG5hbWUgPSBcIkVmZmVjdCBzaXplXCJcbiAgKSArXG4gIGdlb21fdmxpbmUoXG4gICAgeGludGVyY2VwdCA9IDAsXG4gICAgY29sb3IgPSBcImJsYWNrXCIsXG4gICAgbGluZXR5cGUgPSBcImRhc2hlZFwiXG4gICkgK1xuICBmYWNldF9ncmlkKFxuICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksIHJvd3MgPSB2YXJzKGxhYmVsKSxcbiAgICBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLFxuICAgIHNjYWxlcyA9IFwiZnJlZVwiLFxuICAgIHNwYWNlID0gXCJmcmVlXCJcbiAgKSArXG4gIHRoZW1lX2J3KCkgK1xuICB0aGVtZShcbiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLFxuICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gXCJibGFua1wiLCBmaWxsID0gXCJncmF5OTBcIiksXG4gICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLFxuICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgXCJsaW5lc1wiKSxcbiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvdXIgPSBcImdyYXk5NVwiKSxcbiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSBcInNvbGlkXCIsIGNvbG9yID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBzaXplID0gMTQpLFxuICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKVxuICApXG5cbiMgTWV0YW1ldGFfRmlnM19tYWxlLnBlcmMgKEZpZ3VyZSBTMiByaWdodCBwYW5lbClcbmBgYCJ9 -->
<pre class="r"><code>
Metameta_Fig3_male.perc &lt;- overall4.male.perc %&gt;% # filter(., GroupingTerm != &quot;Hearing&quot;) %&gt;%
  ggplot(aes(y = GroupingTerm, x = value)) +
  geom_errorbarh(aes(
    xmin = ci.low,
    xmax = ci.high
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(
    shape = parameter,
    fill = parameter
  ),
  color = &quot;mediumaquamarine&quot;, size = 2.2,
  show.legend = FALSE
  ) +
  scale_x_continuous(
    limits = c(-0.2, 0.62),
    breaks = c(0, 0.3),
    name = &quot;Effect size&quot;
  ) +
  geom_vline(
    xintercept = 0,
    color = &quot;black&quot;,
    linetype = &quot;dashed&quot;
  ) +
  facet_grid(
    cols = vars(parameter), rows = vars(label),
    labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_blank(),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_text(hjust = 0.5, size = 14),
    axis.title.y = element_blank()
  )

# Metameta_Fig3_male.perc (Figure S2 right panel)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="female-fig-s2-10" class="section level4">
<h4>Female Fig S2 &gt;10%</h4>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuXG5tZXRhLnBsb3QzLnBlcmMgPC0gbWV0YWNvbWJvICU+JVxuICBtdXRhdGUoXG4gICAgcGVyY0NWUiA9IGlmZWxzZShsbkNWUiA8IGxvZyg5IC8gMTApLCAxLCAwKSxcbiAgICBwZXJjVlIgPSBpZmVsc2UobG5WUiA8IGxvZyg5IC8gMTApLCAxLCAwKSxcbiAgICBwZXJjUlIgPSBpZmVsc2UobG5SUiA8IGxvZyg5IC8gMTApLCAxLCAwKVxuICApXG5cbiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsbkNWUlxubWV0YWNvbWJvX3Bsb3QzLkNWUi5wZXJjIDwtIG1ldGEucGxvdDMucGVyYyAlPiVcbiAgZmlsdGVyKHBlcmNDVlIgPT0gMSkgJT4lXG4gIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lXG4gIG5lc3QoKVxuXG5tZXRhY29tYm9fcGxvdDMuQ1ZSLnBlcmMuYWxsIDwtIG1ldGEucGxvdDMucGVyYyAlPiVcbiAgZmlsdGVyKHBlcmNDVlIgPT0gMSkgJT4lXG4gIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSlcblxuIyBTaWduaWZpY2FudCBzdWJzZXQgZm9yIGxuVlJcbm1ldGFjb21ib19wbG90My5WUi5wZXJjIDwtIG1ldGEucGxvdDMucGVyYyAlPiVcbiAgZmlsdGVyKHBlcmNWUiA9PSAxKSAlPiVcbiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbmVzdCgpXG5cbm1ldGFjb21ib19wbG90My5WUi5wZXJjLmFsbCA8LSBtZXRhLnBsb3QzLnBlcmMgJT4lXG4gIGZpbHRlcihwZXJjVlIgPT0gMSkgJT4lXG4gIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSlcblxuIyBTaWduaWZpY2FudCBzdWJzZXQgZm9yIGxuUlJcbm1ldGFjb21ib19wbG90My5SUi5wZXJjIDwtIG1ldGEucGxvdDMucGVyYyAlPiVcbiAgZmlsdGVyKHBlcmNSUiA9PSAxKSAlPiVcbiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbmVzdCgpXG5cbm1ldGFjb21ib19wbG90My5SUi5wZXJjLmFsbCA8LSBtZXRhLnBsb3QzLnBlcmMgJT4lXG4gIGZpbHRlcihwZXJjUlIgPT0gMSkgJT4lXG4gIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSlcblxuXG4jICoqRmluYWwgZml4ZWQgZWZmZWN0cyBtZXRhLWFuYWx5c2VzIHdpdGhpbiBncm91cGluZyB0ZXJtcywgd2l0aCBTRSBvZiB0aGUgZXN0aW1hdGVcblxucGxvdDMubWV0YS5DVlIucGVyYyA8LSBtZXRhY29tYm9fcGxvdDMuQ1ZSLnBlcmMgJT4lXG4gIG11dGF0ZShtb2RlbF9sbkNWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoXG4gICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSxcbiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSBcIm9wdGltXCIsIG9wdG1ldGhvZCA9IFwiTmVsZGVyLU1lYWRcIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEZcbiAgKSkpXG5cbnBsb3QzLm1ldGEuVlIucGVyYyA8LSBtZXRhY29tYm9fcGxvdDMuVlIucGVyYyAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgIHlpID0gLngkbG5WUiwgc2VpID0gKC54JGxuVlJfdXBwZXIgLSAueCRsblZSX2xvd2VyKSAvICgyICogMS45NiksXG4gICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICkpKVxuXG5wbG90My5tZXRhLlJSLnBlcmMgPC0gbWV0YWNvbWJvX3Bsb3QzLlJSLnBlcmMgJT4lXG4gIG11dGF0ZShtb2RlbF9sblJSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuUlIsIHNlaSA9ICgueCRsblJSX3VwcGVyIC0gLngkbG5SUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxuIyBBY3Jvc3MgYWxsIGdyb3VwaW5nIHRlcm1zICNcblxucGxvdDMubWV0YS5DVlIucGVyYy5hbGwgPC0gbWV0YWNvbWJvX3Bsb3QzLkNWUi5wZXJjLmFsbCAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaShcbiAgICB5aSA9IC54JGxuQ1ZSLCBzZWkgPSAoLngkbG5DVlJfdXBwZXIgLSAueCRsbkNWUl9sb3dlcikgLyAoMiAqIDEuOTYpLFxuICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9IFwib3B0aW1cIiwgb3B0bWV0aG9kID0gXCJOZWxkZXItTWVhZFwiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRlxuICApKSlcblxucGxvdDMubWV0YS5DVlIucGVyYy5hbGwgPC0gcGxvdDMubWV0YS5DVlIucGVyYy5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKVxuXG5wbG90My5tZXRhLlZSLnBlcmMuYWxsIDwtIG1ldGFjb21ib19wbG90My5WUi5wZXJjLmFsbCAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgIHlpID0gLngkbG5WUiwgc2VpID0gKC54JGxuVlJfdXBwZXIgLSAueCRsblZSX2xvd2VyKSAvICgyICogMS45NiksXG4gICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICkpKVxuXG5wbG90My5tZXRhLlZSLnBlcmMuYWxsIDwtIHBsb3QzLm1ldGEuVlIucGVyYy5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKVxuXG5wbG90My5tZXRhLlJSLnBlcmMuYWxsIDwtIG1ldGFjb21ib19wbG90My5SUi5wZXJjLmFsbCAlPiVcbiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKFxuICAgIHlpID0gLngkbG5SUiwgc2VpID0gKC54JGxuUlJfdXBwZXIgLSAueCRsblJSX2xvd2VyKSAvICgyICogMS45NiksXG4gICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gXCJvcHRpbVwiLCBvcHRtZXRob2QgPSBcIk5lbGRlci1NZWFkXCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGXG4gICkpKVxuXG5wbG90My5tZXRhLlJSLnBlcmMuYWxsIDwtIHBsb3QzLm1ldGEuUlIucGVyYy5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSBcIkFsbFwiKVxuXG4jIENvbWJpbmUgd2l0aCBzZXBhcmF0ZSBncm91cGluZyB0ZXJtIHJlc3VsdHNcblxucGxvdDMubWV0YS5DVlIucGVyYyA8LSBiaW5kX3Jvd3MocGxvdDMubWV0YS5DVlIucGVyYywgcGxvdDMubWV0YS5DVlIucGVyYy5hbGwpXG5wbG90My5tZXRhLlZSLnBlcmMgPC0gYmluZF9yb3dzKHBsb3QzLm1ldGEuVlIucGVyYywgcGxvdDMubWV0YS5WUi5wZXJjLmFsbClcbnBsb3QzLm1ldGEuUlIucGVyYyA8LSBiaW5kX3Jvd3MocGxvdDMubWV0YS5SUi5wZXJjLCBwbG90My5tZXRhLlJSLnBlcmMuYWxsKVxuXG5cbiMgKipSZS1zdHJ1Y3R1cmUgZGF0YSBmb3IgZWFjaCBncm91cGluZyB0ZXJtOyBkZWxldGUgdW4tdXNlZCB2YXJpYWJsZXM6IFwiSGVhcmluZyBtaXNzaW5nIGZvciBhbGwgMyBwYXJhbWV0ZXJzXCJcblxucGxvdDMubWV0YS5DVlIucGVyYy5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMubWV0YS5DVlIucGVyYyAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbXV0YXRlKFxuICAgIGxuQ1ZSID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soMikpLCBsbkNWUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDYpKSxcbiAgICBsbkNWUl91cHBlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDcpKSwgbG5DVlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuQ1ZSLCBwbHVjaygzKSlcbiAgKSlbLCBjKDEsIDQ6NyldXG5hZGQucm93LmhlYXJpbmcgPC0gYXMuZGF0YS5mcmFtZSh0KGMoXCJIZWFyaW5nXCIsIE5BLCBOQSwgTkEsIE5BKSkpICU+JSBzZXROYW1lcyhuYW1lcyhwbG90My5tZXRhLkNWUi5wZXJjLmIpKVxucGxvdDMubWV0YS5DVlIucGVyYy5iIDwtIHJiaW5kKHBsb3QzLm1ldGEuQ1ZSLnBlcmMuYiwgYWRkLnJvdy5oZWFyaW5nKVxucGxvdDMubWV0YS5DVlIucGVyYy5iIDwtIHBsb3QzLm1ldGEuQ1ZSLnBlcmMuYltvcmRlcihwbG90My5tZXRhLkNWUi5wZXJjLmIkR3JvdXBpbmdUZXJtKSwgXVxuXG5wbG90My5tZXRhLlZSLnBlcmMuYiA8LSBhcy5kYXRhLmZyYW1lKHBsb3QzLm1ldGEuVlIucGVyYyAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiVcbiAgbXV0YXRlKFxuICAgIGxuVlIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDIpKSwgbG5WUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soNikpLFxuICAgIGxuVlJfdXBwZXIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDcpKSwgbG5WUl9zZSA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soMykpXG4gICkpWywgYygxLCA0OjcpXVxuYWRkLnJvdy5oZWFyaW5nIDwtIGFzLmRhdGEuZnJhbWUodChjKFwiSGVhcmluZ1wiLCBOQSwgTkEsIE5BLCBOQSkpKSAlPiUgc2V0TmFtZXMobmFtZXMocGxvdDMubWV0YS5WUi5wZXJjLmIpKVxucGxvdDMubWV0YS5WUi5wZXJjLmIgPC0gcmJpbmQocGxvdDMubWV0YS5WUi5wZXJjLmIsIGFkZC5yb3cuaGVhcmluZylcbnBsb3QzLm1ldGEuVlIucGVyYy5iIDwtIHBsb3QzLm1ldGEuVlIucGVyYy5iW29yZGVyKHBsb3QzLm1ldGEuVlIucGVyYy5iJEdyb3VwaW5nVGVybSksIF1cblxucGxvdDMubWV0YS5SUi5wZXJjLmIgPC0gYXMuZGF0YS5mcmFtZShwbG90My5tZXRhLlJSLnBlcmMgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lXG4gIG11dGF0ZShcbiAgICBsblJSID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjaygyKSksIGxuUlJfbG93ZXIgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDYpKSxcbiAgICBsblJSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjayg3KSksIGxuUlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDMpKVxuICApKVssIGMoMSwgNDo3KV1cbmFkZC5yb3cuaGVhcmluZyA8LSBhcy5kYXRhLmZyYW1lKHQoYyhcIkhlYXJpbmdcIiwgTkEsIE5BLCBOQSwgTkEpKSkgJT4lIHNldE5hbWVzKG5hbWVzKHBsb3QzLm1ldGEuUlIucGVyYy5iKSlcbnBsb3QzLm1ldGEuUlIucGVyYy5iIDwtIHJiaW5kKHBsb3QzLm1ldGEuUlIucGVyYy5iLCBhZGQucm93LmhlYXJpbmcpXG5hZGQucm93LmhlbWF0b2xvZ3kgPC0gYXMuZGF0YS5mcmFtZSh0KGMoXCJIZW1hdG9sb2d5XCIsIE5BLCBOQSwgTkEsIE5BKSkpICU+JVxuICBzZXROYW1lcyhuYW1lcyhwbG90My5tZXRhLlJSLnBlcmMuYikpXG5wbG90My5tZXRhLlJSLnBlcmMuYiA8LSByYmluZChwbG90My5tZXRhLlJSLnBlcmMuYiwgYWRkLnJvdy5oZW1hdG9sb2d5KVxuXG5cbnBsb3QzLm1ldGEuUlIucGVyYy5iIDwtIHBsb3QzLm1ldGEuUlIucGVyYy5iW29yZGVyKHBsb3QzLm1ldGEuUlIucGVyYy5iJEdyb3VwaW5nVGVybSksIF1cblxucGxvdDMubWV0YS5DVlIucGVyYy5jIDwtIGZ1bGxfam9pbihwbG90My5tZXRhLkNWUi5wZXJjLmIsIHBsb3QzLm1ldGEuVlIucGVyYy5iKVxub3ZlcmFsbC5wbG90My5wZXJjIDwtIGZ1bGxfam9pbihwbG90My5tZXRhLkNWUi5wZXJjLmMsIHBsb3QzLm1ldGEuUlIucGVyYy5iKVxuXG5cbm92ZXJhbGwucGxvdDMucGVyYyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwucGxvdDMucGVyYyRHcm91cGluZ1Rlcm0sIGxldmVscyA9IGMoXCJCZWhhdmlvdXJcIiwgXCJNb3JwaG9sb2d5XCIsIFwiTWV0YWJvbGlzbVwiLCBcIlBoeXNpb2xvZ3lcIiwgXCJJbW11bm9sb2d5XCIsIFwiSGVtYXRvbG9neVwiLCBcIkhlYXJ0XCIsIFwiSGVhcmluZ1wiLCBcIkV5ZVwiLCBcIkFsbFwiKSlcbm92ZXJhbGwucGxvdDMucGVyYyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwucGxvdDMucGVyYyRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMob3ZlcmFsbC5wbG90My5wZXJjJEdyb3VwaW5nVGVybSkpKVxuYGBgIn0= -->
<pre class="r"><code>
meta.plot3.perc &lt;- metacombo %&gt;%
  mutate(
    percCVR = ifelse(lnCVR &lt; log(9 / 10), 1, 0),
    percVR = ifelse(lnVR &lt; log(9 / 10), 1, 0),
    percRR = ifelse(lnRR &lt; log(9 / 10), 1, 0)
  )

# Significant subset for lnCVR
metacombo_plot3.CVR.perc &lt;- meta.plot3.perc %&gt;%
  filter(percCVR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_plot3.CVR.perc.all &lt;- meta.plot3.perc %&gt;%
  filter(percCVR == 1) %&gt;%
  nest(data = everything())

# Significant subset for lnVR
metacombo_plot3.VR.perc &lt;- meta.plot3.perc %&gt;%
  filter(percVR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_plot3.VR.perc.all &lt;- meta.plot3.perc %&gt;%
  filter(percVR == 1) %&gt;%
  nest(data = everything())

# Significant subset for lnRR
metacombo_plot3.RR.perc &lt;- meta.plot3.perc %&gt;%
  filter(percRR == 1) %&gt;%
  group_by(GroupingTerm) %&gt;%
  nest()

metacombo_plot3.RR.perc.all &lt;- meta.plot3.perc %&gt;%
  filter(percRR == 1) %&gt;%
  nest(data = everything())


# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate

plot3.meta.CVR.perc &lt;- metacombo_plot3.CVR.perc %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.meta.VR.perc &lt;- metacombo_plot3.VR.perc %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.meta.RR.perc &lt;- metacombo_plot3.RR.perc %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(
    yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

# Across all grouping terms #

plot3.meta.CVR.perc.all &lt;- metacombo_plot3.CVR.perc.all %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.meta.CVR.perc.all &lt;- plot3.meta.CVR.perc.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

plot3.meta.VR.perc.all &lt;- metacombo_plot3.VR.perc.all %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(
    yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.meta.VR.perc.all &lt;- plot3.meta.VR.perc.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

plot3.meta.RR.perc.all &lt;- metacombo_plot3.RR.perc.all %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(
    yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower) / (2 * 1.96),
    control = list(optimizer = &quot;optim&quot;, optmethod = &quot;Nelder-Mead&quot;, maxit = 1000), verbose = F
  )))

plot3.meta.RR.perc.all &lt;- plot3.meta.RR.perc.all %&gt;% mutate(GroupingTerm = &quot;All&quot;)

# Combine with separate grouping term results

plot3.meta.CVR.perc &lt;- bind_rows(plot3.meta.CVR.perc, plot3.meta.CVR.perc.all)
plot3.meta.VR.perc &lt;- bind_rows(plot3.meta.VR.perc, plot3.meta.VR.perc.all)
plot3.meta.RR.perc &lt;- bind_rows(plot3.meta.RR.perc, plot3.meta.RR.perc.all)


# **Re-structure data for each grouping term; delete un-used variables: &quot;Hearing missing for all 3 parameters&quot;

plot3.meta.CVR.perc.b &lt;- as.data.frame(plot3.meta.CVR.perc %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
    lnCVR_upper = map_dbl(model_lnCVR, pluck(7)), lnCVR_se = map_dbl(model_lnCVR, pluck(3))
  ))[, c(1, 4:7)]
add.row.hearing &lt;- as.data.frame(t(c(&quot;Hearing&quot;, NA, NA, NA, NA))) %&gt;% setNames(names(plot3.meta.CVR.perc.b))
plot3.meta.CVR.perc.b &lt;- rbind(plot3.meta.CVR.perc.b, add.row.hearing)
plot3.meta.CVR.perc.b &lt;- plot3.meta.CVR.perc.b[order(plot3.meta.CVR.perc.b$GroupingTerm), ]

plot3.meta.VR.perc.b &lt;- as.data.frame(plot3.meta.VR.perc %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
    lnVR_upper = map_dbl(model_lnVR, pluck(7)), lnVR_se = map_dbl(model_lnVR, pluck(3))
  ))[, c(1, 4:7)]
add.row.hearing &lt;- as.data.frame(t(c(&quot;Hearing&quot;, NA, NA, NA, NA))) %&gt;% setNames(names(plot3.meta.VR.perc.b))
plot3.meta.VR.perc.b &lt;- rbind(plot3.meta.VR.perc.b, add.row.hearing)
plot3.meta.VR.perc.b &lt;- plot3.meta.VR.perc.b[order(plot3.meta.VR.perc.b$GroupingTerm), ]

plot3.meta.RR.perc.b &lt;- as.data.frame(plot3.meta.RR.perc %&gt;% group_by(GroupingTerm) %&gt;%
  mutate(
    lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
    lnRR_upper = map_dbl(model_lnRR, pluck(7)), lnRR_se = map_dbl(model_lnRR, pluck(3))
  ))[, c(1, 4:7)]
add.row.hearing &lt;- as.data.frame(t(c(&quot;Hearing&quot;, NA, NA, NA, NA))) %&gt;% setNames(names(plot3.meta.RR.perc.b))
plot3.meta.RR.perc.b &lt;- rbind(plot3.meta.RR.perc.b, add.row.hearing)
add.row.hematology &lt;- as.data.frame(t(c(&quot;Hematology&quot;, NA, NA, NA, NA))) %&gt;%
  setNames(names(plot3.meta.RR.perc.b))
plot3.meta.RR.perc.b &lt;- rbind(plot3.meta.RR.perc.b, add.row.hematology)


plot3.meta.RR.perc.b &lt;- plot3.meta.RR.perc.b[order(plot3.meta.RR.perc.b$GroupingTerm), ]

plot3.meta.CVR.perc.c &lt;- full_join(plot3.meta.CVR.perc.b, plot3.meta.VR.perc.b)
overall.plot3.perc &lt;- full_join(plot3.meta.CVR.perc.c, plot3.meta.RR.perc.b)


overall.plot3.perc$GroupingTerm &lt;- factor(overall.plot3.perc$GroupingTerm, levels = c(&quot;Behaviour&quot;, &quot;Morphology&quot;, &quot;Metabolism&quot;, &quot;Physiology&quot;, &quot;Immunology&quot;, &quot;Hematology&quot;, &quot;Heart&quot;, &quot;Hearing&quot;, &quot;Eye&quot;, &quot;All&quot;))
overall.plot3.perc$GroupingTerm &lt;- factor(overall.plot3.perc$GroupingTerm, rev(levels(overall.plot3.perc$GroupingTerm)))</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Restructure data for plotting Female bias, 10 percent difference</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDMucGVyYyA8LSBnYXRoZXIob3ZlcmFsbC5wbG90My5wZXJjLCBwYXJhbWV0ZXIsIHZhbHVlLCBjKGxuQ1ZSLCBsblZSLCBsblJSKSwgZmFjdG9yX2tleSA9IFRSVUUpIFxuXG5sbkNWUi5jaSA8LSBvdmVyYWxsMy5wZXJjICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5DVlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsbkNWUl9sb3dlciwgY2kuaGlnaCA9IGxuQ1ZSX3VwcGVyKVxubG5WUi5jaSA8LSBvdmVyYWxsMy5wZXJjICAlPiUgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuVlJcIikgJT4lIG11dGF0ZShjaS5sb3cgPSBsblZSX2xvd2VyLCBjaS5oaWdoID0gbG5WUl91cHBlcilcbmxuUlIuY2kgPC0gb3ZlcmFsbDMucGVyYyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuUlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsblJSX2xvd2VyLCBjaS5oaWdoID0gbG5SUl91cHBlcilcblxub3ZlcmFsbDQucGVyYyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpXG5cbm92ZXJhbGw0LnBlcmMkbGFiZWwgPC0gXCJTZXggZGlmZmVyZW5jZSBpbiBtL2YgcmF0aW9zID4gMTAlXCJcblxub3ZlcmFsbDQucGVyYyR2YWx1ZSA8LSBhcy5udW1lcmljKG92ZXJhbGw0LnBlcmMkdmFsdWUpXG5vdmVyYWxsNC5wZXJjJGNpLmxvdyA8LSBhcy5udW1lcmljKG92ZXJhbGw0LnBlcmMkY2kubG93KVxub3ZlcmFsbDQucGVyYyRjaS5oaWdoIDwtIGFzLm51bWVyaWMob3ZlcmFsbDQucGVyYyRjaS5oaWdoKVxuYGBgIn0= -->
<pre class="r"><code>overall3.perc &lt;- gather(overall.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key = TRUE) 

lnCVR.ci &lt;- overall3.perc %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.perc  %&gt;% filter(parameter == &quot;lnVR&quot;) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.perc %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4.perc &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.perc$label &lt;- &quot;Sex difference in m/f ratios &gt; 10%&quot;

overall4.perc$value &lt;- as.numeric(overall4.perc$value)
overall4.perc$ci.low &lt;- as.numeric(overall4.perc$ci.low)
overall4.perc$ci.high &lt;- as.numeric(overall4.perc$ci.high)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Plot FigS2 all &gt;10% difference (female) Figure S2B, bottom left</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuTWV0YW1ldGFfRmlnM19mZW1hbGUucGVyYyA8LSBvdmVyYWxsNC5wZXJjICU+JVxuICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICtcbiAgZ2VvbV9lcnJvcmJhcmgoYWVzKFxuICAgIHhtaW4gPSBjaS5sb3csXG4gICAgeG1heCA9IGNpLmhpZ2hcbiAgKSxcbiAgaGVpZ2h0ID0gMC4xLCBzaG93LmxlZ2VuZCA9IEZBTFNFXG4gICkgK1xuICBnZW9tX3BvaW50KGFlcyhzaGFwZSA9IHBhcmFtZXRlciksXG4gICAgZmlsbCA9IFwic2FsbW9uMVwiLCBjb2xvciA9IFwic2FsbW9uMVwiLCBzaXplID0gMi4yLFxuICAgIHNob3cubGVnZW5kID0gRkFMU0VcbiAgKSArXG5cbiAgIyBzY2FsZV9zaGFwZV9tYW51YWwodmFsdWVzID1cblxuICBzY2FsZV94X2NvbnRpbnVvdXMoXG4gICAgbGltaXRzID0gYygtMC41MywgMC4yKSxcbiAgICBicmVha3MgPSBjKC0wLjMsIDApLFxuICAgIG5hbWUgPSBcIkVmZmVjdCBzaXplXCJcbiAgKSArXG4gIGdlb21fdmxpbmUoXG4gICAgeGludGVyY2VwdCA9IDAsXG4gICAgY29sb3IgPSBcImJsYWNrXCIsXG4gICAgbGluZXR5cGUgPSBcImRhc2hlZFwiXG4gICkgK1xuICBmYWNldF9ncmlkKFxuICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksICMgcm93cyA9IHZhcnMobGFiZWwpLFxuICAgICMgbGFiZWxsZXIgPSBsYWJlbF93cmFwX2dlbih3aWR0aCA9IDIzKSxcbiAgICBzY2FsZXMgPSBcImZyZWVcIixcbiAgICBzcGFjZSA9IFwiZnJlZVwiXG4gICkgK1xuICB0aGVtZV9idygpICtcbiAgdGhlbWUoXG4gICAgc3RyaXAudGV4dC55ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMjcwLCBzaXplID0gMTAsIG1hcmdpbiA9IG1hcmdpbih0ID0gMTUsIHIgPSAxNSwgYiA9IDE1LCBsID0gMTUpKSxcbiAgICBzdHJpcC50ZXh0LnggPSBlbGVtZW50X2JsYW5rKCksXG4gICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9IFwiYmxhbmtcIiwgZmlsbCA9IFwiZ3JheTkwXCIpLFxuICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSxcbiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsIFwibGluZXNcIiksXG4gICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3VyID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksXG4gICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSwgc2l6ZSA9IDE0KSxcbiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKClcbiAgKVxuXG4jIE1ldGFtZXRhX0ZpZzNfZmVtYWxlLnBlcmMgKEZpZ3VyZSA1RCBsZWZ0IHBhbmVsKVxuYGBgIn0= -->
<pre class="r"><code>Metameta_Fig3_female.perc &lt;- overall4.perc %&gt;%
  ggplot(aes(y = GroupingTerm, x = value)) +
  geom_errorbarh(aes(
    xmin = ci.low,
    xmax = ci.high
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(shape = parameter),
    fill = &quot;salmon1&quot;, color = &quot;salmon1&quot;, size = 2.2,
    show.legend = FALSE
  ) +

  # scale_shape_manual(values =

  scale_x_continuous(
    limits = c(-0.53, 0.2),
    breaks = c(-0.3, 0),
    name = &quot;Effect size&quot;
  ) +
  geom_vline(
    xintercept = 0,
    color = &quot;black&quot;,
    linetype = &quot;dashed&quot;
  ) +
  facet_grid(
    cols = vars(parameter), # rows = vars(label),
    # labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_blank(),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_text(hjust = 0.5, size = 14),
    axis.title.y = element_blank()
  )

# Metameta_Fig3_female.perc (Figure 5D left panel)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>MISSING Metameta_Fig3_female.sig Metameta_Fig3_female.sig VR!!! # ADDED TO TEST #Metameta_FigS2_male.sig (Figure S2B top right panel)</p>
<p>Restructure MALE data for plotting</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDMubWFsZS5zaWdTIDwtIGdhdGhlcihvdmVyYWxsLm1hbGUucGxvdDMsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSlcblxuXG5sbkNWUi5jaSA8LSBvdmVyYWxsMy5tYWxlLnNpZ1MgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsbkNWUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpXG5sblZSLmNpIDwtIG92ZXJhbGwzLm1hbGUuc2lnUyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuVlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsblZSX2xvd2VyLCBjaS5oaWdoID0gbG5WUl91cHBlcilcbmxuUlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5SUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuUlJfbG93ZXIsIGNpLmhpZ2ggPSBsblJSX3VwcGVyKVxuXG5vdmVyYWxsNC5tYWxlLnNpZ1MgPC0gYmluZF9yb3dzKGxuQ1ZSLmNpLCBsblZSLmNpLCBsblJSLmNpKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgcGFyYW1ldGVyLCB2YWx1ZSwgY2kubG93LCBjaS5oaWdoKVxuXG5vdmVyYWxsNC5tYWxlLnNpZ1MkbGFiZWwgPC0gXCJDSSBub3Qgb3ZlcmxhcHBpbmcgemVyb1wiXG5gYGAifQ== -->
<pre class="r"><code>overall3.male.sigS &lt;- gather(overall.male.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key = TRUE)


lnCVR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnVR&quot;) %&gt;%
  mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4.male.sigS &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.male.sigS$label &lt;- &quot;CI not overlapping zero&quot;</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Plot FigS2 all significant results (CI not overlapping zero, male )</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuTWV0YW1ldGFfRmlnUzJfbWFsZS5zaWcgPC0gb3ZlcmFsbDQubWFsZS5zaWdTICU+JVxuICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICtcbiAgZ2VvbV9lcnJvcmJhcmgoYWVzKFxuICAgIHhtaW4gPSBjaS5sb3csXG4gICAgeG1heCA9IGNpLmhpZ2hcbiAgKSxcbiAgaGVpZ2h0ID0gMC4xLCBzaG93LmxlZ2VuZCA9IEZBTFNFXG4gICkgK1xuICBnZW9tX3BvaW50KGFlcyhzaGFwZSA9IHBhcmFtZXRlciksXG4gICAgZmlsbCA9IFwibWVkaXVtYXF1YW1hcmluZVwiLCBjb2xvciA9IFwibWVkaXVtYXF1YW1hcmluZVwiLCBzaXplID0gMi4yLFxuICAgIHNob3cubGVnZW5kID0gRkFMU0VcbiAgKSArXG4gIHNjYWxlX3hfY29udGludW91cyhcbiAgICBsaW1pdHMgPSBjKDAsIDAuNCksXG4gICAgYnJlYWtzID0gYygwLCAwLjMpLFxuICAgIG5hbWUgPSBcIkVmZmVjdCBzaXplXCJcbiAgKSArXG4gIGdlb21fdmxpbmUoXG4gICAgeGludGVyY2VwdCA9IDAsXG4gICAgY29sb3IgPSBcImJsYWNrXCIsXG4gICAgbGluZXR5cGUgPSBcImRhc2hlZFwiXG4gICkgK1xuICBmYWNldF9ncmlkKFxuICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksIHJvd3MgPSB2YXJzKGxhYmVsKSxcbiAgICBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLFxuICAgIHNjYWxlcyA9IFwiZnJlZVwiLFxuICAgIHNwYWNlID0gXCJmcmVlXCJcbiAgKSArXG4gIHRoZW1lX2J3KCkgK1xuICB0aGVtZShcbiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLFxuICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLFxuICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSBcImJsYW5rXCIsIGZpbGwgPSBcImdyYXk5MFwiKSxcbiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksXG4gICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCBcImxpbmVzXCIpLFxuICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSxcbiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSBcInNvbGlkXCIsIGNvbG91ciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3IgPSBcImdyYXk5NVwiKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpXG4gIClcblxuIyBNZXRhbWV0YV9GaWdTMl9tYWxlLnNpZ1xuYGBgIn0= -->
<pre class="r"><code>Metameta_FigS2_male.sig &lt;- overall4.male.sigS %&gt;%
  ggplot(aes(y = GroupingTerm, x = value)) +
  geom_errorbarh(aes(
    xmin = ci.low,
    xmax = ci.high
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(shape = parameter),
    fill = &quot;mediumaquamarine&quot;, color = &quot;mediumaquamarine&quot;, size = 2.2,
    show.legend = FALSE
  ) +
  scale_x_continuous(
    limits = c(0, 0.4),
    breaks = c(0, 0.3),
    name = &quot;Effect size&quot;
  ) +
  geom_vline(
    xintercept = 0,
    color = &quot;black&quot;,
    linetype = &quot;dashed&quot;
  ) +
  facet_grid(
    cols = vars(parameter), rows = vars(label),
    labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_text(size = 12),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_blank()
  )

# Metameta_FigS2_male.sig</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
<div id="plot-fig-s2-plots-combined" class="section level4">
<h4>Plot Fig S2: plots combined</h4>
<p>Metameta_FigS2_female.sig</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuRmlnUzIgPC0gZ2dhcnJhbmdlKG1hbGViaWFzX0ZpZ1MyX3NpZ3RyYWl0cywgbWFsZWJpYXNfRmlnMl9vdmVyMTAsIEZpZ1MyYiwgRmlnUzJkLCBuY29sID0gMSwgbnJvdyA9IDQsIGhlaWdodHMgPSBjKDIuMywgMiwgMi4xLCAyKSwgbGFiZWxzID0gYyhcIkFcIiwgXCIgXCIsIFwiQlwiLCBcIiBcIikpXG5cbmBgYCJ9 -->
<pre class="r"><code>FigS2 &lt;- ggarrange(malebias_FigS2_sigtraits, malebias_Fig2_over10, FigS2b, FigS2d, ncol = 1, nrow = 4, heights = c(2.3, 2, 2.1, 2), labels = c(&quot;A&quot;, &quot; &quot;, &quot;B&quot;, &quot; &quot;))
</code></pre>
<!-- rnb-source-end -->
<!-- rnb-output-begin eyJkYXRhIjoiUmVtb3ZlZCAyIHJvd3MgY29udGFpbmluZyBtaXNzaW5nIHZhbHVlcyAocG9zaXRpb25fc3RhY2spLlJlbW92ZWQgOCByb3dzIGNvbnRhaW5pbmcgbWlzc2luZyB2YWx1ZXMgKHBvc2l0aW9uX3N0YWNrKS5cbiJ9 -->
<pre><code>Removed 2 rows containing missing values (position_stack).Removed 8 rows containing missing values (position_stack).</code></pre>
<!-- rnb-output-end -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuRmlnUzJcbmBgYCJ9 -->
<pre class="r"><code>FigS2</code></pre>
<!-- rnb-source-end -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbXSwiaGVpZ2h0Ijo0MzIuNjMyOSwic2l6ZV9iZWhhdmlvciI6MCwid2lkdGgiOjcwMH0= -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
</div>
<div id="not-sure-what-this-below-is-felix-added-1122020-ich-glaube-dass-das-von-vorher-war.-wenn-wir-alles-oben-haben-dann-unten-loeschen" class="section level2">
<h2>NOT SURE WHAT THIS BELOW IS?? Felix added 11/2/2020: Ich glaube, dass das von vorher war. wenn wir alles oben haben, dann unten loeschen</h2>
</div>
<div id="figure-s2-sex-bias-including-vr" class="section level2">
<h2>Figure S2: sex-bias, including VR</h2>
<p>Prepare data for traits with effect size ratios &gt; 10% larger in males</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubWV0YS5wbG90UzIub3ZlcjEwIDwtIG1ldGFfY2xlYW4gJT4lXG4gIHNlbGVjdChsbkNWUiwgbG5WUiwgbG5SUiwgR3JvdXBpbmdUZXJtKSAlPiVcbiAgYXJyYW5nZShHcm91cGluZ1Rlcm0pXG5cbm1ldGEucGxvdFMyLm92ZXIxMC5iIDwtIGdhdGhlcihtZXRhLnBsb3RTMi5vdmVyMTAsIHRyYWl0LCB2YWx1ZSwgYyhsbkNWUiwgbG5WUiwgbG5SUikpXG5cbm1ldGEucGxvdFMyLm92ZXIxMC5iJHRyYWl0IDwtIGZhY3RvcihtZXRhLnBsb3RTMi5vdmVyMTAuYiR0cmFpdCwgbGV2ZWxzID0gYyhcImxuQ1ZSXCIsIFwibG5WUlwiLCBcImxuUlJcIikpXG5cbm1ldGEucGxvdFMyLm92ZXIxMC5jIDwtIG1ldGEucGxvdFMyLm92ZXIxMC5iICU+JVxuICBncm91cF9ieV9hdCh2YXJzKHRyYWl0LCBHcm91cGluZ1Rlcm0pKSAlPiVcbiAgc3VtbWFyaXNlKFxuICAgIG1hbGViaWFzID0gc3VtKHZhbHVlID4gbG9nKDExIC8gMTApKSwgZmVtYWxlYmlhcyA9IHN1bSh2YWx1ZSA8IGxvZyg5IC8gMTApKSwgdG90YWwgPSBtYWxlYmlhcyArIGZlbWFsZWJpYXMsXG4gICAgbWFsZXBlcmNlbnQgPSBtYWxlYmlhcyAqIDEwMCAvIHRvdGFsLCBmZW1hbGVwZXJjZW50ID0gZmVtYWxlYmlhcyAqIDEwMCAvIHRvdGFsXG4gIClcblxubWV0YS5wbG90UzIub3ZlcjEwLmMkbGFiZWwgPC0gXCJTZXggZGlmZmVyZW5jZSBpbiBtL2YgcmF0aW9zID4gMTAlXCJcblxuIyByZXN0cnVjdHVyZSB0byBjcmVhdGUgc3RhY2tlZCBiYXIgcGxvdHNcblxubWV0YS5wbG90UzIub3ZlcjEwLmMgPC0gYXMuZGF0YS5mcmFtZShtZXRhLnBsb3RTMi5vdmVyMTAuYylcbm1ldGEucGxvdFMyLm92ZXIxMC5kIDwtIGdhdGhlcihtZXRhLnBsb3RTMi5vdmVyMTAuYywga2V5ID0gc2V4LCB2YWx1ZSA9IHBlcmNlbnQsIG1hbGVwZXJjZW50OmZlbWFsZXBlcmNlbnQsIGZhY3Rvcl9rZXkgPSBUUlVFKVxuXG4jIGNyZWF0ZSBuZXcgc2FtcGxlIHNpemUgdmFyaWFibGVcblxubWV0YS5wbG90UzIub3ZlcjEwLmQkc2FtcGxlc2l6ZSA8LSB3aXRoKG1ldGEucGxvdFMyLm92ZXIxMC5kLCBpZmVsc2Uoc2V4ID09IFwibWFsZXBlcmNlbnRcIiwgbWFsZWJpYXMsIGZlbWFsZWJpYXMpKVxuXG4jICpQbG90IEZpZ1MyIFNleCBkaWZmZXJlbmNlIGluIG0vZiByYXRpbyA+IDEwJVxubWFsZWJpYXNfRmlnUzJfb3ZlcjEwIDwtXG4gIGdncGxvdChtZXRhLnBsb3RTMi5vdmVyMTAuZCkgK1xuICBhZXMoeCA9IEdyb3VwaW5nVGVybSwgeSA9IHBlcmNlbnQsIGZpbGwgPSBzZXgpICtcbiAgZ2VvbV9jb2woKSArXG4gIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDUwLCBsaW5ldHlwZSA9IFwiZGFzaGVkXCIsIGNvbG9yID0gXCJncmF5NDBcIikgK1xuICBnZW9tX3RleHQoXG4gICAgZGF0YSA9IHN1YnNldChtZXRhLnBsb3QyLm92ZXIxMC5kLCBzYW1wbGVzaXplICE9IDApLCBhZXMobGFiZWwgPSBzYW1wbGVzaXplKSwgcG9zaXRpb24gPSBwb3NpdGlvbl9zdGFjayh2anVzdCA9IC41KSxcbiAgICBjb2xvciA9IFwid2hpdGVcIiwgc2l6ZSA9IDMuNVxuICApICtcbiAgZmFjZXRfZ3JpZChcbiAgICBjb2xzID0gdmFycyh0cmFpdCksIHJvd3MgPSB2YXJzKGxhYmVsKSwgbGFiZWxsZXIgPSBsYWJlbF93cmFwX2dlbih3aWR0aCA9IDE4KSxcbiAgICBzY2FsZXMgPSBcImZyZWVcIiwgc3BhY2UgPSBcImZyZWVcIlxuICApICtcbiAgc2NhbGVfZmlsbF9icmV3ZXIocGFsZXR0ZSA9IFwiU2V0MlwiKSArXG4gIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE4KSArXG4gIHRoZW1lKFxuICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksXG4gICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSBcImJsYW5rXCIsIGZpbGwgPSBcImdyYXk5MFwiKSxcbiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksXG4gICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCBcImxpbmVzXCIpLFxuICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSxcbiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSBcInNvbGlkXCIsIGNvbG91ciA9IFwiZ3JheTk1XCIpLFxuICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9IFwic29saWRcIiwgY29sb3IgPSBcImdyYXk5NVwiKSxcbiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIGxlZ2VuZC5wb3NpdGlvbiA9IFwibm9uZVwiLFxuICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKClcbiAgKSArXG4gIGNvb3JkX2ZsaXAoKVxuXG4jIG1hbGViaWFzX0ZpZ1MyX292ZXIxMCAgIyhQYW5lbCBCIGluIEZpZyBTMiBpbiBtcylcbmBgYCJ9 -->
<pre class="r"><code>meta.plotS2.over10 &lt;- meta_clean %&gt;%
  select(lnCVR, lnVR, lnRR, GroupingTerm) %&gt;%
  arrange(GroupingTerm)

meta.plotS2.over10.b &lt;- gather(meta.plotS2.over10, trait, value, c(lnCVR, lnVR, lnRR))

meta.plotS2.over10.b$trait &lt;- factor(meta.plotS2.over10.b$trait, levels = c(&quot;lnCVR&quot;, &quot;lnVR&quot;, &quot;lnRR&quot;))

meta.plotS2.over10.c &lt;- meta.plotS2.over10.b %&gt;%
  group_by_at(vars(trait, GroupingTerm)) %&gt;%
  summarise(
    malebias = sum(value &gt; log(11 / 10)), femalebias = sum(value &lt; log(9 / 10)), total = malebias + femalebias,
    malepercent = malebias * 100 / total, femalepercent = femalebias * 100 / total
  )

meta.plotS2.over10.c$label &lt;- &quot;Sex difference in m/f ratios &gt; 10%&quot;

# restructure to create stacked bar plots

meta.plotS2.over10.c &lt;- as.data.frame(meta.plotS2.over10.c)
meta.plotS2.over10.d &lt;- gather(meta.plotS2.over10.c, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)

# create new sample size variable

meta.plotS2.over10.d$samplesize &lt;- with(meta.plotS2.over10.d, ifelse(sex == &quot;malepercent&quot;, malebias, femalebias))

# *Plot FigS2 Sex difference in m/f ratio &gt; 10%
malebias_FigS2_over10 &lt;-
  ggplot(meta.plotS2.over10.d) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = 50, linetype = &quot;dashed&quot;, color = &quot;gray40&quot;) +
  geom_text(
    data = subset(meta.plot2.over10.d, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5),
    color = &quot;white&quot;, size = 3.5
  ) +
  facet_grid(
    cols = vars(trait), rows = vars(label), labeller = label_wrap_gen(width = 18),
    scales = &quot;free&quot;, space = &quot;free&quot;
  ) +
  scale_fill_brewer(palette = &quot;Set2&quot;) +
  theme_bw(base_size = 18) +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_blank(),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.position = &quot;none&quot;,
    axis.title.x = element_blank(),
    axis.title.y = element_blank()
  ) +
  coord_flip()

# malebias_FigS2_over10  #(Panel B in Fig S2 in ms)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>#Metameta_FigS2_male.sig (Figure S2B top right panel)</p>
<p>Restructure MALE data for plotting</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDMubWFsZS5zaWdTIDwtIGdhdGhlcihvdmVyYWxsLm1hbGUucGxvdDMsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSlcblxuXG5sbkNWUi5jaSA8LSBvdmVyYWxsMy5tYWxlLnNpZ1MgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsbkNWUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpXG5sblZSLmNpIDwtIG92ZXJhbGwzLm1hbGUuc2lnUyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuVlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsblZSX2xvd2VyLCBjaS5oaWdoID0gbG5WUl91cHBlcilcbmxuUlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5SUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuUlJfbG93ZXIsIGNpLmhpZ2ggPSBsblJSX3VwcGVyKVxuXG5vdmVyYWxsNC5tYWxlLnNpZ1MgPC0gYmluZF9yb3dzKGxuQ1ZSLmNpLCBsblZSLmNpLCBsblJSLmNpKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgcGFyYW1ldGVyLCB2YWx1ZSwgY2kubG93LCBjaS5oaWdoKVxuXG5vdmVyYWxsNC5tYWxlLnNpZ1MkbGFiZWwgPC0gXCJDSSBub3Qgb3ZlcmxhcHBpbmcgemVyb1wiXG5gYGAifQ== -->
<pre class="r"><code>overall3.male.sigS &lt;- gather(overall.male.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key = TRUE)


lnCVR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnVR&quot;) %&gt;%
  mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.male.sigS %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4.male.sigS &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.male.sigS$label &lt;- &quot;CI not overlapping zero&quot;</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Plot FigS2 all significant results (CI not overlapping zero, male )</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbWzEsIlJlbW92ZWQgNSByb3dzIGNvbnRhaW5pbmcgbWlzc2luZyB2YWx1ZXMgKGdlb21fZXJyb3JiYXJoKS4iXSxbMSwiUmVtb3ZlZCA1IHJvd3MgY29udGFpbmluZyBtaXNzaW5nIHZhbHVlcyAoZ2VvbV9wb2ludCkuIl1dLCJoZWlnaHQiOjQzMi42MzI5LCJzaXplX2JlaGF2aW9yIjowLCJ3aWR0aCI6NzAwfQ== -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<div id="perc-sex-difference-male-bias" class="section level3">
<h3>10 % Perc sex difference, male bias</h3>
<p>Restructure data for plotting : Male biased, 10% difference</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDNTLnBlcmMgPC0gZ2F0aGVyKG92ZXJhbGwubWFsZS5wbG90My5wZXJjLCBwYXJhbWV0ZXIsIHZhbHVlLCBjKGxuQ1ZSLCBsblZSLCBsblJSKSwgZmFjdG9yX2tleSA9IFRSVUUpICMgbG5WUixcblxubG5DVlIuY2kgPC0gb3ZlcmFsbDNTLnBlcmMgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsbkNWUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpXG5sblZSLmNpIDwtIG92ZXJhbGwzUy5wZXJjICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5WUlwiKSAlPiVcbiAgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKVxubG5SUi5jaSA8LSBvdmVyYWxsM1MucGVyYyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuUlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsblJSX2xvd2VyLCBjaS5oaWdoID0gbG5SUl91cHBlcilcblxub3ZlcmFsbDRTLm1hbGUucGVyYyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpICMgbG5WUi5jaSxcblxub3ZlcmFsbDRTLm1hbGUucGVyYyRsYWJlbCA8LSBcIlNleCBkaWZmZXJlbmNlIGluIG0vZiByYXRpb3MgPiAxMCVcIlxuXG5vdmVyYWxsNFMubWFsZS5wZXJjJHZhbHVlIDwtIGFzLm51bWVyaWMob3ZlcmFsbDRTLm1hbGUucGVyYyR2YWx1ZSlcbm92ZXJhbGw0Uy5tYWxlLnBlcmMkY2kubG93IDwtIGFzLm51bWVyaWMob3ZlcmFsbDRTLm1hbGUucGVyYyRjaS5sb3cpXG5vdmVyYWxsNFMubWFsZS5wZXJjJGNpLmhpZ2ggPC0gYXMubnVtZXJpYyhvdmVyYWxsNFMubWFsZS5wZXJjJGNpLmhpZ2gpXG5gYGAifQ== -->
<pre class="r"><code>overall3S.perc &lt;- gather(overall.male.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key = TRUE) # lnVR,

lnCVR.ci &lt;- overall3S.perc %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3S.perc %&gt;%
  filter(parameter == &quot;lnVR&quot;) %&gt;%
  mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3S.perc %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4S.male.perc &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high) # lnVR.ci,

overall4S.male.perc$label &lt;- &quot;Sex difference in m/f ratios &gt; 10%&quot;

overall4S.male.perc$value &lt;- as.numeric(overall4S.male.perc$value)
overall4S.male.perc$ci.low &lt;- as.numeric(overall4S.male.perc$ci.low)
overall4S.male.perc$ci.high &lt;- as.numeric(overall4S.male.perc$ci.high)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Plot FigS2 all &gt;10% difference (male bias)</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuTWV0YW1ldGFfRmlnUzJfbWFsZS5wZXJjIDwtIG92ZXJhbGw0Uy5tYWxlLnBlcmMgJT4lICMgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSAhPSBcIkhlYXJpbmdcIikgJT4lXG4gIGdncGxvdChhZXMoeSA9IEdyb3VwaW5nVGVybSwgeCA9IHZhbHVlKSkgK1xuICBnZW9tX2Vycm9yYmFyaChhZXMoXG4gICAgeG1pbiA9IGNpLmxvdyxcbiAgICB4bWF4ID0gY2kuaGlnaFxuICApLFxuICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0VcbiAgKSArXG4gIGdlb21fcG9pbnQoYWVzKFxuICAgIHNoYXBlID0gcGFyYW1ldGVyLFxuICAgIGZpbGwgPSBwYXJhbWV0ZXJcbiAgKSxcbiAgY29sb3IgPSBcIm1lZGl1bWFxdWFtYXJpbmVcIiwgc2l6ZSA9IDIuMixcbiAgc2hvdy5sZWdlbmQgPSBGQUxTRVxuICApICtcbiAgc2NhbGVfeF9jb250aW51b3VzKFxuICAgIGxpbWl0cyA9IGMoLTAuMiwgMC42MiksXG4gICAgYnJlYWtzID0gYygwLCAwLjMpLFxuICAgIG5hbWUgPSBcIkVmZmVjdCBzaXplXCJcbiAgKSArXG4gIGdlb21fdmxpbmUoXG4gICAgeGludGVyY2VwdCA9IDAsXG4gICAgY29sb3IgPSBcImJsYWNrXCIsXG4gICAgbGluZXR5cGUgPSBcImRhc2hlZFwiXG4gICkgK1xuICBmYWNldF9ncmlkKFxuICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksIHJvd3MgPSB2YXJzKGxhYmVsKSxcbiAgICBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLFxuICAgIHNjYWxlcyA9IFwiZnJlZVwiLFxuICAgIHNwYWNlID0gXCJmcmVlXCJcbiAgKSArXG4gIHRoZW1lX2J3KCkgK1xuICB0aGVtZShcbiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLFxuICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gXCJibGFua1wiLCBmaWxsID0gXCJncmF5OTBcIiksXG4gICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLFxuICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgXCJsaW5lc1wiKSxcbiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvdXIgPSBcImdyYXk5NVwiKSxcbiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSBcInNvbGlkXCIsIGNvbG9yID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBzaXplID0gMTQpLFxuICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKVxuICApXG5cbiMgTWV0YW1ldGFfRmlnUzJfbWFsZS5wZXJjIChGaWd1cmUgNUQgcmlnaHQgcGFuZWwpXG5gYGAifQ== -->
<pre class="r"><code>Metameta_FigS2_male.perc &lt;- overall4S.male.perc %&gt;% # filter(., GroupingTerm != &quot;Hearing&quot;) %&gt;%
  ggplot(aes(y = GroupingTerm, x = value)) +
  geom_errorbarh(aes(
    xmin = ci.low,
    xmax = ci.high
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(
    shape = parameter,
    fill = parameter
  ),
  color = &quot;mediumaquamarine&quot;, size = 2.2,
  show.legend = FALSE
  ) +
  scale_x_continuous(
    limits = c(-0.2, 0.62),
    breaks = c(0, 0.3),
    name = &quot;Effect size&quot;
  ) +
  geom_vline(
    xintercept = 0,
    color = &quot;black&quot;,
    linetype = &quot;dashed&quot;
  ) +
  facet_grid(
    cols = vars(parameter), rows = vars(label),
    labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_blank(),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_text(hjust = 0.5, size = 14),
    axis.title.y = element_blank()
  )

# Metameta_FigS2_male.perc (Figure 5D right panel)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Restructure data for plotting: Female bias, 10 percent difference, including VR</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxub3ZlcmFsbDNTLnBlcmMgPC0gZ2F0aGVyKG92ZXJhbGwucGxvdDMucGVyYywgcGFyYW1ldGVyLCB2YWx1ZSwgYyhsbkNWUiwgbG5WUiwgbG5SUiksIGZhY3Rvcl9rZXkgPSBUUlVFKSAjIGxuVlIsXG5cbmxuQ1ZSLmNpIDwtIG92ZXJhbGwzUy5wZXJjICU+JVxuICBmaWx0ZXIocGFyYW1ldGVyID09IFwibG5DVlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsbkNWUl9sb3dlciwgY2kuaGlnaCA9IGxuQ1ZSX3VwcGVyKVxubG5WUi5jaSA8LSBvdmVyYWxsM1MucGVyYyAlPiVcbiAgZmlsdGVyKHBhcmFtZXRlciA9PSBcImxuVlJcIikgJT4lXG4gIG11dGF0ZShjaS5sb3cgPSBsblZSX2xvd2VyLCBjaS5oaWdoID0gbG5WUl91cHBlcilcbmxuUlIuY2kgPC0gb3ZlcmFsbDNTLnBlcmMgJT4lXG4gIGZpbHRlcihwYXJhbWV0ZXIgPT0gXCJsblJSXCIpICU+JVxuICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpXG5cbm92ZXJhbGw0Uy5wZXJjIDwtIGJpbmRfcm93cyhsbkNWUi5jaSwgbG5WUi5jaSwgbG5SUi5jaSkgJT4lIHNlbGVjdChHcm91cGluZ1Rlcm0sIHBhcmFtZXRlciwgdmFsdWUsIGNpLmxvdywgY2kuaGlnaClcblxub3ZlcmFsbDRTLnBlcmMkbGFiZWwgPC0gXCJTZXggZGlmZmVyZW5jZSBpbiBtL2YgcmF0aW9zID4gMTAlXCJcblxub3ZlcmFsbDRTLnBlcmMkdmFsdWUgPC0gYXMubnVtZXJpYyhvdmVyYWxsNFMucGVyYyR2YWx1ZSlcbm92ZXJhbGw0Uy5wZXJjJGNpLmxvdyA8LSBhcy5udW1lcmljKG92ZXJhbGw0Uy5wZXJjJGNpLmxvdylcbm92ZXJhbGw0Uy5wZXJjJGNpLmhpZ2ggPC0gYXMubnVtZXJpYyhvdmVyYWxsNFMucGVyYyRjaS5oaWdoKVxuYGBgIn0= -->
<pre class="r"><code>overall3S.perc &lt;- gather(overall.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key = TRUE) # lnVR,

lnCVR.ci &lt;- overall3S.perc %&gt;%
  filter(parameter == &quot;lnCVR&quot;) %&gt;%
  mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3S.perc %&gt;%
  filter(parameter == &quot;lnVR&quot;) %&gt;%
  mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3S.perc %&gt;%
  filter(parameter == &quot;lnRR&quot;) %&gt;%
  mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)

overall4S.perc &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4S.perc$label &lt;- &quot;Sex difference in m/f ratios &gt; 10%&quot;

overall4S.perc$value &lt;- as.numeric(overall4S.perc$value)
overall4S.perc$ci.low &lt;- as.numeric(overall4S.perc$ci.low)
overall4S.perc$ci.high &lt;- as.numeric(overall4S.perc$ci.high)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Plot Fig5D all &gt;10% difference (female)</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuTWV0YW1ldGFfRmlnM1NfZmVtYWxlLnBlcmMgPC0gb3ZlcmFsbDRTLnBlcmMgJT4lXG4gIGdncGxvdChhZXMoeSA9IEdyb3VwaW5nVGVybSwgeCA9IHZhbHVlKSkgK1xuICBnZW9tX2Vycm9yYmFyaChhZXMoXG4gICAgeG1pbiA9IGNpLmxvdyxcbiAgICB4bWF4ID0gY2kuaGlnaFxuICApLFxuICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0VcbiAgKSArXG4gIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSxcbiAgICBmaWxsID0gXCJzYWxtb24xXCIsIGNvbG9yID0gXCJzYWxtb24xXCIsIHNpemUgPSAyLjIsXG4gICAgc2hvdy5sZWdlbmQgPSBGQUxTRVxuICApICtcblxuICAjIHNjYWxlX3NoYXBlX21hbnVhbCh2YWx1ZXMgPVxuXG4gIHNjYWxlX3hfY29udGludW91cyhcbiAgICBsaW1pdHMgPSBjKC0wLjUzLCAwLjIpLFxuICAgIGJyZWFrcyA9IGMoLTAuMywgMCksXG4gICAgbmFtZSA9IFwiRWZmZWN0IHNpemVcIlxuICApICtcbiAgZ2VvbV92bGluZShcbiAgICB4aW50ZXJjZXB0ID0gMCxcbiAgICBjb2xvciA9IFwiYmxhY2tcIixcbiAgICBsaW5ldHlwZSA9IFwiZGFzaGVkXCJcbiAgKSArXG4gIGZhY2V0X2dyaWQoXG4gICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgIyByb3dzID0gdmFycyhsYWJlbCksXG4gICAgIyBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLFxuICAgIHNjYWxlcyA9IFwiZnJlZVwiLFxuICAgIHNwYWNlID0gXCJmcmVlXCJcbiAgKSArXG4gIHRoZW1lX2J3KCkgK1xuICB0aGVtZShcbiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLFxuICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gXCJibGFua1wiLCBmaWxsID0gXCJncmF5OTBcIiksXG4gICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLFxuICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgXCJsaW5lc1wiKSxcbiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksXG4gICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gXCJzb2xpZFwiLCBjb2xvdXIgPSBcImdyYXk5NVwiKSxcbiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSBcInNvbGlkXCIsIGNvbG9yID0gXCJncmF5OTVcIiksXG4gICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLFxuICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSxcbiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksXG4gICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBzaXplID0gMTQpLFxuICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKVxuICApXG5cbiMgTWV0YW1ldGFfRmlnM1NfZmVtYWxlLnBlcmMgKEZpZ3VyZSA1RCBsZWZ0IHBhbmVsKVxuYGBgIn0= -->
<pre class="r"><code>Metameta_Fig3S_female.perc &lt;- overall4S.perc %&gt;%
  ggplot(aes(y = GroupingTerm, x = value)) +
  geom_errorbarh(aes(
    xmin = ci.low,
    xmax = ci.high
  ),
  height = 0.1, show.legend = FALSE
  ) +
  geom_point(aes(shape = parameter),
    fill = &quot;salmon1&quot;, color = &quot;salmon1&quot;, size = 2.2,
    show.legend = FALSE
  ) +

  # scale_shape_manual(values =

  scale_x_continuous(
    limits = c(-0.53, 0.2),
    breaks = c(-0.3, 0),
    name = &quot;Effect size&quot;
  ) +
  geom_vline(
    xintercept = 0,
    color = &quot;black&quot;,
    linetype = &quot;dashed&quot;
  ) +
  facet_grid(
    cols = vars(parameter), # rows = vars(label),
    # labeller = label_wrap_gen(width = 23),
    scales = &quot;free&quot;,
    space = &quot;free&quot;
  ) +
  theme_bw() +
  theme(
    strip.text.y = element_text(angle = 270, size = 10, margin = margin(t = 15, r = 15, b = 15, l = 15)),
    strip.text.x = element_blank(),
    strip.background = element_rect(colour = NULL, linetype = &quot;blank&quot;, fill = &quot;gray90&quot;),
    text = element_text(size = 14),
    panel.spacing = unit(0.5, &quot;lines&quot;),
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major.x = element_line(linetype = &quot;solid&quot;, colour = &quot;gray95&quot;),
    panel.grid.major.y = element_line(linetype = &quot;solid&quot;, color = &quot;gray95&quot;),
    panel.grid.minor.y = element_blank(),
    panel.grid.minor.x = element_blank(),
    legend.title = element_blank(),
    axis.title.x = element_text(hjust = 0.5, size = 14),
    axis.title.y = element_blank()
  )

# Metameta_Fig3S_female.perc (Figure 5D left panel)</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<p>Figure S2</p>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-plot-begin eyJjb25kaXRpb25zIjpbXSwiaGVpZ2h0Ijo0MzIuNjMyOSwic2l6ZV9iZWhhdmlvciI6MCwid2lkdGgiOjcwMH0= -->
<p><img src="" /></p>
<!-- rnb-plot-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
</div>
</div>
<div id="acknowledgements" class="section level2">
<h2>Acknowledgements</h2>
<p>tbd</p>
</div>
<div id="r-session-information" class="section level2">
<h2>R Session Information</h2>
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuc2Vzc2lvbkluZm8oKVxuYGBgIn0= -->
<pre class="r"><code>sessionInfo()</code></pre>
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
<!-- rnb-text-end -->
</div>
</div>

<div id="rmd-source-code">LS0tCnRpdGxlOiAiSU1QQyBNb3VzZSBkYXRhIC0gVmFyaWFuY2UgaW4gc2V4IGRpZmZlcmVuY2VzIgphdXRob3I6ICJTdXNhbm5lIFphaml0c2NoZWssICBGZWxpeCBaYWppdHNjaGVrLCBSdXNzZWxsIEJvbmR1cmlhbnNreSxSb2JlcnQgIEJyb29rcywgV2lsbCBDb3Jud2VsbCwgRGFuaWVsIEZhbHN0ZXIsIE1hbGdvcnRhemEgTGFnaXN6LCBKZXJlbXkgTWFzb24sIERhbmllbCBOb2JsZSwgQWxpc3RhaXIgU2VuaW9yICYgU2hpbmljaGkgTmFrYWdhd2EiCmRhdGU6ICJBdWd1c3QgMjAxOSIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUKICAgIGRlcHRoOiA0CiAgICBudW1iZXJfc2VjdGlvbnM6IG5vCiAgICB0aGVtZTogIGZsYXRseQogICAgdG9jOiB5ZXMKICAgIHRvY19kZXB0aDogNAogICAgdG9jX2Zsb2F0OiB5ZXMKICBodG1sX25vdGVib29rOgogICAgdG9jOiB5ZXMKICBwZGZfZG9jdW1lbnQ6CiAgICB0b2M6IHllcwogICAgdG9jX2RlcHRoOiAnNCcKc3VidGl0bGU6IEVsZWN0cm9uaWMgU3VwcGxlbWVudGFyeSBNYXRlcmlhbAotLS0KCiMgU2V0LXVwCgojIyBMb2FkaW5nIHBhY2thZ2VzICYgY3VzdG9tIGZ1bmN0aW9ucwoKYGBge3IsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICBlY2hvID0gVFJVRSwKICB3YXJuaW5nID0gRkFMU0UsCiAgbWVzc2FnZSA9IEZBTFNFLAogIGNhY2hlID0gVFJVRSwKICB0aWR5ID0gVFJVRQopCmBgYAoKYGBge3J9CmxpYnJhcnkocmVhZHIpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkobWV0YWZvcikKbGlicmFyeShkZXZ0b29scykKbGlicmFyeShwdXJycikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkodGlkeXIpCmxpYnJhcnkodGliYmxlKQpsaWJyYXJ5KGthYmxlRXh0cmEpCmxpYnJhcnkocm9idW1ldGEpCmxpYnJhcnkoZ2dwdWJyKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoaGVyZSkKYGBgCgojIyBGdW5jdGlvbnMgCmZvciBwcmVwYXJpbmcgdGhlIGRhdGEgZm9yIG1ldGEgYW5hbHlzZXMKCiMjIyAxKSBTdWJzZXR0aW5nIGRhdGEKQ3JlYXRlIGZ1bmN0aW9uIGZvciBzdWItc2V0dGluZyB0aGUgZGF0YSB0byBjaG9vc2Ugb25seSBvbmUgZGF0YSBwb2ludCBwZXIgaW5kaXZpZHVhbCBwZXIgdHJhaXQ6ICJkYXRhX3N1YnNldF9wYXJhbWV0ZXJpZF9pbmRpdmlkdWFsX2J5X2FnZSIKCmBgYHtyfQpkYXRhX3N1YnNldF9wYXJhbWV0ZXJpZF9pbmRpdmlkdWFsX2J5X2FnZSA8LSBmdW5jdGlvbihteWRhdGEsIHBhcmFtZXRlciwgYWdlX21pbj0wLCBhZ2VfY2VudGVyPTEwMCkgewogIHRtcCA8LSBteWRhdGEgJT4lCiAgICBmaWx0ZXIoCiAgICAgIGFnZV9pbl9kYXlzID49IGFnZV9taW4sCiAgICAgIGlkID09IHBhcmFtZXRlcgogICAgKSAlPiUKICAgICMgdGFrZSByZXN1bHRzIGZvciBzaW5nbGUgaW5kaXZpZHVhbCBjbG9zZXN0IHRvIGFnZV9jZW50ZXIKICAgIG11dGF0ZShhZ2VfZGlmZiA9IGFicyhhZ2VfY2VudGVyIC0gYWdlX2luX2RheXMpKSAlPiUKICAgIGdyb3VwX2J5KGJpb2xvZ2ljYWxfc2FtcGxlX2lkKSAlPiUKICAgIGZpbHRlcihhZ2VfZGlmZiA9PSBtaW4oYWdlX2RpZmYpKSAlPiUKICAgIHNlbGVjdCgtYWdlX2RpZmYpIyAlPiUgCiMgICAgZmlsdGVyKCFkdXBsaWNhdGVkKGJpb2xvZ2ljYWxfc2FtcGxlX2lkKSkgICNGZWxpeCA2LzIvMjAyMDogdGhpcyBsaW5lIGNhbiBiZSBkZWxldGVkCiAgICAKICAjIHN0aWxsIHNvbWUgaW5kaXZpZHVhbHMgd2l0aCBtdWx0aXBsZSByZWNvcmRzIChiZWNhdXNlIHNhbWUgaW5kaXZpZHVhbCBhcHBlYXIgdW5kZXIgZGlmZmVyZW50IHByb2NlZHVyZXMsIHNvIGZpbHRlciB0byBvbmUgcmVjb3JkKQogIGogPC0gbWF0Y2godW5pcXVlKHRtcCRiaW9sb2dpY2FsX3NhbXBsZV9pZCksIHRtcCRiaW9sb2dpY2FsX3NhbXBsZV9pZCkKICB0bXBbaiwgXSAKICB9CmBgYAoKIyMjIDIpICJQb3B1bGF0aW9uIHN0YXRpc3RpY3MiCkNyZWF0ZSBmdW5jdGlvbiBjYWxsZWQ6ICJjYWxjdWxhdGVfcG9wdWxhdGlvbl9zdGF0cyIKVGhpcyBmdW5jdGlvbiBncm91cHMgYW5pbWFscyBmcm9tIHRoZSBzYW1lIHN0cmFpbiBhbmQgc2FtZSBpbnNpdGl1dGlvbiB0b2dldGhlci4gVGhpcyBpcyBkb25lIGZvciBlYWNoIHRyYWl0IHNlb2FyYXRlbHksIGFuZCBvbmx5IGZvciB0cmFpdHMgdGhhdCBoYXZlIGJlZW4gbWVhc3VyZWQgaW4gYm90aCBzZXhlcy4gQW55IGdyb3VwIGNvbnRhaW5pbmcgZmV3ZXIgdGhhbiA1IGluZGl2aWR1YWxzIGlzIGV4Y2x1ZGVkLgoKYGBge3J9CmNhbGN1bGF0ZV9wb3B1bGF0aW9uX3N0YXRzIDwtIGZ1bmN0aW9uKG15ZGF0YSwgbWluX2luZGl2aWR1YWxzID0gNSkgewogIG15ZGF0YSAlPiUKICAgIGdyb3VwX2J5KHBvcHVsYXRpb24sIHN0cmFpbl9uYW1lLCBwcm9kdWN0aW9uX2NlbnRlciwgc2V4KSAlPiUKICAgIHN1bW1hcmlzZSgKICAgICAgdHJhaXQgPSBwYXJhbWV0ZXJfbmFtZVsxXSwKICAgICAgeF9iYXIgPSBtZWFuKGRhdGFfcG9pbnQpLAogICAgICB4X3NkID0gc2QoZGF0YV9wb2ludCksCiAgICAgIG5faW5kID0gbigpCiAgICApICU+JQogICAgdW5ncm91cCgpICU+JQogICAgZmlsdGVyKG5faW5kID4gbWluX2luZGl2aWR1YWxzKSAlPiUKICAgICMgQ2hlY2sgYm90aCBzZXhlcyBwcmVzZW50ICYgZmlsdGVyIHRob3NlIG1pc3NpbmcKICAgIGdyb3VwX2J5KHBvcHVsYXRpb24pICU+JQogICAgbXV0YXRlKAogICAgICBuX3NleCA9IG5fZGlzdGluY3Qoc2V4KQogICAgKSAlPiUKICAgIHVuZ3JvdXAoKSAlPiUKICAgIGZpbHRlcihuX3NleCA9PSAyKSAlPiUKICAgIHNlbGVjdCgtbl9zZXgpICU+JQogICAgYXJyYW5nZShwcm9kdWN0aW9uX2NlbnRlciwgc3RyYWluX25hbWUsIHBvcHVsYXRpb24sIHNleCkKfQpgYGAKCiMjIyAzKSBFeHRyYWN0aW9uIG9mIGVmZmVjdCBzaXplcyBhbmQgc2FtcGxlIHZhcmlhbmNlcwpGdW5jdGlvbjogImNyZWF0ZV9tZXRhX2FuYWx5c2lzX2VmZmVjdF9zaXplcyIKCmBgYHtyfQpjcmVhdGVfbWV0YV9hbmFseXNpc19lZmZlY3Rfc2l6ZXMgPC0gZnVuY3Rpb24obXlkYXRhKSB7CiAgaSA8LSBzZXEoMSwgbnJvdyhteWRhdGEpLCBieSA9IDIpCiAgaW5wdXQgPC0gZGF0YS5mcmFtZSgKICAgIG4xaSA9IG15ZGF0YSRuX2luZFtpXSwKICAgIG4yaSA9IG15ZGF0YSRuX2luZFtpICsgMV0sCiAgICB4MWkgPSBteWRhdGEkeF9iYXJbaV0sCiAgICB4MmkgPSBteWRhdGEkeF9iYXJbaSArIDFdLAogICAgc2QxaSA9IG15ZGF0YSR4X3NkW2ldLAogICAgc2QyaSA9IG15ZGF0YSR4X3NkW2kgKyAxXQogICkKCiAgbXlkYXRhW2ksIF0gJT4lCiAgICBzZWxlY3Qoc3RyYWluX25hbWUsIHByb2R1Y3Rpb25fY2VudGVyLCB0cmFpdCkgJT4lCiAgICBtdXRhdGUoCiAgICAgIGVmZmVjdF9zaXplX0NWUiA9IGNhbGN1bGF0ZV9sbkNWUihDTWVhbiA9IGlucHV0JHgxaSwgQ1NEID0gaW5wdXQkc2QxaSwgQ04gPSBpbnB1dCRuMWksIEVNZWFuID0gaW5wdXQkeDJpLCBFU0QgPSBpbnB1dCRzZDJpLCBFTiA9IGlucHV0JG4yaSksCiAgICAgIHNhbXBsZV92YXJpYW5jZV9DVlIgPSBjYWxjdWxhdGVfdmFyX2xuQ1ZSKENNZWFuID0gaW5wdXQkeDFpLCBDU0QgPSBpbnB1dCRzZDFpLCBDTiA9IGlucHV0JG4xaSwgRU1lYW4gPSBpbnB1dCR4MmksIEVTRCA9IGlucHV0JHNkMmksIEVOID0gaW5wdXQkbjJpKSwKICAgICAgZWZmZWN0X3NpemVfVlIgPSBjYWxjdWxhdGVfbG5WUihDU0QgPSBpbnB1dCRzZDFpLCBDTiA9IGlucHV0JG4xaSwgRVNEID0gaW5wdXQkc2QyaSwgRU4gPSBpbnB1dCRuMmkpLAogICAgICBzYW1wbGVfdmFyaWFuY2VfVlIgPSBjYWxjdWxhdGVfdmFyX2xuVlIoQ04gPSBpbnB1dCRuMWksIEVOID0gaW5wdXQkbjJpKSwKICAgICAgZWZmZWN0X3NpemVfUlIgPSBjYWxjdWxhdGVfbG5SUihDTWVhbiA9IGlucHV0JHgxaSwgQ1NEID0gaW5wdXQkc2QxaSwgQ04gPSBpbnB1dCRuMWksIEVNZWFuID0gaW5wdXQkeDJpLCBFU0QgPSBpbnB1dCRzZDJpLCBFTiA9IGlucHV0JG4yaSksCiAgICAgIHNhbXBsZV92YXJpYW5jZV9SUiA9IGNhbGN1bGF0ZV92YXJfbG5SUihDTWVhbiA9IGlucHV0JHgxaSwgQ1NEID0gaW5wdXQkc2QxaSwgQ04gPSBpbnB1dCRuMWksIEVNZWFuID0gaW5wdXQkeDJpLCBFU0QgPSBpbnB1dCRzZDJpLCBFTiA9IGlucHV0JG4yaSksCiAgICAgIGVyciA9IGFzLmZhY3RvcihzZXFfbGVuKG4oKSkpCiAgICApCn0KYGBgCgogCiMjIyA0KSBDYWxjdWxhdGUgbWV0YS1hbmFseXNpcyBzdGF0aXN0aWNzCgpCYXNlZCBvbiBhIGZ1bmN0aW9uIGNyZWF0ZWQgYnkgQSBNIFNlbmlvciBAIHRoZSBVbml2ZXJzaXR5IG9mIE90YWdvIE5aIDAzLzAxLzIwMTQ6IAoKKiBDYWxjdWxhdGVzIGVmZmVjdCBzaXplcyBmb3IgbWV0YS1hbmFseXNpcyBvZiB2YXJpYW5jZS4gIEFsbCBmdW5jdGlvbnMgdGFrZSB0aGUgbWVhbiwgc2QgYW5kIG4gZnJvbSB0aGUgY29udHJvbCBhbmQgZXhwZXJpbWVudGFsIGdyb3Vwcy4KKiBUaGUgZmlyc3QgZnVuY3Rpb24sIGNhbGN1bGF0ZV9sbkNWUiwgY2FsY3VsYXRlcyB0aGUgdGhlIGxvZyByZXNwb25zZS1yYXRpbyBvZiB0aGUgY29lZmZpY2llbnQgb2YgdmFyaWFuY2UgKGxuQ1ZSKSAtIHNlZSBOYWthZ2F3YSBldCBhbCAyMDE1LgoqIFRoZSBzZWNvbmQgZnVuY3Rpb24gY2FsY3VsYXRlcyB0aGUgbWVhc3VyZW1lbnQgZXJyb3IgdmFyaWFuY2UgZm9yIGxuQ1ZSLiBBcyB3ZWxsIGFzIHRoZSBhZm9yZW1lbnRpb25lZCBwYXJhbWV0ZXJzLCB0aGlzIGZ1bmN0aW9uIGFsc28gdGFrZXMgRXF1YWxfRV9DX0NvcnIgKGRlZmF1bHQgPSBUKSwgd2hpY2ggbXVzdCBiZSBUcnVlIG9yIEZhbHNlLiBJZiB0cnVlLCB0aGUgZnVuY3Rpb24gYXNzdW1lcyB0aGF0IHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIG1lYW4gYW5kIHNkIChUYXlsb3IncyBMYXcpICBpcyBlcXVhbCBmb3IgdGhlIG1lYW4gYW5kIGNvbnRyb2wgZ3JvdXBzLCBhbmQsIHRodXMgdGhlc2UgZGF0YSBhcmUgcG9vbGVkLiBJZiBGYWxzZSB0aGUgbWVhbi1TRCBjb3JyZWxhdGlvbiBmb3IgdGhlIGV4cGVyaW1lbnRhbCBhbmQgY29udHJvbCBncm91cHMgYXJlIGNhbGN1bGF0ZWQgc2VwYXJhdGVseSBmcm9tIG9uZSBhbm90aGVyLgoqIFNpbWlsYXIgZnVuY3Rpb25zIGFyZSB0aGVuIGltcGxlbWVudGVkIGZvciBsblZSIChmb3IgY29tcGFyaXNvbiBvZiBzdGFuZGFyZCBkZXZpYXRpb25zKSBhbmQgbG4gUlIgIChmb3IgY29tcGFyaXNvbiBvZiBtZWFucykgCiAKYGBge3J9CgpjYWxjdWxhdGVfbG5DVlIgPC0gZnVuY3Rpb24oQ01lYW4sIENTRCwgQ04sIEVNZWFuLCBFU0QsIEVOKSB7CiAgbG9nKEVTRCkgLSBsb2coRU1lYW4pICsgMSAvICgyICogKEVOIC0gMSkpIC0gKGxvZyhDU0QpIC0gbG9nKENNZWFuKSArIDEgLyAoMiAqIChDTiAtIDEpKSkKfQoKY2FsY3VsYXRlX3Zhcl9sbkNWUiA8LSBmdW5jdGlvbihDTWVhbiwgQ1NELCBDTiwgRU1lYW4sIEVTRCwgRU4sIEVxdWFsX0VfQ19Db3JyID0gVCkgewogIGlmIChFcXVhbF9FX0NfQ29yciA9PSBUKSB7CiAgICBtdmNvcnIgPC0gMCAjIGNvci50ZXN0KGxvZyhjKENNZWFuLCBFTWVhbikpLCBsb2coYyhDU0QsIEVTRCkpKSRlc3RpbWF0ZSAgIG9sZCwgc2xpZ2h0bHkgaW5jb3JyZWN0CiAgICBTMiA8LSBDU0ReMiAvIChDTiAqIChDTWVhbl4yKSkgKyAxIC8gKDIgKiAoQ04gLSAxKSkgLSAyICogbXZjb3JyICogc3FydCgoQ1NEXjIgLyAoQ04gKiAoQ01lYW5eMikpKSAqICgxIC8gKDIgKiAoQ04gLSAxKSkpKSArIEVTRF4yIC8gKEVOICogKEVNZWFuXjIpKSArIDEgLyAoMiAqIChFTiAtIDEpKSAtIDIgKiBtdmNvcnIgKiBzcXJ0KChFU0ReMiAvIChFTiAqIChFTWVhbl4yKSkpICogKDEgLyAoMiAqIChFTiAtIDEpKSkpCiAgfQogIGVsc2UgewogICAgQ212Y29yciA8LSBjb3IudGVzdChsb2coQ01lYW4pLCBsb2coQ1NEKSkkZXN0aW1hdGUKICAgIEVtdmNvcnIgPC0gY29yLnRlc3QobG9nKEVNZWFuKSwgKEVTRCkpJGVzdGltYXRlCiAgICBTMiA8LSBDU0ReMiAvIChDTiAqIChDTWVhbl4yKSkgKyAxIC8gKDIgKiAoQ04gLSAxKSkgLSAyICogQ212Y29yciAqIHNxcnQoKENTRF4yIC8gKENOICogKENNZWFuXjIpKSkgKiAoMSAvICgyICogKENOIC0gMSkpKSkgKyBFU0ReMiAvIChFTiAqIChFTWVhbl4yKSkgKyAxIC8gKDIgKiAoRU4gLSAxKSkgLSAyICogRW12Y29yciAqIHNxcnQoKEVTRF4yIC8gKEVOICogKEVNZWFuXjIpKSkgKiAoMSAvICgyICogKEVOIC0gMSkpKSkKICB9CiAgUzIKfQoKY2FsY3VsYXRlX2xuVlIgPC0gZnVuY3Rpb24oQ1NELCBDTiwgRVNELCBFTikgewogIGxvZyhFU0QpIC0gbG9nKENTRCkgKyAxIC8gKDIgKiAoRU4gLSAxKSkgLSAxIC8gKDIgKiAoQ04gLSAxKSkKfQoKY2FsY3VsYXRlX3Zhcl9sblZSIDwtIGZ1bmN0aW9uKENOLCBFTikgewogIDEgLyAoMiAqIChFTiAtIDEpKSArIDEgLyAoMiAqIChDTiAtIDEpKQp9CgpjYWxjdWxhdGVfbG5SUiA8LSBmdW5jdGlvbihDTWVhbiwgQ1NELCBDTiwgRU1lYW4sIEVTRCwgRU4pIHsKICBsb2coRU1lYW4pIC0gbG9nKENNZWFuKQp9CgpjYWxjdWxhdGVfdmFyX2xuUlIgPC0gZnVuY3Rpb24oQ01lYW4sIENTRCwgQ04sIEVNZWFuLCBFU0QsIEVOKSB7CiAgQ1NEXjIgLyAoQ04gKiBDTWVhbl4yKSArIEVTRF4yIC8gKEVOICogRU1lYW5eMikKfQpgYGAKCiMjIExvYWQgJiBjbGVhbiBkYXRhCgojIyMgMSkgRGF0YSBsb2FkaW5nIGFuZCBjbGVhbmluZyBvZiB0aGUgY3N2IGZpbGUKClRoaXMgc3RlcCB3ZSBoYXZlIGFscmVhZHkgZG9uZSBhbmQgcHJvdmlkZSBhIGNsZWFuZWQgdXAgZmlsZSB3aGljaCBpcyBsZXNzIGNvbXB1dGluZyBpbnRlbnNpdmUgYW5kIHdoaWNoIHdlIGhhdmUgc2F2ZWQgaW4gYSBmb2xkZXIgY2FsbGVkIGBleHBvcnRgLiBIb3dldmVyLCB0aGUgY3ZzIGlzIHByb3ZpZGVkIGluIGNhc2UgdGhpcyBpcyBwcmVmZXJyZWQgdG8gYmUgYXR0ZW1wdGVkLCBmb2xsb3dpbmcgdGhlIHN0ZXBzIGJlbG93OgoKYGBge3IgY2xlYW4sIGV2YWw9RkFMU0UsIGluY2x1ZGU9VFJVRX0KIyBsb2FkcyB0aGUgcmF3IGRhdGEsIHNldHRpbmcgc29tZSBkZWZhdWx0IHR5cGVzIGZvciB2YXJpb3VzIGNvbHVtbnMKCmxvYWRfcmF3IDwtIGZ1bmN0aW9uKGZpbGVuYW1lKSB7CiAgcmVhZF9jc3YoZmlsZW5hbWUsCiAgICBjb2xfdHlwZXMgPSBjb2xzKAogICAgICAuZGVmYXVsdCA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgcHJvamVjdF9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgaWQgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgIHBhcmFtZXRlcl9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgYWdlX2luX2RheXMgPSBjb2xfaW50ZWdlcigpLAogICAgICBkYXRlX29mX2V4cGVyaW1lbnQgPSBjb2xfZGF0ZXRpbWUoZm9ybWF0ID0gIiIpLAogICAgICB3ZWlnaHQgPSBjb2xfZG91YmxlKCksCiAgICAgIHBoZW5vdHlwaW5nX2NlbnRlcl9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgcHJvZHVjdGlvbl9jZW50ZXJfaWQgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgIHdlaWdodF9kYXRlID0gY29sX2RhdGV0aW1lKGZvcm1hdCA9ICIiKSwKICAgICAgZGF0ZV9vZl9iaXJ0aCA9IGNvbF9kYXRldGltZShmb3JtYXQgPSAiIiksCiAgICAgIHByb2NlZHVyZV9pZCA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgcGlwZWxpbmVfaWQgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgIGJpb2xvZ2ljYWxfc2FtcGxlX2lkID0gY29sX2NoYXJhY3RlcigpLAogICAgICBiaW9sb2dpY2FsX21vZGVsX2lkID0gY29sX2NoYXJhY3RlcigpLAogICAgICB3ZWlnaHRfZGF5c19vbGQgPSBjb2xfaW50ZWdlcigpLAogICAgICBkYXRhc291cmNlX2lkID0gY29sX2NoYXJhY3RlcigpLAogICAgICBleHBlcmltZW50X2lkID0gY29sX2NoYXJhY3RlcigpLAogICAgICBkYXRhX3BvaW50ID0gY29sX2RvdWJsZSgpLAogICAgICBhZ2VfaW5fd2Vla3MgPSBjb2xfaW50ZWdlcigpLAogICAgICBgX3ZlcnNpb25fYCA9IGNvbF9jaGFyYWN0ZXIoKQogICAgKQogICkKfQoKIyBBcHBseSBzb21lIHN0YW5kYXJkIGNsZWFuaW5nIHRvIHRoZSBkYXRhCmNsZWFuX3Jhd19kYXRhIDwtIGZ1bmN0aW9uKG15ZGF0YSkgewogIAogIGdyb3VwIDwtIHJlYWRfY3N2KGhlcmUoImRhdGEiLCAiUGFyYW1ldGVyR3JvdXBpbmcuY3N2IikpCiAgCiAgdG1wIDwtIAogICAgbXlkYXRhICU+JQoKICAgICMgRmlsdGVyIHRvIElNUEMgc291cmNlIChyZWNvbW1lbmQgYnkgSmVyZW1leSBpbiBlbWFpbCB0byBTdXNpIG9uIDIwIEF1ZyAyMDE4KQogICAgZmlsdGVyKGRhdGFzb3VyY2VfbmFtZSA9PSAiSU1QQyIpICU+JQoKICAgICMgc3RhbmRhcmRpc2UgdHJhaXQgbmFtZXMKICAgIG11dGF0ZShwYXJhbWV0ZXJfbmFtZSA9IHRvbG93ZXIocGFyYW1ldGVyX25hbWUpKSAlPiUKCiAgICAjIHJlbW92ZSBleHRyZW1lIGFnZXMKICAgIGZpbHRlcihhZ2VfaW5fZGF5cyA+IDAgJiBhZ2VfaW5fZGF5cyA8IDUwMCkgJT4lCgogICAgIyByZW1vdmUgTkFzCiAgICBmaWx0ZXIoIWlzLm5hKGRhdGFfcG9pbnQpKSAlPiUKCiAgICAjIHN1YnNldCB0byByZWFzb25hYmxlIHNldCBvZiB2YXJpYWJsZXMsIGRhdGVfb2ZfZXhwZXJpbWVudCB1c2VkIGFzIGFuIGluZGljYXRvciBvZiBiYXRjaC1sZXZlbCBlZmZlY3RzCiAgICBzZWxlY3QocHJvZHVjdGlvbl9jZW50ZXIsIHN0cmFpbl9uYW1lLCBzdHJhaW5fYWNjZXNzaW9uX2lkLCBiaW9sb2dpY2FsX3NhbXBsZV9pZCwgcGlwZWxpbmVfc3RhYmxlX2lkLCBwcm9jZWR1cmVfZ3JvdXAsIHByb2NlZHVyZV9uYW1lLCBzZXgsIGRhdGVfb2ZfZXhwZXJpbWVudCwgYWdlX2luX2RheXMsIHdlaWdodCwgcGFyYW1ldGVyX25hbWUsIGRhdGFfcG9pbnQpICU+JSAKCiAgICAjIHNvcnQKICAgIGFycmFuZ2UocHJvZHVjdGlvbl9jZW50ZXIsIGJpb2xvZ2ljYWxfc2FtcGxlX2lkLCBhZ2VfaW5fZGF5cykKICAgICAgCiAgICAjIGZpbHRlciB0byBncm91cHMgd2l0aCA+IDEgY2VudHJlICAKICAgIG1lcmdlKHRtcCwgCiAgICAgICAgICB0bXAgJT4lIGdyb3VwX2J5KHBhcmFtZXRlcl9uYW1lKSAlPiUKICAgIHN1bW1hcmlzZShjZW50ZXJfcGVyX3RyYWl0ID0gbGVuZ3RoKHVuaXF1ZShwcm9kdWN0aW9uX2NlbnRlciwgbmEucm0gPSBUUlVFKSkpCiAgICAgICAgKSU+JQogICAgZmlsdGVyKGNlbnRlcl9wZXJfdHJhaXQgPj0gMikgJT4lIAoKICAgICMgRGVmaW5lIHBvcHVsYXRpb24gdmFyaWFibGUKICAgIG11dGF0ZShwb3B1bGF0aW9uID0gc3ByaW50ZigiJXMtJXMiLCBwcm9kdWN0aW9uX2NlbnRlciwgc3RyYWluX25hbWUpKSAlPiUgCgogICAgIyBhZGQgZ3JvdXBpbmcgdmFyaWFibGU6IHRoZXNlIHdlcmUgZGVjaWRlZCBiYXNlZCBvbiBmdW5jdGlvbmFsIGdyb3VwcyBhbmQgcHJvY2VkdXJlcyAKICAgIG11dGF0ZShwYXJhbWV0ZXJfZ3JvdXAgPSBncm91cCRwYXJhbWV0ZXJbbWF0Y2gocGFyYW1ldGVyX25hbWUsIGdyb3VwJHBhcmFtZXRlcl9uYW1lKV0gKSAlPiUKICAgIAogICAgIyBBc3NpZ24gdW5pcXVlIElEcyAocGVyIHRyYWl0KQogICAgIyBlYWNoIHVuaXF1ZSBwYXJhbWV0ZXJfbmFtZSAoPXRyYWl0LHVzZSB0cmFpdCB2YXJpYWJsZSkgZ2V0cyBhIHVuaXF1ZSBudW1iZXIgKCdpZCcpCgogICAgIyBXZSBhZGQgYSBuZXcgdmFyaWFibGUsIHdoZXJlIHJlZHVuZGFudCB0cmFpdHMgYXJlIGNvbWJpbmVkCiAgICAjW25vdGUgaG93ZXZlciwgYXQgdGhpcyBzdGFnZSB0aGUgZGF0YXNldCBzdGlsbCBjb250YWlucyBub25zZW5zaWNhbCB0cmFpdHMsIGkuZS4gdHJhaXRzIHRoYXQgbWF5IG5vdCBjb250YWluIGFueSBpbmZvcm1hdGlvbiBvbiB2YXJpYW5jZV0KICAgIG11dGF0ZShpZCA9IG1hdGNoKHBhcmFtZXRlcl9uYW1lLCB1bmlxdWUocGFyYW1ldGVyX25hbWUpKSkgJT4lIAogICAgYXNfdGliYmxlKCkKfQoKIyBMb2FkIHJhdyBkYXRhIC0gc2F2ZSBjbGVhbmVkIGRhdGFzZXQgYXMgUkRTIGZvciByZXVzZQpkYXRhX3JhdyA8LSBsb2FkX3JhdyhoZXJlKCJkYXRhIiwiZHI3LjBfYWxsX2NvbnRyb2xfZGF0YS5jc3YuZ3oiKSkKZGlyLmNyZWF0ZSgiZXhwb3J0IiwgRiwgRikKCmRhdGEgPC0gZGF0YV9yYXcgJT4lIAogIGNsZWFuX3Jhd19kYXRhKCkgCnNhdmVSRFMoZGF0YSwgImV4cG9ydC9kYXRhX2NsZWFuLnJkcyIpCmBgYAoKRm9yIGFuYWx5c2lzIHdlIGxvYWQgdGhlIFJEUyBjcmVhdGVkIGFib3ZlIGFuZCBvdGhlciBkYXRhc2V0czoKCmBgYHtyIGxvYWR9CmRhdGEgPC0gcmVhZFJEUyhoZXJlKCJleHBvcnQiLCAiZGF0YV9jbGVhbi5yZHMiKSkgCgpwcm9jZWR1cmVzIDwtIHJlYWRfY3N2KGhlcmUoImRhdGEiLCAicHJvY2VkdXJlcy5jc3YiKSkKCmBgYAoKCkNoZWNraW5nIGxlbmd0aCBvZiBkaWZmZXJlbnQgdmFyaWFibGVzIGFuZCBzYW1wbGUgc2l6ZXMuCgojIyMgVGFibGUgMTogICJTdHJhaW5zIGFuZCBDZW50ZXIgU2FtcGxlIFNpemVzIgpUaGlzIHRhYmxlIHN1bW1hcmlzZXMgdGhlIGF2YWlsYWJsZSBudW1iZXJzIG9mIG1hbGUgYW5kIGZlbWFsZSBtaWNlIGZyb20gZWFjaCBzdHJhaW4gYW5kIG9yaWdpbmF0aW5nIGluc3RpdHV0aW9uLgoKYGBge3IgZWNobyA9IEZBTFNFLCByZXN1bHRzID0gJ2hvbGQnfQojbGVuZ3RoKHVuaXF1ZShkYXRhJHBhcmFtZXRlcl9uYW1lKSkgIyAyMzIgdHJhaXRzCiNsZW5ndGgodW5pcXVlKGRhdGEkcGFyYW1ldGVyX2dyb3VwKSkgIyAxNjEgcGFyYW1ldGVyIGdyb3VwcwojbGVuZ3RoKHVuaXF1ZShkYXRhJHByb2NlZHVyZV9uYW1lKSkgIyAyNiBwcm9jZWR1cmUgZ3JvdXBzCiNsZW5ndGgodW5pcXVlKGRhdGEkYmlvbG9naWNhbF9zYW1wbGVfaWQpKSAjIDI3MTQ3IGluZGl2aWRpYWwgbWljZSAgIAoKI251bWJlciBvZiBtYWxlcyBhbmQgZmVtYWxlcyBwZXIgc3RyYWluIHBlciBwcm9kdWN0aW9uIGNlbnRlciAKa2FibGUoY2JpbmQoZGF0YSAlPiUgZ3JvdXBfYnkocHJvZHVjdGlvbl9jZW50ZXIsIHN0cmFpbl9uYW1lKSAlPiUgY291bnQoYmlvbG9naWNhbF9zYW1wbGVfaWQsIHNleCkgJT4lIGNvdW50KHNleCkgJT4lIHByaW50KG4gPSBJbmYpKSkgJT4lCiAga2FibGVfc3R5bGluZygpICU+JQogIHNjcm9sbF9ib3god2lkdGggPSAiNzAlIiwgaGVpZ2h0ID0gIjIwMHB4IikKCiMjIFNaOiBJIGRvbid0IHVuZGVyc3RhbmQgd2h5IHRoZSB0aWJibGUgaXMgc2hvd2luZyBpbiB0aGUga25pdHRlZCBodG1sCmBgYAoKCiMgTWV0YS1hbmFseXNlcwojIyAxLiBQb3B1bGF0aW9uIGFzIGFuYWx5c2lzIHVuaXQgCihTdGVwIEMsIEZpZ3VyZSAzIGluIG1haW4gZG9jdW1lbnQpCgojIyMgTG9vcDogTWV0YS1hbmFseXNlcyBvbiBhbGwgdHJhaXRzCgoqIFRoZSBsb29wIGNvbWJpbmVzIHRoZSBmdW5jdGlvbnMgbWVudGlvbmVkIGFib3ZlIGFuZCBmaWxscyB0aGUgZGF0YSBtYXRyaXggd2l0aCByZXN1bHRzIGZyb20gb3VyIG1ldGEgYW5hbHlzaXMuIAoqIEVycm9yIG1lc3NhZ2VzIGluZGljYXRlIHRyYWl0cyB0aGF0IGVpdGhlciBkaWQgbm90IHJlYWNoIGNvbnZlcmdlbmNlLCBvciB0aGF0IGRpZCBub3QgcmV0dXJuIG1lYW5pbmdmdWwgcmVzdWx0cyBpbiB0aGUgbWV0YS1hbmFseXNpcywgZHVlIHRvIGFic2VuY2Ugb2YgdmFyaWFuY2UuIFRob3NlIHRyYWl0cyB3aWxsIGJlIHJlbW92ZWQgaW4gbGF0ZXIgc3RlcHMsIG91dGxpbmVkIGJlbG93LgoKYGBge3J9CgpuIDwtIGxlbmd0aCh1bmlxdWUoZGF0YSRpZCkpCgojIENyZWF0ZSBkYXRhZnJhbWUgdG8gc3RvcmUgcmVzdWx0cwpyZXN1bHRzX2FsbHRyYWl0c19ncm91cGluZyA8LSAKICAgIHRpYmJsZShpZCA9IDE6biwgbG5DVlI9MCwgbG5DVlJfbG93ZXI9MCwgbG5DVlJfdXBwZXI9MCwgCiAgICAgICAgICAgbG5DVlJfc2U9MCwgbG5WUj0wLCBsblZSX2xvd2VyPTAsIGxuVlJfdXBwZXI9MCwgCiAgICAgICAgICAgbG5WUl9zZT0wLCBsblJSPTAsIGxuUlJfbG93ZXI9MCwgbG5SUl91cHBlcj0wLCBsblJSX3NlPTAsIHNhbXBsZVNpemU9MCwgdHJhaXQ9MCkKCmZvciAodCBpbiAxOm4pIHsKICB0cnlDYXRjaCgKICAgIHsKICAgICAgcmVzdWx0cyA8LSBkYXRhICU+JSAKICAgICAgICBkYXRhX3N1YnNldF9wYXJhbWV0ZXJpZF9pbmRpdmlkdWFsX2J5X2FnZSh0KSAlPiUKICAgICAgICBjYWxjdWxhdGVfcG9wdWxhdGlvbl9zdGF0cygpICU+JQogICAgICAgIGNyZWF0ZV9tZXRhX2FuYWx5c2lzX2VmZmVjdF9zaXplcygpCgogICAgICAjIGxuQ1ZSLCAgbG9nIHJlcHNvbnNlLXJhdGlvIG9mIHRoZSBjb2VmZmljaWVudCBvZiB2YXJpYW5jZQogICAgICBjdnIgPC0gbWV0YWZvcjo6cm1hLm12KHlpID0gZWZmZWN0X3NpemVfQ1ZSLCBWID0gc2FtcGxlX3ZhcmlhbmNlX0NWUiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmFuZG9tID0gbGlzdCh+IDEgfCBzdHJhaW5fbmFtZSwgfiAxIHwgcHJvZHVjdGlvbl9jZW50ZXIsIH4gMSB8IGVyciksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGLCBkYXRhID0gcmVzdWx0cykKCiAgICAgICMgbG5WUiwgY29tcGFyaXNvbiBvZiBzdGFuZGFyZCBkZXZpYXRpb25zCiAgICAgIGN2IDwtIG1ldGFmb3I6OnJtYS5tdih5aSA9IGVmZmVjdF9zaXplX1ZSLCBWID0gc2FtcGxlX3ZhcmlhbmNlX1ZSLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcmFuZG9tID0gbGlzdCh+IDEgfCBzdHJhaW5fbmFtZSwgfiAxIHwgcHJvZHVjdGlvbl9jZW50ZXIsIH4gMSB8IGVyciksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRiwgZGF0YSA9IHJlc3VsdHMpCgogICAgICAjIGZvciBtZWFucywgbG5SUgogICAgICBtZWFucyA8LSBtZXRhZm9yOjpybWEubXYoeWkgPSBlZmZlY3Rfc2l6ZV9SUiwgViA9IHNhbXBsZV92YXJpYW5jZV9SUiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByYW5kb20gPSBsaXN0KH4gMSB8IHN0cmFpbl9uYW1lLCB+IDEgfCBwcm9kdWN0aW9uX2NlbnRlciwgfiAxIHwgZXJyKSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGLCBkYXRhID0gcmVzdWx0cykKICAgICAgCiAgICAgIGYgPC0gZnVuY3Rpb24oeCkgdW5saXN0KHhbYygiYiIsICJjaS5sYiIsICJjaS51YiIsICJzZSIpXSkKCiAgICAgIHJlc3VsdHNfYWxsdHJhaXRzX2dyb3VwaW5nW3QsIDI6MTRdIDwtIGMoZihjdnIpLCBmKGN2KSwgZihtZWFucyksIG1lYW5zJGspCiAgICAgIHJlc3VsdHNfYWxsdHJhaXRzX2dyb3VwaW5nW3QsIDE1XSA8LSB1bmlxdWUocmVzdWx0cyR0cmFpdCkKICAgIH0sCiAgICBlcnJvciA9IGZ1bmN0aW9uKGUpIHsKICAgICAgY2F0KCJFUlJPUiA6IiwgdCwgY29uZGl0aW9uTWVzc2FnZShlKSwgIlxuIikKICAgIH0KICApCn0KYGBgCgpJbiB0aGUgYWJvdmUgZnVuY3Rpb24sIHdlIHVzZSAndHJ5Q2F0Y2gnIGFuZCAnY29uZGl0aW9uTWVzc2FnZScgdG8gcHJldmVudCB0aGUgbG9vcCBmcm9tIGFib3J0aW5nIHdoZW4gdGhlIGZpcnN0IGVycm9yIGF0IHJvdyA4NCBpcyBwcm9kdWNlZC4KQXMgY29udmVyZ2VuY2UgaW4gdGhlIHR3byBsaXN0ZWQgbm9uLWNvbnZlcmdpbmcgY2FzZXMgY2FuJ3QgYmUgYWNoaWV2ZWQgYnkgc2Vuc2libHkgdHdlYWtpbmcgKG90aGVyIG9wdGltIGV0Yy4pLCBhbmQgd2Ugb25seSBsZWFybiBhYm91dCBub24tY29udmVyZ2VuY2UgaW4gdGhlIGxvb3AsIGl0IGlzIG5vdCBwb3NzaWJsZSB0byBleGNsdWRlIHRoZSB0cmFpdHMgKE49MikgYmVmb3JlaGFuZC4KU2ltaWxhcmx5LCB0aGVyZSBhcmUgOCB0cmFpdHMgd2l0aCB2ZXJ5IGxvdyB2YXJpYXRpb24sIHdoaWNoIGNhbiBub3QgYmUgZXhjbHVkZWQgcHJpb3IgdG8gcnVubmluZyB0aGUgbG9vcC4KClRoZSBwcm9kdWNlZCAiV2FybmluZ3MiIGluZGljYXRlIGNhc2VzIHdoZXJlIHZhcmlhbmNlIGNvbXBvbmVudHMgYXJlIHNldCB0byB6ZXJvIGR1cmluZyBsaWtlbGlob29kIG9wdGltaXphdGlvbi4KCgojIyMgTWVyZ2luZyBkYXRhc2V0cyAmIHJlbW92YWwgb2Ygbm9uLWNvbnZlcmdlZCB0cmFpdHMKClByb2NlZHVyZSBuYW1lcywgZ3JvdXBpbmcgdmFyaWFibGVzIGFuZCB0cmFpdCBuYW1lcyAoInBhcmFtZXRlcl9uYW1lcyIpIGFyZSBtZXJnZWQgYmFjayB0b2dldGhlciB3aXRoIHRoZSByZXN1bHRzIGZyb20gdGhlIG1ldGFmb3IgYW5hbHlzaXMgYWJvdmUuCiAKYGBge3J9CnJlc3VsdHNfYWxsdHJhaXRzX2dyb3VwaW5nMiA8LSAKICByZXN1bHRzX2FsbHRyYWl0c19ncm91cGluZyAlPiUgCiAgbGVmdF9qb2luKGJ5PSJpZCIsCiAgICAgICAgICAgICBkYXRhICU+JSBzZWxlY3QoaWQsIHBhcmFtZXRlcl9ncm91cCwgcHJvY2VkdXJlID0gcHJvY2VkdXJlX25hbWUsIHByb2NlZHVyZV9uYW1lLCBwYXJhbWV0ZXJfbmFtZSkgJT4lICAgIyBXZSBmaWx0ZXIgZHVwbGljYXRlZCBpZCdzIHRvIGdldCBvbmx5IG9uZSB1bmlxdWUgcm93IHBlciBpZCAoYW5kIHRoZXJlIGlzIG9uZSBpZCBwZXIgcGFyYW1ldGVyX25hbWUpCiAgICAgICAgICAgICAgZmlsdGVyKCFkdXBsaWNhdGVkKGlkKSkKICAgICAgICAgICAgKSAlPiUKICAjIEJlbG93IHdlIGFkZCAncHJvY2VkdXJlJyAoZnJvbSB0aGUgcHJldmlvdXNseSBsb2FkZWQgJ3Byb2NlZHVyZXMuY3N2JykgYXMgYSB2YXJpYWJsZQogIGxlZnRfam9pbihieT0icHJvY2VkdXJlIiwgCiAgICAgICAgICAgIHByb2NlZHVyZXMgJT4lIGRpc3RpbmN0KCkKICAgICAgICAgICAgKQoKIyhuIDwtIGxlbmd0aCh1bmlxdWUocmVzdWx0c19hbGx0cmFpdHNfZ3JvdXBpbmcyJHBhcmFtZXRlcl9uYW1lKSkpICMgMjMyCmBgYAoKIyMjIFJlbW92YWwgb2YgdHJhaXRzIAoKMTQgdHJhaXRzIGZyb20gdGhlIG9yaWdpbmFsbHkgMjMyIHRoYXQgaGFkIGJlZW4gaW5jbHVkZWQgYXJlIHJlbW92ZWQgYmVjYXVzZSB0aGV5IGVpdGhlciBkaWQgbm90IGFjaGlldmUgY29udmVyZ2VuY2Ugb3IgYXJlIG5vbnNlbnNpY2FsIGZvciBhbmFseXNpcyBvZiB2YXJpYW5jZSAoc3VjaCBhcyB0cmFpdHMgdGhhdCBzaG93IG5vIHZhcmlhdGlvbiwgc2VlIGxpc3QgYmVsb3cpLiAKCk5vdCBjb252ZXJnZWQ6ICJkcCB0IGNlbGxzIiwgIm16YiAoY2QyMS8zNSBoaWdoKSIKCk5vdCBlbm91Z2ggdmFyaWF0aW9uOiAibnVtYmVyIG9mIGNhdWRhbCB2ZXJ0ZWJyYWUiLCAibnVtYmVyIG9mIGNlcnZpY2FsIHZlcnRlYnJhZSIsICJudW1iZXIgb2YgZGlnaXRzIiwgIm51bWJlciBvZiBsdW1iYXIgdmVydGVicmFlIiwgIm51bWJlciBvZiBwZWx2aWMgdmVydGVicmFlIiwgIm51bWJlciBvZiByaWJzIGxlZnQiLCJudW1iZXIgb2YgcmlicyByaWdodCIsICJudW1iZXIgb2Ygc2lnbmFscyIsICJudW1iZXIgb2YgdGhvcmFjaWMgdmVydGVicmFlIiwgInRvdGFsIG51bWJlciBvZiBhY3F1aXJlZCBldmVudHMgaW4gcGFuZWwgYSIsInRvdGFsIG51bWJlciBvZiBhY3F1aXJlZCBldmVudHMgaW4gcGFuZWwgYiIsICJ3aG9sZSBhcmVuYSBwZXJtYW5lbmNlIi4KCgpgYGB7cn0KIyBXZSBleGNsdWRlIDE0IHBhcmFtZXRlciBuYW1lcyBmb3Igd2hpY2ggbWV0YWZvciBtb2RlbHMgZGlkbid0IGNvbnZlcmdlICgiZHAgdCBjZWxscyIsICJtemIgKGNkMjEvMzUgaGlnaCkiKSwgYW5kIG9mIHBhcmFtZXRlcnMgdGhhdCBkb24ndCBoYXJib3VyIGVub3VnaCB2YXJpYXRpb24KbWV0YV9jbGVhbiA8LSByZXN1bHRzX2FsbHRyYWl0c19ncm91cGluZzIgJT4lIAoJICBmaWx0ZXIoIXBhcmFtZXRlcl9uYW1lICVpbiUgYygiZHAgdCBjZWxscyIsICJtemIgKGNkMjEvMzUgaGlnaCkiLCAibnVtYmVyIG9mIGNhdWRhbCB2ZXJ0ZWJyYWUiLCAKCSAgIm51bWJlciBvZiBjZXJ2aWNhbCB2ZXJ0ZWJyYWUiLCAibnVtYmVyIG9mIGRpZ2l0cyIsICJudW1iZXIgb2YgbHVtYmFyIHZlcnRlYnJhZSIsICJudW1iZXIgb2YgcGVsdmljIHZlcnRlYnJhZSIsICJudW1iZXIgb2YgcmlicyBsZWZ0IiwgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICJudW1iZXIgb2YgcmlicyByaWdodCIsICJudW1iZXIgb2Ygc2lnbmFscyIsICJudW1iZXIgb2YgdGhvcmFjaWMgdmVydGVicmFlIiwgInRvdGFsIG51bWJlciBvZiBhY3F1aXJlZCBldmVudHMgaW4gcGFuZWwgYSIsCiAgICAgICAgInRvdGFsIG51bWJlciBvZiBhY3F1aXJlZCBldmVudHMgaW4gcGFuZWwgYiIsICJ3aG9sZSBhcmVuYSBwZXJtYW5lbmNlIikpCgpgYGAKIAoKIyMgMi4gTWV0YS1hbmFseXNpczogY29uZGVuc2luZyBub24taW5kZXBlbmRlbnQgdHJhaXRzIAooU3RlcCBGIGluIEZpZ3VyZSAzIGluIG1haW4gYXJ0aWNsZSkKCiMjIyBEZWFsaW5nIHdpdGggQ29ycmVsYXRlZCBQYXJhbWV0ZXJzLCBwcmVwYXJhdGlvbgoKVGhpcyBkYXRhc2V0IGNvbnRhaW5lZCBhIG51bWJlciBvZiBoaWdobHkgY29ycmVsYXRlZCB0cmFpdHMsIHN1Y2ggYXMgZGlmZmVyZW50IGtpbmRzIG9mIGNlbGwgY291bnRzIChmb3IgZXhhbXBsZSBoaWVyYXJjaGljYWwgcGFyYW1ldGVyaXphdGlvbiB3aXRoaW4gaW1tdW5vbG9naWNhbCBhc3NheXMpLiBBcyB0aG9zZSBkYXRhLXBvaW50cyBhcmUgbm90IGluZGVwZW5kZW50IG9mIGVhY2ggb3RoZXIsICB3ZSBjb25kdWN0ZWQgbWV0YSBhbmFseXNlcyBvbiB0aGVzZSBjb3JyZWxhdGVkIHBhcmFtZXRlcnMgdG8gY29sbGFwc2UgdGhlIG51bWJlciBvZiBsZXZlbHMuCgojIyMjIENvbGxhcHNpbmcgYW5kIG1lcmdpbmcgY29ycmVsYXRlZCBwYXJhbWV0ZXJzCgpIZXJlIHdlIGRvdWJsZSBjaGVjayBudW1iZXJzIG9mIHRyYWl0IHBhcmFtZXRlcnMgaW4gdGhlIGRhdGFzZXQKCmBgYHtyfQoKbWV0YTEgPC0gbWV0YV9jbGVhbiAKbGVuZ3RoKHVuaXF1ZShtZXRhMSRwcm9jZWR1cmUpKSAjMTgKbGVuZ3RoKHVuaXF1ZShtZXRhMSRHcm91cGluZ1Rlcm0pKSAjOQpsZW5ndGgodW5pcXVlKG1ldGExJHBhcmFtZXRlcl9ncm91cCkpICMgMTQ4IGxldmVscy4gVG8gYmUgdXNlZCBhcyBncm91cGluZyBmYWN0b3IgZm9yIG1ldGEtbWV0YS1hbmFseXNpcyAvIGNvbGxhcHNpbmcgZG93biBiYXNlZCBvbiB0aGluZ3MgdGhhdCBhcmUgY2xhc3NpZmllZCBpZGVudGljYWxseSBpbiAicGFyYW1ldGVyX2dyb3VwIiBidXQgaGF2ZSBkaWZmZXJlbnQgInBhcmFtZXRlcl9uYW1lIgpsZW5ndGgodW5pcXVlKG1ldGExJHBhcmFtZXRlcl9uYW1lKSkgIzIxOApgYGAKCiMjIyMgQ291bnQgb2YgbnVtYmVyIG9mIHBhcmFtZXRlciBuYW1lcyAoY29ycmVsYXRlZCBzdWItdHJhaXRzKSBpbiBlYWNoIHBhcmFtZXRlciBncm91cCAocGFyX2dyb3VwX3NpemUpIAoKIyMjIFRhYmxlIDI6IE51bWJlcnMgb2YgY29ycmVsYXRlZCBhbmQgdW5jb3JyZWxhdGVkIHRyYWl0cwpUaGlzIHNlcnZlcyB0byBpZGVudGlmeSBhbmQgc2VwYXJhdGUgdGhlIHRyYWl0cyB0aGF0IGFyZSBjb3JyZWxhdGVkIGZyb20gdGhlIGZ1bGwgZGF0YXNldCB0aGF0IGNhbiBiZSBwcm9jZXNzZWQgYXMgaXMuIElmIHRoZSBzYW1wbGUgc2l6ZSAobikgZm9yIGEgZ2l2ZW4gInBhcmFtZXRlciBncm91cCIgZXF1YWxzIDEsIHRoZSB0cmFpdCBpcyB1bmlxdWUgYW5kIHVuY29ycmVsYXRlZC4gQWxsIGluc3RhbmNlcywgd2hlcmUgdGhlcmUgYXJlIDIgb3IgbW9yZSB0cmFpdHMgYXNzb2NpYXRlZCB3aXRoIHRoZSBzYW1lIHBhcmFtZXRlciBncm91cCAoOTAgY2FzZXMpLCBhcmUgc2VsZWN0ZWQgZm9yIGEgIm1pbmktbWV0YSBhbmFseXNpcyIsIHdoaWNoIHJlbW92ZXMgdGhlIGlzc3VlIG9mIGNvcnJlbGF0aW9uLgoKYGBge3J9CmthYmxlKGNiaW5kKG1ldGExICU+JSBjb3VudChwYXJhbWV0ZXJfZ3JvdXApKSkgJT4lCiAga2FibGVfc3R5bGluZygpICU+JQogIHNjcm9sbF9ib3god2lkdGggPSAiNjAlIiwgaGVpZ2h0ID0gIjIwMHB4IikKYGBgCgpgYGB7cn0KbWV0YTFfc3ViIDwtIG1ldGExICU+JQogICMgQWRkIHN1bW1hcnkgb2YgbnVtYmVyIG9mIHBhcmFtZXRlciBuYW1lcyBpbiBlYWNoIHBhcmFtZXRlciBncm91cAogIGdyb3VwX2J5KHBhcmFtZXRlcl9ncm91cCkgJT4lCiAgbXV0YXRlKHBhcl9ncm91cF9zaXplID0gbGVuZ3RoKHVuaXF1ZShwYXJhbWV0ZXJfbmFtZSkpLCAKICAgICAgICAgc2FtcGxlU2l6ZSA9IGFzLm51bWVyaWMoc2FtcGxlU2l6ZSkpICU+JSAKICB1bmdyb3VwKCkgJT4lIAogICMgQ3JlYXRlIHN1YnNldHMgd2l0aCA+IDEgY291bnQgKHBhcl9ncm91cF9zaXplID4gMSkKICBmaWx0ZXIocGFyX2dyb3VwX3NpemUgPiAxKSAjIDkwIG9ic2VydmF0aW9ucwpgYGAKCiMjIyMgTWV0YS1hbmFseXNlcyBvbiBjb3JyZWxhdGVkIChzdWItKXRyYWl0cywgdXNpbmcgcm9idW1ldGFgIApIZXJlIHdlIHBlcGFyZSB0aGUgc3Vic2V0IG9mIHRoZSBkYXRhICh1c2luZyBuZXN0KCkpLCBhbmQgaW4gdGhpcyBmaXJzdCBzdGVwIHRoZSBtb2RlbCBvZiB0aGUgbWV0YS1hbmFseXNpcyBlZmZlY3Qgc2l6ZXMgYXJlIGNhbGN1bGF0ZWQKCmBgYHtyfQoKIyBDcmVhdGUgc3VtbWFyeSBvZiBudW1iZXIgb2YgcGFyYW1ldGVyIG5hbWVzIGluIGVhY2ggcGFyYW1ldGVyIGdyb3VwLCBhbmQgbWVyZ2UgYmFjayB0b2dldGhlcgoKbWV0YTFiIDwtCiAgbWV0YTEgJT4lCiAgZ3JvdXBfYnkocGFyYW1ldGVyX2dyb3VwKSAlPiUgCiAgc3VtbWFyaXplKHBhcl9ncm91cF9zaXplID0gbGVuZ3RoKHVuaXF1ZShwYXJhbWV0ZXJfbmFtZSwgbmEucm0gPSBUUlVFKSkpCgptZXRhMSRwYXJfZ3JvdXBfc2l6ZSA8LSBtZXRhMWIkcGFyX2dyb3VwX3NpemVbbWF0Y2gobWV0YTEkcGFyYW1ldGVyX2dyb3VwLCBtZXRhMWIkcGFyYW1ldGVyX2dyb3VwKV0KCiMgQ3JlYXRlIHN1YnNldHMgd2l0aCA+IDEgY291bnQgKHBhcl9ncm91cF9zaXplID4gMSkgCgptZXRhMV9zdWIgPC0gc3Vic2V0KG1ldGExLHBhcl9ncm91cF9zaXplID4xKSAjIDkwIG9ic2VydmF0aW9ucyAgIAptZXRhMV9zdWIkc2FtcGxlU2l6ZSA8LSBhcy5udW1lcmljKG1ldGExX3N1YiRzYW1wbGVTaXplKQoKIyBOZXN0aW5nIGFuZCBtZXRhLWFuYWx5c2VzIG9uIGNvcnJlbGF0ZWQgdHJhaXRzLCB1c2luZyByb2J1bWV0YQoKbl9jb3VudCA8LSBtZXRhMV9zdWIgJT4lCiAgZ3JvdXBfYnkocGFyYW1ldGVyX2dyb3VwKSAlPiUKICBtdXRhdGUocmF3X04gPSBzdW0oc2FtcGxlU2l6ZSkpICU+JQogIG5lc3QoKSAlPiUKICB1bmdyb3VwKCkKCm1vZGVsX2NvdW50IDwtIG5fY291bnQgJT4lCiAgbXV0YXRlKAogICAgbW9kZWxfbG5SUiA9IG1hcChkYXRhLCB+IHJvYnUoLngkbG5SUiB+IDEsIGRhdGEgPSAueCwgc3R1ZHludW0gPSAueCRpZCwgbW9kZWx3ZWlnaHRzID0gYygiQ09SUiIpLCByaG8gPSAwLjgsIHNtYWxsID0gVFJVRSwgdmFyLmVmZi5zaXplID0gKC54JGxuUlJfc2UpXjIpKSwKICAgIG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiByb2J1KC54JGxuVlIgfiAxLCBkYXRhID0gLngsIHN0dWR5bnVtID0gLngkaWQsIG1vZGVsd2VpZ2h0cyA9IGMoIkNPUlIiKSwgcmhvID0gMC44LCBzbWFsbCA9IFRSVUUsIHZhci5lZmYuc2l6ZSA9ICgueCRsblZSX3NlKV4yKSksCiAgICBtb2RlbF9sbkNWUiA9IG1hcChkYXRhLCB+IHJvYnUoLngkbG5DVlIgfiAxLCBkYXRhID0gLngsIHN0dWR5bnVtID0gLngkaWQsIG1vZGVsd2VpZ2h0cyA9IGMoIkNPUlIiKSwgcmhvID0gMC44LCBzbWFsbCA9IFRSVUUsIHZhci5lZmYuc2l6ZSA9ICgueCRsbkNWUl9zZSleMikpCiAgKQpgYGAKCiMjIyMgRXh0cmFjdGluZyBhbmQgc2F2ZSBwYXJhbWV0ZXIgZXN0aW1hdGVzCkhlcmUgd2UgYXBwbHkgYW4gYWRkaXRpb25hbCBGdW5jdGlvbiB0byBjb2xsZWN0IHRoZSBvdXRjb21lcyBvZiB0aGUgJ21pbmktbWV0YS1hbmFseXNpcycgdGhhdCBoYXMgb25kZW5zZWQgb3VyIG5vbi1pbmRlcGVuZGVudCB0cmFpdHMuCgpgYGB7cn0KY291bnRfZnVuIDwtIGZ1bmN0aW9uKG1vZF9zdWIpIHsKICByZXR1cm4oYyhtb2Rfc3ViJHJlZ190YWJsZSRiLnIsIG1vZF9zdWIkcmVnX3RhYmxlJENJLkwsIG1vZF9zdWIkcmVnX3RhYmxlJENJLlUsIG1vZF9zdWIkcmVnX3RhYmxlJFNFKSkKfSAjIGVzdGltYXRlLCBsb3dlciBjaSwgdXBwZXIgY2ksIFNFCmBgYAoKRXh0cmFjdGlvbiBvZiB2YWx1ZXMgY3JlYXRlZCBkdXJpbmcgbWV0YS1hbmFseXNlcyB1c2luZyByb2J1bWV0YQoKYGBge3J9CnJvYnVzdWJfUlIgPC0gbW9kZWxfY291bnQgJT4lCiAgdHJhbnNtdXRlKHBhcmFtZXRlcl9ncm91cCwgZXN0aW1hdGVsblJSID0gbWFwKG1vZGVsX2xuUlIsIGNvdW50X2Z1bikpICU+JQogIG11dGF0ZShyID0gbWFwKGVzdGltYXRlbG5SUiwgfiBkYXRhLmZyYW1lKHQoLikpKSkgJT4lCiAgdW5uZXN0KHIpICU+JQogIHNlbGVjdCgtZXN0aW1hdGVsblJSKSAlPiUKICBwdXJycjo6c2V0X25hbWVzKGMoInBhcmFtZXRlcl9ncm91cCIsICJsblJSIiwgImxuUlJfbG93ZXIiLCAibG5SUl91cHBlciIsICJsblJSX3NlIikpCgpyb2J1c3ViX0NWUiA8LSBtb2RlbF9jb3VudCAlPiUKICB0cmFuc211dGUocGFyYW1ldGVyX2dyb3VwLCBlc3RpbWF0ZWxuQ1ZSID0gbWFwKG1vZGVsX2xuQ1ZSLCBjb3VudF9mdW4pKSAlPiUKICBtdXRhdGUociA9IG1hcChlc3RpbWF0ZWxuQ1ZSLCB+IGRhdGEuZnJhbWUodCguKSkpKSAlPiUKICB1bm5lc3QocikgJT4lCiAgc2VsZWN0KC1lc3RpbWF0ZWxuQ1ZSKSAlPiUKICBwdXJycjo6c2V0X25hbWVzKGMoInBhcmFtZXRlcl9ncm91cCIsICJsbkNWUiIsICJsbkNWUl9sb3dlciIsICJsbkNWUl91cHBlciIsICJsbkNWUl9zZSIpKQoKcm9idXN1Yl9WUiA8LSBtb2RlbF9jb3VudCAlPiUKICB0cmFuc211dGUocGFyYW1ldGVyX2dyb3VwLCBlc3RpbWF0ZWxuVlIgPSBtYXAobW9kZWxfbG5WUiwgY291bnRfZnVuKSkgJT4lCiAgbXV0YXRlKHIgPSBtYXAoZXN0aW1hdGVsblZSLCB+IGRhdGEuZnJhbWUodCguKSkpKSAlPiUKICB1bm5lc3QocikgJT4lCiAgc2VsZWN0KC1lc3RpbWF0ZWxuVlIpICU+JQogIHB1cnJyOjpzZXRfbmFtZXMoYygicGFyYW1ldGVyX2dyb3VwIiwgImxuVlIiLCAibG5WUl9sb3dlciIsICJsblZSX3VwcGVyIiwgImxuVlJfc2UiKSkKCnJvYnVfYWxsIDwtIGZ1bGxfam9pbihyb2J1c3ViX0NWUiwgcm9idXN1Yl9WUikgJT4lIGZ1bGxfam9pbiguLCByb2J1c3ViX1JSKQpgYGAKCiMjIyMgQ29tYmluaW5nIGRhdGEgCk1lcmdlIHRoZSB0d28gZGF0YSBzZXRzICh0aGUgbmV3IFtyb2J1X2FsbF0gYW5kIHRoZSBpbml0aWFsIFt1bmNvcnJlbGF0ZWQgc3ViLXRyYWl0cyB3aXRoIGNvdW50ID0gMV0pIAoKYGBge3J9Cm1ldGFfYWxsIDwtIG1ldGExICU+JQogIGZpbHRlcihwYXJfZ3JvdXBfc2l6ZSA9PSAxKSAlPiUKICBhc190aWJibGUoKQojIGdsaW1wc2UobWV0YV9hbGwpCiMgZ2xpbXBzZShyb2J1X2FsbCkKCiMgU3RlcCAxOiAgQ29sdW1ucyBhcmUgbWF0Y2hlZCBieSBuYW1lIChpbiBvdXIgY2FzZSwgJ3BhcmFtZXRlcl9ncm91cCcpLCBhbmQgYW55IG1pc3NpbmcgY29sdW1ucyB3aWxsIGJlIGZpbGxlZCB3aXRoIE5BCmNvbWJpbmVkbWV0YSA8LSBiaW5kX3Jvd3Mocm9idV9hbGwsIG1ldGFfYWxsKQojIGdsaW1wc2UoY29tYmluZWRtZXRhKQoKIyBTdGVwcyAyJjM6IEFkZCBpbmZvcm1hdGlvbiBhYm91dCBudW1iZXIgb2YgdHJhaXRzIGluIGEgcGFyYW1ldGVyIGdyb3VwLCBwcm9jZWR1cmUsIGFuZCBncm91cGluZyB0ZXJtCm1ldGFjb21ibyA8LSBjb21iaW5lZG1ldGEKbWV0YWNvbWJvJGNvdW50cyA8LSBtZXRhMSRwYXJfZ3JvdXBfc2l6ZVttYXRjaChtZXRhY29tYm8kcGFyYW1ldGVyX2dyb3VwLCBtZXRhMSRwYXJhbWV0ZXJfZ3JvdXApXSAKbWV0YWNvbWJvJHByb2NlZHVyZTIgPC0gbWV0YTEkcHJvY2VkdXJlW21hdGNoKG1ldGFjb21ibyRwYXJhbWV0ZXJfZ3JvdXAsIG1ldGExJHBhcmFtZXRlcl9ncm91cCldCm1ldGFjb21ibyRHcm91cGluZ1Rlcm0yIDwtIG1ldGExJEdyb3VwaW5nVGVybVttYXRjaChtZXRhY29tYm8kcGFyYW1ldGVyX2dyb3VwLCBtZXRhMSRwYXJhbWV0ZXJfZ3JvdXApXQoKYGBgCgpDbGVhbi11cCwgcmVvcmRlciwgYW5kIHJlbmFtZSAKCmBgYHtyfQptZXRhY29tYm8gPC0gbWV0YWNvbWJvW2MoInBhcmFtZXRlcl9ncm91cCIsICJjb3VudHMiLCJwcm9jZWR1cmUyIiwiR3JvdXBpbmdUZXJtMiIsICJsbkNWUiIsImxuQ1ZSX2xvd2VyIiwibG5DVlJfdXBwZXIiLCJsbkNWUl9zZSIsImxuVlIiLCJsblZSX2xvd2VyIiwibG5WUl91cHBlciIsImxuVlJfc2UiLCJsblJSIiwibG5SUl9sb3dlciIsImxuUlJfdXBwZXIiLCJsblJSX3NlIildIAoKbmFtZXMobWV0YWNvbWJvKVtuYW1lcyhtZXRhY29tYm8pPT0icHJvY2VkdXJlMiJdIDwtICJwcm9jZWR1cmUiIApuYW1lcyhtZXRhY29tYm8pW25hbWVzKG1ldGFjb21ibyk9PSJHcm91cGluZ1Rlcm0yIl0gPC0gIkdyb3VwaW5nVGVybSIgCgojIFF1aWNrIHByZS1jaGVjayBiZWZvcmUgZG9pbmcgcGxvdHMKbWV0YWNvbWJvICU+JQogIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgZHBseXI6OnN1bW1hcml6ZShNZWFuQ1ZSID0gbWVhbihsbkNWUiksIE1lYW5WUiA9IG1lYW4obG5WUiksIE1lYW5SUiA9IG1lYW4obG5SUikpCmBgYAoKIyMjIFRhYmxlIDM6IEZ1bGwgY29ycmVjdGVkIGRhdGFzZXQKCldlIHVzZSB0aGlzIGNvcnJlY3RlZCAoZm9yIGNvcnJlbGF0ZWQgdHJhaXRzKSAicmVzdWx0cyIgdGFibGUsIHdoaWNoIGNvbnRhaW5zIGVhY2ggb2YgdGhlIG1ldGEtYW5hbHl0aWMgbWVhbnMgZm9yIGFsbCBlZmZlY3Qgc2l6ZXMgb2YgaW50ZXJlc3QsIGZvciBmdXJ0aGVyIGFuYWx5c2VzLiAgV2UgZnVydGhlciB1c2UgdGhpcyB0YWJsZSBhcyBwYXJ0IG9mIHRoZSBTaGlueSBBcHAsIHdoaWNoIGlzIGFibGUgdG8gcHJvdmlkZSB0aGUgcGVyY2VudGFnZSBkaWZmZXJlbmNlcyBiZXR3ZWVuIG1hbGVzIGFuZCBmZW1hbGVzIGZvciBtZWFuLCB2YXJpYW5jZSBhbmQgY29lZmZpY2llbnQgb2YgdmFyaWFuY2UuIAoKVGhpcyBpcyB0aGUgZnVsbCByZXN1bHQgZGF0YXNldApgYGB7cn0Ka2FibGUobWV0YWNvbWJvKSAlPiUKICBrYWJsZV9zdHlsaW5nKCkgJT4lCiAgc2Nyb2xsX2JveCh3aWR0aCA9ICIxMDAlIiwgaGVpZ2h0ID0gIjIwMHB4IikKCiMgdHJhaXRfbWV0YV9yZXN1bHRzIDwtIHdyaXRlLmNzdihtZXRhY29tYm8sIGZpbGUgPSAiZXhwb3J0L3RyYWl0X21ldGFfcmVzdWx0cy5jc3YiKSAgI0ZlbGl4IDcvMi8yMDIwOiBJIHRoaW5rIHRoaXMgY2FuIGJlIGRlbGV0ZWQgZm9yIHB1YmxpY2F0aW9uIQpgYGAKCiMjIDMuIFNlY29uZC1vcmRlciBtZXRhLWFuYWx5c2lzIGZvciBmdW5jdGlvbmFsIGdyb3VwcwooU2VjdGlvbiBIIGluIEZpZ3VyZSAzIGluIG1haW4gYXJ0aWNsZSkKCiMjIyBQZXJmb3JtaW5nIG1ldGEtYW5hbHlzZXMgKDMgZm9yIGVhY2ggb2YgdGhlIDkgZ3JvdXBpbmcgdGVybXM6IGxuQ1ZSLCBsblZSLCBsblJSKSAKCiMjIyMgUHJlcGFyYXRpb24gb2YgZGF0YQoKTmVzdGluZywgY2FsY3VsYXRpbmcgdGhlIG51bWJlciBvZiBwYXJhbWV0ZXJzIHdpdGhpbiBlYWNoIGdyb3VwaW5nIHRlcm0sIGFuZCBydW5uaW5nIHRoZSBtZXRhLWFuYWx5c2VzCgpgYGB7cn0KbWV0YWNvbWJvX2ZpbmFsIDwtIG1ldGFjb21ibyAlPiUKICBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JQogICBuZXN0KCkKCiMgKipjYWxjdWxhdGUgbnVtYmVyIG9mIHBhcmFtZXRlcnMgcGVyIGdyb3VwaW5nIHRlcm0KCm1ldGFjb21ib19maW5hbCA8LSBtZXRhY29tYm9fZmluYWwgJT4lIG11dGF0ZShwYXJhX3Blcl9Hcm91cGluZ1Rlcm0gPSBtYXBfZGJsKGRhdGEsIG5yb3cpKQoKIyBGb3IgYWxsIGdyb3VwaW5nIHRlcm1zCm1ldGFjb21ib19maW5hbF9hbGwgPC0gbWV0YWNvbWJvICU+JQogIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSkKCgojICoqRmluYWwgZml4ZWQgZWZmZWN0cyBtZXRhLWFuYWx5c2VzIHdpdGhpbiBncm91cGluZyB0ZXJtcywgd2l0aCBTRSBvZiB0aGUgZXN0aW1hdGUKCm92ZXJhbGwxIDwtIG1ldGFjb21ib19maW5hbCAlPiUKCiAgbXV0YXRlKAogICAgbW9kZWxfbG5DVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgICB5aSA9IC54JGxuQ1ZSLCBzZWkgPSAoLngkbG5DVlJfdXBwZXIgLSAueCRsbkNWUl9sb3dlcikgLyAoMiAqIDEuOTYpLAogICAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRgogICAgKSksCiAgICBtb2RlbF9sblZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEYKICAgICkpLAogICAgbW9kZWxfbG5SUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoCiAgICAgIHlpID0gLngkbG5SUiwgc2VpID0gKC54JGxuUlJfdXBwZXIgLSAueCRsblJSX2xvd2VyKSAvICgyICogMS45NiksCiAgICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgICApKQogICkKCiMgKipGaW5hbCBmaXhlZCBlZmZlY3RzIG1ldGEtYW5hbHlzZXMgQUNST1NTIGdyb3VwaW5nIHRlcm1zLCB3aXRoIFNFIG9mIHRoZSBlc3RpbWF0ZQoKb3ZlcmFsbF9hbGwxIDwtIG1ldGFjb21ib19maW5hbF9hbGwgJT4lCgogIG11dGF0ZSgKICAgIG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEYKICAgICkpLAogICAgbW9kZWxfbG5WUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoCiAgICAgIHlpID0gLngkbG5WUiwgc2VpID0gKC54JGxuVlJfdXBwZXIgLSAueCRsblZSX2xvd2VyKSAvICgyICogMS45NiksCiAgICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgICApKSwKICAgIG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgICB5aSA9IC54JGxuUlIsIHNlaSA9ICgueCRsblJSX3VwcGVyIC0gLngkbG5SUl9sb3dlcikgLyAoMiAqIDEuOTYpLAogICAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRgogICAgKSkKICApCmBgYAoKIyMjIFJlLXN0cnVjdHVyaW5nIHRoZSBkYXRhIGZvciBlYWNoIGdyb3VwaW5nIHRlcm0KV2UgaGVyZSBkZWxldGUgdW51c2VkIHZhcmlhYmxlcywgYW5kIHNlbGVjdCB0aGUgcmVzcGVjdGl2ZSBlZmZlY3Qgc2l6ZXMuIFBsZWFzZSBub3RlIC0gdGhlIHJlZmVyZW5jaW5nIG9mIHRoZSBjZWxscyBkb2VzIE5PVCBkZXBlbmQgb24gcHJldmlvdXMgb3JkZXJpbmcgb2YgdGhlIGRhdGEuIFRoaXMgd291bGQgb25seSBiZSBhZmZlY3RlZCBpZiB0aGUgb3V0cHV0IHN0cnVjdHVyZSBmcm9tIG1ldGFmb3I6OnJtYS51bmkgY2hhbmdlcy4gCgpgYGB7cn0KQmVoYXZpb3VyIDwtIG92ZXJhbGwxICU+JSAKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJCZWhhdmlvdXIiKSAlPiUgCiAgbXV0YXRlKAogICAgbG5DVlIgPSAuW1s0XV1bWzFdXSRiLCBsbkNWUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBsbkNWUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBsbkNWUl9zZSA9IC5bWzRdXVtbMV1dJHNlLAogICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsCiAgICBsblJSID0gLltbNl1dW1sxXV0kYiwgbG5SUl9sb3dlciA9IC5bWzZdXVtbMV1dJGNpLmxiLCBsblJSX3VwcGVyID0gLltbNl1dW1sxXV0kY2kudWIsIGxuUlJfc2UgPSAuW1s2XV1bWzFdXSRzZQogICkgICU+JQogIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpCgpJbW11bm9sb2d5IDwtIG92ZXJhbGwxICU+JSAKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJJbW11bm9sb2d5IikgJT4lIAogIG11dGF0ZSgKICAgIGxuQ1ZSID0gLltbNF1dW1sxXV0kYiwgbG5DVlJfbG93ZXIgPSAuW1s0XV1bWzFdXSRjaS5sYiwgbG5DVlJfdXBwZXIgPSAuW1s0XV1bWzFdXSRjaS51YiwgbG5DVlJfc2UgPSAuW1s0XV1bWzFdXSRzZSwKICAgIGxuVlIgPSAuW1s1XV1bWzFdXSRiLCBsblZSX2xvd2VyID0gLltbNV1dW1sxXV0kY2kubGIsIGxuVlJfdXBwZXIgPSAuW1s1XV1bWzFdXSRjaS51YiwgbG5WUl9zZSA9IC5bWzVdXVtbMV1dJHNlLAogICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2UKICApICAlPiUKICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBsbkNWUjpsblJSX3NlKQoKSGVtYXRvbG9neSA8LSBvdmVyYWxsMSAlPiUgCiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSAiSGVtYXRvbG9neSIpICU+JSAKICBtdXRhdGUoCiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsCiAgICBsblZSID0gLltbNV1dW1sxXV0kYiwgbG5WUl9sb3dlciA9IC5bWzVdXVtbMV1dJGNpLmxiLCBsblZSX3VwcGVyID0gLltbNV1dW1sxXV0kY2kudWIsIGxuVlJfc2UgPSAuW1s1XV1bWzFdXSRzZSwKICAgIGxuUlIgPSAuW1s2XV1bWzFdXSRiLCBsblJSX2xvd2VyID0gLltbNl1dW1sxXV0kY2kubGIsIGxuUlJfdXBwZXIgPSAuW1s2XV1bWzFdXSRjaS51YiwgbG5SUl9zZSA9IC5bWzZdXVtbMV1dJHNlCiAgKSAgJT4lCiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgbG5DVlI6bG5SUl9zZSkKCkhlYXJpbmcgPC0gb3ZlcmFsbDEgJT4lIAogIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gIkhlYXJpbmciKSAlPiUgCiAgbXV0YXRlKAogICAgbG5DVlIgPSAuW1s0XV1bWzFdXSRiLCBsbkNWUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBsbkNWUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBsbkNWUl9zZSA9IC5bWzRdXVtbMV1dJHNlLAogICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsCiAgICBsblJSID0gLltbNl1dW1sxXV0kYiwgbG5SUl9sb3dlciA9IC5bWzZdXVtbMV1dJGNpLmxiLCBsblJSX3VwcGVyID0gLltbNl1dW1sxXV0kY2kudWIsIGxuUlJfc2UgPSAuW1s2XV1bWzFdXSRzZQogICkgICU+JQogIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGxuQ1ZSOmxuUlJfc2UpCgpQaHlzaW9sb2d5IDwtIG92ZXJhbGwxICU+JSAKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJQaHlzaW9sb2d5IikgJT4lIAogIG11dGF0ZSgKICAgIGxuQ1ZSID0gLltbNF1dW1sxXV0kYiwgbG5DVlJfbG93ZXIgPSAuW1s0XV1bWzFdXSRjaS5sYiwgbG5DVlJfdXBwZXIgPSAuW1s0XV1bWzFdXSRjaS51YiwgbG5DVlJfc2UgPSAuW1s0XV1bWzFdXSRzZSwKICAgIGxuVlIgPSAuW1s1XV1bWzFdXSRiLCBsblZSX2xvd2VyID0gLltbNV1dW1sxXV0kY2kubGIsIGxuVlJfdXBwZXIgPSAuW1s1XV1bWzFdXSRjaS51YiwgbG5WUl9zZSA9IC5bWzVdXVtbMV1dJHNlLAogICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2UKICApICAlPiUKICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBsbkNWUjpsblJSX3NlKQoKTWV0YWJvbGlzbSA8LSBvdmVyYWxsMSAlPiUgCiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSAiTWV0YWJvbGlzbSIpICU+JSAKICBtdXRhdGUoCiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsCiAgICBsblZSID0gLltbNV1dW1sxXV0kYiwgbG5WUl9sb3dlciA9IC5bWzVdXVtbMV1dJGNpLmxiLCBsblZSX3VwcGVyID0gLltbNV1dW1sxXV0kY2kudWIsIGxuVlJfc2UgPSAuW1s1XV1bWzFdXSRzZSwKICAgIGxuUlIgPSAuW1s2XV1bWzFdXSRiLCBsblJSX2xvd2VyID0gLltbNl1dW1sxXV0kY2kubGIsIGxuUlJfdXBwZXIgPSAuW1s2XV1bWzFdXSRjaS51YiwgbG5SUl9zZSA9IC5bWzZdXVtbMV1dJHNlCiAgKSAgJT4lCiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgbG5DVlI6bG5SUl9zZSkKCk1vcnBob2xvZ3kgPC0gb3ZlcmFsbDEgJT4lIAogIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gIk1vcnBob2xvZ3kiKSAlPiUKICBtdXRhdGUoCiAgICBsbkNWUiA9IC5bWzRdXVtbMV1dJGIsIGxuQ1ZSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuQ1ZSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGxuQ1ZSX3NlID0gLltbNF1dW1sxXV0kc2UsCiAgICBsblZSID0gLltbNV1dW1sxXV0kYiwgbG5WUl9sb3dlciA9IC5bWzVdXVtbMV1dJGNpLmxiLCBsblZSX3VwcGVyID0gLltbNV1dW1sxXV0kY2kudWIsIGxuVlJfc2UgPSAuW1s1XV1bWzFdXSRzZSwKICAgIGxuUlIgPSAuW1s2XV1bWzFdXSRiLCBsblJSX2xvd2VyID0gLltbNl1dW1sxXV0kY2kubGIsIGxuUlJfdXBwZXIgPSAuW1s2XV1bWzFdXSRjaS51YiwgbG5SUl9zZSA9IC5bWzZdXVtbMV1dJHNlCiAgKSAgJT4lCiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgbG5DVlI6bG5SUl9zZSkKICAKSGVhcnQgPC0gb3ZlcmFsbDEgJT4lIAogIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gIkhlYXJ0IikgJT4lIAogIG11dGF0ZSgKICAgIGxuQ1ZSID0gLltbNF1dW1sxXV0kYiwgbG5DVlJfbG93ZXIgPSAuW1s0XV1bWzFdXSRjaS5sYiwgbG5DVlJfdXBwZXIgPSAuW1s0XV1bWzFdXSRjaS51YiwgbG5DVlJfc2UgPSAuW1s0XV1bWzFdXSRzZSwKICAgIGxuVlIgPSAuW1s1XV1bWzFdXSRiLCBsblZSX2xvd2VyID0gLltbNV1dW1sxXV0kY2kubGIsIGxuVlJfdXBwZXIgPSAuW1s1XV1bWzFdXSRjaS51YiwgbG5WUl9zZSA9IC5bWzVdXVtbMV1dJHNlLAogICAgbG5SUiA9IC5bWzZdXVtbMV1dJGIsIGxuUlJfbG93ZXIgPSAuW1s2XV1bWzFdXSRjaS5sYiwgbG5SUl91cHBlciA9IC5bWzZdXVtbMV1dJGNpLnViLCBsblJSX3NlID0gLltbNl1dW1sxXV0kc2UKICApICAlPiUKICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBsbkNWUjpsblJSX3NlKQoKRXllIDwtIG92ZXJhbGwxICU+JSAKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJFeWUiKSAlPiUgCiAgbXV0YXRlKAogICAgbG5DVlIgPSAuW1s0XV1bWzFdXSRiLCBsbkNWUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBsbkNWUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBsbkNWUl9zZSA9IC5bWzRdXVtbMV1dJHNlLAogICAgbG5WUiA9IC5bWzVdXVtbMV1dJGIsIGxuVlJfbG93ZXIgPSAuW1s1XV1bWzFdXSRjaS5sYiwgbG5WUl91cHBlciA9IC5bWzVdXVtbMV1dJGNpLnViLCBsblZSX3NlID0gLltbNV1dW1sxXV0kc2UsCiAgICBsblJSID0gLltbNl1dW1sxXV0kYiwgbG5SUl9sb3dlciA9IC5bWzZdXVtbMV1dJGNpLmxiLCBsblJSX3VwcGVyID0gLltbNl1dW1sxXV0kY2kudWIsIGxuUlJfc2UgPSAuW1s2XV1bWzFdXSRzZQogICkgICU+JQogICAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgbG5DVlI6bG5SUl9zZSkKCkFsbCA8LSBvdmVyYWxsX2FsbDEgJT4lIAogIG11dGF0ZSgKICAgIGxuQ1ZSID0gLltbMl1dW1sxXV0kYiwgbG5DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgbG5DVlJfdXBwZXIgPSAuW1syXV1bWzFdXSRjaS51YiwgbG5DVlJfc2UgPSAuW1syXV1bWzFdXSRzZSwgCiAgICBsblZSID0gLltbM11dW1sxXV0kYiwgbG5WUl9sb3dlciA9IC5bWzNdXVtbMV1dJGNpLmxiLCBsblZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGxuVlJfc2UgPSAuW1szXV1bWzFdXSRzZSwKICAgIGxuUlIgPSAuW1s0XV1bWzFdXSRiLCBsblJSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGxuUlJfdXBwZXIgPSAuW1s0XV1bWzFdXSRjaS51YiwgbG5SUl9zZSA9IC5bWzRdXVtbMV1dJHNlCiAgKSAgJT4lCiAgICBzZWxlY3QoLiwgbG5DVlI6bG5SUl9zZSkKCkFsbCA8LSBBbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSAiQWxsIikKCm92ZXJhbGwyIDwtIGJpbmRfcm93cyhCZWhhdmlvdXIsIE1vcnBob2xvZ3ksIE1ldGFib2xpc20sIFBoeXNpb2xvZ3ksIEltbXVub2xvZ3ksIEhlbWF0b2xvZ3ksIEhlYXJ0LCBIZWFyaW5nLCBFeWUsIEFsbCkgCmBgYAoKIyBWaXN1YWxpc2F0aW9uCiMjIEZpZ3VyZSA0IAojIyMjIFByZXBhcmF0aW9uIGZvciBwbG90czogQ291bnQgZGF0YSwgYmFzZWQgb24gRmlyc3Qtb3JkZXIgbWV0YW1hbmFseXNpcyByZXN1bHRzClRoaXMgaW5jbHVkZXMgYWxsIHNlcGFyYXRlIGVsaWdpYmxlIHRyYWl0cy4KUmUtb3JkZXJpbmcgb2YgZ3JvdXBpbmcgdGVybXMgCgpgYGB7cn0KCm1ldGFfY2xlYW4kR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihtZXRhX2NsZWFuJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYygiQmVoYXZpb3VyIiwgIk1vcnBob2xvZ3kiLCAiTWV0YWJvbGlzbSIsICJQaHlzaW9sb2d5IiwgIkltbXVub2xvZ3kiLCAiSGVtYXRvbG9neSIsICJIZWFydCIsICJIZWFyaW5nIiwgIkV5ZSIpKQptZXRhX2NsZWFuJEdyb3VwaW5nVGVybSA8LSBmYWN0b3IobWV0YV9jbGVhbiRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMobWV0YV9jbGVhbiRHcm91cGluZ1Rlcm0pKSkKCiMgKlByZXBhcmluZyBkYXRhIGZvciBhbGwgdHJhaXRzCgptZXRhLnBsb3QyLmFsbCA8LSBtZXRhX2NsZWFuICU+JQogIHNlbGVjdChsbkNWUiwgbG5WUiwgbG5SUiwgR3JvdXBpbmdUZXJtKSAlPiUKICBhcnJhbmdlKEdyb3VwaW5nVGVybSkKCm1ldGEucGxvdDIuYWxsLmIgPC0gZ2F0aGVyKG1ldGEucGxvdDIuYWxsLCB0cmFpdCwgdmFsdWUsIGMobG5DVlIsIGxuUlIpKSAjIGxuVlIgaGFzIGJlZW4gcmVtb3ZlZCBoZXJlIGFuZCBpbiB0aGUgc3RlcHMgYmVsb3csIGFzIHRoaXMgaXMgb25seSBpbmNsdWRlZCBpbiB0aGUgc3VwcGxlbWVudGFsIGZpZ3VyZQoKbWV0YS5wbG90Mi5hbGwuYiR0cmFpdCA8LSBmYWN0b3IobWV0YS5wbG90Mi5hbGwuYiR0cmFpdCwgbGV2ZWxzID0gYygibG5DVlIiLCAibG5SUiIpKSAKbWV0YS5wbG90Mi5hbGwuYyA8LSBtZXRhLnBsb3QyLmFsbC5iICU+JQogIGdyb3VwX2J5X2F0KHZhcnModHJhaXQsIEdyb3VwaW5nVGVybSkpICU+JQogIHN1bW1hcmlzZSgKICAgIG1hbGViaWFzID0gc3VtKHZhbHVlID4gMCksIGZlbWFsZWJpYXMgPSBzdW0odmFsdWUgPD0gMCksIHRvdGFsID0gbWFsZWJpYXMgKyBmZW1hbGViaWFzLAogICAgbWFsZXBlcmNlbnQgPSBtYWxlYmlhcyAqIDEwMCAvIHRvdGFsLCBmZW1hbGVwZXJjZW50ID0gZmVtYWxlYmlhcyAqIDEwMCAvIHRvdGFsCiAgKQoKbWV0YS5wbG90Mi5hbGwuYyRsYWJlbCA8LSAiQWxsIHRyYWl0cyIKCiMgUmUtc3RydWN0dXJlIHRvIGNyZWF0ZSBzdGFja2VkIGJhciBwbG90cwoKbWV0YS5wbG90Mi5hbGwuZCA8LSBhcy5kYXRhLmZyYW1lKG1ldGEucGxvdDIuYWxsLmMpCm1ldGEucGxvdDIuYWxsLmUgPC0gZ2F0aGVyKG1ldGEucGxvdDIuYWxsLmQsIGtleSA9IHNleCwgdmFsdWUgPSBwZXJjZW50LCBtYWxlcGVyY2VudDpmZW1hbGVwZXJjZW50LCBmYWN0b3Jfa2V5ID0gVFJVRSkKCiMgQ3JlYXRlIG5ldyBzYW1wbGUgc2l6ZSB2YXJpYWJsZQoKbWV0YS5wbG90Mi5hbGwuZSRzYW1wbGVzaXplIDwtIHdpdGgobWV0YS5wbG90Mi5hbGwuZSwgaWZlbHNlKHNleCA9PSAibWFsZXBlcmNlbnQiLCBtYWxlYmlhcywgZmVtYWxlYmlhcykpCgojIEFkZCBzdW1tYXJ5IHJvdyAoJ0FsbCcpIGFuZCByZS1hcnJhbmdlIHJvd3MgaW50byBjb3JyZWN0IG9yZGVyIGZvciBwbG90dGluZyAod2FybmluZ3MgYWJvdXQgY29lcmNpbmcgJ2lkJyBpbnRvIGNoYXJhY3RlciB2ZWN0b3IgYXJlIG9rKQoKbWV0YS5wbG90Mi5hbGwuZiA8LSBtZXRhLnBsb3QyLmFsbC5lICU+JSBncm91cF9ieSh0cmFpdCwgc2V4KSAlPiUgCglzdW1tYXJpc2UoR3JvdXBpbmdUZXJtID0gIkFsbCIsIG1hbGViaWFzID0gc3VtKG1hbGViaWFzKSwgZmVtYWxlYmlhcyA9IHN1bShmZW1hbGViaWFzKSwgdG90YWwgPSBtYWxlYmlhcyArIGZlbWFsZWJpYXMsIAoJbGFiZWwgPSAiQWxsIHRyYWl0cyIsIHNhbXBsZXNpemUgPSBzdW0oc2FtcGxlc2l6ZSkpICU+JQoJbXV0YXRlKHBlcmNlbnQgPSBpZmVsc2Uoc2V4ID09ICJmZW1hbGVwZXJjZW50IiwgZmVtYWxlYmlhcyoxMDAvKG1hbGViaWFzK2ZlbWFsZWJpYXMpLCBtYWxlYmlhcyoxMDAvKG1hbGViaWFzK2ZlbWFsZWJpYXMpKSkgJT4lCgliaW5kX3Jvd3MobWV0YS5wbG90Mi5hbGwuZSwgLikgJT4lCgltdXRhdGUocm93bnVtYmVyID0gcm93X251bWJlcigpKSAlPiUKCS5bYygzNywgMTo5LCAzOSwgMTA6MTgsIDM4LCAxOToyNywgNDAsIDI4OjM2KSwgXSAKICAjbGluZSByZWZlcmVuY2VzIGluIHByZXZpb3VzIGNvZGUgbGluZSBjb3JyZXNwb25kaW5nIHRvOiAKICAjJ2xuQ1ZSKG1hbGUoQWxsKSksIGxuQ1ZSKG1hbGUoJ3NpbmdsZSBncm91cGluZyB0ZXJtcycpLCBsblJSKG1hbGUoQWxsKSksIGxuUlIobWFsZSgnc2luZ2xlIGdyb3VwaW5nIHRlcm1zJykpLAogICNsbkNWUihmZW1hbGUoQWxsKSksIGxuQ1ZSKGZlbWFsZSgnc2luZ2xlIGdyb3VwaW5nIHRlcm1zJyksIGxuUlIoZmVtYWxlKEFsbCkpLCBsblJSKGZlbWFsZSgnc2luZ2xlIGdyb3VwaW5nIHRlcm1zJykpJwoKbWV0YS5wbG90Mi5hbGwuZiRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG1ldGEucGxvdDIuYWxsLmYkR3JvdXBpbmdUZXJtLCBsZXZlbHMgPSBjKCJCZWhhdmlvdXIiLCAiTW9ycGhvbG9neSIsICJNZXRhYm9saXNtIiwgIlBoeXNpb2xvZ3kiLCAiSW1tdW5vbG9neSIsICJIZW1hdG9sb2d5IiwgIkhlYXJ0IiwgIkhlYXJpbmciLCAiRXllIiwgIkFsbCIpKSAKbWV0YS5wbG90Mi5hbGwuZiRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG1ldGEucGxvdDIuYWxsLmYkR3JvdXBpbmdUZXJtLCByZXYobGV2ZWxzKG1ldGEucGxvdDIuYWxsLmYkR3JvdXBpbmdUZXJtKSkpCgptYWxlYmlhc19GaWcyX2FsbHRyYWl0cyA8LQogIGdncGxvdChtZXRhLnBsb3QyLmFsbC5mKSArCiAgYWVzKHggPSBHcm91cGluZ1Rlcm0sIHkgPSBwZXJjZW50LCBmaWxsID0gc2V4KSArCiAgZ2VvbV9jb2woKSArCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gNTAsIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImdyYXk0MCIpICsKICBnZW9tX3RleHQoCiAgICBkYXRhID0gc3Vic2V0KG1ldGEucGxvdDIuYWxsLmYsIHNhbXBsZXNpemUgIT0gMCksIGFlcyhsYWJlbCA9IHNhbXBsZXNpemUpLCBwb3NpdGlvbiA9IHBvc2l0aW9uX3N0YWNrKHZqdXN0ID0gLjUpLAogICAgY29sb3IgPSAid2hpdGUiLCBzaXplID0gMy41CiAgKSArCiAgZmFjZXRfZ3JpZCgKICAgIGNvbHMgPSB2YXJzKHRyYWl0KSwgcm93cyA9IHZhcnMobGFiZWwpLCBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMTgpLAogICAgc2NhbGVzID0gImZyZWUiLCBzcGFjZSA9ICJmcmVlIgogICkgKwogIHNjYWxlX2ZpbGxfYnJld2VyKHBhbGV0dGUgPSAiU2V0MiIpICsKICB0aGVtZV9idyhiYXNlX3NpemUgPSAxOCkgKwogIHRoZW1lKAogICAgc3RyaXAudGV4dC55ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMjcwLCBzaXplID0gMTAsIG1hcmdpbiA9IG1hcmdpbih0ID0gMTUsIHIgPSAxNSwgYiA9IDE1LCBsID0gMTUpKSwKICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLAogICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9ICJibGFuayIsIGZpbGwgPSAiZ3JheTkwIiksCiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksCiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsICJsaW5lcyIpLAogICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksCiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvdXIgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIiwKICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKQogICkgKwogIGNvb3JkX2ZsaXAoKQoKIyBtYWxlYmlhc19GaWcyX2FsbHRyYWl0cyAgICAgIyhwYW5lbCBBIGluIEZpZ3VyZSA0IGluIG1zKQpgYGAKCgojIyMgIE92ZXJhbGwgcmVzdWx0cyBvZiBzZWNvbmQgb3JkZXIgbWV0YS1hbmFseXNpcyAoRmlndXJlIDQsIFBhbmVsIEIpCiMjIyMgUmUtc3RydWN0dXJlIGRhdGEgZm9yIHBsb3R0aW5nIApEYXRhIGFyZSByZS1zdHJ1Y3R1cmVkLCBhbmQgZ3JvdXBpbmcgdGVybXMgYXJlIGJlaW5nIHJlLW9yZGVyZWQKCmBgYHtyfQpvdmVyYWxsMyA8LSBnYXRoZXIob3ZlcmFsbDIsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSkgCgpsbkNWUi5jaSA8LSBvdmVyYWxsMyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsbkNWUiIpICU+JQogIG11dGF0ZShjaS5sb3cgPSBsbkNWUl9sb3dlciwgY2kuaGlnaCA9IGxuQ1ZSX3VwcGVyKQpsblZSLmNpIDwtIG92ZXJhbGwzICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpCmxuUlIuY2kgPC0gb3ZlcmFsbDMgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5SUiIpICU+JQogIG11dGF0ZShjaS5sb3cgPSBsblJSX2xvd2VyLCBjaS5oaWdoID0gbG5SUl91cHBlcikKCm92ZXJhbGw0IDwtIGJpbmRfcm93cyhsbkNWUi5jaSwgbG5SUi5jaSkgJT4lIHNlbGVjdChHcm91cGluZ1Rlcm0sIHBhcmFtZXRlciwgdmFsdWUsIGNpLmxvdywgY2kuaGlnaCkgCgojIFJlLW9yZGVyIGdyb3VwaW5nIHRlcm1zCgpvdmVyYWxsNCRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGw0JEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYygiQmVoYXZpb3VyIiwgIk1vcnBob2xvZ3kiLCAiTWV0YWJvbGlzbSIsICJQaHlzaW9sb2d5IiwgIkltbXVub2xvZ3kiLCAiSGVtYXRvbG9neSIsICJIZWFydCIsICJIZWFyaW5nIiwgIkV5ZSIsICJBbGwiKSkKb3ZlcmFsbDQkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihvdmVyYWxsNCRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMob3ZlcmFsbDQkR3JvdXBpbmdUZXJtKSkpCm92ZXJhbGw0JGxhYmVsIDwtICJBbGwgdHJhaXRzIgoKa2FibGUoY2JpbmQob3ZlcmFsbDQsIG92ZXJhbGw0KSkgJT4lCiAga2FibGVfc3R5bGluZygpICU+JQogIHNjcm9sbF9ib3god2lkdGggPSAiMTAwJSIsIGhlaWdodCA9ICIyMDBweCIpCmBgYAoKYGBge3J9Ck1ldGFtZXRhX0ZpZzNfYWxsdHJhaXRzIDwtIG92ZXJhbGw0ICU+JQoKICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICsKICBnZW9tX2Vycm9yYmFyaChhZXMoCiAgICB4bWluID0gY2kubG93LAogICAgeG1heCA9IGNpLmhpZ2gKICApLAogIGhlaWdodCA9IDAuMSwgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSwKICAgIGZpbGwgPSAiYmxhY2siLAogICAgY29sb3IgPSAiYmxhY2siLCBzaXplID0gMi4yLAogICAgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIHNjYWxlX3hfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoLTAuMjQsIDAuMjUpLAogICAgYnJlYWtzID0gYygtMC4yLCAtMC4xLCAwLCAwLjEsIDAuMiksCiAgICBuYW1lID0gIkVmZmVjdCBzaXplIgogICkgKwogIGdlb21fdmxpbmUoCiAgICB4aW50ZXJjZXB0ID0gMCwKICAgIGNvbG9yID0gImJsYWNrIiwKICAgIGxpbmV0eXBlID0gImRhc2hlZCIKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgcm93cyA9IHZhcnMobGFiZWwpLAogICAgbGFiZWxsZXIgPSBsYWJlbF93cmFwX2dlbih3aWR0aCA9IDIzKSwKICAgIHNjYWxlcyA9ICJmcmVlIiwKICAgIHNwYWNlID0gImZyZWUiCiAgKSArCiAgdGhlbWVfYncoKSArCiAgdGhlbWUoCiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLAogICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksCiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gImJsYW5rIiwgZmlsbCA9ICJncmF5OTAiKSwKICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwKICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgImxpbmVzIiksCiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG91ciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG9yID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLAogICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLAogICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBzaXplID0gMTQpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpCiAgKQoKIyBNZXRhbWV0YV9GaWczX2FsbHRyYWl0cwpgYGAKCiMjIyBGaWcgNCAjIFNaIFNUSUxMIFRPIERPCkpvaW4gdGhlIGRpZmZlcmVudCBwYXJ0cyBhbmQgICNUTyBETyEhIGFkZCBNIC8gRiBzeW1ib2xzIGluIE1ldGFtZXRhX0ZpZzNfYWxsdHJhaXRzIApgYGB7cn0KI1Rlc3QKI21hbGUgPC0gcmVhZFBORyhzeXN0ZW0uZmlsZSgiaW1nIiwgIm1hbGUiKSkKI3Rlc3QgPC0gTWV0YW1ldGFfRmlnM19hbGx0cmFpdHMgCgojbGlicmFyeShwbmcpCmBgYAoKIyMjIEZpZ3VyZSA0ClBhbmVsIEEgc2hvd3MgdGhlIG51bWJlcnMgb2YgdHJhaXRzIGFjcm9zcyBmdW5jdGlvbmFsIGdyb3VwcyB0aGF0IGFyZSBlaXRoZXIgbWFsZS1iaWFzZWQgKGJsdWUtZ3JlZW4pIG9yIGZlbWFsZS1iaWFzZWQgKG9yYW5nZS1yZWQpLCBhcyBjYWxjdWxhdGVkIGluIFN0ZXAgRCAoZmlndXJlIDMpLiBQYW5lbCBCIHNob3dzIGVmZmVjdCBzaXplcyBhbmQgOTUlIENJIGZyb20gc2VwYXJhdGUgbWV0YS1hbmFseXNpcyBmb3IgZWFjaCBmdW5jdGlvbmFsIGdyb3VwIChzdGVwIEggaW4gRmlndXJlIDMpLiBCb3RoIHBhbmVscyByZXByZXNlbnQgcmVzdWx0cyBldmFsdWF0ZWQgYWNyb3NzIGFsbCB0cmFpdHMgKFBoYXNlIDMsIEZpZ3VyZSAzKS4gVHJhaXRzIHRoYXQgYXJlIG1hbGUgYmlhc2VkIGlzIHNob3duIGluIGJsdWUsIHdoZXJlYXMgZmVtYWxlIGJpYXMgZGF0YSBpcyByZXByZXNlbnRlZCBpbiBvcmFuZ2UuCgoKYGBge3J9CkZpZzQgPC0gZ2dhcnJhbmdlKG1hbGViaWFzX0ZpZzJfYWxsdHJhaXRzLCBNZXRhbWV0YV9GaWczX2FsbHRyYWl0cywgIG5yb3cgPSAyLCBhbGlnbiA9ICJ2IiwgaGVpZ2h0cyA9IGMoMSwgMSksIGxhYmVscyA9IGMoIkEiLCAiQiIpKQpGaWc0CmBgYAoKCiMjIEZpZ3VyZSA1CiMjIyMgUHJlcGFyaW5nIGRhdGEgZm9yIHRyYWl0cyB3aXRoIENJIG5vdCBvdmVybGFwcGluZyAwClRvIGZ1cnRoZXIgaW52ZXN0aWdhdGUgc2V4IGJpYXMgaW4gdGhpcyBkYXRhc2V0LCBhbmQgaW4gcGFydGljdWxhciBpZiB0aGUgZXh0ZW50IG9mIHNleCBiaWFzIGRpZmZlcnMgYmV0d2VlbiB0cmFpdHMsIHdlIGludmVzdGlnYXRlIHRoZSBtYWduaXR1ZGUgb2YgbWFsZS0gYW5kIGZlbWFsZSBiaWFzIGluIHNpZ25pZmljYW50bHkgZGlmZmVyZW50IHRyYWl0cyBvbiAoYm90aCBmb3IgbWVhbnMgYW5kIHZhcmlhYmlsaXR5KQoKVG8gZG8gdGhpcywgd2Ugc2VsZWN0IG9ubHkgdHJhaXRzIHRoYXQgaGF2ZSBDSXMgdGhhdCBkbyBub3Qgb3ZlcmxhcCB3aXRoIHplcm8uClRoZSBjb2RlIGJlbG93IGNyZWF0ZXMgRmlndXJlIDVBLgpgYGB7cn0KCm1ldGEucGxvdDIuc2lnIDwtIG1ldGFfY2xlYW4gJT4lCiAgbXV0YXRlKAogICAgbG5DVlJzaWcgPSBpZmVsc2UobG5DVlJfbG93ZXIgKiBsbkNWUl91cHBlciA+IDAsIDEsIDApLCBsblZSc2lnID0gaWZlbHNlKGxuVlJfbG93ZXIgKiBsblZSX3VwcGVyID4gMCwgMSwgMCksCiAgICBsblJSc2lnID0gaWZlbHNlKGxuUlJfbG93ZXIgKiBsblJSX3VwcGVyID4gMCwgMSwgMCkKICApCgptZXRhLnBsb3QyLnNpZy5iIDwtIG1ldGEucGxvdDIuc2lnWywgYygibG5DVlIiLCAibG5SUiIsICJsbkNWUnNpZyIsICJsblZSc2lnIiwgImxuUlJzaWciLCAiR3JvdXBpbmdUZXJtIildIAoKbWV0YS5wbG90Mi5zaWcuYyA8LSBnYXRoZXIobWV0YS5wbG90Mi5zaWcuYiwgdHJhaXQsIHZhbHVlLCBsbkNWUjpsblJSKQptZXRhLnBsb3QyLnNpZy5jJHNpZyA8LSAicGxhY2Vob2xkZXIiCgptZXRhLnBsb3QyLnNpZy5jJHRyYWl0IDwtIGZhY3RvcihtZXRhLnBsb3QyLnNpZy5jJHRyYWl0LCBsZXZlbHMgPSBjKCJsbkNWUiIsICJsblJSIikpIAoKbWV0YS5wbG90Mi5zaWcuYyRzaWcgPC0gaWZlbHNlKG1ldGEucGxvdDIuc2lnLmMkdHJhaXQgPT0gImxuQ1ZSIiwgbWV0YS5wbG90Mi5zaWcuYyRsbkNWUnNpZywKICBpZmVsc2UobWV0YS5wbG90Mi5zaWcuYyR0cmFpdCA9PSAibG5WUiIsIG1ldGEucGxvdDIuc2lnLmMkbG5WUnNpZywgbWV0YS5wbG90Mi5zaWcuYyRsblJSc2lnKQopCgojIENob29zaW5nIHNleCBiaWFzZWQgbG4tcmF0aW9zIHNpZ25pZmljYW50bHkgbGFyZ2VyIHRoYW4gMAptZXRhLnBsb3QyLnNpZy5tYWxlYmlhcyA8LSBtZXRhLnBsb3QyLnNpZy5jICU+JQogIGdyb3VwX2J5X2F0KHZhcnModHJhaXQsIEdyb3VwaW5nVGVybSkpICU+JQogIGZpbHRlcihzaWcgPT0gMSkgJT4lCiAgc3VtbWFyaXNlKG1hbGVfc2lnID0gc3VtKHZhbHVlID4gMCksIGZlbWFsZV9zaWcgPSBzdW0odmFsdWUgPCAwKSwgdG90YWwgPSBtYWxlX3NpZyArIGZlbWFsZV9zaWcpCgptZXRhLnBsb3QyLnNpZy5tYWxlYmlhcyA8LSB1bmdyb3VwKG1ldGEucGxvdDIuc2lnLm1hbGViaWFzKSAlPiUKICBhZGRfcm93KHRyYWl0ID0gImxuQ1ZSIiwgR3JvdXBpbmdUZXJtID0gIkhlYXJpbmciLCBtYWxlX3NpZyA9IDAsIGZlbWFsZV9zaWcgPSAwLCAuYmVmb3JlID0gNCkgJT4lICMgYWRkICJIZWFyaW5nIiBmb3IgbG5DVlIgKG5vdCBmaWx0ZXJlZCBhcyBvbmx5IHplcm9zKQogIG11dGF0ZShtYWxlcGVyY2VudCA9IG1hbGVfc2lnICogMTAwIC8gdG90YWwsIGZlbWFsZXBlcmNlbnQgPSBmZW1hbGVfc2lnICogMTAwIC8gdG90YWwpCgptZXRhLnBsb3QyLnNpZy5tYWxlYmlhcyRsYWJlbCA8LSAiQ0kgbm90IG92ZXJsYXBwaW5nIHplcm8iCgojIFJlLXN0cnVjdHVyZSB0byBjcmVhdGUgc3RhY2tlZCBiYXIgcGxvdHMKCm1ldGEucGxvdDIuc2lnLmJvdGhzZXhlcyA8LSBhcy5kYXRhLmZyYW1lKG1ldGEucGxvdDIuc2lnLm1hbGViaWFzKQptZXRhLnBsb3QyLnNpZy5ib3Roc2V4ZXMuYiA8LSBnYXRoZXIobWV0YS5wbG90Mi5zaWcuYm90aHNleGVzLCBrZXkgPSBzZXgsIHZhbHVlID0gcGVyY2VudCwgbWFsZXBlcmNlbnQ6ZmVtYWxlcGVyY2VudCwgZmFjdG9yX2tleSA9IFRSVUUpCgojIGNyZWF0ZSBuZXcgc2FtcGxlIHNpemUgdmFyaWFibGUKCm1ldGEucGxvdDIuc2lnLmJvdGhzZXhlcy5iJHNhbXBsZXNpemUgPC0gd2l0aChtZXRhLnBsb3QyLnNpZy5ib3Roc2V4ZXMuYiwgaWZlbHNlKHNleCA9PSAibWFsZXBlcmNlbnQiLCBtYWxlX3NpZywgZmVtYWxlX3NpZykpCgojIEFkZCBzdW1tYXJ5IHJvdyAoJ0FsbCcpIGFuZCByZS1hcnJhbmdlIHJvd3MgaW50byBjb3JyZWN0IG9yZGVyIGZvciBwbG90dGluZyAKCm1ldGEucGxvdDIuc2lnLmJvdGhzZXhlcy5jIDwtIG1ldGEucGxvdDIuc2lnLmJvdGhzZXhlcy5iICU+JSBncm91cF9ieSh0cmFpdCwgc2V4KSAlPiUgCiAgc3VtbWFyaXNlKEdyb3VwaW5nVGVybSA9ICJBbGwiLCBtYWxlX3NpZyA9IHN1bShtYWxlX3NpZyksIGZlbWFsZV9zaWcgPSBzdW0oZmVtYWxlX3NpZyksIHRvdGFsID0gbWFsZV9zaWcgKyBmZW1hbGVfc2lnLCAKICAgICAgICAgICAgbGFiZWwgPSAiQ0kgbm90IG92ZXJsYXBwaW5nIHplcm8iLCBzYW1wbGVzaXplID0gc3VtKHNhbXBsZXNpemUpKSAlPiUKICBtdXRhdGUocGVyY2VudCA9IGlmZWxzZShzZXggPT0gImZlbWFsZXBlcmNlbnQiLCBmZW1hbGVfc2lnKjEwMC8obWFsZV9zaWcrZmVtYWxlX3NpZyksIG1hbGVfc2lnKjEwMC8obWFsZV9zaWcrZmVtYWxlX3NpZykpKSAlPiUKICBiaW5kX3Jvd3MobWV0YS5wbG90Mi5zaWcuYm90aHNleGVzLmIsIC4pICU+JQogIG11dGF0ZShyb3dudW1iZXIgPSByb3dfbnVtYmVyKCkpICU+JQogIC5bYygzNywgMTo5LCAzOSwgMTA6MTgsIDM4LCAxOToyNywgNDAsIDI4OjM2KSwgXSAKICAjbGluZSByZWZlcmVuY2VzIGluIHByZXZpb3VzIGNvZGUgbGluZSBjb3JyZXNwb25kaW5nIHRvOiAKICAjJ2xuQ1ZSKG1hbGUoQWxsKSksIGxuQ1ZSKG1hbGUoJ3NpbmdsZSBncm91cGluZyB0ZXJtcycpLCBsblJSKG1hbGUoQWxsKSksIGxuUlIobWFsZSgnc2luZ2xlIGdyb3VwaW5nIHRlcm1zJykpLAogICNsbkNWUihmZW1hbGUoQWxsKSksIGxuQ1ZSKGZlbWFsZSgnc2luZ2xlIGdyb3VwaW5nIHRlcm1zJyksIGxuUlIoZmVtYWxlKEFsbCkpLCBsblJSKGZlbWFsZSgnc2luZ2xlIGdyb3VwaW5nIHRlcm1zJykpJwoKbWV0YS5wbG90Mi5zaWcuYm90aHNleGVzLmMkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihtZXRhLnBsb3QyLnNpZy5ib3Roc2V4ZXMuYyRHcm91cGluZ1Rlcm0sIGxldmVscyA9IGMoIkJlaGF2aW91ciIsICJNb3JwaG9sb2d5IiwgIk1ldGFib2xpc20iLCAiUGh5c2lvbG9neSIsICJJbW11bm9sb2d5IiwgIkhlbWF0b2xvZ3kiLCAiSGVhcnQiLCAiSGVhcmluZyIsICJFeWUiLCAiQWxsIikpIAptZXRhLnBsb3QyLnNpZy5ib3Roc2V4ZXMuYyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG1ldGEucGxvdDIuc2lnLmJvdGhzZXhlcy5jJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhtZXRhLnBsb3QyLnNpZy5ib3Roc2V4ZXMuYyRHcm91cGluZ1Rlcm0pKSkKCiMgUGxvdCBGaWcyIGFsbCBzaWduaWZpY2FudCByZXN1bHRzIChDSSBub3Qgb3ZlcmxhcHBpbmcgemVybykKIyBTZXZlcmFsIGdyb3VwaW5nIHRlcm1zIGFyZSBhZGRlZCBwb3N0LWhvYyAod2l0aCBubyBkYXRhIHRvIGRpc3BsYXkpOiBubyBzaWduaWZpY2FudCBsbkNWUiBmb3IgJ0hlYXJpbmcnIGluIGVpdGhlciBzZXg7IG5vIHNpZy4gbWFsZS1iaWFzZWQgbG5DVlIgZm9yICdJbW11bm9sb2d5JyBhbmQgJ0V5ZSwgYW5kIG5vIHNpZ25pZmljYW50IGZlbWFsZS1iaWFzZWQgbG5SUiBmb3IgJ0V5ZScuCgptYWxlYmlhc19GaWcyX3NpZ3RyYWl0cyA8LQogIGdncGxvdChtZXRhLnBsb3QyLnNpZy5ib3Roc2V4ZXMuYykgKwogIGFlcyh4ID0gR3JvdXBpbmdUZXJtLCB5ID0gcGVyY2VudCwgZmlsbCA9IHNleCkgKwogIGdlb21fY29sKCkgKwogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDUwLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJncmF5NDAiKSArCiAgZ2VvbV90ZXh0KAogICAgZGF0YSA9IHN1YnNldChtZXRhLnBsb3QyLnNpZy5ib3Roc2V4ZXMuYywgc2FtcGxlc2l6ZSAhPSAwKSwgYWVzKGxhYmVsID0gc2FtcGxlc2l6ZSksIHBvc2l0aW9uID0gcG9zaXRpb25fc3RhY2sodmp1c3QgPSAuNSksCiAgICBjb2xvciA9ICJ3aGl0ZSIsIHNpemUgPSAzLjUKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnModHJhaXQpLCByb3dzID0gdmFycyhsYWJlbCksIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAxOCksCiAgICBzY2FsZXMgPSAiZnJlZSIsIHNwYWNlID0gImZyZWUiCiAgKSArCiAgc2NhbGVfZmlsbF9icmV3ZXIocGFsZXR0ZSA9ICJTZXQyIikgKwogIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE4KSArCiAgdGhlbWUoCiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLAogICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksCiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gImJsYW5rIiwgZmlsbCA9ICJncmF5OTAiKSwKICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwKICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgImxpbmVzIiksCiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG91ciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG9yID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLAogICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLAogICAgbGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiLAogICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpCiAgKSArCiAgY29vcmRfZmxpcCgpCmBgYAoKIyMjIFByZXBhcmF0aW9uIGZvciBQbG90cyBvbiBzaWduaWZpY2FudCBzZXgtYmlhcyAoU2Vjb25kLW9yZGVyIG1ldGEgYW5hbHlzaXMgcmVzdWx0cykKCiMjIyMgRmlndXJlIDUgQiAtIHRyYWl0cyB3aXRoIENJIG5vdCBvdmVybGFwcGluZyAwIApQcmVwYXJlIGRhdGEgCmNyZWF0ZSBjb2x1bW4gd2l0aCAxPSBkaWZmZXJlbnQgZnJvbSB6ZXJvLCAwPSB6ZXJvIGluY2x1ZGVkIGluIENJCiMjIyMgTWFsZS1iaWFzZWQgKHNpZ25pZmljYW50KSB0cmFpdHMKCmBgYHtyfQptZXRhLm1hbGUucGxvdDMuc2lnIDwtIG1ldGFjb21ibyAlPiUKICBtdXRhdGUoCiAgICBzaWdDVlIgPSBpZmVsc2UobG5DVlJfbG93ZXIgPiAwLCAxLCAwKSwKICAgIHNpZ1ZSID0gaWZlbHNlKGxuVlJfbG93ZXIgPiAwLCAxLCAwKSwKICAgIHNpZ1JSID0gaWZlbHNlKGxuUlJfbG93ZXIgPiAwLCAxLCAwKQogICkKCiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsbkNWUgptZXRhY29tYm9fbWFsZS5wbG90My5DVlIgPC0gbWV0YS5tYWxlLnBsb3QzLnNpZyAlPiUKICBmaWx0ZXIoc2lnQ1ZSID09IDEpICU+JQogIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbmVzdCgpCgptZXRhY29tYm9fbWFsZS5wbG90My5DVlIuYWxsIDwtIG1ldGEubWFsZS5wbG90My5zaWcgJT4lCiAgZmlsdGVyKHNpZ0NWUiA9PSAxKSAlPiUKICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpICAgICNGZWxpeCBhZGRlZCAnZGF0YSA9IGV2ZXJ5dGhpbmcoKScgb24gNC8yLzIwMjAKCiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsblZSCm1ldGFjb21ib19tYWxlLnBsb3QzLlZSIDwtIG1ldGEubWFsZS5wbG90My5zaWcgJT4lCiAgZmlsdGVyKHNpZ1ZSID09IDEpICU+JQogIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbmVzdCgpCgptZXRhY29tYm9fbWFsZS5wbG90My5WUi5hbGwgPC0gbWV0YS5tYWxlLnBsb3QzLnNpZyAlPiUKICBmaWx0ZXIoc2lnVlIgPT0gMSkgJT4lCiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKSAgICAKCiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsblJSCm1ldGFjb21ib19tYWxlLnBsb3QzLlJSIDwtIG1ldGEubWFsZS5wbG90My5zaWcgJT4lCiAgZmlsdGVyKHNpZ1JSID09IDEpICU+JQogIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbmVzdCgpCgptZXRhY29tYm9fbWFsZS5wbG90My5SUi5hbGwgPC0gbWV0YS5tYWxlLnBsb3QzLnNpZyAlPiUKICBmaWx0ZXIoc2lnUlIgPT0gMSkgJT4lCiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKSAgIAoKIyAqKkZpbmFsIGZpeGVkIGVmZmVjdHMgbWV0YS1hbmFseXNlcyB3aXRoaW4gZ3JvdXBpbmcgdGVybXMsIHdpdGggU0Ugb2YgdGhlIGVzdGltYXRlCgpwbG90My5tYWxlLm1ldGEuQ1ZSIDwtIG1ldGFjb21ib19tYWxlLnBsb3QzLkNWUiAlPiUKICBtdXRhdGUobW9kZWxfbG5DVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tYWxlLm1ldGEuVlIgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuVlIgJT4lCiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tYWxlLm1ldGEuUlIgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuUlIgJT4lCiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblJSLCBzZWkgPSAoLngkbG5SUl91cHBlciAtIC54JGxuUlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgojIEFjcm9zcyBhbGwgZ3JvdXBpbmcgdGVybXMgIwoKcGxvdDMubWFsZS5tZXRhLkNWUi5hbGwgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuQ1ZSLmFsbCAlPiUKICBtdXRhdGUobW9kZWxfbG5DVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tYWxlLm1ldGEuQ1ZSLmFsbCA8LSBwbG90My5tYWxlLm1ldGEuQ1ZSLmFsbCAlPiUgbXV0YXRlKEdyb3VwaW5nVGVybSA9ICJBbGwiKQoKcGxvdDMubWFsZS5tZXRhLlZSLmFsbCA8LSBtZXRhY29tYm9fbWFsZS5wbG90My5WUi5hbGwgJT4lCiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tYWxlLm1ldGEuVlIuYWxsIDwtIHBsb3QzLm1hbGUubWV0YS5WUi5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSAiQWxsIikKCnBsb3QzLm1hbGUubWV0YS5SUi5hbGwgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuUlIuYWxsICU+JQogIG11dGF0ZShtb2RlbF9sblJSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgIHlpID0gLngkbG5SUiwgc2VpID0gKC54JGxuUlJfdXBwZXIgLSAueCRsblJSX2xvd2VyKSAvICgyICogMS45NiksCiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRgogICkpKQoKcGxvdDMubWFsZS5tZXRhLlJSLmFsbCA8LSBwbG90My5tYWxlLm1ldGEuUlIuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gIkFsbCIpCgojIENvbWJpbmUgd2l0aCBzZXBhcmF0ZSBncm91cGluZyB0ZXJtIHJlc3VsdHMKCnBsb3QzLm1hbGUubWV0YS5DVlIgPC0gYmluZF9yb3dzKHBsb3QzLm1hbGUubWV0YS5DVlIsIHBsb3QzLm1hbGUubWV0YS5DVlIuYWxsKQpwbG90My5tYWxlLm1ldGEuVlIgPC0gYmluZF9yb3dzKHBsb3QzLm1hbGUubWV0YS5WUiwgcGxvdDMubWFsZS5tZXRhLlZSLmFsbCkKcGxvdDMubWFsZS5tZXRhLlJSIDwtIGJpbmRfcm93cyhwbG90My5tYWxlLm1ldGEuUlIsIHBsb3QzLm1hbGUubWV0YS5SUi5hbGwpCgojICoqUmUtc3RydWN0dXJlIGRhdGEgZm9yIGVhY2ggZ3JvdXBpbmcgdGVybTsgZGVsZXRlIHVuLXVzZWQgdmFyaWFibGVzCgpwbG90My5tYWxlLm1ldGEuQ1ZSLmIgPC0gYXMuZGF0YS5mcmFtZShwbG90My5tYWxlLm1ldGEuQ1ZSICU+JSBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JQogIG11dGF0ZSgKICAgIGxuQ1ZSID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soMikpLCBsbkNWUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDYpKSwKICAgIGxuQ1ZSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soNykpLCBsbkNWUl9zZSA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDMpKQogICkpWywgYygxLCA0OjcpXQphZGQucm93LmhlYXJpbmcgPC0gYXMuZGF0YS5mcmFtZSh0KGMoIkhlYXJpbmciLCBOQSwgTkEsIE5BLCBOQSkpKSAlPiUgc2V0TmFtZXMobmFtZXMocGxvdDMubWFsZS5tZXRhLkNWUi5iKSkKCnBsb3QzLm1hbGUubWV0YS5DVlIuYiA8LSBiaW5kX3Jvd3MocGxvdDMubWFsZS5tZXRhLkNWUi5iLCBhZGQucm93LmhlYXJpbmcpCnBsb3QzLm1hbGUubWV0YS5DVlIuYiA8LSBwbG90My5tYWxlLm1ldGEuQ1ZSLmJbb3JkZXIocGxvdDMubWFsZS5tZXRhLkNWUi5iJEdyb3VwaW5nVGVybSksIF0KCnBsb3QzLm1hbGUubWV0YS5WUi5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMubWFsZS5tZXRhLlZSICU+JSBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JQogIG11dGF0ZSgKICAgIGxuVlIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDIpKSwgbG5WUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soNikpLAogICAgbG5WUl91cHBlciA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soNykpLCBsblZSX3NlID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjaygzKSkKICApKVssIGMoMSwgNDo3KV0KcGxvdDMubWFsZS5tZXRhLlZSLmIgPC0gcGxvdDMubWFsZS5tZXRhLlZSLmJbb3JkZXIocGxvdDMubWFsZS5tZXRhLlZSLmIkR3JvdXBpbmdUZXJtKSwgXQoKcGxvdDMubWFsZS5tZXRhLlJSLmIgPC0gYXMuZGF0YS5mcmFtZShwbG90My5tYWxlLm1ldGEuUlIgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbXV0YXRlKAogICAgbG5SUiA9IG1hcF9kYmwobW9kZWxfbG5SUiwgcGx1Y2soMikpLCBsblJSX2xvd2VyID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjayg2KSksCiAgICBsblJSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjayg3KSksIGxuUlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDMpKQogICkpWywgYygxLCA0OjcpXQpwbG90My5tYWxlLm1ldGEuUlIuYiA8LSBwbG90My5tYWxlLm1ldGEuUlIuYltvcmRlcihwbG90My5tYWxlLm1ldGEuUlIuYiRHcm91cGluZ1Rlcm0pLCBdCgpvdmVyYWxsLm1hbGUucGxvdDMgPC0gZnVsbF9qb2luKHBsb3QzLm1hbGUubWV0YS5DVlIuYiwgcGxvdDMubWFsZS5tZXRhLlZSLmIpCm92ZXJhbGwubWFsZS5wbG90MyA8LSBmdWxsX2pvaW4ob3ZlcmFsbC5tYWxlLnBsb3QzLCBwbG90My5tYWxlLm1ldGEuUlIuYikKCm92ZXJhbGwubWFsZS5wbG90MyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwubWFsZS5wbG90MyRHcm91cGluZ1Rlcm0sIGxldmVscyA9IGMoIkJlaGF2aW91ciIsICJNb3JwaG9sb2d5IiwgIk1ldGFib2xpc20iLCAiUGh5c2lvbG9neSIsICJJbW11bm9sb2d5IiwgIkhlbWF0b2xvZ3kiLCAiSGVhcnQiLCAiSGVhcmluZyIsICJFeWUiLCAiQWxsIikpCm92ZXJhbGwubWFsZS5wbG90MyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwubWFsZS5wbG90MyRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMob3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSkpKQoKb3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYygiQmVoYXZpb3VyIiwgIk1vcnBob2xvZ3kiLCAiTWV0YWJvbGlzbSIsICJQaHlzaW9sb2d5IiwgIkltbXVub2xvZ3kiLCAiSGVtYXRvbG9neSIsICJIZWFydCIsICJIZWFyaW5nIiwgIkV5ZSIsICJBbGwiKSkKb3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5tYWxlLnBsb3QzJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhvdmVyYWxsLm1hbGUucGxvdDMkR3JvdXBpbmdUZXJtKSkpCgojIHN0cihvdmVyYWxsLm1hbGUucGxvdDMpCmBgYAoKClJlc3RydWN0dXJlIE1BTEUgZGF0YSBmb3IgcGxvdHRpbmcgCgpgYGB7cn0Kb3ZlcmFsbDMubWFsZS5zaWcgPC0gZ2F0aGVyKG92ZXJhbGwubWFsZS5wbG90MywgcGFyYW1ldGVyLCB2YWx1ZSwgYyhsbkNWUiwgbG5SUiksIGZhY3Rvcl9rZXkgPSBUUlVFKSAKCmxuQ1ZSLmNpIDwtIG92ZXJhbGwzLm1hbGUuc2lnICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuQ1ZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpCiMgbG5WUi5jaSA8LSBvdmVyYWxsMy5tYWxlLnNpZyAgJT4lIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuVlIiKSAlPiUgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKQpsblJSLmNpIDwtIG92ZXJhbGwzLm1hbGUuc2lnICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuUlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpCgpvdmVyYWxsNC5tYWxlLnNpZyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpIAoKb3ZlcmFsbDQubWFsZS5zaWckbGFiZWwgPC0gIkNJIG5vdCBvdmVybGFwcGluZyB6ZXJvIgpgYGAKClBsb3QgRmlnIDVCIGFsbCBzaWduaWZpY2FudCByZXN1bHRzIChDSSBub3Qgb3ZlcmxhcHBpbmcgemVybykgZm9yIG1hbGVzLiBUaGlzIGlzIHRoZSByaWdodCBwYW5lbCBpbiBGaWd1cmUgNUIuCgpgYGB7cn0KCk1ldGFtZXRhX0ZpZzNfbWFsZS5zaWcgPC0gb3ZlcmFsbDQubWFsZS5zaWcgJT4lCiAgZ2dwbG90KGFlcyh5ID0gR3JvdXBpbmdUZXJtLCB4ID0gdmFsdWUpKSArCiAgZ2VvbV9lcnJvcmJhcmgoYWVzKAogICAgeG1pbiA9IGNpLmxvdywKICAgIHhtYXggPSBjaS5oaWdoCiAgKSwKICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0UKICApICsKICBnZW9tX3BvaW50KGFlcyhzaGFwZSA9IHBhcmFtZXRlciksCiAgICBmaWxsID0gIm1lZGl1bWFxdWFtYXJpbmUiLCBjb2xvciA9ICJtZWRpdW1hcXVhbWFyaW5lIiwgc2l6ZSA9IDIuMiwKICAgIHNob3cubGVnZW5kID0gRkFMU0UKICApICsKICBzY2FsZV94X2NvbnRpbnVvdXMoCiAgICBsaW1pdHMgPSBjKDAsIDAuNCksCiAgICBicmVha3MgPSBjKDAsIDAuMyksCiAgICBuYW1lID0gIkVmZmVjdCBzaXplIgogICkgKwogIGdlb21fdmxpbmUoCiAgICB4aW50ZXJjZXB0ID0gMCwKICAgIGNvbG9yID0gImJsYWNrIiwKICAgIGxpbmV0eXBlID0gImRhc2hlZCIKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgcm93cyA9IHZhcnMobGFiZWwpLAogICAgbGFiZWxsZXIgPSBsYWJlbF93cmFwX2dlbih3aWR0aCA9IDIzKSwKICAgIHNjYWxlcyA9ICJmcmVlIiwKICAgIHNwYWNlID0gImZyZWUiCiAgKSArCiAgdGhlbWVfYncoKSArCiAgdGhlbWUoCiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLAogICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksCiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gImJsYW5rIiwgZmlsbCA9ICJncmF5OTAiKSwKICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwKICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgImxpbmVzIiksCiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG91ciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG9yID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLAogICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLAogICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpCiAgKQoKIyBNZXRhbWV0YV9GaWczX21hbGUuc2lnCmBgYAoKIyMjIyBGZW1hbGUgcGFydCwgc2lnbmlmaWNhbnQgdHJhaXRzCkZlbWFsZSBGaWc1QiBzaWcKClByZXBhcmUgZGF0YSBmb3IgdHJhaXRzIHdpdGggQ0kgbm90IG92ZXJsYXBwaW5nIDAKY3JlYXRlIGNvbHVtbiB3aXRoIDE9IGRpZmZlcmVudCBmcm9tIHplcm8sIDA9IHplcm8gaW5jbHVkZWQgaW4gQ0kKCmBgYHtyfQoKIyBGZW1hbGUtYmlhc2VkIHRyYWl0cwoKbWV0YS5mZW1hbGUucGxvdDMuc2lnIDwtIG1ldGFjb21ibyAlPiUKICBtdXRhdGUoCiAgICBzaWdDVlIgPSBpZmVsc2UobG5DVlJfdXBwZXIgPCAwLCAxLCAwKSwKICAgIHNpZ1ZSID0gaWZlbHNlKGxuVlJfdXBwZXIgPCAwLCAxLCAwKSwKICAgIHNpZ1JSID0gaWZlbHNlKGxuUlJfdXBwZXIgPCAwLCAxLCAwKQogICkKCiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsbkNWUgoKbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5DVlIgPC0gbWV0YS5mZW1hbGUucGxvdDMuc2lnICU+JQogIGZpbHRlcihzaWdDVlIgPT0gMSkgJT4lCiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiUKICBuZXN0KCkKCm1ldGFjb21ib19mZW1hbGUucGxvdDMuQ1ZSLmFsbCA8LSBtZXRhLmZlbWFsZS5wbG90My5zaWcgJT4lCiAgZmlsdGVyKHNpZ0NWUiA9PSAxKSAlPiUKICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpICAgCgojIFNpZ25pZmljYW50IHN1YnNldCBmb3IgbG5WUgoKbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5WUiA8LSBtZXRhLmZlbWFsZS5wbG90My5zaWcgJT4lCiAgZmlsdGVyKHNpZ1ZSID09IDEpICU+JQogIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbmVzdCgpCgptZXRhY29tYm9fZmVtYWxlLnBsb3QzLlZSLmFsbCA8LSBtZXRhLmZlbWFsZS5wbG90My5zaWcgJT4lCiAgZmlsdGVyKHNpZ1ZSID09IDEpICU+JQogIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSkgICAKCiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsblJSCgptZXRhY29tYm9fZmVtYWxlLnBsb3QzLlJSIDwtIG1ldGEuZmVtYWxlLnBsb3QzLnNpZyAlPiUKICBmaWx0ZXIoc2lnUlIgPT0gMSkgJT4lCiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiUKICBuZXN0KCkKCiNGZWxpeCBhZGRlZCA3LzIvMjAyMDogbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5SUls0LDJdW1sxXV0gW1sxXV0kbG5SUl91cHBlcjsgI29ubHkgdHdvIGRhdGEgcG9pbnRzOiAtMC4xMjM3NzI2MyAtMC4wMTU1MzQ2Mjsgc2hvdWxkIHByb2JhYmx5IGJlIGV4Y2x1ZGVkPyEKCm1ldGFjb21ib19mZW1hbGUucGxvdDMuUlIuYWxsIDwtIG1ldGEuZmVtYWxlLnBsb3QzLnNpZyAlPiUKICBmaWx0ZXIoc2lnUlIgPT0gMSkgJT4lCiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKSAgIAoKIyAqKkZpbmFsIGZpeGVkIGVmZmVjdHMgbWV0YS1hbmFseXNlcyB3aXRoaW4gZ3JvdXBpbmcgdGVybXMsIHdpdGggU0Ugb2YgdGhlIGVzdGltYXRlCgpwbG90My5mZW1hbGUubWV0YS5DVlIgPC0gbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5DVlIgJT4lCiAgbXV0YXRlKG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgIHlpID0gLngkbG5DVlIsIHNlaSA9ICgueCRsbkNWUl91cHBlciAtIC54JGxuQ1ZSX2xvd2VyKSAvICgyICogMS45NiksCiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRgogICkpKQoKcGxvdDMuZmVtYWxlLm1ldGEuVlIgPC0gbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5WUiAlPiUKICBtdXRhdGUobW9kZWxfbG5WUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoCiAgICB5aSA9IC54JGxuVlIsIHNlaSA9ICgueCRsblZSX3VwcGVyIC0gLngkbG5WUl9sb3dlcikgLyAoMiAqIDEuOTYpLAogICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEYKICApKSkKCnBsb3QzLmZlbWFsZS5tZXRhLlJSIDwtIG1ldGFjb21ib19mZW1hbGUucGxvdDMuUlIgJT4lCiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblJSLCBzZWkgPSAoLngkbG5SUl91cHBlciAtIC54JGxuUlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgojIEFjcm9zcyBhbGwgZ3JvdXBpbmcgdGVybXMgIwoKcGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmFsbCA8LSBtZXRhY29tYm9fZmVtYWxlLnBsb3QzLkNWUi5hbGwgJT4lCiAgbXV0YXRlKG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgIHlpID0gLngkbG5DVlIsIHNlaSA9ICgueCRsbkNWUl91cHBlciAtIC54JGxuQ1ZSX2xvd2VyKSAvICgyICogMS45NiksCiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRgogICkpKQoKcGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmFsbCA8LSBwbG90My5mZW1hbGUubWV0YS5DVlIuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gIkFsbCIpCgpwbG90My5mZW1hbGUubWV0YS5WUi5hbGwgPC0gbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5WUi5hbGwgJT4lCiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5mZW1hbGUubWV0YS5WUi5hbGwgPC0gcGxvdDMuZmVtYWxlLm1ldGEuVlIuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gIkFsbCIpCgpwbG90My5mZW1hbGUubWV0YS5SUi5hbGwgPC0gbWV0YWNvbWJvX2ZlbWFsZS5wbG90My5SUi5hbGwgJT4lCiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblJSLCBzZWkgPSAoLngkbG5SUl91cHBlciAtIC54JGxuUlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5mZW1hbGUubWV0YS5SUi5hbGwgPC0gcGxvdDMuZmVtYWxlLm1ldGEuUlIuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gIkFsbCIpCgojIENvbWJpbmUgd2l0aCBzZXBhcmF0ZSBncm91cGluZyB0ZXJtIHJlc3VsdHMKCnBsb3QzLmZlbWFsZS5tZXRhLkNWUiA8LSBiaW5kX3Jvd3MocGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLCBwbG90My5mZW1hbGUubWV0YS5DVlIuYWxsKQpwbG90My5mZW1hbGUubWV0YS5WUiA8LSBiaW5kX3Jvd3MocGxvdDMuZmVtYWxlLm1ldGEuVlIsIHBsb3QzLmZlbWFsZS5tZXRhLlZSLmFsbCkKcGxvdDMuZmVtYWxlLm1ldGEuUlIgPC0gYmluZF9yb3dzKHBsb3QzLmZlbWFsZS5tZXRhLlJSLCBwbG90My5mZW1hbGUubWV0YS5SUi5hbGwpCgojICoqUmUtc3RydWN0dXJlIGRhdGEgZm9yIGVhY2ggZ3JvdXBpbmcgdGVybTsgZGVsZXRlIHVuLXVzZWQgdmFyaWFibGVzCgpwbG90My5mZW1hbGUubWV0YS5DVlIuYiA8LSBhcy5kYXRhLmZyYW1lKHBsb3QzLmZlbWFsZS5tZXRhLkNWUiAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiUKICBtdXRhdGUoCiAgICBsbkNWUiA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDIpKSwgbG5DVlJfbG93ZXIgPSBtYXBfZGJsKG1vZGVsX2xuQ1ZSLCBwbHVjayg2KSksCiAgICBsbkNWUl91cHBlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDcpKSwgbG5DVlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuQ1ZSLCBwbHVjaygzKSkKICApKVssIGMoMSwgNDo3KV0KCmFkZC5yb3cuaGVhcmluZyA8LSBhcy5kYXRhLmZyYW1lKHQoYygiSGVhcmluZyIsIE5BLCBOQSwgTkEsIE5BKSkpICU+JSBzZXROYW1lcyhuYW1lcyhwbG90My5mZW1hbGUubWV0YS5DVlIuYikpCgpwbG90My5mZW1hbGUubWV0YS5DVlIuYiA8LSBiaW5kX3Jvd3MocGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmIsIGFkZC5yb3cuaGVhcmluZykKcGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmIgPC0gcGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmJbb3JkZXIocGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmIkR3JvdXBpbmdUZXJtKSwgXQoKcGxvdDMuZmVtYWxlLm1ldGEuVlIuYiA8LSBhcy5kYXRhLmZyYW1lKHBsb3QzLmZlbWFsZS5tZXRhLlZSICU+JSBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JQogIG11dGF0ZSgKICAgIGxuVlIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDIpKSwgbG5WUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soNikpLAogICAgbG5WUl91cHBlciA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soNykpLCBsblZSX3NlID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjaygzKSkKICApKVssIGMoMSwgNDo3KV0KCnBsb3QzLmZlbWFsZS5tZXRhLlZSLmIgPC0gcGxvdDMuZmVtYWxlLm1ldGEuVlIuYltvcmRlcihwbG90My5mZW1hbGUubWV0YS5WUi5iJEdyb3VwaW5nVGVybSksIF0KCnBsb3QzLmZlbWFsZS5tZXRhLlJSLmIgPC0gYXMuZGF0YS5mcmFtZShwbG90My5mZW1hbGUubWV0YS5SUiAlPiUgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiUKICBtdXRhdGUoCiAgICBsblJSID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjaygyKSksIGxuUlJfbG93ZXIgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDYpKSwKICAgIGxuUlJfdXBwZXIgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDcpKSwgbG5SUl9zZSA9IG1hcF9kYmwobW9kZWxfbG5SUiwgcGx1Y2soMykpCiAgKSlbLCBjKDEsIDQ6NyldCgpwbG90My5mZW1hbGUubWV0YS5SUi5iIDwtIHBsb3QzLmZlbWFsZS5tZXRhLlJSLmJbb3JkZXIocGxvdDMuZmVtYWxlLm1ldGEuUlIuYiRHcm91cGluZ1Rlcm0pLCBdCgpvdmVyYWxsLmZlbWFsZS5wbG90MyA8LSBmdWxsX2pvaW4ocGxvdDMuZmVtYWxlLm1ldGEuQ1ZSLmIsIHBsb3QzLmZlbWFsZS5tZXRhLlZSLmIpCm92ZXJhbGwuZmVtYWxlLnBsb3QzIDwtIGZ1bGxfam9pbihvdmVyYWxsLmZlbWFsZS5wbG90MywgcGxvdDMuZmVtYWxlLm1ldGEuUlIuYikKCm92ZXJhbGwuZmVtYWxlLnBsb3QzJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5mZW1hbGUucGxvdDMkR3JvdXBpbmdUZXJtLCBsZXZlbHMgPSBjKCJCZWhhdmlvdXIiLCAiTW9ycGhvbG9neSIsICJNZXRhYm9saXNtIiwgIlBoeXNpb2xvZ3kiLCAiSW1tdW5vbG9neSIsICJIZW1hdG9sb2d5IiwgIkhlYXJ0IiwgIkhlYXJpbmciLCAiRXllIiwgIkFsbCIpKQpvdmVyYWxsLmZlbWFsZS5wbG90MyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwuZmVtYWxlLnBsb3QzJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhvdmVyYWxsLmZlbWFsZS5wbG90MyRHcm91cGluZ1Rlcm0pKSkKCmBgYAoKUmUtc3RydWN0dXJlIGRhdGEgZm9yIHBsb3R0aW5nCgpgYGB7cn0Kb3ZlcmFsbDMuZmVtYWxlLnNpZyA8LSBnYXRoZXIob3ZlcmFsbC5mZW1hbGUucGxvdDMsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSkgCgpsbkNWUi5jaSA8LSBvdmVyYWxsMy5mZW1hbGUuc2lnICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuQ1ZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpCiMgbG5WUi5jaSA8LSBvdmVyYWxsMy5mZW1hbGUuc2lnICAlPiUgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5WUiIpICU+JSBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpCmxuUlIuY2kgPC0gb3ZlcmFsbDMuZmVtYWxlLnNpZyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsblJSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuUlJfbG93ZXIsIGNpLmhpZ2ggPSBsblJSX3VwcGVyKQoKb3ZlcmFsbDQuZmVtYWxlLnNpZyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpICMgbG5WUi5jaSwKCm92ZXJhbGw0LmZlbWFsZS5zaWckbGFiZWwgPC0gIkNJIG5vdCBvdmVybGFwcGluZyB6ZXJvIgoKYGBgCgpQbG90dGluZyBGaWc1QiBhbGwgc2lnbmlmaWNhbnQgcmVzdWx0cyAoQ0kgbm90IG92ZXJsYXBwaW5nIHplcm8sIGZlbWFsZSApCgpgYGB7cn0KCk1ldGFtZXRhX0ZpZzNfZmVtYWxlLnNpZyAgPC0gb3ZlcmFsbDQuZmVtYWxlLnNpZyAlPiUKICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICsKICBnZW9tX2Vycm9yYmFyaChhZXMoCiAgICB4bWluID0gY2kubG93LAogICAgeG1heCA9IGNpLmhpZ2gKICApLAogIGhlaWdodCA9IDAuMSwgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSwKICAgIGZpbGwgPSAic2FsbW9uMSIsIGNvbG9yID0gInNhbG1vbjEiLCBzaXplID0gMi4yLAogICAgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIHNjYWxlX3hfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoLTAuNCwgMCksCiAgICBicmVha3MgPSBjKC0wLjMsIDApLAogICAgbmFtZSA9ICJFZmZlY3Qgc2l6ZSIKICApICsKICBnZW9tX3ZsaW5lKAogICAgeGludGVyY2VwdCA9IDAsCiAgICBjb2xvciA9ICJibGFjayIsCiAgICBsaW5ldHlwZSA9ICJkYXNoZWQiCiAgKSArCiAgZmFjZXRfZ3JpZCgKICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksICMgcm93cyA9IHZhcnMobGFiZWwpLAogICAgIyBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLAogICAgc2NhbGVzID0gImZyZWUiLAogICAgc3BhY2UgPSAiZnJlZSIKICApICsKICB0aGVtZV9idygpICsKICB0aGVtZSgKICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksCiAgICBzdHJpcC50ZXh0LnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDEyKSwKICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSAiYmxhbmsiLCBmaWxsID0gImdyYXk5MCIpLAogICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLAogICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCAibGluZXMiKSwKICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLAogICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3VyID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3IgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKCkKICApCgojIE1ldGFtZXRhX0ZpZzNfZmVtYWxlLnNpZyAjKEZpZ3VyZSA1QiBsZWZ0IHBhbmVsKQpgYGAKIyMgSk9JTiEhISBDT0RFIE1JU1NJTkc/PwptYWxlYmlhc19GaWcyX3NpZ3RyYWl0cwpNZXRhbWV0YV9GaWczX2ZlbWFsZS5zaWcgIyhGaWd1cmUgNUIgbGVmdCBwYW5lbCkKTWV0YW1ldGFfRmlnM19tYWxlLnNpZwpgYGB7cn0KRmlnNUIgPC0gZ2dhcnJhbmdlKE1ldGFtZXRhX0ZpZzNfZmVtYWxlLnNpZywgTWV0YW1ldGFfRmlnM19tYWxlLnNpZywKICBuY29sID0gMiwgbnJvdyA9IDEsIHdpZHRocyA9IGMoMSwgMS4yMCksIGhlaWdodHMgPSBjKDEsIDEpCikKCkZpZzUgPC0gZ2dhcnJhbmdlKG1hbGViaWFzX0ZpZzJfc2lndHJhaXRzLCBGaWc1QiwKICBuY29sID0gMSwgbnJvdyA9IDIsIHdpZHRocyA9IGMoMSwgMS4xMCksIGhlaWdodHMgPSBjKDEuMTAsIDEpLCAgbGFiZWxzID0gYygiQSIsICJCIikKKQpGaWc1CmBgYAoKCgojIFN1cHBsZW1lbnRhbCBQbG90cwojIyBGaWd1cmUgUzEgCiMjIyBJbmNsdWRpbmcgbG5WUgojIyMgQ291bnQgZGF0YSwgaW5jbHVkaW5nIGxuVlIgKEZpZyBTMSBwYW5lbCBBKQoKYGBge3J9CiMgKlByZXBhcmUgZGF0YSBmb3IgYWxsIHRyYWl0cwoKbWV0YS5wbG90Mi5hbGwgPC0gbWV0YV9jbGVhbiAlPiUKICBzZWxlY3QobG5DVlIsIGxuVlIsIGxuUlIsIEdyb3VwaW5nVGVybSkgJT4lCiAgYXJyYW5nZShHcm91cGluZ1Rlcm0pCgptZXRhLnBsb3QyLmFsbC5iUzEgPC0gZ2F0aGVyKG1ldGEucGxvdDIuYWxsLCB0cmFpdCwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpKQoKbWV0YS5wbG90Mi5hbGwuYlMxJHRyYWl0IDwtIGZhY3RvcihtZXRhLnBsb3QyLmFsbC5iUzEkdHJhaXQsIGxldmVscyA9IGMoImxuQ1ZSIiwgImxuVlIiLCAibG5SUiIpKQoKbWV0YS5wbG90Mi5hbGwuY1MxIDwtIG1ldGEucGxvdDIuYWxsLmJTMSAlPiUKICBncm91cF9ieV9hdCh2YXJzKHRyYWl0LCBHcm91cGluZ1Rlcm0pKSAlPiUKICBzdW1tYXJpc2UoCiAgICBtYWxlYmlhcyA9IHN1bSh2YWx1ZSA+IDApLCBmZW1hbGViaWFzID0gc3VtKHZhbHVlIDw9IDApLCB0b3RhbCA9IG1hbGViaWFzICsgZmVtYWxlYmlhcywKICAgIG1hbGVwZXJjZW50ID0gbWFsZWJpYXMgKiAxMDAgLyB0b3RhbCwgZmVtYWxlcGVyY2VudCA9IGZlbWFsZWJpYXMgKiAxMDAgLyB0b3RhbAogICkKCm1ldGEucGxvdDIuYWxsLmNTMSRsYWJlbCA8LSAiQWxsIHRyYWl0cyIKCiMgUmUtc3RydWN0dXJlIHRvIGNyZWF0ZSBzdGFja2VkIGJhciBwbG90cwoKbWV0YS5wbG90Mi5hbGwuZFMxIDwtIGFzLmRhdGEuZnJhbWUobWV0YS5wbG90Mi5hbGwuY1MxKQptZXRhLnBsb3QyLmFsbC5lUzEgPC0gZ2F0aGVyKG1ldGEucGxvdDIuYWxsLmRTMSwga2V5ID0gc2V4LCB2YWx1ZSA9IHBlcmNlbnQsIG1hbGVwZXJjZW50OmZlbWFsZXBlcmNlbnQsIGZhY3Rvcl9rZXkgPSBUUlVFKQoKIyBDcmVhdGUgbmV3IHNhbXBsZSBzaXplIHZhcmlhYmxlCgptZXRhLnBsb3QyLmFsbC5lUzEkc2FtcGxlc2l6ZSA8LSB3aXRoKG1ldGEucGxvdDIuYWxsLmVTMSwgaWZlbHNlKHNleCA9PSAibWFsZXBlcmNlbnQiLCBtYWxlYmlhcywgZmVtYWxlYmlhcykpCgojIEFkZCBzdW1tYXJ5IHJvdyAoJ0FsbCcpIGFuZCByZS1hcnJhbmdlIHJvd3MgaW50byBjb3JyZWN0IG9yZGVyIGZvciBwbG90dGluZyAod2FybmluZ3MgYWJvdXQgY29lcmNpbmcgJ2lkJyBpbnRvIGNoYXJhY3RlciB2ZWN0b3IgYXJlIG9rKQoKbWV0YS5wbG90Mi5hbGwuZlMxIDwtIG1ldGEucGxvdDIuYWxsLmVTMSAlPiUgZ3JvdXBfYnkodHJhaXQsIHNleCkgJT4lIAogIHN1bW1hcmlzZShHcm91cGluZ1Rlcm0gPSAiQWxsIiwgbWFsZWJpYXMgPSBzdW0obWFsZWJpYXMpLCBmZW1hbGViaWFzID0gc3VtKGZlbWFsZWJpYXMpLCB0b3RhbCA9IG1hbGViaWFzICsgZmVtYWxlYmlhcywgCiAgICAgICAgICAgIGxhYmVsID0gIkFsbCB0cmFpdHMiLCBzYW1wbGVzaXplID0gc3VtKHNhbXBsZXNpemUpKSAlPiUKICBtdXRhdGUocGVyY2VudCA9IGlmZWxzZShzZXggPT0gImZlbWFsZXBlcmNlbnQiLCBmZW1hbGViaWFzKjEwMC8obWFsZWJpYXMrZmVtYWxlYmlhcyksIG1hbGViaWFzKjEwMC8obWFsZWJpYXMrZmVtYWxlYmlhcykpKSAlPiUKICBiaW5kX3Jvd3MobWV0YS5wbG90Mi5hbGwuZVMxLCAuKSAlPiUKICBtdXRhdGUocm93bnVtYmVyID0gcm93X251bWJlcigpKSAlPiUKICAuW2MoNTUsIDE6OSwgNTcsIDEwOjE4LCA1OSwgMTk6MjcsIDU2LCAyODozNiwgNTgsIDM3OjQ1LCA2MCwgNDY6NTQpLCBdIAoKbWV0YS5wbG90Mi5hbGwuZlMxJEdyb3VwaW5nVGVybSA8LSBmYWN0b3IobWV0YS5wbG90Mi5hbGwuZlMxJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYygiQmVoYXZpb3VyIiwgIk1vcnBob2xvZ3kiLCAiTWV0YWJvbGlzbSIsICJQaHlzaW9sb2d5IiwgIkltbXVub2xvZ3kiLCAiSGVtYXRvbG9neSIsICJIZWFydCIsICJIZWFyaW5nIiwgIkV5ZSIsICJBbGwiKSkgCm1ldGEucGxvdDIuYWxsLmZTMSRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG1ldGEucGxvdDIuYWxsLmZTMSRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMobWV0YS5wbG90Mi5hbGwuZlMxJEdyb3VwaW5nVGVybSkpKQoKbWFsZWJpYXNfRmlnUzFfYWxsdHJhaXRzIDwtCiAgZ2dwbG90KG1ldGEucGxvdDIuYWxsLmZTMSkgKwogIGFlcyh4ID0gR3JvdXBpbmdUZXJtLCB5ID0gcGVyY2VudCwgZmlsbCA9IHNleCkgKwogIGdlb21fY29sKCkgKwogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDUwLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJncmF5NDAiKSArCiAgZ2VvbV90ZXh0KAogICAgZGF0YSA9IHN1YnNldChtZXRhLnBsb3QyLmFsbC5mUzEsIHNhbXBsZXNpemUgIT0gMCksIGFlcyhsYWJlbCA9IHNhbXBsZXNpemUpLCBwb3NpdGlvbiA9IHBvc2l0aW9uX3N0YWNrKHZqdXN0ID0gLjUpLAogICAgY29sb3IgPSAid2hpdGUiLCBzaXplID0gMy41CiAgKSArCiAgZmFjZXRfZ3JpZCgKICAgIGNvbHMgPSB2YXJzKHRyYWl0KSwgcm93cyA9IHZhcnMobGFiZWwpLCBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMTgpLAogICAgc2NhbGVzID0gImZyZWUiLCBzcGFjZSA9ICJmcmVlIgogICkgKwogIHNjYWxlX2ZpbGxfYnJld2VyKHBhbGV0dGUgPSAiU2V0MiIpICsKICB0aGVtZV9idyhiYXNlX3NpemUgPSAxOCkgKwogIHRoZW1lKAogICAgc3RyaXAudGV4dC55ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMjcwLCBzaXplID0gMTAsIG1hcmdpbiA9IG1hcmdpbih0ID0gMTUsIHIgPSAxNSwgYiA9IDE1LCBsID0gMTUpKSwKICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLAogICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9ICJibGFuayIsIGZpbGwgPSAiZ3JheTkwIiksCiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksCiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsICJsaW5lcyIpLAogICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksCiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvdXIgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIiwKICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKQogICkgKwogIGNvb3JkX2ZsaXAoKQoKIyBtYWxlYmlhc19GaWdTMV9hbGx0cmFpdHMgICAgICMocGFuZWwgQSBpbiBGaWd1cmUgUzEpCmBgYAoKIyMjICBPdmVyYWxsIHJlc3VsdHMgb2Ygc2Vjb25kIG9yZGVyIG1ldGEgYW5hbHlzaXMsIElOQ0xVRElORyBWUgojIyMjIFJlLXN0cnVjdHVyZSBkYXRhIGZvciBwbG90dGluZyAKUmVzdHJ1Y3R1cmUgTUFMRSBkYXRhIGZvciBwbG90dGluZyAKCmBgYHtyfQpvdmVyYWxsMy5tYWxlLnNpZ1MgPC0gZ2F0aGVyKG92ZXJhbGwubWFsZS5wbG90MywgcGFyYW1ldGVyLCB2YWx1ZSwgYyhsbkNWUiwgbG5WUiwgbG5SUiksIGZhY3Rvcl9rZXkgPSBUUlVFKQoKbG5DVlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuQ1ZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpCmxuVlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpCmxuUlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuUlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpCgpvdmVyYWxsNC5tYWxlLnNpZ1MgPC0gYmluZF9yb3dzKGxuQ1ZSLmNpLCBsblZSLmNpLCBsblJSLmNpKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgcGFyYW1ldGVyLCB2YWx1ZSwgY2kubG93LCBjaS5oaWdoKQoKb3ZlcmFsbDQubWFsZS5zaWdTJGxhYmVsIDwtICJDSSBub3Qgb3ZlcmxhcHBpbmcgemVybyIKCiMgRGF0YSBhcmUgcmUtc3RydWN0dXJlZCwgYW5kIGdyb3VwaW5nIHRlcm1zIGFyZSBiZWluZyByZS1vcmRlcmVkCgpvdmVyYWxsM1MgPC0gZ2F0aGVyKG92ZXJhbGwyLCBwYXJhbWV0ZXIsIHZhbHVlLCBjKGxuQ1ZSLCBsblZSLCBsblJSKSwgZmFjdG9yX2tleSA9IFRSVUUpCgpsbkNWUi5jaSA8LSBvdmVyYWxsM1MgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5DVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5DVlJfbG93ZXIsIGNpLmhpZ2ggPSBsbkNWUl91cHBlcikKbG5WUi5jaSA8LSBvdmVyYWxsM1MgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5WUiIpICU+JQogIG11dGF0ZShjaS5sb3cgPSBsblZSX2xvd2VyLCBjaS5oaWdoID0gbG5WUl91cHBlcikKbG5SUi5jaSA8LSBvdmVyYWxsM1MgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5SUiIpICU+JQogIG11dGF0ZShjaS5sb3cgPSBsblJSX2xvd2VyLCBjaS5oaWdoID0gbG5SUl91cHBlcikKCm92ZXJhbGw0UyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpCgojIFJlLW9yZGVyIGdyb3VwaW5nIHRlcm1zCgpvdmVyYWxsNFMkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihvdmVyYWxsNFMkR3JvdXBpbmdUZXJtLCBsZXZlbHMgPSBjKCJCZWhhdmlvdXIiLCAiTW9ycGhvbG9neSIsICJNZXRhYm9saXNtIiwgIlBoeXNpb2xvZ3kiLCAiSW1tdW5vbG9neSIsICJIZW1hdG9sb2d5IiwgIkhlYXJ0IiwgIkhlYXJpbmciLCAiRXllIiwgIkFsbCIpKQpvdmVyYWxsNFMkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihvdmVyYWxsNFMkR3JvdXBpbmdUZXJtLCByZXYobGV2ZWxzKG92ZXJhbGw0UyRHcm91cGluZ1Rlcm0pKSkKb3ZlcmFsbDRTJGxhYmVsIDwtICJBbGwgdHJhaXRzIgpgYGAKCiMjIyMgUHJlcGFyYXRpb24gZm9yIHBsb3QsIGluY2x1ZGluZyBsblZSClByZXBhcmF0aW9uOiBTdWItUGxvdCAgZm9yIEZpZ3VyZSBTMTogYWxsIHRyYWl0cyAoUzEgQikKCmBgYHtyfQpNZXRhbWV0YV9GaWdTMV9hbGx0cmFpdHMgPC0gb3ZlcmFsbDRTICU+JQoKICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICsKICBnZW9tX2Vycm9yYmFyaChhZXMoCiAgICB4bWluID0gY2kubG93LAogICAgeG1heCA9IGNpLmhpZ2gKICApLAogIGhlaWdodCA9IDAuMSwgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSwKICAgIGZpbGwgPSAiYmxhY2siLAogICAgY29sb3IgPSAiYmxhY2siLCBzaXplID0gMi4yLAogICAgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIHNjYWxlX3hfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoLTAuMjQsIDAuMjUpLAogICAgYnJlYWtzID0gYygtMC4yLCAtMC4xLCAwLCAwLjEsIDAuMiksCiAgICBuYW1lID0gIkVmZmVjdCBzaXplIgogICkgKwogIGdlb21fdmxpbmUoCiAgICB4aW50ZXJjZXB0ID0gMCwKICAgIGNvbG9yID0gImJsYWNrIiwKICAgIGxpbmV0eXBlID0gImRhc2hlZCIKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgcm93cyA9IHZhcnMobGFiZWwpLAogICAgbGFiZWxsZXIgPSBsYWJlbF93cmFwX2dlbih3aWR0aCA9IDIzKSwKICAgIHNjYWxlcyA9ICJmcmVlIiwKICAgIHNwYWNlID0gImZyZWUiCiAgKSArCiAgdGhlbWVfYncoKSArCiAgdGhlbWUoCiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLAogICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksCiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gImJsYW5rIiwgZmlsbCA9ICJncmF5OTAiKSwKICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwKICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgImxpbmVzIiksCiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG91ciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG9yID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLAogICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLAogICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBzaXplID0gMTQpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpCiAgKQoKIyBNZXRhbWV0YV9GaWdTMV9hbGx0cmFpdHMKYGBgCgojIyMgSGV0ZXJvZ2VuZWl0eQpUaGUgYW5hbHlzaXMgZm9yIGhldGVyb2dlbmVpdHkgZm9sbG93cyB0aGUgd29ya2Zsb3cgb2YgdGhlIGFib3ZlIHN0ZXBzIGZvciB0aGUgZGlmZmVyZW50IG1ldGEtYW5hbHlzZXMuIEhvd2V2ZXIsIGluIHRoZSBpbml0aWFsIG1ldGEtYW5hbHlzaXMgd2UgZXh0cmFjdCBzaWdtYV4yIGFuZCBlcnJvcnMgZm9yIG1vdXNlIHN0cmFpbnMgYW5kIGNlbnRlcnMgKEluc3RpdHV0aW9ucykuIAoKYGBge3J9CiMgQ3JlYXRlIGRhdGFmcmFtZSB0byBzdG9yZSByZXN1bHRzCnJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nIDwtIGFzLmRhdGEuZnJhbWUoY2JpbmQoYygxOm4pLCBtYXRyaXgocmVwKDAsIG4gKiAzMCksIG5jb2wgPSAzMCkpKQpuYW1lcyhyZXN1bHRzLmFsbGhldGVyby5ncm91cGluZykgPC0gYygKICAiaWQiLCAic2lnbWEyX3N0cmFpbi5DVlIiLCAic2lnbWEyX2NlbnRlci5DVlIiLCAic2lnbWEyX2Vycm9yLkNWUiIsICJzLm5sZXZlbHMuc3RyYWluLkNWUiIsCiAgInMubmxldmVscy5jZW50ZXIuQ1ZSIiwgInMubmxldmVscy5lcnJvci5DVlIiLCAic2lnbWEyX3N0cmFpbi5WUiIsICJzaWdtYTJfY2VudGVyLlZSIiwgInNpZ21hMl9lcnJvci5WUiIsICJzLm5sZXZlbHMuc3RyYWluLlZSIiwKICAicy5ubGV2ZWxzLmNlbnRlci5WUiIsICJzLm5sZXZlbHMuZXJyb3IuVlIiLCAic2lnbWEyX3N0cmFpbi5SUiIsICJzaWdtYTJfY2VudGVyLlJSIiwgInNpZ21hMl9lcnJvci5SUiIsICJzLm5sZXZlbHMuc3RyYWluLlJSIiwKICAicy5ubGV2ZWxzLmNlbnRlci5SUiIsICJzLm5sZXZlbHMuZXJyb3IuUlIiLCAibG5DVlIiLCAibG5DVlJfbG93ZXIiLCAibG5DVlJfdXBwZXIiLCAibG5DVlJfc2UiLCAibG5WUiIsICJsblZSX2xvd2VyIiwgImxuVlJfdXBwZXIiLAogICJsblZSX3NlIiwgImxuUlIiLCAibG5SUl9sb3dlciIsICJsblJSX3VwcGVyIiwgImxuUlJfc2UiCikKCmBgYAoKTE9PUApQYXJhbWV0ZXJzIHRvIGV4dHJhY3QgZnJvbSBtZXRhZm9yIChzaWdtYTIncywgcy5ubGV2ZWxzKQoKYGBge3J9Cgpmb3IgKHQgaW4gMTpuKSB7CiAgdHJ5Q2F0Y2goCiAgICB7CiAgICAgIGRhdGFfcGFyX2FnZSA8LSBkYXRhX3N1YnNldF9wYXJhbWV0ZXJpZF9pbmRpdmlkdWFsX2J5X2FnZShkYXRhLCB0LCBhZ2VfbWluID0gMCwgYWdlX2NlbnRlciA9IDEwMCkKCiAgICAgIHBvcHVsYXRpb25fc3RhdHMgPC0gY2FsY3VsYXRlX3BvcHVsYXRpb25fc3RhdHMoZGF0YV9wYXJfYWdlKQoKICAgICAgcmVzdWx0cyA8LSBjcmVhdGVfbWV0YV9hbmFseXNpc19lZmZlY3Rfc2l6ZXMocG9wdWxhdGlvbl9zdGF0cykKCiAgICAgICMgbG5DVlIsIGxvZ2FyaXRtIG9mIHRoZSByYXRpbyBvZiBtYWxlIGFuZCBmZW1hbGUgY29lZmZpY2llbnRzIG9mIHZhcmlhbmNlCgogICAgICBjdnIuIDwtIG1ldGFmb3I6OnJtYS5tdih5aSA9IGVmZmVjdF9zaXplX0NWUiwgViA9IHNhbXBsZV92YXJpYW5jZV9DVlIsIHJhbmRvbSA9IGxpc3QoCiAgICAgICAgfiAxIHwgc3RyYWluX25hbWUsIH4gMSB8IHByb2R1Y3Rpb25fY2VudGVyLAogICAgICAgIH4gMSB8IGVycgogICAgICApLCBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCBkYXRhID0gcmVzdWx0cykKICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMl0gPC0gY3ZyLiRzaWdtYTJbMV0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgM10gPC0gY3ZyLiRzaWdtYTJbMl0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgNF0gPC0gY3ZyLiRzaWdtYTJbM10KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgNV0gPC0gY3ZyLiRzLm5sZXZlbHNbMV0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgNl0gPC0gY3ZyLiRzLm5sZXZlbHNbMl0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgN10gPC0gY3ZyLiRzLm5sZXZlbHNbM10KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMjBdIDwtIGN2ci4kYgogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyMV0gPC0gY3ZyLiRjaS5sYgogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyMl0gPC0gY3ZyLiRjaS51YgogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyM10gPC0gY3ZyLiRzZQoKICAgICAgIyBsblZSLCBtYWxlIHRvIGZlbWFsZSB2YXJpYWJpbGl0eSByYXRpbyAobG9nYXJpdGhtIG9mIG1hbGUgYW5kIGZlbWFsZSBzdGFuZGFyZCBkZXZpYXRpb25zKQoKICAgICAgdnIuIDwtIG1ldGFmb3I6OnJtYS5tdih5aSA9IGVmZmVjdF9zaXplX1ZSLCBWID0gc2FtcGxlX3ZhcmlhbmNlX1ZSLCByYW5kb20gPSBsaXN0KAogICAgICAgIH4gMSB8IHN0cmFpbl9uYW1lLCB+IDEgfCBwcm9kdWN0aW9uX2NlbnRlciwKICAgICAgICB+IDEgfCBlcnIKICAgICAgKSwgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwKSwgZGF0YSA9IHJlc3VsdHMpCiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDhdIDwtIHZyLiRzaWdtYTJbMV0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgOV0gPC0gdnIuJHNpZ21hMlsyXQogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAxMF0gPC0gdnIuJHNpZ21hMlszXQogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAxMV0gPC0gdnIuJHMubmxldmVsc1sxXQogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAxMl0gPC0gdnIuJHMubmxldmVsc1syXQogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAxM10gPC0gdnIuJHMubmxldmVsc1szXQogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyNF0gPC0gdnIuJGIKICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMjVdIDwtIHZyLiRjaS5sYgogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAyNl0gPC0gdnIuJGNpLnViCiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDI3XSA8LSB2ci4kc2UKCiAgICAgICMgbG5SUiwgcmVzcG9uc2UgcmF0aW8gKGxvZ2FyaXRobSBvZiBtYWxlIGFuZCBmZW1hbGUgbWVhbnMpCgogICAgICByci4gPC0gbWV0YWZvcjo6cm1hLm12KHlpID0gZWZmZWN0X3NpemVfUlIsIFYgPSBzYW1wbGVfdmFyaWFuY2VfUlIsIHJhbmRvbSA9IGxpc3QoCiAgICAgICAgfiAxIHwgc3RyYWluX25hbWUsIH4gMSB8IHByb2R1Y3Rpb25fY2VudGVyLAogICAgICAgIH4gMSB8IGVycgogICAgICApLCBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCBkYXRhID0gcmVzdWx0cykKICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMTRdIDwtIHJyLiRzaWdtYTJbMV0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMTVdIDwtIHJyLiRzaWdtYTJbMl0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMTZdIDwtIHJyLiRzaWdtYTJbM10KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMTddIDwtIHJyLiRzLm5sZXZlbHNbMV0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMThdIDwtIHJyLiRzLm5sZXZlbHNbMl0KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMTldIDwtIHJyLiRzLm5sZXZlbHNbM10KICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMjhdIDwtIHJyLiRiCiAgICAgIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nW3QsIDI5XSA8LSByci4kY2kubGIKICAgICAgcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbdCwgMzBdIDwtIHJyLiRjaS51YgogICAgICByZXN1bHRzLmFsbGhldGVyby5ncm91cGluZ1t0LCAzMV0gPC0gcnIuJHNlCiAgICB9LAogICAgZXJyb3IgPSBmdW5jdGlvbihlKSB7CiAgICAgIGNhdCgiRVJST1IgOiIsIGNvbmRpdGlvbk1lc3NhZ2UoZSksICJcbiIpCiAgICB9CiAgKQp9CmBgYAoKIyMjIyBFeGNsdWRlIHRyYWl0cyB3aXRob3V0IHZhcmlhdGlvbiBiZXR3ZWVuIG1vdXNlIHN0cmFpbnM7IG1lcmdlIGRhdGFzZXRzICAjRmVsaXggYWRkZWQgNi8yLzIwMjAKCmBgYHtyfQpyZXN1bHRzLmFsbGhldGVyby5ncm91cGluZzIgPC0gcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmdbcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmckcy5ubGV2ZWxzLnN0cmFpbi5WUiAhPSAwLCBdCiMgbnJvdyhyZXN1bHRzLmFsbGhldGVyby5ncm91cGluZykgIzIyMyAgRmVsaXggNy8yLzIwMjAgYWRkZWQ6IG5vdCBzdXJlLiBSdW4gYWdhaW4gYW5kIGl0IHdhcyAyMzI/IQpgYGAKCk1lcmdlIGRhdGEgc2V0cyBjb250YWluaW5nIG1ldGFmb3IgcmVzdWx0cyB3aXRoIHByb2NlZHVyZSBldGMuIG5hbWVzIAoKYGBge3J9CiMgcHJvY2VkdXJlcyA8LSByZWFkLmNzdihoZXJlKCJleHBvcnQiLCAicHJvY2VkdXJlcy5jc3YiKSkKCnJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nMiRwYXJhbWV0ZXJfZ3JvdXAgPC0gZGF0YSRwYXJhbWV0ZXJfZ3JvdXBbbWF0Y2gocmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJGlkLCBkYXRhJGlkKV0KcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJHByb2NlZHVyZSA8LSBkYXRhJHByb2NlZHVyZV9uYW1lW21hdGNoKHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nMiRpZCwgZGF0YSRpZCldCgpyZXN1bHRzLmFsbGhldGVyby5ncm91cGluZzIkR3JvdXBpbmdUZXJtIDwtIHByb2NlZHVyZXMkR3JvdXBpbmdUZXJtW21hdGNoKHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nMiRwcm9jZWR1cmUsIHByb2NlZHVyZXMkcHJvY2VkdXJlKV0KcmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJHBhcmFtZXRlcl9uYW1lIDwtIGRhdGEkcGFyYW1ldGVyX25hbWVbbWF0Y2gocmVzdWx0cy5hbGxoZXRlcm8uZ3JvdXBpbmcyJGlkLCBkYXRhJGlkKV0KYGBgCgojIyMjIENvcnJlbGF0ZWQgcGFyYW1ldGVycwoKYGBge3J9Cm1ldGFoZXRlcm8xIDwtIHJlc3VsdHMuYWxsaGV0ZXJvLmdyb3VwaW5nMgojIGxlbmd0aCh1bmlxdWUobWV0YWhldGVybzEkcHJvY2VkdXJlKSkgIzE5CiMgbGVuZ3RoKHVuaXF1ZShtZXRhaGV0ZXJvMSRHcm91cGluZ1Rlcm0pKSAjOSAKIyBsZW5ndGgodW5pcXVlKG1ldGFoZXRlcm8xJHBhcmFtZXRlcl9ncm91cCkpICMxNTIKIyBsZW5ndGgodW5pcXVlKG1ldGFoZXRlcm8xJHBhcmFtZXRlcl9uYW1lKSkgIzIyMwoKIyBDb3VudCBvZiBudW1iZXIgb2YgcGFyYW1ldGVyIG5hbWVzIChjb3JyZWxhdGVkIHN1Yi10cmFpdHMpIGluIGVhY2ggcGFyYW1ldGVyIGdyb3VwIChwYXJfZ3JvdXBfc2l6ZSkKCm1ldGFoZXRlcm8xYiA8LQogIG1ldGFoZXRlcm8xICU+JQogIGdyb3VwX2J5KHBhcmFtZXRlcl9ncm91cCkgJT4lCiAgbXV0YXRlKHBhcl9ncm91cF9zaXplID0gbl9kaXN0aW5jdChwYXJhbWV0ZXJfbmFtZSkpCgptZXRhaGV0ZXJvMSRwYXJfZ3JvdXBfc2l6ZSA8LSBtZXRhaGV0ZXJvMWIkcGFyX2dyb3VwX3NpemVbbWF0Y2gobWV0YWhldGVybzEkcGFyYW1ldGVyX2dyb3VwLCBtZXRhaGV0ZXJvMWIkcGFyYW1ldGVyX2dyb3VwKV0KCiMgQ3JlYXRlIHN1YnNldHMgd2l0aCA+IDEgY291bnQgKHBhcl9ncm91cF9zaXplID4gMSkKCm1ldGFoZXRlcm8xX3N1YiA8LSBzdWJzZXQobWV0YWhldGVybzEsIHBhcl9ncm91cF9zaXplID4gMSkgIyA5MiBvYnNlcnZhdGlvbnMKIyBzdHIobWV0YWhldGVybzFfc3ViKQojIG1ldGFoZXRlcm8xX3N1YiRzYW1wbGVTaXplIDwtIGFzLm51bWVyaWMobWV0YWhldGVybzFfc3ViJHNhbXBsZVNpemUpICNmcm9tIHByZXZpb3VzIGFuYWx5c2lzPyBkb24ndCB0aGluayBpcyB1c2VkOiA6IGRlbGV0ZSBpbiBmaW5hbCB2ZXJzaW9uCgojIE5lc3QgZGF0YQoKbl9jb3VudC4gPC0gbWV0YWhldGVybzFfc3ViICU+JQogIGdyb3VwX2J5KHBhcmFtZXRlcl9ncm91cCkgJT4lCiAgIyBtdXRhdGUocmF3X04gPSBzdW0oc2FtcGxlU2l6ZSkpICU+JSAgI0ZlbGl4IGFkZGVkOiBkb24ndCB0aGluayBpcyBuZWNlc3Nhcnk6IGRlbGV0ZSBpbiBmaW5hbCB2ZXJzaW9uCiAgbmVzdCgpCgojIG1ldGEtYW5hbHlzaXMgcHJlcGFyYXRpb24KCm1vZGVsX2NvdW50LiA8LSBuX2NvdW50LiAlPiUKICBtdXRhdGUoCiAgICBtb2RlbF9sblJSID0gbWFwKGRhdGEsIH4gcm9idSgueCRsblJSIH4gMSwKICAgICAgZGF0YSA9IC54LCBzdHVkeW51bSA9IC54JGlkLCBtb2RlbHdlaWdodHMgPSBjKCJDT1JSIiksIHJobyA9IDAuOCwKICAgICAgc21hbGwgPSBUUlVFLCB2YXIuZWZmLnNpemUgPSAoLngkbG5SUl9zZSleMgogICAgKSksCiAgICBtb2RlbF9sblZSID0gbWFwKGRhdGEsIH4gcm9idSgueCRsblZSIH4gMSwKICAgICAgZGF0YSA9IC54LCBzdHVkeW51bSA9IC54JGlkLCBtb2RlbHdlaWdodHMgPSBjKCJDT1JSIiksIHJobyA9IDAuOCwKICAgICAgc21hbGwgPSBUUlVFLCB2YXIuZWZmLnNpemUgPSAoLngkbG5WUl9zZSleMgogICAgKSksCiAgICBtb2RlbF9sbkNWUiA9IG1hcChkYXRhLCB+IHJvYnUoLngkbG5DVlIgfiAxLAogICAgICBkYXRhID0gLngsIHN0dWR5bnVtID0gLngkaWQsIG1vZGVsd2VpZ2h0cyA9IGMoIkNPUlIiKSwgcmhvID0gMC44LAogICAgICBzbWFsbCA9IFRSVUUsIHZhci5lZmYuc2l6ZSA9ICgueCRsbkNWUl9zZSleMgogICAgKSkKICApCgoKIyBSb2J1bWV0YSBvYmplY3QgZGV0YWlsczoKIyBzdHIobW9kZWxfY291bnQuJG1vZGVsX2xuQ1ZSW1sxXV0pCgojIyAqUGVyZm9ybSBtZXRhLWFuYWx5c2VzIG9uIGNvcnJlbGF0ZWQgc3ViLXRyYWl0cywgdXNpbmcgcm9idW1ldGEKICMgU3VzaSAvIEZFTElYOiB3aGF0J3MgdGhpcyBiZWxvdz8KIyBTaGluaWNoaTogV2UgdGhpbmsgd2Ugd2FudCB0byB1c2UgdGhlc2UgZm9yIGZ1cnRoZXIgYW5hbHlzZXM6CiMgcmVzaWR1YWwgdmFyaWFuY2U6IGFzLm51bWVyaWMocm9idV9maXQkbW9kX2luZm8kdGVybTEpICAgICAoc2FtZSBhcyAnbW9kX2luZm8kdGF1LnNxJykKIyBzYW1wbGUgc2l6ZTogcm9idV9maXQkTgoKIyMgKipFeHRyYWN0IGFuZCBzYXZlIHBhcmFtZXRlciBlc3RpbWF0ZXMKCiMgRmVsaXg6IGRvZXNuJ3Qgd29yayAsIGVycm9yIG1lc3NhZ2U6CiMhISEhISEhISEhISBFUlJPUiEhISEhISEhISEhISEhISEhISEhCiNFcnJvcjogQ29sdW1uIGBwYXJhbWV0ZXJfZ3JvdXBgIGNhbid0IGJlIG1vZGlmaWVkIGJlY2F1c2UgaXQncyBhIGdyb3VwaW5nIHZhcmlhYmxlCgpjb3VudF9mdW4uIDwtIGZ1bmN0aW9uKG1vZF9zdWIpIHsKICByZXR1cm4oYyhhcy5udW1lcmljKG1vZF9zdWIkbW9kX2luZm8kdGVybTEpLCBtb2Rfc3ViJE4pKQp9Cgpyb2J1c3ViX1JSLiA8LSBtb2RlbF9jb3VudC4gJT4lCiAgdHJhbnNtdXRlKGVzdGltYXRlbG5SUiA9IG1hcChtb2RlbF9sblJSLCBjb3VudF9mdW4uKSkgJT4lICAgICNGZWxpeCA0LzIvMjAyMDogZGVsZXRlZDogJ3BhcmFtZXRlcl9ncm91cCcgKGluIGJyYWNrZXRzLCBhZnRlciAndHJhbnNtdXRlJykKICBtdXRhdGUociA9IG1hcChlc3RpbWF0ZWxuUlIsIH4gZGF0YS5mcmFtZSh0KC4pKSkpICU+JQogIHVubmVzdChyKSAlPiUKICBzZWxlY3QoLWVzdGltYXRlbG5SUikgJT4lCiAgcHVycnI6OnNldF9uYW1lcyhjKCJwYXJhbWV0ZXJfZ3JvdXAiLCAidmFyLlJSIiwgIk4uUlIiKSkKCnJvYnVzdWJfQ1ZSLiA8LSBtb2RlbF9jb3VudC4gJT4lCiAgdHJhbnNtdXRlKGVzdGltYXRlbG5DVlIgPSBtYXAobW9kZWxfbG5DVlIsIGNvdW50X2Z1bi4pKSAlPiUKICBtdXRhdGUociA9IG1hcChlc3RpbWF0ZWxuQ1ZSLCB+IGRhdGEuZnJhbWUodCguKSkpKSAlPiUKICB1bm5lc3QocikgJT4lCiAgc2VsZWN0KC1lc3RpbWF0ZWxuQ1ZSKSAlPiUKICBwdXJycjo6c2V0X25hbWVzKGMoInBhcmFtZXRlcl9ncm91cCIsICJ2YXIuQ1ZSIiwgIk4uQ1ZSIikpCgpyb2J1c3ViX1ZSLiA8LSBtb2RlbF9jb3VudC4gJT4lCiAgdHJhbnNtdXRlKGVzdGltYXRlbG5WUiA9IG1hcChtb2RlbF9sblZSLCBjb3VudF9mdW4uKSkgJT4lCiAgbXV0YXRlKHIgPSBtYXAoZXN0aW1hdGVsblZSLCB+IGRhdGEuZnJhbWUodCguKSkpKSAlPiUKICB1bm5lc3QocikgJT4lCiAgc2VsZWN0KC1lc3RpbWF0ZWxuVlIpICU+JQogIHB1cnJyOjpzZXRfbmFtZXMoYygicGFyYW1ldGVyX2dyb3VwIiwgInZhci5WUiIsICJOLlZSIikpCgpyb2J1X2FsbC4gPC0gZnVsbF9qb2luKHJvYnVzdWJfQ1ZSLiwgcm9idXN1Yl9WUi4pICU+JSBmdWxsX2pvaW4oLiwgcm9idXN1Yl9SUi4pCmBgYAoKTWVyZ2UgdGhlIHR3byBkYXRhIHNldHMgKHRoZSBuZXcgW3JvYnVfYWxsLl0gYW5kIHRoZSBpbml0aWFsIFt1bmNvcnJlbGF0ZWQgc3ViLXRyYWl0cyB3aXRoIGNvdW50ID0gMV0pCgpJbiB0aGlzIHN0ZXAsIHdlIAkKMSkgbWVyZ2UgdGhlIE4gZnJvbSByb2J1bWV0YSBhbmQgdGhlICBOIGZyb20gbWV0YWZvciAocy5ubGV2ZWxzLmVycm9yKSB0b2dldGhlciBpbnRvIHRoZSBzYW1lIGNvbHVtbnMgKE4uUlIsIE4uVlIsIE4uQ1ZSKQoyKSBjYWxjdWxhdGUgdGhlIHRvdGFsIHZhcmlhbmNlIGZvciBtZXRhZm9yIG1vZGVscyBhcyB0aGUgc3VtIG9mIHJhbmRvbSBlZmZlY3QgdmFyaWFuY2VzIGFuZCB0aGUgcmVzaWR1YWwgZXJyb3IsIHRoZW4gYWRkIGluIHRoZSBzYW1lIGNvbHVtbnMgdG9nZXRoZXIgd2l0aCB0aGUgcmVzaWR1YWwgdmFyaWFuY2VzIGZyb20gcm9idW1ldGEKCmBgYHtyfQptZXRhaGV0ZXJvX2FsbCA8LSBtZXRhaGV0ZXJvMSAlPiUKICBmaWx0ZXIocGFyX2dyb3VwX3NpemUgPT0gMSkgJT4lCiAgYXNfdGliYmxlKCkKbWV0YWhldGVyb19hbGwkTi5SUiA8LSBtZXRhaGV0ZXJvX2FsbCRzLm5sZXZlbHMuZXJyb3IuUlIKbWV0YWhldGVyb19hbGwkTi5DVlIgPC0gbWV0YWhldGVyb19hbGwkcy5ubGV2ZWxzLmVycm9yLkNWUgptZXRhaGV0ZXJvX2FsbCROLlZSIDwtIG1ldGFoZXRlcm9fYWxsJHMubmxldmVscy5lcnJvci5WUgptZXRhaGV0ZXJvX2FsbCR2YXIuUlIgPC0gbG9nKHNxcnQobWV0YWhldGVyb19hbGwkc2lnbWEyX3N0cmFpbi5SUiArIG1ldGFoZXRlcm9fYWxsJHNpZ21hMl9jZW50ZXIuUlIgKyBtZXRhaGV0ZXJvX2FsbCRzaWdtYTJfZXJyb3IuUlIpKQptZXRhaGV0ZXJvX2FsbCR2YXIuVlIgPC0gbG9nKHNxcnQobWV0YWhldGVyb19hbGwkc2lnbWEyX3N0cmFpbi5WUiArIG1ldGFoZXRlcm9fYWxsJHNpZ21hMl9jZW50ZXIuVlIgKyBtZXRhaGV0ZXJvX2FsbCRzaWdtYTJfZXJyb3IuVlIpKQptZXRhaGV0ZXJvX2FsbCR2YXIuQ1ZSIDwtIGxvZyhzcXJ0KG1ldGFoZXRlcm9fYWxsJHNpZ21hMl9zdHJhaW4uQ1ZSICsgbWV0YWhldGVyb19hbGwkc2lnbWEyX2NlbnRlci5DVlIgKyBtZXRhaGV0ZXJvX2FsbCRzaWdtYTJfZXJyb3IuQ1ZSKSkKIyBzdHIobWV0YWhldGVyb19hbGwpCiMgc3RyKHJvYnVfYWxsLikKCm1ldGFoZXRlcm9fYWxsIDwtIG1ldGFoZXRlcm9fYWxsICU+JSBtdXRhdGUoCiAgdmFyLlJSID0gaWZfZWxzZSh2YXIuUlIgPT0gLUluZiwgLTcsIHZhci5SUiksICAgI0ZlbGl4IGNvbW1lbnRlZCA2LzIvMjAyMDogY2FuJ3QgcmVtbWViZXIsIHdoeSAtNywgLTYsIC01IGluIHRoaXMgc2VjdGlvbiEKICB2YXIuVlIgPSBpZl9lbHNlKHZhci5WUiA9PSAtSW5mLCAtNSwgdmFyLlZSKSwKICB2YXIuQ1ZSID0gaWZfZWxzZSh2YXIuQ1ZSID09IC1JbmYsIC02LCB2YXIuQ1ZSKQopCgojICoqQ29tYmluZSBkYXRhCiMjIFN0ZXAxCmNvbWJpbmVkbWV0YWhldGVybyA8LSBiaW5kX3Jvd3Mocm9idV9hbGwuLCBtZXRhaGV0ZXJvX2FsbCkKIyBnbGltcHNlKGNvbWJpbmVkbWV0YWhldGVybykKCiMgU3RlcHMgMiYzCgptZXRhY29tYm9oZXRlcm8gPC0gY29tYmluZWRtZXRhaGV0ZXJvCm1ldGFjb21ib2hldGVybyRjb3VudHMgPC0gbWV0YWhldGVybzEkcGFyX2dyb3VwX3NpemVbbWF0Y2gobWV0YWNvbWJvaGV0ZXJvJHBhcmFtZXRlcl9ncm91cCwgbWV0YWhldGVybzEkcGFyYW1ldGVyX2dyb3VwKV0KbWV0YWNvbWJvaGV0ZXJvJHByb2NlZHVyZTIgPC0gbWV0YWhldGVybzEkcHJvY2VkdXJlW21hdGNoKG1ldGFjb21ib2hldGVybyRwYXJhbWV0ZXJfZ3JvdXAsIG1ldGFoZXRlcm8xJHBhcmFtZXRlcl9ncm91cCldCm1ldGFjb21ib2hldGVybyRHcm91cGluZ1Rlcm0yIDwtIG1ldGFoZXRlcm8xJEdyb3VwaW5nVGVybVttYXRjaChtZXRhY29tYm9oZXRlcm8kcGFyYW1ldGVyX2dyb3VwLCBtZXRhaGV0ZXJvMSRwYXJhbWV0ZXJfZ3JvdXApXQoKIyAqKkNsZWFuLXVwIGFuZCByZW5hbWUKCm1ldGFjb21ib2hldGVybyA8LSBtZXRhY29tYm9oZXRlcm8gJT4lIHNlbGVjdChwYXJhbWV0ZXJfZ3JvdXAsIHZhci5DVlIsIE4uQ1ZSLCB2YXIuVlIsIE4uVlIsIHZhci5SUiwgTi5SUiwgY291bnRzLCBwcm9jZWR1cmUgPSBwcm9jZWR1cmUyLCBHcm91cGluZ1Rlcm0gPSBHcm91cGluZ1Rlcm0yKSAgI0ZlbGl4IGNoYW5nZWQgNi8yLzIwMjA6IHdhczogYygxOjcsIDQzOjQ1LCBhbmQgMiByZW5hbWluZyBsaW5lcykKCmBgYAoKIyMjIyBNZXRhLWFuYWx5c2lzIG9mIGhldGVyb2dlbmVpdHkKCmBgYHtyfQojIyBQZXJmb3JtIG1ldGEtbWV0YS1hbmFseXNpcyAoMyBmb3IgZWFjaCBvZiB0aGUgOSBncm91cGluZyB0ZXJtczogdmFyLkNWUiwgdmFyLlZSLCB2YXIuUlIpCgptZXRhY29tYm9oZXRlcm9fZmluYWwgPC0gbWV0YWNvbWJvaGV0ZXJvICU+JQogIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbmVzdCgpCgojIEZpbmFsIGZpeGVkIGVmZmVjdHMgbWV0YS1hbmFseXNlcyB3aXRoaW4gZ3JvdXBpbmcgdGVybXMsIHdpdGggU0Ugb2YgdGhlIGVzdGltYXRlCgpoZXRlcm9nMSA8LSBtZXRhY29tYm9oZXRlcm9fZmluYWwgJT4lCgogIG11dGF0ZSgKICAgIG1vZGVsX2hldGVyb0NWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoCiAgICAgIHlpID0gLngkdmFyLkNWUiwgc2VpID0gc3FydCgxIC8gMiAqICgueCROLkNWUiAtIDEpKSwKICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwMCwgc3RlcGFkaiA9IDAuNSksIHZlcmJvc2UgPSBGCiAgICApKSwKICAgIG1vZGVsX2hldGVyb1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgICAgeWkgPSAueCR2YXIuVlIsIHNlaSA9IHNxcnQoMSAvIDIgKiAoLngkTi5WUiAtIDEpKSwKICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwMCwgc3RlcGFkaiA9IDAuNSksIHZlcmJvc2UgPSBGCiAgICApKSwKICAgIG1vZGVsX2hldGVyb1JSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgICAgeWkgPSAueCR2YXIuUlIsIHNlaSA9IHNxcnQoMSAvIDIgKiAoLngkTi5SUiAtIDEpKSwKICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwMCwgc3RlcGFkaiA9IDAuNSksIHZlcmJvc2UgPSBGCiAgICApKQogICkKCiMgQWNyb3NzIGFsbCBncm91cGluZyB0ZXJtcyAgIAoKbWV0YWNvbWJvaGV0ZXJvX2FsbF9maW5hbCA8LSBtZXRhY29tYm9oZXRlcm8gJT4lCiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKSAKCiMgRmluYWwgZml4ZWQgZWZmZWN0cyBtZXRhLWFuYWx5c2VzIEFDUk9TUyBncm91cGluZyB0ZXJtcywgd2l0aCBTRSBvZiB0aGUgZXN0aW1hdGUKCmhldGVyb2cxX2FsbCA8LSBtZXRhY29tYm9oZXRlcm9fYWxsX2ZpbmFsICU+JQogIAogIG11dGF0ZSgKICAgIG1vZGVsX2hldGVyb0NWUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoCiAgICAgIHlpID0gLngkdmFyLkNWUiwgc2VpID0gc3FydCgxIC8gMiAqICgueCROLkNWUiAtIDEpKSwKICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwMCwgc3RlcGFkaiA9IDAuNSksIHZlcmJvc2UgPSBGCiAgICApKSwKICAgIG1vZGVsX2hldGVyb1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgICAgeWkgPSAueCR2YXIuVlIsIHNlaSA9IHNxcnQoMSAvIDIgKiAoLngkTi5WUiAtIDEpKSwKICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwMCwgc3RlcGFkaiA9IDAuNSksIHZlcmJvc2UgPSBGCiAgICApKSwKICAgIG1vZGVsX2hldGVyb1JSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgICAgeWkgPSAueCR2YXIuUlIsIHNlaSA9IHNxcnQoMSAvIDIgKiAoLngkTi5SUiAtIDEpKSwKICAgICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwMCwgc3RlcGFkaiA9IDAuNSksIHZlcmJvc2UgPSBGCiAgICApKQogICkKCgojIFJlLXN0cnVjdHVyZSBkYXRhIGZvciBlYWNoIGdyb3VwaW5nIHRlcm07IGV4dHJhY3QgaGV0ZXJvZ2VuZW5pdHkvdmFyaWFuY2UgdGVybXM7IGRlbGV0ZSB1bi11c2VkIHZhcmlhYmxlcwoKQmVoYXZpb3VyLiA8LSBoZXRlcm9nMSAlPiUKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJCZWhhdmlvdXIiKSAlPiUKICBzZWxlY3QoLiwgLWRhdGEpICU+JQogIG11dGF0ZSgKICAgIGhldGVyb0NWUiA9IC5bWzJdXVtbMV1dJGIsIGhldGVyb0NWUl9sb3dlciA9IC5bWzJdXVtbMV1dJGNpLmxiLCBoZXRlcm9DVlJfdXBwZXIgPSAuW1syXV1bWzFdXSRjaS51YiwgaGV0ZXJvQ1ZSX3NlID0gLltbMl1dW1sxXV0kc2UsCiAgICBoZXRlcm9WUiA9IC5bWzNdXVtbMV1dJGIsIGhldGVyb1ZSX2xvd2VyID0gLltbM11dW1sxXV0kY2kubGIsIGhldGVyb1ZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGhldGVyb1ZSX3NlID0gLltbM11dW1sxXV0kc2UsCiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2UKICApICU+JQogIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGhldGVyb0NWUjpoZXRlcm9SUl9zZSkKCkltbXVub2xvZ3kuIDwtIGhldGVyb2cxICU+JQogIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gIkltbXVub2xvZ3kiKSAlPiUKICBzZWxlY3QoLiwgLWRhdGEpICU+JQogIG11dGF0ZSgKICAgIGhldGVyb0NWUiA9IC5bWzJdXVtbMV1dJGIsIGhldGVyb0NWUl9sb3dlciA9IC5bWzJdXVtbMV1dJGNpLmxiLCBoZXRlcm9DVlJfdXBwZXIgPSAuW1syXV1bWzFdXSRjaS51YiwgaGV0ZXJvQ1ZSX3NlID0gLltbMl1dW1sxXV0kc2UsCiAgICBoZXRlcm9WUiA9IC5bWzNdXVtbMV1dJGIsIGhldGVyb1ZSX2xvd2VyID0gLltbM11dW1sxXV0kY2kubGIsIGhldGVyb1ZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGhldGVyb1ZSX3NlID0gLltbM11dW1sxXV0kc2UsCiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2UKICApICU+JQogIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGhldGVyb0NWUjpoZXRlcm9SUl9zZSkKCkhlbWF0b2xvZ3kuIDwtIGhldGVyb2cxICU+JQogIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gPT0gIkhlbWF0b2xvZ3kiKSAlPiUKICBzZWxlY3QoLiwgLWRhdGEpICU+JQogIG11dGF0ZSgKICAgIGhldGVyb0NWUiA9IC5bWzJdXVtbMV1dJGIsIGhldGVyb0NWUl9sb3dlciA9IC5bWzJdXVtbMV1dJGNpLmxiLCBoZXRlcm9DVlJfdXBwZXIgPSAuW1syXV1bWzFdXSRjaS51YiwgaGV0ZXJvQ1ZSX3NlID0gLltbMl1dW1sxXV0kc2UsCiAgICBoZXRlcm9WUiA9IC5bWzNdXVtbMV1dJGIsIGhldGVyb1ZSX2xvd2VyID0gLltbM11dW1sxXV0kY2kubGIsIGhldGVyb1ZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGhldGVyb1ZSX3NlID0gLltbM11dW1sxXV0kc2UsCiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2UKICApICU+JQogIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGhldGVyb0NWUjpoZXRlcm9SUl9zZSkKCgpIZWFyaW5nLiA8LSBoZXRlcm9nMSAlPiUKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJIZWFyaW5nIikgJT4lCiAgc2VsZWN0KC4sIC1kYXRhKSAlPiUKICBtdXRhdGUoCiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLAogICAgaGV0ZXJvVlIgPSAuW1szXV1bWzFdXSRiLCBoZXRlcm9WUl9sb3dlciA9IC5bWzNdXVtbMV1dJGNpLmxiLCBoZXRlcm9WUl91cHBlciA9IC5bWzNdXVtbMV1dJGNpLnViLCBoZXRlcm9WUl9zZSA9IC5bWzNdXVtbMV1dJHNlLAogICAgaGV0ZXJvUlIgPSAuW1s0XV1bWzFdXSRiLCBoZXRlcm9SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBoZXRlcm9SUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBoZXRlcm9SUl9zZSA9IC5bWzRdXVtbMV1dJHNlCiAgKSAlPiUKICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBoZXRlcm9DVlI6aGV0ZXJvUlJfc2UpCgpQaHlzaW9sb2d5LiA8LSBoZXRlcm9nMSAlPiUKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJQaHlzaW9sb2d5IikgJT4lCiAgc2VsZWN0KC4sIC1kYXRhKSAlPiUKICBtdXRhdGUoCiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLAogICAgaGV0ZXJvVlIgPSAuW1szXV1bWzFdXSRiLCBoZXRlcm9WUl9sb3dlciA9IC5bWzNdXVtbMV1dJGNpLmxiLCBoZXRlcm9WUl91cHBlciA9IC5bWzNdXVtbMV1dJGNpLnViLCBoZXRlcm9WUl9zZSA9IC5bWzNdXVtbMV1dJHNlLAogICAgaGV0ZXJvUlIgPSAuW1s0XV1bWzFdXSRiLCBoZXRlcm9SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBoZXRlcm9SUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBoZXRlcm9SUl9zZSA9IC5bWzRdXVtbMV1dJHNlCiAgKSAlPiUKICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBoZXRlcm9DVlI6aGV0ZXJvUlJfc2UpCgpNZXRhYm9saXNtLiA8LSBoZXRlcm9nMSAlPiUKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJNZXRhYm9saXNtIikgJT4lCiAgc2VsZWN0KC4sIC1kYXRhKSAlPiUKICBtdXRhdGUoCiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLAogICAgaGV0ZXJvVlIgPSAuW1szXV1bWzFdXSRiLCBoZXRlcm9WUl9sb3dlciA9IC5bWzNdXVtbMV1dJGNpLmxiLCBoZXRlcm9WUl91cHBlciA9IC5bWzNdXVtbMV1dJGNpLnViLCBoZXRlcm9WUl9zZSA9IC5bWzNdXVtbMV1dJHNlLAogICAgaGV0ZXJvUlIgPSAuW1s0XV1bWzFdXSRiLCBoZXRlcm9SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBoZXRlcm9SUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBoZXRlcm9SUl9zZSA9IC5bWzRdXVtbMV1dJHNlCiAgKSAlPiUKICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBoZXRlcm9DVlI6aGV0ZXJvUlJfc2UpCgpNb3JwaG9sb2d5LiA8LSBoZXRlcm9nMSAlPiUKICBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtID09ICJNb3JwaG9sb2d5IikgJT4lCiAgc2VsZWN0KC4sIC1kYXRhKSAlPiUKICBtdXRhdGUoCiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLAogICAgaGV0ZXJvVlIgPSAuW1szXV1bWzFdXSRiLCBoZXRlcm9WUl9sb3dlciA9IC5bWzNdXVtbMV1dJGNpLmxiLCBoZXRlcm9WUl91cHBlciA9IC5bWzNdXVtbMV1dJGNpLnViLCBoZXRlcm9WUl9zZSA9IC5bWzNdXVtbMV1dJHNlLAogICAgaGV0ZXJvUlIgPSAuW1s0XV1bWzFdXSRiLCBoZXRlcm9SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBoZXRlcm9SUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBoZXRlcm9SUl9zZSA9IC5bWzRdXVtbMV1dJHNlCiAgKSAlPiUKICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBoZXRlcm9DVlI6aGV0ZXJvUlJfc2UpCgpIZWFydC4gPC0gaGV0ZXJvZzEgJT4lCiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSAiSGVhcnQiKSAlPiUKICBzZWxlY3QoLiwgLWRhdGEpICU+JQogIG11dGF0ZSgKICAgIGhldGVyb0NWUiA9IC5bWzJdXVtbMV1dJGIsIGhldGVyb0NWUl9sb3dlciA9IC5bWzJdXVtbMV1dJGNpLmxiLCBoZXRlcm9DVlJfdXBwZXIgPSAuW1syXV1bWzFdXSRjaS51YiwgaGV0ZXJvQ1ZSX3NlID0gLltbMl1dW1sxXV0kc2UsCiAgICBoZXRlcm9WUiA9IC5bWzNdXVtbMV1dJGIsIGhldGVyb1ZSX2xvd2VyID0gLltbM11dW1sxXV0kY2kubGIsIGhldGVyb1ZSX3VwcGVyID0gLltbM11dW1sxXV0kY2kudWIsIGhldGVyb1ZSX3NlID0gLltbM11dW1sxXV0kc2UsCiAgICBoZXRlcm9SUiA9IC5bWzRdXVtbMV1dJGIsIGhldGVyb1JSX2xvd2VyID0gLltbNF1dW1sxXV0kY2kubGIsIGhldGVyb1JSX3VwcGVyID0gLltbNF1dW1sxXV0kY2kudWIsIGhldGVyb1JSX3NlID0gLltbNF1dW1sxXV0kc2UKICApICU+JQogIHNlbGVjdCguLCBHcm91cGluZ1Rlcm0sIGhldGVyb0NWUjpoZXRlcm9SUl9zZSkKCkV5ZS4gPC0gaGV0ZXJvZzEgJT4lCiAgZmlsdGVyKC4sIEdyb3VwaW5nVGVybSA9PSAiRXllIikgJT4lCiAgc2VsZWN0KC4sIC1kYXRhKSAlPiUKICBtdXRhdGUoCiAgICBoZXRlcm9DVlIgPSAuW1syXV1bWzFdXSRiLCBoZXRlcm9DVlJfbG93ZXIgPSAuW1syXV1bWzFdXSRjaS5sYiwgaGV0ZXJvQ1ZSX3VwcGVyID0gLltbMl1dW1sxXV0kY2kudWIsIGhldGVyb0NWUl9zZSA9IC5bWzJdXVtbMV1dJHNlLAogICAgaGV0ZXJvVlIgPSAuW1szXV1bWzFdXSRiLCBoZXRlcm9WUl9sb3dlciA9IC5bWzNdXVtbMV1dJGNpLmxiLCBoZXRlcm9WUl91cHBlciA9IC5bWzNdXVtbMV1dJGNpLnViLCBoZXRlcm9WUl9zZSA9IC5bWzNdXVtbMV1dJHNlLAogICAgaGV0ZXJvUlIgPSAuW1s0XV1bWzFdXSRiLCBoZXRlcm9SUl9sb3dlciA9IC5bWzRdXVtbMV1dJGNpLmxiLCBoZXRlcm9SUl91cHBlciA9IC5bWzRdXVtbMV1dJGNpLnViLCBoZXRlcm9SUl9zZSA9IC5bWzRdXVtbMV1dJHNlCiAgKSAlPiUKICBzZWxlY3QoLiwgR3JvdXBpbmdUZXJtLCBoZXRlcm9DVlI6aGV0ZXJvUlJfc2UpCgojUmVvcmRlciB0byBiZSBhYmxlIHRvIGtlZXAgY2VsbCByZWZlcmVuY2luZyAKaGV0ZXJvZzFfYWxsIDwtIGhldGVyb2cxX2FsbCAlPiUgbXV0YXRlKEdyb3VwaW5nVGVybSA9ICJBbGwiKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgZXZlcnl0aGluZygpKQoKQWxsLiA8LSBoZXRlcm9nMV9hbGwgJT4lIAogIHNlbGVjdCguLCAtZGF0YSkgJT4lCiAgbXV0YXRlKAogICAgaGV0ZXJvQ1ZSID0gLltbMl1dW1sxXV0kYiwgaGV0ZXJvQ1ZSX2xvd2VyID0gLltbMl1dW1sxXV0kY2kubGIsIGhldGVyb0NWUl91cHBlciA9IC5bWzJdXVtbMV1dJGNpLnViLCBoZXRlcm9DVlJfc2UgPSAuW1syXV1bWzFdXSRzZSwKICAgIGhldGVyb1ZSID0gLltbM11dW1sxXV0kYiwgaGV0ZXJvVlJfbG93ZXIgPSAuW1szXV1bWzFdXSRjaS5sYiwgaGV0ZXJvVlJfdXBwZXIgPSAuW1szXV1bWzFdXSRjaS51YiwgaGV0ZXJvVlJfc2UgPSAuW1szXV1bWzFdXSRzZSwKICAgIGhldGVyb1JSID0gLltbNF1dW1sxXV0kYiwgaGV0ZXJvUlJfbG93ZXIgPSAuW1s0XV1bWzFdXSRjaS5sYiwgaGV0ZXJvUlJfdXBwZXIgPSAuW1s0XV1bWzFdXSRjaS51YiwgaGV0ZXJvUlJfc2UgPSAuW1s0XV1bWzFdXSRzZQogICkgJT4lCiAgc2VsZWN0KC4sIEdyb3VwaW5nVGVybSwgaGV0ZXJvQ1ZSOmhldGVyb1JSX3NlKQoKaGV0ZXJvZzIgPC0gYmluZF9yb3dzKEJlaGF2aW91ci4sIE1vcnBob2xvZ3kuLCBNZXRhYm9saXNtLiwgUGh5c2lvbG9neS4sIEltbXVub2xvZ3kuLCBIZW1hdG9sb2d5LiwgSGVhcnQuLCBIZWFyaW5nLiwgRXllLiwgQWxsLikKIyBzdHIoaGV0ZXJvZzIpCmBgYAoKIyMjIyBIZXRlcm9nZW5laXR5IFBMT1QKUmVzdHJ1Y3R1cmUgZGF0YSBmb3IgcGxvdHRpbmcgCgpgYGB7cn0KaGV0ZXJvZzMgPC0gZ2F0aGVyKGhldGVyb2cyLCBwYXJhbWV0ZXIsIHZhbHVlLCBjKGhldGVyb0NWUiwgaGV0ZXJvVlIsIGhldGVyb1JSKSwgZmFjdG9yX2tleSA9IFRSVUUpCgpoZXRlcm9DVlIuY2kgPC0gaGV0ZXJvZzMgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAiaGV0ZXJvQ1ZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGhldGVyb0NWUl9sb3dlciwgY2kuaGlnaCA9IGhldGVyb0NWUl91cHBlcikKaGV0ZXJvVlIuY2kgPC0gaGV0ZXJvZzMgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAiaGV0ZXJvVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gaGV0ZXJvVlJfbG93ZXIsIGNpLmhpZ2ggPSBoZXRlcm9WUl91cHBlcikKaGV0ZXJvUlIuY2kgPC0gaGV0ZXJvZzMgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAiaGV0ZXJvUlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gaGV0ZXJvUlJfbG93ZXIsIGNpLmhpZ2ggPSBoZXRlcm9SUl91cHBlcikKCmhldGVyb2c0IDwtIGJpbmRfcm93cyhoZXRlcm9DVlIuY2ksIGhldGVyb1ZSLmNpLCBoZXRlcm9SUi5jaSkgJT4lIHNlbGVjdChHcm91cGluZ1Rlcm0sIHBhcmFtZXRlciwgdmFsdWUsIGNpLmxvdywgY2kuaGlnaCkKCiMgKipSZS1vcmRlciBncm91cGluZyB0ZXJtcwoKaGV0ZXJvZzQkR3JvdXBpbmdUZXJtIDwtIGZhY3RvcihoZXRlcm9nNCRHcm91cGluZ1Rlcm0sIGxldmVscyA9IGMoIkJlaGF2aW91ciIsICJNb3JwaG9sb2d5IiwgIk1ldGFib2xpc20iLCAiUGh5c2lvbG9neSIsICJJbW11bm9sb2d5IiwgIkhlbWF0b2xvZ3kiLCAiSGVhcnQiLCAiSGVhcmluZyIsICJFeWUiLCAiQWxsIikpCmhldGVyb2c0JEdyb3VwaW5nVGVybSA8LSBmYWN0b3IoaGV0ZXJvZzQkR3JvdXBpbmdUZXJtLCByZXYobGV2ZWxzKGhldGVyb2c0JEdyb3VwaW5nVGVybSkpKQpoZXRlcm9nNCRsYWJlbCA8LSAiQWxsIHRyYWl0cyIKIyB3cml0ZS5jc3YoaGV0ZXJvZzQsICJoZXRlcm9nNC5jc3YiKQpgYGAKCiMjIyMgUGxvdCBTMSBDIChTZWNvbmQtb3JkZXIgbWV0YSBhbmFseXNpcyBvbiBoZXRlcm9nZW5laXR5KQoKYGBge3J9CmhldGVyb2c1IDwtIGhldGVyb2c0CmhldGVyb2c1JG1lYW4gPC0gYXMubnVtZXJpYyhleHAoaGV0ZXJvZzUkdmFsdWUpKQpoZXRlcm9nNSRjaS5sIDwtIGFzLm51bWVyaWMoZXhwKGhldGVyb2c1JGNpLmxvdykpCmhldGVyb2c1JGNpLmggPC0gYXMubnVtZXJpYyhleHAoaGV0ZXJvZzUkY2kuaGlnaCkpCgpoZXRlcm9nNiA8LSBoZXRlcm9nNQoKSGV0ZXJvUzEgPC0KICBoZXRlcm9nNiAlPiUKICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSBtZWFuKSkgKwogIGdlb21fZXJyb3JiYXJoKGFlcygKICAgIHhtaW4gPSBjaS5sLAogICAgeG1heCA9IGNpLmgKICApLAogIGhlaWdodCA9IDAuMSwgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSwKICAgIGZpbGwgPSAiYmxhY2siLAogICAgY29sb3IgPSAiYmxhY2siLCBzaXplID0gMi4yLAogICAgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIHNjYWxlX3hfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoLTAuMSwgMS40KSwKICAgICMgYnJlYWtzID0gYygwLCAwLjEsIDAuMiksCiAgICBuYW1lID0gInNpZ21hXjIiCiAgKSArCiAgIyBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQ9MCwKICAjIGNvbG9yPSdibGFjaycsCiAgIyBsaW5ldHlwZT0nZGFzaGVkJykrCiAgZmFjZXRfZ3JpZCgKICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksIHJvd3MgPSB2YXJzKGxhYmVsKSwKICAgIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAyMyksCiAgICBzY2FsZXMgPSAiZnJlZSIsCiAgICBzcGFjZSA9ICJmcmVlIgogICkgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKAogICAgc3RyaXAudGV4dC55ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMjcwLCBzaXplID0gMTAsIG1hcmdpbiA9IG1hcmdpbih0ID0gMTUsIHIgPSAxNSwgYiA9IDE1LCBsID0gMTUpKSwKICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLAogICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9ICJibGFuayIsIGZpbGwgPSAiZ3JheTkwIiksCiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksCiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsICJsaW5lcyIpLAogICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksCiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvdXIgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSwgc2l6ZSA9IDE0KSwKICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKQogICkKCiNIZXRlcm9TMQoKYGBgCgoKIyMjIyBDb21iaW5lZCBGaWd1cmUgUzE6IG92ZXJhbGwgQ291bnQgZGF0YSwgTWV0YSBhbmx5c2lzIHJlc3VsdHMsIEhldGVyb2dlbmVpdHkpCgpgYGB7cn0KRmlnUzEgPC0gZ2dhcnJhbmdlKG1hbGViaWFzX0ZpZ1MxX2FsbHRyYWl0cyArIHhsYWIoInBlcmNlbnRhZ2Ugc2V4IGJpYXMiKSwgTWV0YW1ldGFfRmlnUzFfYWxsdHJhaXRzLCBIZXRlcm9TMSwgbnJvdyA9IDMsIGFsaWduID0gInYiLCBoZWlnaHRzID0gYygxLCAxLCAxKSwgbGFiZWxzID0gYygiQSIsICJCIiwgIkMiKSkKRmlnUzEKIyBnZ3NhdmUoIkZpZ1MxX092ZXJhbGxSZXN1bHRzLnBkZiIsIHBsb3QgPSBGaWc0LCB3aWR0aCA9IDYsIGhlaWdodCA9IDUpCmBgYAoKIyMgRmlndXJlIFMyCgpQbG90IEZpZ1MyIGFsbCBzaWduaWZpY2FudCByZXN1bHRzIChDSSBub3Qgb3ZlcmxhcHBpbmcgemVybykgZm9yIG1hbGVzCiMjIyBGRUxJWDogICJBTEwiIG1pc3NpbmcuIEZlbGl4IGFkZGVkIDExLzIvMjAyMDogZG9uZQpgYGB7cn0KbWV0YS5wbG90Mi5zaWcuYlMgPC0gbWV0YS5wbG90Mi5zaWdbLCBjKCJsbkNWUiIsICJsblZSIiwgImxuUlIiLCAibG5DVlJzaWciLCAibG5WUnNpZyIsICJsblJSc2lnIiwgIkdyb3VwaW5nVGVybSIpXQoKbWV0YS5wbG90Mi5zaWcuY1MgPC0gZ2F0aGVyKG1ldGEucGxvdDIuc2lnLmJTLCB0cmFpdCwgdmFsdWUsIGxuQ1ZSOmxuUlIpCm1ldGEucGxvdDIuc2lnLmNTJHNpZyA8LSAicGxhY2Vob2xkZXIiCgptZXRhLnBsb3QyLnNpZy5jUyR0cmFpdCA8LSBmYWN0b3IobWV0YS5wbG90Mi5zaWcuY1MkdHJhaXQsIGxldmVscyA9IGMoImxuQ1ZSIiwgImxuVlIiLCAibG5SUiIpKQoKbWV0YS5wbG90Mi5zaWcuY1Mkc2lnIDwtIGlmZWxzZShtZXRhLnBsb3QyLnNpZy5jUyR0cmFpdCA9PSAibG5DVlIiLCBtZXRhLnBsb3QyLnNpZy5jUyRsbkNWUnNpZywKICBpZmVsc2UobWV0YS5wbG90Mi5zaWcuY1MkdHJhaXQgPT0gImxuVlIiLCBtZXRhLnBsb3QyLnNpZy5jUyRsblZSc2lnLCBtZXRhLnBsb3QyLnNpZy5jUyRsblJSc2lnKQopCgojIGNob29zaW5nIHNleCBiaWFzZWQgbG4tcmF0aW9zIHNpZ25pZmljYW50bHkgbGFyZ2VyIHRoYW4gMAptZXRhLnBsb3RTMi5zaWcubWFsZWJpYXMgPC0gbWV0YS5wbG90Mi5zaWcuY1MgJT4lCiAgZ3JvdXBfYnlfYXQodmFycyh0cmFpdCwgR3JvdXBpbmdUZXJtKSkgJT4lCiAgZmlsdGVyKHNpZyA9PSAxKSAlPiUKICBzdW1tYXJpc2UobWFsZV9zaWcgPSBzdW0odmFsdWUgPiAwKSwgZmVtYWxlX3NpZyA9IHN1bSh2YWx1ZSA8IDApLCB0b3RhbCA9IG1hbGVfc2lnICsgZmVtYWxlX3NpZykKCm1ldGEucGxvdFMyLnNpZy5tYWxlYmlhcyA8LSB1bmdyb3VwKG1ldGEucGxvdFMyLnNpZy5tYWxlYmlhcykgJT4lCiAgYWRkX3Jvdyh0cmFpdCA9ICJsbkNWUiIsIEdyb3VwaW5nVGVybSA9ICJIZWFyaW5nIiwgbWFsZV9zaWcgPSAwLCBmZW1hbGVfc2lnID0gMCwgLmJlZm9yZSA9IDQpICU+JSAjIGFkZCAiSGVhcmluZyIgZm9yIGxuQ1ZSIChub3QgZmlsdGVyZWQgYXMgb25seSB6ZXJvcykKICBtdXRhdGUobWFsZXBlcmNlbnQgPSBtYWxlX3NpZyAqIDEwMCAvIHRvdGFsLCBmZW1hbGVwZXJjZW50ID0gZmVtYWxlX3NpZyAqIDEwMCAvIHRvdGFsKQoKbWV0YS5wbG90UzIuc2lnLm1hbGViaWFzJGxhYmVsIDwtICJDSSBub3Qgb3ZlcmxhcHBpbmcgemVybyIKCiMgcmVzdHJ1Y3R1cmUgdG8gY3JlYXRlIHN0YWNrZWQgYmFyIHBsb3RzCgptZXRhLnBsb3RTMi5zaWcuYm90aHNleGVzIDwtIGFzLmRhdGEuZnJhbWUobWV0YS5wbG90UzIuc2lnLm1hbGViaWFzKQptZXRhLnBsb3RTMi5zaWcuYm90aHNleGVzLmIgPC0gZ2F0aGVyKG1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMsIGtleSA9IHNleCwgdmFsdWUgPSBwZXJjZW50LCBtYWxlcGVyY2VudDpmZW1hbGVwZXJjZW50LCBmYWN0b3Jfa2V5ID0gVFJVRSkKCiMgY3JlYXRlIG5ldyBzYW1wbGUgc2l6ZSB2YXJpYWJsZQoKbWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5iJHNhbXBsZXNpemUgPC0gd2l0aChtZXRhLnBsb3RTMi5zaWcuYm90aHNleGVzLmIsIGlmZWxzZShzZXggPT0gIm1hbGVwZXJjZW50IiwgbWFsZV9zaWcsIGZlbWFsZV9zaWcpKQoKIyBBZGQgc3VtbWFyeSByb3cgKCdBbGwnKSBhbmQgcmUtYXJyYW5nZSByb3dzIGludG8gY29ycmVjdCBvcmRlciBmb3IgcGxvdHRpbmcgKHdhcm5pbmdzIGFib3V0IGNvZXJjaW5nICdpZCcgaW50byBjaGFyYWN0ZXIgdmVjdG9yIGFyZSBvaykKCm1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMuYyA8LSBtZXRhLnBsb3RTMi5zaWcuYm90aHNleGVzLmIgJT4lIGdyb3VwX2J5KHRyYWl0LCBzZXgpICU+JSAKICBzdW1tYXJpc2UoR3JvdXBpbmdUZXJtID0gIkFsbCIsIG1hbGVfc2lnID0gc3VtKG1hbGVfc2lnKSwgZmVtYWxlX3NpZyA9IHN1bShmZW1hbGVfc2lnKSwgdG90YWwgPSBtYWxlX3NpZyArIGZlbWFsZV9zaWcsIAogICAgICAgICAgICBsYWJlbCA9ICJDSSBub3Qgb3ZlcmxhcHBpbmcgemVybyIsIHNhbXBsZXNpemUgPSBzdW0oc2FtcGxlc2l6ZSkpICU+JQogIG11dGF0ZShwZXJjZW50ID0gaWZlbHNlKHNleCA9PSAiZmVtYWxlcGVyY2VudCIsIGZlbWFsZV9zaWcqMTAwLyhtYWxlX3NpZyArIGZlbWFsZV9zaWcpLCBtYWxlX3NpZyoxMDAvKG1hbGVfc2lnICsgZmVtYWxlX3NpZykpKSAlPiUKICBiaW5kX3Jvd3MobWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5iLCAuKSAlPiUKICBtdXRhdGUocm93bnVtYmVyID0gcm93X251bWJlcigpKSAlPiUKICAuW2MoNTUsIDE6OSwgNTcsIDEwOjE4LCA1OSwgMTk6MjcsIDU2LCAyODozNiwgNTgsIDM3OjQ1LCA2MCwgNDY6NTQpLCBdIAoKbWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5jJEdyb3VwaW5nVGVybSA8LSBmYWN0b3IobWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5jJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYygiQmVoYXZpb3VyIiwgIk1vcnBob2xvZ3kiLCAiTWV0YWJvbGlzbSIsICJQaHlzaW9sb2d5IiwgIkltbXVub2xvZ3kiLCAiSGVtYXRvbG9neSIsICJIZWFydCIsICJIZWFyaW5nIiwgIkV5ZSIsICJBbGwiKSkgCm1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMuYyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMuYyRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMobWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5jJEdyb3VwaW5nVGVybSkpKQoKIyAqUGxvdCBGaWcyIGFsbCBzaWduaWZpY2FudCByZXN1bHRzIChDSSBub3Qgb3ZlcmxhcHBpbmcgemVybyk6CiMgICAgIG5vIHNpZy4gbG5DVlIgZm9yICdIZWFyaW5nJyBpbiBlaXRoZXIgc2V4OyBubyBzaWcuIG1hbGUtYmlhc2VkIGxuQ1ZSIGZvciAnSW1tdW5vbG9neScgYW5kICdFeWUsIGFuZCBubyBzaWcuIG1hbGUtYmlhc2VkIGxuVlIgZm9yICdFeWUnCgptYWxlYmlhc19GaWdTMl9zaWd0cmFpdHMgPC0KICBnZ3Bsb3QobWV0YS5wbG90UzIuc2lnLmJvdGhzZXhlcy5jKSArCiAgYWVzKHggPSBHcm91cGluZ1Rlcm0sIHkgPSBwZXJjZW50LCBmaWxsID0gc2V4KSArCiAgZ2VvbV9jb2woKSArCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gNTAsIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImdyYXk0MCIpICsKICBnZW9tX3RleHQoCiAgICBkYXRhID0gc3Vic2V0KG1ldGEucGxvdFMyLnNpZy5ib3Roc2V4ZXMuYywgc2FtcGxlc2l6ZSAhPSAwKSwgYWVzKGxhYmVsID0gc2FtcGxlc2l6ZSksIHBvc2l0aW9uID0gcG9zaXRpb25fc3RhY2sodmp1c3QgPSAuNSksCiAgICBjb2xvciA9ICJ3aGl0ZSIsIHNpemUgPSAzLjUKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnModHJhaXQpLCByb3dzID0gdmFycyhsYWJlbCksIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAxOCksCiAgICBzY2FsZXMgPSAiZnJlZSIsIHNwYWNlID0gImZyZWUiCiAgKSArCiAgc2NhbGVfZmlsbF9icmV3ZXIocGFsZXR0ZSA9ICJTZXQyIikgKwogIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE4KSArCiAgdGhlbWUoCiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLAogICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksCiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gImJsYW5rIiwgZmlsbCA9ICJncmF5OTAiKSwKICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwKICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgImxpbmVzIiksCiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG91ciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG9yID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLAogICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLAogICAgbGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiLAogICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpCiAgKSArCiAgY29vcmRfZmxpcCgpCgojIG1hbGViaWFzX0ZpZ1MyX3NpZ3RyYWl0cyAjIHRoaXMgaXMgRmlndXJlIFMyIEEKYGBgCiMjIyBQcmVwYXJlIGRhdGEgZm9yIHRyYWl0cyB3aXRoIGVmZmVjdCBzaXplIHJhdGlvcyA+IDEwJSBsYXJnZXIgaW4gbWFsZXMsIHN1cHBsZW1lbnRhbCBGaWd1cmUgUzIKIyMjIEZFTElYOiAgIkFMTCIgbWlzc2luZy4gRmVsaXggYWRkZWQgMTEvMi8yMDIwOiBkb25lClRoaXMgRmlndXJlIGV4dGVuZHMgRmlndXJlIDQsIGFzIGl0IGluY2x1ZGVzIHJlc3VsdHMgbm90IG9ubHkgZm9yIGxuQ1ZSIGFuZCBsblJSIGJ1dCBhbHNvIGxuQ1ZSLiBJbiBhZGRpdGlvbiwgd2UgY29tcGFyZSB0d28gZGlmZmVyZW50IGFzc2Vzc21lbnRzIG9mIHNleC1iaWFzLCBzaWduaWZpY2FuY2UgKENJIG5vdCBvdmVybGFwcGluZyB6ZXJvKSBhbmQgc2V4IGRpZmZlcmVuY2VzIGluIG1hbGUgLyBmZW1hbGUgcmF0aW9zID4gMTAlCgojIyMgT3ZlciAxMCUgbWFsZSBiaWFzLCBjb3VudCBkYXRhIChmaXJzdC0gb3JkZXIgbWV0YW5hbHlzaXMpIApgYGB7cn0KbWV0YS5wbG90Mi5vdmVyMTAgPC0gbWV0YV9jbGVhbiAlPiUKICBzZWxlY3QobG5DVlIsIGxuVlIsIGxuUlIsIEdyb3VwaW5nVGVybSkgJT4lCiAgYXJyYW5nZShHcm91cGluZ1Rlcm0pIAoKbWV0YS5wbG90Mi5vdmVyMTAuYiA8LSBnYXRoZXIobWV0YS5wbG90Mi5vdmVyMTAsIHRyYWl0LCB2YWx1ZSwgYyhsbkNWUiwgbG5WUiwgbG5SUikpIAoKbWV0YS5wbG90Mi5vdmVyMTAuYiR0cmFpdCA8LSBmYWN0b3IobWV0YS5wbG90Mi5vdmVyMTAuYiR0cmFpdCwgbGV2ZWxzID0gYygibG5DVlIiLCAibG5WUiIsICJsblJSIikpIAoKbWV0YS5wbG90Mi5vdmVyMTAuYyA8LSBtZXRhLnBsb3QyLm92ZXIxMC5iICU+JQogIGdyb3VwX2J5X2F0KHZhcnModHJhaXQsIEdyb3VwaW5nVGVybSkpICU+JQogIHN1bW1hcmlzZSgKICAgIG1hbGViaWFzID0gc3VtKHZhbHVlID4gbG9nKDExIC8gMTApKSwgZmVtYWxlYmlhcyA9IHN1bSh2YWx1ZSA8IGxvZyg5IC8gMTApKSwgdG90YWwgPSBtYWxlYmlhcyArIGZlbWFsZWJpYXMsCiAgICBtYWxlcGVyY2VudCA9IG1hbGViaWFzICogMTAwIC8gdG90YWwsIGZlbWFsZXBlcmNlbnQgPSBmZW1hbGViaWFzICogMTAwIC8gdG90YWwKICApCgptZXRhLnBsb3QyLm92ZXIxMC5jJGxhYmVsIDwtICJTZXggZGlmZmVyZW5jZSBpbiBtL2YgcmF0aW9zID4gMTAlIgoKIyByZXN0cnVjdHVyZSB0byBjcmVhdGUgc3RhY2tlZCBiYXIgcGxvdHMKCm1ldGEucGxvdDIub3ZlcjEwLmMgPC0gYXMuZGF0YS5mcmFtZShtZXRhLnBsb3QyLm92ZXIxMC5jKQptZXRhLnBsb3QyLm92ZXIxMC5kIDwtIGdhdGhlcihtZXRhLnBsb3QyLm92ZXIxMC5jLCBrZXkgPSBzZXgsIHZhbHVlID0gcGVyY2VudCwgbWFsZXBlcmNlbnQ6ZmVtYWxlcGVyY2VudCwgZmFjdG9yX2tleSA9IFRSVUUpCgojIGNyZWF0ZSBuZXcgc2FtcGxlIHNpemUgdmFyaWFibGUKCm1ldGEucGxvdDIub3ZlcjEwLmQkc2FtcGxlc2l6ZSA8LSB3aXRoKG1ldGEucGxvdDIub3ZlcjEwLmQsIGlmZWxzZShzZXggPT0gIm1hbGVwZXJjZW50IiwgbWFsZWJpYXMsIGZlbWFsZWJpYXMpKQoKIyBBZGQgc3VtbWFyeSByb3cgKCdBbGwnKSBhbmQgcmUtYXJyYW5nZSByb3dzIGludG8gY29ycmVjdCBvcmRlciBmb3IgcGxvdHRpbmcgKHdhcm5pbmdzIGFib3V0IGNvZXJjaW5nICdpZCcgaW50byBjaGFyYWN0ZXIgdmVjdG9yIGFyZSBvaykKCm1ldGEucGxvdDIub3ZlcjEwLmUgPC0gbWV0YS5wbG90Mi5vdmVyMTAuZCAlPiUgZ3JvdXBfYnkodHJhaXQsIHNleCkgJT4lIAogIHN1bW1hcmlzZShHcm91cGluZ1Rlcm0gPSAiQWxsIiwgbWFsZWJpYXMgPSBzdW0obWFsZWJpYXMpLCBmZW1hbGViaWFzID0gc3VtKGZlbWFsZWJpYXMpLCB0b3RhbCA9IG1hbGViaWFzICsgZmVtYWxlYmlhcywgCiAgICAgICAgICAgIGxhYmVsID0gIlNleCBkaWZmZXJlbmNlIGluIG0vZiByYXRpb3MgPiAxMCUiLCBzYW1wbGVzaXplID0gc3VtKHNhbXBsZXNpemUpKSAlPiUKICBtdXRhdGUocGVyY2VudCA9IGlmZWxzZShzZXggPT0gImZlbWFsZXBlcmNlbnQiLCBmZW1hbGViaWFzKjEwMC8obWFsZWJpYXMgKyBmZW1hbGViaWFzKSwgbWFsZWJpYXMqMTAwLyhtYWxlYmlhcyArIGZlbWFsZWJpYXMpKSkgJT4lCiAgYmluZF9yb3dzKG1ldGEucGxvdDIub3ZlcjEwLmQsIC4pICU+JQogIG11dGF0ZShyb3dudW1iZXIgPSByb3dfbnVtYmVyKCkpICU+JQogIC5bYyg1NSwgMTo5LCA1NywgMTA6MTgsIDU5LCAxOToyNywgNTYsIDI4OjM2LCA1OCwgMzc6NDUsIDYwLCA0Njo1NCksIF0gCgptZXRhLnBsb3QyLm92ZXIxMC5lJEdyb3VwaW5nVGVybSA8LSBmYWN0b3IobWV0YS5wbG90Mi5vdmVyMTAuZSRHcm91cGluZ1Rlcm0sIGxldmVscyA9IGMoIkJlaGF2aW91ciIsICJNb3JwaG9sb2d5IiwgIk1ldGFib2xpc20iLCAiUGh5c2lvbG9neSIsICJJbW11bm9sb2d5IiwgIkhlbWF0b2xvZ3kiLCAiSGVhcnQiLCAiSGVhcmluZyIsICJFeWUiLCAiQWxsIikpIAptZXRhLnBsb3QyLm92ZXIxMC5lJEdyb3VwaW5nVGVybSA8LSBmYWN0b3IobWV0YS5wbG90Mi5vdmVyMTAuZSRHcm91cGluZ1Rlcm0sIHJldihsZXZlbHMobWV0YS5wbG90Mi5vdmVyMTAuZSRHcm91cGluZ1Rlcm0pKSkKCgojICpQbG90IEZpZzIgU2V4IGRpZmZlcmVuY2UgaW4gbS9mIHJhdGlvID4gMTAlCm1hbGViaWFzX0ZpZzJfb3ZlcjEwIDwtCiAgZ2dwbG90KG1ldGEucGxvdDIub3ZlcjEwLmUpICsKICBhZXMoeCA9IEdyb3VwaW5nVGVybSwgeSA9IHBlcmNlbnQsIGZpbGwgPSBzZXgpICsKICBnZW9tX2NvbCgpICsKICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSA1MCwgbGluZXR5cGUgPSAiZGFzaGVkIiwgY29sb3IgPSAiZ3JheTQwIikgKwogIGdlb21fdGV4dCgKICAgIGRhdGEgPSBzdWJzZXQobWV0YS5wbG90Mi5vdmVyMTAuZSwgc2FtcGxlc2l6ZSAhPSAwKSwgYWVzKGxhYmVsID0gc2FtcGxlc2l6ZSksIHBvc2l0aW9uID0gcG9zaXRpb25fc3RhY2sodmp1c3QgPSAuNSksCiAgICBjb2xvciA9ICJ3aGl0ZSIsIHNpemUgPSAzLjUKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnModHJhaXQpLCByb3dzID0gdmFycyhsYWJlbCksIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAxOCksCiAgICBzY2FsZXMgPSAiZnJlZSIsIHNwYWNlID0gImZyZWUiCiAgKSArCiAgc2NhbGVfZmlsbF9icmV3ZXIocGFsZXR0ZSA9ICJTZXQyIikgKwogIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE4KSArCiAgdGhlbWUoCiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLAogICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF9ibGFuaygpLAogICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9ICJibGFuayIsIGZpbGwgPSAiZ3JheTkwIiksCiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksCiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsICJsaW5lcyIpLAogICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksCiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvdXIgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIiwKICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKQogICkgKwogIGNvb3JkX2ZsaXAoKQoKIyBtYWxlYmlhc19GaWcyX292ZXIxMCAgKHN1cHBsZW1lbnRhbCBGaWd1cmUgUzIpCmBgYAoKIyMjIyBGaWcgUzIsIHNlY29uZC1vcmRlciBtZXRhLWFuYWx5c2lzLCBtYWxlIHRyYWl0cwojIyMjIEZlbWFsZSBGaWd1cmUsIHNpZ25pZmljYW50IHRyYWl0cwpGZW1hbGUgRmlnUzIgQiBzaWcKClByZXBhcmUgZGF0YSBmb3IgdHJhaXRzIHdpdGggQ0kgbm90IG92ZXJsYXBwaW5nIDAKY3JlYXRlIGNvbHVtbiB3aXRoIDE9IGRpZmZlcmVudCBmcm9tIHplcm8sIDA9IHplcm8gaW5jbHVkZWQgaW4gQ0kKCgpSZXN0cnVjdHVyZSBkYXRhIGZvciBwbG90dGluZwoKYGBge3J9Cm92ZXJhbGwzLmZlbWFsZS5zaWdTIDwtIGdhdGhlcihvdmVyYWxsLmZlbWFsZS5wbG90MywgcGFyYW1ldGVyLCB2YWx1ZSwgYyhsbkNWUiwgbG5WUiwgbG5SUiksIGZhY3Rvcl9rZXkgPSBUUlVFKQoKbG5DVlIuY2kgPC0gb3ZlcmFsbDMuZmVtYWxlLnNpZ1MgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5DVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5DVlJfbG93ZXIsIGNpLmhpZ2ggPSBsbkNWUl91cHBlcikKbG5WUi5jaSA8LSBvdmVyYWxsMy5mZW1hbGUuc2lnUyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsblZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKQpsblJSLmNpIDwtIG92ZXJhbGwzLmZlbWFsZS5zaWdTICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuUlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpCgpvdmVyYWxsNC5mZW1hbGUuc2lnUyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpCgpvdmVyYWxsNC5mZW1hbGUuc2lnUyRsYWJlbCA8LSAiQ0kgbm90IG92ZXJsYXBwaW5nIHplcm8iCgojIwoKTWV0YW1ldGFfRmlnUzJfZmVtYWxlLnNpZyA8LSBvdmVyYWxsNC5mZW1hbGUuc2lnUyAlPiUKICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICsKICBnZW9tX2Vycm9yYmFyaChhZXMoCiAgICB4bWluID0gY2kubG93LAogICAgeG1heCA9IGNpLmhpZ2gKICApLAogIGhlaWdodCA9IDAuMSwgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSwKICAgIGZpbGwgPSAic2FsbW9uMSIsIGNvbG9yID0gInNhbG1vbjEiLCBzaXplID0gMi4yLAogICAgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIHNjYWxlX3hfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoLTAuNCwgMCksCiAgICBicmVha3MgPSBjKC0wLjMsIDApLAogICAgbmFtZSA9ICJFZmZlY3Qgc2l6ZSIKICApICsKICBnZW9tX3ZsaW5lKAogICAgeGludGVyY2VwdCA9IDAsCiAgICBjb2xvciA9ICJibGFjayIsCiAgICBsaW5ldHlwZSA9ICJkYXNoZWQiCiAgKSArCiAgZmFjZXRfZ3JpZCgKICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksICMgcm93cyA9IHZhcnMobGFiZWwpLAogICAgIyBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLAogICAgc2NhbGVzID0gImZyZWUiLAogICAgc3BhY2UgPSAiZnJlZSIKICApICsKICB0aGVtZV9idygpICsKICB0aGVtZSgKICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksCiAgICBzdHJpcC50ZXh0LnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDEyKSwKICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSAiYmxhbmsiLCBmaWxsID0gImdyYXk5MCIpLAogICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLAogICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCAibGluZXMiKSwKICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLAogICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3VyID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3IgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKCkKICApCgojIE1ldGFtZXRhX0ZpZ1MyX2ZlbWFsZS5zaWcKYGBgCgpQcmVwYXJlIGRhdGEgZm9yIHRyYWl0cyB3aXRoIG0vZiBkaWZmZXJlbmNlID4gMTAlCgpDcmVhdGUgY29sdW1uIHdpdGggMT0gbGFyZ2VyLCAwPSBkaWZmZXJlbmNlIG5vdCBsYXJnZXIgdGhhbiAxMCUgYmV0d2VlbiBtYWxlL2ZlbWFsZSByYXRpb3MKYGBge3J9Cm1ldGEubWFsZS5wbG90My5wZXJjIDwtIG1ldGFjb21ibyAlPiUKICBtdXRhdGUoCiAgICBwZXJjQ1ZSID0gaWZlbHNlKGxuQ1ZSID4gbG9nKDExIC8gMTApLCAxLCAwKSwKICAgIHBlcmNWUiA9IGlmZWxzZShsblZSID4gbG9nKDExIC8gMTApLCAxLCAwKSwKICAgIHBlcmNSUiA9IGlmZWxzZShsblJSID4gbG9nKDExIC8gMTApLCAxLCAwKQogICkKCiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsbkNWUgptZXRhY29tYm9fbWFsZS5wbG90My5DVlIucGVyYyA8LSBtZXRhLm1hbGUucGxvdDMucGVyYyAlPiUKICBmaWx0ZXIocGVyY0NWUiA9PSAxKSAlPiUKICBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JQogIG5lc3QoKQoKbWV0YWNvbWJvX21hbGUucGxvdDMuQ1ZSLnBlcmMuYWxsIDwtIG1ldGEubWFsZS5wbG90My5wZXJjICU+JQogIGZpbHRlcihwZXJjQ1ZSID09IDEpICU+JQogIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSkKCiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsblZSCm1ldGFjb21ib19tYWxlLnBsb3QzLlZSLnBlcmMgPC0gbWV0YS5tYWxlLnBsb3QzLnBlcmMgJT4lCiAgZmlsdGVyKHBlcmNWUiA9PSAxKSAlPiUKICBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JQogIG5lc3QoKQoKbWV0YWNvbWJvX21hbGUucGxvdDMuVlIucGVyYy5hbGwgPC0gbWV0YS5tYWxlLnBsb3QzLnBlcmMgJT4lCiAgZmlsdGVyKHBlcmNWUiA9PSAxKSAlPiUKICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpCgojIFNpZ25pZmljYW50IHN1YnNldCBmb3IgbG5SUgptZXRhY29tYm9fbWFsZS5wbG90My5SUi5wZXJjIDwtIG1ldGEubWFsZS5wbG90My5wZXJjICU+JQogIGZpbHRlcihwZXJjUlIgPT0gMSkgJT4lCiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiUKICBuZXN0KCkKCm1ldGFjb21ib19tYWxlLnBsb3QzLlJSLnBlcmMuYWxsIDwtIG1ldGEubWFsZS5wbG90My5wZXJjICU+JQogIGZpbHRlcihwZXJjUlIgPT0gMSkgJT4lCiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKQoKCiMgKipGaW5hbCBmaXhlZCBlZmZlY3RzIG1ldGEtYW5hbHlzZXMgd2l0aGluIGdyb3VwaW5nIHRlcm1zIGFuZCBhY3Jvc3MgZ3JvdXBpbmcgdGVybXMsIHdpdGggU0Ugb2YgdGhlIGVzdGltYXRlCgpwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuQ1ZSLnBlcmMgJT4lCiAgbXV0YXRlKG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgIHlpID0gLngkbG5DVlIsIHNlaSA9ICgueCRsbkNWUl91cHBlciAtIC54JGxuQ1ZSX2xvd2VyKSAvICgyICogMS45NiksCiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRgogICkpKQoKcGxvdDMubWFsZS5tZXRhLlZSLnBlcmMgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuVlIucGVyYyAlPiUKICBtdXRhdGUobW9kZWxfbG5WUiA9IG1hcChkYXRhLCB+IG1ldGFmb3I6OnJtYS51bmkoCiAgICB5aSA9IC54JGxuVlIsIHNlaSA9ICgueCRsblZSX3VwcGVyIC0gLngkbG5WUl9sb3dlcikgLyAoMiAqIDEuOTYpLAogICAgY29udHJvbCA9IGxpc3Qob3B0aW1pemVyID0gIm9wdGltIiwgb3B0bWV0aG9kID0gIk5lbGRlci1NZWFkIiwgbWF4aXQgPSAxMDAwKSwgdmVyYm9zZSA9IEYKICApKSkKCnBsb3QzLm1hbGUubWV0YS5SUi5wZXJjIDwtIG1ldGFjb21ib19tYWxlLnBsb3QzLlJSLnBlcmMgJT4lCiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblJSLCBzZWkgPSAoLngkbG5SUl91cHBlciAtIC54JGxuUlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgojIEFjcm9zcyBhbGwgZ3JvdXBpbmcgdGVybXMgIwoKcGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLmFsbCA8LSBtZXRhY29tYm9fbWFsZS5wbG90My5DVlIucGVyYy5hbGwgJT4lCiAgbXV0YXRlKG1vZGVsX2xuQ1ZSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgIHlpID0gLngkbG5DVlIsIHNlaSA9ICgueCRsbkNWUl91cHBlciAtIC54JGxuQ1ZSX2xvd2VyKSAvICgyICogMS45NiksCiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRgogICkpKQoKcGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLmFsbCA8LSBwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gIkFsbCIpCgpwbG90My5tYWxlLm1ldGEuVlIucGVyYy5hbGwgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuVlIucGVyYy5hbGwgJT4lCiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tYWxlLm1ldGEuVlIucGVyYy5hbGwgPC0gcGxvdDMubWFsZS5tZXRhLlZSLnBlcmMuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gIkFsbCIpCgpwbG90My5tYWxlLm1ldGEuUlIucGVyYy5hbGwgPC0gbWV0YWNvbWJvX21hbGUucGxvdDMuUlIucGVyYy5hbGwgJT4lCiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblJSLCBzZWkgPSAoLngkbG5SUl91cHBlciAtIC54JGxuUlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tYWxlLm1ldGEuUlIucGVyYy5hbGwgPC0gcGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gIkFsbCIpCgojIENvbWJpbmUgd2l0aCBzZXBhcmF0ZSBncm91cGluZyB0ZXJtIHJlc3VsdHMKCnBsb3QzLm1hbGUubWV0YS5DVlIucGVyYyA8LSBiaW5kX3Jvd3MocGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLCBwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYWxsKQpwbG90My5tYWxlLm1ldGEuVlIucGVyYyA8LSBiaW5kX3Jvd3MocGxvdDMubWFsZS5tZXRhLlZSLnBlcmMsIHBsb3QzLm1hbGUubWV0YS5WUi5wZXJjLmFsbCkKcGxvdDMubWFsZS5tZXRhLlJSLnBlcmMgPC0gYmluZF9yb3dzKHBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLCBwbG90My5tYWxlLm1ldGEuUlIucGVyYy5hbGwpCgoKIyAqKlJlLXN0cnVjdHVyZSBkYXRhIGZvciBlYWNoIGdyb3VwaW5nIHRlcm07IGRlbGV0ZSB1bi11c2VkIHZhcmlhYmxlczogIkhlYXJpbmcgbWlzc2luZyBmb3IgYWxsIDMgcGFyYW1ldGVycyIKCnBsb3QzLm1hbGUubWV0YS5DVlIucGVyYy5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjICU+JSBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JQogIG11dGF0ZSgKICAgIGxuQ1ZSID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soMikpLCBsbkNWUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDYpKSwKICAgIGxuQ1ZSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soNykpLCBsbkNWUl9zZSA9IG1hcF9kYmwobW9kZWxfbG5DVlIsIHBsdWNrKDMpKQogICkpWywgYygxLCA0OjcpXQphZGQucm93LmhlYXJpbmcgPC0gYXMuZGF0YS5mcmFtZSh0KGMoIkhlYXJpbmciLCBOQSwgTkEsIE5BLCBOQSkpKSAlPiUgc2V0TmFtZXMobmFtZXMocGxvdDMubWFsZS5tZXRhLkNWUi5wZXJjLmIpKQpwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYiA8LSByYmluZChwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYiwgYWRkLnJvdy5oZWFyaW5nKQpwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYiA8LSBwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYltvcmRlcihwbG90My5tYWxlLm1ldGEuQ1ZSLnBlcmMuYiRHcm91cGluZ1Rlcm0pLCBdCgpwbG90My5tYWxlLm1ldGEuVlIucGVyYy5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMubWFsZS5tZXRhLlZSLnBlcmMgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbXV0YXRlKAogICAgbG5WUiA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soMikpLCBsblZSX2xvd2VyID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjayg2KSksCiAgICBsblZSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjayg3KSksIGxuVlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDMpKQogICkpWywgYygxLCA0OjcpXQphZGQucm93LmhlYXJpbmcgPC0gYXMuZGF0YS5mcmFtZSh0KGMoIkhlYXJpbmciLCBOQSwgTkEsIE5BLCBOQSkpKSAlPiUgc2V0TmFtZXMobmFtZXMocGxvdDMubWFsZS5tZXRhLlZSLnBlcmMuYikpCnBsb3QzLm1hbGUubWV0YS5WUi5wZXJjLmIgPC0gcmJpbmQocGxvdDMubWFsZS5tZXRhLlZSLnBlcmMuYiwgYWRkLnJvdy5oZWFyaW5nKQpwbG90My5tYWxlLm1ldGEuVlIucGVyYy5iIDwtIHBsb3QzLm1hbGUubWV0YS5WUi5wZXJjLmJbb3JkZXIocGxvdDMubWFsZS5tZXRhLlZSLnBlcmMuYiRHcm91cGluZ1Rlcm0pLCBdCgpwbG90My5tYWxlLm1ldGEuUlIucGVyYy5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMubWFsZS5tZXRhLlJSLnBlcmMgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbXV0YXRlKAogICAgbG5SUiA9IG1hcF9kYmwobW9kZWxfbG5SUiwgcGx1Y2soMikpLCBsblJSX2xvd2VyID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjayg2KSksCiAgICBsblJSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjayg3KSksIGxuUlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDMpKQogICkpWywgYygxLCA0OjcpXQphZGQucm93LmhlYXJpbmcgPC0gYXMuZGF0YS5mcmFtZSh0KGMoIkhlYXJpbmciLCBOQSwgTkEsIE5BLCBOQSkpKSAlPiUKICBzZXROYW1lcyhuYW1lcyhwbG90My5tYWxlLm1ldGEuUlIucGVyYy5iKSkKcGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYiA8LSByYmluZChwbG90My5tYWxlLm1ldGEuUlIucGVyYy5iLCBhZGQucm93LmhlYXJpbmcpCgphZGQucm93LmV5ZSA8LSBhcy5kYXRhLmZyYW1lKHQoYygiRXllIiwgTkEsIE5BLCBOQSwgTkEpKSkgJT4lCiAgc2V0TmFtZXMobmFtZXMocGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYikpCnBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLmIgPC0gcmJpbmQocGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYiwgYWRkLnJvdy5leWUpCgpwbG90My5tYWxlLm1ldGEuUlIucGVyYy5iIDwtIHBsb3QzLm1hbGUubWV0YS5SUi5wZXJjLmJbb3JkZXIocGxvdDMubWFsZS5tZXRhLlJSLnBlcmMuYiRHcm91cGluZ1Rlcm0pLCBdCgpwbG90My5tYWxlLm1ldGEuQ1ZSLlZyLnBlcmMgPC0gZnVsbF9qb2luKHBsb3QzLm1hbGUubWV0YS5DVlIucGVyYy5iLCBwbG90My5tYWxlLm1ldGEuVlIucGVyYy5iKQpvdmVyYWxsLm1hbGUucGxvdDMucGVyYyA8LSBmdWxsX2pvaW4ocGxvdDMubWFsZS5tZXRhLkNWUi5Wci5wZXJjLCBwbG90My5tYWxlLm1ldGEuUlIucGVyYy5iKQoKCm92ZXJhbGwubWFsZS5wbG90My5wZXJjJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5tYWxlLnBsb3QzLnBlcmMkR3JvdXBpbmdUZXJtLCBsZXZlbHMgPSBjKCJCZWhhdmlvdXIiLCAiTW9ycGhvbG9neSIsICJNZXRhYm9saXNtIiwgIlBoeXNpb2xvZ3kiLCAiSW1tdW5vbG9neSIsICJIZW1hdG9sb2d5IiwgIkhlYXJ0IiwgIkhlYXJpbmciLCAiRXllIiwgIkFsbCIpKQpvdmVyYWxsLm1hbGUucGxvdDMucGVyYyRHcm91cGluZ1Rlcm0gPC0gZmFjdG9yKG92ZXJhbGwubWFsZS5wbG90My5wZXJjJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhvdmVyYWxsLm1hbGUucGxvdDMucGVyYyRHcm91cGluZ1Rlcm0pKSkKCmBgYAoKUmVzdHJ1Y3R1cmUgZGF0YSBmb3IgcGxvdHRpbmcgOiBNYWxlIGJpYXNlZCwgMTAlIGRpZmZlcmVuY2UKCmBgYHtyfQpvdmVyYWxsMy5wZXJjIDwtIGdhdGhlcihvdmVyYWxsLm1hbGUucGxvdDMucGVyYywgcGFyYW1ldGVyLCB2YWx1ZSwgYyhsbkNWUiwgbG5WUiwgbG5SUiksIGZhY3Rvcl9rZXkgPSBUUlVFKSAKCmxuQ1ZSLmNpIDwtIG92ZXJhbGwzLnBlcmMgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5DVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5DVlJfbG93ZXIsIGNpLmhpZ2ggPSBsbkNWUl91cHBlcikKbG5WUi5jaSA8LSBvdmVyYWxsMy5wZXJjICAlPiUgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5WUiIpICU+JSBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpCmxuUlIuY2kgPC0gb3ZlcmFsbDMucGVyYyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsblJSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuUlJfbG93ZXIsIGNpLmhpZ2ggPSBsblJSX3VwcGVyKQoKb3ZlcmFsbDQubWFsZS5wZXJjIDwtIGJpbmRfcm93cyhsbkNWUi5jaSxsblZSLmNpLCBsblJSLmNpKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgcGFyYW1ldGVyLCB2YWx1ZSwgY2kubG93LCBjaS5oaWdoKSAKCm92ZXJhbGw0Lm1hbGUucGVyYyRsYWJlbCA8LSAiU2V4IGRpZmZlcmVuY2UgaW4gbS9mIHJhdGlvcyA+IDEwJSIKCm92ZXJhbGw0Lm1hbGUucGVyYyR2YWx1ZSA8LSBhcy5udW1lcmljKG92ZXJhbGw0Lm1hbGUucGVyYyR2YWx1ZSkKb3ZlcmFsbDQubWFsZS5wZXJjJGNpLmxvdyA8LSBhcy5udW1lcmljKG92ZXJhbGw0Lm1hbGUucGVyYyRjaS5sb3cpCm92ZXJhbGw0Lm1hbGUucGVyYyRjaS5oaWdoIDwtIGFzLm51bWVyaWMob3ZlcmFsbDQubWFsZS5wZXJjJGNpLmhpZ2gpCmBgYAoKUGxvdCBGaWcgUzIgYWxsID4xMCUgZGlmZmVyZW5jZSAobWFsZSBiaWFzKQpTMiBCLCBib3R0b20gcmlnaHQgCgpgYGB7cn0KCk1ldGFtZXRhX0ZpZzNfbWFsZS5wZXJjIDwtIG92ZXJhbGw0Lm1hbGUucGVyYyAlPiUgIyBmaWx0ZXIoLiwgR3JvdXBpbmdUZXJtICE9ICJIZWFyaW5nIikgJT4lCiAgZ2dwbG90KGFlcyh5ID0gR3JvdXBpbmdUZXJtLCB4ID0gdmFsdWUpKSArCiAgZ2VvbV9lcnJvcmJhcmgoYWVzKAogICAgeG1pbiA9IGNpLmxvdywKICAgIHhtYXggPSBjaS5oaWdoCiAgKSwKICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0UKICApICsKICBnZW9tX3BvaW50KGFlcygKICAgIHNoYXBlID0gcGFyYW1ldGVyLAogICAgZmlsbCA9IHBhcmFtZXRlcgogICksCiAgY29sb3IgPSAibWVkaXVtYXF1YW1hcmluZSIsIHNpemUgPSAyLjIsCiAgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIHNjYWxlX3hfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoLTAuMiwgMC42MiksCiAgICBicmVha3MgPSBjKDAsIDAuMyksCiAgICBuYW1lID0gIkVmZmVjdCBzaXplIgogICkgKwogIGdlb21fdmxpbmUoCiAgICB4aW50ZXJjZXB0ID0gMCwKICAgIGNvbG9yID0gImJsYWNrIiwKICAgIGxpbmV0eXBlID0gImRhc2hlZCIKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgcm93cyA9IHZhcnMobGFiZWwpLAogICAgbGFiZWxsZXIgPSBsYWJlbF93cmFwX2dlbih3aWR0aCA9IDIzKSwKICAgIHNjYWxlcyA9ICJmcmVlIiwKICAgIHNwYWNlID0gImZyZWUiCiAgKSArCiAgdGhlbWVfYncoKSArCiAgdGhlbWUoCiAgICBzdHJpcC50ZXh0LnkgPSBlbGVtZW50X3RleHQoYW5nbGUgPSAyNzAsIHNpemUgPSAxMCwgbWFyZ2luID0gbWFyZ2luKHQgPSAxNSwgciA9IDE1LCBiID0gMTUsIGwgPSAxNSkpLAogICAgc3RyaXAudGV4dC54ID0gZWxlbWVudF9ibGFuaygpLAogICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9ICJibGFuayIsIGZpbGwgPSAiZ3JheTkwIiksCiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksCiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsICJsaW5lcyIpLAogICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksCiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvdXIgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSwgc2l6ZSA9IDE0KSwKICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKQogICkKCiMgTWV0YW1ldGFfRmlnM19tYWxlLnBlcmMgKEZpZ3VyZSBTMiByaWdodCBwYW5lbCkKYGBgCgojIyMjIEZlbWFsZSBGaWcgUzIgPjEwJQoKYGBge3J9CgptZXRhLnBsb3QzLnBlcmMgPC0gbWV0YWNvbWJvICU+JQogIG11dGF0ZSgKICAgIHBlcmNDVlIgPSBpZmVsc2UobG5DVlIgPCBsb2coOSAvIDEwKSwgMSwgMCksCiAgICBwZXJjVlIgPSBpZmVsc2UobG5WUiA8IGxvZyg5IC8gMTApLCAxLCAwKSwKICAgIHBlcmNSUiA9IGlmZWxzZShsblJSIDwgbG9nKDkgLyAxMCksIDEsIDApCiAgKQoKIyBTaWduaWZpY2FudCBzdWJzZXQgZm9yIGxuQ1ZSCm1ldGFjb21ib19wbG90My5DVlIucGVyYyA8LSBtZXRhLnBsb3QzLnBlcmMgJT4lCiAgZmlsdGVyKHBlcmNDVlIgPT0gMSkgJT4lCiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiUKICBuZXN0KCkKCm1ldGFjb21ib19wbG90My5DVlIucGVyYy5hbGwgPC0gbWV0YS5wbG90My5wZXJjICU+JQogIGZpbHRlcihwZXJjQ1ZSID09IDEpICU+JQogIG5lc3QoZGF0YSA9IGV2ZXJ5dGhpbmcoKSkKCiMgU2lnbmlmaWNhbnQgc3Vic2V0IGZvciBsblZSCm1ldGFjb21ib19wbG90My5WUi5wZXJjIDwtIG1ldGEucGxvdDMucGVyYyAlPiUKICBmaWx0ZXIocGVyY1ZSID09IDEpICU+JQogIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbmVzdCgpCgptZXRhY29tYm9fcGxvdDMuVlIucGVyYy5hbGwgPC0gbWV0YS5wbG90My5wZXJjICU+JQogIGZpbHRlcihwZXJjVlIgPT0gMSkgJT4lCiAgbmVzdChkYXRhID0gZXZlcnl0aGluZygpKQoKIyBTaWduaWZpY2FudCBzdWJzZXQgZm9yIGxuUlIKbWV0YWNvbWJvX3Bsb3QzLlJSLnBlcmMgPC0gbWV0YS5wbG90My5wZXJjICU+JQogIGZpbHRlcihwZXJjUlIgPT0gMSkgJT4lCiAgZ3JvdXBfYnkoR3JvdXBpbmdUZXJtKSAlPiUKICBuZXN0KCkKCm1ldGFjb21ib19wbG90My5SUi5wZXJjLmFsbCA8LSBtZXRhLnBsb3QzLnBlcmMgJT4lCiAgZmlsdGVyKHBlcmNSUiA9PSAxKSAlPiUKICBuZXN0KGRhdGEgPSBldmVyeXRoaW5nKCkpCgoKIyAqKkZpbmFsIGZpeGVkIGVmZmVjdHMgbWV0YS1hbmFseXNlcyB3aXRoaW4gZ3JvdXBpbmcgdGVybXMsIHdpdGggU0Ugb2YgdGhlIGVzdGltYXRlCgpwbG90My5tZXRhLkNWUi5wZXJjIDwtIG1ldGFjb21ib19wbG90My5DVlIucGVyYyAlPiUKICBtdXRhdGUobW9kZWxfbG5DVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tZXRhLlZSLnBlcmMgPC0gbWV0YWNvbWJvX3Bsb3QzLlZSLnBlcmMgJT4lCiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tZXRhLlJSLnBlcmMgPC0gbWV0YWNvbWJvX3Bsb3QzLlJSLnBlcmMgJT4lCiAgbXV0YXRlKG1vZGVsX2xuUlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblJSLCBzZWkgPSAoLngkbG5SUl91cHBlciAtIC54JGxuUlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgojIEFjcm9zcyBhbGwgZ3JvdXBpbmcgdGVybXMgIwoKcGxvdDMubWV0YS5DVlIucGVyYy5hbGwgPC0gbWV0YWNvbWJvX3Bsb3QzLkNWUi5wZXJjLmFsbCAlPiUKICBtdXRhdGUobW9kZWxfbG5DVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsbkNWUiwgc2VpID0gKC54JGxuQ1ZSX3VwcGVyIC0gLngkbG5DVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tZXRhLkNWUi5wZXJjLmFsbCA8LSBwbG90My5tZXRhLkNWUi5wZXJjLmFsbCAlPiUgbXV0YXRlKEdyb3VwaW5nVGVybSA9ICJBbGwiKQoKcGxvdDMubWV0YS5WUi5wZXJjLmFsbCA8LSBtZXRhY29tYm9fcGxvdDMuVlIucGVyYy5hbGwgJT4lCiAgbXV0YXRlKG1vZGVsX2xuVlIgPSBtYXAoZGF0YSwgfiBtZXRhZm9yOjpybWEudW5pKAogICAgeWkgPSAueCRsblZSLCBzZWkgPSAoLngkbG5WUl91cHBlciAtIC54JGxuVlJfbG93ZXIpIC8gKDIgKiAxLjk2KSwKICAgIGNvbnRyb2wgPSBsaXN0KG9wdGltaXplciA9ICJvcHRpbSIsIG9wdG1ldGhvZCA9ICJOZWxkZXItTWVhZCIsIG1heGl0ID0gMTAwMCksIHZlcmJvc2UgPSBGCiAgKSkpCgpwbG90My5tZXRhLlZSLnBlcmMuYWxsIDwtIHBsb3QzLm1ldGEuVlIucGVyYy5hbGwgJT4lIG11dGF0ZShHcm91cGluZ1Rlcm0gPSAiQWxsIikKCnBsb3QzLm1ldGEuUlIucGVyYy5hbGwgPC0gbWV0YWNvbWJvX3Bsb3QzLlJSLnBlcmMuYWxsICU+JQogIG11dGF0ZShtb2RlbF9sblJSID0gbWFwKGRhdGEsIH4gbWV0YWZvcjo6cm1hLnVuaSgKICAgIHlpID0gLngkbG5SUiwgc2VpID0gKC54JGxuUlJfdXBwZXIgLSAueCRsblJSX2xvd2VyKSAvICgyICogMS45NiksCiAgICBjb250cm9sID0gbGlzdChvcHRpbWl6ZXIgPSAib3B0aW0iLCBvcHRtZXRob2QgPSAiTmVsZGVyLU1lYWQiLCBtYXhpdCA9IDEwMDApLCB2ZXJib3NlID0gRgogICkpKQoKcGxvdDMubWV0YS5SUi5wZXJjLmFsbCA8LSBwbG90My5tZXRhLlJSLnBlcmMuYWxsICU+JSBtdXRhdGUoR3JvdXBpbmdUZXJtID0gIkFsbCIpCgojIENvbWJpbmUgd2l0aCBzZXBhcmF0ZSBncm91cGluZyB0ZXJtIHJlc3VsdHMKCnBsb3QzLm1ldGEuQ1ZSLnBlcmMgPC0gYmluZF9yb3dzKHBsb3QzLm1ldGEuQ1ZSLnBlcmMsIHBsb3QzLm1ldGEuQ1ZSLnBlcmMuYWxsKQpwbG90My5tZXRhLlZSLnBlcmMgPC0gYmluZF9yb3dzKHBsb3QzLm1ldGEuVlIucGVyYywgcGxvdDMubWV0YS5WUi5wZXJjLmFsbCkKcGxvdDMubWV0YS5SUi5wZXJjIDwtIGJpbmRfcm93cyhwbG90My5tZXRhLlJSLnBlcmMsIHBsb3QzLm1ldGEuUlIucGVyYy5hbGwpCgoKIyAqKlJlLXN0cnVjdHVyZSBkYXRhIGZvciBlYWNoIGdyb3VwaW5nIHRlcm07IGRlbGV0ZSB1bi11c2VkIHZhcmlhYmxlczogIkhlYXJpbmcgbWlzc2luZyBmb3IgYWxsIDMgcGFyYW1ldGVycyIKCnBsb3QzLm1ldGEuQ1ZSLnBlcmMuYiA8LSBhcy5kYXRhLmZyYW1lKHBsb3QzLm1ldGEuQ1ZSLnBlcmMgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbXV0YXRlKAogICAgbG5DVlIgPSBtYXBfZGJsKG1vZGVsX2xuQ1ZSLCBwbHVjaygyKSksIGxuQ1ZSX2xvd2VyID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soNikpLAogICAgbG5DVlJfdXBwZXIgPSBtYXBfZGJsKG1vZGVsX2xuQ1ZSLCBwbHVjayg3KSksIGxuQ1ZSX3NlID0gbWFwX2RibChtb2RlbF9sbkNWUiwgcGx1Y2soMykpCiAgKSlbLCBjKDEsIDQ6NyldCmFkZC5yb3cuaGVhcmluZyA8LSBhcy5kYXRhLmZyYW1lKHQoYygiSGVhcmluZyIsIE5BLCBOQSwgTkEsIE5BKSkpICU+JSBzZXROYW1lcyhuYW1lcyhwbG90My5tZXRhLkNWUi5wZXJjLmIpKQpwbG90My5tZXRhLkNWUi5wZXJjLmIgPC0gcmJpbmQocGxvdDMubWV0YS5DVlIucGVyYy5iLCBhZGQucm93LmhlYXJpbmcpCnBsb3QzLm1ldGEuQ1ZSLnBlcmMuYiA8LSBwbG90My5tZXRhLkNWUi5wZXJjLmJbb3JkZXIocGxvdDMubWV0YS5DVlIucGVyYy5iJEdyb3VwaW5nVGVybSksIF0KCnBsb3QzLm1ldGEuVlIucGVyYy5iIDwtIGFzLmRhdGEuZnJhbWUocGxvdDMubWV0YS5WUi5wZXJjICU+JSBncm91cF9ieShHcm91cGluZ1Rlcm0pICU+JQogIG11dGF0ZSgKICAgIGxuVlIgPSBtYXBfZGJsKG1vZGVsX2xuVlIsIHBsdWNrKDIpKSwgbG5WUl9sb3dlciA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soNikpLAogICAgbG5WUl91cHBlciA9IG1hcF9kYmwobW9kZWxfbG5WUiwgcGx1Y2soNykpLCBsblZSX3NlID0gbWFwX2RibChtb2RlbF9sblZSLCBwbHVjaygzKSkKICApKVssIGMoMSwgNDo3KV0KYWRkLnJvdy5oZWFyaW5nIDwtIGFzLmRhdGEuZnJhbWUodChjKCJIZWFyaW5nIiwgTkEsIE5BLCBOQSwgTkEpKSkgJT4lIHNldE5hbWVzKG5hbWVzKHBsb3QzLm1ldGEuVlIucGVyYy5iKSkKcGxvdDMubWV0YS5WUi5wZXJjLmIgPC0gcmJpbmQocGxvdDMubWV0YS5WUi5wZXJjLmIsIGFkZC5yb3cuaGVhcmluZykKcGxvdDMubWV0YS5WUi5wZXJjLmIgPC0gcGxvdDMubWV0YS5WUi5wZXJjLmJbb3JkZXIocGxvdDMubWV0YS5WUi5wZXJjLmIkR3JvdXBpbmdUZXJtKSwgXQoKcGxvdDMubWV0YS5SUi5wZXJjLmIgPC0gYXMuZGF0YS5mcmFtZShwbG90My5tZXRhLlJSLnBlcmMgJT4lIGdyb3VwX2J5KEdyb3VwaW5nVGVybSkgJT4lCiAgbXV0YXRlKAogICAgbG5SUiA9IG1hcF9kYmwobW9kZWxfbG5SUiwgcGx1Y2soMikpLCBsblJSX2xvd2VyID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjayg2KSksCiAgICBsblJSX3VwcGVyID0gbWFwX2RibChtb2RlbF9sblJSLCBwbHVjayg3KSksIGxuUlJfc2UgPSBtYXBfZGJsKG1vZGVsX2xuUlIsIHBsdWNrKDMpKQogICkpWywgYygxLCA0OjcpXQphZGQucm93LmhlYXJpbmcgPC0gYXMuZGF0YS5mcmFtZSh0KGMoIkhlYXJpbmciLCBOQSwgTkEsIE5BLCBOQSkpKSAlPiUgc2V0TmFtZXMobmFtZXMocGxvdDMubWV0YS5SUi5wZXJjLmIpKQpwbG90My5tZXRhLlJSLnBlcmMuYiA8LSByYmluZChwbG90My5tZXRhLlJSLnBlcmMuYiwgYWRkLnJvdy5oZWFyaW5nKQphZGQucm93LmhlbWF0b2xvZ3kgPC0gYXMuZGF0YS5mcmFtZSh0KGMoIkhlbWF0b2xvZ3kiLCBOQSwgTkEsIE5BLCBOQSkpKSAlPiUKICBzZXROYW1lcyhuYW1lcyhwbG90My5tZXRhLlJSLnBlcmMuYikpCnBsb3QzLm1ldGEuUlIucGVyYy5iIDwtIHJiaW5kKHBsb3QzLm1ldGEuUlIucGVyYy5iLCBhZGQucm93LmhlbWF0b2xvZ3kpCgoKcGxvdDMubWV0YS5SUi5wZXJjLmIgPC0gcGxvdDMubWV0YS5SUi5wZXJjLmJbb3JkZXIocGxvdDMubWV0YS5SUi5wZXJjLmIkR3JvdXBpbmdUZXJtKSwgXQoKcGxvdDMubWV0YS5DVlIucGVyYy5jIDwtIGZ1bGxfam9pbihwbG90My5tZXRhLkNWUi5wZXJjLmIsIHBsb3QzLm1ldGEuVlIucGVyYy5iKQpvdmVyYWxsLnBsb3QzLnBlcmMgPC0gZnVsbF9qb2luKHBsb3QzLm1ldGEuQ1ZSLnBlcmMuYywgcGxvdDMubWV0YS5SUi5wZXJjLmIpCgoKb3ZlcmFsbC5wbG90My5wZXJjJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5wbG90My5wZXJjJEdyb3VwaW5nVGVybSwgbGV2ZWxzID0gYygiQmVoYXZpb3VyIiwgIk1vcnBob2xvZ3kiLCAiTWV0YWJvbGlzbSIsICJQaHlzaW9sb2d5IiwgIkltbXVub2xvZ3kiLCAiSGVtYXRvbG9neSIsICJIZWFydCIsICJIZWFyaW5nIiwgIkV5ZSIsICJBbGwiKSkKb3ZlcmFsbC5wbG90My5wZXJjJEdyb3VwaW5nVGVybSA8LSBmYWN0b3Iob3ZlcmFsbC5wbG90My5wZXJjJEdyb3VwaW5nVGVybSwgcmV2KGxldmVscyhvdmVyYWxsLnBsb3QzLnBlcmMkR3JvdXBpbmdUZXJtKSkpCmBgYAoKUmVzdHJ1Y3R1cmUgZGF0YSBmb3IgcGxvdHRpbmcKRmVtYWxlIGJpYXMsIDEwIHBlcmNlbnQgZGlmZmVyZW5jZQoKYGBge3J9Cm92ZXJhbGwzLnBlcmMgPC0gZ2F0aGVyKG92ZXJhbGwucGxvdDMucGVyYywgcGFyYW1ldGVyLCB2YWx1ZSwgYyhsbkNWUiwgbG5WUiwgbG5SUiksIGZhY3Rvcl9rZXkgPSBUUlVFKSAKCmxuQ1ZSLmNpIDwtIG92ZXJhbGwzLnBlcmMgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5DVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5DVlJfbG93ZXIsIGNpLmhpZ2ggPSBsbkNWUl91cHBlcikKbG5WUi5jaSA8LSBvdmVyYWxsMy5wZXJjICAlPiUgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5WUiIpICU+JSBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpCmxuUlIuY2kgPC0gb3ZlcmFsbDMucGVyYyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsblJSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuUlJfbG93ZXIsIGNpLmhpZ2ggPSBsblJSX3VwcGVyKQoKb3ZlcmFsbDQucGVyYyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpCgpvdmVyYWxsNC5wZXJjJGxhYmVsIDwtICJTZXggZGlmZmVyZW5jZSBpbiBtL2YgcmF0aW9zID4gMTAlIgoKb3ZlcmFsbDQucGVyYyR2YWx1ZSA8LSBhcy5udW1lcmljKG92ZXJhbGw0LnBlcmMkdmFsdWUpCm92ZXJhbGw0LnBlcmMkY2kubG93IDwtIGFzLm51bWVyaWMob3ZlcmFsbDQucGVyYyRjaS5sb3cpCm92ZXJhbGw0LnBlcmMkY2kuaGlnaCA8LSBhcy5udW1lcmljKG92ZXJhbGw0LnBlcmMkY2kuaGlnaCkKYGBgCgpQbG90IEZpZ1MyIGFsbCA+MTAlIGRpZmZlcmVuY2UgKGZlbWFsZSkKRmlndXJlIFMyQiwgYm90dG9tIGxlZnQKCmBgYHtyfQpNZXRhbWV0YV9GaWczX2ZlbWFsZS5wZXJjIDwtIG92ZXJhbGw0LnBlcmMgJT4lCiAgZ2dwbG90KGFlcyh5ID0gR3JvdXBpbmdUZXJtLCB4ID0gdmFsdWUpKSArCiAgZ2VvbV9lcnJvcmJhcmgoYWVzKAogICAgeG1pbiA9IGNpLmxvdywKICAgIHhtYXggPSBjaS5oaWdoCiAgKSwKICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0UKICApICsKICBnZW9tX3BvaW50KGFlcyhzaGFwZSA9IHBhcmFtZXRlciksCiAgICBmaWxsID0gInNhbG1vbjEiLCBjb2xvciA9ICJzYWxtb24xIiwgc2l6ZSA9IDIuMiwKICAgIHNob3cubGVnZW5kID0gRkFMU0UKICApICsKCiAgIyBzY2FsZV9zaGFwZV9tYW51YWwodmFsdWVzID0KCiAgc2NhbGVfeF9jb250aW51b3VzKAogICAgbGltaXRzID0gYygtMC41MywgMC4yKSwKICAgIGJyZWFrcyA9IGMoLTAuMywgMCksCiAgICBuYW1lID0gIkVmZmVjdCBzaXplIgogICkgKwogIGdlb21fdmxpbmUoCiAgICB4aW50ZXJjZXB0ID0gMCwKICAgIGNvbG9yID0gImJsYWNrIiwKICAgIGxpbmV0eXBlID0gImRhc2hlZCIKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgIyByb3dzID0gdmFycyhsYWJlbCksCiAgICAjIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAyMyksCiAgICBzY2FsZXMgPSAiZnJlZSIsCiAgICBzcGFjZSA9ICJmcmVlIgogICkgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKAogICAgc3RyaXAudGV4dC55ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMjcwLCBzaXplID0gMTAsIG1hcmdpbiA9IG1hcmdpbih0ID0gMTUsIHIgPSAxNSwgYiA9IDE1LCBsID0gMTUpKSwKICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSAiYmxhbmsiLCBmaWxsID0gImdyYXk5MCIpLAogICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLAogICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCAibGluZXMiKSwKICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLAogICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3VyID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3IgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUsIHNpemUgPSAxNCksCiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKCkKICApCgojIE1ldGFtZXRhX0ZpZzNfZmVtYWxlLnBlcmMgKEZpZ3VyZSA1RCBsZWZ0IHBhbmVsKQpgYGAKTUlTU0lORwpNZXRhbWV0YV9GaWczX2ZlbWFsZS5zaWcgTWV0YW1ldGFfRmlnM19mZW1hbGUuc2lnIFZSISEhCiMgQURERUQgVE8gVEVTVAojTWV0YW1ldGFfRmlnUzJfbWFsZS5zaWcgKEZpZ3VyZSBTMkIgdG9wIHJpZ2h0IHBhbmVsKQoKUmVzdHJ1Y3R1cmUgTUFMRSBkYXRhIGZvciBwbG90dGluZyAKCmBgYHtyfQpvdmVyYWxsMy5tYWxlLnNpZ1MgPC0gZ2F0aGVyKG92ZXJhbGwubWFsZS5wbG90MywgcGFyYW1ldGVyLCB2YWx1ZSwgYyhsbkNWUiwgbG5WUiwgbG5SUiksIGZhY3Rvcl9rZXkgPSBUUlVFKQoKCmxuQ1ZSLmNpIDwtIG92ZXJhbGwzLm1hbGUuc2lnUyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsbkNWUiIpICU+JQogIG11dGF0ZShjaS5sb3cgPSBsbkNWUl9sb3dlciwgY2kuaGlnaCA9IGxuQ1ZSX3VwcGVyKQpsblZSLmNpIDwtIG92ZXJhbGwzLm1hbGUuc2lnUyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsblZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKQpsblJSLmNpIDwtIG92ZXJhbGwzLm1hbGUuc2lnUyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsblJSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuUlJfbG93ZXIsIGNpLmhpZ2ggPSBsblJSX3VwcGVyKQoKb3ZlcmFsbDQubWFsZS5zaWdTIDwtIGJpbmRfcm93cyhsbkNWUi5jaSwgbG5WUi5jaSwgbG5SUi5jaSkgJT4lIHNlbGVjdChHcm91cGluZ1Rlcm0sIHBhcmFtZXRlciwgdmFsdWUsIGNpLmxvdywgY2kuaGlnaCkKCm92ZXJhbGw0Lm1hbGUuc2lnUyRsYWJlbCA8LSAiQ0kgbm90IG92ZXJsYXBwaW5nIHplcm8iCmBgYAoKUGxvdCBGaWdTMiBhbGwgc2lnbmlmaWNhbnQgcmVzdWx0cyAoQ0kgbm90IG92ZXJsYXBwaW5nIHplcm8sIG1hbGUgKQoKYGBge3J9Ck1ldGFtZXRhX0ZpZ1MyX21hbGUuc2lnIDwtIG92ZXJhbGw0Lm1hbGUuc2lnUyAlPiUKICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICsKICBnZW9tX2Vycm9yYmFyaChhZXMoCiAgICB4bWluID0gY2kubG93LAogICAgeG1heCA9IGNpLmhpZ2gKICApLAogIGhlaWdodCA9IDAuMSwgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIGdlb21fcG9pbnQoYWVzKHNoYXBlID0gcGFyYW1ldGVyKSwKICAgIGZpbGwgPSAibWVkaXVtYXF1YW1hcmluZSIsIGNvbG9yID0gIm1lZGl1bWFxdWFtYXJpbmUiLCBzaXplID0gMi4yLAogICAgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIHNjYWxlX3hfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoMCwgMC40KSwKICAgIGJyZWFrcyA9IGMoMCwgMC4zKSwKICAgIG5hbWUgPSAiRWZmZWN0IHNpemUiCiAgKSArCiAgZ2VvbV92bGluZSgKICAgIHhpbnRlcmNlcHQgPSAwLAogICAgY29sb3IgPSAiYmxhY2siLAogICAgbGluZXR5cGUgPSAiZGFzaGVkIgogICkgKwogIGZhY2V0X2dyaWQoCiAgICBjb2xzID0gdmFycyhwYXJhbWV0ZXIpLCByb3dzID0gdmFycyhsYWJlbCksCiAgICBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLAogICAgc2NhbGVzID0gImZyZWUiLAogICAgc3BhY2UgPSAiZnJlZSIKICApICsKICB0aGVtZV9idygpICsKICB0aGVtZSgKICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksCiAgICBzdHJpcC50ZXh0LnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDEyKSwKICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSAiYmxhbmsiLCBmaWxsID0gImdyYXk5MCIpLAogICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLAogICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCAibGluZXMiKSwKICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLAogICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3VyID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3IgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKCkKICApCgojIE1ldGFtZXRhX0ZpZ1MyX21hbGUuc2lnCmBgYAoKCgojIyMjIFBsb3QgRmlnIFMyOiAgIHBsb3RzIGNvbWJpbmVkCgpNZXRhbWV0YV9GaWdTMl9mZW1hbGUuc2lnCmBgYHtyfQpsaWJyYXJ5KGdncHVicikKRmlnUzJiIDwtIGdnYXJyYW5nZShNZXRhbWV0YV9GaWdTMl9mZW1hbGUuc2lnLCBNZXRhbWV0YV9GaWdTMl9tYWxlLnNpZywKICBuY29sID0gMiwgbnJvdyA9IDEsIHdpZHRocyA9IGMoMSwgMS4yMCksIGhlaWdodHMgPSBjKDEsIDEpCikKCkZpZ1MyZCA8LSBnZ2FycmFuZ2UoTWV0YW1ldGFfRmlnM19mZW1hbGUucGVyYywgTWV0YW1ldGFfRmlnM19tYWxlLnBlcmMsCiAgbmNvbCA9IDIsIG5yb3cgPSAxLCB3aWR0aHMgPSBjKDEsIDEuMjApLCBoZWlnaHRzID0gYygxLCAxKQopCgojIGVuZCBjb21iaW5hdGlvbiBGaWd1cmUgNQpGaWdTMiA8LSBnZ2FycmFuZ2UobWFsZWJpYXNfRmlnUzJfc2lndHJhaXRzLCBtYWxlYmlhc19GaWcyX292ZXIxMCwgRmlnUzJiLCBGaWdTMmQsIG5jb2wgPSAxLCBucm93ID0gNCwgaGVpZ2h0cyA9IGMoMi4zLCAyLCAyLjEsIDIpLCBsYWJlbHMgPSBjKCJBIiwgIiAiLCAiQiIsICIgIikpCkZpZ1MyCmBgYAoKIyMgTk9UIFNVUkUgV0hBVCBUSElTIEJFTE9XIElTPz8gRmVsaXggYWRkZWQgMTEvMi8yMDIwOiBJY2ggZ2xhdWJlLCBkYXNzIGRhcyB2b24gdm9yaGVyIHdhci4gd2VubiB3aXIgYWxsZXMgb2JlbiBoYWJlbiwgZGFubiB1bnRlbiBsb2VzY2hlbgoKIyMgRmlndXJlIFMyOiBzZXgtYmlhcywgaW5jbHVkaW5nIFZSCgpQcmVwYXJlIGRhdGEgZm9yIHRyYWl0cyB3aXRoIGVmZmVjdCBzaXplIHJhdGlvcyA+IDEwJSBsYXJnZXIgaW4gbWFsZXMKCmBgYHtyfQptZXRhLnBsb3RTMi5vdmVyMTAgPC0gbWV0YV9jbGVhbiAlPiUKICBzZWxlY3QobG5DVlIsIGxuVlIsIGxuUlIsIEdyb3VwaW5nVGVybSkgJT4lCiAgYXJyYW5nZShHcm91cGluZ1Rlcm0pCgptZXRhLnBsb3RTMi5vdmVyMTAuYiA8LSBnYXRoZXIobWV0YS5wbG90UzIub3ZlcjEwLCB0cmFpdCwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpKQoKbWV0YS5wbG90UzIub3ZlcjEwLmIkdHJhaXQgPC0gZmFjdG9yKG1ldGEucGxvdFMyLm92ZXIxMC5iJHRyYWl0LCBsZXZlbHMgPSBjKCJsbkNWUiIsICJsblZSIiwgImxuUlIiKSkKCm1ldGEucGxvdFMyLm92ZXIxMC5jIDwtIG1ldGEucGxvdFMyLm92ZXIxMC5iICU+JQogIGdyb3VwX2J5X2F0KHZhcnModHJhaXQsIEdyb3VwaW5nVGVybSkpICU+JQogIHN1bW1hcmlzZSgKICAgIG1hbGViaWFzID0gc3VtKHZhbHVlID4gbG9nKDExIC8gMTApKSwgZmVtYWxlYmlhcyA9IHN1bSh2YWx1ZSA8IGxvZyg5IC8gMTApKSwgdG90YWwgPSBtYWxlYmlhcyArIGZlbWFsZWJpYXMsCiAgICBtYWxlcGVyY2VudCA9IG1hbGViaWFzICogMTAwIC8gdG90YWwsIGZlbWFsZXBlcmNlbnQgPSBmZW1hbGViaWFzICogMTAwIC8gdG90YWwKICApCgptZXRhLnBsb3RTMi5vdmVyMTAuYyRsYWJlbCA8LSAiU2V4IGRpZmZlcmVuY2UgaW4gbS9mIHJhdGlvcyA+IDEwJSIKCiMgcmVzdHJ1Y3R1cmUgdG8gY3JlYXRlIHN0YWNrZWQgYmFyIHBsb3RzCgptZXRhLnBsb3RTMi5vdmVyMTAuYyA8LSBhcy5kYXRhLmZyYW1lKG1ldGEucGxvdFMyLm92ZXIxMC5jKQptZXRhLnBsb3RTMi5vdmVyMTAuZCA8LSBnYXRoZXIobWV0YS5wbG90UzIub3ZlcjEwLmMsIGtleSA9IHNleCwgdmFsdWUgPSBwZXJjZW50LCBtYWxlcGVyY2VudDpmZW1hbGVwZXJjZW50LCBmYWN0b3Jfa2V5ID0gVFJVRSkKCiMgY3JlYXRlIG5ldyBzYW1wbGUgc2l6ZSB2YXJpYWJsZQoKbWV0YS5wbG90UzIub3ZlcjEwLmQkc2FtcGxlc2l6ZSA8LSB3aXRoKG1ldGEucGxvdFMyLm92ZXIxMC5kLCBpZmVsc2Uoc2V4ID09ICJtYWxlcGVyY2VudCIsIG1hbGViaWFzLCBmZW1hbGViaWFzKSkKCiMgKlBsb3QgRmlnUzIgU2V4IGRpZmZlcmVuY2UgaW4gbS9mIHJhdGlvID4gMTAlCm1hbGViaWFzX0ZpZ1MyX292ZXIxMCA8LQogIGdncGxvdChtZXRhLnBsb3RTMi5vdmVyMTAuZCkgKwogIGFlcyh4ID0gR3JvdXBpbmdUZXJtLCB5ID0gcGVyY2VudCwgZmlsbCA9IHNleCkgKwogIGdlb21fY29sKCkgKwogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDUwLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJncmF5NDAiKSArCiAgZ2VvbV90ZXh0KAogICAgZGF0YSA9IHN1YnNldChtZXRhLnBsb3QyLm92ZXIxMC5kLCBzYW1wbGVzaXplICE9IDApLCBhZXMobGFiZWwgPSBzYW1wbGVzaXplKSwgcG9zaXRpb24gPSBwb3NpdGlvbl9zdGFjayh2anVzdCA9IC41KSwKICAgIGNvbG9yID0gIndoaXRlIiwgc2l6ZSA9IDMuNQogICkgKwogIGZhY2V0X2dyaWQoCiAgICBjb2xzID0gdmFycyh0cmFpdCksIHJvd3MgPSB2YXJzKGxhYmVsKSwgbGFiZWxsZXIgPSBsYWJlbF93cmFwX2dlbih3aWR0aCA9IDE4KSwKICAgIHNjYWxlcyA9ICJmcmVlIiwgc3BhY2UgPSAiZnJlZSIKICApICsKICBzY2FsZV9maWxsX2JyZXdlcihwYWxldHRlID0gIlNldDIiKSArCiAgdGhlbWVfYncoYmFzZV9zaXplID0gMTgpICsKICB0aGVtZSgKICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksCiAgICBzdHJpcC50ZXh0LnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gImJsYW5rIiwgZmlsbCA9ICJncmF5OTAiKSwKICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwKICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgImxpbmVzIiksCiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG91ciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG9yID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLAogICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLAogICAgbGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiLAogICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpCiAgKSArCiAgY29vcmRfZmxpcCgpCgojIG1hbGViaWFzX0ZpZ1MyX292ZXIxMCAgIyhQYW5lbCBCIGluIEZpZyBTMiBpbiBtcykKYGBgCgoKCiNNZXRhbWV0YV9GaWdTMl9tYWxlLnNpZyAoRmlndXJlIFMyQiB0b3AgcmlnaHQgcGFuZWwpCgpSZXN0cnVjdHVyZSBNQUxFIGRhdGEgZm9yIHBsb3R0aW5nIAoKYGBge3J9Cm92ZXJhbGwzLm1hbGUuc2lnUyA8LSBnYXRoZXIob3ZlcmFsbC5tYWxlLnBsb3QzLCBwYXJhbWV0ZXIsIHZhbHVlLCBjKGxuQ1ZSLCBsblZSLCBsblJSKSwgZmFjdG9yX2tleSA9IFRSVUUpCgoKbG5DVlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuQ1ZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuQ1ZSX2xvd2VyLCBjaS5oaWdoID0gbG5DVlJfdXBwZXIpCmxuVlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5WUl9sb3dlciwgY2kuaGlnaCA9IGxuVlJfdXBwZXIpCmxuUlIuY2kgPC0gb3ZlcmFsbDMubWFsZS5zaWdTICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuUlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpCgpvdmVyYWxsNC5tYWxlLnNpZ1MgPC0gYmluZF9yb3dzKGxuQ1ZSLmNpLCBsblZSLmNpLCBsblJSLmNpKSAlPiUgc2VsZWN0KEdyb3VwaW5nVGVybSwgcGFyYW1ldGVyLCB2YWx1ZSwgY2kubG93LCBjaS5oaWdoKQoKb3ZlcmFsbDQubWFsZS5zaWdTJGxhYmVsIDwtICJDSSBub3Qgb3ZlcmxhcHBpbmcgemVybyIKYGBgCgpQbG90IEZpZ1MyIGFsbCBzaWduaWZpY2FudCByZXN1bHRzIChDSSBub3Qgb3ZlcmxhcHBpbmcgemVybywgbWFsZSApCgpgYGB7cn0KTWV0YW1ldGFfRmlnUzJfbWFsZS5zaWcgPC0gb3ZlcmFsbDQubWFsZS5zaWdTICU+JQogIGdncGxvdChhZXMoeSA9IEdyb3VwaW5nVGVybSwgeCA9IHZhbHVlKSkgKwogIGdlb21fZXJyb3JiYXJoKGFlcygKICAgIHhtaW4gPSBjaS5sb3csCiAgICB4bWF4ID0gY2kuaGlnaAogICksCiAgaGVpZ2h0ID0gMC4xLCBzaG93LmxlZ2VuZCA9IEZBTFNFCiAgKSArCiAgZ2VvbV9wb2ludChhZXMoc2hhcGUgPSBwYXJhbWV0ZXIpLAogICAgZmlsbCA9ICJtZWRpdW1hcXVhbWFyaW5lIiwgY29sb3IgPSAibWVkaXVtYXF1YW1hcmluZSIsIHNpemUgPSAyLjIsCiAgICBzaG93LmxlZ2VuZCA9IEZBTFNFCiAgKSArCiAgc2NhbGVfeF9jb250aW51b3VzKAogICAgbGltaXRzID0gYygwLCAwLjQpLAogICAgYnJlYWtzID0gYygwLCAwLjMpLAogICAgbmFtZSA9ICJFZmZlY3Qgc2l6ZSIKICApICsKICBnZW9tX3ZsaW5lKAogICAgeGludGVyY2VwdCA9IDAsCiAgICBjb2xvciA9ICJibGFjayIsCiAgICBsaW5ldHlwZSA9ICJkYXNoZWQiCiAgKSArCiAgZmFjZXRfZ3JpZCgKICAgIGNvbHMgPSB2YXJzKHBhcmFtZXRlciksIHJvd3MgPSB2YXJzKGxhYmVsKSwKICAgIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAyMyksCiAgICBzY2FsZXMgPSAiZnJlZSIsCiAgICBzcGFjZSA9ICJmcmVlIgogICkgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKAogICAgc3RyaXAudGV4dC55ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMjcwLCBzaXplID0gMTAsIG1hcmdpbiA9IG1hcmdpbih0ID0gMTUsIHIgPSAxNSwgYiA9IDE1LCBsID0gMTUpKSwKICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLAogICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChjb2xvdXIgPSBOVUxMLCBsaW5ldHlwZSA9ICJibGFuayIsIGZpbGwgPSAiZ3JheTkwIiksCiAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksCiAgICBwYW5lbC5zcGFjaW5nID0gdW5pdCgwLjUsICJsaW5lcyIpLAogICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKCksCiAgICBwYW5lbC5ncmlkLm1ham9yLnggPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvdXIgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1ham9yLnkgPSBlbGVtZW50X2xpbmUobGluZXR5cGUgPSAic29saWQiLCBjb2xvciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWlub3IueSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIHBhbmVsLmdyaWQubWlub3IueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKQogICkKCiMgTWV0YW1ldGFfRmlnUzJfbWFsZS5zaWcKYGBgCgojIyMgMTAgJSBQZXJjIHNleCBkaWZmZXJlbmNlLCBtYWxlIGJpYXMKUmVzdHJ1Y3R1cmUgZGF0YSBmb3IgcGxvdHRpbmcgOiBNYWxlIGJpYXNlZCwgMTAlIGRpZmZlcmVuY2UKCmBgYHtyfQpvdmVyYWxsM1MucGVyYyA8LSBnYXRoZXIob3ZlcmFsbC5tYWxlLnBsb3QzLnBlcmMsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSkgIyBsblZSLAoKbG5DVlIuY2kgPC0gb3ZlcmFsbDNTLnBlcmMgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5DVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5DVlJfbG93ZXIsIGNpLmhpZ2ggPSBsbkNWUl91cHBlcikKbG5WUi5jaSA8LSBvdmVyYWxsM1MucGVyYyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsblZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKQpsblJSLmNpIDwtIG92ZXJhbGwzUy5wZXJjICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuUlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpCgpvdmVyYWxsNFMubWFsZS5wZXJjIDwtIGJpbmRfcm93cyhsbkNWUi5jaSwgbG5WUi5jaSwgbG5SUi5jaSkgJT4lIHNlbGVjdChHcm91cGluZ1Rlcm0sIHBhcmFtZXRlciwgdmFsdWUsIGNpLmxvdywgY2kuaGlnaCkgIyBsblZSLmNpLAoKb3ZlcmFsbDRTLm1hbGUucGVyYyRsYWJlbCA8LSAiU2V4IGRpZmZlcmVuY2UgaW4gbS9mIHJhdGlvcyA+IDEwJSIKCm92ZXJhbGw0Uy5tYWxlLnBlcmMkdmFsdWUgPC0gYXMubnVtZXJpYyhvdmVyYWxsNFMubWFsZS5wZXJjJHZhbHVlKQpvdmVyYWxsNFMubWFsZS5wZXJjJGNpLmxvdyA8LSBhcy5udW1lcmljKG92ZXJhbGw0Uy5tYWxlLnBlcmMkY2kubG93KQpvdmVyYWxsNFMubWFsZS5wZXJjJGNpLmhpZ2ggPC0gYXMubnVtZXJpYyhvdmVyYWxsNFMubWFsZS5wZXJjJGNpLmhpZ2gpCmBgYAoKUGxvdCBGaWdTMiAgYWxsID4xMCUgZGlmZmVyZW5jZSAobWFsZSBiaWFzKQoKYGBge3J9Ck1ldGFtZXRhX0ZpZ1MyX21hbGUucGVyYyA8LSBvdmVyYWxsNFMubWFsZS5wZXJjICU+JSAjIGZpbHRlciguLCBHcm91cGluZ1Rlcm0gIT0gIkhlYXJpbmciKSAlPiUKICBnZ3Bsb3QoYWVzKHkgPSBHcm91cGluZ1Rlcm0sIHggPSB2YWx1ZSkpICsKICBnZW9tX2Vycm9yYmFyaChhZXMoCiAgICB4bWluID0gY2kubG93LAogICAgeG1heCA9IGNpLmhpZ2gKICApLAogIGhlaWdodCA9IDAuMSwgc2hvdy5sZWdlbmQgPSBGQUxTRQogICkgKwogIGdlb21fcG9pbnQoYWVzKAogICAgc2hhcGUgPSBwYXJhbWV0ZXIsCiAgICBmaWxsID0gcGFyYW1ldGVyCiAgKSwKICBjb2xvciA9ICJtZWRpdW1hcXVhbWFyaW5lIiwgc2l6ZSA9IDIuMiwKICBzaG93LmxlZ2VuZCA9IEZBTFNFCiAgKSArCiAgc2NhbGVfeF9jb250aW51b3VzKAogICAgbGltaXRzID0gYygtMC4yLCAwLjYyKSwKICAgIGJyZWFrcyA9IGMoMCwgMC4zKSwKICAgIG5hbWUgPSAiRWZmZWN0IHNpemUiCiAgKSArCiAgZ2VvbV92bGluZSgKICAgIHhpbnRlcmNlcHQgPSAwLAogICAgY29sb3IgPSAiYmxhY2siLAogICAgbGluZXR5cGUgPSAiZGFzaGVkIgogICkgKwogIGZhY2V0X2dyaWQoCiAgICBjb2xzID0gdmFycyhwYXJhbWV0ZXIpLCByb3dzID0gdmFycyhsYWJlbCksCiAgICBsYWJlbGxlciA9IGxhYmVsX3dyYXBfZ2VuKHdpZHRoID0gMjMpLAogICAgc2NhbGVzID0gImZyZWUiLAogICAgc3BhY2UgPSAiZnJlZSIKICApICsKICB0aGVtZV9idygpICsKICB0aGVtZSgKICAgIHN0cmlwLnRleHQueSA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDI3MCwgc2l6ZSA9IDEwLCBtYXJnaW4gPSBtYXJnaW4odCA9IDE1LCByID0gMTUsIGIgPSAxNSwgbCA9IDE1KSksCiAgICBzdHJpcC50ZXh0LnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGNvbG91ciA9IE5VTEwsIGxpbmV0eXBlID0gImJsYW5rIiwgZmlsbCA9ICJncmF5OTAiKSwKICAgIHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwKICAgIHBhbmVsLnNwYWNpbmcgPSB1bml0KDAuNSwgImxpbmVzIiksCiAgICBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueCA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG91ciA9ICJncmF5OTUiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IueSA9IGVsZW1lbnRfbGluZShsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG9yID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5taW5vci55ID0gZWxlbWVudF9ibGFuaygpLAogICAgcGFuZWwuZ3JpZC5taW5vci54ID0gZWxlbWVudF9ibGFuaygpLAogICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBzaXplID0gMTQpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpCiAgKQoKIyBNZXRhbWV0YV9GaWdTMl9tYWxlLnBlcmMgKEZpZ3VyZSA1RCByaWdodCBwYW5lbCkKYGBgCgpSZXN0cnVjdHVyZSBkYXRhIGZvciBwbG90dGluZzogCkZlbWFsZSBiaWFzLCAxMCBwZXJjZW50IGRpZmZlcmVuY2UsIGluY2x1ZGluZyBWUgoKYGBge3J9Cm92ZXJhbGwzUy5wZXJjIDwtIGdhdGhlcihvdmVyYWxsLnBsb3QzLnBlcmMsIHBhcmFtZXRlciwgdmFsdWUsIGMobG5DVlIsIGxuVlIsIGxuUlIpLCBmYWN0b3Jfa2V5ID0gVFJVRSkgIyBsblZSLAoKbG5DVlIuY2kgPC0gb3ZlcmFsbDNTLnBlcmMgJT4lCiAgZmlsdGVyKHBhcmFtZXRlciA9PSAibG5DVlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5DVlJfbG93ZXIsIGNpLmhpZ2ggPSBsbkNWUl91cHBlcikKbG5WUi5jaSA8LSBvdmVyYWxsM1MucGVyYyAlPiUKICBmaWx0ZXIocGFyYW1ldGVyID09ICJsblZSIikgJT4lCiAgbXV0YXRlKGNpLmxvdyA9IGxuVlJfbG93ZXIsIGNpLmhpZ2ggPSBsblZSX3VwcGVyKQpsblJSLmNpIDwtIG92ZXJhbGwzUy5wZXJjICU+JQogIGZpbHRlcihwYXJhbWV0ZXIgPT0gImxuUlIiKSAlPiUKICBtdXRhdGUoY2kubG93ID0gbG5SUl9sb3dlciwgY2kuaGlnaCA9IGxuUlJfdXBwZXIpCgpvdmVyYWxsNFMucGVyYyA8LSBiaW5kX3Jvd3MobG5DVlIuY2ksIGxuVlIuY2ksIGxuUlIuY2kpICU+JSBzZWxlY3QoR3JvdXBpbmdUZXJtLCBwYXJhbWV0ZXIsIHZhbHVlLCBjaS5sb3csIGNpLmhpZ2gpCgpvdmVyYWxsNFMucGVyYyRsYWJlbCA8LSAiU2V4IGRpZmZlcmVuY2UgaW4gbS9mIHJhdGlvcyA+IDEwJSIKCm92ZXJhbGw0Uy5wZXJjJHZhbHVlIDwtIGFzLm51bWVyaWMob3ZlcmFsbDRTLnBlcmMkdmFsdWUpCm92ZXJhbGw0Uy5wZXJjJGNpLmxvdyA8LSBhcy5udW1lcmljKG92ZXJhbGw0Uy5wZXJjJGNpLmxvdykKb3ZlcmFsbDRTLnBlcmMkY2kuaGlnaCA8LSBhcy5udW1lcmljKG92ZXJhbGw0Uy5wZXJjJGNpLmhpZ2gpCmBgYAoKUGxvdCBGaWc1RCBhbGwgPjEwJSBkaWZmZXJlbmNlIChmZW1hbGUpCgpgYGB7cn0KTWV0YW1ldGFfRmlnM1NfZmVtYWxlLnBlcmMgPC0gb3ZlcmFsbDRTLnBlcmMgJT4lCiAgZ2dwbG90KGFlcyh5ID0gR3JvdXBpbmdUZXJtLCB4ID0gdmFsdWUpKSArCiAgZ2VvbV9lcnJvcmJhcmgoYWVzKAogICAgeG1pbiA9IGNpLmxvdywKICAgIHhtYXggPSBjaS5oaWdoCiAgKSwKICBoZWlnaHQgPSAwLjEsIHNob3cubGVnZW5kID0gRkFMU0UKICApICsKICBnZW9tX3BvaW50KGFlcyhzaGFwZSA9IHBhcmFtZXRlciksCiAgICBmaWxsID0gInNhbG1vbjEiLCBjb2xvciA9ICJzYWxtb24xIiwgc2l6ZSA9IDIuMiwKICAgIHNob3cubGVnZW5kID0gRkFMU0UKICApICsKCiAgIyBzY2FsZV9zaGFwZV9tYW51YWwodmFsdWVzID0KCiAgc2NhbGVfeF9jb250aW51b3VzKAogICAgbGltaXRzID0gYygtMC41MywgMC4yKSwKICAgIGJyZWFrcyA9IGMoLTAuMywgMCksCiAgICBuYW1lID0gIkVmZmVjdCBzaXplIgogICkgKwogIGdlb21fdmxpbmUoCiAgICB4aW50ZXJjZXB0ID0gMCwKICAgIGNvbG9yID0gImJsYWNrIiwKICAgIGxpbmV0eXBlID0gImRhc2hlZCIKICApICsKICBmYWNldF9ncmlkKAogICAgY29scyA9IHZhcnMocGFyYW1ldGVyKSwgIyByb3dzID0gdmFycyhsYWJlbCksCiAgICAjIGxhYmVsbGVyID0gbGFiZWxfd3JhcF9nZW4od2lkdGggPSAyMyksCiAgICBzY2FsZXMgPSAiZnJlZSIsCiAgICBzcGFjZSA9ICJmcmVlIgogICkgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKAogICAgc3RyaXAudGV4dC55ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gMjcwLCBzaXplID0gMTAsIG1hcmdpbiA9IG1hcmdpbih0ID0gMTUsIHIgPSAxNSwgYiA9IDE1LCBsID0gMTUpKSwKICAgIHN0cmlwLnRleHQueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoY29sb3VyID0gTlVMTCwgbGluZXR5cGUgPSAiYmxhbmsiLCBmaWxsID0gImdyYXk5MCIpLAogICAgdGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLAogICAgcGFuZWwuc3BhY2luZyA9IHVuaXQoMC41LCAibGluZXMiKSwKICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZSgpLAogICAgcGFuZWwuZ3JpZC5tYWpvci54ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3VyID0gImdyYXk5NSIpLAogICAgcGFuZWwuZ3JpZC5tYWpvci55ID0gZWxlbWVudF9saW5lKGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3IgPSAiZ3JheTk1IiksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnkgPSBlbGVtZW50X2JsYW5rKCksCiAgICBwYW5lbC5ncmlkLm1pbm9yLnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUsIHNpemUgPSAxNCksCiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKCkKICApCgojIE1ldGFtZXRhX0ZpZzNTX2ZlbWFsZS5wZXJjIChGaWd1cmUgNUQgbGVmdCBwYW5lbCkKYGBgCgpGaWd1cmUgUzIgCgpgYGB7cn0KRmlnUzJjIDwtIGdnYXJyYW5nZShNZXRhbWV0YV9GaWdTMl9mZW1hbGUuc2lnLCBNZXRhbWV0YV9GaWdTMl9tYWxlLnNpZywKICBuY29sID0gMiwgbnJvdyA9IDEsIHdpZHRocyA9IGMoMSwgMS4yMCksIGhlaWdodHMgPSBjKDEsIDEpCikKCkZpZ1MyZCA8LSBnZ2FycmFuZ2UoTWV0YW1ldGFfRmlnM1NfZmVtYWxlLnBlcmMsIE1ldGFtZXRhX0ZpZ1MyX21hbGUucGVyYywKICBuY29sID0gMiwgbnJvdyA9IDEsIHdpZHRocyA9IGMoMSwgMS4yMCksIGhlaWdodHMgPSBjKDEsIDEpCikKCiMgZW5kIGNvbWJpbmF0aW9uIEZpZ3VyZSA1CgpGaWdTMiA8LSBnZ2FycmFuZ2UobWFsZWJpYXNfRmlnUzJfc2lndHJhaXRzLCBtYWxlYmlhc19GaWdTMl9vdmVyMTAsIEZpZ1MyYywgRmlnUzJkLCBuY29sID0gMSwgbnJvdyA9IDQsIGhlaWdodHMgPSBjKDIuMiwgMiwgMi4yLCAyKSwgbGFiZWxzID0gYygiQSIsICIgIiwgIkIiLCAiICIpKQpGaWdTMgpgYGAKCiMjIEFja25vd2xlZGdlbWVudHMKdGJkCgojIyBSIFNlc3Npb24gSW5mb3JtYXRpb24KCmBgYHtyfQpzZXNzaW9uSW5mbygpCmBgYAoK</div>



</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});

$(document).ready(function () {
  $('.knitsql-table').addClass('kable-table');
  var container = $('.kable-table');
  container.each(function() {

    // move the caption out of the table
    var table = $(this).children('table');
    var caption = table.children('caption').detach();
    caption.insertBefore($(this)).css('display', 'inherit');
  });
});

</script>

<!-- tabsets -->

<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});

$(document).ready(function () {
  $('.tabset-dropdown > .nav-tabs > li').click(function () {
    $(this).parent().toggleClass('nav-tabs-open')
  });
});
</script>

<!-- code folding -->
<script>
$(document).ready(function () {
  window.initializeSourceEmbed("SydneySexDiff_Felix_11-2-2020TEST.Rmd");
  window.initializeCodeFolding("show" === "show");
});
</script>


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>