<!DOCTYPE html>
<!-- saved from url=(0131)file:///Volumes/SZ%20WD%20drive/garvan/Github/IMPC%20sexDiffs/mice_sex_diff/scripts/2019_July_IMPC-variance-and-sex-difference.html -->
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8">



<meta name="generator" content="pandoc">
<meta http-equiv="X-UA-Compatible" content="IE=EDGE">


<meta name="author" content="Susanne &amp; Felix Zajitschek">


<title>IMPC Mouse data - Variance in sex differences</title>

<script>/*! jQuery v1.11.3 | (c) 2005, 2015 jQuery Foundation, Inc. | jquery.org/license */
!function(a,b){"object"==typeof module&&"object"==typeof module.exports?module.exports=a.document?b(a,!0):function(a){if(!a.document)throw new Error("jQuery requires a window with a document");return b(a)}:b(a)}("undefined"!=typeof window?window:this,function(a,b){var c=[],d=c.slice,e=c.concat,f=c.push,g=c.indexOf,h={},i=h.toString,j=h.hasOwnProperty,k={},l="1.11.3",m=function(a,b){return new m.fn.init(a,b)},n=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,o=/^-ms-/,p=/-([\da-z])/gi,q=function(a,b){return b.toUpperCase()};m.fn=m.prototype={jquery:l,constructor:m,selector:"",length:0,toArray:function(){return d.call(this)},get:function(a){return null!=a?0>a?this[a+this.length]:this[a]:d.call(this)},pushStack:function(a){var b=m.merge(this.constructor(),a);return b.prevObject=this,b.context=this.context,b},each:function(a,b){return m.each(this,a,b)},map:function(a){return this.pushStack(m.map(this,function(b,c){return a.call(b,c,b)}))},slice:function(){return this.pushStack(d.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(a){var b=this.length,c=+a+(0>a?b:0);return this.pushStack(c>=0&&b>c?[this[c]]:[])},end:function(){return this.prevObject||this.constructor(null)},push:f,sort:c.sort,splice:c.splice},m.extend=m.fn.extend=function(){var a,b,c,d,e,f,g=arguments[0]||{},h=1,i=arguments.length,j=!1;for("boolean"==typeof g&&(j=g,g=arguments[h]||{},h++),"object"==typeof g||m.isFunction(g)||(g={}),h===i&&(g=this,h--);i>h;h++)if(null!=(e=arguments[h]))for(d in e)a=g[d],c=e[d],g!==c&&(j&&c&&(m.isPlainObject(c)||(b=m.isArray(c)))?(b?(b=!1,f=a&&m.isArray(a)?a:[]):f=a&&m.isPlainObject(a)?a:{},g[d]=m.extend(j,f,c)):void 0!==c&&(g[d]=c));return g},m.extend({expando:"jQuery"+(l+Math.random()).replace(/\D/g,""),isReady:!0,error:function(a){throw new Error(a)},noop:function(){},isFunction:function(a){return"function"===m.type(a)},isArray:Array.isArray||function(a){return"array"===m.type(a)},isWindow:function(a){return null!=a&&a==a.window},isNumeric:function(a){return!m.isArray(a)&&a-parseFloat(a)+1>=0},isEmptyObject:function(a){var b;for(b in a)return!1;return!0},isPlainObject:function(a){var b;if(!a||"object"!==m.type(a)||a.nodeType||m.isWindow(a))return!1;try{if(a.constructor&&!j.call(a,"constructor")&&!j.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}if(k.ownLast)for(b in a)return j.call(a,b);for(b in a);return void 0===b||j.call(a,b)},type:function(a){return null==a?a+"":"object"==typeof a||"function"==typeof a?h[i.call(a)]||"object":typeof a},globalEval:function(b){b&&m.trim(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(o,"ms-").replace(p,q)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toLowerCase()===b.toLowerCase()},each:function(a,b,c){var d,e=0,f=a.length,g=r(a);if(c){if(g){for(;f>e;e++)if(d=b.apply(a[e],c),d===!1)break}else for(e in a)if(d=b.apply(a[e],c),d===!1)break}else if(g){for(;f>e;e++)if(d=b.call(a[e],e,a[e]),d===!1)break}else for(e in a)if(d=b.call(a[e],e,a[e]),d===!1)break;return a},trim:function(a){return null==a?"":(a+"").replace(n,"")},makeArray:function(a,b){var c=b||[];return null!=a&&(r(Object(a))?m.merge(c,"string"==typeof a?[a]:a):f.call(c,a)),c},inArray:function(a,b,c){var d;if(b){if(g)return g.call(b,a,c);for(d=b.length,c=c?0>c?Math.max(0,d+c):c:0;d>c;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,b){var c=+b.length,d=0,e=a.length;while(c>d)a[e++]=b[d++];if(c!==c)while(void 0!==b[d])a[e++]=b[d++];return a.length=e,a},grep:function(a,b,c){for(var d,e=[],f=0,g=a.length,h=!c;g>f;f++)d=!b(a[f],f),d!==h&&e.push(a[f]);return e},map:function(a,b,c){var d,f=0,g=a.length,h=r(a),i=[];if(h)for(;g>f;f++)d=b(a[f],f,c),null!=d&&i.push(d);else for(f in a)d=b(a[f],f,c),null!=d&&i.push(d);return e.apply([],i)},guid:1,proxy:function(a,b){var c,e,f;return"string"==typeof b&&(f=a[b],b=a,a=f),m.isFunction(a)?(c=d.call(arguments,2),e=function(){return a.apply(b||this,c.concat(d.call(arguments)))},e.guid=a.guid=a.guid||m.guid++,e):void 0},now:function(){return+new Date},support:k}),m.each("Boolean Number String Function Array Date RegExp Object Error".split(" "),function(a,b){h["[object "+b+"]"]=b.toLowerCase()});function r(a){var b="length"in a&&a.length,c=m.type(a);return"function"===c||m.isWindow(a)?!1:1===a.nodeType&&b?!0:"array"===c||0===b||"number"==typeof b&&b>0&&b-1 in a}var s=function(a){var b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u="sizzle"+1*new Date,v=a.document,w=0,x=0,y=ha(),z=ha(),A=ha(),B=function(a,b){return a===b&&(l=!0),0},C=1<<31,D={}.hasOwnProperty,E=[],F=E.pop,G=E.push,H=E.push,I=E.slice,J=function(a,b){for(var c=0,d=a.length;d>c;c++)if(a[c]===b)return c;return-1},K="checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",L="[\\x20\\t\\r\\n\\f]",M="(?:\\\\.|[\\w-]|[^\\x00-\\xa0])+",N=M.replace("w","w#"),O="\\["+L+"*("+M+")(?:"+L+"*([*^$|!~]?=)"+L+"*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|("+N+"))|)"+L+"*\\]",P=":("+M+")(?:\\((('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|((?:\\\\.|[^\\\\()[\\]]|"+O+")*)|.*)\\)|)",Q=new RegExp(L+"+","g"),R=new RegExp("^"+L+"+|((?:^|[^\\\\])(?:\\\\.)*)"+L+"+$","g"),S=new RegExp("^"+L+"*,"+L+"*"),T=new RegExp("^"+L+"*([>+~]|"+L+")"+L+"*"),U=new RegExp("="+L+"*([^\\]'\"]*?)"+L+"*\\]","g"),V=new RegExp(P),W=new RegExp("^"+N+"$"),X={ID:new RegExp("^#("+M+")"),CLASS:new RegExp("^\\.("+M+")"),TAG:new RegExp("^("+M.replace("w","w*")+")"),ATTR:new RegExp("^"+O),PSEUDO:new RegExp("^"+P),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+L+"*(even|odd|(([+-]|)(\\d*)n|)"+L+"*(?:([+-]|)"+L+"*(\\d+)|))"+L+"*\\)|)","i"),bool:new RegExp("^(?:"+K+")$","i"),needsContext:new RegExp("^"+L+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+L+"*((?:-\\d)?\\d*)"+L+"*\\)|)(?=[^-]|$)","i")},Y=/^(?:input|select|textarea|button)$/i,Z=/^h\d$/i,$=/^[^{]+\{\s*\[native \w/,_=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,aa=/[+~]/,ba=/'|\\/g,ca=new RegExp("\\\\([\\da-f]{1,6}"+L+"?|("+L+")|.)","ig"),da=function(a,b,c){var d="0x"+b-65536;return d!==d||c?b:0>d?String.fromCharCode(d+65536):String.fromCharCode(d>>10|55296,1023&d|56320)},ea=function(){m()};try{H.apply(E=I.call(v.childNodes),v.childNodes),E[v.childNodes.length].nodeType}catch(fa){H={apply:E.length?function(a,b){G.apply(a,I.call(b))}:function(a,b){var c=a.length,d=0;while(a[c++]=b[d++]);a.length=c-1}}}function ga(a,b,d,e){var f,h,j,k,l,o,r,s,w,x;if((b?b.ownerDocument||b:v)!==n&&m(b),b=b||n,d=d||[],k=b.nodeType,"string"!=typeof a||!a||1!==k&&9!==k&&11!==k)return d;if(!e&&p){if(11!==k&&(f=_.exec(a)))if(j=f[1]){if(9===k){if(h=b.getElementById(j),!h||!h.parentNode)return d;if(h.id===j)return d.push(h),d}else if(b.ownerDocument&&(h=b.ownerDocument.getElementById(j))&&t(b,h)&&h.id===j)return d.push(h),d}else{if(f[2])return H.apply(d,b.getElementsByTagName(a)),d;if((j=f[3])&&c.getElementsByClassName)return H.apply(d,b.getElementsByClassName(j)),d}if(c.qsa&&(!q||!q.test(a))){if(s=r=u,w=b,x=1!==k&&a,1===k&&"object"!==b.nodeName.toLowerCase()){o=g(a),(r=b.getAttribute("id"))?s=r.replace(ba,"\\$&"):b.setAttribute("id",s),s="[id='"+s+"'] ",l=o.length;while(l--)o[l]=s+ra(o[l]);w=aa.test(a)&&pa(b.parentNode)||b,x=o.join(",")}if(x)try{return H.apply(d,w.querySelectorAll(x)),d}catch(y){}finally{r||b.removeAttribute("id")}}}return i(a.replace(R,"$1"),b,d,e)}function ha(){var a=[];function b(c,e){return a.push(c+" ")>d.cacheLength&&delete b[a.shift()],b[c+" "]=e}return b}function ia(a){return a[u]=!0,a}function ja(a){var b=n.createElement("div");try{return!!a(b)}catch(c){return!1}finally{b.parentNode&&b.parentNode.removeChild(b),b=null}}function ka(a,b){var c=a.split("|"),e=a.length;while(e--)d.attrHandle[c[e]]=b}function la(a,b){var c=b&&a,d=c&&1===a.nodeType&&1===b.nodeType&&(~b.sourceIndex||C)-(~a.sourceIndex||C);if(d)return d;if(c)while(c=c.nextSibling)if(c===b)return-1;return a?1:-1}function ma(a){return function(b){var c=b.nodeName.toLowerCase();return"input"===c&&b.type===a}}function na(a){return function(b){var c=b.nodeName.toLowerCase();return("input"===c||"button"===c)&&b.type===a}}function oa(a){return ia(function(b){return b=+b,ia(function(c,d){var e,f=a([],c.length,b),g=f.length;while(g--)c[e=f[g]]&&(c[e]=!(d[e]=c[e]))})})}function pa(a){return a&&"undefined"!=typeof a.getElementsByTagName&&a}c=ga.support={},f=ga.isXML=function(a){var b=a&&(a.ownerDocument||a).documentElement;return b?"HTML"!==b.nodeName:!1},m=ga.setDocument=function(a){var b,e,g=a?a.ownerDocument||a:v;return g!==n&&9===g.nodeType&&g.documentElement?(n=g,o=g.documentElement,e=g.defaultView,e&&e!==e.top&&(e.addEventListener?e.addEventListener("unload",ea,!1):e.attachEvent&&e.attachEvent("onunload",ea)),p=!f(g),c.attributes=ja(function(a){return a.className="i",!a.getAttribute("className")}),c.getElementsByTagName=ja(function(a){return a.appendChild(g.createComment("")),!a.getElementsByTagName("*").length}),c.getElementsByClassName=$.test(g.getElementsByClassName),c.getById=ja(function(a){return o.appendChild(a).id=u,!g.getElementsByName||!g.getElementsByName(u).length}),c.getById?(d.find.ID=function(a,b){if("undefined"!=typeof b.getElementById&&p){var c=b.getElementById(a);return c&&c.parentNode?[c]:[]}},d.filter.ID=function(a){var b=a.replace(ca,da);return function(a){return a.getAttribute("id")===b}}):(delete d.find.ID,d.filter.ID=function(a){var b=a.replace(ca,da);return function(a){var c="undefined"!=typeof a.getAttributeNode&&a.getAttributeNode("id");return c&&c.value===b}}),d.find.TAG=c.getElementsByTagName?function(a,b){return"undefined"!=typeof b.getElementsByTagName?b.getElementsByTagName(a):c.qsa?b.querySelectorAll(a):void 0}:function(a,b){var c,d=[],e=0,f=b.getElementsByTagName(a);if("*"===a){while(c=f[e++])1===c.nodeType&&d.push(c);return d}return f},d.find.CLASS=c.getElementsByClassName&&function(a,b){return p?b.getElementsByClassName(a):void 0},r=[],q=[],(c.qsa=$.test(g.querySelectorAll))&&(ja(function(a){o.appendChild(a).innerHTML="<a id='"+u+"'></a><select id='"+u+"-\f]' msallowcapture=''><option selected=''></option></select>",a.querySelectorAll("[msallowcapture^='']").length&&q.push("[*^$]="+L+"*(?:''|\"\")"),a.querySelectorAll("[selected]").length||q.push("\\["+L+"*(?:value|"+K+")"),a.querySelectorAll("[id~="+u+"-]").length||q.push("~="),a.querySelectorAll(":checked").length||q.push(":checked"),a.querySelectorAll("a#"+u+"+*").length||q.push(".#.+[+~]")}),ja(function(a){var b=g.createElement("input");b.setAttribute("type","hidden"),a.appendChild(b).setAttribute("name","D"),a.querySelectorAll("[name=d]").length&&q.push("name"+L+"*[*^$|!~]?="),a.querySelectorAll(":enabled").length||q.push(":enabled",":disabled"),a.querySelectorAll("*,:x"),q.push(",.*:")})),(c.matchesSelector=$.test(s=o.matches||o.webkitMatchesSelector||o.mozMatchesSelector||o.oMatchesSelector||o.msMatchesSelector))&&ja(function(a){c.disconnectedMatch=s.call(a,"div"),s.call(a,"[s!='']:x"),r.push("!=",P)}),q=q.length&&new RegExp(q.join("|")),r=r.length&&new RegExp(r.join("|")),b=$.test(o.compareDocumentPosition),t=b||$.test(o.contains)?function(a,b){var c=9===a.nodeType?a.documentElement:a,d=b&&b.parentNode;return a===d||!(!d||1!==d.nodeType||!(c.contains?c.contains(d):a.compareDocumentPosition&&16&a.compareDocumentPosition(d)))}:function(a,b){if(b)while(b=b.parentNode)if(b===a)return!0;return!1},B=b?function(a,b){if(a===b)return l=!0,0;var d=!a.compareDocumentPosition-!b.compareDocumentPosition;return d?d:(d=(a.ownerDocument||a)===(b.ownerDocument||b)?a.compareDocumentPosition(b):1,1&d||!c.sortDetached&&b.compareDocumentPosition(a)===d?a===g||a.ownerDocument===v&&t(v,a)?-1:b===g||b.ownerDocument===v&&t(v,b)?1:k?J(k,a)-J(k,b):0:4&d?-1:1)}:function(a,b){if(a===b)return l=!0,0;var c,d=0,e=a.parentNode,f=b.parentNode,h=[a],i=[b];if(!e||!f)return a===g?-1:b===g?1:e?-1:f?1:k?J(k,a)-J(k,b):0;if(e===f)return la(a,b);c=a;while(c=c.parentNode)h.unshift(c);c=b;while(c=c.parentNode)i.unshift(c);while(h[d]===i[d])d++;return d?la(h[d],i[d]):h[d]===v?-1:i[d]===v?1:0},g):n},ga.matches=function(a,b){return ga(a,null,null,b)},ga.matchesSelector=function(a,b){if((a.ownerDocument||a)!==n&&m(a),b=b.replace(U,"='$1']"),!(!c.matchesSelector||!p||r&&r.test(b)||q&&q.test(b)))try{var d=s.call(a,b);if(d||c.disconnectedMatch||a.document&&11!==a.document.nodeType)return d}catch(e){}return ga(b,n,null,[a]).length>0},ga.contains=function(a,b){return(a.ownerDocument||a)!==n&&m(a),t(a,b)},ga.attr=function(a,b){(a.ownerDocument||a)!==n&&m(a);var e=d.attrHandle[b.toLowerCase()],f=e&&D.call(d.attrHandle,b.toLowerCase())?e(a,b,!p):void 0;return void 0!==f?f:c.attributes||!p?a.getAttribute(b):(f=a.getAttributeNode(b))&&f.specified?f.value:null},ga.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)},ga.uniqueSort=function(a){var b,d=[],e=0,f=0;if(l=!c.detectDuplicates,k=!c.sortStable&&a.slice(0),a.sort(B),l){while(b=a[f++])b===a[f]&&(e=d.push(f));while(e--)a.splice(d[e],1)}return k=null,a},e=ga.getText=function(a){var b,c="",d=0,f=a.nodeType;if(f){if(1===f||9===f||11===f){if("string"==typeof a.textContent)return a.textContent;for(a=a.firstChild;a;a=a.nextSibling)c+=e(a)}else if(3===f||4===f)return a.nodeValue}else while(b=a[d++])c+=e(b);return c},d=ga.selectors={cacheLength:50,createPseudo:ia,match:X,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(a){return a[1]=a[1].replace(ca,da),a[3]=(a[3]||a[4]||a[5]||"").replace(ca,da),"~="===a[2]&&(a[3]=" "+a[3]+" "),a.slice(0,4)},CHILD:function(a){return a[1]=a[1].toLowerCase(),"nth"===a[1].slice(0,3)?(a[3]||ga.error(a[0]),a[4]=+(a[4]?a[5]+(a[6]||1):2*("even"===a[3]||"odd"===a[3])),a[5]=+(a[7]+a[8]||"odd"===a[3])):a[3]&&ga.error(a[0]),a},PSEUDO:function(a){var b,c=!a[6]&&a[2];return X.CHILD.test(a[0])?null:(a[3]?a[2]=a[4]||a[5]||"":c&&V.test(c)&&(b=g(c,!0))&&(b=c.indexOf(")",c.length-b)-c.length)&&(a[0]=a[0].slice(0,b),a[2]=c.slice(0,b)),a.slice(0,3))}},filter:{TAG:function(a){var b=a.replace(ca,da).toLowerCase();return"*"===a?function(){return!0}:function(a){return a.nodeName&&a.nodeName.toLowerCase()===b}},CLASS:function(a){var b=y[a+" "];return b||(b=new RegExp("(^|"+L+")"+a+"("+L+"|$)"))&&y(a,function(a){return b.test("string"==typeof a.className&&a.className||"undefined"!=typeof a.getAttribute&&a.getAttribute("class")||"")})},ATTR:function(a,b,c){return function(d){var e=ga.attr(d,a);return null==e?"!="===b:b?(e+="","="===b?e===c:"!="===b?e!==c:"^="===b?c&&0===e.indexOf(c):"*="===b?c&&e.indexOf(c)>-1:"$="===b?c&&e.slice(-c.length)===c:"~="===b?(" "+e.replace(Q," ")+" ").indexOf(c)>-1:"|="===b?e===c||e.slice(0,c.length+1)===c+"-":!1):!0}},CHILD:function(a,b,c,d,e){var f="nth"!==a.slice(0,3),g="last"!==a.slice(-4),h="of-type"===b;return 1===d&&0===e?function(a){return!!a.parentNode}:function(b,c,i){var j,k,l,m,n,o,p=f!==g?"nextSibling":"previousSibling",q=b.parentNode,r=h&&b.nodeName.toLowerCase(),s=!i&&!h;if(q){if(f){while(p){l=b;while(l=l[p])if(h?l.nodeName.toLowerCase()===r:1===l.nodeType)return!1;o=p="only"===a&&!o&&"nextSibling"}return!0}if(o=[g?q.firstChild:q.lastChild],g&&s){k=q[u]||(q[u]={}),j=k[a]||[],n=j[0]===w&&j[1],m=j[0]===w&&j[2],l=n&&q.childNodes[n];while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if(1===l.nodeType&&++m&&l===b){k[a]=[w,n,m];break}}else if(s&&(j=(b[u]||(b[u]={}))[a])&&j[0]===w)m=j[1];else while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if((h?l.nodeName.toLowerCase()===r:1===l.nodeType)&&++m&&(s&&((l[u]||(l[u]={}))[a]=[w,m]),l===b))break;return m-=e,m===d||m%d===0&&m/d>=0}}},PSEUDO:function(a,b){var c,e=d.pseudos[a]||d.setFilters[a.toLowerCase()]||ga.error("unsupported pseudo: "+a);return e[u]?e(b):e.length>1?(c=[a,a,"",b],d.setFilters.hasOwnProperty(a.toLowerCase())?ia(function(a,c){var d,f=e(a,b),g=f.length;while(g--)d=J(a,f[g]),a[d]=!(c[d]=f[g])}):function(a){return e(a,0,c)}):e}},pseudos:{not:ia(function(a){var b=[],c=[],d=h(a.replace(R,"$1"));return d[u]?ia(function(a,b,c,e){var f,g=d(a,null,e,[]),h=a.length;while(h--)(f=g[h])&&(a[h]=!(b[h]=f))}):function(a,e,f){return b[0]=a,d(b,null,f,c),b[0]=null,!c.pop()}}),has:ia(function(a){return function(b){return ga(a,b).length>0}}),contains:ia(function(a){return a=a.replace(ca,da),function(b){return(b.textContent||b.innerText||e(b)).indexOf(a)>-1}}),lang:ia(function(a){return W.test(a||"")||ga.error("unsupported lang: "+a),a=a.replace(ca,da).toLowerCase(),function(b){var c;do if(c=p?b.lang:b.getAttribute("xml:lang")||b.getAttribute("lang"))return c=c.toLowerCase(),c===a||0===c.indexOf(a+"-");while((b=b.parentNode)&&1===b.nodeType);return!1}}),target:function(b){var c=a.location&&a.location.hash;return c&&c.slice(1)===b.id},root:function(a){return a===o},focus:function(a){return a===n.activeElement&&(!n.hasFocus||n.hasFocus())&&!!(a.type||a.href||~a.tabIndex)},enabled:function(a){return a.disabled===!1},disabled:function(a){return a.disabled===!0},checked:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&!!a.checked||"option"===b&&!!a.selected},selected:function(a){return a.parentNode&&a.parentNode.selectedIndex,a.selected===!0},empty:function(a){for(a=a.firstChild;a;a=a.nextSibling)if(a.nodeType<6)return!1;return!0},parent:function(a){return!d.pseudos.empty(a)},header:function(a){return Z.test(a.nodeName)},input:function(a){return Y.test(a.nodeName)},button:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&"button"===a.type||"button"===b},text:function(a){var b;return"input"===a.nodeName.toLowerCase()&&"text"===a.type&&(null==(b=a.getAttribute("type"))||"text"===b.toLowerCase())},first:oa(function(){return[0]}),last:oa(function(a,b){return[b-1]}),eq:oa(function(a,b,c){return[0>c?c+b:c]}),even:oa(function(a,b){for(var c=0;b>c;c+=2)a.push(c);return a}),odd:oa(function(a,b){for(var c=1;b>c;c+=2)a.push(c);return a}),lt:oa(function(a,b,c){for(var d=0>c?c+b:c;--d>=0;)a.push(d);return a}),gt:oa(function(a,b,c){for(var d=0>c?c+b:c;++d<b;)a.push(d);return a})}},d.pseudos.nth=d.pseudos.eq;for(b in{radio:!0,checkbox:!0,file:!0,password:!0,image:!0})d.pseudos[b]=ma(b);for(b in{submit:!0,reset:!0})d.pseudos[b]=na(b);function qa(){}qa.prototype=d.filters=d.pseudos,d.setFilters=new qa,g=ga.tokenize=function(a,b){var c,e,f,g,h,i,j,k=z[a+" "];if(k)return b?0:k.slice(0);h=a,i=[],j=d.preFilter;while(h){(!c||(e=S.exec(h)))&&(e&&(h=h.slice(e[0].length)||h),i.push(f=[])),c=!1,(e=T.exec(h))&&(c=e.shift(),f.push({value:c,type:e[0].replace(R," ")}),h=h.slice(c.length));for(g in d.filter)!(e=X[g].exec(h))||j[g]&&!(e=j[g](e))||(c=e.shift(),f.push({value:c,type:g,matches:e}),h=h.slice(c.length));if(!c)break}return b?h.length:h?ga.error(a):z(a,i).slice(0)};function ra(a){for(var b=0,c=a.length,d="";c>b;b++)d+=a[b].value;return d}function sa(a,b,c){var d=b.dir,e=c&&"parentNode"===d,f=x++;return b.first?function(b,c,f){while(b=b[d])if(1===b.nodeType||e)return a(b,c,f)}:function(b,c,g){var h,i,j=[w,f];if(g){while(b=b[d])if((1===b.nodeType||e)&&a(b,c,g))return!0}else while(b=b[d])if(1===b.nodeType||e){if(i=b[u]||(b[u]={}),(h=i[d])&&h[0]===w&&h[1]===f)return j[2]=h[2];if(i[d]=j,j[2]=a(b,c,g))return!0}}}function ta(a){return a.length>1?function(b,c,d){var e=a.length;while(e--)if(!a[e](b,c,d))return!1;return!0}:a[0]}function ua(a,b,c){for(var d=0,e=b.length;e>d;d++)ga(a,b[d],c);return c}function va(a,b,c,d,e){for(var f,g=[],h=0,i=a.length,j=null!=b;i>h;h++)(f=a[h])&&(!c||c(f,d,e))&&(g.push(f),j&&b.push(h));return g}function wa(a,b,c,d,e,f){return d&&!d[u]&&(d=wa(d)),e&&!e[u]&&(e=wa(e,f)),ia(function(f,g,h,i){var j,k,l,m=[],n=[],o=g.length,p=f||ua(b||"*",h.nodeType?[h]:h,[]),q=!a||!f&&b?p:va(p,m,a,h,i),r=c?e||(f?a:o||d)?[]:g:q;if(c&&c(q,r,h,i),d){j=va(r,n),d(j,[],h,i),k=j.length;while(k--)(l=j[k])&&(r[n[k]]=!(q[n[k]]=l))}if(f){if(e||a){if(e){j=[],k=r.length;while(k--)(l=r[k])&&j.push(q[k]=l);e(null,r=[],j,i)}k=r.length;while(k--)(l=r[k])&&(j=e?J(f,l):m[k])>-1&&(f[j]=!(g[j]=l))}}else r=va(r===g?r.splice(o,r.length):r),e?e(null,g,r,i):H.apply(g,r)})}function xa(a){for(var b,c,e,f=a.length,g=d.relative[a[0].type],h=g||d.relative[" "],i=g?1:0,k=sa(function(a){return a===b},h,!0),l=sa(function(a){return J(b,a)>-1},h,!0),m=[function(a,c,d){var e=!g&&(d||c!==j)||((b=c).nodeType?k(a,c,d):l(a,c,d));return b=null,e}];f>i;i++)if(c=d.relative[a[i].type])m=[sa(ta(m),c)];else{if(c=d.filter[a[i].type].apply(null,a[i].matches),c[u]){for(e=++i;f>e;e++)if(d.relative[a[e].type])break;return wa(i>1&&ta(m),i>1&&ra(a.slice(0,i-1).concat({value:" "===a[i-2].type?"*":""})).replace(R,"$1"),c,e>i&&xa(a.slice(i,e)),f>e&&xa(a=a.slice(e)),f>e&&ra(a))}m.push(c)}return ta(m)}function ya(a,b){var c=b.length>0,e=a.length>0,f=function(f,g,h,i,k){var l,m,o,p=0,q="0",r=f&&[],s=[],t=j,u=f||e&&d.find.TAG("*",k),v=w+=null==t?1:Math.random()||.1,x=u.length;for(k&&(j=g!==n&&g);q!==x&&null!=(l=u[q]);q++){if(e&&l){m=0;while(o=a[m++])if(o(l,g,h)){i.push(l);break}k&&(w=v)}c&&((l=!o&&l)&&p--,f&&r.push(l))}if(p+=q,c&&q!==p){m=0;while(o=b[m++])o(r,s,g,h);if(f){if(p>0)while(q--)r[q]||s[q]||(s[q]=F.call(i));s=va(s)}H.apply(i,s),k&&!f&&s.length>0&&p+b.length>1&&ga.uniqueSort(i)}return k&&(w=v,j=t),r};return c?ia(f):f}return h=ga.compile=function(a,b){var c,d=[],e=[],f=A[a+" "];if(!f){b||(b=g(a)),c=b.length;while(c--)f=xa(b[c]),f[u]?d.push(f):e.push(f);f=A(a,ya(e,d)),f.selector=a}return f},i=ga.select=function(a,b,e,f){var i,j,k,l,m,n="function"==typeof a&&a,o=!f&&g(a=n.selector||a);if(e=e||[],1===o.length){if(j=o[0]=o[0].slice(0),j.length>2&&"ID"===(k=j[0]).type&&c.getById&&9===b.nodeType&&p&&d.relative[j[1].type]){if(b=(d.find.ID(k.matches[0].replace(ca,da),b)||[])[0],!b)return e;n&&(b=b.parentNode),a=a.slice(j.shift().value.length)}i=X.needsContext.test(a)?0:j.length;while(i--){if(k=j[i],d.relative[l=k.type])break;if((m=d.find[l])&&(f=m(k.matches[0].replace(ca,da),aa.test(j[0].type)&&pa(b.parentNode)||b))){if(j.splice(i,1),a=f.length&&ra(j),!a)return H.apply(e,f),e;break}}}return(n||h(a,o))(f,b,!p,e,aa.test(a)&&pa(b.parentNode)||b),e},c.sortStable=u.split("").sort(B).join("")===u,c.detectDuplicates=!!l,m(),c.sortDetached=ja(function(a){return 1&a.compareDocumentPosition(n.createElement("div"))}),ja(function(a){return a.innerHTML="<a href='#'></a>","#"===a.firstChild.getAttribute("href")})||ka("type|href|height|width",function(a,b,c){return c?void 0:a.getAttribute(b,"type"===b.toLowerCase()?1:2)}),c.attributes&&ja(function(a){return a.innerHTML="<input/>",a.firstChild.setAttribute("value",""),""===a.firstChild.getAttribute("value")})||ka("value",function(a,b,c){return c||"input"!==a.nodeName.toLowerCase()?void 0:a.defaultValue}),ja(function(a){return null==a.getAttribute("disabled")})||ka(K,function(a,b,c){var d;return c?void 0:a[b]===!0?b.toLowerCase():(d=a.getAttributeNode(b))&&d.specified?d.value:null}),ga}(a);m.find=s,m.expr=s.selectors,m.expr[":"]=m.expr.pseudos,m.unique=s.uniqueSort,m.text=s.getText,m.isXMLDoc=s.isXML,m.contains=s.contains;var t=m.expr.match.needsContext,u=/^<(\w+)\s*\/?>(?:<\/\1>|)$/,v=/^.[^:#\[\.,]*$/;function w(a,b,c){if(m.isFunction(b))return m.grep(a,function(a,d){return!!b.call(a,d,a)!==c});if(b.nodeType)return m.grep(a,function(a){return a===b!==c});if("string"==typeof b){if(v.test(b))return m.filter(b,a,c);b=m.filter(b,a)}return m.grep(a,function(a){return m.inArray(a,b)>=0!==c})}m.filter=function(a,b,c){var d=b[0];return c&&(a=":not("+a+")"),1===b.length&&1===d.nodeType?m.find.matchesSelector(d,a)?[d]:[]:m.find.matches(a,m.grep(b,function(a){return 1===a.nodeType}))},m.fn.extend({find:function(a){var b,c=[],d=this,e=d.length;if("string"!=typeof a)return this.pushStack(m(a).filter(function(){for(b=0;e>b;b++)if(m.contains(d[b],this))return!0}));for(b=0;e>b;b++)m.find(a,d[b],c);return c=this.pushStack(e>1?m.unique(c):c),c.selector=this.selector?this.selector+" "+a:a,c},filter:function(a){return this.pushStack(w(this,a||[],!1))},not:function(a){return this.pushStack(w(this,a||[],!0))},is:function(a){return!!w(this,"string"==typeof a&&t.test(a)?m(a):a||[],!1).length}});var x,y=a.document,z=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,A=m.fn.init=function(a,b){var c,d;if(!a)return this;if("string"==typeof a){if(c="<"===a.charAt(0)&&">"===a.charAt(a.length-1)&&a.length>=3?[null,a,null]:z.exec(a),!c||!c[1]&&b)return!b||b.jquery?(b||x).find(a):this.constructor(b).find(a);if(c[1]){if(b=b instanceof m?b[0]:b,m.merge(this,m.parseHTML(c[1],b&&b.nodeType?b.ownerDocument||b:y,!0)),u.test(c[1])&&m.isPlainObject(b))for(c in b)m.isFunction(this[c])?this[c](b[c]):this.attr(c,b[c]);return this}if(d=y.getElementById(c[2]),d&&d.parentNode){if(d.id!==c[2])return x.find(a);this.length=1,this[0]=d}return this.context=y,this.selector=a,this}return a.nodeType?(this.context=this[0]=a,this.length=1,this):m.isFunction(a)?"undefined"!=typeof x.ready?x.ready(a):a(m):(void 0!==a.selector&&(this.selector=a.selector,this.context=a.context),m.makeArray(a,this))};A.prototype=m.fn,x=m(y);var B=/^(?:parents|prev(?:Until|All))/,C={children:!0,contents:!0,next:!0,prev:!0};m.extend({dir:function(a,b,c){var d=[],e=a[b];while(e&&9!==e.nodeType&&(void 0===c||1!==e.nodeType||!m(e).is(c)))1===e.nodeType&&d.push(e),e=e[b];return d},sibling:function(a,b){for(var c=[];a;a=a.nextSibling)1===a.nodeType&&a!==b&&c.push(a);return c}}),m.fn.extend({has:function(a){var b,c=m(a,this),d=c.length;return this.filter(function(){for(b=0;d>b;b++)if(m.contains(this,c[b]))return!0})},closest:function(a,b){for(var c,d=0,e=this.length,f=[],g=t.test(a)||"string"!=typeof a?m(a,b||this.context):0;e>d;d++)for(c=this[d];c&&c!==b;c=c.parentNode)if(c.nodeType<11&&(g?g.index(c)>-1:1===c.nodeType&&m.find.matchesSelector(c,a))){f.push(c);break}return this.pushStack(f.length>1?m.unique(f):f)},index:function(a){return a?"string"==typeof a?m.inArray(this[0],m(a)):m.inArray(a.jquery?a[0]:a,this):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(a,b){return this.pushStack(m.unique(m.merge(this.get(),m(a,b))))},addBack:function(a){return this.add(null==a?this.prevObject:this.prevObject.filter(a))}});function D(a,b){do a=a[b];while(a&&1!==a.nodeType);return a}m.each({parent:function(a){var b=a.parentNode;return b&&11!==b.nodeType?b:null},parents:function(a){return m.dir(a,"parentNode")},parentsUntil:function(a,b,c){return m.dir(a,"parentNode",c)},next:function(a){return D(a,"nextSibling")},prev:function(a){return D(a,"previousSibling")},nextAll:function(a){return m.dir(a,"nextSibling")},prevAll:function(a){return m.dir(a,"previousSibling")},nextUntil:function(a,b,c){return m.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return m.dir(a,"previousSibling",c)},siblings:function(a){return m.sibling((a.parentNode||{}).firstChild,a)},children:function(a){return m.sibling(a.firstChild)},contents:function(a){return m.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:m.merge([],a.childNodes)}},function(a,b){m.fn[a]=function(c,d){var e=m.map(this,b,c);return"Until"!==a.slice(-5)&&(d=c),d&&"string"==typeof d&&(e=m.filter(d,e)),this.length>1&&(C[a]||(e=m.unique(e)),B.test(a)&&(e=e.reverse())),this.pushStack(e)}});var E=/\S+/g,F={};function G(a){var b=F[a]={};return m.each(a.match(E)||[],function(a,c){b[c]=!0}),b}m.Callbacks=function(a){a="string"==typeof a?F[a]||G(a):m.extend({},a);var b,c,d,e,f,g,h=[],i=!a.once&&[],j=function(l){for(c=a.memory&&l,d=!0,f=g||0,g=0,e=h.length,b=!0;h&&e>f;f++)if(h[f].apply(l[0],l[1])===!1&&a.stopOnFalse){c=!1;break}b=!1,h&&(i?i.length&&j(i.shift()):c?h=[]:k.disable())},k={add:function(){if(h){var d=h.length;!function f(b){m.each(b,function(b,c){var d=m.type(c);"function"===d?a.unique&&k.has(c)||h.push(c):c&&c.length&&"string"!==d&&f(c)})}(arguments),b?e=h.length:c&&(g=d,j(c))}return this},remove:function(){return h&&m.each(arguments,function(a,c){var d;while((d=m.inArray(c,h,d))>-1)h.splice(d,1),b&&(e>=d&&e--,f>=d&&f--)}),this},has:function(a){return a?m.inArray(a,h)>-1:!(!h||!h.length)},empty:function(){return h=[],e=0,this},disable:function(){return h=i=c=void 0,this},disabled:function(){return!h},lock:function(){return i=void 0,c||k.disable(),this},locked:function(){return!i},fireWith:function(a,c){return!h||d&&!i||(c=c||[],c=[a,c.slice?c.slice():c],b?i.push(c):j(c)),this},fire:function(){return k.fireWith(this,arguments),this},fired:function(){return!!d}};return k},m.extend({Deferred:function(a){var b=[["resolve","done",m.Callbacks("once memory"),"resolved"],["reject","fail",m.Callbacks("once memory"),"rejected"],["notify","progress",m.Callbacks("memory")]],c="pending",d={state:function(){return c},always:function(){return e.done(arguments).fail(arguments),this},then:function(){var a=arguments;return m.Deferred(function(c){m.each(b,function(b,f){var g=m.isFunction(a[b])&&a[b];e[f[1]](function(){var a=g&&g.apply(this,arguments);a&&m.isFunction(a.promise)?a.promise().done(c.resolve).fail(c.reject).progress(c.notify):c[f[0]+"With"](this===d?c.promise():this,g?[a]:arguments)})}),a=null}).promise()},promise:function(a){return null!=a?m.extend(a,d):d}},e={};return d.pipe=d.then,m.each(b,function(a,f){var g=f[2],h=f[3];d[f[1]]=g.add,h&&g.add(function(){c=h},b[1^a][2].disable,b[2][2].lock),e[f[0]]=function(){return e[f[0]+"With"](this===e?d:this,arguments),this},e[f[0]+"With"]=g.fireWith}),d.promise(e),a&&a.call(e,e),e},when:function(a){var b=0,c=d.call(arguments),e=c.length,f=1!==e||a&&m.isFunction(a.promise)?e:0,g=1===f?a:m.Deferred(),h=function(a,b,c){return function(e){b[a]=this,c[a]=arguments.length>1?d.call(arguments):e,c===i?g.notifyWith(b,c):--f||g.resolveWith(b,c)}},i,j,k;if(e>1)for(i=new Array(e),j=new Array(e),k=new Array(e);e>b;b++)c[b]&&m.isFunction(c[b].promise)?c[b].promise().done(h(b,k,c)).fail(g.reject).progress(h(b,j,i)):--f;return f||g.resolveWith(k,c),g.promise()}});var H;m.fn.ready=function(a){return m.ready.promise().done(a),this},m.extend({isReady:!1,readyWait:1,holdReady:function(a){a?m.readyWait++:m.ready(!0)},ready:function(a){if(a===!0?!--m.readyWait:!m.isReady){if(!y.body)return setTimeout(m.ready);m.isReady=!0,a!==!0&&--m.readyWait>0||(H.resolveWith(y,[m]),m.fn.triggerHandler&&(m(y).triggerHandler("ready"),m(y).off("ready")))}}});function I(){y.addEventListener?(y.removeEventListener("DOMContentLoaded",J,!1),a.removeEventListener("load",J,!1)):(y.detachEvent("onreadystatechange",J),a.detachEvent("onload",J))}function J(){(y.addEventListener||"load"===event.type||"complete"===y.readyState)&&(I(),m.ready())}m.ready.promise=function(b){if(!H)if(H=m.Deferred(),"complete"===y.readyState)setTimeout(m.ready);else if(y.addEventListener)y.addEventListener("DOMContentLoaded",J,!1),a.addEventListener("load",J,!1);else{y.attachEvent("onreadystatechange",J),a.attachEvent("onload",J);var c=!1;try{c=null==a.frameElement&&y.documentElement}catch(d){}c&&c.doScroll&&!function e(){if(!m.isReady){try{c.doScroll("left")}catch(a){return setTimeout(e,50)}I(),m.ready()}}()}return H.promise(b)};var K="undefined",L;for(L in m(k))break;k.ownLast="0"!==L,k.inlineBlockNeedsLayout=!1,m(function(){var a,b,c,d;c=y.getElementsByTagName("body")[0],c&&c.style&&(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),typeof b.style.zoom!==K&&(b.style.cssText="display:inline;margin:0;border:0;padding:1px;width:1px;zoom:1",k.inlineBlockNeedsLayout=a=3===b.offsetWidth,a&&(c.style.zoom=1)),c.removeChild(d))}),function(){var a=y.createElement("div");if(null==k.deleteExpando){k.deleteExpando=!0;try{delete a.test}catch(b){k.deleteExpando=!1}}a=null}(),m.acceptData=function(a){var b=m.noData[(a.nodeName+" ").toLowerCase()],c=+a.nodeType||1;return 1!==c&&9!==c?!1:!b||b!==!0&&a.getAttribute("classid")===b};var M=/^(?:\{[\w\W]*\}|\[[\w\W]*\])$/,N=/([A-Z])/g;function O(a,b,c){if(void 0===c&&1===a.nodeType){var d="data-"+b.replace(N,"-$1").toLowerCase();if(c=a.getAttribute(d),"string"==typeof c){try{c="true"===c?!0:"false"===c?!1:"null"===c?null:+c+""===c?+c:M.test(c)?m.parseJSON(c):c}catch(e){}m.data(a,b,c)}else c=void 0}return c}function P(a){var b;for(b in a)if(("data"!==b||!m.isEmptyObject(a[b]))&&"toJSON"!==b)return!1;

return!0}function Q(a,b,d,e){if(m.acceptData(a)){var f,g,h=m.expando,i=a.nodeType,j=i?m.cache:a,k=i?a[h]:a[h]&&h;if(k&&j[k]&&(e||j[k].data)||void 0!==d||"string"!=typeof b)return k||(k=i?a[h]=c.pop()||m.guid++:h),j[k]||(j[k]=i?{}:{toJSON:m.noop}),("object"==typeof b||"function"==typeof b)&&(e?j[k]=m.extend(j[k],b):j[k].data=m.extend(j[k].data,b)),g=j[k],e||(g.data||(g.data={}),g=g.data),void 0!==d&&(g[m.camelCase(b)]=d),"string"==typeof b?(f=g[b],null==f&&(f=g[m.camelCase(b)])):f=g,f}}function R(a,b,c){if(m.acceptData(a)){var d,e,f=a.nodeType,g=f?m.cache:a,h=f?a[m.expando]:m.expando;if(g[h]){if(b&&(d=c?g[h]:g[h].data)){m.isArray(b)?b=b.concat(m.map(b,m.camelCase)):b in d?b=[b]:(b=m.camelCase(b),b=b in d?[b]:b.split(" ")),e=b.length;while(e--)delete d[b[e]];if(c?!P(d):!m.isEmptyObject(d))return}(c||(delete g[h].data,P(g[h])))&&(f?m.cleanData([a],!0):k.deleteExpando||g!=g.window?delete g[h]:g[h]=null)}}}m.extend({cache:{},noData:{"applet ":!0,"embed ":!0,"object ":"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"},hasData:function(a){return a=a.nodeType?m.cache[a[m.expando]]:a[m.expando],!!a&&!P(a)},data:function(a,b,c){return Q(a,b,c)},removeData:function(a,b){return R(a,b)},_data:function(a,b,c){return Q(a,b,c,!0)},_removeData:function(a,b){return R(a,b,!0)}}),m.fn.extend({data:function(a,b){var c,d,e,f=this[0],g=f&&f.attributes;if(void 0===a){if(this.length&&(e=m.data(f),1===f.nodeType&&!m._data(f,"parsedAttrs"))){c=g.length;while(c--)g[c]&&(d=g[c].name,0===d.indexOf("data-")&&(d=m.camelCase(d.slice(5)),O(f,d,e[d])));m._data(f,"parsedAttrs",!0)}return e}return"object"==typeof a?this.each(function(){m.data(this,a)}):arguments.length>1?this.each(function(){m.data(this,a,b)}):f?O(f,a,m.data(f,a)):void 0},removeData:function(a){return this.each(function(){m.removeData(this,a)})}}),m.extend({queue:function(a,b,c){var d;return a?(b=(b||"fx")+"queue",d=m._data(a,b),c&&(!d||m.isArray(c)?d=m._data(a,b,m.makeArray(c)):d.push(c)),d||[]):void 0},dequeue:function(a,b){b=b||"fx";var c=m.queue(a,b),d=c.length,e=c.shift(),f=m._queueHooks(a,b),g=function(){m.dequeue(a,b)};"inprogress"===e&&(e=c.shift(),d--),e&&("fx"===b&&c.unshift("inprogress"),delete f.stop,e.call(a,g,f)),!d&&f&&f.empty.fire()},_queueHooks:function(a,b){var c=b+"queueHooks";return m._data(a,c)||m._data(a,c,{empty:m.Callbacks("once memory").add(function(){m._removeData(a,b+"queue"),m._removeData(a,c)})})}}),m.fn.extend({queue:function(a,b){var c=2;return"string"!=typeof a&&(b=a,a="fx",c--),arguments.length<c?m.queue(this[0],a):void 0===b?this:this.each(function(){var c=m.queue(this,a,b);m._queueHooks(this,a),"fx"===a&&"inprogress"!==c[0]&&m.dequeue(this,a)})},dequeue:function(a){return this.each(function(){m.dequeue(this,a)})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,b){var c,d=1,e=m.Deferred(),f=this,g=this.length,h=function(){--d||e.resolveWith(f,[f])};"string"!=typeof a&&(b=a,a=void 0),a=a||"fx";while(g--)c=m._data(f[g],a+"queueHooks"),c&&c.empty&&(d++,c.empty.add(h));return h(),e.promise(b)}});var S=/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/.source,T=["Top","Right","Bottom","Left"],U=function(a,b){return a=b||a,"none"===m.css(a,"display")||!m.contains(a.ownerDocument,a)},V=m.access=function(a,b,c,d,e,f,g){var h=0,i=a.length,j=null==c;if("object"===m.type(c)){e=!0;for(h in c)m.access(a,b,h,c[h],!0,f,g)}else if(void 0!==d&&(e=!0,m.isFunction(d)||(g=!0),j&&(g?(b.call(a,d),b=null):(j=b,b=function(a,b,c){return j.call(m(a),c)})),b))for(;i>h;h++)b(a[h],c,g?d:d.call(a[h],h,b(a[h],c)));return e?a:j?b.call(a):i?b(a[0],c):f},W=/^(?:checkbox|radio)$/i;!function(){var a=y.createElement("input"),b=y.createElement("div"),c=y.createDocumentFragment();if(b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",k.leadingWhitespace=3===b.firstChild.nodeType,k.tbody=!b.getElementsByTagName("tbody").length,k.htmlSerialize=!!b.getElementsByTagName("link").length,k.html5Clone="<:nav></:nav>"!==y.createElement("nav").cloneNode(!0).outerHTML,a.type="checkbox",a.checked=!0,c.appendChild(a),k.appendChecked=a.checked,b.innerHTML="<textarea>x</textarea>",k.noCloneChecked=!!b.cloneNode(!0).lastChild.defaultValue,c.appendChild(b),b.innerHTML="<input type='radio' checked='checked' name='t'/>",k.checkClone=b.cloneNode(!0).cloneNode(!0).lastChild.checked,k.noCloneEvent=!0,b.attachEvent&&(b.attachEvent("onclick",function(){k.noCloneEvent=!1}),b.cloneNode(!0).click()),null==k.deleteExpando){k.deleteExpando=!0;try{delete b.test}catch(d){k.deleteExpando=!1}}}(),function(){var b,c,d=y.createElement("div");for(b in{submit:!0,change:!0,focusin:!0})c="on"+b,(k[b+"Bubbles"]=c in a)||(d.setAttribute(c,"t"),k[b+"Bubbles"]=d.attributes[c].expando===!1);d=null}();var X=/^(?:input|select|textarea)$/i,Y=/^key/,Z=/^(?:mouse|pointer|contextmenu)|click/,$=/^(?:focusinfocus|focusoutblur)$/,_=/^([^.]*)(?:\.(.+)|)$/;function aa(){return!0}function ba(){return!1}function ca(){try{return y.activeElement}catch(a){}}m.event={global:{},add:function(a,b,c,d,e){var f,g,h,i,j,k,l,n,o,p,q,r=m._data(a);if(r){c.handler&&(i=c,c=i.handler,e=i.selector),c.guid||(c.guid=m.guid++),(g=r.events)||(g=r.events={}),(k=r.handle)||(k=r.handle=function(a){return typeof m===K||a&&m.event.triggered===a.type?void 0:m.event.dispatch.apply(k.elem,arguments)},k.elem=a),b=(b||"").match(E)||[""],h=b.length;while(h--)f=_.exec(b[h])||[],o=q=f[1],p=(f[2]||"").split(".").sort(),o&&(j=m.event.special[o]||{},o=(e?j.delegateType:j.bindType)||o,j=m.event.special[o]||{},l=m.extend({type:o,origType:q,data:d,handler:c,guid:c.guid,selector:e,needsContext:e&&m.expr.match.needsContext.test(e),namespace:p.join(".")},i),(n=g[o])||(n=g[o]=[],n.delegateCount=0,j.setup&&j.setup.call(a,d,p,k)!==!1||(a.addEventListener?a.addEventListener(o,k,!1):a.attachEvent&&a.attachEvent("on"+o,k))),j.add&&(j.add.call(a,l),l.handler.guid||(l.handler.guid=c.guid)),e?n.splice(n.delegateCount++,0,l):n.push(l),m.event.global[o]=!0);a=null}},remove:function(a,b,c,d,e){var f,g,h,i,j,k,l,n,o,p,q,r=m.hasData(a)&&m._data(a);if(r&&(k=r.events)){b=(b||"").match(E)||[""],j=b.length;while(j--)if(h=_.exec(b[j])||[],o=q=h[1],p=(h[2]||"").split(".").sort(),o){l=m.event.special[o]||{},o=(d?l.delegateType:l.bindType)||o,n=k[o]||[],h=h[2]&&new RegExp("(^|\\.)"+p.join("\\.(?:.*\\.|)")+"(\\.|$)"),i=f=n.length;while(f--)g=n[f],!e&&q!==g.origType||c&&c.guid!==g.guid||h&&!h.test(g.namespace)||d&&d!==g.selector&&("**"!==d||!g.selector)||(n.splice(f,1),g.selector&&n.delegateCount--,l.remove&&l.remove.call(a,g));i&&!n.length&&(l.teardown&&l.teardown.call(a,p,r.handle)!==!1||m.removeEvent(a,o,r.handle),delete k[o])}else for(o in k)m.event.remove(a,o+b[j],c,d,!0);m.isEmptyObject(k)&&(delete r.handle,m._removeData(a,"events"))}},trigger:function(b,c,d,e){var f,g,h,i,k,l,n,o=[d||y],p=j.call(b,"type")?b.type:b,q=j.call(b,"namespace")?b.namespace.split("."):[];if(h=l=d=d||y,3!==d.nodeType&&8!==d.nodeType&&!$.test(p+m.event.triggered)&&(p.indexOf(".")>=0&&(q=p.split("."),p=q.shift(),q.sort()),g=p.indexOf(":")<0&&"on"+p,b=b[m.expando]?b:new m.Event(p,"object"==typeof b&&b),b.isTrigger=e?2:3,b.namespace=q.join("."),b.namespace_re=b.namespace?new RegExp("(^|\\.)"+q.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,b.result=void 0,b.target||(b.target=d),c=null==c?[b]:m.makeArray(c,[b]),k=m.event.special[p]||{},e||!k.trigger||k.trigger.apply(d,c)!==!1)){if(!e&&!k.noBubble&&!m.isWindow(d)){for(i=k.delegateType||p,$.test(i+p)||(h=h.parentNode);h;h=h.parentNode)o.push(h),l=h;l===(d.ownerDocument||y)&&o.push(l.defaultView||l.parentWindow||a)}n=0;while((h=o[n++])&&!b.isPropagationStopped())b.type=n>1?i:k.bindType||p,f=(m._data(h,"events")||{})[b.type]&&m._data(h,"handle"),f&&f.apply(h,c),f=g&&h[g],f&&f.apply&&m.acceptData(h)&&(b.result=f.apply(h,c),b.result===!1&&b.preventDefault());if(b.type=p,!e&&!b.isDefaultPrevented()&&(!k._default||k._default.apply(o.pop(),c)===!1)&&m.acceptData(d)&&g&&d[p]&&!m.isWindow(d)){l=d[g],l&&(d[g]=null),m.event.triggered=p;try{d[p]()}catch(r){}m.event.triggered=void 0,l&&(d[g]=l)}return b.result}},dispatch:function(a){a=m.event.fix(a);var b,c,e,f,g,h=[],i=d.call(arguments),j=(m._data(this,"events")||{})[a.type]||[],k=m.event.special[a.type]||{};if(i[0]=a,a.delegateTarget=this,!k.preDispatch||k.preDispatch.call(this,a)!==!1){h=m.event.handlers.call(this,a,j),b=0;while((f=h[b++])&&!a.isPropagationStopped()){a.currentTarget=f.elem,g=0;while((e=f.handlers[g++])&&!a.isImmediatePropagationStopped())(!a.namespace_re||a.namespace_re.test(e.namespace))&&(a.handleObj=e,a.data=e.data,c=((m.event.special[e.origType]||{}).handle||e.handler).apply(f.elem,i),void 0!==c&&(a.result=c)===!1&&(a.preventDefault(),a.stopPropagation()))}return k.postDispatch&&k.postDispatch.call(this,a),a.result}},handlers:function(a,b){var c,d,e,f,g=[],h=b.delegateCount,i=a.target;if(h&&i.nodeType&&(!a.button||"click"!==a.type))for(;i!=this;i=i.parentNode||this)if(1===i.nodeType&&(i.disabled!==!0||"click"!==a.type)){for(e=[],f=0;h>f;f++)d=b[f],c=d.selector+" ",void 0===e[c]&&(e[c]=d.needsContext?m(c,this).index(i)>=0:m.find(c,this,null,[i]).length),e[c]&&e.push(d);e.length&&g.push({elem:i,handlers:e})}return h<b.length&&g.push({elem:this,handlers:b.slice(h)}),g},fix:function(a){if(a[m.expando])return a;var b,c,d,e=a.type,f=a,g=this.fixHooks[e];g||(this.fixHooks[e]=g=Z.test(e)?this.mouseHooks:Y.test(e)?this.keyHooks:{}),d=g.props?this.props.concat(g.props):this.props,a=new m.Event(f),b=d.length;while(b--)c=d[b],a[c]=f[c];return a.target||(a.target=f.srcElement||y),3===a.target.nodeType&&(a.target=a.target.parentNode),a.metaKey=!!a.metaKey,g.filter?g.filter(a,f):a},props:"altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){return null==a.which&&(a.which=null!=b.charCode?b.charCode:b.keyCode),a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,b){var c,d,e,f=b.button,g=b.fromElement;return null==a.pageX&&null!=b.clientX&&(d=a.target.ownerDocument||y,e=d.documentElement,c=d.body,a.pageX=b.clientX+(e&&e.scrollLeft||c&&c.scrollLeft||0)-(e&&e.clientLeft||c&&c.clientLeft||0),a.pageY=b.clientY+(e&&e.scrollTop||c&&c.scrollTop||0)-(e&&e.clientTop||c&&c.clientTop||0)),!a.relatedTarget&&g&&(a.relatedTarget=g===a.target?b.toElement:g),a.which||void 0===f||(a.which=1&f?1:2&f?3:4&f?2:0),a}},special:{load:{noBubble:!0},focus:{trigger:function(){if(this!==ca()&&this.focus)try{return this.focus(),!1}catch(a){}},delegateType:"focusin"},blur:{trigger:function(){return this===ca()&&this.blur?(this.blur(),!1):void 0},delegateType:"focusout"},click:{trigger:function(){return m.nodeName(this,"input")&&"checkbox"===this.type&&this.click?(this.click(),!1):void 0},_default:function(a){return m.nodeName(a.target,"a")}},beforeunload:{postDispatch:function(a){void 0!==a.result&&a.originalEvent&&(a.originalEvent.returnValue=a.result)}}},simulate:function(a,b,c,d){var e=m.extend(new m.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?m.event.trigger(e,null,b):m.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},m.removeEvent=y.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){var d="on"+b;a.detachEvent&&(typeof a[d]===K&&(a[d]=null),a.detachEvent(d,c))},m.Event=function(a,b){return this instanceof m.Event?(a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||void 0===a.defaultPrevented&&a.returnValue===!1?aa:ba):this.type=a,b&&m.extend(this,b),this.timeStamp=a&&a.timeStamp||m.now(),void(this[m.expando]=!0)):new m.Event(a,b)},m.Event.prototype={isDefaultPrevented:ba,isPropagationStopped:ba,isImmediatePropagationStopped:ba,preventDefault:function(){var a=this.originalEvent;this.isDefaultPrevented=aa,a&&(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){var a=this.originalEvent;this.isPropagationStopped=aa,a&&(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){var a=this.originalEvent;this.isImmediatePropagationStopped=aa,a&&a.stopImmediatePropagation&&a.stopImmediatePropagation(),this.stopPropagation()}},m.each({mouseenter:"mouseover",mouseleave:"mouseout",pointerenter:"pointerover",pointerleave:"pointerout"},function(a,b){m.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c,d=this,e=a.relatedTarget,f=a.handleObj;return(!e||e!==d&&!m.contains(d,e))&&(a.type=f.origType,c=f.handler.apply(this,arguments),a.type=b),c}}}),k.submitBubbles||(m.event.special.submit={setup:function(){return m.nodeName(this,"form")?!1:void m.event.add(this,"click._submit keypress._submit",function(a){var b=a.target,c=m.nodeName(b,"input")||m.nodeName(b,"button")?b.form:void 0;c&&!m._data(c,"submitBubbles")&&(m.event.add(c,"submit._submit",function(a){a._submit_bubble=!0}),m._data(c,"submitBubbles",!0))})},postDispatch:function(a){a._submit_bubble&&(delete a._submit_bubble,this.parentNode&&!a.isTrigger&&m.event.simulate("submit",this.parentNode,a,!0))},teardown:function(){return m.nodeName(this,"form")?!1:void m.event.remove(this,"._submit")}}),k.changeBubbles||(m.event.special.change={setup:function(){return X.test(this.nodeName)?(("checkbox"===this.type||"radio"===this.type)&&(m.event.add(this,"propertychange._change",function(a){"checked"===a.originalEvent.propertyName&&(this._just_changed=!0)}),m.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1),m.event.simulate("change",this,a,!0)})),!1):void m.event.add(this,"beforeactivate._change",function(a){var b=a.target;X.test(b.nodeName)&&!m._data(b,"changeBubbles")&&(m.event.add(b,"change._change",function(a){!this.parentNode||a.isSimulated||a.isTrigger||m.event.simulate("change",this.parentNode,a,!0)}),m._data(b,"changeBubbles",!0))})},handle:function(a){var b=a.target;return this!==b||a.isSimulated||a.isTrigger||"radio"!==b.type&&"checkbox"!==b.type?a.handleObj.handler.apply(this,arguments):void 0},teardown:function(){return m.event.remove(this,"._change"),!X.test(this.nodeName)}}),k.focusinBubbles||m.each({focus:"focusin",blur:"focusout"},function(a,b){var c=function(a){m.event.simulate(b,a.target,m.event.fix(a),!0)};m.event.special[b]={setup:function(){var d=this.ownerDocument||this,e=m._data(d,b);e||d.addEventListener(a,c,!0),m._data(d,b,(e||0)+1)},teardown:function(){var d=this.ownerDocument||this,e=m._data(d,b)-1;e?m._data(d,b,e):(d.removeEventListener(a,c,!0),m._removeData(d,b))}}}),m.fn.extend({on:function(a,b,c,d,e){var f,g;if("object"==typeof a){"string"!=typeof b&&(c=c||b,b=void 0);for(f in a)this.on(f,b,c,a[f],e);return this}if(null==c&&null==d?(d=b,c=b=void 0):null==d&&("string"==typeof b?(d=c,c=void 0):(d=c,c=b,b=void 0)),d===!1)d=ba;else if(!d)return this;return 1===e&&(g=d,d=function(a){return m().off(a),g.apply(this,arguments)},d.guid=g.guid||(g.guid=m.guid++)),this.each(function(){m.event.add(this,a,d,c,b)})},one:function(a,b,c,d){return this.on(a,b,c,d,1)},off:function(a,b,c){var d,e;if(a&&a.preventDefault&&a.handleObj)return d=a.handleObj,m(a.delegateTarget).off(d.namespace?d.origType+"."+d.namespace:d.origType,d.selector,d.handler),this;if("object"==typeof a){for(e in a)this.off(e,b,a[e]);return this}return(b===!1||"function"==typeof b)&&(c=b,b=void 0),c===!1&&(c=ba),this.each(function(){m.event.remove(this,a,c,b)})},trigger:function(a,b){return this.each(function(){m.event.trigger(a,b,this)})},triggerHandler:function(a,b){var c=this[0];return c?m.event.trigger(a,b,c,!0):void 0}});function da(a){var b=ea.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}var ea="abbr|article|aside|audio|bdi|canvas|data|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",fa=/ jQuery\d+="(?:null|\d+)"/g,ga=new RegExp("<(?:"+ea+")[\\s/>]","i"),ha=/^\s+/,ia=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/gi,ja=/<([\w:]+)/,ka=/<tbody/i,la=/<|&#?\w+;/,ma=/<(?:script|style|link)/i,na=/checked\s*(?:[^=]|=\s*.checked.)/i,oa=/^$|\/(?:java|ecma)script/i,pa=/^true\/(.*)/,qa=/^\s*<!(?:\[CDATA\[|--)|(?:\]\]|--)>\s*$/g,ra={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],area:[1,"<map>","</map>"],param:[1,"<object>","</object>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],_default:k.htmlSerialize?[0,"",""]:[1,"X<div>","</div>"]},sa=da(y),ta=sa.appendChild(y.createElement("div"));ra.optgroup=ra.option,ra.tbody=ra.tfoot=ra.colgroup=ra.caption=ra.thead,ra.th=ra.td;function ua(a,b){var c,d,e=0,f=typeof a.getElementsByTagName!==K?a.getElementsByTagName(b||"*"):typeof a.querySelectorAll!==K?a.querySelectorAll(b||"*"):void 0;if(!f)for(f=[],c=a.childNodes||a;null!=(d=c[e]);e++)!b||m.nodeName(d,b)?f.push(d):m.merge(f,ua(d,b));return void 0===b||b&&m.nodeName(a,b)?m.merge([a],f):f}function va(a){W.test(a.type)&&(a.defaultChecked=a.checked)}function wa(a,b){return m.nodeName(a,"table")&&m.nodeName(11!==b.nodeType?b:b.firstChild,"tr")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function xa(a){return a.type=(null!==m.find.attr(a,"type"))+"/"+a.type,a}function ya(a){var b=pa.exec(a.type);return b?a.type=b[1]:a.removeAttribute("type"),a}function za(a,b){for(var c,d=0;null!=(c=a[d]);d++)m._data(c,"globalEval",!b||m._data(b[d],"globalEval"))}function Aa(a,b){if(1===b.nodeType&&m.hasData(a)){var c,d,e,f=m._data(a),g=m._data(b,f),h=f.events;if(h){delete g.handle,g.events={};for(c in h)for(d=0,e=h[c].length;e>d;d++)m.event.add(b,c,h[c][d])}g.data&&(g.data=m.extend({},g.data))}}function Ba(a,b){var c,d,e;if(1===b.nodeType){if(c=b.nodeName.toLowerCase(),!k.noCloneEvent&&b[m.expando]){e=m._data(b);for(d in e.events)m.removeEvent(b,d,e.handle);b.removeAttribute(m.expando)}"script"===c&&b.text!==a.text?(xa(b).text=a.text,ya(b)):"object"===c?(b.parentNode&&(b.outerHTML=a.outerHTML),k.html5Clone&&a.innerHTML&&!m.trim(b.innerHTML)&&(b.innerHTML=a.innerHTML)):"input"===c&&W.test(a.type)?(b.defaultChecked=b.checked=a.checked,b.value!==a.value&&(b.value=a.value)):"option"===c?b.defaultSelected=b.selected=a.defaultSelected:("input"===c||"textarea"===c)&&(b.defaultValue=a.defaultValue)}}m.extend({clone:function(a,b,c){var d,e,f,g,h,i=m.contains(a.ownerDocument,a);if(k.html5Clone||m.isXMLDoc(a)||!ga.test("<"+a.nodeName+">")?f=a.cloneNode(!0):(ta.innerHTML=a.outerHTML,ta.removeChild(f=ta.firstChild)),!(k.noCloneEvent&&k.noCloneChecked||1!==a.nodeType&&11!==a.nodeType||m.isXMLDoc(a)))for(d=ua(f),h=ua(a),g=0;null!=(e=h[g]);++g)d[g]&&Ba(e,d[g]);if(b)if(c)for(h=h||ua(a),d=d||ua(f),g=0;null!=(e=h[g]);g++)Aa(e,d[g]);else Aa(a,f);return d=ua(f,"script"),d.length>0&&za(d,!i&&ua(a,"script")),d=h=e=null,f},buildFragment:function(a,b,c,d){for(var e,f,g,h,i,j,l,n=a.length,o=da(b),p=[],q=0;n>q;q++)if(f=a[q],f||0===f)if("object"===m.type(f))m.merge(p,f.nodeType?[f]:f);else if(la.test(f)){h=h||o.appendChild(b.createElement("div")),i=(ja.exec(f)||["",""])[1].toLowerCase(),l=ra[i]||ra._default,h.innerHTML=l[1]+f.replace(ia,"<$1></$2>")+l[2],e=l[0];while(e--)h=h.lastChild;if(!k.leadingWhitespace&&ha.test(f)&&p.push(b.createTextNode(ha.exec(f)[0])),!k.tbody){f="table"!==i||ka.test(f)?"<table>"!==l[1]||ka.test(f)?0:h:h.firstChild,e=f&&f.childNodes.length;while(e--)m.nodeName(j=f.childNodes[e],"tbody")&&!j.childNodes.length&&f.removeChild(j)}m.merge(p,h.childNodes),h.textContent="";while(h.firstChild)h.removeChild(h.firstChild);h=o.lastChild}else p.push(b.createTextNode(f));h&&o.removeChild(h),k.appendChecked||m.grep(ua(p,"input"),va),q=0;while(f=p[q++])if((!d||-1===m.inArray(f,d))&&(g=m.contains(f.ownerDocument,f),h=ua(o.appendChild(f),"script"),g&&za(h),c)){e=0;while(f=h[e++])oa.test(f.type||"")&&c.push(f)}return h=null,o},cleanData:function(a,b){for(var d,e,f,g,h=0,i=m.expando,j=m.cache,l=k.deleteExpando,n=m.event.special;null!=(d=a[h]);h++)if((b||m.acceptData(d))&&(f=d[i],g=f&&j[f])){if(g.events)for(e in g.events)n[e]?m.event.remove(d,e):m.removeEvent(d,e,g.handle);j[f]&&(delete j[f],l?delete d[i]:typeof d.removeAttribute!==K?d.removeAttribute(i):d[i]=null,c.push(f))}}}),m.fn.extend({text:function(a){return V(this,function(a){return void 0===a?m.text(this):this.empty().append((this[0]&&this[0].ownerDocument||y).createTextNode(a))},null,a,arguments.length)},append:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=wa(this,a);b.appendChild(a)}})},prepend:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=wa(this,a);b.insertBefore(a,b.firstChild)}})},before:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this)})},after:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this.nextSibling)})},remove:function(a,b){for(var c,d=a?m.filter(a,this):this,e=0;null!=(c=d[e]);e++)b||1!==c.nodeType||m.cleanData(ua(c)),c.parentNode&&(b&&m.contains(c.ownerDocument,c)&&za(ua(c,"script")),c.parentNode.removeChild(c));return this},empty:function(){for(var a,b=0;null!=(a=this[b]);b++){1===a.nodeType&&m.cleanData(ua(a,!1));while(a.firstChild)a.removeChild(a.firstChild);a.options&&m.nodeName(a,"select")&&(a.options.length=0)}return this},clone:function(a,b){return a=null==a?!1:a,b=null==b?a:b,this.map(function(){return m.clone(this,a,b)})},html:function(a){return V(this,function(a){var b=this[0]||{},c=0,d=this.length;if(void 0===a)return 1===b.nodeType?b.innerHTML.replace(fa,""):void 0;if(!("string"!=typeof a||ma.test(a)||!k.htmlSerialize&&ga.test(a)||!k.leadingWhitespace&&ha.test(a)||ra[(ja.exec(a)||["",""])[1].toLowerCase()])){a=a.replace(ia,"<$1></$2>");try{for(;d>c;c++)b=this[c]||{},1===b.nodeType&&(m.cleanData(ua(b,!1)),b.innerHTML=a);b=0}catch(e){}}b&&this.empty().append(a)},null,a,arguments.length)},replaceWith:function(){var a=arguments[0];return this.domManip(arguments,function(b){a=this.parentNode,m.cleanData(ua(this)),a&&a.replaceChild(b,this)}),a&&(a.length||a.nodeType)?this:this.remove()},detach:function(a){return this.remove(a,!0)},domManip:function(a,b){a=e.apply([],a);var c,d,f,g,h,i,j=0,l=this.length,n=this,o=l-1,p=a[0],q=m.isFunction(p);if(q||l>1&&"string"==typeof p&&!k.checkClone&&na.test(p))return this.each(function(c){var d=n.eq(c);q&&(a[0]=p.call(this,c,d.html())),d.domManip(a,b)});if(l&&(i=m.buildFragment(a,this[0].ownerDocument,!1,this),c=i.firstChild,1===i.childNodes.length&&(i=c),c)){for(g=m.map(ua(i,"script"),xa),f=g.length;l>j;j++)d=i,j!==o&&(d=m.clone(d,!0,!0),f&&m.merge(g,ua(d,"script"))),b.call(this[j],d,j);if(f)for(h=g[g.length-1].ownerDocument,m.map(g,ya),j=0;f>j;j++)d=g[j],oa.test(d.type||"")&&!m._data(d,"globalEval")&&m.contains(h,d)&&(d.src?m._evalUrl&&m._evalUrl(d.src):m.globalEval((d.text||d.textContent||d.innerHTML||"").replace(qa,"")));i=c=null}return this}}),m.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){m.fn[a]=function(a){for(var c,d=0,e=[],g=m(a),h=g.length-1;h>=d;d++)c=d===h?this:this.clone(!0),m(g[d])[b](c),f.apply(e,c.get());return this.pushStack(e)}});var Ca,Da={};function Ea(b,c){var d,e=m(c.createElement(b)).appendTo(c.body),f=a.getDefaultComputedStyle&&(d=a.getDefaultComputedStyle(e[0]))?d.display:m.css(e[0],"display");return e.detach(),f}function Fa(a){var b=y,c=Da[a];return c||(c=Ea(a,b),"none"!==c&&c||(Ca=(Ca||m("<iframe frameborder='0' width='0' height='0'/>")).appendTo(b.documentElement),b=(Ca[0].contentWindow||Ca[0].contentDocument).document,b.write(),b.close(),c=Ea(a,b),Ca.detach()),Da[a]=c),c}!function(){var a;k.shrinkWrapBlocks=function(){if(null!=a)return a;a=!1;var b,c,d;return c=y.getElementsByTagName("body")[0],c&&c.style?(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),typeof b.style.zoom!==K&&(b.style.cssText="-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:1px;width:1px;zoom:1",b.appendChild(y.createElement("div")).style.width="5px",a=3!==b.offsetWidth),c.removeChild(d),a):void 0}}();var Ga=/^margin/,Ha=new RegExp("^("+S+")(?!px)[a-z%]+$","i"),Ia,Ja,Ka=/^(top|right|bottom|left)$/;a.getComputedStyle?(Ia=function(b){return b.ownerDocument.defaultView.opener?b.ownerDocument.defaultView.getComputedStyle(b,null):a.getComputedStyle(b,null)},Ja=function(a,b,c){var d,e,f,g,h=a.style;return c=c||Ia(a),g=c?c.getPropertyValue(b)||c[b]:void 0,c&&(""!==g||m.contains(a.ownerDocument,a)||(g=m.style(a,b)),Ha.test(g)&&Ga.test(b)&&(d=h.width,e=h.minWidth,f=h.maxWidth,h.minWidth=h.maxWidth=h.width=g,g=c.width,h.width=d,h.minWidth=e,h.maxWidth=f)),void 0===g?g:g+""}):y.documentElement.currentStyle&&(Ia=function(a){return a.currentStyle},Ja=function(a,b,c){var d,e,f,g,h=a.style;return c=c||Ia(a),g=c?c[b]:void 0,null==g&&h&&h[b]&&(g=h[b]),Ha.test(g)&&!Ka.test(b)&&(d=h.left,e=a.runtimeStyle,f=e&&e.left,f&&(e.left=a.currentStyle.left),h.left="fontSize"===b?"1em":g,g=h.pixelLeft+"px",h.left=d,f&&(e.left=f)),void 0===g?g:g+""||"auto"});function La(a,b){return{get:function(){var c=a();if(null!=c)return c?void delete this.get:(this.get=b).apply(this,arguments)}}}!function(){var b,c,d,e,f,g,h;if(b=y.createElement("div"),b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=d&&d.style){c.cssText="float:left;opacity:.5",k.opacity="0.5"===c.opacity,k.cssFloat=!!c.cssFloat,b.style.backgroundClip="content-box",b.cloneNode(!0).style.backgroundClip="",k.clearCloneStyle="content-box"===b.style.backgroundClip,k.boxSizing=""===c.boxSizing||""===c.MozBoxSizing||""===c.WebkitBoxSizing,m.extend(k,{reliableHiddenOffsets:function(){return null==g&&i(),g},boxSizingReliable:function(){return null==f&&i(),f},pixelPosition:function(){return null==e&&i(),e},reliableMarginRight:function(){return null==h&&i(),h}});function i(){var b,c,d,i;c=y.getElementsByTagName("body")[0],c&&c.style&&(b=y.createElement("div"),d=y.createElement("div"),d.style.cssText="position:absolute;border:0;width:0;height:0;top:0;left:-9999px",c.appendChild(d).appendChild(b),b.style.cssText="-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;display:block;margin-top:1%;top:1%;border:1px;padding:1px;width:4px;position:absolute",e=f=!1,h=!0,a.getComputedStyle&&(e="1%"!==(a.getComputedStyle(b,null)||{}).top,f="4px"===(a.getComputedStyle(b,null)||{width:"4px"}).width,i=b.appendChild(y.createElement("div")),i.style.cssText=b.style.cssText="-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:0",i.style.marginRight=i.style.width="0",b.style.width="1px",h=!parseFloat((a.getComputedStyle(i,null)||{}).marginRight),b.removeChild(i)),b.innerHTML="<table><tr><td></td><td>t</td></tr></table>",i=b.getElementsByTagName("td"),i[0].style.cssText="margin:0;border:0;padding:0;display:none",g=0===i[0].offsetHeight,g&&(i[0].style.display="",i[1].style.display="none",g=0===i[0].offsetHeight),c.removeChild(d))}}}(),m.swap=function(a,b,c,d){var e,f,g={};for(f in b)g[f]=a.style[f],a.style[f]=b[f];e=c.apply(a,d||[]);for(f in b)a.style[f]=g[f];return e};var Ma=/alpha\([^)]*\)/i,Na=/opacity\s*=\s*([^)]*)/,Oa=/^(none|table(?!-c[ea]).+)/,Pa=new RegExp("^("+S+")(.*)$","i"),Qa=new RegExp("^([+-])=("+S+")","i"),Ra={position:"absolute",visibility:"hidden",display:"block"},Sa={letterSpacing:"0",fontWeight:"400"},Ta=["Webkit","O","Moz","ms"];function Ua(a,b){if(b in a)return b;var c=b.charAt(0).toUpperCase()+b.slice(1),d=b,e=Ta.length;while(e--)if(b=Ta[e]+c,b in a)return b;return d}function Va(a,b){for(var c,d,e,f=[],g=0,h=a.length;h>g;g++)d=a[g],d.style&&(f[g]=m._data(d,"olddisplay"),c=d.style.display,b?(f[g]||"none"!==c||(d.style.display=""),""===d.style.display&&U(d)&&(f[g]=m._data(d,"olddisplay",Fa(d.nodeName)))):(e=U(d),(c&&"none"!==c||!e)&&m._data(d,"olddisplay",e?c:m.css(d,"display"))));for(g=0;h>g;g++)d=a[g],d.style&&(b&&"none"!==d.style.display&&""!==d.style.display||(d.style.display=b?f[g]||"":"none"));return a}function Wa(a,b,c){var d=Pa.exec(b);return d?Math.max(0,d[1]-(c||0))+(d[2]||"px"):b}function Xa(a,b,c,d,e){for(var f=c===(d?"border":"content")?4:"width"===b?1:0,g=0;4>f;f+=2)"margin"===c&&(g+=m.css(a,c+T[f],!0,e)),d?("content"===c&&(g-=m.css(a,"padding"+T[f],!0,e)),"margin"!==c&&(g-=m.css(a,"border"+T[f]+"Width",!0,e))):(g+=m.css(a,"padding"+T[f],!0,e),"padding"!==c&&(g+=m.css(a,"border"+T[f]+"Width",!0,e)));return g}function Ya(a,b,c){var d=!0,e="width"===b?a.offsetWidth:a.offsetHeight,f=Ia(a),g=k.boxSizing&&"border-box"===m.css(a,"boxSizing",!1,f);if(0>=e||null==e){if(e=Ja(a,b,f),(0>e||null==e)&&(e=a.style[b]),Ha.test(e))return e;d=g&&(k.boxSizingReliable()||e===a.style[b]),e=parseFloat(e)||0}return e+Xa(a,b,c||(g?"border":"content"),d,f)+"px"}m.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=Ja(a,"opacity");return""===c?"1":c}}}},cssNumber:{columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":k.cssFloat?"cssFloat":"styleFloat"},style:function(a,b,c,d){if(a&&3!==a.nodeType&&8!==a.nodeType&&a.style){var e,f,g,h=m.camelCase(b),i=a.style;if(b=m.cssProps[h]||(m.cssProps[h]=Ua(i,h)),g=m.cssHooks[b]||m.cssHooks[h],void 0===c)return g&&"get"in g&&void 0!==(e=g.get(a,!1,d))?e:i[b];if(f=typeof c,"string"===f&&(e=Qa.exec(c))&&(c=(e[1]+1)*e[2]+parseFloat(m.css(a,b)),f="number"),null!=c&&c===c&&("number"!==f||m.cssNumber[h]||(c+="px"),k.clearCloneStyle||""!==c||0!==b.indexOf("background")||(i[b]="inherit"),!(g&&"set"in g&&void 0===(c=g.set(a,c,d)))))try{i[b]=c}catch(j){}}},css:function(a,b,c,d){var e,f,g,h=m.camelCase(b);return b=m.cssProps[h]||(m.cssProps[h]=Ua(a.style,h)),g=m.cssHooks[b]||m.cssHooks[h],g&&"get"in g&&(f=g.get(a,!0,c)),void 0===f&&(f=Ja(a,b,d)),"normal"===f&&b in Sa&&(f=Sa[b]),""===c||c?(e=parseFloat(f),c===!0||m.isNumeric(e)?e||0:f):f}}),m.each(["height","width"],function(a,b){m.cssHooks[b]={get:function(a,c,d){return c?Oa.test(m.css(a,"display"))&&0===a.offsetWidth?m.swap(a,Ra,function(){return Ya(a,b,d)}):Ya(a,b,d):void 0},set:function(a,c,d){var e=d&&Ia(a);return Wa(a,c,d?Xa(a,b,d,k.boxSizing&&"border-box"===m.css(a,"boxSizing",!1,e),e):0)}}}),k.opacity||(m.cssHooks.opacity={get:function(a,b){return Na.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?.01*parseFloat(RegExp.$1)+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=m.isNumeric(b)?"alpha(opacity="+100*b+")":"",f=d&&d.filter||c.filter||"";c.zoom=1,(b>=1||""===b)&&""===m.trim(f.replace(Ma,""))&&c.removeAttribute&&(c.removeAttribute("filter"),""===b||d&&!d.filter)||(c.filter=Ma.test(f)?f.replace(Ma,e):f+" "+e)}}),m.cssHooks.marginRight=La(k.reliableMarginRight,function(a,b){return b?m.swap(a,{display:"inline-block"},Ja,[a,"marginRight"]):void 0}),m.each({margin:"",padding:"",border:"Width"},function(a,b){m.cssHooks[a+b]={expand:function(c){for(var d=0,e={},f="string"==typeof c?c.split(" "):[c];4>d;d++)e[a+T[d]+b]=f[d]||f[d-2]||f[0];return e}},Ga.test(a)||(m.cssHooks[a+b].set=Wa)}),m.fn.extend({css:function(a,b){return V(this,function(a,b,c){var d,e,f={},g=0;if(m.isArray(b)){for(d=Ia(a),e=b.length;e>g;g++)f[b[g]]=m.css(a,b[g],!1,d);return f}return void 0!==c?m.style(a,b,c):m.css(a,b)},a,b,arguments.length>1)},show:function(){return Va(this,!0)},hide:function(){return Va(this)},toggle:function(a){return"boolean"==typeof a?a?this.show():this.hide():this.each(function(){U(this)?m(this).show():m(this).hide()})}});function Za(a,b,c,d,e){
return new Za.prototype.init(a,b,c,d,e)}m.Tween=Za,Za.prototype={constructor:Za,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||"swing",this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(m.cssNumber[c]?"":"px")},cur:function(){var a=Za.propHooks[this.prop];return a&&a.get?a.get(this):Za.propHooks._default.get(this)},run:function(a){var b,c=Za.propHooks[this.prop];return this.options.duration?this.pos=b=m.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):this.pos=b=a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):Za.propHooks._default.set(this),this}},Za.prototype.init.prototype=Za.prototype,Za.propHooks={_default:{get:function(a){var b;return null==a.elem[a.prop]||a.elem.style&&null!=a.elem.style[a.prop]?(b=m.css(a.elem,a.prop,""),b&&"auto"!==b?b:0):a.elem[a.prop]},set:function(a){m.fx.step[a.prop]?m.fx.step[a.prop](a):a.elem.style&&(null!=a.elem.style[m.cssProps[a.prop]]||m.cssHooks[a.prop])?m.style(a.elem,a.prop,a.now+a.unit):a.elem[a.prop]=a.now}}},Za.propHooks.scrollTop=Za.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},m.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2}},m.fx=Za.prototype.init,m.fx.step={};var $a,_a,ab=/^(?:toggle|show|hide)$/,bb=new RegExp("^(?:([+-])=|)("+S+")([a-z%]*)$","i"),cb=/queueHooks$/,db=[ib],eb={"*":[function(a,b){var c=this.createTween(a,b),d=c.cur(),e=bb.exec(b),f=e&&e[3]||(m.cssNumber[a]?"":"px"),g=(m.cssNumber[a]||"px"!==f&&+d)&&bb.exec(m.css(c.elem,a)),h=1,i=20;if(g&&g[3]!==f){f=f||g[3],e=e||[],g=+d||1;do h=h||".5",g/=h,m.style(c.elem,a,g+f);while(h!==(h=c.cur()/d)&&1!==h&&--i)}return e&&(g=c.start=+g||+d||0,c.unit=f,c.end=e[1]?g+(e[1]+1)*e[2]:+e[2]),c}]};function fb(){return setTimeout(function(){$a=void 0}),$a=m.now()}function gb(a,b){var c,d={height:a},e=0;for(b=b?1:0;4>e;e+=2-b)c=T[e],d["margin"+c]=d["padding"+c]=a;return b&&(d.opacity=d.width=a),d}function hb(a,b,c){for(var d,e=(eb[b]||[]).concat(eb["*"]),f=0,g=e.length;g>f;f++)if(d=e[f].call(c,b,a))return d}function ib(a,b,c){var d,e,f,g,h,i,j,l,n=this,o={},p=a.style,q=a.nodeType&&U(a),r=m._data(a,"fxshow");c.queue||(h=m._queueHooks(a,"fx"),null==h.unqueued&&(h.unqueued=0,i=h.empty.fire,h.empty.fire=function(){h.unqueued||i()}),h.unqueued++,n.always(function(){n.always(function(){h.unqueued--,m.queue(a,"fx").length||h.empty.fire()})})),1===a.nodeType&&("height"in b||"width"in b)&&(c.overflow=[p.overflow,p.overflowX,p.overflowY],j=m.css(a,"display"),l="none"===j?m._data(a,"olddisplay")||Fa(a.nodeName):j,"inline"===l&&"none"===m.css(a,"float")&&(k.inlineBlockNeedsLayout&&"inline"!==Fa(a.nodeName)?p.zoom=1:p.display="inline-block")),c.overflow&&(p.overflow="hidden",k.shrinkWrapBlocks()||n.always(function(){p.overflow=c.overflow[0],p.overflowX=c.overflow[1],p.overflowY=c.overflow[2]}));for(d in b)if(e=b[d],ab.exec(e)){if(delete b[d],f=f||"toggle"===e,e===(q?"hide":"show")){if("show"!==e||!r||void 0===r[d])continue;q=!0}o[d]=r&&r[d]||m.style(a,d)}else j=void 0;if(m.isEmptyObject(o))"inline"===("none"===j?Fa(a.nodeName):j)&&(p.display=j);else{r?"hidden"in r&&(q=r.hidden):r=m._data(a,"fxshow",{}),f&&(r.hidden=!q),q?m(a).show():n.done(function(){m(a).hide()}),n.done(function(){var b;m._removeData(a,"fxshow");for(b in o)m.style(a,b,o[b])});for(d in o)g=hb(q?r[d]:0,d,n),d in r||(r[d]=g.start,q&&(g.end=g.start,g.start="width"===d||"height"===d?1:0))}}function jb(a,b){var c,d,e,f,g;for(c in a)if(d=m.camelCase(c),e=b[d],f=a[c],m.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=m.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function kb(a,b,c){var d,e,f=0,g=db.length,h=m.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=$a||fb(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;i>g;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),1>f&&i?c:(h.resolveWith(a,[j]),!1)},j=h.promise({elem:a,props:m.extend({},b),opts:m.extend(!0,{specialEasing:{}},c),originalProperties:b,originalOptions:c,startTime:$a||fb(),duration:c.duration,tweens:[],createTween:function(b,c){var d=m.Tween(a,j.opts,b,c,j.opts.specialEasing[b]||j.opts.easing);return j.tweens.push(d),d},stop:function(b){var c=0,d=b?j.tweens.length:0;if(e)return this;for(e=!0;d>c;c++)j.tweens[c].run(1);return b?h.resolveWith(a,[j,b]):h.rejectWith(a,[j,b]),this}}),k=j.props;for(jb(k,j.opts.specialEasing);g>f;f++)if(d=db[f].call(j,a,k,j.opts))return d;return m.map(k,hb,j),m.isFunction(j.opts.start)&&j.opts.start.call(a,j),m.fx.timer(m.extend(i,{elem:a,anim:j,queue:j.opts.queue})),j.progress(j.opts.progress).done(j.opts.done,j.opts.complete).fail(j.opts.fail).always(j.opts.always)}m.Animation=m.extend(kb,{tweener:function(a,b){m.isFunction(a)?(b=a,a=["*"]):a=a.split(" ");for(var c,d=0,e=a.length;e>d;d++)c=a[d],eb[c]=eb[c]||[],eb[c].unshift(b)},prefilter:function(a,b){b?db.unshift(a):db.push(a)}}),m.speed=function(a,b,c){var d=a&&"object"==typeof a?m.extend({},a):{complete:c||!c&&b||m.isFunction(a)&&a,duration:a,easing:c&&b||b&&!m.isFunction(b)&&b};return d.duration=m.fx.off?0:"number"==typeof d.duration?d.duration:d.duration in m.fx.speeds?m.fx.speeds[d.duration]:m.fx.speeds._default,(null==d.queue||d.queue===!0)&&(d.queue="fx"),d.old=d.complete,d.complete=function(){m.isFunction(d.old)&&d.old.call(this),d.queue&&m.dequeue(this,d.queue)},d},m.fn.extend({fadeTo:function(a,b,c,d){return this.filter(U).css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=m.isEmptyObject(a),f=m.speed(b,c,d),g=function(){var b=kb(this,m.extend({},a),f);(e||m._data(this,"finish"))&&b.stop(!0)};return g.finish=g,e||f.queue===!1?this.each(g):this.queue(f.queue,g)},stop:function(a,b,c){var d=function(a){var b=a.stop;delete a.stop,b(c)};return"string"!=typeof a&&(c=b,b=a,a=void 0),b&&a!==!1&&this.queue(a||"fx",[]),this.each(function(){var b=!0,e=null!=a&&a+"queueHooks",f=m.timers,g=m._data(this);if(e)g[e]&&g[e].stop&&d(g[e]);else for(e in g)g[e]&&g[e].stop&&cb.test(e)&&d(g[e]);for(e=f.length;e--;)f[e].elem!==this||null!=a&&f[e].queue!==a||(f[e].anim.stop(c),b=!1,f.splice(e,1));(b||!c)&&m.dequeue(this,a)})},finish:function(a){return a!==!1&&(a=a||"fx"),this.each(function(){var b,c=m._data(this),d=c[a+"queue"],e=c[a+"queueHooks"],f=m.timers,g=d?d.length:0;for(c.finish=!0,m.queue(this,a,[]),e&&e.stop&&e.stop.call(this,!0),b=f.length;b--;)f[b].elem===this&&f[b].queue===a&&(f[b].anim.stop(!0),f.splice(b,1));for(b=0;g>b;b++)d[b]&&d[b].finish&&d[b].finish.call(this);delete c.finish})}}),m.each(["toggle","show","hide"],function(a,b){var c=m.fn[b];m.fn[b]=function(a,d,e){return null==a||"boolean"==typeof a?c.apply(this,arguments):this.animate(gb(b,!0),a,d,e)}}),m.each({slideDown:gb("show"),slideUp:gb("hide"),slideToggle:gb("toggle"),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){m.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),m.timers=[],m.fx.tick=function(){var a,b=m.timers,c=0;for($a=m.now();c<b.length;c++)a=b[c],a()||b[c]!==a||b.splice(c--,1);b.length||m.fx.stop(),$a=void 0},m.fx.timer=function(a){m.timers.push(a),a()?m.fx.start():m.timers.pop()},m.fx.interval=13,m.fx.start=function(){_a||(_a=setInterval(m.fx.tick,m.fx.interval))},m.fx.stop=function(){clearInterval(_a),_a=null},m.fx.speeds={slow:600,fast:200,_default:400},m.fn.delay=function(a,b){return a=m.fx?m.fx.speeds[a]||a:a,b=b||"fx",this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},function(){var a,b,c,d,e;b=y.createElement("div"),b.setAttribute("className","t"),b.innerHTML="  <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=y.createElement("select"),e=c.appendChild(y.createElement("option")),a=b.getElementsByTagName("input")[0],d.style.cssText="top:1px",k.getSetAttribute="t"!==b.className,k.style=/top/.test(d.getAttribute("style")),k.hrefNormalized="/a"===d.getAttribute("href"),k.checkOn=!!a.value,k.optSelected=e.selected,k.enctype=!!y.createElement("form").enctype,c.disabled=!0,k.optDisabled=!e.disabled,a=y.createElement("input"),a.setAttribute("value",""),k.input=""===a.getAttribute("value"),a.value="t",a.setAttribute("type","radio"),k.radioValue="t"===a.value}();var lb=/\r/g;m.fn.extend({val:function(a){var b,c,d,e=this[0];{if(arguments.length)return d=m.isFunction(a),this.each(function(c){var e;1===this.nodeType&&(e=d?a.call(this,c,m(this).val()):a,null==e?e="":"number"==typeof e?e+="":m.isArray(e)&&(e=m.map(e,function(a){return null==a?"":a+""})),b=m.valHooks[this.type]||m.valHooks[this.nodeName.toLowerCase()],b&&"set"in b&&void 0!==b.set(this,e,"value")||(this.value=e))});if(e)return b=m.valHooks[e.type]||m.valHooks[e.nodeName.toLowerCase()],b&&"get"in b&&void 0!==(c=b.get(e,"value"))?c:(c=e.value,"string"==typeof c?c.replace(lb,""):null==c?"":c)}}}),m.extend({valHooks:{option:{get:function(a){var b=m.find.attr(a,"value");return null!=b?b:m.trim(m.text(a))}},select:{get:function(a){for(var b,c,d=a.options,e=a.selectedIndex,f="select-one"===a.type||0>e,g=f?null:[],h=f?e+1:d.length,i=0>e?h:f?e:0;h>i;i++)if(c=d[i],!(!c.selected&&i!==e||(k.optDisabled?c.disabled:null!==c.getAttribute("disabled"))||c.parentNode.disabled&&m.nodeName(c.parentNode,"optgroup"))){if(b=m(c).val(),f)return b;g.push(b)}return g},set:function(a,b){var c,d,e=a.options,f=m.makeArray(b),g=e.length;while(g--)if(d=e[g],m.inArray(m.valHooks.option.get(d),f)>=0)try{d.selected=c=!0}catch(h){d.scrollHeight}else d.selected=!1;return c||(a.selectedIndex=-1),e}}}}),m.each(["radio","checkbox"],function(){m.valHooks[this]={set:function(a,b){return m.isArray(b)?a.checked=m.inArray(m(a).val(),b)>=0:void 0}},k.checkOn||(m.valHooks[this].get=function(a){return null===a.getAttribute("value")?"on":a.value})});var mb,nb,ob=m.expr.attrHandle,pb=/^(?:checked|selected)$/i,qb=k.getSetAttribute,rb=k.input;m.fn.extend({attr:function(a,b){return V(this,m.attr,a,b,arguments.length>1)},removeAttr:function(a){return this.each(function(){m.removeAttr(this,a)})}}),m.extend({attr:function(a,b,c){var d,e,f=a.nodeType;if(a&&3!==f&&8!==f&&2!==f)return typeof a.getAttribute===K?m.prop(a,b,c):(1===f&&m.isXMLDoc(a)||(b=b.toLowerCase(),d=m.attrHooks[b]||(m.expr.match.bool.test(b)?nb:mb)),void 0===c?d&&"get"in d&&null!==(e=d.get(a,b))?e:(e=m.find.attr(a,b),null==e?void 0:e):null!==c?d&&"set"in d&&void 0!==(e=d.set(a,c,b))?e:(a.setAttribute(b,c+""),c):void m.removeAttr(a,b))},removeAttr:function(a,b){var c,d,e=0,f=b&&b.match(E);if(f&&1===a.nodeType)while(c=f[e++])d=m.propFix[c]||c,m.expr.match.bool.test(c)?rb&&qb||!pb.test(c)?a[d]=!1:a[m.camelCase("default-"+c)]=a[d]=!1:m.attr(a,c,""),a.removeAttribute(qb?c:d)},attrHooks:{type:{set:function(a,b){if(!k.radioValue&&"radio"===b&&m.nodeName(a,"input")){var c=a.value;return a.setAttribute("type",b),c&&(a.value=c),b}}}}}),nb={set:function(a,b,c){return b===!1?m.removeAttr(a,c):rb&&qb||!pb.test(c)?a.setAttribute(!qb&&m.propFix[c]||c,c):a[m.camelCase("default-"+c)]=a[c]=!0,c}},m.each(m.expr.match.bool.source.match(/\w+/g),function(a,b){var c=ob[b]||m.find.attr;ob[b]=rb&&qb||!pb.test(b)?function(a,b,d){var e,f;return d||(f=ob[b],ob[b]=e,e=null!=c(a,b,d)?b.toLowerCase():null,ob[b]=f),e}:function(a,b,c){return c?void 0:a[m.camelCase("default-"+b)]?b.toLowerCase():null}}),rb&&qb||(m.attrHooks.value={set:function(a,b,c){return m.nodeName(a,"input")?void(a.defaultValue=b):mb&&mb.set(a,b,c)}}),qb||(mb={set:function(a,b,c){var d=a.getAttributeNode(c);return d||a.setAttributeNode(d=a.ownerDocument.createAttribute(c)),d.value=b+="","value"===c||b===a.getAttribute(c)?b:void 0}},ob.id=ob.name=ob.coords=function(a,b,c){var d;return c?void 0:(d=a.getAttributeNode(b))&&""!==d.value?d.value:null},m.valHooks.button={get:function(a,b){var c=a.getAttributeNode(b);return c&&c.specified?c.value:void 0},set:mb.set},m.attrHooks.contenteditable={set:function(a,b,c){mb.set(a,""===b?!1:b,c)}},m.each(["width","height"],function(a,b){m.attrHooks[b]={set:function(a,c){return""===c?(a.setAttribute(b,"auto"),c):void 0}}})),k.style||(m.attrHooks.style={get:function(a){return a.style.cssText||void 0},set:function(a,b){return a.style.cssText=b+""}});var sb=/^(?:input|select|textarea|button|object)$/i,tb=/^(?:a|area)$/i;m.fn.extend({prop:function(a,b){return V(this,m.prop,a,b,arguments.length>1)},removeProp:function(a){return a=m.propFix[a]||a,this.each(function(){try{this[a]=void 0,delete this[a]}catch(b){}})}}),m.extend({propFix:{"for":"htmlFor","class":"className"},prop:function(a,b,c){var d,e,f,g=a.nodeType;if(a&&3!==g&&8!==g&&2!==g)return f=1!==g||!m.isXMLDoc(a),f&&(b=m.propFix[b]||b,e=m.propHooks[b]),void 0!==c?e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:a[b]=c:e&&"get"in e&&null!==(d=e.get(a,b))?d:a[b]},propHooks:{tabIndex:{get:function(a){var b=m.find.attr(a,"tabindex");return b?parseInt(b,10):sb.test(a.nodeName)||tb.test(a.nodeName)&&a.href?0:-1}}}}),k.hrefNormalized||m.each(["href","src"],function(a,b){m.propHooks[b]={get:function(a){return a.getAttribute(b,4)}}}),k.optSelected||(m.propHooks.selected={get:function(a){var b=a.parentNode;return b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex),null}}),m.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){m.propFix[this.toLowerCase()]=this}),k.enctype||(m.propFix.enctype="encoding");var ub=/[\t\r\n\f]/g;m.fn.extend({addClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j="string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).addClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(ub," "):" ")){f=0;while(e=b[f++])d.indexOf(" "+e+" ")<0&&(d+=e+" ");g=m.trim(d),c.className!==g&&(c.className=g)}return this},removeClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j=0===arguments.length||"string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).removeClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(ub," "):"")){f=0;while(e=b[f++])while(d.indexOf(" "+e+" ")>=0)d=d.replace(" "+e+" "," ");g=a?m.trim(d):"",c.className!==g&&(c.className=g)}return this},toggleClass:function(a,b){var c=typeof a;return"boolean"==typeof b&&"string"===c?b?this.addClass(a):this.removeClass(a):this.each(m.isFunction(a)?function(c){m(this).toggleClass(a.call(this,c,this.className,b),b)}:function(){if("string"===c){var b,d=0,e=m(this),f=a.match(E)||[];while(b=f[d++])e.hasClass(b)?e.removeClass(b):e.addClass(b)}else(c===K||"boolean"===c)&&(this.className&&m._data(this,"__className__",this.className),this.className=this.className||a===!1?"":m._data(this,"__className__")||"")})},hasClass:function(a){for(var b=" "+a+" ",c=0,d=this.length;d>c;c++)if(1===this[c].nodeType&&(" "+this[c].className+" ").replace(ub," ").indexOf(b)>=0)return!0;return!1}}),m.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){m.fn[b]=function(a,c){return arguments.length>0?this.on(b,null,a,c):this.trigger(b)}}),m.fn.extend({hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return 1===arguments.length?this.off(a,"**"):this.off(b,a||"**",c)}});var vb=m.now(),wb=/\?/,xb=/(,)|(\[|{)|(}|])|"(?:[^"\\\r\n]|\\["\\\/bfnrt]|\\u[\da-fA-F]{4})*"\s*:?|true|false|null|-?(?!0\d)\d+(?:\.\d+|)(?:[eE][+-]?\d+|)/g;m.parseJSON=function(b){if(a.JSON&&a.JSON.parse)return a.JSON.parse(b+"");var c,d=null,e=m.trim(b+"");return e&&!m.trim(e.replace(xb,function(a,b,e,f){return c&&b&&(d=0),0===d?a:(c=e||b,d+=!f-!e,"")}))?Function("return "+e)():m.error("Invalid JSON: "+b)},m.parseXML=function(b){var c,d;if(!b||"string"!=typeof b)return null;try{a.DOMParser?(d=new DOMParser,c=d.parseFromString(b,"text/xml")):(c=new ActiveXObject("Microsoft.XMLDOM"),c.async="false",c.loadXML(b))}catch(e){c=void 0}return c&&c.documentElement&&!c.getElementsByTagName("parsererror").length||m.error("Invalid XML: "+b),c};var yb,zb,Ab=/#.*$/,Bb=/([?&])_=[^&]*/,Cb=/^(.*?):[ \t]*([^\r\n]*)\r?$/gm,Db=/^(?:about|app|app-storage|.+-extension|file|res|widget):$/,Eb=/^(?:GET|HEAD)$/,Fb=/^\/\//,Gb=/^([\w.+-]+:)(?:\/\/(?:[^\/?#]*@|)([^\/?#:]*)(?::(\d+)|)|)/,Hb={},Ib={},Jb="*/".concat("*");try{zb=location.href}catch(Kb){zb=y.createElement("a"),zb.href="",zb=zb.href}yb=Gb.exec(zb.toLowerCase())||[];function Lb(a){return function(b,c){"string"!=typeof b&&(c=b,b="*");var d,e=0,f=b.toLowerCase().match(E)||[];if(m.isFunction(c))while(d=f[e++])"+"===d.charAt(0)?(d=d.slice(1)||"*",(a[d]=a[d]||[]).unshift(c)):(a[d]=a[d]||[]).push(c)}}function Mb(a,b,c,d){var e={},f=a===Ib;function g(h){var i;return e[h]=!0,m.each(a[h]||[],function(a,h){var j=h(b,c,d);return"string"!=typeof j||f||e[j]?f?!(i=j):void 0:(b.dataTypes.unshift(j),g(j),!1)}),i}return g(b.dataTypes[0])||!e["*"]&&g("*")}function Nb(a,b){var c,d,e=m.ajaxSettings.flatOptions||{};for(d in b)void 0!==b[d]&&((e[d]?a:c||(c={}))[d]=b[d]);return c&&m.extend(!0,a,c),a}function Ob(a,b,c){var d,e,f,g,h=a.contents,i=a.dataTypes;while("*"===i[0])i.shift(),void 0===e&&(e=a.mimeType||b.getResponseHeader("Content-Type"));if(e)for(g in h)if(h[g]&&h[g].test(e)){i.unshift(g);break}if(i[0]in c)f=i[0];else{for(g in c){if(!i[0]||a.converters[g+" "+i[0]]){f=g;break}d||(d=g)}f=f||d}return f?(f!==i[0]&&i.unshift(f),c[f]):void 0}function Pb(a,b,c,d){var e,f,g,h,i,j={},k=a.dataTypes.slice();if(k[1])for(g in a.converters)j[g.toLowerCase()]=a.converters[g];f=k.shift();while(f)if(a.responseFields[f]&&(c[a.responseFields[f]]=b),!i&&d&&a.dataFilter&&(b=a.dataFilter(b,a.dataType)),i=f,f=k.shift())if("*"===f)f=i;else if("*"!==i&&i!==f){if(g=j[i+" "+f]||j["* "+f],!g)for(e in j)if(h=e.split(" "),h[1]===f&&(g=j[i+" "+h[0]]||j["* "+h[0]])){g===!0?g=j[e]:j[e]!==!0&&(f=h[0],k.unshift(h[1]));break}if(g!==!0)if(g&&a["throws"])b=g(b);else try{b=g(b)}catch(l){return{state:"parsererror",error:g?l:"No conversion from "+i+" to "+f}}}return{state:"success",data:b}}m.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:zb,type:"GET",isLocal:Db.test(yb[1]),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":Jb,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":m.parseJSON,"text xml":m.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(a,b){return b?Nb(Nb(a,m.ajaxSettings),b):Nb(m.ajaxSettings,a)},ajaxPrefilter:Lb(Hb),ajaxTransport:Lb(Ib),ajax:function(a,b){"object"==typeof a&&(b=a,a=void 0),b=b||{};var c,d,e,f,g,h,i,j,k=m.ajaxSetup({},b),l=k.context||k,n=k.context&&(l.nodeType||l.jquery)?m(l):m.event,o=m.Deferred(),p=m.Callbacks("once memory"),q=k.statusCode||{},r={},s={},t=0,u="canceled",v={readyState:0,getResponseHeader:function(a){var b;if(2===t){if(!j){j={};while(b=Cb.exec(f))j[b[1].toLowerCase()]=b[2]}b=j[a.toLowerCase()]}return null==b?null:b},getAllResponseHeaders:function(){return 2===t?f:null},setRequestHeader:function(a,b){var c=a.toLowerCase();return t||(a=s[c]=s[c]||a,r[a]=b),this},overrideMimeType:function(a){return t||(k.mimeType=a),this},statusCode:function(a){var b;if(a)if(2>t)for(b in a)q[b]=[q[b],a[b]];else v.always(a[v.status]);return this},abort:function(a){var b=a||u;return i&&i.abort(b),x(0,b),this}};if(o.promise(v).complete=p.add,v.success=v.done,v.error=v.fail,k.url=((a||k.url||zb)+"").replace(Ab,"").replace(Fb,yb[1]+"//"),k.type=b.method||b.type||k.method||k.type,k.dataTypes=m.trim(k.dataType||"*").toLowerCase().match(E)||[""],null==k.crossDomain&&(c=Gb.exec(k.url.toLowerCase()),k.crossDomain=!(!c||c[1]===yb[1]&&c[2]===yb[2]&&(c[3]||("http:"===c[1]?"80":"443"))===(yb[3]||("http:"===yb[1]?"80":"443")))),k.data&&k.processData&&"string"!=typeof k.data&&(k.data=m.param(k.data,k.traditional)),Mb(Hb,k,b,v),2===t)return v;h=m.event&&k.global,h&&0===m.active++&&m.event.trigger("ajaxStart"),k.type=k.type.toUpperCase(),k.hasContent=!Eb.test(k.type),e=k.url,k.hasContent||(k.data&&(e=k.url+=(wb.test(e)?"&":"?")+k.data,delete k.data),k.cache===!1&&(k.url=Bb.test(e)?e.replace(Bb,"$1_="+vb++):e+(wb.test(e)?"&":"?")+"_="+vb++)),k.ifModified&&(m.lastModified[e]&&v.setRequestHeader("If-Modified-Since",m.lastModified[e]),m.etag[e]&&v.setRequestHeader("If-None-Match",m.etag[e])),(k.data&&k.hasContent&&k.contentType!==!1||b.contentType)&&v.setRequestHeader("Content-Type",k.contentType),v.setRequestHeader("Accept",k.dataTypes[0]&&k.accepts[k.dataTypes[0]]?k.accepts[k.dataTypes[0]]+("*"!==k.dataTypes[0]?", "+Jb+"; q=0.01":""):k.accepts["*"]);for(d in k.headers)v.setRequestHeader(d,k.headers[d]);if(k.beforeSend&&(k.beforeSend.call(l,v,k)===!1||2===t))return v.abort();u="abort";for(d in{success:1,error:1,complete:1})v[d](k[d]);if(i=Mb(Ib,k,b,v)){v.readyState=1,h&&n.trigger("ajaxSend",[v,k]),k.async&&k.timeout>0&&(g=setTimeout(function(){v.abort("timeout")},k.timeout));try{t=1,i.send(r,x)}catch(w){if(!(2>t))throw w;x(-1,w)}}else x(-1,"No Transport");function x(a,b,c,d){var j,r,s,u,w,x=b;2!==t&&(t=2,g&&clearTimeout(g),i=void 0,f=d||"",v.readyState=a>0?4:0,j=a>=200&&300>a||304===a,c&&(u=Ob(k,v,c)),u=Pb(k,u,v,j),j?(k.ifModified&&(w=v.getResponseHeader("Last-Modified"),w&&(m.lastModified[e]=w),w=v.getResponseHeader("etag"),w&&(m.etag[e]=w)),204===a||"HEAD"===k.type?x="nocontent":304===a?x="notmodified":(x=u.state,r=u.data,s=u.error,j=!s)):(s=x,(a||!x)&&(x="error",0>a&&(a=0))),v.status=a,v.statusText=(b||x)+"",j?o.resolveWith(l,[r,x,v]):o.rejectWith(l,[v,x,s]),v.statusCode(q),q=void 0,h&&n.trigger(j?"ajaxSuccess":"ajaxError",[v,k,j?r:s]),p.fireWith(l,[v,x]),h&&(n.trigger("ajaxComplete",[v,k]),--m.active||m.event.trigger("ajaxStop")))}return v},getJSON:function(a,b,c){return m.get(a,b,c,"json")},getScript:function(a,b){return m.get(a,void 0,b,"script")}}),m.each(["get","post"],function(a,b){m[b]=function(a,c,d,e){return m.isFunction(c)&&(e=e||d,d=c,c=void 0),m.ajax({url:a,type:b,dataType:e,data:c,success:d})}}),m._evalUrl=function(a){return m.ajax({url:a,type:"GET",dataType:"script",async:!1,global:!1,"throws":!0})},m.fn.extend({wrapAll:function(a){if(m.isFunction(a))return this.each(function(b){m(this).wrapAll(a.call(this,b))});if(this[0]){var b=m(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&1===a.firstChild.nodeType)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){return this.each(m.isFunction(a)?function(b){m(this).wrapInner(a.call(this,b))}:function(){var b=m(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=m.isFunction(a);return this.each(function(c){m(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){m.nodeName(this,"body")||m(this).replaceWith(this.childNodes)}).end()}}),m.expr.filters.hidden=function(a){return a.offsetWidth<=0&&a.offsetHeight<=0||!k.reliableHiddenOffsets()&&"none"===(a.style&&a.style.display||m.css(a,"display"))},m.expr.filters.visible=function(a){return!m.expr.filters.hidden(a)};var Qb=/%20/g,Rb=/\[\]$/,Sb=/\r?\n/g,Tb=/^(?:submit|button|image|reset|file)$/i,Ub=/^(?:input|select|textarea|keygen)/i;function Vb(a,b,c,d){var e;if(m.isArray(b))m.each(b,function(b,e){c||Rb.test(a)?d(a,e):Vb(a+"["+("object"==typeof e?b:"")+"]",e,c,d)});else if(c||"object"!==m.type(b))d(a,b);else for(e in b)Vb(a+"["+e+"]",b[e],c,d)}m.param=function(a,b){var c,d=[],e=function(a,b){b=m.isFunction(b)?b():null==b?"":b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};if(void 0===b&&(b=m.ajaxSettings&&m.ajaxSettings.traditional),m.isArray(a)||a.jquery&&!m.isPlainObject(a))m.each(a,function(){e(this.name,this.value)});else for(c in a)Vb(c,a[c],b,e);return d.join("&").replace(Qb,"+")},m.fn.extend({serialize:function(){return m.param(this.serializeArray())},serializeArray:function(){return this.map(function(){var a=m.prop(this,"elements");return a?m.makeArray(a):this}).filter(function(){var a=this.type;return this.name&&!m(this).is(":disabled")&&Ub.test(this.nodeName)&&!Tb.test(a)&&(this.checked||!W.test(a))}).map(function(a,b){var c=m(this).val();return null==c?null:m.isArray(c)?m.map(c,function(a){return{name:b.name,value:a.replace(Sb,"\r\n")}}):{name:b.name,value:c.replace(Sb,"\r\n")}}).get()}}),m.ajaxSettings.xhr=void 0!==a.ActiveXObject?function(){return!this.isLocal&&/^(get|post|head|put|delete|options)$/i.test(this.type)&&Zb()||$b()}:Zb;var Wb=0,Xb={},Yb=m.ajaxSettings.xhr();a.attachEvent&&a.attachEvent("onunload",function(){for(var a in Xb)Xb[a](void 0,!0)}),k.cors=!!Yb&&"withCredentials"in Yb,Yb=k.ajax=!!Yb,Yb&&m.ajaxTransport(function(a){if(!a.crossDomain||k.cors){var b;return{send:function(c,d){var e,f=a.xhr(),g=++Wb;if(f.open(a.type,a.url,a.async,a.username,a.password),a.xhrFields)for(e in a.xhrFields)f[e]=a.xhrFields[e];a.mimeType&&f.overrideMimeType&&f.overrideMimeType(a.mimeType),a.crossDomain||c["X-Requested-With"]||(c["X-Requested-With"]="XMLHttpRequest");for(e in c)void 0!==c[e]&&f.setRequestHeader(e,c[e]+"");f.send(a.hasContent&&a.data||null),b=function(c,e){var h,i,j;if(b&&(e||4===f.readyState))if(delete Xb[g],b=void 0,f.onreadystatechange=m.noop,e)4!==f.readyState&&f.abort();else{j={},h=f.status,"string"==typeof f.responseText&&(j.text=f.responseText);try{i=f.statusText}catch(k){i=""}h||!a.isLocal||a.crossDomain?1223===h&&(h=204):h=j.text?200:404}j&&d(h,i,j,f.getAllResponseHeaders())},a.async?4===f.readyState?setTimeout(b):f.onreadystatechange=Xb[g]=b:b()},abort:function(){b&&b(void 0,!0)}}}});function Zb(){try{return new a.XMLHttpRequest}catch(b){}}function $b(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}m.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/(?:java|ecma)script/},converters:{"text script":function(a){return m.globalEval(a),a}}}),m.ajaxPrefilter("script",function(a){void 0===a.cache&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),m.ajaxTransport("script",function(a){if(a.crossDomain){var b,c=y.head||m("head")[0]||y.documentElement;return{send:function(d,e){b=y.createElement("script"),b.async=!0,a.scriptCharset&&(b.charset=a.scriptCharset),b.src=a.url,b.onload=b.onreadystatechange=function(a,c){(c||!b.readyState||/loaded|complete/.test(b.readyState))&&(b.onload=b.onreadystatechange=null,b.parentNode&&b.parentNode.removeChild(b),b=null,c||e(200,"success"))},c.insertBefore(b,c.firstChild)},abort:function(){b&&b.onload(void 0,!0)}}}});var _b=[],ac=/(=)\?(?=&|$)|\?\?/;m.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var a=_b.pop()||m.expando+"_"+vb++;return this[a]=!0,a}}),m.ajaxPrefilter("json jsonp",function(b,c,d){var e,f,g,h=b.jsonp!==!1&&(ac.test(b.url)?"url":"string"==typeof b.data&&!(b.contentType||"").indexOf("application/x-www-form-urlencoded")&&ac.test(b.data)&&"data");return h||"jsonp"===b.dataTypes[0]?(e=b.jsonpCallback=m.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,h?b[h]=b[h].replace(ac,"$1"+e):b.jsonp!==!1&&(b.url+=(wb.test(b.url)?"&":"?")+b.jsonp+"="+e),b.converters["script json"]=function(){return g||m.error(e+" was not called"),g[0]},b.dataTypes[0]="json",f=a[e],a[e]=function(){g=arguments},d.always(function(){a[e]=f,b[e]&&(b.jsonpCallback=c.jsonpCallback,_b.push(e)),g&&m.isFunction(f)&&f(g[0]),g=f=void 0}),"script"):void 0}),m.parseHTML=function(a,b,c){if(!a||"string"!=typeof a)return null;"boolean"==typeof b&&(c=b,b=!1),b=b||y;var d=u.exec(a),e=!c&&[];return d?[b.createElement(d[1])]:(d=m.buildFragment([a],b,e),e&&e.length&&m(e).remove(),m.merge([],d.childNodes))};var bc=m.fn.load;m.fn.load=function(a,b,c){if("string"!=typeof a&&bc)return bc.apply(this,arguments);var d,e,f,g=this,h=a.indexOf(" ");return h>=0&&(d=m.trim(a.slice(h,a.length)),a=a.slice(0,h)),m.isFunction(b)?(c=b,b=void 0):b&&"object"==typeof b&&(f="POST"),g.length>0&&m.ajax({url:a,type:f,dataType:"html",data:b}).done(function(a){e=arguments,g.html(d?m("<div>").append(m.parseHTML(a)).find(d):a)}).complete(c&&function(a,b){g.each(c,e||[a.responseText,b,a])}),this},m.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(a,b){m.fn[b]=function(a){return this.on(b,a)}}),m.expr.filters.animated=function(a){return m.grep(m.timers,function(b){return a===b.elem}).length};var cc=a.document.documentElement;function dc(a){return m.isWindow(a)?a:9===a.nodeType?a.defaultView||a.parentWindow:!1}m.offset={setOffset:function(a,b,c){var d,e,f,g,h,i,j,k=m.css(a,"position"),l=m(a),n={};"static"===k&&(a.style.position="relative"),h=l.offset(),f=m.css(a,"top"),i=m.css(a,"left"),j=("absolute"===k||"fixed"===k)&&m.inArray("auto",[f,i])>-1,j?(d=l.position(),g=d.top,e=d.left):(g=parseFloat(f)||0,e=parseFloat(i)||0),m.isFunction(b)&&(b=b.call(a,c,h)),null!=b.top&&(n.top=b.top-h.top+g),null!=b.left&&(n.left=b.left-h.left+e),"using"in b?b.using.call(a,n):l.css(n)}},m.fn.extend({offset:function(a){if(arguments.length)return void 0===a?this:this.each(function(b){m.offset.setOffset(this,a,b)});var b,c,d={top:0,left:0},e=this[0],f=e&&e.ownerDocument;if(f)return b=f.documentElement,m.contains(b,e)?(typeof e.getBoundingClientRect!==K&&(d=e.getBoundingClientRect()),c=dc(f),{top:d.top+(c.pageYOffset||b.scrollTop)-(b.clientTop||0),left:d.left+(c.pageXOffset||b.scrollLeft)-(b.clientLeft||0)}):d},position:function(){if(this[0]){var a,b,c={top:0,left:0},d=this[0];return"fixed"===m.css(d,"position")?b=d.getBoundingClientRect():(a=this.offsetParent(),b=this.offset(),m.nodeName(a[0],"html")||(c=a.offset()),c.top+=m.css(a[0],"borderTopWidth",!0),c.left+=m.css(a[0],"borderLeftWidth",!0)),{top:b.top-c.top-m.css(d,"marginTop",!0),left:b.left-c.left-m.css(d,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||cc;while(a&&!m.nodeName(a,"html")&&"static"===m.css(a,"position"))a=a.offsetParent;return a||cc})}}),m.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(a,b){var c=/Y/.test(b);m.fn[a]=function(d){return V(this,function(a,d,e){var f=dc(a);return void 0===e?f?b in f?f[b]:f.document.documentElement[d]:a[d]:void(f?f.scrollTo(c?m(f).scrollLeft():e,c?e:m(f).scrollTop()):a[d]=e)},a,d,arguments.length,null)}}),m.each(["top","left"],function(a,b){m.cssHooks[b]=La(k.pixelPosition,function(a,c){return c?(c=Ja(a,b),Ha.test(c)?m(a).position()[b]+"px":c):void 0})}),m.each({Height:"height",Width:"width"},function(a,b){m.each({padding:"inner"+a,content:b,"":"outer"+a},function(c,d){m.fn[d]=function(d,e){var f=arguments.length&&(c||"boolean"!=typeof d),g=c||(d===!0||e===!0?"margin":"border");return V(this,function(b,c,d){var e;return m.isWindow(b)?b.document.documentElement["client"+a]:9===b.nodeType?(e=b.documentElement,Math.max(b.body["scroll"+a],e["scroll"+a],b.body["offset"+a],e["offset"+a],e["client"+a])):void 0===d?m.css(b,c,g):m.style(b,c,d,g)},b,f?d:void 0,f,null)}})}),m.fn.size=function(){return this.length},m.fn.andSelf=m.fn.addBack,"function"==typeof define&&define.amd&&define("jquery",[],function(){return m});var ec=a.jQuery,fc=a.$;return m.noConflict=function(b){return a.$===m&&(a.$=fc),b&&a.jQuery===m&&(a.jQuery=ec),m},typeof b===K&&(a.jQuery=a.$=m),m});
</script>
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}article,aside,details,figcaption,figure,footer,header,hgroup,main,menu,nav,section,summary{display:block}audio,canvas,progress,video{display:inline-block;vertical-align:baseline}audio:not([controls]){display:none;height:0}[hidden],template{display:none}a{background-color:transparent}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}dfn{font-style:italic}h1{margin:.67em 0;font-size:2em}mark{color:#000;background:#ff0}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}img{border:0}svg:not(:root){overflow:hidden}figure{margin:1em 40px}hr{height:0;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box}pre{overflow:auto}code,kbd,pre,samp{font-family:monospace,monospace;font-size:1em}button,input,optgroup,select,textarea{margin:0;font:inherit;color:inherit}button{overflow:visible}button,select{text-transform:none}button,html input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer}button[disabled],html input[disabled]{cursor:default}button::-moz-focus-inner,input::-moz-focus-inner{padding:0;border:0}input{line-height:normal}input[type=checkbox],input[type=radio]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0}input[type=number]::-webkit-inner-spin-button,input[type=number]::-webkit-outer-spin-button{height:auto}input[type=search]{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;-webkit-appearance:textfield}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}fieldset{padding:.35em .625em .75em;margin:0 2px;border:1px solid silver}legend{padding:0;border:0}textarea{overflow:auto}optgroup{font-weight:700}table{border-spacing:0;border-collapse:collapse}td,th{padding:0}@media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}abbr[title]:after{content:" (" attr(title) ")"}a[href^="javascript:"]:after,a[href^="#"]:after{content:""}blockquote,pre{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}.navbar{display:none}.btn>.caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #ddd!important}}@font-face{font-family:'Glyphicons Halflings';src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B/EnCYu/TgCGmr7bMh8GfYL+BfcLvB0gRagC09w9elfldaIy/hNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4/BO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r+vnsV+372uf1xBLq4qU/45fTuqaAP+pssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ+Azok7B7O/f6J8AzYBySZQB/QHYUSA+EeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ+PKRWyFHHmg1Wi/6xzUgA0LREoKJChwnQa9B+5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl+KdDPbI6Ag4vLr+hjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq+MhrGxDLak0PrwYzSXtcuyhXEhwOYofiW+EcI/jw8P6IY6ed+etAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji+zDbo8x8HyIRUbXnwUcklFv51fvTymiV+MXLSmGH9d9+aXpD5X6lao41anWGig7IwIdnoBY2ht/pO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi+7u/jpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf+61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP/OfKnlk/Lkaid/O2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu/gFtuW0wR4cgd+ZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ+HW06H+tx+bQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543/FV6klQ6Tv1OoZGXLv0igKrl/CmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF/0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5/xTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ/1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb/Veyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6/xM+4Y67ngNBknxIPwuppgIhFcwJyr6EIj+LzNj/mfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h/C/PkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn/pdpgHKNGrGIdkRK+KPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho+EIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA+q/j9m3LM/O7WJka4tSidVCjsvo2lQ/2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3/5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho/bcwQdeboqfQartuU3CsCf+cXkgYAqp/0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid/NIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A+TRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC+JE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW/WDHA60cYFaI/PjpzquUqdaYGcIq+mLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC+1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A+P/oFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E/vwOiKxRtCWsDM+eTHUrmwrCK5BIfMzGkD+0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3/kFutpQGNc3pCR7gvC4sgwbupDu3DyEN+W6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc+h1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0+bC5zgpGz7Io+mjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO/ENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn+3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif+pZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx/k3QgnAFSq27/2i4GEBA+UvTJKK/9eISNvG46Em5RZfjTYLdeD8kdXHyrwId/DQZUaMCY4gGbke2C8vfjgV/Y9kkRQOJIn/xM9INZSpiBnqX0Q9GlQPpPKAyO5y+W5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W/N6l54qOynCqD3DpWQ+mpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE+7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv/8lbTIkkYpqKM9VOhp65ktYk+Q46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI+ejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5+7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu+vtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY/iOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v+6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ/qDQK+bfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam+WpHG+0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3+J1eCBay8IYZ0wQRKGAqvCuZ/UgbQPyllosq+XtfKIZOzmeJqRazpmmoP/76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t/I4Jktu0XSgifO2ozFOiwd/0SssJDn0dn4xqk4GDTTKX73/wQyBLdqgJ+Wx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy/qqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh/wkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml/R4yrzow1Q2A5G+kzo/RhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj/UMMc34IBqTKLDTp76WzL/dMjCxK7MjhiGjeYAC/kj/jY/Rde7hpSM1xChrog6yZ7OWTuD56xBJnGFE+pT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G+9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36/dBySis4m9/DR8izaLJW6bWCkVgm5T+ius3ZXq4xI+GnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te/r4dPYMCl5qtiHNTn+TPbh1jCBHH+dMJNhwNgs3nT+OhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF+uRIWyXjQMAs2chdpaKPNaB+kSezYt0+CA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6/TzoA1/ZBG9bIUVHLAbi/kdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh+epgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF+zkJHIA7PwCDk1gGVmGUZSSoPhNf+Tklauz98QofOlCIQ/tCD4dosHYPqtPCXB3agggQQIqQJsSkB+qn0rkQ1toJjON/OtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU+TQ6NIw3ej+AtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb++W6Uk4q6F7/rg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK+EfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l+wM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l+DMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg+EWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb+Mw76Qy29iQ5up/X7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa/xnsMYcIO/vEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz/Chp/Vlpj2P7jJQmQRwGnltkTV5dbF9fE3/fxoSqTROgq9wFUlbuYzYcasE0ouzBo+dDCDzxKAfhbAZYxQiHrLzV2iVexnDX/QnT1fsT/xuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR+CtGdkPwYN2o7DOw/VGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO/f9Qua+pDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD/prQ84B1pVGkIpVUAHCG+iz3Bn3qm2AVrYcYWhock4jso5+J7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk+UILT7+VoX5mdxxA5fS42gISQVi/HTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8/6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk/wdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt+Su9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ/BfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk/gc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B//lHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO+CvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd/p1gi/07h8qfwHrByuSxglc9cI4QIg2oqvC/qm0i7tjPLTgDhoWTAKDO2ONW5oe+/eKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2/j4ODUwRkqrtBBCrDsDpt8jhZdXoy/1BCqw3sSGhgGGy0a5Jw6BP/TExoCmNFYjZl248A0osgPyGEmRA+fAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd/ocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE/EZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ/Ugd/JZQK8lvAm43uDRAbyW8gZ+ZGq0EVerVGUKUSm/Idn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ+QATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm+oOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724+zUQ7+vkCpZB+pGA562hYQiDxHVWOq0oDQl/QsoiY+cuI7iWq/ZIBtHcXJ7kks+h2fCNUPA82BzjnqktNts+RLdk1VSu+tqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy/44XYXdI5noQoRcvjZ1RMPACRqYg2V1+OwOepcOknRLLFdYgTkT5UApt/JhLM3jeFYprZV+Zow2g8fP+U68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr/A1SY9dXFz4RjzoU9ExfJCmx/I9FKEGT3n2cmzl2X42L3Jh+AbQq6sA+Ss1kitoa4TAYgKHaoybHUDJ51oETdeI/9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB+Un44zExFE4vLytcu5NwpWrUxO/0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL+BDqMyaN3RJPh/anbx+Iv+qgQdAa3M9Z5JmvYlh4qop+Ho1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs+gs37sFvi0PPVvA5dnCBgILTwoKd/+DoL9F6inlM7H4rOTzD79KJgKlZO/Zgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno+gBoKVXgIL/VI8dB1O5o/R3Suez/gD7M781ShjKpIIORM/nxG+jjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4/QftDbEn+AucIr1oxrLabRj9q4ae0+fXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd+eNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz/6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT+mAUmiYbV3YQVqFVp9dorv+TsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp+xJyYLv1OsxQCZwTB4a8BZ/5EdxTBJthApqyfd9u3ifr/WILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj/qn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9+W8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4/YtowhEmTs0vrvlD/CrisnoBNDAcUi/teY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O/4DcgV/dZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk+tgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb/n7qwhvGnrHuf5bX6Vh/n3xffU3PeHdR+FA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E+YbfL0adwNtHP7dT7t7b46DVZIkzaRJOM+S6KcrzYVg+T3wSRFRQashjfU18NutrKa/7PXbtuJvpIjbgPeqd+pjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir/8tNXJ/OsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG+FZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx/GdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD/Qi/EmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4/asthNMK5UQKCOhU97oaOYNGsTah+jfCKsZnTRn5TbhFX8ghg8CBYt/BjeYYYUrtUZ5jVij/op7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM+3SW6Opll/wgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy+QbSKVJcqkia+GvDefFwMOmgnD7h81TUtMn+mRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d/QK7Cr4uoCeOQ7/8JfKT77KiDzLImESHw/0wf73QeHu74hxv7uihi4fTX+XEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo/oVH5ww5OzLFsiTPDns7fS6EURSSWd/92BxMYQ8sBaH+j+wthQPdVgDGpTfi+JQIWMD8xKqULliRH01rTeyF8x8q/GBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE+/7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV/yTDRRP8Y2ww5RO6d2D94o+6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt+kqdae76ViWe3STan69yaF9+fESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw/A1zEdjWquIsQXXGIVEH0thC5M+W9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF+RVmI8L4HUYk4x+67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8/p5qIQrEo/H+1l/0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud+tJUfdaZ4CWNijzZtlRa8+CkmO/EwHYfPZFU/hzjFWH7vnzHRMo+aF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce/+/9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs/GWJS6SwEN/ULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e+G2zor8l+YaMxSEomDdLHGcD6YVQPegTaA74H8+V4WvJkFUrjMLGLlvSZQWvi8/QA7yzQ8GPno//5SJHRP/OqKObPCo81s/+6WgLqykYpGAgQZhVDEBPXWgU/WzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M+GWn6ASobIWC+LbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg/kpf3+CnAXKiMgIE8Jk/Mhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo+RJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B+SkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE+VMd3b1fhCynD0pQNhCG6/WCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp/YbHjo++7/Wj8S4YNa+ZdqAw1hDrKWFXv9+zaXpf8ZTDSbiqsxnwN/CzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m/NCW/HILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO+5EJ7Z6bCiRoPedRZ/P0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn/LvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl+11PoFYnNv2HwAODeNRkHj+8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij+bsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur/eWHjiB7SOVdqMAVmpBvfRiebsFjger7DC+8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l+kXRZ0KLZaGsFSIdQz/HXDxf3/TE30+DgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH+RptvRMVRaahu4cySjS3P5wxAUCPkmn+rhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik/zbrTQk5KmgxCg/f45L0jywebOWUYFJQAJia7XzCV0x89rpp/f3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl+5tfUWZNwBpEPXghzbBggYCw/dhy0ntds2yeHCDKkF/YxQjNIL/F/37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD+qNOhwMlfARQUdJ2tUX+MNJqOwIciWalZsmEjt07tfa8ma4cji9sqz+Q9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe+jGDiNJQLWnfx+drTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf/bkvo8PLVBsZl152y5S8+HRDfZIMCbYZ1WDp4yrdchOJw8k6R+/2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB+M4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5/iYp3ZdrCf7fL+en+sIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv+NRiJc8JAKqqgCA/PNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN/hCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj+bYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5/zBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8/i+jHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2+JrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk+Mz7wwstg6RFZb+TZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm/7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk+9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx+whVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC+XYuqMBMUun5YezKbRKmEPwuK+CLzijPEQgfhahQswBBLfg/GBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX+RCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk/4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug/AbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM+Zu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX/pcsfwXbLze2+D+u33OGBoJyAAL3jn3RuEcdp5If8O+a4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT++tm+haBCikRUUMrMhYKZJKYoVuv/bsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV/DMUxd9uFZmBfKXMCn/SqkWJyKPnT6lq+4zBZni6fYRByJn6OK+OgPBGRAJluwGSk4wxjOOzyce/PKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO/cEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm+bddRQu5F9s0XftGEJ9JSuSk+ZachCbdU45fEqbugzTIUokwoAKvpUQF/CvLbWW5BNQFqFkJg2f30E/48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J+1pT0tLkvFVZaNzfhs/Kd3+A9YsImlO4XK4vpCo/elHQi/9gkFg07xxnuXLt21unCIpDV+bbRxb7FC6nWYTsMFF8+1LUg4JFjVt3vqbuhHmDKbgQ4e+RGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB/KVijd1ARWkFEf3yiUw1v/WaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G+ZManTqDLPjyrOse7WiiwOJCG+J0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj/6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j/N46f+S2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb/0jQbaHJ2YRK8A+ls6WMhWmpCXYG5jqapGs5/eOJErxi2/2KWVHiPellTgh/fNl/2KYPKb7DUcAg+mCOPQFCiU9Mq/WLcU1xxC8aLePFZZlE+PCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh/nFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW+oKFLvpyvTBMM69tN1Ydwv1LIEhHsC+ueVG+w+kyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw+H/AuOx+aH+tBL88H57D0MsqyiZxhOEQkF/8DR1d2hSPMj/sNOa5rxcUnBgH8ictv2J+cb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd/PjMMtQfyDNZsOPd6XcAsnBE/mRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl/XPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG/VanIvcwycVA7+BE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP/MVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX/5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c/F1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J/5wkjpkre727p5PTRX5FGrSBIfJqhJE/IS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug+oRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U/5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7/BQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN+nA7pvF78/RII5ZHA09OAiE/66MF6HQ+qVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe+hXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz+JV/4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB+K3wBP/ineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q/9uocGsx41O4IZhViw/2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY/cQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE/om7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi/caHSM3FPRGRf7dB7YC+cD2ho6oL2zGDCkjlf/DFoQVl8GS/56wur3rdV6ggtzZW60MRB3g+U1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg/gBQIZMG/YcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK/G7F3mUc3GOAKqh60zM0v34v+ELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND+/GTk6M56Ig4yMsU6LUW1EWE+fIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP/IoRIZ/F6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg/RrPD/d3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl+Mu4xf0ezqeXD2PtPDnwMPo86sbwDV+9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD/OwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d/UfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH+14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC+OA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6+vAUUBoGhY3CT2tgwehdPqU/4Q7ZLYvhRl/ogOvR9O2+wkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn/dFSWBWzQ/VYk+Gezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n/yJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET/Hh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j+DXfpi12m1RbzYLg9J2wFergEwOxFyD0/JstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT/cUP6pE/mujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB+HEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu+vqQ02+KpJBjaLt9ye1Ab+BbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC+UwkXOoAjneU/xHplMQo2cXUlrVNqJYczgYlaOEczVCs/OCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38+xsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9+b8fH6+b8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj/0Q7PFUcC8hDrxESWdfgFRm+7vvWbkEppHB4T/1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y+g3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR/Rrs/JLKXgEx+qkmeDlFOD1/yTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW+xz+5FElFxWB28VjYIGZ0Yd+5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ+lT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ+2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1+JpI9psyNYIFuJogZa0/1AhOWdlHQxdAgbwacsHqPZo8u/ngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2+RdM+MAaYaZ0Y/ADkbNCZuAyAVQa2OcXOeICmDn9Q/eFkDeFQg5MgHEDXq/tVjj+jtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2/Bc0UxvseQCO2pQ2i+Krfhu/WeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt/U0Wf+phiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7+ExseJauyqo30hs+1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j/e1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la/QCTiVelFnU6O/GCvykqS/wZJDhKN9gBtSOp/1SP5VRgJcoVj+kmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn+8p6+vBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H+gDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D/GvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P+jAgN5TB3haSifDcApp6yymEi6Ij/GsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x/pChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11/yxyw0UnGig3MFdZklN5FI/qiT65T+jOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5+bqWiAYiAv6Jsf79/VUs4cIl+n6+WOjcgB/2l5TreoAV2717JzZbQIR0W1cl/dEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW/PhoawJDrGAP0JYWHgAVUByo/bGdiv2T2EMg8gsS14/rAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq+SCcTSx5NDtbFwNlh8VhjGGDu7JG5/TAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9+ogD8Kk/W7QoRN1UWPqM4+xdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c+4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS+o3F8YVVeikw13w+OEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX++7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9/O53DYi/5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD+P8sNh6e+XYHJXT/lkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp+pT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS/2ToPjqkaq62/7WFG8advGlRRqxB9diP07JrXowKR9tpRa+jGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq+nsp3YMuXt/GkXxLx/P6+ZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar+gMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud+YlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl/zh575R5rsrmRnKAzq4POFdgbYBuEviM4+LVC15ssLNFghbTtHWerS1hDt5s4qkLUha/qpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI+yjEldJfSo4y0QhG4i4IwkRFGcjWY8+EzgYYJUK7BXQksLxAww/YYWBMhJILB9e8ePEJ4OP7z+4/wOQDl64iOYDp26DaONPxpKtBxq/aTzRGarm3VkPYTLJKx6Z/Mw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ+lPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k/UuGkNpP1DBI5ch/EehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv+J41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI+HYexTUevLUeta4/DqKrbMVS+Yqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ++KkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9/Wx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k/90B8+yRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB/mQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go/n6j0cS+a2gEU8gIHJ+BwfgZX4GL+Bd/gW34FZ+BS/gUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh/F062yJ7AAAAEDAWAAABWhJ+KPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg);src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B/EnCYu/TgCGmr7bMh8GfYL+BfcLvB0gRagC09w9elfldaIy/hNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4/BO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r+vnsV+372uf1xBLq4qU/45fTuqaAP+pssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ+Azok7B7O/f6J8AzYBySZQB/QHYUSA+EeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ+PKRWyFHHmg1Wi/6xzUgA0LREoKJChwnQa9B+5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl+KdDPbI6Ag4vLr+hjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq+MhrGxDLak0PrwYzSXtcuyhXEhwOYofiW+EcI/jw8P6IY6ed+etAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji+zDbo8x8HyIRUbXnwUcklFv51fvTymiV+MXLSmGH9d9+aXpD5X6lao41anWGig7IwIdnoBY2ht/pO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi+7u/jpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf+61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP/OfKnlk/Lkaid/O2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu/gFtuW0wR4cgd+ZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ+HW06H+tx+bQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543/FV6klQ6Tv1OoZGXLv0igKrl/CmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF/0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5/xTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ/1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb/Veyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6/xM+4Y67ngNBknxIPwuppgIhFcwJyr6EIj+LzNj/mfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h/C/PkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn/pdpgHKNGrGIdkRK+KPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho+EIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA+q/j9m3LM/O7WJka4tSidVCjsvo2lQ/2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3/5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho/bcwQdeboqfQartuU3CsCf+cXkgYAqp/0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid/NIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A+TRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC+JE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW/WDHA60cYFaI/PjpzquUqdaYGcIq+mLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC+1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A+P/oFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E/vwOiKxRtCWsDM+eTHUrmwrCK5BIfMzGkD+0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3/kFutpQGNc3pCR7gvC4sgwbupDu3DyEN+W6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc+h1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0+bC5zgpGz7Io+mjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO/ENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn+3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif+pZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx/k3QgnAFSq27/2i4GEBA+UvTJKK/9eISNvG46Em5RZfjTYLdeD8kdXHyrwId/DQZUaMCY4gGbke2C8vfjgV/Y9kkRQOJIn/xM9INZSpiBnqX0Q9GlQPpPKAyO5y+W5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W/N6l54qOynCqD3DpWQ+mpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE+7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv/8lbTIkkYpqKM9VOhp65ktYk+Q46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI+ejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5+7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu+vtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY/iOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v+6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ/qDQK+bfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam+WpHG+0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3+J1eCBay8IYZ0wQRKGAqvCuZ/UgbQPyllosq+XtfKIZOzmeJqRazpmmoP/76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t/I4Jktu0XSgifO2ozFOiwd/0SssJDn0dn4xqk4GDTTKX73/wQyBLdqgJ+Wx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy/qqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh/wkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml/R4yrzow1Q2A5G+kzo/RhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj/UMMc34IBqTKLDTp76WzL/dMjCxK7MjhiGjeYAC/kj/jY/Rde7hpSM1xChrog6yZ7OWTuD56xBJnGFE+pT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G+9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36/dBySis4m9/DR8izaLJW6bWCkVgm5T+ius3ZXq4xI+GnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te/r4dPYMCl5qtiHNTn+TPbh1jCBHH+dMJNhwNgs3nT+OhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF+uRIWyXjQMAs2chdpaKPNaB+kSezYt0+CA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6/TzoA1/ZBG9bIUVHLAbi/kdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh+epgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF+zkJHIA7PwCDk1gGVmGUZSSoPhNf+Tklauz98QofOlCIQ/tCD4dosHYPqtPCXB3agggQQIqQJsSkB+qn0rkQ1toJjON/OtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU+TQ6NIw3ej+AtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb++W6Uk4q6F7/rg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK+EfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l+wM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l+DMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg+EWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb+Mw76Qy29iQ5up/X7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa/xnsMYcIO/vEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz/Chp/Vlpj2P7jJQmQRwGnltkTV5dbF9fE3/fxoSqTROgq9wFUlbuYzYcasE0ouzBo+dDCDzxKAfhbAZYxQiHrLzV2iVexnDX/QnT1fsT/xuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR+CtGdkPwYN2o7DOw/VGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO/f9Qua+pDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD/prQ84B1pVGkIpVUAHCG+iz3Bn3qm2AVrYcYWhock4jso5+J7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk+UILT7+VoX5mdxxA5fS42gISQVi/HTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8/6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk/wdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt+Su9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ/BfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk/gc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B//lHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO+CvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd/p1gi/07h8qfwHrByuSxglc9cI4QIg2oqvC/qm0i7tjPLTgDhoWTAKDO2ONW5oe+/eKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2/j4ODUwRkqrtBBCrDsDpt8jhZdXoy/1BCqw3sSGhgGGy0a5Jw6BP/TExoCmNFYjZl248A0osgPyGEmRA+fAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd/ocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE/EZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ/Ugd/JZQK8lvAm43uDRAbyW8gZ+ZGq0EVerVGUKUSm/Idn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ+QATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm+oOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724+zUQ7+vkCpZB+pGA562hYQiDxHVWOq0oDQl/QsoiY+cuI7iWq/ZIBtHcXJ7kks+h2fCNUPA82BzjnqktNts+RLdk1VSu+tqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy/44XYXdI5noQoRcvjZ1RMPACRqYg2V1+OwOepcOknRLLFdYgTkT5UApt/JhLM3jeFYprZV+Zow2g8fP+U68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr/A1SY9dXFz4RjzoU9ExfJCmx/I9FKEGT3n2cmzl2X42L3Jh+AbQq6sA+Ss1kitoa4TAYgKHaoybHUDJ51oETdeI/9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB+Un44zExFE4vLytcu5NwpWrUxO/0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL+BDqMyaN3RJPh/anbx+Iv+qgQdAa3M9Z5JmvYlh4qop+Ho1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs+gs37sFvi0PPVvA5dnCBgILTwoKd/+DoL9F6inlM7H4rOTzD79KJgKlZO/Zgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno+gBoKVXgIL/VI8dB1O5o/R3Suez/gD7M781ShjKpIIORM/nxG+jjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4/QftDbEn+AucIr1oxrLabRj9q4ae0+fXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd+eNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz/6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT+mAUmiYbV3YQVqFVp9dorv+TsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp+xJyYLv1OsxQCZwTB4a8BZ/5EdxTBJthApqyfd9u3ifr/WILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj/qn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9+W8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4/YtowhEmTs0vrvlD/CrisnoBNDAcUi/teY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O/4DcgV/dZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk+tgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb/n7qwhvGnrHuf5bX6Vh/n3xffU3PeHdR+FA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E+YbfL0adwNtHP7dT7t7b46DVZIkzaRJOM+S6KcrzYVg+T3wSRFRQashjfU18NutrKa/7PXbtuJvpIjbgPeqd+pjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir/8tNXJ/OsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG+FZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx/GdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD/Qi/EmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4/asthNMK5UQKCOhU97oaOYNGsTah+jfCKsZnTRn5TbhFX8ghg8CBYt/BjeYYYUrtUZ5jVij/op7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM+3SW6Opll/wgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy+QbSKVJcqkia+GvDefFwMOmgnD7h81TUtMn+mRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d/QK7Cr4uoCeOQ7/8JfKT77KiDzLImESHw/0wf73QeHu74hxv7uihi4fTX+XEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo/oVH5ww5OzLFsiTPDns7fS6EURSSWd/92BxMYQ8sBaH+j+wthQPdVgDGpTfi+JQIWMD8xKqULliRH01rTeyF8x8q/GBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE+/7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV/yTDRRP8Y2ww5RO6d2D94o+6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt+kqdae76ViWe3STan69yaF9+fESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw/A1zEdjWquIsQXXGIVEH0thC5M+W9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF+RVmI8L4HUYk4x+67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8/p5qIQrEo/H+1l/0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud+tJUfdaZ4CWNijzZtlRa8+CkmO/EwHYfPZFU/hzjFWH7vnzHRMo+aF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce/+/9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs/GWJS6SwEN/ULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e+G2zor8l+YaMxSEomDdLHGcD6YVQPegTaA74H8+V4WvJkFUrjMLGLlvSZQWvi8/QA7yzQ8GPno//5SJHRP/OqKObPCo81s/+6WgLqykYpGAgQZhVDEBPXWgU/WzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M+GWn6ASobIWC+LbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg/kpf3+CnAXKiMgIE8Jk/Mhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo+RJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B+SkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE+VMd3b1fhCynD0pQNhCG6/WCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp/YbHjo++7/Wj8S4YNa+ZdqAw1hDrKWFXv9+zaXpf8ZTDSbiqsxnwN/CzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m/NCW/HILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO+5EJ7Z6bCiRoPedRZ/P0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn/LvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl+11PoFYnNv2HwAODeNRkHj+8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij+bsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur/eWHjiB7SOVdqMAVmpBvfRiebsFjger7DC+8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l+kXRZ0KLZaGsFSIdQz/HXDxf3/TE30+DgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH+RptvRMVRaahu4cySjS3P5wxAUCPkmn+rhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik/zbrTQk5KmgxCg/f45L0jywebOWUYFJQAJia7XzCV0x89rpp/f3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl+5tfUWZNwBpEPXghzbBggYCw/dhy0ntds2yeHCDKkF/YxQjNIL/F/37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD+qNOhwMlfARQUdJ2tUX+MNJqOwIciWalZsmEjt07tfa8ma4cji9sqz+Q9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe+jGDiNJQLWnfx+drTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf/bkvo8PLVBsZl152y5S8+HRDfZIMCbYZ1WDp4yrdchOJw8k6R+/2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB+M4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5/iYp3ZdrCf7fL+en+sIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv+NRiJc8JAKqqgCA/PNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN/hCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj+bYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5/zBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8/i+jHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2+JrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk+Mz7wwstg6RFZb+TZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm/7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk+9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx+whVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC+XYuqMBMUun5YezKbRKmEPwuK+CLzijPEQgfhahQswBBLfg/GBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX+RCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk/4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug/AbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM+Zu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX/pcsfwXbLze2+D+u33OGBoJyAAL3jn3RuEcdp5If8O+a4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT++tm+haBCikRUUMrMhYKZJKYoVuv/bsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV/DMUxd9uFZmBfKXMCn/SqkWJyKPnT6lq+4zBZni6fYRByJn6OK+OgPBGRAJluwGSk4wxjOOzyce/PKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO/cEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm+bddRQu5F9s0XftGEJ9JSuSk+ZachCbdU45fEqbugzTIUokwoAKvpUQF/CvLbWW5BNQFqFkJg2f30E/48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J+1pT0tLkvFVZaNzfhs/Kd3+A9YsImlO4XK4vpCo/elHQi/9gkFg07xxnuXLt21unCIpDV+bbRxb7FC6nWYTsMFF8+1LUg4JFjVt3vqbuhHmDKbgQ4e+RGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB/KVijd1ARWkFEf3yiUw1v/WaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G+ZManTqDLPjyrOse7WiiwOJCG+J0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj/6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j/N46f+S2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb/0jQbaHJ2YRK8A+ls6WMhWmpCXYG5jqapGs5/eOJErxi2/2KWVHiPellTgh/fNl/2KYPKb7DUcAg+mCOPQFCiU9Mq/WLcU1xxC8aLePFZZlE+PCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh/nFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW+oKFLvpyvTBMM69tN1Ydwv1LIEhHsC+ueVG+w+kyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw+H/AuOx+aH+tBL88H57D0MsqyiZxhOEQkF/8DR1d2hSPMj/sNOa5rxcUnBgH8ictv2J+cb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd/PjMMtQfyDNZsOPd6XcAsnBE/mRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl/XPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG/VanIvcwycVA7+BE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP/MVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX/5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c/F1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J/5wkjpkre727p5PTRX5FGrSBIfJqhJE/IS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug+oRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U/5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7/BQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN+nA7pvF78/RII5ZHA09OAiE/66MF6HQ+qVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe+hXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz+JV/4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB+K3wBP/ineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q/9uocGsx41O4IZhViw/2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY/cQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE/om7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi/caHSM3FPRGRf7dB7YC+cD2ho6oL2zGDCkjlf/DFoQVl8GS/56wur3rdV6ggtzZW60MRB3g+U1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg/gBQIZMG/YcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK/G7F3mUc3GOAKqh60zM0v34v+ELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND+/GTk6M56Ig4yMsU6LUW1EWE+fIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP/IoRIZ/F6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg/RrPD/d3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl+Mu4xf0ezqeXD2PtPDnwMPo86sbwDV+9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD/OwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d/UfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH+14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC+OA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6+vAUUBoGhY3CT2tgwehdPqU/4Q7ZLYvhRl/ogOvR9O2+wkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn/dFSWBWzQ/VYk+Gezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n/yJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET/Hh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j+DXfpi12m1RbzYLg9J2wFergEwOxFyD0/JstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT/cUP6pE/mujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB+HEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu+vqQ02+KpJBjaLt9ye1Ab+BbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC+UwkXOoAjneU/xHplMQo2cXUlrVNqJYczgYlaOEczVCs/OCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38+xsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9+b8fH6+b8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj/0Q7PFUcC8hDrxESWdfgFRm+7vvWbkEppHB4T/1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y+g3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR/Rrs/JLKXgEx+qkmeDlFOD1/yTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW+xz+5FElFxWB28VjYIGZ0Yd+5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ+lT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ+2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1+JpI9psyNYIFuJogZa0/1AhOWdlHQxdAgbwacsHqPZo8u/ngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2+RdM+MAaYaZ0Y/ADkbNCZuAyAVQa2OcXOeICmDn9Q/eFkDeFQg5MgHEDXq/tVjj+jtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2/Bc0UxvseQCO2pQ2i+Krfhu/WeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt/U0Wf+phiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7+ExseJauyqo30hs+1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j/e1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la/QCTiVelFnU6O/GCvykqS/wZJDhKN9gBtSOp/1SP5VRgJcoVj+kmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn+8p6+vBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H+gDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D/GvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P+jAgN5TB3haSifDcApp6yymEi6Ij/GsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x/pChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11/yxyw0UnGig3MFdZklN5FI/qiT65T+jOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5+bqWiAYiAv6Jsf79/VUs4cIl+n6+WOjcgB/2l5TreoAV2717JzZbQIR0W1cl/dEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW/PhoawJDrGAP0JYWHgAVUByo/bGdiv2T2EMg8gsS14/rAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq+SCcTSx5NDtbFwNlh8VhjGGDu7JG5/TAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9+ogD8Kk/W7QoRN1UWPqM4+xdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c+4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS+o3F8YVVeikw13w+OEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX++7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9/O53DYi/5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD+P8sNh6e+XYHJXT/lkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp+pT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS/2ToPjqkaq62/7WFG8advGlRRqxB9diP07JrXowKR9tpRa+jGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq+nsp3YMuXt/GkXxLx/P6+ZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar+gMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud+YlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl/zh575R5rsrmRnKAzq4POFdgbYBuEviM4+LVC15ssLNFghbTtHWerS1hDt5s4qkLUha/qpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI+yjEldJfSo4y0QhG4i4IwkRFGcjWY8+EzgYYJUK7BXQksLxAww/YYWBMhJILB9e8ePEJ4OP7z+4/wOQDl64iOYDp26DaONPxpKtBxq/aTzRGarm3VkPYTLJKx6Z/Mw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ+lPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k/UuGkNpP1DBI5ch/EehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv+J41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI+HYexTUevLUeta4/DqKrbMVS+Yqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ++KkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9/Wx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k/90B8+yRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB/mQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go/n6j0cS+a2gEU8gIHJ+BwfgZX4GL+Bd/gW34FZ+BS/gUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh/F062yJ7AAAAEDAWAAABWhJ+KPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg) format('embedded-opentype'),url(data:application/font-woff;base64,d09GRgABAAAAAFuAAA8AAAAAsVwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAABWAAAABwAAAAcbSqX3EdERUYAAAF0AAAAHwAAACABRAAET1MvMgAAAZQAAABFAAAAYGe5a4ljbWFwAAAB3AAAAsAAAAZy2q3jgWN2dCAAAAScAAAABAAAAAQAKAL4Z2FzcAAABKAAAAAIAAAACP//AANnbHlmAAAEqAAATRcAAJSkfV3Cb2hlYWQAAFHAAAAANAAAADYFTS/YaGhlYQAAUfQAAAAcAAAAJApEBBFobXR4AABSEAAAAU8AAAN00scgYGxvY2EAAFNgAAACJwAAAjBv+5XObWF4cAAAVYgAAAAgAAAAIAFqANhuYW1lAABVqAAAAZ4AAAOisyygm3Bvc3QAAFdIAAAELQAACtG6o+U1d2ViZgAAW3gAAAAGAAAABsMYVFAAAAABAAAAAMw9os8AAAAA0HaBdQAAAADQdnOXeNpjYGRgYOADYgkGEGBiYGRgZBQDkixgHgMABUgASgB42mNgZulmnMDAysDCzMN0gYGBIQpCMy5hMGLaAeQDpRCACYkd6h3ux+DAoPD/P/OB/wJAdSIM1UBhRiQlCgyMADGWCwwAAAB42u2UP2hTQRzHf5ekaVPExv6JjW3fvTQ0sa3QLA5xylBLgyBx0gzSWEUaXbIoBBQyCQGHLqXUqYNdtIIgIg5FHJxEtwqtpbnfaV1E1KFaSvX5vVwGEbW6OPngk8/vvXfv7pt3v4SImojIDw6BViKxRgIVBaZwVdSv+xvXA+Iuzqcog2cOkkvDNE8Lbqs74k64i+5Sf3u8Z2AnIRLbyVCyTflVSEXVoEqrrMqrgiqqsqqqWQ5xlAc5zWOc5TwXucxVnuE5HdQhHdFRHdNJndZZndeFLc/zsKJLQ/WV6BcrCdWkwspVKZVROaw0qUqqoqZZcJhdTnGGxznHBS5xhad5VhNWCuturBTXKZ3RObuS98pb9c57k6ql9rp2v1as5deb1r6s9q1GV2IrHSt73T631424YXzjgPwqt+Rn+VG+lRvyirwsS/KCPCfPytPypDwhj8mjctRZd9acF86y89x55jxxHjkPnXstXfbt/pNjj/nwXW+cHa6/SYvZ7yEwbDYazDcIgoUGzY3h2HtqgUcs1AFPWKgTXrRQF7xkoQhRf7uF9hPFeyzUTTSwY6EoUUJY6AC8bSGMS4Ys1Au3WaiPSGGsMtkdGH2rzJgYHAaYjxIwQqtB1CnYkEZ9BM6ALOpROAfyqI/DBQudgidBETXuqRIooz4DV0AV9UV4GsyivkTEyMMmw1UYGdhkuAYjA5sMGMvIwCbDDRgZeAz1TXgcmDy3YeRhk+cOjCxsMjyAkYFNhscwMrDJ8BQ2886gXoaRhedQvyTSkDZ7uA6HLLQBI5vGntAbGHugTc53cMxC7+E4SKL+ACOzNpk3YWTWJid+iRo5NXIKM3fBItAPW55FdJLY3FeHBDr90606JCIU9Jk+Ms3/Y/8L8jUq3y79bJ/0/+ROoP4v9v/4/mj+i7HBXUd0/elU6IHfHt8Aj9EPGAAoAvgAAAAB//8AAnjaxb0JfBvVtTA+dxaN1hltI1m2ZVuSJVneLVlSHCdy9oTEWchqtrBEJRAgCYEsQNhC2EsbWmpI2dqkQBoSYgKlpaQthVL0yusrpW77aEubfq/ly+ujvJampSTW5Dvnzmi1E+jr//3+Xmbu3Llz77nnbuece865DMu0MAy5jGtiOEZkOp8lTNeUwyLP/DH+rEH41ZTDHAtB5lkOowWMPiwayNiUwwTjE46AI5xwhFrINPXYn/7ENY0dbWHfZAiTZbL8ID/InAd5xz2NpIH4STpDGonHIJNE3OP1KG4ISaSNeBuITAyRLgIxoiEUhFAnmUpEiXSRSGqAQEw0kuyFUIb0k2gnGSApyBFi0il2SI5YLGb5MdFjXCey4mNHzQ7WwLGEdZiPPgYR64we8THZHAt+wnT84D/x8YTpGPgheKH4CMEDVF9xBOIeP3EbQgGH29BGgpGkIxCMTCW9qUTA0Zsir+QUP1mt+P2KusevwIO6Bx/Iaj8/OD5O0VNrZW2EsqZBWbO1skRiEKE0DdlKKaSVO5VAuRpqk8VQJAqY7ydxaK44YJvrO2EWjOoDBoFYzQbDNkON+UbiKoRkywMWWf1j4bEY2iIY1AeMgvmEz/kVo9v4FSc/aMZMrFbjl4zWLL0+Y5FlyzNlEVYDudJohg8gPUP7kcB/mn+G6cd+5PV4Q72dXCgocWJADBgUuDTwiXiGSyZo14HOEQ2lE6k0XDIEusexDzZOMXwt1Dutz+tqmxTvlskNWXXUQIbhaurum9GrePqm9Yaeabjkiqf+bUvzDOvb2Y1E+EX2DnemcTP/zLcuu7xjQXdAtjR0Lo5n4/Hs/GtntMlysHt+29NXbH6se//WbFcyu+r28H0MwzI30DYeYTLMXIA2EG8QlHpAsyS0EfEToR0a3utIxFPJ3kiIHCCrZ66b0e2xEmL1dM9YN/MwS5p01N5jMX/BLKt/1R83l0LyC29M6+iYxo/UNg/EF7c2WyyW5tYl8WnhWg2/hyySbD5UhnDyS7OcU0dnrFw+DfGdI7v4QfYIIzOMq9hFtY55gmvC7jZ2FK7sEdrn6IXBuucYhjsGdQ8z0yEbWkkczjjsE5hNAIZrPx2zOLZDmKNXcXtg7EMqidAEEWg+SJCBBNwxvxJfc/bZa+KKf+xoKZybnq5vaqpPTye7CiF+ZFjxZ8/7Qij0hfOG/cowPA1rT1l4ymWnrKmxxqfErTVrpgwPlz1kC+Oy8NMDz6c+IO38K/x0xkPnLW8Kx6qGAoQdL+TD9V9rb+/ctn//trxz8dUrZrD/zk/ferF0cNt1BzctmX2FZPXt/jnFCQNz4Ah/iKllGiCMs1w5Lkg0kiEwj6VTXCDKsX9rMpnvIj9pcDecXAIXMnqn2dTUbN6w0XQ9ue6FV/nnXCH7S3lPWGltVcLsH75ub3ab7A8M28caNrIeOr3o5Q0yFsYL80xaa0EY/UEczV7icUMY5pnelAkmUAXmHYjvFWFGxuqlSaow3OM+/iYY7/l/hVELF4EjRqNR/bvRbOY+DUGzGR/Oh3EqmE/ugIQQguGt/eMYz/+L0cimjeZfQDI3phXMbMQsqH+CjwVz/hf4idHovgVmB8gLvjbicDcC/NypP536E/9N/puMibExdohBmNwyiaZdJGoigos7GpF222xrfnZhML/7Z+ylaqP63Hr+m7bdUkQ6/2cXqdfmvwixY+s2ksXFeXcE+iX0Z+Iow76DBNgjJ7TOdUK18iPsPflfQD+DPsZG2Aj9VmKMMJ4fYRrhIaxhTDR0Elh2vA6h/AE6xUb29mj3sjmL72petXjejPy+oel60M99tFduCI59N3221xe7apOvxs6aHs7vab1IqY2tv7q2xsHeHGml/cV06u/8S/xTjJ+JYc0bWEX0ukW6YmIbGkJRMdjJ9mYIH5QIdJF4hvRGyK7cC7ctImQRcUET99fGXOoft35GYLMQu+g2smnkgZUrH8AL/9Si217IssJ916nv14ZrJrvdxLkQvrvtBcjgPC0NXOicO8Qf4mcxPqh3hgUw3DDfdvLJXngg7N3dN2zbPJSaed3OfZnMU7dvmznp3C3bruO+Nmue0LFsy7S+6265+fCKFYdvvuW6vmlblnUI8xCXp37CrOZv4B9gauDBlYp7adcUXB5DNCwYImlXOJJKkAdvExXxVvKEYnCo+3eIskP9qrrfIYs71CccBjfXRC52udTHHdaP1A1ui/VvH1otbrLrpNXBsGX5B89QghDyimlvNB2KfkxZ5C9/em3+d1+d//IfFp2+2Oxn/s+9n/79p39S3s8idN6g0yZObwJOgKUpNB3GyU0Ls0PbRzIRq4lcarLKOJBkLRzJQD4j2090XrbA7DW8K3jNF5hlGS5e4V2D17zgss4T20egOJte5iD0bReM9yjTxnQxCRj3c5kFzGJmGbNKmwGw39IJDJcXJZGMkaAB4jyJAKw0jt5IAuIE+A+U3cVAZZrq9zhDyBrU8oosuxcGNTzCKJfla7JjNVmuSb/+tuzN2H+X4vlB+PpdfMXXmuVsNiub1T34SFbjYw5itEvVi0K0Nt9pNJUMI7SLGRhf2xipfCYf8z5OdlGKayOucFeVPeS/dbo3lBrbSMmwUiQN5/ed7g0Ds1s17IuZC5kNzM3MZ6EWCa0DtekdJfAxz+R/OX28sND7yRMTBcf++s8mQCQWHya4qBv/ufeMoWyslPA9DtMxUknxkH/yfTnm2CMYzs+Cq3r7PxY/MXomrvTEsRpfEGHa+WN8E1AHjElb7d06ddA7oK/+5Mdsv9EtPms0jv0Z5kf1FqPxWdFtfFr0kHfgDX0Y+5PRSG7RUj0tQr7rmfX8DH4G5W28kKeJLtmQsQkuwMP1pk16EV4sl7vrMJATfyUWo/GwEco4rh4XFQgaiUX9qxZHrMQqKnz/c2d8b9TysYrAuXpP/Rf/Gr8b1qwwc5a+euLa6S6sneNXToG2XrEJi4R5SGs8Sq2S3d97bsfCRaTdaLwKClRHt37mkudvXbjwVrLhuYeGhh56bvfQkHpk2CwvwClqgWwuBfndC3c8dwmstj81KkagcUgbfPY8Zje0W/82VPWJHmSq6pP8hPWpotc/EexDOK3qU+wngPhOCiO9MJRm8TJefjelrzoKnG2Bn+1NCUmPE4gHFmBN9jrTigRIpsACrc9Gstg58ULkp9467+Gf/eFnD5/31lNrt2967dhrm7bzI+VT5m+fzKhvf2MzpICEm79Bopkn07lt1762adNr127LwVqQLdJ5+lpQDcvHPQtVY5knhYrK6q8/JsiP6EuhGZdFdaNszjvpqvc+PI0CdjN0AXsFOC3ZfALDJwr4q2Xq+GF+GNbsxUg5NLLIEXi8otcDQcUts0D8eQ1iVDRAMBTsYiNdRIxE09EIBJO9A2xqgERTaW86BUFn0OD2xFO97FAgFhF6OoQ7prYt4XwSeUgQHiJyDbeke9IdQntciLQ1FlJMaYcUNvZBg+FB1ubjlnRNvl3o6IEU2w7fdNPhm/hh+FLysUu6++DLHkOkrSHYEjH0tEPe7WdD3uyDgvAgK/m4szFFR7ch0toUgBTdWHr7EpaWru6+6dmbbnqWEbV2EtxAsXiZAPTtGPSbHsotI2leoM8TePEqgSQprs7AGFf8kuOkPdZPXGb55POAW1d/jLST9v5YflasP6v/CO7+GNAPC2BMZWmsOjp2NNbfHwMCJD+LPVL+D/OYlWEEI/9jpPddOFkB5d1GSuKZYggmCCd7JUxD7EXAzxyirYnNDLdDZoFdx14kivkvGc3579Jm36reTTvDgBnaO6vzyQ6chQmlsMoIkIQ2+bBDWBud1Va4pcCn8CPqxlh/fgtG8IPaPH8C5wk6/nZDv69jurV5QhtwE0x2iqOsj9Mx8B9/0EaUdiPfOYYDCi/q9jhWRuupMDEU0+CtX0sDFxv07T/K5niBPqN9+tQjgEc31NGCXFeMcCEuQBIc/BK4CO78u7EPYvl3yaEfK3vcb6qP1R2tI7vUjVDDUdKubsSrNjYKY1qBEa2P50SJoaXiksIoLiCwnxS6EBuBde87botNfdEWwYvF/R0/u5yCqhGeEOR2ynSeyXjt6ka7neyye8kryBSWE52y+RBgogrXPZ8E1yIHoHIFUM+AbJhE7lbMtt8ApL+xmZW7PwbjAO0fAVoXQOuiSP/ksIVdFZ0aulsamKUzwPZ/NYDMJRBPCxsBqLzqHyneXF6Ej9HlIFo7+pg+jUb3unRmGpstGkm6etOuDBGA5wCMefp1gTHcdZlvPBXlOslvYTp1cd8UjYLVd/J5awNrIOKLnIt9MD9qdrKrWCvA6ALm3QV9VrsPm60Q7+RHJHP+2hqfugo/MvI2H/mqr4b9tFnKSRY1Y5Ek80Nm/WIhr1ikKnxGz9TWXrokf9xwujfvcOTtNTWnxd0F37Y2W79tteBqZ4G5qLCuomw+nSr28QESCRVLTyYKILGJOPfcnaIFOsewhRdvv+rWa/Wih0vlbX6Zb75T5C0qNKVFvH1QL/vazSWgC2s6oWXXIuUxQelKiJbowuJDQViatLmLijg9CQBMg8WiPgiw3LEeYRmm5f+XdnvkDnxLLjMLxtvX74C3OlwPQqx4xwIdpPx38LrlDphiyWUWHWKAzzxurS/xTo+P5wGFak62ap1PVFFN4v/y+xuR39WnIO7lsWfwgVsK17wxrs9K8ltIKuhkw7f/6dhK6gQokFKhWX3urrjk/rnI0pgfpGMeuQIUaEM7+GF5q2iMkCaMQwxxOzcvU0eXbsnS9XknXvP7Gtw5dwPXlFu2ecvSHEZgNDsU6x/GdXBYXyOQjzZReSedeEPY6nEv9gJR4oBQJtFO6Kd0fwC6BO4LNHDeBujB6dSNcUQC9zIv2LnAzGk99bUDrdFY+9yGFQtEo0GQPNv6vS2drj4+1jHbv3aJSMUWP+QTZrmbNTjU8wyG/iXNNpskybLcJ3CiTF5Ir+JYzmJwE0mSVhlxbtbmvweB3ulB6Til5UuUZydpgiFVeobhU0WaBqpJ198d+/XeNRTZ9/1OPfG7+2hwzd5W3D+hmyjsRcUg/+Cavb++Vh2ls3L7zT/etOnHNxeerv313vzLVqPai4nJv+K1FC6040/4udw7sAb3laSg0XCkAAs0npBO6VJabS4Elk/U+D4gTXW+j0wnrMlqNamq4tMIYB87tE10i0FR3LZNhJsb7/R561btmes8YBCRkhYNByRtKd55mqTas9FYhJnbRGHuOh3M4QTdgQSqmgRxuzGdSvZGcbMxNQGk5C3ebLjoXIOFM4l+WKHmLTJwRv9E8GWJ6dYvf/FmEyEGr+gyrr1p5zrgkz0Cw2j94Hv8Jdx7dIVegBSNtgsqGsRQEYiIBoXwD0LNvQ5d7s5Z00QzwNhqZA0b+tMG1tQq5nd84uq8R0zPvX35G8uRaze4jcOHzz0w1+Q2BIRvf6J6Kgatnrbiem+CFvAxfkrndzD9MFPP1GWTUHclpASUkCNAQkpCCcCgDSUDAhDZ+CuEkgn8J7i9nMA7pA4lISappxILKfAeSAbIcSDuN2bJcfZILqeO5rLs0MnngSHYRdrHjmaz7JEsEPw51ZqDJDmUIOZIe34WaQeegNsJn1qz8AIpT3yCjyEih/xELkuJ0lEMYTLVCiWpo5oYMleMH6USyYJcD+uOe+kWKpn1Qns34iyYDjkSLvgnZXcgVQNeqINXr48m3iS7cjm8tedyY0f1QvTnHHdsrKby/+SSbPY8/NH6vpl/Esq3Ae4ZU1HC44KFiI9o7CEgab/RqHbj7s5KAg06s39ZP/zxI/mVuF/TbTSy+3Fb8If9/cv7+wt91yy8RfP1QXtW5RzQn7qIiZyuFM5QfJ5E9uVnqT85TanFx0lkP3ukBAMprvsRyi/C8NAJL1xbIIirSvnSj4O5netb4JxmNANHPssHAcHMHsFRgEug816gDBeMbdfiuRcghqYcm0+Xxx/5IAEtN3fqFF3LzAXqwoT0PN0OVTNqxo8sxMkd5Ig6k79Zk7VxxX6gMLOZFQgvpW2RrMW1D0BDihaXQ9wVRoBxPLfpknmkeMtoB/qM9cRc9IqmMD2XUmdZ7GSRKPUZvChf8BoykriM2MnKYbOHX8R7cLdNCxSFFVQqoYswnlWtlFS2mNkhswVpZiQW1J/UKFfipHGlUkM6UKBhMz1istELIHJLMSctu3ugzfaVSOjKvUgc/THK4Sdg2Wscz69leKIkkrwuuWiOe9yGYKQXRumkC3qbRcMwrvhjNXgdZk3RxAUEhuSPvn3nnd++U/3vlVOmrJzCD8JLxV1OHRjrZifbcFDOuRNTGqdgQm1tSNJ2OcQ04YiEXuxtII1ECSQRoQGYioEsgCfchB4ghAtw7FfJre4WZ9hkVi9MtjuWqtdNDlpMrfEG9fOT6q21okg+e4As38MfGquNt7oUws6Ysarj1/efE+yst86YUVNvDdts3Pv5c8m/aP0C+f8/Qb+IMnGq09BgwN01oIOAnAdagI8mBSrqk1gxTDUBOtk2ousEtBH2z4Ir2d3f6k8PXXVlt2qN9RODxRuoJT/v27wm09jRYVc/e++iyx2tyzJb/n3J0htXP87eSsQaf2Ly0s6Zmxela88REy1cf4273mI3iXNJ7KxrZibOm9xm6rl4fqy/t27smU8tOfdW2ucBzg2UfmOIVyLIl3kpYlwphDISTXJXsctmiDtN7fNV6zelgxwnWxsVr83Aj/S5ki1jL/a0GC6+2L6Um+aoddlNFuj+bJ8mH/iaLh8I0/U51NspIEfq0dohwyFXKgm4NggwQ4rRhCOUFtxxo8XnitT4cnGfT93IS8FaT85XE3H5LMY4zIEPL1hw443wz+1UmhTJyJGxZzw+wsKkKZgUiVtKOKMEb2AKHTv61FNc01PQFwKnvsZ/9pPA4RKTASWahmh+8MxwzHxKy74IRn5LGRjsPUUwTu64UYNY38caqd7HKucZ/tHnODtENw/2UfHRMaq1UUPDJQ0OKkWCeet5fYOhII1VRz8+/Elg5j4Gxur3J8o2PJ4rg+2d08T/fwEzSVbyZ9XPro95T477lRKqUSRXQnauHNsISAl27oWi6Fv9z48JMv8r/aMMj8onCP/DuDZOuN+GPPr/+p7bx+7JlbYdppcNhzKU/1Px5aiaGDn/s1iGMaBcleKUo/v9rcxkZj7DBEKOfrayytXNLYiUdBY+pleQXdnscKlQcpzuWluxsieeyuXIK6SdxozitWyGOV3vOHHjguyCQ6fpIYy2JwvrQEF/Qa9Pdf/QqOSqCiE/EE1/XIVKTc2tzWbHnimrEd+Vyz311Ml3P0GVTj7PD5aDnsvCvH36alEaPMePcMegXs7x8igTu4B9v7G9vTHvhCu/kzIdx+BxC0ay9zRSvoS0F2lIxI+X7klU63I40gLQ3w5ep5na+SFnba3z5D64zv+QtM4n4ffG3tq4aNHGRfxgrXPMim+5487abL7xhdseIRn1KDl+7aINixdv0OD+JSPwKf5+xoP6aiTeQIDVlIhMcL1H5R9PYXvprs3fv2bO7MOplCmweuiq2JRZ1zz+9a/v2PH1Hfz9236w+ZrPXvWfAxlj4NLLHpq3c/PQ3uvmvbrjG7fe+o2y/cLdtE6VUlXi0ASb1VLUBVSUWSU4HdvAraTyS8xzM8NxvxFkXV6pUVRiJwcgC5zEeht4rwcp7ki0k41G0qlQhG1Vzlq8alEmnFi58caB5Q9vn988MLhqyVlHvLEWjtQFeupdiocF/tkkOGPW2ibWaBTkeZ/dvPWazXfOnnvL6jkRXpi85sFzZt+55ZptW3bl1cCCHZPD06MhySha7UFzjcjbp8fOecFCirzAG/yVjBX6OFIaadSjQq1nNhyIe8tVbaaSdHlXIWKacMeuZA1uxS95zILhyrxAdsXTL6m7kNQlx2P9uZf2qhufePFFbpI6/OU0WcP99RrCsrwseVot5mtytpf6Y0gm9sdeyKnPQ7onyK4nXlR/rg7H95M1upzu89DH6pgUcikoiihJ6NJKmRxV1x+MJiOA3YwhDRQrWU0u/0rvq0VYXnyCwsLeTJYBq3dAtJDavuzyoVpzZ99Z0+a0uoiFH/xcqgDR7rUFeOrUn6Cywb8ZeNMbhLV5ugP9l0zv9UN5b5mFkjzxUcpPJCn3V402pRxtJd2GrnLdhtVk9ZSZh9W91fCSH5B7ofxPiWL+j3D/uwhBRdyAyozeZwvQzs79soi+BKSnafLviZCcfrpBpLyimfLfTyJtbyruIQKD01tUwJyKEo/ybaxkSNFUMdMkhQoJyRBQFhnUkDQSXhTM+3NmY0EDM7ffLIjqWEGt8lCO6mLia3PukFnghosJD5p5SIho/VDkzQfLE+IrYoJXkD19pdP7OwG/voIUtagiWiZ4PAFTHHlTVhRZ7dYmPar+NJ+8JhmR6DFK5DV1foHoLNO/pHrvZfmWZ15RQlwvoVDKhCWNK3CCch9lfFBuAqUgpFSShmNaPj+i5++WZfKeViJfW5HnUakVL4UCNVkA4+ETfIqx4B5xSaP2L1yn0zn2ltPn4+OqZGmwwEVCaCSqG53ldtL1oLGAhdMLd09MpCCF6tD6ZnAZBY9hDaYsP0jzZ0j5ZjKsF4i1UmLuhbJMCnYJPt5VwFNvmZawXjEvLJqIH8STonZjq7BZ8gKgR20C9MDFqJAX1H64QW2NEup6qgzLP8cvppL/NNTOBTCJABOHeWoXzLhw4Wuy7gaBtjKr9kgKq8ZlRYBS32Lpxc8vIhpNDTfyNXWybMJbn2RyQ5EmWc2QF9wmSZ0KYCE+cPuYO6b15Uotj2Kd4MItLS7gtFbkTdrFND6pvEZqv5Yv7jXAus7Pg7avo7KDot50NX3CPkP+Kps8J9/3mGQIteY/LGPC+L7872SPR2br5fy8MtKBMHedGuM28/MZmPJMrGgi3Gb1S+Si1/L/zrZwO9XH1ce/z7ZQ1WSoY/+pMb5FT4ua0Wm+Jf/298nFmChEQ+Ti71est4mq9VYI6RsymoRJKYidElT2FGnDTZvqtfhGAFTbeqEw68GqtfmbVa/1IFO1/jdWr/8BDRRtQh9XNjubEm4aWVpVonpTGR7PVGc+KJNoBIWF7kYi4gUV3r1U6723i6TxUl3n3/tM27aZfKb7THiHW9VzFSwHJ05VfK6Ar7kaB0XgPPE0BSkSFKsBUpaLihEWoA9wBt8qirh2VSOkZwXEwyrxZ5jyt2rJmSo9gX7cg6jsEUGJU9z9xJPOEM3uQQxKgkh35DNATnVyrmJ3mbCNyIB/yox4wH1bg2DwN7q9kov4pFqny8oSm3RQbGgJ1QQTs6ZMLilOVYJ9v6Wha3HcJ9jddsXp9YhGUXLXt/qMDnvLpPNTXfNa60z5/yjXQOMq+lNmwh5egpYrdfZQZV9rI47xlRkuyTjpzsmCBSWNkAXVoK8sgYWqQJWbo1RLo6QH0YW6pxqfCnRgkd+RiFjUQUQ7poIaYoakgXxwFd9BuuI38H1xBxXSFb/pBDIKQFn7YB3dB36l7sG1FLaKiBdp1KxLvfswap/30lnVESgNnvjbUoT6w9N+Xoio0qcYOIM+heg940YimsucQVvli9NEcft2UZwGQwLuilj1fFr1i3NP94X+PE7Hpvtj6lBJfJ4R6NvWiaL6MgzWHxiN66DExa+dAdAbMYX6HVF8A+7rjEZIXAVbDe7PVI9rmN69JOLV1DOSvRPxWNPZBZf/Nf+Ny65BhYxxxV+77XJ2wfQ389/IQPgajXbwMsuAz/0IaQcXJavKbRqR2IqyZruXjVC2+hdee/5vdnYOedpmVtR3NGXldxSzDSIiBVpkGb9by89UpEPKrSLZmyFDzMab/wXl2CNe7s/qCtTvWgG5kpBmCBlSzDS/r8N4uwBwohRW63JTS1y32f0TQsPfXVGEHQrV8/NCfiOUVirYcBbIeA2+iF68rQIo3B/S628vYESr79ehzS7Q9LEL9UXmik9XVHb1yBO3Ngvt5935+k1efkV51mzzrM0LL3/20avnwMeKuWyOUZg2TasSqZ+KcZQiOn1Iu2Vh497ALUVZiCKt/gh6IvTIj1ZLRjWAkpHKOKovNwp00eqPROiAbiNEKieXwMLcXhVJ1/uzmLP4tfxaHR59cBdJVG1kTAgl9ze9QKUEQ946Hkb+okJ5JRDyf54Axur1D+WS49cLr0tTPEu7UmXrxcSr3XNvumv4yXzInXKH4F7Tc7p17Zt+t/qW2+93k063X7VW6lALxTY7i1nBXMxcxmzQbabxz+tJo+wijYaIGMNS8AoSMgAPt84DdHOoMPfjXhF+kuH1tZvuFQrRCN07xGcXRX9MYxYchDe5BcHj+Z4i+42WyPc8Xofi7bbZJN5nJLJ5qr6IqRtzqNlM17SpFsnkEyTWoABEjz4JXOQvzWYuwdnV5LNGOwTM5v9r4RpQ8ZXsYodks3o31JBlzbYtNotisnm22MxiwGFXam5oN1n0TA/hRvshvTSDwHff4nNzRo9Dum6PaJbMXzDz+x+Fkj4L4bFNBb1asqsgH7Dyh4DvbkPtf5yMDKzEwyoaESMSNS9P9gJVA3/RTlwoMwZvxECFWxIPNw9gi01nOHjP32esZTtmXHnxvZd8ZtakqQ7ekajbXetpNa6ocTVxJtY+uSe69OLz77zh5bDR3xjZMzUz6fxrz1nqrZGcHQHfPVefN+fiK86LeXj+Sc5lPKy+k/vCUI/DaLFYCWHr6nbXuILTIsb5imNKY/rCm28fSMxPhkN1XbNMNZGuqwOBhtTSxWuTk6bw0ZaG86b1hKddePOKuBvmiguYBn4T/yOqOyGRBt7bKUI1GjioBC8aUKwF7Q319UgcmtFGIzCJGBqwQij0ynDsfdFGc3TS3BlNfJ25xmzniMkpXXTPvCaD3ZaZvyzjmZdudBostmhb0ORZNN2sJBeed1HXkrUsywueQH+L0eCPxmsa5ZpgRJSDZ11yDv+jmbd86vxZfc1WcZJ3UkMq1BOOOVtvu/+pB+en186d3GTwWAw2jheaJs09/+LNfZft37DALyrNj1wABMuUKbODyTVnT/KYbJ3Tpq8IrNh92dkxOj5P/YpZx4/ycyiVcDYdn4JbEoKdQi9054iBKsygLW46FRGxAb0NPNCm8BSNCPjoKcj6EAus4SuP3rB+cV99/eTF6294dA8+TK6v74MHVpYNRt/I30e8QGTOOdfGWzzxcy+87a7bLjw37rHw1nPzp0KyyRSeZO+QQhInt3dYgvycjrPOv+T8s1rptaP84VeywdWX2T4ysr0/7TLIs6+x9zib56ye1dM9e/XsZmePY3NDs9zlnNVt4+WgHJbbz3Livg4P9WWgviOMm4kCRT6I8vw0NbUUEnFvOuFKoxQW1gTsvFirsF5pb7qTUCx4i7VmtToveaDxvK9uOaedVvPRpVOnNz0Q6bry7uiSdQ8t7Vy4JQKVS+XPplV2ts4bvCwZu+KzgITtxepaPRzWdpv74muvv6RO0SorX6cu/dqKn/XWnrtp/Zragz13DUCl5myiFW2Ycvb0PtsXnU+tx8pvLFbUspLX68mdegwmOif/NPDONajTGoUh6tU56HBJCTBASVvNUB5VIiKpc9kd7kludodSFz7xQbiOmMk5dOYk56gzL6uaf7N8a6MQOHm0ae6snZpFDfuT3/jdYzjzwkXXIVHoXNuCfQslQZqBZjTsoHMqrkE4jaYdgkGz2ATOgB3cPkSukD01DnV3ttb1wx+6arPqbkcNAHoFPzKUUQ+qL0k97pjbZv1I/egC9zTFbrrlFpNdmea+gIgfWW3wqkcis8ky5FAcRd1If5nNZrl2FFpungc8wpoCl1BpQV/ScS+zjlASyUTVv/AJ46gkJI4bHX4lTnloctxPZE1ckS3+jG2fKIjkQFyzuo8jvYQG1OrGvJPSTu/nSp9PHNTl4z5hK/8gtXVKF6gEKiglgcKiRlCESsQCV5QIlKWKpr34lt/wkSx/JCmP5/cBKQfl/5gd+rOS/+p91/+YCg5CXK2W4M9fu+/6xxX+vnelVuldIDCG0VQTpU9Dw4pRfei+6zWx0MLie0gPbyrkmRU7OwT16JGeyXLHqOLqAfVN1GPlBzWtFNzj0TRTCjogtP1NjIvu5habN5Aoa1k66wGpqriVetJgiGdwDZtKhnN0y4n9sXYnsqGmZfDSR15+5NLBlhoDaedEm7sxmpqRija6ZEEg2EAnTiAC8IrmFbGz1q08P9PSkjl/5bqzYqT9hMmptEXDgTqP3Wiye+sD4Wir4jCeoHbbp5hRfpB7BakUIppIlPCD30dR1GtslDz8OsqbXmejFC/v8wu5X2myq7SJ8Avzv9DFUJySf5uNvq4+Ti7W9D/OZrLChdwxmPNiBRqVjnpK/aGxRCDspVYKAW9AN1JANoo8wP4BJUlGqdgw6m1qPQ2QW3+OfU5/ieLS/NuKpDU3uf8bcAXyBal5jMR2NEAbPAZt0K3hvxHBEDlUxfIGcD+N2gNSNx36nfqlAYow0puatNpRz0e4W2oahKzQHsjf2c16ad/3t2KTtPobnX6D8C8pd0MDP+Kx7wnXqGGlLQcvikMErm6TmfsuxJXbSAxqNjOogJLQBLiKEHAE+JGTS3JoEhTrz8/CB+5YlupJ58aOat8Kv4JvregxwcU5Cp8GFAFm1FyOfto6GS2m1NGTS6CPNKkbsTdCBlnN9onMho55BX8IJZtEQ35lk+htwN5A0V3RCPoD/yXAcv6pAtbZczRUA64JmcUf4q7Q89ZHLeJVZ5D1Ps/t+0iCT3AHVtZC7JDCXfR7OSb/Xja5H3zQbZL1B+ULX1BMTEk3AseSpmnKEK4T9ekMIidUCRQFfcbj7z8gNLvzF7mbhQN8h6ZbRset+nQWdS/ZX3k7WpS8P9sfo0iGS64wV516pOhjI6TZ2dApgI5+LhxywYoWxKUrykKJsIoDsR4mSrCTg0egMPnLW/3Q5Nn8BZEuzqEI7HK3n0+zFmuO3TtWQ5WJoG9YqCD6Gc32SxnbnVPfsxvrFXK2dILl7bLthDp6glhcsfp4bYvbSmj/mQ94uBTw0E73x2jbNRCvC6VL6GCFDwU7eWQDcC5FY5s0slieRDwtAbRsbLXbaXAuu14e2OJw1dc6jQ3ZdY8v7rv2/BWZLqvFWVvvcmwZkK9f5jS4muO9yR5res4kfkRxhV03L1RfPOiPtYi8pd7jNEsOpyTwxpaY/yCZu/Amd5Or9uS3DYaeqVOhH7gZN/8I/wi1fEuLXvyNivibjuKvN+1Nc01HF/3h+ef/sOhox8MPd5SFucPjorQwXT+ytA8EmA5mamHNFDVhBI5pjZbQpugBNkO8MvRub8KVDKST1Wag7D3xlin1ZF7LFP/79nbvCXFOY+PUjrT7/otsPXXZ4exdPzuhZuL5LUXVAn7k7PbhG89uz3b41X01gbjP1xwlu5rrvvf9+pbs6E/Vu7Nk642/PYRaAiUBdrmO6CDTBLPQFA1ur0uXoBR1INDMkypKpoTqnSMx5GiEdTEaSHLs0Alvu/19/5QW9Rv1U1ridT22i+53pzumbs+XFFXYC++CGsTj5JUT/GCgRt3n78i2n71FHG4/u6X++9+raya7os3ZbDmgWfXun44e+u2NZKuGZ0HiF8M4TlMPR+EU6rPKRJ8wOU2RFUFLex3egEsz3YqEAq0cqhAAW19dBZIlVzR61tuIdTnpXH7l+uXrbjPUyep+8cl6aXKWhPHpDcXl9KiTWDNr4mBQc8Tq+NzK/OKSbsfl79o9G20R+brBXYvUg0rLHhtrc4TN81TTOWSZ0gL1ZVlOYH2ery/7XVUjFMbzYpg7UswcqJPQwBd0LKLabJ8IaCr2otcjSkIrGwootKECaUd4XH1+SdazRrfddkBU98t1htvWrbjqSqjaCguxrffM/5zDCpBALUycmajhd+R6ww4SWafuZ5eU+tPid4lgd3gt+b/Y9rQoZNmiXYPXyRHbRs8zX/f4WIFjWZJtUdSD55AP3xtXH+ZipC0EqdBGDA4CoYEU6gRLGPU11QhkLTBiEYPiqOeQgwTCl9aok1Qr5pFf71qEeNxjy/8F0GoqYPv75Yh9j3x4DuJ+uEzHRpAq2lMqb+qfTdiq6kGtzfOWsv0c7lSeMXDHBDe1MT+LUgx0Pg/p87u2UicdIvqQi8DkxhcUwUXCedMpb4NQjwY3npTmgsURJavLwCRyEcN2HfWsDVGfv/u9ZUWUx+PYFueUKwaNvbtu+Xps3eVWbN1GcgVrdMnWJ7WmJz9SD66EBidag0NF1Ukep0t5A7sFCWdhzvYwHv6L/BehXuHqfaBwBEU7hfVLcXvS4VQv+T/vaSIl7cbeMc7ekv9i8S3e1L5xxpvMGcu1EYPbKyCiijjGXcDKckm43PqU2qNWlXusZMiqF82cuVzolUHN9NNR0HZPxFPV9V0wLtvq+k4DqOwVWDlzuQLVdqFiP08cRX7aRlBVfR8cb55bWe5LExnlcsDp1vAP8Q9BucPMk1Ulh4GnN0SAdxcNHv3q9ohx1Ati4S/tkWjIDe3hQdkUGrGRaFBiUdiTSkI41UkMuuQHP+EaSQYlPQTFWJF03BNPpTu5KFAdkWgDukzsZKMG0Q1TAQQglScOaP/dsZ8+fP75D/9Uu5Gs3FY/2SxPld0DHOciXI9gqjcEidXjE+3BLosy0OcX3T7O5g65ROGyzQ2BZs7WbZVnO5ydLe32hMwTQ4wnnKXW6XW5LAa7oaXOIHoUl0FgLQLH2by8wSTWeAx2Y5PDazK3BqZbeJZwXGPaYhX87ZNszoDdaRxotXO1nNlpdvAPFWHDm8PqEE0sZxDEqGzxisFNnuCWetPcGrObN0p23tTZwMuRVodSV8+LTrOV3eRvzjQZiSjaLYS1WEJe0kNsJlZu9LFun7++wW4gRDRbaxw2nrOGm+xOj9cmtbp9ZqeTM1m8UXfQQCSTVSQox6pvtjot/FpHvIUjJovFEoYvHYV9C5Y/xN9OfcalvII37UEhTbTg/AQIaPb4Vz6j5u8/aViycMod/fkDcpu8QZbZoeBi/vbzP3XPsZvOubMtaPHkD9jt6+U2O7vqU/9C9SMvgrXpQNG/E0oJxun+CiElUa0IKQSUwERxOntKSV7ekcuh9VBZBBo3VUcB58ofKBHCwLyf9qFosz9Ibf8dGqwaBMjRig4SGOZ2UkWI7UiO9OfUPdxOYFApUZyfpY7mgEc5rtNGGk2H1lPhAk1Hp/VAMqQEHEUfEYkkUQq1JMdzsX7kklRrTrUi1wMcDjmu1YYfATj7Y+pGpPEBXuoQIj8rR9mgCl4C9yqmF7xnVWxGVniNqtpVmXBvQ6iwni5YQ8a1jYrXtc2J13HvgkvqWxuva1sbr+P2S5ceKGyBwDv2DbrToe1u6BkAJV7xnVLUaq0sJB8pFqcUIPi3yuwxi4JuLr+P30f3OkPQ72aO0xYo3/EsmO3QO5qEF8S0qQH0UsKXv0brnl9+8M7jF174+DsfvPOl1au/RL5/9DsbNnwHL2pHR1NTRxMZhJtHktOOxLxErPF6YlLvpC9YP73x+4ofw+3xVdrHcDE0dQQCmCRgvt9b35xINDf1CDcRSfJ+pYl+Sf8YcurfmXP5F/kj6J82jNsrkWiEuhVlgFfyNkB3S5MUzLhoNiwSCYcxQ7Ui4J0Xh7fmqRbaPa1tzujxkBRlsEHy0/OM4pYLPb7g9O6BQJN6l9zQ0OGyCaZz0vMTbHOzXfQ7a2tsterTcqxeInODoemdktw+1SbVhKwtW9ffe8VKadK0OVuC3bWzyKm5LeddsWTeorWyY9IMtUFutdu5g+Rn533qkocdvLs2HmhU75br/MmWtD8zA3OP2t1ea636jEzqYxJZGAwFiDEd61oTsrRuW3/3pYNi3bS+Rd+GjOfVpAPNd6y64Gsz1GaZleWIPoYL/v9mTeQBENVEguiF1aC4YeXxFETw6QyPfn0m9g8IrMFAvKM1EI11DARnbqibHk/Iojy5rSdgCyZi06y8sS024PeuO4MfwQ5Y9yKRZCqyYaF30vzeHlmUprR21tR0t0yz8KZY66zWuGvxVQB/36kP+K38t2Hu6NQ9SFJfw0AdpqPEK2qTMpf2VCqJwqPoJezTL824b8akoL+x03nhh+oNo5e77psxg9Q5LzebIKD+fsY34f2MtB9fk9v5b8PT6tYrgv4kRPwd0q9z3gdJSJ0653KjCYPwCaR5aUY63eW48O/kdo33yxX9wCiMv2QTrk8eGSI6Ag6moG9t2P/F7GRNlDjl0gw7pJ5aOXXqyqn8SENnXBmbSwUYLyqJjv3UmY1nKr4t80no0faXsaIEiF/BRaIBnItSce4OUif7W6Vm9T9H1X9Vj71BEm+RdmIJQST/ZfVdudUvh9S/qqNvqT98g9SQ3lHibZY0mRVHooyDN/FHmTgzjdozKw28NwQ0hwN6BCoPKaEk3YtKwNhwRLXuk076CGoZNXDQcRwZvreTZY9EZi+d0s4+ztv8iei04JQl6ZbDD2eHV7X4uHuFVfPrOmcs6m6Kr7hssr+1VZFcEZ/PdJkn1hOs8SXS/NFFgqt94PIZzZ3tdaL6Q5vo6piSzdy737pwsX1VyxUrF15iJ4uNkq+rbyg1Z+O8VsNC1UmcvORPRfxtPrfRwL2p/oA1eZp6Z/aGffoewaXcA/xBlKlQLfhQL/oPgBGP3qsA7IQS8qDVNswHKRSheDUvA3Q7MZoRcJMxlEygujn1QdyzfPfq3dEp/bXh5e5YXW2Ngfvza0ZF6UgFL/E0fTq4LBlvTE2qb/KuuzYSXVnjTfM1osvqMHVbm9950quIZlbqaL6YP7jk3kUtA0GnX2nvq53f3WoSsvEdDRnULgo2fN7lNZJgI8/VWi33c3bBZnGY05+dm+3qc7fNmj4YGKLj2nfqFP+g7jdDlxEV5XsJQZP6hYrS1l0VQr4c69Xueixp90gnZPmE5OF22j+SYEWHlZ0K/Hgsh/Ztsbh6h2DNRlvv6jJh9XaJaHCZDiUDKNTMkvb8vsqCyf3ZNdSmO0fa0Y4baJTtpbKzuVzeeSI7fCKr2Z0WypapnXJ4gnoWy3PoUIlIQ1TXdqhQJIXp9Wx5fYdpeWh2TY5D+YVyKd0jw3iumwi/BC3cEy4o83QlZnW79MrCgCjbhWXBlRZVVZZv4rIKpXC01HFlHdHLoeWVl6UVc/J5uGm6CViW5mulYMk+HqNYr0AyUPivLg2oMs2MPqtuhHyRyiwvNJej1Br+fcLyoAyu8D9B7bgmzUqfFobF5nKnK4+t8MPJkI/xHUNWk117jugWF+xazTAALQn6+UE9lhoI5ApGA/iuJOsrlNP28SVVuBVajXmircLel46w2bJS1Q0Ft0KDuikDFL/3pYrid1Q4FvofwRIo4R9h2ftSwc6jHAMqLcCql8YPHtlzGoByNXYN6v8hXnRaOhUvx0sVLCexwupGDR4NOYC7PePa5keIPACnuAdD7dEadRuTIiS6Lb7uskb381My5yjzF8lGCjBRqdwrWJCagfB3yCy7XT1i92hbcZ5Ci1FJkgYMDf6n+jspIsHFjJrTOdzSMuOa9DbDcj/nH9N9bIoGVgzHPWIQuFuYtaMRaq8eCKI0gEF6lPOZjBz3EEvaaxwSUT9U/8JbJZPJJLBLolH1La/RbF9AbC8JJjv/mMnssKjLRBJyqj9QXxNko0Ux/X79epfiXkm6fmKwF/en1HLc6LxloXWKvGa5rVCVL83VuiPcDEX/K5pTXOxHfx6HHB0t2FI0qI2rCZFTrvPWU67zVuS/kTsLnc7IKhFg30e4FOkqNSfH5PtkmUy6Cpiv/36k2sbqCeCFNa+URpoY0sZoYmCgCr3qgZz6s8I0gP1bYiR+D79H56NOz0EVWCTy2/fffvSCCx59W7uRV9995eqrX8GLesOXNm360iZ+T/El3uZqL+FyzSZ8XxpTiI/G0nkT4zznFZ0t4ipMz5v4q9ssqbdKUZt6u82knPCrt6PZwsnn0XySVnyPR1ZXAn72yx48bWJsu7apnI3Hy8bygUK5Js32qcytapqgmn95uexccj205vGgJ+euOeG2SORmKZr/qKzcx9SFctMJdwMUFZDJITs7dnOp1EKZCxg304Cevyfya+vlKqv6aXK1qIj3imL+L6hL+yvUlFfE0VKZ7E8gBY3M/8VoJCFgizH1W6VyC76nH6b7jiibYVxUmVIEspry/LgZIlCeP11Z4zs/AwvVwtGFEut5S1JY4lfyT0N/evOLo+rUEgjcqc9IkGpQbv3iW7Co5b+KgjvpzYdH85PLcc4X21ouwEGl/S4qnUAvoSlXUUhR1eKr2VWFTB+GMl6FsiQsVD1R3urlAAIoSn7JQkmiVVCHSpCwDH/qPepXQ0Db77CJOAImohB+RPWr31ev5g/kE+zTa4lbvZo8xdWPffQu9yJTPCNB66s+zXoJt/0L6hSoCuBIoK8fnBGG87OoRckJpLqyWe4YbpGi50g0+3I3UD85Oa0fzubfoXxPLbW3FDWzigmyJeM0tQkax7PqTy80+UxfUHPlBZIRVNQ+v0xRm8REKPoLmNr0+Uo48v9GFbXPKylqQ2IKm00QddgyWGMROCTxdLB9nCY8P7j2DjlsV/+mfr0C0r/NkeXbbpPlOTBBwT0mVz1zx9S/wJecBF9Wgv3p032iP2v4VSgfgW2G+HUEdEXU6iq4CtpLJfIN9XQG8dwa1VoO8XC2SrPDDyCOQptXgbcPvlAgBfxBoGwftQKeKFrNTASPt3pGGqDt/QRasn2kri+H6L80MJRsmVYJrAKyDItpJUy3/15WYIJqcJ9Q5N/LFJ4c3dc1URpWl9hW6mu50MUIelg4ucTPf15zs5DFo1c0VSp1tKB9jkwIyuM45kb+IP8gHed+6jO3v0KbIknzLy636E8KPTdCuUpB0wLo9JKnAO6pv0vS31EtBha/fJemkgLVVnd8KCk4qBTpQ5m7FbifBKrPJcq0pZAFVG/XbOFz+Tcq2MLrcmV28Nmi/OHskh82bau0k8eWCaPijQPWQ5lUvslwVCfHkXBMIehqUgtDNLeauH1huvZTbYmw+luPjyWoNGEuxRLR7LK5fSyXFUyK7PURQv2v8D3XOt2NJ6liBbmPGOsakw1kbeOs+31Wm5qpH+iJWSzqdPr2O7zc2TmtnrzCig6bBd/vgQmzOlz0STWIlmZEQfupogOZFHUZ7EkUnMn0RrpIMqAgHRJAOjIJ3yGw1I/MAp9q9S3Q/clADNm1wEeO+xbwg5OIYHZLY3ehG5lJk2xhco+6JWybpEVz2wrR6hZyD0QXZbeDVB+onmlimpkWprdAs4WEZDSQppsDlcdCBJJESIYFuAtUnC4GIF2C3Uu2Kv7L1bdz6FxtqxpG4TqQOqOUNAJ2HLvPWA2GgDy4O4vaDrtyl6P+1fAll+SyFcQ28GHqh7fvvf37udylf0fNwhzgz87Y+cf5x9GnF6ygHu18sAbipWeF0YPBgp2GaKeQduxxdEr3SgbH1kvH7tvqSLhedomOvZyts2dw8acu3dY/f+ucuMtCuP/e4zC4XnH3OLZ8ZuxTWxy8dJfU5dhDeKPSlJy5pn/+7u3XrJhmr9C5CuleGflGQocKnlAUaRKp0BAHV0ZwUt9VCqk6zYOgRIuMfePJzdmBdpPJ7/6B23+f+sp9NMDZevovvfYHG5dGPISQq1DojqNckchVrCcCYz/Q0hI0m3NKDRfkgsrnamo+p0CAq1FyvC3a3Nak/s5VX282x9Ufy3E39VAx6o7LpCvO2wK+ch9jNqpJCutcIOooKnYWtDK8gTRVYygRQfwgzKM5+jP2jOZdx3r32Py7rQUPOzAnoRs95NvRAR0qLGU11Taqu1bUYSzMcWjMEir067JQQHfIrLBHsrgv00/Wavd8HRLMEEYFSW3HCSNQehnrHztKqHcDyo4VfZ6gPKCR+gufwA8GegxUEo4A+gd0BASHiH6jYMLIsUdQJTs/C641KN4oCHWolCMLlMfIdtWKScjx7SM5LD9HnfmhrGI0S139UWfUnxgOXdJFW+AMcGjKr6eHAttHF5sUoeArYKDcxMSYcKA/xUDhPiEOEAPafSIUFArN0r24ynI91EPARDXvIDYyvqZaWeroBOUABQA/E+DXC7PWafDLQY2oiwpUEyj4RQtVlUp1GrM7In2p2A7VuiOW6otMiGOo5Mrp05ejVuTy6dNX/k/7mybZQ0nUmfrbx3U4KueDnlHm5wdh8FFeKnoaKKh/TK18StOPhwG9Xo5mqXAxvw/79YQwwDR+nAKQQ4izVXioB84qcppWB7IqjU45z4CE17OvF1Dw+oTFqxtz8dxwtogBnF9MjIl/in+K8s3hM9laIn0TiCbTAXL0T798bPXqx36p3chrv0O+GC9Xaj48Ecv8U8UEeBvUEsDlTepiU5OvlpeNGvpnKF0RvUooWhIjnx6GeBapXCQYTw9DNg6/OC3gZjp76oNTj9Kz6Jqobxb9NDqc08vcKReOpcsQV2K8InXFaXW3aI6Ofr1k48rp7CX7rx+v1UKPsfvzQU0Kc83i2VdILmd2/yX55zT9luN2+Cu4nKfwPcK/CvDVU+pHh8+LaldIf1fA5h3ndT6Fln9/W/9Ce1vndfvJtnPVO2xhm3qbafHVCN1X363UXHq9xuVD8OSD29Z8pZ5cZrern9cAdGW/uib/ud+VK0L9a42r6C90kL8KzxwLQw9NkIQJL0ASU8M+VG0KsUdgdvpgP/6NqqP0/gHZFUfGEijZLHpiIgvV5/Bltrj8Qd7XQd5p4P+7tJo30NMO6VGBwahSPMYiaaBYoLY6uEnciyhhh1Z/vvacG/rjpsvnpzs0B1Id6fmX8119l88XnOxe/uGrzzHcdu7UtY3+2vmXN5zUyj3ZcPl8p1sZSs6/nGXtwrV7Ka0XZdz83fwjjINpZWYw85lL8BRK4nGyIir2RiOsEyipuEcIakpGjWgBjLiHWOgj0Yi34gW1kKPxHt2Na5q+lwg1RdRSpFDNzosb44YJXnAfoEOpZW//6u1lhYA6leevezbI26zNHO811M2dc5HFxpk4i1jPC0s21/BWW5DnPQbn2X1WK43/aM2n18DfSoybbNHijFpamzXI31eRibGUOxSu/lT96YZlq1Yt20DaSBuG6knw2eusHs5EPBfNmVvHKdaQzcDfz9ZsXmLDWGXy2U5OsYSsIn8CS12jQIyD12KKqZrLPy7mSPdICmd6WGHG8NDZkkHuE4h9TU8FpmUO/VjC/EinToFyoNDz2p9XD6g78WgQdPG7Z3R0T/Z5dTM9lsL8Ktek7szl2L+gQwGgwkZHc2g5Su7NvVqwGy2Ua4KSXUwt1X4PaM5paaEu6jQ5zVFyNabxvUksVt2T/4VeamYPlLtffdQsk+2sUTY/zDXl/05W53/Bz9UK3p7LjapZ2ZxOm+UlZXrL3HHGqO8+wVroDaCTTnTxitMxmiAAYQzVJQH+nj3oIHnPaN6Zq6sNSLjBl8tKgVr2mj/9CWi9dnKca8rBQBsd5R1tzVlgrl5pbnPw6kZclCr2CHxMnHohLz+3KRQokzALyeIKFU1TNCiayJdoHvDYe7K6mZLm8S3uJ9dojuaJ62/qN/tjQxnSnhnKPw+LNrLi8ZKyJ3x1YhiI1aNAtP6NzCGzYv3DmaGh/LvQZnt0evgIhTFV0kE/PYxAnOHhCQUZdCWY5JWJwMzlAGl1mpNbDU7yyGnhRMILsYhH3VRAijrPcBU8/Cj1Y9NY6cnGVW0CjTLaz7E3epvaT/LtTV72Rs+0WVVmd0dz/MGTI5F0OsIviaqDlbbO5X6xT3PeXbXHRtf/z+fdka+eKPr8KF7IF4vBsT9MFPuPJMBTBMq9hQxXelQ+bewnf18ap4Ib+mSMrtDU5zqlD8QANa5MBGh/OwOvSDfcV2d66mfEWsbGWmIz6nsyZDWQSmqmxDneYyvjHPmRXHZxeueyRGLZzvRioKnGto9nIPkibAJA16adcOZRQr1iAP3bUyBR7T4RgAWTKxhkCYFwshq+7iV9r0whk50cmRcTg4fy5x4OmmNkHndIA2+YuMbmE9dwGYB4KFTsvnDE6Ah47r/fE3AYI+oXADpkdlENcZ8OZEEf8FFGZNxMs6ZLpG3SUFLL7Q2kcFU/A/Jsw+vWDa/7emewLaoeibaF1B9qUNnuqWK3+UfXYVL1v/omD15xxeDkPnXTOKSVcCbDGtOu0YQNpGAP7U1HU58UrqGu8xIbHtkQ3LVhb7Dx46ET3Ffcm1q0YcOizNmf3bC3VjWfAcpSv3MyTlgJ23FHQgmgvk+gk8pL0mcCDOn08MDAQlf+/SlTZ1z12fnqntOhbOTL9/ZdevbAPN+yby1f/uUtC/ixm8ZBo59LTXEW060hGrTDplNprWd58fwB/b/E27BdS/s7U+rGVCeQ46nzaw9QccnmZerGZZs3Yw9aVHt+Kh6HN4ti6lxIhT/wahnZtWwzlY9QHQ2c79C+dxzvVDKy8GqKWQERO9YAKbpsDUTLdWV5dE8PVPjvj9pqw7ah/PFVtkit7aj6G5xY9mfJrCz1j1e0BcnPol4UjtrCdbahIVtd2HaURujnFJR8CuOuUUfhrGhgKKgjCYNSvCc1WKlEp8wHUaAYynFNyzZn+2MnYv36dbMDBTonl/T/ma5IKAyEGz+4eRnVtaX6tss2o34u8mWorFtuFgm4A6qK/yp/gLEBVat5WnPDdKA574ubuFJ/IUfZ/Y2Nt6mN+ZNNTSTaeI56gKwkXerTe9DDHUw8/H35FY3nNN7GGuBKWhrV9ep+0k1WjNWVaHkW1yA+QHWNu8rtBw2a5YXuE40rs7/GA+j09V3hA98yRnFPOGr8ltGlsFdD/7tRce3LH6Trcneuiy7K7J3khKu+3qUaXPWaX7T6/Kfj9BX2eZq2XAcZT79u1ClJzUtHUqfqSMWBcZS43Ena0cUGLgpkKxB1QM+0Fxz10wgg6r5rltnFpH05pepUq3Y2HfYqeKRntmUFNz+XmcOs1H31U6cC6RTVLfCg7RNBF1UF2/wBgu0fFQtPEU1sSg3VcNsR7dWq3af87tUFn1l3ltXpaJxpNvtcZkH2WmMst3JqRpxUH+WC0E1qOGtP66s1MYv+VLu8/XFXvV/ZbunYYBeVN64ls0ur6NzpV9xzlmQwB5qC4Tq70WC0tk8dWJXeHvkD0h9zJOM0vD86/1NJMaIAolctvlByferCsqOKDKceOfUu1PsmoFCamV5mCrMUOCi6V6FJosMF22AcrKJgQDVhfYh6tepp/lYgvnCEAbJQ1L0rOpajEmRcasMiPfxhgGoVo4rwreQpV6fUJHH2e8fa1s2c13Apl1b89a58ozdoap2sjgLN9uISl7P1DrulyeIkt0zr6JjWocoPOZsaXPb6jtqBblsgsaRre2xHi4nELm0MhG1+x1SXwLpFi53b+aHRYo/IrbZtuWAKu5cSEXfybnnmUCaXGTpQr0xK2O2WWY76f+nAjNVf7nCZHU5XqIkTnpt6VtvsFlPXg1031g/VRdpkkyVpD7jnmax88QwDvg/66NnMRdRXTcGTmQc3cuINwN5IQqi0yzb+YFVHuVqI5s4ADfg5oE4ybDLd28mFSFmYvRoomsWXEdLU2Wl3GJy93ZNb/d5gqmNaqJZSO1l6PVRy0nZIj/45EetjLguh1rLqR+SK0hO6NrsqcNX8zoUdjQYDJ7tb4os6+i+Y0qpY2AWlnLRDWdGFTfGY1gV0zNAtJ7pdo24se0D88AwLY/gZmE9iuP4V5v7CSR/RThaHLh+UeBkXwU6BC7lGOevK65udTv+tS/PfW7qj3ljTcj3b9OkbV85t8xsMj7Ddj7DGpthZKwKPvso/c/1K9aLE12fMWLV1y1D9ua8lyJdWXr/bG+noCFutf/mLILe39ITUV4igr3876fpX5g2zeB52sWnIL4fXHlgeUzOx5QfIvJQyrKQE9wHUqVq+PEaOrz0wVvNbJZVSfsuMzxN4l9PkedFzw9V5Dj+nzpgoT4ZxCxJfC5RWLc74YVHxKlExCYt0JAOMatREhHBSCAtSfod6x6Ls8HCWECLwXZ9nd5Dz1T24JUdWs6fU3++fcnT49Qe+kBs+wdsMZgPXMp3U5S958snPP/EE7bvkOPCuTUDTUQ/UzirLhML9yPahoe1D5Fj5jWsaoveyP00PehdUAHk/seDVWsvDWXXXsyn/4wfpXc2V3/Qxli3jl/5hj/83avSCfpTNxOEKLmTjxOEKuxgNlsQn0xgct724mhynupNW1Ph6o3RYS3/+2TJrzLlkFz+ip3qCHKf6eqW02QJLjBYuuj4sobhCWqa/YHGEHpcnumuWSOhxeaL7sOakNR6vvmo+YcfFA8UFXEPZf9UjyudIOyNwx/i90DdsujS/FX2UAwvWSVK4NxaMhAGw3oowp/uc8CTi7D2rBgZWwb/60faR7SPsEbjkXy4G0XaqhXPwe2cePjxjxuHD6ssQuR1fq6PF0E+o2t1nePTn8TUmxz/A3crMoCc7egESuoTHYc7mYdg6etORoOhR7BBGD+qJopELrl4S6cJNRtEAsLP/OdvnJq0Wo0GolY2Et9VFB2Kf+4bZvVyxfOMz3WdFfSIryj6DwWghre7aQbdiDrkTL3A3vNDuDpk93HqXwam+bWmUJZfNn5ozKV5Pmmq8PF/jVY+2Tlk2M2RzSXKjmbQ4RZcQavEYrN/9rlXwtIQqzxQNMzPPfHYLvuPoO9TbT8bpGw5CQPGd+SyX/Cyf0Vxjd2R9NmsunnXYa8xGHzn+sSfM5J0y0DZEXWWxkXjcR75KBLNLHi7XvX2G8VOrf4Ykg0AMdBESIpo7MgAfyakA6rkqpI6UjNs0px7cMV+D5BF49Tez1VGnYmq0WIijp985m4Sn2gJR9b07riPPFo97OYbUZbxJCpot7H/lpZBicglCPN7WOfJkcHqc3ElWqvvz/1E6bIQrG+tz6WkM1SM9FBTR7FSs8KyBBytSmNEoquJNFN5EQyTiCrnKDx1h58yxCepPHU5nxGoxEQeeOZi2m80DxNxncVhr6BmEfUarxejw+WSiHhWk19bSY7aKR5MsteblJpfTLtjimBouXsm3d3djjYM+wEW0El9dM/ueVRWIsXwe43R7SgbVZqrnqoJ1X/kuF7pcgf8duv4q6vayV5U9zMV91GxO59UUjW8rHV6u799WzKMT7umRCXbYUKM+foaCcwgaoqZUtmodV3p+X7akb4dnU9B9La38RPFUG2SCC90tVA4XwEFhyOpZZrUCsgWYHsczLFBBVGNtstoN1bw0Z+O4fYIbvZVt4EUcJEKOhHeincWqONw+q6w5Go+WGOSR7LhKV+KBqbBPpfUvOf9QqkpDyVhBeyyZQGMsdA5FBUqvFMtUyGq9vjnsAJU4UcrxldP1CCaofyDkSAifoP5QwWx+SyUGxp75BzGAvtG7uQ38LehlyEQMeh0TeE6Bm7tYdXqdkt0uOb3kfYlNwmOdDyacOq/qlFo1v+PTmTi3E/glC9W11b34A22zmLzvb231Q0L2Bgg60OTW4YdstO+YOJnO38TtpH7zy9ymokWyA79qlVSn38HtpFlImFnhu3b4boNWXklOXV0Iwo7lQ1hrZyPFcwtjwFP7iEKSHSSJw509kh8kj6pr+H1jR7km9vcvqN9657vffefkv+fKxge1X+7RdjYUPIESN7gTvRkB/RMYtEkaVkdHApmdBPpnKmz0n1xSWFOyVIuLrinZwpoCRe6kyiVZoHX088F+UX4+WKS4iBTP0IWxGtZgOdMaV4KTayqHQF/VihBwTbgDXTCmKoOBJeNhwJMzEVjtjIFLuU38fPR7hqNG1JS7g/qRCuy3vmQ3W9Vu8qbVbP+SzazGRJH83MzP90Ck2m31mMjP8TiLn5uwD2Ugr2PFvPQjB5BnSJvQxGQZZEB+LopqzGzDbMmbkAPkZVJjeO5FzOSBKCgJze2ZS4Gemc9twrwY6u9H61iUQTcRvtdT9RW3tRxAWwFs2tcuJRnI6xjmBdWjbgFNRHMHiF1uHYBfUR/ut5Ug2jXAaT96+9RH/FToRwIzGbKmVJ1AZQnoabSB1yyIg7ByAridHApPMjyw0OiV6RjSbCuzwLAvFizBliWJua1tsuAgvNPbmljYbpt8lkWam7b3XZiOiKJskMOtmfScnsbPW208knwjuXrXK4Q1iKIgNyYXXDVT9C2Ye/78GQ5BEEXfFdde2RwauOysdJNL5AzCy84ard/nGAVN8alecnFdgu5Gbd5DJTL+hHZK0vApVy3OfU8XTSJg1TlssivsPYUlIqvn66PzrVTymCc4wgF6SDNR0pDf+9Gp+VnsUH5WtpHYsuhOaey8zdwLN47V8MTbm78g687+P3cx6tcAeNpjYGRgYGBk8s0/zBIfz2/zlUGeZQNQhOFCWfF0GP0/8P8c1jusIkAuBwMTSBQAYwQM6HjaY2BkYGAV+d8KJgP/XWG9wwAUQQGLAYqPBl942n1TvUoDQRCe1VM8kWARjNrZGIurBAsRBIuA2vkAFsJiKTYW4guIjT5ARMgTxCLoA1hcb5OgDyGHrY7f7M65e8fpLF++2W/nZ2eTmGfaIJi5I0qGDlZZcD51QzTTJirZPAI9JIwVA+wT8L5nOdMaV0AuMJ+icRHq8of6LSD18fzq8ds7xjpwBnQiSI9V5QVl6NwPvgM15NXn/AtWZyj3W0HjEXitOc/dIdbetPdFTZ+P6t+X7xU0/k6GJtOe1/B3arN0/pmz1J4UZc+D6ExwjD7vioeGd5HvhvU+R+DZcGZ6YBPNfAi0G97iBPwFXqph2cW8+D7kjMfwtinHb6kLb6Wygk3cZytSEoptGrlScdHtLPeri1JKueACMZfU1ViJG1Sq5E43dIt7SZZFl1zuRhb/GOs44xFVDbrJzB5tYs35OmaXTrEmkv0DajnMWQB42mNgYNCCwk0MLxheMPrhgUuY2JiUmOqY2pjWMD1hdmPOY+5hPsLCwWLEksSyiOUOawzrLrYiti/sCuxJ7Kc45DiSOPZxmnG2cG7jvMelweXDNYXrEbcBdxf3KR4OngheLd443g18fHwZfFv4NfiX8T8TEBIIEZggsEpQS7BMcJsQl5CFUI3QAWEp4RLhCyJaIldEbURXiJ4RYxEzE0sQ2yD2TzxIfJkEk4SeRJbENIkNEg8k/klqSGZITpE8InlL8p2UmVSG1A6pb9Jx0ltkjGSmyDySlZF1kc2RnSK7R/aZnJ5cmdwB+ST5SwpuCvsUjRTLFHcoOShNU9qhzKespGyhXKV8SPmBCpOKgUqcyjSVR6omqgmqe9RE1OrUnqkHqO9R/6FholGgsUZzgeYZLTUtL60WbS7tKh0OnQydXTpvdGV0O3S/6Gnopekt0ruhz6fvpl+nv0n/h4GdQYvBJUMhwwTDdYYvjFSM4oxmGd0zVjK2M84w3mYiYZJgssLkkqmO6TzTF2Z2ZjVmd8ylzP3MJ5lfsRCwcLJoszhhyWXpZdlhecZKxirHapbVPesF1ndsJGwCbBbZ/LA1sn1jZ2XXY3fFXsM+z36V/S8HD4cGh2OOTI51ThJOK5zeOUs4OzmXOS9wPuUi4JLgss7lm2uU6zY3NrcSty1u39zN3Mvct7l/8xDzMPLw88jyaPM44ynkaeEZ59niucqLyUvPKwgAn3OqOQAAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAHjarZK9TgJBEMf/d6CRaAyRhMLqCgsbL4ciglTGRPEjSiSKlnLycXJ86CEniU/hM9jYWPgIFkYfwd6nsDD+d1mBIIUx3mZnfzs3MzszuwDCeIYG8UUwQxmAFgxxPeeuyxrmcaNYxzTuFAewi0fFQSTxqXgM11pC8TgS2oPiCUS1d8Uh8ofiSczpYcVT5LjiCPlY8Qui+ncOr7D02y6/BTCrP/m+b5bdTrPi2I26Z9qNGtbRQBMdXMJBGRW0YOCecxEWYoiTCvxrYBunqHPdoX2bLOyrMKlZg8thDETw5K7Itci1TXlGy0124QRZZLDFU/exhxztMozlosTpMH6ZPge0L+OKGnFKjJ4WRwppHPL0PP3SI2P9jLQwFOu3GRhDfkeyDo//G7IHgzllZQxLdquvrdCyBVvat3seJlYo06gxapUxhU2JWnFygR03sSxnEkvcpf5Y5eibGq315TDp7fKWm8zbUVl71Aqq/ZtNnlkWmLnQtno9ycvXYbA6W2pF3aKfCayyC0Ja7Fr/PW70/HO4YM0OKxFvzf0C1MyPjwAAeNpt1VWUU2cYRuHsgxenQt1d8/3JOUnqAyR1d/cCLQVKO22pu7tQd3d3d3d3d3cXmGzumrWy3pWLs/NdPDMpZaWu1783l1Lpf14MnfzO6FbqVupfGkD30iR60JNe9KYP09CXfvRnAAMZxGCGMG3pW6ZjemZgKDMyEzMzC7MyG7MzB3MyF3MzD/MyH/OzAAuyEAuzCIuyGIuzBGWCRIUqOQU16jRYkqVYmmVYluVYng6GMZwRNGmxAiuyEiuzCquyGquzBmuyFmuzDuuyHuuzARuyERuzCZuyGZuzBVuyFVuzDduyHdszklGMZgd2ZAw7MZZxjGdnJrALu9LJbuzOHkxkT/Zib/ZhX/Zjfw7gQA7iYA7hUA7jcI7gSI7iaI7hWI7jeE7gRE7iZE5hEqdyGqdzBmdyFmdzDudyHudzARdyERdzCZdyGZdzBVdyFVdzDddyHddzAzdyEzdzC7dyG7dzB3dyF3dzD/dyH/fzAA/yEA/zCI/yGI/zBE/yFE/zDM/yHM/zAi/yEi/zCq/yGq/zBm/yFm/zDu/yHu/zAR/yER/zCZ/yGZ/zBV/yFV/zDd/yHd/zAz/yEz/zC7/yG7/zB3/yF3/zD/9mpYwsy7pl3bMeWc+sV9Y765NNk/XN+mX9swHZwGxQNjgb0nPkmInjR0V7Uq/OsaPL5Y7ylE3l8tQNN7kVt+rmbuHW3LrbcDvam1rtzVvdm50TxrU/DBvRtZUY1rV5a3jXFn550Wo/XDNWK3dFmh7X9LimxzU9qulRTY9qelTTo5rlKLt2wk7YiaprL+yFvbAX9pK9ZC/ZS/aSvWQv2Uv2kr1kr2KvYq9ir2KvYq9ir2KvYq9ir2Kvaq9qr2qvaq9qr2qvaq9qr2qvai+3l9vL7eX2cnu5vdxebi+3l9sr7BV2CjuFncJOYaewU9gp7NTs1LyrZq9mr2avZq9mr2avZq9mr26vbq9ur26vbq9ur26vbq9ur26vYa9hr2GvYa9hr2GvYa/R7oXuQ/eh+2j/UU7e3C3cqc/V3fYdof/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D92H7kP3ofvQfeg+dB+6D92H7kP3ofvQfRT29B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6j6nuG3Ya7U5q/0hN3nCTW3Grbu4Wrs/rP+k/6T/pP+k/6T/pP+k+6T7pPek86TzpPOk86TzpOuk66TrpOuk66TrpOlWmPu/36zrpOuk66TrpOuk66TrpOvl/Pek76TvpO+k76TvpO+k76TvpO+k76TvpO7V9t+qtVs/OaOURU6bo6PgPt6rZbwAAAAABVFDDFwAA) format('woff'),url(data:application/x-font-truetype;base64,AAEAAAAPAIAAAwBwRkZUTW0ql9wAAAD8AAAAHEdERUYBRAAEAAABGAAAACBPUy8yZ7lriQAAATgAAABgY21hcNqt44EAAAGYAAAGcmN2dCAAKAL4AAAIDAAAAARnYXNw//8AAwAACBAAAAAIZ2x5Zn1dwm8AAAgYAACUpGhlYWQFTS/YAACcvAAAADZoaGVhCkQEEQAAnPQAAAAkaG10eNLHIGAAAJ0YAAADdGxvY2Fv+5XOAACgjAAAAjBtYXhwAWoA2AAAorwAAAAgbmFtZbMsoJsAAKLcAAADonBvc3S6o+U1AACmgAAACtF3ZWJmwxhUUAAAsVQAAAAGAAAAAQAAAADMPaLPAAAAANB2gXUAAAAA0HZzlwABAAAADgAAABgAAAAAAAIAAQABARYAAQAEAAAAAgAAAAMEiwGQAAUABAMMAtAAAABaAwwC0AAAAaQAMgK4AAAAAAUAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAFVLV04AQAAg//8DwP8QAAAFFAB7AAAAAQAAAAAAAAAAAAAAIAABAAAABQAAAAMAAAAsAAAACgAAAdwAAQAAAAAEaAADAAEAAAAsAAMACgAAAdwABAGwAAAAaABAAAUAKAAgACsAoAClIAogLyBfIKwgvSISIxsl/CYBJvonCScP4APgCeAZ4CngOeBJ4FngYOBp4HngieCX4QnhGeEp4TnhRuFJ4VnhaeF54YnhleGZ4gbiCeIW4hniIeIn4jniSeJZ4mD4////AAAAIAAqAKAApSAAIC8gXyCsIL0iEiMbJfwmASb6JwknD+AB4AXgEOAg4DDgQOBQ4GDgYuBw4IDgkOEB4RDhIOEw4UDhSOFQ4WDhcOGA4ZDhl+IA4gniEOIY4iHiI+Iw4kDiUOJg+P/////j/9r/Zv9i4Ajf5N+132nfWd4F3P3aHdoZ2SHZE9kOIB0gHCAWIBAgCiAEH/4f+B/3H/Ef6x/lH3wfdh9wH2ofZB9jH10fVx9RH0sfRR9EHt4e3B7WHtUezh7NHsUevx65HrMIFQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAACjAAAAAAAAAA1AAAAIAAAACAAAAADAAAAKgAAACsAAAAEAAAAoAAAAKAAAAAGAAAApQAAAKUAAAAHAAAgAAAAIAoAAAAIAAAgLwAAIC8AAAATAAAgXwAAIF8AAAAUAAAgrAAAIKwAAAAVAAAgvQAAIL0AAAAWAAAiEgAAIhIAAAAXAAAjGwAAIxsAAAAYAAAl/AAAJfwAAAAZAAAmAQAAJgEAAAAaAAAm+gAAJvoAAAAbAAAnCQAAJwkAAAAcAAAnDwAAJw8AAAAdAADgAQAA4AMAAAAeAADgBQAA4AkAAAAhAADgEAAA4BkAAAAmAADgIAAA4CkAAAAwAADgMAAA4DkAAAA6AADgQAAA4EkAAABEAADgUAAA4FkAAABOAADgYAAA4GAAAABYAADgYgAA4GkAAABZAADgcAAA4HkAAABhAADggAAA4IkAAABrAADgkAAA4JcAAAB1AADhAQAA4QkAAAB9AADhEAAA4RkAAACGAADhIAAA4SkAAACQAADhMAAA4TkAAACaAADhQAAA4UYAAACkAADhSAAA4UkAAACrAADhUAAA4VkAAACtAADhYAAA4WkAAAC3AADhcAAA4XkAAADBAADhgAAA4YkAAADLAADhkAAA4ZUAAADVAADhlwAA4ZkAAADbAADiAAAA4gYAAADeAADiCQAA4gkAAADlAADiEAAA4hYAAADmAADiGAAA4hkAAADtAADiIQAA4iEAAADvAADiIwAA4icAAADwAADiMAAA4jkAAAD1AADiQAAA4kkAAAD/AADiUAAA4lkAAAEJAADiYAAA4mAAAAETAAD4/wAA+P8AAAEUAAH1EQAB9REAAAEVAAH2qgAB9qoAAAEWAAYCCgAAAAABAAABAAAAAAAAAAAAAAAAAAAAAQACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAEAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAL4AAAAAf//AAIAAgAoAAABaAMgAAMABwAusQEALzyyBwQA7TKxBgXcPLIDAgDtMgCxAwAvPLIFBADtMrIHBgH8PLIBAgDtMjMRIRElMxEjKAFA/ujw8AMg/OAoAtAAAQBkAGQETARMAFsAAAEyFh8BHgEdATc+AR8BFgYPATMyFhcWFRQGDwEOASsBFx4BDwEGJi8BFRQGBwYjIiYvAS4BPQEHDgEvASY2PwEjIiYnJjU0Nj8BPgE7AScuAT8BNhYfATU0Njc2AlgPJgsLCg+eBxYIagcCB57gChECBgMCAQIRCuCeBwIHaggWB54PCikiDyYLCwoPngcWCGoHAgee4AoRAgYDAgECEQrgngcCB2oIFgeeDwopBEwDAgECEQrgngcCB2oIFgeeDwopIg8mCwsKD54HFghqBwIHnuAKEQIGAwIBAhEK4J4HAgdqCBYHng8KKSIPJgsLCg+eBxYIagcCB57gChECBgAAAAABAAAAAARMBEwAIwAAATMyFhURITIWHQEUBiMhERQGKwEiJjURISImPQE0NjMhETQ2AcLIFR0BXhUdHRX+oh0VyBUd/qIVHR0VAV4dBEwdFf6iHRXIFR3+ohUdHRUBXh0VyBUdAV4VHQAAAAABAHAAAARABEwARQAAATMyFgcBBgchMhYPAQ4BKwEVITIWDwEOASsBFRQGKwEiJj0BISImPwE+ATsBNSEiJj8BPgE7ASYnASY2OwEyHwEWMj8BNgM5+goFCP6UBgUBDAoGBngGGAp9ARMKBgZ4BhgKfQ8LlAsP/u0KBgZ4BhgKff7tCgYGeAYYCnYFBv6UCAUK+hkSpAgUCKQSBEwKCP6UBgwMCKAIDGQMCKAIDK4LDw8LrgwIoAgMZAwIoAgMDAYBbAgKEqQICKQSAAABAGQABQSMBK4AOwAAATIXFhcjNC4DIyIOAwchByEGFSEHIR4EMzI+AzUzBgcGIyInLgEnIzczNjcjNzM+ATc2AujycDwGtSM0QDkXEys4MjAPAXtk/tQGAZZk/tQJMDlCNBUWOUA0I64eYmunznYkQgzZZHABBdpkhhQ+H3UErr1oaS1LMCEPCx4uTzJkMjJkSnRCKw8PIjBKK6trdZ4wqndkLzVkV4UljQAAAgB7AAAETASwAD4ARwAAASEyHgUVHAEVFA4FKwEHITIWDwEOASsBFRQGKwEiJj0BISImPwE+ATsBNSEiJj8BPgE7ARE0NhcRMzI2NTQmIwGsAV5DakIwFgwBAQwWMEJqQ7ICASAKBgZ4BhgKigsKlQoP/vUKBgZ4BhgKdf71CgYGeAYYCnUPtstALS1ABLAaJD8yTyokCwsLJCpQMkAlGmQMCKAIDK8LDg8KrwwIoAgMZAwIoAgMAdsKD8j+1EJWVEAAAAEAyAGQBEwCvAAPAAATITIWHQEUBiMhIiY9ATQ2+gMgFR0dFfzgFR0dArwdFcgVHR0VyBUdAAAAAgDIAAAD6ASwACUAQQAAARUUBisBFRQGBx4BHQEzMhYdASE1NDY7ATU0NjcuAT0BIyImPQEXFRQWFx4BFAYHDgEdASE1NCYnLgE0Njc+AT0BA+gdFTJjUVFjMhUd/OAdFTJjUVFjMhUdyEE3HCAgHDdBAZBBNxwgIBw3QQSwlhUdZFuVIyOVW5YdFZaWFR2WW5UjI5VbZB0VlshkPGMYDDI8MgwYYzyWljxjGAwyPDIMGGM8ZAAAAAEAAAAAAAAAAAAAAAAxAAAB//IBLATCBEEAFgAAATIWFzYzMhYVFAYjISImNTQ2NyY1NDYB9261LCwueKqqeP0ST3FVQgLYBEF3YQ6teHmtclBFaw4MGZnXAAAAAgAAAGQEsASvABoAHgAAAB4BDwEBMzIWHQEhNTQ2OwEBJyY+ARYfATc2AyEnAwL2IAkKiAHTHhQe+1AeFB4B1IcKCSAkCm9wCXoBebbDBLMTIxC7/RYlFSoqFSUC6rcQJBQJEJSWEPwecAIWAAAAAAQAAABkBLAETAALABcAIwA3AAATITIWBwEGIicBJjYXARYUBwEGJjURNDYJATYWFREUBicBJjQHARYGIyEiJjcBNjIfARYyPwE2MhkEfgoFCP3MCBQI/cwIBQMBCAgI/vgICgoDjAEICAoKCP74CFwBbAgFCvuCCgUIAWwIFAikCBQIpAgUBEwKCP3JCAgCNwgK2v74CBQI/vgIBQoCJgoF/vABCAgFCv3aCgUIAQgIFID+lAgKCggBbAgIpAgIpAgAAAAD//D/8AS6BLoACQANABAAAAAyHwEWFA8BJzcTAScJAQUTA+AmDpkNDWPWXyL9mdYCZv4f/rNuBLoNmQ4mDlzWYP50/ZrWAmb8anABTwAAAAEAAAAABLAEsAAPAAABETMyFh0BITU0NjsBEQEhArz6FR384B0V+v4MBLACiv3aHRUyMhUdAiYCJgAAAAEADgAIBEwEnAAfAAABJTYWFREUBgcGLgE2NzYXEQURFAYHBi4BNjc2FxE0NgFwAoUnMFNGT4gkV09IQv2oWEFPiCRXT0hCHQP5ow8eIvzBN1EXGSltchkYEAIJm/2iKmAVGilucRoYEQJ/JioAAAACAAn/+AS7BKcAHQApAAAAMh4CFQcXFAcBFgYPAQYiJwEGIycHIi4CND4BBCIOARQeATI+ATQmAZDItoNOAQFOARMXARY7GikT/u13jgUCZLaDTk6DAXKwlFZWlLCUVlYEp06DtmQCBY15/u4aJRg6FBQBEk0BAU6Dtsi2g1tWlLCUVlaUsJQAAQBkAFgErwREABkAAAE+Ah4CFRQOAwcuBDU0PgIeAQKJMHt4dVg2Q3mEqD4+p4V4Qzhadnh5A7VESAUtU3ZAOXmAf7JVVbJ/gHk5QHZTLQVIAAAAAf/TAF4EewSUABgAAAETNjIXEyEyFgcFExYGJyUFBiY3EyUmNjMBl4MHFQeBAaUVBhH+qoIHDxH+qf6qEQ8Hgv6lEQYUAyABYRMT/p8RDPn+bxQLDPb3DAsUAZD7DBEAAv/TAF4EewSUABgAIgAAARM2MhcTITIWBwUTFgYnJQUGJjcTJSY2MwUjFwc3Fyc3IycBl4MHFQeBAaUVBhH+qoIHDxH+qf6qEQ8Hgv6lEQYUAfPwxUrBw0rA6k4DIAFhExP+nxEM+f5vFAsM9vcMCxQBkPsMEWSO4ouM5YzTAAABAAAAAASwBLAAJgAAATIWHQEUBiMVFBYXBR4BHQEUBiMhIiY9ATQ2NyU+AT0BIiY9ATQ2Alh8sD4mDAkBZgkMDwr7ggoPDAkBZgkMJj6wBLCwfPouaEsKFwbmBRcKXQoPDwpdChcF5gYXCktoLvp8sAAAAA0AAAAABLAETAAPABMAIwAnACsALwAzADcARwBLAE8AUwBXAAATITIWFREUBiMhIiY1ETQ2FxUzNSkBIgYVERQWMyEyNjURNCYzFTM1BRUzNSEVMzUFFTM1IRUzNQchIgYVERQWMyEyNjURNCYFFTM1IRUzNQUVMzUhFTM1GQR+Cg8PCvuCCg8PVWQCo/3aCg8PCgImCg8Pc2T8GGQDIGT8GGQDIGTh/doKDw8KAiYKDw/872QDIGT8GGQDIGQETA8K++YKDw8KBBoKD2RkZA8K/qIKDw8KAV4KD2RkyGRkZGTIZGRkZGQPCv6iCg8PCgFeCg9kZGRkZMhkZGRkAAAEAAAAAARMBEwADwAfAC8APwAAEyEyFhURFAYjISImNRE0NikBMhYVERQGIyEiJjURNDYBITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NjIBkBUdHRX+cBUdHQJtAZAVHR0V/nAVHR39vQGQFR0dFf5wFR0dAm0BkBUdHRX+cBUdHQRMHRX+cBUdHRUBkBUdHRX+cBUdHRUBkBUd/agdFf5wFR0dFQGQFR0dFf5wFR0dFQGQFR0AAAkAAAAABEwETAAPAB8ALwA/AE8AXwBvAH8AjwAAEzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2MsgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR0ETB0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHf5wHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUd/nAdFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0ABgAAAAAEsARMAA8AHwAvAD8ATwBfAAATMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYyyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHQRMHRXIFR0dFcgVHR0VyBUdHRXIFR3+cB0VyBUdHRXIFR0dFcgVHR0VyBUd/nAdFcgVHR0VyBUdHRXIFR0dFcgVHQAAAAABACYALAToBCAAFwAACQE2Mh8BFhQHAQYiJwEmND8BNjIfARYyAdECOwgUB7EICPzxBxUH/oAICLEHFAirBxYB3QI7CAixBxQI/PAICAGACBQHsQgIqwcAAQBuAG4EQgRCACMAAAEXFhQHCQEWFA8BBiInCQEGIi8BJjQ3CQEmND8BNjIXCQE2MgOIsggI/vUBCwgIsggVB/70/vQHFQiyCAgBC/71CAiyCBUHAQwBDAcVBDuzCBUH/vT+9AcVCLIICAEL/vUICLIIFQcBDAEMBxUIsggI/vUBDAcAAwAX/+sExQSZABkAJQBJAAAAMh4CFRQHARYUDwEGIicBBiMiLgI0PgEEIg4BFB4BMj4BNCYFMzIWHQEzMhYdARQGKwEVFAYrASImPQEjIiY9ATQ2OwE1NDYBmcSzgk1OASwICG0HFQj+1HeOYrSBTU2BAW+zmFhYmLOZWFj+vJYKD0sKDw8KSw8KlgoPSwoPDwpLDwSZTYKzYo15/tUIFQhsCAgBK01NgbTEs4JNWJmzmFhYmLOZIw8KSw8KlgoPSwoPDwpLDwqWCg9LCg8AAAMAF//rBMUEmQAZACUANQAAADIeAhUUBwEWFA8BBiInAQYjIi4CND4BBCIOARQeATI+ATQmBSEyFh0BFAYjISImPQE0NgGZxLOCTU4BLAgIbQcVCP7Ud45itIFNTYEBb7OYWFiYs5lYWP5YAV4KDw8K/qIKDw8EmU2Cs2KNef7VCBUIbAgIAStNTYG0xLOCTViZs5hYWJizmYcPCpYKDw8KlgoPAAAAAAIAFwAXBJkEsAAPAC0AAAEzMhYVERQGKwEiJjURNDYFNRYSFRQOAiIuAjU0EjcVDgEVFB4BMj4BNTQmAiZkFR0dFWQVHR0BD6fSW5vW6tabW9KnZ3xyxejFcnwEsB0V/nAVHR0VAZAVHeGmPv7ZuHXWm1tbm9Z1uAEnPqY3yHh0xXJyxXR4yAAEAGQAAASwBLAADwAfAC8APwAAATMyFhURFAYrASImNRE0NgEzMhYVERQGKwEiJjURNDYBMzIWFREUBisBIiY1ETQ2BTMyFh0BFAYrASImPQE0NgQBlgoPDwqWCg8P/t6WCg8PCpYKDw/+3pYKDw8KlgoPD/7elgoPDwqWCg8PBLAPCvuCCg8PCgR+Cg/+cA8K/RIKDw8KAu4KD/7UDwr+PgoPDwoBwgoPyA8K+goPDwr6Cg8AAAAAAgAaABsElgSWAEcATwAAATIfAhYfATcWFwcXFh8CFhUUDwIGDwEXBgcnBwYPAgYjIi8CJi8BByYnNycmLwImNTQ/AjY/ASc2Nxc3Nj8CNhIiBhQWMjY0AlghKSYFMS0Fhj0rUAMZDgGYBQWYAQ8YA1AwOIYFLDIFJisfISkmBTEtBYY8LFADGQ0ClwYGlwINGQNQLzqFBS0xBSYreLJ+frJ+BJYFmAEOGQJQMDmGBSwxBiYrHiIoJgYxLAWGPSxRAxkOApcFBZcCDhkDUTA5hgUtMAYmKiAhKCYGMC0Fhj0sUAIZDgGYBf6ZfrF+frEABwBkAAAEsAUUABMAFwAhACUAKQAtADEAAAEhMhYdASEyFh0BITU0NjMhNTQ2FxUhNQERFAYjISImNREXETMRMxEzETMRMxEzETMRAfQBLCk7ARMKD/u0DwoBEzspASwBLDsp/UQpO2RkZGRkZGRkBRQ7KWQPCktLCg9kKTtkZGT+1PzgKTs7KQMgZP1EArz9RAK8/UQCvP1EArwAAQAMAAAFCATRAB8AABMBNjIXARYGKwERFAYrASImNREhERQGKwEiJjURIyImEgJsCBUHAmAIBQqvDwr6Cg/+1A8K+goPrwoFAmoCYAcH/aAICv3BCg8PCgF3/okKDw8KAj8KAAIAZAAAA+gEsAARABcAAAERFBYzIREUBiMhIiY1ETQ2MwEjIiY9AQJYOykBLB0V/OAVHR0VA1L6FR0EsP5wKTv9dhUdHRUETBUd/nAdFfoAAwAXABcEmQSZAA8AGwAwAAAAMh4CFA4CIi4CND4BBCIOARQeATI+ATQmBTMyFhURMzIWHQEUBisBIiY1ETQ2AePq1ptbW5vW6tabW1ubAb/oxXJyxejFcnL+fDIKD68KDw8K+goPDwSZW5vW6tabW1ub1urWmztyxejFcnLF6MUNDwr+7Q8KMgoPDwoBXgoPAAAAAAL/nAAABRQEsAALAA8AACkBAyMDIQEzAzMDMwEDMwMFFP3mKfIp/eYBr9EVohTQ/p4b4BsBkP5wBLD+1AEs/nD+1AEsAAAAAAIAZAAABLAEsAAVAC8AAAEzMhYVETMyFgcBBiInASY2OwERNDYBMzIWFREUBiMhIiY1ETQ2OwEyFh0BITU0NgImyBUdvxQLDf65DSYN/rkNCxS/HQJUMgoPDwr75goPDwoyCg8DhA8EsB0V/j4XEP5wEBABkBAXAcIVHfzgDwr+ogoPDwoBXgoPDwqvrwoPAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgUzMhYVETMyFgcDBiInAyY2OwERNDYB4+rWm1tbm9bq1ptbW5sBv+jFcnLF6MVycv58lgoPiRUKDd8NJg3fDQoViQ8EmVub1urWm1tbm9bq1ps7csXoxXJyxejFDQ8K/u0XEP7tEBABExAXARMKDwAAAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JiUTFgYrAREUBisBIiY1ESMiJjcTNjIB4+rWm1tbm9bq1ptbW5sBv+jFcnLF6MVycv7n3w0KFYkPCpYKD4kVCg3fDSYEmVub1urWm1tbm9bq1ps7csXoxXJyxejFAf7tEBf+7QoPDwoBExcQARMQAAAAAAIAAAAABLAEsAAZADkAABMhMhYXExYVERQGBwYjISImJyY1EzQ3Ez4BBSEiBgcDBhY7ATIWHwEeATsBMjY/AT4BOwEyNicDLgHhAu4KEwO6BwgFDBn7tAweAgYBB7kDEwKX/dQKEgJXAgwKlgoTAiYCEwr6ChMCJgITCpYKDAJXAhIEsA4K/XQYGf5XDB4CBggEDRkBqRkYAowKDsgOC/4+Cw4OCpgKDg4KmAoODgsBwgsOAAMAFwAXBJkEmQAPABsAJwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgUXFhQPAQYmNRE0NgHj6tabW1ub1urWm1tbmwG/6MVycsXoxXJy/ov9ERH9EBgYBJlbm9bq1ptbW5vW6tabO3LF6MVycsXoxV2+DCQMvgwLFQGQFQsAAQAXABcEmQSwACgAAAE3NhYVERQGIyEiJj8BJiMiDgEUHgEyPgE1MxQOAiIuAjQ+AjMyA7OHBwsPCv6WCwQHhW2BdMVycsXoxXKWW5vW6tabW1ub1nXABCSHBwQL/pYKDwsHhUxyxejFcnLFdHXWm1tbm9bq1ptbAAAAAAIAFwABBJkEsAAaADUAAAE3NhYVERQGIyEiJj8BJiMiDgEVIzQ+AjMyEzMUDgIjIicHBiY1ETQ2MyEyFg8BFjMyPgEDs4cHCw8L/pcLBAeGboF0xXKWW5vWdcDrllub1nXAnIYHCw8LAWgKBQiFboJ0xXIEJIcHBAv+lwsPCweGS3LFdHXWm1v9v3XWm1t2hggFCgFoCw8LB4VMcsUAAAAKAGQAAASwBLAADwAfAC8APwBPAF8AbwB/AI8AnwAAEyEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0NgczMhYdARQGKwEiJj0BNDYzITIWHQEUBiMhIiY9ATQ2BzMyFh0BFAYrASImPQE0NjMhMhYdARQGIyEiJj0BNDYHMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0Nn0EGgoPDwr75goPDwPA/K4KDw8KA1IKDw/9CDIKDw8KMgoPD9IBwgoPDwr+PgoPD74yCg8PCjIKDw/SAcIKDw8K/j4KDw++MgoPDwoyCg8P0gHCCg8PCv4+Cg8PvjIKDw8KMgoPD9IBwgoPDwr+PgoPDwSwDwr7ggoPDwoEfgoPyA8K/K4KDw8KA1IKD2QPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKDwAAAAACAAAAAARMBLAAGQAjAAABNTQmIyEiBh0BIyIGFREUFjMhMjY1ETQmIyE1NDY7ATIWHQEDhHVT/tRSdmQpOzspA4QpOzsp/ageFMgUHgMgyFN1dlLIOyn9qCk7OykCWCk7lhUdHRWWAAIAZAAABEwETAAJADcAABMzMhYVESMRNDYFMhcWFREUBw4DIyIuAScuAiMiBwYjIicmNRE+ATc2HgMXHgIzMjc2fTIKD2QPA8AEBRADIUNAMRwaPyonKSxHHlVLBwgGBQ4WeDsXKC4TOQQpLUUdZ1AHBEwPCvvNBDMKDzACBhH+WwYGO1AkDQ0ODg8PDzkFAwcPAbY3VwMCAwsGFAEODg5XCAAAAwAAAAAEsASXACEAMQBBAAAAMh4CFREUBisBIiY1ETQuASAOARURFAYrASImNRE0PgEDMzIWFREUBisBIiY1ETQ2ITMyFhURFAYrASImNRE0NgHk6N6jYw8KMgoPjeT++uSNDwoyCg9joyqgCAwMCKAIDAwCYKAIDAwIoAgMDASXY6PedP7UCg8PCgEsf9FyctF//tQKDw8KASx03qP9wAwI/jQIDAwIAcwIDAwI/jQIDAwIAcwIDAAAAAACAAAA0wRHA90AFQA5AAABJTYWFREUBiclJisBIiY1ETQ2OwEyBTc2Mh8BFhQPARcWFA8BBiIvAQcGIi8BJjQ/AScmND8BNjIXAUEBAgkMDAn+/hUZ+goPDwr6GQJYeAcUByIHB3h4BwciBxQHeHgHFAciBwd3dwcHIgcUBwMurAYHCv0SCgcGrA4PCgFeCg+EeAcHIgcUB3h4BxQHIgcHd3cHByIHFAd4eAcUByIICAAAAAACAAAA0wNyA90AFQAvAAABJTYWFREUBiclJisBIiY1ETQ2OwEyJTMWFxYVFAcGDwEiLwEuATc2NTQnJjY/ATYBQQECCQwMCf7+FRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcDLqwGBwr9EgoHBqwODwoBXgoPZAEJgaGafwkBAQYXBxMIZ36EaggUBxYFAAAAAAMAAADEBGID7AAbADEASwAAATMWFxYVFAYHBgcjIi8BLgE3NjU0JicmNj8BNgUlNhYVERQGJyUmKwEiJjURNDY7ATIlMxYXFhUUBwYPASIvAS4BNzY1NCcmNj8BNgPHAwsGh0RABwoDCQcqCAIGbzs3BgIJKgf9ggECCQwMCf7+FRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcD7AEJs9lpy1QJAQYiBhQIlrJarEcJFAYhBb6sBgcK/RIKBwasDg8KAV4KD2QBCYGhmn8JAQEGFwcTCGd+hGoIFQYWBQAAAAANAAAAAASwBLAACQAVABkAHQAhACUALQA7AD8AQwBHAEsATwAAATMVIxUhFSMRIQEjFTMVIREjESM1IQURIREhESERBSM1MwUjNTMBMxEhETM1MwEzFSMVIzUjNTM1IzUhBREhEQcjNTMFIzUzASM1MwUhNSEB9GRk/nBkAfQCvMjI/tTIZAJY+7QBLAGQASz84GRkArxkZP1EyP4MyGQB9MhkyGRkyAEs/UQBLGRkZAOEZGT+DGRkAfT+1AEsA4RkZGQCWP4MZMgBLAEsyGT+1AEs/tQBLMhkZGT+DP4MAfRk/tRkZGRkyGTI/tQBLMhkZGT+1GRkZAAAAAAJAAAAAASwBLAAAwAHAAsADwATABcAGwAfACMAADcjETMTIxEzASMRMxMjETMBIxEzASE1IRcjNTMXIzUzBSM1M2RkZMhkZAGQyMjIZGQBLMjI/OD+1AEsyGRkyGRkASzIyMgD6PwYA+j8GAPo/BgD6PwYA+j7UGRkW1tbW1sAAAIAAAAKBKYEsAANABUAAAkBFhQHAQYiJwETNDYzBCYiBhQWMjYB9AKqCAj+MAgUCP1WAQ8KAUM7Uzs7UzsEsP1WCBQI/jAICAKqAdsKD807O1Q7OwAAAAADAAAACgXSBLAADQAZACEAAAkBFhQHAQYiJwETNDYzIQEWFAcBBiIvAQkBBCYiBhQWMjYB9AKqCAj+MAgUCP1WAQ8KAwYCqggI/jAIFAg4Aaj9RP7TO1M7O1M7BLD9VggUCP4wCAgCqgHbCg/9VggUCP4wCAg4AaoCvM07O1Q7OwAAAAABAGQAAASwBLAAJgAAASEyFREUDwEGJjURNCYjISIPAQYWMyEyFhURFAYjISImNRE0PwE2ASwDOUsSQAgKDwr9RBkSQAgFCgK8Cg8PCvyuCg8SixIEsEv8fBkSQAgFCgO2Cg8SQAgKDwr8SgoPDwoDzxkSixIAAAABAMj//wRMBLAACgAAEyEyFhURCQERNDb6AyAVHf4+/j4dBLAdFfuCAbz+QwR/FR0AAAAAAwAAAAAEsASwABUARQBVAAABISIGBwMGHwEeATMhMjY/ATYnAy4BASMiBg8BDgEjISImLwEuASsBIgYVERQWOwEyNj0BNDYzITIWHQEUFjsBMjY1ETQmASEiBg8BBhYzITI2LwEuAQM2/kQLEAFOBw45BhcKAcIKFwY+DgdTARABVpYKFgROBBYK/doKFgROBBYKlgoPDwqWCg8PCgLuCg8PCpYKDw/+sf4MChMCJgILCgJYCgsCJgITBLAPCv7TGBVsCQwMCWwVGAEtCg/+cA0JnAkNDQmcCQ0PCv12Cg8PCpYKDw8KlgoPDwoCigoP/agOCpgKDg4KmAoOAAAAAAQAAABkBLAETAAdACEAKQAxAAABMzIeAh8BMzIWFREUBiMhIiY1ETQ2OwE+BAEVMzUEIgYUFjI2NCQyFhQGIiY0AfTIOF00JAcGlik7Oyn8GCk7OymWAgknM10ByGT+z76Hh76H/u9WPDxWPARMKTs7FRQ7Kf2oKTs7KQJYKTsIG0U1K/7UZGRGh76Hh74IPFY8PFYAAAAAAgA1AAAEsASvACAAIwAACQEWFx4BHwEVITUyNi8BIQYHBh4CMxUhNTY3PgE/AQEDIQMCqQGBFCgSJQkK/l81LBFS/nk6IgsJKjIe/pM4HAwaBwcBj6wBVKIEr/waMioTFQECQkJXLd6RWSIuHAxCQhgcDCUNDQPu/VoByQAAAAADAGQAAAPwBLAAJwAyADsAAAEeBhUUDgMjITU+ATURNC4EJzUFMh4CFRQOAgclMzI2NTQuAisBETMyNjU0JisBAvEFEzUwOyodN1htbDD+DCk7AQYLFyEaAdc5dWM+Hy0tEP6Pi05pESpTPnbYUFJ9Xp8CgQEHGB0zOlIuQ3VONxpZBzMoAzsYFBwLEAkHRwEpSXNDM1s6KwkxYUopOzQb/K5lUFqBAAABAMgAAANvBLAAGQAAARcOAQcDBhYXFSE1NjcTNjQuBCcmJzUDbQJTQgeECSxK/gy6Dq0DAw8MHxUXDQYEsDkTNSj8uTEoBmFhEFIDQBEaExAJCwYHAwI5AAAAAAL/tQAABRQEsAAlAC8AAAEjNC4FKwERFBYfARUhNTI+AzURIyIOBRUjESEFIxEzByczESM3BRQyCAsZEyYYGcgyGRn+cAQOIhoWyBkYJhMZCwgyA+j7m0tLfX1LS30DhBUgFQ4IAwH8rhYZAQJkZAEFCRUOA1IBAwgOFSAVASzI/OCnpwMgpwACACH/tQSPBLAAJQAvAAABIzQuBSsBERQWHwEVITUyPgM1ESMiDgUVIxEhEwc1IRUnNxUhNQRMMggLGRMmGBnIMhkZ/nAEDiIaFsgZGCYTGQsIMgPoQ6f84KenAyADhBUgFQ4IAwH9dhYZAQJkZAEFCRUOAooBAwgOFSAVASz7gn1LS319S0sABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyAlgVHR0V/agVHR0VA+gVHR0V/BgVHR0VAyAVHR0V/OAVHR0VBEwVHR0V+7QVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYDITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NgMhMhYdARQGIyEiJj0BNDb6ArwVHR0V/UQVHR2zBEwVHR0V+7QVHR3dArwVHR0V/UQVHR2zBEwVHR0V+7QVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AAAE1NDYzITIWHQEUBiMhIiYBNTQ2MyEyFh0BFAYjISImEzU0NjMhMhYdARQGIyEiJgE1NDYzITIWHQEUBiMhIiYB9B0VAlgVHR0V/agVHf5wHRUD6BUdHRX8GBUdyB0VAyAVHR0V/OAVHf7UHRUETBUdHRX7tBUdA7ZkFR0dFWQVHR3+6WQVHR0VZBUdHf7pZBUdHRVkFR0d/ulkFR0dFWQVHR0AAAQAAAAABLAETAAPAB8ALwA/AAATITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2MgRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dBEwdFWQVHR0VZBUd/tQdFWQVHR0VZBUd/tQdFWQVHR0VZBUd/tQdFWQVHR0VZBUdAAgAAAAABLAETAAPAB8ALwA/AE8AXwBvAH8AABMzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2MmQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR0ETB0VZBUdHRVkFR0dFWQVHR0VZBUd/tQdFWQVHR0VZBUdHRVkFR0dFWQVHf7UHRVkFR0dFWQVHR0VZBUdHRVkFR3+1B0VZBUdHRVkFR0dFWQVHR0VZBUdAAAG/5wAAASwBEwAAwATACMAKgA6AEoAACEjETsCMhYdARQGKwEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2BQc1IzUzNQUhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2AZBkZJZkFR0dFWQVHR0VAfQVHR0V/gwVHR3++qfIyAHCASwVHR0V/tQVHR0VAlgVHR0V/agVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR36fUtkS68dFWQVHR0VZBUd/tQdFWQVHR0VZBUdAAAABgAAAAAFFARMAA8AEwAjACoAOgBKAAATMzIWHQEUBisBIiY9ATQ2ASMRMwEhMhYdARQGIyEiJj0BNDYFMxUjFSc3BSEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyZBUdHRVkFR0dA2dkZPyuAfQVHR0V/gwVHR0EL8jIp6f75gEsFR0dFf7UFR0dFQJYFR0dFf2oFR0dBEwdFWQVHR0VZBUd+7QETP7UHRVkFR0dFWQVHchkS319rx0VZBUdHRVkFR3+1B0VZBUdHRVkFR0AAAAAAgAAAMgEsAPoAA8AEgAAEyEyFhURFAYjISImNRE0NgkCSwLuHywsH/0SHywsBIT+1AEsA+gsH/12HywsHwKKHyz9RAEsASwAAwAAAAAEsARMAA8AFwAfAAATITIWFREUBiMhIiY1ETQ2FxE3BScBExEEMhYUBiImNCwEWBIaGhL7qBIaGkr3ASpKASXs/NJwTk5wTgRMGhL8DBIaGhID9BIaZP0ftoOcAT7+4AH0dE5vT09vAAAAAAIA2wAFBDYEkQAWAB4AAAEyHgEVFAcOAQ8BLgQnJjU0PgIWIgYUFjI2NAKIdcZzRkWyNjYJIV5YbSk8RHOft7eCgreCBJF4ynVzj23pPz4IIWZomEiEdVijeUjDgriBgbgAAAACABcAFwSZBJkADwAXAAAAMh4CFA4CIi4CND4BAREiDgEUHgEB4+rWm1tbm9bq1ptbW5sBS3TFcnLFBJlbm9bq1ptbW5vW6tab/G8DVnLF6MVyAAACAHUAAwPfBQ8AGgA1AAABHgYVFA4DBy4DNTQ+BQMOAhceBBcWNj8BNiYnLgInJjc2IyYCKhVJT1dOPiUzVnB9P1SbfEokP0xXUEm8FykoAwEbITEcExUWAgYCCQkFEikMGiACCAgFD0iPdXdzdYdFR4BeRiYEBTpjl1lFh3ZzeHaQ/f4hS4I6JUEnIw4IBwwQIgoYBwQQQSlZtgsBAAAAAwAAAAAEywRsAAwAKgAvAAABNz4CHgEXHgEPAiUhMhcHISIGFREUFjMhMjY9ATcRFAYjISImNRE0NgkBBzcBA+hsAgYUFR0OFgoFBmz9BQGQMje7/pApOzspAfQpO8i7o/5wpbm5Azj+lqE3AWMD9XMBAgIEDw4WKgsKc8gNuzsp/gwpOzsptsj+tKW5uaUBkKW5/tf+ljKqAWMAAgAAAAAEkwRMABsANgAAASEGByMiBhURFBYzITI2NTcVFAYjISImNRE0NgUBFhQHAQYmJzUmDgMHPgY3NT4BAV4BaaQ0wyk7OykB9Ck7yLml/nClubkCfwFTCAj+rAcLARo5ZFRYGgouOUlARioTAQsETJI2Oyn+DCk7OymZZ6W5uaUBkKW5G/7TBxUH/s4GBAnLAQINFjAhO2JBNB0UBwHSCgUAAAAAAgAAAAAEnQRMAB0ANQAAASEyFwchIgYVERQWMyEyNj0BNxUUBiMhIiY1ETQ2CQE2Mh8BFhQHAQYiLwEmND8BNjIfARYyAV4BXjxDsv6jKTs7KQH0KTvIuaX+cKW5uQHKAYsHFQdlBwf97QcVB/gHB2UHFQdvCBQETBexOyn+DCk7OylFyNulubmlAZCluf4zAYsHB2UHFQf97AcH+AcVB2UHB28HAAAAAQAKAAoEpgSmADsAAAkBNjIXARYGKwEVMzU0NhcBFhQHAQYmPQEjFTMyFgcBBiInASY2OwE1IxUUBicBJjQ3ATYWHQEzNSMiJgE+AQgIFAgBBAcFCqrICggBCAgI/vgICsiqCgUH/vwIFAj++AgFCq/ICgj++AgIAQgICsivCgUDlgEICAj++AgKyK0KBAf+/AcVB/73BwQKrcgKCP74CAgBCAgKyK0KBAcBCQcVBwEEBwQKrcgKAAEAyAAAA4QETAAZAAATMzIWFREBNhYVERQGJwERFAYrASImNRE0NvpkFR0B0A8VFQ/+MB0VZBUdHQRMHRX+SgHFDggV/BgVCA4Bxf5KFR0dFQPoFR0AAAABAAAAAASwBEwAIwAAEzMyFhURATYWFREBNhYVERQGJwERFAYnAREUBisBIiY1ETQ2MmQVHQHQDxUB0A8VFQ/+MBUP/jAdFWQVHR0ETB0V/koBxQ4IFf5KAcUOCBX8GBUIDgHF/koVCA4Bxf5KFR0dFQPoFR0AAAABAJ0AGQSwBDMAFQAAAREUBicBERQGJwEmNDcBNhYVEQE2FgSwFQ/+MBUP/hQPDwHsDxUB0A8VBBr8GBUIDgHF/koVCA4B4A4qDgHgDggV/koBxQ4IAAAAAQDIABYEMwQ2AAsAABMBFhQHAQYmNRE0NvMDLhIS/NISGRkEMv4OCx4L/g4LDhUD6BUOAAIAyABkA4QD6AAPAB8AABMzMhYVERQGKwEiJjURNDYhMzIWFREUBisBIiY1ETQ2+sgVHR0VyBUdHQGlyBUdHRXIFR0dA+gdFfzgFR0dFQMgFR0dFfzgFR0dFQMgFR0AAAEAyABkBEwD6AAPAAABERQGIyEiJjURNDYzITIWBEwdFfzgFR0dFQMgFR0DtvzgFR0dFQMgFR0dAAAAAAEAAAAZBBMEMwAVAAABETQ2FwEWFAcBBiY1EQEGJjURNDYXAfQVDwHsDw/+FA8V/jAPFRUPAmQBthUIDv4gDioO/iAOCBUBtv47DggVA+gVCA4AAAH//gACBLMETwAjAAABNzIWFRMUBiMHIiY1AwEGJjUDAQYmNQM0NhcBAzQ2FwEDNDYEGGQUHgUdFWQVHQL+MQ4VAv4yDxUFFQ8B0gIVDwHSAh0ETgEdFfwYFR0BHRUBtf46DwkVAbX+OQ4JFAPoFQkP/j4BthQJDv49AbYVHQAAAQEsAAAD6ARMABkAAAEzMhYVERQGKwEiJjURAQYmNRE0NhcBETQ2A1JkFR0dFWQVHf4wDxUVDwHQHQRMHRX8GBUdHRUBtv47DggVA+gVCA7+OwG2FR0AAAIAZADIBLAESAALABsAAAkBFgYjISImNwE2MgEhMhYdARQGIyEiJj0BNDYCrgH1DwkW++4WCQ8B9Q8q/fcD6BUdHRX8GBUdHQQ5/eQPFhYPAhwP/UgdFWQVHR0VZBUdAAEAiP/8A3UESgAFAAAJAgcJAQN1/qABYMX92AIoA4T+n/6fxgIoAiYAAAAAAQE7//wEKARKAAUAAAkBJwkBNwQo/dnGAWH+n8YCI/3ZxgFhAWHGAAIAFwAXBJkEmQAPADMAAAAyHgIUDgIiLgI0PgEFIyIGHQEjIgYdARQWOwEVFBY7ATI2PQEzMjY9ATQmKwE1NCYB4+rWm1tbm9bq1ptbW5sBfWQVHZYVHR0Vlh0VZBUdlhUdHRWWHQSZW5vW6tabW1ub1urWm7odFZYdFWQVHZYVHR0Vlh0VZBUdlhUdAAAAAAIAFwAXBJkEmQAPAB8AAAAyHgIUDgIiLgI0PgEBISIGHQEUFjMhMjY9ATQmAePq1ptbW5vW6tabW1ubAkX+DBUdHRUB9BUdHQSZW5vW6tabW1ub1urWm/5+HRVkFR0dFWQVHQACABcAFwSZBJkADwAzAAAAMh4CFA4CIi4CND4BBCIPAScmIg8BBhQfAQcGFB8BFjI/ARcWMj8BNjQvATc2NC8BAePq1ptbW5vW6tabW1ubAeUZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0JCXh4CQmNBJlbm9bq1ptbW5vW6tabrQl4eAkJjQkZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0AAgAXABcEmQSZAA8AJAAAADIeAhQOAiIuAjQ+AQEnJiIPAQYUHwEWMjcBNjQvASYiBwHj6tabW1ub1urWm1tbmwEVVAcVCIsHB/IHFQcBdwcHiwcVBwSZW5vW6tabW1ub1urWm/4xVQcHiwgUCPEICAF3BxUIiwcHAAAAAAMAFwAXBJkEmQAPADsASwAAADIeAhQOAiIuAjQ+AQUiDgMVFDsBFjc+ATMyFhUUBgciDgUHBhY7ATI+AzU0LgMTIyIGHQEUFjsBMjY9ATQmAePq1ptbW5vW6tabW1ubAT8dPEIyIRSDHgUGHR8UFw4TARkOGhITDAIBDQ6tBx4oIxgiM0Q8OpYKDw8KlgoPDwSZW5vW6tabW1ub1urWm5ELHi9PMhkFEBQQFRIXFgcIBw4UHCoZCBEQKDhcNi9IKhsJ/eMPCpYKDw8KlgoPAAADABcAFwSZBJkADwAfAD4AAAAyHgIUDgIiLgI0PgEFIyIGHQEUFjsBMjY9ATQmAyMiBh0BFBY7ARUjIgYdARQWMyEyNj0BNCYrARE0JgHj6tabW1ub1urWm1tbmwGWlgoPDwqWCg8PCvoKDw8KS0sKDw8KAV4KDw8KSw8EmVub1urWm1tbm9bq1ptWDwqWCg8PCpYKD/7UDwoyCg/IDwoyCg8PCjIKDwETCg8AAgAAAAAEsASwAC8AXwAAATMyFh0BHgEXMzIWHQEUBisBDgEHFRQGKwEiJj0BLgEnIyImPQE0NjsBPgE3NTQ2ExUUBisBIiY9AQ4BBzMyFh0BFAYrAR4BFzU0NjsBMhYdAT4BNyMiJj0BNDY7AS4BAg2WCg9nlxvCCg8PCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw+5DwqWCg9EZheoCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmBLAPCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw8KlgoPZ5cbwgoP/s2oCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmRA8KlgoPRGYAAwAXABcEmQSZAA8AGwA/AAAAMh4CFA4CIi4CND4BBCIOARQeATI+ATQmBxcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyAePq1ptbW5vW6tabW1ubAb/oxXJyxejFcnKaQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwdABxUHfHwHFQSZW5vW6tabW1ub1urWmztyxejFcnLF6MVaQAcVB3x8BxUHQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwAAAAMAFwAXBJkEmQAPABsAMAAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgcXFhQHAQYiLwEmND8BNjIfATc2MgHj6tabW1ub1urWm1tbmwG/6MVycsXoxXJyg2oHB/7ACBQIyggIagcVB0/FBxUEmVub1urWm1tbm9bq1ps7csXoxXJyxejFfWoHFQf+vwcHywcVB2oICE/FBwAAAAMAFwAXBJkEmQAPABgAIQAAADIeAhQOAiIuAjQ+AQUiDgEVFBcBJhcBFjMyPgE1NAHj6tabW1ub1urWm1tbmwFLdMVyQQJLafX9uGhzdMVyBJlbm9bq1ptbW5vW6tabO3LFdHhpAktB0P24PnLFdHMAAAAAAQAXAFMEsAP5ABUAABMBNhYVESEyFh0BFAYjIREUBicBJjQnAgoQFwImFR0dFf3aFxD99hACRgGrDQoV/t0dFcgVHf7dFQoNAasNJgAAAAABAAAAUwSZA/kAFQAACQEWFAcBBiY1ESEiJj0BNDYzIRE0NgJ/AgoQEP32EBf92hUdHRUCJhcD8f5VDSYN/lUNChUBIx0VyBUdASMVCgAAAAEAtwAABF0EmQAVAAAJARYGIyERFAYrASImNREhIiY3ATYyAqoBqw0KFf7dHRXIFR3+3RUKDQGrDSYEif32EBf92hUdHRUCJhcQAgoQAAAAAQC3ABcEXQSwABUAAAEzMhYVESEyFgcBBiInASY2MyERNDYCJsgVHQEjFQoN/lUNJg3+VQ0KFQEjHQSwHRX92hcQ/fYQEAIKEBcCJhUdAAABAAAAtwSZBF0AFwAACQEWFAcBBiY1EQ4DBz4ENxE0NgJ/AgoQEP32EBdesKWBJAUsW4fHfhcEVf5VDSYN/lUNChUBIwIkRHVNabGdcUYHAQYVCgACAAAAAASwBLAAFQArAAABITIWFREUBi8BBwYiLwEmND8BJyY2ASEiJjURNDYfATc2Mh8BFhQPARcWBgNSASwVHRUOXvkIFAhqBwf5Xg4I/iH+1BUdFQ5e+QgUCGoHB/leDggEsB0V/tQVCA5e+QcHaggUCPleDhX7UB0VASwVCA5e+QcHaggUCPleDhUAAAACAEkASQRnBGcAFQArAAABFxYUDwEXFgYjISImNRE0Nh8BNzYyASEyFhURFAYvAQcGIi8BJjQ/AScmNgP2agcH+V4OCBX+1BUdFQ5e+QgU/QwBLBUdFQ5e+QgUCGoHB/leDggEYGoIFAj5Xg4VHRUBLBUIDl75B/3xHRX+1BUIDl75BwdqCBQI+V4OFQAAAAADABcAFwSZBJkADwAfAC8AAAAyHgIUDgIiLgI0PgEFIyIGFxMeATsBMjY3EzYmAyMiBh0BFBY7ATI2PQE0JgHj6tabW1ub1urWm1tbmwGz0BQYBDoEIxQ2FCMEOgQYMZYKDw8KlgoPDwSZW5vW6tabW1ub1urWm7odFP7SFB0dFAEuFB3+DA8KlgoPDwqWCg8AAAAABQAAAAAEsASwAEkAVQBhAGgAbwAAATIWHwEWHwEWFxY3Nj8BNjc2MzIWHwEWHwIeATsBMhYdARQGKwEiBh0BIREjESE1NCYrASImPQE0NjsBMjY1ND8BNjc+BAUHBhY7ATI2LwEuAQUnJgYPAQYWOwEyNhMhIiY1ESkBERQGIyERAQQJFAUFFhbEFQ8dCAsmxBYXERUXMA0NDgQZCAEPCj0KDw8KMgoP/nDI/nAPCjIKDw8KPQsOCRkFDgIGFRYfAp2mBwQK2woKAzMDEP41sQgQAzMDCgrnCwMe/okKDwGQAlgPCv6JBLAEAgIKDXYNCxUJDRZ2DQoHIREQFRh7LAkLDwoyCg8PCq8BLP7UrwoPDwoyCg8GBQQwgBkUAwgWEQ55ogcKDgqVCgSqnQcECo8KDgr8cg8KAXf+iQoPAZAAAAAAAgAAAAwErwSmACsASQAAATYWFQYCDgQuAScmByYOAQ8BBiY1NDc+ATc+AScuAT4BNz4GFyYGBw4BDwEOBAcOARY2Nz4CNz4DNz4BBI0IGgItQmxhi2KORDg9EQQRMxuZGhYqCFUYEyADCQIQOjEnUmFch3vAJQgdHyaiPT44XHRZUhcYDhItIRmKcVtGYWtbKRYEBKYDEwiy/t3IlVgxEQgLCwwBAQIbG5kYEyJAJghKFRE8Hzdff4U/M0o1JSMbL0QJGCYvcSEhHjZST2c1ODwEJygeW0AxJUBff1UyFAABAF0AHgRyBM8ATwAAAQ4BHgQXLgc+ATceAwYHDgQHBicmNzY3PgQuAScWDgMmJy4BJyY+BDcGHgM3PgEuAicmPgMCjScfCic4R0IgBBsKGAoQAwEJEg5gikggBhANPkpTPhZINx8SBgsNJysiCRZOQQoVNU1bYC9QZwICBAUWITsoCAYdJzIYHw8YIiYHDyJJYlkEz0OAZVxEOSQMBzgXOB42IzElKRIqg5Gnl0o3Z0c6IAYWCwYNAwQFIDhHXGF1OWiqb0sdBxUknF0XNTQ8PEUiNWNROBYJDS5AQVUhVZloUSkAAAAAA//cAGoE1ARGABsAPwBRAAAAMh4FFA4FIi4FND4EBSYGFxYVFAYiJjU0NzYmBwYHDgEXHgQyPgM3NiYnJgUHDgEXFhcWNj8BNiYnJicuAQIGpJ17bk85HBw6T257naKde25POhwcOU9uewIPDwYIGbD4sBcIBw5GWg0ECxYyWl+DiINfWjIWCwQMWv3/Iw8JCSU4EC0OIw4DDywtCyIERi1JXGJcSSpJXGJcSS0tSVxiXEkqSVxiXEncDwYTOT58sLB8OzcTBg9FcxAxEiRGXkQxMEVeRSQSMRF1HiQPLxJEMA0EDyIPJQ8sSRIEAAAABP/cAAAE1ASwABQAJwA7AEwAACEjNy4ENTQ+BTMyFzczEzceARUUDgMHNz4BNzYmJyYlBgcOARceBBc3LgE1NDc2JhcHDgEXFhcWNj8CJyYnLgECUJQfW6l2WSwcOU9ue51SPUEglCYvbIknUGqYUi5NdiYLBAw2/VFGWg0ECxIqSExoNSlrjxcIB3wjDwkJJTgQLQ4MFgMsLQsieBRhdHpiGxVJXGJcSS0Pef5StVXWNBpacm5jGq0xiD8SMRFGckVzEDESHjxRQTkNmhKnbjs3EwZwJA8vEkQwDQQPC1YELEkSBAAAAAP/ngAABRIEqwALABgAKAAAJwE2FhcBFgYjISImJSE1NDY7ATIWHQEhAQczMhYPAQ4BKwEiJi8BJjZaAoIUOBQCghUbJfryJRsBCgFZDwqWCg8BWf5DaNAUGAQ6BCMUNhQjBDoEGGQEKh8FIfvgIEdEhEsKDw8KSwLT3x0U/BQdHRT8FB0AAAABAGQAFQSwBLAAKAAAADIWFREBHgEdARQGJyURFh0BFAYvAQcGJj0BNDcRBQYmPQE0NjcBETQCTHxYAWsPFhgR/plkGhPNzRMaZP6ZERgWDwFrBLBYPv6t/rsOMRQpFA0M+f75XRRAFRAJgIAJEBVAFF0BB/kMDRQpFDEOAUUBUz4AAAARAAAAAARMBLAAHQAnACsALwAzADcAOwA/AEMARwBLAE8AUwBXAFsAXwBjAAABMzIWHQEzMhYdASE1NDY7ATU0NjsBMhYdASE1NDYBERQGIyEiJjURFxUzNTMVMzUzFTM1MxUzNTMVMzUFFTM1MxUzNTMVMzUzFTM1MxUzNQUVMzUzFTM1MxUzNTMVMzUzFTM1A1JkFR0yFR37tB0VMh0VZBUdAfQdAQ8dFfwYFR1kZGRkZGRkZGRk/HxkZGRkZGRkZGT8fGRkZGRkZGRkZASwHRUyHRWWlhUdMhUdHRUyMhUd/nD9EhUdHRUC7shkZGRkZGRkZGRkyGRkZGRkZGRkZGTIZGRkZGRkZGRkZAAAAAMAAAAZBXcElwAZACUANwAAARcWFA8BBiY9ASMBISImPQE0NjsBATM1NDYBBycjIiY9ATQ2MyEBFxYUDwEGJj0BIyc3FzM1NDYEb/kPD/kOFZ/9qP7dFR0dFdECWPEV/amNetEVHR0VASMDGvkPD/kOFfG1jXqfFQSN5g4qDuYOCBWW/agdFWQVHQJYlhUI/piNeh0VZBUd/k3mDioO5g4IFZa1jXqWFQgAAAABAAAAAASwBEwAEgAAEyEyFhURFAYjIQERIyImNRE0NmQD6Ck7Oyn9rP7QZCk7OwRMOyn9qCk7/tQBLDspAlgpOwAAAAMAZAAABEwEsAAJABMAPwAAEzMyFh0BITU0NiEzMhYdASE1NDYBERQOBSIuBTURIRUUFRwBHgYyPgYmNTQ9AZbIFR3+1B0C0cgVHf7UHQEPBhgoTGacwJxmTCgYBgEsAwcNFB8nNkI2Jx8TDwUFAQSwHRX6+hUdHRX6+hUd/nD+1ClJalZcPigoPlxWakkpASz6CRIVKyclIRsWEAgJEBccISUnKhURCPoAAAAB//8A1ARMA8IABQAAAQcJAScBBEzG/p/+n8UCJwGbxwFh/p/HAicAAQAAAO4ETQPcAAUAAAkCNwkBBE392v3ZxgFhAWEDFf3ZAifH/p8BYQAAAAAC/1EAZAVfA+gAFAApAAABITIWFREzMhYPAQYiLwEmNjsBESElFxYGKwERIRchIiY1ESMiJj8BNjIBlALqFR2WFQgO5g4qDuYOCBWW/oP+HOYOCBWWAYHX/RIVHZYVCA7mDioD6B0V/dkVDvkPD/kOFQGRuPkOFf5wyB0VAiYVDvkPAAABAAYAAASeBLAAMAAAEzMyFh8BITIWBwMOASMhFyEyFhQGKwEVFAYiJj0BIRUUBiImPQEjIiYvAQMjIiY0NjheERwEJgOAGB4FZAUsIf2HMAIXFR0dFTIdKh3+1B0qHR8SHQYFyTYUHh4EsBYQoiUY/iUVK8gdKh0yFR0dFTIyFR0dFTIUCQoDwR0qHQAAAAACAAAAAASwBEwACwAPAAABFSE1MzQ2MyEyFhUFIREhBLD7UMg7KQEsKTv9RASw+1AD6GRkKTs7Kcj84AACAAAAAAXcBEwADAAQAAATAxEzNDYzITIWFSEVBQEhAcjIyDspASwqOgH0ASz+1PtQASwDIP5wAlgpOzspyGT9RAK8AAEBRQAAA2sErwAbAAABFxYGKwERMzIWDwEGIi8BJjY7AREjIiY/ATYyAnvmDggVlpYVCA7mDioO5g4IFZaWFQgO5g4qBKD5DhX9pxUO+Q8P+Q4VAlkVDvkPAAAAAQABAUQErwNrABsAAAEXFhQPAQYmPQEhFRQGLwEmND8BNhYdASE1NDYDqPkODvkPFf2oFQ/5Dg75DxUCWBUDYOUPKQ/lDwkUl5cUCQ/lDykP5Q8JFZWVFQkAAAAEAAAAAASwBLAACQAZAB0AIQAAAQMuASMhIgYHAwUhIgYdARQWMyEyNj0BNCYFNTMVMzUzFQSRrAUkFP1gFCQFrAQt/BgpOzspA+gpOzv+q2RkZAGQAtwXLSgV/R1kOylkKTs7KWQpO8hkZGRkAAAAA/+cAGQEsARMAAsAIwAxAAAAMhYVERQGIiY1ETQDJSMTFgYjIisBIiYnAj0BNDU0PgE7ASUBFSIuAz0BND4CNwRpKh0dKh1k/V0mLwMRFQUCVBQdBDcCCwzIAqP8GAQOIhoWFR0dCwRMHRX8rhUdHRUDUhX8mcj+7BAIHBUBUQ76AgQQDw36/tT6AQsTKRwyGigUDAEAAAACAEoAAARmBLAALAA1AAABMzIWDwEeARcTFzMyFhQGBw4EIyIuBC8BLgE0NjsBNxM+ATcnJjYDFjMyNw4BIiYCKV4UEgYSU3oPP3YRExwaEggeZGqfTzl0XFU+LwwLEhocExF2Pw96UxIGEyQyNDUxDDdGOASwFRMlE39N/rmtHSkoBwQLHBYSCg4REg4FBAgoKR2tAUdNfhQgExr7vgYGMT09AAEAFAAUBJwEnAAXAAABNwcXBxcHFycHJwcnBzcnNyc3Jxc3FzcDIOBO6rS06k7gLZubLeBO6rS06k7gLZubA7JO4C2bmy3gTuq0tOpO4C2bmy3gTuq0tAADAAAAZASwBLAAIQAtAD0AAAEzMhYdAQchMhYdARQHAw4BKwEiJi8BIyImNRE0PwI+ARcPAREzFzMTNSE3NQEzMhYVERQGKwEiJjURNDYCijIoPBwBSCg8He4QLBf6B0YfHz0tNxSRYA0xG2SWZIjW+v4+Mv12ZBUdHRVkFR0dBLBRLJZ9USxkLR3+qBghMhkZJCcBkCQbxMYcKGTU1f6JZAF3feGv/tQdFf4MFR0dFQH0FR0AAAAAAwAAAAAEsARMACAAMAA8AAABMzIWFxMWHQEUBiMhFh0BFAYrASImLwImNRE0NjsBNgUzMhYVERQGKwEiJjURNDYhByMRHwEzNSchNQMCWPoXLBDuHTwo/rgcPCgyGzENYJEUNy09fP3pZBUdHRVkFR0dAl+IZJZkMjIBwvoETCEY/qgdLWQsUXYHlixRKBzGxBskAZAnJGRkHRX+DBUdHRUB9BUdZP6J1dSv4X0BdwADAAAAZAUOBE8AGwA3AEcAAAElNh8BHgEPASEyFhQGKwEDDgEjISImNRE0NjcXERchEz4BOwEyNiYjISoDLgQnJj8BJwUzMhYVERQGKwEiJjURNDYBZAFrHxZuDQEMVAEuVGxuVGqDBhsP/qoHphwOOmQBJYMGGw/LFRMSFv44AgoCCQMHAwUDAQwRklb9T2QVHR0VZBUdHQNp5hAWcA0mD3lMkE7+rRUoog0CDRElCkj+CVkBUxUoMjIBAgIDBQIZFrdT5B0V/gwVHR0VAfQVHQAAAAP/nABkBLAETwAdADYARgAAAQUeBBURFAYjISImJwMjIiY0NjMhJyY2PwE2BxcWBw4FKgIjIRUzMhYXEyE3ESUFMzIWFREUBisBIiY1ETQ2AdsBbgIIFBANrAf+qg8bBoNqVW1sVAEuVQsBDW4WSpIRDAIDBQMHAwkDCgH+Jd0PHAaCASZq/qoCUGQVHR0VZBUdHQRP5gEFEBEXC/3zDaIoFQFTTpBMeQ8mDXAWrrcWGQIFAwICAWQoFf6tWQH37OQdFf4MFR0dFQH0FR0AAAADAGEAAARMBQ4AGwA3AEcAAAAyFh0BBR4BFREUBiMhIiYvAQMmPwE+AR8BETQXNTQmBhURHAMOBAcGLwEHEyE3ESUuAQMhMhYdARQGIyEiJj0BNDYB3pBOAVMVKKIN/fMRJQoJ5hAWcA0mD3nGMjIBAgIDBQIZFrdT7AH3Wf6tFSiWAfQVHR0V/gwVHR0FDm5UaoMGGw/+qgemHA4OAWsfFm4NAQxUAS5U1ssVExIW/jgCCgIJAwcDBQMBDBGSVv6tZAElgwYb/QsdFWQVHR0VZBUdAAP//QAGA+gFFAAPAC0ASQAAASEyNj0BNCYjISIGHQEUFgEVFAYiJjURBwYmLwEmNxM+BDMhMhYVERQGBwEDFzc2Fx4FHAIVERQWNj0BNDY3JREnAV4B9BUdHRX+DBUdHQEPTpBMeQ8mDXAWEOYBBRARFwsCDQ2iKBX9iexTtxYZAgUDAgIBMjIoFQFTWQRMHRVkFR0dFWQVHfzmalRubFQBLlQMAQ1uFh8BawIIEw8Mpgf+qg8bBgHP/q1WkhEMAQMFAwcDCQIKAv44FhITFcsPGwaDASVkAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBJSYGHQEhIgYdARQWMyEVFBY3JTY0AeLs1ptbW5vW7NabW1ubAob+7RAX/u0KDw8KARMXEAETEASaW5vW7NabW1ub1uzWm/453w0KFYkPCpYKD4kVCg3fDSYAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgENAQYUFwUWNj0BITI2PQE0JiMhNTQmAeLs1ptbW5vW7NabW1ubASX+7RAQARMQFwETCg8PCv7tFwSaW5vW7NabW1ub1uzWm+jfDSYN3w0KFYkPCpYKD4kVCgAAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBAyYiBwMGFjsBERQWOwEyNjURMzI2AeLs1ptbW5vW7NabW1ubAkvfDSYN3w0KFYkPCpYKD4kVCgSaW5vW7NabW1ub1uzWm/5AARMQEP7tEBf+7QoPDwoBExcAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEFIyIGFREjIgYXExYyNxM2JisBETQmAeLs1ptbW5vW7NabW1ubAZeWCg+JFQoN3w0mDd8NChWJDwSaW5vW7NabW1ub1uzWm7sPCv7tFxD+7RAQARMQFwETCg8AAAMAGAAYBJgEmAAPAJYApgAAADIeAhQOAiIuAjQ+ASUOAwcGJgcOAQcGFgcOAQcGFgcUFgcyHgEXHgIXHgI3Fg4BFx4CFxQGFBcWNz4CNy4BJy4BJyIOAgcGJyY2NS4BJzYuAQYHBicmNzY3HgIXHgMfAT4CJyY+ATc+AzcmNzIWMjY3LgMnND4CJiceAT8BNi4CJwYHFB4BFS4CJz4BNxYyPgEB5OjVm1xcm9Xo1ZtcXJsBZA8rHDoKDz0PFD8DAxMBAzEFCRwGIgEMFhkHECIvCxU/OR0HFBkDDRQjEwcFaHUeISQDDTAMD0UREi4oLBAzDwQBBikEAQMLGhIXExMLBhAGKBsGBxYVEwYFAgsFAwMNFwQGCQcYFgYQCCARFwkKKiFBCwQCAQMDHzcLDAUdLDgNEiEQEgg/KhADGgMKEgoRBJhcm9Xo1ZtcXJvV6NWbEQwRBwkCAwYFBycPCxcHInIWInYcCUcYChQECA4QBAkuHgQPJioRFRscBAcSCgwCch0kPiAIAQcHEAsBAgsLIxcBMQENCQIPHxkCFBkdHB4QBgEBBwoMGBENBAMMJSAQEhYXDQ4qFBkKEhIDCQsXJxQiBgEOCQwHAQ0DBAUcJAwSCwRnETIoAwEJCwsLJQcKDBEAAAAAAQAAAAIErwSFABYAAAE2FwUXNxYGBw4BJwEGIi8BJjQ3ASY2AvSkjv79kfsGUE08hjv9rA8rD28PDwJYIk8EhVxliuh+WYcrIgsW/awQEG4PKxACV2XJAAYAAABgBLAErAAPABMAIwAnADcAOwAAEyEyFh0BFAYjISImPQE0NgUjFTMFITIWHQEUBiMhIiY9ATQ2BSEVIQUhMhYdARQGIyEiJj0BNDYFIRUhZAPoKTs7KfwYKTs7BBHIyPwYA+gpOzsp/BgpOzsEEf4MAfT8GAPoKTs7KfwYKTs7BBH+1AEsBKw7KWQpOzspZCk7ZGTIOylkKTs7KWQpO2RkyDspZCk7OylkKTtkZAAAAAIAZAAABEwEsAALABEAABMhMhYUBiMhIiY0NgERBxEBIZYDhBUdHRX8fBUdHQI7yP6iA4QEsB0qHR0qHf1E/tTIAfQB9AAAAAMAAABkBLAEsAAXABsAJQAAATMyFh0BITIWFREhNSMVIRE0NjMhNTQ2FxUzNQEVFAYjISImPQEB9MgpOwEsKTv+DMj+DDspASw7KcgB9Dsp/BgpOwSwOylkOyn+cGRkAZApO2QpO2RkZP1EyCk7OynIAAAABAAAAAAEsASwABUAKwBBAFcAABMhMhYPARcWFA8BBiIvAQcGJjURNDYpATIWFREUBi8BBwYiLwEmND8BJyY2ARcWFA8BFxYGIyEiJjURNDYfATc2MgU3NhYVERQGIyEiJj8BJyY0PwE2MhcyASwVCA5exwcHaggUCMdeDhUdAzUBLBUdFQ5exwgUCGoHB8deDgj+L2oHB8deDggV/tQVHRUOXscIFALLXg4VHRX+1BUIDl7HBwdqCBQIBLAVDl7HCBQIagcHx14OCBUBLBUdHRX+1BUIDl7HBwdqCBQIx14OFf0maggUCMdeDhUdFQEsFQgOXscHzl4OCBX+1BUdFQ5exwgUCGoHBwAAAAYAAAAABKgEqAAPABsAIwA7AEMASwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JiQyFhQGIiY0JDIWFAYjIicHFhUUBiImNTQ2PwImNTQEMhYUBiImNCQyFhQGIiY0Advy3Z9fX5/d8t2gXl6gAcbgv29vv+C/b2/+LS0gIC0gAUwtICAWDg83ETNIMykfegEJ/octICAtIAIdLSAgLSAEqF+f3fLdoF5eoN3y3Z9Xb7/gv29vv+C/BiAtISEtICAtIQqRFxwkMzMkIDEFfgEODhekIC0gIC0gIC0gIC0AAf/YAFoEuQS8AFsAACUBNjc2JicmIyIOAwcABw4EFx4BMzI3ATYnLgEjIgcGBwEOASY0NwA3PgEzMhceARcWBgcOBgcGIyImJyY2NwE2NzYzMhceARcWBgcBDgEnLgECIgHVWwgHdl8WGSJBMD8hIP6IDx4eLRMNBQlZN0ozAiQkEAcdEhoYDRr+qw8pHA4BRyIjQS4ODyw9DQ4YIwwod26La1YOOEBGdiIwGkQB/0coW2tQSE5nDxE4Qv4eDyoQEAOtAdZbZWKbEQQUGjIhH/6JDxsdNSg3HT5CMwIkJCcQFBcMGv6uDwEcKQ4BTSIjIQEINykvYyMLKnhuiWZMBxtAOU6+RAH/SBg3ISSGV121Qv4kDwIPDyYAAAACAGQAWASvBEQAGQBEAAABPgIeAhUUDgMHLgQ1ND4CHgEFIg4DIi4DIyIGFRQeAhcWFx4EMj4DNzY3PgQ1NCYCiTB7eHVYNkN5hKg+PqeFeEM4WnZ4eQEjIT8yLSohJyktPyJDbxtBMjMPBw86KzEhDSIzKUAMBAgrKT8dF2oDtURIBS1TdkA5eYB/slVVsn+AeTlAdlMtBUgtJjY1JiY1NiZvTRc4SjQxDwcOPCouGBgwKEALBAkpKkQqMhNPbQACADn/8gR3BL4AFwAuAAAAMh8BFhUUBg8BJi8BNycBFwcvASY0NwEDNxYfARYUBwEGIi8BJjQ/ARYfAQcXAQKru0KNQjgiHR8uEl/3/nvUaRONQkIBGxJpCgmNQkL+5UK6Qo1CQjcdLhJf9wGFBL5CjUJeKmsiHTUuEl/4/nvUahKNQrpCARv+RmkICY1CukL+5UJCjUK7Qjc3LxFf+AGFAAAAAAMAyAAAA+gEsAARABUAHQAAADIeAhURFAYjISImNRE0PgEHESERACIGFBYyNjQCBqqaZDo7Kf2oKTs8Zj4CWP7/Vj09Vj0EsB4uMhX8Ryk7OykDuRUzLar9RAK8/RY9Vj09VgABAAAAAASwBLAAFgAACQEWFAYiLwEBEScBBRMBJyEBJyY0NjIDhgEbDx0qDiT+6dT+zP7oywEz0gEsAQsjDx0qBKH+5g8qHQ8j/vX+1NL+zcsBGAE01AEXJA4qHQAAAAADAScAEQQJBOAAMgBAAEsAAAEVHgQXIy4DJxEXHgQVFAYHFSM1JicuASczHgEXEScuBDU0PgI3NRkBDgMVFB4DFxYXET4ENC4CArwmRVI8LAKfBA0dMydAIjxQNyiym2SWVygZA4sFV0obLkJOMCAyVWg6HSoqFQ4TJhkZCWgWKTEiGBkzNwTgTgUTLD9pQiQuLBsH/s0NBxMtPGQ+i6oMTU8QVyhrVk1iEAFPCA4ZLzlYNkZwSCoGTf4SARIEDh02Jh0rGRQIBgPQ/soCCRYgNEM0JRkAAAABAGQAZgOUBK0ASgAAATIeARUjNC4CIyIGBwYVFB4BFxYXMxUjFgYHBgc+ATM2FjMyNxcOAyMiLgEHDgEPASc+BTc+AScjNTMmJy4CPgE3NgIxVJlemSc8OxolVBQpGxoYBgPxxQgVFS02ImIWIIwiUzUyHzY4HCAXanQmJ1YYFzcEGAcTDBEJMAwk3aYXFQcKAg4tJGEErVCLTig/IhIdFSw5GkowKgkFZDKCHj4yCg8BIh6TExcIASIfBAMaDAuRAxAFDQsRCjePR2QvORQrREFMIVgAAAACABn//wSXBLAADwAfAAABMzIWDwEGIi8BJjY7AREzBRcWBisBESMRIyImPwE2MgGQlhUIDuYOKg7mDggVlsgCF+YOCBWWyJYVCA7mDioBLBYO+g8P+g4WA4QQ+Q4V/HwDhBUO+Q8AAAQAGf//A+gEsAAHABcAGwAlAAABIzUjFSMRIQEzMhYPAQYiLwEmNjsBETMFFTM1EwczFSE1NyM1IQPoZGRkASz9qJYVCA7mDioO5g4IFZbIAZFkY8jI/tTIyAEsArxkZAH0/HwWDvoPD/oOFgOEZMjI/RL6ZJb6ZAAAAAAEABn//wPoBLAADwAZACEAJQAAATMyFg8BBiIvASY2OwERMwUHMxUhNTcjNSERIzUjFSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAljIyP7UyMgBLGRkZAEsx2QBLBYO+g8P+g4WA4SW+mSW+mT7UGRkAfRkyMgAAAAEABn//wRMBLAADwAVABsAHwAAATMyFg8BBiIvASY2OwERMwEjESM1MxMjNSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAlhkZMhkZMgBLMdkASwWDvoPD/oOFgOE/gwBkGT7UGQBkGTIyAAAAAAEABn//wRMBLAADwAVABkAHwAAATMyFg8BBiIvASY2OwERMwEjNSMRIQcVMzUDIxEjNTMBkJYVCA7mDioO5g4IFZbIArxkyAEsx2QBZGTIASwWDvoPD/oOFgOE/gxkAZBkyMj7tAGQZAAAAAAFABn//wSwBLAADwATABcAGwAfAAABMzIWDwEGIi8BJjY7AREzBSM1MxMhNSETITUhEyE1IQGQlhUIDuYOKg7mDggVlsgB9MjIZP7UASxk/nABkGT+DAH0ASwWDvoPD/oOFgOEyMj+DMj+DMj+DMgABQAZ//8EsASwAA8AEwAXABsAHwAAATMyFg8BBiIvASY2OwERMwUhNSEDITUhAyE1IQMjNTMBkJYVCA7mDioO5g4IFZbIAyD+DAH0ZP5wAZBk/tQBLGTIyAEsFg76Dw/6DhYDhMjI/gzI/gzI/gzIAAIAAAAABEwETAAPAB8AAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmAV4BkKK8u6P+cKW5uQJn/gwpOzspAfQpOzsETLuj/nClubmlAZClucg7Kf4MKTs7KQH0KTsAAAAAAwAAAAAETARMAA8AHwArAAABITIWFREUBiMhIiY1ETQ2BSEiBhURFBYzITI2NRE0JgUXFhQPAQYmNRE0NgFeAZClubml/nCju7wCZP4MKTs7KQH0KTs7/m/9ERH9EBgYBEy5pf5wpbm5pQGQo7vIOyn+DCk7OykB9Ck7gr4MJAy+DAsVAZAVCwAAAAADAAAAAARMBEwADwAfACsAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFg8BBiIvASY2AV4BkKO7uaX+cKW5uQJn/gwpOzspAfQpOzv+FQGQFQsMvgwkDL4MCwRMvKL+cKW5uaUBkKO7yDsp/gwpOzspAfQpO8gYEP0REf0QGAAAAAMAAAAABEwETAAPAB8AKwAAASEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFFxYGIyEiJj8BNjIBXgGQpbm5pf5wo7u5Amf+DCk7OykB9Ck7O/77vgwLFf5wFQsMvgwkBEy5pf5wo7u8ogGQpbnIOyn+DCk7OykB9Ck7z/0QGBgQ/REAAAAAAgAAAAAFFARMAB8ANQAAASEyFhURFAYjISImPQE0NjMhMjY1ETQmIyEiJj0BNDYHARYUBwEGJj0BIyImPQE0NjsBNTQ2AiYBkKW5uaX+cBUdHRUBwik7Oyn+PhUdHb8BRBAQ/rwQFvoVHR0V+hYETLml/nCluR0VZBUdOykB9Ck7HRVkFR3p/uQOJg7+5A4KFZYdFcgVHZYVCgAAAQDZAAID1wSeACMAAAEXFgcGAgclMhYHIggBBwYrAScmNz4BPwEhIicmNzYANjc2MwMZCQgDA5gCASwYEQ4B/vf+8wQMDgkJCQUCUCcn/tIXCAoQSwENuwUJEASeCQoRC/5TBwEjEv7K/sUFDwgLFQnlbm4TFRRWAS/TBhAAAAACAAAAAAT+BEwAHwA1AAABITIWHQEUBiMhIgYVERQWMyEyFh0BFAYjISImNRE0NgUBFhQHAQYmPQEjIiY9ATQ2OwE1NDYBXgGQFR0dFf4+KTs7KQHCFR0dFf5wpbm5AvEBRBAQ/rwQFvoVHR0V+hYETB0VZBUdOyn+DCk7HRVkFR25pQGQpbnp/uQOJg7+5A4KFZYdFcgVHZYVCgACAAAAAASwBLAAFQAxAAABITIWFREUBi8BAQYiLwEmNDcBJyY2ASMiBhURFBYzITI2PQE3ERQGIyEiJjURNDYzIQLuAZAVHRUObf7IDykPjQ8PAThtDgj+75wpOzspAfQpO8i7o/5wpbm5pQEsBLAdFf5wFQgObf7IDw+NDykPAThtDhX+1Dsp/gwpOzsplMj+1qW5uaUBkKW5AAADAA4ADgSiBKIADwAbACMAAAAyHgIUDgIiLgI0PgEEIg4BFB4BMj4BNCYEMhYUBiImNAHh7tmdXV2d2e7ZnV1dnQHD5sJxccLmwnFx/nugcnKgcgSiXZ3Z7tmdXV2d2e7ZnUdxwubCcXHC5sJzcqBycqAAAAMAAAAABEwEsAAVAB8AIwAAATMyFhURMzIWBwEGIicBJjY7ARE0NgEhMhYdASE1NDYFFTM1AcLIFR31FAoO/oEOJw3+hQ0JFfod/oUD6BUd+7QdA2dkBLAdFf6iFg/+Vg8PAaoPFgFeFR38fB0V+voVHWQyMgAAAAMAAAAABEwErAAVAB8AIwAACQEWBisBFRQGKwEiJj0BIyImNwE+AQEhMhYdASE1NDYFFTM1AkcBeg4KFfQiFsgUGPoUCw4Bfw4n/fkD6BUd+7QdA2dkBJ7+TQ8g+hQeHRX6IQ8BrxAC/H8dFfr6FR1kMjIAAwAAAAAETARLABQAHgAiAAAJATYyHwEWFAcBBiInASY0PwE2MhcDITIWHQEhNTQ2BRUzNQGMAXEHFQeLBwf98wcVB/7cBweLCBUH1APoFR37tB0DZ2QC0wFxBweLCBUH/fMICAEjCBQIiwcH/dIdFfr6FR1kMjIABAAAAAAETASbAAkAGQAjACcAABM3NjIfAQcnJjQFNzYWFQMOASMFIiY/ASc3ASEyFh0BITU0NgUVMzWHjg4qDk3UTQ4CFtIOFQIBHRX9qxUIDtCa1P49A+gVHfu0HQNnZAP/jg4OTdRMDyqa0g4IFf2pFB4BFQ7Qm9T9Oh0V+voVHWQyMgAAAAQAAAAABEwEsAAPABkAIwAnAAABBR4BFRMUBi8BByc3JyY2EwcGIi8BJjQ/AQEhMhYdASE1NDYFFTM1AV4CVxQeARUO0JvUm9IOCMNMDyoOjg4OTf76A+gVHfu0HQNnZASwAgEdFf2rFQgO0JrUmtIOFf1QTQ4Ojg4qDk3+WB0V+voVHWQyMgACAAT/7ASwBK8ABQAIAAAlCQERIQkBFQEEsP4d/sb+cQSs/TMCq2cBFP5xAacDHPz55gO5AAAAAAIAAABkBEwEsAAVABkAAAERFAYrAREhESMiJjURNDY7AREhETMHIzUzBEwdFZb9RJYVHR0V+gH0ZMhkZAPo/K4VHQGQ/nAdFQPoFB7+1AEsyMgAAAMAAABFBN0EsAAWABoALwAAAQcBJyYiDwEhESMiJjURNDY7AREhETMHIzUzARcWFAcBBiIvASY0PwE2Mh8BATYyBEwC/tVfCRkJlf7IlhUdHRX6AfRkyGRkAbBqBwf+XAgUCMoICGoHFQdPASkHFQPolf7VXwkJk/5wHRUD6BQe/tQBLMjI/c5qBxUH/lsHB8sHFQdqCAhPASkHAAMAAAANBQcEsAAWABoAPgAAAREHJy4BBwEhESMiJjURNDY7AREhETMHIzUzARcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyBExnhg8lEP72/reWFR0dFfoB9GTIZGQB9kYPD4ODDw9GDykPg4MPKQ9GDw+Dgw8PRg8pD4ODDykD6P7zZ4YPAw7+9v5wHRUD6BQe/tQBLMjI/YxGDykPg4MPKQ9GDw+Dgw8PRg8pD4ODDykPRg8Pg4MPAAADAAAAFQSXBLAAFQAZAC8AAAERISIGHQEhESMiJjURNDY7AREhETMHIzUzEzMyFh0BMzIWDwEGIi8BJjY7ATU0NgRM/qIVHf4MlhUdHRX6AfRkyGRklmQVHZYVCA7mDioO5g4IFZYdA+j+1B0Vlv5wHRUD6BQe/tQBLMjI/agdFfoVDuYODuYOFfoVHQAAAAADAAAAAASXBLAAFQAZAC8AAAERJyYiBwEhESMiJjURNDY7AREhETMHIzUzExcWBisBFRQGKwEiJj0BIyImPwE2MgRMpQ4qDv75/m6WFR0dFfoB9GTIZGTr5g4IFZYdFWQVHZYVCA7mDioD6P5wpQ8P/vf+cB0VA+gUHv7UASzIyP2F5Q8V+hQeHhT6FQ/lDwADAAAAyASwBEwACQATABcAABMhMhYdASE1NDYBERQGIyEiJjURExUhNTIETBUd+1AdBJMdFfu0FR1kAZAETB0VlpYVHf7U/doVHR0VAib+1MjIAAAGAAMAfQStBJcADwAZAB0ALQAxADsAAAEXFhQPAQYmPQEhNSE1NDYBIyImPQE0NjsBFyM1MwE3NhYdASEVIRUUBi8BJjQFIzU7AjIWHQEUBisBA6f4Dg74DhX+cAGQFf0vMhUdHRUyyGRk/oL3DhUBkP5wFQ73DwOBZGRkMxQdHRQzBI3mDioO5g4IFZbIlhUI/oUdFWQVHcjI/cvmDggVlsiWFQgO5g4qecgdFWQVHQAAAAACAGQAAASwBLAAFgBRAAABJTYWFREUBisBIiY1ES4ENRE0NiUyFh8BERQOAg8BERQGKwEiJjURLgQ1ETQ+AzMyFh8BETMRPAE+AjMyFh8BETMRND4DA14BFBklHRXIFR0EDiIaFiX+4RYZAgEVHR0LCh0VyBUdBA4iGhYBBwoTDRQZAgNkBQkVDxcZAQFkAQUJFQQxdBIUH/uuFR0dFQGNAQgbHzUeAWcfRJEZDA3+Phw/MSkLC/5BFR0dFQG/BA8uLkAcAcICBxENCxkMDf6iAV4CBxENCxkMDf6iAV4CBxENCwABAGQAAASwBEwAMwAAARUiDgMVERQWHwEVITUyNjURIREUFjMVITUyPgM1ETQmLwE1IRUiBhURIRE0JiM1BLAEDiIaFjIZGf5wSxn+DBlL/nAEDiIaFjIZGQGQSxkB9BlLBEw4AQUKFA78iBYZAQI4OA0lAYr+diUNODgBBQoUDgN4FhkBAjg4DSX+dgGKJQ04AAAABgAAAAAETARMAAwAHAAgACQAKAA0AAABITIWHQEjBTUnITchBSEyFhURFAYjISImNRE0NhcVITUBBTUlBRUhNQUVFAYjIQchJyE3MwKjAXcVHWn+2cj+cGQBd/4lASwpOzsp/tQpOzspASwCvP5wAZD8GAEsArwdFf6JZP6JZAGQyGkD6B0VlmJiyGTIOyn+DCk7OykB9Ck7ZMjI/veFo4XGyMhm+BUdZGTIAAEAEAAQBJ8EnwAmAAATNzYWHwEWBg8BHgEXNz4BHwEeAQ8BBiIuBicuBTcRohEuDosOBhF3ZvyNdxEzE8ATBxGjAw0uMUxPZWZ4O0p3RjITCwED76IRBhPCFDERdo78ZXYRBA6IDi8RogEECBUgNUNjO0qZfHNVQBAAAAACAAAAAASwBEwAIwBBAAAAMh4EHwEVFAYvAS4BPQEmIAcVFAYPAQYmPQE+BRIyHgIfARUBHgEdARQGIyEiJj0BNDY3ATU0PgIB/LimdWQ/LAkJHRTKFB2N/sKNHRTKFB0DDTE7ZnTKcFImFgEBAW0OFR0V+7QVHRUOAW0CFiYETBUhKCgiCgrIFRgDIgMiFZIYGJIVIgMiAxgVyAQNJyQrIP7kExwcCgoy/tEPMhTUFR0dFdQUMg8BLzIEDSEZAAADAAAAAASwBLAADQAdACcAAAEHIScRMxUzNTMVMzUzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYETMj9qMjIyMjIyPyuArwVHR0VDIn8SokMFR0dswRMFR37UB0CvMjIAfTIyMjI/OAdKh1kZB0qHf7UHRUyMhUdAAAAAwBkAAAEsARMAAkAEwAdAAABIyIGFREhETQmASMiBhURIRE0JgEhETQ2OwEyFhUCvGQpOwEsOwFnZCk7ASw7/Rv+1DspZCk7BEw7KfwYA+gpO/7UOyn9RAK8KTv84AGQKTs7KQAAAAAF/5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQURByMRMwcRMxHIArx8sLB8/UR8sLAYA4T+DMjI/tTIyAEsAZBkyMhkZARMsHz+DHywsHwB9HywyP1EArzIZP7UZGQBLGT+1GQB9GT+1AEsAAAABf+cAAAEsARMAA8AEwAfACUAKQAAEyEyFhURFAYjISImNRE0NhcRIREBIzUjFSMRMxUzNTMFEQcjETMHETMRyAK8fLCwfP1EfLCwGAOE/gxkZGRkZGQBkGTIyGRkBEywfP4MfLCwfAH0fLDI/UQCvP2oyMgB9MjIZP7UZAH0ZP7UASwABP+cAAAEsARMAA8AEwAbACMAABMhMhYVERQGIyEiJjURNDYXESERBSMRMxUhESEFIxEzFSERIcgCvHywsHz9RHywsBgDhP4MyMj+1AEsAZDIyP7UASwETLB8/gx8sLB8AfR8sMj9RAK8yP7UZAH0ZP7UZAH0AAAABP+cAAAEsARMAA8AEwAWABkAABMhMhYVERQGIyEiJjURNDYXESERAS0BDQERyAK8fLCwfP1EfLCwGAOE/gz+1AEsAZD+1ARMsHz+DHywsHwB9HywyP1EArz+DJaWlpYBLAAAAAX/nAAABLAETAAPABMAFwAgACkAABMhMhYVERQGIyEiJjURNDYXESERAyERIQcjIgYVFBY7AQERMzI2NTQmI8gCvHywsHz9RHywsBgDhGT9RAK8ZIImOTYpgv4Mgik2OSYETLB8/gx8sLB8AfR8sMj9RAK8/agB9GRWQUFUASz+1FRBQVYAAAAF/5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQEjESM1MwMjNTPIArx8sLB8/UR8sLAYA4T+DMjI/tTIyAEsAZBkZMjIZGQETLB8/gx8sLB8AfR8sMj9RAK8yGT+1GRkASz+DAGQZP4MZAAG/5wAAASwBEwADwATABkAHwAjACcAABMhMhYVERQGIyEiJjURNDYXESERBTMRIREzASMRIzUzBRUzNQEjNTPIArx8sLB8/UR8sLAYA4T9RMj+1GQCWGRkyP2oZAEsZGQETLB8/gx8sLB8AfR8sMj9RAK8yP5wAfT+DAGQZMjIyP7UZAAF/5wAAASwBEwADwATABwAIgAmAAATITIWFREUBiMhIiY1ETQ2FxEhEQEHIzU3NSM1IQEjESM1MwMjNTPIArx8sLB8/UR8sLAYA4T+DMdkx8gBLAGQZGTIx2RkBEywfP4MfLCwfAH0fLDI/UQCvP5wyDLIlmT+DAGQZP4MZAAAAAMACQAJBKcEpwAPABsAJQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgchFSEVISc1NyEB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWz+1AEs/tRkZAEsBKdentvw255eXp7b8NueTHHC5MJxccLkwtDIZGTIZAAAAAAEAAkACQSnBKcADwAbACcAKwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgcVBxcVIycjFSMRIQcVMzUB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWwyZGRklmQBLMjIBKdentvw255eXp7b8NueTHHC5MJxccLkwtBkMmQyZGQBkGRkZAAAAv/y/50EwgRBACAANgAAATIWFzYzMhYUBisBNTQmIyEiBh0BIyImNTQ2NyY1ND4BEzMyFhURMzIWDwEGIi8BJjY7ARE0NgH3brUsLC54qqp4gB0V/tQVHd5QcFZBAmKqepYKD4kVCg3fDSYN3w0KFYkPBEF3YQ6t8a36FR0dFfpzT0VrDhMSZKpi/bMPCv7tFxD0EBD0EBcBEwoPAAAAAAL/8v+cBMMEQQAcADMAAAEyFhc2MzIWFxQGBwEmIgcBIyImNTQ2NyY1ND4BExcWBisBERQGKwEiJjURIyImNzY3NjIB9m62LCsueaoBeFr+hg0lDf6DCU9xVkECYqnm3w0KFYkPCpYKD4kVCg3HGBMZBEF3YQ+teGOkHAFoEBD+k3NPRWsOExNkqWP9kuQQF/7tCg8PCgETFxDMGBMAAAABAGQAAARMBG0AGAAAJTUhATMBMwkBMwEzASEVIyIGHQEhNTQmIwK8AZD+8qr+8qr+1P7Uqv7yqv7yAZAyFR0BkB0VZGQBLAEsAU3+s/7U/tRkHRUyMhUdAAAAAAEAeQAABDcEmwAvAAABMhYXHgEVFAYHFhUUBiMiJxUyFh0BITU0NjM1BiMiJjU0Ny4BNTQ2MzIXNCY1NDYCWF6TGll7OzIJaUo3LRUd/tQdFS03SmkELzlpSgUSAqMEm3FZBoNaPWcfHRpKaR77HRUyMhUd+x5pShIUFVg1SmkCAhAFdKMAAAAGACcAFASJBJwAEQAqAEIASgBiAHsAAAEWEgIHDgEiJicmAhI3PgEyFgUiBw4BBwYWHwEWMzI3Njc2Nz4BLwEmJyYXIgcOAQcGFh8BFjMyNz4BNz4BLwEmJyYWJiIGFBYyNjciBw4BBw4BHwEWFxYzMjc+ATc2Ji8BJhciBwYHBgcOAR8BFhcWMzI3PgE3NiYvASYD8m9PT29T2dzZU29PT29T2dzZ/j0EBHmxIgQNDCQDBBcGG0dGYAsNAwkDCwccBAVQdRgEDA0iBAQWBhJROQwMAwkDCwf5Y4xjY4xjVhYGElE6CwwDCQMLBwgEBVB1GAQNDCIEjRcGG0dGYAsNAwkDCwcIBAR5sSIEDQwkAwPyb/7V/tVvU1dXU28BKwErb1NXVxwBIrF5DBYDCQEWYEZHGwMVDCMNBgSRAhh1UA0WAwkBFTpREgMVCyMMBwT6Y2OMY2MVFTpREQQVCyMMBwQCGHVQDRYDCQEkFmBGRxsDFQwjDQYEASKxeQwWAwkBAAAABQBkAAAD6ASwAAwADwAWABwAIgAAASERIzUhFSERNDYzIQEjNQMzByczNTMDISImNREFFRQGKwECvAEstP6s/oQPCgI/ASzIZKLU1KJktP51Cg8DhA8KwwMg/oTIyALzCg/+1Mj84NTUyP4MDwoBi8jDCg8AAAAABQBkAAAD6ASwAAkADAATABoAIQAAASERCQERNDYzIQEjNRMjFSM1IzcDISImPQEpARUUBisBNQK8ASz+ov3aDwoCPwEsyD6iZKLUqv6dCg8BfAIIDwqbAyD9+AFe/doERwoP/tTI/HzIyNT+ZA8KNzcKD1AAAAAAAwAAAAAEsAP0AAgAGQAfAAABIxUzFyERIzcFMzIeAhUhFSEDETM0PgIBMwMhASEEiqJkZP7UotT9EsgbGiEOASz9qMhkDiEaAnPw8PzgASwB9AMgyGQBLNTUBBErJGT+ogHCJCsRBP5w/nAB9AAAAAMAAAAABEwETAAZADIAOQAAATMyFh0BMzIWHQEUBiMhIiY9ATQ2OwE1NDYFNTIWFREUBiMhIic3ARE0NjMVFBYzITI2AQc1IzUzNQKKZBUdMhUdHRX+1BUdHRUyHQFzKTs7Kf2oARP2/ro7KVg+ASw+WP201MjIBEwdFTIdFWQVHR0VZBUdMhUd+pY7KfzgKTsE9gFGAUQpO5Y+WFj95tSiZKIAAwBkAAAEvARMABkANgA9AAABMzIWHQEzMhYdARQGIyEiJj0BNDY7ATU0NgU1MhYVESMRMxQOAiMhIiY1ETQ2MxUUFjMhMjYBBzUjNTM1AcJkFR0yFR0dFf7UFR0dFTIdAXMpO8jIDiEaG/2oKTs7KVg+ASw+WAGc1MjIBEwdFTIdFWQVHR0VZBUdMhUd+pY7Kf4M/tQkKxEEOykDICk7lj5YWP3m1KJkogAAAAP/ogAABRYE1AALABsAHwAACQEWBiMhIiY3ATYyEyMiBhcTHgE7ATI2NxM2JgMVMzUCkgJ9FyAs+wQsIBcCfRZARNAUGAQ6BCMUNhQjBDoEGODIBK37sCY3NyYEUCf+TB0U/tIUHR0UAS4UHf4MZGQAAAAACQAAAAAETARMAA8AHwAvAD8ATwBfAG8AfwCPAAABMzIWHQEUBisBIiY9ATQ2EzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBqfoKDw8K+goPDwr6Cg8PCvoKDw8BmvoKDw8K+goPD/zq+goPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K+goPD/zq+goPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K+goPDwRMDwqWCg8PCpYKD/7UDwqWCg8PCpYKDw8KlgoPDwqWCg/+1A8KlgoPDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKD/7UDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKDw8KlgoPAAAAAwAAAAAEsAUUABkAKQAzAAABMxUjFSEyFg8BBgchJi8BJjYzITUjNTM1MwEhMhYUBisBFyE3IyImNDYDITIWHQEhNTQ2ArxkZAFePjEcQiko/PwoKUIcMT4BXmRkyP4+ArwVHR0VDIn8SooNFR0dswRMFR37UB0EsMhkTzeEUzMzU4Q3T2TIZPx8HSodZGQdKh3+1B0VMjIVHQAABAAAAAAEsAUUAAUAGQArADUAAAAyFhUjNAchFhUUByEyFg8BIScmNjMhJjU0AyEyFhQGKwEVBSElNSMiJjQ2AyEyFh0BITU0NgIwUDnCPAE6EgMBSCkHIq/9WrIiCikBSAOvArwVHR0VlgET/EoBE5YVHR2zBEwVHftQHQUUOykpjSUmCBEhFpGRFiERCCb+lR0qHcjIyMgdKh39qB0VMjIVHQAEAAAAAASwBJ0ABwAUACQALgAAADIWFAYiJjQTMzIWFRQXITY1NDYzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYCDZZqapZqty4iKyf+vCcrI/7NArwVHR0VDYr8SokMFR0dswRMFR37UB0EnWqWamqW/us5Okxra0w6Of5yHSodZGQdKh3+1B0VMjIVHQAEAAAAAASwBRQADwAcACwANgAAATIeARUUBiImNTQ3FzcnNhMzMhYVFBchNjU0NjMBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYL1szb5xvIpBvoyIfLiIrJ/68Jysj/s0CvBUdHRUNivxKiQwVHR2zBEwVHftQHQUUa4s2Tm9vTj5Rj2+jGv4KOTpMa2tMOjn+ch0qHWRkHSod/tQdFTIyFR0AAAADAAAAAASwBRIAEgAiACwAAAEFFSEUHgMXIS4BNTQ+AjcBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYASz+1CU/P00T/e48PUJtj0r+ogK8FR0dFQ2K/EqJDBUdHbMETBUd+1AdBLChizlmUT9IGVO9VFShdksE/H4dKh1kZB0qHf7UHRUyMhUdAAIAyAAAA+gFFAAPACkAAAAyFh0BHgEdASE1NDY3NTQDITIWFyMVMxUjFTMVIxUzFAYjISImNRE0NgIvUjsuNv5wNi5kAZA2XBqsyMjIyMh1U/5wU3V1BRQ7KU4aXDYyMjZcGk4p/kc2LmRkZGRkU3V1UwGQU3UAAAMAZP//BEwETAAPAC8AMwAAEyEyFhURFAYjISImNRE0NgMhMhYdARQGIyEXFhQGIi8BIQcGIiY0PwEhIiY9ATQ2BQchJ5YDhBUdHRX8fBUdHQQDtgoPDwr+5eANGiUNWP30Vw0mGg3g/t8KDw8BqmQBRGQETB0V/gwVHR0VAfQVHf1EDwoyCg/gDSUbDVhYDRslDeAPCjIKD2RkZAAAAAAEAAAAAASwBEwAGQAjAC0ANwAAEyEyFh0BIzQmKwEiBhUjNCYrASIGFSM1NDYDITIWFREhETQ2ExUUBisBIiY9ASEVFAYrASImPQHIAyBTdWQ7KfopO2Q7KfopO2R1EQPoKTv7UDvxHRVkFR0D6B0VZBUdBEx1U8gpOzspKTs7KchTdf4MOyn+1AEsKTv+DDIVHR0VMjIVHR0VMgADAAEAAASpBKwADQARABsAAAkBFhQPASEBJjQ3ATYyCQMDITIWHQEhNTQ2AeACqh8fg/4f/fsgIAEnH1n+rAFWAS/+q6IDIBUd/HwdBI39VR9ZH4MCBh9ZHwEoH/5u/qoBMAFV/BsdFTIyFR0AAAAAAgCPAAAEIQSwABcALwAAAQMuASMhIgYHAwYWMyEVFBYyNj0BMzI2AyE1NDY7ATU0NjsBETMRMzIWHQEzMhYVBCG9CCcV/nAVJwi9CBMVAnEdKh19FROo/a0dFTIdFTDILxUdMhUdAocB+hMcHBP+BhMclhUdHRWWHP2MMhUdMhUdASz+1B0VMh0VAAAEAAAAAASwBLAADQAQAB8AIgAAASERFAYjIREBNTQ2MyEBIzUBIREUBiMhIiY1ETQ2MyEBIzUDhAEsDwr+if7UDwoBdwEsyP2oASwPCv12Cg8PCgF3ASzIAyD9wQoPAk8BLFQKD/7UyP4M/cEKDw8KA7YKD/7UyAAC/5wAZAUUBEcARgBWAAABMzIeAhcWFxY2NzYnJjc+ARYXFgcOASsBDgEPAQ4BKwEiJj8BBisBIicHDgErASImPwEmLwEuAT0BNDY7ATY3JyY2OwE2BSMiBh0BFBY7ATI2PQE0JgHkw0uOakkMEhEfQwoKGRMKBQ8XDCkCA1Y9Pgc4HCcDIhVkFRgDDDEqwxgpCwMiFWQVGAMaVCyfExwdFXwLLW8QBxXLdAFF+goPDwr6Cg8PBEdBa4pJDgYKISAiJRsQCAYIDCw9P1c3fCbqFB0dFEYOCEAUHR0UnUplNQcmFTIVHVdPXw4TZV8PCjIKDw8KMgoPAAb/nP/mBRQEfgAJACQANAA8AFIAYgAAASU2Fh8BFgYPASUzMhYfASEyFh0BFAYHBQYmJyYjISImPQE0NhcjIgYdARQ7ATI2NTQmJyYEIgYUFjI2NAE3PgEeARceAT8BFxYGDwEGJi8BJjYlBwYfAR4BPwE2Jy4BJy4BAoEBpxMuDiAOAxCL/CtqQ0geZgM3FR0cE/0fFyIJKjr+1D5YWLlQExIqhhALIAsSAYBALS1ALf4PmBIgHhMQHC0aPzANITNQL3wpgigJASlmHyElDR0RPRMFAhQHCxADhPcICxAmDyoNeMgiNtQdFTIVJgeEBBQPQ1g+yD5YrBwVODMQEAtEERzJLUAtLUD+24ITChESEyMgAwWzPUkrRSgJL5cvfRxYGyYrDwkLNRAhFEgJDAQAAAAAAwBkAAAEOQSwAFEAYABvAAABMzIWHQEeARcWDgIPATIeBRUUDgUjFRQGKwEiJj0BIxUUBisBIiY9ASMiJj0BNDY7AREjIiY9ATQ2OwE1NDY7ATIWHQEzNTQ2AxUhMj4CNTc0LgMjARUhMj4CNTc0LgMjAnGWCg9PaAEBIC4uEBEGEjQwOiodFyI2LUAjGg8KlgoPZA8KlgoPrwoPDwpLSwoPDwqvDwqWCg9kD9cBBxwpEwsBAQsTKRz++QFrHCkTCwEBCxMpHASwDwptIW1KLk0tHwYGAw8UKDJOLTtdPCoVCwJLCg8PCktLCg8PCksPCpYKDwJYDwqWCg9LCg8PCktLCg/+1MgVHR0LCgQOIhoW/nDIFR0dCwoEDiIaFgAAAwAEAAIEsASuABcAKQAsAAATITIWFREUBg8BDgEjISImJy4CNRE0NgQiDgQPARchNy4FAyMT1AMMVnokEhIdgVL9xFKCHAgYKHoCIIx9VkcrHQYGnAIwnAIIIClJVSGdwwSuelb+YDO3QkJXd3ZYHFrFMwGgVnqZFyYtLSUMDPPzBQ8sKDEj/sIBBQACAMgAAAOEBRQADwAZAAABMzIWFREUBiMhIiY1ETQ2ARUUBisBIiY9AQHblmesVCn+PilUrAFINhWWFTYFFKxn/gwpVFQpAfRnrPwY4RU2NhXhAAACAMgAAAOEBRQADwAZAAABMxQWMxEUBiMhIiY1ETQ2ARUUBisBIiY9AQHbYLOWVCn+PilUrAFINhWWFTYFFJaz/kIpVFQpAfRnrPwY4RU2NhXhAAACAAAAFAUOBBoAFAAaAAAJASUHFRcVJwc1NzU0Jj4CPwEnCQEFJTUFJQUO/YL+hk5klpZkAQEBBQQvkwKCAVz+ov6iAV4BXgL//uWqPOCWx5SVyJb6BA0GCgYDKEEBG/1ipqaTpaUAAAMAZAH0BLADIAAHAA8AFwAAEjIWFAYiJjQkMhYUBiImNCQyFhQGIiY0vHxYWHxYAeh8WFh8WAHofFhYfFgDIFh8WFh8WFh8WFh8WFh8WFh8AAAAAAMBkAAAArwETAAHAA8AFwAAADIWFAYiJjQSMhYUBiImNBIyFhQGIiY0Aeh8WFh8WFh8WFh8WFh8WFh8WARMWHxYWHz+yFh8WFh8/shYfFhYfAAAAAMAZABkBEwETAAPAB8ALwAAEyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2fQO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PBEwPCpYKDw8KlgoP/nAPCpYKDw8KlgoP/nAPCpYKDw8KlgoPAAAABAAAAAAEsASwAA8AHwAvADMAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFhURFAYjISImNRE0NhcVITUBXgH0ory7o/4Mpbm5Asv9qCk7OykCWCk7O/2xAfQVHR0V/gwVHR1HAZAEsLuj/gylubmlAfSlucg7Kf2oKTs7KQJYKTtkHRX+1BUdHRUBLBUdZMjIAAAAAAEAZABkBLAETAA7AAATITIWFAYrARUzMhYUBisBFTMyFhQGKwEVMzIWFAYjISImNDY7ATUjIiY0NjsBNSMiJjQ2OwE1IyImNDaWA+gVHR0VMjIVHR0VMjIVHR0VMjIVHR0V/BgVHR0VMjIVHR0VMjIVHR0VMjIVHR0ETB0qHcgdKh3IHSodyB0qHR0qHcgdKh3IHSodyB0qHQAAAAYBLAAFA+gEowAHAA0AEwAZAB8AKgAAAR4BBgcuATYBMhYVIiYlFAYjNDYBMhYVIiYlFAYjNDYDFRQGIiY9ARYzMgKKVz8/V1c/P/75fLB8sAK8sHyw/cB8sHywArywfLCwHSodKAMRBKNDsrJCQrKy/sCwfLB8fLB8sP7UsHywfHywfLD+05AVHR0VjgQAAAH/tQDIBJQDgQBCAAABNzYXAR4BBw4BKwEyFRQOBCsBIhE0NyYiBxYVECsBIi4DNTQzIyImJyY2NwE2HwEeAQ4BLwEHIScHBi4BNgLpRRkUASoLCAYFGg8IAQQNGyc/KZK4ChRUFQu4jjBJJxkHAgcPGQYGCAsBKhQaTBQVCiMUM7YDe7YsFCMKFgNuEwYS/tkLHw8OEw0dNkY4MhwBIBgXBAQYF/7gKjxTQyMNEw4PHwoBKBIHEwUjKBYGDMHBDAUWKCMAAAAAAgAAAAAEsASwACUAQwAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjNC4DKwERFBYXMxUjNTI1ESMiDgMVIzUhBLAyCAsZEyYYGcgyGRn+cAQOIhoWyBkYJhMZCwgyA+j9RBkIChgQEWQZDQzIMmQREBgKCBkB9AOEFSAVDggDAfyuFhkBAmRkAQUJFQ4DUgEDCA4VIBUBLP0SDxMKBQH+VwsNATIyGQGpAQUKEw+WAAAAAAMAAAAABEwErgAdACAAMAAAATUiJy4BLwEBIwEGBw4BDwEVITUiJj8BIRcWBiMVARsBARUUBiMhIiY9ATQ2MyEyFgPoGR4OFgUE/t9F/tQSFQkfCwsBETE7EkUBJT0NISf+7IZ5AbEdFfwYFR0dFQPoFR0BLDIgDiIKCwLr/Q4jFQkTBQUyMisusKYiQTIBhwFW/qr942QVHR0VZBUdHQADAAAAAASwBLAADwBHAEoAABMhMhYVERQGIyEiJjURNDYFIyIHAQYHBgcGHQEUFjMhMjY9ATQmIyInJj8BIRcWBwYjIgYdARQWMyEyNj0BNCYnIicmJyMBJhMjEzIETBUdHRX7tBUdHQJGRg0F/tUREhImDAsJAREIDAwINxAKCj8BCjkLEQwYCAwMCAE5CAwLCBEZGQ8B/uAFDsVnBLAdFfu0FR0dFQRMFR1SDP0PIBMSEAUNMggMDAgyCAwXDhmjmR8YEQwIMggMDAgyBwwBGRskAuwM/gUBCAAABAAAAAAEsASwAAMAEwAjACcAAAEhNSEFITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NhcRIREEsPtQBLD7ggGQFR0dFf5wFR0dAm0BkBUdHRX+cBUdHUcBLARMZMgdFfx8FR0dFQOEFR0dFf5wFR0dFQGQFR1k/tQBLAAEAAAAAASwBLAADwAfACMAJwAAEyEyFhURFAYjISImNRE0NgEhMhYVERQGIyEiJjURNDYXESEREyE1ITIBkBUdHRX+cBUdHQJtAZAVHR0V/nAVHR1HASzI+1AEsASwHRX8fBUdHRUDhBUd/gwdFf5wFR0dFQGQFR1k/tQBLP2oZAAAAAACAAAAZASwA+gAJwArAAATITIWFREzNTQ2MyEyFh0BMxUjFRQGIyEiJj0BIxEUBiMhIiY1ETQ2AREhETIBkBUdZB0VAZAVHWRkHRX+cBUdZB0V/nAVHR0CnwEsA+gdFf6ilhUdHRWWZJYVHR0Vlv6iFR0dFQMgFR3+1P7UASwAAAQAAAAABLAEsAADABMAFwAnAAAzIxEzFyEyFhURFAYjISImNRE0NhcRIREBITIWFREUBiMhIiY1ETQ2ZGRklgGQFR0dFf5wFR0dRwEs/qIDhBUdHRX8fBUdHQSwZB0V/nAVHR0VAZAVHWT+1AEs/gwdFf5wFR0dFQGQFR0AAAAAAgBkAAAETASwACcAKwAAATMyFhURFAYrARUhMhYVERQGIyEiJjURNDYzITUjIiY1ETQ2OwE1MwcRIRECWJYVHR0VlgHCFR0dFfx8FR0dFQFelhUdHRWWZMgBLARMHRX+cBUdZB0V/nAVHR0VAZAVHWQdFQGQFR1kyP7UASwAAAAEAAAAAASwBLAAAwATABcAJwAAISMRMwUhMhYVERQGIyEiJjURNDYXESERASEyFhURFAYjISImNRE0NgSwZGT9dgGQFR0dFf5wFR0dRwEs/K4DhBUdHRX8fBUdHQSwZB0V/nAVHR0VAZAVHWT+1AEs/gwdFf5wFR0dFQGQFR0AAAEBLAAwA28EgAAPAAAJAQYjIiY1ETQ2MzIXARYUA2H+EhcSDhAQDhIXAe4OAjX+EhcbGQPoGRsX/hIOKgAAAAABAUEAMgOEBH4ACwAACQE2FhURFAYnASY0AU8B7h0qKh3+Eg4CewHuHREp/BgpER0B7g4qAAAAAAEAMgFBBH4DhAALAAATITIWBwEGIicBJjZkA+gpER3+Eg4qDv4SHREDhCod/hIODgHuHSoAAAAAAQAyASwEfgNvAAsAAAkBFgYjISImNwE2MgJ7Ae4dESn8GCkRHQHuDioDYf4SHSoqHQHuDgAAAAACAAgAAASwBCgABgAKAAABFQE1LQE1ASE1IQK8/UwBnf5jBKj84AMgAuW2/r3dwcHd+9jIAAAAAAIAAABkBLAEsAALADEAAAEjFTMVIREzNSM1IQEzND4FOwERFAYPARUhNSIuAzURMzIeBRUzESEEsMjI/tTIyAEs+1AyCAsZEyYYGWQyGRkBkAQOIhoWZBkYJhMZCwgy/OADhGRkASxkZP4MFSAVDggDAf3aFhkBAmRkAQUJFQ4CJgEDCA4VIBUBLAAAAgAAAAAETAPoACUAMQAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjFTMVIREzNSM1IQMgMggLGRMmGBlkMhkZ/nAEDiIaFmQZGCYTGQsIMgMgASzIyP7UyMgBLAK8FSAVDggDAf3aFhkCAWRkAQUJFQ4CJgEDCA4VIBUBLPzgZGQBLGRkAAABAMgAZgNyBEoAEgAAATMyFgcJARYGKwEiJwEmNDcBNgK9oBAKDP4wAdAMChCgDQr+KQcHAdcKBEoWDP4w/jAMFgkB1wgUCAHXCQAAAQE+AGYD6ARKABIAAAEzMhcBFhQHAQYrASImNwkBJjYBU6ANCgHXBwf+KQoNoBAKDAHQ/jAMCgRKCf4pCBQI/ikJFgwB0AHQDBYAAAEAZgDIBEoDcgASAAAAFh0BFAcBBiInASY9ATQ2FwkBBDQWCf4pCBQI/ikJFgwB0AHQA3cKEKANCv4pBwcB1woNoBAKDP4wAdAAAAABAGYBPgRKA+gAEgAACQEWHQEUBicJAQYmPQE0NwE2MgJqAdcJFgz+MP4wDBYJAdcIFAPh/ikKDaAQCgwB0P4wDAoQoA0KAdcHAAAAAgDZ//kEPQSwAAUAOgAAARQGIzQ2BTMyFh8BNjc+Ah4EBgcOBgcGIiYjIgYiJy4DLwEuAT4EHgEXJyY2A+iwfLD+VmQVJgdPBQsiKFAzRyorDwURAQQSFyozTSwNOkkLDkc3EDlfNyYHBw8GDyUqPjdGMR+TDA0EsHywfLDIHBPCAQIGBwcFDx81S21DBxlLR1xKQhEFBQcHGWt0bCQjP2hJNyATBwMGBcASGAAAAAACAMgAFQOEBLAAFgAaAAATITIWFREUBisBEQcGJjURIyImNRE0NhcVITX6AlgVHR0Vlv8TGpYVHR2rASwEsB0V/nAVHf4MsgkQFQKKHRUBkBUdZGRkAAAAAgDIABkETASwAA4AEgAAEyEyFhURBRElIREjETQ2ARU3NfoC7ic9/UQCWP1EZB8BDWQEsFEs/Ft1A7Z9/BgEARc0/V1kFGQAAQAAAAECTW/DBF9fDzz1AB8EsAAAAADQdnOXAAAAANB2c5f/Uf+cBdwFFAAAAAgAAgAAAAAAAAABAAAFFP+FAAAFFP9R/tQF3AABAAAAAAAAAAAAAAAAAAAAowG4ACgAAAAAAZAAAASwAAAEsABkBLAAAASwAAAEsABwAooAAAUUAAACigAABRQAAAGxAAABRQAAANgAAADYAAAAogAAAQQAAABIAAABBAAAAUUAAASwAGQEsAB7BLAAyASwAMgB9AAABLD/8gSwAAAEsAAABLD/8ASwAAAEsAAOBLAACQSwAGQEsP/TBLD/0wSwAAAEsAAABLAAAASwAAAEsAAABLAAJgSwAG4EsAAXBLAAFwSwABcEsABkBLAAGgSwAGQEsAAMBLAAZASwABcEsP+cBLAAZASwABcEsAAXBLAAAASwABcEsAAXBLAAFwSwAGQEsAAABLAAZASwAAAEsAAABLAAAASwAAAEsAAABLAAAASwAAAEsAAABLAAZASwAMgEsAAABLAAAASwADUEsABkBLAAyASw/7UEsAAhBLAAAASwAAAEsAAABLAAAASwAAAEsP+cBLAAAASwAAAEsAAABLAA2wSwABcEsAB1BLAAAASwAAAEsAAABLAACgSwAMgEsAAABLAAnQSwAMgEsADIBLAAyASwAAAEsP/+BLABLASwAGQEsACIBLABOwSwABcEsAAXBLAAFwSwABcEsAAXBLAAFwSwAAAEsAAXBLAAFwSwABcEsAAXBLAAAASwALcEsAC3BLAAAASwAAAEsABJBLAAFwSwAAAEsAAABLAAXQSw/9wEsP/cBLD/nwSwAGQEsAAABLAAAASwAAAEsABkBLD//wSwAAAEsP9RBLAABgSwAAAEsAAABLABRQSwAAEEsAAABLD/nASwAEoEsAAUBLAAAASwAAAEsAAABLD/nASwAGEEsP/9BLAAFgSwABYEsAAWBLAAFgSwABgEsAAABMQAAASwAGQAAAAAAAD/2ABkADkAyAAAAScAZAAZABkAGQAZABkAGQAZAAAAAAAAAAAAAADZAAAAAAAOAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAMAZABkAAAAEAAAAAAAZP+c/5z/nP+c/5z/nP+c/5wACQAJ//L/8gBkAHkAJwBkAGQAAAAAAGT/ogAAAAAAAAAAAAAAAADIAGQAAAABAI8AAP+c/5wAZAAEAMgAyAAAAGQBkABkAAAAZAEs/7UAAAAAAAAAAAAAAAAAAABkAAABLAFBADIAMgAIAAAAAADIAT4AZgBmANkAyADIAAAAKgAqACoAKgCyAOgA6AFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BpAIGAiICfgKGAqwC5ANGA24DjAPEBAgEMgRiBKIE3AVcBboGcgb0ByAHYgfKCB4IYgi+CTYJhAm2Cd4KKApMCpQK4gswC4oLygwIDFgNKg1eDbAODg5oDrQPKA+mD+YQEhBUEJAQqhEqEXYRthIKEjgSfBLAExoTdBPQFCoU1BU8FagVzBYEFjYWYBawFv4XUhemGAIYLhhqGJYYsBjgGP4ZKBloGZQZxBnaGe4aNhpoGrga9hteG7QcMhyUHOIdHB1EHWwdlB28HeYeLh52HsAfYh/SIEYgviEyIXYhuCJAIpYiuCMOIyIjOCN6I8Ij4CQCJDAkXiSWJOIlNCVgJbwmFCZ+JuYnUCe8J/goNChwKKwpoCnMKiYqSiqEKworeiwILGgsuizsLRwtiC30LiguZi6iLtgvDi9GL34vsi/4MD4whDDSMRIxYDGuMegyJDJeMpoy3jMiMz4zaDO2NBg0YDSoNNI1LDWeNeg2PjZ8Ntw3GjdON5I31DgQOEI4hjjIOQo5SjmIOcw6HDpsOpo63jugO9w8GDxQPKI8+D0yPew+Oj6MPtQ/KD9uP6o/+kBIQIBAxkECQX5CGEKoQu5DGENCQ3ZDoEPKRBBEYESuRPZFWkW2RgZGdEa0RvZHNkd2R7ZH9kgWSDJITkhqSIZIzEkSSThJXkmESapKAkouSlIAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAAAAABAAxgABAAAAAAATABIAAAADAAEECQAAAGoAEgADAAEECQABACgAfAADAAEECQACAA4ApAADAAEECQADAEwAsgADAAEECQAEADgA/gADAAEECQAFAHgBNgADAAEECQAGADYBrgADAAEECQAIABYB5AADAAEECQAJABYB+gADAAEECQALACQCEAADAAEECQAMACQCNAADAAEECQATACQCWAADAAEECQDIABYCfAADAAEECQDJADACkgADAAEECdkDABoCwnd3dy5nbHlwaGljb25zLmNvbQBDAG8AcAB5AHIAaQBnAGgAdAAgAKkAIAAyADAAMQA0ACAAYgB5ACAASgBhAG4AIABLAG8AdgBhAHIAaQBrAC4AIABBAGwAbAAgAHIAaQBnAGgAdABzACAAcgBlAHMAZQByAHYAZQBkAC4ARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAFIAZQBnAHUAbABhAHIAMQAuADAAMAA5ADsAVQBLAFcATgA7AEcATABZAFAASABJAEMATwBOAFMASABhAGwAZgBsAGkAbgBnAHMALQBSAGUAZwB1AGwAYQByAEcATABZAFAASABJAEMATwBOAFMAIABIAGEAbABmAGwAaQBuAGcAcwAgAFIAZQBnAHUAbABhAHIAVgBlAHIAcwBpAG8AbgAgADEALgAwADAAOQA7AFAAUwAgADAAMAAxAC4AMAAwADkAOwBoAG8AdABjAG8AbgB2ACAAMQAuADAALgA3ADAAOwBtAGEAawBlAG8AdABmAC4AbABpAGIAMgAuADUALgA1ADgAMwAyADkARwBMAFkAUABIAEkAQwBPAE4AUwBIAGEAbABmAGwAaQBuAGcAcwAtAFIAZQBnAHUAbABhAHIASgBhAG4AIABLAG8AdgBhAHIAaQBrAEoAYQBuACAASwBvAHYAYQByAGkAawB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQBXAGUAYgBmAG8AbgB0ACAAMQAuADAAVwBlAGQAIABPAGMAdAAgADIAOQAgADAANgA6ADMANgA6ADAANwAgADIAMAAxADQARgBvAG4AdAAgAFMAcQB1AGkAcgByAGUAbAAAAAIAAAAAAAD/tQAyAAAAAAAAAAAAAAAAAAAAAAAAAAABFwAAAQIBAwADAA0ADgEEAJYBBQEGAQcBCAEJAQoBCwEMAQ0BDgEPARABEQESARMA7wEUARUBFgEXARgBGQEaARsBHAEdAR4BHwEgASEBIgEjASQBJQEmAScBKAEpASoBKwEsAS0BLgEvATABMQEyATMBNAE1ATYBNwE4ATkBOgE7ATwBPQE+AT8BQAFBAUIBQwFEAUUBRgFHAUgBSQFKAUsBTAFNAU4BTwFQAVEBUgFTAVQBVQFWAVcBWAFZAVoBWwFcAV0BXgFfAWABYQFiAWMBZAFlAWYBZwFoAWkBagFrAWwBbQFuAW8BcAFxAXIBcwF0AXUBdgF3AXgBeQF6AXsBfAF9AX4BfwGAAYEBggGDAYQBhQGGAYcBiAGJAYoBiwGMAY0BjgGPAZABkQGSAZMBlAGVAZYBlwGYAZkBmgGbAZwBnQGeAZ8BoAGhAaIBowGkAaUBpgGnAagBqQGqAasBrAGtAa4BrwGwAbEBsgGzAbQBtQG2AbcBuAG5AboBuwG8Ab0BvgG/AcABwQHCAcMBxAHFAcYBxwHIAckBygHLAcwBzQHOAc8B0AHRAdIB0wHUAdUB1gHXAdgB2QHaAdsB3AHdAd4B3wHgAeEB4gHjAeQB5QHmAecB6AHpAeoB6wHsAe0B7gHvAfAB8QHyAfMB9AH1AfYB9wH4AfkB+gH7AfwB/QH+Af8CAAIBAgICAwIEAgUCBgIHAggCCQIKAgsCDAINAg4CDwIQAhECEgZnbHlwaDEGZ2x5cGgyB3VuaTAwQTAHdW5pMjAwMAd1bmkyMDAxB3VuaTIwMDIHdW5pMjAwMwd1bmkyMDA0B3VuaTIwMDUHdW5pMjAwNgd1bmkyMDA3B3VuaTIwMDgHdW5pMjAwOQd1bmkyMDBBB3VuaTIwMkYHdW5pMjA1RgRFdXJvB3VuaTIwQkQHdW5pMjMxQgd1bmkyNUZDB3VuaTI2MDEHdW5pMjZGQQd1bmkyNzA5B3VuaTI3MEYHdW5pRTAwMQd1bmlFMDAyB3VuaUUwMDMHdW5pRTAwNQd1bmlFMDA2B3VuaUUwMDcHdW5pRTAwOAd1bmlFMDA5B3VuaUUwMTAHdW5pRTAxMQd1bmlFMDEyB3VuaUUwMTMHdW5pRTAxNAd1bmlFMDE1B3VuaUUwMTYHdW5pRTAxNwd1bmlFMDE4B3VuaUUwMTkHdW5pRTAyMAd1bmlFMDIxB3VuaUUwMjIHdW5pRTAyMwd1bmlFMDI0B3VuaUUwMjUHdW5pRTAyNgd1bmlFMDI3B3VuaUUwMjgHdW5pRTAyOQd1bmlFMDMwB3VuaUUwMzEHdW5pRTAzMgd1bmlFMDMzB3VuaUUwMzQHdW5pRTAzNQd1bmlFMDM2B3VuaUUwMzcHdW5pRTAzOAd1bmlFMDM5B3VuaUUwNDAHdW5pRTA0MQd1bmlFMDQyB3VuaUUwNDMHdW5pRTA0NAd1bmlFMDQ1B3VuaUUwNDYHdW5pRTA0Nwd1bmlFMDQ4B3VuaUUwNDkHdW5pRTA1MAd1bmlFMDUxB3VuaUUwNTIHdW5pRTA1Mwd1bmlFMDU0B3VuaUUwNTUHdW5pRTA1Ngd1bmlFMDU3B3VuaUUwNTgHdW5pRTA1OQd1bmlFMDYwB3VuaUUwNjIHdW5pRTA2Mwd1bmlFMDY0B3VuaUUwNjUHdW5pRTA2Ngd1bmlFMDY3B3VuaUUwNjgHdW5pRTA2OQd1bmlFMDcwB3VuaUUwNzEHdW5pRTA3Mgd1bmlFMDczB3VuaUUwNzQHdW5pRTA3NQd1bmlFMDc2B3VuaUUwNzcHdW5pRTA3OAd1bmlFMDc5B3VuaUUwODAHdW5pRTA4MQd1bmlFMDgyB3VuaUUwODMHdW5pRTA4NAd1bmlFMDg1B3VuaUUwODYHdW5pRTA4Nwd1bmlFMDg4B3VuaUUwODkHdW5pRTA5MAd1bmlFMDkxB3VuaUUwOTIHdW5pRTA5Mwd1bmlFMDk0B3VuaUUwOTUHdW5pRTA5Ngd1bmlFMDk3B3VuaUUxMDEHdW5pRTEwMgd1bmlFMTAzB3VuaUUxMDQHdW5pRTEwNQd1bmlFMTA2B3VuaUUxMDcHdW5pRTEwOAd1bmlFMTA5B3VuaUUxMTAHdW5pRTExMQd1bmlFMTEyB3VuaUUxMTMHdW5pRTExNAd1bmlFMTE1B3VuaUUxMTYHdW5pRTExNwd1bmlFMTE4B3VuaUUxMTkHdW5pRTEyMAd1bmlFMTIxB3VuaUUxMjIHdW5pRTEyMwd1bmlFMTI0B3VuaUUxMjUHdW5pRTEyNgd1bmlFMTI3B3VuaUUxMjgHdW5pRTEyOQd1bmlFMTMwB3VuaUUxMzEHdW5pRTEzMgd1bmlFMTMzB3VuaUUxMzQHdW5pRTEzNQd1bmlFMTM2B3VuaUUxMzcHdW5pRTEzOAd1bmlFMTM5B3VuaUUxNDAHdW5pRTE0MQd1bmlFMTQyB3VuaUUxNDMHdW5pRTE0NAd1bmlFMTQ1B3VuaUUxNDYHdW5pRTE0OAd1bmlFMTQ5B3VuaUUxNTAHdW5pRTE1MQd1bmlFMTUyB3VuaUUxNTMHdW5pRTE1NAd1bmlFMTU1B3VuaUUxNTYHdW5pRTE1Nwd1bmlFMTU4B3VuaUUxNTkHdW5pRTE2MAd1bmlFMTYxB3VuaUUxNjIHdW5pRTE2Mwd1bmlFMTY0B3VuaUUxNjUHdW5pRTE2Ngd1bmlFMTY3B3VuaUUxNjgHdW5pRTE2OQd1bmlFMTcwB3VuaUUxNzEHdW5pRTE3Mgd1bmlFMTczB3VuaUUxNzQHdW5pRTE3NQd1bmlFMTc2B3VuaUUxNzcHdW5pRTE3OAd1bmlFMTc5B3VuaUUxODAHdW5pRTE4MQd1bmlFMTgyB3VuaUUxODMHdW5pRTE4NAd1bmlFMTg1B3VuaUUxODYHdW5pRTE4Nwd1bmlFMTg4B3VuaUUxODkHdW5pRTE5MAd1bmlFMTkxB3VuaUUxOTIHdW5pRTE5Mwd1bmlFMTk0B3VuaUUxOTUHdW5pRTE5Nwd1bmlFMTk4B3VuaUUxOTkHdW5pRTIwMAd1bmlFMjAxB3VuaUUyMDIHdW5pRTIwMwd1bmlFMjA0B3VuaUUyMDUHdW5pRTIwNgd1bmlFMjA5B3VuaUUyMTAHdW5pRTIxMQd1bmlFMjEyB3VuaUUyMTMHdW5pRTIxNAd1bmlFMjE1B3VuaUUyMTYHdW5pRTIxOAd1bmlFMjE5B3VuaUUyMjEHdW5pRTIyMwd1bmlFMjI0B3VuaUUyMjUHdW5pRTIyNgd1bmlFMjI3B3VuaUUyMzAHdW5pRTIzMQd1bmlFMjMyB3VuaUUyMzMHdW5pRTIzNAd1bmlFMjM1B3VuaUUyMzYHdW5pRTIzNwd1bmlFMjM4B3VuaUUyMzkHdW5pRTI0MAd1bmlFMjQxB3VuaUUyNDIHdW5pRTI0Mwd1bmlFMjQ0B3VuaUUyNDUHdW5pRTI0Ngd1bmlFMjQ3B3VuaUUyNDgHdW5pRTI0OQd1bmlFMjUwB3VuaUUyNTEHdW5pRTI1Mgd1bmlFMjUzB3VuaUUyNTQHdW5pRTI1NQd1bmlFMjU2B3VuaUUyNTcHdW5pRTI1OAd1bmlFMjU5B3VuaUUyNjAHdW5pRjhGRgZ1MUY1MTEGdTFGNkFBAAAAAAFUUMMXAAA=) format('truetype'),url() format('svg')}.glyphicon{position:relative;top:1px;display:inline-block;font-family:'Glyphicons Halflings';font-style:normal;font-weight:400;line-height:1;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.glyphicon-asterisk:before{content:"\2a"}.glyphicon-plus:before{content:"\2b"}.glyphicon-eur:before,.glyphicon-euro:before{content:"\20ac"}.glyphicon-minus:before{content:"\2212"}.glyphicon-cloud:before{content:"\2601"}.glyphicon-envelope:before{content:"\2709"}.glyphicon-pencil:before{content:"\270f"}.glyphicon-glass:before{content:"\e001"}.glyphicon-music:before{content:"\e002"}.glyphicon-search:before{content:"\e003"}.glyphicon-heart:before{content:"\e005"}.glyphicon-star:before{content:"\e006"}.glyphicon-star-empty:before{content:"\e007"}.glyphicon-user:before{content:"\e008"}.glyphicon-film:before{content:"\e009"}.glyphicon-th-large:before{content:"\e010"}.glyphicon-th:before{content:"\e011"}.glyphicon-th-list:before{content:"\e012"}.glyphicon-ok:before{content:"\e013"}.glyphicon-remove:before{content:"\e014"}.glyphicon-zoom-in:before{content:"\e015"}.glyphicon-zoom-out:before{content:"\e016"}.glyphicon-off:before{content:"\e017"}.glyphicon-signal:before{content:"\e018"}.glyphicon-cog:before{content:"\e019"}.glyphicon-trash:before{content:"\e020"}.glyphicon-home:before{content:"\e021"}.glyphicon-file:before{content:"\e022"}.glyphicon-time:before{content:"\e023"}.glyphicon-road:before{content:"\e024"}.glyphicon-download-alt:before{content:"\e025"}.glyphicon-download:before{content:"\e026"}.glyphicon-upload:before{content:"\e027"}.glyphicon-inbox:before{content:"\e028"}.glyphicon-play-circle:before{content:"\e029"}.glyphicon-repeat:before{content:"\e030"}.glyphicon-refresh:before{content:"\e031"}.glyphicon-list-alt:before{content:"\e032"}.glyphicon-lock:before{content:"\e033"}.glyphicon-flag:before{content:"\e034"}.glyphicon-headphones:before{content:"\e035"}.glyphicon-volume-off:before{content:"\e036"}.glyphicon-volume-down:before{content:"\e037"}.glyphicon-volume-up:before{content:"\e038"}.glyphicon-qrcode:before{content:"\e039"}.glyphicon-barcode:before{content:"\e040"}.glyphicon-tag:before{content:"\e041"}.glyphicon-tags:before{content:"\e042"}.glyphicon-book:before{content:"\e043"}.glyphicon-bookmark:before{content:"\e044"}.glyphicon-print:before{content:"\e045"}.glyphicon-camera:before{content:"\e046"}.glyphicon-font:before{content:"\e047"}.glyphicon-bold:before{content:"\e048"}.glyphicon-italic:before{content:"\e049"}.glyphicon-text-height:before{content:"\e050"}.glyphicon-text-width:before{content:"\e051"}.glyphicon-align-left:before{content:"\e052"}.glyphicon-align-center:before{content:"\e053"}.glyphicon-align-right:before{content:"\e054"}.glyphicon-align-justify:before{content:"\e055"}.glyphicon-list:before{content:"\e056"}.glyphicon-indent-left:before{content:"\e057"}.glyphicon-indent-right:before{content:"\e058"}.glyphicon-facetime-video:before{content:"\e059"}.glyphicon-picture:before{content:"\e060"}.glyphicon-map-marker:before{content:"\e062"}.glyphicon-adjust:before{content:"\e063"}.glyphicon-tint:before{content:"\e064"}.glyphicon-edit:before{content:"\e065"}.glyphicon-share:before{content:"\e066"}.glyphicon-check:before{content:"\e067"}.glyphicon-move:before{content:"\e068"}.glyphicon-step-backward:before{content:"\e069"}.glyphicon-fast-backward:before{content:"\e070"}.glyphicon-backward:before{content:"\e071"}.glyphicon-play:before{content:"\e072"}.glyphicon-pause:before{content:"\e073"}.glyphicon-stop:before{content:"\e074"}.glyphicon-forward:before{content:"\e075"}.glyphicon-fast-forward:before{content:"\e076"}.glyphicon-step-forward:before{content:"\e077"}.glyphicon-eject:before{content:"\e078"}.glyphicon-chevron-left:before{content:"\e079"}.glyphicon-chevron-right:before{content:"\e080"}.glyphicon-plus-sign:before{content:"\e081"}.glyphicon-minus-sign:before{content:"\e082"}.glyphicon-remove-sign:before{content:"\e083"}.glyphicon-ok-sign:before{content:"\e084"}.glyphicon-question-sign:before{content:"\e085"}.glyphicon-info-sign:before{content:"\e086"}.glyphicon-screenshot:before{content:"\e087"}.glyphicon-remove-circle:before{content:"\e088"}.glyphicon-ok-circle:before{content:"\e089"}.glyphicon-ban-circle:before{content:"\e090"}.glyphicon-arrow-left:before{content:"\e091"}.glyphicon-arrow-right:before{content:"\e092"}.glyphicon-arrow-up:before{content:"\e093"}.glyphicon-arrow-down:before{content:"\e094"}.glyphicon-share-alt:before{content:"\e095"}.glyphicon-resize-full:before{content:"\e096"}.glyphicon-resize-small:before{content:"\e097"}.glyphicon-exclamation-sign:before{content:"\e101"}.glyphicon-gift:before{content:"\e102"}.glyphicon-leaf:before{content:"\e103"}.glyphicon-fire:before{content:"\e104"}.glyphicon-eye-open:before{content:"\e105"}.glyphicon-eye-close:before{content:"\e106"}.glyphicon-warning-sign:before{content:"\e107"}.glyphicon-plane:before{content:"\e108"}.glyphicon-calendar:before{content:"\e109"}.glyphicon-random:before{content:"\e110"}.glyphicon-comment:before{content:"\e111"}.glyphicon-magnet:before{content:"\e112"}.glyphicon-chevron-up:before{content:"\e113"}.glyphicon-chevron-down:before{content:"\e114"}.glyphicon-retweet:before{content:"\e115"}.glyphicon-shopping-cart:before{content:"\e116"}.glyphicon-folder-close:before{content:"\e117"}.glyphicon-folder-open:before{content:"\e118"}.glyphicon-resize-vertical:before{content:"\e119"}.glyphicon-resize-horizontal:before{content:"\e120"}.glyphicon-hdd:before{content:"\e121"}.glyphicon-bullhorn:before{content:"\e122"}.glyphicon-bell:before{content:"\e123"}.glyphicon-certificate:before{content:"\e124"}.glyphicon-thumbs-up:before{content:"\e125"}.glyphicon-thumbs-down:before{content:"\e126"}.glyphicon-hand-right:before{content:"\e127"}.glyphicon-hand-left:before{content:"\e128"}.glyphicon-hand-up:before{content:"\e129"}.glyphicon-hand-down:before{content:"\e130"}.glyphicon-circle-arrow-right:before{content:"\e131"}.glyphicon-circle-arrow-left:before{content:"\e132"}.glyphicon-circle-arrow-up:before{content:"\e133"}.glyphicon-circle-arrow-down:before{content:"\e134"}.glyphicon-globe:before{content:"\e135"}.glyphicon-wrench:before{content:"\e136"}.glyphicon-tasks:before{content:"\e137"}.glyphicon-filter:before{content:"\e138"}.glyphicon-briefcase:before{content:"\e139"}.glyphicon-fullscreen:before{content:"\e140"}.glyphicon-dashboard:before{content:"\e141"}.glyphicon-paperclip:before{content:"\e142"}.glyphicon-heart-empty:before{content:"\e143"}.glyphicon-link:before{content:"\e144"}.glyphicon-phone:before{content:"\e145"}.glyphicon-pushpin:before{content:"\e146"}.glyphicon-usd:before{content:"\e148"}.glyphicon-gbp:before{content:"\e149"}.glyphicon-sort:before{content:"\e150"}.glyphicon-sort-by-alphabet:before{content:"\e151"}.glyphicon-sort-by-alphabet-alt:before{content:"\e152"}.glyphicon-sort-by-order:before{content:"\e153"}.glyphicon-sort-by-order-alt:before{content:"\e154"}.glyphicon-sort-by-attributes:before{content:"\e155"}.glyphicon-sort-by-attributes-alt:before{content:"\e156"}.glyphicon-unchecked:before{content:"\e157"}.glyphicon-expand:before{content:"\e158"}.glyphicon-collapse-down:before{content:"\e159"}.glyphicon-collapse-up:before{content:"\e160"}.glyphicon-log-in:before{content:"\e161"}.glyphicon-flash:before{content:"\e162"}.glyphicon-log-out:before{content:"\e163"}.glyphicon-new-window:before{content:"\e164"}.glyphicon-record:before{content:"\e165"}.glyphicon-save:before{content:"\e166"}.glyphicon-open:before{content:"\e167"}.glyphicon-saved:before{content:"\e168"}.glyphicon-import:before{content:"\e169"}.glyphicon-export:before{content:"\e170"}.glyphicon-send:before{content:"\e171"}.glyphicon-floppy-disk:before{content:"\e172"}.glyphicon-floppy-saved:before{content:"\e173"}.glyphicon-floppy-remove:before{content:"\e174"}.glyphicon-floppy-save:before{content:"\e175"}.glyphicon-floppy-open:before{content:"\e176"}.glyphicon-credit-card:before{content:"\e177"}.glyphicon-transfer:before{content:"\e178"}.glyphicon-cutlery:before{content:"\e179"}.glyphicon-header:before{content:"\e180"}.glyphicon-compressed:before{content:"\e181"}.glyphicon-earphone:before{content:"\e182"}.glyphicon-phone-alt:before{content:"\e183"}.glyphicon-tower:before{content:"\e184"}.glyphicon-stats:before{content:"\e185"}.glyphicon-sd-video:before{content:"\e186"}.glyphicon-hd-video:before{content:"\e187"}.glyphicon-subtitles:before{content:"\e188"}.glyphicon-sound-stereo:before{content:"\e189"}.glyphicon-sound-dolby:before{content:"\e190"}.glyphicon-sound-5-1:before{content:"\e191"}.glyphicon-sound-6-1:before{content:"\e192"}.glyphicon-sound-7-1:before{content:"\e193"}.glyphicon-copyright-mark:before{content:"\e194"}.glyphicon-registration-mark:before{content:"\e195"}.glyphicon-cloud-download:before{content:"\e197"}.glyphicon-cloud-upload:before{content:"\e198"}.glyphicon-tree-conifer:before{content:"\e199"}.glyphicon-tree-deciduous:before{content:"\e200"}.glyphicon-cd:before{content:"\e201"}.glyphicon-save-file:before{content:"\e202"}.glyphicon-open-file:before{content:"\e203"}.glyphicon-level-up:before{content:"\e204"}.glyphicon-copy:before{content:"\e205"}.glyphicon-paste:before{content:"\e206"}.glyphicon-alert:before{content:"\e209"}.glyphicon-equalizer:before{content:"\e210"}.glyphicon-king:before{content:"\e211"}.glyphicon-queen:before{content:"\e212"}.glyphicon-pawn:before{content:"\e213"}.glyphicon-bishop:before{content:"\e214"}.glyphicon-knight:before{content:"\e215"}.glyphicon-baby-formula:before{content:"\e216"}.glyphicon-tent:before{content:"\26fa"}.glyphicon-blackboard:before{content:"\e218"}.glyphicon-bed:before{content:"\e219"}.glyphicon-apple:before{content:"\f8ff"}.glyphicon-erase:before{content:"\e221"}.glyphicon-hourglass:before{content:"\231b"}.glyphicon-lamp:before{content:"\e223"}.glyphicon-duplicate:before{content:"\e224"}.glyphicon-piggy-bank:before{content:"\e225"}.glyphicon-scissors:before{content:"\e226"}.glyphicon-bitcoin:before{content:"\e227"}.glyphicon-btc:before{content:"\e227"}.glyphicon-xbt:before{content:"\e227"}.glyphicon-yen:before{content:"\00a5"}.glyphicon-jpy:before{content:"\00a5"}.glyphicon-ruble:before{content:"\20bd"}.glyphicon-rub:before{content:"\20bd"}.glyphicon-scale:before{content:"\e230"}.glyphicon-ice-lolly:before{content:"\e231"}.glyphicon-ice-lolly-tasted:before{content:"\e232"}.glyphicon-education:before{content:"\e233"}.glyphicon-option-horizontal:before{content:"\e234"}.glyphicon-option-vertical:before{content:"\e235"}.glyphicon-menu-hamburger:before{content:"\e236"}.glyphicon-modal-window:before{content:"\e237"}.glyphicon-oil:before{content:"\e238"}.glyphicon-grain:before{content:"\e239"}.glyphicon-sunglasses:before{content:"\e240"}.glyphicon-text-size:before{content:"\e241"}.glyphicon-text-color:before{content:"\e242"}.glyphicon-text-background:before{content:"\e243"}.glyphicon-object-align-top:before{content:"\e244"}.glyphicon-object-align-bottom:before{content:"\e245"}.glyphicon-object-align-horizontal:before{content:"\e246"}.glyphicon-object-align-left:before{content:"\e247"}.glyphicon-object-align-vertical:before{content:"\e248"}.glyphicon-object-align-right:before{content:"\e249"}.glyphicon-triangle-right:before{content:"\e250"}.glyphicon-triangle-left:before{content:"\e251"}.glyphicon-triangle-bottom:before{content:"\e252"}.glyphicon-triangle-top:before{content:"\e253"}.glyphicon-console:before{content:"\e254"}.glyphicon-superscript:before{content:"\e255"}.glyphicon-subscript:before{content:"\e256"}.glyphicon-menu-left:before{content:"\e257"}.glyphicon-menu-right:before{content:"\e258"}.glyphicon-menu-down:before{content:"\e259"}.glyphicon-menu-up:before{content:"\e260"}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:rgba(0,0,0,0)}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}button,input,select,textarea{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}figure{margin:0}img{vertical-align:middle}.carousel-inner>.item>a>img,.carousel-inner>.item>img,.img-responsive,.thumbnail a>img,.thumbnail>img{display:block;max-width:100%;height:auto}.img-rounded{border-radius:6px}.img-thumbnail{display:inline-block;max-width:100%;height:auto;padding:4px;line-height:1.42857143;background-color:#fff;border:1px solid #ddd;border-radius:4px;-webkit-transition:all .2s ease-in-out;-o-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.img-circle{border-radius:50%}hr{margin-top:20px;margin-bottom:20px;border:0;border-top:1px solid #eee}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}[role=button]{cursor:pointer}.h1,.h2,.h3,.h4,.h5,.h6,h1,h2,h3,h4,h5,h6{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}.h1 .small,.h1 small,.h2 .small,.h2 small,.h3 .small,.h3 small,.h4 .small,.h4 small,.h5 .small,.h5 small,.h6 .small,.h6 small,h1 .small,h1 small,h2 .small,h2 small,h3 .small,h3 small,h4 .small,h4 small,h5 .small,h5 small,h6 .small,h6 small{font-weight:400;line-height:1;color:#777}.h1,.h2,.h3,h1,h2,h3{margin-top:20px;margin-bottom:10px}.h1 .small,.h1 small,.h2 .small,.h2 small,.h3 .small,.h3 small,h1 .small,h1 small,h2 .small,h2 small,h3 .small,h3 small{font-size:65%}.h4,.h5,.h6,h4,h5,h6{margin-top:10px;margin-bottom:10px}.h4 .small,.h4 small,.h5 .small,.h5 small,.h6 .small,.h6 small,h4 .small,h4 small,h5 .small,h5 small,h6 .small,h6 small{font-size:75%}.h1,h1{font-size:36px}.h2,h2{font-size:30px}.h3,h3{font-size:24px}.h4,h4{font-size:18px}.h5,h5{font-size:14px}.h6,h6{font-size:12px}p{margin:0 0 10px}.lead{margin-bottom:20px;font-size:16px;font-weight:300;line-height:1.4}@media (min-width:768px){.lead{font-size:21px}}.small,small{font-size:85%}.mark,mark{padding:.2em;background-color:#fcf8e3}.text-left{text-align:left}.text-right{text-align:right}.text-center{text-align:center}.text-justify{text-align:justify}.text-nowrap{white-space:nowrap}.text-lowercase{text-transform:lowercase}.text-uppercase{text-transform:uppercase}.text-capitalize{text-transform:capitalize}.text-muted{color:#777}.text-primary{color:#337ab7}a.text-primary:focus,a.text-primary:hover{color:#286090}.text-success{color:#3c763d}a.text-success:focus,a.text-success:hover{color:#2b542c}.text-info{color:#31708f}a.text-info:focus,a.text-info:hover{color:#245269}.text-warning{color:#8a6d3b}a.text-warning:focus,a.text-warning:hover{color:#66512c}.text-danger{color:#a94442}a.text-danger:focus,a.text-danger:hover{color:#843534}.bg-primary{color:#fff;background-color:#337ab7}a.bg-primary:focus,a.bg-primary:hover{background-color:#286090}.bg-success{background-color:#dff0d8}a.bg-success:focus,a.bg-success:hover{background-color:#c1e2b3}.bg-info{background-color:#d9edf7}a.bg-info:focus,a.bg-info:hover{background-color:#afd9ee}.bg-warning{background-color:#fcf8e3}a.bg-warning:focus,a.bg-warning:hover{background-color:#f7ecb5}.bg-danger{background-color:#f2dede}a.bg-danger:focus,a.bg-danger:hover{background-color:#e4b9b9}.page-header{padding-bottom:9px;margin:40px 0 20px;border-bottom:1px solid #eee}ol,ul{margin-top:0;margin-bottom:10px}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;margin-left:-5px;list-style:none}.list-inline>li{display:inline-block;padding-right:5px;padding-left:5px}dl{margin-top:0;margin-bottom:20px}dd,dt{line-height:1.42857143}dt{font-weight:700}dd{margin-left:0}@media (min-width:768px){.dl-horizontal dt{float:left;width:160px;overflow:hidden;clear:left;text-align:right;text-overflow:ellipsis;white-space:nowrap}.dl-horizontal dd{margin-left:180px}}abbr[data-original-title],abbr[title]{cursor:help;border-bottom:1px dotted #777}.initialism{font-size:90%;text-transform:uppercase}blockquote{padding:10px 20px;margin:0 0 20px;font-size:17.5px;border-left:5px solid #eee}blockquote ol:last-child,blockquote p:last-child,blockquote ul:last-child{margin-bottom:0}blockquote .small,blockquote footer,blockquote small{display:block;font-size:80%;line-height:1.42857143;color:#777}blockquote .small:before,blockquote footer:before,blockquote small:before{content:'\2014 \00A0'}.blockquote-reverse,blockquote.pull-right{padding-right:15px;padding-left:0;text-align:right;border-right:5px solid #eee;border-left:0}.blockquote-reverse .small:before,.blockquote-reverse footer:before,.blockquote-reverse small:before,blockquote.pull-right .small:before,blockquote.pull-right footer:before,blockquote.pull-right small:before{content:''}.blockquote-reverse .small:after,.blockquote-reverse footer:after,.blockquote-reverse small:after,blockquote.pull-right .small:after,blockquote.pull-right footer:after,blockquote.pull-right small:after{content:'\00A0 \2014'}address{margin-bottom:20px;font-style:normal;line-height:1.42857143}code,kbd,pre,samp{font-family:monospace}code{padding:2px 4px;font-size:90%;color:#c7254e;background-color:#f9f2f4;border-radius:4px}kbd{padding:2px 4px;font-size:90%;color:#fff;background-color:#333;border-radius:3px;-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,.25);box-shadow:inset 0 -1px 0 rgba(0,0,0,.25)}kbd kbd{padding:0;font-size:100%;font-weight:700;-webkit-box-shadow:none;box-shadow:none}pre{display:block;padding:9.5px;margin:0 0 10px;font-size:13px;line-height:1.42857143;color:#333;word-break:break-all;word-wrap:break-word;background-color:#f5f5f5;border:1px solid #ccc;border-radius:4px}pre code{padding:0;font-size:inherit;color:inherit;white-space:pre-wrap;background-color:transparent;border-radius:0}.pre-scrollable{max-height:340px;overflow-y:scroll}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.container-fluid{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}.row{margin-right:-15px;margin-left:-15px}.col-lg-1,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-md-1,.col-md-10,.col-md-11,.col-md-12,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-sm-1,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-xs-1,.col-xs-10,.col-xs-11,.col-xs-12,.col-xs-2,.col-xs-3,.col-xs-4,.col-xs-5,.col-xs-6,.col-xs-7,.col-xs-8,.col-xs-9{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-1,.col-xs-10,.col-xs-11,.col-xs-12,.col-xs-2,.col-xs-3,.col-xs-4,.col-xs-5,.col-xs-6,.col-xs-7,.col-xs-8,.col-xs-9{float:left}.col-xs-12{width:100%}.col-xs-11{width:91.66666667%}.col-xs-10{width:83.33333333%}.col-xs-9{width:75%}.col-xs-8{width:66.66666667%}.col-xs-7{width:58.33333333%}.col-xs-6{width:50%}.col-xs-5{width:41.66666667%}.col-xs-4{width:33.33333333%}.col-xs-3{width:25%}.col-xs-2{width:16.66666667%}.col-xs-1{width:8.33333333%}.col-xs-pull-12{right:100%}.col-xs-pull-11{right:91.66666667%}.col-xs-pull-10{right:83.33333333%}.col-xs-pull-9{right:75%}.col-xs-pull-8{right:66.66666667%}.col-xs-pull-7{right:58.33333333%}.col-xs-pull-6{right:50%}.col-xs-pull-5{right:41.66666667%}.col-xs-pull-4{right:33.33333333%}.col-xs-pull-3{right:25%}.col-xs-pull-2{right:16.66666667%}.col-xs-pull-1{right:8.33333333%}.col-xs-pull-0{right:auto}.col-xs-push-12{left:100%}.col-xs-push-11{left:91.66666667%}.col-xs-push-10{left:83.33333333%}.col-xs-push-9{left:75%}.col-xs-push-8{left:66.66666667%}.col-xs-push-7{left:58.33333333%}.col-xs-push-6{left:50%}.col-xs-push-5{left:41.66666667%}.col-xs-push-4{left:33.33333333%}.col-xs-push-3{left:25%}.col-xs-push-2{left:16.66666667%}.col-xs-push-1{left:8.33333333%}.col-xs-push-0{left:auto}.col-xs-offset-12{margin-left:100%}.col-xs-offset-11{margin-left:91.66666667%}.col-xs-offset-10{margin-left:83.33333333%}.col-xs-offset-9{margin-left:75%}.col-xs-offset-8{margin-left:66.66666667%}.col-xs-offset-7{margin-left:58.33333333%}.col-xs-offset-6{margin-left:50%}.col-xs-offset-5{margin-left:41.66666667%}.col-xs-offset-4{margin-left:33.33333333%}.col-xs-offset-3{margin-left:25%}.col-xs-offset-2{margin-left:16.66666667%}.col-xs-offset-1{margin-left:8.33333333%}.col-xs-offset-0{margin-left:0}@media (min-width:768px){.col-sm-1,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9{float:left}.col-sm-12{width:100%}.col-sm-11{width:91.66666667%}.col-sm-10{width:83.33333333%}.col-sm-9{width:75%}.col-sm-8{width:66.66666667%}.col-sm-7{width:58.33333333%}.col-sm-6{width:50%}.col-sm-5{width:41.66666667%}.col-sm-4{width:33.33333333%}.col-sm-3{width:25%}.col-sm-2{width:16.66666667%}.col-sm-1{width:8.33333333%}.col-sm-pull-12{right:100%}.col-sm-pull-11{right:91.66666667%}.col-sm-pull-10{right:83.33333333%}.col-sm-pull-9{right:75%}.col-sm-pull-8{right:66.66666667%}.col-sm-pull-7{right:58.33333333%}.col-sm-pull-6{right:50%}.col-sm-pull-5{right:41.66666667%}.col-sm-pull-4{right:33.33333333%}.col-sm-pull-3{right:25%}.col-sm-pull-2{right:16.66666667%}.col-sm-pull-1{right:8.33333333%}.col-sm-pull-0{right:auto}.col-sm-push-12{left:100%}.col-sm-push-11{left:91.66666667%}.col-sm-push-10{left:83.33333333%}.col-sm-push-9{left:75%}.col-sm-push-8{left:66.66666667%}.col-sm-push-7{left:58.33333333%}.col-sm-push-6{left:50%}.col-sm-push-5{left:41.66666667%}.col-sm-push-4{left:33.33333333%}.col-sm-push-3{left:25%}.col-sm-push-2{left:16.66666667%}.col-sm-push-1{left:8.33333333%}.col-sm-push-0{left:auto}.col-sm-offset-12{margin-left:100%}.col-sm-offset-11{margin-left:91.66666667%}.col-sm-offset-10{margin-left:83.33333333%}.col-sm-offset-9{margin-left:75%}.col-sm-offset-8{margin-left:66.66666667%}.col-sm-offset-7{margin-left:58.33333333%}.col-sm-offset-6{margin-left:50%}.col-sm-offset-5{margin-left:41.66666667%}.col-sm-offset-4{margin-left:33.33333333%}.col-sm-offset-3{margin-left:25%}.col-sm-offset-2{margin-left:16.66666667%}.col-sm-offset-1{margin-left:8.33333333%}.col-sm-offset-0{margin-left:0}}@media (min-width:992px){.col-md-1,.col-md-10,.col-md-11,.col-md-12,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9{float:left}.col-md-12{width:100%}.col-md-11{width:91.66666667%}.col-md-10{width:83.33333333%}.col-md-9{width:75%}.col-md-8{width:66.66666667%}.col-md-7{width:58.33333333%}.col-md-6{width:50%}.col-md-5{width:41.66666667%}.col-md-4{width:33.33333333%}.col-md-3{width:25%}.col-md-2{width:16.66666667%}.col-md-1{width:8.33333333%}.col-md-pull-12{right:100%}.col-md-pull-11{right:91.66666667%}.col-md-pull-10{right:83.33333333%}.col-md-pull-9{right:75%}.col-md-pull-8{right:66.66666667%}.col-md-pull-7{right:58.33333333%}.col-md-pull-6{right:50%}.col-md-pull-5{right:41.66666667%}.col-md-pull-4{right:33.33333333%}.col-md-pull-3{right:25%}.col-md-pull-2{right:16.66666667%}.col-md-pull-1{right:8.33333333%}.col-md-pull-0{right:auto}.col-md-push-12{left:100%}.col-md-push-11{left:91.66666667%}.col-md-push-10{left:83.33333333%}.col-md-push-9{left:75%}.col-md-push-8{left:66.66666667%}.col-md-push-7{left:58.33333333%}.col-md-push-6{left:50%}.col-md-push-5{left:41.66666667%}.col-md-push-4{left:33.33333333%}.col-md-push-3{left:25%}.col-md-push-2{left:16.66666667%}.col-md-push-1{left:8.33333333%}.col-md-push-0{left:auto}.col-md-offset-12{margin-left:100%}.col-md-offset-11{margin-left:91.66666667%}.col-md-offset-10{margin-left:83.33333333%}.col-md-offset-9{margin-left:75%}.col-md-offset-8{margin-left:66.66666667%}.col-md-offset-7{margin-left:58.33333333%}.col-md-offset-6{margin-left:50%}.col-md-offset-5{margin-left:41.66666667%}.col-md-offset-4{margin-left:33.33333333%}.col-md-offset-3{margin-left:25%}.col-md-offset-2{margin-left:16.66666667%}.col-md-offset-1{margin-left:8.33333333%}.col-md-offset-0{margin-left:0}}@media (min-width:1200px){.col-lg-1,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9{float:left}.col-lg-12{width:100%}.col-lg-11{width:91.66666667%}.col-lg-10{width:83.33333333%}.col-lg-9{width:75%}.col-lg-8{width:66.66666667%}.col-lg-7{width:58.33333333%}.col-lg-6{width:50%}.col-lg-5{width:41.66666667%}.col-lg-4{width:33.33333333%}.col-lg-3{width:25%}.col-lg-2{width:16.66666667%}.col-lg-1{width:8.33333333%}.col-lg-pull-12{right:100%}.col-lg-pull-11{right:91.66666667%}.col-lg-pull-10{right:83.33333333%}.col-lg-pull-9{right:75%}.col-lg-pull-8{right:66.66666667%}.col-lg-pull-7{right:58.33333333%}.col-lg-pull-6{right:50%}.col-lg-pull-5{right:41.66666667%}.col-lg-pull-4{right:33.33333333%}.col-lg-pull-3{right:25%}.col-lg-pull-2{right:16.66666667%}.col-lg-pull-1{right:8.33333333%}.col-lg-pull-0{right:auto}.col-lg-push-12{left:100%}.col-lg-push-11{left:91.66666667%}.col-lg-push-10{left:83.33333333%}.col-lg-push-9{left:75%}.col-lg-push-8{left:66.66666667%}.col-lg-push-7{left:58.33333333%}.col-lg-push-6{left:50%}.col-lg-push-5{left:41.66666667%}.col-lg-push-4{left:33.33333333%}.col-lg-push-3{left:25%}.col-lg-push-2{left:16.66666667%}.col-lg-push-1{left:8.33333333%}.col-lg-push-0{left:auto}.col-lg-offset-12{margin-left:100%}.col-lg-offset-11{margin-left:91.66666667%}.col-lg-offset-10{margin-left:83.33333333%}.col-lg-offset-9{margin-left:75%}.col-lg-offset-8{margin-left:66.66666667%}.col-lg-offset-7{margin-left:58.33333333%}.col-lg-offset-6{margin-left:50%}.col-lg-offset-5{margin-left:41.66666667%}.col-lg-offset-4{margin-left:33.33333333%}.col-lg-offset-3{margin-left:25%}.col-lg-offset-2{margin-left:16.66666667%}.col-lg-offset-1{margin-left:8.33333333%}.col-lg-offset-0{margin-left:0}}table{background-color:transparent}caption{padding-top:8px;padding-bottom:8px;color:#777;text-align:left}th{}.table{width:100%;max-width:100%;margin-bottom:20px}.table>tbody>tr>td,.table>tbody>tr>th,.table>tfoot>tr>td,.table>tfoot>tr>th,.table>thead>tr>td,.table>thead>tr>th{padding:8px;line-height:1.42857143;vertical-align:top;border-top:1px solid #ddd}.table>thead>tr>th{vertical-align:bottom;border-bottom:2px solid #ddd}.table>caption+thead>tr:first-child>td,.table>caption+thead>tr:first-child>th,.table>colgroup+thead>tr:first-child>td,.table>colgroup+thead>tr:first-child>th,.table>thead:first-child>tr:first-child>td,.table>thead:first-child>tr:first-child>th{border-top:0}.table>tbody+tbody{border-top:2px solid #ddd}.table .table{background-color:#fff}.table-condensed>tbody>tr>td,.table-condensed>tbody>tr>th,.table-condensed>tfoot>tr>td,.table-condensed>tfoot>tr>th,.table-condensed>thead>tr>td,.table-condensed>thead>tr>th{padding:5px}.table-bordered{border:1px solid #ddd}.table-bordered>tbody>tr>td,.table-bordered>tbody>tr>th,.table-bordered>tfoot>tr>td,.table-bordered>tfoot>tr>th,.table-bordered>thead>tr>td,.table-bordered>thead>tr>th{border:1px solid #ddd}.table-bordered>thead>tr>td,.table-bordered>thead>tr>th{border-bottom-width:2px}.table-striped>tbody>tr:nth-of-type(odd){background-color:#f9f9f9}.table-hover>tbody>tr:hover{background-color:#f5f5f5}table col[class*=col-]{position:static;display:table-column;float:none}table td[class*=col-],table th[class*=col-]{position:static;display:table-cell;float:none}.table>tbody>tr.active>td,.table>tbody>tr.active>th,.table>tbody>tr>td.active,.table>tbody>tr>th.active,.table>tfoot>tr.active>td,.table>tfoot>tr.active>th,.table>tfoot>tr>td.active,.table>tfoot>tr>th.active,.table>thead>tr.active>td,.table>thead>tr.active>th,.table>thead>tr>td.active,.table>thead>tr>th.active{background-color:#f5f5f5}.table-hover>tbody>tr.active:hover>td,.table-hover>tbody>tr.active:hover>th,.table-hover>tbody>tr:hover>.active,.table-hover>tbody>tr>td.active:hover,.table-hover>tbody>tr>th.active:hover{background-color:#e8e8e8}.table>tbody>tr.success>td,.table>tbody>tr.success>th,.table>tbody>tr>td.success,.table>tbody>tr>th.success,.table>tfoot>tr.success>td,.table>tfoot>tr.success>th,.table>tfoot>tr>td.success,.table>tfoot>tr>th.success,.table>thead>tr.success>td,.table>thead>tr.success>th,.table>thead>tr>td.success,.table>thead>tr>th.success{background-color:#dff0d8}.table-hover>tbody>tr.success:hover>td,.table-hover>tbody>tr.success:hover>th,.table-hover>tbody>tr:hover>.success,.table-hover>tbody>tr>td.success:hover,.table-hover>tbody>tr>th.success:hover{background-color:#d0e9c6}.table>tbody>tr.info>td,.table>tbody>tr.info>th,.table>tbody>tr>td.info,.table>tbody>tr>th.info,.table>tfoot>tr.info>td,.table>tfoot>tr.info>th,.table>tfoot>tr>td.info,.table>tfoot>tr>th.info,.table>thead>tr.info>td,.table>thead>tr.info>th,.table>thead>tr>td.info,.table>thead>tr>th.info{background-color:#d9edf7}.table-hover>tbody>tr.info:hover>td,.table-hover>tbody>tr.info:hover>th,.table-hover>tbody>tr:hover>.info,.table-hover>tbody>tr>td.info:hover,.table-hover>tbody>tr>th.info:hover{background-color:#c4e3f3}.table>tbody>tr.warning>td,.table>tbody>tr.warning>th,.table>tbody>tr>td.warning,.table>tbody>tr>th.warning,.table>tfoot>tr.warning>td,.table>tfoot>tr.warning>th,.table>tfoot>tr>td.warning,.table>tfoot>tr>th.warning,.table>thead>tr.warning>td,.table>thead>tr.warning>th,.table>thead>tr>td.warning,.table>thead>tr>th.warning{background-color:#fcf8e3}.table-hover>tbody>tr.warning:hover>td,.table-hover>tbody>tr.warning:hover>th,.table-hover>tbody>tr:hover>.warning,.table-hover>tbody>tr>td.warning:hover,.table-hover>tbody>tr>th.warning:hover{background-color:#faf2cc}.table>tbody>tr.danger>td,.table>tbody>tr.danger>th,.table>tbody>tr>td.danger,.table>tbody>tr>th.danger,.table>tfoot>tr.danger>td,.table>tfoot>tr.danger>th,.table>tfoot>tr>td.danger,.table>tfoot>tr>th.danger,.table>thead>tr.danger>td,.table>thead>tr.danger>th,.table>thead>tr>td.danger,.table>thead>tr>th.danger{background-color:#f2dede}.table-hover>tbody>tr.danger:hover>td,.table-hover>tbody>tr.danger:hover>th,.table-hover>tbody>tr:hover>.danger,.table-hover>tbody>tr>td.danger:hover,.table-hover>tbody>tr>th.danger:hover{background-color:#ebcccc}.table-responsive{min-height:.01%;overflow-x:auto}@media screen and (max-width:767px){.table-responsive{width:100%;margin-bottom:15px;overflow-y:hidden;-ms-overflow-style:-ms-autohiding-scrollbar;border:1px solid #ddd}.table-responsive>.table{margin-bottom:0}.table-responsive>.table>tbody>tr>td,.table-responsive>.table>tbody>tr>th,.table-responsive>.table>tfoot>tr>td,.table-responsive>.table>tfoot>tr>th,.table-responsive>.table>thead>tr>td,.table-responsive>.table>thead>tr>th{white-space:nowrap}.table-responsive>.table-bordered{border:0}.table-responsive>.table-bordered>tbody>tr>td:first-child,.table-responsive>.table-bordered>tbody>tr>th:first-child,.table-responsive>.table-bordered>tfoot>tr>td:first-child,.table-responsive>.table-bordered>tfoot>tr>th:first-child,.table-responsive>.table-bordered>thead>tr>td:first-child,.table-responsive>.table-bordered>thead>tr>th:first-child{border-left:0}.table-responsive>.table-bordered>tbody>tr>td:last-child,.table-responsive>.table-bordered>tbody>tr>th:last-child,.table-responsive>.table-bordered>tfoot>tr>td:last-child,.table-responsive>.table-bordered>tfoot>tr>th:last-child,.table-responsive>.table-bordered>thead>tr>td:last-child,.table-responsive>.table-bordered>thead>tr>th:last-child{border-right:0}.table-responsive>.table-bordered>tbody>tr:last-child>td,.table-responsive>.table-bordered>tbody>tr:last-child>th,.table-responsive>.table-bordered>tfoot>tr:last-child>td,.table-responsive>.table-bordered>tfoot>tr:last-child>th{border-bottom:0}}fieldset{min-width:0;padding:0;margin:0;border:0}legend{display:block;width:100%;padding:0;margin-bottom:20px;font-size:21px;line-height:inherit;color:#333;border:0;border-bottom:1px solid #e5e5e5}label{display:inline-block;max-width:100%;margin-bottom:5px;font-weight:700}input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=checkbox],input[type=radio]{margin:4px 0 0;margin-top:1px\9;line-height:normal}input[type=file]{display:block}input[type=range]{display:block;width:100%}select[multiple],select[size]{height:auto}input[type=file]:focus,input[type=checkbox]:focus,input[type=radio]:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}output{display:block;padding-top:7px;font-size:14px;line-height:1.42857143;color:#555}.form-control{display:block;width:100%;height:34px;padding:6px 12px;font-size:14px;line-height:1.42857143;color:#555;background-color:#fff;background-image:none;border:1px solid #ccc;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-webkit-transition:border-color ease-in-out .15s,-webkit-box-shadow ease-in-out .15s;-o-transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s;transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s}.form-control:focus{border-color:#66afe9;outline:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 8px rgba(102,175,233,.6);box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 8px rgba(102,175,233,.6)}.form-control::-moz-placeholder{color:#999;opacity:1}.form-control:-ms-input-placeholder{color:#999}.form-control::-webkit-input-placeholder{color:#999}.form-control[disabled],.form-control[readonly],fieldset[disabled] .form-control{background-color:#eee;opacity:1}.form-control[disabled],fieldset[disabled] .form-control{cursor:not-allowed}textarea.form-control{height:auto}input[type=search]{-webkit-appearance:none}@media screen and (-webkit-min-device-pixel-ratio:0){input[type=date].form-control,input[type=time].form-control,input[type=datetime-local].form-control,input[type=month].form-control{line-height:34px}.input-group-sm input[type=date],.input-group-sm input[type=time],.input-group-sm input[type=datetime-local],.input-group-sm input[type=month],input[type=date].input-sm,input[type=time].input-sm,input[type=datetime-local].input-sm,input[type=month].input-sm{line-height:30px}.input-group-lg input[type=date],.input-group-lg input[type=time],.input-group-lg input[type=datetime-local],.input-group-lg input[type=month],input[type=date].input-lg,input[type=time].input-lg,input[type=datetime-local].input-lg,input[type=month].input-lg{line-height:46px}}.form-group{margin-bottom:15px}.checkbox,.radio{position:relative;display:block;margin-top:10px;margin-bottom:10px}.checkbox label,.radio label{min-height:20px;padding-left:20px;margin-bottom:0;font-weight:400;cursor:pointer}.checkbox input[type=checkbox],.checkbox-inline input[type=checkbox],.radio input[type=radio],.radio-inline input[type=radio]{position:absolute;margin-top:4px\9;margin-left:-20px}.checkbox+.checkbox,.radio+.radio{margin-top:-5px}.checkbox-inline,.radio-inline{position:relative;display:inline-block;padding-left:20px;margin-bottom:0;font-weight:400;vertical-align:middle;cursor:pointer}.checkbox-inline+.checkbox-inline,.radio-inline+.radio-inline{margin-top:0;margin-left:10px}fieldset[disabled] input[type=checkbox],fieldset[disabled] input[type=radio],input[type=checkbox].disabled,input[type=checkbox][disabled],input[type=radio].disabled,input[type=radio][disabled]{cursor:not-allowed}.checkbox-inline.disabled,.radio-inline.disabled,fieldset[disabled] .checkbox-inline,fieldset[disabled] .radio-inline{cursor:not-allowed}.checkbox.disabled label,.radio.disabled label,fieldset[disabled] .checkbox label,fieldset[disabled] .radio label{cursor:not-allowed}.form-control-static{min-height:34px;padding-top:7px;padding-bottom:7px;margin-bottom:0}.form-control-static.input-lg,.form-control-static.input-sm{padding-right:0;padding-left:0}.input-sm{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}select.input-sm{height:30px;line-height:30px}select[multiple].input-sm,textarea.input-sm{height:auto}.form-group-sm .form-control{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}.form-group-sm select.form-control{height:30px;line-height:30px}.form-group-sm select[multiple].form-control,.form-group-sm textarea.form-control{height:auto}.form-group-sm .form-control-static{height:30px;min-height:32px;padding:6px 10px;font-size:12px;line-height:1.5}.input-lg{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}select.input-lg{height:46px;line-height:46px}select[multiple].input-lg,textarea.input-lg{height:auto}.form-group-lg .form-control{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}.form-group-lg select.form-control{height:46px;line-height:46px}.form-group-lg select[multiple].form-control,.form-group-lg textarea.form-control{height:auto}.form-group-lg .form-control-static{height:46px;min-height:38px;padding:11px 16px;font-size:18px;line-height:1.3333333}.has-feedback{position:relative}.has-feedback .form-control{padding-right:42.5px}.form-control-feedback{position:absolute;top:0;right:0;z-index:2;display:block;width:34px;height:34px;line-height:34px;text-align:center;pointer-events:none}.form-group-lg .form-control+.form-control-feedback,.input-group-lg+.form-control-feedback,.input-lg+.form-control-feedback{width:46px;height:46px;line-height:46px}.form-group-sm .form-control+.form-control-feedback,.input-group-sm+.form-control-feedback,.input-sm+.form-control-feedback{width:30px;height:30px;line-height:30px}.has-success .checkbox,.has-success .checkbox-inline,.has-success .control-label,.has-success .help-block,.has-success .radio,.has-success .radio-inline,.has-success.checkbox label,.has-success.checkbox-inline label,.has-success.radio label,.has-success.radio-inline label{color:#3c763d}.has-success .form-control{border-color:#3c763d;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-success .form-control:focus{border-color:#2b542c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #67b168;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #67b168}.has-success .input-group-addon{color:#3c763d;background-color:#dff0d8;border-color:#3c763d}.has-success .form-control-feedback{color:#3c763d}.has-warning .checkbox,.has-warning .checkbox-inline,.has-warning .control-label,.has-warning .help-block,.has-warning .radio,.has-warning .radio-inline,.has-warning.checkbox label,.has-warning.checkbox-inline label,.has-warning.radio label,.has-warning.radio-inline label{color:#8a6d3b}.has-warning .form-control{border-color:#8a6d3b;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-warning .form-control:focus{border-color:#66512c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #c0a16b;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #c0a16b}.has-warning .input-group-addon{color:#8a6d3b;background-color:#fcf8e3;border-color:#8a6d3b}.has-warning .form-control-feedback{color:#8a6d3b}.has-error .checkbox,.has-error .checkbox-inline,.has-error .control-label,.has-error .help-block,.has-error .radio,.has-error .radio-inline,.has-error.checkbox label,.has-error.checkbox-inline label,.has-error.radio label,.has-error.radio-inline label{color:#a94442}.has-error .form-control{border-color:#a94442;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-error .form-control:focus{border-color:#843534;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #ce8483;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #ce8483}.has-error .input-group-addon{color:#a94442;background-color:#f2dede;border-color:#a94442}.has-error .form-control-feedback{color:#a94442}.has-feedback label~.form-control-feedback{top:25px}.has-feedback label.sr-only~.form-control-feedback{top:0}.help-block{display:block;margin-top:5px;margin-bottom:10px;color:#737373}@media (min-width:768px){.form-inline .form-group{display:inline-block;margin-bottom:0;vertical-align:middle}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-static{display:inline-block}.form-inline .input-group{display:inline-table;vertical-align:middle}.form-inline .input-group .form-control,.form-inline .input-group .input-group-addon,.form-inline .input-group .input-group-btn{width:auto}.form-inline .input-group>.form-control{width:100%}.form-inline .control-label{margin-bottom:0;vertical-align:middle}.form-inline .checkbox,.form-inline .radio{display:inline-block;margin-top:0;margin-bottom:0;vertical-align:middle}.form-inline .checkbox label,.form-inline .radio label{padding-left:0}.form-inline .checkbox input[type=checkbox],.form-inline .radio input[type=radio]{position:relative;margin-left:0}.form-inline .has-feedback .form-control-feedback{top:0}}.form-horizontal .checkbox,.form-horizontal .checkbox-inline,.form-horizontal .radio,.form-horizontal .radio-inline{padding-top:7px;margin-top:0;margin-bottom:0}.form-horizontal .checkbox,.form-horizontal .radio{min-height:27px}.form-horizontal .form-group{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.form-horizontal .control-label{padding-top:7px;margin-bottom:0;text-align:right}}.form-horizontal .has-feedback .form-control-feedback{right:15px}@media (min-width:768px){.form-horizontal .form-group-lg .control-label{padding-top:14.33px;font-size:18px}}@media (min-width:768px){.form-horizontal .form-group-sm .control-label{padding-top:6px;font-size:12px}}.btn{display:inline-block;padding:6px 12px;margin-bottom:0;font-size:14px;font-weight:400;line-height:1.42857143;text-align:center;white-space:nowrap;vertical-align:middle;-ms-touch-action:manipulation;touch-action:manipulation;cursor:pointer;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;background-image:none;border:1px solid transparent;border-radius:4px}.btn.active.focus,.btn.active:focus,.btn.focus,.btn:active.focus,.btn:active:focus,.btn:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}.btn.focus,.btn:focus,.btn:hover{color:#333;text-decoration:none}.btn.active,.btn:active{background-image:none;outline:0;-webkit-box-shadow:inset 0 3px 5px rgba(0,0,0,.125);box-shadow:inset 0 3px 5px rgba(0,0,0,.125)}.btn.disabled,.btn[disabled],fieldset[disabled] .btn{cursor:not-allowed;filter:alpha(opacity=65);-webkit-box-shadow:none;box-shadow:none;opacity:.65}a.btn.disabled,fieldset[disabled] a.btn{pointer-events:none}.btn-default{color:#333;background-color:#fff;border-color:#ccc}.btn-default.focus,.btn-default:focus{color:#333;background-color:#e6e6e6;border-color:#8c8c8c}.btn-default:hover{color:#333;background-color:#e6e6e6;border-color:#adadad}.btn-default.active,.btn-default:active,.open>.dropdown-toggle.btn-default{color:#333;background-color:#e6e6e6;border-color:#adadad}.btn-default.active.focus,.btn-default.active:focus,.btn-default.active:hover,.btn-default:active.focus,.btn-default:active:focus,.btn-default:active:hover,.open>.dropdown-toggle.btn-default.focus,.open>.dropdown-toggle.btn-default:focus,.open>.dropdown-toggle.btn-default:hover{color:#333;background-color:#d4d4d4;border-color:#8c8c8c}.btn-default.active,.btn-default:active,.open>.dropdown-toggle.btn-default{background-image:none}.btn-default.disabled,.btn-default.disabled.active,.btn-default.disabled.focus,.btn-default.disabled:active,.btn-default.disabled:focus,.btn-default.disabled:hover,.btn-default[disabled],.btn-default[disabled].active,.btn-default[disabled].focus,.btn-default[disabled]:active,.btn-default[disabled]:focus,.btn-default[disabled]:hover,fieldset[disabled] .btn-default,fieldset[disabled] .btn-default.active,fieldset[disabled] .btn-default.focus,fieldset[disabled] .btn-default:active,fieldset[disabled] .btn-default:focus,fieldset[disabled] .btn-default:hover{background-color:#fff;border-color:#ccc}.btn-default .badge{color:#fff;background-color:#333}.btn-primary{color:#fff;background-color:#337ab7;border-color:#2e6da4}.btn-primary.focus,.btn-primary:focus{color:#fff;background-color:#286090;border-color:#122b40}.btn-primary:hover{color:#fff;background-color:#286090;border-color:#204d74}.btn-primary.active,.btn-primary:active,.open>.dropdown-toggle.btn-primary{color:#fff;background-color:#286090;border-color:#204d74}.btn-primary.active.focus,.btn-primary.active:focus,.btn-primary.active:hover,.btn-primary:active.focus,.btn-primary:active:focus,.btn-primary:active:hover,.open>.dropdown-toggle.btn-primary.focus,.open>.dropdown-toggle.btn-primary:focus,.open>.dropdown-toggle.btn-primary:hover{color:#fff;background-color:#204d74;border-color:#122b40}.btn-primary.active,.btn-primary:active,.open>.dropdown-toggle.btn-primary{background-image:none}.btn-primary.disabled,.btn-primary.disabled.active,.btn-primary.disabled.focus,.btn-primary.disabled:active,.btn-primary.disabled:focus,.btn-primary.disabled:hover,.btn-primary[disabled],.btn-primary[disabled].active,.btn-primary[disabled].focus,.btn-primary[disabled]:active,.btn-primary[disabled]:focus,.btn-primary[disabled]:hover,fieldset[disabled] .btn-primary,fieldset[disabled] .btn-primary.active,fieldset[disabled] .btn-primary.focus,fieldset[disabled] .btn-primary:active,fieldset[disabled] .btn-primary:focus,fieldset[disabled] .btn-primary:hover{background-color:#337ab7;border-color:#2e6da4}.btn-primary .badge{color:#337ab7;background-color:#fff}.btn-success{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.btn-success.focus,.btn-success:focus{color:#fff;background-color:#449d44;border-color:#255625}.btn-success:hover{color:#fff;background-color:#449d44;border-color:#398439}.btn-success.active,.btn-success:active,.open>.dropdown-toggle.btn-success{color:#fff;background-color:#449d44;border-color:#398439}.btn-success.active.focus,.btn-success.active:focus,.btn-success.active:hover,.btn-success:active.focus,.btn-success:active:focus,.btn-success:active:hover,.open>.dropdown-toggle.btn-success.focus,.open>.dropdown-toggle.btn-success:focus,.open>.dropdown-toggle.btn-success:hover{color:#fff;background-color:#398439;border-color:#255625}.btn-success.active,.btn-success:active,.open>.dropdown-toggle.btn-success{background-image:none}.btn-success.disabled,.btn-success.disabled.active,.btn-success.disabled.focus,.btn-success.disabled:active,.btn-success.disabled:focus,.btn-success.disabled:hover,.btn-success[disabled],.btn-success[disabled].active,.btn-success[disabled].focus,.btn-success[disabled]:active,.btn-success[disabled]:focus,.btn-success[disabled]:hover,fieldset[disabled] .btn-success,fieldset[disabled] .btn-success.active,fieldset[disabled] .btn-success.focus,fieldset[disabled] .btn-success:active,fieldset[disabled] .btn-success:focus,fieldset[disabled] .btn-success:hover{background-color:#5cb85c;border-color:#4cae4c}.btn-success .badge{color:#5cb85c;background-color:#fff}.btn-info{color:#fff;background-color:#5bc0de;border-color:#46b8da}.btn-info.focus,.btn-info:focus{color:#fff;background-color:#31b0d5;border-color:#1b6d85}.btn-info:hover{color:#fff;background-color:#31b0d5;border-color:#269abc}.btn-info.active,.btn-info:active,.open>.dropdown-toggle.btn-info{color:#fff;background-color:#31b0d5;border-color:#269abc}.btn-info.active.focus,.btn-info.active:focus,.btn-info.active:hover,.btn-info:active.focus,.btn-info:active:focus,.btn-info:active:hover,.open>.dropdown-toggle.btn-info.focus,.open>.dropdown-toggle.btn-info:focus,.open>.dropdown-toggle.btn-info:hover{color:#fff;background-color:#269abc;border-color:#1b6d85}.btn-info.active,.btn-info:active,.open>.dropdown-toggle.btn-info{background-image:none}.btn-info.disabled,.btn-info.disabled.active,.btn-info.disabled.focus,.btn-info.disabled:active,.btn-info.disabled:focus,.btn-info.disabled:hover,.btn-info[disabled],.btn-info[disabled].active,.btn-info[disabled].focus,.btn-info[disabled]:active,.btn-info[disabled]:focus,.btn-info[disabled]:hover,fieldset[disabled] .btn-info,fieldset[disabled] .btn-info.active,fieldset[disabled] .btn-info.focus,fieldset[disabled] .btn-info:active,fieldset[disabled] .btn-info:focus,fieldset[disabled] .btn-info:hover{background-color:#5bc0de;border-color:#46b8da}.btn-info .badge{color:#5bc0de;background-color:#fff}.btn-warning{color:#fff;background-color:#f0ad4e;border-color:#eea236}.btn-warning.focus,.btn-warning:focus{color:#fff;background-color:#ec971f;border-color:#985f0d}.btn-warning:hover{color:#fff;background-color:#ec971f;border-color:#d58512}.btn-warning.active,.btn-warning:active,.open>.dropdown-toggle.btn-warning{color:#fff;background-color:#ec971f;border-color:#d58512}.btn-warning.active.focus,.btn-warning.active:focus,.btn-warning.active:hover,.btn-warning:active.focus,.btn-warning:active:focus,.btn-warning:active:hover,.open>.dropdown-toggle.btn-warning.focus,.open>.dropdown-toggle.btn-warning:focus,.open>.dropdown-toggle.btn-warning:hover{color:#fff;background-color:#d58512;border-color:#985f0d}.btn-warning.active,.btn-warning:active,.open>.dropdown-toggle.btn-warning{background-image:none}.btn-warning.disabled,.btn-warning.disabled.active,.btn-warning.disabled.focus,.btn-warning.disabled:active,.btn-warning.disabled:focus,.btn-warning.disabled:hover,.btn-warning[disabled],.btn-warning[disabled].active,.btn-warning[disabled].focus,.btn-warning[disabled]:active,.btn-warning[disabled]:focus,.btn-warning[disabled]:hover,fieldset[disabled] .btn-warning,fieldset[disabled] .btn-warning.active,fieldset[disabled] .btn-warning.focus,fieldset[disabled] .btn-warning:active,fieldset[disabled] .btn-warning:focus,fieldset[disabled] .btn-warning:hover{background-color:#f0ad4e;border-color:#eea236}.btn-warning .badge{color:#f0ad4e;background-color:#fff}.btn-danger{color:#fff;background-color:#d9534f;border-color:#d43f3a}.btn-danger.focus,.btn-danger:focus{color:#fff;background-color:#c9302c;border-color:#761c19}.btn-danger:hover{color:#fff;background-color:#c9302c;border-color:#ac2925}.btn-danger.active,.btn-danger:active,.open>.dropdown-toggle.btn-danger{color:#fff;background-color:#c9302c;border-color:#ac2925}.btn-danger.active.focus,.btn-danger.active:focus,.btn-danger.active:hover,.btn-danger:active.focus,.btn-danger:active:focus,.btn-danger:active:hover,.open>.dropdown-toggle.btn-danger.focus,.open>.dropdown-toggle.btn-danger:focus,.open>.dropdown-toggle.btn-danger:hover{color:#fff;background-color:#ac2925;border-color:#761c19}.btn-danger.active,.btn-danger:active,.open>.dropdown-toggle.btn-danger{background-image:none}.btn-danger.disabled,.btn-danger.disabled.active,.btn-danger.disabled.focus,.btn-danger.disabled:active,.btn-danger.disabled:focus,.btn-danger.disabled:hover,.btn-danger[disabled],.btn-danger[disabled].active,.btn-danger[disabled].focus,.btn-danger[disabled]:active,.btn-danger[disabled]:focus,.btn-danger[disabled]:hover,fieldset[disabled] .btn-danger,fieldset[disabled] .btn-danger.active,fieldset[disabled] .btn-danger.focus,fieldset[disabled] .btn-danger:active,fieldset[disabled] .btn-danger:focus,fieldset[disabled] .btn-danger:hover{background-color:#d9534f;border-color:#d43f3a}.btn-danger .badge{color:#d9534f;background-color:#fff}.btn-link{font-weight:400;color:#337ab7;border-radius:0}.btn-link,.btn-link.active,.btn-link:active,.btn-link[disabled],fieldset[disabled] .btn-link{background-color:transparent;-webkit-box-shadow:none;box-shadow:none}.btn-link,.btn-link:active,.btn-link:focus,.btn-link:hover{border-color:transparent}.btn-link:focus,.btn-link:hover{color:#23527c;text-decoration:underline;background-color:transparent}.btn-link[disabled]:focus,.btn-link[disabled]:hover,fieldset[disabled] .btn-link:focus,fieldset[disabled] .btn-link:hover{color:#777;text-decoration:none}.btn-group-lg>.btn,.btn-lg{padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}.btn-group-sm>.btn,.btn-sm{padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}.btn-group-xs>.btn,.btn-xs{padding:1px 5px;font-size:12px;line-height:1.5;border-radius:3px}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:5px}input[type=button].btn-block,input[type=reset].btn-block,input[type=submit].btn-block{width:100%}.fade{opacity:0;-webkit-transition:opacity .15s linear;-o-transition:opacity .15s linear;transition:opacity .15s linear}.fade.in{opacity:1}.collapse{display:none}.collapse.in{display:block}tr.collapse.in{display:table-row}tbody.collapse.in{display:table-row-group}.collapsing{position:relative;height:0;overflow:hidden;-webkit-transition-timing-function:ease;-o-transition-timing-function:ease;transition-timing-function:ease;-webkit-transition-duration:.35s;-o-transition-duration:.35s;transition-duration:.35s;-webkit-transition-property:height,visibility;-o-transition-property:height,visibility;transition-property:height,visibility}.caret{display:inline-block;width:0;height:0;margin-left:2px;vertical-align:middle;border-top:4px dashed;border-top:4px solid\9;border-right:4px solid transparent;border-left:4px solid transparent}.dropdown,.dropup{position:relative}.dropdown-toggle:focus{outline:0}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:160px;padding:5px 0;margin:2px 0 0;font-size:14px;text-align:left;list-style:none;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #ccc;border:1px solid rgba(0,0,0,.15);border-radius:4px;-webkit-box-shadow:0 6px 12px rgba(0,0,0,.175);box-shadow:0 6px 12px rgba(0,0,0,.175)}.dropdown-menu.pull-right{right:0;left:auto}.dropdown-menu .divider{height:1px;margin:9px 0;overflow:hidden;background-color:#e5e5e5}.dropdown-menu>li>a{display:block;padding:3px 20px;clear:both;font-weight:400;line-height:1.42857143;color:#333;white-space:nowrap}.dropdown-menu>li>a:focus,.dropdown-menu>li>a:hover{color:#262626;text-decoration:none;background-color:#f5f5f5}.dropdown-menu>.active>a,.dropdown-menu>.active>a:focus,.dropdown-menu>.active>a:hover{color:#fff;text-decoration:none;background-color:#337ab7;outline:0}.dropdown-menu>.disabled>a,.dropdown-menu>.disabled>a:focus,.dropdown-menu>.disabled>a:hover{color:#777}.dropdown-menu>.disabled>a:focus,.dropdown-menu>.disabled>a:hover{text-decoration:none;cursor:not-allowed;background-color:transparent;background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.open>.dropdown-menu{display:block}.open>a{outline:0}.dropdown-menu-right{right:0;left:auto}.dropdown-menu-left{right:auto;left:0}.dropdown-header{display:block;padding:3px 20px;font-size:12px;line-height:1.42857143;color:#777;white-space:nowrap}.dropdown-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:990}.pull-right>.dropdown-menu{right:0;left:auto}.dropup .caret,.navbar-fixed-bottom .dropdown .caret{content:"";border-top:0;border-bottom:4px dashed;border-bottom:4px solid\9}.dropup .dropdown-menu,.navbar-fixed-bottom .dropdown .dropdown-menu{top:auto;bottom:100%;margin-bottom:2px}@media (min-width:768px){.navbar-right .dropdown-menu{right:0;left:auto}.navbar-right .dropdown-menu-left{right:auto;left:0}}.btn-group,.btn-group-vertical{position:relative;display:inline-block;vertical-align:middle}.btn-group-vertical>.btn,.btn-group>.btn{position:relative;float:left}.btn-group-vertical>.btn.active,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:hover,.btn-group>.btn.active,.btn-group>.btn:active,.btn-group>.btn:focus,.btn-group>.btn:hover{z-index:2}.btn-group .btn+.btn,.btn-group .btn+.btn-group,.btn-group .btn-group+.btn,.btn-group .btn-group+.btn-group{margin-left:-1px}.btn-toolbar{margin-left:-5px}.btn-toolbar .btn,.btn-toolbar .btn-group,.btn-toolbar .input-group{float:left}.btn-toolbar>.btn,.btn-toolbar>.btn-group,.btn-toolbar>.input-group{margin-left:5px}.btn-group>.btn:not(:first-child):not(:last-child):not(.dropdown-toggle){border-radius:0}.btn-group>.btn:first-child{margin-left:0}.btn-group>.btn:first-child:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn:last-child:not(:first-child),.btn-group>.dropdown-toggle:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.btn-group>.btn-group{float:left}.btn-group>.btn-group:not(:first-child):not(:last-child)>.btn{border-radius:0}.btn-group>.btn-group:first-child:not(:last-child)>.btn:last-child,.btn-group>.btn-group:first-child:not(:last-child)>.dropdown-toggle{border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn-group:last-child:not(:first-child)>.btn:first-child{border-top-left-radius:0;border-bottom-left-radius:0}.btn-group .dropdown-toggle:active,.btn-group.open .dropdown-toggle{outline:0}.btn-group>.btn+.dropdown-toggle{padding-right:8px;padding-left:8px}.btn-group>.btn-lg+.dropdown-toggle{padding-right:12px;padding-left:12px}.btn-group.open .dropdown-toggle{-webkit-box-shadow:inset 0 3px 5px rgba(0,0,0,.125);box-shadow:inset 0 3px 5px rgba(0,0,0,.125)}.btn-group.open .dropdown-toggle.btn-link{-webkit-box-shadow:none;box-shadow:none}.btn .caret{margin-left:0}.btn-lg .caret{border-width:5px 5px 0;border-bottom-width:0}.dropup .btn-lg .caret{border-width:0 5px 5px}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group,.btn-group-vertical>.btn-group>.btn{display:block;float:none;width:100%;max-width:100%}.btn-group-vertical>.btn-group>.btn{float:none}.btn-group-vertical>.btn+.btn,.btn-group-vertical>.btn+.btn-group,.btn-group-vertical>.btn-group+.btn,.btn-group-vertical>.btn-group+.btn-group{margin-top:-1px;margin-left:0}.btn-group-vertical>.btn:not(:first-child):not(:last-child){border-radius:0}.btn-group-vertical>.btn:first-child:not(:last-child){border-top-right-radius:4px;border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn:last-child:not(:first-child){border-top-left-radius:0;border-top-right-radius:0;border-bottom-left-radius:4px}.btn-group-vertical>.btn-group:not(:first-child):not(:last-child)>.btn{border-radius:0}.btn-group-vertical>.btn-group:first-child:not(:last-child)>.btn:last-child,.btn-group-vertical>.btn-group:first-child:not(:last-child)>.dropdown-toggle{border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn-group:last-child:not(:first-child)>.btn:first-child{border-top-left-radius:0;border-top-right-radius:0}.btn-group-justified{display:table;width:100%;table-layout:fixed;border-collapse:separate}.btn-group-justified>.btn,.btn-group-justified>.btn-group{display:table-cell;float:none;width:1%}.btn-group-justified>.btn-group .btn{width:100%}.btn-group-justified>.btn-group .dropdown-menu{left:auto}[data-toggle=buttons]>.btn input[type=checkbox],[data-toggle=buttons]>.btn input[type=radio],[data-toggle=buttons]>.btn-group>.btn input[type=checkbox],[data-toggle=buttons]>.btn-group>.btn input[type=radio]{position:absolute;clip:rect(0,0,0,0);pointer-events:none}.input-group{position:relative;display:table;border-collapse:separate}.input-group[class*=col-]{float:none;padding-right:0;padding-left:0}.input-group .form-control{position:relative;z-index:2;float:left;width:100%;margin-bottom:0}.input-group-lg>.form-control,.input-group-lg>.input-group-addon,.input-group-lg>.input-group-btn>.btn{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}select.input-group-lg>.form-control,select.input-group-lg>.input-group-addon,select.input-group-lg>.input-group-btn>.btn{height:46px;line-height:46px}select[multiple].input-group-lg>.form-control,select[multiple].input-group-lg>.input-group-addon,select[multiple].input-group-lg>.input-group-btn>.btn,textarea.input-group-lg>.form-control,textarea.input-group-lg>.input-group-addon,textarea.input-group-lg>.input-group-btn>.btn{height:auto}.input-group-sm>.form-control,.input-group-sm>.input-group-addon,.input-group-sm>.input-group-btn>.btn{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}select.input-group-sm>.form-control,select.input-group-sm>.input-group-addon,select.input-group-sm>.input-group-btn>.btn{height:30px;line-height:30px}select[multiple].input-group-sm>.form-control,select[multiple].input-group-sm>.input-group-addon,select[multiple].input-group-sm>.input-group-btn>.btn,textarea.input-group-sm>.form-control,textarea.input-group-sm>.input-group-addon,textarea.input-group-sm>.input-group-btn>.btn{height:auto}.input-group .form-control,.input-group-addon,.input-group-btn{display:table-cell}.input-group .form-control:not(:first-child):not(:last-child),.input-group-addon:not(:first-child):not(:last-child),.input-group-btn:not(:first-child):not(:last-child){border-radius:0}.input-group-addon,.input-group-btn{width:1%;white-space:nowrap;vertical-align:middle}.input-group-addon{padding:6px 12px;font-size:14px;font-weight:400;line-height:1;color:#555;text-align:center;background-color:#eee;border:1px solid #ccc;border-radius:4px}.input-group-addon.input-sm{padding:5px 10px;font-size:12px;border-radius:3px}.input-group-addon.input-lg{padding:10px 16px;font-size:18px;border-radius:6px}.input-group-addon input[type=checkbox],.input-group-addon input[type=radio]{margin-top:0}.input-group .form-control:first-child,.input-group-addon:first-child,.input-group-btn:first-child>.btn,.input-group-btn:first-child>.btn-group>.btn,.input-group-btn:first-child>.dropdown-toggle,.input-group-btn:last-child>.btn-group:not(:last-child)>.btn,.input-group-btn:last-child>.btn:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.input-group-addon:first-child{border-right:0}.input-group .form-control:last-child,.input-group-addon:last-child,.input-group-btn:first-child>.btn-group:not(:first-child)>.btn,.input-group-btn:first-child>.btn:not(:first-child),.input-group-btn:last-child>.btn,.input-group-btn:last-child>.btn-group>.btn,.input-group-btn:last-child>.dropdown-toggle{border-top-left-radius:0;border-bottom-left-radius:0}.input-group-addon:last-child{border-left:0}.input-group-btn{position:relative;font-size:0;white-space:nowrap}.input-group-btn>.btn{position:relative}.input-group-btn>.btn+.btn{margin-left:-1px}.input-group-btn>.btn:active,.input-group-btn>.btn:focus,.input-group-btn>.btn:hover{z-index:2}.input-group-btn:first-child>.btn,.input-group-btn:first-child>.btn-group{margin-right:-1px}.input-group-btn:last-child>.btn,.input-group-btn:last-child>.btn-group{z-index:2;margin-left:-1px}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.nav>li.disabled>a{color:#777}.nav>li.disabled>a:focus,.nav>li.disabled>a:hover{color:#777;text-decoration:none;cursor:not-allowed;background-color:transparent}.nav .open>a,.nav .open>a:focus,.nav .open>a:hover{background-color:#eee;border-color:#337ab7}.nav .nav-divider{height:1px;margin:9px 0;overflow:hidden;background-color:#e5e5e5}.nav>li>a>img{max-width:none}.nav-tabs{border-bottom:1px solid #ddd}.nav-tabs>li{float:left;margin-bottom:-1px}.nav-tabs>li>a{margin-right:2px;line-height:1.42857143;border:1px solid transparent;border-radius:4px 4px 0 0}.nav-tabs>li>a:hover{border-color:#eee #eee #ddd}.nav-tabs>li.active>a,.nav-tabs>li.active>a:focus,.nav-tabs>li.active>a:hover{color:#555;cursor:default;background-color:#fff;border:1px solid #ddd;border-bottom-color:transparent}.nav-tabs.nav-justified{width:100%;border-bottom:0}.nav-tabs.nav-justified>li{float:none}.nav-tabs.nav-justified>li>a{margin-bottom:5px;text-align:center}.nav-tabs.nav-justified>.dropdown .dropdown-menu{top:auto;left:auto}@media (min-width:768px){.nav-tabs.nav-justified>li{display:table-cell;width:1%}.nav-tabs.nav-justified>li>a{margin-bottom:0}}.nav-tabs.nav-justified>li>a{margin-right:0;border-radius:4px}.nav-tabs.nav-justified>.active>a,.nav-tabs.nav-justified>.active>a:focus,.nav-tabs.nav-justified>.active>a:hover{border:1px solid #ddd}@media (min-width:768px){.nav-tabs.nav-justified>li>a{border-bottom:1px solid #ddd;border-radius:4px 4px 0 0}.nav-tabs.nav-justified>.active>a,.nav-tabs.nav-justified>.active>a:focus,.nav-tabs.nav-justified>.active>a:hover{border-bottom-color:#fff}}.nav-pills>li{float:left}.nav-pills>li>a{border-radius:4px}.nav-pills>li+li{margin-left:2px}.nav-pills>li.active>a,.nav-pills>li.active>a:focus,.nav-pills>li.active>a:hover{color:#fff;background-color:#337ab7}.nav-stacked>li{float:none}.nav-stacked>li+li{margin-top:2px;margin-left:0}.nav-justified{width:100%}.nav-justified>li{float:none}.nav-justified>li>a{margin-bottom:5px;text-align:center}.nav-justified>.dropdown .dropdown-menu{top:auto;left:auto}@media (min-width:768px){.nav-justified>li{display:table-cell;width:1%}.nav-justified>li>a{margin-bottom:0}}.nav-tabs-justified{border-bottom:0}.nav-tabs-justified>li>a{margin-right:0;border-radius:4px}.nav-tabs-justified>.active>a,.nav-tabs-justified>.active>a:focus,.nav-tabs-justified>.active>a:hover{border:1px solid #ddd}@media (min-width:768px){.nav-tabs-justified>li>a{border-bottom:1px solid #ddd;border-radius:4px 4px 0 0}.nav-tabs-justified>.active>a,.nav-tabs-justified>.active>a:focus,.nav-tabs-justified>.active>a:hover{border-bottom-color:#fff}}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.nav-tabs .dropdown-menu{margin-top:-1px;border-top-left-radius:0;border-top-right-radius:0}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}.navbar-collapse.in{overflow-y:auto}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}.navbar-collapse.in{overflow-y:visible}.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse,.navbar-static-top .navbar-collapse{padding-right:0;padding-left:0}}.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse{max-height:340px}@media (max-device-width:480px) and (orientation:landscape){.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse{max-height:200px}}.container-fluid>.navbar-collapse,.container-fluid>.navbar-header,.container>.navbar-collapse,.container>.navbar-header{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container-fluid>.navbar-collapse,.container-fluid>.navbar-header,.container>.navbar-collapse,.container>.navbar-header{margin-right:0;margin-left:0}}.navbar-static-top{z-index:1000;border-width:0 0 1px}@media (min-width:768px){.navbar-static-top{border-radius:0}}.navbar-fixed-bottom,.navbar-fixed-top{position:fixed;right:0;left:0;z-index:1030}@media (min-width:768px){.navbar-fixed-bottom,.navbar-fixed-top{border-radius:0}}.navbar-fixed-top{top:0;border-width:0 0 1px}.navbar-fixed-bottom{bottom:0;margin-bottom:0;border-width:1px 0 0}.navbar-brand{float:left;height:50px;padding:15px 15px;font-size:18px;line-height:20px}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}.navbar-brand>img{display:block}@media (min-width:768px){.navbar>.container .navbar-brand,.navbar>.container-fluid .navbar-brand{margin-left:-15px}}.navbar-toggle{position:relative;float:right;padding:9px 10px;margin-top:8px;margin-right:15px;margin-bottom:8px;background-color:transparent;background-image:none;border:1px solid transparent;border-radius:4px}.navbar-toggle:focus{outline:0}.navbar-toggle .icon-bar{display:block;width:22px;height:2px;border-radius:1px}.navbar-toggle .icon-bar+.icon-bar{margin-top:4px}@media (min-width:768px){.navbar-toggle{display:none}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (max-width:767px){.navbar-nav .open .dropdown-menu{position:static;float:none;width:auto;margin-top:0;background-color:transparent;border:0;-webkit-box-shadow:none;box-shadow:none}.navbar-nav .open .dropdown-menu .dropdown-header,.navbar-nav .open .dropdown-menu>li>a{padding:5px 15px 5px 25px}.navbar-nav .open .dropdown-menu>li>a{line-height:20px}.navbar-nav .open .dropdown-menu>li>a:focus,.navbar-nav .open .dropdown-menu>li>a:hover{background-image:none}}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-form{padding:10px 15px;margin-top:8px;margin-right:-15px;margin-bottom:8px;margin-left:-15px;border-top:1px solid transparent;border-bottom:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1),0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1),0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-form .form-group{display:inline-block;margin-bottom:0;vertical-align:middle}.navbar-form .form-control{display:inline-block;width:auto;vertical-align:middle}.navbar-form .form-control-static{display:inline-block}.navbar-form .input-group{display:inline-table;vertical-align:middle}.navbar-form .input-group .form-control,.navbar-form .input-group .input-group-addon,.navbar-form .input-group .input-group-btn{width:auto}.navbar-form .input-group>.form-control{width:100%}.navbar-form .control-label{margin-bottom:0;vertical-align:middle}.navbar-form .checkbox,.navbar-form .radio{display:inline-block;margin-top:0;margin-bottom:0;vertical-align:middle}.navbar-form .checkbox label,.navbar-form .radio label{padding-left:0}.navbar-form .checkbox input[type=checkbox],.navbar-form .radio input[type=radio]{position:relative;margin-left:0}.navbar-form .has-feedback .form-control-feedback{top:0}}@media (max-width:767px){.navbar-form .form-group{margin-bottom:5px}.navbar-form .form-group:last-child{margin-bottom:0}}@media (min-width:768px){.navbar-form{width:auto;padding-top:0;padding-bottom:0;margin-right:0;margin-left:0;border:0;-webkit-box-shadow:none;box-shadow:none}}.navbar-nav>li>.dropdown-menu{margin-top:0;border-top-left-radius:0;border-top-right-radius:0}.navbar-fixed-bottom .navbar-nav>li>.dropdown-menu{margin-bottom:0;border-top-left-radius:4px;border-top-right-radius:4px;border-bottom-right-radius:0;border-bottom-left-radius:0}.navbar-btn{margin-top:8px;margin-bottom:8px}.navbar-btn.btn-sm{margin-top:10px;margin-bottom:10px}.navbar-btn.btn-xs{margin-top:14px;margin-bottom:14px}.navbar-text{margin-top:15px;margin-bottom:15px}@media (min-width:768px){.navbar-text{float:left;margin-right:15px;margin-left:15px}}@media (min-width:768px){.navbar-left{float:left!important}.navbar-right{float:right!important;margin-right:-15px}.navbar-right~.navbar-right{margin-right:0}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-brand{color:#777}.navbar-default .navbar-brand:focus,.navbar-default .navbar-brand:hover{color:#5e5e5e;background-color:transparent}.navbar-default .navbar-text{color:#777}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-nav>.active>a,.navbar-default .navbar-nav>.active>a:focus,.navbar-default .navbar-nav>.active>a:hover{color:#555;background-color:#e7e7e7}.navbar-default .navbar-nav>.disabled>a,.navbar-default .navbar-nav>.disabled>a:focus,.navbar-default .navbar-nav>.disabled>a:hover{color:#ccc;background-color:transparent}.navbar-default .navbar-toggle{border-color:#ddd}.navbar-default .navbar-toggle:focus,.navbar-default .navbar-toggle:hover{background-color:#ddd}.navbar-default .navbar-toggle .icon-bar{background-color:#888}.navbar-default .navbar-collapse,.navbar-default .navbar-form{border-color:#e7e7e7}.navbar-default .navbar-nav>.open>a,.navbar-default .navbar-nav>.open>a:focus,.navbar-default .navbar-nav>.open>a:hover{color:#555;background-color:#e7e7e7}@media (max-width:767px){.navbar-default .navbar-nav .open .dropdown-menu>li>a{color:#777}.navbar-default .navbar-nav .open .dropdown-menu>li>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-nav .open .dropdown-menu>.active>a,.navbar-default .navbar-nav .open .dropdown-menu>.active>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>.active>a:hover{color:#555;background-color:#e7e7e7}.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a,.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a:hover{color:#ccc;background-color:transparent}}.navbar-default .navbar-link{color:#777}.navbar-default .navbar-link:hover{color:#333}.navbar-default .btn-link{color:#777}.navbar-default .btn-link:focus,.navbar-default .btn-link:hover{color:#333}.navbar-default .btn-link[disabled]:focus,.navbar-default .btn-link[disabled]:hover,fieldset[disabled] .navbar-default .btn-link:focus,fieldset[disabled] .navbar-default .btn-link:hover{color:#ccc}.navbar-inverse{background-color:#222;border-color:#080808}.navbar-inverse .navbar-brand{color:#9d9d9d}.navbar-inverse .navbar-brand:focus,.navbar-inverse .navbar-brand:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-text{color:#9d9d9d}.navbar-inverse .navbar-nav>li>a{color:#9d9d9d}.navbar-inverse .navbar-nav>li>a:focus,.navbar-inverse .navbar-nav>li>a:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-nav>.active>a,.navbar-inverse .navbar-nav>.active>a:focus,.navbar-inverse .navbar-nav>.active>a:hover{color:#fff;background-color:#080808}.navbar-inverse .navbar-nav>.disabled>a,.navbar-inverse .navbar-nav>.disabled>a:focus,.navbar-inverse .navbar-nav>.disabled>a:hover{color:#444;background-color:transparent}.navbar-inverse .navbar-toggle{border-color:#333}.navbar-inverse .navbar-toggle:focus,.navbar-inverse .navbar-toggle:hover{background-color:#333}.navbar-inverse .navbar-toggle .icon-bar{background-color:#fff}.navbar-inverse .navbar-collapse,.navbar-inverse .navbar-form{border-color:#101010}.navbar-inverse .navbar-nav>.open>a,.navbar-inverse .navbar-nav>.open>a:focus,.navbar-inverse .navbar-nav>.open>a:hover{color:#fff;background-color:#080808}@media (max-width:767px){.navbar-inverse .navbar-nav .open .dropdown-menu>.dropdown-header{border-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu .divider{background-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu>li>a{color:#9d9d9d}.navbar-inverse .navbar-nav .open .dropdown-menu>li>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>li>a:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a,.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a:hover{color:#fff;background-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a,.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a:hover{color:#444;background-color:transparent}}.navbar-inverse .navbar-link{color:#9d9d9d}.navbar-inverse .navbar-link:hover{color:#fff}.navbar-inverse .btn-link{color:#9d9d9d}.navbar-inverse .btn-link:focus,.navbar-inverse .btn-link:hover{color:#fff}.navbar-inverse .btn-link[disabled]:focus,.navbar-inverse .btn-link[disabled]:hover,fieldset[disabled] .navbar-inverse .btn-link:focus,fieldset[disabled] .navbar-inverse .btn-link:hover{color:#444}.breadcrumb{padding:8px 15px;margin-bottom:20px;list-style:none;background-color:#f5f5f5;border-radius:4px}.breadcrumb>li{display:inline-block}.breadcrumb>li+li:before{padding:0 5px;color:#ccc;content:"/\00a0"}.breadcrumb>.active{color:#777}.pagination{display:inline-block;padding-left:0;margin:20px 0;border-radius:4px}.pagination>li{display:inline}.pagination>li>a,.pagination>li>span{position:relative;float:left;padding:6px 12px;margin-left:-1px;line-height:1.42857143;color:#337ab7;text-decoration:none;background-color:#fff;border:1px solid #ddd}.pagination>li:first-child>a,.pagination>li:first-child>span{margin-left:0;border-top-left-radius:4px;border-bottom-left-radius:4px}.pagination>li:last-child>a,.pagination>li:last-child>span{border-top-right-radius:4px;border-bottom-right-radius:4px}.pagination>li>a:focus,.pagination>li>a:hover,.pagination>li>span:focus,.pagination>li>span:hover{z-index:3;color:#23527c;background-color:#eee;border-color:#ddd}.pagination>.active>a,.pagination>.active>a:focus,.pagination>.active>a:hover,.pagination>.active>span,.pagination>.active>span:focus,.pagination>.active>span:hover{z-index:2;color:#fff;cursor:default;background-color:#337ab7;border-color:#337ab7}.pagination>.disabled>a,.pagination>.disabled>a:focus,.pagination>.disabled>a:hover,.pagination>.disabled>span,.pagination>.disabled>span:focus,.pagination>.disabled>span:hover{color:#777;cursor:not-allowed;background-color:#fff;border-color:#ddd}.pagination-lg>li>a,.pagination-lg>li>span{padding:10px 16px;font-size:18px;line-height:1.3333333}.pagination-lg>li:first-child>a,.pagination-lg>li:first-child>span{border-top-left-radius:6px;border-bottom-left-radius:6px}.pagination-lg>li:last-child>a,.pagination-lg>li:last-child>span{border-top-right-radius:6px;border-bottom-right-radius:6px}.pagination-sm>li>a,.pagination-sm>li>span{padding:5px 10px;font-size:12px;line-height:1.5}.pagination-sm>li:first-child>a,.pagination-sm>li:first-child>span{border-top-left-radius:3px;border-bottom-left-radius:3px}.pagination-sm>li:last-child>a,.pagination-sm>li:last-child>span{border-top-right-radius:3px;border-bottom-right-radius:3px}.pager{padding-left:0;margin:20px 0;text-align:center;list-style:none}.pager li{display:inline}.pager li>a,.pager li>span{display:inline-block;padding:5px 14px;background-color:#fff;border:1px solid #ddd;border-radius:15px}.pager li>a:focus,.pager li>a:hover{text-decoration:none;background-color:#eee}.pager .next>a,.pager .next>span{float:right}.pager .previous>a,.pager .previous>span{float:left}.pager .disabled>a,.pager .disabled>a:focus,.pager .disabled>a:hover,.pager .disabled>span{color:#777;cursor:not-allowed;background-color:#fff}.label{display:inline;padding:.2em .6em .3em;font-size:75%;font-weight:700;line-height:1;color:#fff;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25em}a.label:focus,a.label:hover{color:#fff;text-decoration:none;cursor:pointer}.label:empty{display:none}.btn .label{position:relative;top:-1px}.label-default{background-color:#777}.label-default[href]:focus,.label-default[href]:hover{background-color:#5e5e5e}.label-primary{background-color:#337ab7}.label-primary[href]:focus,.label-primary[href]:hover{background-color:#286090}.label-success{background-color:#5cb85c}.label-success[href]:focus,.label-success[href]:hover{background-color:#449d44}.label-info{background-color:#5bc0de}.label-info[href]:focus,.label-info[href]:hover{background-color:#31b0d5}.label-warning{background-color:#f0ad4e}.label-warning[href]:focus,.label-warning[href]:hover{background-color:#ec971f}.label-danger{background-color:#d9534f}.label-danger[href]:focus,.label-danger[href]:hover{background-color:#c9302c}.badge{display:inline-block;min-width:10px;padding:3px 7px;font-size:12px;font-weight:700;line-height:1;color:#fff;text-align:center;white-space:nowrap;vertical-align:middle;background-color:#777;border-radius:10px}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.btn-group-xs>.btn .badge,.btn-xs .badge{top:0;padding:1px 5px}a.badge:focus,a.badge:hover{color:#fff;text-decoration:none;cursor:pointer}.list-group-item.active>.badge,.nav-pills>.active>a>.badge{color:#337ab7;background-color:#fff}.list-group-item>.badge{float:right}.list-group-item>.badge+.badge{margin-right:5px}.nav-pills>li>a>.badge{margin-left:3px}.jumbotron{padding-top:30px;padding-bottom:30px;margin-bottom:30px;color:inherit;background-color:#eee}.jumbotron .h1,.jumbotron h1{color:inherit}.jumbotron p{margin-bottom:15px;font-size:21px;font-weight:200}.jumbotron>hr{border-top-color:#d5d5d5}.container .jumbotron,.container-fluid .jumbotron{border-radius:6px}.jumbotron .container{max-width:100%}@media screen and (min-width:768px){.jumbotron{padding-top:48px;padding-bottom:48px}.container .jumbotron,.container-fluid .jumbotron{padding-right:60px;padding-left:60px}.jumbotron .h1,.jumbotron h1{font-size:63px}}.thumbnail{display:block;padding:4px;margin-bottom:20px;line-height:1.42857143;background-color:#fff;border:1px solid #ddd;border-radius:4px;-webkit-transition:border .2s ease-in-out;-o-transition:border .2s ease-in-out;transition:border .2s ease-in-out}.thumbnail a>img,.thumbnail>img{margin-right:auto;margin-left:auto}a.thumbnail.active,a.thumbnail:focus,a.thumbnail:hover{border-color:#337ab7}.thumbnail .caption{padding:9px;color:#333}.alert{padding:15px;margin-bottom:20px;border:1px solid transparent;border-radius:4px}.alert h4{margin-top:0;color:inherit}.alert .alert-link{font-weight:700}.alert>p,.alert>ul{margin-bottom:0}.alert>p+p{margin-top:5px}.alert-dismissable,.alert-dismissible{padding-right:35px}.alert-dismissable .close,.alert-dismissible .close{position:relative;top:-2px;right:-21px;color:inherit}.alert-success{color:#3c763d;background-color:#dff0d8;border-color:#d6e9c6}.alert-success hr{border-top-color:#c9e2b3}.alert-success .alert-link{color:#2b542c}.alert-info{color:#31708f;background-color:#d9edf7;border-color:#bce8f1}.alert-info hr{border-top-color:#a6e1ec}.alert-info .alert-link{color:#245269}.alert-warning{color:#8a6d3b;background-color:#fcf8e3;border-color:#faebcc}.alert-warning hr{border-top-color:#f7e1b5}.alert-warning .alert-link{color:#66512c}.alert-danger{color:#a94442;background-color:#f2dede;border-color:#ebccd1}.alert-danger hr{border-top-color:#e4b9c0}.alert-danger .alert-link{color:#843534}@-webkit-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-o-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}.progress{height:20px;margin-bottom:20px;overflow:hidden;background-color:#f5f5f5;border-radius:4px;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,.1);box-shadow:inset 0 1px 2px rgba(0,0,0,.1)}.progress-bar{float:left;width:0;height:100%;font-size:12px;line-height:20px;color:#fff;text-align:center;background-color:#337ab7;-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,.15);box-shadow:inset 0 -1px 0 rgba(0,0,0,.15);-webkit-transition:width .6s ease;-o-transition:width .6s ease;transition:width .6s ease}.progress-bar-striped,.progress-striped .progress-bar{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);-webkit-background-size:40px 40px;background-size:40px 40px}.progress-bar.active,.progress.active .progress-bar{-webkit-animation:progress-bar-stripes 2s linear infinite;-o-animation:progress-bar-stripes 2s linear infinite;animation:progress-bar-stripes 2s linear infinite}.progress-bar-success{background-color:#5cb85c}.progress-striped .progress-bar-success{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-info{background-color:#5bc0de}.progress-striped .progress-bar-info{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-warning{background-color:#f0ad4e}.progress-striped .progress-bar-warning{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-danger{background-color:#d9534f}.progress-striped .progress-bar-danger{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.media{margin-top:15px}.media:first-child{margin-top:0}.media,.media-body{overflow:hidden;zoom:1}.media-body{width:10000px}.media-object{display:block}.media-object.img-thumbnail{max-width:none}.media-right,.media>.pull-right{padding-left:10px}.media-left,.media>.pull-left{padding-right:10px}.media-body,.media-left,.media-right{display:table-cell;vertical-align:top}.media-middle{vertical-align:middle}.media-bottom{vertical-align:bottom}.media-heading{margin-top:0;margin-bottom:5px}.media-list{padding-left:0;list-style:none}.list-group{padding-left:0;margin-bottom:20px}.list-group-item{position:relative;display:block;padding:10px 15px;margin-bottom:-1px;background-color:#fff;border:1px solid #ddd}.list-group-item:first-child{border-top-left-radius:4px;border-top-right-radius:4px}.list-group-item:last-child{margin-bottom:0;border-bottom-right-radius:4px;border-bottom-left-radius:4px}a.list-group-item,button.list-group-item{color:#555}a.list-group-item .list-group-item-heading,button.list-group-item .list-group-item-heading{color:#333}a.list-group-item:focus,a.list-group-item:hover,button.list-group-item:focus,button.list-group-item:hover{color:#555;text-decoration:none;background-color:#f5f5f5}button.list-group-item{width:100%;text-align:left}.list-group-item.disabled,.list-group-item.disabled:focus,.list-group-item.disabled:hover{color:#777;cursor:not-allowed;background-color:#eee}.list-group-item.disabled .list-group-item-heading,.list-group-item.disabled:focus .list-group-item-heading,.list-group-item.disabled:hover .list-group-item-heading{color:inherit}.list-group-item.disabled .list-group-item-text,.list-group-item.disabled:focus .list-group-item-text,.list-group-item.disabled:hover .list-group-item-text{color:#777}.list-group-item.active,.list-group-item.active:focus,.list-group-item.active:hover{z-index:2;color:#fff;background-color:#337ab7;border-color:#337ab7}.list-group-item.active .list-group-item-heading,.list-group-item.active .list-group-item-heading>.small,.list-group-item.active .list-group-item-heading>small,.list-group-item.active:focus .list-group-item-heading,.list-group-item.active:focus .list-group-item-heading>.small,.list-group-item.active:focus .list-group-item-heading>small,.list-group-item.active:hover .list-group-item-heading,.list-group-item.active:hover .list-group-item-heading>.small,.list-group-item.active:hover .list-group-item-heading>small{color:inherit}.list-group-item.active .list-group-item-text,.list-group-item.active:focus .list-group-item-text,.list-group-item.active:hover .list-group-item-text{color:#c7ddef}.list-group-item-success{color:#3c763d;background-color:#dff0d8}a.list-group-item-success,button.list-group-item-success{color:#3c763d}a.list-group-item-success .list-group-item-heading,button.list-group-item-success .list-group-item-heading{color:inherit}a.list-group-item-success:focus,a.list-group-item-success:hover,button.list-group-item-success:focus,button.list-group-item-success:hover{color:#3c763d;background-color:#d0e9c6}a.list-group-item-success.active,a.list-group-item-success.active:focus,a.list-group-item-success.active:hover,button.list-group-item-success.active,button.list-group-item-success.active:focus,button.list-group-item-success.active:hover{color:#fff;background-color:#3c763d;border-color:#3c763d}.list-group-item-info{color:#31708f;background-color:#d9edf7}a.list-group-item-info,button.list-group-item-info{color:#31708f}a.list-group-item-info .list-group-item-heading,button.list-group-item-info .list-group-item-heading{color:inherit}a.list-group-item-info:focus,a.list-group-item-info:hover,button.list-group-item-info:focus,button.list-group-item-info:hover{color:#31708f;background-color:#c4e3f3}a.list-group-item-info.active,a.list-group-item-info.active:focus,a.list-group-item-info.active:hover,button.list-group-item-info.active,button.list-group-item-info.active:focus,button.list-group-item-info.active:hover{color:#fff;background-color:#31708f;border-color:#31708f}.list-group-item-warning{color:#8a6d3b;background-color:#fcf8e3}a.list-group-item-warning,button.list-group-item-warning{color:#8a6d3b}a.list-group-item-warning .list-group-item-heading,button.list-group-item-warning .list-group-item-heading{color:inherit}a.list-group-item-warning:focus,a.list-group-item-warning:hover,button.list-group-item-warning:focus,button.list-group-item-warning:hover{color:#8a6d3b;background-color:#faf2cc}a.list-group-item-warning.active,a.list-group-item-warning.active:focus,a.list-group-item-warning.active:hover,button.list-group-item-warning.active,button.list-group-item-warning.active:focus,button.list-group-item-warning.active:hover{color:#fff;background-color:#8a6d3b;border-color:#8a6d3b}.list-group-item-danger{color:#a94442;background-color:#f2dede}a.list-group-item-danger,button.list-group-item-danger{color:#a94442}a.list-group-item-danger .list-group-item-heading,button.list-group-item-danger .list-group-item-heading{color:inherit}a.list-group-item-danger:focus,a.list-group-item-danger:hover,button.list-group-item-danger:focus,button.list-group-item-danger:hover{color:#a94442;background-color:#ebcccc}a.list-group-item-danger.active,a.list-group-item-danger.active:focus,a.list-group-item-danger.active:hover,button.list-group-item-danger.active,button.list-group-item-danger.active:focus,button.list-group-item-danger.active:hover{color:#fff;background-color:#a94442;border-color:#a94442}.list-group-item-heading{margin-top:0;margin-bottom:5px}.list-group-item-text{margin-bottom:0;line-height:1.3}.panel{margin-bottom:20px;background-color:#fff;border:1px solid transparent;border-radius:4px;-webkit-box-shadow:0 1px 1px rgba(0,0,0,.05);box-shadow:0 1px 1px rgba(0,0,0,.05)}.panel-body{padding:15px}.panel-heading{padding:10px 15px;border-bottom:1px solid transparent;border-top-left-radius:3px;border-top-right-radius:3px}.panel-heading>.dropdown .dropdown-toggle{color:inherit}.panel-title{margin-top:0;margin-bottom:0;font-size:16px;color:inherit}.panel-title>.small,.panel-title>.small>a,.panel-title>a,.panel-title>small,.panel-title>small>a{color:inherit}.panel-footer{padding:10px 15px;background-color:#f5f5f5;border-top:1px solid #ddd;border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.list-group,.panel>.panel-collapse>.list-group{margin-bottom:0}.panel>.list-group .list-group-item,.panel>.panel-collapse>.list-group .list-group-item{border-width:1px 0;border-radius:0}.panel>.list-group:first-child .list-group-item:first-child,.panel>.panel-collapse>.list-group:first-child .list-group-item:first-child{border-top:0;border-top-left-radius:3px;border-top-right-radius:3px}.panel>.list-group:last-child .list-group-item:last-child,.panel>.panel-collapse>.list-group:last-child .list-group-item:last-child{border-bottom:0;border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.panel-heading+.panel-collapse>.list-group .list-group-item:first-child{border-top-left-radius:0;border-top-right-radius:0}.panel-heading+.list-group .list-group-item:first-child{border-top-width:0}.list-group+.panel-footer{border-top-width:0}.panel>.panel-collapse>.table,.panel>.table,.panel>.table-responsive>.table{margin-bottom:0}.panel>.panel-collapse>.table caption,.panel>.table caption,.panel>.table-responsive>.table caption{padding-right:15px;padding-left:15px}.panel>.table-responsive:first-child>.table:first-child,.panel>.table:first-child{border-top-left-radius:3px;border-top-right-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child,.panel>.table:first-child>thead:first-child>tr:first-child{border-top-left-radius:3px;border-top-right-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:first-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child td:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child th:first-child,.panel>.table:first-child>thead:first-child>tr:first-child td:first-child,.panel>.table:first-child>thead:first-child>tr:first-child th:first-child{border-top-left-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:last-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:last-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:last-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:last-child,.panel>.table:first-child>tbody:first-child>tr:first-child td:last-child,.panel>.table:first-child>tbody:first-child>tr:first-child th:last-child,.panel>.table:first-child>thead:first-child>tr:first-child td:last-child,.panel>.table:first-child>thead:first-child>tr:first-child th:last-child{border-top-right-radius:3px}.panel>.table-responsive:last-child>.table:last-child,.panel>.table:last-child{border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child{border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:first-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:first-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:first-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:first-child,.panel>.table:last-child>tbody:last-child>tr:last-child td:first-child,.panel>.table:last-child>tbody:last-child>tr:last-child th:first-child,.panel>.table:last-child>tfoot:last-child>tr:last-child td:first-child,.panel>.table:last-child>tfoot:last-child>tr:last-child th:first-child{border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:last-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child td:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child th:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child td:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child th:last-child{border-bottom-right-radius:3px}.panel>.panel-body+.table,.panel>.panel-body+.table-responsive,.panel>.table+.panel-body,.panel>.table-responsive+.panel-body{border-top:1px solid #ddd}.panel>.table>tbody:first-child>tr:first-child td,.panel>.table>tbody:first-child>tr:first-child th{border-top:0}.panel>.table-bordered,.panel>.table-responsive>.table-bordered{border:0}.panel>.table-bordered>tbody>tr>td:first-child,.panel>.table-bordered>tbody>tr>th:first-child,.panel>.table-bordered>tfoot>tr>td:first-child,.panel>.table-bordered>tfoot>tr>th:first-child,.panel>.table-bordered>thead>tr>td:first-child,.panel>.table-bordered>thead>tr>th:first-child,.panel>.table-responsive>.table-bordered>tbody>tr>td:first-child,.panel>.table-responsive>.table-bordered>tbody>tr>th:first-child,.panel>.table-responsive>.table-bordered>tfoot>tr>td:first-child,.panel>.table-responsive>.table-bordered>tfoot>tr>th:first-child,.panel>.table-responsive>.table-bordered>thead>tr>td:first-child,.panel>.table-responsive>.table-bordered>thead>tr>th:first-child{border-left:0}.panel>.table-bordered>tbody>tr>td:last-child,.panel>.table-bordered>tbody>tr>th:last-child,.panel>.table-bordered>tfoot>tr>td:last-child,.panel>.table-bordered>tfoot>tr>th:last-child,.panel>.table-bordered>thead>tr>td:last-child,.panel>.table-bordered>thead>tr>th:last-child,.panel>.table-responsive>.table-bordered>tbody>tr>td:last-child,.panel>.table-responsive>.table-bordered>tbody>tr>th:last-child,.panel>.table-responsive>.table-bordered>tfoot>tr>td:last-child,.panel>.table-responsive>.table-bordered>tfoot>tr>th:last-child,.panel>.table-responsive>.table-bordered>thead>tr>td:last-child,.panel>.table-responsive>.table-bordered>thead>tr>th:last-child{border-right:0}.panel>.table-bordered>tbody>tr:first-child>td,.panel>.table-bordered>tbody>tr:first-child>th,.panel>.table-bordered>thead>tr:first-child>td,.panel>.table-bordered>thead>tr:first-child>th,.panel>.table-responsive>.table-bordered>tbody>tr:first-child>td,.panel>.table-responsive>.table-bordered>tbody>tr:first-child>th,.panel>.table-responsive>.table-bordered>thead>tr:first-child>td,.panel>.table-responsive>.table-bordered>thead>tr:first-child>th{border-bottom:0}.panel>.table-bordered>tbody>tr:last-child>td,.panel>.table-bordered>tbody>tr:last-child>th,.panel>.table-bordered>tfoot>tr:last-child>td,.panel>.table-bordered>tfoot>tr:last-child>th,.panel>.table-responsive>.table-bordered>tbody>tr:last-child>td,.panel>.table-responsive>.table-bordered>tbody>tr:last-child>th,.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>td,.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>th{border-bottom:0}.panel>.table-responsive{margin-bottom:0;border:0}.panel-group{margin-bottom:20px}.panel-group .panel{margin-bottom:0;border-radius:4px}.panel-group .panel+.panel{margin-top:5px}.panel-group .panel-heading{border-bottom:0}.panel-group .panel-heading+.panel-collapse>.list-group,.panel-group .panel-heading+.panel-collapse>.panel-body{border-top:1px solid #ddd}.panel-group .panel-footer{border-top:0}.panel-group .panel-footer+.panel-collapse .panel-body{border-bottom:1px solid #ddd}.panel-default{border-color:#ddd}.panel-default>.panel-heading{color:#333;background-color:#f5f5f5;border-color:#ddd}.panel-default>.panel-heading+.panel-collapse>.panel-body{border-top-color:#ddd}.panel-default>.panel-heading .badge{color:#f5f5f5;background-color:#333}.panel-default>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#ddd}.panel-primary{border-color:#337ab7}.panel-primary>.panel-heading{color:#fff;background-color:#337ab7;border-color:#337ab7}.panel-primary>.panel-heading+.panel-collapse>.panel-body{border-top-color:#337ab7}.panel-primary>.panel-heading .badge{color:#337ab7;background-color:#fff}.panel-primary>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#337ab7}.panel-success{border-color:#d6e9c6}.panel-success>.panel-heading{color:#3c763d;background-color:#dff0d8;border-color:#d6e9c6}.panel-success>.panel-heading+.panel-collapse>.panel-body{border-top-color:#d6e9c6}.panel-success>.panel-heading .badge{color:#dff0d8;background-color:#3c763d}.panel-success>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#d6e9c6}.panel-info{border-color:#bce8f1}.panel-info>.panel-heading{color:#31708f;background-color:#d9edf7;border-color:#bce8f1}.panel-info>.panel-heading+.panel-collapse>.panel-body{border-top-color:#bce8f1}.panel-info>.panel-heading .badge{color:#d9edf7;background-color:#31708f}.panel-info>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#bce8f1}.panel-warning{border-color:#faebcc}.panel-warning>.panel-heading{color:#8a6d3b;background-color:#fcf8e3;border-color:#faebcc}.panel-warning>.panel-heading+.panel-collapse>.panel-body{border-top-color:#faebcc}.panel-warning>.panel-heading .badge{color:#fcf8e3;background-color:#8a6d3b}.panel-warning>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#faebcc}.panel-danger{border-color:#ebccd1}.panel-danger>.panel-heading{color:#a94442;background-color:#f2dede;border-color:#ebccd1}.panel-danger>.panel-heading+.panel-collapse>.panel-body{border-top-color:#ebccd1}.panel-danger>.panel-heading .badge{color:#f2dede;background-color:#a94442}.panel-danger>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#ebccd1}.embed-responsive{position:relative;display:block;height:0;padding:0;overflow:hidden}.embed-responsive .embed-responsive-item,.embed-responsive embed,.embed-responsive iframe,.embed-responsive object,.embed-responsive video{position:absolute;top:0;bottom:0;left:0;width:100%;height:100%;border:0}.embed-responsive-16by9{padding-bottom:56.25%}.embed-responsive-4by3{padding-bottom:75%}.well{min-height:20px;padding:19px;margin-bottom:20px;background-color:#f5f5f5;border:1px solid #e3e3e3;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.05);box-shadow:inset 0 1px 1px rgba(0,0,0,.05)}.well blockquote{border-color:#ddd;border-color:rgba(0,0,0,.15)}.well-lg{padding:24px;border-radius:6px}.well-sm{padding:9px;border-radius:3px}.close{float:right;font-size:21px;font-weight:700;line-height:1;color:#000;text-shadow:0 1px 0 #fff;filter:alpha(opacity=20);opacity:.2}.close:focus,.close:hover{color:#000;text-decoration:none;cursor:pointer;filter:alpha(opacity=50);opacity:.5}button.close{-webkit-appearance:none;padding:0;cursor:pointer;background:0 0;border:0}.modal-open{overflow:hidden}.modal{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1050;display:none;overflow:hidden;-webkit-overflow-scrolling:touch;outline:0}.modal.fade .modal-dialog{-webkit-transition:-webkit-transform .3s ease-out;-o-transition:-o-transform .3s ease-out;transition:transform .3s ease-out;-webkit-transform:translate(0,-25%);-ms-transform:translate(0,-25%);-o-transform:translate(0,-25%);transform:translate(0,-25%)}.modal.in .modal-dialog{-webkit-transform:translate(0,0);-ms-transform:translate(0,0);-o-transform:translate(0,0);transform:translate(0,0)}.modal-open .modal{overflow-x:hidden;overflow-y:auto}.modal-dialog{position:relative;width:auto;margin:10px}.modal-content{position:relative;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #999;border:1px solid rgba(0,0,0,.2);border-radius:6px;outline:0;-webkit-box-shadow:0 3px 9px rgba(0,0,0,.5);box-shadow:0 3px 9px rgba(0,0,0,.5)}.modal-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1040;background-color:#000}.modal-backdrop.fade{filter:alpha(opacity=0);opacity:0}.modal-backdrop.in{filter:alpha(opacity=50);opacity:.5}.modal-header{min-height:16.43px;padding:15px;border-bottom:1px solid #e5e5e5}.modal-header .close{margin-top:-2px}.modal-title{margin:0;line-height:1.42857143}.modal-body{position:relative;padding:15px}.modal-footer{padding:15px;text-align:right;border-top:1px solid #e5e5e5}.modal-footer .btn+.btn{margin-bottom:0;margin-left:5px}.modal-footer .btn-group .btn+.btn{margin-left:-1px}.modal-footer .btn-block+.btn-block{margin-left:0}.modal-scrollbar-measure{position:absolute;top:-9999px;width:50px;height:50px;overflow:scroll}@media (min-width:768px){.modal-dialog{width:600px;margin:30px auto}.modal-content{-webkit-box-shadow:0 5px 15px rgba(0,0,0,.5);box-shadow:0 5px 15px rgba(0,0,0,.5)}.modal-sm{width:300px}}@media (min-width:992px){.modal-lg{width:900px}}.tooltip{position:absolute;z-index:1070;display:block;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:12px;font-style:normal;font-weight:400;line-height:1.42857143;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;word-wrap:normal;white-space:normal;filter:alpha(opacity=0);opacity:0;line-break:auto}.tooltip.in{filter:alpha(opacity=90);opacity:.9}.tooltip.top{padding:5px 0;margin-top:-3px}.tooltip.right{padding:0 5px;margin-left:3px}.tooltip.bottom{padding:5px 0;margin-top:3px}.tooltip.left{padding:0 5px;margin-left:-3px}.tooltip-inner{max-width:200px;padding:3px 8px;color:#fff;text-align:center;background-color:#000;border-radius:4px}.tooltip-arrow{position:absolute;width:0;height:0;border-color:transparent;border-style:solid}.tooltip.top .tooltip-arrow{bottom:0;left:50%;margin-left:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.top-left .tooltip-arrow{right:5px;bottom:0;margin-bottom:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.top-right .tooltip-arrow{bottom:0;left:5px;margin-bottom:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.right .tooltip-arrow{top:50%;left:0;margin-top:-5px;border-width:5px 5px 5px 0;border-right-color:#000}.tooltip.left .tooltip-arrow{top:50%;right:0;margin-top:-5px;border-width:5px 0 5px 5px;border-left-color:#000}.tooltip.bottom .tooltip-arrow{top:0;left:50%;margin-left:-5px;border-width:0 5px 5px;border-bottom-color:#000}.tooltip.bottom-left .tooltip-arrow{top:0;right:5px;margin-top:-5px;border-width:0 5px 5px;border-bottom-color:#000}.tooltip.bottom-right .tooltip-arrow{top:0;left:5px;margin-top:-5px;border-width:0 5px 5px;border-bottom-color:#000}.popover{position:absolute;top:0;left:0;z-index:1060;display:none;max-width:276px;padding:1px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;font-style:normal;font-weight:400;line-height:1.42857143;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;word-wrap:normal;white-space:normal;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #ccc;border:1px solid rgba(0,0,0,.2);border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,.2);box-shadow:0 5px 10px rgba(0,0,0,.2);line-break:auto}.popover.top{margin-top:-10px}.popover.right{margin-left:10px}.popover.bottom{margin-top:10px}.popover.left{margin-left:-10px}.popover-title{padding:8px 14px;margin:0;font-size:14px;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-radius:5px 5px 0 0}.popover-content{padding:9px 14px}.popover>.arrow,.popover>.arrow:after{position:absolute;display:block;width:0;height:0;border-color:transparent;border-style:solid}.popover>.arrow{border-width:11px}.popover>.arrow:after{content:"";border-width:10px}.popover.top>.arrow{bottom:-11px;left:50%;margin-left:-11px;border-top-color:#999;border-top-color:rgba(0,0,0,.25);border-bottom-width:0}.popover.top>.arrow:after{bottom:1px;margin-left:-10px;content:" ";border-top-color:#fff;border-bottom-width:0}.popover.right>.arrow{top:50%;left:-11px;margin-top:-11px;border-right-color:#999;border-right-color:rgba(0,0,0,.25);border-left-width:0}.popover.right>.arrow:after{bottom:-10px;left:1px;content:" ";border-right-color:#fff;border-left-width:0}.popover.bottom>.arrow{top:-11px;left:50%;margin-left:-11px;border-top-width:0;border-bottom-color:#999;border-bottom-color:rgba(0,0,0,.25)}.popover.bottom>.arrow:after{top:1px;margin-left:-10px;content:" ";border-top-width:0;border-bottom-color:#fff}.popover.left>.arrow{top:50%;right:-11px;margin-top:-11px;border-right-width:0;border-left-color:#999;border-left-color:rgba(0,0,0,.25)}.popover.left>.arrow:after{right:1px;bottom:-10px;content:" ";border-right-width:0;border-left-color:#fff}.carousel{position:relative}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner>.item{position:relative;display:none;-webkit-transition:.6s ease-in-out left;-o-transition:.6s ease-in-out left;transition:.6s ease-in-out left}.carousel-inner>.item>a>img,.carousel-inner>.item>img{line-height:1}@media all and (transform-3d),(-webkit-transform-3d){.carousel-inner>.item{-webkit-transition:-webkit-transform .6s ease-in-out;-o-transition:-o-transform .6s ease-in-out;transition:transform .6s ease-in-out;-webkit-backface-visibility:hidden;backface-visibility:hidden;-webkit-perspective:1000px;perspective:1000px}.carousel-inner>.item.active.right,.carousel-inner>.item.next{left:0;-webkit-transform:translate3d(100%,0,0);transform:translate3d(100%,0,0)}.carousel-inner>.item.active.left,.carousel-inner>.item.prev{left:0;-webkit-transform:translate3d(-100%,0,0);transform:translate3d(-100%,0,0)}.carousel-inner>.item.active,.carousel-inner>.item.next.left,.carousel-inner>.item.prev.right{left:0;-webkit-transform:translate3d(0,0,0);transform:translate3d(0,0,0)}}.carousel-inner>.active,.carousel-inner>.next,.carousel-inner>.prev{display:block}.carousel-inner>.active{left:0}.carousel-inner>.next,.carousel-inner>.prev{position:absolute;top:0;width:100%}.carousel-inner>.next{left:100%}.carousel-inner>.prev{left:-100%}.carousel-inner>.next.left,.carousel-inner>.prev.right{left:0}.carousel-inner>.active.left{left:-100%}.carousel-inner>.active.right{left:100%}.carousel-control{position:absolute;top:0;bottom:0;left:0;width:15%;font-size:20px;color:#fff;text-align:center;text-shadow:0 1px 2px rgba(0,0,0,.6);filter:alpha(opacity=50);opacity:.5}.carousel-control.left{background-image:-webkit-linear-gradient(left,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);background-image:-o-linear-gradient(left,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);background-image:-webkit-gradient(linear,left top,right top,from(rgba(0,0,0,.5)),to(rgba(0,0,0,.0001)));background-image:linear-gradient(to right,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#80000000', endColorstr='#00000000', GradientType=1);background-repeat:repeat-x}.carousel-control.right{right:0;left:auto;background-image:-webkit-linear-gradient(left,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);background-image:-o-linear-gradient(left,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);background-image:-webkit-gradient(linear,left top,right top,from(rgba(0,0,0,.0001)),to(rgba(0,0,0,.5)));background-image:linear-gradient(to right,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#00000000', endColorstr='#80000000', GradientType=1);background-repeat:repeat-x}.carousel-control:focus,.carousel-control:hover{color:#fff;text-decoration:none;filter:alpha(opacity=90);outline:0;opacity:.9}.carousel-control .glyphicon-chevron-left,.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next,.carousel-control .icon-prev{position:absolute;top:50%;z-index:5;display:inline-block;margin-top:-10px}.carousel-control .glyphicon-chevron-left,.carousel-control .icon-prev{left:50%;margin-left:-10px}.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next{right:50%;margin-right:-10px}.carousel-control .icon-next,.carousel-control .icon-prev{width:20px;height:20px;font-family:serif;line-height:1}.carousel-control .icon-prev:before{content:'\2039'}.carousel-control .icon-next:before{content:'\203a'}.carousel-indicators{position:absolute;bottom:10px;left:50%;z-index:15;width:60%;padding-left:0;margin-left:-30%;text-align:center;list-style:none}.carousel-indicators li{display:inline-block;width:10px;height:10px;margin:1px;text-indent:-999px;cursor:pointer;background-color:#000\9;background-color:rgba(0,0,0,0);border:1px solid #fff;border-radius:10px}.carousel-indicators .active{width:12px;height:12px;margin:0;background-color:#fff}.carousel-caption{position:absolute;right:15%;bottom:20px;left:15%;z-index:10;padding-top:20px;padding-bottom:20px;color:#fff;text-align:center;text-shadow:0 1px 2px rgba(0,0,0,.6)}.carousel-caption .btn{text-shadow:none}@media screen and (min-width:768px){.carousel-control .glyphicon-chevron-left,.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next,.carousel-control .icon-prev{width:30px;height:30px;margin-top:-15px;font-size:30px}.carousel-control .glyphicon-chevron-left,.carousel-control .icon-prev{margin-left:-15px}.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next{margin-right:-15px}.carousel-caption{right:20%;left:20%;padding-bottom:30px}.carousel-indicators{bottom:20px}}.btn-group-vertical>.btn-group:after,.btn-group-vertical>.btn-group:before,.btn-toolbar:after,.btn-toolbar:before,.clearfix:after,.clearfix:before,.container-fluid:after,.container-fluid:before,.container:after,.container:before,.dl-horizontal dd:after,.dl-horizontal dd:before,.form-horizontal .form-group:after,.form-horizontal .form-group:before,.modal-footer:after,.modal-footer:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.pager:after,.pager:before,.panel-body:after,.panel-body:before,.row:after,.row:before{display:table;content:" "}.btn-group-vertical>.btn-group:after,.btn-toolbar:after,.clearfix:after,.container-fluid:after,.container:after,.dl-horizontal dd:after,.form-horizontal .form-group:after,.modal-footer:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.pager:after,.panel-body:after,.row:after{clear:both}.center-block{display:block;margin-right:auto;margin-left:auto}.pull-right{float:right!important}.pull-left{float:left!important}.hide{display:none!important}.show{display:block!important}.invisible{visibility:hidden}.text-hide{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.hidden{display:none!important}.affix{position:fixed}@-ms-viewport{width:device-width}.visible-lg,.visible-md,.visible-sm,.visible-xs{display:none!important}.visible-lg-block,.visible-lg-inline,.visible-lg-inline-block,.visible-md-block,.visible-md-inline,.visible-md-inline-block,.visible-sm-block,.visible-sm-inline,.visible-sm-inline-block,.visible-xs-block,.visible-xs-inline,.visible-xs-inline-block{display:none!important}@media (max-width:767px){.visible-xs{display:block!important}table.visible-xs{display:table!important}tr.visible-xs{display:table-row!important}td.visible-xs,th.visible-xs{display:table-cell!important}}@media (max-width:767px){.visible-xs-block{display:block!important}}@media (max-width:767px){.visible-xs-inline{display:inline!important}}@media (max-width:767px){.visible-xs-inline-block{display:inline-block!important}}@media (min-width:768px) and (max-width:991px){.visible-sm{display:block!important}table.visible-sm{display:table!important}tr.visible-sm{display:table-row!important}td.visible-sm,th.visible-sm{display:table-cell!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-block{display:block!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-inline{display:inline!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-inline-block{display:inline-block!important}}@media (min-width:992px) and (max-width:1199px){.visible-md{display:block!important}table.visible-md{display:table!important}tr.visible-md{display:table-row!important}td.visible-md,th.visible-md{display:table-cell!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-block{display:block!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-inline{display:inline!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-inline-block{display:inline-block!important}}@media (min-width:1200px){.visible-lg{display:block!important}table.visible-lg{display:table!important}tr.visible-lg{display:table-row!important}td.visible-lg,th.visible-lg{display:table-cell!important}}@media (min-width:1200px){.visible-lg-block{display:block!important}}@media (min-width:1200px){.visible-lg-inline{display:inline!important}}@media (min-width:1200px){.visible-lg-inline-block{display:inline-block!important}}@media (max-width:767px){.hidden-xs{display:none!important}}@media (min-width:768px) and (max-width:991px){.hidden-sm{display:none!important}}@media (min-width:992px) and (max-width:1199px){.hidden-md{display:none!important}}@media (min-width:1200px){.hidden-lg{display:none!important}}.visible-print{display:none!important}@media print{.visible-print{display:block!important}table.visible-print{display:table!important}tr.visible-print{display:table-row!important}td.visible-print,th.visible-print{display:table-cell!important}}.visible-print-block{display:none!important}@media print{.visible-print-block{display:block!important}}.visible-print-inline{display:none!important}@media print{.visible-print-inline{display:inline!important}}.visible-print-inline-block{display:none!important}@media print{.visible-print-inline-block{display:inline-block!important}}@media print{.hidden-print{display:none!important}}
</style>
<script>/*!
 * Bootstrap v3.3.5 (http://getbootstrap.com)
 * Copyright 2011-2015 Twitter, Inc.
 * Licensed under the MIT license
 */
if("undefined"==typeof jQuery)throw new Error("Bootstrap's JavaScript requires jQuery");+function(a){"use strict";var b=a.fn.jquery.split(" ")[0].split(".");if(b[0]<2&&b[1]<9||1==b[0]&&9==b[1]&&b[2]<1)throw new Error("Bootstrap's JavaScript requires jQuery version 1.9.1 or higher")}(jQuery),+function(a){"use strict";function b(){var a=document.createElement("bootstrap"),b={WebkitTransition:"webkitTransitionEnd",MozTransition:"transitionend",OTransition:"oTransitionEnd otransitionend",transition:"transitionend"};for(var c in b)if(void 0!==a.style[c])return{end:b[c]};return!1}a.fn.emulateTransitionEnd=function(b){var c=!1,d=this;a(this).one("bsTransitionEnd",function(){c=!0});var e=function(){c||a(d).trigger(a.support.transition.end)};return setTimeout(e,b),this},a(function(){a.support.transition=b(),a.support.transition&&(a.event.special.bsTransitionEnd={bindType:a.support.transition.end,delegateType:a.support.transition.end,handle:function(b){return a(b.target).is(this)?b.handleObj.handler.apply(this,arguments):void 0}})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var c=a(this),e=c.data("bs.alert");e||c.data("bs.alert",e=new d(this)),"string"==typeof b&&e[b].call(c)})}var c='[data-dismiss="alert"]',d=function(b){a(b).on("click",c,this.close)};d.VERSION="3.3.5",d.TRANSITION_DURATION=150,d.prototype.close=function(b){function c(){g.detach().trigger("closed.bs.alert").remove()}var e=a(this),f=e.attr("data-target");f||(f=e.attr("href"),f=f&&f.replace(/.*(?=#[^\s]*$)/,""));var g=a(f);b&&b.preventDefault(),g.length||(g=e.closest(".alert")),g.trigger(b=a.Event("close.bs.alert")),b.isDefaultPrevented()||(g.removeClass("in"),a.support.transition&&g.hasClass("fade")?g.one("bsTransitionEnd",c).emulateTransitionEnd(d.TRANSITION_DURATION):c())};var e=a.fn.alert;a.fn.alert=b,a.fn.alert.Constructor=d,a.fn.alert.noConflict=function(){return a.fn.alert=e,this},a(document).on("click.bs.alert.data-api",c,d.prototype.close)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.button"),f="object"==typeof b&&b;e||d.data("bs.button",e=new c(this,f)),"toggle"==b?e.toggle():b&&e.setState(b)})}var c=function(b,d){this.$element=a(b),this.options=a.extend({},c.DEFAULTS,d),this.isLoading=!1};c.VERSION="3.3.5",c.DEFAULTS={loadingText:"loading..."},c.prototype.setState=function(b){var c="disabled",d=this.$element,e=d.is("input")?"val":"html",f=d.data();b+="Text",null==f.resetText&&d.data("resetText",d[e]()),setTimeout(a.proxy(function(){d[e](null==f[b]?this.options[b]:f[b]),"loadingText"==b?(this.isLoading=!0,d.addClass(c).attr(c,c)):this.isLoading&&(this.isLoading=!1,d.removeClass(c).removeAttr(c))},this),0)},c.prototype.toggle=function(){var a=!0,b=this.$element.closest('[data-toggle="buttons"]');if(b.length){var c=this.$element.find("input");"radio"==c.prop("type")?(c.prop("checked")&&(a=!1),b.find(".active").removeClass("active"),this.$element.addClass("active")):"checkbox"==c.prop("type")&&(c.prop("checked")!==this.$element.hasClass("active")&&(a=!1),this.$element.toggleClass("active")),c.prop("checked",this.$element.hasClass("active")),a&&c.trigger("change")}else this.$element.attr("aria-pressed",!this.$element.hasClass("active")),this.$element.toggleClass("active")};var d=a.fn.button;a.fn.button=b,a.fn.button.Constructor=c,a.fn.button.noConflict=function(){return a.fn.button=d,this},a(document).on("click.bs.button.data-api",'[data-toggle^="button"]',function(c){var d=a(c.target);d.hasClass("btn")||(d=d.closest(".btn")),b.call(d,"toggle"),a(c.target).is('input[type="radio"]')||a(c.target).is('input[type="checkbox"]')||c.preventDefault()}).on("focus.bs.button.data-api blur.bs.button.data-api",'[data-toggle^="button"]',function(b){a(b.target).closest(".btn").toggleClass("focus",/^focus(in)?$/.test(b.type))})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.carousel"),f=a.extend({},c.DEFAULTS,d.data(),"object"==typeof b&&b),g="string"==typeof b?b:f.slide;e||d.data("bs.carousel",e=new c(this,f)),"number"==typeof b?e.to(b):g?e[g]():f.interval&&e.pause().cycle()})}var c=function(b,c){this.$element=a(b),this.$indicators=this.$element.find(".carousel-indicators"),this.options=c,this.paused=null,this.sliding=null,this.interval=null,this.$active=null,this.$items=null,this.options.keyboard&&this.$element.on("keydown.bs.carousel",a.proxy(this.keydown,this)),"hover"==this.options.pause&&!("ontouchstart"in document.documentElement)&&this.$element.on("mouseenter.bs.carousel",a.proxy(this.pause,this)).on("mouseleave.bs.carousel",a.proxy(this.cycle,this))};c.VERSION="3.3.5",c.TRANSITION_DURATION=600,c.DEFAULTS={interval:5e3,pause:"hover",wrap:!0,keyboard:!0},c.prototype.keydown=function(a){if(!/input|textarea/i.test(a.target.tagName)){switch(a.which){case 37:this.prev();break;case 39:this.next();break;default:return}a.preventDefault()}},c.prototype.cycle=function(b){return b||(this.paused=!1),this.interval&&clearInterval(this.interval),this.options.interval&&!this.paused&&(this.interval=setInterval(a.proxy(this.next,this),this.options.interval)),this},c.prototype.getItemIndex=function(a){return this.$items=a.parent().children(".item"),this.$items.index(a||this.$active)},c.prototype.getItemForDirection=function(a,b){var c=this.getItemIndex(b),d="prev"==a&&0===c||"next"==a&&c==this.$items.length-1;if(d&&!this.options.wrap)return b;var e="prev"==a?-1:1,f=(c+e)%this.$items.length;return this.$items.eq(f)},c.prototype.to=function(a){var b=this,c=this.getItemIndex(this.$active=this.$element.find(".item.active"));return a>this.$items.length-1||0>a?void 0:this.sliding?this.$element.one("slid.bs.carousel",function(){b.to(a)}):c==a?this.pause().cycle():this.slide(a>c?"next":"prev",this.$items.eq(a))},c.prototype.pause=function(b){return b||(this.paused=!0),this.$element.find(".next, .prev").length&&a.support.transition&&(this.$element.trigger(a.support.transition.end),this.cycle(!0)),this.interval=clearInterval(this.interval),this},c.prototype.next=function(){return this.sliding?void 0:this.slide("next")},c.prototype.prev=function(){return this.sliding?void 0:this.slide("prev")},c.prototype.slide=function(b,d){var e=this.$element.find(".item.active"),f=d||this.getItemForDirection(b,e),g=this.interval,h="next"==b?"left":"right",i=this;if(f.hasClass("active"))return this.sliding=!1;var j=f[0],k=a.Event("slide.bs.carousel",{relatedTarget:j,direction:h});if(this.$element.trigger(k),!k.isDefaultPrevented()){if(this.sliding=!0,g&&this.pause(),this.$indicators.length){this.$indicators.find(".active").removeClass("active");var l=a(this.$indicators.children()[this.getItemIndex(f)]);l&&l.addClass("active")}var m=a.Event("slid.bs.carousel",{relatedTarget:j,direction:h});return a.support.transition&&this.$element.hasClass("slide")?(f.addClass(b),f[0].offsetWidth,e.addClass(h),f.addClass(h),e.one("bsTransitionEnd",function(){f.removeClass([b,h].join(" ")).addClass("active"),e.removeClass(["active",h].join(" ")),i.sliding=!1,setTimeout(function(){i.$element.trigger(m)},0)}).emulateTransitionEnd(c.TRANSITION_DURATION)):(e.removeClass("active"),f.addClass("active"),this.sliding=!1,this.$element.trigger(m)),g&&this.cycle(),this}};var d=a.fn.carousel;a.fn.carousel=b,a.fn.carousel.Constructor=c,a.fn.carousel.noConflict=function(){return a.fn.carousel=d,this};var e=function(c){var d,e=a(this),f=a(e.attr("data-target")||(d=e.attr("href"))&&d.replace(/.*(?=#[^\s]+$)/,""));if(f.hasClass("carousel")){var g=a.extend({},f.data(),e.data()),h=e.attr("data-slide-to");h&&(g.interval=!1),b.call(f,g),h&&f.data("bs.carousel").to(h),c.preventDefault()}};a(document).on("click.bs.carousel.data-api","[data-slide]",e).on("click.bs.carousel.data-api","[data-slide-to]",e),a(window).on("load",function(){a('[data-ride="carousel"]').each(function(){var c=a(this);b.call(c,c.data())})})}(jQuery),+function(a){"use strict";function b(b){var c,d=b.attr("data-target")||(c=b.attr("href"))&&c.replace(/.*(?=#[^\s]+$)/,"");return a(d)}function c(b){return this.each(function(){var c=a(this),e=c.data("bs.collapse"),f=a.extend({},d.DEFAULTS,c.data(),"object"==typeof b&&b);!e&&f.toggle&&/show|hide/.test(b)&&(f.toggle=!1),e||c.data("bs.collapse",e=new d(this,f)),"string"==typeof b&&e[b]()})}var d=function(b,c){this.$element=a(b),this.options=a.extend({},d.DEFAULTS,c),this.$trigger=a('[data-toggle="collapse"][href="#'+b.id+'"],[data-toggle="collapse"][data-target="#'+b.id+'"]'),this.transitioning=null,this.options.parent?this.$parent=this.getParent():this.addAriaAndCollapsedClass(this.$element,this.$trigger),this.options.toggle&&this.toggle()};d.VERSION="3.3.5",d.TRANSITION_DURATION=350,d.DEFAULTS={toggle:!0},d.prototype.dimension=function(){var a=this.$element.hasClass("width");return a?"width":"height"},d.prototype.show=function(){if(!this.transitioning&&!this.$element.hasClass("in")){var b,e=this.$parent&&this.$parent.children(".panel").children(".in, .collapsing");if(!(e&&e.length&&(b=e.data("bs.collapse"),b&&b.transitioning))){var f=a.Event("show.bs.collapse");if(this.$element.trigger(f),!f.isDefaultPrevented()){e&&e.length&&(c.call(e,"hide"),b||e.data("bs.collapse",null));var g=this.dimension();this.$element.removeClass("collapse").addClass("collapsing")[g](0).attr("aria-expanded",!0),this.$trigger.removeClass("collapsed").attr("aria-expanded",!0),this.transitioning=1;var h=function(){this.$element.removeClass("collapsing").addClass("collapse in")[g](""),this.transitioning=0,this.$element.trigger("shown.bs.collapse")};if(!a.support.transition)return h.call(this);var i=a.camelCase(["scroll",g].join("-"));this.$element.one("bsTransitionEnd",a.proxy(h,this)).emulateTransitionEnd(d.TRANSITION_DURATION)[g](this.$element[0][i])}}}},d.prototype.hide=function(){if(!this.transitioning&&this.$element.hasClass("in")){var b=a.Event("hide.bs.collapse");if(this.$element.trigger(b),!b.isDefaultPrevented()){var c=this.dimension();this.$element[c](this.$element[c]())[0].offsetHeight,this.$element.addClass("collapsing").removeClass("collapse in").attr("aria-expanded",!1),this.$trigger.addClass("collapsed").attr("aria-expanded",!1),this.transitioning=1;var e=function(){this.transitioning=0,this.$element.removeClass("collapsing").addClass("collapse").trigger("hidden.bs.collapse")};return a.support.transition?void this.$element[c](0).one("bsTransitionEnd",a.proxy(e,this)).emulateTransitionEnd(d.TRANSITION_DURATION):e.call(this)}}},d.prototype.toggle=function(){this[this.$element.hasClass("in")?"hide":"show"]()},d.prototype.getParent=function(){return a(this.options.parent).find('[data-toggle="collapse"][data-parent="'+this.options.parent+'"]').each(a.proxy(function(c,d){var e=a(d);this.addAriaAndCollapsedClass(b(e),e)},this)).end()},d.prototype.addAriaAndCollapsedClass=function(a,b){var c=a.hasClass("in");a.attr("aria-expanded",c),b.toggleClass("collapsed",!c).attr("aria-expanded",c)};var e=a.fn.collapse;a.fn.collapse=c,a.fn.collapse.Constructor=d,a.fn.collapse.noConflict=function(){return a.fn.collapse=e,this},a(document).on("click.bs.collapse.data-api",'[data-toggle="collapse"]',function(d){var e=a(this);e.attr("data-target")||d.preventDefault();var f=b(e),g=f.data("bs.collapse"),h=g?"toggle":e.data();c.call(f,h)})}(jQuery),+function(a){"use strict";function b(b){var c=b.attr("data-target");c||(c=b.attr("href"),c=c&&/#[A-Za-z]/.test(c)&&c.replace(/.*(?=#[^\s]*$)/,""));var d=c&&a(c);return d&&d.length?d:b.parent()}function c(c){c&&3===c.which||(a(e).remove(),a(f).each(function(){var d=a(this),e=b(d),f={relatedTarget:this};e.hasClass("open")&&(c&&"click"==c.type&&/input|textarea/i.test(c.target.tagName)&&a.contains(e[0],c.target)||(e.trigger(c=a.Event("hide.bs.dropdown",f)),c.isDefaultPrevented()||(d.attr("aria-expanded","false"),e.removeClass("open").trigger("hidden.bs.dropdown",f))))}))}function d(b){return this.each(function(){var c=a(this),d=c.data("bs.dropdown");d||c.data("bs.dropdown",d=new g(this)),"string"==typeof b&&d[b].call(c)})}var e=".dropdown-backdrop",f='[data-toggle="dropdown"]',g=function(b){a(b).on("click.bs.dropdown",this.toggle)};g.VERSION="3.3.5",g.prototype.toggle=function(d){var e=a(this);if(!e.is(".disabled, :disabled")){var f=b(e),g=f.hasClass("open");if(c(),!g){"ontouchstart"in document.documentElement&&!f.closest(".navbar-nav").length&&a(document.createElement("div")).addClass("dropdown-backdrop").insertAfter(a(this)).on("click",c);var h={relatedTarget:this};if(f.trigger(d=a.Event("show.bs.dropdown",h)),d.isDefaultPrevented())return;e.trigger("focus").attr("aria-expanded","true"),f.toggleClass("open").trigger("shown.bs.dropdown",h)}return!1}},g.prototype.keydown=function(c){if(/(38|40|27|32)/.test(c.which)&&!/input|textarea/i.test(c.target.tagName)){var d=a(this);if(c.preventDefault(),c.stopPropagation(),!d.is(".disabled, :disabled")){var e=b(d),g=e.hasClass("open");if(!g&&27!=c.which||g&&27==c.which)return 27==c.which&&e.find(f).trigger("focus"),d.trigger("click");var h=" li:not(.disabled):visible a",i=e.find(".dropdown-menu"+h);if(i.length){var j=i.index(c.target);38==c.which&&j>0&&j--,40==c.which&&j<i.length-1&&j++,~j||(j=0),i.eq(j).trigger("focus")}}}};var h=a.fn.dropdown;a.fn.dropdown=d,a.fn.dropdown.Constructor=g,a.fn.dropdown.noConflict=function(){return a.fn.dropdown=h,this},a(document).on("click.bs.dropdown.data-api",c).on("click.bs.dropdown.data-api",".dropdown form",function(a){a.stopPropagation()}).on("click.bs.dropdown.data-api",f,g.prototype.toggle).on("keydown.bs.dropdown.data-api",f,g.prototype.keydown).on("keydown.bs.dropdown.data-api",".dropdown-menu",g.prototype.keydown)}(jQuery),+function(a){"use strict";function b(b,d){return this.each(function(){var e=a(this),f=e.data("bs.modal"),g=a.extend({},c.DEFAULTS,e.data(),"object"==typeof b&&b);f||e.data("bs.modal",f=new c(this,g)),"string"==typeof b?f[b](d):g.show&&f.show(d)})}var c=function(b,c){this.options=c,this.$body=a(document.body),this.$element=a(b),this.$dialog=this.$element.find(".modal-dialog"),this.$backdrop=null,this.isShown=null,this.originalBodyPad=null,this.scrollbarWidth=0,this.ignoreBackdropClick=!1,this.options.remote&&this.$element.find(".modal-content").load(this.options.remote,a.proxy(function(){this.$element.trigger("loaded.bs.modal")},this))};c.VERSION="3.3.5",c.TRANSITION_DURATION=300,c.BACKDROP_TRANSITION_DURATION=150,c.DEFAULTS={backdrop:!0,keyboard:!0,show:!0},c.prototype.toggle=function(a){return this.isShown?this.hide():this.show(a)},c.prototype.show=function(b){var d=this,e=a.Event("show.bs.modal",{relatedTarget:b});this.$element.trigger(e),this.isShown||e.isDefaultPrevented()||(this.isShown=!0,this.checkScrollbar(),this.setScrollbar(),this.$body.addClass("modal-open"),this.escape(),this.resize(),this.$element.on("click.dismiss.bs.modal",'[data-dismiss="modal"]',a.proxy(this.hide,this)),this.$dialog.on("mousedown.dismiss.bs.modal",function(){d.$element.one("mouseup.dismiss.bs.modal",function(b){a(b.target).is(d.$element)&&(d.ignoreBackdropClick=!0)})}),this.backdrop(function(){var e=a.support.transition&&d.$element.hasClass("fade");d.$element.parent().length||d.$element.appendTo(d.$body),d.$element.show().scrollTop(0),d.adjustDialog(),e&&d.$element[0].offsetWidth,d.$element.addClass("in"),d.enforceFocus();var f=a.Event("shown.bs.modal",{relatedTarget:b});e?d.$dialog.one("bsTransitionEnd",function(){d.$element.trigger("focus").trigger(f)}).emulateTransitionEnd(c.TRANSITION_DURATION):d.$element.trigger("focus").trigger(f)}))},c.prototype.hide=function(b){b&&b.preventDefault(),b=a.Event("hide.bs.modal"),this.$element.trigger(b),this.isShown&&!b.isDefaultPrevented()&&(this.isShown=!1,this.escape(),this.resize(),a(document).off("focusin.bs.modal"),this.$element.removeClass("in").off("click.dismiss.bs.modal").off("mouseup.dismiss.bs.modal"),this.$dialog.off("mousedown.dismiss.bs.modal"),a.support.transition&&this.$element.hasClass("fade")?this.$element.one("bsTransitionEnd",a.proxy(this.hideModal,this)).emulateTransitionEnd(c.TRANSITION_DURATION):this.hideModal())},c.prototype.enforceFocus=function(){a(document).off("focusin.bs.modal").on("focusin.bs.modal",a.proxy(function(a){this.$element[0]===a.target||this.$element.has(a.target).length||this.$element.trigger("focus")},this))},c.prototype.escape=function(){this.isShown&&this.options.keyboard?this.$element.on("keydown.dismiss.bs.modal",a.proxy(function(a){27==a.which&&this.hide()},this)):this.isShown||this.$element.off("keydown.dismiss.bs.modal")},c.prototype.resize=function(){this.isShown?a(window).on("resize.bs.modal",a.proxy(this.handleUpdate,this)):a(window).off("resize.bs.modal")},c.prototype.hideModal=function(){var a=this;this.$element.hide(),this.backdrop(function(){a.$body.removeClass("modal-open"),a.resetAdjustments(),a.resetScrollbar(),a.$element.trigger("hidden.bs.modal")})},c.prototype.removeBackdrop=function(){this.$backdrop&&this.$backdrop.remove(),this.$backdrop=null},c.prototype.backdrop=function(b){var d=this,e=this.$element.hasClass("fade")?"fade":"";if(this.isShown&&this.options.backdrop){var f=a.support.transition&&e;if(this.$backdrop=a(document.createElement("div")).addClass("modal-backdrop "+e).appendTo(this.$body),this.$element.on("click.dismiss.bs.modal",a.proxy(function(a){return this.ignoreBackdropClick?void(this.ignoreBackdropClick=!1):void(a.target===a.currentTarget&&("static"==this.options.backdrop?this.$element[0].focus():this.hide()))},this)),f&&this.$backdrop[0].offsetWidth,this.$backdrop.addClass("in"),!b)return;f?this.$backdrop.one("bsTransitionEnd",b).emulateTransitionEnd(c.BACKDROP_TRANSITION_DURATION):b()}else if(!this.isShown&&this.$backdrop){this.$backdrop.removeClass("in");var g=function(){d.removeBackdrop(),b&&b()};a.support.transition&&this.$element.hasClass("fade")?this.$backdrop.one("bsTransitionEnd",g).emulateTransitionEnd(c.BACKDROP_TRANSITION_DURATION):g()}else b&&b()},c.prototype.handleUpdate=function(){this.adjustDialog()},c.prototype.adjustDialog=function(){var a=this.$element[0].scrollHeight>document.documentElement.clientHeight;this.$element.css({paddingLeft:!this.bodyIsOverflowing&&a?this.scrollbarWidth:"",paddingRight:this.bodyIsOverflowing&&!a?this.scrollbarWidth:""})},c.prototype.resetAdjustments=function(){this.$element.css({paddingLeft:"",paddingRight:""})},c.prototype.checkScrollbar=function(){var a=window.innerWidth;if(!a){var b=document.documentElement.getBoundingClientRect();a=b.right-Math.abs(b.left)}this.bodyIsOverflowing=document.body.clientWidth<a,this.scrollbarWidth=this.measureScrollbar()},c.prototype.setScrollbar=function(){var a=parseInt(this.$body.css("padding-right")||0,10);this.originalBodyPad=document.body.style.paddingRight||"",this.bodyIsOverflowing&&this.$body.css("padding-right",a+this.scrollbarWidth)},c.prototype.resetScrollbar=function(){this.$body.css("padding-right",this.originalBodyPad)},c.prototype.measureScrollbar=function(){var a=document.createElement("div");a.className="modal-scrollbar-measure",this.$body.append(a);var b=a.offsetWidth-a.clientWidth;return this.$body[0].removeChild(a),b};var d=a.fn.modal;a.fn.modal=b,a.fn.modal.Constructor=c,a.fn.modal.noConflict=function(){return a.fn.modal=d,this},a(document).on("click.bs.modal.data-api",'[data-toggle="modal"]',function(c){var d=a(this),e=d.attr("href"),f=a(d.attr("data-target")||e&&e.replace(/.*(?=#[^\s]+$)/,"")),g=f.data("bs.modal")?"toggle":a.extend({remote:!/#/.test(e)&&e},f.data(),d.data());d.is("a")&&c.preventDefault(),f.one("show.bs.modal",function(a){a.isDefaultPrevented()||f.one("hidden.bs.modal",function(){d.is(":visible")&&d.trigger("focus")})}),b.call(f,g,this)})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.tooltip"),f="object"==typeof b&&b;(e||!/destroy|hide/.test(b))&&(e||d.data("bs.tooltip",e=new c(this,f)),"string"==typeof b&&e[b]())})}var c=function(a,b){this.type=null,this.options=null,this.enabled=null,this.timeout=null,this.hoverState=null,this.$element=null,this.inState=null,this.init("tooltip",a,b)};c.VERSION="3.3.5",c.TRANSITION_DURATION=150,c.DEFAULTS={animation:!0,placement:"top",selector:!1,template:'<div class="tooltip" role="tooltip"><div class="tooltip-arrow"></div><div class="tooltip-inner"></div></div>',trigger:"hover focus",title:"",delay:0,html:!1,container:!1,viewport:{selector:"body",padding:0}},c.prototype.init=function(b,c,d){if(this.enabled=!0,this.type=b,this.$element=a(c),this.options=this.getOptions(d),this.$viewport=this.options.viewport&&a(a.isFunction(this.options.viewport)?this.options.viewport.call(this,this.$element):this.options.viewport.selector||this.options.viewport),this.inState={click:!1,hover:!1,focus:!1},this.$element[0]instanceof document.constructor&&!this.options.selector)throw new Error("`selector` option must be specified when initializing "+this.type+" on the window.document object!");for(var e=this.options.trigger.split(" "),f=e.length;f--;){var g=e[f];if("click"==g)this.$element.on("click."+this.type,this.options.selector,a.proxy(this.toggle,this));else if("manual"!=g){var h="hover"==g?"mouseenter":"focusin",i="hover"==g?"mouseleave":"focusout";this.$element.on(h+"."+this.type,this.options.selector,a.proxy(this.enter,this)),this.$element.on(i+"."+this.type,this.options.selector,a.proxy(this.leave,this))}}this.options.selector?this._options=a.extend({},this.options,{trigger:"manual",selector:""}):this.fixTitle()},c.prototype.getDefaults=function(){return c.DEFAULTS},c.prototype.getOptions=function(b){return b=a.extend({},this.getDefaults(),this.$element.data(),b),b.delay&&"number"==typeof b.delay&&(b.delay={show:b.delay,hide:b.delay}),b},c.prototype.getDelegateOptions=function(){var b={},c=this.getDefaults();return this._options&&a.each(this._options,function(a,d){c[a]!=d&&(b[a]=d)}),b},c.prototype.enter=function(b){var c=b instanceof this.constructor?b:a(b.currentTarget).data("bs."+this.type);return c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c)),b instanceof a.Event&&(c.inState["focusin"==b.type?"focus":"hover"]=!0),c.tip().hasClass("in")||"in"==c.hoverState?void(c.hoverState="in"):(clearTimeout(c.timeout),c.hoverState="in",c.options.delay&&c.options.delay.show?void(c.timeout=setTimeout(function(){"in"==c.hoverState&&c.show()},c.options.delay.show)):c.show())},c.prototype.isInStateTrue=function(){for(var a in this.inState)if(this.inState[a])return!0;return!1},c.prototype.leave=function(b){var c=b instanceof this.constructor?b:a(b.currentTarget).data("bs."+this.type);return c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c)),b instanceof a.Event&&(c.inState["focusout"==b.type?"focus":"hover"]=!1),c.isInStateTrue()?void 0:(clearTimeout(c.timeout),c.hoverState="out",c.options.delay&&c.options.delay.hide?void(c.timeout=setTimeout(function(){"out"==c.hoverState&&c.hide()},c.options.delay.hide)):c.hide())},c.prototype.show=function(){var b=a.Event("show.bs."+this.type);if(this.hasContent()&&this.enabled){this.$element.trigger(b);var d=a.contains(this.$element[0].ownerDocument.documentElement,this.$element[0]);if(b.isDefaultPrevented()||!d)return;var e=this,f=this.tip(),g=this.getUID(this.type);this.setContent(),f.attr("id",g),this.$element.attr("aria-describedby",g),this.options.animation&&f.addClass("fade");var h="function"==typeof this.options.placement?this.options.placement.call(this,f[0],this.$element[0]):this.options.placement,i=/\s?auto?\s?/i,j=i.test(h);j&&(h=h.replace(i,"")||"top"),f.detach().css({top:0,left:0,display:"block"}).addClass(h).data("bs."+this.type,this),this.options.container?f.appendTo(this.options.container):f.insertAfter(this.$element),this.$element.trigger("inserted.bs."+this.type);var k=this.getPosition(),l=f[0].offsetWidth,m=f[0].offsetHeight;if(j){var n=h,o=this.getPosition(this.$viewport);h="bottom"==h&&k.bottom+m>o.bottom?"top":"top"==h&&k.top-m<o.top?"bottom":"right"==h&&k.right+l>o.width?"left":"left"==h&&k.left-l<o.left?"right":h,f.removeClass(n).addClass(h)}var p=this.getCalculatedOffset(h,k,l,m);this.applyPlacement(p,h);var q=function(){var a=e.hoverState;e.$element.trigger("shown.bs."+e.type),e.hoverState=null,"out"==a&&e.leave(e)};a.support.transition&&this.$tip.hasClass("fade")?f.one("bsTransitionEnd",q).emulateTransitionEnd(c.TRANSITION_DURATION):q()}},c.prototype.applyPlacement=function(b,c){var d=this.tip(),e=d[0].offsetWidth,f=d[0].offsetHeight,g=parseInt(d.css("margin-top"),10),h=parseInt(d.css("margin-left"),10);isNaN(g)&&(g=0),isNaN(h)&&(h=0),b.top+=g,b.left+=h,a.offset.setOffset(d[0],a.extend({using:function(a){d.css({top:Math.round(a.top),left:Math.round(a.left)})}},b),0),d.addClass("in");var i=d[0].offsetWidth,j=d[0].offsetHeight;"top"==c&&j!=f&&(b.top=b.top+f-j);var k=this.getViewportAdjustedDelta(c,b,i,j);k.left?b.left+=k.left:b.top+=k.top;var l=/top|bottom/.test(c),m=l?2*k.left-e+i:2*k.top-f+j,n=l?"offsetWidth":"offsetHeight";d.offset(b),this.replaceArrow(m,d[0][n],l)},c.prototype.replaceArrow=function(a,b,c){this.arrow().css(c?"left":"top",50*(1-a/b)+"%").css(c?"top":"left","")},c.prototype.setContent=function(){var a=this.tip(),b=this.getTitle();a.find(".tooltip-inner")[this.options.html?"html":"text"](b),a.removeClass("fade in top bottom left right")},c.prototype.hide=function(b){function d(){"in"!=e.hoverState&&f.detach(),e.$element.removeAttr("aria-describedby").trigger("hidden.bs."+e.type),b&&b()}var e=this,f=a(this.$tip),g=a.Event("hide.bs."+this.type);return this.$element.trigger(g),g.isDefaultPrevented()?void 0:(f.removeClass("in"),a.support.transition&&f.hasClass("fade")?f.one("bsTransitionEnd",d).emulateTransitionEnd(c.TRANSITION_DURATION):d(),this.hoverState=null,this)},c.prototype.fixTitle=function(){var a=this.$element;(a.attr("title")||"string"!=typeof a.attr("data-original-title"))&&a.attr("data-original-title",a.attr("title")||"").attr("title","")},c.prototype.hasContent=function(){return this.getTitle()},c.prototype.getPosition=function(b){b=b||this.$element;var c=b[0],d="BODY"==c.tagName,e=c.getBoundingClientRect();null==e.width&&(e=a.extend({},e,{width:e.right-e.left,height:e.bottom-e.top}));var f=d?{top:0,left:0}:b.offset(),g={scroll:d?document.documentElement.scrollTop||document.body.scrollTop:b.scrollTop()},h=d?{width:a(window).width(),height:a(window).height()}:null;return a.extend({},e,g,h,f)},c.prototype.getCalculatedOffset=function(a,b,c,d){return"bottom"==a?{top:b.top+b.height,left:b.left+b.width/2-c/2}:"top"==a?{top:b.top-d,left:b.left+b.width/2-c/2}:"left"==a?{top:b.top+b.height/2-d/2,left:b.left-c}:{top:b.top+b.height/2-d/2,left:b.left+b.width}},c.prototype.getViewportAdjustedDelta=function(a,b,c,d){var e={top:0,left:0};if(!this.$viewport)return e;var f=this.options.viewport&&this.options.viewport.padding||0,g=this.getPosition(this.$viewport);if(/right|left/.test(a)){var h=b.top-f-g.scroll,i=b.top+f-g.scroll+d;h<g.top?e.top=g.top-h:i>g.top+g.height&&(e.top=g.top+g.height-i)}else{var j=b.left-f,k=b.left+f+c;j<g.left?e.left=g.left-j:k>g.right&&(e.left=g.left+g.width-k)}return e},c.prototype.getTitle=function(){var a,b=this.$element,c=this.options;return a=b.attr("data-original-title")||("function"==typeof c.title?c.title.call(b[0]):c.title)},c.prototype.getUID=function(a){do a+=~~(1e6*Math.random());while(document.getElementById(a));return a},c.prototype.tip=function(){if(!this.$tip&&(this.$tip=a(this.options.template),1!=this.$tip.length))throw new Error(this.type+" `template` option must consist of exactly 1 top-level element!");return this.$tip},c.prototype.arrow=function(){return this.$arrow=this.$arrow||this.tip().find(".tooltip-arrow")},c.prototype.enable=function(){this.enabled=!0},c.prototype.disable=function(){this.enabled=!1},c.prototype.toggleEnabled=function(){this.enabled=!this.enabled},c.prototype.toggle=function(b){var c=this;b&&(c=a(b.currentTarget).data("bs."+this.type),c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c))),b?(c.inState.click=!c.inState.click,c.isInStateTrue()?c.enter(c):c.leave(c)):c.tip().hasClass("in")?c.leave(c):c.enter(c)},c.prototype.destroy=function(){var a=this;clearTimeout(this.timeout),this.hide(function(){a.$element.off("."+a.type).removeData("bs."+a.type),a.$tip&&a.$tip.detach(),a.$tip=null,a.$arrow=null,a.$viewport=null})};var d=a.fn.tooltip;a.fn.tooltip=b,a.fn.tooltip.Constructor=c,a.fn.tooltip.noConflict=function(){return a.fn.tooltip=d,this}}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.popover"),f="object"==typeof b&&b;(e||!/destroy|hide/.test(b))&&(e||d.data("bs.popover",e=new c(this,f)),"string"==typeof b&&e[b]())})}var c=function(a,b){this.init("popover",a,b)};if(!a.fn.tooltip)throw new Error("Popover requires tooltip.js");c.VERSION="3.3.5",c.DEFAULTS=a.extend({},a.fn.tooltip.Constructor.DEFAULTS,{placement:"right",trigger:"click",content:"",template:'<div class="popover" role="tooltip"><div class="arrow"></div><h3 class="popover-title"></h3><div class="popover-content"></div></div>'}),c.prototype=a.extend({},a.fn.tooltip.Constructor.prototype),c.prototype.constructor=c,c.prototype.getDefaults=function(){return c.DEFAULTS},c.prototype.setContent=function(){var a=this.tip(),b=this.getTitle(),c=this.getContent();a.find(".popover-title")[this.options.html?"html":"text"](b),a.find(".popover-content").children().detach().end()[this.options.html?"string"==typeof c?"html":"append":"text"](c),a.removeClass("fade top bottom left right in"),a.find(".popover-title").html()||a.find(".popover-title").hide()},c.prototype.hasContent=function(){return this.getTitle()||this.getContent()},c.prototype.getContent=function(){var a=this.$element,b=this.options;return a.attr("data-content")||("function"==typeof b.content?b.content.call(a[0]):b.content)},c.prototype.arrow=function(){return this.$arrow=this.$arrow||this.tip().find(".arrow")};var d=a.fn.popover;a.fn.popover=b,a.fn.popover.Constructor=c,a.fn.popover.noConflict=function(){return a.fn.popover=d,this}}(jQuery),+function(a){"use strict";function b(c,d){this.$body=a(document.body),this.$scrollElement=a(a(c).is(document.body)?window:c),this.options=a.extend({},b.DEFAULTS,d),this.selector=(this.options.target||"")+" .nav li > a",this.offsets=[],this.targets=[],this.activeTarget=null,this.scrollHeight=0,this.$scrollElement.on("scroll.bs.scrollspy",a.proxy(this.process,this)),this.refresh(),this.process()}function c(c){return this.each(function(){var d=a(this),e=d.data("bs.scrollspy"),f="object"==typeof c&&c;e||d.data("bs.scrollspy",e=new b(this,f)),"string"==typeof c&&e[c]()})}b.VERSION="3.3.5",b.DEFAULTS={offset:10},b.prototype.getScrollHeight=function(){return this.$scrollElement[0].scrollHeight||Math.max(this.$body[0].scrollHeight,document.documentElement.scrollHeight)},b.prototype.refresh=function(){var b=this,c="offset",d=0;this.offsets=[],this.targets=[],this.scrollHeight=this.getScrollHeight(),a.isWindow(this.$scrollElement[0])||(c="position",d=this.$scrollElement.scrollTop()),this.$body.find(this.selector).map(function(){var b=a(this),e=b.data("target")||b.attr("href"),f=/^#./.test(e)&&a(e);return f&&f.length&&f.is(":visible")&&[[f[c]().top+d,e]]||null}).sort(function(a,b){return a[0]-b[0]}).each(function(){b.offsets.push(this[0]),b.targets.push(this[1])})},b.prototype.process=function(){var a,b=this.$scrollElement.scrollTop()+this.options.offset,c=this.getScrollHeight(),d=this.options.offset+c-this.$scrollElement.height(),e=this.offsets,f=this.targets,g=this.activeTarget;if(this.scrollHeight!=c&&this.refresh(),b>=d)return g!=(a=f[f.length-1])&&this.activate(a);if(g&&b<e[0])return this.activeTarget=null,this.clear();for(a=e.length;a--;)g!=f[a]&&b>=e[a]&&(void 0===e[a+1]||b<e[a+1])&&this.activate(f[a])},b.prototype.activate=function(b){this.activeTarget=b,this.clear();var c=this.selector+'[data-target="'+b+'"],'+this.selector+'[href="'+b+'"]',d=a(c).parents("li").addClass("active");d.parent(".dropdown-menu").length&&(d=d.closest("li.dropdown").addClass("active")),
d.trigger("activate.bs.scrollspy")},b.prototype.clear=function(){a(this.selector).parentsUntil(this.options.target,".active").removeClass("active")};var d=a.fn.scrollspy;a.fn.scrollspy=c,a.fn.scrollspy.Constructor=b,a.fn.scrollspy.noConflict=function(){return a.fn.scrollspy=d,this},a(window).on("load.bs.scrollspy.data-api",function(){a('[data-spy="scroll"]').each(function(){var b=a(this);c.call(b,b.data())})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.tab");e||d.data("bs.tab",e=new c(this)),"string"==typeof b&&e[b]()})}var c=function(b){this.element=a(b)};c.VERSION="3.3.5",c.TRANSITION_DURATION=150,c.prototype.show=function(){var b=this.element,c=b.closest("ul:not(.dropdown-menu)"),d=b.data("target");if(d||(d=b.attr("href"),d=d&&d.replace(/.*(?=#[^\s]*$)/,"")),!b.parent("li").hasClass("active")){var e=c.find(".active:last a"),f=a.Event("hide.bs.tab",{relatedTarget:b[0]}),g=a.Event("show.bs.tab",{relatedTarget:e[0]});if(e.trigger(f),b.trigger(g),!g.isDefaultPrevented()&&!f.isDefaultPrevented()){var h=a(d);this.activate(b.closest("li"),c),this.activate(h,h.parent(),function(){e.trigger({type:"hidden.bs.tab",relatedTarget:b[0]}),b.trigger({type:"shown.bs.tab",relatedTarget:e[0]})})}}},c.prototype.activate=function(b,d,e){function f(){g.removeClass("active").find("> .dropdown-menu > .active").removeClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!1),b.addClass("active").find('[data-toggle="tab"]').attr("aria-expanded",!0),h?(b[0].offsetWidth,b.addClass("in")):b.removeClass("fade"),b.parent(".dropdown-menu").length&&b.closest("li.dropdown").addClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!0),e&&e()}var g=d.find("> .active"),h=e&&a.support.transition&&(g.length&&g.hasClass("fade")||!!d.find("> .fade").length);g.length&&h?g.one("bsTransitionEnd",f).emulateTransitionEnd(c.TRANSITION_DURATION):f(),g.removeClass("in")};var d=a.fn.tab;a.fn.tab=b,a.fn.tab.Constructor=c,a.fn.tab.noConflict=function(){return a.fn.tab=d,this};var e=function(c){c.preventDefault(),b.call(a(this),"show")};a(document).on("click.bs.tab.data-api",'[data-toggle="tab"]',e).on("click.bs.tab.data-api",'[data-toggle="pill"]',e)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.affix"),f="object"==typeof b&&b;e||d.data("bs.affix",e=new c(this,f)),"string"==typeof b&&e[b]()})}var c=function(b,d){this.options=a.extend({},c.DEFAULTS,d),this.$target=a(this.options.target).on("scroll.bs.affix.data-api",a.proxy(this.checkPosition,this)).on("click.bs.affix.data-api",a.proxy(this.checkPositionWithEventLoop,this)),this.$element=a(b),this.affixed=null,this.unpin=null,this.pinnedOffset=null,this.checkPosition()};c.VERSION="3.3.5",c.RESET="affix affix-top affix-bottom",c.DEFAULTS={offset:0,target:window},c.prototype.getState=function(a,b,c,d){var e=this.$target.scrollTop(),f=this.$element.offset(),g=this.$target.height();if(null!=c&&"top"==this.affixed)return c>e?"top":!1;if("bottom"==this.affixed)return null!=c?e+this.unpin<=f.top?!1:"bottom":a-d>=e+g?!1:"bottom";var h=null==this.affixed,i=h?e:f.top,j=h?g:b;return null!=c&&c>=e?"top":null!=d&&i+j>=a-d?"bottom":!1},c.prototype.getPinnedOffset=function(){if(this.pinnedOffset)return this.pinnedOffset;this.$element.removeClass(c.RESET).addClass("affix");var a=this.$target.scrollTop(),b=this.$element.offset();return this.pinnedOffset=b.top-a},c.prototype.checkPositionWithEventLoop=function(){setTimeout(a.proxy(this.checkPosition,this),1)},c.prototype.checkPosition=function(){if(this.$element.is(":visible")){var b=this.$element.height(),d=this.options.offset,e=d.top,f=d.bottom,g=Math.max(a(document).height(),a(document.body).height());"object"!=typeof d&&(f=e=d),"function"==typeof e&&(e=d.top(this.$element)),"function"==typeof f&&(f=d.bottom(this.$element));var h=this.getState(g,b,e,f);if(this.affixed!=h){null!=this.unpin&&this.$element.css("top","");var i="affix"+(h?"-"+h:""),j=a.Event(i+".bs.affix");if(this.$element.trigger(j),j.isDefaultPrevented())return;this.affixed=h,this.unpin="bottom"==h?this.getPinnedOffset():null,this.$element.removeClass(c.RESET).addClass(i).trigger(i.replace("affix","affixed")+".bs.affix")}"bottom"==h&&this.$element.offset({top:g-b-f})}};var d=a.fn.affix;a.fn.affix=b,a.fn.affix.Constructor=c,a.fn.affix.noConflict=function(){return a.fn.affix=d,this},a(window).on("load",function(){a('[data-spy="affix"]').each(function(){var c=a(this),d=c.data();d.offset=d.offset||{},null!=d.offsetBottom&&(d.offset.bottom=d.offsetBottom),null!=d.offsetTop&&(d.offset.top=d.offsetTop),b.call(c,d)})})}(jQuery);</script>
<script>/**
* @preserve HTML5 Shiv 3.7.2 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
*/
// Only run this code in IE 8
if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.2",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b)}(this,document);
};
</script>
<script>/*! Respond.js v1.4.2: min/max-width media query polyfill * Copyright 2013 Scott Jehl
 * Licensed under https://github.com/scottjehl/Respond/blob/master/LICENSE-MIT
 *  */

// Only run this code in IE 8
if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a){"use strict";a.matchMedia=a.matchMedia||function(a){var b,c=a.documentElement,d=c.firstElementChild||c.firstChild,e=a.createElement("body"),f=a.createElement("div");return f.id="mq-test-1",f.style.cssText="position:absolute;top:-100em",e.style.background="none",e.appendChild(f),function(a){return f.innerHTML='&shy;<style media="'+a+'"> #mq-test-1 { width: 42px; }</style>',c.insertBefore(e,d),b=42===f.offsetWidth,c.removeChild(e),{matches:b,media:a}}}(a.document)}(this),function(a){"use strict";function b(){u(!0)}var c={};a.respond=c,c.update=function(){};var d=[],e=function(){var b=!1;try{b=new a.XMLHttpRequest}catch(c){b=new a.ActiveXObject("Microsoft.XMLHTTP")}return function(){return b}}(),f=function(a,b){var c=e();c&&(c.open("GET",a,!0),c.onreadystatechange=function(){4!==c.readyState||200!==c.status&&304!==c.status||b(c.responseText)},4!==c.readyState&&c.send(null))};if(c.ajax=f,c.queue=d,c.regex={media:/@media[^\{]+\{([^\{\}]*\{[^\}\{]*\})+/gi,keyframes:/@(?:\-(?:o|moz|webkit)\-)?keyframes[^\{]+\{(?:[^\{\}]*\{[^\}\{]*\})+[^\}]*\}/gi,urls:/(url\()['"]?([^\/\)'"][^:\)'"]+)['"]?(\))/g,findStyles:/@media *([^\{]+)\{([\S\s]+?)$/,only:/(only\s+)?([a-zA-Z]+)\s?/,minw:/\([\s]*min\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/,maxw:/\([\s]*max\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/},c.mediaQueriesSupported=a.matchMedia&&null!==a.matchMedia("only all")&&a.matchMedia("only all").matches,!c.mediaQueriesSupported){var g,h,i,j=a.document,k=j.documentElement,l=[],m=[],n=[],o={},p=30,q=j.getElementsByTagName("head")[0]||k,r=j.getElementsByTagName("base")[0],s=q.getElementsByTagName("link"),t=function(){var a,b=j.createElement("div"),c=j.body,d=k.style.fontSize,e=c&&c.style.fontSize,f=!1;return b.style.cssText="position:absolute;font-size:1em;width:1em",c||(c=f=j.createElement("body"),c.style.background="none"),k.style.fontSize="100%",c.style.fontSize="100%",c.appendChild(b),f&&k.insertBefore(c,k.firstChild),a=b.offsetWidth,f?k.removeChild(c):c.removeChild(b),k.style.fontSize=d,e&&(c.style.fontSize=e),a=i=parseFloat(a)},u=function(b){var c="clientWidth",d=k[c],e="CSS1Compat"===j.compatMode&&d||j.body[c]||d,f={},o=s[s.length-1],r=(new Date).getTime();if(b&&g&&p>r-g)return a.clearTimeout(h),h=a.setTimeout(u,p),void 0;g=r;for(var v in l)if(l.hasOwnProperty(v)){var w=l[v],x=w.minw,y=w.maxw,z=null===x,A=null===y,B="em";x&&(x=parseFloat(x)*(x.indexOf(B)>-1?i||t():1)),y&&(y=parseFloat(y)*(y.indexOf(B)>-1?i||t():1)),w.hasquery&&(z&&A||!(z||e>=x)||!(A||y>=e))||(f[w.media]||(f[w.media]=[]),f[w.media].push(m[w.rules]))}for(var C in n)n.hasOwnProperty(C)&&n[C]&&n[C].parentNode===q&&q.removeChild(n[C]);n.length=0;for(var D in f)if(f.hasOwnProperty(D)){var E=j.createElement("style"),F=f[D].join("\n");E.type="text/css",E.media=D,q.insertBefore(E,o.nextSibling),E.styleSheet?E.styleSheet.cssText=F:E.appendChild(j.createTextNode(F)),n.push(E)}},v=function(a,b,d){var e=a.replace(c.regex.keyframes,"").match(c.regex.media),f=e&&e.length||0;b=b.substring(0,b.lastIndexOf("/"));var g=function(a){return a.replace(c.regex.urls,"$1"+b+"$2$3")},h=!f&&d;b.length&&(b+="/"),h&&(f=1);for(var i=0;f>i;i++){var j,k,n,o;h?(j=d,m.push(g(a))):(j=e[i].match(c.regex.findStyles)&&RegExp.$1,m.push(RegExp.$2&&g(RegExp.$2))),n=j.split(","),o=n.length;for(var p=0;o>p;p++)k=n[p],l.push({media:k.split("(")[0].match(c.regex.only)&&RegExp.$2||"all",rules:m.length-1,hasquery:k.indexOf("(")>-1,minw:k.match(c.regex.minw)&&parseFloat(RegExp.$1)+(RegExp.$2||""),maxw:k.match(c.regex.maxw)&&parseFloat(RegExp.$1)+(RegExp.$2||"")})}u()},w=function(){if(d.length){var b=d.shift();f(b.href,function(c){v(c,b.href,b.media),o[b.href]=!0,a.setTimeout(function(){w()},0)})}},x=function(){for(var b=0;b<s.length;b++){var c=s[b],e=c.href,f=c.media,g=c.rel&&"stylesheet"===c.rel.toLowerCase();e&&g&&!o[e]&&(c.styleSheet&&c.styleSheet.rawCssText?(v(c.styleSheet.rawCssText,e,f),o[e]=!0):(!/^([a-zA-Z:]*\/\/)/.test(e)&&!r||e.replace(RegExp.$1,"").split("/")[0]===a.location.host)&&("//"===e.substring(0,2)&&(e=a.location.protocol+e),d.push({href:e,media:f})))}w()};x(),c.update=x,c.getEmValue=t,a.addEventListener?a.addEventListener("resize",b,!1):a.attachEvent&&a.attachEvent("onresize",b)}}(this);
};
</script>
<script>/*! jQuery UI - v1.11.4 - 2016-01-05
* http://jqueryui.com
* Includes: core.js, widget.js, mouse.js, position.js, draggable.js, droppable.js, resizable.js, selectable.js, sortable.js, accordion.js, autocomplete.js, button.js, dialog.js, menu.js, progressbar.js, selectmenu.js, slider.js, spinner.js, tabs.js, tooltip.js, effect.js, effect-blind.js, effect-bounce.js, effect-clip.js, effect-drop.js, effect-explode.js, effect-fade.js, effect-fold.js, effect-highlight.js, effect-puff.js, effect-pulsate.js, effect-scale.js, effect-shake.js, effect-size.js, effect-slide.js, effect-transfer.js
* Copyright jQuery Foundation and other contributors; Licensed MIT */

(function(e){"function"==typeof define&&define.amd?define(["jquery"],e):e(jQuery)})(function(e){function t(t,s){var n,a,o,r=t.nodeName.toLowerCase();return"area"===r?(n=t.parentNode,a=n.name,t.href&&a&&"map"===n.nodeName.toLowerCase()?(o=e("img[usemap='#"+a+"']")[0],!!o&&i(o)):!1):(/^(input|select|textarea|button|object)$/.test(r)?!t.disabled:"a"===r?t.href||s:s)&&i(t)}function i(t){return e.expr.filters.visible(t)&&!e(t).parents().addBack().filter(function(){return"hidden"===e.css(this,"visibility")}).length}function s(e){return function(){var t=this.element.val();e.apply(this,arguments),this._refresh(),t!==this.element.val()&&this._trigger("change")}}e.ui=e.ui||{},e.extend(e.ui,{version:"1.11.4",keyCode:{BACKSPACE:8,COMMA:188,DELETE:46,DOWN:40,END:35,ENTER:13,ESCAPE:27,HOME:36,LEFT:37,PAGE_DOWN:34,PAGE_UP:33,PERIOD:190,RIGHT:39,SPACE:32,TAB:9,UP:38}}),e.fn.extend({scrollParent:function(t){var i=this.css("position"),s="absolute"===i,n=t?/(auto|scroll|hidden)/:/(auto|scroll)/,a=this.parents().filter(function(){var t=e(this);return s&&"static"===t.css("position")?!1:n.test(t.css("overflow")+t.css("overflow-y")+t.css("overflow-x"))}).eq(0);return"fixed"!==i&&a.length?a:e(this[0].ownerDocument||document)},uniqueId:function(){var e=0;return function(){return this.each(function(){this.id||(this.id="ui-id-"+ ++e)})}}(),removeUniqueId:function(){return this.each(function(){/^ui-id-\d+$/.test(this.id)&&e(this).removeAttr("id")})}}),e.extend(e.expr[":"],{data:e.expr.createPseudo?e.expr.createPseudo(function(t){return function(i){return!!e.data(i,t)}}):function(t,i,s){return!!e.data(t,s[3])},focusable:function(i){return t(i,!isNaN(e.attr(i,"tabindex")))},tabbable:function(i){var s=e.attr(i,"tabindex"),n=isNaN(s);return(n||s>=0)&&t(i,!n)}}),e("<a>").outerWidth(1).jquery||e.each(["Width","Height"],function(t,i){function s(t,i,s,a){return e.each(n,function(){i-=parseFloat(e.css(t,"padding"+this))||0,s&&(i-=parseFloat(e.css(t,"border"+this+"Width"))||0),a&&(i-=parseFloat(e.css(t,"margin"+this))||0)}),i}var n="Width"===i?["Left","Right"]:["Top","Bottom"],a=i.toLowerCase(),o={innerWidth:e.fn.innerWidth,innerHeight:e.fn.innerHeight,outerWidth:e.fn.outerWidth,outerHeight:e.fn.outerHeight};e.fn["inner"+i]=function(t){return void 0===t?o["inner"+i].call(this):this.each(function(){e(this).css(a,s(this,t)+"px")})},e.fn["outer"+i]=function(t,n){return"number"!=typeof t?o["outer"+i].call(this,t):this.each(function(){e(this).css(a,s(this,t,!0,n)+"px")})}}),e.fn.addBack||(e.fn.addBack=function(e){return this.add(null==e?this.prevObject:this.prevObject.filter(e))}),e("<a>").data("a-b","a").removeData("a-b").data("a-b")&&(e.fn.removeData=function(t){return function(i){return arguments.length?t.call(this,e.camelCase(i)):t.call(this)}}(e.fn.removeData)),e.ui.ie=!!/msie [\w.]+/.exec(navigator.userAgent.toLowerCase()),e.fn.extend({focus:function(t){return function(i,s){return"number"==typeof i?this.each(function(){var t=this;setTimeout(function(){e(t).focus(),s&&s.call(t)},i)}):t.apply(this,arguments)}}(e.fn.focus),disableSelection:function(){var e="onselectstart"in document.createElement("div")?"selectstart":"mousedown";return function(){return this.bind(e+".ui-disableSelection",function(e){e.preventDefault()})}}(),enableSelection:function(){return this.unbind(".ui-disableSelection")},zIndex:function(t){if(void 0!==t)return this.css("zIndex",t);if(this.length)for(var i,s,n=e(this[0]);n.length&&n[0]!==document;){if(i=n.css("position"),("absolute"===i||"relative"===i||"fixed"===i)&&(s=parseInt(n.css("zIndex"),10),!isNaN(s)&&0!==s))return s;n=n.parent()}return 0}}),e.ui.plugin={add:function(t,i,s){var n,a=e.ui[t].prototype;for(n in s)a.plugins[n]=a.plugins[n]||[],a.plugins[n].push([i,s[n]])},call:function(e,t,i,s){var n,a=e.plugins[t];if(a&&(s||e.element[0].parentNode&&11!==e.element[0].parentNode.nodeType))for(n=0;a.length>n;n++)e.options[a[n][0]]&&a[n][1].apply(e.element,i)}};var n=0,a=Array.prototype.slice;e.cleanData=function(t){return function(i){var s,n,a;for(a=0;null!=(n=i[a]);a++)try{s=e._data(n,"events"),s&&s.remove&&e(n).triggerHandler("remove")}catch(o){}t(i)}}(e.cleanData),e.widget=function(t,i,s){var n,a,o,r,h={},l=t.split(".")[0];return t=t.split(".")[1],n=l+"-"+t,s||(s=i,i=e.Widget),e.expr[":"][n.toLowerCase()]=function(t){return!!e.data(t,n)},e[l]=e[l]||{},a=e[l][t],o=e[l][t]=function(e,t){return this._createWidget?(arguments.length&&this._createWidget(e,t),void 0):new o(e,t)},e.extend(o,a,{version:s.version,_proto:e.extend({},s),_childConstructors:[]}),r=new i,r.options=e.widget.extend({},r.options),e.each(s,function(t,s){return e.isFunction(s)?(h[t]=function(){var e=function(){return i.prototype[t].apply(this,arguments)},n=function(e){return i.prototype[t].apply(this,e)};return function(){var t,i=this._super,a=this._superApply;return this._super=e,this._superApply=n,t=s.apply(this,arguments),this._super=i,this._superApply=a,t}}(),void 0):(h[t]=s,void 0)}),o.prototype=e.widget.extend(r,{widgetEventPrefix:a?r.widgetEventPrefix||t:t},h,{constructor:o,namespace:l,widgetName:t,widgetFullName:n}),a?(e.each(a._childConstructors,function(t,i){var s=i.prototype;e.widget(s.namespace+"."+s.widgetName,o,i._proto)}),delete a._childConstructors):i._childConstructors.push(o),e.widget.bridge(t,o),o},e.widget.extend=function(t){for(var i,s,n=a.call(arguments,1),o=0,r=n.length;r>o;o++)for(i in n[o])s=n[o][i],n[o].hasOwnProperty(i)&&void 0!==s&&(t[i]=e.isPlainObject(s)?e.isPlainObject(t[i])?e.widget.extend({},t[i],s):e.widget.extend({},s):s);return t},e.widget.bridge=function(t,i){var s=i.prototype.widgetFullName||t;e.fn[t]=function(n){var o="string"==typeof n,r=a.call(arguments,1),h=this;return o?this.each(function(){var i,a=e.data(this,s);return"instance"===n?(h=a,!1):a?e.isFunction(a[n])&&"_"!==n.charAt(0)?(i=a[n].apply(a,r),i!==a&&void 0!==i?(h=i&&i.jquery?h.pushStack(i.get()):i,!1):void 0):e.error("no such method '"+n+"' for "+t+" widget instance"):e.error("cannot call methods on "+t+" prior to initialization; "+"attempted to call method '"+n+"'")}):(r.length&&(n=e.widget.extend.apply(null,[n].concat(r))),this.each(function(){var t=e.data(this,s);t?(t.option(n||{}),t._init&&t._init()):e.data(this,s,new i(n,this))})),h}},e.Widget=function(){},e.Widget._childConstructors=[],e.Widget.prototype={widgetName:"widget",widgetEventPrefix:"",defaultElement:"<div>",options:{disabled:!1,create:null},_createWidget:function(t,i){i=e(i||this.defaultElement||this)[0],this.element=e(i),this.uuid=n++,this.eventNamespace="."+this.widgetName+this.uuid,this.bindings=e(),this.hoverable=e(),this.focusable=e(),i!==this&&(e.data(i,this.widgetFullName,this),this._on(!0,this.element,{remove:function(e){e.target===i&&this.destroy()}}),this.document=e(i.style?i.ownerDocument:i.document||i),this.window=e(this.document[0].defaultView||this.document[0].parentWindow)),this.options=e.widget.extend({},this.options,this._getCreateOptions(),t),this._create(),this._trigger("create",null,this._getCreateEventData()),this._init()},_getCreateOptions:e.noop,_getCreateEventData:e.noop,_create:e.noop,_init:e.noop,destroy:function(){this._destroy(),this.element.unbind(this.eventNamespace).removeData(this.widgetFullName).removeData(e.camelCase(this.widgetFullName)),this.widget().unbind(this.eventNamespace).removeAttr("aria-disabled").removeClass(this.widgetFullName+"-disabled "+"ui-state-disabled"),this.bindings.unbind(this.eventNamespace),this.hoverable.removeClass("ui-state-hover"),this.focusable.removeClass("ui-state-focus")},_destroy:e.noop,widget:function(){return this.element},option:function(t,i){var s,n,a,o=t;if(0===arguments.length)return e.widget.extend({},this.options);if("string"==typeof t)if(o={},s=t.split("."),t=s.shift(),s.length){for(n=o[t]=e.widget.extend({},this.options[t]),a=0;s.length-1>a;a++)n[s[a]]=n[s[a]]||{},n=n[s[a]];if(t=s.pop(),1===arguments.length)return void 0===n[t]?null:n[t];n[t]=i}else{if(1===arguments.length)return void 0===this.options[t]?null:this.options[t];o[t]=i}return this._setOptions(o),this},_setOptions:function(e){var t;for(t in e)this._setOption(t,e[t]);return this},_setOption:function(e,t){return this.options[e]=t,"disabled"===e&&(this.widget().toggleClass(this.widgetFullName+"-disabled",!!t),t&&(this.hoverable.removeClass("ui-state-hover"),this.focusable.removeClass("ui-state-focus"))),this},enable:function(){return this._setOptions({disabled:!1})},disable:function(){return this._setOptions({disabled:!0})},_on:function(t,i,s){var n,a=this;"boolean"!=typeof t&&(s=i,i=t,t=!1),s?(i=n=e(i),this.bindings=this.bindings.add(i)):(s=i,i=this.element,n=this.widget()),e.each(s,function(s,o){function r(){return t||a.options.disabled!==!0&&!e(this).hasClass("ui-state-disabled")?("string"==typeof o?a[o]:o).apply(a,arguments):void 0}"string"!=typeof o&&(r.guid=o.guid=o.guid||r.guid||e.guid++);var h=s.match(/^([\w:-]*)\s*(.*)$/),l=h[1]+a.eventNamespace,u=h[2];u?n.delegate(u,l,r):i.bind(l,r)})},_off:function(t,i){i=(i||"").split(" ").join(this.eventNamespace+" ")+this.eventNamespace,t.unbind(i).undelegate(i),this.bindings=e(this.bindings.not(t).get()),this.focusable=e(this.focusable.not(t).get()),this.hoverable=e(this.hoverable.not(t).get())},_delay:function(e,t){function i(){return("string"==typeof e?s[e]:e).apply(s,arguments)}var s=this;return setTimeout(i,t||0)},_hoverable:function(t){this.hoverable=this.hoverable.add(t),this._on(t,{mouseenter:function(t){e(t.currentTarget).addClass("ui-state-hover")},mouseleave:function(t){e(t.currentTarget).removeClass("ui-state-hover")}})},_focusable:function(t){this.focusable=this.focusable.add(t),this._on(t,{focusin:function(t){e(t.currentTarget).addClass("ui-state-focus")},focusout:function(t){e(t.currentTarget).removeClass("ui-state-focus")}})},_trigger:function(t,i,s){var n,a,o=this.options[t];if(s=s||{},i=e.Event(i),i.type=(t===this.widgetEventPrefix?t:this.widgetEventPrefix+t).toLowerCase(),i.target=this.element[0],a=i.originalEvent)for(n in a)n in i||(i[n]=a[n]);return this.element.trigger(i,s),!(e.isFunction(o)&&o.apply(this.element[0],[i].concat(s))===!1||i.isDefaultPrevented())}},e.each({show:"fadeIn",hide:"fadeOut"},function(t,i){e.Widget.prototype["_"+t]=function(s,n,a){"string"==typeof n&&(n={effect:n});var o,r=n?n===!0||"number"==typeof n?i:n.effect||i:t;n=n||{},"number"==typeof n&&(n={duration:n}),o=!e.isEmptyObject(n),n.complete=a,n.delay&&s.delay(n.delay),o&&e.effects&&e.effects.effect[r]?s[t](n):r!==t&&s[r]?s[r](n.duration,n.easing,a):s.queue(function(i){e(this)[t](),a&&a.call(s[0]),i()})}}),e.widget;var o=!1;e(document).mouseup(function(){o=!1}),e.widget("ui.mouse",{version:"1.11.4",options:{cancel:"input,textarea,button,select,option",distance:1,delay:0},_mouseInit:function(){var t=this;this.element.bind("mousedown."+this.widgetName,function(e){return t._mouseDown(e)}).bind("click."+this.widgetName,function(i){return!0===e.data(i.target,t.widgetName+".preventClickEvent")?(e.removeData(i.target,t.widgetName+".preventClickEvent"),i.stopImmediatePropagation(),!1):void 0}),this.started=!1},_mouseDestroy:function(){this.element.unbind("."+this.widgetName),this._mouseMoveDelegate&&this.document.unbind("mousemove."+this.widgetName,this._mouseMoveDelegate).unbind("mouseup."+this.widgetName,this._mouseUpDelegate)},_mouseDown:function(t){if(!o){this._mouseMoved=!1,this._mouseStarted&&this._mouseUp(t),this._mouseDownEvent=t;var i=this,s=1===t.which,n="string"==typeof this.options.cancel&&t.target.nodeName?e(t.target).closest(this.options.cancel).length:!1;return s&&!n&&this._mouseCapture(t)?(this.mouseDelayMet=!this.options.delay,this.mouseDelayMet||(this._mouseDelayTimer=setTimeout(function(){i.mouseDelayMet=!0},this.options.delay)),this._mouseDistanceMet(t)&&this._mouseDelayMet(t)&&(this._mouseStarted=this._mouseStart(t)!==!1,!this._mouseStarted)?(t.preventDefault(),!0):(!0===e.data(t.target,this.widgetName+".preventClickEvent")&&e.removeData(t.target,this.widgetName+".preventClickEvent"),this._mouseMoveDelegate=function(e){return i._mouseMove(e)},this._mouseUpDelegate=function(e){return i._mouseUp(e)},this.document.bind("mousemove."+this.widgetName,this._mouseMoveDelegate).bind("mouseup."+this.widgetName,this._mouseUpDelegate),t.preventDefault(),o=!0,!0)):!0}},_mouseMove:function(t){if(this._mouseMoved){if(e.ui.ie&&(!document.documentMode||9>document.documentMode)&&!t.button)return this._mouseUp(t);if(!t.which)return this._mouseUp(t)}return(t.which||t.button)&&(this._mouseMoved=!0),this._mouseStarted?(this._mouseDrag(t),t.preventDefault()):(this._mouseDistanceMet(t)&&this._mouseDelayMet(t)&&(this._mouseStarted=this._mouseStart(this._mouseDownEvent,t)!==!1,this._mouseStarted?this._mouseDrag(t):this._mouseUp(t)),!this._mouseStarted)},_mouseUp:function(t){return this.document.unbind("mousemove."+this.widgetName,this._mouseMoveDelegate).unbind("mouseup."+this.widgetName,this._mouseUpDelegate),this._mouseStarted&&(this._mouseStarted=!1,t.target===this._mouseDownEvent.target&&e.data(t.target,this.widgetName+".preventClickEvent",!0),this._mouseStop(t)),o=!1,!1},_mouseDistanceMet:function(e){return Math.max(Math.abs(this._mouseDownEvent.pageX-e.pageX),Math.abs(this._mouseDownEvent.pageY-e.pageY))>=this.options.distance},_mouseDelayMet:function(){return this.mouseDelayMet},_mouseStart:function(){},_mouseDrag:function(){},_mouseStop:function(){},_mouseCapture:function(){return!0}}),function(){function t(e,t,i){return[parseFloat(e[0])*(p.test(e[0])?t/100:1),parseFloat(e[1])*(p.test(e[1])?i/100:1)]}function i(t,i){return parseInt(e.css(t,i),10)||0}function s(t){var i=t[0];return 9===i.nodeType?{width:t.width(),height:t.height(),offset:{top:0,left:0}}:e.isWindow(i)?{width:t.width(),height:t.height(),offset:{top:t.scrollTop(),left:t.scrollLeft()}}:i.preventDefault?{width:0,height:0,offset:{top:i.pageY,left:i.pageX}}:{width:t.outerWidth(),height:t.outerHeight(),offset:t.offset()}}e.ui=e.ui||{};var n,a,o=Math.max,r=Math.abs,h=Math.round,l=/left|center|right/,u=/top|center|bottom/,d=/[\+\-]\d+(\.[\d]+)?%?/,c=/^\w+/,p=/%$/,f=e.fn.position;e.position={scrollbarWidth:function(){if(void 0!==n)return n;var t,i,s=e("<div style='display:block;position:absolute;width:50px;height:50px;overflow:hidden;'><div style='height:100px;width:auto;'></div></div>"),a=s.children()[0];return e("body").append(s),t=a.offsetWidth,s.css("overflow","scroll"),i=a.offsetWidth,t===i&&(i=s[0].clientWidth),s.remove(),n=t-i},getScrollInfo:function(t){var i=t.isWindow||t.isDocument?"":t.element.css("overflow-x"),s=t.isWindow||t.isDocument?"":t.element.css("overflow-y"),n="scroll"===i||"auto"===i&&t.width<t.element[0].scrollWidth,a="scroll"===s||"auto"===s&&t.height<t.element[0].scrollHeight;return{width:a?e.position.scrollbarWidth():0,height:n?e.position.scrollbarWidth():0}},getWithinInfo:function(t){var i=e(t||window),s=e.isWindow(i[0]),n=!!i[0]&&9===i[0].nodeType;return{element:i,isWindow:s,isDocument:n,offset:i.offset()||{left:0,top:0},scrollLeft:i.scrollLeft(),scrollTop:i.scrollTop(),width:s||n?i.width():i.outerWidth(),height:s||n?i.height():i.outerHeight()}}},e.fn.position=function(n){if(!n||!n.of)return f.apply(this,arguments);n=e.extend({},n);var p,m,g,v,y,b,_=e(n.of),x=e.position.getWithinInfo(n.within),w=e.position.getScrollInfo(x),k=(n.collision||"flip").split(" "),T={};return b=s(_),_[0].preventDefault&&(n.at="left top"),m=b.width,g=b.height,v=b.offset,y=e.extend({},v),e.each(["my","at"],function(){var e,t,i=(n[this]||"").split(" ");1===i.length&&(i=l.test(i[0])?i.concat(["center"]):u.test(i[0])?["center"].concat(i):["center","center"]),i[0]=l.test(i[0])?i[0]:"center",i[1]=u.test(i[1])?i[1]:"center",e=d.exec(i[0]),t=d.exec(i[1]),T[this]=[e?e[0]:0,t?t[0]:0],n[this]=[c.exec(i[0])[0],c.exec(i[1])[0]]}),1===k.length&&(k[1]=k[0]),"right"===n.at[0]?y.left+=m:"center"===n.at[0]&&(y.left+=m/2),"bottom"===n.at[1]?y.top+=g:"center"===n.at[1]&&(y.top+=g/2),p=t(T.at,m,g),y.left+=p[0],y.top+=p[1],this.each(function(){var s,l,u=e(this),d=u.outerWidth(),c=u.outerHeight(),f=i(this,"marginLeft"),b=i(this,"marginTop"),D=d+f+i(this,"marginRight")+w.width,S=c+b+i(this,"marginBottom")+w.height,N=e.extend({},y),M=t(T.my,u.outerWidth(),u.outerHeight());"right"===n.my[0]?N.left-=d:"center"===n.my[0]&&(N.left-=d/2),"bottom"===n.my[1]?N.top-=c:"center"===n.my[1]&&(N.top-=c/2),N.left+=M[0],N.top+=M[1],a||(N.left=h(N.left),N.top=h(N.top)),s={marginLeft:f,marginTop:b},e.each(["left","top"],function(t,i){e.ui.position[k[t]]&&e.ui.position[k[t]][i](N,{targetWidth:m,targetHeight:g,elemWidth:d,elemHeight:c,collisionPosition:s,collisionWidth:D,collisionHeight:S,offset:[p[0]+M[0],p[1]+M[1]],my:n.my,at:n.at,within:x,elem:u})}),n.using&&(l=function(e){var t=v.left-N.left,i=t+m-d,s=v.top-N.top,a=s+g-c,h={target:{element:_,left:v.left,top:v.top,width:m,height:g},element:{element:u,left:N.left,top:N.top,width:d,height:c},horizontal:0>i?"left":t>0?"right":"center",vertical:0>a?"top":s>0?"bottom":"middle"};d>m&&m>r(t+i)&&(h.horizontal="center"),c>g&&g>r(s+a)&&(h.vertical="middle"),h.important=o(r(t),r(i))>o(r(s),r(a))?"horizontal":"vertical",n.using.call(this,e,h)}),u.offset(e.extend(N,{using:l}))})},e.ui.position={fit:{left:function(e,t){var i,s=t.within,n=s.isWindow?s.scrollLeft:s.offset.left,a=s.width,r=e.left-t.collisionPosition.marginLeft,h=n-r,l=r+t.collisionWidth-a-n;t.collisionWidth>a?h>0&&0>=l?(i=e.left+h+t.collisionWidth-a-n,e.left+=h-i):e.left=l>0&&0>=h?n:h>l?n+a-t.collisionWidth:n:h>0?e.left+=h:l>0?e.left-=l:e.left=o(e.left-r,e.left)},top:function(e,t){var i,s=t.within,n=s.isWindow?s.scrollTop:s.offset.top,a=t.within.height,r=e.top-t.collisionPosition.marginTop,h=n-r,l=r+t.collisionHeight-a-n;t.collisionHeight>a?h>0&&0>=l?(i=e.top+h+t.collisionHeight-a-n,e.top+=h-i):e.top=l>0&&0>=h?n:h>l?n+a-t.collisionHeight:n:h>0?e.top+=h:l>0?e.top-=l:e.top=o(e.top-r,e.top)}},flip:{left:function(e,t){var i,s,n=t.within,a=n.offset.left+n.scrollLeft,o=n.width,h=n.isWindow?n.scrollLeft:n.offset.left,l=e.left-t.collisionPosition.marginLeft,u=l-h,d=l+t.collisionWidth-o-h,c="left"===t.my[0]?-t.elemWidth:"right"===t.my[0]?t.elemWidth:0,p="left"===t.at[0]?t.targetWidth:"right"===t.at[0]?-t.targetWidth:0,f=-2*t.offset[0];0>u?(i=e.left+c+p+f+t.collisionWidth-o-a,(0>i||r(u)>i)&&(e.left+=c+p+f)):d>0&&(s=e.left-t.collisionPosition.marginLeft+c+p+f-h,(s>0||d>r(s))&&(e.left+=c+p+f))},top:function(e,t){var i,s,n=t.within,a=n.offset.top+n.scrollTop,o=n.height,h=n.isWindow?n.scrollTop:n.offset.top,l=e.top-t.collisionPosition.marginTop,u=l-h,d=l+t.collisionHeight-o-h,c="top"===t.my[1],p=c?-t.elemHeight:"bottom"===t.my[1]?t.elemHeight:0,f="top"===t.at[1]?t.targetHeight:"bottom"===t.at[1]?-t.targetHeight:0,m=-2*t.offset[1];0>u?(s=e.top+p+f+m+t.collisionHeight-o-a,(0>s||r(u)>s)&&(e.top+=p+f+m)):d>0&&(i=e.top-t.collisionPosition.marginTop+p+f+m-h,(i>0||d>r(i))&&(e.top+=p+f+m))}},flipfit:{left:function(){e.ui.position.flip.left.apply(this,arguments),e.ui.position.fit.left.apply(this,arguments)},top:function(){e.ui.position.flip.top.apply(this,arguments),e.ui.position.fit.top.apply(this,arguments)}}},function(){var t,i,s,n,o,r=document.getElementsByTagName("body")[0],h=document.createElement("div");t=document.createElement(r?"div":"body"),s={visibility:"hidden",width:0,height:0,border:0,margin:0,background:"none"},r&&e.extend(s,{position:"absolute",left:"-1000px",top:"-1000px"});for(o in s)t.style[o]=s[o];t.appendChild(h),i=r||document.documentElement,i.insertBefore(t,i.firstChild),h.style.cssText="position: absolute; left: 10.7432222px;",n=e(h).offset().left,a=n>10&&11>n,t.innerHTML="",i.removeChild(t)}()}(),e.ui.position,e.widget("ui.draggable",e.ui.mouse,{version:"1.11.4",widgetEventPrefix:"drag",options:{addClasses:!0,appendTo:"parent",axis:!1,connectToSortable:!1,containment:!1,cursor:"auto",cursorAt:!1,grid:!1,handle:!1,helper:"original",iframeFix:!1,opacity:!1,refreshPositions:!1,revert:!1,revertDuration:500,scope:"default",scroll:!0,scrollSensitivity:20,scrollSpeed:20,snap:!1,snapMode:"both",snapTolerance:20,stack:!1,zIndex:!1,drag:null,start:null,stop:null},_create:function(){"original"===this.options.helper&&this._setPositionRelative(),this.options.addClasses&&this.element.addClass("ui-draggable"),this.options.disabled&&this.element.addClass("ui-draggable-disabled"),this._setHandleClassName(),this._mouseInit()},_setOption:function(e,t){this._super(e,t),"handle"===e&&(this._removeHandleClassName(),this._setHandleClassName())},_destroy:function(){return(this.helper||this.element).is(".ui-draggable-dragging")?(this.destroyOnClear=!0,void 0):(this.element.removeClass("ui-draggable ui-draggable-dragging ui-draggable-disabled"),this._removeHandleClassName(),this._mouseDestroy(),void 0)},_mouseCapture:function(t){var i=this.options;return this._blurActiveElement(t),this.helper||i.disabled||e(t.target).closest(".ui-resizable-handle").length>0?!1:(this.handle=this._getHandle(t),this.handle?(this._blockFrames(i.iframeFix===!0?"iframe":i.iframeFix),!0):!1)},_blockFrames:function(t){this.iframeBlocks=this.document.find(t).map(function(){var t=e(this);return e("<div>").css("position","absolute").appendTo(t.parent()).outerWidth(t.outerWidth()).outerHeight(t.outerHeight()).offset(t.offset())[0]})},_unblockFrames:function(){this.iframeBlocks&&(this.iframeBlocks.remove(),delete this.iframeBlocks)},_blurActiveElement:function(t){var i=this.document[0];if(this.handleElement.is(t.target))try{i.activeElement&&"body"!==i.activeElement.nodeName.toLowerCase()&&e(i.activeElement).blur()}catch(s){}},_mouseStart:function(t){var i=this.options;return this.helper=this._createHelper(t),this.helper.addClass("ui-draggable-dragging"),this._cacheHelperProportions(),e.ui.ddmanager&&(e.ui.ddmanager.current=this),this._cacheMargins(),this.cssPosition=this.helper.css("position"),this.scrollParent=this.helper.scrollParent(!0),this.offsetParent=this.helper.offsetParent(),this.hasFixedAncestor=this.helper.parents().filter(function(){return"fixed"===e(this).css("position")}).length>0,this.positionAbs=this.element.offset(),this._refreshOffsets(t),this.originalPosition=this.position=this._generatePosition(t,!1),this.originalPageX=t.pageX,this.originalPageY=t.pageY,i.cursorAt&&this._adjustOffsetFromHelper(i.cursorAt),this._setContainment(),this._trigger("start",t)===!1?(this._clear(),!1):(this._cacheHelperProportions(),e.ui.ddmanager&&!i.dropBehaviour&&e.ui.ddmanager.prepareOffsets(this,t),this._normalizeRightBottom(),this._mouseDrag(t,!0),e.ui.ddmanager&&e.ui.ddmanager.dragStart(this,t),!0)},_refreshOffsets:function(e){this.offset={top:this.positionAbs.top-this.margins.top,left:this.positionAbs.left-this.margins.left,scroll:!1,parent:this._getParentOffset(),relative:this._getRelativeOffset()},this.offset.click={left:e.pageX-this.offset.left,top:e.pageY-this.offset.top}},_mouseDrag:function(t,i){if(this.hasFixedAncestor&&(this.offset.parent=this._getParentOffset()),this.position=this._generatePosition(t,!0),this.positionAbs=this._convertPositionTo("absolute"),!i){var s=this._uiHash();if(this._trigger("drag",t,s)===!1)return this._mouseUp({}),!1;this.position=s.position}return this.helper[0].style.left=this.position.left+"px",this.helper[0].style.top=this.position.top+"px",e.ui.ddmanager&&e.ui.ddmanager.drag(this,t),!1},_mouseStop:function(t){var i=this,s=!1;return e.ui.ddmanager&&!this.options.dropBehaviour&&(s=e.ui.ddmanager.drop(this,t)),this.dropped&&(s=this.dropped,this.dropped=!1),"invalid"===this.options.revert&&!s||"valid"===this.options.revert&&s||this.options.revert===!0||e.isFunction(this.options.revert)&&this.options.revert.call(this.element,s)?e(this.helper).animate(this.originalPosition,parseInt(this.options.revertDuration,10),function(){i._trigger("stop",t)!==!1&&i._clear()}):this._trigger("stop",t)!==!1&&this._clear(),!1},_mouseUp:function(t){return this._unblockFrames(),e.ui.ddmanager&&e.ui.ddmanager.dragStop(this,t),this.handleElement.is(t.target)&&this.element.focus(),e.ui.mouse.prototype._mouseUp.call(this,t)},cancel:function(){return this.helper.is(".ui-draggable-dragging")?this._mouseUp({}):this._clear(),this},_getHandle:function(t){return this.options.handle?!!e(t.target).closest(this.element.find(this.options.handle)).length:!0},_setHandleClassName:function(){this.handleElement=this.options.handle?this.element.find(this.options.handle):this.element,this.handleElement.addClass("ui-draggable-handle")},_removeHandleClassName:function(){this.handleElement.removeClass("ui-draggable-handle")},_createHelper:function(t){var i=this.options,s=e.isFunction(i.helper),n=s?e(i.helper.apply(this.element[0],[t])):"clone"===i.helper?this.element.clone().removeAttr("id"):this.element;return n.parents("body").length||n.appendTo("parent"===i.appendTo?this.element[0].parentNode:i.appendTo),s&&n[0]===this.element[0]&&this._setPositionRelative(),n[0]===this.element[0]||/(fixed|absolute)/.test(n.css("position"))||n.css("position","absolute"),n},_setPositionRelative:function(){/^(?:r|a|f)/.test(this.element.css("position"))||(this.element[0].style.position="relative")},_adjustOffsetFromHelper:function(t){"string"==typeof t&&(t=t.split(" ")),e.isArray(t)&&(t={left:+t[0],top:+t[1]||0}),"left"in t&&(this.offset.click.left=t.left+this.margins.left),"right"in t&&(this.offset.click.left=this.helperProportions.width-t.right+this.margins.left),"top"in t&&(this.offset.click.top=t.top+this.margins.top),"bottom"in t&&(this.offset.click.top=this.helperProportions.height-t.bottom+this.margins.top)},_isRootNode:function(e){return/(html|body)/i.test(e.tagName)||e===this.document[0]},_getParentOffset:function(){var t=this.offsetParent.offset(),i=this.document[0];return"absolute"===this.cssPosition&&this.scrollParent[0]!==i&&e.contains(this.scrollParent[0],this.offsetParent[0])&&(t.left+=this.scrollParent.scrollLeft(),t.top+=this.scrollParent.scrollTop()),this._isRootNode(this.offsetParent[0])&&(t={top:0,left:0}),{top:t.top+(parseInt(this.offsetParent.css("borderTopWidth"),10)||0),left:t.left+(parseInt(this.offsetParent.css("borderLeftWidth"),10)||0)}},_getRelativeOffset:function(){if("relative"!==this.cssPosition)return{top:0,left:0};var e=this.element.position(),t=this._isRootNode(this.scrollParent[0]);return{top:e.top-(parseInt(this.helper.css("top"),10)||0)+(t?0:this.scrollParent.scrollTop()),left:e.left-(parseInt(this.helper.css("left"),10)||0)+(t?0:this.scrollParent.scrollLeft())}},_cacheMargins:function(){this.margins={left:parseInt(this.element.css("marginLeft"),10)||0,top:parseInt(this.element.css("marginTop"),10)||0,right:parseInt(this.element.css("marginRight"),10)||0,bottom:parseInt(this.element.css("marginBottom"),10)||0}},_cacheHelperProportions:function(){this.helperProportions={width:this.helper.outerWidth(),height:this.helper.outerHeight()}},_setContainment:function(){var t,i,s,n=this.options,a=this.document[0];return this.relativeContainer=null,n.containment?"window"===n.containment?(this.containment=[e(window).scrollLeft()-this.offset.relative.left-this.offset.parent.left,e(window).scrollTop()-this.offset.relative.top-this.offset.parent.top,e(window).scrollLeft()+e(window).width()-this.helperProportions.width-this.margins.left,e(window).scrollTop()+(e(window).height()||a.body.parentNode.scrollHeight)-this.helperProportions.height-this.margins.top],void 0):"document"===n.containment?(this.containment=[0,0,e(a).width()-this.helperProportions.width-this.margins.left,(e(a).height()||a.body.parentNode.scrollHeight)-this.helperProportions.height-this.margins.top],void 0):n.containment.constructor===Array?(this.containment=n.containment,void 0):("parent"===n.containment&&(n.containment=this.helper[0].parentNode),i=e(n.containment),s=i[0],s&&(t=/(scroll|auto)/.test(i.css("overflow")),this.containment=[(parseInt(i.css("borderLeftWidth"),10)||0)+(parseInt(i.css("paddingLeft"),10)||0),(parseInt(i.css("borderTopWidth"),10)||0)+(parseInt(i.css("paddingTop"),10)||0),(t?Math.max(s.scrollWidth,s.offsetWidth):s.offsetWidth)-(parseInt(i.css("borderRightWidth"),10)||0)-(parseInt(i.css("paddingRight"),10)||0)-this.helperProportions.width-this.margins.left-this.margins.right,(t?Math.max(s.scrollHeight,s.offsetHeight):s.offsetHeight)-(parseInt(i.css("borderBottomWidth"),10)||0)-(parseInt(i.css("paddingBottom"),10)||0)-this.helperProportions.height-this.margins.top-this.margins.bottom],this.relativeContainer=i),void 0):(this.containment=null,void 0)},_convertPositionTo:function(e,t){t||(t=this.position);var i="absolute"===e?1:-1,s=this._isRootNode(this.scrollParent[0]);return{top:t.top+this.offset.relative.top*i+this.offset.parent.top*i-("fixed"===this.cssPosition?-this.offset.scroll.top:s?0:this.offset.scroll.top)*i,left:t.left+this.offset.relative.left*i+this.offset.parent.left*i-("fixed"===this.cssPosition?-this.offset.scroll.left:s?0:this.offset.scroll.left)*i}},_generatePosition:function(e,t){var i,s,n,a,o=this.options,r=this._isRootNode(this.scrollParent[0]),h=e.pageX,l=e.pageY;return r&&this.offset.scroll||(this.offset.scroll={top:this.scrollParent.scrollTop(),left:this.scrollParent.scrollLeft()}),t&&(this.containment&&(this.relativeContainer?(s=this.relativeContainer.offset(),i=[this.containment[0]+s.left,this.containment[1]+s.top,this.containment[2]+s.left,this.containment[3]+s.top]):i=this.containment,e.pageX-this.offset.click.left<i[0]&&(h=i[0]+this.offset.click.left),e.pageY-this.offset.click.top<i[1]&&(l=i[1]+this.offset.click.top),e.pageX-this.offset.click.left>i[2]&&(h=i[2]+this.offset.click.left),e.pageY-this.offset.click.top>i[3]&&(l=i[3]+this.offset.click.top)),o.grid&&(n=o.grid[1]?this.originalPageY+Math.round((l-this.originalPageY)/o.grid[1])*o.grid[1]:this.originalPageY,l=i?n-this.offset.click.top>=i[1]||n-this.offset.click.top>i[3]?n:n-this.offset.click.top>=i[1]?n-o.grid[1]:n+o.grid[1]:n,a=o.grid[0]?this.originalPageX+Math.round((h-this.originalPageX)/o.grid[0])*o.grid[0]:this.originalPageX,h=i?a-this.offset.click.left>=i[0]||a-this.offset.click.left>i[2]?a:a-this.offset.click.left>=i[0]?a-o.grid[0]:a+o.grid[0]:a),"y"===o.axis&&(h=this.originalPageX),"x"===o.axis&&(l=this.originalPageY)),{top:l-this.offset.click.top-this.offset.relative.top-this.offset.parent.top+("fixed"===this.cssPosition?-this.offset.scroll.top:r?0:this.offset.scroll.top),left:h-this.offset.click.left-this.offset.relative.left-this.offset.parent.left+("fixed"===this.cssPosition?-this.offset.scroll.left:r?0:this.offset.scroll.left)}},_clear:function(){this.helper.removeClass("ui-draggable-dragging"),this.helper[0]===this.element[0]||this.cancelHelperRemoval||this.helper.remove(),this.helper=null,this.cancelHelperRemoval=!1,this.destroyOnClear&&this.destroy()},_normalizeRightBottom:function(){"y"!==this.options.axis&&"auto"!==this.helper.css("right")&&(this.helper.width(this.helper.width()),this.helper.css("right","auto")),"x"!==this.options.axis&&"auto"!==this.helper.css("bottom")&&(this.helper.height(this.helper.height()),this.helper.css("bottom","auto"))},_trigger:function(t,i,s){return s=s||this._uiHash(),e.ui.plugin.call(this,t,[i,s,this],!0),/^(drag|start|stop)/.test(t)&&(this.positionAbs=this._convertPositionTo("absolute"),s.offset=this.positionAbs),e.Widget.prototype._trigger.call(this,t,i,s)},plugins:{},_uiHash:function(){return{helper:this.helper,position:this.position,originalPosition:this.originalPosition,offset:this.positionAbs}}}),e.ui.plugin.add("draggable","connectToSortable",{start:function(t,i,s){var n=e.extend({},i,{item:s.element});s.sortables=[],e(s.options.connectToSortable).each(function(){var i=e(this).sortable("instance");i&&!i.options.disabled&&(s.sortables.push(i),i.refreshPositions(),i._trigger("activate",t,n))})},stop:function(t,i,s){var n=e.extend({},i,{item:s.element});s.cancelHelperRemoval=!1,e.each(s.sortables,function(){var e=this;e.isOver?(e.isOver=0,s.cancelHelperRemoval=!0,e.cancelHelperRemoval=!1,e._storedCSS={position:e.placeholder.css("position"),top:e.placeholder.css("top"),left:e.placeholder.css("left")},e._mouseStop(t),e.options.helper=e.options._helper):(e.cancelHelperRemoval=!0,e._trigger("deactivate",t,n))})},drag:function(t,i,s){e.each(s.sortables,function(){var n=!1,a=this;a.positionAbs=s.positionAbs,a.helperProportions=s.helperProportions,a.offset.click=s.offset.click,a._intersectsWith(a.containerCache)&&(n=!0,e.each(s.sortables,function(){return this.positionAbs=s.positionAbs,this.helperProportions=s.helperProportions,this.offset.click=s.offset.click,this!==a&&this._intersectsWith(this.containerCache)&&e.contains(a.element[0],this.element[0])&&(n=!1),n
})),n?(a.isOver||(a.isOver=1,s._parent=i.helper.parent(),a.currentItem=i.helper.appendTo(a.element).data("ui-sortable-item",!0),a.options._helper=a.options.helper,a.options.helper=function(){return i.helper[0]},t.target=a.currentItem[0],a._mouseCapture(t,!0),a._mouseStart(t,!0,!0),a.offset.click.top=s.offset.click.top,a.offset.click.left=s.offset.click.left,a.offset.parent.left-=s.offset.parent.left-a.offset.parent.left,a.offset.parent.top-=s.offset.parent.top-a.offset.parent.top,s._trigger("toSortable",t),s.dropped=a.element,e.each(s.sortables,function(){this.refreshPositions()}),s.currentItem=s.element,a.fromOutside=s),a.currentItem&&(a._mouseDrag(t),i.position=a.position)):a.isOver&&(a.isOver=0,a.cancelHelperRemoval=!0,a.options._revert=a.options.revert,a.options.revert=!1,a._trigger("out",t,a._uiHash(a)),a._mouseStop(t,!0),a.options.revert=a.options._revert,a.options.helper=a.options._helper,a.placeholder&&a.placeholder.remove(),i.helper.appendTo(s._parent),s._refreshOffsets(t),i.position=s._generatePosition(t,!0),s._trigger("fromSortable",t),s.dropped=!1,e.each(s.sortables,function(){this.refreshPositions()}))})}}),e.ui.plugin.add("draggable","cursor",{start:function(t,i,s){var n=e("body"),a=s.options;n.css("cursor")&&(a._cursor=n.css("cursor")),n.css("cursor",a.cursor)},stop:function(t,i,s){var n=s.options;n._cursor&&e("body").css("cursor",n._cursor)}}),e.ui.plugin.add("draggable","opacity",{start:function(t,i,s){var n=e(i.helper),a=s.options;n.css("opacity")&&(a._opacity=n.css("opacity")),n.css("opacity",a.opacity)},stop:function(t,i,s){var n=s.options;n._opacity&&e(i.helper).css("opacity",n._opacity)}}),e.ui.plugin.add("draggable","scroll",{start:function(e,t,i){i.scrollParentNotHidden||(i.scrollParentNotHidden=i.helper.scrollParent(!1)),i.scrollParentNotHidden[0]!==i.document[0]&&"HTML"!==i.scrollParentNotHidden[0].tagName&&(i.overflowOffset=i.scrollParentNotHidden.offset())},drag:function(t,i,s){var n=s.options,a=!1,o=s.scrollParentNotHidden[0],r=s.document[0];o!==r&&"HTML"!==o.tagName?(n.axis&&"x"===n.axis||(s.overflowOffset.top+o.offsetHeight-t.pageY<n.scrollSensitivity?o.scrollTop=a=o.scrollTop+n.scrollSpeed:t.pageY-s.overflowOffset.top<n.scrollSensitivity&&(o.scrollTop=a=o.scrollTop-n.scrollSpeed)),n.axis&&"y"===n.axis||(s.overflowOffset.left+o.offsetWidth-t.pageX<n.scrollSensitivity?o.scrollLeft=a=o.scrollLeft+n.scrollSpeed:t.pageX-s.overflowOffset.left<n.scrollSensitivity&&(o.scrollLeft=a=o.scrollLeft-n.scrollSpeed))):(n.axis&&"x"===n.axis||(t.pageY-e(r).scrollTop()<n.scrollSensitivity?a=e(r).scrollTop(e(r).scrollTop()-n.scrollSpeed):e(window).height()-(t.pageY-e(r).scrollTop())<n.scrollSensitivity&&(a=e(r).scrollTop(e(r).scrollTop()+n.scrollSpeed))),n.axis&&"y"===n.axis||(t.pageX-e(r).scrollLeft()<n.scrollSensitivity?a=e(r).scrollLeft(e(r).scrollLeft()-n.scrollSpeed):e(window).width()-(t.pageX-e(r).scrollLeft())<n.scrollSensitivity&&(a=e(r).scrollLeft(e(r).scrollLeft()+n.scrollSpeed)))),a!==!1&&e.ui.ddmanager&&!n.dropBehaviour&&e.ui.ddmanager.prepareOffsets(s,t)}}),e.ui.plugin.add("draggable","snap",{start:function(t,i,s){var n=s.options;s.snapElements=[],e(n.snap.constructor!==String?n.snap.items||":data(ui-draggable)":n.snap).each(function(){var t=e(this),i=t.offset();this!==s.element[0]&&s.snapElements.push({item:this,width:t.outerWidth(),height:t.outerHeight(),top:i.top,left:i.left})})},drag:function(t,i,s){var n,a,o,r,h,l,u,d,c,p,f=s.options,m=f.snapTolerance,g=i.offset.left,v=g+s.helperProportions.width,y=i.offset.top,b=y+s.helperProportions.height;for(c=s.snapElements.length-1;c>=0;c--)h=s.snapElements[c].left-s.margins.left,l=h+s.snapElements[c].width,u=s.snapElements[c].top-s.margins.top,d=u+s.snapElements[c].height,h-m>v||g>l+m||u-m>b||y>d+m||!e.contains(s.snapElements[c].item.ownerDocument,s.snapElements[c].item)?(s.snapElements[c].snapping&&s.options.snap.release&&s.options.snap.release.call(s.element,t,e.extend(s._uiHash(),{snapItem:s.snapElements[c].item})),s.snapElements[c].snapping=!1):("inner"!==f.snapMode&&(n=m>=Math.abs(u-b),a=m>=Math.abs(d-y),o=m>=Math.abs(h-v),r=m>=Math.abs(l-g),n&&(i.position.top=s._convertPositionTo("relative",{top:u-s.helperProportions.height,left:0}).top),a&&(i.position.top=s._convertPositionTo("relative",{top:d,left:0}).top),o&&(i.position.left=s._convertPositionTo("relative",{top:0,left:h-s.helperProportions.width}).left),r&&(i.position.left=s._convertPositionTo("relative",{top:0,left:l}).left)),p=n||a||o||r,"outer"!==f.snapMode&&(n=m>=Math.abs(u-y),a=m>=Math.abs(d-b),o=m>=Math.abs(h-g),r=m>=Math.abs(l-v),n&&(i.position.top=s._convertPositionTo("relative",{top:u,left:0}).top),a&&(i.position.top=s._convertPositionTo("relative",{top:d-s.helperProportions.height,left:0}).top),o&&(i.position.left=s._convertPositionTo("relative",{top:0,left:h}).left),r&&(i.position.left=s._convertPositionTo("relative",{top:0,left:l-s.helperProportions.width}).left)),!s.snapElements[c].snapping&&(n||a||o||r||p)&&s.options.snap.snap&&s.options.snap.snap.call(s.element,t,e.extend(s._uiHash(),{snapItem:s.snapElements[c].item})),s.snapElements[c].snapping=n||a||o||r||p)}}),e.ui.plugin.add("draggable","stack",{start:function(t,i,s){var n,a=s.options,o=e.makeArray(e(a.stack)).sort(function(t,i){return(parseInt(e(t).css("zIndex"),10)||0)-(parseInt(e(i).css("zIndex"),10)||0)});o.length&&(n=parseInt(e(o[0]).css("zIndex"),10)||0,e(o).each(function(t){e(this).css("zIndex",n+t)}),this.css("zIndex",n+o.length))}}),e.ui.plugin.add("draggable","zIndex",{start:function(t,i,s){var n=e(i.helper),a=s.options;n.css("zIndex")&&(a._zIndex=n.css("zIndex")),n.css("zIndex",a.zIndex)},stop:function(t,i,s){var n=s.options;n._zIndex&&e(i.helper).css("zIndex",n._zIndex)}}),e.ui.draggable,e.widget("ui.droppable",{version:"1.11.4",widgetEventPrefix:"drop",options:{accept:"*",activeClass:!1,addClasses:!0,greedy:!1,hoverClass:!1,scope:"default",tolerance:"intersect",activate:null,deactivate:null,drop:null,out:null,over:null},_create:function(){var t,i=this.options,s=i.accept;this.isover=!1,this.isout=!0,this.accept=e.isFunction(s)?s:function(e){return e.is(s)},this.proportions=function(){return arguments.length?(t=arguments[0],void 0):t?t:t={width:this.element[0].offsetWidth,height:this.element[0].offsetHeight}},this._addToManager(i.scope),i.addClasses&&this.element.addClass("ui-droppable")},_addToManager:function(t){e.ui.ddmanager.droppables[t]=e.ui.ddmanager.droppables[t]||[],e.ui.ddmanager.droppables[t].push(this)},_splice:function(e){for(var t=0;e.length>t;t++)e[t]===this&&e.splice(t,1)},_destroy:function(){var t=e.ui.ddmanager.droppables[this.options.scope];this._splice(t),this.element.removeClass("ui-droppable ui-droppable-disabled")},_setOption:function(t,i){if("accept"===t)this.accept=e.isFunction(i)?i:function(e){return e.is(i)};else if("scope"===t){var s=e.ui.ddmanager.droppables[this.options.scope];this._splice(s),this._addToManager(i)}this._super(t,i)},_activate:function(t){var i=e.ui.ddmanager.current;this.options.activeClass&&this.element.addClass(this.options.activeClass),i&&this._trigger("activate",t,this.ui(i))},_deactivate:function(t){var i=e.ui.ddmanager.current;this.options.activeClass&&this.element.removeClass(this.options.activeClass),i&&this._trigger("deactivate",t,this.ui(i))},_over:function(t){var i=e.ui.ddmanager.current;i&&(i.currentItem||i.element)[0]!==this.element[0]&&this.accept.call(this.element[0],i.currentItem||i.element)&&(this.options.hoverClass&&this.element.addClass(this.options.hoverClass),this._trigger("over",t,this.ui(i)))},_out:function(t){var i=e.ui.ddmanager.current;i&&(i.currentItem||i.element)[0]!==this.element[0]&&this.accept.call(this.element[0],i.currentItem||i.element)&&(this.options.hoverClass&&this.element.removeClass(this.options.hoverClass),this._trigger("out",t,this.ui(i)))},_drop:function(t,i){var s=i||e.ui.ddmanager.current,n=!1;return s&&(s.currentItem||s.element)[0]!==this.element[0]?(this.element.find(":data(ui-droppable)").not(".ui-draggable-dragging").each(function(){var i=e(this).droppable("instance");return i.options.greedy&&!i.options.disabled&&i.options.scope===s.options.scope&&i.accept.call(i.element[0],s.currentItem||s.element)&&e.ui.intersect(s,e.extend(i,{offset:i.element.offset()}),i.options.tolerance,t)?(n=!0,!1):void 0}),n?!1:this.accept.call(this.element[0],s.currentItem||s.element)?(this.options.activeClass&&this.element.removeClass(this.options.activeClass),this.options.hoverClass&&this.element.removeClass(this.options.hoverClass),this._trigger("drop",t,this.ui(s)),this.element):!1):!1},ui:function(e){return{draggable:e.currentItem||e.element,helper:e.helper,position:e.position,offset:e.positionAbs}}}),e.ui.intersect=function(){function e(e,t,i){return e>=t&&t+i>e}return function(t,i,s,n){if(!i.offset)return!1;var a=(t.positionAbs||t.position.absolute).left+t.margins.left,o=(t.positionAbs||t.position.absolute).top+t.margins.top,r=a+t.helperProportions.width,h=o+t.helperProportions.height,l=i.offset.left,u=i.offset.top,d=l+i.proportions().width,c=u+i.proportions().height;switch(s){case"fit":return a>=l&&d>=r&&o>=u&&c>=h;case"intersect":return a+t.helperProportions.width/2>l&&d>r-t.helperProportions.width/2&&o+t.helperProportions.height/2>u&&c>h-t.helperProportions.height/2;case"pointer":return e(n.pageY,u,i.proportions().height)&&e(n.pageX,l,i.proportions().width);case"touch":return(o>=u&&c>=o||h>=u&&c>=h||u>o&&h>c)&&(a>=l&&d>=a||r>=l&&d>=r||l>a&&r>d);default:return!1}}}(),e.ui.ddmanager={current:null,droppables:{"default":[]},prepareOffsets:function(t,i){var s,n,a=e.ui.ddmanager.droppables[t.options.scope]||[],o=i?i.type:null,r=(t.currentItem||t.element).find(":data(ui-droppable)").addBack();e:for(s=0;a.length>s;s++)if(!(a[s].options.disabled||t&&!a[s].accept.call(a[s].element[0],t.currentItem||t.element))){for(n=0;r.length>n;n++)if(r[n]===a[s].element[0]){a[s].proportions().height=0;continue e}a[s].visible="none"!==a[s].element.css("display"),a[s].visible&&("mousedown"===o&&a[s]._activate.call(a[s],i),a[s].offset=a[s].element.offset(),a[s].proportions({width:a[s].element[0].offsetWidth,height:a[s].element[0].offsetHeight}))}},drop:function(t,i){var s=!1;return e.each((e.ui.ddmanager.droppables[t.options.scope]||[]).slice(),function(){this.options&&(!this.options.disabled&&this.visible&&e.ui.intersect(t,this,this.options.tolerance,i)&&(s=this._drop.call(this,i)||s),!this.options.disabled&&this.visible&&this.accept.call(this.element[0],t.currentItem||t.element)&&(this.isout=!0,this.isover=!1,this._deactivate.call(this,i)))}),s},dragStart:function(t,i){t.element.parentsUntil("body").bind("scroll.droppable",function(){t.options.refreshPositions||e.ui.ddmanager.prepareOffsets(t,i)})},drag:function(t,i){t.options.refreshPositions&&e.ui.ddmanager.prepareOffsets(t,i),e.each(e.ui.ddmanager.droppables[t.options.scope]||[],function(){if(!this.options.disabled&&!this.greedyChild&&this.visible){var s,n,a,o=e.ui.intersect(t,this,this.options.tolerance,i),r=!o&&this.isover?"isout":o&&!this.isover?"isover":null;r&&(this.options.greedy&&(n=this.options.scope,a=this.element.parents(":data(ui-droppable)").filter(function(){return e(this).droppable("instance").options.scope===n}),a.length&&(s=e(a[0]).droppable("instance"),s.greedyChild="isover"===r)),s&&"isover"===r&&(s.isover=!1,s.isout=!0,s._out.call(s,i)),this[r]=!0,this["isout"===r?"isover":"isout"]=!1,this["isover"===r?"_over":"_out"].call(this,i),s&&"isout"===r&&(s.isout=!1,s.isover=!0,s._over.call(s,i)))}})},dragStop:function(t,i){t.element.parentsUntil("body").unbind("scroll.droppable"),t.options.refreshPositions||e.ui.ddmanager.prepareOffsets(t,i)}},e.ui.droppable,e.widget("ui.resizable",e.ui.mouse,{version:"1.11.4",widgetEventPrefix:"resize",options:{alsoResize:!1,animate:!1,animateDuration:"slow",animateEasing:"swing",aspectRatio:!1,autoHide:!1,containment:!1,ghost:!1,grid:!1,handles:"e,s,se",helper:!1,maxHeight:null,maxWidth:null,minHeight:10,minWidth:10,zIndex:90,resize:null,start:null,stop:null},_num:function(e){return parseInt(e,10)||0},_isNumber:function(e){return!isNaN(parseInt(e,10))},_hasScroll:function(t,i){if("hidden"===e(t).css("overflow"))return!1;var s=i&&"left"===i?"scrollLeft":"scrollTop",n=!1;return t[s]>0?!0:(t[s]=1,n=t[s]>0,t[s]=0,n)},_create:function(){var t,i,s,n,a,o=this,r=this.options;if(this.element.addClass("ui-resizable"),e.extend(this,{_aspectRatio:!!r.aspectRatio,aspectRatio:r.aspectRatio,originalElement:this.element,_proportionallyResizeElements:[],_helper:r.helper||r.ghost||r.animate?r.helper||"ui-resizable-helper":null}),this.element[0].nodeName.match(/^(canvas|textarea|input|select|button|img)$/i)&&(this.element.wrap(e("<div class='ui-wrapper' style='overflow: hidden;'></div>").css({position:this.element.css("position"),width:this.element.outerWidth(),height:this.element.outerHeight(),top:this.element.css("top"),left:this.element.css("left")})),this.element=this.element.parent().data("ui-resizable",this.element.resizable("instance")),this.elementIsWrapper=!0,this.element.css({marginLeft:this.originalElement.css("marginLeft"),marginTop:this.originalElement.css("marginTop"),marginRight:this.originalElement.css("marginRight"),marginBottom:this.originalElement.css("marginBottom")}),this.originalElement.css({marginLeft:0,marginTop:0,marginRight:0,marginBottom:0}),this.originalResizeStyle=this.originalElement.css("resize"),this.originalElement.css("resize","none"),this._proportionallyResizeElements.push(this.originalElement.css({position:"static",zoom:1,display:"block"})),this.originalElement.css({margin:this.originalElement.css("margin")}),this._proportionallyResize()),this.handles=r.handles||(e(".ui-resizable-handle",this.element).length?{n:".ui-resizable-n",e:".ui-resizable-e",s:".ui-resizable-s",w:".ui-resizable-w",se:".ui-resizable-se",sw:".ui-resizable-sw",ne:".ui-resizable-ne",nw:".ui-resizable-nw"}:"e,s,se"),this._handles=e(),this.handles.constructor===String)for("all"===this.handles&&(this.handles="n,e,s,w,se,sw,ne,nw"),t=this.handles.split(","),this.handles={},i=0;t.length>i;i++)s=e.trim(t[i]),a="ui-resizable-"+s,n=e("<div class='ui-resizable-handle "+a+"'></div>"),n.css({zIndex:r.zIndex}),"se"===s&&n.addClass("ui-icon ui-icon-gripsmall-diagonal-se"),this.handles[s]=".ui-resizable-"+s,this.element.append(n);this._renderAxis=function(t){var i,s,n,a;t=t||this.element;for(i in this.handles)this.handles[i].constructor===String?this.handles[i]=this.element.children(this.handles[i]).first().show():(this.handles[i].jquery||this.handles[i].nodeType)&&(this.handles[i]=e(this.handles[i]),this._on(this.handles[i],{mousedown:o._mouseDown})),this.elementIsWrapper&&this.originalElement[0].nodeName.match(/^(textarea|input|select|button)$/i)&&(s=e(this.handles[i],this.element),a=/sw|ne|nw|se|n|s/.test(i)?s.outerHeight():s.outerWidth(),n=["padding",/ne|nw|n/.test(i)?"Top":/se|sw|s/.test(i)?"Bottom":/^e$/.test(i)?"Right":"Left"].join(""),t.css(n,a),this._proportionallyResize()),this._handles=this._handles.add(this.handles[i])},this._renderAxis(this.element),this._handles=this._handles.add(this.element.find(".ui-resizable-handle")),this._handles.disableSelection(),this._handles.mouseover(function(){o.resizing||(this.className&&(n=this.className.match(/ui-resizable-(se|sw|ne|nw|n|e|s|w)/i)),o.axis=n&&n[1]?n[1]:"se")}),r.autoHide&&(this._handles.hide(),e(this.element).addClass("ui-resizable-autohide").mouseenter(function(){r.disabled||(e(this).removeClass("ui-resizable-autohide"),o._handles.show())}).mouseleave(function(){r.disabled||o.resizing||(e(this).addClass("ui-resizable-autohide"),o._handles.hide())})),this._mouseInit()},_destroy:function(){this._mouseDestroy();var t,i=function(t){e(t).removeClass("ui-resizable ui-resizable-disabled ui-resizable-resizing").removeData("resizable").removeData("ui-resizable").unbind(".resizable").find(".ui-resizable-handle").remove()};return this.elementIsWrapper&&(i(this.element),t=this.element,this.originalElement.css({position:t.css("position"),width:t.outerWidth(),height:t.outerHeight(),top:t.css("top"),left:t.css("left")}).insertAfter(t),t.remove()),this.originalElement.css("resize",this.originalResizeStyle),i(this.originalElement),this},_mouseCapture:function(t){var i,s,n=!1;for(i in this.handles)s=e(this.handles[i])[0],(s===t.target||e.contains(s,t.target))&&(n=!0);return!this.options.disabled&&n},_mouseStart:function(t){var i,s,n,a=this.options,o=this.element;return this.resizing=!0,this._renderProxy(),i=this._num(this.helper.css("left")),s=this._num(this.helper.css("top")),a.containment&&(i+=e(a.containment).scrollLeft()||0,s+=e(a.containment).scrollTop()||0),this.offset=this.helper.offset(),this.position={left:i,top:s},this.size=this._helper?{width:this.helper.width(),height:this.helper.height()}:{width:o.width(),height:o.height()},this.originalSize=this._helper?{width:o.outerWidth(),height:o.outerHeight()}:{width:o.width(),height:o.height()},this.sizeDiff={width:o.outerWidth()-o.width(),height:o.outerHeight()-o.height()},this.originalPosition={left:i,top:s},this.originalMousePosition={left:t.pageX,top:t.pageY},this.aspectRatio="number"==typeof a.aspectRatio?a.aspectRatio:this.originalSize.width/this.originalSize.height||1,n=e(".ui-resizable-"+this.axis).css("cursor"),e("body").css("cursor","auto"===n?this.axis+"-resize":n),o.addClass("ui-resizable-resizing"),this._propagate("start",t),!0},_mouseDrag:function(t){var i,s,n=this.originalMousePosition,a=this.axis,o=t.pageX-n.left||0,r=t.pageY-n.top||0,h=this._change[a];return this._updatePrevProperties(),h?(i=h.apply(this,[t,o,r]),this._updateVirtualBoundaries(t.shiftKey),(this._aspectRatio||t.shiftKey)&&(i=this._updateRatio(i,t)),i=this._respectSize(i,t),this._updateCache(i),this._propagate("resize",t),s=this._applyChanges(),!this._helper&&this._proportionallyResizeElements.length&&this._proportionallyResize(),e.isEmptyObject(s)||(this._updatePrevProperties(),this._trigger("resize",t,this.ui()),this._applyChanges()),!1):!1},_mouseStop:function(t){this.resizing=!1;var i,s,n,a,o,r,h,l=this.options,u=this;return this._helper&&(i=this._proportionallyResizeElements,s=i.length&&/textarea/i.test(i[0].nodeName),n=s&&this._hasScroll(i[0],"left")?0:u.sizeDiff.height,a=s?0:u.sizeDiff.width,o={width:u.helper.width()-a,height:u.helper.height()-n},r=parseInt(u.element.css("left"),10)+(u.position.left-u.originalPosition.left)||null,h=parseInt(u.element.css("top"),10)+(u.position.top-u.originalPosition.top)||null,l.animate||this.element.css(e.extend(o,{top:h,left:r})),u.helper.height(u.size.height),u.helper.width(u.size.width),this._helper&&!l.animate&&this._proportionallyResize()),e("body").css("cursor","auto"),this.element.removeClass("ui-resizable-resizing"),this._propagate("stop",t),this._helper&&this.helper.remove(),!1},_updatePrevProperties:function(){this.prevPosition={top:this.position.top,left:this.position.left},this.prevSize={width:this.size.width,height:this.size.height}},_applyChanges:function(){var e={};return this.position.top!==this.prevPosition.top&&(e.top=this.position.top+"px"),this.position.left!==this.prevPosition.left&&(e.left=this.position.left+"px"),this.size.width!==this.prevSize.width&&(e.width=this.size.width+"px"),this.size.height!==this.prevSize.height&&(e.height=this.size.height+"px"),this.helper.css(e),e},_updateVirtualBoundaries:function(e){var t,i,s,n,a,o=this.options;a={minWidth:this._isNumber(o.minWidth)?o.minWidth:0,maxWidth:this._isNumber(o.maxWidth)?o.maxWidth:1/0,minHeight:this._isNumber(o.minHeight)?o.minHeight:0,maxHeight:this._isNumber(o.maxHeight)?o.maxHeight:1/0},(this._aspectRatio||e)&&(t=a.minHeight*this.aspectRatio,s=a.minWidth/this.aspectRatio,i=a.maxHeight*this.aspectRatio,n=a.maxWidth/this.aspectRatio,t>a.minWidth&&(a.minWidth=t),s>a.minHeight&&(a.minHeight=s),a.maxWidth>i&&(a.maxWidth=i),a.maxHeight>n&&(a.maxHeight=n)),this._vBoundaries=a},_updateCache:function(e){this.offset=this.helper.offset(),this._isNumber(e.left)&&(this.position.left=e.left),this._isNumber(e.top)&&(this.position.top=e.top),this._isNumber(e.height)&&(this.size.height=e.height),this._isNumber(e.width)&&(this.size.width=e.width)},_updateRatio:function(e){var t=this.position,i=this.size,s=this.axis;return this._isNumber(e.height)?e.width=e.height*this.aspectRatio:this._isNumber(e.width)&&(e.height=e.width/this.aspectRatio),"sw"===s&&(e.left=t.left+(i.width-e.width),e.top=null),"nw"===s&&(e.top=t.top+(i.height-e.height),e.left=t.left+(i.width-e.width)),e},_respectSize:function(e){var t=this._vBoundaries,i=this.axis,s=this._isNumber(e.width)&&t.maxWidth&&t.maxWidth<e.width,n=this._isNumber(e.height)&&t.maxHeight&&t.maxHeight<e.height,a=this._isNumber(e.width)&&t.minWidth&&t.minWidth>e.width,o=this._isNumber(e.height)&&t.minHeight&&t.minHeight>e.height,r=this.originalPosition.left+this.originalSize.width,h=this.position.top+this.size.height,l=/sw|nw|w/.test(i),u=/nw|ne|n/.test(i);return a&&(e.width=t.minWidth),o&&(e.height=t.minHeight),s&&(e.width=t.maxWidth),n&&(e.height=t.maxHeight),a&&l&&(e.left=r-t.minWidth),s&&l&&(e.left=r-t.maxWidth),o&&u&&(e.top=h-t.minHeight),n&&u&&(e.top=h-t.maxHeight),e.width||e.height||e.left||!e.top?e.width||e.height||e.top||!e.left||(e.left=null):e.top=null,e},_getPaddingPlusBorderDimensions:function(e){for(var t=0,i=[],s=[e.css("borderTopWidth"),e.css("borderRightWidth"),e.css("borderBottomWidth"),e.css("borderLeftWidth")],n=[e.css("paddingTop"),e.css("paddingRight"),e.css("paddingBottom"),e.css("paddingLeft")];4>t;t++)i[t]=parseInt(s[t],10)||0,i[t]+=parseInt(n[t],10)||0;return{height:i[0]+i[2],width:i[1]+i[3]}},_proportionallyResize:function(){if(this._proportionallyResizeElements.length)for(var e,t=0,i=this.helper||this.element;this._proportionallyResizeElements.length>t;t++)e=this._proportionallyResizeElements[t],this.outerDimensions||(this.outerDimensions=this._getPaddingPlusBorderDimensions(e)),e.css({height:i.height()-this.outerDimensions.height||0,width:i.width()-this.outerDimensions.width||0})},_renderProxy:function(){var t=this.element,i=this.options;this.elementOffset=t.offset(),this._helper?(this.helper=this.helper||e("<div style='overflow:hidden;'></div>"),this.helper.addClass(this._helper).css({width:this.element.outerWidth()-1,height:this.element.outerHeight()-1,position:"absolute",left:this.elementOffset.left+"px",top:this.elementOffset.top+"px",zIndex:++i.zIndex}),this.helper.appendTo("body").disableSelection()):this.helper=this.element},_change:{e:function(e,t){return{width:this.originalSize.width+t}},w:function(e,t){var i=this.originalSize,s=this.originalPosition;return{left:s.left+t,width:i.width-t}},n:function(e,t,i){var s=this.originalSize,n=this.originalPosition;return{top:n.top+i,height:s.height-i}},s:function(e,t,i){return{height:this.originalSize.height+i}},se:function(t,i,s){return e.extend(this._change.s.apply(this,arguments),this._change.e.apply(this,[t,i,s]))},sw:function(t,i,s){return e.extend(this._change.s.apply(this,arguments),this._change.w.apply(this,[t,i,s]))},ne:function(t,i,s){return e.extend(this._change.n.apply(this,arguments),this._change.e.apply(this,[t,i,s]))},nw:function(t,i,s){return e.extend(this._change.n.apply(this,arguments),this._change.w.apply(this,[t,i,s]))}},_propagate:function(t,i){e.ui.plugin.call(this,t,[i,this.ui()]),"resize"!==t&&this._trigger(t,i,this.ui())},plugins:{},ui:function(){return{originalElement:this.originalElement,element:this.element,helper:this.helper,position:this.position,size:this.size,originalSize:this.originalSize,originalPosition:this.originalPosition}}}),e.ui.plugin.add("resizable","animate",{stop:function(t){var i=e(this).resizable("instance"),s=i.options,n=i._proportionallyResizeElements,a=n.length&&/textarea/i.test(n[0].nodeName),o=a&&i._hasScroll(n[0],"left")?0:i.sizeDiff.height,r=a?0:i.sizeDiff.width,h={width:i.size.width-r,height:i.size.height-o},l=parseInt(i.element.css("left"),10)+(i.position.left-i.originalPosition.left)||null,u=parseInt(i.element.css("top"),10)+(i.position.top-i.originalPosition.top)||null;i.element.animate(e.extend(h,u&&l?{top:u,left:l}:{}),{duration:s.animateDuration,easing:s.animateEasing,step:function(){var s={width:parseInt(i.element.css("width"),10),height:parseInt(i.element.css("height"),10),top:parseInt(i.element.css("top"),10),left:parseInt(i.element.css("left"),10)};n&&n.length&&e(n[0]).css({width:s.width,height:s.height}),i._updateCache(s),i._propagate("resize",t)}})}}),e.ui.plugin.add("resizable","containment",{start:function(){var t,i,s,n,a,o,r,h=e(this).resizable("instance"),l=h.options,u=h.element,d=l.containment,c=d instanceof e?d.get(0):/parent/.test(d)?u.parent().get(0):d;c&&(h.containerElement=e(c),/document/.test(d)||d===document?(h.containerOffset={left:0,top:0},h.containerPosition={left:0,top:0},h.parentData={element:e(document),left:0,top:0,width:e(document).width(),height:e(document).height()||document.body.parentNode.scrollHeight}):(t=e(c),i=[],e(["Top","Right","Left","Bottom"]).each(function(e,s){i[e]=h._num(t.css("padding"+s))}),h.containerOffset=t.offset(),h.containerPosition=t.position(),h.containerSize={height:t.innerHeight()-i[3],width:t.innerWidth()-i[1]},s=h.containerOffset,n=h.containerSize.height,a=h.containerSize.width,o=h._hasScroll(c,"left")?c.scrollWidth:a,r=h._hasScroll(c)?c.scrollHeight:n,h.parentData={element:c,left:s.left,top:s.top,width:o,height:r}))},resize:function(t){var i,s,n,a,o=e(this).resizable("instance"),r=o.options,h=o.containerOffset,l=o.position,u=o._aspectRatio||t.shiftKey,d={top:0,left:0},c=o.containerElement,p=!0;c[0]!==document&&/static/.test(c.css("position"))&&(d=h),l.left<(o._helper?h.left:0)&&(o.size.width=o.size.width+(o._helper?o.position.left-h.left:o.position.left-d.left),u&&(o.size.height=o.size.width/o.aspectRatio,p=!1),o.position.left=r.helper?h.left:0),l.top<(o._helper?h.top:0)&&(o.size.height=o.size.height+(o._helper?o.position.top-h.top:o.position.top),u&&(o.size.width=o.size.height*o.aspectRatio,p=!1),o.position.top=o._helper?h.top:0),n=o.containerElement.get(0)===o.element.parent().get(0),a=/relative|absolute/.test(o.containerElement.css("position")),n&&a?(o.offset.left=o.parentData.left+o.position.left,o.offset.top=o.parentData.top+o.position.top):(o.offset.left=o.element.offset().left,o.offset.top=o.element.offset().top),i=Math.abs(o.sizeDiff.width+(o._helper?o.offset.left-d.left:o.offset.left-h.left)),s=Math.abs(o.sizeDiff.height+(o._helper?o.offset.top-d.top:o.offset.top-h.top)),i+o.size.width>=o.parentData.width&&(o.size.width=o.parentData.width-i,u&&(o.size.height=o.size.width/o.aspectRatio,p=!1)),s+o.size.height>=o.parentData.height&&(o.size.height=o.parentData.height-s,u&&(o.size.width=o.size.height*o.aspectRatio,p=!1)),p||(o.position.left=o.prevPosition.left,o.position.top=o.prevPosition.top,o.size.width=o.prevSize.width,o.size.height=o.prevSize.height)},stop:function(){var t=e(this).resizable("instance"),i=t.options,s=t.containerOffset,n=t.containerPosition,a=t.containerElement,o=e(t.helper),r=o.offset(),h=o.outerWidth()-t.sizeDiff.width,l=o.outerHeight()-t.sizeDiff.height;t._helper&&!i.animate&&/relative/.test(a.css("position"))&&e(this).css({left:r.left-n.left-s.left,width:h,height:l}),t._helper&&!i.animate&&/static/.test(a.css("position"))&&e(this).css({left:r.left-n.left-s.left,width:h,height:l})}}),e.ui.plugin.add("resizable","alsoResize",{start:function(){var t=e(this).resizable("instance"),i=t.options;e(i.alsoResize).each(function(){var t=e(this);t.data("ui-resizable-alsoresize",{width:parseInt(t.width(),10),height:parseInt(t.height(),10),left:parseInt(t.css("left"),10),top:parseInt(t.css("top"),10)})})},resize:function(t,i){var s=e(this).resizable("instance"),n=s.options,a=s.originalSize,o=s.originalPosition,r={height:s.size.height-a.height||0,width:s.size.width-a.width||0,top:s.position.top-o.top||0,left:s.position.left-o.left||0};e(n.alsoResize).each(function(){var t=e(this),s=e(this).data("ui-resizable-alsoresize"),n={},a=t.parents(i.originalElement[0]).length?["width","height"]:["width","height","top","left"];e.each(a,function(e,t){var i=(s[t]||0)+(r[t]||0);i&&i>=0&&(n[t]=i||null)}),t.css(n)})},stop:function(){e(this).removeData("resizable-alsoresize")}}),e.ui.plugin.add("resizable","ghost",{start:function(){var t=e(this).resizable("instance"),i=t.options,s=t.size;t.ghost=t.originalElement.clone(),t.ghost.css({opacity:.25,display:"block",position:"relative",height:s.height,width:s.width,margin:0,left:0,top:0}).addClass("ui-resizable-ghost").addClass("string"==typeof i.ghost?i.ghost:""),t.ghost.appendTo(t.helper)},resize:function(){var t=e(this).resizable("instance");t.ghost&&t.ghost.css({position:"relative",height:t.size.height,width:t.size.width})},stop:function(){var t=e(this).resizable("instance");t.ghost&&t.helper&&t.helper.get(0).removeChild(t.ghost.get(0))}}),e.ui.plugin.add("resizable","grid",{resize:function(){var t,i=e(this).resizable("instance"),s=i.options,n=i.size,a=i.originalSize,o=i.originalPosition,r=i.axis,h="number"==typeof s.grid?[s.grid,s.grid]:s.grid,l=h[0]||1,u=h[1]||1,d=Math.round((n.width-a.width)/l)*l,c=Math.round((n.height-a.height)/u)*u,p=a.width+d,f=a.height+c,m=s.maxWidth&&p>s.maxWidth,g=s.maxHeight&&f>s.maxHeight,v=s.minWidth&&s.minWidth>p,y=s.minHeight&&s.minHeight>f;s.grid=h,v&&(p+=l),y&&(f+=u),m&&(p-=l),g&&(f-=u),/^(se|s|e)$/.test(r)?(i.size.width=p,i.size.height=f):/^(ne)$/.test(r)?(i.size.width=p,i.size.height=f,i.position.top=o.top-c):/^(sw)$/.test(r)?(i.size.width=p,i.size.height=f,i.position.left=o.left-d):((0>=f-u||0>=p-l)&&(t=i._getPaddingPlusBorderDimensions(this)),f-u>0?(i.size.height=f,i.position.top=o.top-c):(f=u-t.height,i.size.height=f,i.position.top=o.top+a.height-f),p-l>0?(i.size.width=p,i.position.left=o.left-d):(p=l-t.width,i.size.width=p,i.position.left=o.left+a.width-p))}}),e.ui.resizable,e.widget("ui.selectable",e.ui.mouse,{version:"1.11.4",options:{appendTo:"body",autoRefresh:!0,distance:0,filter:"*",tolerance:"touch",selected:null,selecting:null,start:null,stop:null,unselected:null,unselecting:null},_create:function(){var t,i=this;this.element.addClass("ui-selectable"),this.dragged=!1,this.refresh=function(){t=e(i.options.filter,i.element[0]),t.addClass("ui-selectee"),t.each(function(){var t=e(this),i=t.offset();e.data(this,"selectable-item",{element:this,$element:t,left:i.left,top:i.top,right:i.left+t.outerWidth(),bottom:i.top+t.outerHeight(),startselected:!1,selected:t.hasClass("ui-selected"),selecting:t.hasClass("ui-selecting"),unselecting:t.hasClass("ui-unselecting")})})},this.refresh(),this.selectees=t.addClass("ui-selectee"),this._mouseInit(),this.helper=e("<div class='ui-selectable-helper'></div>")},_destroy:function(){this.selectees.removeClass("ui-selectee").removeData("selectable-item"),this.element.removeClass("ui-selectable ui-selectable-disabled"),this._mouseDestroy()},_mouseStart:function(t){var i=this,s=this.options;this.opos=[t.pageX,t.pageY],this.options.disabled||(this.selectees=e(s.filter,this.element[0]),this._trigger("start",t),e(s.appendTo).append(this.helper),this.helper.css({left:t.pageX,top:t.pageY,width:0,height:0}),s.autoRefresh&&this.refresh(),this.selectees.filter(".ui-selected").each(function(){var s=e.data(this,"selectable-item");s.startselected=!0,t.metaKey||t.ctrlKey||(s.$element.removeClass("ui-selected"),s.selected=!1,s.$element.addClass("ui-unselecting"),s.unselecting=!0,i._trigger("unselecting",t,{unselecting:s.element}))}),e(t.target).parents().addBack().each(function(){var s,n=e.data(this,"selectable-item");return n?(s=!t.metaKey&&!t.ctrlKey||!n.$element.hasClass("ui-selected"),n.$element.removeClass(s?"ui-unselecting":"ui-selected").addClass(s?"ui-selecting":"ui-unselecting"),n.unselecting=!s,n.selecting=s,n.selected=s,s?i._trigger("selecting",t,{selecting:n.element}):i._trigger("unselecting",t,{unselecting:n.element}),!1):void 0}))},_mouseDrag:function(t){if(this.dragged=!0,!this.options.disabled){var i,s=this,n=this.options,a=this.opos[0],o=this.opos[1],r=t.pageX,h=t.pageY;return a>r&&(i=r,r=a,a=i),o>h&&(i=h,h=o,o=i),this.helper.css({left:a,top:o,width:r-a,height:h-o}),this.selectees.each(function(){var i=e.data(this,"selectable-item"),l=!1;
i&&i.element!==s.element[0]&&("touch"===n.tolerance?l=!(i.left>r||a>i.right||i.top>h||o>i.bottom):"fit"===n.tolerance&&(l=i.left>a&&r>i.right&&i.top>o&&h>i.bottom),l?(i.selected&&(i.$element.removeClass("ui-selected"),i.selected=!1),i.unselecting&&(i.$element.removeClass("ui-unselecting"),i.unselecting=!1),i.selecting||(i.$element.addClass("ui-selecting"),i.selecting=!0,s._trigger("selecting",t,{selecting:i.element}))):(i.selecting&&((t.metaKey||t.ctrlKey)&&i.startselected?(i.$element.removeClass("ui-selecting"),i.selecting=!1,i.$element.addClass("ui-selected"),i.selected=!0):(i.$element.removeClass("ui-selecting"),i.selecting=!1,i.startselected&&(i.$element.addClass("ui-unselecting"),i.unselecting=!0),s._trigger("unselecting",t,{unselecting:i.element}))),i.selected&&(t.metaKey||t.ctrlKey||i.startselected||(i.$element.removeClass("ui-selected"),i.selected=!1,i.$element.addClass("ui-unselecting"),i.unselecting=!0,s._trigger("unselecting",t,{unselecting:i.element})))))}),!1}},_mouseStop:function(t){var i=this;return this.dragged=!1,e(".ui-unselecting",this.element[0]).each(function(){var s=e.data(this,"selectable-item");s.$element.removeClass("ui-unselecting"),s.unselecting=!1,s.startselected=!1,i._trigger("unselected",t,{unselected:s.element})}),e(".ui-selecting",this.element[0]).each(function(){var s=e.data(this,"selectable-item");s.$element.removeClass("ui-selecting").addClass("ui-selected"),s.selecting=!1,s.selected=!0,s.startselected=!0,i._trigger("selected",t,{selected:s.element})}),this._trigger("stop",t),this.helper.remove(),!1}}),e.widget("ui.sortable",e.ui.mouse,{version:"1.11.4",widgetEventPrefix:"sort",ready:!1,options:{appendTo:"parent",axis:!1,connectWith:!1,containment:!1,cursor:"auto",cursorAt:!1,dropOnEmpty:!0,forcePlaceholderSize:!1,forceHelperSize:!1,grid:!1,handle:!1,helper:"original",items:"> *",opacity:!1,placeholder:!1,revert:!1,scroll:!0,scrollSensitivity:20,scrollSpeed:20,scope:"default",tolerance:"intersect",zIndex:1e3,activate:null,beforeStop:null,change:null,deactivate:null,out:null,over:null,receive:null,remove:null,sort:null,start:null,stop:null,update:null},_isOverAxis:function(e,t,i){return e>=t&&t+i>e},_isFloating:function(e){return/left|right/.test(e.css("float"))||/inline|table-cell/.test(e.css("display"))},_create:function(){this.containerCache={},this.element.addClass("ui-sortable"),this.refresh(),this.offset=this.element.offset(),this._mouseInit(),this._setHandleClassName(),this.ready=!0},_setOption:function(e,t){this._super(e,t),"handle"===e&&this._setHandleClassName()},_setHandleClassName:function(){this.element.find(".ui-sortable-handle").removeClass("ui-sortable-handle"),e.each(this.items,function(){(this.instance.options.handle?this.item.find(this.instance.options.handle):this.item).addClass("ui-sortable-handle")})},_destroy:function(){this.element.removeClass("ui-sortable ui-sortable-disabled").find(".ui-sortable-handle").removeClass("ui-sortable-handle"),this._mouseDestroy();for(var e=this.items.length-1;e>=0;e--)this.items[e].item.removeData(this.widgetName+"-item");return this},_mouseCapture:function(t,i){var s=null,n=!1,a=this;return this.reverting?!1:this.options.disabled||"static"===this.options.type?!1:(this._refreshItems(t),e(t.target).parents().each(function(){return e.data(this,a.widgetName+"-item")===a?(s=e(this),!1):void 0}),e.data(t.target,a.widgetName+"-item")===a&&(s=e(t.target)),s?!this.options.handle||i||(e(this.options.handle,s).find("*").addBack().each(function(){this===t.target&&(n=!0)}),n)?(this.currentItem=s,this._removeCurrentsFromItems(),!0):!1:!1)},_mouseStart:function(t,i,s){var n,a,o=this.options;if(this.currentContainer=this,this.refreshPositions(),this.helper=this._createHelper(t),this._cacheHelperProportions(),this._cacheMargins(),this.scrollParent=this.helper.scrollParent(),this.offset=this.currentItem.offset(),this.offset={top:this.offset.top-this.margins.top,left:this.offset.left-this.margins.left},e.extend(this.offset,{click:{left:t.pageX-this.offset.left,top:t.pageY-this.offset.top},parent:this._getParentOffset(),relative:this._getRelativeOffset()}),this.helper.css("position","absolute"),this.cssPosition=this.helper.css("position"),this.originalPosition=this._generatePosition(t),this.originalPageX=t.pageX,this.originalPageY=t.pageY,o.cursorAt&&this._adjustOffsetFromHelper(o.cursorAt),this.domPosition={prev:this.currentItem.prev()[0],parent:this.currentItem.parent()[0]},this.helper[0]!==this.currentItem[0]&&this.currentItem.hide(),this._createPlaceholder(),o.containment&&this._setContainment(),o.cursor&&"auto"!==o.cursor&&(a=this.document.find("body"),this.storedCursor=a.css("cursor"),a.css("cursor",o.cursor),this.storedStylesheet=e("<style>*{ cursor: "+o.cursor+" !important; }</style>").appendTo(a)),o.opacity&&(this.helper.css("opacity")&&(this._storedOpacity=this.helper.css("opacity")),this.helper.css("opacity",o.opacity)),o.zIndex&&(this.helper.css("zIndex")&&(this._storedZIndex=this.helper.css("zIndex")),this.helper.css("zIndex",o.zIndex)),this.scrollParent[0]!==this.document[0]&&"HTML"!==this.scrollParent[0].tagName&&(this.overflowOffset=this.scrollParent.offset()),this._trigger("start",t,this._uiHash()),this._preserveHelperProportions||this._cacheHelperProportions(),!s)for(n=this.containers.length-1;n>=0;n--)this.containers[n]._trigger("activate",t,this._uiHash(this));return e.ui.ddmanager&&(e.ui.ddmanager.current=this),e.ui.ddmanager&&!o.dropBehaviour&&e.ui.ddmanager.prepareOffsets(this,t),this.dragging=!0,this.helper.addClass("ui-sortable-helper"),this._mouseDrag(t),!0},_mouseDrag:function(t){var i,s,n,a,o=this.options,r=!1;for(this.position=this._generatePosition(t),this.positionAbs=this._convertPositionTo("absolute"),this.lastPositionAbs||(this.lastPositionAbs=this.positionAbs),this.options.scroll&&(this.scrollParent[0]!==this.document[0]&&"HTML"!==this.scrollParent[0].tagName?(this.overflowOffset.top+this.scrollParent[0].offsetHeight-t.pageY<o.scrollSensitivity?this.scrollParent[0].scrollTop=r=this.scrollParent[0].scrollTop+o.scrollSpeed:t.pageY-this.overflowOffset.top<o.scrollSensitivity&&(this.scrollParent[0].scrollTop=r=this.scrollParent[0].scrollTop-o.scrollSpeed),this.overflowOffset.left+this.scrollParent[0].offsetWidth-t.pageX<o.scrollSensitivity?this.scrollParent[0].scrollLeft=r=this.scrollParent[0].scrollLeft+o.scrollSpeed:t.pageX-this.overflowOffset.left<o.scrollSensitivity&&(this.scrollParent[0].scrollLeft=r=this.scrollParent[0].scrollLeft-o.scrollSpeed)):(t.pageY-this.document.scrollTop()<o.scrollSensitivity?r=this.document.scrollTop(this.document.scrollTop()-o.scrollSpeed):this.window.height()-(t.pageY-this.document.scrollTop())<o.scrollSensitivity&&(r=this.document.scrollTop(this.document.scrollTop()+o.scrollSpeed)),t.pageX-this.document.scrollLeft()<o.scrollSensitivity?r=this.document.scrollLeft(this.document.scrollLeft()-o.scrollSpeed):this.window.width()-(t.pageX-this.document.scrollLeft())<o.scrollSensitivity&&(r=this.document.scrollLeft(this.document.scrollLeft()+o.scrollSpeed))),r!==!1&&e.ui.ddmanager&&!o.dropBehaviour&&e.ui.ddmanager.prepareOffsets(this,t)),this.positionAbs=this._convertPositionTo("absolute"),this.options.axis&&"y"===this.options.axis||(this.helper[0].style.left=this.position.left+"px"),this.options.axis&&"x"===this.options.axis||(this.helper[0].style.top=this.position.top+"px"),i=this.items.length-1;i>=0;i--)if(s=this.items[i],n=s.item[0],a=this._intersectsWithPointer(s),a&&s.instance===this.currentContainer&&n!==this.currentItem[0]&&this.placeholder[1===a?"next":"prev"]()[0]!==n&&!e.contains(this.placeholder[0],n)&&("semi-dynamic"===this.options.type?!e.contains(this.element[0],n):!0)){if(this.direction=1===a?"down":"up","pointer"!==this.options.tolerance&&!this._intersectsWithSides(s))break;this._rearrange(t,s),this._trigger("change",t,this._uiHash());break}return this._contactContainers(t),e.ui.ddmanager&&e.ui.ddmanager.drag(this,t),this._trigger("sort",t,this._uiHash()),this.lastPositionAbs=this.positionAbs,!1},_mouseStop:function(t,i){if(t){if(e.ui.ddmanager&&!this.options.dropBehaviour&&e.ui.ddmanager.drop(this,t),this.options.revert){var s=this,n=this.placeholder.offset(),a=this.options.axis,o={};a&&"x"!==a||(o.left=n.left-this.offset.parent.left-this.margins.left+(this.offsetParent[0]===this.document[0].body?0:this.offsetParent[0].scrollLeft)),a&&"y"!==a||(o.top=n.top-this.offset.parent.top-this.margins.top+(this.offsetParent[0]===this.document[0].body?0:this.offsetParent[0].scrollTop)),this.reverting=!0,e(this.helper).animate(o,parseInt(this.options.revert,10)||500,function(){s._clear(t)})}else this._clear(t,i);return!1}},cancel:function(){if(this.dragging){this._mouseUp({target:null}),"original"===this.options.helper?this.currentItem.css(this._storedCSS).removeClass("ui-sortable-helper"):this.currentItem.show();for(var t=this.containers.length-1;t>=0;t--)this.containers[t]._trigger("deactivate",null,this._uiHash(this)),this.containers[t].containerCache.over&&(this.containers[t]._trigger("out",null,this._uiHash(this)),this.containers[t].containerCache.over=0)}return this.placeholder&&(this.placeholder[0].parentNode&&this.placeholder[0].parentNode.removeChild(this.placeholder[0]),"original"!==this.options.helper&&this.helper&&this.helper[0].parentNode&&this.helper.remove(),e.extend(this,{helper:null,dragging:!1,reverting:!1,_noFinalSort:null}),this.domPosition.prev?e(this.domPosition.prev).after(this.currentItem):e(this.domPosition.parent).prepend(this.currentItem)),this},serialize:function(t){var i=this._getItemsAsjQuery(t&&t.connected),s=[];return t=t||{},e(i).each(function(){var i=(e(t.item||this).attr(t.attribute||"id")||"").match(t.expression||/(.+)[\-=_](.+)/);i&&s.push((t.key||i[1]+"[]")+"="+(t.key&&t.expression?i[1]:i[2]))}),!s.length&&t.key&&s.push(t.key+"="),s.join("&")},toArray:function(t){var i=this._getItemsAsjQuery(t&&t.connected),s=[];return t=t||{},i.each(function(){s.push(e(t.item||this).attr(t.attribute||"id")||"")}),s},_intersectsWith:function(e){var t=this.positionAbs.left,i=t+this.helperProportions.width,s=this.positionAbs.top,n=s+this.helperProportions.height,a=e.left,o=a+e.width,r=e.top,h=r+e.height,l=this.offset.click.top,u=this.offset.click.left,d="x"===this.options.axis||s+l>r&&h>s+l,c="y"===this.options.axis||t+u>a&&o>t+u,p=d&&c;return"pointer"===this.options.tolerance||this.options.forcePointerForContainers||"pointer"!==this.options.tolerance&&this.helperProportions[this.floating?"width":"height"]>e[this.floating?"width":"height"]?p:t+this.helperProportions.width/2>a&&o>i-this.helperProportions.width/2&&s+this.helperProportions.height/2>r&&h>n-this.helperProportions.height/2},_intersectsWithPointer:function(e){var t="x"===this.options.axis||this._isOverAxis(this.positionAbs.top+this.offset.click.top,e.top,e.height),i="y"===this.options.axis||this._isOverAxis(this.positionAbs.left+this.offset.click.left,e.left,e.width),s=t&&i,n=this._getDragVerticalDirection(),a=this._getDragHorizontalDirection();return s?this.floating?a&&"right"===a||"down"===n?2:1:n&&("down"===n?2:1):!1},_intersectsWithSides:function(e){var t=this._isOverAxis(this.positionAbs.top+this.offset.click.top,e.top+e.height/2,e.height),i=this._isOverAxis(this.positionAbs.left+this.offset.click.left,e.left+e.width/2,e.width),s=this._getDragVerticalDirection(),n=this._getDragHorizontalDirection();return this.floating&&n?"right"===n&&i||"left"===n&&!i:s&&("down"===s&&t||"up"===s&&!t)},_getDragVerticalDirection:function(){var e=this.positionAbs.top-this.lastPositionAbs.top;return 0!==e&&(e>0?"down":"up")},_getDragHorizontalDirection:function(){var e=this.positionAbs.left-this.lastPositionAbs.left;return 0!==e&&(e>0?"right":"left")},refresh:function(e){return this._refreshItems(e),this._setHandleClassName(),this.refreshPositions(),this},_connectWith:function(){var e=this.options;return e.connectWith.constructor===String?[e.connectWith]:e.connectWith},_getItemsAsjQuery:function(t){function i(){r.push(this)}var s,n,a,o,r=[],h=[],l=this._connectWith();if(l&&t)for(s=l.length-1;s>=0;s--)for(a=e(l[s],this.document[0]),n=a.length-1;n>=0;n--)o=e.data(a[n],this.widgetFullName),o&&o!==this&&!o.options.disabled&&h.push([e.isFunction(o.options.items)?o.options.items.call(o.element):e(o.options.items,o.element).not(".ui-sortable-helper").not(".ui-sortable-placeholder"),o]);for(h.push([e.isFunction(this.options.items)?this.options.items.call(this.element,null,{options:this.options,item:this.currentItem}):e(this.options.items,this.element).not(".ui-sortable-helper").not(".ui-sortable-placeholder"),this]),s=h.length-1;s>=0;s--)h[s][0].each(i);return e(r)},_removeCurrentsFromItems:function(){var t=this.currentItem.find(":data("+this.widgetName+"-item)");this.items=e.grep(this.items,function(e){for(var i=0;t.length>i;i++)if(t[i]===e.item[0])return!1;return!0})},_refreshItems:function(t){this.items=[],this.containers=[this];var i,s,n,a,o,r,h,l,u=this.items,d=[[e.isFunction(this.options.items)?this.options.items.call(this.element[0],t,{item:this.currentItem}):e(this.options.items,this.element),this]],c=this._connectWith();if(c&&this.ready)for(i=c.length-1;i>=0;i--)for(n=e(c[i],this.document[0]),s=n.length-1;s>=0;s--)a=e.data(n[s],this.widgetFullName),a&&a!==this&&!a.options.disabled&&(d.push([e.isFunction(a.options.items)?a.options.items.call(a.element[0],t,{item:this.currentItem}):e(a.options.items,a.element),a]),this.containers.push(a));for(i=d.length-1;i>=0;i--)for(o=d[i][1],r=d[i][0],s=0,l=r.length;l>s;s++)h=e(r[s]),h.data(this.widgetName+"-item",o),u.push({item:h,instance:o,width:0,height:0,left:0,top:0})},refreshPositions:function(t){this.floating=this.items.length?"x"===this.options.axis||this._isFloating(this.items[0].item):!1,this.offsetParent&&this.helper&&(this.offset.parent=this._getParentOffset());var i,s,n,a;for(i=this.items.length-1;i>=0;i--)s=this.items[i],s.instance!==this.currentContainer&&this.currentContainer&&s.item[0]!==this.currentItem[0]||(n=this.options.toleranceElement?e(this.options.toleranceElement,s.item):s.item,t||(s.width=n.outerWidth(),s.height=n.outerHeight()),a=n.offset(),s.left=a.left,s.top=a.top);if(this.options.custom&&this.options.custom.refreshContainers)this.options.custom.refreshContainers.call(this);else for(i=this.containers.length-1;i>=0;i--)a=this.containers[i].element.offset(),this.containers[i].containerCache.left=a.left,this.containers[i].containerCache.top=a.top,this.containers[i].containerCache.width=this.containers[i].element.outerWidth(),this.containers[i].containerCache.height=this.containers[i].element.outerHeight();return this},_createPlaceholder:function(t){t=t||this;var i,s=t.options;s.placeholder&&s.placeholder.constructor!==String||(i=s.placeholder,s.placeholder={element:function(){var s=t.currentItem[0].nodeName.toLowerCase(),n=e("<"+s+">",t.document[0]).addClass(i||t.currentItem[0].className+" ui-sortable-placeholder").removeClass("ui-sortable-helper");return"tbody"===s?t._createTrPlaceholder(t.currentItem.find("tr").eq(0),e("<tr>",t.document[0]).appendTo(n)):"tr"===s?t._createTrPlaceholder(t.currentItem,n):"img"===s&&n.attr("src",t.currentItem.attr("src")),i||n.css("visibility","hidden"),n},update:function(e,n){(!i||s.forcePlaceholderSize)&&(n.height()||n.height(t.currentItem.innerHeight()-parseInt(t.currentItem.css("paddingTop")||0,10)-parseInt(t.currentItem.css("paddingBottom")||0,10)),n.width()||n.width(t.currentItem.innerWidth()-parseInt(t.currentItem.css("paddingLeft")||0,10)-parseInt(t.currentItem.css("paddingRight")||0,10)))}}),t.placeholder=e(s.placeholder.element.call(t.element,t.currentItem)),t.currentItem.after(t.placeholder),s.placeholder.update(t,t.placeholder)},_createTrPlaceholder:function(t,i){var s=this;t.children().each(function(){e("<td>&#160;</td>",s.document[0]).attr("colspan",e(this).attr("colspan")||1).appendTo(i)})},_contactContainers:function(t){var i,s,n,a,o,r,h,l,u,d,c=null,p=null;for(i=this.containers.length-1;i>=0;i--)if(!e.contains(this.currentItem[0],this.containers[i].element[0]))if(this._intersectsWith(this.containers[i].containerCache)){if(c&&e.contains(this.containers[i].element[0],c.element[0]))continue;c=this.containers[i],p=i}else this.containers[i].containerCache.over&&(this.containers[i]._trigger("out",t,this._uiHash(this)),this.containers[i].containerCache.over=0);if(c)if(1===this.containers.length)this.containers[p].containerCache.over||(this.containers[p]._trigger("over",t,this._uiHash(this)),this.containers[p].containerCache.over=1);else{for(n=1e4,a=null,u=c.floating||this._isFloating(this.currentItem),o=u?"left":"top",r=u?"width":"height",d=u?"clientX":"clientY",s=this.items.length-1;s>=0;s--)e.contains(this.containers[p].element[0],this.items[s].item[0])&&this.items[s].item[0]!==this.currentItem[0]&&(h=this.items[s].item.offset()[o],l=!1,t[d]-h>this.items[s][r]/2&&(l=!0),n>Math.abs(t[d]-h)&&(n=Math.abs(t[d]-h),a=this.items[s],this.direction=l?"up":"down"));if(!a&&!this.options.dropOnEmpty)return;if(this.currentContainer===this.containers[p])return this.currentContainer.containerCache.over||(this.containers[p]._trigger("over",t,this._uiHash()),this.currentContainer.containerCache.over=1),void 0;a?this._rearrange(t,a,null,!0):this._rearrange(t,null,this.containers[p].element,!0),this._trigger("change",t,this._uiHash()),this.containers[p]._trigger("change",t,this._uiHash(this)),this.currentContainer=this.containers[p],this.options.placeholder.update(this.currentContainer,this.placeholder),this.containers[p]._trigger("over",t,this._uiHash(this)),this.containers[p].containerCache.over=1}},_createHelper:function(t){var i=this.options,s=e.isFunction(i.helper)?e(i.helper.apply(this.element[0],[t,this.currentItem])):"clone"===i.helper?this.currentItem.clone():this.currentItem;return s.parents("body").length||e("parent"!==i.appendTo?i.appendTo:this.currentItem[0].parentNode)[0].appendChild(s[0]),s[0]===this.currentItem[0]&&(this._storedCSS={width:this.currentItem[0].style.width,height:this.currentItem[0].style.height,position:this.currentItem.css("position"),top:this.currentItem.css("top"),left:this.currentItem.css("left")}),(!s[0].style.width||i.forceHelperSize)&&s.width(this.currentItem.width()),(!s[0].style.height||i.forceHelperSize)&&s.height(this.currentItem.height()),s},_adjustOffsetFromHelper:function(t){"string"==typeof t&&(t=t.split(" ")),e.isArray(t)&&(t={left:+t[0],top:+t[1]||0}),"left"in t&&(this.offset.click.left=t.left+this.margins.left),"right"in t&&(this.offset.click.left=this.helperProportions.width-t.right+this.margins.left),"top"in t&&(this.offset.click.top=t.top+this.margins.top),"bottom"in t&&(this.offset.click.top=this.helperProportions.height-t.bottom+this.margins.top)},_getParentOffset:function(){this.offsetParent=this.helper.offsetParent();var t=this.offsetParent.offset();return"absolute"===this.cssPosition&&this.scrollParent[0]!==this.document[0]&&e.contains(this.scrollParent[0],this.offsetParent[0])&&(t.left+=this.scrollParent.scrollLeft(),t.top+=this.scrollParent.scrollTop()),(this.offsetParent[0]===this.document[0].body||this.offsetParent[0].tagName&&"html"===this.offsetParent[0].tagName.toLowerCase()&&e.ui.ie)&&(t={top:0,left:0}),{top:t.top+(parseInt(this.offsetParent.css("borderTopWidth"),10)||0),left:t.left+(parseInt(this.offsetParent.css("borderLeftWidth"),10)||0)}},_getRelativeOffset:function(){if("relative"===this.cssPosition){var e=this.currentItem.position();return{top:e.top-(parseInt(this.helper.css("top"),10)||0)+this.scrollParent.scrollTop(),left:e.left-(parseInt(this.helper.css("left"),10)||0)+this.scrollParent.scrollLeft()}}return{top:0,left:0}},_cacheMargins:function(){this.margins={left:parseInt(this.currentItem.css("marginLeft"),10)||0,top:parseInt(this.currentItem.css("marginTop"),10)||0}},_cacheHelperProportions:function(){this.helperProportions={width:this.helper.outerWidth(),height:this.helper.outerHeight()}},_setContainment:function(){var t,i,s,n=this.options;"parent"===n.containment&&(n.containment=this.helper[0].parentNode),("document"===n.containment||"window"===n.containment)&&(this.containment=[0-this.offset.relative.left-this.offset.parent.left,0-this.offset.relative.top-this.offset.parent.top,"document"===n.containment?this.document.width():this.window.width()-this.helperProportions.width-this.margins.left,("document"===n.containment?this.document.width():this.window.height()||this.document[0].body.parentNode.scrollHeight)-this.helperProportions.height-this.margins.top]),/^(document|window|parent)$/.test(n.containment)||(t=e(n.containment)[0],i=e(n.containment).offset(),s="hidden"!==e(t).css("overflow"),this.containment=[i.left+(parseInt(e(t).css("borderLeftWidth"),10)||0)+(parseInt(e(t).css("paddingLeft"),10)||0)-this.margins.left,i.top+(parseInt(e(t).css("borderTopWidth"),10)||0)+(parseInt(e(t).css("paddingTop"),10)||0)-this.margins.top,i.left+(s?Math.max(t.scrollWidth,t.offsetWidth):t.offsetWidth)-(parseInt(e(t).css("borderLeftWidth"),10)||0)-(parseInt(e(t).css("paddingRight"),10)||0)-this.helperProportions.width-this.margins.left,i.top+(s?Math.max(t.scrollHeight,t.offsetHeight):t.offsetHeight)-(parseInt(e(t).css("borderTopWidth"),10)||0)-(parseInt(e(t).css("paddingBottom"),10)||0)-this.helperProportions.height-this.margins.top])},_convertPositionTo:function(t,i){i||(i=this.position);var s="absolute"===t?1:-1,n="absolute"!==this.cssPosition||this.scrollParent[0]!==this.document[0]&&e.contains(this.scrollParent[0],this.offsetParent[0])?this.scrollParent:this.offsetParent,a=/(html|body)/i.test(n[0].tagName);return{top:i.top+this.offset.relative.top*s+this.offset.parent.top*s-("fixed"===this.cssPosition?-this.scrollParent.scrollTop():a?0:n.scrollTop())*s,left:i.left+this.offset.relative.left*s+this.offset.parent.left*s-("fixed"===this.cssPosition?-this.scrollParent.scrollLeft():a?0:n.scrollLeft())*s}},_generatePosition:function(t){var i,s,n=this.options,a=t.pageX,o=t.pageY,r="absolute"!==this.cssPosition||this.scrollParent[0]!==this.document[0]&&e.contains(this.scrollParent[0],this.offsetParent[0])?this.scrollParent:this.offsetParent,h=/(html|body)/i.test(r[0].tagName);return"relative"!==this.cssPosition||this.scrollParent[0]!==this.document[0]&&this.scrollParent[0]!==this.offsetParent[0]||(this.offset.relative=this._getRelativeOffset()),this.originalPosition&&(this.containment&&(t.pageX-this.offset.click.left<this.containment[0]&&(a=this.containment[0]+this.offset.click.left),t.pageY-this.offset.click.top<this.containment[1]&&(o=this.containment[1]+this.offset.click.top),t.pageX-this.offset.click.left>this.containment[2]&&(a=this.containment[2]+this.offset.click.left),t.pageY-this.offset.click.top>this.containment[3]&&(o=this.containment[3]+this.offset.click.top)),n.grid&&(i=this.originalPageY+Math.round((o-this.originalPageY)/n.grid[1])*n.grid[1],o=this.containment?i-this.offset.click.top>=this.containment[1]&&i-this.offset.click.top<=this.containment[3]?i:i-this.offset.click.top>=this.containment[1]?i-n.grid[1]:i+n.grid[1]:i,s=this.originalPageX+Math.round((a-this.originalPageX)/n.grid[0])*n.grid[0],a=this.containment?s-this.offset.click.left>=this.containment[0]&&s-this.offset.click.left<=this.containment[2]?s:s-this.offset.click.left>=this.containment[0]?s-n.grid[0]:s+n.grid[0]:s)),{top:o-this.offset.click.top-this.offset.relative.top-this.offset.parent.top+("fixed"===this.cssPosition?-this.scrollParent.scrollTop():h?0:r.scrollTop()),left:a-this.offset.click.left-this.offset.relative.left-this.offset.parent.left+("fixed"===this.cssPosition?-this.scrollParent.scrollLeft():h?0:r.scrollLeft())}},_rearrange:function(e,t,i,s){i?i[0].appendChild(this.placeholder[0]):t.item[0].parentNode.insertBefore(this.placeholder[0],"down"===this.direction?t.item[0]:t.item[0].nextSibling),this.counter=this.counter?++this.counter:1;var n=this.counter;this._delay(function(){n===this.counter&&this.refreshPositions(!s)})},_clear:function(e,t){function i(e,t,i){return function(s){i._trigger(e,s,t._uiHash(t))}}this.reverting=!1;var s,n=[];if(!this._noFinalSort&&this.currentItem.parent().length&&this.placeholder.before(this.currentItem),this._noFinalSort=null,this.helper[0]===this.currentItem[0]){for(s in this._storedCSS)("auto"===this._storedCSS[s]||"static"===this._storedCSS[s])&&(this._storedCSS[s]="");this.currentItem.css(this._storedCSS).removeClass("ui-sortable-helper")}else this.currentItem.show();for(this.fromOutside&&!t&&n.push(function(e){this._trigger("receive",e,this._uiHash(this.fromOutside))}),!this.fromOutside&&this.domPosition.prev===this.currentItem.prev().not(".ui-sortable-helper")[0]&&this.domPosition.parent===this.currentItem.parent()[0]||t||n.push(function(e){this._trigger("update",e,this._uiHash())}),this!==this.currentContainer&&(t||(n.push(function(e){this._trigger("remove",e,this._uiHash())}),n.push(function(e){return function(t){e._trigger("receive",t,this._uiHash(this))}}.call(this,this.currentContainer)),n.push(function(e){return function(t){e._trigger("update",t,this._uiHash(this))}}.call(this,this.currentContainer)))),s=this.containers.length-1;s>=0;s--)t||n.push(i("deactivate",this,this.containers[s])),this.containers[s].containerCache.over&&(n.push(i("out",this,this.containers[s])),this.containers[s].containerCache.over=0);if(this.storedCursor&&(this.document.find("body").css("cursor",this.storedCursor),this.storedStylesheet.remove()),this._storedOpacity&&this.helper.css("opacity",this._storedOpacity),this._storedZIndex&&this.helper.css("zIndex","auto"===this._storedZIndex?"":this._storedZIndex),this.dragging=!1,t||this._trigger("beforeStop",e,this._uiHash()),this.placeholder[0].parentNode.removeChild(this.placeholder[0]),this.cancelHelperRemoval||(this.helper[0]!==this.currentItem[0]&&this.helper.remove(),this.helper=null),!t){for(s=0;n.length>s;s++)n[s].call(this,e);this._trigger("stop",e,this._uiHash())}return this.fromOutside=!1,!this.cancelHelperRemoval},_trigger:function(){e.Widget.prototype._trigger.apply(this,arguments)===!1&&this.cancel()},_uiHash:function(t){var i=t||this;return{helper:i.helper,placeholder:i.placeholder||e([]),position:i.position,originalPosition:i.originalPosition,offset:i.positionAbs,item:i.currentItem,sender:t?t.element:null}}}),e.widget("ui.accordion",{version:"1.11.4",options:{active:0,animate:{},collapsible:!1,event:"click",header:"> li > :first-child,> :not(li):even",heightStyle:"auto",icons:{activeHeader:"ui-icon-triangle-1-s",header:"ui-icon-triangle-1-e"},activate:null,beforeActivate:null},hideProps:{borderTopWidth:"hide",borderBottomWidth:"hide",paddingTop:"hide",paddingBottom:"hide",height:"hide"},showProps:{borderTopWidth:"show",borderBottomWidth:"show",paddingTop:"show",paddingBottom:"show",height:"show"},_create:function(){var t=this.options;this.prevShow=this.prevHide=e(),this.element.addClass("ui-accordion ui-widget ui-helper-reset").attr("role","tablist"),t.collapsible||t.active!==!1&&null!=t.active||(t.active=0),this._processPanels(),0>t.active&&(t.active+=this.headers.length),this._refresh()},_getCreateEventData:function(){return{header:this.active,panel:this.active.length?this.active.next():e()}},_createIcons:function(){var t=this.options.icons;t&&(e("<span>").addClass("ui-accordion-header-icon ui-icon "+t.header).prependTo(this.headers),this.active.children(".ui-accordion-header-icon").removeClass(t.header).addClass(t.activeHeader),this.headers.addClass("ui-accordion-icons"))},_destroyIcons:function(){this.headers.removeClass("ui-accordion-icons").children(".ui-accordion-header-icon").remove()},_destroy:function(){var e;this.element.removeClass("ui-accordion ui-widget ui-helper-reset").removeAttr("role"),this.headers.removeClass("ui-accordion-header ui-accordion-header-active ui-state-default ui-corner-all ui-state-active ui-state-disabled ui-corner-top").removeAttr("role").removeAttr("aria-expanded").removeAttr("aria-selected").removeAttr("aria-controls").removeAttr("tabIndex").removeUniqueId(),this._destroyIcons(),e=this.headers.next().removeClass("ui-helper-reset ui-widget-content ui-corner-bottom ui-accordion-content ui-accordion-content-active ui-state-disabled").css("display","").removeAttr("role").removeAttr("aria-hidden").removeAttr("aria-labelledby").removeUniqueId(),"content"!==this.options.heightStyle&&e.css("height","")},_setOption:function(e,t){return"active"===e?(this._activate(t),void 0):("event"===e&&(this.options.event&&this._off(this.headers,this.options.event),this._setupEvents(t)),this._super(e,t),"collapsible"!==e||t||this.options.active!==!1||this._activate(0),"icons"===e&&(this._destroyIcons(),t&&this._createIcons()),"disabled"===e&&(this.element.toggleClass("ui-state-disabled",!!t).attr("aria-disabled",t),this.headers.add(this.headers.next()).toggleClass("ui-state-disabled",!!t)),void 0)},_keydown:function(t){if(!t.altKey&&!t.ctrlKey){var i=e.ui.keyCode,s=this.headers.length,n=this.headers.index(t.target),a=!1;switch(t.keyCode){case i.RIGHT:case i.DOWN:a=this.headers[(n+1)%s];break;case i.LEFT:case i.UP:a=this.headers[(n-1+s)%s];break;case i.SPACE:case i.ENTER:this._eventHandler(t);break;case i.HOME:a=this.headers[0];break;case i.END:a=this.headers[s-1]}a&&(e(t.target).attr("tabIndex",-1),e(a).attr("tabIndex",0),a.focus(),t.preventDefault())}},_panelKeyDown:function(t){t.keyCode===e.ui.keyCode.UP&&t.ctrlKey&&e(t.currentTarget).prev().focus()},refresh:function(){var t=this.options;this._processPanels(),t.active===!1&&t.collapsible===!0||!this.headers.length?(t.active=!1,this.active=e()):t.active===!1?this._activate(0):this.active.length&&!e.contains(this.element[0],this.active[0])?this.headers.length===this.headers.find(".ui-state-disabled").length?(t.active=!1,this.active=e()):this._activate(Math.max(0,t.active-1)):t.active=this.headers.index(this.active),this._destroyIcons(),this._refresh()},_processPanels:function(){var e=this.headers,t=this.panels;this.headers=this.element.find(this.options.header).addClass("ui-accordion-header ui-state-default ui-corner-all"),this.panels=this.headers.next().addClass("ui-accordion-content ui-helper-reset ui-widget-content ui-corner-bottom").filter(":not(.ui-accordion-content-active)").hide(),t&&(this._off(e.not(this.headers)),this._off(t.not(this.panels)))},_refresh:function(){var t,i=this.options,s=i.heightStyle,n=this.element.parent();this.active=this._findActive(i.active).addClass("ui-accordion-header-active ui-state-active ui-corner-top").removeClass("ui-corner-all"),this.active.next().addClass("ui-accordion-content-active").show(),this.headers.attr("role","tab").each(function(){var t=e(this),i=t.uniqueId().attr("id"),s=t.next(),n=s.uniqueId().attr("id");t.attr("aria-controls",n),s.attr("aria-labelledby",i)}).next().attr("role","tabpanel"),this.headers.not(this.active).attr({"aria-selected":"false","aria-expanded":"false",tabIndex:-1}).next().attr({"aria-hidden":"true"}).hide(),this.active.length?this.active.attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0}).next().attr({"aria-hidden":"false"}):this.headers.eq(0).attr("tabIndex",0),this._createIcons(),this._setupEvents(i.event),"fill"===s?(t=n.height(),this.element.siblings(":visible").each(function(){var i=e(this),s=i.css("position");"absolute"!==s&&"fixed"!==s&&(t-=i.outerHeight(!0))}),this.headers.each(function(){t-=e(this).outerHeight(!0)}),this.headers.next().each(function(){e(this).height(Math.max(0,t-e(this).innerHeight()+e(this).height()))}).css("overflow","auto")):"auto"===s&&(t=0,this.headers.next().each(function(){t=Math.max(t,e(this).css("height","").height())}).height(t))},_activate:function(t){var i=this._findActive(t)[0];i!==this.active[0]&&(i=i||this.active[0],this._eventHandler({target:i,currentTarget:i,preventDefault:e.noop}))},_findActive:function(t){return"number"==typeof t?this.headers.eq(t):e()},_setupEvents:function(t){var i={keydown:"_keydown"};t&&e.each(t.split(" "),function(e,t){i[t]="_eventHandler"}),this._off(this.headers.add(this.headers.next())),this._on(this.headers,i),this._on(this.headers.next(),{keydown:"_panelKeyDown"}),this._hoverable(this.headers),this._focusable(this.headers)},_eventHandler:function(t){var i=this.options,s=this.active,n=e(t.currentTarget),a=n[0]===s[0],o=a&&i.collapsible,r=o?e():n.next(),h=s.next(),l={oldHeader:s,oldPanel:h,newHeader:o?e():n,newPanel:r};
t.preventDefault(),a&&!i.collapsible||this._trigger("beforeActivate",t,l)===!1||(i.active=o?!1:this.headers.index(n),this.active=a?e():n,this._toggle(l),s.removeClass("ui-accordion-header-active ui-state-active"),i.icons&&s.children(".ui-accordion-header-icon").removeClass(i.icons.activeHeader).addClass(i.icons.header),a||(n.removeClass("ui-corner-all").addClass("ui-accordion-header-active ui-state-active ui-corner-top"),i.icons&&n.children(".ui-accordion-header-icon").removeClass(i.icons.header).addClass(i.icons.activeHeader),n.next().addClass("ui-accordion-content-active")))},_toggle:function(t){var i=t.newPanel,s=this.prevShow.length?this.prevShow:t.oldPanel;this.prevShow.add(this.prevHide).stop(!0,!0),this.prevShow=i,this.prevHide=s,this.options.animate?this._animate(i,s,t):(s.hide(),i.show(),this._toggleComplete(t)),s.attr({"aria-hidden":"true"}),s.prev().attr({"aria-selected":"false","aria-expanded":"false"}),i.length&&s.length?s.prev().attr({tabIndex:-1,"aria-expanded":"false"}):i.length&&this.headers.filter(function(){return 0===parseInt(e(this).attr("tabIndex"),10)}).attr("tabIndex",-1),i.attr("aria-hidden","false").prev().attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0})},_animate:function(e,t,i){var s,n,a,o=this,r=0,h=e.css("box-sizing"),l=e.length&&(!t.length||e.index()<t.index()),u=this.options.animate||{},d=l&&u.down||u,c=function(){o._toggleComplete(i)};return"number"==typeof d&&(a=d),"string"==typeof d&&(n=d),n=n||d.easing||u.easing,a=a||d.duration||u.duration,t.length?e.length?(s=e.show().outerHeight(),t.animate(this.hideProps,{duration:a,easing:n,step:function(e,t){t.now=Math.round(e)}}),e.hide().animate(this.showProps,{duration:a,easing:n,complete:c,step:function(e,i){i.now=Math.round(e),"height"!==i.prop?"content-box"===h&&(r+=i.now):"content"!==o.options.heightStyle&&(i.now=Math.round(s-t.outerHeight()-r),r=0)}}),void 0):t.animate(this.hideProps,a,n,c):e.animate(this.showProps,a,n,c)},_toggleComplete:function(e){var t=e.oldPanel;t.removeClass("ui-accordion-content-active").prev().removeClass("ui-corner-top").addClass("ui-corner-all"),t.length&&(t.parent()[0].className=t.parent()[0].className),this._trigger("activate",null,e)}}),e.widget("ui.menu",{version:"1.11.4",defaultElement:"<ul>",delay:300,options:{icons:{submenu:"ui-icon-carat-1-e"},items:"> *",menus:"ul",position:{my:"left-1 top",at:"right top"},role:"menu",blur:null,focus:null,select:null},_create:function(){this.activeMenu=this.element,this.mouseHandled=!1,this.element.uniqueId().addClass("ui-menu ui-widget ui-widget-content").toggleClass("ui-menu-icons",!!this.element.find(".ui-icon").length).attr({role:this.options.role,tabIndex:0}),this.options.disabled&&this.element.addClass("ui-state-disabled").attr("aria-disabled","true"),this._on({"mousedown .ui-menu-item":function(e){e.preventDefault()},"click .ui-menu-item":function(t){var i=e(t.target);!this.mouseHandled&&i.not(".ui-state-disabled").length&&(this.select(t),t.isPropagationStopped()||(this.mouseHandled=!0),i.has(".ui-menu").length?this.expand(t):!this.element.is(":focus")&&e(this.document[0].activeElement).closest(".ui-menu").length&&(this.element.trigger("focus",[!0]),this.active&&1===this.active.parents(".ui-menu").length&&clearTimeout(this.timer)))},"mouseenter .ui-menu-item":function(t){if(!this.previousFilter){var i=e(t.currentTarget);i.siblings(".ui-state-active").removeClass("ui-state-active"),this.focus(t,i)}},mouseleave:"collapseAll","mouseleave .ui-menu":"collapseAll",focus:function(e,t){var i=this.active||this.element.find(this.options.items).eq(0);t||this.focus(e,i)},blur:function(t){this._delay(function(){e.contains(this.element[0],this.document[0].activeElement)||this.collapseAll(t)})},keydown:"_keydown"}),this.refresh(),this._on(this.document,{click:function(e){this._closeOnDocumentClick(e)&&this.collapseAll(e),this.mouseHandled=!1}})},_destroy:function(){this.element.removeAttr("aria-activedescendant").find(".ui-menu").addBack().removeClass("ui-menu ui-widget ui-widget-content ui-menu-icons ui-front").removeAttr("role").removeAttr("tabIndex").removeAttr("aria-labelledby").removeAttr("aria-expanded").removeAttr("aria-hidden").removeAttr("aria-disabled").removeUniqueId().show(),this.element.find(".ui-menu-item").removeClass("ui-menu-item").removeAttr("role").removeAttr("aria-disabled").removeUniqueId().removeClass("ui-state-hover").removeAttr("tabIndex").removeAttr("role").removeAttr("aria-haspopup").children().each(function(){var t=e(this);t.data("ui-menu-submenu-carat")&&t.remove()}),this.element.find(".ui-menu-divider").removeClass("ui-menu-divider ui-widget-content")},_keydown:function(t){var i,s,n,a,o=!0;switch(t.keyCode){case e.ui.keyCode.PAGE_UP:this.previousPage(t);break;case e.ui.keyCode.PAGE_DOWN:this.nextPage(t);break;case e.ui.keyCode.HOME:this._move("first","first",t);break;case e.ui.keyCode.END:this._move("last","last",t);break;case e.ui.keyCode.UP:this.previous(t);break;case e.ui.keyCode.DOWN:this.next(t);break;case e.ui.keyCode.LEFT:this.collapse(t);break;case e.ui.keyCode.RIGHT:this.active&&!this.active.is(".ui-state-disabled")&&this.expand(t);break;case e.ui.keyCode.ENTER:case e.ui.keyCode.SPACE:this._activate(t);break;case e.ui.keyCode.ESCAPE:this.collapse(t);break;default:o=!1,s=this.previousFilter||"",n=String.fromCharCode(t.keyCode),a=!1,clearTimeout(this.filterTimer),n===s?a=!0:n=s+n,i=this._filterMenuItems(n),i=a&&-1!==i.index(this.active.next())?this.active.nextAll(".ui-menu-item"):i,i.length||(n=String.fromCharCode(t.keyCode),i=this._filterMenuItems(n)),i.length?(this.focus(t,i),this.previousFilter=n,this.filterTimer=this._delay(function(){delete this.previousFilter},1e3)):delete this.previousFilter}o&&t.preventDefault()},_activate:function(e){this.active.is(".ui-state-disabled")||(this.active.is("[aria-haspopup='true']")?this.expand(e):this.select(e))},refresh:function(){var t,i,s=this,n=this.options.icons.submenu,a=this.element.find(this.options.menus);this.element.toggleClass("ui-menu-icons",!!this.element.find(".ui-icon").length),a.filter(":not(.ui-menu)").addClass("ui-menu ui-widget ui-widget-content ui-front").hide().attr({role:this.options.role,"aria-hidden":"true","aria-expanded":"false"}).each(function(){var t=e(this),i=t.parent(),s=e("<span>").addClass("ui-menu-icon ui-icon "+n).data("ui-menu-submenu-carat",!0);i.attr("aria-haspopup","true").prepend(s),t.attr("aria-labelledby",i.attr("id"))}),t=a.add(this.element),i=t.find(this.options.items),i.not(".ui-menu-item").each(function(){var t=e(this);s._isDivider(t)&&t.addClass("ui-widget-content ui-menu-divider")}),i.not(".ui-menu-item, .ui-menu-divider").addClass("ui-menu-item").uniqueId().attr({tabIndex:-1,role:this._itemRole()}),i.filter(".ui-state-disabled").attr("aria-disabled","true"),this.active&&!e.contains(this.element[0],this.active[0])&&this.blur()},_itemRole:function(){return{menu:"menuitem",listbox:"option"}[this.options.role]},_setOption:function(e,t){"icons"===e&&this.element.find(".ui-menu-icon").removeClass(this.options.icons.submenu).addClass(t.submenu),"disabled"===e&&this.element.toggleClass("ui-state-disabled",!!t).attr("aria-disabled",t),this._super(e,t)},focus:function(e,t){var i,s;this.blur(e,e&&"focus"===e.type),this._scrollIntoView(t),this.active=t.first(),s=this.active.addClass("ui-state-focus").removeClass("ui-state-active"),this.options.role&&this.element.attr("aria-activedescendant",s.attr("id")),this.active.parent().closest(".ui-menu-item").addClass("ui-state-active"),e&&"keydown"===e.type?this._close():this.timer=this._delay(function(){this._close()},this.delay),i=t.children(".ui-menu"),i.length&&e&&/^mouse/.test(e.type)&&this._startOpening(i),this.activeMenu=t.parent(),this._trigger("focus",e,{item:t})},_scrollIntoView:function(t){var i,s,n,a,o,r;this._hasScroll()&&(i=parseFloat(e.css(this.activeMenu[0],"borderTopWidth"))||0,s=parseFloat(e.css(this.activeMenu[0],"paddingTop"))||0,n=t.offset().top-this.activeMenu.offset().top-i-s,a=this.activeMenu.scrollTop(),o=this.activeMenu.height(),r=t.outerHeight(),0>n?this.activeMenu.scrollTop(a+n):n+r>o&&this.activeMenu.scrollTop(a+n-o+r))},blur:function(e,t){t||clearTimeout(this.timer),this.active&&(this.active.removeClass("ui-state-focus"),this.active=null,this._trigger("blur",e,{item:this.active}))},_startOpening:function(e){clearTimeout(this.timer),"true"===e.attr("aria-hidden")&&(this.timer=this._delay(function(){this._close(),this._open(e)},this.delay))},_open:function(t){var i=e.extend({of:this.active},this.options.position);clearTimeout(this.timer),this.element.find(".ui-menu").not(t.parents(".ui-menu")).hide().attr("aria-hidden","true"),t.show().removeAttr("aria-hidden").attr("aria-expanded","true").position(i)},collapseAll:function(t,i){clearTimeout(this.timer),this.timer=this._delay(function(){var s=i?this.element:e(t&&t.target).closest(this.element.find(".ui-menu"));s.length||(s=this.element),this._close(s),this.blur(t),this.activeMenu=s},this.delay)},_close:function(e){e||(e=this.active?this.active.parent():this.element),e.find(".ui-menu").hide().attr("aria-hidden","true").attr("aria-expanded","false").end().find(".ui-state-active").not(".ui-state-focus").removeClass("ui-state-active")},_closeOnDocumentClick:function(t){return!e(t.target).closest(".ui-menu").length},_isDivider:function(e){return!/[^\-\u2014\u2013\s]/.test(e.text())},collapse:function(e){var t=this.active&&this.active.parent().closest(".ui-menu-item",this.element);t&&t.length&&(this._close(),this.focus(e,t))},expand:function(e){var t=this.active&&this.active.children(".ui-menu ").find(this.options.items).first();t&&t.length&&(this._open(t.parent()),this._delay(function(){this.focus(e,t)}))},next:function(e){this._move("next","first",e)},previous:function(e){this._move("prev","last",e)},isFirstItem:function(){return this.active&&!this.active.prevAll(".ui-menu-item").length},isLastItem:function(){return this.active&&!this.active.nextAll(".ui-menu-item").length},_move:function(e,t,i){var s;this.active&&(s="first"===e||"last"===e?this.active["first"===e?"prevAll":"nextAll"](".ui-menu-item").eq(-1):this.active[e+"All"](".ui-menu-item").eq(0)),s&&s.length&&this.active||(s=this.activeMenu.find(this.options.items)[t]()),this.focus(i,s)},nextPage:function(t){var i,s,n;return this.active?(this.isLastItem()||(this._hasScroll()?(s=this.active.offset().top,n=this.element.height(),this.active.nextAll(".ui-menu-item").each(function(){return i=e(this),0>i.offset().top-s-n}),this.focus(t,i)):this.focus(t,this.activeMenu.find(this.options.items)[this.active?"last":"first"]())),void 0):(this.next(t),void 0)},previousPage:function(t){var i,s,n;return this.active?(this.isFirstItem()||(this._hasScroll()?(s=this.active.offset().top,n=this.element.height(),this.active.prevAll(".ui-menu-item").each(function(){return i=e(this),i.offset().top-s+n>0}),this.focus(t,i)):this.focus(t,this.activeMenu.find(this.options.items).first())),void 0):(this.next(t),void 0)},_hasScroll:function(){return this.element.outerHeight()<this.element.prop("scrollHeight")},select:function(t){this.active=this.active||e(t.target).closest(".ui-menu-item");var i={item:this.active};this.active.has(".ui-menu").length||this.collapseAll(t,!0),this._trigger("select",t,i)},_filterMenuItems:function(t){var i=t.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&"),s=RegExp("^"+i,"i");return this.activeMenu.find(this.options.items).filter(".ui-menu-item").filter(function(){return s.test(e.trim(e(this).text()))})}}),e.widget("ui.autocomplete",{version:"1.11.4",defaultElement:"<input>",options:{appendTo:null,autoFocus:!1,delay:300,minLength:1,position:{my:"left top",at:"left bottom",collision:"none"},source:null,change:null,close:null,focus:null,open:null,response:null,search:null,select:null},requestIndex:0,pending:0,_create:function(){var t,i,s,n=this.element[0].nodeName.toLowerCase(),a="textarea"===n,o="input"===n;this.isMultiLine=a?!0:o?!1:this.element.prop("isContentEditable"),this.valueMethod=this.element[a||o?"val":"text"],this.isNewMenu=!0,this.element.addClass("ui-autocomplete-input").attr("autocomplete","off"),this._on(this.element,{keydown:function(n){if(this.element.prop("readOnly"))return t=!0,s=!0,i=!0,void 0;t=!1,s=!1,i=!1;var a=e.ui.keyCode;switch(n.keyCode){case a.PAGE_UP:t=!0,this._move("previousPage",n);break;case a.PAGE_DOWN:t=!0,this._move("nextPage",n);break;case a.UP:t=!0,this._keyEvent("previous",n);break;case a.DOWN:t=!0,this._keyEvent("next",n);break;case a.ENTER:this.menu.active&&(t=!0,n.preventDefault(),this.menu.select(n));break;case a.TAB:this.menu.active&&this.menu.select(n);break;case a.ESCAPE:this.menu.element.is(":visible")&&(this.isMultiLine||this._value(this.term),this.close(n),n.preventDefault());break;default:i=!0,this._searchTimeout(n)}},keypress:function(s){if(t)return t=!1,(!this.isMultiLine||this.menu.element.is(":visible"))&&s.preventDefault(),void 0;if(!i){var n=e.ui.keyCode;switch(s.keyCode){case n.PAGE_UP:this._move("previousPage",s);break;case n.PAGE_DOWN:this._move("nextPage",s);break;case n.UP:this._keyEvent("previous",s);break;case n.DOWN:this._keyEvent("next",s)}}},input:function(e){return s?(s=!1,e.preventDefault(),void 0):(this._searchTimeout(e),void 0)},focus:function(){this.selectedItem=null,this.previous=this._value()},blur:function(e){return this.cancelBlur?(delete this.cancelBlur,void 0):(clearTimeout(this.searching),this.close(e),this._change(e),void 0)}}),this._initSource(),this.menu=e("<ul>").addClass("ui-autocomplete ui-front").appendTo(this._appendTo()).menu({role:null}).hide().menu("instance"),this._on(this.menu.element,{mousedown:function(t){t.preventDefault(),this.cancelBlur=!0,this._delay(function(){delete this.cancelBlur});var i=this.menu.element[0];e(t.target).closest(".ui-menu-item").length||this._delay(function(){var t=this;this.document.one("mousedown",function(s){s.target===t.element[0]||s.target===i||e.contains(i,s.target)||t.close()})})},menufocus:function(t,i){var s,n;return this.isNewMenu&&(this.isNewMenu=!1,t.originalEvent&&/^mouse/.test(t.originalEvent.type))?(this.menu.blur(),this.document.one("mousemove",function(){e(t.target).trigger(t.originalEvent)}),void 0):(n=i.item.data("ui-autocomplete-item"),!1!==this._trigger("focus",t,{item:n})&&t.originalEvent&&/^key/.test(t.originalEvent.type)&&this._value(n.value),s=i.item.attr("aria-label")||n.value,s&&e.trim(s).length&&(this.liveRegion.children().hide(),e("<div>").text(s).appendTo(this.liveRegion)),void 0)},menuselect:function(e,t){var i=t.item.data("ui-autocomplete-item"),s=this.previous;this.element[0]!==this.document[0].activeElement&&(this.element.focus(),this.previous=s,this._delay(function(){this.previous=s,this.selectedItem=i})),!1!==this._trigger("select",e,{item:i})&&this._value(i.value),this.term=this._value(),this.close(e),this.selectedItem=i}}),this.liveRegion=e("<span>",{role:"status","aria-live":"assertive","aria-relevant":"additions"}).addClass("ui-helper-hidden-accessible").appendTo(this.document[0].body),this._on(this.window,{beforeunload:function(){this.element.removeAttr("autocomplete")}})},_destroy:function(){clearTimeout(this.searching),this.element.removeClass("ui-autocomplete-input").removeAttr("autocomplete"),this.menu.element.remove(),this.liveRegion.remove()},_setOption:function(e,t){this._super(e,t),"source"===e&&this._initSource(),"appendTo"===e&&this.menu.element.appendTo(this._appendTo()),"disabled"===e&&t&&this.xhr&&this.xhr.abort()},_appendTo:function(){var t=this.options.appendTo;return t&&(t=t.jquery||t.nodeType?e(t):this.document.find(t).eq(0)),t&&t[0]||(t=this.element.closest(".ui-front")),t.length||(t=this.document[0].body),t},_initSource:function(){var t,i,s=this;e.isArray(this.options.source)?(t=this.options.source,this.source=function(i,s){s(e.ui.autocomplete.filter(t,i.term))}):"string"==typeof this.options.source?(i=this.options.source,this.source=function(t,n){s.xhr&&s.xhr.abort(),s.xhr=e.ajax({url:i,data:t,dataType:"json",success:function(e){n(e)},error:function(){n([])}})}):this.source=this.options.source},_searchTimeout:function(e){clearTimeout(this.searching),this.searching=this._delay(function(){var t=this.term===this._value(),i=this.menu.element.is(":visible"),s=e.altKey||e.ctrlKey||e.metaKey||e.shiftKey;(!t||t&&!i&&!s)&&(this.selectedItem=null,this.search(null,e))},this.options.delay)},search:function(e,t){return e=null!=e?e:this._value(),this.term=this._value(),e.length<this.options.minLength?this.close(t):this._trigger("search",t)!==!1?this._search(e):void 0},_search:function(e){this.pending++,this.element.addClass("ui-autocomplete-loading"),this.cancelSearch=!1,this.source({term:e},this._response())},_response:function(){var t=++this.requestIndex;return e.proxy(function(e){t===this.requestIndex&&this.__response(e),this.pending--,this.pending||this.element.removeClass("ui-autocomplete-loading")},this)},__response:function(e){e&&(e=this._normalize(e)),this._trigger("response",null,{content:e}),!this.options.disabled&&e&&e.length&&!this.cancelSearch?(this._suggest(e),this._trigger("open")):this._close()},close:function(e){this.cancelSearch=!0,this._close(e)},_close:function(e){this.menu.element.is(":visible")&&(this.menu.element.hide(),this.menu.blur(),this.isNewMenu=!0,this._trigger("close",e))},_change:function(e){this.previous!==this._value()&&this._trigger("change",e,{item:this.selectedItem})},_normalize:function(t){return t.length&&t[0].label&&t[0].value?t:e.map(t,function(t){return"string"==typeof t?{label:t,value:t}:e.extend({},t,{label:t.label||t.value,value:t.value||t.label})})},_suggest:function(t){var i=this.menu.element.empty();this._renderMenu(i,t),this.isNewMenu=!0,this.menu.refresh(),i.show(),this._resizeMenu(),i.position(e.extend({of:this.element},this.options.position)),this.options.autoFocus&&this.menu.next()},_resizeMenu:function(){var e=this.menu.element;e.outerWidth(Math.max(e.width("").outerWidth()+1,this.element.outerWidth()))},_renderMenu:function(t,i){var s=this;e.each(i,function(e,i){s._renderItemData(t,i)})},_renderItemData:function(e,t){return this._renderItem(e,t).data("ui-autocomplete-item",t)},_renderItem:function(t,i){return e("<li>").text(i.label).appendTo(t)},_move:function(e,t){return this.menu.element.is(":visible")?this.menu.isFirstItem()&&/^previous/.test(e)||this.menu.isLastItem()&&/^next/.test(e)?(this.isMultiLine||this._value(this.term),this.menu.blur(),void 0):(this.menu[e](t),void 0):(this.search(null,t),void 0)},widget:function(){return this.menu.element},_value:function(){return this.valueMethod.apply(this.element,arguments)},_keyEvent:function(e,t){(!this.isMultiLine||this.menu.element.is(":visible"))&&(this._move(e,t),t.preventDefault())}}),e.extend(e.ui.autocomplete,{escapeRegex:function(e){return e.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")},filter:function(t,i){var s=RegExp(e.ui.autocomplete.escapeRegex(i),"i");return e.grep(t,function(e){return s.test(e.label||e.value||e)})}}),e.widget("ui.autocomplete",e.ui.autocomplete,{options:{messages:{noResults:"No search results.",results:function(e){return e+(e>1?" results are":" result is")+" available, use up and down arrow keys to navigate."}}},__response:function(t){var i;this._superApply(arguments),this.options.disabled||this.cancelSearch||(i=t&&t.length?this.options.messages.results(t.length):this.options.messages.noResults,this.liveRegion.children().hide(),e("<div>").text(i).appendTo(this.liveRegion))}}),e.ui.autocomplete;var r,h="ui-button ui-widget ui-state-default ui-corner-all",l="ui-button-icons-only ui-button-icon-only ui-button-text-icons ui-button-text-icon-primary ui-button-text-icon-secondary ui-button-text-only",u=function(){var t=e(this);setTimeout(function(){t.find(":ui-button").button("refresh")},1)},d=function(t){var i=t.name,s=t.form,n=e([]);return i&&(i=i.replace(/'/g,"\\'"),n=s?e(s).find("[name='"+i+"'][type=radio]"):e("[name='"+i+"'][type=radio]",t.ownerDocument).filter(function(){return!this.form})),n};e.widget("ui.button",{version:"1.11.4",defaultElement:"<button>",options:{disabled:null,text:!0,label:null,icons:{primary:null,secondary:null}},_create:function(){this.element.closest("form").unbind("reset"+this.eventNamespace).bind("reset"+this.eventNamespace,u),"boolean"!=typeof this.options.disabled?this.options.disabled=!!this.element.prop("disabled"):this.element.prop("disabled",this.options.disabled),this._determineButtonType(),this.hasTitle=!!this.buttonElement.attr("title");var t=this,i=this.options,s="checkbox"===this.type||"radio"===this.type,n=s?"":"ui-state-active";null===i.label&&(i.label="input"===this.type?this.buttonElement.val():this.buttonElement.html()),this._hoverable(this.buttonElement),this.buttonElement.addClass(h).attr("role","button").bind("mouseenter"+this.eventNamespace,function(){i.disabled||this===r&&e(this).addClass("ui-state-active")}).bind("mouseleave"+this.eventNamespace,function(){i.disabled||e(this).removeClass(n)}).bind("click"+this.eventNamespace,function(e){i.disabled&&(e.preventDefault(),e.stopImmediatePropagation())}),this._on({focus:function(){this.buttonElement.addClass("ui-state-focus")},blur:function(){this.buttonElement.removeClass("ui-state-focus")}}),s&&this.element.bind("change"+this.eventNamespace,function(){t.refresh()}),"checkbox"===this.type?this.buttonElement.bind("click"+this.eventNamespace,function(){return i.disabled?!1:void 0}):"radio"===this.type?this.buttonElement.bind("click"+this.eventNamespace,function(){if(i.disabled)return!1;e(this).addClass("ui-state-active"),t.buttonElement.attr("aria-pressed","true");var s=t.element[0];d(s).not(s).map(function(){return e(this).button("widget")[0]}).removeClass("ui-state-active").attr("aria-pressed","false")}):(this.buttonElement.bind("mousedown"+this.eventNamespace,function(){return i.disabled?!1:(e(this).addClass("ui-state-active"),r=this,t.document.one("mouseup",function(){r=null}),void 0)}).bind("mouseup"+this.eventNamespace,function(){return i.disabled?!1:(e(this).removeClass("ui-state-active"),void 0)}).bind("keydown"+this.eventNamespace,function(t){return i.disabled?!1:((t.keyCode===e.ui.keyCode.SPACE||t.keyCode===e.ui.keyCode.ENTER)&&e(this).addClass("ui-state-active"),void 0)}).bind("keyup"+this.eventNamespace+" blur"+this.eventNamespace,function(){e(this).removeClass("ui-state-active")}),this.buttonElement.is("a")&&this.buttonElement.keyup(function(t){t.keyCode===e.ui.keyCode.SPACE&&e(this).click()})),this._setOption("disabled",i.disabled),this._resetButton()},_determineButtonType:function(){var e,t,i;this.type=this.element.is("[type=checkbox]")?"checkbox":this.element.is("[type=radio]")?"radio":this.element.is("input")?"input":"button","checkbox"===this.type||"radio"===this.type?(e=this.element.parents().last(),t="label[for='"+this.element.attr("id")+"']",this.buttonElement=e.find(t),this.buttonElement.length||(e=e.length?e.siblings():this.element.siblings(),this.buttonElement=e.filter(t),this.buttonElement.length||(this.buttonElement=e.find(t))),this.element.addClass("ui-helper-hidden-accessible"),i=this.element.is(":checked"),i&&this.buttonElement.addClass("ui-state-active"),this.buttonElement.prop("aria-pressed",i)):this.buttonElement=this.element},widget:function(){return this.buttonElement},_destroy:function(){this.element.removeClass("ui-helper-hidden-accessible"),this.buttonElement.removeClass(h+" ui-state-active "+l).removeAttr("role").removeAttr("aria-pressed").html(this.buttonElement.find(".ui-button-text").html()),this.hasTitle||this.buttonElement.removeAttr("title")},_setOption:function(e,t){return this._super(e,t),"disabled"===e?(this.widget().toggleClass("ui-state-disabled",!!t),this.element.prop("disabled",!!t),t&&("checkbox"===this.type||"radio"===this.type?this.buttonElement.removeClass("ui-state-focus"):this.buttonElement.removeClass("ui-state-focus ui-state-active")),void 0):(this._resetButton(),void 0)},refresh:function(){var t=this.element.is("input, button")?this.element.is(":disabled"):this.element.hasClass("ui-button-disabled");t!==this.options.disabled&&this._setOption("disabled",t),"radio"===this.type?d(this.element[0]).each(function(){e(this).is(":checked")?e(this).button("widget").addClass("ui-state-active").attr("aria-pressed","true"):e(this).button("widget").removeClass("ui-state-active").attr("aria-pressed","false")}):"checkbox"===this.type&&(this.element.is(":checked")?this.buttonElement.addClass("ui-state-active").attr("aria-pressed","true"):this.buttonElement.removeClass("ui-state-active").attr("aria-pressed","false"))},_resetButton:function(){if("input"===this.type)return this.options.label&&this.element.val(this.options.label),void 0;var t=this.buttonElement.removeClass(l),i=e("<span></span>",this.document[0]).addClass("ui-button-text").html(this.options.label).appendTo(t.empty()).text(),s=this.options.icons,n=s.primary&&s.secondary,a=[];s.primary||s.secondary?(this.options.text&&a.push("ui-button-text-icon"+(n?"s":s.primary?"-primary":"-secondary")),s.primary&&t.prepend("<span class='ui-button-icon-primary ui-icon "+s.primary+"'></span>"),s.secondary&&t.append("<span class='ui-button-icon-secondary ui-icon "+s.secondary+"'></span>"),this.options.text||(a.push(n?"ui-button-icons-only":"ui-button-icon-only"),this.hasTitle||t.attr("title",e.trim(i)))):a.push("ui-button-text-only"),t.addClass(a.join(" "))}}),e.widget("ui.buttonset",{version:"1.11.4",options:{items:"button, input[type=button], input[type=submit], input[type=reset], input[type=checkbox], input[type=radio], a, :data(ui-button)"},_create:function(){this.element.addClass("ui-buttonset")},_init:function(){this.refresh()},_setOption:function(e,t){"disabled"===e&&this.buttons.button("option",e,t),this._super(e,t)},refresh:function(){var t="rtl"===this.element.css("direction"),i=this.element.find(this.options.items),s=i.filter(":ui-button");i.not(":ui-button").button(),s.button("refresh"),this.buttons=i.map(function(){return e(this).button("widget")[0]}).removeClass("ui-corner-all ui-corner-left ui-corner-right").filter(":first").addClass(t?"ui-corner-right":"ui-corner-left").end().filter(":last").addClass(t?"ui-corner-left":"ui-corner-right").end().end()},_destroy:function(){this.element.removeClass("ui-buttonset"),this.buttons.map(function(){return e(this).button("widget")[0]}).removeClass("ui-corner-left ui-corner-right").end().button("destroy")}}),e.ui.button,e.widget("ui.dialog",{version:"1.11.4",options:{appendTo:"body",autoOpen:!0,buttons:[],closeOnEscape:!0,closeText:"Close",dialogClass:"",draggable:!0,hide:null,height:"auto",maxHeight:null,maxWidth:null,minHeight:150,minWidth:150,modal:!1,position:{my:"center",at:"center",of:window,collision:"fit",using:function(t){var i=e(this).css(t).offset().top;0>i&&e(this).css("top",t.top-i)}},resizable:!0,show:null,title:null,width:300,beforeClose:null,close:null,drag:null,dragStart:null,dragStop:null,focus:null,open:null,resize:null,resizeStart:null,resizeStop:null},sizeRelatedOptions:{buttons:!0,height:!0,maxHeight:!0,maxWidth:!0,minHeight:!0,minWidth:!0,width:!0},resizableRelatedOptions:{maxHeight:!0,maxWidth:!0,minHeight:!0,minWidth:!0},_create:function(){this.originalCss={display:this.element[0].style.display,width:this.element[0].style.width,minHeight:this.element[0].style.minHeight,maxHeight:this.element[0].style.maxHeight,height:this.element[0].style.height},this.originalPosition={parent:this.element.parent(),index:this.element.parent().children().index(this.element)},this.originalTitle=this.element.attr("title"),this.options.title=this.options.title||this.originalTitle,this._createWrapper(),this.element.show().removeAttr("title").addClass("ui-dialog-content ui-widget-content").appendTo(this.uiDialog),this._createTitlebar(),this._createButtonPane(),this.options.draggable&&e.fn.draggable&&this._makeDraggable(),this.options.resizable&&e.fn.resizable&&this._makeResizable(),this._isOpen=!1,this._trackFocus()},_init:function(){this.options.autoOpen&&this.open()},_appendTo:function(){var t=this.options.appendTo;return t&&(t.jquery||t.nodeType)?e(t):this.document.find(t||"body").eq(0)},_destroy:function(){var e,t=this.originalPosition;this._untrackInstance(),this._destroyOverlay(),this.element.removeUniqueId().removeClass("ui-dialog-content ui-widget-content").css(this.originalCss).detach(),this.uiDialog.stop(!0,!0).remove(),this.originalTitle&&this.element.attr("title",this.originalTitle),e=t.parent.children().eq(t.index),e.length&&e[0]!==this.element[0]?e.before(this.element):t.parent.append(this.element)},widget:function(){return this.uiDialog},disable:e.noop,enable:e.noop,close:function(t){var i,s=this;if(this._isOpen&&this._trigger("beforeClose",t)!==!1){if(this._isOpen=!1,this._focusedElement=null,this._destroyOverlay(),this._untrackInstance(),!this.opener.filter(":focusable").focus().length)try{i=this.document[0].activeElement,i&&"body"!==i.nodeName.toLowerCase()&&e(i).blur()}catch(n){}this._hide(this.uiDialog,this.options.hide,function(){s._trigger("close",t)})}},isOpen:function(){return this._isOpen},moveToTop:function(){this._moveToTop()},_moveToTop:function(t,i){var s=!1,n=this.uiDialog.siblings(".ui-front:visible").map(function(){return+e(this).css("z-index")}).get(),a=Math.max.apply(null,n);return a>=+this.uiDialog.css("z-index")&&(this.uiDialog.css("z-index",a+1),s=!0),s&&!i&&this._trigger("focus",t),s},open:function(){var t=this;return this._isOpen?(this._moveToTop()&&this._focusTabbable(),void 0):(this._isOpen=!0,this.opener=e(this.document[0].activeElement),this._size(),this._position(),this._createOverlay(),this._moveToTop(null,!0),this.overlay&&this.overlay.css("z-index",this.uiDialog.css("z-index")-1),this._show(this.uiDialog,this.options.show,function(){t._focusTabbable(),t._trigger("focus")}),this._makeFocusTarget(),this._trigger("open"),void 0)},_focusTabbable:function(){var e=this._focusedElement;e||(e=this.element.find("[autofocus]")),e.length||(e=this.element.find(":tabbable")),e.length||(e=this.uiDialogButtonPane.find(":tabbable")),e.length||(e=this.uiDialogTitlebarClose.filter(":tabbable")),e.length||(e=this.uiDialog),e.eq(0).focus()},_keepFocus:function(t){function i(){var t=this.document[0].activeElement,i=this.uiDialog[0]===t||e.contains(this.uiDialog[0],t);i||this._focusTabbable()}t.preventDefault(),i.call(this),this._delay(i)},_createWrapper:function(){this.uiDialog=e("<div>").addClass("ui-dialog ui-widget ui-widget-content ui-corner-all ui-front "+this.options.dialogClass).hide().attr({tabIndex:-1,role:"dialog"}).appendTo(this._appendTo()),this._on(this.uiDialog,{keydown:function(t){if(this.options.closeOnEscape&&!t.isDefaultPrevented()&&t.keyCode&&t.keyCode===e.ui.keyCode.ESCAPE)return t.preventDefault(),this.close(t),void 0;if(t.keyCode===e.ui.keyCode.TAB&&!t.isDefaultPrevented()){var i=this.uiDialog.find(":tabbable"),s=i.filter(":first"),n=i.filter(":last");t.target!==n[0]&&t.target!==this.uiDialog[0]||t.shiftKey?t.target!==s[0]&&t.target!==this.uiDialog[0]||!t.shiftKey||(this._delay(function(){n.focus()}),t.preventDefault()):(this._delay(function(){s.focus()}),t.preventDefault())}},mousedown:function(e){this._moveToTop(e)&&this._focusTabbable()}}),this.element.find("[aria-describedby]").length||this.uiDialog.attr({"aria-describedby":this.element.uniqueId().attr("id")})},_createTitlebar:function(){var t;this.uiDialogTitlebar=e("<div>").addClass("ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix").prependTo(this.uiDialog),this._on(this.uiDialogTitlebar,{mousedown:function(t){e(t.target).closest(".ui-dialog-titlebar-close")||this.uiDialog.focus()}}),this.uiDialogTitlebarClose=e("<button type='button'></button>").button({label:this.options.closeText,icons:{primary:"ui-icon-closethick"},text:!1}).addClass("ui-dialog-titlebar-close").appendTo(this.uiDialogTitlebar),this._on(this.uiDialogTitlebarClose,{click:function(e){e.preventDefault(),this.close(e)}}),t=e("<span>").uniqueId().addClass("ui-dialog-title").prependTo(this.uiDialogTitlebar),this._title(t),this.uiDialog.attr({"aria-labelledby":t.attr("id")})},_title:function(e){this.options.title||e.html("&#160;"),e.text(this.options.title)
},_createButtonPane:function(){this.uiDialogButtonPane=e("<div>").addClass("ui-dialog-buttonpane ui-widget-content ui-helper-clearfix"),this.uiButtonSet=e("<div>").addClass("ui-dialog-buttonset").appendTo(this.uiDialogButtonPane),this._createButtons()},_createButtons:function(){var t=this,i=this.options.buttons;return this.uiDialogButtonPane.remove(),this.uiButtonSet.empty(),e.isEmptyObject(i)||e.isArray(i)&&!i.length?(this.uiDialog.removeClass("ui-dialog-buttons"),void 0):(e.each(i,function(i,s){var n,a;s=e.isFunction(s)?{click:s,text:i}:s,s=e.extend({type:"button"},s),n=s.click,s.click=function(){n.apply(t.element[0],arguments)},a={icons:s.icons,text:s.showText},delete s.icons,delete s.showText,e("<button></button>",s).button(a).appendTo(t.uiButtonSet)}),this.uiDialog.addClass("ui-dialog-buttons"),this.uiDialogButtonPane.appendTo(this.uiDialog),void 0)},_makeDraggable:function(){function t(e){return{position:e.position,offset:e.offset}}var i=this,s=this.options;this.uiDialog.draggable({cancel:".ui-dialog-content, .ui-dialog-titlebar-close",handle:".ui-dialog-titlebar",containment:"document",start:function(s,n){e(this).addClass("ui-dialog-dragging"),i._blockFrames(),i._trigger("dragStart",s,t(n))},drag:function(e,s){i._trigger("drag",e,t(s))},stop:function(n,a){var o=a.offset.left-i.document.scrollLeft(),r=a.offset.top-i.document.scrollTop();s.position={my:"left top",at:"left"+(o>=0?"+":"")+o+" "+"top"+(r>=0?"+":"")+r,of:i.window},e(this).removeClass("ui-dialog-dragging"),i._unblockFrames(),i._trigger("dragStop",n,t(a))}})},_makeResizable:function(){function t(e){return{originalPosition:e.originalPosition,originalSize:e.originalSize,position:e.position,size:e.size}}var i=this,s=this.options,n=s.resizable,a=this.uiDialog.css("position"),o="string"==typeof n?n:"n,e,s,w,se,sw,ne,nw";this.uiDialog.resizable({cancel:".ui-dialog-content",containment:"document",alsoResize:this.element,maxWidth:s.maxWidth,maxHeight:s.maxHeight,minWidth:s.minWidth,minHeight:this._minHeight(),handles:o,start:function(s,n){e(this).addClass("ui-dialog-resizing"),i._blockFrames(),i._trigger("resizeStart",s,t(n))},resize:function(e,s){i._trigger("resize",e,t(s))},stop:function(n,a){var o=i.uiDialog.offset(),r=o.left-i.document.scrollLeft(),h=o.top-i.document.scrollTop();s.height=i.uiDialog.height(),s.width=i.uiDialog.width(),s.position={my:"left top",at:"left"+(r>=0?"+":"")+r+" "+"top"+(h>=0?"+":"")+h,of:i.window},e(this).removeClass("ui-dialog-resizing"),i._unblockFrames(),i._trigger("resizeStop",n,t(a))}}).css("position",a)},_trackFocus:function(){this._on(this.widget(),{focusin:function(t){this._makeFocusTarget(),this._focusedElement=e(t.target)}})},_makeFocusTarget:function(){this._untrackInstance(),this._trackingInstances().unshift(this)},_untrackInstance:function(){var t=this._trackingInstances(),i=e.inArray(this,t);-1!==i&&t.splice(i,1)},_trackingInstances:function(){var e=this.document.data("ui-dialog-instances");return e||(e=[],this.document.data("ui-dialog-instances",e)),e},_minHeight:function(){var e=this.options;return"auto"===e.height?e.minHeight:Math.min(e.minHeight,e.height)},_position:function(){var e=this.uiDialog.is(":visible");e||this.uiDialog.show(),this.uiDialog.position(this.options.position),e||this.uiDialog.hide()},_setOptions:function(t){var i=this,s=!1,n={};e.each(t,function(e,t){i._setOption(e,t),e in i.sizeRelatedOptions&&(s=!0),e in i.resizableRelatedOptions&&(n[e]=t)}),s&&(this._size(),this._position()),this.uiDialog.is(":data(ui-resizable)")&&this.uiDialog.resizable("option",n)},_setOption:function(e,t){var i,s,n=this.uiDialog;"dialogClass"===e&&n.removeClass(this.options.dialogClass).addClass(t),"disabled"!==e&&(this._super(e,t),"appendTo"===e&&this.uiDialog.appendTo(this._appendTo()),"buttons"===e&&this._createButtons(),"closeText"===e&&this.uiDialogTitlebarClose.button({label:""+t}),"draggable"===e&&(i=n.is(":data(ui-draggable)"),i&&!t&&n.draggable("destroy"),!i&&t&&this._makeDraggable()),"position"===e&&this._position(),"resizable"===e&&(s=n.is(":data(ui-resizable)"),s&&!t&&n.resizable("destroy"),s&&"string"==typeof t&&n.resizable("option","handles",t),s||t===!1||this._makeResizable()),"title"===e&&this._title(this.uiDialogTitlebar.find(".ui-dialog-title")))},_size:function(){var e,t,i,s=this.options;this.element.show().css({width:"auto",minHeight:0,maxHeight:"none",height:0}),s.minWidth>s.width&&(s.width=s.minWidth),e=this.uiDialog.css({height:"auto",width:s.width}).outerHeight(),t=Math.max(0,s.minHeight-e),i="number"==typeof s.maxHeight?Math.max(0,s.maxHeight-e):"none","auto"===s.height?this.element.css({minHeight:t,maxHeight:i,height:"auto"}):this.element.height(Math.max(0,s.height-e)),this.uiDialog.is(":data(ui-resizable)")&&this.uiDialog.resizable("option","minHeight",this._minHeight())},_blockFrames:function(){this.iframeBlocks=this.document.find("iframe").map(function(){var t=e(this);return e("<div>").css({position:"absolute",width:t.outerWidth(),height:t.outerHeight()}).appendTo(t.parent()).offset(t.offset())[0]})},_unblockFrames:function(){this.iframeBlocks&&(this.iframeBlocks.remove(),delete this.iframeBlocks)},_allowInteraction:function(t){return e(t.target).closest(".ui-dialog").length?!0:!!e(t.target).closest(".ui-datepicker").length},_createOverlay:function(){if(this.options.modal){var t=!0;this._delay(function(){t=!1}),this.document.data("ui-dialog-overlays")||this._on(this.document,{focusin:function(e){t||this._allowInteraction(e)||(e.preventDefault(),this._trackingInstances()[0]._focusTabbable())}}),this.overlay=e("<div>").addClass("ui-widget-overlay ui-front").appendTo(this._appendTo()),this._on(this.overlay,{mousedown:"_keepFocus"}),this.document.data("ui-dialog-overlays",(this.document.data("ui-dialog-overlays")||0)+1)}},_destroyOverlay:function(){if(this.options.modal&&this.overlay){var e=this.document.data("ui-dialog-overlays")-1;e?this.document.data("ui-dialog-overlays",e):this.document.unbind("focusin").removeData("ui-dialog-overlays"),this.overlay.remove(),this.overlay=null}}}),e.widget("ui.progressbar",{version:"1.11.4",options:{max:100,value:0,change:null,complete:null},min:0,_create:function(){this.oldValue=this.options.value=this._constrainedValue(),this.element.addClass("ui-progressbar ui-widget ui-widget-content ui-corner-all").attr({role:"progressbar","aria-valuemin":this.min}),this.valueDiv=e("<div class='ui-progressbar-value ui-widget-header ui-corner-left'></div>").appendTo(this.element),this._refreshValue()},_destroy:function(){this.element.removeClass("ui-progressbar ui-widget ui-widget-content ui-corner-all").removeAttr("role").removeAttr("aria-valuemin").removeAttr("aria-valuemax").removeAttr("aria-valuenow"),this.valueDiv.remove()},value:function(e){return void 0===e?this.options.value:(this.options.value=this._constrainedValue(e),this._refreshValue(),void 0)},_constrainedValue:function(e){return void 0===e&&(e=this.options.value),this.indeterminate=e===!1,"number"!=typeof e&&(e=0),this.indeterminate?!1:Math.min(this.options.max,Math.max(this.min,e))},_setOptions:function(e){var t=e.value;delete e.value,this._super(e),this.options.value=this._constrainedValue(t),this._refreshValue()},_setOption:function(e,t){"max"===e&&(t=Math.max(this.min,t)),"disabled"===e&&this.element.toggleClass("ui-state-disabled",!!t).attr("aria-disabled",t),this._super(e,t)},_percentage:function(){return this.indeterminate?100:100*(this.options.value-this.min)/(this.options.max-this.min)},_refreshValue:function(){var t=this.options.value,i=this._percentage();this.valueDiv.toggle(this.indeterminate||t>this.min).toggleClass("ui-corner-right",t===this.options.max).width(i.toFixed(0)+"%"),this.element.toggleClass("ui-progressbar-indeterminate",this.indeterminate),this.indeterminate?(this.element.removeAttr("aria-valuenow"),this.overlayDiv||(this.overlayDiv=e("<div class='ui-progressbar-overlay'></div>").appendTo(this.valueDiv))):(this.element.attr({"aria-valuemax":this.options.max,"aria-valuenow":t}),this.overlayDiv&&(this.overlayDiv.remove(),this.overlayDiv=null)),this.oldValue!==t&&(this.oldValue=t,this._trigger("change")),t===this.options.max&&this._trigger("complete")}}),e.widget("ui.selectmenu",{version:"1.11.4",defaultElement:"<select>",options:{appendTo:null,disabled:null,icons:{button:"ui-icon-triangle-1-s"},position:{my:"left top",at:"left bottom",collision:"none"},width:null,change:null,close:null,focus:null,open:null,select:null},_create:function(){var e=this.element.uniqueId().attr("id");this.ids={element:e,button:e+"-button",menu:e+"-menu"},this._drawButton(),this._drawMenu(),this.options.disabled&&this.disable()},_drawButton:function(){var t=this;this.label=e("label[for='"+this.ids.element+"']").attr("for",this.ids.button),this._on(this.label,{click:function(e){this.button.focus(),e.preventDefault()}}),this.element.hide(),this.button=e("<span>",{"class":"ui-selectmenu-button ui-widget ui-state-default ui-corner-all",tabindex:this.options.disabled?-1:0,id:this.ids.button,role:"combobox","aria-expanded":"false","aria-autocomplete":"list","aria-owns":this.ids.menu,"aria-haspopup":"true"}).insertAfter(this.element),e("<span>",{"class":"ui-icon "+this.options.icons.button}).prependTo(this.button),this.buttonText=e("<span>",{"class":"ui-selectmenu-text"}).appendTo(this.button),this._setText(this.buttonText,this.element.find("option:selected").text()),this._resizeButton(),this._on(this.button,this._buttonEvents),this.button.one("focusin",function(){t.menuItems||t._refreshMenu()}),this._hoverable(this.button),this._focusable(this.button)},_drawMenu:function(){var t=this;this.menu=e("<ul>",{"aria-hidden":"true","aria-labelledby":this.ids.button,id:this.ids.menu}),this.menuWrap=e("<div>",{"class":"ui-selectmenu-menu ui-front"}).append(this.menu).appendTo(this._appendTo()),this.menuInstance=this.menu.menu({role:"listbox",select:function(e,i){e.preventDefault(),t._setSelection(),t._select(i.item.data("ui-selectmenu-item"),e)},focus:function(e,i){var s=i.item.data("ui-selectmenu-item");null!=t.focusIndex&&s.index!==t.focusIndex&&(t._trigger("focus",e,{item:s}),t.isOpen||t._select(s,e)),t.focusIndex=s.index,t.button.attr("aria-activedescendant",t.menuItems.eq(s.index).attr("id"))}}).menu("instance"),this.menu.addClass("ui-corner-bottom").removeClass("ui-corner-all"),this.menuInstance._off(this.menu,"mouseleave"),this.menuInstance._closeOnDocumentClick=function(){return!1},this.menuInstance._isDivider=function(){return!1}},refresh:function(){this._refreshMenu(),this._setText(this.buttonText,this._getSelectedItem().text()),this.options.width||this._resizeButton()},_refreshMenu:function(){this.menu.empty();var e,t=this.element.find("option");t.length&&(this._parseOptions(t),this._renderMenu(this.menu,this.items),this.menuInstance.refresh(),this.menuItems=this.menu.find("li").not(".ui-selectmenu-optgroup"),e=this._getSelectedItem(),this.menuInstance.focus(null,e),this._setAria(e.data("ui-selectmenu-item")),this._setOption("disabled",this.element.prop("disabled")))},open:function(e){this.options.disabled||(this.menuItems?(this.menu.find(".ui-state-focus").removeClass("ui-state-focus"),this.menuInstance.focus(null,this._getSelectedItem())):this._refreshMenu(),this.isOpen=!0,this._toggleAttr(),this._resizeMenu(),this._position(),this._on(this.document,this._documentClick),this._trigger("open",e))},_position:function(){this.menuWrap.position(e.extend({of:this.button},this.options.position))},close:function(e){this.isOpen&&(this.isOpen=!1,this._toggleAttr(),this.range=null,this._off(this.document),this._trigger("close",e))},widget:function(){return this.button},menuWidget:function(){return this.menu},_renderMenu:function(t,i){var s=this,n="";e.each(i,function(i,a){a.optgroup!==n&&(e("<li>",{"class":"ui-selectmenu-optgroup ui-menu-divider"+(a.element.parent("optgroup").prop("disabled")?" ui-state-disabled":""),text:a.optgroup}).appendTo(t),n=a.optgroup),s._renderItemData(t,a)})},_renderItemData:function(e,t){return this._renderItem(e,t).data("ui-selectmenu-item",t)},_renderItem:function(t,i){var s=e("<li>");return i.disabled&&s.addClass("ui-state-disabled"),this._setText(s,i.label),s.appendTo(t)},_setText:function(e,t){t?e.text(t):e.html("&#160;")},_move:function(e,t){var i,s,n=".ui-menu-item";this.isOpen?i=this.menuItems.eq(this.focusIndex):(i=this.menuItems.eq(this.element[0].selectedIndex),n+=":not(.ui-state-disabled)"),s="first"===e||"last"===e?i["first"===e?"prevAll":"nextAll"](n).eq(-1):i[e+"All"](n).eq(0),s.length&&this.menuInstance.focus(t,s)},_getSelectedItem:function(){return this.menuItems.eq(this.element[0].selectedIndex)},_toggle:function(e){this[this.isOpen?"close":"open"](e)},_setSelection:function(){var e;this.range&&(window.getSelection?(e=window.getSelection(),e.removeAllRanges(),e.addRange(this.range)):this.range.select(),this.button.focus())},_documentClick:{mousedown:function(t){this.isOpen&&(e(t.target).closest(".ui-selectmenu-menu, #"+this.ids.button).length||this.close(t))}},_buttonEvents:{mousedown:function(){var e;window.getSelection?(e=window.getSelection(),e.rangeCount&&(this.range=e.getRangeAt(0))):this.range=document.selection.createRange()},click:function(e){this._setSelection(),this._toggle(e)},keydown:function(t){var i=!0;switch(t.keyCode){case e.ui.keyCode.TAB:case e.ui.keyCode.ESCAPE:this.close(t),i=!1;break;case e.ui.keyCode.ENTER:this.isOpen&&this._selectFocusedItem(t);break;case e.ui.keyCode.UP:t.altKey?this._toggle(t):this._move("prev",t);break;case e.ui.keyCode.DOWN:t.altKey?this._toggle(t):this._move("next",t);break;case e.ui.keyCode.SPACE:this.isOpen?this._selectFocusedItem(t):this._toggle(t);break;case e.ui.keyCode.LEFT:this._move("prev",t);break;case e.ui.keyCode.RIGHT:this._move("next",t);break;case e.ui.keyCode.HOME:case e.ui.keyCode.PAGE_UP:this._move("first",t);break;case e.ui.keyCode.END:case e.ui.keyCode.PAGE_DOWN:this._move("last",t);break;default:this.menu.trigger(t),i=!1}i&&t.preventDefault()}},_selectFocusedItem:function(e){var t=this.menuItems.eq(this.focusIndex);t.hasClass("ui-state-disabled")||this._select(t.data("ui-selectmenu-item"),e)},_select:function(e,t){var i=this.element[0].selectedIndex;this.element[0].selectedIndex=e.index,this._setText(this.buttonText,e.label),this._setAria(e),this._trigger("select",t,{item:e}),e.index!==i&&this._trigger("change",t,{item:e}),this.close(t)},_setAria:function(e){var t=this.menuItems.eq(e.index).attr("id");this.button.attr({"aria-labelledby":t,"aria-activedescendant":t}),this.menu.attr("aria-activedescendant",t)},_setOption:function(e,t){"icons"===e&&this.button.find("span.ui-icon").removeClass(this.options.icons.button).addClass(t.button),this._super(e,t),"appendTo"===e&&this.menuWrap.appendTo(this._appendTo()),"disabled"===e&&(this.menuInstance.option("disabled",t),this.button.toggleClass("ui-state-disabled",t).attr("aria-disabled",t),this.element.prop("disabled",t),t?(this.button.attr("tabindex",-1),this.close()):this.button.attr("tabindex",0)),"width"===e&&this._resizeButton()},_appendTo:function(){var t=this.options.appendTo;return t&&(t=t.jquery||t.nodeType?e(t):this.document.find(t).eq(0)),t&&t[0]||(t=this.element.closest(".ui-front")),t.length||(t=this.document[0].body),t},_toggleAttr:function(){this.button.toggleClass("ui-corner-top",this.isOpen).toggleClass("ui-corner-all",!this.isOpen).attr("aria-expanded",this.isOpen),this.menuWrap.toggleClass("ui-selectmenu-open",this.isOpen),this.menu.attr("aria-hidden",!this.isOpen)},_resizeButton:function(){var e=this.options.width;e||(e=this.element.show().outerWidth(),this.element.hide()),this.button.outerWidth(e)},_resizeMenu:function(){this.menu.outerWidth(Math.max(this.button.outerWidth(),this.menu.width("").outerWidth()+1))},_getCreateOptions:function(){return{disabled:this.element.prop("disabled")}},_parseOptions:function(t){var i=[];t.each(function(t,s){var n=e(s),a=n.parent("optgroup");i.push({element:n,index:t,value:n.val(),label:n.text(),optgroup:a.attr("label")||"",disabled:a.prop("disabled")||n.prop("disabled")})}),this.items=i},_destroy:function(){this.menuWrap.remove(),this.button.remove(),this.element.show(),this.element.removeUniqueId(),this.label.attr("for",this.ids.element)}}),e.widget("ui.slider",e.ui.mouse,{version:"1.11.4",widgetEventPrefix:"slide",options:{animate:!1,distance:0,max:100,min:0,orientation:"horizontal",range:!1,step:1,value:0,values:null,change:null,slide:null,start:null,stop:null},numPages:5,_create:function(){this._keySliding=!1,this._mouseSliding=!1,this._animateOff=!0,this._handleIndex=null,this._detectOrientation(),this._mouseInit(),this._calculateNewMax(),this.element.addClass("ui-slider ui-slider-"+this.orientation+" ui-widget"+" ui-widget-content"+" ui-corner-all"),this._refresh(),this._setOption("disabled",this.options.disabled),this._animateOff=!1},_refresh:function(){this._createRange(),this._createHandles(),this._setupEvents(),this._refreshValue()},_createHandles:function(){var t,i,s=this.options,n=this.element.find(".ui-slider-handle").addClass("ui-state-default ui-corner-all"),a="<span class='ui-slider-handle ui-state-default ui-corner-all' tabindex='0'></span>",o=[];for(i=s.values&&s.values.length||1,n.length>i&&(n.slice(i).remove(),n=n.slice(0,i)),t=n.length;i>t;t++)o.push(a);this.handles=n.add(e(o.join("")).appendTo(this.element)),this.handle=this.handles.eq(0),this.handles.each(function(t){e(this).data("ui-slider-handle-index",t)})},_createRange:function(){var t=this.options,i="";t.range?(t.range===!0&&(t.values?t.values.length&&2!==t.values.length?t.values=[t.values[0],t.values[0]]:e.isArray(t.values)&&(t.values=t.values.slice(0)):t.values=[this._valueMin(),this._valueMin()]),this.range&&this.range.length?this.range.removeClass("ui-slider-range-min ui-slider-range-max").css({left:"",bottom:""}):(this.range=e("<div></div>").appendTo(this.element),i="ui-slider-range ui-widget-header ui-corner-all"),this.range.addClass(i+("min"===t.range||"max"===t.range?" ui-slider-range-"+t.range:""))):(this.range&&this.range.remove(),this.range=null)},_setupEvents:function(){this._off(this.handles),this._on(this.handles,this._handleEvents),this._hoverable(this.handles),this._focusable(this.handles)},_destroy:function(){this.handles.remove(),this.range&&this.range.remove(),this.element.removeClass("ui-slider ui-slider-horizontal ui-slider-vertical ui-widget ui-widget-content ui-corner-all"),this._mouseDestroy()},_mouseCapture:function(t){var i,s,n,a,o,r,h,l,u=this,d=this.options;return d.disabled?!1:(this.elementSize={width:this.element.outerWidth(),height:this.element.outerHeight()},this.elementOffset=this.element.offset(),i={x:t.pageX,y:t.pageY},s=this._normValueFromMouse(i),n=this._valueMax()-this._valueMin()+1,this.handles.each(function(t){var i=Math.abs(s-u.values(t));(n>i||n===i&&(t===u._lastChangedValue||u.values(t)===d.min))&&(n=i,a=e(this),o=t)}),r=this._start(t,o),r===!1?!1:(this._mouseSliding=!0,this._handleIndex=o,a.addClass("ui-state-active").focus(),h=a.offset(),l=!e(t.target).parents().addBack().is(".ui-slider-handle"),this._clickOffset=l?{left:0,top:0}:{left:t.pageX-h.left-a.width()/2,top:t.pageY-h.top-a.height()/2-(parseInt(a.css("borderTopWidth"),10)||0)-(parseInt(a.css("borderBottomWidth"),10)||0)+(parseInt(a.css("marginTop"),10)||0)},this.handles.hasClass("ui-state-hover")||this._slide(t,o,s),this._animateOff=!0,!0))},_mouseStart:function(){return!0},_mouseDrag:function(e){var t={x:e.pageX,y:e.pageY},i=this._normValueFromMouse(t);return this._slide(e,this._handleIndex,i),!1},_mouseStop:function(e){return this.handles.removeClass("ui-state-active"),this._mouseSliding=!1,this._stop(e,this._handleIndex),this._change(e,this._handleIndex),this._handleIndex=null,this._clickOffset=null,this._animateOff=!1,!1},_detectOrientation:function(){this.orientation="vertical"===this.options.orientation?"vertical":"horizontal"},_normValueFromMouse:function(e){var t,i,s,n,a;return"horizontal"===this.orientation?(t=this.elementSize.width,i=e.x-this.elementOffset.left-(this._clickOffset?this._clickOffset.left:0)):(t=this.elementSize.height,i=e.y-this.elementOffset.top-(this._clickOffset?this._clickOffset.top:0)),s=i/t,s>1&&(s=1),0>s&&(s=0),"vertical"===this.orientation&&(s=1-s),n=this._valueMax()-this._valueMin(),a=this._valueMin()+s*n,this._trimAlignValue(a)},_start:function(e,t){var i={handle:this.handles[t],value:this.value()};return this.options.values&&this.options.values.length&&(i.value=this.values(t),i.values=this.values()),this._trigger("start",e,i)},_slide:function(e,t,i){var s,n,a;this.options.values&&this.options.values.length?(s=this.values(t?0:1),2===this.options.values.length&&this.options.range===!0&&(0===t&&i>s||1===t&&s>i)&&(i=s),i!==this.values(t)&&(n=this.values(),n[t]=i,a=this._trigger("slide",e,{handle:this.handles[t],value:i,values:n}),s=this.values(t?0:1),a!==!1&&this.values(t,i))):i!==this.value()&&(a=this._trigger("slide",e,{handle:this.handles[t],value:i}),a!==!1&&this.value(i))},_stop:function(e,t){var i={handle:this.handles[t],value:this.value()};this.options.values&&this.options.values.length&&(i.value=this.values(t),i.values=this.values()),this._trigger("stop",e,i)},_change:function(e,t){if(!this._keySliding&&!this._mouseSliding){var i={handle:this.handles[t],value:this.value()};this.options.values&&this.options.values.length&&(i.value=this.values(t),i.values=this.values()),this._lastChangedValue=t,this._trigger("change",e,i)}},value:function(e){return arguments.length?(this.options.value=this._trimAlignValue(e),this._refreshValue(),this._change(null,0),void 0):this._value()},values:function(t,i){var s,n,a;if(arguments.length>1)return this.options.values[t]=this._trimAlignValue(i),this._refreshValue(),this._change(null,t),void 0;if(!arguments.length)return this._values();if(!e.isArray(arguments[0]))return this.options.values&&this.options.values.length?this._values(t):this.value();for(s=this.options.values,n=arguments[0],a=0;s.length>a;a+=1)s[a]=this._trimAlignValue(n[a]),this._change(null,a);this._refreshValue()},_setOption:function(t,i){var s,n=0;switch("range"===t&&this.options.range===!0&&("min"===i?(this.options.value=this._values(0),this.options.values=null):"max"===i&&(this.options.value=this._values(this.options.values.length-1),this.options.values=null)),e.isArray(this.options.values)&&(n=this.options.values.length),"disabled"===t&&this.element.toggleClass("ui-state-disabled",!!i),this._super(t,i),t){case"orientation":this._detectOrientation(),this.element.removeClass("ui-slider-horizontal ui-slider-vertical").addClass("ui-slider-"+this.orientation),this._refreshValue(),this.handles.css("horizontal"===i?"bottom":"left","");break;case"value":this._animateOff=!0,this._refreshValue(),this._change(null,0),this._animateOff=!1;break;case"values":for(this._animateOff=!0,this._refreshValue(),s=0;n>s;s+=1)this._change(null,s);this._animateOff=!1;break;case"step":case"min":case"max":this._animateOff=!0,this._calculateNewMax(),this._refreshValue(),this._animateOff=!1;break;case"range":this._animateOff=!0,this._refresh(),this._animateOff=!1}},_value:function(){var e=this.options.value;return e=this._trimAlignValue(e)},_values:function(e){var t,i,s;if(arguments.length)return t=this.options.values[e],t=this._trimAlignValue(t);if(this.options.values&&this.options.values.length){for(i=this.options.values.slice(),s=0;i.length>s;s+=1)i[s]=this._trimAlignValue(i[s]);return i}return[]},_trimAlignValue:function(e){if(this._valueMin()>=e)return this._valueMin();if(e>=this._valueMax())return this._valueMax();var t=this.options.step>0?this.options.step:1,i=(e-this._valueMin())%t,s=e-i;return 2*Math.abs(i)>=t&&(s+=i>0?t:-t),parseFloat(s.toFixed(5))},_calculateNewMax:function(){var e=this.options.max,t=this._valueMin(),i=this.options.step,s=Math.floor(+(e-t).toFixed(this._precision())/i)*i;e=s+t,this.max=parseFloat(e.toFixed(this._precision()))},_precision:function(){var e=this._precisionOf(this.options.step);return null!==this.options.min&&(e=Math.max(e,this._precisionOf(this.options.min))),e},_precisionOf:function(e){var t=""+e,i=t.indexOf(".");return-1===i?0:t.length-i-1},_valueMin:function(){return this.options.min},_valueMax:function(){return this.max},_refreshValue:function(){var t,i,s,n,a,o=this.options.range,r=this.options,h=this,l=this._animateOff?!1:r.animate,u={};this.options.values&&this.options.values.length?this.handles.each(function(s){i=100*((h.values(s)-h._valueMin())/(h._valueMax()-h._valueMin())),u["horizontal"===h.orientation?"left":"bottom"]=i+"%",e(this).stop(1,1)[l?"animate":"css"](u,r.animate),h.options.range===!0&&("horizontal"===h.orientation?(0===s&&h.range.stop(1,1)[l?"animate":"css"]({left:i+"%"},r.animate),1===s&&h.range[l?"animate":"css"]({width:i-t+"%"},{queue:!1,duration:r.animate})):(0===s&&h.range.stop(1,1)[l?"animate":"css"]({bottom:i+"%"},r.animate),1===s&&h.range[l?"animate":"css"]({height:i-t+"%"},{queue:!1,duration:r.animate}))),t=i}):(s=this.value(),n=this._valueMin(),a=this._valueMax(),i=a!==n?100*((s-n)/(a-n)):0,u["horizontal"===this.orientation?"left":"bottom"]=i+"%",this.handle.stop(1,1)[l?"animate":"css"](u,r.animate),"min"===o&&"horizontal"===this.orientation&&this.range.stop(1,1)[l?"animate":"css"]({width:i+"%"},r.animate),"max"===o&&"horizontal"===this.orientation&&this.range[l?"animate":"css"]({width:100-i+"%"},{queue:!1,duration:r.animate}),"min"===o&&"vertical"===this.orientation&&this.range.stop(1,1)[l?"animate":"css"]({height:i+"%"},r.animate),"max"===o&&"vertical"===this.orientation&&this.range[l?"animate":"css"]({height:100-i+"%"},{queue:!1,duration:r.animate}))},_handleEvents:{keydown:function(t){var i,s,n,a,o=e(t.target).data("ui-slider-handle-index");switch(t.keyCode){case e.ui.keyCode.HOME:case e.ui.keyCode.END:case e.ui.keyCode.PAGE_UP:case e.ui.keyCode.PAGE_DOWN:case e.ui.keyCode.UP:case e.ui.keyCode.RIGHT:case e.ui.keyCode.DOWN:case e.ui.keyCode.LEFT:if(t.preventDefault(),!this._keySliding&&(this._keySliding=!0,e(t.target).addClass("ui-state-active"),i=this._start(t,o),i===!1))return}switch(a=this.options.step,s=n=this.options.values&&this.options.values.length?this.values(o):this.value(),t.keyCode){case e.ui.keyCode.HOME:n=this._valueMin();break;case e.ui.keyCode.END:n=this._valueMax();break;case e.ui.keyCode.PAGE_UP:n=this._trimAlignValue(s+(this._valueMax()-this._valueMin())/this.numPages);break;case e.ui.keyCode.PAGE_DOWN:n=this._trimAlignValue(s-(this._valueMax()-this._valueMin())/this.numPages);break;case e.ui.keyCode.UP:case e.ui.keyCode.RIGHT:if(s===this._valueMax())return;n=this._trimAlignValue(s+a);break;case e.ui.keyCode.DOWN:case e.ui.keyCode.LEFT:if(s===this._valueMin())return;n=this._trimAlignValue(s-a)}this._slide(t,o,n)},keyup:function(t){var i=e(t.target).data("ui-slider-handle-index");this._keySliding&&(this._keySliding=!1,this._stop(t,i),this._change(t,i),e(t.target).removeClass("ui-state-active"))}}}),e.widget("ui.spinner",{version:"1.11.4",defaultElement:"<input>",widgetEventPrefix:"spin",options:{culture:null,icons:{down:"ui-icon-triangle-1-s",up:"ui-icon-triangle-1-n"},incremental:!0,max:null,min:null,numberFormat:null,page:10,step:1,change:null,spin:null,start:null,stop:null},_create:function(){this._setOption("max",this.options.max),this._setOption("min",this.options.min),this._setOption("step",this.options.step),""!==this.value()&&this._value(this.element.val(),!0),this._draw(),this._on(this._events),this._refresh(),this._on(this.window,{beforeunload:function(){this.element.removeAttr("autocomplete")}})},_getCreateOptions:function(){var t={},i=this.element;return e.each(["min","max","step"],function(e,s){var n=i.attr(s);void 0!==n&&n.length&&(t[s]=n)}),t},_events:{keydown:function(e){this._start(e)&&this._keydown(e)&&e.preventDefault()},keyup:"_stop",focus:function(){this.previous=this.element.val()},blur:function(e){return this.cancelBlur?(delete this.cancelBlur,void 0):(this._stop(),this._refresh(),this.previous!==this.element.val()&&this._trigger("change",e),void 0)},mousewheel:function(e,t){if(t){if(!this.spinning&&!this._start(e))return!1;this._spin((t>0?1:-1)*this.options.step,e),clearTimeout(this.mousewheelTimer),this.mousewheelTimer=this._delay(function(){this.spinning&&this._stop(e)},100),e.preventDefault()}},"mousedown .ui-spinner-button":function(t){function i(){var e=this.element[0]===this.document[0].activeElement;e||(this.element.focus(),this.previous=s,this._delay(function(){this.previous=s}))}var s;s=this.element[0]===this.document[0].activeElement?this.previous:this.element.val(),t.preventDefault(),i.call(this),this.cancelBlur=!0,this._delay(function(){delete this.cancelBlur,i.call(this)}),this._start(t)!==!1&&this._repeat(null,e(t.currentTarget).hasClass("ui-spinner-up")?1:-1,t)},"mouseup .ui-spinner-button":"_stop","mouseenter .ui-spinner-button":function(t){return e(t.currentTarget).hasClass("ui-state-active")?this._start(t)===!1?!1:(this._repeat(null,e(t.currentTarget).hasClass("ui-spinner-up")?1:-1,t),void 0):void 0},"mouseleave .ui-spinner-button":"_stop"},_draw:function(){var e=this.uiSpinner=this.element.addClass("ui-spinner-input").attr("autocomplete","off").wrap(this._uiSpinnerHtml()).parent().append(this._buttonHtml());this.element.attr("role","spinbutton"),this.buttons=e.find(".ui-spinner-button").attr("tabIndex",-1).button().removeClass("ui-corner-all"),this.buttons.height()>Math.ceil(.5*e.height())&&e.height()>0&&e.height(e.height()),this.options.disabled&&this.disable()},_keydown:function(t){var i=this.options,s=e.ui.keyCode;switch(t.keyCode){case s.UP:return this._repeat(null,1,t),!0;case s.DOWN:return this._repeat(null,-1,t),!0;case s.PAGE_UP:return this._repeat(null,i.page,t),!0;case s.PAGE_DOWN:return this._repeat(null,-i.page,t),!0}return!1},_uiSpinnerHtml:function(){return"<span class='ui-spinner ui-widget ui-widget-content ui-corner-all'></span>"},_buttonHtml:function(){return"<a class='ui-spinner-button ui-spinner-up ui-corner-tr'><span class='ui-icon "+this.options.icons.up+"'>&#9650;</span>"+"</a>"+"<a class='ui-spinner-button ui-spinner-down ui-corner-br'>"+"<span class='ui-icon "+this.options.icons.down+"'>&#9660;</span>"+"</a>"},_start:function(e){return this.spinning||this._trigger("start",e)!==!1?(this.counter||(this.counter=1),this.spinning=!0,!0):!1},_repeat:function(e,t,i){e=e||500,clearTimeout(this.timer),this.timer=this._delay(function(){this._repeat(40,t,i)},e),this._spin(t*this.options.step,i)},_spin:function(e,t){var i=this.value()||0;this.counter||(this.counter=1),i=this._adjustValue(i+e*this._increment(this.counter)),this.spinning&&this._trigger("spin",t,{value:i})===!1||(this._value(i),this.counter++)},_increment:function(t){var i=this.options.incremental;return i?e.isFunction(i)?i(t):Math.floor(t*t*t/5e4-t*t/500+17*t/200+1):1},_precision:function(){var e=this._precisionOf(this.options.step);return null!==this.options.min&&(e=Math.max(e,this._precisionOf(this.options.min))),e},_precisionOf:function(e){var t=""+e,i=t.indexOf(".");return-1===i?0:t.length-i-1},_adjustValue:function(e){var t,i,s=this.options;return t=null!==s.min?s.min:0,i=e-t,i=Math.round(i/s.step)*s.step,e=t+i,e=parseFloat(e.toFixed(this._precision())),null!==s.max&&e>s.max?s.max:null!==s.min&&s.min>e?s.min:e},_stop:function(e){this.spinning&&(clearTimeout(this.timer),clearTimeout(this.mousewheelTimer),this.counter=0,this.spinning=!1,this._trigger("stop",e))},_setOption:function(e,t){if("culture"===e||"numberFormat"===e){var i=this._parse(this.element.val());return this.options[e]=t,this.element.val(this._format(i)),void 0}("max"===e||"min"===e||"step"===e)&&"string"==typeof t&&(t=this._parse(t)),"icons"===e&&(this.buttons.first().find(".ui-icon").removeClass(this.options.icons.up).addClass(t.up),this.buttons.last().find(".ui-icon").removeClass(this.options.icons.down).addClass(t.down)),this._super(e,t),"disabled"===e&&(this.widget().toggleClass("ui-state-disabled",!!t),this.element.prop("disabled",!!t),this.buttons.button(t?"disable":"enable"))},_setOptions:s(function(e){this._super(e)}),_parse:function(e){return"string"==typeof e&&""!==e&&(e=window.Globalize&&this.options.numberFormat?Globalize.parseFloat(e,10,this.options.culture):+e),""===e||isNaN(e)?null:e
},_format:function(e){return""===e?"":window.Globalize&&this.options.numberFormat?Globalize.format(e,this.options.numberFormat,this.options.culture):e},_refresh:function(){this.element.attr({"aria-valuemin":this.options.min,"aria-valuemax":this.options.max,"aria-valuenow":this._parse(this.element.val())})},isValid:function(){var e=this.value();return null===e?!1:e===this._adjustValue(e)},_value:function(e,t){var i;""!==e&&(i=this._parse(e),null!==i&&(t||(i=this._adjustValue(i)),e=this._format(i))),this.element.val(e),this._refresh()},_destroy:function(){this.element.removeClass("ui-spinner-input").prop("disabled",!1).removeAttr("autocomplete").removeAttr("role").removeAttr("aria-valuemin").removeAttr("aria-valuemax").removeAttr("aria-valuenow"),this.uiSpinner.replaceWith(this.element)},stepUp:s(function(e){this._stepUp(e)}),_stepUp:function(e){this._start()&&(this._spin((e||1)*this.options.step),this._stop())},stepDown:s(function(e){this._stepDown(e)}),_stepDown:function(e){this._start()&&(this._spin((e||1)*-this.options.step),this._stop())},pageUp:s(function(e){this._stepUp((e||1)*this.options.page)}),pageDown:s(function(e){this._stepDown((e||1)*this.options.page)}),value:function(e){return arguments.length?(s(this._value).call(this,e),void 0):this._parse(this.element.val())},widget:function(){return this.uiSpinner}}),e.widget("ui.tabs",{version:"1.11.4",delay:300,options:{active:null,collapsible:!1,event:"click",heightStyle:"content",hide:null,show:null,activate:null,beforeActivate:null,beforeLoad:null,load:null},_isLocal:function(){var e=/#.*$/;return function(t){var i,s;t=t.cloneNode(!1),i=t.href.replace(e,""),s=location.href.replace(e,"");try{i=decodeURIComponent(i)}catch(n){}try{s=decodeURIComponent(s)}catch(n){}return t.hash.length>1&&i===s}}(),_create:function(){var t=this,i=this.options;this.running=!1,this.element.addClass("ui-tabs ui-widget ui-widget-content ui-corner-all").toggleClass("ui-tabs-collapsible",i.collapsible),this._processTabs(),i.active=this._initialActive(),e.isArray(i.disabled)&&(i.disabled=e.unique(i.disabled.concat(e.map(this.tabs.filter(".ui-state-disabled"),function(e){return t.tabs.index(e)}))).sort()),this.active=this.options.active!==!1&&this.anchors.length?this._findActive(i.active):e(),this._refresh(),this.active.length&&this.load(i.active)},_initialActive:function(){var t=this.options.active,i=this.options.collapsible,s=location.hash.substring(1);return null===t&&(s&&this.tabs.each(function(i,n){return e(n).attr("aria-controls")===s?(t=i,!1):void 0}),null===t&&(t=this.tabs.index(this.tabs.filter(".ui-tabs-active"))),(null===t||-1===t)&&(t=this.tabs.length?0:!1)),t!==!1&&(t=this.tabs.index(this.tabs.eq(t)),-1===t&&(t=i?!1:0)),!i&&t===!1&&this.anchors.length&&(t=0),t},_getCreateEventData:function(){return{tab:this.active,panel:this.active.length?this._getPanelForTab(this.active):e()}},_tabKeydown:function(t){var i=e(this.document[0].activeElement).closest("li"),s=this.tabs.index(i),n=!0;if(!this._handlePageNav(t)){switch(t.keyCode){case e.ui.keyCode.RIGHT:case e.ui.keyCode.DOWN:s++;break;case e.ui.keyCode.UP:case e.ui.keyCode.LEFT:n=!1,s--;break;case e.ui.keyCode.END:s=this.anchors.length-1;break;case e.ui.keyCode.HOME:s=0;break;case e.ui.keyCode.SPACE:return t.preventDefault(),clearTimeout(this.activating),this._activate(s),void 0;case e.ui.keyCode.ENTER:return t.preventDefault(),clearTimeout(this.activating),this._activate(s===this.options.active?!1:s),void 0;default:return}t.preventDefault(),clearTimeout(this.activating),s=this._focusNextTab(s,n),t.ctrlKey||t.metaKey||(i.attr("aria-selected","false"),this.tabs.eq(s).attr("aria-selected","true"),this.activating=this._delay(function(){this.option("active",s)},this.delay))}},_panelKeydown:function(t){this._handlePageNav(t)||t.ctrlKey&&t.keyCode===e.ui.keyCode.UP&&(t.preventDefault(),this.active.focus())},_handlePageNav:function(t){return t.altKey&&t.keyCode===e.ui.keyCode.PAGE_UP?(this._activate(this._focusNextTab(this.options.active-1,!1)),!0):t.altKey&&t.keyCode===e.ui.keyCode.PAGE_DOWN?(this._activate(this._focusNextTab(this.options.active+1,!0)),!0):void 0},_findNextTab:function(t,i){function s(){return t>n&&(t=0),0>t&&(t=n),t}for(var n=this.tabs.length-1;-1!==e.inArray(s(),this.options.disabled);)t=i?t+1:t-1;return t},_focusNextTab:function(e,t){return e=this._findNextTab(e,t),this.tabs.eq(e).focus(),e},_setOption:function(e,t){return"active"===e?(this._activate(t),void 0):"disabled"===e?(this._setupDisabled(t),void 0):(this._super(e,t),"collapsible"===e&&(this.element.toggleClass("ui-tabs-collapsible",t),t||this.options.active!==!1||this._activate(0)),"event"===e&&this._setupEvents(t),"heightStyle"===e&&this._setupHeightStyle(t),void 0)},_sanitizeSelector:function(e){return e?e.replace(/[!"$%&'()*+,.\/:;<=>?@\[\]\^`{|}~]/g,"\\$&"):""},refresh:function(){var t=this.options,i=this.tablist.children(":has(a[href])");t.disabled=e.map(i.filter(".ui-state-disabled"),function(e){return i.index(e)}),this._processTabs(),t.active!==!1&&this.anchors.length?this.active.length&&!e.contains(this.tablist[0],this.active[0])?this.tabs.length===t.disabled.length?(t.active=!1,this.active=e()):this._activate(this._findNextTab(Math.max(0,t.active-1),!1)):t.active=this.tabs.index(this.active):(t.active=!1,this.active=e()),this._refresh()},_refresh:function(){this._setupDisabled(this.options.disabled),this._setupEvents(this.options.event),this._setupHeightStyle(this.options.heightStyle),this.tabs.not(this.active).attr({"aria-selected":"false","aria-expanded":"false",tabIndex:-1}),this.panels.not(this._getPanelForTab(this.active)).hide().attr({"aria-hidden":"true"}),this.active.length?(this.active.addClass("ui-tabs-active ui-state-active").attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0}),this._getPanelForTab(this.active).show().attr({"aria-hidden":"false"})):this.tabs.eq(0).attr("tabIndex",0)},_processTabs:function(){var t=this,i=this.tabs,s=this.anchors,n=this.panels;this.tablist=this._getList().addClass("ui-tabs-nav ui-helper-reset ui-helper-clearfix ui-widget-header ui-corner-all").attr("role","tablist").delegate("> li","mousedown"+this.eventNamespace,function(t){e(this).is(".ui-state-disabled")&&t.preventDefault()}).delegate(".ui-tabs-anchor","focus"+this.eventNamespace,function(){e(this).closest("li").is(".ui-state-disabled")&&this.blur()}),this.tabs=this.tablist.find("> li:has(a[href])").addClass("ui-state-default ui-corner-top").attr({role:"tab",tabIndex:-1}),this.anchors=this.tabs.map(function(){return e("a",this)[0]}).addClass("ui-tabs-anchor").attr({role:"presentation",tabIndex:-1}),this.panels=e(),this.anchors.each(function(i,s){var n,a,o,r=e(s).uniqueId().attr("id"),h=e(s).closest("li"),l=h.attr("aria-controls");t._isLocal(s)?(n=s.hash,o=n.substring(1),a=t.element.find(t._sanitizeSelector(n))):(o=h.attr("aria-controls")||e({}).uniqueId()[0].id,n="#"+o,a=t.element.find(n),a.length||(a=t._createPanel(o),a.insertAfter(t.panels[i-1]||t.tablist)),a.attr("aria-live","polite")),a.length&&(t.panels=t.panels.add(a)),l&&h.data("ui-tabs-aria-controls",l),h.attr({"aria-controls":o,"aria-labelledby":r}),a.attr("aria-labelledby",r)}),this.panels.addClass("ui-tabs-panel ui-widget-content ui-corner-bottom").attr("role","tabpanel"),i&&(this._off(i.not(this.tabs)),this._off(s.not(this.anchors)),this._off(n.not(this.panels)))},_getList:function(){return this.tablist||this.element.find("ol,ul").eq(0)},_createPanel:function(t){return e("<div>").attr("id",t).addClass("ui-tabs-panel ui-widget-content ui-corner-bottom").data("ui-tabs-destroy",!0)},_setupDisabled:function(t){e.isArray(t)&&(t.length?t.length===this.anchors.length&&(t=!0):t=!1);for(var i,s=0;i=this.tabs[s];s++)t===!0||-1!==e.inArray(s,t)?e(i).addClass("ui-state-disabled").attr("aria-disabled","true"):e(i).removeClass("ui-state-disabled").removeAttr("aria-disabled");this.options.disabled=t},_setupEvents:function(t){var i={};t&&e.each(t.split(" "),function(e,t){i[t]="_eventHandler"}),this._off(this.anchors.add(this.tabs).add(this.panels)),this._on(!0,this.anchors,{click:function(e){e.preventDefault()}}),this._on(this.anchors,i),this._on(this.tabs,{keydown:"_tabKeydown"}),this._on(this.panels,{keydown:"_panelKeydown"}),this._focusable(this.tabs),this._hoverable(this.tabs)},_setupHeightStyle:function(t){var i,s=this.element.parent();"fill"===t?(i=s.height(),i-=this.element.outerHeight()-this.element.height(),this.element.siblings(":visible").each(function(){var t=e(this),s=t.css("position");"absolute"!==s&&"fixed"!==s&&(i-=t.outerHeight(!0))}),this.element.children().not(this.panels).each(function(){i-=e(this).outerHeight(!0)}),this.panels.each(function(){e(this).height(Math.max(0,i-e(this).innerHeight()+e(this).height()))}).css("overflow","auto")):"auto"===t&&(i=0,this.panels.each(function(){i=Math.max(i,e(this).height("").height())}).height(i))},_eventHandler:function(t){var i=this.options,s=this.active,n=e(t.currentTarget),a=n.closest("li"),o=a[0]===s[0],r=o&&i.collapsible,h=r?e():this._getPanelForTab(a),l=s.length?this._getPanelForTab(s):e(),u={oldTab:s,oldPanel:l,newTab:r?e():a,newPanel:h};t.preventDefault(),a.hasClass("ui-state-disabled")||a.hasClass("ui-tabs-loading")||this.running||o&&!i.collapsible||this._trigger("beforeActivate",t,u)===!1||(i.active=r?!1:this.tabs.index(a),this.active=o?e():a,this.xhr&&this.xhr.abort(),l.length||h.length||e.error("jQuery UI Tabs: Mismatching fragment identifier."),h.length&&this.load(this.tabs.index(a),t),this._toggle(t,u))},_toggle:function(t,i){function s(){a.running=!1,a._trigger("activate",t,i)}function n(){i.newTab.closest("li").addClass("ui-tabs-active ui-state-active"),o.length&&a.options.show?a._show(o,a.options.show,s):(o.show(),s())}var a=this,o=i.newPanel,r=i.oldPanel;this.running=!0,r.length&&this.options.hide?this._hide(r,this.options.hide,function(){i.oldTab.closest("li").removeClass("ui-tabs-active ui-state-active"),n()}):(i.oldTab.closest("li").removeClass("ui-tabs-active ui-state-active"),r.hide(),n()),r.attr("aria-hidden","true"),i.oldTab.attr({"aria-selected":"false","aria-expanded":"false"}),o.length&&r.length?i.oldTab.attr("tabIndex",-1):o.length&&this.tabs.filter(function(){return 0===e(this).attr("tabIndex")}).attr("tabIndex",-1),o.attr("aria-hidden","false"),i.newTab.attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0})},_activate:function(t){var i,s=this._findActive(t);s[0]!==this.active[0]&&(s.length||(s=this.active),i=s.find(".ui-tabs-anchor")[0],this._eventHandler({target:i,currentTarget:i,preventDefault:e.noop}))},_findActive:function(t){return t===!1?e():this.tabs.eq(t)},_getIndex:function(e){return"string"==typeof e&&(e=this.anchors.index(this.anchors.filter("[href$='"+e+"']"))),e},_destroy:function(){this.xhr&&this.xhr.abort(),this.element.removeClass("ui-tabs ui-widget ui-widget-content ui-corner-all ui-tabs-collapsible"),this.tablist.removeClass("ui-tabs-nav ui-helper-reset ui-helper-clearfix ui-widget-header ui-corner-all").removeAttr("role"),this.anchors.removeClass("ui-tabs-anchor").removeAttr("role").removeAttr("tabIndex").removeUniqueId(),this.tablist.unbind(this.eventNamespace),this.tabs.add(this.panels).each(function(){e.data(this,"ui-tabs-destroy")?e(this).remove():e(this).removeClass("ui-state-default ui-state-active ui-state-disabled ui-corner-top ui-corner-bottom ui-widget-content ui-tabs-active ui-tabs-panel").removeAttr("tabIndex").removeAttr("aria-live").removeAttr("aria-busy").removeAttr("aria-selected").removeAttr("aria-labelledby").removeAttr("aria-hidden").removeAttr("aria-expanded").removeAttr("role")}),this.tabs.each(function(){var t=e(this),i=t.data("ui-tabs-aria-controls");i?t.attr("aria-controls",i).removeData("ui-tabs-aria-controls"):t.removeAttr("aria-controls")}),this.panels.show(),"content"!==this.options.heightStyle&&this.panels.css("height","")},enable:function(t){var i=this.options.disabled;i!==!1&&(void 0===t?i=!1:(t=this._getIndex(t),i=e.isArray(i)?e.map(i,function(e){return e!==t?e:null}):e.map(this.tabs,function(e,i){return i!==t?i:null})),this._setupDisabled(i))},disable:function(t){var i=this.options.disabled;if(i!==!0){if(void 0===t)i=!0;else{if(t=this._getIndex(t),-1!==e.inArray(t,i))return;i=e.isArray(i)?e.merge([t],i).sort():[t]}this._setupDisabled(i)}},load:function(t,i){t=this._getIndex(t);var s=this,n=this.tabs.eq(t),a=n.find(".ui-tabs-anchor"),o=this._getPanelForTab(n),r={tab:n,panel:o},h=function(e,t){"abort"===t&&s.panels.stop(!1,!0),n.removeClass("ui-tabs-loading"),o.removeAttr("aria-busy"),e===s.xhr&&delete s.xhr};this._isLocal(a[0])||(this.xhr=e.ajax(this._ajaxSettings(a,i,r)),this.xhr&&"canceled"!==this.xhr.statusText&&(n.addClass("ui-tabs-loading"),o.attr("aria-busy","true"),this.xhr.done(function(e,t,n){setTimeout(function(){o.html(e),s._trigger("load",i,r),h(n,t)},1)}).fail(function(e,t){setTimeout(function(){h(e,t)},1)})))},_ajaxSettings:function(t,i,s){var n=this;return{url:t.attr("href"),beforeSend:function(t,a){return n._trigger("beforeLoad",i,e.extend({jqXHR:t,ajaxSettings:a},s))}}},_getPanelForTab:function(t){var i=e(t).attr("aria-controls");return this.element.find(this._sanitizeSelector("#"+i))}}),e.widget("ui.tooltip",{version:"1.11.4",options:{content:function(){var t=e(this).attr("title")||"";return e("<a>").text(t).html()},hide:!0,items:"[title]:not([disabled])",position:{my:"left top+15",at:"left bottom",collision:"flipfit flip"},show:!0,tooltipClass:null,track:!1,close:null,open:null},_addDescribedBy:function(t,i){var s=(t.attr("aria-describedby")||"").split(/\s+/);s.push(i),t.data("ui-tooltip-id",i).attr("aria-describedby",e.trim(s.join(" ")))},_removeDescribedBy:function(t){var i=t.data("ui-tooltip-id"),s=(t.attr("aria-describedby")||"").split(/\s+/),n=e.inArray(i,s);-1!==n&&s.splice(n,1),t.removeData("ui-tooltip-id"),s=e.trim(s.join(" ")),s?t.attr("aria-describedby",s):t.removeAttr("aria-describedby")},_create:function(){this._on({mouseover:"open",focusin:"open"}),this.tooltips={},this.parents={},this.options.disabled&&this._disable(),this.liveRegion=e("<div>").attr({role:"log","aria-live":"assertive","aria-relevant":"additions"}).addClass("ui-helper-hidden-accessible").appendTo(this.document[0].body)},_setOption:function(t,i){var s=this;return"disabled"===t?(this[i?"_disable":"_enable"](),this.options[t]=i,void 0):(this._super(t,i),"content"===t&&e.each(this.tooltips,function(e,t){s._updateContent(t.element)}),void 0)},_disable:function(){var t=this;e.each(this.tooltips,function(i,s){var n=e.Event("blur");n.target=n.currentTarget=s.element[0],t.close(n,!0)}),this.element.find(this.options.items).addBack().each(function(){var t=e(this);t.is("[title]")&&t.data("ui-tooltip-title",t.attr("title")).removeAttr("title")})},_enable:function(){this.element.find(this.options.items).addBack().each(function(){var t=e(this);t.data("ui-tooltip-title")&&t.attr("title",t.data("ui-tooltip-title"))})},open:function(t){var i=this,s=e(t?t.target:this.element).closest(this.options.items);s.length&&!s.data("ui-tooltip-id")&&(s.attr("title")&&s.data("ui-tooltip-title",s.attr("title")),s.data("ui-tooltip-open",!0),t&&"mouseover"===t.type&&s.parents().each(function(){var t,s=e(this);s.data("ui-tooltip-open")&&(t=e.Event("blur"),t.target=t.currentTarget=this,i.close(t,!0)),s.attr("title")&&(s.uniqueId(),i.parents[this.id]={element:this,title:s.attr("title")},s.attr("title",""))}),this._registerCloseHandlers(t,s),this._updateContent(s,t))},_updateContent:function(e,t){var i,s=this.options.content,n=this,a=t?t.type:null;return"string"==typeof s?this._open(t,e,s):(i=s.call(e[0],function(i){n._delay(function(){e.data("ui-tooltip-open")&&(t&&(t.type=a),this._open(t,e,i))})}),i&&this._open(t,e,i),void 0)},_open:function(t,i,s){function n(e){l.of=e,o.is(":hidden")||o.position(l)}var a,o,r,h,l=e.extend({},this.options.position);if(s){if(a=this._find(i))return a.tooltip.find(".ui-tooltip-content").html(s),void 0;i.is("[title]")&&(t&&"mouseover"===t.type?i.attr("title",""):i.removeAttr("title")),a=this._tooltip(i),o=a.tooltip,this._addDescribedBy(i,o.attr("id")),o.find(".ui-tooltip-content").html(s),this.liveRegion.children().hide(),s.clone?(h=s.clone(),h.removeAttr("id").find("[id]").removeAttr("id")):h=s,e("<div>").html(h).appendTo(this.liveRegion),this.options.track&&t&&/^mouse/.test(t.type)?(this._on(this.document,{mousemove:n}),n(t)):o.position(e.extend({of:i},this.options.position)),o.hide(),this._show(o,this.options.show),this.options.show&&this.options.show.delay&&(r=this.delayedShow=setInterval(function(){o.is(":visible")&&(n(l.of),clearInterval(r))},e.fx.interval)),this._trigger("open",t,{tooltip:o})}},_registerCloseHandlers:function(t,i){var s={keyup:function(t){if(t.keyCode===e.ui.keyCode.ESCAPE){var s=e.Event(t);s.currentTarget=i[0],this.close(s,!0)}}};i[0]!==this.element[0]&&(s.remove=function(){this._removeTooltip(this._find(i).tooltip)}),t&&"mouseover"!==t.type||(s.mouseleave="close"),t&&"focusin"!==t.type||(s.focusout="close"),this._on(!0,i,s)},close:function(t){var i,s=this,n=e(t?t.currentTarget:this.element),a=this._find(n);return a?(i=a.tooltip,a.closing||(clearInterval(this.delayedShow),n.data("ui-tooltip-title")&&!n.attr("title")&&n.attr("title",n.data("ui-tooltip-title")),this._removeDescribedBy(n),a.hiding=!0,i.stop(!0),this._hide(i,this.options.hide,function(){s._removeTooltip(e(this))}),n.removeData("ui-tooltip-open"),this._off(n,"mouseleave focusout keyup"),n[0]!==this.element[0]&&this._off(n,"remove"),this._off(this.document,"mousemove"),t&&"mouseleave"===t.type&&e.each(this.parents,function(t,i){e(i.element).attr("title",i.title),delete s.parents[t]}),a.closing=!0,this._trigger("close",t,{tooltip:i}),a.hiding||(a.closing=!1)),void 0):(n.removeData("ui-tooltip-open"),void 0)},_tooltip:function(t){var i=e("<div>").attr("role","tooltip").addClass("ui-tooltip ui-widget ui-corner-all ui-widget-content "+(this.options.tooltipClass||"")),s=i.uniqueId().attr("id");return e("<div>").addClass("ui-tooltip-content").appendTo(i),i.appendTo(this.document[0].body),this.tooltips[s]={element:t,tooltip:i}},_find:function(e){var t=e.data("ui-tooltip-id");return t?this.tooltips[t]:null},_removeTooltip:function(e){e.remove(),delete this.tooltips[e.attr("id")]},_destroy:function(){var t=this;e.each(this.tooltips,function(i,s){var n=e.Event("blur"),a=s.element;n.target=n.currentTarget=a[0],t.close(n,!0),e("#"+i).remove(),a.data("ui-tooltip-title")&&(a.attr("title")||a.attr("title",a.data("ui-tooltip-title")),a.removeData("ui-tooltip-title"))}),this.liveRegion.remove()}});var c="ui-effects-",p=e;e.effects={effect:{}},function(e,t){function i(e,t,i){var s=d[t.type]||{};return null==e?i||!t.def?null:t.def:(e=s.floor?~~e:parseFloat(e),isNaN(e)?t.def:s.mod?(e+s.mod)%s.mod:0>e?0:e>s.max?s.max:e)}function s(i){var s=l(),n=s._rgba=[];return i=i.toLowerCase(),f(h,function(e,a){var o,r=a.re.exec(i),h=r&&a.parse(r),l=a.space||"rgba";return h?(o=s[l](h),s[u[l].cache]=o[u[l].cache],n=s._rgba=o._rgba,!1):t}),n.length?("0,0,0,0"===n.join()&&e.extend(n,a.transparent),s):a[i]}function n(e,t,i){return i=(i+1)%1,1>6*i?e+6*(t-e)*i:1>2*i?t:2>3*i?e+6*(t-e)*(2/3-i):e}var a,o="backgroundColor borderBottomColor borderLeftColor borderRightColor borderTopColor color columnRuleColor outlineColor textDecorationColor textEmphasisColor",r=/^([\-+])=\s*(\d+\.?\d*)/,h=[{re:/rgba?\(\s*(\d{1,3})\s*,\s*(\d{1,3})\s*,\s*(\d{1,3})\s*(?:,\s*(\d?(?:\.\d+)?)\s*)?\)/,parse:function(e){return[e[1],e[2],e[3],e[4]]}},{re:/rgba?\(\s*(\d+(?:\.\d+)?)\%\s*,\s*(\d+(?:\.\d+)?)\%\s*,\s*(\d+(?:\.\d+)?)\%\s*(?:,\s*(\d?(?:\.\d+)?)\s*)?\)/,parse:function(e){return[2.55*e[1],2.55*e[2],2.55*e[3],e[4]]}},{re:/#([a-f0-9]{2})([a-f0-9]{2})([a-f0-9]{2})/,parse:function(e){return[parseInt(e[1],16),parseInt(e[2],16),parseInt(e[3],16)]}},{re:/#([a-f0-9])([a-f0-9])([a-f0-9])/,parse:function(e){return[parseInt(e[1]+e[1],16),parseInt(e[2]+e[2],16),parseInt(e[3]+e[3],16)]}},{re:/hsla?\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\%\s*,\s*(\d+(?:\.\d+)?)\%\s*(?:,\s*(\d?(?:\.\d+)?)\s*)?\)/,space:"hsla",parse:function(e){return[e[1],e[2]/100,e[3]/100,e[4]]}}],l=e.Color=function(t,i,s,n){return new e.Color.fn.parse(t,i,s,n)},u={rgba:{props:{red:{idx:0,type:"byte"},green:{idx:1,type:"byte"},blue:{idx:2,type:"byte"}}},hsla:{props:{hue:{idx:0,type:"degrees"},saturation:{idx:1,type:"percent"},lightness:{idx:2,type:"percent"}}}},d={"byte":{floor:!0,max:255},percent:{max:1},degrees:{mod:360,floor:!0}},c=l.support={},p=e("<p>")[0],f=e.each;p.style.cssText="background-color:rgba(1,1,1,.5)",c.rgba=p.style.backgroundColor.indexOf("rgba")>-1,f(u,function(e,t){t.cache="_"+e,t.props.alpha={idx:3,type:"percent",def:1}}),l.fn=e.extend(l.prototype,{parse:function(n,o,r,h){if(n===t)return this._rgba=[null,null,null,null],this;(n.jquery||n.nodeType)&&(n=e(n).css(o),o=t);var d=this,c=e.type(n),p=this._rgba=[];return o!==t&&(n=[n,o,r,h],c="array"),"string"===c?this.parse(s(n)||a._default):"array"===c?(f(u.rgba.props,function(e,t){p[t.idx]=i(n[t.idx],t)}),this):"object"===c?(n instanceof l?f(u,function(e,t){n[t.cache]&&(d[t.cache]=n[t.cache].slice())}):f(u,function(t,s){var a=s.cache;f(s.props,function(e,t){if(!d[a]&&s.to){if("alpha"===e||null==n[e])return;d[a]=s.to(d._rgba)}d[a][t.idx]=i(n[e],t,!0)}),d[a]&&0>e.inArray(null,d[a].slice(0,3))&&(d[a][3]=1,s.from&&(d._rgba=s.from(d[a])))}),this):t},is:function(e){var i=l(e),s=!0,n=this;return f(u,function(e,a){var o,r=i[a.cache];return r&&(o=n[a.cache]||a.to&&a.to(n._rgba)||[],f(a.props,function(e,i){return null!=r[i.idx]?s=r[i.idx]===o[i.idx]:t})),s}),s},_space:function(){var e=[],t=this;return f(u,function(i,s){t[s.cache]&&e.push(i)}),e.pop()},transition:function(e,t){var s=l(e),n=s._space(),a=u[n],o=0===this.alpha()?l("transparent"):this,r=o[a.cache]||a.to(o._rgba),h=r.slice();return s=s[a.cache],f(a.props,function(e,n){var a=n.idx,o=r[a],l=s[a],u=d[n.type]||{};null!==l&&(null===o?h[a]=l:(u.mod&&(l-o>u.mod/2?o+=u.mod:o-l>u.mod/2&&(o-=u.mod)),h[a]=i((l-o)*t+o,n)))}),this[n](h)},blend:function(t){if(1===this._rgba[3])return this;var i=this._rgba.slice(),s=i.pop(),n=l(t)._rgba;return l(e.map(i,function(e,t){return(1-s)*n[t]+s*e}))},toRgbaString:function(){var t="rgba(",i=e.map(this._rgba,function(e,t){return null==e?t>2?1:0:e});return 1===i[3]&&(i.pop(),t="rgb("),t+i.join()+")"},toHslaString:function(){var t="hsla(",i=e.map(this.hsla(),function(e,t){return null==e&&(e=t>2?1:0),t&&3>t&&(e=Math.round(100*e)+"%"),e});return 1===i[3]&&(i.pop(),t="hsl("),t+i.join()+")"},toHexString:function(t){var i=this._rgba.slice(),s=i.pop();return t&&i.push(~~(255*s)),"#"+e.map(i,function(e){return e=(e||0).toString(16),1===e.length?"0"+e:e}).join("")},toString:function(){return 0===this._rgba[3]?"transparent":this.toRgbaString()}}),l.fn.parse.prototype=l.fn,u.hsla.to=function(e){if(null==e[0]||null==e[1]||null==e[2])return[null,null,null,e[3]];var t,i,s=e[0]/255,n=e[1]/255,a=e[2]/255,o=e[3],r=Math.max(s,n,a),h=Math.min(s,n,a),l=r-h,u=r+h,d=.5*u;return t=h===r?0:s===r?60*(n-a)/l+360:n===r?60*(a-s)/l+120:60*(s-n)/l+240,i=0===l?0:.5>=d?l/u:l/(2-u),[Math.round(t)%360,i,d,null==o?1:o]},u.hsla.from=function(e){if(null==e[0]||null==e[1]||null==e[2])return[null,null,null,e[3]];var t=e[0]/360,i=e[1],s=e[2],a=e[3],o=.5>=s?s*(1+i):s+i-s*i,r=2*s-o;return[Math.round(255*n(r,o,t+1/3)),Math.round(255*n(r,o,t)),Math.round(255*n(r,o,t-1/3)),a]},f(u,function(s,n){var a=n.props,o=n.cache,h=n.to,u=n.from;l.fn[s]=function(s){if(h&&!this[o]&&(this[o]=h(this._rgba)),s===t)return this[o].slice();var n,r=e.type(s),d="array"===r||"object"===r?s:arguments,c=this[o].slice();return f(a,function(e,t){var s=d["object"===r?e:t.idx];null==s&&(s=c[t.idx]),c[t.idx]=i(s,t)}),u?(n=l(u(c)),n[o]=c,n):l(c)},f(a,function(t,i){l.fn[t]||(l.fn[t]=function(n){var a,o=e.type(n),h="alpha"===t?this._hsla?"hsla":"rgba":s,l=this[h](),u=l[i.idx];return"undefined"===o?u:("function"===o&&(n=n.call(this,u),o=e.type(n)),null==n&&i.empty?this:("string"===o&&(a=r.exec(n),a&&(n=u+parseFloat(a[2])*("+"===a[1]?1:-1))),l[i.idx]=n,this[h](l)))})})}),l.hook=function(t){var i=t.split(" ");f(i,function(t,i){e.cssHooks[i]={set:function(t,n){var a,o,r="";if("transparent"!==n&&("string"!==e.type(n)||(a=s(n)))){if(n=l(a||n),!c.rgba&&1!==n._rgba[3]){for(o="backgroundColor"===i?t.parentNode:t;(""===r||"transparent"===r)&&o&&o.style;)try{r=e.css(o,"backgroundColor"),o=o.parentNode}catch(h){}n=n.blend(r&&"transparent"!==r?r:"_default")}n=n.toRgbaString()}try{t.style[i]=n}catch(h){}}},e.fx.step[i]=function(t){t.colorInit||(t.start=l(t.elem,i),t.end=l(t.end),t.colorInit=!0),e.cssHooks[i].set(t.elem,t.start.transition(t.end,t.pos))}})},l.hook(o),e.cssHooks.borderColor={expand:function(e){var t={};return f(["Top","Right","Bottom","Left"],function(i,s){t["border"+s+"Color"]=e}),t}},a=e.Color.names={aqua:"#00ffff",black:"#000000",blue:"#0000ff",fuchsia:"#ff00ff",gray:"#808080",green:"#008000",lime:"#00ff00",maroon:"#800000",navy:"#000080",olive:"#808000",purple:"#800080",red:"#ff0000",silver:"#c0c0c0",teal:"#008080",white:"#ffffff",yellow:"#ffff00",transparent:[null,null,null,0],_default:"#ffffff"}}(p),function(){function t(t){var i,s,n=t.ownerDocument.defaultView?t.ownerDocument.defaultView.getComputedStyle(t,null):t.currentStyle,a={};if(n&&n.length&&n[0]&&n[n[0]])for(s=n.length;s--;)i=n[s],"string"==typeof n[i]&&(a[e.camelCase(i)]=n[i]);else for(i in n)"string"==typeof n[i]&&(a[i]=n[i]);return a}function i(t,i){var s,a,o={};for(s in i)a=i[s],t[s]!==a&&(n[s]||(e.fx.step[s]||!isNaN(parseFloat(a)))&&(o[s]=a));return o}var s=["add","remove","toggle"],n={border:1,borderBottom:1,borderColor:1,borderLeft:1,borderRight:1,borderTop:1,borderWidth:1,margin:1,padding:1};e.each(["borderLeftStyle","borderRightStyle","borderBottomStyle","borderTopStyle"],function(t,i){e.fx.step[i]=function(e){("none"!==e.end&&!e.setAttr||1===e.pos&&!e.setAttr)&&(p.style(e.elem,i,e.end),e.setAttr=!0)}}),e.fn.addBack||(e.fn.addBack=function(e){return this.add(null==e?this.prevObject:this.prevObject.filter(e))}),e.effects.animateClass=function(n,a,o,r){var h=e.speed(a,o,r);return this.queue(function(){var a,o=e(this),r=o.attr("class")||"",l=h.children?o.find("*").addBack():o;l=l.map(function(){var i=e(this);return{el:i,start:t(this)}}),a=function(){e.each(s,function(e,t){n[t]&&o[t+"Class"](n[t])})},a(),l=l.map(function(){return this.end=t(this.el[0]),this.diff=i(this.start,this.end),this}),o.attr("class",r),l=l.map(function(){var t=this,i=e.Deferred(),s=e.extend({},h,{queue:!1,complete:function(){i.resolve(t)}});return this.el.animate(this.diff,s),i.promise()}),e.when.apply(e,l.get()).done(function(){a(),e.each(arguments,function(){var t=this.el;e.each(this.diff,function(e){t.css(e,"")})}),h.complete.call(o[0])})})},e.fn.extend({addClass:function(t){return function(i,s,n,a){return s?e.effects.animateClass.call(this,{add:i},s,n,a):t.apply(this,arguments)}}(e.fn.addClass),removeClass:function(t){return function(i,s,n,a){return arguments.length>1?e.effects.animateClass.call(this,{remove:i},s,n,a):t.apply(this,arguments)}}(e.fn.removeClass),toggleClass:function(t){return function(i,s,n,a,o){return"boolean"==typeof s||void 0===s?n?e.effects.animateClass.call(this,s?{add:i}:{remove:i},n,a,o):t.apply(this,arguments):e.effects.animateClass.call(this,{toggle:i},s,n,a)}}(e.fn.toggleClass),switchClass:function(t,i,s,n,a){return e.effects.animateClass.call(this,{add:i,remove:t},s,n,a)}})}(),function(){function t(t,i,s,n){return e.isPlainObject(t)&&(i=t,t=t.effect),t={effect:t},null==i&&(i={}),e.isFunction(i)&&(n=i,s=null,i={}),("number"==typeof i||e.fx.speeds[i])&&(n=s,s=i,i={}),e.isFunction(s)&&(n=s,s=null),i&&e.extend(t,i),s=s||i.duration,t.duration=e.fx.off?0:"number"==typeof s?s:s in e.fx.speeds?e.fx.speeds[s]:e.fx.speeds._default,t.complete=n||i.complete,t}function i(t){return!t||"number"==typeof t||e.fx.speeds[t]?!0:"string"!=typeof t||e.effects.effect[t]?e.isFunction(t)?!0:"object"!=typeof t||t.effect?!1:!0:!0}e.extend(e.effects,{version:"1.11.4",save:function(e,t){for(var i=0;t.length>i;i++)null!==t[i]&&e.data(c+t[i],e[0].style[t[i]])},restore:function(e,t){var i,s;for(s=0;t.length>s;s++)null!==t[s]&&(i=e.data(c+t[s]),void 0===i&&(i=""),e.css(t[s],i))},setMode:function(e,t){return"toggle"===t&&(t=e.is(":hidden")?"show":"hide"),t},getBaseline:function(e,t){var i,s;switch(e[0]){case"top":i=0;break;case"middle":i=.5;break;case"bottom":i=1;break;default:i=e[0]/t.height}switch(e[1]){case"left":s=0;break;case"center":s=.5;break;case"right":s=1;break;default:s=e[1]/t.width}return{x:s,y:i}},createWrapper:function(t){if(t.parent().is(".ui-effects-wrapper"))return t.parent();var i={width:t.outerWidth(!0),height:t.outerHeight(!0),"float":t.css("float")},s=e("<div></div>").addClass("ui-effects-wrapper").css({fontSize:"100%",background:"transparent",border:"none",margin:0,padding:0}),n={width:t.width(),height:t.height()},a=document.activeElement;try{a.id}catch(o){a=document.body}return t.wrap(s),(t[0]===a||e.contains(t[0],a))&&e(a).focus(),s=t.parent(),"static"===t.css("position")?(s.css({position:"relative"}),t.css({position:"relative"})):(e.extend(i,{position:t.css("position"),zIndex:t.css("z-index")}),e.each(["top","left","bottom","right"],function(e,s){i[s]=t.css(s),isNaN(parseInt(i[s],10))&&(i[s]="auto")}),t.css({position:"relative",top:0,left:0,right:"auto",bottom:"auto"})),t.css(n),s.css(i).show()},removeWrapper:function(t){var i=document.activeElement;return t.parent().is(".ui-effects-wrapper")&&(t.parent().replaceWith(t),(t[0]===i||e.contains(t[0],i))&&e(i).focus()),t},setTransition:function(t,i,s,n){return n=n||{},e.each(i,function(e,i){var a=t.cssUnit(i);a[0]>0&&(n[i]=a[0]*s+a[1])}),n}}),e.fn.extend({effect:function(){function i(t){function i(){e.isFunction(a)&&a.call(n[0]),e.isFunction(t)&&t()}var n=e(this),a=s.complete,r=s.mode;(n.is(":hidden")?"hide"===r:"show"===r)?(n[r](),i()):o.call(n[0],s,i)}var s=t.apply(this,arguments),n=s.mode,a=s.queue,o=e.effects.effect[s.effect];return e.fx.off||!o?n?this[n](s.duration,s.complete):this.each(function(){s.complete&&s.complete.call(this)}):a===!1?this.each(i):this.queue(a||"fx",i)},show:function(e){return function(s){if(i(s))return e.apply(this,arguments);var n=t.apply(this,arguments);return n.mode="show",this.effect.call(this,n)}}(e.fn.show),hide:function(e){return function(s){if(i(s))return e.apply(this,arguments);var n=t.apply(this,arguments);return n.mode="hide",this.effect.call(this,n)}}(e.fn.hide),toggle:function(e){return function(s){if(i(s)||"boolean"==typeof s)return e.apply(this,arguments);var n=t.apply(this,arguments);return n.mode="toggle",this.effect.call(this,n)}}(e.fn.toggle),cssUnit:function(t){var i=this.css(t),s=[];return e.each(["em","px","%","pt"],function(e,t){i.indexOf(t)>0&&(s=[parseFloat(i),t])}),s}})}(),function(){var t={};e.each(["Quad","Cubic","Quart","Quint","Expo"],function(e,i){t[i]=function(t){return Math.pow(t,e+2)}}),e.extend(t,{Sine:function(e){return 1-Math.cos(e*Math.PI/2)},Circ:function(e){return 1-Math.sqrt(1-e*e)},Elastic:function(e){return 0===e||1===e?e:-Math.pow(2,8*(e-1))*Math.sin((80*(e-1)-7.5)*Math.PI/15)},Back:function(e){return e*e*(3*e-2)},Bounce:function(e){for(var t,i=4;((t=Math.pow(2,--i))-1)/11>e;);return 1/Math.pow(4,3-i)-7.5625*Math.pow((3*t-2)/22-e,2)}}),e.each(t,function(t,i){e.easing["easeIn"+t]=i,e.easing["easeOut"+t]=function(e){return 1-i(1-e)},e.easing["easeInOut"+t]=function(e){return.5>e?i(2*e)/2:1-i(-2*e+2)/2}})}(),e.effects,e.effects.effect.blind=function(t,i){var s,n,a,o=e(this),r=/up|down|vertical/,h=/up|left|vertical|horizontal/,l=["position","top","bottom","left","right","height","width"],u=e.effects.setMode(o,t.mode||"hide"),d=t.direction||"up",c=r.test(d),p=c?"height":"width",f=c?"top":"left",m=h.test(d),g={},v="show"===u;o.parent().is(".ui-effects-wrapper")?e.effects.save(o.parent(),l):e.effects.save(o,l),o.show(),s=e.effects.createWrapper(o).css({overflow:"hidden"}),n=s[p](),a=parseFloat(s.css(f))||0,g[p]=v?n:0,m||(o.css(c?"bottom":"right",0).css(c?"top":"left","auto").css({position:"absolute"}),g[f]=v?a:n+a),v&&(s.css(p,0),m||s.css(f,a+n)),s.animate(g,{duration:t.duration,easing:t.easing,queue:!1,complete:function(){"hide"===u&&o.hide(),e.effects.restore(o,l),e.effects.removeWrapper(o),i()
}})},e.effects.effect.bounce=function(t,i){var s,n,a,o=e(this),r=["position","top","bottom","left","right","height","width"],h=e.effects.setMode(o,t.mode||"effect"),l="hide"===h,u="show"===h,d=t.direction||"up",c=t.distance,p=t.times||5,f=2*p+(u||l?1:0),m=t.duration/f,g=t.easing,v="up"===d||"down"===d?"top":"left",y="up"===d||"left"===d,b=o.queue(),_=b.length;for((u||l)&&r.push("opacity"),e.effects.save(o,r),o.show(),e.effects.createWrapper(o),c||(c=o["top"===v?"outerHeight":"outerWidth"]()/3),u&&(a={opacity:1},a[v]=0,o.css("opacity",0).css(v,y?2*-c:2*c).animate(a,m,g)),l&&(c/=Math.pow(2,p-1)),a={},a[v]=0,s=0;p>s;s++)n={},n[v]=(y?"-=":"+=")+c,o.animate(n,m,g).animate(a,m,g),c=l?2*c:c/2;l&&(n={opacity:0},n[v]=(y?"-=":"+=")+c,o.animate(n,m,g)),o.queue(function(){l&&o.hide(),e.effects.restore(o,r),e.effects.removeWrapper(o),i()}),_>1&&b.splice.apply(b,[1,0].concat(b.splice(_,f+1))),o.dequeue()},e.effects.effect.clip=function(t,i){var s,n,a,o=e(this),r=["position","top","bottom","left","right","height","width"],h=e.effects.setMode(o,t.mode||"hide"),l="show"===h,u=t.direction||"vertical",d="vertical"===u,c=d?"height":"width",p=d?"top":"left",f={};e.effects.save(o,r),o.show(),s=e.effects.createWrapper(o).css({overflow:"hidden"}),n="IMG"===o[0].tagName?s:o,a=n[c](),l&&(n.css(c,0),n.css(p,a/2)),f[c]=l?a:0,f[p]=l?0:a/2,n.animate(f,{queue:!1,duration:t.duration,easing:t.easing,complete:function(){l||o.hide(),e.effects.restore(o,r),e.effects.removeWrapper(o),i()}})},e.effects.effect.drop=function(t,i){var s,n=e(this),a=["position","top","bottom","left","right","opacity","height","width"],o=e.effects.setMode(n,t.mode||"hide"),r="show"===o,h=t.direction||"left",l="up"===h||"down"===h?"top":"left",u="up"===h||"left"===h?"pos":"neg",d={opacity:r?1:0};e.effects.save(n,a),n.show(),e.effects.createWrapper(n),s=t.distance||n["top"===l?"outerHeight":"outerWidth"](!0)/2,r&&n.css("opacity",0).css(l,"pos"===u?-s:s),d[l]=(r?"pos"===u?"+=":"-=":"pos"===u?"-=":"+=")+s,n.animate(d,{queue:!1,duration:t.duration,easing:t.easing,complete:function(){"hide"===o&&n.hide(),e.effects.restore(n,a),e.effects.removeWrapper(n),i()}})},e.effects.effect.explode=function(t,i){function s(){b.push(this),b.length===d*c&&n()}function n(){p.css({visibility:"visible"}),e(b).remove(),m||p.hide(),i()}var a,o,r,h,l,u,d=t.pieces?Math.round(Math.sqrt(t.pieces)):3,c=d,p=e(this),f=e.effects.setMode(p,t.mode||"hide"),m="show"===f,g=p.show().css("visibility","hidden").offset(),v=Math.ceil(p.outerWidth()/c),y=Math.ceil(p.outerHeight()/d),b=[];for(a=0;d>a;a++)for(h=g.top+a*y,u=a-(d-1)/2,o=0;c>o;o++)r=g.left+o*v,l=o-(c-1)/2,p.clone().appendTo("body").wrap("<div></div>").css({position:"absolute",visibility:"visible",left:-o*v,top:-a*y}).parent().addClass("ui-effects-explode").css({position:"absolute",overflow:"hidden",width:v,height:y,left:r+(m?l*v:0),top:h+(m?u*y:0),opacity:m?0:1}).animate({left:r+(m?0:l*v),top:h+(m?0:u*y),opacity:m?1:0},t.duration||500,t.easing,s)},e.effects.effect.fade=function(t,i){var s=e(this),n=e.effects.setMode(s,t.mode||"toggle");s.animate({opacity:n},{queue:!1,duration:t.duration,easing:t.easing,complete:i})},e.effects.effect.fold=function(t,i){var s,n,a=e(this),o=["position","top","bottom","left","right","height","width"],r=e.effects.setMode(a,t.mode||"hide"),h="show"===r,l="hide"===r,u=t.size||15,d=/([0-9]+)%/.exec(u),c=!!t.horizFirst,p=h!==c,f=p?["width","height"]:["height","width"],m=t.duration/2,g={},v={};e.effects.save(a,o),a.show(),s=e.effects.createWrapper(a).css({overflow:"hidden"}),n=p?[s.width(),s.height()]:[s.height(),s.width()],d&&(u=parseInt(d[1],10)/100*n[l?0:1]),h&&s.css(c?{height:0,width:u}:{height:u,width:0}),g[f[0]]=h?n[0]:u,v[f[1]]=h?n[1]:0,s.animate(g,m,t.easing).animate(v,m,t.easing,function(){l&&a.hide(),e.effects.restore(a,o),e.effects.removeWrapper(a),i()})},e.effects.effect.highlight=function(t,i){var s=e(this),n=["backgroundImage","backgroundColor","opacity"],a=e.effects.setMode(s,t.mode||"show"),o={backgroundColor:s.css("backgroundColor")};"hide"===a&&(o.opacity=0),e.effects.save(s,n),s.show().css({backgroundImage:"none",backgroundColor:t.color||"#ffff99"}).animate(o,{queue:!1,duration:t.duration,easing:t.easing,complete:function(){"hide"===a&&s.hide(),e.effects.restore(s,n),i()}})},e.effects.effect.size=function(t,i){var s,n,a,o=e(this),r=["position","top","bottom","left","right","width","height","overflow","opacity"],h=["position","top","bottom","left","right","overflow","opacity"],l=["width","height","overflow"],u=["fontSize"],d=["borderTopWidth","borderBottomWidth","paddingTop","paddingBottom"],c=["borderLeftWidth","borderRightWidth","paddingLeft","paddingRight"],p=e.effects.setMode(o,t.mode||"effect"),f=t.restore||"effect"!==p,m=t.scale||"both",g=t.origin||["middle","center"],v=o.css("position"),y=f?r:h,b={height:0,width:0,outerHeight:0,outerWidth:0};"show"===p&&o.show(),s={height:o.height(),width:o.width(),outerHeight:o.outerHeight(),outerWidth:o.outerWidth()},"toggle"===t.mode&&"show"===p?(o.from=t.to||b,o.to=t.from||s):(o.from=t.from||("show"===p?b:s),o.to=t.to||("hide"===p?b:s)),a={from:{y:o.from.height/s.height,x:o.from.width/s.width},to:{y:o.to.height/s.height,x:o.to.width/s.width}},("box"===m||"both"===m)&&(a.from.y!==a.to.y&&(y=y.concat(d),o.from=e.effects.setTransition(o,d,a.from.y,o.from),o.to=e.effects.setTransition(o,d,a.to.y,o.to)),a.from.x!==a.to.x&&(y=y.concat(c),o.from=e.effects.setTransition(o,c,a.from.x,o.from),o.to=e.effects.setTransition(o,c,a.to.x,o.to))),("content"===m||"both"===m)&&a.from.y!==a.to.y&&(y=y.concat(u).concat(l),o.from=e.effects.setTransition(o,u,a.from.y,o.from),o.to=e.effects.setTransition(o,u,a.to.y,o.to)),e.effects.save(o,y),o.show(),e.effects.createWrapper(o),o.css("overflow","hidden").css(o.from),g&&(n=e.effects.getBaseline(g,s),o.from.top=(s.outerHeight-o.outerHeight())*n.y,o.from.left=(s.outerWidth-o.outerWidth())*n.x,o.to.top=(s.outerHeight-o.to.outerHeight)*n.y,o.to.left=(s.outerWidth-o.to.outerWidth)*n.x),o.css(o.from),("content"===m||"both"===m)&&(d=d.concat(["marginTop","marginBottom"]).concat(u),c=c.concat(["marginLeft","marginRight"]),l=r.concat(d).concat(c),o.find("*[width]").each(function(){var i=e(this),s={height:i.height(),width:i.width(),outerHeight:i.outerHeight(),outerWidth:i.outerWidth()};f&&e.effects.save(i,l),i.from={height:s.height*a.from.y,width:s.width*a.from.x,outerHeight:s.outerHeight*a.from.y,outerWidth:s.outerWidth*a.from.x},i.to={height:s.height*a.to.y,width:s.width*a.to.x,outerHeight:s.height*a.to.y,outerWidth:s.width*a.to.x},a.from.y!==a.to.y&&(i.from=e.effects.setTransition(i,d,a.from.y,i.from),i.to=e.effects.setTransition(i,d,a.to.y,i.to)),a.from.x!==a.to.x&&(i.from=e.effects.setTransition(i,c,a.from.x,i.from),i.to=e.effects.setTransition(i,c,a.to.x,i.to)),i.css(i.from),i.animate(i.to,t.duration,t.easing,function(){f&&e.effects.restore(i,l)})})),o.animate(o.to,{queue:!1,duration:t.duration,easing:t.easing,complete:function(){0===o.to.opacity&&o.css("opacity",o.from.opacity),"hide"===p&&o.hide(),e.effects.restore(o,y),f||("static"===v?o.css({position:"relative",top:o.to.top,left:o.to.left}):e.each(["top","left"],function(e,t){o.css(t,function(t,i){var s=parseInt(i,10),n=e?o.to.left:o.to.top;return"auto"===i?n+"px":s+n+"px"})})),e.effects.removeWrapper(o),i()}})},e.effects.effect.scale=function(t,i){var s=e(this),n=e.extend(!0,{},t),a=e.effects.setMode(s,t.mode||"effect"),o=parseInt(t.percent,10)||(0===parseInt(t.percent,10)?0:"hide"===a?0:100),r=t.direction||"both",h=t.origin,l={height:s.height(),width:s.width(),outerHeight:s.outerHeight(),outerWidth:s.outerWidth()},u={y:"horizontal"!==r?o/100:1,x:"vertical"!==r?o/100:1};n.effect="size",n.queue=!1,n.complete=i,"effect"!==a&&(n.origin=h||["middle","center"],n.restore=!0),n.from=t.from||("show"===a?{height:0,width:0,outerHeight:0,outerWidth:0}:l),n.to={height:l.height*u.y,width:l.width*u.x,outerHeight:l.outerHeight*u.y,outerWidth:l.outerWidth*u.x},n.fade&&("show"===a&&(n.from.opacity=0,n.to.opacity=1),"hide"===a&&(n.from.opacity=1,n.to.opacity=0)),s.effect(n)},e.effects.effect.puff=function(t,i){var s=e(this),n=e.effects.setMode(s,t.mode||"hide"),a="hide"===n,o=parseInt(t.percent,10)||150,r=o/100,h={height:s.height(),width:s.width(),outerHeight:s.outerHeight(),outerWidth:s.outerWidth()};e.extend(t,{effect:"scale",queue:!1,fade:!0,mode:n,complete:i,percent:a?o:100,from:a?h:{height:h.height*r,width:h.width*r,outerHeight:h.outerHeight*r,outerWidth:h.outerWidth*r}}),s.effect(t)},e.effects.effect.pulsate=function(t,i){var s,n=e(this),a=e.effects.setMode(n,t.mode||"show"),o="show"===a,r="hide"===a,h=o||"hide"===a,l=2*(t.times||5)+(h?1:0),u=t.duration/l,d=0,c=n.queue(),p=c.length;for((o||!n.is(":visible"))&&(n.css("opacity",0).show(),d=1),s=1;l>s;s++)n.animate({opacity:d},u,t.easing),d=1-d;n.animate({opacity:d},u,t.easing),n.queue(function(){r&&n.hide(),i()}),p>1&&c.splice.apply(c,[1,0].concat(c.splice(p,l+1))),n.dequeue()},e.effects.effect.shake=function(t,i){var s,n=e(this),a=["position","top","bottom","left","right","height","width"],o=e.effects.setMode(n,t.mode||"effect"),r=t.direction||"left",h=t.distance||20,l=t.times||3,u=2*l+1,d=Math.round(t.duration/u),c="up"===r||"down"===r?"top":"left",p="up"===r||"left"===r,f={},m={},g={},v=n.queue(),y=v.length;for(e.effects.save(n,a),n.show(),e.effects.createWrapper(n),f[c]=(p?"-=":"+=")+h,m[c]=(p?"+=":"-=")+2*h,g[c]=(p?"-=":"+=")+2*h,n.animate(f,d,t.easing),s=1;l>s;s++)n.animate(m,d,t.easing).animate(g,d,t.easing);n.animate(m,d,t.easing).animate(f,d/2,t.easing).queue(function(){"hide"===o&&n.hide(),e.effects.restore(n,a),e.effects.removeWrapper(n),i()}),y>1&&v.splice.apply(v,[1,0].concat(v.splice(y,u+1))),n.dequeue()},e.effects.effect.slide=function(t,i){var s,n=e(this),a=["position","top","bottom","left","right","width","height"],o=e.effects.setMode(n,t.mode||"show"),r="show"===o,h=t.direction||"left",l="up"===h||"down"===h?"top":"left",u="up"===h||"left"===h,d={};e.effects.save(n,a),n.show(),s=t.distance||n["top"===l?"outerHeight":"outerWidth"](!0),e.effects.createWrapper(n).css({overflow:"hidden"}),r&&n.css(l,u?isNaN(s)?"-"+s:-s:s),d[l]=(r?u?"+=":"-=":u?"-=":"+=")+s,n.animate(d,{queue:!1,duration:t.duration,easing:t.easing,complete:function(){"hide"===o&&n.hide(),e.effects.restore(n,a),e.effects.removeWrapper(n),i()}})},e.effects.effect.transfer=function(t,i){var s=e(this),n=e(t.to),a="fixed"===n.css("position"),o=e("body"),r=a?o.scrollTop():0,h=a?o.scrollLeft():0,l=n.offset(),u={top:l.top-r,left:l.left-h,height:n.innerHeight(),width:n.innerWidth()},d=s.offset(),c=e("<div class='ui-effects-transfer'></div>").appendTo(document.body).addClass(t.className).css({top:d.top-r,left:d.left-h,height:s.innerHeight(),width:s.innerWidth(),position:a?"fixed":"absolute"}).animate(u,t.duration,t.easing,function(){c.remove(),i()})}});</script>
<style type="text/css">

.tocify {
width: 20%;
max-height: 90%;
overflow: auto;
margin-left: 2%;
position: fixed;
border: 1px solid #ccc;
border-radius: 6px;
}

.tocify ul, .tocify li {
list-style: none;
margin: 0;
padding: 0;
border: none;
line-height: 30px;
}

.tocify-header {
text-indent: 10px;
}

.tocify-subheader {
text-indent: 20px;
display: none;
}

.tocify-subheader li {
font-size: 12px;
}

.tocify-subheader .tocify-subheader {
text-indent: 30px;
}
.tocify-subheader .tocify-subheader .tocify-subheader {
text-indent: 40px;
}
.tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader {
text-indent: 50px;
}
.tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader {
text-indent: 60px;
}

.tocify .tocify-item > a, .tocify .nav-list .nav-header {
margin: 0px;
}

.tocify .tocify-item a, .tocify .list-group-item {
padding: 5px;
}
.tocify .nav-pills > li {
float: none;
}


</style>
<script>/* jquery Tocify - v1.9.1 - 2013-10-22
 * http://www.gregfranko.com/jquery.tocify.js/
 * Copyright (c) 2013 Greg Franko; Licensed MIT */

// Immediately-Invoked Function Expression (IIFE) [Ben Alman Blog Post](http://benalman.com/news/2010/11/immediately-invoked-function-expression/) that calls another IIFE that contains all of the plugin logic.  I used this pattern so that anyone viewing this code would not have to scroll to the bottom of the page to view the local parameters that were passed to the main IIFE.
(function(tocify) {

    // ECMAScript 5 Strict Mode: [John Resig Blog Post](http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/)
    "use strict";

    // Calls the second IIFE and locally passes in the global jQuery, window, and document objects
    tocify(window.jQuery, window, document);

  }

  // Locally passes in `jQuery`, the `window` object, the `document` object, and an `undefined` variable.  The `jQuery`, `window` and `document` objects are passed in locally, to improve performance, since javascript first searches for a variable match within the local variables set before searching the global variables set.  All of the global variables are also passed in locally to be minifier friendly. `undefined` can be passed in locally, because it is not a reserved word in JavaScript.
  (function($, window, document, undefined) {

    // ECMAScript 5 Strict Mode: [John Resig Blog Post](http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/)
    "use strict";

    var tocClassName = "tocify",
      tocClass = "." + tocClassName,
      tocFocusClassName = "tocify-focus",
      tocHoverClassName = "tocify-hover",
      hideTocClassName = "tocify-hide",
      hideTocClass = "." + hideTocClassName,
      headerClassName = "tocify-header",
      headerClass = "." + headerClassName,
      subheaderClassName = "tocify-subheader",
      subheaderClass = "." + subheaderClassName,
      itemClassName = "tocify-item",
      itemClass = "." + itemClassName,
      extendPageClassName = "tocify-extend-page",
      extendPageClass = "." + extendPageClassName;

    // Calling the jQueryUI Widget Factory Method
    $.widget("toc.tocify", {

      //Plugin version
      version: "1.9.1",

      // These options will be used as defaults
      options: {

        // **context**: Accepts String: Any jQuery selector
        // The container element that holds all of the elements used to generate the table of contents
        context: "body",

        // **ignoreSelector**: Accepts String: Any jQuery selector
        // A selector to any element that would be matched by selectors that you wish to be ignored
        ignoreSelector: null,

        // **selectors**: Accepts an Array of Strings: Any jQuery selectors
        // The element's used to generate the table of contents.  The order is very important since it will determine the table of content's nesting structure
        selectors: "h1, h2, h3",

        // **showAndHide**: Accepts a boolean: true or false
        // Used to determine if elements should be shown and hidden
        showAndHide: true,

        // **showEffect**: Accepts String: "none", "fadeIn", "show", or "slideDown"
        // Used to display any of the table of contents nested items
        showEffect: "slideDown",

        // **showEffectSpeed**: Accepts Number (milliseconds) or String: "slow", "medium", or "fast"
        // The time duration of the show animation
        showEffectSpeed: "medium",

        // **hideEffect**: Accepts String: "none", "fadeOut", "hide", or "slideUp"
        // Used to hide any of the table of contents nested items
        hideEffect: "slideUp",

        // **hideEffectSpeed**: Accepts Number (milliseconds) or String: "slow", "medium", or "fast"
        // The time duration of the hide animation
        hideEffectSpeed: "medium",

        // **smoothScroll**: Accepts a boolean: true or false
        // Determines if a jQuery animation should be used to scroll to specific table of contents items on the page
        smoothScroll: true,

        // **smoothScrollSpeed**: Accepts Number (milliseconds) or String: "slow", "medium", or "fast"
        // The time duration of the smoothScroll animation
        smoothScrollSpeed: "medium",

        // **scrollTo**: Accepts Number (pixels)
        // The amount of space between the top of page and the selected table of contents item after the page has been scrolled
        scrollTo: 0,

        // **showAndHideOnScroll**: Accepts a boolean: true or false
        // Determines if table of contents nested items should be shown and hidden while scrolling
        showAndHideOnScroll: true,

        // **highlightOnScroll**: Accepts a boolean: true or false
        // Determines if table of contents nested items should be highlighted (set to a different color) while scrolling
        highlightOnScroll: true,

        // **highlightOffset**: Accepts a number
        // The offset distance in pixels to trigger the next active table of contents item
        highlightOffset: 40,

        // **theme**: Accepts a string: "bootstrap", "jqueryui", or "none"
        // Determines if Twitter Bootstrap, jQueryUI, or Tocify classes should be added to the table of contents
        theme: "bootstrap",

        // **extendPage**: Accepts a boolean: true or false
        // If a user scrolls to the bottom of the page and the page is not tall enough to scroll to the last table of contents item, then the page height is increased
        extendPage: true,

        // **extendPageOffset**: Accepts a number: pixels
        // How close to the bottom of the page a user must scroll before the page is extended
        extendPageOffset: 100,

        // **history**: Accepts a boolean: true or false
        // Adds a hash to the page url to maintain history
        history: true,

        // **scrollHistory**: Accepts a boolean: true or false
        // Adds a hash to the page url, to maintain history, when scrolling to a TOC item
        scrollHistory: false,

        // **hashGenerator**: How the hash value (the anchor segment of the URL, following the
        // # character) will be generated.
        //
        // "compact" (default) - #CompressesEverythingTogether
        // "pretty" - #looks-like-a-nice-url-and-is-easily-readable
        // function(text, element){} - Your own hash generation function that accepts the text as an
        // argument, and returns the hash value.
        hashGenerator: "compact",

        // **highlightDefault**: Accepts a boolean: true or false
        // Set's the first TOC item as active if no other TOC item is active.
        highlightDefault: true

      },

      // _Create
      // -------
      //      Constructs the plugin.  Only called once.
      _create: function() {

        var self = this;

        self.extendPageScroll = true;

        // Internal array that keeps track of all TOC items (Helps to recognize if there are duplicate TOC item strings)
        self.items = [];

        // Generates the HTML for the dynamic table of contents
        self._generateToc();

        // Adds CSS classes to the newly generated table of contents HTML
        self._addCSSClasses();

        self.webkit = (function() {

          for (var prop in window) {

            if (prop) {

              if (prop.toLowerCase().indexOf("webkit") !== -1) {

                return true;

              }

            }

          }

          return false;

        }());

        // Adds jQuery event handlers to the newly generated table of contents
        self._setEventHandlers();

        // Binding to the Window load event to make sure the correct scrollTop is calculated
        $(window).load(function() {

          // Sets the active TOC item
          self._setActiveElement(true);

          // Once all animations on the page are complete, this callback function will be called
          $("html, body").promise().done(function() {

            setTimeout(function() {

              self.extendPageScroll = false;

            }, 0);

          });

        });

      },

      // _generateToc
      // ------------
      //      Generates the HTML for the dynamic table of contents
      _generateToc: function() {

        // _Local variables_

        // Stores the plugin context in the self variable
        var self = this,

          // All of the HTML tags found within the context provided (i.e. body) that match the top level jQuery selector above
          firstElem,

          // Instantiated variable that will store the top level newly created unordered list DOM element
          ul,
          ignoreSelector = self.options.ignoreSelector;


        // Determine the element to start the toc with
        // get all the top level selectors
        firstElem = [];
        var selectors = this.options.selectors.replace(/ /g, "").split(",");
        // find the first set that have at least one non-ignored element
        for(var i = 0; i < selectors.length; i++) {
          var foundSelectors = $(this.options.context).find(selectors[i]);
          for (var s = 0; s < foundSelectors.length; s++) {
            if (!$(foundSelectors[s]).is(ignoreSelector)) {
              firstElem = foundSelectors;
              break;
            }
          }
          if (firstElem.length> 0)
            break;
        }

        if (!firstElem.length) {

          self.element.addClass(hideTocClassName);

          return;

        }

        self.element.addClass(tocClassName);

        // Loops through each top level selector
        firstElem.each(function(index) {

          //If the element matches the ignoreSelector then we skip it
          if ($(this).is(ignoreSelector)) {
            return;
          }

          // Creates an unordered list HTML element and adds a dynamic ID and standard class name
          ul = $("<ul/>", {
            "id": headerClassName + index,
            "class": headerClassName
          }).

          // Appends a top level list item HTML element to the previously created HTML header
          append(self._nestElements($(this), index));

          // Add the created unordered list element to the HTML element calling the plugin
          self.element.append(ul);

          // Finds all of the HTML tags between the header and subheader elements
          $(this).nextUntil(this.nodeName.toLowerCase()).each(function() {

            // If there are no nested subheader elemements
            if ($(this).find(self.options.selectors).length === 0) {

              // Loops through all of the subheader elements
              $(this).filter(self.options.selectors).each(function() {

                //If the element matches the ignoreSelector then we skip it
                if ($(this).is(ignoreSelector)) {
                  return;
                }

                self._appendSubheaders.call(this, self, ul);

              });

            }

            // If there are nested subheader elements
            else {

              // Loops through all of the subheader elements
              $(this).find(self.options.selectors).each(function() {

                //If the element matches the ignoreSelector then we skip it
                if ($(this).is(ignoreSelector)) {
                  return;
                }

                self._appendSubheaders.call(this, self, ul);

              });

            }

          });

        });

      },

      _setActiveElement: function(pageload) {

        var self = this,

          hash = window.location.hash.substring(1),

          elem = self.element.find('li[data-unique="' + hash + '"]');

        if (hash.length) {

          // Removes highlighting from all of the list item's
          self.element.find("." + self.focusClass).removeClass(self.focusClass);

          // Highlights the current list item that was clicked
          elem.addClass(self.focusClass);

          // Triggers the click event on the currently focused TOC item
          elem.click();

        } else {

          // Removes highlighting from all of the list item's
          self.element.find("." + self.focusClass).removeClass(self.focusClass);

          if (!hash.length && pageload && self.options.highlightDefault) {

            // Highlights the first TOC item if no other items are highlighted
            self.element.find(itemClass).first().addClass(self.focusClass);

          }

        }

        return self;

      },

      // _nestElements
      // -------------
      //      Helps create the table of contents list by appending nested list items
      _nestElements: function(self, index) {

        var arr, item, hashValue;

        arr = $.grep(this.items, function(item) {

          return item === self.text();

        });

        // If there is already a duplicate TOC item
        if (arr.length) {

          // Adds the current TOC item text and index (for slight randomization) to the internal array
          this.items.push(self.text() + index);

        }

        // If there not a duplicate TOC item
        else {

          // Adds the current TOC item text to the internal array
          this.items.push(self.text());

        }

        hashValue = this._generateHashValue(arr, self, index);

        // Appends a list item HTML element to the last unordered list HTML element found within the HTML element calling the plugin
        item = $("<li/>", {

          // Sets a common class name to the list item
          "class": itemClassName,

          "data-unique": hashValue

        });

        if (this.options.theme !== "bootstrap3") {

          item.append($("<a/>", {

            "html": self.html()

          }));

        } else {

          item.html(self.html());

        }

        // Adds an HTML anchor tag before the currently traversed HTML element
        self.before($("<div/>", {

          // Sets a name attribute on the anchor tag to the text of the currently traversed HTML element (also making sure that all whitespace is replaced with an underscore)
          "name": hashValue,

          "data-unique": hashValue

        }));

        return item;

      },

      // _generateHashValue
      // ------------------
      //      Generates the hash value that will be used to refer to each item.
      _generateHashValue: function(arr, self, index) {

        var hashValue = "",
          hashGeneratorOption = this.options.hashGenerator;

        if (hashGeneratorOption === "pretty") {

          // prettify the text
          hashValue = self.text().toLowerCase().replace(/\s/g, "-");

          // fix double hyphens
          while (hashValue.indexOf("--") > -1) {
            hashValue = hashValue.replace(/--/g, "-");
          }

          // fix colon-space instances
          while (hashValue.indexOf(":-") > -1) {
            hashValue = hashValue.replace(/:-/g, "-");
          }

        } else if (typeof hashGeneratorOption === "function") {

          // call the function
          hashValue = hashGeneratorOption(self.text(), self);

        } else {

          // compact - the default
          hashValue = self.text().replace(/\s/g, "");

        }

        // add the index if we need to
        if (arr.length) {
          hashValue += "" + index;
        }

        // return the value
        return hashValue;

      },

      // _appendElements
      // ---------------
      //      Helps create the table of contents list by appending subheader elements

      _appendSubheaders: function(self, ul) {

        // The current element index
        var index = $(this).index(self.options.selectors),

          // Finds the previous header DOM element
          previousHeader = $(self.options.selectors).eq(index - 1),

          currentTagName = +$(this).prop("tagName").charAt(1),

          previousTagName = +previousHeader.prop("tagName").charAt(1),

          lastSubheader;

        // If the current header DOM element is smaller than the previous header DOM element or the first subheader
        if (currentTagName < previousTagName) {

          // Selects the last unordered list HTML found within the HTML element calling the plugin
          self.element.find(subheaderClass + "[data-tag=" + currentTagName + "]").last().append(self._nestElements($(this), index));

        }

        // If the current header DOM element is the same type of header(eg. h4) as the previous header DOM element
        else if (currentTagName === previousTagName) {

          ul.find(itemClass).last().after(self._nestElements($(this), index));

        } else {

          // Selects the last unordered list HTML found within the HTML element calling the plugin
          ul.find(itemClass).last().

          // Appends an unorderedList HTML element to the dynamic `unorderedList` variable and sets a common class name
          after($("<ul/>", {

            "class": subheaderClassName,

            "data-tag": currentTagName

          })).next(subheaderClass).

          // Appends a list item HTML element to the last unordered list HTML element found within the HTML element calling the plugin
          append(self._nestElements($(this), index));
        }

      },

      // _setEventHandlers
      // ----------------
      //      Adds jQuery event handlers to the newly generated table of contents
      _setEventHandlers: function() {

        // _Local variables_

        // Stores the plugin context in the self variable
        var self = this,

          // Instantiates a new variable that will be used to hold a specific element's context
          $self,

          // Instantiates a new variable that will be used to determine the smoothScroll animation time duration
          duration;

        // Event delegation that looks for any clicks on list item elements inside of the HTML element calling the plugin
        this.element.on("click.tocify", "li", function(event) {

          if (self.options.history) {

            window.location.hash = $(this).attr("data-unique");

          }

          // Removes highlighting from all of the list item's
          self.element.find("." + self.focusClass).removeClass(self.focusClass);

          // Highlights the current list item that was clicked
          $(this).addClass(self.focusClass);

          // If the showAndHide option is true
          if (self.options.showAndHide) {

            var elem = $('li[data-unique="' + $(this).attr("data-unique") + '"]');

            self._triggerShow(elem);

          }

          self._scrollTo($(this));

        });

        // Mouseenter and Mouseleave event handlers for the list item's within the HTML element calling the plugin
        this.element.find("li").on({

          // Mouseenter event handler
          "mouseenter.tocify": function() {

            // Adds a hover CSS class to the current list item
            $(this).addClass(self.hoverClass);

            // Makes sure the cursor is set to the pointer icon
            $(this).css("cursor", "pointer");

          },

          // Mouseleave event handler
          "mouseleave.tocify": function() {

            if (self.options.theme !== "bootstrap") {

              // Removes the hover CSS class from the current list item
              $(this).removeClass(self.hoverClass);

            }

          }
        });

        // only attach handler if needed (expensive in IE)
        if (self.options.extendPage || self.options.highlightOnScroll || self.options.scrollHistory || self.options.showAndHideOnScroll) {
          // Window scroll event handler
          $(window).on("scroll.tocify", function() {

            // Once all animations on the page are complete, this callback function will be called
            $("html, body").promise().done(function() {

              // Local variables

              // Stores how far the user has scrolled
              var winScrollTop = $(window).scrollTop(),

                // Stores the height of the window
                winHeight = $(window).height(),

                // Stores the height of the document
                docHeight = $(document).height(),

                scrollHeight = $("body")[0].scrollHeight,

                // Instantiates a variable that will be used to hold a selected HTML element
                elem,

                lastElem,

                lastElemOffset,

                currentElem;

              if (self.options.extendPage) {

                // If the user has scrolled to the bottom of the page and the last toc item is not focused
                if ((self.webkit && winScrollTop >= scrollHeight - winHeight - self.options.extendPageOffset) || (!self.webkit && winHeight + winScrollTop > docHeight - self.options.extendPageOffset)) {

                  if (!$(extendPageClass).length) {

                    lastElem = $('div[data-unique="' + $(itemClass).last().attr("data-unique") + '"]');

                    if (!lastElem.length) return;

                    // Gets the top offset of the page header that is linked to the last toc item
                    lastElemOffset = lastElem.offset().top;

                    // Appends a div to the bottom of the page and sets the height to the difference of the window scrollTop and the last element's position top offset
                    $(self.options.context).append($("<div/>", {

                      "class": extendPageClassName,

                      "height": Math.abs(lastElemOffset - winScrollTop) + "px",

                      "data-unique": extendPageClassName

                    }));

                    if (self.extendPageScroll) {

                      currentElem = self.element.find('li.' + self.focusClass);

                      self._scrollTo($('div[data-unique="' + currentElem.attr("data-unique") + '"]'));

                    }

                  }

                }

              }

              // The zero timeout ensures the following code is run after the scroll events
              setTimeout(function() {

                // _Local variables_

                // Stores the distance to the closest anchor
                var closestAnchorDistance = null,

                  // Stores the index of the closest anchor
                  closestAnchorIdx = null,

                  // Keeps a reference to all anchors
                  anchors = $(self.options.context).find("div[data-unique]"),

                  anchorText;

                // Determines the index of the closest anchor
                anchors.each(function(idx) {
                  var distance = Math.abs(($(this).next().length ? $(this).next() : $(this)).offset().top - winScrollTop - self.options.highlightOffset);
                  if (closestAnchorDistance == null || distance < closestAnchorDistance) {
                    closestAnchorDistance = distance;
                    closestAnchorIdx = idx;
                  } else {
                    return false;
                  }
                });

                anchorText = $(anchors[closestAnchorIdx]).attr("data-unique");

                // Stores the list item HTML element that corresponds to the currently traversed anchor tag
                elem = $('li[data-unique="' + anchorText + '"]');

                // If the `highlightOnScroll` option is true and a next element is found
                if (self.options.highlightOnScroll && elem.length) {

                  // Removes highlighting from all of the list item's
                  self.element.find("." + self.focusClass).removeClass(self.focusClass);

                  // Highlights the corresponding list item
                  elem.addClass(self.focusClass);

                }

                if (self.options.scrollHistory) {

                  if (window.location.hash !== "#" + anchorText) {

                    window.location.replace("#" + anchorText);

                  }
                }

                // If the `showAndHideOnScroll` option is true
                if (self.options.showAndHideOnScroll && self.options.showAndHide) {

                  self._triggerShow(elem, true);

                }

              }, 0);

            });

          });
        }

      },

      // Show
      // ----
      //      Opens the current sub-header
      show: function(elem, scroll) {

        // Stores the plugin context in the `self` variable
        var self = this,
          element = elem;

        // If the sub-header is not already visible
        if (!elem.is(":visible")) {

          // If the current element does not have any nested subheaders, is not a header, and its parent is not visible
          if (!elem.find(subheaderClass).length && !elem.parent().is(headerClass) && !elem.parent().is(":visible")) {

            // Sets the current element to all of the subheaders within the current header
            elem = elem.parents(subheaderClass).add(elem);

          }

          // If the current element does not have any nested subheaders and is not a header
          else if (!elem.children(subheaderClass).length && !elem.parent().is(headerClass)) {

            // Sets the current element to the closest subheader
            elem = elem.closest(subheaderClass);

          }

          //Determines what jQuery effect to use
          switch (self.options.showEffect) {

            //Uses `no effect`
            case "none":

              elem.show();

              break;

              //Uses the jQuery `show` special effect
            case "show":

              elem.show(self.options.showEffectSpeed);

              break;

              //Uses the jQuery `slideDown` special effect
            case "slideDown":

              elem.slideDown(self.options.showEffectSpeed);

              break;

              //Uses the jQuery `fadeIn` special effect
            case "fadeIn":

              elem.fadeIn(self.options.showEffectSpeed);

              break;

              //If none of the above options were passed, then a `jQueryUI show effect` is expected
            default:

              elem.show();

              break;

          }

        }

        // If the current subheader parent element is a header
        if (elem.parent().is(headerClass)) {

          // Hides all non-active sub-headers
          self.hide($(subheaderClass).not(elem));

        }

        // If the current subheader parent element is not a header
        else {

          // Hides all non-active sub-headers
          self.hide($(subheaderClass).not(elem.closest(headerClass).find(subheaderClass).not(elem.siblings())));

        }

        // Maintains chainablity
        return self;

      },

      // Hide
      // ----
      //      Closes the current sub-header
      hide: function(elem) {

        // Stores the plugin context in the `self` variable
        var self = this;

        //Determines what jQuery effect to use
        switch (self.options.hideEffect) {

          // Uses `no effect`
          case "none":

            elem.hide();

            break;

            // Uses the jQuery `hide` special effect
          case "hide":

            elem.hide(self.options.hideEffectSpeed);

            break;

            // Uses the jQuery `slideUp` special effect
          case "slideUp":

            elem.slideUp(self.options.hideEffectSpeed);

            break;

            // Uses the jQuery `fadeOut` special effect
          case "fadeOut":

            elem.fadeOut(self.options.hideEffectSpeed);

            break;

            // If none of the above options were passed, then a `jqueryUI hide effect` is expected
          default:

            elem.hide();

            break;

        }

        // Maintains chainablity
        return self;
      },

      // _triggerShow
      // ------------
      //      Determines what elements get shown on scroll and click
      _triggerShow: function(elem, scroll) {

        var self = this;

        // If the current element's parent is a header element or the next element is a nested subheader element
        if (elem.parent().is(headerClass) || elem.next().is(subheaderClass)) {

          // Shows the next sub-header element
          self.show(elem.next(subheaderClass), scroll);

        }

        // If the current element's parent is a subheader element
        else if (elem.parent().is(subheaderClass)) {

          // Shows the parent sub-header element
          self.show(elem.parent(), scroll);

        }

        // Maintains chainability
        return self;

      },

      // _addCSSClasses
      // --------------
      //      Adds CSS classes to the newly generated table of contents HTML
      _addCSSClasses: function() {

        // If the user wants a jqueryUI theme
        if (this.options.theme === "jqueryui") {

          this.focusClass = "ui-state-default";

          this.hoverClass = "ui-state-hover";

          //Adds the default styling to the dropdown list
          this.element.addClass("ui-widget").find(".toc-title").addClass("ui-widget-header").end().find("li").addClass("ui-widget-content");

        }

        // If the user wants a twitterBootstrap theme
        else if (this.options.theme === "bootstrap") {

          this.element.find(headerClass + "," + subheaderClass).addClass("nav nav-list");

          this.focusClass = "active";

        }

        // If the user wants a twitterBootstrap theme
        else if (this.options.theme === "bootstrap3") {

          this.element.find(headerClass + "," + subheaderClass).addClass("list-group");

          this.element.find(itemClass).addClass("list-group-item");

          this.focusClass = "active";

        }

        // If a user does not want a prebuilt theme
        else {

          // Adds more neutral classes (instead of jqueryui)

          this.focusClass = tocFocusClassName;

          this.hoverClass = tocHoverClassName;

        }

        //Maintains chainability
        return this;

      },

      // setOption
      // ---------
      //      Sets a single Tocify option after the plugin is invoked
      setOption: function() {

        // Calls the jQueryUI Widget Factory setOption method
        $.Widget.prototype._setOption.apply(this, arguments);

      },

      // setOptions
      // ----------
      //      Sets a single or multiple Tocify options after the plugin is invoked
      setOptions: function() {

        // Calls the jQueryUI Widget Factory setOptions method
        $.Widget.prototype._setOptions.apply(this, arguments);

      },

      // _scrollTo
      // ---------
      //      Scrolls to a specific element
      _scrollTo: function(elem) {

        var self = this,
          duration = self.options.smoothScroll || 0,
          scrollTo = self.options.scrollTo,
          currentDiv = $('div[data-unique="' + elem.attr("data-unique") + '"]');

        if (!currentDiv.length) {

          return self;

        }

        // Once all animations on the page are complete, this callback function will be called
        $("html, body").promise().done(function() {

          // Animates the html and body element scrolltops
          $("html, body").animate({

            // Sets the jQuery `scrollTop` to the top offset of the HTML div tag that matches the current list item's `data-unique` tag
            "scrollTop": currentDiv.offset().top - ($.isFunction(scrollTo) ? scrollTo.call() : scrollTo) + "px"

          }, {

            // Sets the smoothScroll animation time duration to the smoothScrollSpeed option
            "duration": duration

          });

        });

        // Maintains chainability
        return self;

      }

    });

  })); //end of plugin
</script>
<script>

/**
 * jQuery Plugin: Sticky Tabs
 *
 * @author Aidan Lister <aidan@php.net>
 * adapted by Ruben Arslan to activate parent tabs too
 * http://www.aidanlister.com/2014/03/persisting-the-tab-state-in-bootstrap/
 */
(function($) {
  "use strict";
  $.fn.rmarkdownStickyTabs = function() {
    var context = this;
    // Show the tab corresponding with the hash in the URL, or the first tab
    var showStuffFromHash = function() {
      var hash = window.location.hash;
      var selector = hash ? 'a[href="' + hash + '"]' : 'li.active > a';
      var $selector = $(selector, context);
      if($selector.data('toggle') === "tab") {
        $selector.tab('show');
        // walk up the ancestors of this element, show any hidden tabs
        $selector.parents('.section.tabset').each(function(i, elm) {
          var link = $('a[href="#' + $(elm).attr('id') + '"]');
          if(link.data('toggle') === "tab") {
            link.tab("show");
          }
        });
      }
    };


    // Set the correct tab when the page loads
    showStuffFromHash(context);

    // Set the correct tab when a user uses their back/forward button
    $(window).on('hashchange', function() {
      showStuffFromHash(context);
    });

    // Change the URL when tabs are clicked
    $('a', context).on('click', function(e) {
      history.pushState(null, null, this.href);
      showStuffFromHash(context);
    });

    return this;
  };
}(jQuery));

window.buildTabsets = function(tocID) {

  // build a tabset from a section div with the .tabset class
  function buildTabset(tabset) {

    // check for fade and pills options
    var fade = tabset.hasClass("tabset-fade");
    var pills = tabset.hasClass("tabset-pills");
    var navClass = pills ? "nav-pills" : "nav-tabs";

    // determine the heading level of the tabset and tabs
    var match = tabset.attr('class').match(/level(\d) /);
    if (match === null)
      return;
    var tabsetLevel = Number(match[1]);
    var tabLevel = tabsetLevel + 1;

    // find all subheadings immediately below
    var tabs = tabset.find("div.section.level" + tabLevel);
    if (!tabs.length)
      return;

    // create tablist and tab-content elements
    var tabList = $('<ul class="nav ' + navClass + '" role="tablist"></ul>');
    $(tabs[0]).before(tabList);
    var tabContent = $('<div class="tab-content"></div>');
    $(tabs[0]).before(tabContent);

    // build the tabset
    var activeTab = 0;
    tabs.each(function(i) {

      // get the tab div
      var tab = $(tabs[i]);

      // get the id then sanitize it for use with bootstrap tabs
      var id = tab.attr('id');

      // see if this is marked as the active tab
      if (tab.hasClass('active'))
        activeTab = i;

      // remove any table of contents entries associated with
      // this ID (since we'll be removing the heading element)
      $("div#" + tocID + " li a[href='#" + id + "']").parent().remove();

      // sanitize the id for use with bootstrap tabs
      id = id.replace(/[.\/?&!#<>]/g, '').replace(/\s/g, '_');
      tab.attr('id', id);

      // get the heading element within it, grab it's text, then remove it
      var heading = tab.find('h' + tabLevel + ':first');
      var headingText = heading.html();
      heading.remove();

      // build and append the tab list item
      var a = $('<a role="tab" data-toggle="tab">' + headingText + '</a>');
      a.attr('href', '#' + id);
      a.attr('aria-controls', id);
      var li = $('<li role="presentation"></li>');
      li.append(a);
      tabList.append(li);

      // set it's attributes
      tab.attr('role', 'tabpanel');
      tab.addClass('tab-pane');
      tab.addClass('tabbed-pane');
      if (fade)
        tab.addClass('fade');

      // move it into the tab content div
      tab.detach().appendTo(tabContent);
    });

    // set active tab
    $(tabList.children('li')[activeTab]).addClass('active');
    var active = $(tabContent.children('div.section')[activeTab]);
    active.addClass('active');
    if (fade)
      active.addClass('in');

    if (tabset.hasClass("tabset-sticky"))
      tabset.rmarkdownStickyTabs();
  }

  // convert section divs with the .tabset class to tabsets
  var tabsets = $("div.section.tabset");
  tabsets.each(function(i) {
    buildTabset($(tabsets[i]));
  });
};

</script>
<script>
window.initializeCodeFolding = function(show) {

  // handlers for show-all and hide all
  $("#rmd-show-all-code").click(function() {
    $('div.r-code-collapse').each(function() {
      $(this).collapse('show');
    });
  });
  $("#rmd-hide-all-code").click(function() {
    $('div.r-code-collapse').each(function() {
      $(this).collapse('hide');
    });
  });

  // index for unique code element ids
  var currentIndex = 1;

  // select all R code blocks
  var rCodeBlocks = $('pre.r, pre.python, pre.bash, pre.sql, pre.cpp, pre.stan, pre.julia');
  rCodeBlocks.each(function() {

    // create a collapsable div to wrap the code in
    var div = $('<div class="collapse r-code-collapse"></div>');
    if (show)
      div.addClass('in');
    var id = 'rcode-643E0F36' + currentIndex++;
    div.attr('id', id);
    $(this).before(div);
    $(this).detach().appendTo(div);

    // add a show code button right above
    var showCodeText = $('<span>' + (show ? 'Hide' : 'Code') + '</span>');
    var showCodeButton = $('<button type="button" class="btn btn-default btn-xs code-folding-btn pull-right"></button>');
    showCodeButton.append(showCodeText);
    showCodeButton
        .attr('data-toggle', 'collapse')
        .attr('data-target', '#' + id)
        .attr('aria-expanded', show)
        .attr('aria-controls', id);

    var buttonRow = $('<div class="row"></div>');
    var buttonCol = $('<div class="col-md-12"></div>');

    buttonCol.append(showCodeButton);
    buttonRow.append(buttonCol);

    div.before(buttonRow);

    // update state of button on show/hide
    div.on('hidden.bs.collapse', function () {
      showCodeText.text('Code');
    });
    div.on('show.bs.collapse', function () {
      showCodeText.text('Hide');
    });
  });

}
</script>
<style type="text/css">.hljs-literal {
color: #990073;
}
.hljs-number {
color: #099;
}
.hljs-comment {
color: #998;
font-style: italic;
}
.hljs-keyword {
color: #900;
font-weight: bold;
}
.hljs-string {
color: #d14;
}
</style>
<script src="data:application/javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0KyspaWYocihuLmNbdF0uYlIsZSkpcmV0dXJuIG4uY1t0XX1mdW5jdGlvbiB1KGUsbil7aWYocihlLmVSLG4pKXtmb3IoO2UuZW5kc1BhcmVudCYmZS5wYXJlbnQ7KWU9ZS5wYXJlbnQ7cmV0dXJuIGV9cmV0dXJuIGUuZVc/dShlLnBhcmVudCxuKTp2b2lkIDB9ZnVuY3Rpb24gYyhlLG4pe3JldHVybiFhJiZyKG4uaVIsZSl9ZnVuY3Rpb24gbChlLG4pe3ZhciB0PU4uY0k/blswXS50b0xvd2VyQ2FzZSgpOm5bMF07cmV0dXJuIGUuay5oYXNPd25Qcm9wZXJ0eSh0KSYmZS5rW3RdfWZ1bmN0aW9uIHAoZSxuLHQscil7dmFyIGE9cj8iIjpJLmNsYXNzUHJlZml4LGk9JzxzcGFuIGNsYXNzPSInK2Esbz10PyIiOkM7cmV0dXJuIGkrPWUrJyI+JyxpK24rb31mdW5jdGlvbiBoKCl7dmFyIGUsdCxyLGE7aWYoIUUuaylyZXR1cm4gbihrKTtmb3IoYT0iIix0PTAsRS5sUi5sYXN0SW5kZXg9MCxyPUUubFIuZXhlYyhrKTtyOylhKz1uKGsuc3Vic3RyaW5nKHQsci5pbmRleCkpLGU9bChFLHIpLGU/KEIrPWVbMV0sYSs9cChlWzBdLG4oclswXSkpKTphKz1uKHJbMF0pLHQ9RS5sUi5sYXN0SW5kZXgscj1FLmxSLmV4ZWMoayk7cmV0dXJuIGErbihrLnN1YnN0cih0KSl9ZnVuY3Rpb24gZCgpe3ZhciBlPSJzdHJpbmciPT10eXBlb2YgRS5zTDtpZihlJiYheVtFLnNMXSlyZXR1cm4gbihrKTt2YXIgdD1lP2YoRS5zTCxrLCEwLHhbRS5zTF0pOmcoayxFLnNMLmxlbmd0aD9FLnNMOnZvaWQgMCk7cmV0dXJuIEUucj4wJiYoQis9dC5yKSxlJiYoeFtFLnNMXT10LnRvcCkscCh0Lmxhbmd1YWdlLHQudmFsdWUsITEsITApfWZ1bmN0aW9uIGIoKXtMKz1udWxsIT1FLnNMP2QoKTpoKCksaz0iIn1mdW5jdGlvbiB2KGUpe0wrPWUuY04/cChlLmNOLCIiLCEwKToiIixFPU9iamVjdC5jcmVhdGUoZSx7cGFyZW50Ont2YWx1ZTpFfX0pfWZ1bmN0aW9uIG0oZSxuKXtpZihrKz1lLG51bGw9PW4pcmV0dXJuIGIoKSwwO3ZhciB0PW8obixFKTtpZih0KXJldHVybiB0LnNraXA/ays9bjoodC5lQiYmKGsrPW4pLGIoKSx0LnJCfHx0LmVCfHwoaz1uKSksdih0LG4pLHQuckI/MDpuLmxlbmd0aDt2YXIgcj11KEUsbik7aWYocil7dmFyIGE9RTthLnNraXA/ays9bjooYS5yRXx8YS5lRXx8KGsrPW4pLGIoKSxhLmVFJiYoaz1uKSk7ZG8gRS5jTiYmKEwrPUMpLEUuc2tpcHx8KEIrPUUuciksRT1FLnBhcmVudDt3aGlsZShFIT09ci5wYXJlbnQpO3JldHVybiByLnN0YXJ0cyYmdihyLnN0YXJ0cywiIiksYS5yRT8wOm4ubGVuZ3RofWlmKGMobixFKSl0aHJvdyBuZXcgRXJyb3IoJ0lsbGVnYWwgbGV4ZW1lICInK24rJyIgZm9yIG1vZGUgIicrKEUuY058fCI8dW5uYW1lZD4iKSsnIicpO3JldHVybiBrKz1uLG4ubGVuZ3RofHwxfXZhciBOPXcoZSk7aWYoIU4pdGhyb3cgbmV3IEVycm9yKCdVbmtub3duIGxhbmd1YWdlOiAiJytlKyciJyk7cyhOKTt2YXIgUixFPWl8fE4seD17fSxMPSIiO2ZvcihSPUU7UiE9PU47Uj1SLnBhcmVudClSLmNOJiYoTD1wKFIuY04sIiIsITApK0wpO3ZhciBrPSIiLEI9MDt0cnl7Zm9yKHZhciBNLGosTz0wOzspe2lmKEUudC5sYXN0SW5kZXg9TyxNPUUudC5leGVjKHQpLCFNKWJyZWFrO2o9bSh0LnN1YnN0cmluZyhPLE0uaW5kZXgpLE1bMF0pLE89TS5pbmRleCtqfWZvcihtKHQuc3Vic3RyKE8pKSxSPUU7Ui5wYXJlbnQ7Uj1SLnBhcmVudClSLmNOJiYoTCs9Qyk7cmV0dXJue3I6Qix2YWx1ZTpMLGxhbmd1YWdlOmUsdG9wOkV9fWNhdGNoKFQpe2lmKFQubWVzc2FnZSYmLTEhPT1ULm1lc3NhZ2UuaW5kZXhPZigiSWxsZWdhbCIpKXJldHVybntyOjAsdmFsdWU6bih0KX07dGhyb3cgVH19ZnVuY3Rpb24gZyhlLHQpe3Q9dHx8SS5sYW5ndWFnZXN8fHgoeSk7dmFyIHI9e3I6MCx2YWx1ZTpuKGUpfSxhPXI7cmV0dXJuIHQuZmlsdGVyKHcpLmZvckVhY2goZnVuY3Rpb24obil7dmFyIHQ9ZihuLGUsITEpO3QubGFuZ3VhZ2U9bix0LnI+YS5yJiYoYT10KSx0LnI+ci5yJiYoYT1yLHI9dCl9KSxhLmxhbmd1YWdlJiYoci5zZWNvbmRfYmVzdD1hKSxyfWZ1bmN0aW9uIHAoZSl7cmV0dXJuIEkudGFiUmVwbGFjZXx8SS51c2VCUj9lLnJlcGxhY2UoTSxmdW5jdGlvbihlLG4pe3JldHVybiBJLnVzZUJSJiYiXG4iPT09ZT8iPGJyPiI6SS50YWJSZXBsYWNlP24ucmVwbGFjZSgvXHQvZyxJLnRhYlJlcGxhY2UpOiIifSk6ZX1mdW5jdGlvbiBoKGUsbix0KXt2YXIgcj1uP0xbbl06dCxhPVtlLnRyaW0oKV07cmV0dXJuIGUubWF0Y2goL1xiaGxqc1xiLyl8fGEucHVzaCgiaGxqcyIpLC0xPT09ZS5pbmRleE9mKHIpJiZhLnB1c2gociksYS5qb2luKCIgIikudHJpbSgpfWZ1bmN0aW9uIGQoZSl7dmFyIG4sdCxyLG8sbCxzPWkoZSk7YShzKXx8KEkudXNlQlI/KG49ZG9jdW1lbnQuY3JlYXRlRWxlbWVudE5TKCJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hodG1sIiwiZGl2Iiksbi5pbm5lckhUTUw9ZS5pbm5lckhUTUwucmVwbGFjZSgvXG4vZywiIikucmVwbGFjZSgvPGJyWyBcL10qPi9nLCJcbiIpKTpuPWUsbD1uLnRleHRDb250ZW50LHI9cz9mKHMsbCwhMCk6ZyhsKSx0PXUobiksdC5sZW5ndGgmJihvPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnROUygiaHR0cDovL3d3dy53My5vcmcvMTk5OS94aHRtbCIsImRpdiIpLG8uaW5uZXJIVE1MPXIudmFsdWUsci52YWx1ZT1jKHQsdShvKSxsKSksci52YWx1ZT1wKHIudmFsdWUpLGUuaW5uZXJIVE1MPXIudmFsdWUsZS5jbGFzc05hbWU9aChlLmNsYXNzTmFtZSxzLHIubGFuZ3VhZ2UpLGUucmVzdWx0PXtsYW5ndWFnZTpyLmxhbmd1YWdlLHJlOnIucn0sci5zZWNvbmRfYmVzdCYmKGUuc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnIuc2Vjb25kX2Jlc3QubGFuZ3VhZ2UscmU6ci5zZWNvbmRfYmVzdC5yfSkpfWZ1bmN0aW9uIGIoZSl7ST1vKEksZSl9ZnVuY3Rpb24gdigpe2lmKCF2LmNhbGxlZCl7di5jYWxsZWQ9ITA7dmFyIGU9ZG9jdW1lbnQucXVlcnlTZWxlY3RvckFsbCgicHJlIGNvZGUiKTtFLmZvckVhY2guY2FsbChlLGQpfX1mdW5jdGlvbiBtKCl7YWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsdiwhMSksYWRkRXZlbnRMaXN0ZW5lcigibG9hZCIsdiwhMSl9ZnVuY3Rpb24gTihuLHQpe3ZhciByPXlbbl09dChlKTtyLmFsaWFzZXMmJnIuYWxpYXNlcy5mb3JFYWNoKGZ1bmN0aW9uKGUpe0xbZV09bn0pfWZ1bmN0aW9uIFIoKXtyZXR1cm4geCh5KX1mdW5jdGlvbiB3KGUpe3JldHVybiBlPShlfHwiIikudG9Mb3dlckNhc2UoKSx5W2VdfHx5W0xbZV1dfXZhciBFPVtdLHg9T2JqZWN0LmtleXMseT17fSxMPXt9LGs9L14obm8tP2hpZ2hsaWdodHxwbGFpbnx0ZXh0KSQvaSxCPS9cYmxhbmcoPzp1YWdlKT8tKFtcdy1dKylcYi9pLE09LygoXig8W14+XSs+fFx0fCkrfCg/OlxuKSkpL2dtLEM9Ijwvc3Bhbj4iLEk9e2NsYXNzUHJlZml4OiJobGpzLSIsdGFiUmVwbGFjZTpudWxsLHVzZUJSOiExLGxhbmd1YWdlczp2b2lkIDB9O3JldHVybiBlLmhpZ2hsaWdodD1mLGUuaGlnaGxpZ2h0QXV0bz1nLGUuZml4TWFya3VwPXAsZS5oaWdobGlnaHRCbG9jaz1kLGUuY29uZmlndXJlPWIsZS5pbml0SGlnaGxpZ2h0aW5nPXYsZS5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPW0sZS5yZWdpc3Rlckxhbmd1YWdlPU4sZS5saXN0TGFuZ3VhZ2VzPVIsZS5nZXRMYW5ndWFnZT13LGUuaW5oZXJpdD1vLGUuSVI9IlthLXpBLVpdXFx3KiIsZS5VSVI9IlthLXpBLVpfXVxcdyoiLGUuTlI9IlxcYlxcZCsoXFwuXFxkKyk/IixlLkNOUj0iKC0/KShcXGIwW3hYXVthLWZBLUYwLTldK3woXFxiXFxkKyhcXC5cXGQqKT98XFwuXFxkKykoW2VFXVstK10/XFxkKyk/KSIsZS5CTlI9IlxcYigwYlswMV0rKSIsZS5SU1I9IiF8IT18IT09fCV8JT18JnwmJnwmPXxcXCp8XFwqPXxcXCt8XFwrPXwsfC18LT18Lz18L3w6fDt8PDx8PDw9fDw9fDx8PT09fD09fD18Pj4+PXw+Pj18Pj18Pj4+fD4+fD58XFw/fFxcW3xcXHt8XFwofFxcXnxcXF49fFxcfHxcXHw9fFxcfFxcfHx+IixlLkJFPXtiOiJcXFxcW1xcc1xcU10iLHI6MH0sZS5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbZS5CRV19LGUuUVNNPXtjTjoic3RyaW5nIixiOiciJyxlOiciJyxpOiJcXG4iLGM6W2UuQkVdfSxlLlBXTT17YjovXGIoYXxhbnx0aGV8YXJlfEknbXxpc24ndHxkb24ndHxkb2Vzbid0fHdvbid0fGJ1dHxqdXN0fHNob3VsZHxwcmV0dHl8c2ltcGx5fGVub3VnaHxnb25uYXxnb2luZ3x3dGZ8c298c3VjaHx3aWxsfHlvdXx5b3VyfHRoZXl8bGlrZXxtb3JlKVxiL30sZS5DPWZ1bmN0aW9uKG4sdCxyKXt2YXIgYT1lLmluaGVyaXQoe2NOOiJjb21tZW50IixiOm4sZTp0LGM6W119LHJ8fHt9KTtyZXR1cm4gYS5jLnB1c2goZS5QV00pLGEuYy5wdXNoKHtjTjoiZG9jdGFnIixiOiIoPzpUT0RPfEZJWE1FfE5PVEV8QlVHfFhYWCk6IixyOjB9KSxhfSxlLkNMQ009ZS5DKCIvLyIsIiQiKSxlLkNCQ009ZS5DKCIvXFwqIiwiXFwqLyIpLGUuSENNPWUuQygiIyIsIiQiKSxlLk5NPXtjTjoibnVtYmVyIixiOmUuTlIscjowfSxlLkNOTT17Y046Im51bWJlciIsYjplLkNOUixyOjB9LGUuQk5NPXtjTjoibnVtYmVyIixiOmUuQk5SLHI6MH0sZS5DU1NOTT17Y046Im51bWJlciIsYjplLk5SKyIoJXxlbXxleHxjaHxyZW18dnd8dmh8dm1pbnx2bWF4fGNtfG1tfGlufHB0fHBjfHB4fGRlZ3xncmFkfHJhZHx0dXJufHN8bXN8SHp8a0h6fGRwaXxkcGNtfGRwcHgpPyIscjowfSxlLlJNPXtjTjoicmVnZXhwIixiOi9cLy8sZTovXC9bZ2ltdXldKi8saTovXG4vLGM6W2UuQkUse2I6L1xbLyxlOi9cXS8scjowLGM6W2UuQkVdfV19LGUuVE09e2NOOiJ0aXRsZSIsYjplLklSLHI6MH0sZS5VVE09e2NOOiJ0aXRsZSIsYjplLlVJUixyOjB9LGUuTUVUSE9EX0dVQVJEPXtiOiJcXC5cXHMqIitlLlVJUixyOjB9LGV9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInNxbCIsZnVuY3Rpb24oZSl7dmFyIHQ9ZS5DKCItLSIsIiQiKTtyZXR1cm57Y0k6ITAsaTovWzw+e30qI10vLGM6W3tiSzoiYmVnaW4gZW5kIHN0YXJ0IGNvbW1pdCByb2xsYmFjayBzYXZlcG9pbnQgbG9jayBhbHRlciBjcmVhdGUgZHJvcCByZW5hbWUgY2FsbCBkZWxldGUgZG8gaGFuZGxlciBpbnNlcnQgbG9hZCByZXBsYWNlIHNlbGVjdCB0cnVuY2F0ZSB1cGRhdGUgc2V0IHNob3cgcHJhZ21hIGdyYW50IG1lcmdlIGRlc2NyaWJlIHVzZSBleHBsYWluIGhlbHAgZGVjbGFyZSBwcmVwYXJlIGV4ZWN1dGUgZGVhbGxvY2F0ZSByZWxlYXNlIHVubG9jayBwdXJnZSByZXNldCBjaGFuZ2Ugc3RvcCBhbmFseXplIGNhY2hlIGZsdXNoIG9wdGltaXplIHJlcGFpciBraWxsIGluc3RhbGwgdW5pbnN0YWxsIGNoZWNrc3VtIHJlc3RvcmUgY2hlY2sgYmFja3VwIHJldm9rZSBjb21tZW50IixlOi87LyxlVzohMCxsOi9bXHdcLl0rLyxrOntrZXl3b3JkOiJhYm9ydCBhYnMgYWJzb2x1dGUgYWNjIGFjY2UgYWNjZXAgYWNjZXB0IGFjY2VzcyBhY2Nlc3NlZCBhY2Nlc3NpYmxlIGFjY291bnQgYWNvcyBhY3Rpb24gYWN0aXZhdGUgYWRkIGFkZHRpbWUgYWRtaW4gYWRtaW5pc3RlciBhZHZhbmNlZCBhZHZpc2UgYWVzX2RlY3J5cHQgYWVzX2VuY3J5cHQgYWZ0ZXIgYWdlbnQgYWdncmVnYXRlIGFsaSBhbGlhIGFsaWFzIGFsbG9jYXRlIGFsbG93IGFsdGVyIGFsd2F5cyBhbmFseXplIGFuY2lsbGFyeSBhbmQgYW55IGFueWRhdGEgYW55ZGF0YXNldCBhbnlzY2hlbWEgYW55dHlwZSBhcHBseSBhcmNoaXZlIGFyY2hpdmVkIGFyY2hpdmVsb2cgYXJlIGFzIGFzYyBhc2NpaSBhc2luIGFzc2VtYmx5IGFzc2VydGlvbiBhc3NvY2lhdGUgYXN5bmNocm9ub3VzIGF0IGF0YW4gYXRuMiBhdHRyIGF0dHJpIGF0dHJpYiBhdHRyaWJ1IGF0dHJpYnV0IGF0dHJpYnV0ZSBhdHRyaWJ1dGVzIGF1ZGl0IGF1dGhlbnRpY2F0ZWQgYXV0aGVudGljYXRpb24gYXV0aGlkIGF1dGhvcnMgYXV0byBhdXRvYWxsb2NhdGUgYXV0b2RibGluayBhdXRvZXh0ZW5kIGF1dG9tYXRpYyBhdmFpbGFiaWxpdHkgYXZnIGJhY2t1cCBiYWRmaWxlIGJhc2ljZmlsZSBiZWZvcmUgYmVnaW4gYmVnaW5uaW5nIGJlbmNobWFyayBiZXR3ZWVuIGJmaWxlIGJmaWxlX2Jhc2UgYmlnIGJpZ2ZpbGUgYmluIGJpbmFyeV9kb3VibGUgYmluYXJ5X2Zsb2F0IGJpbmxvZyBiaXRfYW5kIGJpdF9jb3VudCBiaXRfbGVuZ3RoIGJpdF9vciBiaXRfeG9yIGJpdG1hcCBibG9iX2Jhc2UgYmxvY2sgYmxvY2tzaXplIGJvZHkgYm90aCBib3VuZCBidWZmZXJfY2FjaGUgYnVmZmVyX3Bvb2wgYnVpbGQgYnVsayBieSBieXRlIGJ5dGVvcmRlcm1hcmsgYnl0ZXMgY2FjaGUgY2FjaGluZyBjYWxsIGNhbGxpbmcgY2FuY2VsIGNhcGFjaXR5IGNhc2NhZGUgY2FzY2FkZWQgY2FzZSBjYXN0IGNhdGFsb2cgY2F0ZWdvcnkgY2VpbCBjZWlsaW5nIGNoYWluIGNoYW5nZSBjaGFuZ2VkIGNoYXJfYmFzZSBjaGFyX2xlbmd0aCBjaGFyYWN0ZXJfbGVuZ3RoIGNoYXJhY3RlcnMgY2hhcmFjdGVyc2V0IGNoYXJpbmRleCBjaGFyc2V0IGNoYXJzZXRmb3JtIGNoYXJzZXRpZCBjaGVjayBjaGVja3N1bSBjaGVja3N1bV9hZ2cgY2hpbGQgY2hvb3NlIGNociBjaHVuayBjbGFzcyBjbGVhbnVwIGNsZWFyIGNsaWVudCBjbG9iIGNsb2JfYmFzZSBjbG9uZSBjbG9zZSBjbHVzdGVyX2lkIGNsdXN0ZXJfcHJvYmFiaWxpdHkgY2x1c3Rlcl9zZXQgY2x1c3RlcmluZyBjb2FsZXNjZSBjb2VyY2liaWxpdHkgY29sIGNvbGxhdGUgY29sbGF0aW9uIGNvbGxlY3QgY29sdSBjb2x1bSBjb2x1bW4gY29sdW1uX3ZhbHVlIGNvbHVtbnMgY29sdW1uc191cGRhdGVkIGNvbW1lbnQgY29tbWl0IGNvbXBhY3QgY29tcGF0aWJpbGl0eSBjb21waWxlZCBjb21wbGV0ZSBjb21wb3NpdGVfbGltaXQgY29tcG91bmQgY29tcHJlc3MgY29tcHV0ZSBjb25jYXQgY29uY2F0X3dzIGNvbmN1cnJlbnQgY29uZmlybSBjb25uIGNvbm5lYyBjb25uZWN0IGNvbm5lY3RfYnlfaXNjeWNsZSBjb25uZWN0X2J5X2lzbGVhZiBjb25uZWN0X2J5X3Jvb3QgY29ubmVjdF90aW1lIGNvbm5lY3Rpb24gY29uc2lkZXIgY29uc2lzdGVudCBjb25zdGFudCBjb25zdHJhaW50IGNvbnN0cmFpbnRzIGNvbnN0cnVjdG9yIGNvbnRhaW5lciBjb250ZW50IGNvbnRlbnRzIGNvbnRleHQgY29udHJpYnV0b3JzIGNvbnRyb2xmaWxlIGNvbnYgY29udmVydCBjb252ZXJ0X3R6IGNvcnIgY29ycl9rIGNvcnJfcyBjb3JyZXNwb25kaW5nIGNvcnJ1cHRpb24gY29zIGNvc3QgY291bnQgY291bnRfYmlnIGNvdW50ZWQgY292YXJfcG9wIGNvdmFyX3NhbXAgY3B1X3Blcl9jYWxsIGNwdV9wZXJfc2Vzc2lvbiBjcmMzMiBjcmVhdGUgY3JlYXRpb24gY3JpdGljYWwgY3Jvc3MgY3ViZSBjdW1lX2Rpc3QgY3VyZGF0ZSBjdXJyZW50IGN1cnJlbnRfZGF0ZSBjdXJyZW50X3RpbWUgY3VycmVudF90aW1lc3RhbXAgY3VycmVudF91c2VyIGN1cnNvciBjdXJ0aW1lIGN1c3RvbWRhdHVtIGN5Y2xlIGRhdGEgZGF0YWJhc2UgZGF0YWJhc2VzIGRhdGFmaWxlIGRhdGFmaWxlcyBkYXRhbGVuZ3RoIGRhdGVfYWRkIGRhdGVfY2FjaGUgZGF0ZV9mb3JtYXQgZGF0ZV9zdWIgZGF0ZWFkZCBkYXRlZGlmZiBkYXRlZnJvbXBhcnRzIGRhdGVuYW1lIGRhdGVwYXJ0IGRhdGV0aW1lMmZyb21wYXJ0cyBkYXkgZGF5X3RvX3NlY29uZCBkYXluYW1lIGRheW9mbW9udGggZGF5b2Z3ZWVrIGRheW9meWVhciBkYXlzIGRiX3JvbGVfY2hhbmdlIGRidGltZXpvbmUgZGRsIGRlYWxsb2NhdGUgZGVjbGFyZSBkZWNvZGUgZGVjb21wb3NlIGRlY3JlbWVudCBkZWNyeXB0IGRlZHVwbGljYXRlIGRlZiBkZWZhIGRlZmF1IGRlZmF1bCBkZWZhdWx0IGRlZmF1bHRzIGRlZmVycmVkIGRlZmkgZGVmaW4gZGVmaW5lIGRlZ3JlZXMgZGVsYXllZCBkZWxlZ2F0ZSBkZWxldGUgZGVsZXRlX2FsbCBkZWxpbWl0ZWQgZGVtYW5kIGRlbnNlX3JhbmsgZGVwdGggZGVxdWV1ZSBkZXNfZGVjcnlwdCBkZXNfZW5jcnlwdCBkZXNfa2V5X2ZpbGUgZGVzYyBkZXNjciBkZXNjcmkgZGVzY3JpYiBkZXNjcmliZSBkZXNjcmlwdG9yIGRldGVybWluaXN0aWMgZGlhZ25vc3RpY3MgZGlmZmVyZW5jZSBkaW1lbnNpb24gZGlyZWN0X2xvYWQgZGlyZWN0b3J5IGRpc2FibGUgZGlzYWJsZV9hbGwgZGlzYWxsb3cgZGlzYXNzb2NpYXRlIGRpc2NhcmRmaWxlIGRpc2Nvbm5lY3QgZGlza2dyb3VwIGRpc3RpbmN0IGRpc3RpbmN0cm93IGRpc3RyaWJ1dGUgZGlzdHJpYnV0ZWQgZGl2IGRvIGRvY3VtZW50IGRvbWFpbiBkb3RuZXQgZG91YmxlIGRvd25ncmFkZSBkcm9wIGR1bXBmaWxlIGR1cGxpY2F0ZSBkdXJhdGlvbiBlYWNoIGVkaXRpb24gZWRpdGlvbmFibGUgZWRpdGlvbnMgZWxlbWVudCBlbGxpcHNpcyBlbHNlIGVsc2lmIGVsdCBlbXB0eSBlbmFibGUgZW5hYmxlX2FsbCBlbmNsb3NlZCBlbmNvZGUgZW5jb2RpbmcgZW5jcnlwdCBlbmQgZW5kLWV4ZWMgZW5kaWFuIGVuZm9yY2VkIGVuZ2luZSBlbmdpbmVzIGVucXVldWUgZW50ZXJwcmlzZSBlbnRpdHllc2NhcGluZyBlb21vbnRoIGVycm9yIGVycm9ycyBlc2NhcGVkIGV2YWxuYW1lIGV2YWx1YXRlIGV2ZW50IGV2ZW50ZGF0YSBldmVudHMgZXhjZXB0IGV4Y2VwdGlvbiBleGNlcHRpb25zIGV4Y2hhbmdlIGV4Y2x1ZGUgZXhjbHVkaW5nIGV4ZWN1IGV4ZWN1dCBleGVjdXRlIGV4ZW1wdCBleGlzdHMgZXhpdCBleHAgZXhwaXJlIGV4cGxhaW4gZXhwb3J0IGV4cG9ydF9zZXQgZXh0ZW5kZWQgZXh0ZW50IGV4dGVybmFsIGV4dGVybmFsXzEgZXh0ZXJuYWxfMiBleHRlcm5hbGx5IGV4dHJhY3QgZmFpbGVkIGZhaWxlZF9sb2dpbl9hdHRlbXB0cyBmYWlsb3ZlciBmYWlsdXJlIGZhciBmYXN0IGZlYXR1cmVfc2V0IGZlYXR1cmVfdmFsdWUgZmV0Y2ggZmllbGQgZmllbGRzIGZpbGUgZmlsZV9uYW1lX2NvbnZlcnQgZmlsZXN5c3RlbV9saWtlX2xvZ2dpbmcgZmluYWwgZmluaXNoIGZpcnN0IGZpcnN0X3ZhbHVlIGZpeGVkIGZsYXNoX2NhY2hlIGZsYXNoYmFjayBmbG9vciBmbHVzaCBmb2xsb3dpbmcgZm9sbG93cyBmb3IgZm9yYWxsIGZvcmNlIGZvcm0gZm9ybWEgZm9ybWF0IGZvdW5kIGZvdW5kX3Jvd3MgZnJlZWxpc3QgZnJlZWxpc3RzIGZyZWVwb29scyBmcmVzaCBmcm9tIGZyb21fYmFzZTY0IGZyb21fZGF5cyBmdHAgZnVsbCBmdW5jdGlvbiBnZW5lcmFsIGdlbmVyYXRlZCBnZXQgZ2V0X2Zvcm1hdCBnZXRfbG9jayBnZXRkYXRlIGdldHV0Y2RhdGUgZ2xvYmFsIGdsb2JhbF9uYW1lIGdsb2JhbGx5IGdvIGdvdG8gZ3JhbnQgZ3JhbnRzIGdyZWF0ZXN0IGdyb3VwIGdyb3VwX2NvbmNhdCBncm91cF9pZCBncm91cGluZyBncm91cGluZ19pZCBncm91cHMgZ3RpZF9zdWJ0cmFjdCBndWFyYW50ZWUgZ3VhcmQgaGFuZGxlciBoYXNoIGhhc2hrZXlzIGhhdmluZyBoZWEgaGVhZCBoZWFkaSBoZWFkaW4gaGVhZGluZyBoZWFwIGhlbHAgaGV4IGhpZXJhcmNoeSBoaWdoIGhpZ2hfcHJpb3JpdHkgaG9zdHMgaG91ciBodHRwIGlkIGlkZW50X2N1cnJlbnQgaWRlbnRfaW5jciBpZGVudF9zZWVkIGlkZW50aWZpZWQgaWRlbnRpdHkgaWRsZV90aW1lIGlmIGlmbnVsbCBpZ25vcmUgaWlmIGlsaWtlIGlsbSBpbW1lZGlhdGUgaW1wb3J0IGluIGluY2x1ZGUgaW5jbHVkaW5nIGluY3JlbWVudCBpbmRleCBpbmRleGVzIGluZGV4aW5nIGluZGV4dHlwZSBpbmRpY2F0b3IgaW5kaWNlcyBpbmV0Nl9hdG9uIGluZXQ2X250b2EgaW5ldF9hdG9uIGluZXRfbnRvYSBpbmZpbGUgaW5pdGlhbCBpbml0aWFsaXplZCBpbml0aWFsbHkgaW5pdHJhbnMgaW5tZW1vcnkgaW5uZXIgaW5ub2RiIGlucHV0IGluc2VydCBpbnN0YWxsIGluc3RhbmNlIGluc3RhbnRpYWJsZSBpbnN0ciBpbnRlcmZhY2UgaW50ZXJsZWF2ZWQgaW50ZXJzZWN0IGludG8gaW52YWxpZGF0ZSBpbnZpc2libGUgaXMgaXNfZnJlZV9sb2NrIGlzX2lwdjQgaXNfaXB2NF9jb21wYXQgaXNfbm90IGlzX25vdF9udWxsIGlzX3VzZWRfbG9jayBpc2RhdGUgaXNudWxsIGlzb2xhdGlvbiBpdGVyYXRlIGphdmEgam9pbiBqc29uIGpzb25fZXhpc3RzIGtlZXAga2VlcF9kdXBsaWNhdGVzIGtleSBrZXlzIGtpbGwgbGFuZ3VhZ2UgbGFyZ2UgbGFzdCBsYXN0X2RheSBsYXN0X2luc2VydF9pZCBsYXN0X3ZhbHVlIGxheCBsY2FzZSBsZWFkIGxlYWRpbmcgbGVhc3QgbGVhdmVzIGxlZnQgbGVuIGxlbmdodCBsZW5ndGggbGVzcyBsZXZlbCBsZXZlbHMgbGlicmFyeSBsaWtlIGxpa2UyIGxpa2U0IGxpa2VjIGxpbWl0IGxpbmVzIGxpbmsgbGlzdCBsaXN0YWdnIGxpdHRsZSBsbiBsb2FkIGxvYWRfZmlsZSBsb2IgbG9icyBsb2NhbCBsb2NhbHRpbWUgbG9jYWx0aW1lc3RhbXAgbG9jYXRlIGxvY2F0b3IgbG9jayBsb2NrZWQgbG9nIGxvZzEwIGxvZzIgbG9nZmlsZSBsb2dmaWxlcyBsb2dnaW5nIGxvZ2ljYWwgbG9naWNhbF9yZWFkc19wZXJfY2FsbCBsb2dvZmYgbG9nb24gbG9ncyBsb25nIGxvb3AgbG93IGxvd19wcmlvcml0eSBsb3dlciBscGFkIGxydHJpbSBsdHJpbSBtYWluIG1ha2Vfc2V0IG1ha2VkYXRlIG1ha2V0aW1lIG1hbmFnZWQgbWFuYWdlbWVudCBtYW51YWwgbWFwIG1hcHBpbmcgbWFzayBtYXN0ZXIgbWFzdGVyX3Bvc193YWl0IG1hdGNoIG1hdGNoZWQgbWF0ZXJpYWxpemVkIG1heCBtYXhleHRlbnRzIG1heGltaXplIG1heGluc3RhbmNlcyBtYXhsZW4gbWF4bG9nZmlsZXMgbWF4bG9naGlzdG9yeSBtYXhsb2dtZW1iZXJzIG1heHNpemUgbWF4dHJhbnMgbWQ1IG1lYXN1cmVzIG1lZGlhbiBtZWRpdW0gbWVtYmVyIG1lbWNvbXByZXNzIG1lbW9yeSBtZXJnZSBtaWNyb3NlY29uZCBtaWQgbWlncmF0aW9uIG1pbiBtaW5leHRlbnRzIG1pbmltdW0gbWluaW5nIG1pbnVzIG1pbnV0ZSBtaW52YWx1ZSBtaXNzaW5nIG1vZCBtb2RlIG1vZGVsIG1vZGlmaWNhdGlvbiBtb2RpZnkgbW9kdWxlIG1vbml0b3JpbmcgbW9udGggbW9udGhzIG1vdW50IG1vdmUgbW92ZW1lbnQgbXVsdGlzZXQgbXV0ZXggbmFtZSBuYW1lX2NvbnN0IG5hbWVzIG5hbiBuYXRpb25hbCBuYXRpdmUgbmF0dXJhbCBuYXYgbmNoYXIgbmNsb2IgbmVzdGVkIG5ldmVyIG5ldyBuZXdsaW5lIG5leHQgbmV4dHZhbCBubyBub193cml0ZV90b19iaW5sb2cgbm9hcmNoaXZlbG9nIG5vYXVkaXQgbm9iYWRmaWxlIG5vY2hlY2sgbm9jb21wcmVzcyBub2NvcHkgbm9jeWNsZSBub2RlbGF5IG5vZGlzY2FyZGZpbGUgbm9lbnRpdHllc2NhcGluZyBub2d1YXJhbnRlZSBub2tlZXAgbm9sb2dmaWxlIG5vbWFwcGluZyBub21heHZhbHVlIG5vbWluaW1pemUgbm9taW52YWx1ZSBub21vbml0b3Jpbmcgbm9uZSBub25lZGl0aW9uYWJsZSBub25zY2hlbWEgbm9vcmRlciBub3ByIG5vcHJvIG5vcHJvbSBub3Byb21wIG5vcHJvbXB0IG5vcmVseSBub3Jlc2V0bG9ncyBub3JldmVyc2Ugbm9ybWFsIG5vcm93ZGVwZW5kZW5jaWVzIG5vc2NoZW1hY2hlY2sgbm9zd2l0Y2ggbm90IG5vdGhpbmcgbm90aWNlIG5vdHJpbSBub3ZhbGlkYXRlIG5vdyBub3dhaXQgbnRoX3ZhbHVlIG51bGxpZiBudWxscyBudW0gbnVtYiBudW1iZSBudmFyY2hhciBudmFyY2hhcjIgb2JqZWN0IG9jaWNvbGwgb2NpZGF0ZSBvY2lkYXRldGltZSBvY2lkdXJhdGlvbiBvY2lpbnRlcnZhbCBvY2lsb2Jsb2NhdG9yIG9jaW51bWJlciBvY2lyZWYgb2NpcmVmY3Vyc29yIG9jaXJvd2lkIG9jaXN0cmluZyBvY2l0eXBlIG9jdCBvY3RldF9sZW5ndGggb2Ygb2ZmIG9mZmxpbmUgb2Zmc2V0IG9pZCBvaWRpbmRleCBvbGQgb24gb25saW5lIG9ubHkgb3BhcXVlIG9wZW4gb3BlcmF0aW9ucyBvcGVyYXRvciBvcHRpbWFsIG9wdGltaXplIG9wdGlvbiBvcHRpb25hbGx5IG9yIG9yYWNsZSBvcmFjbGVfZGF0ZSBvcmFkYXRhIG9yZCBvcmRhdWRpbyBvcmRkaWNvbSBvcmRkb2Mgb3JkZXIgb3JkaW1hZ2Ugb3JkaW5hbGl0eSBvcmR2aWRlbyBvcmdhbml6YXRpb24gb3JsYW55IG9ybHZhcnkgb3V0IG91dGVyIG91dGZpbGUgb3V0bGluZSBvdXRwdXQgb3ZlciBvdmVyZmxvdyBvdmVycmlkaW5nIHBhY2thZ2UgcGFkIHBhcmFsbGVsIHBhcmFsbGVsX2VuYWJsZSBwYXJhbWV0ZXJzIHBhcmVudCBwYXJzZSBwYXJ0aWFsIHBhcnRpdGlvbiBwYXJ0aXRpb25zIHBhc2NhbCBwYXNzaW5nIHBhc3N3b3JkIHBhc3N3b3JkX2dyYWNlX3RpbWUgcGFzc3dvcmRfbG9ja190aW1lIHBhc3N3b3JkX3JldXNlX21heCBwYXNzd29yZF9yZXVzZV90aW1lIHBhc3N3b3JkX3ZlcmlmeV9mdW5jdGlvbiBwYXRjaCBwYXRoIHBhdGluZGV4IHBjdGluY3JlYXNlIHBjdHRocmVzaG9sZCBwY3R1c2VkIHBjdHZlcnNpb24gcGVyY2VudCBwZXJjZW50X3JhbmsgcGVyY2VudGlsZV9jb250IHBlcmNlbnRpbGVfZGlzYyBwZXJmb3JtYW5jZSBwZXJpb2QgcGVyaW9kX2FkZCBwZXJpb2RfZGlmZiBwZXJtYW5lbnQgcGh5c2ljYWwgcGkgcGlwZSBwaXBlbGluZWQgcGl2b3QgcGx1Z2dhYmxlIHBsdWdpbiBwb2xpY3kgcG9zaXRpb24gcG9zdF90cmFuc2FjdGlvbiBwb3cgcG93ZXIgcHJhZ21hIHByZWJ1aWx0IHByZWNlZGVzIHByZWNlZGluZyBwcmVjaXNpb24gcHJlZGljdGlvbiBwcmVkaWN0aW9uX2Nvc3QgcHJlZGljdGlvbl9kZXRhaWxzIHByZWRpY3Rpb25fcHJvYmFiaWxpdHkgcHJlZGljdGlvbl9zZXQgcHJlcGFyZSBwcmVzZW50IHByZXNlcnZlIHByaW9yIHByaW9yaXR5IHByaXZhdGUgcHJpdmF0ZV9zZ2EgcHJpdmlsZWdlcyBwcm9jZWR1cmFsIHByb2NlZHVyZSBwcm9jZWR1cmVfYW5hbHl6ZSBwcm9jZXNzbGlzdCBwcm9maWxlcyBwcm9qZWN0IHByb21wdCBwcm90ZWN0aW9uIHB1YmxpYyBwdWJsaXNoaW5nc2VydmVybmFtZSBwdXJnZSBxdWFydGVyIHF1ZXJ5IHF1aWNrIHF1aWVzY2UgcXVvdGEgcXVvdGVuYW1lIHJhZGlhbnMgcmFpc2UgcmFuZCByYW5nZSByYW5rIHJhdyByZWFkIHJlYWRzIHJlYWRzaXplIHJlYnVpbGQgcmVjb3JkIHJlY29yZHMgcmVjb3ZlciByZWNvdmVyeSByZWN1cnNpdmUgcmVjeWNsZSByZWRvIHJlZHVjZWQgcmVmIHJlZmVyZW5jZSByZWZlcmVuY2VkIHJlZmVyZW5jZXMgcmVmZXJlbmNpbmcgcmVmcmVzaCByZWdleHBfbGlrZSByZWdpc3RlciByZWdyX2F2Z3ggcmVncl9hdmd5IHJlZ3JfY291bnQgcmVncl9pbnRlcmNlcHQgcmVncl9yMiByZWdyX3Nsb3BlIHJlZ3Jfc3h4IHJlZ3Jfc3h5IHJlamVjdCByZWtleSByZWxhdGlvbmFsIHJlbGF0aXZlIHJlbGF5bG9nIHJlbGVhc2UgcmVsZWFzZV9sb2NrIHJlbGllc19vbiByZWxvY2F0ZSByZWx5IHJlbSByZW1haW5kZXIgcmVuYW1lIHJlcGFpciByZXBlYXQgcmVwbGFjZSByZXBsaWNhdGUgcmVwbGljYXRpb24gcmVxdWlyZWQgcmVzZXQgcmVzZXRsb2dzIHJlc2l6ZSByZXNvdXJjZSByZXNwZWN0IHJlc3RvcmUgcmVzdHJpY3RlZCByZXN1bHQgcmVzdWx0X2NhY2hlIHJlc3VtYWJsZSByZXN1bWUgcmV0ZW50aW9uIHJldHVybiByZXR1cm5pbmcgcmV0dXJucyByZXVzZSByZXZlcnNlIHJldm9rZSByaWdodCBybGlrZSByb2xlIHJvbGVzIHJvbGxiYWNrIHJvbGxpbmcgcm9sbHVwIHJvdW5kIHJvdyByb3dfY291bnQgcm93ZGVwZW5kZW5jaWVzIHJvd2lkIHJvd251bSByb3dzIHJ0cmltIHJ1bGVzIHNhZmUgc2FsdCBzYW1wbGUgc2F2ZSBzYXZlcG9pbnQgc2IxIHNiMiBzYjQgc2NhbiBzY2hlbWEgc2NoZW1hY2hlY2sgc2NuIHNjb3BlIHNjcm9sbCBzZG9fZ2VvcmFzdGVyIHNkb190b3BvX2dlb21ldHJ5IHNlYXJjaCBzZWNfdG9fdGltZSBzZWNvbmQgc2VjdGlvbiBzZWN1cmVmaWxlIHNlY3VyaXR5IHNlZWQgc2VnbWVudCBzZWxlY3Qgc2VsZiBzZXF1ZW5jZSBzZXF1ZW50aWFsIHNlcmlhbGl6YWJsZSBzZXJ2ZXIgc2VydmVyZXJyb3Igc2Vzc2lvbiBzZXNzaW9uX3VzZXIgc2Vzc2lvbnNfcGVyX3VzZXIgc2V0IHNldHMgc2V0dGluZ3Mgc2hhIHNoYTEgc2hhMiBzaGFyZSBzaGFyZWQgc2hhcmVkX3Bvb2wgc2hvcnQgc2hvdyBzaHJpbmsgc2h1dGRvd24gc2lfYXZlcmFnZWNvbG9yIHNpX2NvbG9yaGlzdG9ncmFtIHNpX2ZlYXR1cmVsaXN0IHNpX3Bvc2l0aW9uYWxjb2xvciBzaV9zdGlsbGltYWdlIHNpX3RleHR1cmUgc2libGluZ3Mgc2lkIHNpZ24gc2luIHNpemUgc2l6ZV90IHNpemVzIHNraXAgc2xhdmUgc2xlZXAgc21hbGxkYXRldGltZWZyb21wYXJ0cyBzbWFsbGZpbGUgc25hcHNob3Qgc29tZSBzb25hbWUgc29ydCBzb3VuZGV4IHNvdXJjZSBzcGFjZSBzcGFyc2Ugc3BmaWxlIHNwbGl0IHNxbCBzcWxfYmlnX3Jlc3VsdCBzcWxfYnVmZmVyX3Jlc3VsdCBzcWxfY2FjaGUgc3FsX2NhbGNfZm91bmRfcm93cyBzcWxfc21hbGxfcmVzdWx0IHNxbF92YXJpYW50X3Byb3BlcnR5IHNxbGNvZGUgc3FsZGF0YSBzcWxlcnJvciBzcWxuYW1lIHNxbHN0YXRlIHNxcnQgc3F1YXJlIHN0YW5kYWxvbmUgc3RhbmRieSBzdGFydCBzdGFydGluZyBzdGFydHVwIHN0YXRlbWVudCBzdGF0aWMgc3RhdGlzdGljcyBzdGF0c19iaW5vbWlhbF90ZXN0IHN0YXRzX2Nyb3NzdGFiIHN0YXRzX2tzX3Rlc3Qgc3RhdHNfbW9kZSBzdGF0c19td190ZXN0IHN0YXRzX29uZV93YXlfYW5vdmEgc3RhdHNfdF90ZXN0XyBzdGF0c190X3Rlc3RfaW5kZXAgc3RhdHNfdF90ZXN0X29uZSBzdGF0c190X3Rlc3RfcGFpcmVkIHN0YXRzX3dzcl90ZXN0IHN0YXR1cyBzdGQgc3RkZGV2IHN0ZGRldl9wb3Agc3RkZGV2X3NhbXAgc3RkZXYgc3RvcCBzdG9yYWdlIHN0b3JlIHN0b3JlZCBzdHIgc3RyX3RvX2RhdGUgc3RyYWlnaHRfam9pbiBzdHJjbXAgc3RyaWN0IHN0cmluZyBzdHJ1Y3Qgc3R1ZmYgc3R5bGUgc3ViZGF0ZSBzdWJwYXJ0aXRpb24gc3VicGFydGl0aW9ucyBzdWJzdGl0dXRhYmxlIHN1YnN0ciBzdWJzdHJpbmcgc3VidGltZSBzdWJ0cmluZ19pbmRleCBzdWJ0eXBlIHN1Y2Nlc3Mgc3VtIHN1c3BlbmQgc3dpdGNoIHN3aXRjaG9mZnNldCBzd2l0Y2hvdmVyIHN5bmMgc3luY2hyb25vdXMgc3lub255bSBzeXMgc3lzX3htbGFnZyBzeXNhc20gc3lzYXV4IHN5c2RhdGUgc3lzZGF0ZXRpbWVvZmZzZXQgc3lzZGJhIHN5c29wZXIgc3lzdGVtIHN5c3RlbV91c2VyIHN5c3V0Y2RhdGV0aW1lIHRhYmxlIHRhYmxlcyB0YWJsZXNwYWNlIHRhbiB0ZG8gdGVtcGxhdGUgdGVtcG9yYXJ5IHRlcm1pbmF0ZWQgdGVydGlhcnlfd2VpZ2h0cyB0ZXN0IHRoYW4gdGhlbiB0aHJlYWQgdGhyb3VnaCB0aWVyIHRpZXMgdGltZSB0aW1lX2Zvcm1hdCB0aW1lX3pvbmUgdGltZWRpZmYgdGltZWZyb21wYXJ0cyB0aW1lb3V0IHRpbWVzdGFtcCB0aW1lc3RhbXBhZGQgdGltZXN0YW1wZGlmZiB0aW1lem9uZV9hYmJyIHRpbWV6b25lX21pbnV0ZSB0aW1lem9uZV9yZWdpb24gdG8gdG9fYmFzZTY0IHRvX2RhdGUgdG9fZGF5cyB0b19zZWNvbmRzIHRvZGF0ZXRpbWVvZmZzZXQgdHJhY2UgdHJhY2tpbmcgdHJhbnNhY3Rpb24gdHJhbnNhY3Rpb25hbCB0cmFuc2xhdGUgdHJhbnNsYXRpb24gdHJlYXQgdHJpZ2dlciB0cmlnZ2VyX25lc3RsZXZlbCB0cmlnZ2VycyB0cmltIHRydW5jYXRlIHRyeV9jYXN0IHRyeV9jb252ZXJ0IHRyeV9wYXJzZSB0eXBlIHViMSB1YjIgdWI0IHVjYXNlIHVuYXJjaGl2ZWQgdW5ib3VuZGVkIHVuY29tcHJlc3MgdW5kZXIgdW5kbyB1bmhleCB1bmljb2RlIHVuaWZvcm0gdW5pbnN0YWxsIHVuaW9uIHVuaXF1ZSB1bml4X3RpbWVzdGFtcCB1bmtub3duIHVubGltaXRlZCB1bmxvY2sgdW5waXZvdCB1bnJlY292ZXJhYmxlIHVuc2FmZSB1bnNpZ25lZCB1bnRpbCB1bnRydXN0ZWQgdW51c2FibGUgdW51c2VkIHVwZGF0ZSB1cGRhdGVkIHVwZ3JhZGUgdXBwZWQgdXBwZXIgdXBzZXJ0IHVybCB1cm93aWQgdXNhYmxlIHVzYWdlIHVzZSB1c2Vfc3RvcmVkX291dGxpbmVzIHVzZXIgdXNlcl9kYXRhIHVzZXJfcmVzb3VyY2VzIHVzZXJzIHVzaW5nIHV0Y19kYXRlIHV0Y190aW1lc3RhbXAgdXVpZCB1dWlkX3Nob3J0IHZhbGlkYXRlIHZhbGlkYXRlX3Bhc3N3b3JkX3N0cmVuZ3RoIHZhbGlkYXRpb24gdmFsaXN0IHZhbHVlIHZhbHVlcyB2YXIgdmFyX3NhbXAgdmFyY2hhcmMgdmFyaSB2YXJpYSB2YXJpYWIgdmFyaWFibCB2YXJpYWJsZSB2YXJpYWJsZXMgdmFyaWFuY2UgdmFycCB2YXJyYXcgdmFycmF3YyB2YXJyYXkgdmVyaWZ5IHZlcnNpb24gdmVyc2lvbnMgdmlldyB2aXJ0dWFsIHZpc2libGUgdm9pZCB3YWl0IHdhbGxldCB3YXJuaW5nIHdhcm5pbmdzIHdlZWsgd2Vla2RheSB3ZWVrb2Z5ZWFyIHdlbGxmb3JtZWQgd2hlbiB3aGVuZSB3aGVuZXYgd2hlbmV2ZSB3aGVuZXZlciB3aGVyZSB3aGlsZSB3aGl0ZXNwYWNlIHdpdGggd2l0aGluIHdpdGhvdXQgd29yayB3cmFwcGVkIHhkYiB4bWwgeG1sYWdnIHhtbGF0dHJpYnV0ZXMgeG1sY2FzdCB4bWxjb2xhdHR2YWwgeG1sZWxlbWVudCB4bWxleGlzdHMgeG1sZm9yZXN0IHhtbGluZGV4IHhtbG5hbWVzcGFjZXMgeG1scGkgeG1scXVlcnkgeG1scm9vdCB4bWxzY2hlbWEgeG1sc2VyaWFsaXplIHhtbHRhYmxlIHhtbHR5cGUgeG9yIHllYXIgeWVhcl90b19tb250aCB5ZWFycyB5ZWFyd2VlayIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSBudWxsIixidWlsdF9pbjoiYXJyYXkgYmlnaW50IGJpbmFyeSBiaXQgYmxvYiBib29sZWFuIGNoYXIgY2hhcmFjdGVyIGRhdGUgZGVjIGRlY2ltYWwgZmxvYXQgaW50IGludDggaW50ZWdlciBpbnRlcnZhbCBudW1iZXIgbnVtZXJpYyByZWFsIHJlY29yZCBzZXJpYWwgc2VyaWFsOCBzbWFsbGludCB0ZXh0IHZhcmNoYXIgdmFyeWluZyB2b2lkIn0sYzpbe2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGM6W2UuQkUse2I6IicnIn1dfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbZS5CRSx7YjonIiInfV19LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFXX0sZS5DTk0sZS5DQkNNLHRdfSxlLkNCQ00sdF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJyIixmdW5jdGlvbihlKXt2YXIgcj0iKFthLXpBLVpdfFxcLlthLXpBLVouXSlbYS16QS1aMC05Ll9dKiI7cmV0dXJue2M6W2UuSENNLHtiOnIsbDpyLGs6e2tleXdvcmQ6ImZ1bmN0aW9uIGlmIGluIGJyZWFrIG5leHQgcmVwZWF0IGVsc2UgZm9yIHJldHVybiBzd2l0Y2ggd2hpbGUgdHJ5IHRyeUNhdGNoIHN0b3Agd2FybmluZyByZXF1aXJlIGxpYnJhcnkgYXR0YWNoIGRldGFjaCBzb3VyY2Ugc2V0TWV0aG9kIHNldEdlbmVyaWMgc2V0R3JvdXBHZW5lcmljIHNldENsYXNzIC4uLiIsbGl0ZXJhbDoiTlVMTCBOQSBUUlVFIEZBTFNFIFQgRiBJbmYgTmFOIE5BX2ludGVnZXJffDEwIE5BX3JlYWxffDEwIE5BX2NoYXJhY3Rlcl98MTAgTkFfY29tcGxleF98MTAifSxyOjB9LHtjTjoibnVtYmVyIixiOiIwW3hYXVswLTlhLWZBLUZdK1tMaV0/XFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9MXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIscjowfSx7Y046Im51bWJlciIsYjoiXFxkKyg/OlxcLlxcZCopPyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcLlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP2k/XFxiIixyOjB9LHtiOiJgIixlOiJgIixyOjB9LHtjTjoic3RyaW5nIixjOltlLkJFXSx2Olt7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJwZXJsIixmdW5jdGlvbihlKXt2YXIgdD0iZ2V0cHdlbnQgZ2V0c2VydmVudCBxdW90ZW1ldGEgbXNncmN2IHNjYWxhciBraWxsIGRibWNsb3NlIHVuZGVmIGxjIG1hIHN5c3dyaXRlIHRyIHNlbmQgdW1hc2sgc3lzb3BlbiBzaG13cml0ZSB2ZWMgcXggdXRpbWUgbG9jYWwgb2N0IHNlbWN0bCBsb2NhbHRpbWUgcmVhZHBpcGUgZG8gcmV0dXJuIGZvcm1hdCByZWFkIHNwcmludGYgZGJtb3BlbiBwb3AgZ2V0cGdycCBub3QgZ2V0cHduYW0gcmV3aW5kZGlyIHFxZmlsZW5vIHF3IGVuZHByb3RvZW50IHdhaXQgc2V0aG9zdGVudCBibGVzcyBzfDAgb3BlbmRpciBjb250aW51ZSBlYWNoIHNsZWVwIGVuZGdyZW50IHNodXRkb3duIGR1bXAgY2hvbXAgY29ubmVjdCBnZXRzb2NrbmFtZSBkaWUgc29ja2V0cGFpciBjbG9zZSBmbG9jayBleGlzdHMgaW5kZXggc2htZ2V0c3ViIGZvciBlbmRwd2VudCByZWRvIGxzdGF0IG1zZ2N0bCBzZXRwZ3JwIGFicyBleGl0IHNlbGVjdCBwcmludCByZWYgZ2V0aG9zdGJ5YWRkciB1bnNoaWZ0IGZjbnRsIHN5c2NhbGwgZ290byBnZXRuZXRieWFkZHIgam9pbiBnbXRpbWUgc3ltbGluayBzZW1nZXQgc3BsaWNlIHh8MCBnZXRwZWVybmFtZSByZWN2IGxvZyBzZXRzb2Nrb3B0IGNvcyBsYXN0IHJldmVyc2UgZ2V0aG9zdGJ5bmFtZSBnZXRncm5hbSBzdHVkeSBmb3JtbGluZSBlbmRob3N0ZW50IHRpbWVzIGNob3AgbGVuZ3RoIGdldGhvc3RlbnQgZ2V0bmV0ZW50IHBhY2sgZ2V0cHJvdG9lbnQgZ2V0c2VydmJ5bmFtZSByYW5kIG1rZGlyIHBvcyBjaG1vZCB5fDAgc3Vic3RyIGVuZG5ldGVudCBwcmludGYgbmV4dCBvcGVuIG1zZ3NuZCByZWFkZGlyIHVzZSB1bmxpbmsgZ2V0c29ja29wdCBnZXRwcmlvcml0eSByaW5kZXggd2FudGFycmF5IGhleCBzeXN0ZW0gZ2V0c2VydmJ5cG9ydCBlbmRzZXJ2ZW50IGludCBjaHIgdW50aWUgcm1kaXIgcHJvdG90eXBlIHRlbGwgbGlzdGVuIGZvcmsgc2htcmVhZCB1Y2ZpcnN0IHNldHByb3RvZW50IGVsc2Ugc3lzc2VlayBsaW5rIGdldGdyZ2lkIHNobWN0bCB3YWl0cGlkIHVucGFjayBnZXRuZXRieW5hbWUgcmVzZXQgY2hkaXIgZ3JlcCBzcGxpdCByZXF1aXJlIGNhbGxlciBsY2ZpcnN0IHVudGlsIHdhcm4gd2hpbGUgdmFsdWVzIHNoaWZ0IHRlbGxkaXIgZ2V0cHd1aWQgbXkgZ2V0cHJvdG9ieW51bWJlciBkZWxldGUgYW5kIHNvcnQgdWMgZGVmaW5lZCBzcmFuZCBhY2NlcHQgcGFja2FnZSBzZWVrZGlyIGdldHByb3RvYnluYW1lIHNlbW9wIG91ciByZW5hbWUgc2VlayBpZiBxfDAgY2hyb290IHN5c3JlYWQgc2V0cHdlbnQgbm8gY3J5cHQgZ2V0YyBjaG93biBzcXJ0IHdyaXRlIHNldG5ldGVudCBzZXRwcmlvcml0eSBmb3JlYWNoIHRpZSBzaW4gbXNnZ2V0IG1hcCBzdGF0IGdldGxvZ2luIHVubGVzcyBlbHNpZiB0cnVuY2F0ZSBleGVjIGtleXMgZ2xvYiB0aWVkIGNsb3NlZGlyaW9jdGwgc29ja2V0IHJlYWRsaW5rIGV2YWwgeG9yIHJlYWRsaW5lIGJpbm1vZGUgc2V0c2VydmVudCBlb2Ygb3JkIGJpbmQgYWxhcm0gcGlwZSBhdGFuMiBnZXRncmVudCBleHAgdGltZSBwdXNoIHNldGdyZW50IGd0IGx0IG9yIG5lIG18MCBicmVhayBnaXZlbiBzYXkgc3RhdGUgd2hlbiIscj17Y046InN1YnN0IixiOiJbJEBdXFx7IixlOiJcXH0iLGs6dH0scz17YjoiLT57IixlOiJ9In0sbj17djpbe2I6L1wkXGQvfSx7YjovW1wkJUBdKFxeXHdcYnwjXHcrKDo6XHcrKSp8e1x3K318XHcrKDo6XHcqKSopL30se2I6L1tcJCVAXVteXHNcd3tdLyxyOjB9XX0saT1bZS5CRSxyLG5dLG89W24sZS5IQ00sZS5DKCJeXFw9XFx3IiwiXFw9Y3V0Iix7ZVc6ITB9KSxzLHtjTjoic3RyaW5nIixjOmksdjpbe2I6InFbcXd4cl0/XFxzKlxcKCIsZToiXFwpIixyOjV9LHtiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIscjo1fSx7YjoicVtxd3hyXT9cXHMqXFx7IixlOiJcXH0iLHI6NX0se2I6InFbcXd4cl0/XFxzKlxcfCIsZToiXFx8IixyOjV9LHtiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIscjo1fSx7YjoicXdcXHMrcSIsZToicSIscjo1fSx7YjoiJyIsZToiJyIsYzpbZS5CRV19LHtiOiciJyxlOiciJ30se2I6ImAiLGU6ImAiLGM6W2UuQkVdfSx7Yjoie1xcdyt9IixjOltdLHI6MH0se2I6Ii0/XFx3K1xccypcXD1cXD4iLGM6W10scjowfV19LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtiOiIoXFwvXFwvfCIrZS5SU1IrInxcXGIoc3BsaXR8cmV0dXJufHByaW50fHJldmVyc2V8Z3JlcClcXGIpXFxzKiIsazoic3BsaXQgcmV0dXJuIHByaW50IHJldmVyc2UgZ3JlcCIscjowLGM6W2UuSENNLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2UuQkVdLHI6MH1dfSx7Y046ImZ1bmN0aW9uIixiSzoic3ViIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsZUU6ITAscjo1LGM6W2UuVE1dfSx7YjoiLVxcd1xcYiIscjowfSx7YjoiXl9fREFUQV9fJCIsZToiXl9fRU5EX18kIixzTDoibW9qb2xpY2lvdXMiLGM6W3tiOiJeQEAuKiIsZToiJCIsY046ImNvbW1lbnQifV19XTtyZXR1cm4gci5jPW8scy5jPW8se2FsaWFzZXM6WyJwbCIsInBtIl0sbDovW1x3XC5dKy8sazp0LGM6b319KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImluaSIsZnVuY3Rpb24oZSl7dmFyIGI9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOiInJyciLGU6IicnJyIscjoxMH0se2I6JyIiIicsZTonIiIiJyxyOjEwfSx7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfTtyZXR1cm57YWxpYXNlczpbInRvbWwiXSxjSTohMCxpOi9cUy8sYzpbZS5DKCI7IiwiJCIpLGUuSENNLHtjTjoic2VjdGlvbiIsYjovXlxzKlxbKy8sZTovXF0rL30se2I6L15bYS16MC05XFtcXV8tXStccyo9XHMqLyxlOiIkIixyQjohMCxjOlt7Y046ImF0dHIiLGI6L1thLXowLTlcW1xdXy1dKy99LHtiOi89LyxlVzohMCxyOjAsYzpbe2NOOiJsaXRlcmFsIixiOi9cYm9ufG9mZnx0cnVlfGZhbHNlfHllc3xub1xiL30se2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQiXVtcd1xkX10qL30se2I6L1wkXHsoLio/KX0vfV19LGIse2NOOiJudW1iZXIiLGI6LyhbXCtcLV0rKT9bXGRdK19bXGRfXSsvfSxlLk5NXX1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJkaWZmIixmdW5jdGlvbihlKXtyZXR1cm57YWxpYXNlczpbInBhdGNoIl0sYzpbe2NOOiJtZXRhIixyOjEwLHY6W3tiOi9eQEAgK1wtXGQrLFxkKyArXCtcZCssXGQrICtAQCQvfSx7YjovXlwqXCpcKiArXGQrLFxkKyArXCpcKlwqXCokL30se2I6L15cLVwtXC0gK1xkKyxcZCsgK1wtXC1cLVwtJC99XX0se2NOOiJjb21tZW50Iix2Olt7YjovSW5kZXg6IC8sZTovJC99LHtiOi89ezMsfS8sZTovJC99LHtiOi9eXC17M30vLGU6LyQvfSx7YjovXlwqezN9IC8sZTovJC99LHtiOi9eXCt7M30vLGU6LyQvfSx7YjovXCp7NX0vLGU6L1wqezV9JC99XX0se2NOOiJhZGRpdGlvbiIsYjoiXlxcKyIsZToiJCJ9LHtjTjoiZGVsZXRpb24iLGI6Il5cXC0iLGU6IiQifSx7Y046ImFkZGl0aW9uIixiOiJeXFwhIixlOiIkIn1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiZ28iLGZ1bmN0aW9uKGUpe3ZhciB0PXtrZXl3b3JkOiJicmVhayBkZWZhdWx0IGZ1bmMgaW50ZXJmYWNlIHNlbGVjdCBjYXNlIG1hcCBzdHJ1Y3QgY2hhbiBlbHNlIGdvdG8gcGFja2FnZSBzd2l0Y2ggY29uc3QgZmFsbHRocm91Z2ggaWYgcmFuZ2UgdHlwZSBjb250aW51ZSBmb3IgaW1wb3J0IHJldHVybiB2YXIgZ28gZGVmZXIgYm9vbCBieXRlIGNvbXBsZXg2NCBjb21wbGV4MTI4IGZsb2F0MzIgZmxvYXQ2NCBpbnQ4IGludDE2IGludDMyIGludDY0IHN0cmluZyB1aW50OCB1aW50MTYgdWludDMyIHVpbnQ2NCBpbnQgdWludCB1aW50cHRyIHJ1bmUiLGxpdGVyYWw6InRydWUgZmFsc2UgaW90YSBuaWwiLGJ1aWx0X2luOiJhcHBlbmQgY2FwIGNsb3NlIGNvbXBsZXggY29weSBpbWFnIGxlbiBtYWtlIG5ldyBwYW5pYyBwcmludCBwcmludGxuIHJlYWwgcmVjb3ZlciBkZWxldGUifTtyZXR1cm57YWxpYXNlczpbImdvbGFuZyJdLGs6dCxpOiI8LyIsYzpbZS5DTENNLGUuQ0JDTSx7Y046InN0cmluZyIsdjpbZS5RU00se2I6IiciLGU6IlteXFxcXF0nIn0se2I6ImAiLGU6ImAifV19LHtjTjoibnVtYmVyIix2Olt7YjplLkNOUisiW2RmbHNpXSIscjoxfSxlLkNOTV19LHtiOi86PS99LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jIixlOi9ccypcey8sZUU6ITAsYzpbZS5UTSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnQsaTovWyInXS99XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiYmFzaCIsZnVuY3Rpb24oZSl7dmFyIHQ9e2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQjQF1bXHdcZF9dKi99LHtiOi9cJFx7KC4qPyl9L31dfSxzPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLHQse2NOOiJ2YXJpYWJsZSIsYjovXCRcKC8sZTovXCkvLGM6W2UuQkVdfV19LGE9e2NOOiJzdHJpbmciLGI6LycvLGU6LycvfTtyZXR1cm57YWxpYXNlczpbInNoIiwienNoIl0sbDovXGItP1thLXpcLl9dK1xiLyxrOntrZXl3b3JkOiJpZiB0aGVuIGVsc2UgZWxpZiBmaSBmb3Igd2hpbGUgaW4gZG8gZG9uZSBjYXNlIGVzYWMgZnVuY3Rpb24iLGxpdGVyYWw6InRydWUgZmFsc2UiLGJ1aWx0X2luOiJicmVhayBjZCBjb250aW51ZSBldmFsIGV4ZWMgZXhpdCBleHBvcnQgZ2V0b3B0cyBoYXNoIHB3ZCByZWFkb25seSByZXR1cm4gc2hpZnQgdGVzdCB0aW1lcyB0cmFwIHVtYXNrIHVuc2V0IGFsaWFzIGJpbmQgYnVpbHRpbiBjYWxsZXIgY29tbWFuZCBkZWNsYXJlIGVjaG8gZW5hYmxlIGhlbHAgbGV0IGxvY2FsIGxvZ291dCBtYXBmaWxlIHByaW50ZiByZWFkIHJlYWRhcnJheSBzb3VyY2UgdHlwZSB0eXBlc2V0IHVsaW1pdCB1bmFsaWFzIHNldCBzaG9wdCBhdXRvbG9hZCBiZyBiaW5ka2V5IGJ5ZSBjYXAgY2hkaXIgY2xvbmUgY29tcGFyZ3VtZW50cyBjb21wY2FsbCBjb21wY3RsIGNvbXBkZXNjcmliZSBjb21wZmlsZXMgY29tcGdyb3VwcyBjb21wcXVvdGUgY29tcHRhZ3MgY29tcHRyeSBjb21wdmFsdWVzIGRpcnMgZGlzYWJsZSBkaXNvd24gZWNob3RjIGVjaG90aSBlbXVsYXRlIGZjIGZnIGZsb2F0IGZ1bmN0aW9ucyBnZXRjYXAgZ2V0bG4gaGlzdG9yeSBpbnRlZ2VyIGpvYnMga2lsbCBsaW1pdCBsb2cgbm9nbG9iIHBvcGQgcHJpbnQgcHVzaGQgcHVzaGxuIHJlaGFzaCBzY2hlZCBzZXRjYXAgc2V0b3B0IHN0YXQgc3VzcGVuZCB0dHljdGwgdW5mdW5jdGlvbiB1bmhhc2ggdW5saW1pdCB1bnNldG9wdCB2YXJlZCB3YWl0IHdoZW5jZSB3aGVyZSB3aGljaCB6Y29tcGlsZSB6Zm9ybWF0IHpmdHAgemxlIHptb2Rsb2FkIHpwYXJzZW9wdHMgenByb2YgenB0eSB6cmVnZXhwYXJzZSB6c29ja2V0IHpzdHlsZSB6dGNwIixfOiItbmUgLWVxIC1sdCAtZ3QgLWYgLWQgLWUgLXMgLWwgLWEifSxjOlt7Y046Im1ldGEiLGI6L14jIVteXG5dK3NoXHMqJC8scjoxMH0se2NOOiJmdW5jdGlvbiIsYjovXHdbXHdcZF9dKlxzKlwoXHMqXClccypcey8sckI6ITAsYzpbZS5pbmhlcml0KGUuVE0se2I6L1x3W1x3XGRfXSovfSldLHI6MH0sZS5IQ00scyxhLHRdfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicHl0aG9uIixmdW5jdGlvbihlKXt2YXIgcj17a2V5d29yZDoiYW5kIGVsaWYgaXMgZ2xvYmFsIGFzIGluIGlmIGZyb20gcmFpc2UgZm9yIGV4Y2VwdCBmaW5hbGx5IHByaW50IGltcG9ydCBwYXNzIHJldHVybiBleGVjIGVsc2UgYnJlYWsgbm90IHdpdGggY2xhc3MgYXNzZXJ0IHlpZWxkIHRyeSB3aGlsZSBjb250aW51ZSBkZWwgb3IgZGVmIGxhbWJkYSBhc3luYyBhd2FpdCBub25sb2NhbHwxMCBOb25lIFRydWUgRmFsc2UiLGJ1aWx0X2luOiJFbGxpcHNpcyBOb3RJbXBsZW1lbnRlZCJ9LGI9e2NOOiJtZXRhIixiOi9eKD4+PnxcLlwuXC4pIC99LGM9e2NOOiJzdWJzdCIsYjovXHsvLGU6L1x9LyxrOnIsaTovIy99LGE9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOi8odXxiKT9yPycnJy8sZTovJycnLyxjOltiXSxyOjEwfSx7YjovKHV8Yik/cj8iIiIvLGU6LyIiIi8sYzpbYl0scjoxMH0se2I6LyhmcnxyZnxmKScnJy8sZTovJycnLyxjOltiLGNdfSx7YjovKGZyfHJmfGYpIiIiLyxlOi8iIiIvLGM6W2IsY119LHtiOi8odXxyfHVyKScvLGU6LycvLHI6MTB9LHtiOi8odXxyfHVyKSIvLGU6LyIvLHI6MTB9LHtiOi8oYnxiciknLyxlOi8nL30se2I6LyhifGJyKSIvLGU6LyIvfSx7YjovKGZyfHJmfGYpJy8sZTovJy8sYzpbY119LHtiOi8oZnJ8cmZ8ZikiLyxlOi8iLyxjOltjXX0sZS5BU00sZS5RU01dfSxzPXtjTjoibnVtYmVyIixyOjAsdjpbe2I6ZS5CTlIrIltsTGpKXT8ifSx7YjoiXFxiKDBvWzAtN10rKVtsTGpKXT8ifSx7YjplLkNOUisiW2xMakpdPyJ9XX0saT17Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxjOlsic2VsZiIsYixzLGFdfTtyZXR1cm4gYy5jPVthLHMsYl0se2FsaWFzZXM6WyJweSIsImd5cCJdLGs6cixpOi8oPFwvfC0+fFw/KXw9Pi8sYzpbYixzLGEsZS5IQ00se3Y6W3tjTjoiZnVuY3Rpb24iLGJLOiJkZWYifSx7Y046ImNsYXNzIixiSzoiY2xhc3MifV0sZTovOi8saTovWyR7PTtcbixdLyxjOltlLlVUTSxpLHtiOi8tPi8sZVc6ITAsazoiTm9uZSJ9XX0se2NOOiJtZXRhIixiOi9eW1x0IF0qQC8sZTovJC99LHtiOi9cYihwcmludHxleGVjKVwoL31dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianVsaWEiLGZ1bmN0aW9uKGUpe3ZhciByPXtrZXl3b3JkOiJpbiBpc2Egd2hlcmUgYmFyZW1vZHVsZSBiZWdpbiBicmVhayBjYXRjaCBjY2FsbCBjb25zdCBjb250aW51ZSBkbyBlbHNlIGVsc2VpZiBlbmQgZXhwb3J0IGZhbHNlIGZpbmFsbHkgZm9yIGZ1bmN0aW9uIGdsb2JhbCBpZiBpbXBvcnQgaW1wb3J0YWxsIGxldCBsb2NhbCBtYWNybyBtb2R1bGUgcXVvdGUgcmV0dXJuIHRydWUgdHJ5IHVzaW5nIHdoaWxlIHR5cGUgaW1tdXRhYmxlIGFic3RyYWN0IGJpdHN0eXBlIHR5cGVhbGlhcyAiLGxpdGVyYWw6InRydWUgZmFsc2UgQVJHUyBDX05VTEwgRGV2TnVsbCBFTkRJQU5fQk9NIEVOViBJIEluZiBJbmYxNiBJbmYzMiBJbmY2NCBJbnNlcnRpb25Tb3J0IEpVTElBX0hPTUUgTE9BRF9QQVRIIE1lcmdlU29ydCBOYU4gTmFOMTYgTmFOMzIgTmFONjQgUFJPR1JBTV9GSUxFIFF1aWNrU29ydCBSb3VuZERvd24gUm91bmRGcm9tWmVybyBSb3VuZE5lYXJlc3QgUm91bmROZWFyZXN0VGllc0F3YXkgUm91bmROZWFyZXN0VGllc1VwIFJvdW5kVG9aZXJvIFJvdW5kVXAgU1RERVJSIFNURElOIFNURE9VVCBWRVJTSU9OIGNhdGFsYW4gZXwwIGV1fDAgZXVsZXJnYW1tYSBnb2xkZW4gaW0gbm90aGluZyBwaSDOsyDPgCDPhiAiLGJ1aWx0X2luOiJBTlkgQWJzdHJhY3RBcnJheSBBYnN0cmFjdENoYW5uZWwgQWJzdHJhY3RGbG9hdCBBYnN0cmFjdE1hdHJpeCBBYnN0cmFjdFJORyBBYnN0cmFjdFNlcmlhbGl6ZXIgQWJzdHJhY3RTZXQgQWJzdHJhY3RTcGFyc2VBcnJheSBBYnN0cmFjdFNwYXJzZU1hdHJpeCBBYnN0cmFjdFNwYXJzZVZlY3RvciBBYnN0cmFjdFN0cmluZyBBYnN0cmFjdFVuaXRSYW5nZSBBYnN0cmFjdFZlY09yTWF0IEFic3RyYWN0VmVjdG9yIEFueSBBcmd1bWVudEVycm9yIEFycmF5IEFzc2VydGlvbkVycm9yIEFzc29jaWF0aXZlIEJhc2U2NERlY29kZVBpcGUgQmFzZTY0RW5jb2RlUGlwZSBCaWRpYWdvbmFsIEJpZ0Zsb2F0IEJpZ0ludCBCaXRBcnJheSBCaXRNYXRyaXggQml0VmVjdG9yIEJvb2wgQm91bmRzRXJyb3IgQnVmZmVyU3RyZWFtIENhY2hpbmdQb29sIENhcHR1cmVkRXhjZXB0aW9uIENhcnRlc2lhbkluZGV4IENhcnRlc2lhblJhbmdlIENjaGFyIENkb3VibGUgQ2Zsb2F0IENoYW5uZWwgQ2hhciBDaW50IENpbnRtYXhfdCBDbG9uZyBDbG9uZ2xvbmcgQ2x1c3Rlck1hbmFnZXIgQ21kIENvZGVJbmZvIENvbG9uIENvbXBsZXggQ29tcGxleDEyOCBDb21wbGV4MzIgQ29tcGxleDY0IENvbXBvc2l0ZUV4Y2VwdGlvbiBDb25kaXRpb24gQ29uakFycmF5IENvbmpNYXRyaXggQ29ualZlY3RvciBDcHRyZGlmZl90IENzaG9ydCBDc2l6ZV90IENzc2l6ZV90IENzdHJpbmcgQ3VjaGFyIEN1aW50IEN1aW50bWF4X3QgQ3Vsb25nIEN1bG9uZ2xvbmcgQ3VzaG9ydCBDd2NoYXJfdCBDd3N0cmluZyBEYXRhVHlwZSBEYXRlIERhdGVGb3JtYXQgRGF0ZVRpbWUgRGVuc2VBcnJheSBEZW5zZU1hdHJpeCBEZW5zZVZlY09yTWF0IERlbnNlVmVjdG9yIERpYWdvbmFsIERpY3QgRGltZW5zaW9uTWlzbWF0Y2ggRGltcyBEaXJlY3RJbmRleFN0cmluZyBEaXNwbGF5IERpdmlkZUVycm9yIERvbWFpbkVycm9yIEVPRkVycm9yIEVhY2hMaW5lIEVudW0gRW51bWVyYXRlIEVycm9yRXhjZXB0aW9uIEV4Y2VwdGlvbiBFeHBvbmVudGlhbEJhY2tPZmYgRXhwciBGYWN0b3JpemF0aW9uIEZpbGVNb25pdG9yIEZsb2F0MTYgRmxvYXQzMiBGbG9hdDY0IEZ1bmN0aW9uIEZ1dHVyZSBHbG9iYWxSZWYgR290b05vZGUgSFRNTCBIZXJtaXRpYW4gSU8gSU9CdWZmZXIgSU9Db250ZXh0IElPU3RyZWFtIElQQWRkciBJUHY0IElQdjYgSW5kZXhDYXJ0ZXNpYW4gSW5kZXhMaW5lYXIgSW5kZXhTdHlsZSBJbmV4YWN0RXJyb3IgSW5pdEVycm9yIEludCBJbnQxMjggSW50MTYgSW50MzIgSW50NjQgSW50OCBJbnRTZXQgSW50ZWdlciBJbnRlcnJ1cHRFeGNlcHRpb24gSW52YWxpZFN0YXRlRXhjZXB0aW9uIElycmF0aW9uYWwgS2V5RXJyb3IgTGFiZWxOb2RlIExpblNwYWNlIExpbmVOdW1iZXJOb2RlIExvYWRFcnJvciBMb3dlclRyaWFuZ3VsYXIgTUlNRSBNYXRyaXggTWVyc2VubmVUd2lzdGVyIE1ldGhvZCBNZXRob2RFcnJvciBNZXRob2RUYWJsZSBNb2R1bGUgTlR1cGxlIE5ld3Zhck5vZGUgTnVsbEV4Y2VwdGlvbiBOdWxsYWJsZSBOdW1iZXIgT2JqZWN0SWREaWN0IE9yZGluYWxSYW5nZSBPdXRPZk1lbW9yeUVycm9yIE92ZXJmbG93RXJyb3IgUGFpciBQYXJzZUVycm9yIFBhcnRpYWxRdWlja1NvcnQgUGVybXV0ZWREaW1zQXJyYXkgUGlwZSBQb2xsaW5nRmlsZVdhdGNoZXIgUHJvY2Vzc0V4aXRlZEV4Y2VwdGlvbiBQdHIgUXVvdGVOb2RlIFJhbmRvbURldmljZSBSYW5nZSBSYW5nZUluZGV4IFJhdGlvbmFsIFJhd0ZEIFJlYWRPbmx5TWVtb3J5RXJyb3IgUmVhbCBSZWVudHJhbnRMb2NrIFJlZiBSZWdleCBSZWdleE1hdGNoIFJlbW90ZUNoYW5uZWwgUmVtb3RlRXhjZXB0aW9uIFJldlN0cmluZyBSb3VuZGluZ01vZGUgUm93VmVjdG9yIFNTQVZhbHVlIFNlZ21lbnRhdGlvbkZhdWx0IFNlcmlhbGl6YXRpb25TdGF0ZSBTZXQgU2hhcmVkQXJyYXkgU2hhcmVkTWF0cml4IFNoYXJlZFZlY3RvciBTaWduZWQgU2ltcGxlVmVjdG9yIFNsb3QgU2xvdE51bWJlciBTcGFyc2VNYXRyaXhDU0MgU3BhcnNlVmVjdG9yIFN0YWNrRnJhbWUgU3RhY2tPdmVyZmxvd0Vycm9yIFN0YWNrVHJhY2UgU3RlcFJhbmdlIFN0ZXBSYW5nZUxlbiBTdHJpZGVkQXJyYXkgU3RyaWRlZE1hdHJpeCBTdHJpZGVkVmVjT3JNYXQgU3RyaWRlZFZlY3RvciBTdHJpbmcgU3ViQXJyYXkgU3ViU3RyaW5nIFN5bVRyaWRpYWdvbmFsIFN5bWJvbCBTeW1tZXRyaWMgU3lzdGVtRXJyb3IgVENQU29ja2V0IFRhc2sgVGV4dCBUZXh0RGlzcGxheSBUaW1lciBUcmlkaWFnb25hbCBUdXBsZSBUeXBlIFR5cGVFcnJvciBUeXBlTWFwRW50cnkgVHlwZU1hcExldmVsIFR5cGVOYW1lIFR5cGVWYXIgVHlwZWRTbG90IFVEUFNvY2tldCBVSW50IFVJbnQxMjggVUludDE2IFVJbnQzMiBVSW50NjQgVUludDggVW5kZWZSZWZFcnJvciBVbmRlZlZhckVycm9yIFVuaWNvZGVFcnJvciBVbmlmb3JtU2NhbGluZyBVbmlvbiBVbmlvbkFsbCBVbml0UmFuZ2UgVW5zaWduZWQgVXBwZXJUcmlhbmd1bGFyIFZhbCBWYXJhcmcgVmVjRWxlbWVudCBWZWNPck1hdCBWZWN0b3IgVmVyc2lvbk51bWJlciBWb2lkIFdlYWtLZXlEaWN0IFdlYWtSZWYgV29ya2VyQ29uZmlnIFdvcmtlclBvb2wgIn0sdD0iW0EtWmEtel9cXHUwMEExLVxcdUZGRkZdW0EtWmEtel8wLTlcXHUwMEExLVxcdUZGRkZdKiIsYT17bDp0LGs6cixpOi88XC8vfSxuPXtjTjoibnVtYmVyIixiOi8oXGIweFtcZF9dKihcLltcZF9dKik/fDB4XC5cZFtcZF9dKilwWy0rXT9cZCt8XGIwW2JveF1bYS1mQS1GMC05XVthLWZBLUYwLTlfXSp8KFxiXGRbXGRfXSooXC5bXGRfXSopP3xcLlxkW1xkX10qKShbZUVmRl1bLStdP1xkKyk/LyxyOjB9LG89e2NOOiJzdHJpbmciLGI6LycoLnxcXFt4WHVVXVthLXpBLVowLTldKyknL30saT17Y046InN1YnN0IixiOi9cJFwoLyxlOi9cKS8sazpyfSxsPXtjTjoidmFyaWFibGUiLGI6IlxcJCIrdH0sYz17Y046InN0cmluZyIsYzpbZS5CRSxpLGxdLHY6W3tiOi9cdyoiIiIvLGU6LyIiIlx3Ki8scjoxMH0se2I6L1x3KiIvLGU6LyJcdyovfV19LHM9e2NOOiJzdHJpbmciLGM6W2UuQkUsaSxsXSxiOiJgIixlOiJgIn0sZD17Y046Im1ldGEiLGI6IkAiK3R9LHU9e2NOOiJjb21tZW50Iix2Olt7YjoiIz0iLGU6Ij0jIixyOjEwfSx7YjoiIyIsZToiJCJ9XX07cmV0dXJuIGEuYz1bbixvLGMscyxkLHUsZS5IQ00se2NOOiJrZXl3b3JkIixiOiJcXGIoKChhYnN0cmFjdHxwcmltaXRpdmUpXFxzKyl0eXBlfChtdXRhYmxlXFxzKyk/c3RydWN0KVxcYiJ9LHtiOi88Oi99XSxpLmM9YS5jLGF9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImNvZmZlZXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIGM9e2tleXdvcmQ6ImluIGlmIGZvciB3aGlsZSBmaW5hbGx5IG5ldyBkbyByZXR1cm4gZWxzZSBicmVhayBjYXRjaCBpbnN0YW5jZW9mIHRocm93IHRyeSB0aGlzIHN3aXRjaCBjb250aW51ZSB0eXBlb2YgZGVsZXRlIGRlYnVnZ2VyIHN1cGVyIHlpZWxkIGltcG9ydCBleHBvcnQgZnJvbSBhcyBkZWZhdWx0IGF3YWl0IHRoZW4gdW5sZXNzIHVudGlsIGxvb3Agb2YgYnkgd2hlbiBhbmQgb3IgaXMgaXNudCBub3QiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgeWVzIG5vIG9uIG9mZiIsYnVpbHRfaW46Im5wbSByZXF1aXJlIGNvbnNvbGUgcHJpbnQgbW9kdWxlIGdsb2JhbCB3aW5kb3cgZG9jdW1lbnQifSxuPSJbQS1aYS16JF9dWzAtOUEtWmEteiRfXSoiLHI9e2NOOiJzdWJzdCIsYjovI1x7LyxlOi99LyxrOmN9LGk9W2UuQk5NLGUuaW5oZXJpdChlLkNOTSx7c3RhcnRzOntlOiIoXFxzKi8pPyIscjowfX0pLHtjTjoic3RyaW5nIix2Olt7YjovJycnLyxlOi8nJycvLGM6W2UuQkVdfSx7YjovJy8sZTovJy8sYzpbZS5CRV19LHtiOi8iIiIvLGU6LyIiIi8sYzpbZS5CRSxyXX0se2I6LyIvLGU6LyIvLGM6W2UuQkUscl19XX0se2NOOiJyZWdleHAiLHY6W3tiOiIvLy8iLGU6Ii8vLyIsYzpbcixlLkhDTV19LHtiOiIvL1tnaW1dKiIscjowfSx7YjovXC8oPyFbICpdKShcXFwvfC4pKj9cL1tnaW1dKig/PVxXfCQpL31dfSx7YjoiQCIrbn0se3NMOiJqYXZhc2NyaXB0IixlQjohMCxlRTohMCx2Olt7YjoiYGBgIixlOiJgYGAifSx7YjoiYCIsZToiYCJ9XX1dO3IuYz1pO3ZhciBzPWUuaW5oZXJpdChlLlRNLHtiOm59KSx0PSIoXFwoLipcXCkpP1xccypcXEJbLT1dPiIsbz17Y046InBhcmFtcyIsYjoiXFwoW15cXChdIixyQjohMCxjOlt7YjovXCgvLGU6L1wpLyxrOmMsYzpbInNlbGYiXS5jb25jYXQoaSl9XX07cmV0dXJue2FsaWFzZXM6WyJjb2ZmZWUiLCJjc29uIiwiaWNlZCJdLGs6YyxpOi9cL1wqLyxjOmkuY29uY2F0KFtlLkMoIiMjIyIsIiMjIyIpLGUuSENNLHtjTjoiZnVuY3Rpb24iLGI6Il5cXHMqIituKyJcXHMqPVxccyoiK3QsZToiWy09XT4iLHJCOiEwLGM6W3Msb119LHtiOi9bOlwoLD1dXHMqLyxyOjAsYzpbe2NOOiJmdW5jdGlvbiIsYjp0LGU6IlstPV0+IixyQjohMCxjOltvXX1dfSx7Y046ImNsYXNzIixiSzoiY2xhc3MiLGU6IiQiLGk6L1s6PSJcW1xdXS8sYzpbe2JLOiJleHRlbmRzIixlVzohMCxpOi9bOj0iXFtcXV0vLGM6W3NdfSxzXX0se2I6bisiOiIsZToiOiIsckI6ITAsckU6ITAscjowfV0pfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiY3BwIixmdW5jdGlvbih0KXt2YXIgZT17Y046ImtleXdvcmQiLGI6IlxcYlthLXpcXGRfXSpfdFxcYiJ9LHI9e2NOOiJzdHJpbmciLHY6W3tiOicodTg/fFUpP0w/IicsZTonIicsaToiXFxuIixjOlt0LkJFXX0se2I6Jyh1OD98VSk/UiInLGU6JyInLGM6W3QuQkVdfSx7YjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9XX0scz17Y046Im51bWJlciIsdjpbe2I6IlxcYigwYlswMSddKykifSx7YjoiKC0/KVxcYihbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKSh1fFV8bHxMfHVsfFVMfGZ8RnxifEIpIn0se2I6IigtPykoXFxiMFt4WF1bYS1mQS1GMC05J10rfChcXGJbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKShbZUVdWy0rXT9bXFxkJ10rKT8pIn1dLHI6MH0saT17Y046Im1ldGEiLGI6LyNccypbYS16XStcYi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6ImlmIGVsc2UgZWxpZiBlbmRpZiBkZWZpbmUgdW5kZWYgd2FybmluZyBlcnJvciBsaW5lIHByYWdtYSBpZmRlZiBpZm5kZWYgaW5jbHVkZSJ9LGM6W3tiOi9cXFxuLyxyOjB9LHQuaW5oZXJpdChyLHtjTjoibWV0YS1zdHJpbmcifSkse2NOOiJtZXRhLXN0cmluZyIsYjovPFteXG4+XSo+LyxlOi8kLyxpOiJcXG4ifSx0LkNMQ00sdC5DQkNNXX0sYT10LklSKyJcXHMqXFwoIixjPXtrZXl3b3JkOiJpbnQgZmxvYXQgd2hpbGUgcHJpdmF0ZSBjaGFyIGNhdGNoIGltcG9ydCBtb2R1bGUgZXhwb3J0IHZpcnR1YWwgb3BlcmF0b3Igc2l6ZW9mIGR5bmFtaWNfY2FzdHwxMCB0eXBlZGVmIGNvbnN0X2Nhc3R8MTAgY29uc3QgZm9yIHN0YXRpY19jYXN0fDEwIHVuaW9uIG5hbWVzcGFjZSB1bnNpZ25lZCBsb25nIHZvbGF0aWxlIHN0YXRpYyBwcm90ZWN0ZWQgYm9vbCB0ZW1wbGF0ZSBtdXRhYmxlIGlmIHB1YmxpYyBmcmllbmQgZG8gZ290byBhdXRvIHZvaWQgZW51bSBlbHNlIGJyZWFrIGV4dGVybiB1c2luZyBhc20gY2FzZSB0eXBlaWQgc2hvcnQgcmVpbnRlcnByZXRfY2FzdHwxMCBkZWZhdWx0IGRvdWJsZSByZWdpc3RlciBleHBsaWNpdCBzaWduZWQgdHlwZW5hbWUgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIGlubGluZSBkZWxldGUgYWxpZ25vZiBjb25zdGV4cHIgZGVjbHR5cGUgbm9leGNlcHQgc3RhdGljX2Fzc2VydCB0aHJlYWRfbG9jYWwgcmVzdHJpY3QgX0Jvb2wgY29tcGxleCBfQ29tcGxleCBfSW1hZ2luYXJ5IGF0b21pY19ib29sIGF0b21pY19jaGFyIGF0b21pY19zY2hhciBhdG9taWNfdWNoYXIgYXRvbWljX3Nob3J0IGF0b21pY191c2hvcnQgYXRvbWljX2ludCBhdG9taWNfdWludCBhdG9taWNfbG9uZyBhdG9taWNfdWxvbmcgYXRvbWljX2xsb25nIGF0b21pY191bGxvbmcgbmV3IHRocm93IHJldHVybiBhbmQgb3Igbm90IixidWlsdF9pbjoic3RkIHN0cmluZyBjaW4gY291dCBjZXJyIGNsb2cgc3RkaW4gc3Rkb3V0IHN0ZGVyciBzdHJpbmdzdHJlYW0gaXN0cmluZ3N0cmVhbSBvc3RyaW5nc3RyZWFtIGF1dG9fcHRyIGRlcXVlIGxpc3QgcXVldWUgc3RhY2sgdmVjdG9yIG1hcCBzZXQgYml0c2V0IG11bHRpc2V0IG11bHRpbWFwIHVub3JkZXJlZF9zZXQgdW5vcmRlcmVkX21hcCB1bm9yZGVyZWRfbXVsdGlzZXQgdW5vcmRlcmVkX211bHRpbWFwIGFycmF5IHNoYXJlZF9wdHIgYWJvcnQgYWJzIGFjb3MgYXNpbiBhdGFuMiBhdGFuIGNhbGxvYyBjZWlsIGNvc2ggY29zIGV4aXQgZXhwIGZhYnMgZmxvb3IgZm1vZCBmcHJpbnRmIGZwdXRzIGZyZWUgZnJleHAgZnNjYW5mIGlzYWxudW0gaXNhbHBoYSBpc2NudHJsIGlzZGlnaXQgaXNncmFwaCBpc2xvd2VyIGlzcHJpbnQgaXNwdW5jdCBpc3NwYWNlIGlzdXBwZXIgaXN4ZGlnaXQgdG9sb3dlciB0b3VwcGVyIGxhYnMgbGRleHAgbG9nMTAgbG9nIG1hbGxvYyByZWFsbG9jIG1lbWNociBtZW1jbXAgbWVtY3B5IG1lbXNldCBtb2RmIHBvdyBwcmludGYgcHV0Y2hhciBwdXRzIHNjYW5mIHNpbmggc2luIHNucHJpbnRmIHNwcmludGYgc3FydCBzc2NhbmYgc3RyY2F0IHN0cmNociBzdHJjbXAgc3RyY3B5IHN0cmNzcG4gc3RybGVuIHN0cm5jYXQgc3RybmNtcCBzdHJuY3B5IHN0cnBicmsgc3RycmNociBzdHJzcG4gc3Ryc3RyIHRhbmggdGFuIHZmcHJpbnRmIHZwcmludGYgdnNwcmludGYgZW5kbCBpbml0aWFsaXplcl9saXN0IHVuaXF1ZV9wdHIiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbHB0ciBOVUxMIn0sbj1bZSx0LkNMQ00sdC5DQkNNLHMscl07cmV0dXJue2FsaWFzZXM6WyJjIiwiY2MiLCJoIiwiYysrIiwiaCsrIiwiaHBwIl0sazpjLGk6IjwvIixjOm4uY29uY2F0KFtpLHtiOiJcXGIoZGVxdWV8bGlzdHxxdWV1ZXxzdGFja3x2ZWN0b3J8bWFwfHNldHxiaXRzZXR8bXVsdGlzZXR8bXVsdGltYXB8dW5vcmRlcmVkX21hcHx1bm9yZGVyZWRfc2V0fHVub3JkZXJlZF9tdWx0aXNldHx1bm9yZGVyZWRfbXVsdGltYXB8YXJyYXkpXFxzKjwiLGU6Ij4iLGs6YyxjOlsic2VsZiIsZV19LHtiOnQuSVIrIjo6IixrOmN9LHt2Olt7YjovPS8sZTovOy99LHtiOi9cKC8sZTovXCkvfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIsZTovOy99XSxrOmMsYzpuLmNvbmNhdChbe2I6L1woLyxlOi9cKS8sazpjLGM6bi5jb25jYXQoWyJzZWxmIl0pLHI6MH1dKSxyOjB9LHtjTjoiZnVuY3Rpb24iLGI6IigiK3QuSVIrIltcXComXFxzXSspKyIrYSxyQjohMCxlOi9bezs9XS8sZUU6ITAsazpjLGk6L1teXHdcc1wqJl0vLGM6W3tiOmEsckI6ITAsYzpbdC5UTV0scjowfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOmMscjowLGM6W3QuQ0xDTSx0LkNCQ00scixzLGVdfSx0LkNMQ00sdC5DQkNNLGldfSx7Y046ImNsYXNzIixiSzoiY2xhc3Mgc3RydWN0IixlOi9bezs6XS8sYzpbe2I6LzwvLGU6Lz4vLGM6WyJzZWxmIl19LHQuVE1dfV0pLGV4cG9ydHM6e3ByZXByb2Nlc3NvcjppLHN0cmluZ3M6cixrOmN9fX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicnVieSIsZnVuY3Rpb24oZSl7dmFyIGI9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iLHI9e2tleXdvcmQ6ImFuZCB0aGVuIGRlZmluZWQgbW9kdWxlIGluIHJldHVybiByZWRvIGlmIEJFR0lOIHJldHJ5IGVuZCBmb3Igc2VsZiB3aGVuIG5leHQgdW50aWwgZG8gYmVnaW4gdW5sZXNzIEVORCByZXNjdWUgZWxzZSBicmVhayB1bmRlZiBub3Qgc3VwZXIgY2xhc3MgY2FzZSByZXF1aXJlIHlpZWxkIGFsaWFzIHdoaWxlIGVuc3VyZSBlbHNpZiBvciBpbmNsdWRlIGF0dHJfcmVhZGVyIGF0dHJfd3JpdGVyIGF0dHJfYWNjZXNzb3IiLGxpdGVyYWw6InRydWUgZmFsc2UgbmlsIn0sYz17Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9LGE9e2I6IiM8IixlOiI+In0scz1bZS5DKCIjIiwiJCIse2M6W2NdfSksZS5DKCJeXFw9YmVnaW4iLCJeXFw9ZW5kIix7YzpbY10scjoxMH0pLGUuQygiXl9fRU5EX18iLCJcXG4kIildLG49e2NOOiJzdWJzdCIsYjoiI1xceyIsZToifSIsazpyfSx0PXtjTjoic3RyaW5nIixjOltlLkJFLG5dLHY6W3tiOi8nLyxlOi8nL30se2I6LyIvLGU6LyIvfSx7YjovYC8sZTovYC99LHtiOiIlW3FRd1d4XT9cXCgiLGU6IlxcKSJ9LHtiOiIlW3FRd1d4XT9cXFsiLGU6IlxcXSJ9LHtiOiIlW3FRd1d4XT97IixlOiJ9In0se2I6IiVbcVF3V3hdPzwiLGU6Ij4ifSx7YjoiJVtxUXdXeF0/LyIsZToiLyJ9LHtiOiIlW3FRd1d4XT8lIixlOiIlIn0se2I6IiVbcVF3V3hdPy0iLGU6Ii0ifSx7YjoiJVtxUXdXeF0/XFx8IixlOiJcXHwifSx7YjovXEJcPyhcXFxkezEsM318XFx4W0EtRmEtZjAtOV17MSwyfXxcXHVbQS1GYS1mMC05XXs0fXxcXD9cUylcYi99LHtiOi88PCgtPylcdyskLyxlOi9eXHMqXHcrJC99XX0saT17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGVuZHNQYXJlbnQ6ITAsazpyfSxkPVt0LGEse2NOOiJjbGFzcyIsYks6ImNsYXNzIG1vZHVsZSIsZToiJHw7IixpOi89LyxjOltlLmluaGVyaXQoZS5UTSx7YjoiW0EtWmEtel9dXFx3Kig6OlxcdyspKihcXD98XFwhKT8ifSkse2I6IjxcXHMqIixjOlt7YjoiKCIrZS5JUisiOjopPyIrZS5JUn1dfV0uY29uY2F0KHMpfSx7Y046ImZ1bmN0aW9uIixiSzoiZGVmIixlOiIkfDsiLGM6W2UuaW5oZXJpdChlLlRNLHtiOmJ9KSxpXS5jb25jYXQocyl9LHtiOmUuSVIrIjo6In0se2NOOiJzeW1ib2wiLGI6ZS5VSVIrIihcXCF8XFw/KT86IixyOjB9LHtjTjoic3ltYm9sIixiOiI6KD8hXFxzKSIsYzpbdCx7YjpifV0scjowfSx7Y046Im51bWJlciIsYjoiKFxcYjBbMC03X10rKXwoXFxiMHhbMC05YS1mQS1GX10rKXwoXFxiWzEtOV1bMC05X10qKFxcLlswLTlfXSspPyl8WzBfXVxcYiIscjowfSx7YjoiKFxcJFxcVyl8KChcXCR8XFxAXFxAPykoXFx3KykpIn0se2NOOiJwYXJhbXMiLGI6L1x8LyxlOi9cfC8sazpyfSx7YjoiKCIrZS5SU1IrInx1bmxlc3MpXFxzKiIsazoidW5sZXNzIixjOlthLHtjTjoicmVnZXhwIixjOltlLkJFLG5dLGk6L1xuLyx2Olt7YjoiLyIsZToiL1thLXpdKiJ9LHtiOiIlcnsiLGU6In1bYS16XSoifSx7YjoiJXJcXCgiLGU6IlxcKVthLXpdKiJ9LHtiOiIlciEiLGU6IiFbYS16XSoifSx7YjoiJXJcXFsiLGU6IlxcXVthLXpdKiJ9XX1dLmNvbmNhdChzKSxyOjB9XS5jb25jYXQocyk7bi5jPWQsaS5jPWQ7dmFyIGw9Ils+P10+IixvPSJbXFx3I10rXFwoXFx3K1xcKTpcXGQrOlxcZCs+Iix1PSIoXFx3Ky0pP1xcZCtcXC5cXGQrXFwuXFxkKHBcXGQrKT9bXj5dKz4iLHc9W3tiOi9eXHMqPT4vLHN0YXJ0czp7ZToiJCIsYzpkfX0se2NOOiJtZXRhIixiOiJeKCIrbCsifCIrbysifCIrdSsiKSIsc3RhcnRzOntlOiIkIixjOmR9fV07cmV0dXJue2FsaWFzZXM6WyJyYiIsImdlbXNwZWMiLCJwb2RzcGVjIiwidGhvciIsImlyYiJdLGs6cixpOi9cL1wqLyxjOnMuY29uY2F0KHcpLmNvbmNhdChkKX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInlhbWwiLGZ1bmN0aW9uKGUpe3ZhciBiPSJ0cnVlIGZhbHNlIHllcyBubyBudWxsIixhPSJeWyBcXC1dKiIscj0iW2EtekEtWl9dW1xcd1xcLV0qIix0PXtjTjoiYXR0ciIsdjpbe2I6YStyKyI6In0se2I6YSsnIicrcisnIjonfSx7YjphKyInIityKyInOiJ9XX0sYz17Y046InRlbXBsYXRlLXZhcmlhYmxlIix2Olt7Yjoie3siLGU6In19In0se2I6IiV7IixlOiJ9In1dfSxsPXtjTjoic3RyaW5nIixyOjAsdjpbe2I6LycvLGU6LycvfSx7YjovIi8sZTovIi99LHtiOi9cUysvfV0sYzpbZS5CRSxjXX07cmV0dXJue2NJOiEwLGFsaWFzZXM6WyJ5bWwiLCJZQU1MIiwieWFtbCJdLGM6W3Qse2NOOiJtZXRhIixiOiJeLS0tcyokIixyOjEwfSx7Y046InN0cmluZyIsYjoiW1xcfD5dICokIixyRTohMCxjOmwuYyxlOnQudlswXS5ifSx7YjoiPCVbJT0tXT8iLGU6IlslLV0/JT4iLHNMOiJydWJ5IixlQjohMCxlRTohMCxyOjB9LHtjTjoidHlwZSIsYjoiISEiK2UuVUlSfSx7Y046Im1ldGEiLGI6IiYiK2UuVUlSKyIkIn0se2NOOiJtZXRhIixiOiJcXCoiK2UuVUlSKyIkIn0se2NOOiJidWxsZXQiLGI6Il4gKi0iLHI6MH0sZS5IQ00se2JLOmIsazp7bGl0ZXJhbDpifX0sZS5DTk0sbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJjc3MiLGZ1bmN0aW9uKGUpe3ZhciBjPSJbYS16QS1aLV1bYS16QS1aMC05Xy1dKiIsdD17YjovW0EtWlxfXC5cLV0rXHMqOi8sckI6ITAsZToiOyIsZVc6ITAsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6L1xTLyxlOiI6IixlRTohMCxzdGFydHM6e2VXOiEwLGVFOiEwLGM6W3tiOi9bXHctXStcKC8sckI6ITAsYzpbe2NOOiJidWlsdF9pbiIsYjovW1x3LV0rL30se2I6L1woLyxlOi9cKS8sYzpbZS5BU00sZS5RU01dfV19LGUuQ1NTTk0sZS5RU00sZS5BU00sZS5DQkNNLHtjTjoibnVtYmVyIixiOiIjWzAtOUEtRmEtZl0rIn0se2NOOiJtZXRhIixiOiIhaW1wb3J0YW50In1dfX1dfTtyZXR1cm57Y0k6ITAsaTovWz1cL3wnXCRdLyxjOltlLkNCQ00se2NOOiJzZWxlY3Rvci1pZCIsYjovI1tBLVphLXowLTlfLV0rL30se2NOOiJzZWxlY3Rvci1jbGFzcyIsYjovXC5bQS1aYS16MC05Xy1dKy99LHtjTjoic2VsZWN0b3ItYXR0ciIsYjovXFsvLGU6L1xdLyxpOiIkIn0se2NOOiJzZWxlY3Rvci1wc2V1ZG8iLGI6LzooOik/W2EtekEtWjAtOVxfXC1cK1woXCkiJy5dKy99LHtiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazoiZm9udC1mYWNlIHBhZ2UifSx7YjoiQCIsZToiW3s7XSIsaTovOi8sYzpbe2NOOiJrZXl3b3JkIixiOi9cdysvfSx7YjovXHMvLGVXOiEwLGVFOiEwLHI6MCxjOltlLkFTTSxlLlFTTSxlLkNTU05NXX1dfSx7Y046InNlbGVjdG9yLXRhZyIsYjpjLHI6MH0se2I6InsiLGU6In0iLGk6L1xTLyxjOltlLkNCQ00sdF19XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImZvcnRyYW4iLGZ1bmN0aW9uKGUpe3ZhciB0PXtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSJ9LG49e2xpdGVyYWw6Ii5GYWxzZS4gLlRydWUuIixrZXl3b3JkOiJraW5kIGRvIHdoaWxlIHByaXZhdGUgY2FsbCBpbnRyaW5zaWMgd2hlcmUgZWxzZXdoZXJlIHR5cGUgZW5kdHlwZSBlbmRtb2R1bGUgZW5kc2VsZWN0IGVuZGludGVyZmFjZSBlbmQgZW5kZG8gZW5kaWYgaWYgZm9yYWxsIGVuZGZvcmFsbCBvbmx5IGNvbnRhaW5zIGRlZmF1bHQgcmV0dXJuIHN0b3AgdGhlbiBwdWJsaWMgc3Vicm91dGluZXwxMCBmdW5jdGlvbiBwcm9ncmFtIC5hbmQuIC5vci4gLm5vdC4gLmxlLiAuZXEuIC5nZS4gLmd0LiAubHQuIGdvdG8gc2F2ZSBlbHNlIHVzZSBtb2R1bGUgc2VsZWN0IGNhc2UgYWNjZXNzIGJsYW5rIGRpcmVjdCBleGlzdCBmaWxlIGZtdCBmb3JtIGZvcm1hdHRlZCBpb3N0YXQgbmFtZSBuYW1lZCBuZXh0cmVjIG51bWJlciBvcGVuZWQgcmVjIHJlY2wgc2VxdWVudGlhbCBzdGF0dXMgdW5mb3JtYXR0ZWQgdW5pdCBjb250aW51ZSBmb3JtYXQgcGF1c2UgY3ljbGUgZXhpdCBjX251bGxfY2hhciBjX2FsZXJ0IGNfYmFja3NwYWNlIGNfZm9ybV9mZWVkIGZsdXNoIHdhaXQgZGVjaW1hbCByb3VuZCBpb21zZyBzeW5jaHJvbm91cyBub3Bhc3Mgbm9uX292ZXJyaWRhYmxlIHBhc3MgcHJvdGVjdGVkIHZvbGF0aWxlIGFic3RyYWN0IGV4dGVuZHMgaW1wb3J0IG5vbl9pbnRyaW5zaWMgdmFsdWUgZGVmZXJyZWQgZ2VuZXJpYyBmaW5hbCBlbnVtZXJhdG9yIGNsYXNzIGFzc29jaWF0ZSBiaW5kIGVudW0gY19pbnQgY19zaG9ydCBjX2xvbmcgY19sb25nX2xvbmcgY19zaWduZWRfY2hhciBjX3NpemVfdCBjX2ludDhfdCBjX2ludDE2X3QgY19pbnQzMl90IGNfaW50NjRfdCBjX2ludF9sZWFzdDhfdCBjX2ludF9sZWFzdDE2X3QgY19pbnRfbGVhc3QzMl90IGNfaW50X2xlYXN0NjRfdCBjX2ludF9mYXN0OF90IGNfaW50X2Zhc3QxNl90IGNfaW50X2Zhc3QzMl90IGNfaW50X2Zhc3Q2NF90IGNfaW50bWF4X3QgQ19pbnRwdHJfdCBjX2Zsb2F0IGNfZG91YmxlIGNfbG9uZ19kb3VibGUgY19mbG9hdF9jb21wbGV4IGNfZG91YmxlX2NvbXBsZXggY19sb25nX2RvdWJsZV9jb21wbGV4IGNfYm9vbCBjX2NoYXIgY19udWxsX3B0ciBjX251bGxfZnVucHRyIGNfbmV3X2xpbmUgY19jYXJyaWFnZV9yZXR1cm4gY19ob3Jpem9udGFsX3RhYiBjX3ZlcnRpY2FsX3RhYiBpc29fY19iaW5kaW5nIGNfbG9jIGNfZnVubG9jIGNfYXNzb2NpYXRlZCAgY19mX3BvaW50ZXIgY19wdHIgY19mdW5wdHIgaXNvX2ZvcnRyYW5fZW52IGNoYXJhY3Rlcl9zdG9yYWdlX3NpemUgZXJyb3JfdW5pdCBmaWxlX3N0b3JhZ2Vfc2l6ZSBpbnB1dF91bml0IGlvc3RhdF9lbmQgaW9zdGF0X2VvciBudW1lcmljX3N0b3JhZ2Vfc2l6ZSBvdXRwdXRfdW5pdCBjX2ZfcHJvY3BvaW50ZXIgaWVlZV9hcml0aG1ldGljIGllZWVfc3VwcG9ydF91bmRlcmZsb3dfY29udHJvbCBpZWVlX2dldF91bmRlcmZsb3dfbW9kZSBpZWVlX3NldF91bmRlcmZsb3dfbW9kZSBuZXd1bml0IGNvbnRpZ3VvdXMgcmVjdXJzaXZlIHBhZCBwb3NpdGlvbiBhY3Rpb24gZGVsaW0gcmVhZHdyaXRlIGVvciBhZHZhbmNlIG5tbCBpbnRlcmZhY2UgcHJvY2VkdXJlIG5hbWVsaXN0IGluY2x1ZGUgc2VxdWVuY2UgZWxlbWVudGFsIHB1cmUgaW50ZWdlciByZWFsIGNoYXJhY3RlciBjb21wbGV4IGxvZ2ljYWwgZGltZW5zaW9uIGFsbG9jYXRhYmxlfDEwIHBhcmFtZXRlciBleHRlcm5hbCBpbXBsaWNpdHwxMCBub25lIGRvdWJsZSBwcmVjaXNpb24gYXNzaWduIGludGVudCBvcHRpb25hbCBwb2ludGVyIHRhcmdldCBpbiBvdXQgY29tbW9uIGVxdWl2YWxlbmNlIGRhdGEiLGJ1aWx0X2luOiJhbG9nIGFsb2cxMCBhbWF4MCBhbWF4MSBhbWluMCBhbWluMSBhbW9kIGNhYnMgY2NvcyBjZXhwIGNsb2cgY3NpbiBjc3FydCBkYWJzIGRhY29zIGRhc2luIGRhdGFuIGRhdGFuMiBkY29zIGRjb3NoIGRkaW0gZGV4cCBkaW50IGRsb2cgZGxvZzEwIGRtYXgxIGRtaW4xIGRtb2QgZG5pbnQgZHNpZ24gZHNpbiBkc2luaCBkc3FydCBkdGFuIGR0YW5oIGZsb2F0IGlhYnMgaWRpbSBpZGludCBpZG5pbnQgaWZpeCBpc2lnbiBtYXgwIG1heDEgbWluMCBtaW4xIHNuZ2wgYWxnYW1hIGNkYWJzIGNkY29zIGNkZXhwIGNkbG9nIGNkc2luIGNkc3FydCBjcWFicyBjcWNvcyBjcWV4cCBjcWxvZyBjcXNpbiBjcXNxcnQgZGNtcGx4IGRjb25qZyBkZXJmIGRlcmZjIGRmbG9hdCBkZ2FtbWEgZGltYWcgZGxnYW1hIGlxaW50IHFhYnMgcWFjb3MgcWFzaW4gcWF0YW4gcWF0YW4yIHFjbXBseCBxY29uamcgcWNvcyBxY29zaCBxZGltIHFlcmYgcWVyZmMgcWV4cCBxZ2FtbWEgcWltYWcgcWxnYW1hIHFsb2cgcWxvZzEwIHFtYXgxIHFtaW4xIHFtb2QgcW5pbnQgcXNpZ24gcXNpbiBxc2luaCBxc3FydCBxdGFuIHF0YW5oIGFicyBhY29zIGFpbWFnIGFpbnQgYW5pbnQgYXNpbiBhdGFuIGF0YW4yIGNoYXIgY21wbHggY29uamcgY29zIGNvc2ggZXhwIGljaGFyIGluZGV4IGludCBsb2cgbG9nMTAgbWF4IG1pbiBuaW50IHNpZ24gc2luIHNpbmggc3FydCB0YW4gdGFuaCBwcmludCB3cml0ZSBkaW0gbGdlIGxndCBsbGUgbGx0IG1vZCBudWxsaWZ5IGFsbG9jYXRlIGRlYWxsb2NhdGUgYWRqdXN0bCBhZGp1c3RyIGFsbCBhbGxvY2F0ZWQgYW55IGFzc29jaWF0ZWQgYml0X3NpemUgYnRlc3QgY2VpbGluZyBjb3VudCBjc2hpZnQgZGF0ZV9hbmRfdGltZSBkaWdpdHMgZG90X3Byb2R1Y3QgZW9zaGlmdCBlcHNpbG9uIGV4cG9uZW50IGZsb29yIGZyYWN0aW9uIGh1Z2UgaWFuZCBpYmNsciBpYml0cyBpYnNldCBpZW9yIGlvciBpc2hmdCBpc2hmdGMgbGJvdW5kIGxlbl90cmltIG1hdG11bCBtYXhleHBvbmVudCBtYXhsb2MgbWF4dmFsIG1lcmdlIG1pbmV4cG9uZW50IG1pbmxvYyBtaW52YWwgbW9kdWxvIG12Yml0cyBuZWFyZXN0IHBhY2sgcHJlc2VudCBwcm9kdWN0IHJhZGl4IHJhbmRvbV9udW1iZXIgcmFuZG9tX3NlZWQgcmFuZ2UgcmVwZWF0IHJlc2hhcGUgcnJzcGFjaW5nIHNjYWxlIHNjYW4gc2VsZWN0ZWRfaW50X2tpbmQgc2VsZWN0ZWRfcmVhbF9raW5kIHNldF9leHBvbmVudCBzaGFwZSBzaXplIHNwYWNpbmcgc3ByZWFkIHN1bSBzeXN0ZW1fY2xvY2sgdGlueSB0cmFuc3Bvc2UgdHJpbSB1Ym91bmQgdW5wYWNrIHZlcmlmeSBhY2hhciBpYWNoYXIgdHJhbnNmZXIgZGJsZSBlbnRyeSBkcHJvZCBjcHVfdGltZSBjb21tYW5kX2FyZ3VtZW50X2NvdW50IGdldF9jb21tYW5kIGdldF9jb21tYW5kX2FyZ3VtZW50IGdldF9lbnZpcm9ubWVudF92YXJpYWJsZSBpc19pb3N0YXRfZW5kIGllZWVfYXJpdGhtZXRpYyBpZWVlX3N1cHBvcnRfdW5kZXJmbG93X2NvbnRyb2wgaWVlZV9nZXRfdW5kZXJmbG93X21vZGUgaWVlZV9zZXRfdW5kZXJmbG93X21vZGUgaXNfaW9zdGF0X2VvciBtb3ZlX2FsbG9jIG5ld19saW5lIHNlbGVjdGVkX2NoYXJfa2luZCBzYW1lX3R5cGVfYXMgZXh0ZW5kc190eXBlX29mYWNvc2ggYXNpbmggYXRhbmggYmVzc2VsX2owIGJlc3NlbF9qMSBiZXNzZWxfam4gYmVzc2VsX3kwIGJlc3NlbF95MSBiZXNzZWxfeW4gZXJmIGVyZmMgZXJmY19zY2FsZWQgZ2FtbWEgbG9nX2dhbW1hIGh5cG90IG5vcm0yIGF0b21pY19kZWZpbmUgYXRvbWljX3JlZiBleGVjdXRlX2NvbW1hbmRfbGluZSBsZWFkeiB0cmFpbHogc3RvcmFnZV9zaXplIG1lcmdlX2JpdHMgYmdlIGJndCBibGUgYmx0IGRzaGlmdGwgZHNoaWZ0ciBmaW5kbG9jIGlhbGwgaWFueSBpcGFyaXR5IGltYWdlX2luZGV4IGxjb2JvdW5kIHVjb2JvdW5kIG1hc2tsIG1hc2tyIG51bV9pbWFnZXMgcGFyaXR5IHBvcGNudCBwb3BwYXIgc2hpZnRhIHNoaWZ0bCBzaGlmdHIgdGhpc19pbWFnZSJ9O3JldHVybntjSTohMCxhbGlhc2VzOlsiZjkwIiwiZjk1Il0sazpuLGk6L1wvXCovLGM6W2UuaW5oZXJpdChlLkFTTSx7Y046InN0cmluZyIscjowfSksZS5pbmhlcml0KGUuUVNNLHtjTjoic3RyaW5nIixyOjB9KSx7Y046ImZ1bmN0aW9uIixiSzoic3Vicm91dGluZSBmdW5jdGlvbiBwcm9ncmFtIixpOiJbJHs9XFxuXSIsYzpbZS5VVE0sdF19LGUuQygiISIsIiQiLHtyOjB9KSx7Y046Im51bWJlciIsYjoiKD89XFxifFxcK3xcXC18XFwuKSg/PVxcLlxcZHxcXGQpKD86XFxkKyk/KD86XFwuP1xcZCopKD86W2RlXVsrLV0/XFxkKyk/XFxiXFwuPyIscjowfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJhd2siLGZ1bmN0aW9uKGUpe3ZhciByPXtjTjoidmFyaWFibGUiLHY6W3tiOi9cJFtcd1xkI0BdW1x3XGRfXSovfSx7YjovXCRceyguKj8pfS99XX0sYj0iQkVHSU4gRU5EIGlmIGVsc2Ugd2hpbGUgZG8gZm9yIGluIGJyZWFrIGNvbnRpbnVlIGRlbGV0ZSBuZXh0IG5leHRmaWxlIGZ1bmN0aW9uIGZ1bmMgZXhpdHwxMCIsbj17Y046InN0cmluZyIsYzpbZS5CRV0sdjpbe2I6Lyh1fGIpP3I/JycnLyxlOi8nJycvLHI6MTB9LHtiOi8odXxiKT9yPyIiIi8sZTovIiIiLyxyOjEwfSx7YjovKHV8cnx1ciknLyxlOi8nLyxyOjEwfSx7YjovKHV8cnx1cikiLyxlOi8iLyxyOjEwfSx7YjovKGJ8YnIpJy8sZTovJy99LHtiOi8oYnxicikiLyxlOi8iL30sZS5BU00sZS5RU01dfTtyZXR1cm57azp7a2V5d29yZDpifSxjOltyLG4sZS5STSxlLkhDTSxlLk5NXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoIm1ha2VmaWxlIixmdW5jdGlvbihlKXt2YXIgaT17Y046InZhcmlhYmxlIix2Olt7YjoiXFwkXFwoIitlLlVJUisiXFwpIixjOltlLkJFXX0se2I6L1wkW0AlPD9cXlwrXCpdL31dfSxyPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLGldfSxhPXtjTjoidmFyaWFibGUiLGI6L1wkXChbXHctXStccy8sZTovXCkvLGs6e2J1aWx0X2luOiJzdWJzdCBwYXRzdWJzdCBzdHJpcCBmaW5kc3RyaW5nIGZpbHRlciBmaWx0ZXItb3V0IHNvcnQgd29yZCB3b3JkbGlzdCBmaXJzdHdvcmQgbGFzdHdvcmQgZGlyIG5vdGRpciBzdWZmaXggYmFzZW5hbWUgYWRkc3VmZml4IGFkZHByZWZpeCBqb2luIHdpbGRjYXJkIHJlYWxwYXRoIGFic3BhdGggZXJyb3Igd2FybmluZyBzaGVsbCBvcmlnaW4gZmxhdm9yIGZvcmVhY2ggaWYgb3IgYW5kIGNhbGwgZXZhbCBmaWxlIHZhbHVlIn0sYzpbaV19LG49e2I6Il4iK2UuVUlSKyJcXHMqWzorP10/PSIsaToiXFxuIixyQjohMCxjOlt7YjoiXiIrZS5VSVIsZToiWzorP10/PSIsZUU6ITB9XX0sdD17Y046Im1ldGEiLGI6L15cLlBIT05ZOi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6Ii5QSE9OWSJ9LGw6L1tcLlx3XSsvfSxsPXtjTjoic2VjdGlvbiIsYjovXlteXHNdKzovLGU6LyQvLGM6W2ldfTtyZXR1cm57YWxpYXNlczpbIm1rIiwibWFrIl0sazoiZGVmaW5lIGVuZGVmIHVuZGVmaW5lIGlmZGVmIGlmbmRlZiBpZmVxIGlmbmVxIGVsc2UgZW5kaWYgaW5jbHVkZSAtaW5jbHVkZSBzaW5jbHVkZSBvdmVycmlkZSBleHBvcnQgdW5leHBvcnQgcHJpdmF0ZSB2cGF0aCIsbDovW1x3LV0rLyxjOltlLkhDTSxpLHIsYSxuLHQsbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJqYXZhIixmdW5jdGlvbihlKXt2YXIgYT0iW8OALcq4YS16QS1aXyRdW8OALcq4YS16QS1aXyQwLTldKiIsdD1hKyIoPCIrYSsiKFxccyosXFxzKiIrYSsiKSo+KT8iLHI9ImZhbHNlIHN5bmNocm9uaXplZCBpbnQgYWJzdHJhY3QgZmxvYXQgcHJpdmF0ZSBjaGFyIGJvb2xlYW4gc3RhdGljIG51bGwgaWYgY29uc3QgZm9yIHRydWUgd2hpbGUgbG9uZyBzdHJpY3RmcCBmaW5hbGx5IHByb3RlY3RlZCBpbXBvcnQgbmF0aXZlIGZpbmFsIHZvaWQgZW51bSBlbHNlIGJyZWFrIHRyYW5zaWVudCBjYXRjaCBpbnN0YW5jZW9mIGJ5dGUgc3VwZXIgdm9sYXRpbGUgY2FzZSBhc3NlcnQgc2hvcnQgcGFja2FnZSBkZWZhdWx0IGRvdWJsZSBwdWJsaWMgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHRocm93cyBwcm90ZWN0ZWQgcHVibGljIHByaXZhdGUgbW9kdWxlIHJlcXVpcmVzIGV4cG9ydHMgZG8iLHM9IlxcYigwW2JCXShbMDFdK1swMV9dK1swMV0rfFswMV0rKXwwW3hYXShbYS1mQS1GMC05XStbYS1mQS1GMC05X10rW2EtZkEtRjAtOV0rfFthLWZBLUYwLTldKyl8KChbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykoXFwuKFtcXGRdK1tcXGRfXStbXFxkXSt8W1xcZF0rKSk/fFxcLihbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykpKFtlRV1bLStdP1xcZCspPylbbExmRl0/IixjPXtjTjoibnVtYmVyIixiOnMscjowfTtyZXR1cm57YWxpYXNlczpbImpzcCJdLGs6cixpOi88XC98Iy8sYzpbZS5DKCIvXFwqXFwqIiwiXFwqLyIse3I6MCxjOlt7YjovXHcrQC8scjowfSx7Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9XX0pLGUuQ0xDTSxlLkNCQ00sZS5BU00sZS5RU00se2NOOiJjbGFzcyIsYks6ImNsYXNzIGludGVyZmFjZSIsZTovW3s7PV0vLGVFOiEwLGs6ImNsYXNzIGludGVyZmFjZSIsaTovWzoiXFtcXV0vLGM6W3tiSzoiZXh0ZW5kcyBpbXBsZW1lbnRzIn0sZS5VVE1dfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIscjowfSx7Y046ImZ1bmN0aW9uIixiOiIoIit0KyJcXHMrKSsiK2UuVUlSKyJcXHMqXFwoIixyQjohMCxlOi9bezs9XS8sZUU6ITAsazpyLGM6W3tiOmUuVUlSKyJcXHMqXFwoIixyQjohMCxyOjAsYzpbZS5VVE1dfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnIscjowLGM6W2UuQVNNLGUuUVNNLGUuQ05NLGUuQ0JDTV19LGUuQ0xDTSxlLkNCQ01dfSxjLHtjTjoibWV0YSIsYjoiQFtBLVphLXpdKyJ9XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInN0YW4iLGZ1bmN0aW9uKGUpe3JldHVybntjOltlLkhDTSxlLkNMQ00sZS5DQkNNLHtiOmUuVUlSLGw6ZS5VSVIsazp7bmFtZToiZm9yIGluIHdoaWxlIHJlcGVhdCB1bnRpbCBpZiB0aGVuIGVsc2UiLHN5bWJvbDoiYmVybm91bGxpIGJlcm5vdWxsaV9sb2dpdCBiaW5vbWlhbCBiaW5vbWlhbF9sb2dpdCBiZXRhX2Jpbm9taWFsIGh5cGVyZ2VvbWV0cmljIGNhdGVnb3JpY2FsIGNhdGVnb3JpY2FsX2xvZ2l0IG9yZGVyZWRfbG9naXN0aWMgbmVnX2Jpbm9taWFsIG5lZ19iaW5vbWlhbF8yIG5lZ19iaW5vbWlhbF8yX2xvZyBwb2lzc29uIHBvaXNzb25fbG9nIG11bHRpbm9taWFsIG5vcm1hbCBleHBfbW9kX25vcm1hbCBza2V3X25vcm1hbCBzdHVkZW50X3QgY2F1Y2h5IGRvdWJsZV9leHBvbmVudGlhbCBsb2dpc3RpYyBndW1iZWwgbG9nbm9ybWFsIGNoaV9zcXVhcmUgaW52X2NoaV9zcXVhcmUgc2NhbGVkX2ludl9jaGlfc3F1YXJlIGV4cG9uZW50aWFsIGludl9nYW1tYSB3ZWlidWxsIGZyZWNoZXQgcmF5bGVpZ2ggd2llbmVyIHBhcmV0byBwYXJldG9fdHlwZV8yIHZvbl9taXNlcyB1bmlmb3JtIG11bHRpX25vcm1hbCBtdWx0aV9ub3JtYWxfcHJlYyBtdWx0aV9ub3JtYWxfY2hvbGVza3kgbXVsdGlfZ3AgbXVsdGlfZ3BfY2hvbGVza3kgbXVsdGlfc3R1ZGVudF90IGdhdXNzaWFuX2RsbV9vYnMgZGlyaWNobGV0IGxral9jb3JyIGxral9jb3JyX2Nob2xlc2t5IHdpc2hhcnQgaW52X3dpc2hhcnQiLCJzZWxlY3Rvci10YWciOiJpbnQgcmVhbCB2ZWN0b3Igc2ltcGxleCB1bml0X3ZlY3RvciBvcmRlcmVkIHBvc2l0aXZlX29yZGVyZWQgcm93X3ZlY3RvciBtYXRyaXggY2hvbGVza3lfZmFjdG9yX2NvcnIgY2hvbGVza3lfZmFjdG9yX2NvdiBjb3JyX21hdHJpeCBjb3ZfbWF0cml4Iix0aXRsZToiZnVuY3Rpb25zIG1vZGVsIGRhdGEgcGFyYW1ldGVycyBxdWFudGl0aWVzIHRyYW5zZm9ybWVkIGdlbmVyYXRlZCIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSJ9LHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP0xcXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCtcXC4oPyFcXGQpKD86aVxcYik/IixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIscjowfSx7Y046Im51bWJlciIsYjoiXFwuXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiamF2YXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIHI9IltBLVphLXokX11bMC05QS1aYS16JF9dKiIsdD17a2V5d29yZDoiaW4gb2YgaWYgZm9yIHdoaWxlIGZpbmFsbHkgdmFyIG5ldyBmdW5jdGlvbiBkbyByZXR1cm4gdm9pZCBlbHNlIGJyZWFrIGNhdGNoIGluc3RhbmNlb2Ygd2l0aCB0aHJvdyBjYXNlIGRlZmF1bHQgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHR5cGVvZiBkZWxldGUgbGV0IHlpZWxkIGNvbnN0IGV4cG9ydCBzdXBlciBkZWJ1Z2dlciBhcyBhc3luYyBhd2FpdCBzdGF0aWMgaW1wb3J0IGZyb20gYXMiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgTmFOIEluZmluaXR5IixidWlsdF9pbjoiZXZhbCBpc0Zpbml0ZSBpc05hTiBwYXJzZUZsb2F0IHBhcnNlSW50IGRlY29kZVVSSSBkZWNvZGVVUklDb21wb25lbnQgZW5jb2RlVVJJIGVuY29kZVVSSUNvbXBvbmVudCBlc2NhcGUgdW5lc2NhcGUgT2JqZWN0IEZ1bmN0aW9uIEJvb2xlYW4gRXJyb3IgRXZhbEVycm9yIEludGVybmFsRXJyb3IgUmFuZ2VFcnJvciBSZWZlcmVuY2VFcnJvciBTdG9wSXRlcmF0aW9uIFN5bnRheEVycm9yIFR5cGVFcnJvciBVUklFcnJvciBOdW1iZXIgTWF0aCBEYXRlIFN0cmluZyBSZWdFeHAgQXJyYXkgRmxvYXQzMkFycmF5IEZsb2F0NjRBcnJheSBJbnQxNkFycmF5IEludDMyQXJyYXkgSW50OEFycmF5IFVpbnQxNkFycmF5IFVpbnQzMkFycmF5IFVpbnQ4QXJyYXkgVWludDhDbGFtcGVkQXJyYXkgQXJyYXlCdWZmZXIgRGF0YVZpZXcgSlNPTiBJbnRsIGFyZ3VtZW50cyByZXF1aXJlIG1vZHVsZSBjb25zb2xlIHdpbmRvdyBkb2N1bWVudCBTeW1ib2wgU2V0IE1hcCBXZWFrU2V0IFdlYWtNYXAgUHJveHkgUmVmbGVjdCBQcm9taXNlIn0sYT17Y046Im51bWJlciIsdjpbe2I6IlxcYigwW2JCXVswMV0rKSJ9LHtiOiJcXGIoMFtvT11bMC03XSspIn0se2I6ZS5DTlJ9XSxyOjB9LG49e2NOOiJzdWJzdCIsYjoiXFwkXFx7IixlOiJcXH0iLGs6dCxjOltdfSxjPXtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFLG5dfTtuLmM9W2UuQVNNLGUuUVNNLGMsYSxlLlJNXTt2YXIgcz1uLmMuY29uY2F0KFtlLkNCQ00sZS5DTENNXSk7cmV0dXJue2FsaWFzZXM6WyJqcyIsImpzeCJdLGs6dCxjOlt7Y046Im1ldGEiLHI6MTAsYjovXlxzKlsnIl11c2UgKHN0cmljdHxhc20pWyciXS99LHtjTjoibWV0YSIsYjovXiMhLyxlOi8kL30sZS5BU00sZS5RU00sYyxlLkNMQ00sZS5DQkNNLGEse2I6L1t7LF1ccyovLHI6MCxjOlt7YjpyKyJcXHMqOiIsckI6ITAscjowLGM6W3tjTjoiYXR0ciIsYjpyLHI6MH1dfV19LHtiOiIoIitlLlJTUisifFxcYihjYXNlfHJldHVybnx0aHJvdylcXGIpXFxzKiIsazoicmV0dXJuIHRocm93IGNhc2UiLGM6W2UuQ0xDTSxlLkNCQ00sZS5STSx7Y046ImZ1bmN0aW9uIixiOiIoXFwoLio/XFwpfCIrcisiKVxccyo9PiIsckI6ITAsZToiXFxzKj0+IixjOlt7Y046InBhcmFtcyIsdjpbe2I6cn0se2I6L1woXHMqXCkvfSx7YjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxrOnQsYzpzfV19XX0se2I6LzwvLGU6LyhcL1x3K3xcdytcLyk+LyxzTDoieG1sIixjOlt7YjovPFx3K1xzKlwvPi8sc2tpcDohMH0se2I6LzxcdysvLGU6LyhcL1x3K3xcdytcLyk+Lyxza2lwOiEwLGM6W3tiOi88XHcrXHMqXC8+Lyxza2lwOiEwfSwic2VsZiJdfV19XSxyOjB9LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jdGlvbiIsZTovXHsvLGVFOiEwLGM6W2UuaW5oZXJpdChlLlRNLHtiOnJ9KSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxjOnN9XSxpOi9cW3wlL30se2I6L1wkWyguXS99LGUuTUVUSE9EX0dVQVJELHtjTjoiY2xhc3MiLGJLOiJjbGFzcyIsZTovW3s7PV0vLGVFOiEwLGk6L1s6IlxbXF1dLyxjOlt7Yks6ImV4dGVuZHMifSxlLlVUTV19LHtiSzoiY29uc3RydWN0b3IiLGU6L1x7LyxlRTohMH1dLGk6LyMoPyEhKS99fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJ0ZXgiLGZ1bmN0aW9uKGMpe3ZhciBlPXtjTjoidGFnIixiOi9cXC8scjowLGM6W3tjTjoibmFtZSIsdjpbe2I6L1thLXpBLVrQsC3Rj9CQLdGPXStbKl0/L30se2I6L1teYS16QS1a0LAt0Y/QkC3RjzAtOV0vfV0sc3RhcnRzOntlVzohMCxyOjAsYzpbe2NOOiJzdHJpbmciLHY6W3tiOi9cWy8sZTovXF0vfSx7YjovXHsvLGU6L1x9L31dfSx7YjovXHMqPVxzKi8sZVc6ITAscjowLGM6W3tjTjoibnVtYmVyIixiOi8tP1xkKlwuP1xkKyhwdHxwY3xtbXxjbXxpbnxkZHxjY3xleHxlbSk/L31dfV19fV19O3JldHVybntjOltlLHtjTjoiZm9ybXVsYSIsYzpbZV0scjowLHY6W3tiOi9cJFwkLyxlOi9cJFwkL30se2I6L1wkLyxlOi9cJC99XX0sYy5DKCIlIiwiJCIse3I6MH0pXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInhtbCIsZnVuY3Rpb24ocyl7dmFyIGU9IltBLVphLXowLTlcXC5fOi1dKyIsdD17ZVc6ITAsaTovPC8scjowLGM6W3tjTjoiYXR0ciIsYjplLHI6MH0se2I6Lz1ccyovLHI6MCxjOlt7Y046InN0cmluZyIsZW5kc1BhcmVudDohMCx2Olt7YjovIi8sZTovIi99LHtiOi8nLyxlOi8nL30se2I6L1teXHMiJz08PmBdKy99XX1dfV19O3JldHVybnthbGlhc2VzOlsiaHRtbCIsInhodG1sIiwicnNzIiwiYXRvbSIsInhqYiIsInhzZCIsInhzbCIsInBsaXN0Il0sY0k6ITAsYzpbe2NOOiJtZXRhIixiOiI8IURPQ1RZUEUiLGU6Ij4iLHI6MTAsYzpbe2I6IlxcWyIsZToiXFxdIn1dfSxzLkMoIjwhLS0iLCItLT4iLHtyOjEwfSkse2I6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2I6LzxcPyhwaHApPy8sZTovXD8+LyxzTDoicGhwIixjOlt7YjoiL1xcKiIsZToiXFwqLyIsc2tpcDohMH1dfSx7Y046InRhZyIsYjoiPHN0eWxlKD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InN0eWxlIn0sYzpbdF0sc3RhcnRzOntlOiI8L3N0eWxlPiIsckU6ITAsc0w6WyJjc3MiLCJ4bWwiXX19LHtjTjoidGFnIixiOiI8c2NyaXB0KD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InNjcmlwdCJ9LGM6W3RdLHN0YXJ0czp7ZToiPC9zY3JpcHQ+IixyRTohMCxzTDpbImFjdGlvbnNjcmlwdCIsImphdmFzY3JpcHQiLCJoYW5kbGViYXJzIiwieG1sIl19fSx7Y046Im1ldGEiLHY6W3tiOi88XD94bWwvLGU6L1w/Pi8scjoxMH0se2I6LzxcP1x3Ky8sZTovXD8+L31dfSx7Y046InRhZyIsYjoiPC8/IixlOiIvPz4iLGM6W3tjTjoibmFtZSIsYjovW15cLz48XHNdKy8scjowfSx0XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgibWFya2Rvd24iLGZ1bmN0aW9uKGUpe3JldHVybnthbGlhc2VzOlsibWQiLCJta2Rvd24iLCJta2QiXSxjOlt7Y046InNlY3Rpb24iLHY6W3tiOiJeI3sxLDZ9IixlOiIkIn0se2I6Il4uKz9cXG5bPS1dezIsfSQifV19LHtiOiI8IixlOiI+IixzTDoieG1sIixyOjB9LHtjTjoiYnVsbGV0IixiOiJeKFsqKy1dfChcXGQrXFwuKSlcXHMrIn0se2NOOiJzdHJvbmciLGI6IlsqX117Mn0uKz9bKl9dezJ9In0se2NOOiJlbXBoYXNpcyIsdjpbe2I6IlxcKi4rP1xcKiJ9LHtiOiJfLis/XyIscjowfV19LHtjTjoicXVvdGUiLGI6Il4+XFxzKyIsZToiJCJ9LHtjTjoiY29kZSIsdjpbe2I6Il5gYGB3KnMqJCIsZToiXmBgYHMqJCJ9LHtiOiJgLis/YCJ9LHtiOiJeKCB7NH18CSkiLGU6IiQiLHI6MH1dfSx7YjoiXlstXFwqXXszLH0iLGU6IiQifSx7YjoiXFxbLis/XFxdW1xcKFxcW10uKj9bXFwpXFxdXSIsckI6ITAsYzpbe2NOOiJzdHJpbmciLGI6IlxcWyIsZToiXFxdIixlQjohMCxyRTohMCxyOjB9LHtjTjoibGluayIsYjoiXFxdXFwoIixlOiJcXCkiLGVCOiEwLGVFOiEwfSx7Y046InN5bWJvbCIsYjoiXFxdXFxbIixlOiJcXF0iLGVCOiEwLGVFOiEwfV0scjoxMH0se2I6L15cW1teXG5dK1xdOi8sckI6ITAsYzpbe2NOOiJzeW1ib2wiLGI6L1xbLyxlOi9cXS8sZUI6ITAsZUU6ITB9LHtjTjoibGluayIsYjovOlxzKi8sZTovJC8sZUI6ITB9XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianNvbiIsZnVuY3Rpb24oZSl7dmFyIGk9e2xpdGVyYWw6InRydWUgZmFsc2UgbnVsbCJ9LG49W2UuUVNNLGUuQ05NXSxyPXtlOiIsIixlVzohMCxlRTohMCxjOm4sazppfSx0PXtiOiJ7IixlOiJ9IixjOlt7Y046ImF0dHIiLGI6LyIvLGU6LyIvLGM6W2UuQkVdLGk6IlxcbiJ9LGUuaW5oZXJpdChyLHtiOi86L30pXSxpOiJcXFMifSxjPXtiOiJcXFsiLGU6IlxcXSIsYzpbZS5pbmhlcml0KHIpXSxpOiJcXFMifTtyZXR1cm4gbi5zcGxpY2Uobi5sZW5ndGgsMCx0LGMpLHtjOm4sazppLGk6IlxcUyJ9fSk7"></script>
<script>$(document).ready(function(){
    if (typeof $('[data-toggle="tooltip"]').tooltip === 'function') {
        $('[data-toggle="tooltip"]').tooltip();
    }
    if ($('[data-toggle="popover"]').popover === 'function') {
        $('[data-toggle="popover"]').popover();
    }
});
</script>

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>




<style type="text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
.html-widget {
  margin-bottom: 20px;
}
button.code-folding-btn:focus {
  outline: none;
}
summary {
  display: list-item;
}
</style>



<!-- tabsets -->

<style type="text/css">
.tabset-dropdown > .nav-tabs {
  display: inline-table;
  max-height: 500px;
  min-height: 44px;
  overflow-y: auto;
  background: white;
  border: 1px solid #ddd;
  border-radius: 4px;
}

.tabset-dropdown > .nav-tabs > li.active:before {
  content: "";
  font-family: 'Glyphicons Halflings';
  display: inline-block;
  padding: 10px;
  border-right: 1px solid #ddd;
}

.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
  content: "";
  border: none;
}

.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
  content: "";
  font-family: 'Glyphicons Halflings';
  display: inline-block;
  padding: 10px;
  border-right: 1px solid #ddd;
}

.tabset-dropdown > .nav-tabs > li.active {
  display: block;
}

.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
  border: none;
  display: inline-block;
  border-radius: 4px;
}

.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
  display: block;
  float: none;
}

.tabset-dropdown > .nav-tabs > li {
  display: none;
}
</style>

<!-- code folding -->
<style type="text/css">
.code-folding-btn { margin-bottom: 4px; }
</style>



<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>



<script type="text/javascript" src="./IMPC Mouse data - August22nd_files/MathJax.js"></script><style type="text/css">.MathJax_Hover_Frame {border-radius: .25em; -webkit-border-radius: .25em; -moz-border-radius: .25em; -khtml-border-radius: .25em; box-shadow: 0px 0px 15px #83A; -webkit-box-shadow: 0px 0px 15px #83A; -moz-box-shadow: 0px 0px 15px #83A; -khtml-box-shadow: 0px 0px 15px #83A; border: 1px solid #A6D ! important; display: inline-block; position: absolute}
.MathJax_Menu_Button .MathJax_Hover_Arrow {position: absolute; cursor: pointer; display: inline-block; border: 2px solid #AAA; border-radius: 4px; -webkit-border-radius: 4px; -moz-border-radius: 4px; -khtml-border-radius: 4px; font-family: 'Courier New',Courier; font-size: 9px; color: #F0F0F0}
.MathJax_Menu_Button .MathJax_Hover_Arrow span {display: block; background-color: #AAA; border: 1px solid; border-radius: 3px; line-height: 0; padding: 4px}
.MathJax_Hover_Arrow:hover {color: white!important; border: 2px solid #CCC!important}
.MathJax_Hover_Arrow:hover span {background-color: #CCC!important}
</style><style type="text/css">#MathJax_About {position: fixed; left: 50%; width: auto; text-align: center; border: 3px outset; padding: 1em 2em; background-color: #DDDDDD; color: black; cursor: default; font-family: message-box; font-size: 120%; font-style: normal; text-indent: 0; text-transform: none; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; z-index: 201; border-radius: 15px; -webkit-border-radius: 15px; -moz-border-radius: 15px; -khtml-border-radius: 15px; box-shadow: 0px 10px 20px #808080; -webkit-box-shadow: 0px 10px 20px #808080; -moz-box-shadow: 0px 10px 20px #808080; -khtml-box-shadow: 0px 10px 20px #808080; filter: progid:DXImageTransform.Microsoft.dropshadow(OffX=2, OffY=2, Color='gray', Positive='true')}
#MathJax_About.MathJax_MousePost {outline: none}
.MathJax_Menu {position: absolute; background-color: white; color: black; width: auto; padding: 5px 0px; border: 1px solid #CCCCCC; margin: 0; cursor: default; font: menu; text-align: left; text-indent: 0; text-transform: none; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; z-index: 201; border-radius: 5px; -webkit-border-radius: 5px; -moz-border-radius: 5px; -khtml-border-radius: 5px; box-shadow: 0px 10px 20px #808080; -webkit-box-shadow: 0px 10px 20px #808080; -moz-box-shadow: 0px 10px 20px #808080; -khtml-box-shadow: 0px 10px 20px #808080; filter: progid:DXImageTransform.Microsoft.dropshadow(OffX=2, OffY=2, Color='gray', Positive='true')}
.MathJax_MenuItem {padding: 1px 2em; background: transparent}
.MathJax_MenuArrow {position: absolute; right: .5em; padding-top: .25em; color: #666666; font-size: .75em}
.MathJax_MenuActive .MathJax_MenuArrow {color: white}
.MathJax_MenuArrow.RTL {left: .5em; right: auto}
.MathJax_MenuCheck {position: absolute; left: .7em}
.MathJax_MenuCheck.RTL {right: .7em; left: auto}
.MathJax_MenuRadioCheck {position: absolute; left: .7em}
.MathJax_MenuRadioCheck.RTL {right: .7em; left: auto}
.MathJax_MenuLabel {padding: 1px 2em 3px 1.33em; font-style: italic}
.MathJax_MenuRule {border-top: 1px solid #DDDDDD; margin: 4px 3px}
.MathJax_MenuDisabled {color: GrayText}
.MathJax_MenuActive {background-color: #606872; color: white}
.MathJax_MenuDisabled:focus, .MathJax_MenuLabel:focus {background-color: #E8E8E8}
.MathJax_ContextMenu:focus {outline: none}
.MathJax_ContextMenu .MathJax_MenuItem:focus {outline: none}
#MathJax_AboutClose {top: .2em; right: .2em}
.MathJax_Menu .MathJax_MenuClose {top: -10px; left: -10px}
.MathJax_MenuClose {position: absolute; cursor: pointer; display: inline-block; border: 2px solid #AAA; border-radius: 18px; -webkit-border-radius: 18px; -moz-border-radius: 18px; -khtml-border-radius: 18px; font-family: 'Courier New',Courier; font-size: 24px; color: #F0F0F0}
.MathJax_MenuClose span {display: block; background-color: #AAA; border: 1.5px solid; border-radius: 18px; -webkit-border-radius: 18px; -moz-border-radius: 18px; -khtml-border-radius: 18px; line-height: 0; padding: 8px 0 6px}
.MathJax_MenuClose:hover {color: white!important; border: 2px solid #CCC!important}
.MathJax_MenuClose:hover span {background-color: #CCC!important}
.MathJax_MenuClose:hover:focus {outline: none}
</style><style type="text/css">.MathJax_Preview .MJXf-math {color: inherit!important}
</style><style type="text/css">.MJX_Assistive_MathML {position: absolute!important; top: 0; left: 0; clip: rect(1px, 1px, 1px, 1px); padding: 1px 0 0 0!important; border: 0!important; height: 1px!important; width: 1px!important; overflow: hidden!important; display: block!important; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none}
.MJX_Assistive_MathML.MJX_Assistive_MathML_Block {width: 100%!important}
</style><style type="text/css">#MathJax_Zoom {position: absolute; background-color: #F0F0F0; overflow: auto; display: block; z-index: 301; padding: .5em; border: 1px solid black; margin: 0; font-weight: normal; font-style: normal; text-align: left; text-indent: 0; text-transform: none; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; -webkit-box-sizing: content-box; -moz-box-sizing: content-box; box-sizing: content-box; box-shadow: 5px 5px 15px #AAAAAA; -webkit-box-shadow: 5px 5px 15px #AAAAAA; -moz-box-shadow: 5px 5px 15px #AAAAAA; -khtml-box-shadow: 5px 5px 15px #AAAAAA; filter: progid:DXImageTransform.Microsoft.dropshadow(OffX=2, OffY=2, Color='gray', Positive='true')}
#MathJax_ZoomOverlay {position: absolute; left: 0; top: 0; z-index: 300; display: inline-block; width: 100%; height: 100%; border: 0; padding: 0; margin: 0; background-color: white; opacity: 0; filter: alpha(opacity=0)}
#MathJax_ZoomFrame {position: relative; display: inline-block; height: 0; width: 0}
#MathJax_ZoomEventTrap {position: absolute; left: 0; top: 0; z-index: 302; display: inline-block; border: 0; padding: 0; margin: 0; background-color: white; opacity: 0; filter: alpha(opacity=0)}
</style><style type="text/css">.MathJax_Preview {color: #888}
#MathJax_Message {position: fixed; left: 1em; bottom: 1.5em; background-color: #E6E6E6; border: 1px solid #959595; margin: 0px; padding: 2px 8px; z-index: 102; color: black; font-size: 80%; width: auto; white-space: nowrap}
#MathJax_MSIE_Frame {position: absolute; top: 0; left: 0; width: 0px; z-index: 101; border: 0px; margin: 0px; padding: 0px}
.MathJax_Error {color: #CC0000; font-style: italic}
</style><style type="text/css">.MJXp-script {font-size: .8em}
.MJXp-right {-webkit-transform-origin: right; -moz-transform-origin: right; -ms-transform-origin: right; -o-transform-origin: right; transform-origin: right}
.MJXp-bold {font-weight: bold}
.MJXp-italic {font-style: italic}
.MJXp-scr {font-family: MathJax_Script,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-frak {font-family: MathJax_Fraktur,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-sf {font-family: MathJax_SansSerif,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-cal {font-family: MathJax_Caligraphic,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-mono {font-family: MathJax_Typewriter,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-largeop {font-size: 150%}
.MJXp-largeop.MJXp-int {vertical-align: -.2em}
.MJXp-math {display: inline-block; line-height: 1.2; text-indent: 0; font-family: 'Times New Roman',Times,STIXGeneral,serif; white-space: nowrap; border-collapse: collapse}
.MJXp-display {display: block; text-align: center; margin: 1em 0}
.MJXp-math span {display: inline-block}
.MJXp-box {display: block!important; text-align: center}
.MJXp-box:after {content: " "}
.MJXp-rule {display: block!important; margin-top: .1em}
.MJXp-char {display: block!important}
.MJXp-mo {margin: 0 .15em}
.MJXp-mfrac {margin: 0 .125em; vertical-align: .25em}
.MJXp-denom {display: inline-table!important; width: 100%}
.MJXp-denom > * {display: table-row!important}
.MJXp-surd {vertical-align: top}
.MJXp-surd > * {display: block!important}
.MJXp-script-box > *  {display: table!important; height: 50%}
.MJXp-script-box > * > * {display: table-cell!important; vertical-align: top}
.MJXp-script-box > *:last-child > * {vertical-align: bottom}
.MJXp-script-box > * > * > * {display: block!important}
.MJXp-mphantom {visibility: hidden}
.MJXp-munderover {display: inline-table!important}
.MJXp-over {display: inline-block!important; text-align: center}
.MJXp-over > * {display: block!important}
.MJXp-munderover > * {display: table-row!important}
.MJXp-mtable {vertical-align: .25em; margin: 0 .125em}
.MJXp-mtable > * {display: inline-table!important; vertical-align: middle}
.MJXp-mtr {display: table-row!important}
.MJXp-mtd {display: table-cell!important; text-align: center; padding: .5em 0 0 .5em}
.MJXp-mtr > .MJXp-mtd:first-child {padding-left: 0}
.MJXp-mtr:first-child > .MJXp-mtd {padding-top: 0}
.MJXp-mlabeledtr {display: table-row!important}
.MJXp-mlabeledtr > .MJXp-mtd:first-child {padding-left: 0}
.MJXp-mlabeledtr:first-child > .MJXp-mtd {padding-top: 0}
.MJXp-merror {background-color: #FFFF88; color: #CC0000; border: 1px solid #CC0000; padding: 1px 3px; font-style: normal; font-size: 90%}
.MJXp-scale0 {-webkit-transform: scaleX(.0); -moz-transform: scaleX(.0); -ms-transform: scaleX(.0); -o-transform: scaleX(.0); transform: scaleX(.0)}
.MJXp-scale1 {-webkit-transform: scaleX(.1); -moz-transform: scaleX(.1); -ms-transform: scaleX(.1); -o-transform: scaleX(.1); transform: scaleX(.1)}
.MJXp-scale2 {-webkit-transform: scaleX(.2); -moz-transform: scaleX(.2); -ms-transform: scaleX(.2); -o-transform: scaleX(.2); transform: scaleX(.2)}
.MJXp-scale3 {-webkit-transform: scaleX(.3); -moz-transform: scaleX(.3); -ms-transform: scaleX(.3); -o-transform: scaleX(.3); transform: scaleX(.3)}
.MJXp-scale4 {-webkit-transform: scaleX(.4); -moz-transform: scaleX(.4); -ms-transform: scaleX(.4); -o-transform: scaleX(.4); transform: scaleX(.4)}
.MJXp-scale5 {-webkit-transform: scaleX(.5); -moz-transform: scaleX(.5); -ms-transform: scaleX(.5); -o-transform: scaleX(.5); transform: scaleX(.5)}
.MJXp-scale6 {-webkit-transform: scaleX(.6); -moz-transform: scaleX(.6); -ms-transform: scaleX(.6); -o-transform: scaleX(.6); transform: scaleX(.6)}
.MJXp-scale7 {-webkit-transform: scaleX(.7); -moz-transform: scaleX(.7); -ms-transform: scaleX(.7); -o-transform: scaleX(.7); transform: scaleX(.7)}
.MJXp-scale8 {-webkit-transform: scaleX(.8); -moz-transform: scaleX(.8); -ms-transform: scaleX(.8); -o-transform: scaleX(.8); transform: scaleX(.8)}
.MJXp-scale9 {-webkit-transform: scaleX(.9); -moz-transform: scaleX(.9); -ms-transform: scaleX(.9); -o-transform: scaleX(.9); transform: scaleX(.9)}
.MathJax_PHTML .noError {vertical-align: ; font-size: 90%; text-align: left; color: black; padding: 1px 3px; border: 1px solid}
</style></head>

<body><div id="MathJax_Message" style="display: none;"></div>


<div class="container-fluid main-container">


<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
<ul id="tocify-header0" class="tocify-header list-group"><li class="tocify-item list-group-item active" data-unique="set_up">Set up</li><ul class="tocify-subheader list-group" data-tag="3"><li class="tocify-item list-group-item" data-unique="packages">Packages</li><li class="tocify-item list-group-item" data-unique="loading_functions_that_are_necessary">Loading functions that are necessary</li><ul class="tocify-subheader list-group" data-tag="4"><li class="tocify-item list-group-item" data-unique="preparation_of_raw_data">Preparation of raw data</li><li class="tocify-item list-group-item" data-unique="functions_for_preparing_the_data_for_meta_analyses">Functions for preparing the data for meta analyses</li></ul><li class="tocify-item list-group-item" data-unique="clean_data">Clean data</li></ul></ul><ul id="tocify-header1" class="tocify-header list-group"><li class="tocify-item list-group-item" data-unique="meta_analysis,_phase_1">Meta analysis, Phase 1</li><ul class="tocify-subheader list-group" data-tag="3"><li class="tocify-item list-group-item" data-unique="preparation">Preparation</li><ul class="tocify-subheader list-group" data-tag="4"><li class="tocify-item list-group-item" data-unique="define_population_variable__add_grouping_variables">Define population variable &amp; add grouping variables</li><li class="tocify-item list-group-item" data-unique="assign_each_unique_parameter_name_(=trait,use_trait_variable)_a_unique_number_(‘id’)">Assign each unique parameter_name (=trait,use trait variable) a unique number (‘id’)</li><li class="tocify-item list-group-item" data-unique="create_a_matrix_to_store_results_for_all_traits">Create a matrix to store results for all traits</li></ul><li class="tocify-item list-group-item" data-unique="loop,_to_run_meta-analysis_on_all_traits">LOOP, to run meta-analysis on all traits</li><li class="tocify-item list-group-item" data-unique="merging_datasets">Merging datasets</li></ul></ul><ul id="tocify-header2" class="tocify-header list-group"><li class="tocify-item list-group-item" data-unique="meta-analysis,_phase_2" style="cursor: pointer;">Meta-analysis, Phase 2</li><ul class="tocify-subheader list-group" data-tag="3"><li class="tocify-item list-group-item" data-unique="dealing_with_correlated_parameters,_preparation">Dealing with Correlated Parameters, preparation</li><ul class="tocify-subheader list-group" data-tag="4"><li class="tocify-item list-group-item" data-unique="collapsing_and_merging_correlated_parameters">Collapsing and merging correlated parameters</li><li class="tocify-item list-group-item" data-unique="count_of_number_of_parameter_names_(correlated_sub-traits)_in_each_parameter_group_(par_group_size)">Count of number of parameter names (correlated sub-traits) in each parameter group (par_group_size)</li></ul><li class="tocify-item list-group-item" data-unique="perform_meta-analyses_on_correlated_sub-traits,_using_robumeta">Perform meta-analyses on correlated sub-traits, using <code>robumeta</code></li><ul class="tocify-subheader list-group" data-tag="4"><li class="tocify-item list-group-item" data-unique="extract_and_save_parameter_estimates">Extract and save parameter estimates</li><li class="tocify-item list-group-item" data-unique="clean-up_and_rename">Clean-up and rename</li></ul><li class="tocify-item list-group-item" data-unique="visualisation">Visualisation</li><li class="tocify-item list-group-item" data-unique="overall_results_of_second_order_meta_anlaysis_(figure_4a)">Overall results of second order meta anlaysis (Figure 4a)</li><li class="tocify-item list-group-item" data-unique="heterogeneity">Heterogeneity</li></ul></ul><ul id="tocify-header3" class="tocify-header list-group"><li class="tocify-item list-group-item" data-unique="meta-analysis,_phase_3">Meta-analysis, Phase 3</li><ul class="tocify-subheader list-group" data-tag="4"><li class="tocify-item list-group-item" data-unique="perform_meta-analyses_(3_for_each_of_the_9_grouping_terms:_lncvr,_lnvr,_lnrr)">Perform meta-analyses (3 for each of the 9 grouping terms: lnCVR, lnVR, lnRR)</li><li class="tocify-item list-group-item" data-unique="prepare_data">Prepare data</li><ul class="tocify-subheader list-group" data-tag="4"><li class="tocify-item list-group-item" data-unique="plot_figure_2_[4_in_ms]_(first-order_meta_analysis_results)">Plot FIGURE 2 [4 in ms] (First-order meta analysis results)</li><li class="tocify-item list-group-item" data-unique="prepare_data_for_traits_with_ci_not_overlapping_0">Prepare data for traits with CI not overlapping 0</li><li class="tocify-item list-group-item" data-unique="create_final_combined_figure_(figure_2)">Create final combined Figure (Figure 2)</li><ul class="tocify-subheader list-group" data-tag="4"><li class="tocify-item list-group-item" data-unique="restructure_data_for_plotting">Restructure data for plotting</li><li class="tocify-item list-group-item" data-unique="plot_figure_4_(second-order_meta_analysis_results)">Plot FIGURE 4 (Second-order meta analysis results)</li><li class="tocify-item list-group-item" data-unique="figure_4b:_prepare_data_for_traits_with_ci_not_overlapping_0">Figure 4B: Prepare data for traits with CI not overlapping 0</li><li class="tocify-item list-group-item" data-unique="female_figure,_significant_traits">Female Figure, significant traits</li><li class="tocify-item list-group-item" data-unique="fig4_c_10%">Fig4 C &gt;10%</li><li class="tocify-item list-group-item" data-unique="male_fig_3__10%_(male_biased_traits)">Male Fig 3 &gt; 10% (male biased traits)</li><li class="tocify-item list-group-item" data-unique="restructure_data_for_plotting37">Restructure data for plotting</li><li class="tocify-item list-group-item" data-unique="plot_fig3_all_plots_combined">Plot Fig3 all plots combined</li><ul class="tocify-subheader list-group" data-tag="4"><li class="tocify-item list-group-item" data-unique="figure_4_(second-order_meta_analysis_on_heterogeneity)">FIGURE 4 (Second-order meta analysis on heterogeneity)</li><li class="tocify-item list-group-item" data-unique="create_matrix_to_store_results_for_all_traits">Create matrix to store results for all traits</li><li class="tocify-item list-group-item" data-unique="loop">LOOP</li><li class="tocify-item list-group-item" data-unique="exclude_traits">Exclude traits</li><li class="tocify-item list-group-item" data-unique="dealing_with_correlated_parameters">Dealing with correlated parameters</li><li class="tocify-item list-group-item" data-unique="merge_the_two_data_sets_(the_new_[robu_all]_and_the_initial_[uncorrelated_sub-traits_with_count_=_1])">Merge the two data sets (the new [robu_all.] and the initial [uncorrelated sub-traits with count = 1])</li><li class="tocify-item list-group-item" data-unique="last_step:_meta-meta-analysis_of_heterogeneity">Last step: meta-meta-analysis of heterogeneity</li><li class="tocify-item list-group-item" data-unique="heterogeneity_plots">Heterogeneity PLOTS</li><li class="tocify-item list-group-item" data-unique="plot_figure_4_(5_in_ms)_(second-order_meta_analysis_on_heterogeneity)">Plot FIGURE 4 (5 in ms) (Second-order meta analysis on heterogeneity)</li></ul></ul></ul></ul></ul></div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="fluid-row" id="header">

<div class="btn-group pull-right">
<button type="button" class="btn btn-default btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><span>Code</span> <span class="caret"></span></button>
<ul class="dropdown-menu" style="min-width: 50px;">
<li><a id="rmd-show-all-code" href="file:///Volumes/SZ%20WD%20drive/garvan/Github/IMPC%20sexDiffs/mice_sex_diff/scripts/2019_July_IMPC-variance-and-sex-difference.html#">Show All Code</a></li>
<li><a id="rmd-hide-all-code" href="file:///Volumes/SZ%20WD%20drive/garvan/Github/IMPC%20sexDiffs/mice_sex_diff/scripts/2019_July_IMPC-variance-and-sex-difference.html#">Hide All Code</a></li>
</ul>
</div>



<h1 class="title toc-ignore">IMPC Mouse data - Variance in sex differences</h1>
<h4 class="author">Susanne &amp; Felix Zajitschek</h4>
<h4 class="date">August 2019</h4>

</div>


<div id="set-up" class="section level2">
<div name="set_up" data-unique="set_up"></div><h2>Set up</h2>
<div id="packages" class="section level3">
<div name="packages" data-unique="packages"></div><h3>Packages</h3>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F361" aria-expanded="false" aria-controls="rcode-643E0F361"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F361"><pre class="r"><code class="hljs"><span class="hljs-keyword">library</span>(readr)
<span class="hljs-keyword">library</span>(dplyr)
<span class="hljs-keyword">library</span>(metafor)
<span class="hljs-keyword">library</span>(devtools)
<span class="hljs-keyword">library</span>(purrr)
<span class="hljs-keyword">library</span>(tidyverse)
<span class="hljs-keyword">library</span>(tibble)
<span class="hljs-keyword">library</span>(kableExtra)
<span class="hljs-keyword">library</span>(robumeta)
<span class="hljs-keyword">library</span>(ggpubr)
<span class="hljs-keyword">library</span>(ggplot2)</code></pre></div>
</div>
<div id="loading-functions-that-are-necessary" class="section level3">
<div name="loading_functions_that_are_necessary" data-unique="loading_functions_that_are_necessary"></div><h3>Loading functions that are necessary</h3>
<div id="preparation-of-raw-data" class="section level4">
<div name="preparation_of_raw_data" data-unique="preparation_of_raw_data"></div><h4>Preparation of raw data</h4>
<ol style="list-style-type: decimal">
<li>Data loading and cleaning of the csv file This step we have already done and provide a cleaned up file which is less computing intensive. However, cvs</li>
</ol>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F362" aria-expanded="false" aria-controls="rcode-643E0F362"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F362"><pre class="r"><code class="hljs"><span class="hljs-comment"># loads the raw data, setting some default types for various columns</span>

load_raw &lt;- <span class="hljs-keyword">function</span>(filename) {
  read_csv(filename, 
                              col_types = cols(
                                .default = col_character(),
                                project_id = col_character(),
                                id = col_character(),
                                parameter_id = col_character(),
                                age_in_days = col_integer(),
                                date_of_experiment = col_datetime(format = <span class="hljs-string">""</span>),
                                weight = col_double(),
                                phenotyping_center_id = col_character(),
                                production_center_id = col_character(),
                                weight_date = col_datetime(format = <span class="hljs-string">""</span>),
                                date_of_birth = col_datetime(format = <span class="hljs-string">""</span>),
                                procedure_id = col_character(),
                                pipeline_id = col_character(),
                                biological_sample_id = col_character(),
                                biological_model_id = col_character(),
                                weight_days_old = col_integer(),
                                datasource_id = col_character(),
                                experiment_id = col_character(),
                                data_point = col_double(),
                                age_in_weeks = col_integer(),
                                `_version_` = col_character()
                              )
  )
}

<span class="hljs-comment"># Apply some standard cleaning to the data</span>
clean_raw_data &lt;- <span class="hljs-keyword">function</span>(mydata) {
  mydata %&gt;% 
    
    <span class="hljs-comment"># Fileter to IMPC source (recommened by Jeremey in email to Susi on 20 Aug 2018)</span>
    filter(datasource_name == <span class="hljs-string">'IMPC'</span>) %&gt;%
    
    <span class="hljs-comment"># standardise trait names</span>
    mutate(parameter_name = tolower(parameter_name) ) %&gt;%
    
    <span class="hljs-comment"># remove extreme ages</span>
    filter(age_in_days &gt; <span class="hljs-number">0</span> &amp; age_in_days &lt; <span class="hljs-number">500</span>) %&gt;% 

    <span class="hljs-comment"># remove NAs </span>
    filter(!is.na(data_point)) %&gt;%
  
    <span class="hljs-comment"># subset to reasonable set of variables</span>
    <span class="hljs-comment"># date_of_experiment: Jeremy suggested using as an indicator of batch-level effects</span>
    select(production_center, strain_name, strain_accession_id, biological_sample_id, pipeline_stable_id, procedure_group, procedure_name, sex, date_of_experiment, age_in_days, weight, parameter_name, data_point) %&gt;% 
    arrange(production_center, biological_sample_id, age_in_days)
}</code></pre></div>
<ol start="2" style="list-style-type: decimal">
<li>Subsetting the data to choose only one datapoint per individual per trait</li>
</ol>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F363" aria-expanded="false" aria-controls="rcode-643E0F363"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F363"><pre class="r"><code class="hljs"><span class="hljs-comment"># this is a necessary step for the loop across all traits </span>
data_subset_parameterid_individual_by_age &lt;- <span class="hljs-keyword">function</span>(mydata, parameter, age_min, age_center) {
  tmp &lt;- mydata %&gt;%
    filter(age_in_days &gt;= age_min,
           id == parameter) %&gt;%
    <span class="hljs-comment"># take results for single individual closest to age_center</span>
    mutate(age_diff = abs(age_center - age_in_days)) %&gt;%
    group_by(biological_sample_id) %&gt;%
    filter(age_diff == min(age_diff)) %&gt;%
    select(-age_diff)
  
  <span class="hljs-comment"># still some individuals with multiple records (because same individual appears under different procedures, so filter to one record)</span>
  j &lt;- match(unique(tmp$biological_sample_id), tmp$biological_sample_id)
  tmp[j, ] 
}</code></pre></div>
</div>
<div id="functions-for-preparing-the-data-for-meta-analyses" class="section level4">
<div name="functions_for_preparing_the_data_for_meta_analyses" data-unique="functions_for_preparing_the_data_for_meta_analyses"></div><h4>Functions for preparing the data for meta analyses</h4>
<ol start="3" style="list-style-type: decimal">
<li>“Population statistics”</li>
</ol>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F364" aria-expanded="false" aria-controls="rcode-643E0F364"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F364"><pre class="r"><code class="hljs">calculate_population_stats &lt;- <span class="hljs-keyword">function</span>(mydata, min_individuals = <span class="hljs-number">5</span>) {
  mydata %&gt;% 
    group_by(population, strain_name, production_center, sex) %&gt;% 
    summarise(
      trait = parameter_name[<span class="hljs-number">1</span>],
      x_bar = mean(data_point),
      x_sd = sd(data_point),
      n_ind = n()
    ) %&gt;% 
    ungroup() %&gt;%
    filter(n_ind &gt; min_individuals) %&gt;% 
    <span class="hljs-comment"># Check both sexes present &amp; filter those missing</span>
    group_by(population) %&gt;% 
    mutate(
      n_sex = n_distinct(sex)
    ) %&gt;% 
    ungroup() %&gt;%
    filter(n_sex ==<span class="hljs-number">2</span>) %&gt;% 
    select(-n_sex) %&gt;%
    arrange(production_center, strain_name, population, sex)
}</code></pre></div>
<ol start="4" style="list-style-type: decimal">
<li>Extraction of effect sizes and sample variances</li>
</ol>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F365" aria-expanded="false" aria-controls="rcode-643E0F365"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F365"><pre class="r"><code class="hljs">create_meta_analysis_effect_sizes &lt;- <span class="hljs-keyword">function</span>(mydata) {
  i &lt;- seq(<span class="hljs-number">1</span>, nrow(mydata), by = <span class="hljs-number">2</span>)
  input &lt;- data.frame(
    n1i = mydata$n_ind[i],
    n2i = mydata$n_ind[i + <span class="hljs-number">1</span>],
    x1i = mydata$x_bar[i],
    x2i = mydata$x_bar[i + <span class="hljs-number">1</span>],
    sd1i = mydata$x_sd[i],
    sd2i = mydata$x_sd[i + <span class="hljs-number">1</span>]
  )
  
  mydata[i,] %&gt;% 
  select(strain_name, production_center, trait) %&gt;%
    mutate(
      effect_size_CVR = Calc.lnCVR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_CVR = Calc.var.lnCVR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      effect_size_VR = Calc.lnVR(CSD = input$sd1i, CN = input$n1i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_VR = Calc.var.lnVR(CN = input$n1i, EN = input$n2i),
      effect_size_RR = Calc.lnRR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_RR = Calc.var.lnRR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      err = as.factor(seq_len(n()))
    )

}</code></pre></div>
<ol start="5" style="list-style-type: decimal">
<li>Meta Analysis</li>
</ol>
<p>Function to calculate meta-analysis statistics. Created by A M Senior @ the University of Otago NZ 03/01/2014</p>
<p>Below are functions for calculating effect sizes for meta-analysis of variance. All functions take the mean, sd and n from the control and experimental groups.</p>
<p>The first function, Cal.lnCVR, calculates the the log response-ratio of the coefficient of variance (lnCVR) - see Nakagawa et al 2015.</p>
<p>The second function calculates the measurement error variance for lnCVR. As well as the aforementioned parameters, this function also takes Equal.E.C.Corr (default = T), which must be True or False. If true, the function assumes that the correlation between mean and sd (Taylor’s Law) is equal for the mean and control groups, and, thus these data are pooled. If False the mean-SD correlation for the experimental and control groups are calculated separately from one another.</p>
<p>Similar functions are then implemented for lnVR (for comparison of standard deviations) and ln RR (for comparison of means)</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F366" aria-expanded="false" aria-controls="rcode-643E0F366"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F366"><pre class="r"><code class="hljs">Calc.lnCVR &lt;- <span class="hljs-keyword">function</span>(CMean, CSD, CN, EMean, ESD, EN){
  log(ESD) - log(EMean) + <span class="hljs-number">1</span> / (<span class="hljs-number">2</span>*(EN - <span class="hljs-number">1</span>)) - (log(CSD) - log(CMean) + <span class="hljs-number">1</span> / (<span class="hljs-number">2</span>*(CN - <span class="hljs-number">1</span>)))
}

Calc.var.lnCVR &lt;- <span class="hljs-keyword">function</span>(CMean, CSD, CN, EMean, ESD, EN, Equal.E.C.Corr=<span class="hljs-literal">T</span>) {
  <span class="hljs-keyword">if</span>(Equal.E.C.Corr==<span class="hljs-literal">T</span>){
    mvcorr &lt;- <span class="hljs-number">0</span> <span class="hljs-comment">#cor.test(log(c(CMean, EMean)), log(c(CSD, ESD)))$estimate   old, slightly incorrect</span>
    S2 &lt;- CSD^<span class="hljs-number">2</span> / (CN * (CMean^<span class="hljs-number">2</span>)) + <span class="hljs-number">1</span> / (<span class="hljs-number">2</span> * (CN - <span class="hljs-number">1</span>)) - <span class="hljs-number">2</span> * mvcorr * sqrt((CSD^<span class="hljs-number">2</span> / (CN * (CMean^<span class="hljs-number">2</span>))) * (<span class="hljs-number">1</span> / (<span class="hljs-number">2</span> * (CN - <span class="hljs-number">1</span>)))) + ESD^<span class="hljs-number">2</span> / (EN * (EMean^<span class="hljs-number">2</span>)) + <span class="hljs-number">1</span> / (<span class="hljs-number">2</span> * (EN - <span class="hljs-number">1</span>)) - <span class="hljs-number">2</span> * mvcorr * sqrt((ESD^<span class="hljs-number">2</span> / (EN * (EMean^<span class="hljs-number">2</span>))) * (<span class="hljs-number">1</span> / (<span class="hljs-number">2</span> * (EN - <span class="hljs-number">1</span>))))
  }
  <span class="hljs-keyword">else</span>{
    Cmvcorr &lt;- cor.test(log(CMean), log(CSD))$estimate
    Emvcorr &lt;- cor.test(log(EMean), (ESD))$estimate
    S2 &lt;- CSD^<span class="hljs-number">2</span> / (CN * (CMean^<span class="hljs-number">2</span>)) + <span class="hljs-number">1</span> / (<span class="hljs-number">2</span> * (CN - <span class="hljs-number">1</span>)) - <span class="hljs-number">2</span> * Cmvcorr * sqrt((CSD^<span class="hljs-number">2</span> / (CN * (CMean^<span class="hljs-number">2</span>))) * (<span class="hljs-number">1</span> / (<span class="hljs-number">2</span> * (CN - <span class="hljs-number">1</span>)))) + ESD^<span class="hljs-number">2</span> / (EN * (EMean^<span class="hljs-number">2</span>)) + <span class="hljs-number">1</span> / (<span class="hljs-number">2</span> * (EN - <span class="hljs-number">1</span>)) - <span class="hljs-number">2</span> * Emvcorr * sqrt((ESD^<span class="hljs-number">2</span> / (EN * (EMean^<span class="hljs-number">2</span>))) * (<span class="hljs-number">1</span> / (<span class="hljs-number">2</span> * (EN - <span class="hljs-number">1</span>))))     
  }
  S2
}

Calc.lnVR &lt;- <span class="hljs-keyword">function</span>(CSD, CN, ESD, EN){
  log(ESD) - log(CSD) + <span class="hljs-number">1</span> / (<span class="hljs-number">2</span>*(EN - <span class="hljs-number">1</span>)) - <span class="hljs-number">1</span> / (<span class="hljs-number">2</span>*(CN - <span class="hljs-number">1</span>))
}

Calc.var.lnVR &lt;- <span class="hljs-keyword">function</span>( CN,  EN) {
  <span class="hljs-number">1</span> / (<span class="hljs-number">2</span>*(EN - <span class="hljs-number">1</span>)) + <span class="hljs-number">1</span> / (<span class="hljs-number">2</span>*(CN - <span class="hljs-number">1</span>))
}

Calc.lnRR &lt;- <span class="hljs-keyword">function</span>(CMean, CSD, CN, EMean, ESD, EN) {
  log(EMean) - log(CMean)
}

Calc.var.lnRR &lt;- <span class="hljs-keyword">function</span>(CMean, CSD, CN, EMean, ESD, EN) {
  CSD^<span class="hljs-number">2</span>/(CN * CMean^<span class="hljs-number">2</span>) + ESD^<span class="hljs-number">2</span>/(EN * EMean^<span class="hljs-number">2</span>)
}</code></pre></div>
<p>Having loaded the necessary functions, we can get started on the dataset.</p>
<p>We here provide the cleaned dataset, which we have saved in a folder called “export”, as easy starting point. However, the full dataset can be loaded and cleaned using the data cleaning function (Function 1 above), if “#” signs in the code below are removed (created as that is much smaller than the .csv - which we can still provide for those who absolutely want to start from scratch?)</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F367" aria-expanded="false" aria-controls="rcode-643E0F367"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F367"><pre class="r"><code class="hljs"><span class="hljs-comment">## Load raw data - save cleaned dataset as RDS for reuse</span>
<span class="hljs-comment">#data_raw &lt;- load_raw("data/dr7.0_all_control_data.csv") %&gt;%</span>
<span class="hljs-comment">#    clean_raw_data()</span>
<span class="hljs-comment">#dir.create("export", F, F)</span>
<span class="hljs-comment">#saveRDS(data_raw, "export/data_clean.rds")</span>
getwd()</code></pre></div>
<pre><code class="hljs">## [1] "/Volumes/SZ WD drive/garvan/Github/IMPC sexDiffs/mice_sex_diff/scripts"</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F368" aria-expanded="false" aria-controls="rcode-643E0F368"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F368"><pre class="r"><code class="hljs">data1 &lt;- readRDS(<span class="hljs-string">"../export/data_clean.rds"</span>) 
<span class="hljs-comment">#data1 </span></code></pre></div>
</div>
</div>
<div id="clean-data" class="section level3">
<div name="clean_data" data-unique="clean_data"></div><h3>Clean data</h3>
<p>This requires the selection of traits that have been measured in at least 2 centers. Consequently, rare or unusual methods and procedures are being filtered out in this step.</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F369" aria-expanded="false" aria-controls="rcode-643E0F369"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F369"><pre class="r"><code class="hljs">dat1 &lt;-
  data1 %&gt;%
  group_by(parameter_name) %&gt;%
  summarize(center_per_trait = length(unique(production_center, na.rm = <span class="hljs-literal">TRUE</span>)))

dat2 &lt;- merge(data1, dat1) 
dat_moreThan1center &lt;-
  dat2  %&gt;%
  filter(center_per_trait &gt;= <span class="hljs-number">2</span>)

data2 &lt;- dat_moreThan1center
<span class="hljs-comment">#min(data2$center_per_trait)  # as a check if there indeed are no single occurences</span></code></pre></div>
</div>
</div>
<div id="meta-analysis-phase-1" class="section level2">
<div name="meta_analysis,_phase_1" data-unique="meta_analysis,_phase_1"></div><h2>Meta analysis, Phase 1</h2>
<div id="preparation" class="section level3">
<div name="preparation" data-unique="preparation"></div><h3>Preparation</h3>
<div id="define-population-variable-add-grouping-variables" class="section level4">
<div name="define_population_variable__add_grouping_variables" data-unique="define_population_variable__add_grouping_variables"></div><h4>Define population variable &amp; add grouping variables</h4>
<p>In this step, a grouping variable is added (found in “Parameter.Grouping.csv”) The grouping variables were decided based on functional groups and procedures</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3610" aria-expanded="false" aria-controls="rcode-643E0F3610"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3610"><pre class="r"><code class="hljs">data3 &lt;- data2 %&gt;%
mutate(population = sprintf(<span class="hljs-string">"%s-%s"</span>, production_center, strain_name))

 group &lt;- read.csv(<span class="hljs-string">"../export/ParameterGrouping.csv"</span>) 
 data &lt;- data3
 data$parameterGroup &lt;- group$parameter[match(data$parameter_name, group$parameter_name)] </code></pre></div>
</div>
<div id="assign-each-unique-parameter_name-traituse-trait-variable-a-unique-number-id" class="section level4">
<div name="assign_each_unique_parameter_name_(=trait,use_trait_variable)_a_unique_number_(‘id’)" data-unique="assign_each_unique_parameter_name_(=trait,use_trait_variable)_a_unique_number_(‘id’)"></div><h4>Assign each unique parameter_name (=trait,use trait variable) a unique number (‘id’)</h4>
<p>We add a new variable, where redundant traits are combined [note however, at this stage the dataset still contains nonsensical traits, i.e.&nbsp;traits that may not contain any information on variance]</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3611" aria-expanded="false" aria-controls="rcode-643E0F3611"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3611"><pre class="r"><code class="hljs"><span class="hljs-comment">#head(data)</span>

names(data)[<span class="hljs-number">16</span>] &lt;- <span class="hljs-string">"parameter_group"</span>    

data &lt;- transform(data, id = match(parameter_name, unique(parameter_name)))
n1 &lt;- length(unique(data$parameter_name)) <span class="hljs-comment">#232</span>
n2 &lt;- length(unique(data$parameter_group)) <span class="hljs-comment">#161</span>
n3 &lt;- length(unique(data$procedure_name)) <span class="hljs-comment"># 26</span>

n &lt;- length(unique(data$id))
<span class="hljs-comment">#n  # just to check that the number of traits is 232</span></code></pre></div>
</div>
<div id="create-a-matrix-to-store-results-for-all-traits" class="section level4">
<div name="create_a_matrix_to_store_results_for_all_traits" data-unique="create_a_matrix_to_store_results_for_all_traits"></div><h4>Create a matrix to store results for all traits</h4>
<p>As the current version of this script utilizes a loop instead of tidyR code, it is here necessary to create an empty matrix, in which the returning values will be stored.</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3612" aria-expanded="false" aria-controls="rcode-643E0F3612"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3612"><pre class="r"><code class="hljs">results.alltraits.grouping &lt;- as.data.frame(cbind(c(<span class="hljs-number">1</span>:n), matrix(rep(<span class="hljs-number">0</span>, n*<span class="hljs-number">14</span>), ncol = <span class="hljs-number">14</span>))) <span class="hljs-comment">#number of individual results per trait = 10</span>
names(results.alltraits.grouping) &lt;- c(<span class="hljs-string">"id"</span>, <span class="hljs-string">"lnCVR"</span>, <span class="hljs-string">"lnCVR_lower"</span>, <span class="hljs-string">"lnCVR_upper"</span>, <span class="hljs-string">"lnCVR_se"</span>, <span class="hljs-string">"lnVR"</span>, <span class="hljs-string">"lnVR_lower"</span>, <span class="hljs-string">"lnVR_upper"</span>, <span class="hljs-string">"lnVR_se"</span>, <span class="hljs-string">"lnRR"</span>, <span class="hljs-string">"lnRR_lower"</span>, <span class="hljs-string">"lnRR_upper"</span> ,<span class="hljs-string">"lnRR_se"</span> , <span class="hljs-string">"sampleSize"</span>, <span class="hljs-string">"trait"</span>)</code></pre></div>
</div>
</div>
<div id="loop-to-run-meta-analysis-on-all-traits" class="section level3">
<div name="loop,_to_run_meta-analysis_on_all_traits" data-unique="loop,_to_run_meta-analysis_on_all_traits"></div><h3>LOOP, to run meta-analysis on all traits</h3>
<p>The loop combines the functions mentioned above and fills the data matrix with results from our meta analysis. Error messages indicate traits that either did not reach convergence, or that did not return meaningful results in the meta-analysis, due to absence of variance. Those traits will be removed in later steps, outlined below.</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3613" aria-expanded="false" aria-controls="rcode-643E0F3613"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3613"><pre class="r"><code class="hljs"><span class="hljs-keyword">for</span>(t <span class="hljs-keyword">in</span> <span class="hljs-number">1</span>:n) {
  
  <span class="hljs-keyword">tryCatch</span>({
    
    data_par_age &lt;- data_subset_parameterid_individual_by_age(data, t, age_min = <span class="hljs-number">0</span>, age_center = <span class="hljs-number">100</span>)
    
    population_stats &lt;- calculate_population_stats(data_par_age)
    
    results &lt;- create_meta_analysis_effect_sizes(population_stats)
    
<span class="hljs-comment">#lnCVR,  log repsonse-ratio of the coefficient of variance    </span>
    cvr &lt;- metafor::rma.mv(yi = effect_size_CVR, V = sample_variance_CVR, random = list(~<span class="hljs-number">1</span>| strain_name, ~<span class="hljs-number">1</span>|production_center, ~<span class="hljs-number">1</span>|err), control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>),  verbose=<span class="hljs-literal">F</span>, data = results)
    
    results.alltraits.grouping[t, <span class="hljs-number">2</span>] &lt;- cvr$b
    results.alltraits.grouping[t, <span class="hljs-number">3</span>] &lt;- cvr$ci.lb
    results.alltraits.grouping[t, <span class="hljs-number">4</span>] &lt;- cvr$ci.ub
    results.alltraits.grouping[t, <span class="hljs-number">5</span>] &lt;- cvr$se
    
    cvr
    
    <span class="hljs-comment">#lnVR, comparison of standard deviations   </span>
    
cv &lt;- metafor::rma.mv(yi = effect_size_VR, V = sample_variance_VR, random = list(~<span class="hljs-number">1</span>| strain_name, ~<span class="hljs-number">1</span>|production_center,~<span class="hljs-number">1</span>|err), control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>),  verbose=<span class="hljs-literal">F</span>, data = results)
   
    results.alltraits.grouping[t, <span class="hljs-number">6</span>] &lt;- cv$b
    results.alltraits.grouping[t, <span class="hljs-number">7</span>] &lt;- cv$ci.lb
    results.alltraits.grouping[t, <span class="hljs-number">8</span>] &lt;- cv$ci.ub
    results.alltraits.grouping[t, <span class="hljs-number">9</span>] &lt;- cv$se
    
    <span class="hljs-comment"># for means, lnRR</span>

means &lt;- metafor::rma.mv(yi = effect_size_RR, V = sample_variance_RR, random = list(~<span class="hljs-number">1</span>| strain_name, ~<span class="hljs-number">1</span>|production_center, ~<span class="hljs-number">1</span>|err), control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), data = results)
    results.alltraits.grouping[t, <span class="hljs-number">10</span>] &lt;- means$b
    results.alltraits.grouping[t, <span class="hljs-number">11</span>] &lt;- means$ci.lb
    results.alltraits.grouping[t, <span class="hljs-number">12</span>] &lt;- means$ci.ub
    results.alltraits.grouping[t, <span class="hljs-number">13</span>] &lt;- means$se
     
     
        results.alltraits.grouping[t, <span class="hljs-number">14</span>] &lt;- means$k
        results.alltraits.grouping[t, <span class="hljs-number">15</span>] &lt;- unique(results$trait)
   
  }, error=<span class="hljs-keyword">function</span>(e){cat(<span class="hljs-string">"ERROR :"</span>,conditionMessage(e), <span class="hljs-string">"\n"</span>)})
}</code></pre></div>
<pre><code class="hljs">## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10). 
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10). 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y'</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3614" aria-expanded="false" aria-controls="rcode-643E0F3614"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3614"><pre class="r"><code class="hljs"><span class="hljs-comment"># Now that we have a "results" table with each of the meta-analytic means for all effect sizes of interest, we can use this table as part of the Shiny App, which will then be able to back calculate the percentage differences between males and females for mean, variance and coefficient of variance. We'll export and use this in the Shiny App. **Note that I have not dealt with convergence issues in some of these models, and so, this will need to be done down the road**</span>

<span class="hljs-comment">## Note Susi 31/7/2019: This dataset contains dublicated values, plus no info on what the "traits" mean. I will change Dan N's to one further belwo, that have been cleaned up already</span>
<span class="hljs-comment">#FILE TO USE: METACOMBO (around line 500)</span>

<span class="hljs-comment">#trait_meta_results &lt;- write.csv(results.alltraits.grouping, file = "export/trait_meta_results.csv")</span></code></pre></div>
</div>
<div id="merging-datasets" class="section level3">
<div name="merging_datasets" data-unique="merging_datasets"></div><h3>Merging datasets</h3>
<p>Procedure names, grouping variables etc. are merged back together with the results from the metafor analysis above. This requires loading of another excel sheet, “procedures.csv”</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3615" aria-expanded="false" aria-controls="rcode-643E0F3615"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3615"><pre class="r"><code class="hljs">procedures &lt;- read.csv(<span class="hljs-string">"../export/procedures.csv"</span>) 
 
results.alltraits.grouping$parameter_group &lt;- data$parameter_group[match(results.alltraits.grouping$id, data$id)]
results.alltraits.grouping$procedure &lt;- data$procedure_name[match(results.alltraits.grouping$id, data$id)]

results.alltraits.grouping$GroupingTerm &lt;-  procedures$GroupingTerm[match(results.alltraits.grouping$procedure, procedures$procedure)]
results.alltraits.grouping$parameter_name &lt;- data$parameter_name[match(results.alltraits.grouping$id, data$id)]

meta1 &lt;- results.alltraits.grouping
n &lt;- length(unique(meta1$parameter_name)) <span class="hljs-comment"># 232</span></code></pre></div>
<p>Removal of traits that did not achieve convergence, are nonsensical for analysis of variance (such as traits that show variation, such as number of ribs, digits, etc). 14 traits from the originally 232 that had been included are removed.</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3616" aria-expanded="false" aria-controls="rcode-643E0F3616"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3616"><pre class="r"><code class="hljs">meta_clean &lt;- meta1[ !(meta1$id %<span class="hljs-keyword">in</span>% c(<span class="hljs-number">84</span>,<span class="hljs-number">144</span>,<span class="hljs-number">158</span>,<span class="hljs-number">160</span>,<span class="hljs-number">161</span>,<span class="hljs-number">162</span>,<span class="hljs-number">163</span>,<span class="hljs-number">165</span>,<span class="hljs-number">166</span>,<span class="hljs-number">167</span>,<span class="hljs-number">168</span>,<span class="hljs-number">221</span>,<span class="hljs-number">222</span>,<span class="hljs-number">231</span>)), ]
removed &lt;-length(unique(meta_clean$parameter_name)) <span class="hljs-comment">#218</span></code></pre></div>
</div>
</div>
<div id="meta-analysis-phase-2" class="section level2">
<div name="meta-analysis,_phase_2" data-unique="meta-analysis,_phase_2"></div><h2>Meta-analysis, Phase 2</h2>
<div id="dealing-with-correlated-parameters-preparation" class="section level3">
<div name="dealing_with_correlated_parameters,_preparation" data-unique="dealing_with_correlated_parameters,_preparation"></div><h3>Dealing with Correlated Parameters, preparation</h3>
<p>This dataset contained a number of highly correlated traits, such as different kinds of cell counts (for example, hierarchical parametrization within immunological assays). As those data-points are not independent of each other, we conducted a meta analyses on these correlated parameters to collapse the number of levels.</p>
<div id="collapsing-and-merging-correlated-parameters" class="section level4">
<div name="collapsing_and_merging_correlated_parameters" data-unique="collapsing_and_merging_correlated_parameters"></div><h4>Collapsing and merging correlated parameters</h4>
<p>Here we double check numbers of trait parameters in the dataset</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3617" aria-expanded="false" aria-controls="rcode-643E0F3617"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3617"><pre class="r"><code class="hljs">meta1 &lt;- meta_clean 
<span class="hljs-comment"># length(unique(meta1$procedure)) #18</span>
<span class="hljs-comment"># length(unique(meta1$GroupingTerm)) #9 </span>
<span class="hljs-comment"># length(unique(meta1$parameter_group)) # 148 levels. To be used as grouping factor for meta-meta analysis / collapsing down based on things that are classified identically in "parameter_group" but have different "parameter_name" </span>
length(unique(meta1$parameter_name)) <span class="hljs-comment">#218</span></code></pre></div>
<pre><code class="hljs">## [1] 218</code></pre>
</div>
<div id="count-of-number-of-parameter-names-correlated-sub-traits-in-each-parameter-group-par_group_size" class="section level4">
<div name="count_of_number_of_parameter_names_(correlated_sub-traits)_in_each_parameter_group_(par_group_size)" data-unique="count_of_number_of_parameter_names_(correlated_sub-traits)_in_each_parameter_group_(par_group_size)"></div><h4>Count of number of parameter names (correlated sub-traits) in each parameter group (par_group_size)</h4>
<p>This serves to identify and separate the traits that are correlated from the full dataset that can be processed as is. If the sample size (n) for a given “parameter group” equals 1, the trait is unique and uncorrelated. All instances, where there are 2 or more traits associated with the same parameter group (90 cases), are selected for a “mini-meta analysis”, which removes the issue of correlation.</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3618" aria-expanded="false" aria-controls="rcode-643E0F3618"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3618"><pre class="r"><code class="hljs">kable(cbind (meta1 %&gt;%  count(parameter_group) )) %&gt;%
  kable_styling() %&gt;%
  scroll_box(width = <span class="hljs-string">"100%"</span>, height = <span class="hljs-string">"200px"</span>)</code></pre></div>
<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:100%; ">
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_group
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
n
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
B cells
</td>
<td style="text-align:right;">
4
</td>
</tr>
<tr>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
body length
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
cd4 nkt
</td>
<td style="text-align:right;">
6
</td>
</tr>
<tr>
<td style="text-align:left;">
cd4 t
</td>
<td style="text-align:right;">
7
</td>
</tr>
<tr>
<td style="text-align:left;">
cd8 nkt
</td>
<td style="text-align:right;">
6
</td>
</tr>
<tr>
<td style="text-align:left;">
cd8 t
</td>
<td style="text-align:right;">
7
</td>
</tr>
<tr>
<td style="text-align:left;">
cdcs
</td>
<td style="text-align:right;">
2
</td>
</tr>
<tr>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
cv
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
dn nkt
</td>
<td style="text-align:right;">
6
</td>
</tr>
<tr>
<td style="text-align:left;">
dn t
</td>
<td style="text-align:right;">
7
</td>
</tr>
<tr>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
eosinophils
</td>
<td style="text-align:right;">
3
</td>
</tr>
<tr>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
follicular b cells
</td>
<td style="text-align:right;">
2
</td>
</tr>
<tr>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
hr
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
iron
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
luc
</td>
<td style="text-align:right;">
2
</td>
</tr>
<tr>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
lymphocytes
</td>
<td style="text-align:right;">
2
</td>
</tr>
<tr>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
monocytes
</td>
<td style="text-align:right;">
3
</td>
</tr>
<tr>
<td style="text-align:left;">
neutrophils
</td>
<td style="text-align:right;">
3
</td>
</tr>
<tr>
<td style="text-align:left;">
nk cells
</td>
<td style="text-align:right;">
6
</td>
</tr>
<tr>
<td style="text-align:left;">
nkt cells
</td>
<td style="text-align:right;">
4
</td>
</tr>
<tr>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
others
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
percentage of live gated events
</td>
<td style="text-align:right;">
2
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
pq
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
pr
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
pre-pulse inhibition
</td>
<td style="text-align:right;">
5
</td>
</tr>
<tr>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
response amplitude
</td>
<td style="text-align:right;">
10
</td>
</tr>
<tr>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
rr
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
st
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
t cells
</td>
<td style="text-align:right;">
3
</td>
</tr>
<tr>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:right;">
1
</td>
</tr>
<tr>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:right;">
1
</td>
</tr>
</tbody>
</table>
</div>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3619" aria-expanded="false" aria-controls="rcode-643E0F3619"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3619"><pre class="r"><code class="hljs">meta1b &lt;-
  meta1 %&gt;%
  group_by(parameter_group) %&gt;% 
  summarize(par_group_size = length(unique(parameter_name, na.rm = <span class="hljs-literal">TRUE</span>)))
<span class="hljs-comment">#this gives a summary of number of parameter names in each parameter group, now it neeeds to get merged it back together</span>


meta1$par_group_size &lt;- meta1b$par_group_size[match(meta1$parameter_group, meta1b$parameter_group)]

<span class="hljs-comment"># Create subsets with &gt; 1 count (par_group_size &gt; 1) </span>

meta1_sub&lt;-subset(meta1,par_group_size &gt;<span class="hljs-number">1</span>) <span class="hljs-comment"># 90 observations   </span>
meta1_sub$sampleSize &lt;- as.numeric(meta1_sub$sampleSize)</code></pre></div>
</div>
</div>
<div id="perform-meta-analyses-on-correlated-sub-traits-using-robumeta" class="section level3">
<div name="perform_meta-analyses_on_correlated_sub-traits,_using_robumeta" data-unique="perform_meta-analyses_on_correlated_sub-traits,_using_robumeta"></div><h3>Perform meta-analyses on correlated sub-traits, using <code>robumeta</code></h3>
<p>The subset of the data is prepared (nested), and in this first step the model of the meta analysis effect sizes are calculated</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3620" aria-expanded="false" aria-controls="rcode-643E0F3620"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3620"><pre class="r"><code class="hljs"><span class="hljs-comment"># nesting</span>
n_count &lt;- meta1_sub %&gt;% 
  group_by(parameter_group) %&gt;% 
  mutate(raw_N = sum(sampleSize)) %&gt;%  
    nest()

model_count &lt;- n_count %&gt;% 
  mutate(model_lnRR = map(data, ~ robu(.x$lnRR ~ <span class="hljs-number">1</span>, data= .x, studynum= .x$id, modelweights = c(<span class="hljs-string">"CORR"</span>), rho = <span class="hljs-number">0.8</span>, 
                                                small = <span class="hljs-literal">TRUE</span>, var.eff.size= (.x$lnRR_se)^<span class="hljs-number">2</span> )),
  model_lnVR = map(data, ~ robu(.x$lnVR ~ <span class="hljs-number">1</span>, data= .x, studynum= .x$id, modelweights = c(<span class="hljs-string">"CORR"</span>), rho = <span class="hljs-number">0.8</span>, 
                                                small = <span class="hljs-literal">TRUE</span>, var.eff.size= (.x$lnVR_se)^<span class="hljs-number">2</span> )),
  model_lnCVR = map(data, ~ robu(.x$lnCVR ~ <span class="hljs-number">1</span>, data= .x, studynum= .x$id, modelweights = c(<span class="hljs-string">"CORR"</span>), rho = <span class="hljs-number">0.8</span>, 
                                                small = <span class="hljs-literal">TRUE</span>, var.eff.size= (.x$lnCVR_se)^<span class="hljs-number">2</span> ))) </code></pre></div>
<div id="extract-and-save-parameter-estimates" class="section level4">
<div name="extract_and_save_parameter_estimates" data-unique="extract_and_save_parameter_estimates"></div><h4>Extract and save parameter estimates</h4>
<p>Function to collect the outcomes of the “mini” meta analysis</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3621" aria-expanded="false" aria-controls="rcode-643E0F3621"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3621"><pre class="r"><code class="hljs">count_fun &lt;- <span class="hljs-keyword">function</span>(mod_sub)
  <span class="hljs-keyword">return</span>(c(mod_sub$reg_table$b.r, mod_sub$reg_table$CI.L, mod_sub$reg_table$CI.U, mod_sub$reg_table$SE))   <span class="hljs-comment">#estimate, lower ci, upper ci, SE</span></code></pre></div>
<p>Extraction of values created during Meta analysis using robu meta</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3622" aria-expanded="false" aria-controls="rcode-643E0F3622"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3622"><pre class="r"><code class="hljs">robusub_RR &lt;- model_count %&gt;% 
  transmute(parameter_group, estimatelnRR = map(model_lnRR, count_fun)) %&gt;% 
  mutate(r = map(estimatelnRR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnRR) %&gt;%
  purrr::set_names(c(<span class="hljs-string">"parameter_group"</span>,<span class="hljs-string">"lnRR"</span>,<span class="hljs-string">"lnRR_lower"</span>,<span class="hljs-string">"lnRR_upper"</span>,<span class="hljs-string">"lnRR_se"</span>))

robusub_CVR &lt;- model_count %&gt;% 
  transmute(parameter_group, estimatelnCVR = map(model_lnCVR, count_fun)) %&gt;% 
  mutate(r = map(estimatelnCVR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnCVR) %&gt;%
  purrr::set_names(c(<span class="hljs-string">"parameter_group"</span>,<span class="hljs-string">"lnCVR"</span>,<span class="hljs-string">"lnCVR_lower"</span>,<span class="hljs-string">"lnCVR_upper"</span>,<span class="hljs-string">"lnCVR_se"</span>))

robusub_VR &lt;- model_count %&gt;% 
  transmute(parameter_group, estimatelnVR = map(model_lnVR, count_fun)) %&gt;% 
  mutate(r = map(estimatelnVR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnVR) %&gt;%
  purrr::set_names(c(<span class="hljs-string">"parameter_group"</span>,<span class="hljs-string">"lnVR"</span>,<span class="hljs-string">"lnVR_lower"</span>,<span class="hljs-string">"lnVR_upper"</span>,<span class="hljs-string">"lnVR_se"</span>))

robu_all &lt;- full_join(robusub_CVR, robusub_VR) %&gt;% full_join(., robusub_RR)
kable(cbind(robu_all, robu_all)) %&gt;%
  kable_styling() %&gt;%
  scroll_box(width = <span class="hljs-string">"100%"</span>, height = <span class="hljs-string">"200px"</span>)</code></pre></div>
<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:100%; ">
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_group
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_se
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_group
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_se
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
pre-pulse inhibition
</td>
<td style="text-align:right;">
0.0232963
</td>
<td style="text-align:right;">
-0.0802563
</td>
<td style="text-align:right;">
0.1268488
</td>
<td style="text-align:right;">
0.0370507
</td>
<td style="text-align:right;">
0.0091028
</td>
<td style="text-align:right;">
-0.0364640
</td>
<td style="text-align:right;">
0.0546695
</td>
<td style="text-align:right;">
0.0143431
</td>
<td style="text-align:right;">
-0.0052156
</td>
<td style="text-align:right;">
-0.0427126
</td>
<td style="text-align:right;">
0.0322815
</td>
<td style="text-align:right;">
0.0128092
</td>
<td style="text-align:left;">
pre-pulse inhibition
</td>
<td style="text-align:right;">
0.0232963
</td>
<td style="text-align:right;">
-0.0802563
</td>
<td style="text-align:right;">
0.1268488
</td>
<td style="text-align:right;">
0.0370507
</td>
<td style="text-align:right;">
0.0091028
</td>
<td style="text-align:right;">
-0.0364640
</td>
<td style="text-align:right;">
0.0546695
</td>
<td style="text-align:right;">
0.0143431
</td>
<td style="text-align:right;">
-0.0052156
</td>
<td style="text-align:right;">
-0.0427126
</td>
<td style="text-align:right;">
0.0322815
</td>
<td style="text-align:right;">
0.0128092
</td>
</tr>
<tr>
<td style="text-align:left;">
B cells
</td>
<td style="text-align:right;">
-0.0938959
</td>
<td style="text-align:right;">
-0.2500020
</td>
<td style="text-align:right;">
0.0622103
</td>
<td style="text-align:right;">
0.0426972
</td>
<td style="text-align:right;">
-0.0995337
</td>
<td style="text-align:right;">
-0.2068001
</td>
<td style="text-align:right;">
0.0077328
</td>
<td style="text-align:right;">
0.0250132
</td>
<td style="text-align:right;">
-0.0026281
</td>
<td style="text-align:right;">
-0.1298230
</td>
<td style="text-align:right;">
0.1245668
</td>
<td style="text-align:right;">
0.0393018
</td>
<td style="text-align:left;">
B cells
</td>
<td style="text-align:right;">
-0.0938959
</td>
<td style="text-align:right;">
-0.2500020
</td>
<td style="text-align:right;">
0.0622103
</td>
<td style="text-align:right;">
0.0426972
</td>
<td style="text-align:right;">
-0.0995337
</td>
<td style="text-align:right;">
-0.2068001
</td>
<td style="text-align:right;">
0.0077328
</td>
<td style="text-align:right;">
0.0250132
</td>
<td style="text-align:right;">
-0.0026281
</td>
<td style="text-align:right;">
-0.1298230
</td>
<td style="text-align:right;">
0.1245668
</td>
<td style="text-align:right;">
0.0393018
</td>
</tr>
<tr>
<td style="text-align:left;">
cd4 nkt
</td>
<td style="text-align:right;">
-0.0287688
</td>
<td style="text-align:right;">
-0.0566987
</td>
<td style="text-align:right;">
-0.0008389
</td>
<td style="text-align:right;">
0.0101634
</td>
<td style="text-align:right;">
-0.2018746
</td>
<td style="text-align:right;">
-0.3102294
</td>
<td style="text-align:right;">
-0.0935198
</td>
<td style="text-align:right;">
0.0331161
</td>
<td style="text-align:right;">
-0.2344450
</td>
<td style="text-align:right;">
-0.4005266
</td>
<td style="text-align:right;">
-0.0683635
</td>
<td style="text-align:right;">
0.0633501
</td>
<td style="text-align:left;">
cd4 nkt
</td>
<td style="text-align:right;">
-0.0287688
</td>
<td style="text-align:right;">
-0.0566987
</td>
<td style="text-align:right;">
-0.0008389
</td>
<td style="text-align:right;">
0.0101634
</td>
<td style="text-align:right;">
-0.2018746
</td>
<td style="text-align:right;">
-0.3102294
</td>
<td style="text-align:right;">
-0.0935198
</td>
<td style="text-align:right;">
0.0331161
</td>
<td style="text-align:right;">
-0.2344450
</td>
<td style="text-align:right;">
-0.4005266
</td>
<td style="text-align:right;">
-0.0683635
</td>
<td style="text-align:right;">
0.0633501
</td>
</tr>
<tr>
<td style="text-align:left;">
cd4 t
</td>
<td style="text-align:right;">
-0.1507387
</td>
<td style="text-align:right;">
-0.2427976
</td>
<td style="text-align:right;">
-0.0586798
</td>
<td style="text-align:right;">
0.0360690
</td>
<td style="text-align:right;">
-0.1699213
</td>
<td style="text-align:right;">
-0.2629450
</td>
<td style="text-align:right;">
-0.0768975
</td>
<td style="text-align:right;">
0.0348324
</td>
<td style="text-align:right;">
-0.0031242
</td>
<td style="text-align:right;">
-0.0411564
</td>
<td style="text-align:right;">
0.0349081
</td>
<td style="text-align:right;">
0.0148989
</td>
<td style="text-align:left;">
cd4 t
</td>
<td style="text-align:right;">
-0.1507387
</td>
<td style="text-align:right;">
-0.2427976
</td>
<td style="text-align:right;">
-0.0586798
</td>
<td style="text-align:right;">
0.0360690
</td>
<td style="text-align:right;">
-0.1699213
</td>
<td style="text-align:right;">
-0.2629450
</td>
<td style="text-align:right;">
-0.0768975
</td>
<td style="text-align:right;">
0.0348324
</td>
<td style="text-align:right;">
-0.0031242
</td>
<td style="text-align:right;">
-0.0411564
</td>
<td style="text-align:right;">
0.0349081
</td>
<td style="text-align:right;">
0.0148989
</td>
</tr>
<tr>
<td style="text-align:left;">
cd8 nkt
</td>
<td style="text-align:right;">
-0.0424402
</td>
<td style="text-align:right;">
-0.0782046
</td>
<td style="text-align:right;">
-0.0066759
</td>
<td style="text-align:right;">
0.0119223
</td>
<td style="text-align:right;">
-0.0300442
</td>
<td style="text-align:right;">
-0.1823594
</td>
<td style="text-align:right;">
0.1222710
</td>
<td style="text-align:right;">
0.0533765
</td>
<td style="text-align:right;">
0.0035372
</td>
<td style="text-align:right;">
-0.0573749
</td>
<td style="text-align:right;">
0.0644494
</td>
<td style="text-align:right;">
0.0205272
</td>
<td style="text-align:left;">
cd8 nkt
</td>
<td style="text-align:right;">
-0.0424402
</td>
<td style="text-align:right;">
-0.0782046
</td>
<td style="text-align:right;">
-0.0066759
</td>
<td style="text-align:right;">
0.0119223
</td>
<td style="text-align:right;">
-0.0300442
</td>
<td style="text-align:right;">
-0.1823594
</td>
<td style="text-align:right;">
0.1222710
</td>
<td style="text-align:right;">
0.0533765
</td>
<td style="text-align:right;">
0.0035372
</td>
<td style="text-align:right;">
-0.0573749
</td>
<td style="text-align:right;">
0.0644494
</td>
<td style="text-align:right;">
0.0205272
</td>
</tr>
<tr>
<td style="text-align:left;">
cd8 t
</td>
<td style="text-align:right;">
-0.1223681
</td>
<td style="text-align:right;">
-0.2179976
</td>
<td style="text-align:right;">
-0.0267387
</td>
<td style="text-align:right;">
0.0358727
</td>
<td style="text-align:right;">
-0.1581698
</td>
<td style="text-align:right;">
-0.2342579
</td>
<td style="text-align:right;">
-0.0820816
</td>
<td style="text-align:right;">
0.0270229
</td>
<td style="text-align:right;">
-0.0415806
</td>
<td style="text-align:right;">
-0.0510391
</td>
<td style="text-align:right;">
-0.0321221
</td>
<td style="text-align:right;">
0.0023119
</td>
<td style="text-align:left;">
cd8 t
</td>
<td style="text-align:right;">
-0.1223681
</td>
<td style="text-align:right;">
-0.2179976
</td>
<td style="text-align:right;">
-0.0267387
</td>
<td style="text-align:right;">
0.0358727
</td>
<td style="text-align:right;">
-0.1581698
</td>
<td style="text-align:right;">
-0.2342579
</td>
<td style="text-align:right;">
-0.0820816
</td>
<td style="text-align:right;">
0.0270229
</td>
<td style="text-align:right;">
-0.0415806
</td>
<td style="text-align:right;">
-0.0510391
</td>
<td style="text-align:right;">
-0.0321221
</td>
<td style="text-align:right;">
0.0023119
</td>
</tr>
<tr>
<td style="text-align:left;">
cdcs
</td>
<td style="text-align:right;">
-0.0362947
</td>
<td style="text-align:right;">
-0.3588637
</td>
<td style="text-align:right;">
0.2862742
</td>
<td style="text-align:right;">
0.0253867
</td>
<td style="text-align:right;">
0.1080248
</td>
<td style="text-align:right;">
-0.0565718
</td>
<td style="text-align:right;">
0.2726213
</td>
<td style="text-align:right;">
0.0129540
</td>
<td style="text-align:right;">
0.1642541
</td>
<td style="text-align:right;">
-0.1701520
</td>
<td style="text-align:right;">
0.4986601
</td>
<td style="text-align:right;">
0.0263183
</td>
<td style="text-align:left;">
cdcs
</td>
<td style="text-align:right;">
-0.0362947
</td>
<td style="text-align:right;">
-0.3588637
</td>
<td style="text-align:right;">
0.2862742
</td>
<td style="text-align:right;">
0.0253867
</td>
<td style="text-align:right;">
0.1080248
</td>
<td style="text-align:right;">
-0.0565718
</td>
<td style="text-align:right;">
0.2726213
</td>
<td style="text-align:right;">
0.0129540
</td>
<td style="text-align:right;">
0.1642541
</td>
<td style="text-align:right;">
-0.1701520
</td>
<td style="text-align:right;">
0.4986601
</td>
<td style="text-align:right;">
0.0263183
</td>
</tr>
<tr>
<td style="text-align:left;">
dn nkt
</td>
<td style="text-align:right;">
-0.0619371
</td>
<td style="text-align:right;">
-0.1359380
</td>
<td style="text-align:right;">
0.0120637
</td>
<td style="text-align:right;">
0.0257746
</td>
<td style="text-align:right;">
-0.1572129
</td>
<td style="text-align:right;">
-0.2814342
</td>
<td style="text-align:right;">
-0.0329915
</td>
<td style="text-align:right;">
0.0447163
</td>
<td style="text-align:right;">
-0.1727105
</td>
<td style="text-align:right;">
-0.2906356
</td>
<td style="text-align:right;">
-0.0547854
</td>
<td style="text-align:right;">
0.0441034
</td>
<td style="text-align:left;">
dn nkt
</td>
<td style="text-align:right;">
-0.0619371
</td>
<td style="text-align:right;">
-0.1359380
</td>
<td style="text-align:right;">
0.0120637
</td>
<td style="text-align:right;">
0.0257746
</td>
<td style="text-align:right;">
-0.1572129
</td>
<td style="text-align:right;">
-0.2814342
</td>
<td style="text-align:right;">
-0.0329915
</td>
<td style="text-align:right;">
0.0447163
</td>
<td style="text-align:right;">
-0.1727105
</td>
<td style="text-align:right;">
-0.2906356
</td>
<td style="text-align:right;">
-0.0547854
</td>
<td style="text-align:right;">
0.0441034
</td>
</tr>
<tr>
<td style="text-align:left;">
dn t
</td>
<td style="text-align:right;">
-0.0796127
</td>
<td style="text-align:right;">
-0.1844481
</td>
<td style="text-align:right;">
0.0252227
</td>
<td style="text-align:right;">
0.0420063
</td>
<td style="text-align:right;">
-0.2421038
</td>
<td style="text-align:right;">
-0.3431678
</td>
<td style="text-align:right;">
-0.1410397
</td>
<td style="text-align:right;">
0.0406314
</td>
<td style="text-align:right;">
-0.2298147
</td>
<td style="text-align:right;">
-0.2519708
</td>
<td style="text-align:right;">
-0.2076586
</td>
<td style="text-align:right;">
0.0072373
</td>
<td style="text-align:left;">
dn t
</td>
<td style="text-align:right;">
-0.0796127
</td>
<td style="text-align:right;">
-0.1844481
</td>
<td style="text-align:right;">
0.0252227
</td>
<td style="text-align:right;">
0.0420063
</td>
<td style="text-align:right;">
-0.2421038
</td>
<td style="text-align:right;">
-0.3431678
</td>
<td style="text-align:right;">
-0.1410397
</td>
<td style="text-align:right;">
0.0406314
</td>
<td style="text-align:right;">
-0.2298147
</td>
<td style="text-align:right;">
-0.2519708
</td>
<td style="text-align:right;">
-0.2076586
</td>
<td style="text-align:right;">
0.0072373
</td>
</tr>
<tr>
<td style="text-align:left;">
eosinophils
</td>
<td style="text-align:right;">
-0.0662225
</td>
<td style="text-align:right;">
-0.2806631
</td>
<td style="text-align:right;">
0.1482181
</td>
<td style="text-align:right;">
0.0325859
</td>
<td style="text-align:right;">
-0.0154112
</td>
<td style="text-align:right;">
-0.4051652
</td>
<td style="text-align:right;">
0.3743427
</td>
<td style="text-align:right;">
0.0865366
</td>
<td style="text-align:right;">
-0.0042422
</td>
<td style="text-align:right;">
-0.2409206
</td>
<td style="text-align:right;">
0.2324362
</td>
<td style="text-align:right;">
0.0508093
</td>
<td style="text-align:left;">
eosinophils
</td>
<td style="text-align:right;">
-0.0662225
</td>
<td style="text-align:right;">
-0.2806631
</td>
<td style="text-align:right;">
0.1482181
</td>
<td style="text-align:right;">
0.0325859
</td>
<td style="text-align:right;">
-0.0154112
</td>
<td style="text-align:right;">
-0.4051652
</td>
<td style="text-align:right;">
0.3743427
</td>
<td style="text-align:right;">
0.0865366
</td>
<td style="text-align:right;">
-0.0042422
</td>
<td style="text-align:right;">
-0.2409206
</td>
<td style="text-align:right;">
0.2324362
</td>
<td style="text-align:right;">
0.0508093
</td>
</tr>
<tr>
<td style="text-align:left;">
follicular b cells
</td>
<td style="text-align:right;">
-0.1160077
</td>
<td style="text-align:right;">
-0.7256692
</td>
<td style="text-align:right;">
0.4936538
</td>
<td style="text-align:right;">
0.0479814
</td>
<td style="text-align:right;">
-0.1050194
</td>
<td style="text-align:right;">
-0.6946364
</td>
<td style="text-align:right;">
0.4845977
</td>
<td style="text-align:right;">
0.0464039
</td>
<td style="text-align:right;">
0.0052427
</td>
<td style="text-align:right;">
-0.1872381
</td>
<td style="text-align:right;">
0.1977236
</td>
<td style="text-align:right;">
0.0151486
</td>
<td style="text-align:left;">
follicular b cells
</td>
<td style="text-align:right;">
-0.1160077
</td>
<td style="text-align:right;">
-0.7256692
</td>
<td style="text-align:right;">
0.4936538
</td>
<td style="text-align:right;">
0.0479814
</td>
<td style="text-align:right;">
-0.1050194
</td>
<td style="text-align:right;">
-0.6946364
</td>
<td style="text-align:right;">
0.4845977
</td>
<td style="text-align:right;">
0.0464039
</td>
<td style="text-align:right;">
0.0052427
</td>
<td style="text-align:right;">
-0.1872381
</td>
<td style="text-align:right;">
0.1977236
</td>
<td style="text-align:right;">
0.0151486
</td>
</tr>
<tr>
<td style="text-align:left;">
luc
</td>
<td style="text-align:right;">
0.0180436
</td>
<td style="text-align:right;">
-0.2038464
</td>
<td style="text-align:right;">
0.2399336
</td>
<td style="text-align:right;">
0.0174631
</td>
<td style="text-align:right;">
0.2657035
</td>
<td style="text-align:right;">
-1.2251358
</td>
<td style="text-align:right;">
1.7565428
</td>
<td style="text-align:right;">
0.1173316
</td>
<td style="text-align:right;">
0.2215497
</td>
<td style="text-align:right;">
-1.4136389
</td>
<td style="text-align:right;">
1.8567382
</td>
<td style="text-align:right;">
0.1286921
</td>
<td style="text-align:left;">
luc
</td>
<td style="text-align:right;">
0.0180436
</td>
<td style="text-align:right;">
-0.2038464
</td>
<td style="text-align:right;">
0.2399336
</td>
<td style="text-align:right;">
0.0174631
</td>
<td style="text-align:right;">
0.2657035
</td>
<td style="text-align:right;">
-1.2251358
</td>
<td style="text-align:right;">
1.7565428
</td>
<td style="text-align:right;">
0.1173316
</td>
<td style="text-align:right;">
0.2215497
</td>
<td style="text-align:right;">
-1.4136389
</td>
<td style="text-align:right;">
1.8567382
</td>
<td style="text-align:right;">
0.1286921
</td>
</tr>
<tr>
<td style="text-align:left;">
lymphocytes
</td>
<td style="text-align:right;">
0.0805230
</td>
<td style="text-align:right;">
-2.2618128
</td>
<td style="text-align:right;">
2.4228588
</td>
<td style="text-align:right;">
0.1843458
</td>
<td style="text-align:right;">
0.1550159
</td>
<td style="text-align:right;">
-1.0892706
</td>
<td style="text-align:right;">
1.3993024
</td>
<td style="text-align:right;">
0.0979275
</td>
<td style="text-align:right;">
0.0602144
</td>
<td style="text-align:right;">
-1.0131287
</td>
<td style="text-align:right;">
1.1335576
</td>
<td style="text-align:right;">
0.0844739
</td>
<td style="text-align:left;">
lymphocytes
</td>
<td style="text-align:right;">
0.0805230
</td>
<td style="text-align:right;">
-2.2618128
</td>
<td style="text-align:right;">
2.4228588
</td>
<td style="text-align:right;">
0.1843458
</td>
<td style="text-align:right;">
0.1550159
</td>
<td style="text-align:right;">
-1.0892706
</td>
<td style="text-align:right;">
1.3993024
</td>
<td style="text-align:right;">
0.0979275
</td>
<td style="text-align:right;">
0.0602144
</td>
<td style="text-align:right;">
-1.0131287
</td>
<td style="text-align:right;">
1.1335576
</td>
<td style="text-align:right;">
0.0844739
</td>
</tr>
<tr>
<td style="text-align:left;">
monocytes
</td>
<td style="text-align:right;">
-0.0214677
</td>
<td style="text-align:right;">
-0.2033706
</td>
<td style="text-align:right;">
0.1604352
</td>
<td style="text-align:right;">
0.0420605
</td>
<td style="text-align:right;">
0.0784876
</td>
<td style="text-align:right;">
-0.1811005
</td>
<td style="text-align:right;">
0.3380757
</td>
<td style="text-align:right;">
0.0585593
</td>
<td style="text-align:right;">
0.1025193
</td>
<td style="text-align:right;">
-0.1483375
</td>
<td style="text-align:right;">
0.3533762
</td>
<td style="text-align:right;">
0.0571438
</td>
<td style="text-align:left;">
monocytes
</td>
<td style="text-align:right;">
-0.0214677
</td>
<td style="text-align:right;">
-0.2033706
</td>
<td style="text-align:right;">
0.1604352
</td>
<td style="text-align:right;">
0.0420605
</td>
<td style="text-align:right;">
0.0784876
</td>
<td style="text-align:right;">
-0.1811005
</td>
<td style="text-align:right;">
0.3380757
</td>
<td style="text-align:right;">
0.0585593
</td>
<td style="text-align:right;">
0.1025193
</td>
<td style="text-align:right;">
-0.1483375
</td>
<td style="text-align:right;">
0.3533762
</td>
<td style="text-align:right;">
0.0571438
</td>
</tr>
<tr>
<td style="text-align:left;">
neutrophils
</td>
<td style="text-align:right;">
0.2587446
</td>
<td style="text-align:right;">
0.0130803
</td>
<td style="text-align:right;">
0.5044089
</td>
<td style="text-align:right;">
0.0557516
</td>
<td style="text-align:right;">
0.3799805
</td>
<td style="text-align:right;">
-0.2060446
</td>
<td style="text-align:right;">
0.9660057
</td>
<td style="text-align:right;">
0.1317980
</td>
<td style="text-align:right;">
0.1319372
</td>
<td style="text-align:right;">
-0.2669324
</td>
<td style="text-align:right;">
0.5308068
</td>
<td style="text-align:right;">
0.0924336
</td>
<td style="text-align:left;">
neutrophils
</td>
<td style="text-align:right;">
0.2587446
</td>
<td style="text-align:right;">
0.0130803
</td>
<td style="text-align:right;">
0.5044089
</td>
<td style="text-align:right;">
0.0557516
</td>
<td style="text-align:right;">
0.3799805
</td>
<td style="text-align:right;">
-0.2060446
</td>
<td style="text-align:right;">
0.9660057
</td>
<td style="text-align:right;">
0.1317980
</td>
<td style="text-align:right;">
0.1319372
</td>
<td style="text-align:right;">
-0.2669324
</td>
<td style="text-align:right;">
0.5308068
</td>
<td style="text-align:right;">
0.0924336
</td>
</tr>
<tr>
<td style="text-align:left;">
nk cells
</td>
<td style="text-align:right;">
-0.0414772
</td>
<td style="text-align:right;">
-0.0960406
</td>
<td style="text-align:right;">
0.0130862
</td>
<td style="text-align:right;">
0.0200411
</td>
<td style="text-align:right;">
0.0156533
</td>
<td style="text-align:right;">
-0.0703789
</td>
<td style="text-align:right;">
0.1016856
</td>
<td style="text-align:right;">
0.0315487
</td>
<td style="text-align:right;">
0.0471757
</td>
<td style="text-align:right;">
-0.0162213
</td>
<td style="text-align:right;">
0.1105728
</td>
<td style="text-align:right;">
0.0231831
</td>
<td style="text-align:left;">
nk cells
</td>
<td style="text-align:right;">
-0.0414772
</td>
<td style="text-align:right;">
-0.0960406
</td>
<td style="text-align:right;">
0.0130862
</td>
<td style="text-align:right;">
0.0200411
</td>
<td style="text-align:right;">
0.0156533
</td>
<td style="text-align:right;">
-0.0703789
</td>
<td style="text-align:right;">
0.1016856
</td>
<td style="text-align:right;">
0.0315487
</td>
<td style="text-align:right;">
0.0471757
</td>
<td style="text-align:right;">
-0.0162213
</td>
<td style="text-align:right;">
0.1105728
</td>
<td style="text-align:right;">
0.0231831
</td>
</tr>
<tr>
<td style="text-align:left;">
nkt cells
</td>
<td style="text-align:right;">
0.0033757
</td>
<td style="text-align:right;">
-0.1069890
</td>
<td style="text-align:right;">
0.1137404
</td>
<td style="text-align:right;">
0.0294661
</td>
<td style="text-align:right;">
-0.2458705
</td>
<td style="text-align:right;">
-0.4452333
</td>
<td style="text-align:right;">
-0.0465077
</td>
<td style="text-align:right;">
0.0426738
</td>
<td style="text-align:right;">
-0.1823355
</td>
<td style="text-align:right;">
-0.3233946
</td>
<td style="text-align:right;">
-0.0412763
</td>
<td style="text-align:right;">
0.0314580
</td>
<td style="text-align:left;">
nkt cells
</td>
<td style="text-align:right;">
0.0033757
</td>
<td style="text-align:right;">
-0.1069890
</td>
<td style="text-align:right;">
0.1137404
</td>
<td style="text-align:right;">
0.0294661
</td>
<td style="text-align:right;">
-0.2458705
</td>
<td style="text-align:right;">
-0.4452333
</td>
<td style="text-align:right;">
-0.0465077
</td>
<td style="text-align:right;">
0.0426738
</td>
<td style="text-align:right;">
-0.1823355
</td>
<td style="text-align:right;">
-0.3233946
</td>
<td style="text-align:right;">
-0.0412763
</td>
<td style="text-align:right;">
0.0314580
</td>
</tr>
<tr>
<td style="text-align:left;">
percentage of live gated events
</td>
<td style="text-align:right;">
-0.0934933
</td>
<td style="text-align:right;">
-0.3037340
</td>
<td style="text-align:right;">
0.1167473
</td>
<td style="text-align:right;">
0.0165463
</td>
<td style="text-align:right;">
-0.0412606
</td>
<td style="text-align:right;">
-0.1414443
</td>
<td style="text-align:right;">
0.0589231
</td>
<td style="text-align:right;">
0.0078846
</td>
<td style="text-align:right;">
0.0500941
</td>
<td style="text-align:right;">
0.0081191
</td>
<td style="text-align:right;">
0.0920690
</td>
<td style="text-align:right;">
0.0033035
</td>
<td style="text-align:left;">
percentage of live gated events
</td>
<td style="text-align:right;">
-0.0934933
</td>
<td style="text-align:right;">
-0.3037340
</td>
<td style="text-align:right;">
0.1167473
</td>
<td style="text-align:right;">
0.0165463
</td>
<td style="text-align:right;">
-0.0412606
</td>
<td style="text-align:right;">
-0.1414443
</td>
<td style="text-align:right;">
0.0589231
</td>
<td style="text-align:right;">
0.0078846
</td>
<td style="text-align:right;">
0.0500941
</td>
<td style="text-align:right;">
0.0081191
</td>
<td style="text-align:right;">
0.0920690
</td>
<td style="text-align:right;">
0.0033035
</td>
</tr>
<tr>
<td style="text-align:left;">
response amplitude
</td>
<td style="text-align:right;">
0.0333147
</td>
<td style="text-align:right;">
-0.0127585
</td>
<td style="text-align:right;">
0.0793879
</td>
<td style="text-align:right;">
0.0202947
</td>
<td style="text-align:right;">
0.2549274
</td>
<td style="text-align:right;">
0.1969787
</td>
<td style="text-align:right;">
0.3128761
</td>
<td style="text-align:right;">
0.0255003
</td>
<td style="text-align:right;">
0.2016062
</td>
<td style="text-align:right;">
0.1108136
</td>
<td style="text-align:right;">
0.2923987
</td>
<td style="text-align:right;">
0.0401164
</td>
<td style="text-align:left;">
response amplitude
</td>
<td style="text-align:right;">
0.0333147
</td>
<td style="text-align:right;">
-0.0127585
</td>
<td style="text-align:right;">
0.0793879
</td>
<td style="text-align:right;">
0.0202947
</td>
<td style="text-align:right;">
0.2549274
</td>
<td style="text-align:right;">
0.1969787
</td>
<td style="text-align:right;">
0.3128761
</td>
<td style="text-align:right;">
0.0255003
</td>
<td style="text-align:right;">
0.2016062
</td>
<td style="text-align:right;">
0.1108136
</td>
<td style="text-align:right;">
0.2923987
</td>
<td style="text-align:right;">
0.0401164
</td>
</tr>
<tr>
<td style="text-align:left;">
t cells
</td>
<td style="text-align:right;">
-0.1338701
</td>
<td style="text-align:right;">
-0.2750284
</td>
<td style="text-align:right;">
0.0072883
</td>
<td style="text-align:right;">
0.0326594
</td>
<td style="text-align:right;">
-0.1240786
</td>
<td style="text-align:right;">
-0.4120104
</td>
<td style="text-align:right;">
0.1638531
</td>
<td style="text-align:right;">
0.0668611
</td>
<td style="text-align:right;">
-0.0005749
</td>
<td style="text-align:right;">
-0.1663201
</td>
<td style="text-align:right;">
0.1651702
</td>
<td style="text-align:right;">
0.0374233
</td>
<td style="text-align:left;">
t cells
</td>
<td style="text-align:right;">
-0.1338701
</td>
<td style="text-align:right;">
-0.2750284
</td>
<td style="text-align:right;">
0.0072883
</td>
<td style="text-align:right;">
0.0326594
</td>
<td style="text-align:right;">
-0.1240786
</td>
<td style="text-align:right;">
-0.4120104
</td>
<td style="text-align:right;">
0.1638531
</td>
<td style="text-align:right;">
0.0668611
</td>
<td style="text-align:right;">
-0.0005749
</td>
<td style="text-align:right;">
-0.1663201
</td>
<td style="text-align:right;">
0.1651702
</td>
<td style="text-align:right;">
0.0374233
</td>
</tr>
</tbody>
</table>
</div>
<p>Merge the two data sets (the new [robu_all] and the initial [uncorrelated sub-traits with count = 1])</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3623" aria-expanded="false" aria-controls="rcode-643E0F3623"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3623"><pre class="r"><code class="hljs">meta_all &lt;- meta1 %&gt;% filter(par_group_size == <span class="hljs-number">1</span>) %&gt;% as_tibble
<span class="hljs-comment">#str(meta_all)</span>
<span class="hljs-comment">#str(robu_all)</span>
<span class="hljs-comment">#which(is.na(match(names(meta_all),names(robu_all))))  # check</span></code></pre></div>
<p>Combine data</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3624" aria-expanded="false" aria-controls="rcode-643E0F3624"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3624"><pre class="r"><code class="hljs"><span class="hljs-comment"># Step1 </span>
combinedmeta &lt;- bind_rows(robu_all, meta_all)
<span class="hljs-comment">#glimpse(combinedmeta)</span>

<span class="hljs-comment"># Steps 2&amp;3</span>
metacombo &lt;- combinedmeta
metacombo$counts &lt;- meta1$par_group_size[match( metacombo$parameter_group, meta1$parameter_group)]
metacombo$procedure2 &lt;-meta1$procedure[match( metacombo$parameter_group, meta1$parameter_group)]
metacombo$GroupingTerm2 &lt;-meta1$GroupingTerm[match( metacombo$parameter_group, meta1$parameter_group)]

kable(cbind (metacombo, metacombo)) %&gt;%
  kable_styling() %&gt;%
  scroll_box(width = <span class="hljs-string">"100%"</span>, height = <span class="hljs-string">"200px"</span>)</code></pre></div>
<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:100%; ">
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_group
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
id
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
sampleSize
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
trait
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
procedure
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
GroupingTerm
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_name
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
par_group_size
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
counts
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
procedure2
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
GroupingTerm2
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_group
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
id
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
sampleSize
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
trait
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
procedure
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
GroupingTerm
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_name
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
par_group_size
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
counts
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
procedure2
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
GroupingTerm2
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
pre-pulse inhibition
</td>
<td style="text-align:right;">
0.0232963
</td>
<td style="text-align:right;">
-0.0802563
</td>
<td style="text-align:right;">
0.1268488
</td>
<td style="text-align:right;">
0.0370507
</td>
<td style="text-align:right;">
0.0091028
</td>
<td style="text-align:right;">
-0.0364640
</td>
<td style="text-align:right;">
0.0546695
</td>
<td style="text-align:right;">
0.0143431
</td>
<td style="text-align:right;">
-0.0052156
</td>
<td style="text-align:right;">
-0.0427126
</td>
<td style="text-align:right;">
0.0322815
</td>
<td style="text-align:right;">
0.0128092
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
Acoustic Startle and Pre-pulse Inhibition (PPI)
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
pre-pulse inhibition
</td>
<td style="text-align:right;">
0.0232963
</td>
<td style="text-align:right;">
-0.0802563
</td>
<td style="text-align:right;">
0.1268488
</td>
<td style="text-align:right;">
0.0370507
</td>
<td style="text-align:right;">
0.0091028
</td>
<td style="text-align:right;">
-0.0364640
</td>
<td style="text-align:right;">
0.0546695
</td>
<td style="text-align:right;">
0.0143431
</td>
<td style="text-align:right;">
-0.0052156
</td>
<td style="text-align:right;">
-0.0427126
</td>
<td style="text-align:right;">
0.0322815
</td>
<td style="text-align:right;">
0.0128092
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
Acoustic Startle and Pre-pulse Inhibition (PPI)
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
B cells
</td>
<td style="text-align:right;">
-0.0938959
</td>
<td style="text-align:right;">
-0.2500020
</td>
<td style="text-align:right;">
0.0622103
</td>
<td style="text-align:right;">
0.0426972
</td>
<td style="text-align:right;">
-0.0995337
</td>
<td style="text-align:right;">
-0.2068001
</td>
<td style="text-align:right;">
0.0077328
</td>
<td style="text-align:right;">
0.0250132
</td>
<td style="text-align:right;">
-0.0026281
</td>
<td style="text-align:right;">
-0.1298230
</td>
<td style="text-align:right;">
0.1245668
</td>
<td style="text-align:right;">
0.0393018
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
B cells
</td>
<td style="text-align:right;">
-0.0938959
</td>
<td style="text-align:right;">
-0.2500020
</td>
<td style="text-align:right;">
0.0622103
</td>
<td style="text-align:right;">
0.0426972
</td>
<td style="text-align:right;">
-0.0995337
</td>
<td style="text-align:right;">
-0.2068001
</td>
<td style="text-align:right;">
0.0077328
</td>
<td style="text-align:right;">
0.0250132
</td>
<td style="text-align:right;">
-0.0026281
</td>
<td style="text-align:right;">
-0.1298230
</td>
<td style="text-align:right;">
0.1245668
</td>
<td style="text-align:right;">
0.0393018
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
cd4 nkt
</td>
<td style="text-align:right;">
-0.0287688
</td>
<td style="text-align:right;">
-0.0566987
</td>
<td style="text-align:right;">
-0.0008389
</td>
<td style="text-align:right;">
0.0101634
</td>
<td style="text-align:right;">
-0.2018746
</td>
<td style="text-align:right;">
-0.3102294
</td>
<td style="text-align:right;">
-0.0935198
</td>
<td style="text-align:right;">
0.0331161
</td>
<td style="text-align:right;">
-0.2344450
</td>
<td style="text-align:right;">
-0.4005266
</td>
<td style="text-align:right;">
-0.0683635
</td>
<td style="text-align:right;">
0.0633501
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
cd4 nkt
</td>
<td style="text-align:right;">
-0.0287688
</td>
<td style="text-align:right;">
-0.0566987
</td>
<td style="text-align:right;">
-0.0008389
</td>
<td style="text-align:right;">
0.0101634
</td>
<td style="text-align:right;">
-0.2018746
</td>
<td style="text-align:right;">
-0.3102294
</td>
<td style="text-align:right;">
-0.0935198
</td>
<td style="text-align:right;">
0.0331161
</td>
<td style="text-align:right;">
-0.2344450
</td>
<td style="text-align:right;">
-0.4005266
</td>
<td style="text-align:right;">
-0.0683635
</td>
<td style="text-align:right;">
0.0633501
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
cd4 t
</td>
<td style="text-align:right;">
-0.1507387
</td>
<td style="text-align:right;">
-0.2427976
</td>
<td style="text-align:right;">
-0.0586798
</td>
<td style="text-align:right;">
0.0360690
</td>
<td style="text-align:right;">
-0.1699213
</td>
<td style="text-align:right;">
-0.2629450
</td>
<td style="text-align:right;">
-0.0768975
</td>
<td style="text-align:right;">
0.0348324
</td>
<td style="text-align:right;">
-0.0031242
</td>
<td style="text-align:right;">
-0.0411564
</td>
<td style="text-align:right;">
0.0349081
</td>
<td style="text-align:right;">
0.0148989
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
cd4 t
</td>
<td style="text-align:right;">
-0.1507387
</td>
<td style="text-align:right;">
-0.2427976
</td>
<td style="text-align:right;">
-0.0586798
</td>
<td style="text-align:right;">
0.0360690
</td>
<td style="text-align:right;">
-0.1699213
</td>
<td style="text-align:right;">
-0.2629450
</td>
<td style="text-align:right;">
-0.0768975
</td>
<td style="text-align:right;">
0.0348324
</td>
<td style="text-align:right;">
-0.0031242
</td>
<td style="text-align:right;">
-0.0411564
</td>
<td style="text-align:right;">
0.0349081
</td>
<td style="text-align:right;">
0.0148989
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
cd8 nkt
</td>
<td style="text-align:right;">
-0.0424402
</td>
<td style="text-align:right;">
-0.0782046
</td>
<td style="text-align:right;">
-0.0066759
</td>
<td style="text-align:right;">
0.0119223
</td>
<td style="text-align:right;">
-0.0300442
</td>
<td style="text-align:right;">
-0.1823594
</td>
<td style="text-align:right;">
0.1222710
</td>
<td style="text-align:right;">
0.0533765
</td>
<td style="text-align:right;">
0.0035372
</td>
<td style="text-align:right;">
-0.0573749
</td>
<td style="text-align:right;">
0.0644494
</td>
<td style="text-align:right;">
0.0205272
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
cd8 nkt
</td>
<td style="text-align:right;">
-0.0424402
</td>
<td style="text-align:right;">
-0.0782046
</td>
<td style="text-align:right;">
-0.0066759
</td>
<td style="text-align:right;">
0.0119223
</td>
<td style="text-align:right;">
-0.0300442
</td>
<td style="text-align:right;">
-0.1823594
</td>
<td style="text-align:right;">
0.1222710
</td>
<td style="text-align:right;">
0.0533765
</td>
<td style="text-align:right;">
0.0035372
</td>
<td style="text-align:right;">
-0.0573749
</td>
<td style="text-align:right;">
0.0644494
</td>
<td style="text-align:right;">
0.0205272
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
cd8 t
</td>
<td style="text-align:right;">
-0.1223681
</td>
<td style="text-align:right;">
-0.2179976
</td>
<td style="text-align:right;">
-0.0267387
</td>
<td style="text-align:right;">
0.0358727
</td>
<td style="text-align:right;">
-0.1581698
</td>
<td style="text-align:right;">
-0.2342579
</td>
<td style="text-align:right;">
-0.0820816
</td>
<td style="text-align:right;">
0.0270229
</td>
<td style="text-align:right;">
-0.0415806
</td>
<td style="text-align:right;">
-0.0510391
</td>
<td style="text-align:right;">
-0.0321221
</td>
<td style="text-align:right;">
0.0023119
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
cd8 t
</td>
<td style="text-align:right;">
-0.1223681
</td>
<td style="text-align:right;">
-0.2179976
</td>
<td style="text-align:right;">
-0.0267387
</td>
<td style="text-align:right;">
0.0358727
</td>
<td style="text-align:right;">
-0.1581698
</td>
<td style="text-align:right;">
-0.2342579
</td>
<td style="text-align:right;">
-0.0820816
</td>
<td style="text-align:right;">
0.0270229
</td>
<td style="text-align:right;">
-0.0415806
</td>
<td style="text-align:right;">
-0.0510391
</td>
<td style="text-align:right;">
-0.0321221
</td>
<td style="text-align:right;">
0.0023119
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
cdcs
</td>
<td style="text-align:right;">
-0.0362947
</td>
<td style="text-align:right;">
-0.3588637
</td>
<td style="text-align:right;">
0.2862742
</td>
<td style="text-align:right;">
0.0253867
</td>
<td style="text-align:right;">
0.1080248
</td>
<td style="text-align:right;">
-0.0565718
</td>
<td style="text-align:right;">
0.2726213
</td>
<td style="text-align:right;">
0.0129540
</td>
<td style="text-align:right;">
0.1642541
</td>
<td style="text-align:right;">
-0.1701520
</td>
<td style="text-align:right;">
0.4986601
</td>
<td style="text-align:right;">
0.0263183
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
cdcs
</td>
<td style="text-align:right;">
-0.0362947
</td>
<td style="text-align:right;">
-0.3588637
</td>
<td style="text-align:right;">
0.2862742
</td>
<td style="text-align:right;">
0.0253867
</td>
<td style="text-align:right;">
0.1080248
</td>
<td style="text-align:right;">
-0.0565718
</td>
<td style="text-align:right;">
0.2726213
</td>
<td style="text-align:right;">
0.0129540
</td>
<td style="text-align:right;">
0.1642541
</td>
<td style="text-align:right;">
-0.1701520
</td>
<td style="text-align:right;">
0.4986601
</td>
<td style="text-align:right;">
0.0263183
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
dn nkt
</td>
<td style="text-align:right;">
-0.0619371
</td>
<td style="text-align:right;">
-0.1359380
</td>
<td style="text-align:right;">
0.0120637
</td>
<td style="text-align:right;">
0.0257746
</td>
<td style="text-align:right;">
-0.1572129
</td>
<td style="text-align:right;">
-0.2814342
</td>
<td style="text-align:right;">
-0.0329915
</td>
<td style="text-align:right;">
0.0447163
</td>
<td style="text-align:right;">
-0.1727105
</td>
<td style="text-align:right;">
-0.2906356
</td>
<td style="text-align:right;">
-0.0547854
</td>
<td style="text-align:right;">
0.0441034
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
dn nkt
</td>
<td style="text-align:right;">
-0.0619371
</td>
<td style="text-align:right;">
-0.1359380
</td>
<td style="text-align:right;">
0.0120637
</td>
<td style="text-align:right;">
0.0257746
</td>
<td style="text-align:right;">
-0.1572129
</td>
<td style="text-align:right;">
-0.2814342
</td>
<td style="text-align:right;">
-0.0329915
</td>
<td style="text-align:right;">
0.0447163
</td>
<td style="text-align:right;">
-0.1727105
</td>
<td style="text-align:right;">
-0.2906356
</td>
<td style="text-align:right;">
-0.0547854
</td>
<td style="text-align:right;">
0.0441034
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
dn t
</td>
<td style="text-align:right;">
-0.0796127
</td>
<td style="text-align:right;">
-0.1844481
</td>
<td style="text-align:right;">
0.0252227
</td>
<td style="text-align:right;">
0.0420063
</td>
<td style="text-align:right;">
-0.2421038
</td>
<td style="text-align:right;">
-0.3431678
</td>
<td style="text-align:right;">
-0.1410397
</td>
<td style="text-align:right;">
0.0406314
</td>
<td style="text-align:right;">
-0.2298147
</td>
<td style="text-align:right;">
-0.2519708
</td>
<td style="text-align:right;">
-0.2076586
</td>
<td style="text-align:right;">
0.0072373
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
dn t
</td>
<td style="text-align:right;">
-0.0796127
</td>
<td style="text-align:right;">
-0.1844481
</td>
<td style="text-align:right;">
0.0252227
</td>
<td style="text-align:right;">
0.0420063
</td>
<td style="text-align:right;">
-0.2421038
</td>
<td style="text-align:right;">
-0.3431678
</td>
<td style="text-align:right;">
-0.1410397
</td>
<td style="text-align:right;">
0.0406314
</td>
<td style="text-align:right;">
-0.2298147
</td>
<td style="text-align:right;">
-0.2519708
</td>
<td style="text-align:right;">
-0.2076586
</td>
<td style="text-align:right;">
0.0072373
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
eosinophils
</td>
<td style="text-align:right;">
-0.0662225
</td>
<td style="text-align:right;">
-0.2806631
</td>
<td style="text-align:right;">
0.1482181
</td>
<td style="text-align:right;">
0.0325859
</td>
<td style="text-align:right;">
-0.0154112
</td>
<td style="text-align:right;">
-0.4051652
</td>
<td style="text-align:right;">
0.3743427
</td>
<td style="text-align:right;">
0.0865366
</td>
<td style="text-align:right;">
-0.0042422
</td>
<td style="text-align:right;">
-0.2409206
</td>
<td style="text-align:right;">
0.2324362
</td>
<td style="text-align:right;">
0.0508093
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
eosinophils
</td>
<td style="text-align:right;">
-0.0662225
</td>
<td style="text-align:right;">
-0.2806631
</td>
<td style="text-align:right;">
0.1482181
</td>
<td style="text-align:right;">
0.0325859
</td>
<td style="text-align:right;">
-0.0154112
</td>
<td style="text-align:right;">
-0.4051652
</td>
<td style="text-align:right;">
0.3743427
</td>
<td style="text-align:right;">
0.0865366
</td>
<td style="text-align:right;">
-0.0042422
</td>
<td style="text-align:right;">
-0.2409206
</td>
<td style="text-align:right;">
0.2324362
</td>
<td style="text-align:right;">
0.0508093
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
follicular b cells
</td>
<td style="text-align:right;">
-0.1160077
</td>
<td style="text-align:right;">
-0.7256692
</td>
<td style="text-align:right;">
0.4936538
</td>
<td style="text-align:right;">
0.0479814
</td>
<td style="text-align:right;">
-0.1050194
</td>
<td style="text-align:right;">
-0.6946364
</td>
<td style="text-align:right;">
0.4845977
</td>
<td style="text-align:right;">
0.0464039
</td>
<td style="text-align:right;">
0.0052427
</td>
<td style="text-align:right;">
-0.1872381
</td>
<td style="text-align:right;">
0.1977236
</td>
<td style="text-align:right;">
0.0151486
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
follicular b cells
</td>
<td style="text-align:right;">
-0.1160077
</td>
<td style="text-align:right;">
-0.7256692
</td>
<td style="text-align:right;">
0.4936538
</td>
<td style="text-align:right;">
0.0479814
</td>
<td style="text-align:right;">
-0.1050194
</td>
<td style="text-align:right;">
-0.6946364
</td>
<td style="text-align:right;">
0.4845977
</td>
<td style="text-align:right;">
0.0464039
</td>
<td style="text-align:right;">
0.0052427
</td>
<td style="text-align:right;">
-0.1872381
</td>
<td style="text-align:right;">
0.1977236
</td>
<td style="text-align:right;">
0.0151486
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
luc
</td>
<td style="text-align:right;">
0.0180436
</td>
<td style="text-align:right;">
-0.2038464
</td>
<td style="text-align:right;">
0.2399336
</td>
<td style="text-align:right;">
0.0174631
</td>
<td style="text-align:right;">
0.2657035
</td>
<td style="text-align:right;">
-1.2251358
</td>
<td style="text-align:right;">
1.7565428
</td>
<td style="text-align:right;">
0.1173316
</td>
<td style="text-align:right;">
0.2215497
</td>
<td style="text-align:right;">
-1.4136389
</td>
<td style="text-align:right;">
1.8567382
</td>
<td style="text-align:right;">
0.1286921
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
luc
</td>
<td style="text-align:right;">
0.0180436
</td>
<td style="text-align:right;">
-0.2038464
</td>
<td style="text-align:right;">
0.2399336
</td>
<td style="text-align:right;">
0.0174631
</td>
<td style="text-align:right;">
0.2657035
</td>
<td style="text-align:right;">
-1.2251358
</td>
<td style="text-align:right;">
1.7565428
</td>
<td style="text-align:right;">
0.1173316
</td>
<td style="text-align:right;">
0.2215497
</td>
<td style="text-align:right;">
-1.4136389
</td>
<td style="text-align:right;">
1.8567382
</td>
<td style="text-align:right;">
0.1286921
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
lymphocytes
</td>
<td style="text-align:right;">
0.0805230
</td>
<td style="text-align:right;">
-2.2618128
</td>
<td style="text-align:right;">
2.4228588
</td>
<td style="text-align:right;">
0.1843458
</td>
<td style="text-align:right;">
0.1550159
</td>
<td style="text-align:right;">
-1.0892706
</td>
<td style="text-align:right;">
1.3993024
</td>
<td style="text-align:right;">
0.0979275
</td>
<td style="text-align:right;">
0.0602144
</td>
<td style="text-align:right;">
-1.0131287
</td>
<td style="text-align:right;">
1.1335576
</td>
<td style="text-align:right;">
0.0844739
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
lymphocytes
</td>
<td style="text-align:right;">
0.0805230
</td>
<td style="text-align:right;">
-2.2618128
</td>
<td style="text-align:right;">
2.4228588
</td>
<td style="text-align:right;">
0.1843458
</td>
<td style="text-align:right;">
0.1550159
</td>
<td style="text-align:right;">
-1.0892706
</td>
<td style="text-align:right;">
1.3993024
</td>
<td style="text-align:right;">
0.0979275
</td>
<td style="text-align:right;">
0.0602144
</td>
<td style="text-align:right;">
-1.0131287
</td>
<td style="text-align:right;">
1.1335576
</td>
<td style="text-align:right;">
0.0844739
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
monocytes
</td>
<td style="text-align:right;">
-0.0214677
</td>
<td style="text-align:right;">
-0.2033706
</td>
<td style="text-align:right;">
0.1604352
</td>
<td style="text-align:right;">
0.0420605
</td>
<td style="text-align:right;">
0.0784876
</td>
<td style="text-align:right;">
-0.1811005
</td>
<td style="text-align:right;">
0.3380757
</td>
<td style="text-align:right;">
0.0585593
</td>
<td style="text-align:right;">
0.1025193
</td>
<td style="text-align:right;">
-0.1483375
</td>
<td style="text-align:right;">
0.3533762
</td>
<td style="text-align:right;">
0.0571438
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
monocytes
</td>
<td style="text-align:right;">
-0.0214677
</td>
<td style="text-align:right;">
-0.2033706
</td>
<td style="text-align:right;">
0.1604352
</td>
<td style="text-align:right;">
0.0420605
</td>
<td style="text-align:right;">
0.0784876
</td>
<td style="text-align:right;">
-0.1811005
</td>
<td style="text-align:right;">
0.3380757
</td>
<td style="text-align:right;">
0.0585593
</td>
<td style="text-align:right;">
0.1025193
</td>
<td style="text-align:right;">
-0.1483375
</td>
<td style="text-align:right;">
0.3533762
</td>
<td style="text-align:right;">
0.0571438
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
neutrophils
</td>
<td style="text-align:right;">
0.2587446
</td>
<td style="text-align:right;">
0.0130803
</td>
<td style="text-align:right;">
0.5044089
</td>
<td style="text-align:right;">
0.0557516
</td>
<td style="text-align:right;">
0.3799805
</td>
<td style="text-align:right;">
-0.2060446
</td>
<td style="text-align:right;">
0.9660057
</td>
<td style="text-align:right;">
0.1317980
</td>
<td style="text-align:right;">
0.1319372
</td>
<td style="text-align:right;">
-0.2669324
</td>
<td style="text-align:right;">
0.5308068
</td>
<td style="text-align:right;">
0.0924336
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
neutrophils
</td>
<td style="text-align:right;">
0.2587446
</td>
<td style="text-align:right;">
0.0130803
</td>
<td style="text-align:right;">
0.5044089
</td>
<td style="text-align:right;">
0.0557516
</td>
<td style="text-align:right;">
0.3799805
</td>
<td style="text-align:right;">
-0.2060446
</td>
<td style="text-align:right;">
0.9660057
</td>
<td style="text-align:right;">
0.1317980
</td>
<td style="text-align:right;">
0.1319372
</td>
<td style="text-align:right;">
-0.2669324
</td>
<td style="text-align:right;">
0.5308068
</td>
<td style="text-align:right;">
0.0924336
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
nk cells
</td>
<td style="text-align:right;">
-0.0414772
</td>
<td style="text-align:right;">
-0.0960406
</td>
<td style="text-align:right;">
0.0130862
</td>
<td style="text-align:right;">
0.0200411
</td>
<td style="text-align:right;">
0.0156533
</td>
<td style="text-align:right;">
-0.0703789
</td>
<td style="text-align:right;">
0.1016856
</td>
<td style="text-align:right;">
0.0315487
</td>
<td style="text-align:right;">
0.0471757
</td>
<td style="text-align:right;">
-0.0162213
</td>
<td style="text-align:right;">
0.1105728
</td>
<td style="text-align:right;">
0.0231831
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
nk cells
</td>
<td style="text-align:right;">
-0.0414772
</td>
<td style="text-align:right;">
-0.0960406
</td>
<td style="text-align:right;">
0.0130862
</td>
<td style="text-align:right;">
0.0200411
</td>
<td style="text-align:right;">
0.0156533
</td>
<td style="text-align:right;">
-0.0703789
</td>
<td style="text-align:right;">
0.1016856
</td>
<td style="text-align:right;">
0.0315487
</td>
<td style="text-align:right;">
0.0471757
</td>
<td style="text-align:right;">
-0.0162213
</td>
<td style="text-align:right;">
0.1105728
</td>
<td style="text-align:right;">
0.0231831
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
nkt cells
</td>
<td style="text-align:right;">
0.0033757
</td>
<td style="text-align:right;">
-0.1069890
</td>
<td style="text-align:right;">
0.1137404
</td>
<td style="text-align:right;">
0.0294661
</td>
<td style="text-align:right;">
-0.2458705
</td>
<td style="text-align:right;">
-0.4452333
</td>
<td style="text-align:right;">
-0.0465077
</td>
<td style="text-align:right;">
0.0426738
</td>
<td style="text-align:right;">
-0.1823355
</td>
<td style="text-align:right;">
-0.3233946
</td>
<td style="text-align:right;">
-0.0412763
</td>
<td style="text-align:right;">
0.0314580
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
nkt cells
</td>
<td style="text-align:right;">
0.0033757
</td>
<td style="text-align:right;">
-0.1069890
</td>
<td style="text-align:right;">
0.1137404
</td>
<td style="text-align:right;">
0.0294661
</td>
<td style="text-align:right;">
-0.2458705
</td>
<td style="text-align:right;">
-0.4452333
</td>
<td style="text-align:right;">
-0.0465077
</td>
<td style="text-align:right;">
0.0426738
</td>
<td style="text-align:right;">
-0.1823355
</td>
<td style="text-align:right;">
-0.3233946
</td>
<td style="text-align:right;">
-0.0412763
</td>
<td style="text-align:right;">
0.0314580
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
percentage of live gated events
</td>
<td style="text-align:right;">
-0.0934933
</td>
<td style="text-align:right;">
-0.3037340
</td>
<td style="text-align:right;">
0.1167473
</td>
<td style="text-align:right;">
0.0165463
</td>
<td style="text-align:right;">
-0.0412606
</td>
<td style="text-align:right;">
-0.1414443
</td>
<td style="text-align:right;">
0.0589231
</td>
<td style="text-align:right;">
0.0078846
</td>
<td style="text-align:right;">
0.0500941
</td>
<td style="text-align:right;">
0.0081191
</td>
<td style="text-align:right;">
0.0920690
</td>
<td style="text-align:right;">
0.0033035
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
percentage of live gated events
</td>
<td style="text-align:right;">
-0.0934933
</td>
<td style="text-align:right;">
-0.3037340
</td>
<td style="text-align:right;">
0.1167473
</td>
<td style="text-align:right;">
0.0165463
</td>
<td style="text-align:right;">
-0.0412606
</td>
<td style="text-align:right;">
-0.1414443
</td>
<td style="text-align:right;">
0.0589231
</td>
<td style="text-align:right;">
0.0078846
</td>
<td style="text-align:right;">
0.0500941
</td>
<td style="text-align:right;">
0.0081191
</td>
<td style="text-align:right;">
0.0920690
</td>
<td style="text-align:right;">
0.0033035
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
response amplitude
</td>
<td style="text-align:right;">
0.0333147
</td>
<td style="text-align:right;">
-0.0127585
</td>
<td style="text-align:right;">
0.0793879
</td>
<td style="text-align:right;">
0.0202947
</td>
<td style="text-align:right;">
0.2549274
</td>
<td style="text-align:right;">
0.1969787
</td>
<td style="text-align:right;">
0.3128761
</td>
<td style="text-align:right;">
0.0255003
</td>
<td style="text-align:right;">
0.2016062
</td>
<td style="text-align:right;">
0.1108136
</td>
<td style="text-align:right;">
0.2923987
</td>
<td style="text-align:right;">
0.0401164
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
Acoustic Startle and Pre-pulse Inhibition (PPI)
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
response amplitude
</td>
<td style="text-align:right;">
0.0333147
</td>
<td style="text-align:right;">
-0.0127585
</td>
<td style="text-align:right;">
0.0793879
</td>
<td style="text-align:right;">
0.0202947
</td>
<td style="text-align:right;">
0.2549274
</td>
<td style="text-align:right;">
0.1969787
</td>
<td style="text-align:right;">
0.3128761
</td>
<td style="text-align:right;">
0.0255003
</td>
<td style="text-align:right;">
0.2016062
</td>
<td style="text-align:right;">
0.1108136
</td>
<td style="text-align:right;">
0.2923987
</td>
<td style="text-align:right;">
0.0401164
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
Acoustic Startle and Pre-pulse Inhibition (PPI)
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
t cells
</td>
<td style="text-align:right;">
-0.1338701
</td>
<td style="text-align:right;">
-0.2750284
</td>
<td style="text-align:right;">
0.0072883
</td>
<td style="text-align:right;">
0.0326594
</td>
<td style="text-align:right;">
-0.1240786
</td>
<td style="text-align:right;">
-0.4120104
</td>
<td style="text-align:right;">
0.1638531
</td>
<td style="text-align:right;">
0.0668611
</td>
<td style="text-align:right;">
-0.0005749
</td>
<td style="text-align:right;">
-0.1663201
</td>
<td style="text-align:right;">
0.1651702
</td>
<td style="text-align:right;">
0.0374233
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
t cells
</td>
<td style="text-align:right;">
-0.1338701
</td>
<td style="text-align:right;">
-0.2750284
</td>
<td style="text-align:right;">
0.0072883
</td>
<td style="text-align:right;">
0.0326594
</td>
<td style="text-align:right;">
-0.1240786
</td>
<td style="text-align:right;">
-0.4120104
</td>
<td style="text-align:right;">
0.1638531
</td>
<td style="text-align:right;">
0.0668611
</td>
<td style="text-align:right;">
-0.0005749
</td>
<td style="text-align:right;">
-0.1663201
</td>
<td style="text-align:right;">
0.1651702
</td>
<td style="text-align:right;">
0.0374233
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:left;">
NA
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:right;">
0.0538655
</td>
<td style="text-align:right;">
-0.0056830
</td>
<td style="text-align:right;">
0.1134139
</td>
<td style="text-align:right;">
0.0303824
</td>
<td style="text-align:right;">
0.0869649
</td>
<td style="text-align:right;">
0.0065802
</td>
<td style="text-align:right;">
0.1673497
</td>
<td style="text-align:right;">
0.0410134
</td>
<td style="text-align:right;">
0.0024851
</td>
<td style="text-align:right;">
-0.0214504
</td>
<td style="text-align:right;">
0.0264205
</td>
<td style="text-align:right;">
0.0122122
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:right;">
0.0538655
</td>
<td style="text-align:right;">
-0.0056830
</td>
<td style="text-align:right;">
0.1134139
</td>
<td style="text-align:right;">
0.0303824
</td>
<td style="text-align:right;">
0.0869649
</td>
<td style="text-align:right;">
0.0065802
</td>
<td style="text-align:right;">
0.1673497
</td>
<td style="text-align:right;">
0.0410134
</td>
<td style="text-align:right;">
0.0024851
</td>
<td style="text-align:right;">
-0.0214504
</td>
<td style="text-align:right;">
0.0264205
</td>
<td style="text-align:right;">
0.0122122
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
</tr>
<tr>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:right;">
0.0238241
</td>
<td style="text-align:right;">
-0.0331809
</td>
<td style="text-align:right;">
0.0808292
</td>
<td style="text-align:right;">
0.0290848
</td>
<td style="text-align:right;">
0.0250266
</td>
<td style="text-align:right;">
-0.0488450
</td>
<td style="text-align:right;">
0.0988982
</td>
<td style="text-align:right;">
0.0376903
</td>
<td style="text-align:right;">
-0.0200763
</td>
<td style="text-align:right;">
-0.0431508
</td>
<td style="text-align:right;">
0.0029982
</td>
<td style="text-align:right;">
0.0117729
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:right;">
0.0238241
</td>
<td style="text-align:right;">
-0.0331809
</td>
<td style="text-align:right;">
0.0808292
</td>
<td style="text-align:right;">
0.0290848
</td>
<td style="text-align:right;">
0.0250266
</td>
<td style="text-align:right;">
-0.0488450
</td>
<td style="text-align:right;">
0.0988982
</td>
<td style="text-align:right;">
0.0376903
</td>
<td style="text-align:right;">
-0.0200763
</td>
<td style="text-align:right;">
-0.0431508
</td>
<td style="text-align:right;">
0.0029982
</td>
<td style="text-align:right;">
0.0117729
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
</tr>
<tr>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:right;">
0.0518127
</td>
<td style="text-align:right;">
-0.0148242
</td>
<td style="text-align:right;">
0.1184497
</td>
<td style="text-align:right;">
0.0339991
</td>
<td style="text-align:right;">
-0.0891510
</td>
<td style="text-align:right;">
-0.3321998
</td>
<td style="text-align:right;">
0.1538977
</td>
<td style="text-align:right;">
0.1240067
</td>
<td style="text-align:right;">
-0.0224536
</td>
<td style="text-align:right;">
-0.0444163
</td>
<td style="text-align:right;">
-0.0004910
</td>
<td style="text-align:right;">
0.0112057
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:right;">
0.0518127
</td>
<td style="text-align:right;">
-0.0148242
</td>
<td style="text-align:right;">
0.1184497
</td>
<td style="text-align:right;">
0.0339991
</td>
<td style="text-align:right;">
-0.0891510
</td>
<td style="text-align:right;">
-0.3321998
</td>
<td style="text-align:right;">
0.1538977
</td>
<td style="text-align:right;">
0.1240067
</td>
<td style="text-align:right;">
-0.0224536
</td>
<td style="text-align:right;">
-0.0444163
</td>
<td style="text-align:right;">
-0.0004910
</td>
<td style="text-align:right;">
0.0112057
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
</tr>
<tr>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:right;">
0.0170933
</td>
<td style="text-align:right;">
-0.0533187
</td>
<td style="text-align:right;">
0.0875053
</td>
<td style="text-align:right;">
0.0359252
</td>
<td style="text-align:right;">
-0.0344797
</td>
<td style="text-align:right;">
-0.1017901
</td>
<td style="text-align:right;">
0.0328306
</td>
<td style="text-align:right;">
0.0343426
</td>
<td style="text-align:right;">
-0.0497874
</td>
<td style="text-align:right;">
-0.0748197
</td>
<td style="text-align:right;">
-0.0247550
</td>
<td style="text-align:right;">
0.0127718
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:right;">
0.0170933
</td>
<td style="text-align:right;">
-0.0533187
</td>
<td style="text-align:right;">
0.0875053
</td>
<td style="text-align:right;">
0.0359252
</td>
<td style="text-align:right;">
-0.0344797
</td>
<td style="text-align:right;">
-0.1017901
</td>
<td style="text-align:right;">
0.0328306
</td>
<td style="text-align:right;">
0.0343426
</td>
<td style="text-align:right;">
-0.0497874
</td>
<td style="text-align:right;">
-0.0748197
</td>
<td style="text-align:right;">
-0.0247550
</td>
<td style="text-align:right;">
0.0127718
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
</tr>
<tr>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:right;">
-0.0077678
</td>
<td style="text-align:right;">
-0.0418582
</td>
<td style="text-align:right;">
0.0263226
</td>
<td style="text-align:right;">
0.0173934
</td>
<td style="text-align:right;">
0.0141682
</td>
<td style="text-align:right;">
-0.0189973
</td>
<td style="text-align:right;">
0.0473337
</td>
<td style="text-align:right;">
0.0169215
</td>
<td style="text-align:right;">
0.0184043
</td>
<td style="text-align:right;">
0.0056897
</td>
<td style="text-align:right;">
0.0311189
</td>
<td style="text-align:right;">
0.0064872
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:right;">
-0.0077678
</td>
<td style="text-align:right;">
-0.0418582
</td>
<td style="text-align:right;">
0.0263226
</td>
<td style="text-align:right;">
0.0173934
</td>
<td style="text-align:right;">
0.0141682
</td>
<td style="text-align:right;">
-0.0189973
</td>
<td style="text-align:right;">
0.0473337
</td>
<td style="text-align:right;">
0.0169215
</td>
<td style="text-align:right;">
0.0184043
</td>
<td style="text-align:right;">
0.0056897
</td>
<td style="text-align:right;">
0.0311189
</td>
<td style="text-align:right;">
0.0064872
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
</tr>
<tr>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:right;">
-0.0684217
</td>
<td style="text-align:right;">
-0.1895020
</td>
<td style="text-align:right;">
0.0526586
</td>
<td style="text-align:right;">
0.0617768
</td>
<td style="text-align:right;">
0.0585179
</td>
<td style="text-align:right;">
-0.1322507
</td>
<td style="text-align:right;">
0.2492866
</td>
<td style="text-align:right;">
0.0973327
</td>
<td style="text-align:right;">
0.1069442
</td>
<td style="text-align:right;">
0.0319934
</td>
<td style="text-align:right;">
0.1818950
</td>
<td style="text-align:right;">
0.0382409
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:right;">
-0.0684217
</td>
<td style="text-align:right;">
-0.1895020
</td>
<td style="text-align:right;">
0.0526586
</td>
<td style="text-align:right;">
0.0617768
</td>
<td style="text-align:right;">
0.0585179
</td>
<td style="text-align:right;">
-0.1322507
</td>
<td style="text-align:right;">
0.2492866
</td>
<td style="text-align:right;">
0.0973327
</td>
<td style="text-align:right;">
0.1069442
</td>
<td style="text-align:right;">
0.0319934
</td>
<td style="text-align:right;">
0.1818950
</td>
<td style="text-align:right;">
0.0382409
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:right;">
0.1133080
</td>
<td style="text-align:right;">
0.0451475
</td>
<td style="text-align:right;">
0.1814685
</td>
<td style="text-align:right;">
0.0347764
</td>
<td style="text-align:right;">
0.0559995
</td>
<td style="text-align:right;">
-0.0080678
</td>
<td style="text-align:right;">
0.1200668
</td>
<td style="text-align:right;">
0.0326880
</td>
<td style="text-align:right;">
-0.0567840
</td>
<td style="text-align:right;">
-0.0732083
</td>
<td style="text-align:right;">
-0.0403597
</td>
<td style="text-align:right;">
0.0083799
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:right;">
0.1133080
</td>
<td style="text-align:right;">
0.0451475
</td>
<td style="text-align:right;">
0.1814685
</td>
<td style="text-align:right;">
0.0347764
</td>
<td style="text-align:right;">
0.0559995
</td>
<td style="text-align:right;">
-0.0080678
</td>
<td style="text-align:right;">
0.1200668
</td>
<td style="text-align:right;">
0.0326880
</td>
<td style="text-align:right;">
-0.0567840
</td>
<td style="text-align:right;">
-0.0732083
</td>
<td style="text-align:right;">
-0.0403597
</td>
<td style="text-align:right;">
0.0083799
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:right;">
0.1043649
</td>
<td style="text-align:right;">
0.0451585
</td>
<td style="text-align:right;">
0.1635713
</td>
<td style="text-align:right;">
0.0302079
</td>
<td style="text-align:right;">
-0.3112471
</td>
<td style="text-align:right;">
-0.3980164
</td>
<td style="text-align:right;">
-0.2244778
</td>
<td style="text-align:right;">
0.0442709
</td>
<td style="text-align:right;">
-0.4216032
</td>
<td style="text-align:right;">
-0.4694832
</td>
<td style="text-align:right;">
-0.3737231
</td>
<td style="text-align:right;">
0.0244290
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:right;">
0.1043649
</td>
<td style="text-align:right;">
0.0451585
</td>
<td style="text-align:right;">
0.1635713
</td>
<td style="text-align:right;">
0.0302079
</td>
<td style="text-align:right;">
-0.3112471
</td>
<td style="text-align:right;">
-0.3980164
</td>
<td style="text-align:right;">
-0.2244778
</td>
<td style="text-align:right;">
0.0442709
</td>
<td style="text-align:right;">
-0.4216032
</td>
<td style="text-align:right;">
-0.4694832
</td>
<td style="text-align:right;">
-0.3737231
</td>
<td style="text-align:right;">
0.0244290
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:right;">
0.0383407
</td>
<td style="text-align:right;">
-0.0423419
</td>
<td style="text-align:right;">
0.1190232
</td>
<td style="text-align:right;">
0.0411653
</td>
<td style="text-align:right;">
0.2795566
</td>
<td style="text-align:right;">
0.1615777
</td>
<td style="text-align:right;">
0.3975355
</td>
<td style="text-align:right;">
0.0601944
</td>
<td style="text-align:right;">
0.2246987
</td>
<td style="text-align:right;">
0.1793151
</td>
<td style="text-align:right;">
0.2700822
</td>
<td style="text-align:right;">
0.0231553
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:right;">
0.0383407
</td>
<td style="text-align:right;">
-0.0423419
</td>
<td style="text-align:right;">
0.1190232
</td>
<td style="text-align:right;">
0.0411653
</td>
<td style="text-align:right;">
0.2795566
</td>
<td style="text-align:right;">
0.1615777
</td>
<td style="text-align:right;">
0.3975355
</td>
<td style="text-align:right;">
0.0601944
</td>
<td style="text-align:right;">
0.2246987
</td>
<td style="text-align:right;">
0.1793151
</td>
<td style="text-align:right;">
0.2700822
</td>
<td style="text-align:right;">
0.0231553
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:right;">
-0.1531723
</td>
<td style="text-align:right;">
-0.2210551
</td>
<td style="text-align:right;">
-0.0852895
</td>
<td style="text-align:right;">
0.0346347
</td>
<td style="text-align:right;">
0.2748396
</td>
<td style="text-align:right;">
0.1950895
</td>
<td style="text-align:right;">
0.3545898
</td>
<td style="text-align:right;">
0.0406896
</td>
<td style="text-align:right;">
0.4357738
</td>
<td style="text-align:right;">
0.3655882
</td>
<td style="text-align:right;">
0.5059595
</td>
<td style="text-align:right;">
0.0358097
</td>
<td style="text-align:right;">
15
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:right;">
-0.1531723
</td>
<td style="text-align:right;">
-0.2210551
</td>
<td style="text-align:right;">
-0.0852895
</td>
<td style="text-align:right;">
0.0346347
</td>
<td style="text-align:right;">
0.2748396
</td>
<td style="text-align:right;">
0.1950895
</td>
<td style="text-align:right;">
0.3545898
</td>
<td style="text-align:right;">
0.0406896
</td>
<td style="text-align:right;">
0.4357738
</td>
<td style="text-align:right;">
0.3655882
</td>
<td style="text-align:right;">
0.5059595
</td>
<td style="text-align:right;">
0.0358097
</td>
<td style="text-align:right;">
15
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:right;">
0.0119165
</td>
<td style="text-align:right;">
-0.1228287
</td>
<td style="text-align:right;">
0.1466617
</td>
<td style="text-align:right;">
0.0687488
</td>
<td style="text-align:right;">
-0.0566968
</td>
<td style="text-align:right;">
-0.2457779
</td>
<td style="text-align:right;">
0.1323843
</td>
<td style="text-align:right;">
0.0964717
</td>
<td style="text-align:right;">
-0.0585577
</td>
<td style="text-align:right;">
-0.1331777
</td>
<td style="text-align:right;">
0.0160624
</td>
<td style="text-align:right;">
0.0380722
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:right;">
0.0119165
</td>
<td style="text-align:right;">
-0.1228287
</td>
<td style="text-align:right;">
0.1466617
</td>
<td style="text-align:right;">
0.0687488
</td>
<td style="text-align:right;">
-0.0566968
</td>
<td style="text-align:right;">
-0.2457779
</td>
<td style="text-align:right;">
0.1323843
</td>
<td style="text-align:right;">
0.0964717
</td>
<td style="text-align:right;">
-0.0585577
</td>
<td style="text-align:right;">
-0.1331777
</td>
<td style="text-align:right;">
0.0160624
</td>
<td style="text-align:right;">
0.0380722
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:right;">
-0.0917931
</td>
<td style="text-align:right;">
-0.2022487
</td>
<td style="text-align:right;">
0.0186624
</td>
<td style="text-align:right;">
0.0563559
</td>
<td style="text-align:right;">
0.2031265
</td>
<td style="text-align:right;">
-0.0131549
</td>
<td style="text-align:right;">
0.4194079
</td>
<td style="text-align:right;">
0.1103497
</td>
<td style="text-align:right;">
0.2675772
</td>
<td style="text-align:right;">
0.0643028
</td>
<td style="text-align:right;">
0.4708516
</td>
<td style="text-align:right;">
0.1037133
</td>
<td style="text-align:right;">
20
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:right;">
-0.0917931
</td>
<td style="text-align:right;">
-0.2022487
</td>
<td style="text-align:right;">
0.0186624
</td>
<td style="text-align:right;">
0.0563559
</td>
<td style="text-align:right;">
0.2031265
</td>
<td style="text-align:right;">
-0.0131549
</td>
<td style="text-align:right;">
0.4194079
</td>
<td style="text-align:right;">
0.1103497
</td>
<td style="text-align:right;">
0.2675772
</td>
<td style="text-align:right;">
0.0643028
</td>
<td style="text-align:right;">
0.4708516
</td>
<td style="text-align:right;">
0.1037133
</td>
<td style="text-align:right;">
20
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:right;">
-0.0934739
</td>
<td style="text-align:right;">
-0.1787512
</td>
<td style="text-align:right;">
-0.0081966
</td>
<td style="text-align:right;">
0.0435096
</td>
<td style="text-align:right;">
-0.0639511
</td>
<td style="text-align:right;">
-0.2828066
</td>
<td style="text-align:right;">
0.1549044
</td>
<td style="text-align:right;">
0.1116630
</td>
<td style="text-align:right;">
-0.0156339
</td>
<td style="text-align:right;">
-0.1102310
</td>
<td style="text-align:right;">
0.0789633
</td>
<td style="text-align:right;">
0.0482647
</td>
<td style="text-align:right;">
21
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:right;">
-0.0934739
</td>
<td style="text-align:right;">
-0.1787512
</td>
<td style="text-align:right;">
-0.0081966
</td>
<td style="text-align:right;">
0.0435096
</td>
<td style="text-align:right;">
-0.0639511
</td>
<td style="text-align:right;">
-0.2828066
</td>
<td style="text-align:right;">
0.1549044
</td>
<td style="text-align:right;">
0.1116630
</td>
<td style="text-align:right;">
-0.0156339
</td>
<td style="text-align:right;">
-0.1102310
</td>
<td style="text-align:right;">
0.0789633
</td>
<td style="text-align:right;">
0.0482647
</td>
<td style="text-align:right;">
21
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:right;">
0.1314998
</td>
<td style="text-align:right;">
0.0329846
</td>
<td style="text-align:right;">
0.2300151
</td>
<td style="text-align:right;">
0.0502638
</td>
<td style="text-align:right;">
-0.0448684
</td>
<td style="text-align:right;">
-0.1340146
</td>
<td style="text-align:right;">
0.0442777
</td>
<td style="text-align:right;">
0.0454836
</td>
<td style="text-align:right;">
-0.1722378
</td>
<td style="text-align:right;">
-0.2207030
</td>
<td style="text-align:right;">
-0.1237726
</td>
<td style="text-align:right;">
0.0247276
</td>
<td style="text-align:right;">
22
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:right;">
0.1314998
</td>
<td style="text-align:right;">
0.0329846
</td>
<td style="text-align:right;">
0.2300151
</td>
<td style="text-align:right;">
0.0502638
</td>
<td style="text-align:right;">
-0.0448684
</td>
<td style="text-align:right;">
-0.1340146
</td>
<td style="text-align:right;">
0.0442777
</td>
<td style="text-align:right;">
0.0454836
</td>
<td style="text-align:right;">
-0.1722378
</td>
<td style="text-align:right;">
-0.2207030
</td>
<td style="text-align:right;">
-0.1237726
</td>
<td style="text-align:right;">
0.0247276
</td>
<td style="text-align:right;">
22
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
body length
</td>
<td style="text-align:right;">
-0.0347988
</td>
<td style="text-align:right;">
-0.0824528
</td>
<td style="text-align:right;">
0.0128552
</td>
<td style="text-align:right;">
0.0243137
</td>
<td style="text-align:right;">
-0.0059677
</td>
<td style="text-align:right;">
-0.0526221
</td>
<td style="text-align:right;">
0.0406866
</td>
<td style="text-align:right;">
0.0238037
</td>
<td style="text-align:right;">
0.0282722
</td>
<td style="text-align:right;">
0.0233254
</td>
<td style="text-align:right;">
0.0332189
</td>
<td style="text-align:right;">
0.0025239
</td>
<td style="text-align:right;">
23
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
body length
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
body length
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
body length
</td>
<td style="text-align:right;">
-0.0347988
</td>
<td style="text-align:right;">
-0.0824528
</td>
<td style="text-align:right;">
0.0128552
</td>
<td style="text-align:right;">
0.0243137
</td>
<td style="text-align:right;">
-0.0059677
</td>
<td style="text-align:right;">
-0.0526221
</td>
<td style="text-align:right;">
0.0406866
</td>
<td style="text-align:right;">
0.0238037
</td>
<td style="text-align:right;">
0.0282722
</td>
<td style="text-align:right;">
0.0233254
</td>
<td style="text-align:right;">
0.0332189
</td>
<td style="text-align:right;">
0.0025239
</td>
<td style="text-align:right;">
23
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
body length
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
body length
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:right;">
-0.0325368
</td>
<td style="text-align:right;">
-0.1066429
</td>
<td style="text-align:right;">
0.0415693
</td>
<td style="text-align:right;">
0.0378099
</td>
<td style="text-align:right;">
-0.0303742
</td>
<td style="text-align:right;">
-0.1044537
</td>
<td style="text-align:right;">
0.0437054
</td>
<td style="text-align:right;">
0.0377964
</td>
<td style="text-align:right;">
0.0018532
</td>
<td style="text-align:right;">
-0.0005002
</td>
<td style="text-align:right;">
0.0042066
</td>
<td style="text-align:right;">
0.0012008
</td>
<td style="text-align:right;">
24
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:right;">
-0.0325368
</td>
<td style="text-align:right;">
-0.1066429
</td>
<td style="text-align:right;">
0.0415693
</td>
<td style="text-align:right;">
0.0378099
</td>
<td style="text-align:right;">
-0.0303742
</td>
<td style="text-align:right;">
-0.1044537
</td>
<td style="text-align:right;">
0.0437054
</td>
<td style="text-align:right;">
0.0377964
</td>
<td style="text-align:right;">
0.0018532
</td>
<td style="text-align:right;">
-0.0005002
</td>
<td style="text-align:right;">
0.0042066
</td>
<td style="text-align:right;">
0.0012008
</td>
<td style="text-align:right;">
24
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:right;">
0.0245675
</td>
<td style="text-align:right;">
-0.0420402
</td>
<td style="text-align:right;">
0.0911752
</td>
<td style="text-align:right;">
0.0339841
</td>
<td style="text-align:right;">
0.2335793
</td>
<td style="text-align:right;">
0.1694979
</td>
<td style="text-align:right;">
0.2976607
</td>
<td style="text-align:right;">
0.0326952
</td>
<td style="text-align:right;">
0.2096770
</td>
<td style="text-align:right;">
0.1938727
</td>
<td style="text-align:right;">
0.2254813
</td>
<td style="text-align:right;">
0.0080636
</td>
<td style="text-align:right;">
25
</td>
<td style="text-align:right;">
18
</td>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:left;">
Body Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:right;">
0.0245675
</td>
<td style="text-align:right;">
-0.0420402
</td>
<td style="text-align:right;">
0.0911752
</td>
<td style="text-align:right;">
0.0339841
</td>
<td style="text-align:right;">
0.2335793
</td>
<td style="text-align:right;">
0.1694979
</td>
<td style="text-align:right;">
0.2976607
</td>
<td style="text-align:right;">
0.0326952
</td>
<td style="text-align:right;">
0.2096770
</td>
<td style="text-align:right;">
0.1938727
</td>
<td style="text-align:right;">
0.2254813
</td>
<td style="text-align:right;">
0.0080636
</td>
<td style="text-align:right;">
25
</td>
<td style="text-align:right;">
18
</td>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:left;">
Body Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Weight
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:right;">
0.0853708
</td>
<td style="text-align:right;">
0.0299665
</td>
<td style="text-align:right;">
0.1407751
</td>
<td style="text-align:right;">
0.0282680
</td>
<td style="text-align:right;">
0.2849370
</td>
<td style="text-align:right;">
0.2328875
</td>
<td style="text-align:right;">
0.3369866
</td>
<td style="text-align:right;">
0.0265564
</td>
<td style="text-align:right;">
0.2030973
</td>
<td style="text-align:right;">
0.1864076
</td>
<td style="text-align:right;">
0.2197871
</td>
<td style="text-align:right;">
0.0085153
</td>
<td style="text-align:right;">
26
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:right;">
0.0853708
</td>
<td style="text-align:right;">
0.0299665
</td>
<td style="text-align:right;">
0.1407751
</td>
<td style="text-align:right;">
0.0282680
</td>
<td style="text-align:right;">
0.2849370
</td>
<td style="text-align:right;">
0.2328875
</td>
<td style="text-align:right;">
0.3369866
</td>
<td style="text-align:right;">
0.0265564
</td>
<td style="text-align:right;">
0.2030973
</td>
<td style="text-align:right;">
0.1864076
</td>
<td style="text-align:right;">
0.2197871
</td>
<td style="text-align:right;">
0.0085153
</td>
<td style="text-align:right;">
26
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:right;">
0.1053511
</td>
<td style="text-align:right;">
0.0412461
</td>
<td style="text-align:right;">
0.1694562
</td>
<td style="text-align:right;">
0.0327073
</td>
<td style="text-align:right;">
0.3038998
</td>
<td style="text-align:right;">
0.2435428
</td>
<td style="text-align:right;">
0.3642568
</td>
<td style="text-align:right;">
0.0307949
</td>
<td style="text-align:right;">
0.2008638
</td>
<td style="text-align:right;">
0.1816362
</td>
<td style="text-align:right;">
0.2200914
</td>
<td style="text-align:right;">
0.0098102
</td>
<td style="text-align:right;">
27
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:right;">
0.1053511
</td>
<td style="text-align:right;">
0.0412461
</td>
<td style="text-align:right;">
0.1694562
</td>
<td style="text-align:right;">
0.0327073
</td>
<td style="text-align:right;">
0.3038998
</td>
<td style="text-align:right;">
0.2435428
</td>
<td style="text-align:right;">
0.3642568
</td>
<td style="text-align:right;">
0.0307949
</td>
<td style="text-align:right;">
0.2008638
</td>
<td style="text-align:right;">
0.1816362
</td>
<td style="text-align:right;">
0.2200914
</td>
<td style="text-align:right;">
0.0098102
</td>
<td style="text-align:right;">
27
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:right;">
0.0981587
</td>
<td style="text-align:right;">
0.0272824
</td>
<td style="text-align:right;">
0.1690349
</td>
<td style="text-align:right;">
0.0361620
</td>
<td style="text-align:right;">
0.1286546
</td>
<td style="text-align:right;">
0.0533659
</td>
<td style="text-align:right;">
0.2039432
</td>
<td style="text-align:right;">
0.0384133
</td>
<td style="text-align:right;">
0.0315241
</td>
<td style="text-align:right;">
0.0003806
</td>
<td style="text-align:right;">
0.0626676
</td>
<td style="text-align:right;">
0.0158898
</td>
<td style="text-align:right;">
28
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:right;">
0.0981587
</td>
<td style="text-align:right;">
0.0272824
</td>
<td style="text-align:right;">
0.1690349
</td>
<td style="text-align:right;">
0.0361620
</td>
<td style="text-align:right;">
0.1286546
</td>
<td style="text-align:right;">
0.0533659
</td>
<td style="text-align:right;">
0.2039432
</td>
<td style="text-align:right;">
0.0384133
</td>
<td style="text-align:right;">
0.0315241
</td>
<td style="text-align:right;">
0.0003806
</td>
<td style="text-align:right;">
0.0626676
</td>
<td style="text-align:right;">
0.0158898
</td>
<td style="text-align:right;">
28
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:right;">
0.1709230
</td>
<td style="text-align:right;">
0.0625642
</td>
<td style="text-align:right;">
0.2792818
</td>
<td style="text-align:right;">
0.0552861
</td>
<td style="text-align:right;">
0.2091372
</td>
<td style="text-align:right;">
0.1015600
</td>
<td style="text-align:right;">
0.3167143
</td>
<td style="text-align:right;">
0.0548873
</td>
<td style="text-align:right;">
0.0372537
</td>
<td style="text-align:right;">
-0.0130828
</td>
<td style="text-align:right;">
0.0875902
</td>
<td style="text-align:right;">
0.0256824
</td>
<td style="text-align:right;">
29
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:right;">
0.1709230
</td>
<td style="text-align:right;">
0.0625642
</td>
<td style="text-align:right;">
0.2792818
</td>
<td style="text-align:right;">
0.0552861
</td>
<td style="text-align:right;">
0.2091372
</td>
<td style="text-align:right;">
0.1015600
</td>
<td style="text-align:right;">
0.3167143
</td>
<td style="text-align:right;">
0.0548873
</td>
<td style="text-align:right;">
0.0372537
</td>
<td style="text-align:right;">
-0.0130828
</td>
<td style="text-align:right;">
0.0875902
</td>
<td style="text-align:right;">
0.0256824
</td>
<td style="text-align:right;">
29
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:right;">
0.0542638
</td>
<td style="text-align:right;">
-0.0881612
</td>
<td style="text-align:right;">
0.1966887
</td>
<td style="text-align:right;">
0.0726671
</td>
<td style="text-align:right;">
0.0492830
</td>
<td style="text-align:right;">
-0.1087868
</td>
<td style="text-align:right;">
0.2073528
</td>
<td style="text-align:right;">
0.0806494
</td>
<td style="text-align:right;">
0.0012286
</td>
<td style="text-align:right;">
-0.0187942
</td>
<td style="text-align:right;">
0.0212514
</td>
<td style="text-align:right;">
0.0102159
</td>
<td style="text-align:right;">
30
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:right;">
0.0542638
</td>
<td style="text-align:right;">
-0.0881612
</td>
<td style="text-align:right;">
0.1966887
</td>
<td style="text-align:right;">
0.0726671
</td>
<td style="text-align:right;">
0.0492830
</td>
<td style="text-align:right;">
-0.1087868
</td>
<td style="text-align:right;">
0.2073528
</td>
<td style="text-align:right;">
0.0806494
</td>
<td style="text-align:right;">
0.0012286
</td>
<td style="text-align:right;">
-0.0187942
</td>
<td style="text-align:right;">
0.0212514
</td>
<td style="text-align:right;">
0.0102159
</td>
<td style="text-align:right;">
30
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:right;">
0.0097946
</td>
<td style="text-align:right;">
-0.0464600
</td>
<td style="text-align:right;">
0.0660492
</td>
<td style="text-align:right;">
0.0287018
</td>
<td style="text-align:right;">
0.0135683
</td>
<td style="text-align:right;">
-0.0424600
</td>
<td style="text-align:right;">
0.0695966
</td>
<td style="text-align:right;">
0.0285864
</td>
<td style="text-align:right;">
0.0036564
</td>
<td style="text-align:right;">
-0.0000609
</td>
<td style="text-align:right;">
0.0073737
</td>
<td style="text-align:right;">
0.0018966
</td>
<td style="text-align:right;">
31
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:right;">
0.0097946
</td>
<td style="text-align:right;">
-0.0464600
</td>
<td style="text-align:right;">
0.0660492
</td>
<td style="text-align:right;">
0.0287018
</td>
<td style="text-align:right;">
0.0135683
</td>
<td style="text-align:right;">
-0.0424600
</td>
<td style="text-align:right;">
0.0695966
</td>
<td style="text-align:right;">
0.0285864
</td>
<td style="text-align:right;">
0.0036564
</td>
<td style="text-align:right;">
-0.0000609
</td>
<td style="text-align:right;">
0.0073737
</td>
<td style="text-align:right;">
0.0018966
</td>
<td style="text-align:right;">
31
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:right;">
0.0133816
</td>
<td style="text-align:right;">
-0.0797535
</td>
<td style="text-align:right;">
0.1065166
</td>
<td style="text-align:right;">
0.0475188
</td>
<td style="text-align:right;">
0.1017991
</td>
<td style="text-align:right;">
0.0206287
</td>
<td style="text-align:right;">
0.1829694
</td>
<td style="text-align:right;">
0.0414142
</td>
<td style="text-align:right;">
0.0934439
</td>
<td style="text-align:right;">
0.0580233
</td>
<td style="text-align:right;">
0.1288645
</td>
<td style="text-align:right;">
0.0180721
</td>
<td style="text-align:right;">
32
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:right;">
0.0133816
</td>
<td style="text-align:right;">
-0.0797535
</td>
<td style="text-align:right;">
0.1065166
</td>
<td style="text-align:right;">
0.0475188
</td>
<td style="text-align:right;">
0.1017991
</td>
<td style="text-align:right;">
0.0206287
</td>
<td style="text-align:right;">
0.1829694
</td>
<td style="text-align:right;">
0.0414142
</td>
<td style="text-align:right;">
0.0934439
</td>
<td style="text-align:right;">
0.0580233
</td>
<td style="text-align:right;">
0.1288645
</td>
<td style="text-align:right;">
0.0180721
</td>
<td style="text-align:right;">
32
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:right;">
0.0167300
</td>
<td style="text-align:right;">
-0.0404735
</td>
<td style="text-align:right;">
0.0739335
</td>
<td style="text-align:right;">
0.0291860
</td>
<td style="text-align:right;">
-0.0588515
</td>
<td style="text-align:right;">
-0.1004209
</td>
<td style="text-align:right;">
-0.0172820
</td>
<td style="text-align:right;">
0.0212093
</td>
<td style="text-align:right;">
-0.0724619
</td>
<td style="text-align:right;">
-0.1149622
</td>
<td style="text-align:right;">
-0.0299616
</td>
<td style="text-align:right;">
0.0216842
</td>
<td style="text-align:right;">
61
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:right;">
0.0167300
</td>
<td style="text-align:right;">
-0.0404735
</td>
<td style="text-align:right;">
0.0739335
</td>
<td style="text-align:right;">
0.0291860
</td>
<td style="text-align:right;">
-0.0588515
</td>
<td style="text-align:right;">
-0.1004209
</td>
<td style="text-align:right;">
-0.0172820
</td>
<td style="text-align:right;">
0.0212093
</td>
<td style="text-align:right;">
-0.0724619
</td>
<td style="text-align:right;">
-0.1149622
</td>
<td style="text-align:right;">
-0.0299616
</td>
<td style="text-align:right;">
0.0216842
</td>
<td style="text-align:right;">
61
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:right;">
-0.0162603
</td>
<td style="text-align:right;">
-0.0733243
</td>
<td style="text-align:right;">
0.0408038
</td>
<td style="text-align:right;">
0.0291149
</td>
<td style="text-align:right;">
-0.1060637
</td>
<td style="text-align:right;">
-0.2023343
</td>
<td style="text-align:right;">
-0.0097930
</td>
<td style="text-align:right;">
0.0491186
</td>
<td style="text-align:right;">
-0.0940204
</td>
<td style="text-align:right;">
-0.1945774
</td>
<td style="text-align:right;">
0.0065366
</td>
<td style="text-align:right;">
0.0513055
</td>
<td style="text-align:right;">
62
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:right;">
-0.0162603
</td>
<td style="text-align:right;">
-0.0733243
</td>
<td style="text-align:right;">
0.0408038
</td>
<td style="text-align:right;">
0.0291149
</td>
<td style="text-align:right;">
-0.1060637
</td>
<td style="text-align:right;">
-0.2023343
</td>
<td style="text-align:right;">
-0.0097930
</td>
<td style="text-align:right;">
0.0491186
</td>
<td style="text-align:right;">
-0.0940204
</td>
<td style="text-align:right;">
-0.1945774
</td>
<td style="text-align:right;">
0.0065366
</td>
<td style="text-align:right;">
0.0513055
</td>
<td style="text-align:right;">
62
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:right;">
-0.0253715
</td>
<td style="text-align:right;">
-0.0826435
</td>
<td style="text-align:right;">
0.0319004
</td>
<td style="text-align:right;">
0.0292209
</td>
<td style="text-align:right;">
-0.0255734
</td>
<td style="text-align:right;">
-0.1014389
</td>
<td style="text-align:right;">
0.0502922
</td>
<td style="text-align:right;">
0.0387076
</td>
<td style="text-align:right;">
-0.0035151
</td>
<td style="text-align:right;">
-0.0902886
</td>
<td style="text-align:right;">
0.0832585
</td>
<td style="text-align:right;">
0.0442730
</td>
<td style="text-align:right;">
63
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:right;">
-0.0253715
</td>
<td style="text-align:right;">
-0.0826435
</td>
<td style="text-align:right;">
0.0319004
</td>
<td style="text-align:right;">
0.0292209
</td>
<td style="text-align:right;">
-0.0255734
</td>
<td style="text-align:right;">
-0.1014389
</td>
<td style="text-align:right;">
0.0502922
</td>
<td style="text-align:right;">
0.0387076
</td>
<td style="text-align:right;">
-0.0035151
</td>
<td style="text-align:right;">
-0.0902886
</td>
<td style="text-align:right;">
0.0832585
</td>
<td style="text-align:right;">
0.0442730
</td>
<td style="text-align:right;">
63
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:right;">
0.0244492
</td>
<td style="text-align:right;">
-0.0737922
</td>
<td style="text-align:right;">
0.1226906
</td>
<td style="text-align:right;">
0.0501241
</td>
<td style="text-align:right;">
-0.0228690
</td>
<td style="text-align:right;">
-0.1548339
</td>
<td style="text-align:right;">
0.1090960
</td>
<td style="text-align:right;">
0.0673303
</td>
<td style="text-align:right;">
-0.0630751
</td>
<td style="text-align:right;">
-0.2215457
</td>
<td style="text-align:right;">
0.0953955
</td>
<td style="text-align:right;">
0.0808538
</td>
<td style="text-align:right;">
64
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:right;">
0.0244492
</td>
<td style="text-align:right;">
-0.0737922
</td>
<td style="text-align:right;">
0.1226906
</td>
<td style="text-align:right;">
0.0501241
</td>
<td style="text-align:right;">
-0.0228690
</td>
<td style="text-align:right;">
-0.1548339
</td>
<td style="text-align:right;">
0.1090960
</td>
<td style="text-align:right;">
0.0673303
</td>
<td style="text-align:right;">
-0.0630751
</td>
<td style="text-align:right;">
-0.2215457
</td>
<td style="text-align:right;">
0.0953955
</td>
<td style="text-align:right;">
0.0808538
</td>
<td style="text-align:right;">
64
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:right;">
0.0321555
</td>
<td style="text-align:right;">
-0.1270972
</td>
<td style="text-align:right;">
0.1914083
</td>
<td style="text-align:right;">
0.0812529
</td>
<td style="text-align:right;">
0.0241491
</td>
<td style="text-align:right;">
-0.1438502
</td>
<td style="text-align:right;">
0.1921485
</td>
<td style="text-align:right;">
0.0857155
</td>
<td style="text-align:right;">
-0.0127047
</td>
<td style="text-align:right;">
-0.0177349
</td>
<td style="text-align:right;">
-0.0076745
</td>
<td style="text-align:right;">
0.0025665
</td>
<td style="text-align:right;">
65
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:right;">
0.0321555
</td>
<td style="text-align:right;">
-0.1270972
</td>
<td style="text-align:right;">
0.1914083
</td>
<td style="text-align:right;">
0.0812529
</td>
<td style="text-align:right;">
0.0241491
</td>
<td style="text-align:right;">
-0.1438502
</td>
<td style="text-align:right;">
0.1921485
</td>
<td style="text-align:right;">
0.0857155
</td>
<td style="text-align:right;">
-0.0127047
</td>
<td style="text-align:right;">
-0.0177349
</td>
<td style="text-align:right;">
-0.0076745
</td>
<td style="text-align:right;">
0.0025665
</td>
<td style="text-align:right;">
65
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:right;">
-0.0529450
</td>
<td style="text-align:right;">
-0.1534816
</td>
<td style="text-align:right;">
0.0475915
</td>
<td style="text-align:right;">
0.0512951
</td>
<td style="text-align:right;">
-0.0561198
</td>
<td style="text-align:right;">
-0.1827679
</td>
<td style="text-align:right;">
0.0705282
</td>
<td style="text-align:right;">
0.0646176
</td>
<td style="text-align:right;">
-0.0154221
</td>
<td style="text-align:right;">
-0.0577200
</td>
<td style="text-align:right;">
0.0268757
</td>
<td style="text-align:right;">
0.0215809
</td>
<td style="text-align:right;">
66
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:right;">
-0.0529450
</td>
<td style="text-align:right;">
-0.1534816
</td>
<td style="text-align:right;">
0.0475915
</td>
<td style="text-align:right;">
0.0512951
</td>
<td style="text-align:right;">
-0.0561198
</td>
<td style="text-align:right;">
-0.1827679
</td>
<td style="text-align:right;">
0.0705282
</td>
<td style="text-align:right;">
0.0646176
</td>
<td style="text-align:right;">
-0.0154221
</td>
<td style="text-align:right;">
-0.0577200
</td>
<td style="text-align:right;">
0.0268757
</td>
<td style="text-align:right;">
0.0215809
</td>
<td style="text-align:right;">
66
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
</tr>
<tr>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:right;">
0.0241232
</td>
<td style="text-align:right;">
-0.1071457
</td>
<td style="text-align:right;">
0.1553920
</td>
<td style="text-align:right;">
0.0669751
</td>
<td style="text-align:right;">
-0.1318792
</td>
<td style="text-align:right;">
-0.3968974
</td>
<td style="text-align:right;">
0.1331390
</td>
<td style="text-align:right;">
0.1352159
</td>
<td style="text-align:right;">
-0.1344413
</td>
<td style="text-align:right;">
-0.3838303
</td>
<td style="text-align:right;">
0.1149476
</td>
<td style="text-align:right;">
0.1272416
</td>
<td style="text-align:right;">
67
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:right;">
0.0241232
</td>
<td style="text-align:right;">
-0.1071457
</td>
<td style="text-align:right;">
0.1553920
</td>
<td style="text-align:right;">
0.0669751
</td>
<td style="text-align:right;">
-0.1318792
</td>
<td style="text-align:right;">
-0.3968974
</td>
<td style="text-align:right;">
0.1331390
</td>
<td style="text-align:right;">
0.1352159
</td>
<td style="text-align:right;">
-0.1344413
</td>
<td style="text-align:right;">
-0.3838303
</td>
<td style="text-align:right;">
0.1149476
</td>
<td style="text-align:right;">
0.1272416
</td>
<td style="text-align:right;">
67
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:right;">
0.0352315
</td>
<td style="text-align:right;">
-0.0229205
</td>
<td style="text-align:right;">
0.0933835
</td>
<td style="text-align:right;">
0.0296699
</td>
<td style="text-align:right;">
0.1066373
</td>
<td style="text-align:right;">
-0.2200831
</td>
<td style="text-align:right;">
0.4333578
</td>
<td style="text-align:right;">
0.1666972
</td>
<td style="text-align:right;">
-0.0844078
</td>
<td style="text-align:right;">
-0.1320251
</td>
<td style="text-align:right;">
-0.0367905
</td>
<td style="text-align:right;">
0.0242950
</td>
<td style="text-align:right;">
68
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:right;">
0.0352315
</td>
<td style="text-align:right;">
-0.0229205
</td>
<td style="text-align:right;">
0.0933835
</td>
<td style="text-align:right;">
0.0296699
</td>
<td style="text-align:right;">
0.1066373
</td>
<td style="text-align:right;">
-0.2200831
</td>
<td style="text-align:right;">
0.4333578
</td>
<td style="text-align:right;">
0.1666972
</td>
<td style="text-align:right;">
-0.0844078
</td>
<td style="text-align:right;">
-0.1320251
</td>
<td style="text-align:right;">
-0.0367905
</td>
<td style="text-align:right;">
0.0242950
</td>
<td style="text-align:right;">
68
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
cv
</td>
<td style="text-align:right;">
0.1874544
</td>
<td style="text-align:right;">
0.0716631
</td>
<td style="text-align:right;">
0.3032457
</td>
<td style="text-align:right;">
0.0590783
</td>
<td style="text-align:right;">
-0.0895722
</td>
<td style="text-align:right;">
-0.2484833
</td>
<td style="text-align:right;">
0.0693388
</td>
<td style="text-align:right;">
0.0810786
</td>
<td style="text-align:right;">
-0.2401301
</td>
<td style="text-align:right;">
-0.3410322
</td>
<td style="text-align:right;">
-0.1392280
</td>
<td style="text-align:right;">
0.0514816
</td>
<td style="text-align:right;">
69
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
cv
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
cv
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
cv
</td>
<td style="text-align:right;">
0.1874544
</td>
<td style="text-align:right;">
0.0716631
</td>
<td style="text-align:right;">
0.3032457
</td>
<td style="text-align:right;">
0.0590783
</td>
<td style="text-align:right;">
-0.0895722
</td>
<td style="text-align:right;">
-0.2484833
</td>
<td style="text-align:right;">
0.0693388
</td>
<td style="text-align:right;">
0.0810786
</td>
<td style="text-align:right;">
-0.2401301
</td>
<td style="text-align:right;">
-0.3410322
</td>
<td style="text-align:right;">
-0.1392280
</td>
<td style="text-align:right;">
0.0514816
</td>
<td style="text-align:right;">
69
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
cv
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
cv
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:right;">
-0.0187819
</td>
<td style="text-align:right;">
-0.0858957
</td>
<td style="text-align:right;">
0.0483318
</td>
<td style="text-align:right;">
0.0342423
</td>
<td style="text-align:right;">
-0.1272582
</td>
<td style="text-align:right;">
-0.1997426
</td>
<td style="text-align:right;">
-0.0547738
</td>
<td style="text-align:right;">
0.0369825
</td>
<td style="text-align:right;">
-0.1121373
</td>
<td style="text-align:right;">
-0.1816322
</td>
<td style="text-align:right;">
-0.0426424
</td>
<td style="text-align:right;">
0.0354572
</td>
<td style="text-align:right;">
70
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:right;">
-0.0187819
</td>
<td style="text-align:right;">
-0.0858957
</td>
<td style="text-align:right;">
0.0483318
</td>
<td style="text-align:right;">
0.0342423
</td>
<td style="text-align:right;">
-0.1272582
</td>
<td style="text-align:right;">
-0.1997426
</td>
<td style="text-align:right;">
-0.0547738
</td>
<td style="text-align:right;">
0.0369825
</td>
<td style="text-align:right;">
-0.1121373
</td>
<td style="text-align:right;">
-0.1816322
</td>
<td style="text-align:right;">
-0.0426424
</td>
<td style="text-align:right;">
0.0354572
</td>
<td style="text-align:right;">
70
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:right;">
-0.0300111
</td>
<td style="text-align:right;">
-0.1345066
</td>
<td style="text-align:right;">
0.0744844
</td>
<td style="text-align:right;">
0.0533150
</td>
<td style="text-align:right;">
-0.0525735
</td>
<td style="text-align:right;">
-0.1483174
</td>
<td style="text-align:right;">
0.0431705
</td>
<td style="text-align:right;">
0.0488499
</td>
<td style="text-align:right;">
-0.0284086
</td>
<td style="text-align:right;">
-0.0492579
</td>
<td style="text-align:right;">
-0.0075592
</td>
<td style="text-align:right;">
0.0106376
</td>
<td style="text-align:right;">
85
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:right;">
-0.0300111
</td>
<td style="text-align:right;">
-0.1345066
</td>
<td style="text-align:right;">
0.0744844
</td>
<td style="text-align:right;">
0.0533150
</td>
<td style="text-align:right;">
-0.0525735
</td>
<td style="text-align:right;">
-0.1483174
</td>
<td style="text-align:right;">
0.0431705
</td>
<td style="text-align:right;">
0.0488499
</td>
<td style="text-align:right;">
-0.0284086
</td>
<td style="text-align:right;">
-0.0492579
</td>
<td style="text-align:right;">
-0.0075592
</td>
<td style="text-align:right;">
0.0106376
</td>
<td style="text-align:right;">
85
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:right;">
0.1120972
</td>
<td style="text-align:right;">
0.0431489
</td>
<td style="text-align:right;">
0.1810454
</td>
<td style="text-align:right;">
0.0351783
</td>
<td style="text-align:right;">
0.1743929
</td>
<td style="text-align:right;">
0.0875252
</td>
<td style="text-align:right;">
0.2612607
</td>
<td style="text-align:right;">
0.0443211
</td>
<td style="text-align:right;">
0.0600907
</td>
<td style="text-align:right;">
0.0354923
</td>
<td style="text-align:right;">
0.0846891
</td>
<td style="text-align:right;">
0.0125504
</td>
<td style="text-align:right;">
86
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:right;">
0.1120972
</td>
<td style="text-align:right;">
0.0431489
</td>
<td style="text-align:right;">
0.1810454
</td>
<td style="text-align:right;">
0.0351783
</td>
<td style="text-align:right;">
0.1743929
</td>
<td style="text-align:right;">
0.0875252
</td>
<td style="text-align:right;">
0.2612607
</td>
<td style="text-align:right;">
0.0443211
</td>
<td style="text-align:right;">
0.0600907
</td>
<td style="text-align:right;">
0.0354923
</td>
<td style="text-align:right;">
0.0846891
</td>
<td style="text-align:right;">
0.0125504
</td>
<td style="text-align:right;">
86
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:right;">
-0.0084176
</td>
<td style="text-align:right;">
-0.0780811
</td>
<td style="text-align:right;">
0.0612459
</td>
<td style="text-align:right;">
0.0355433
</td>
<td style="text-align:right;">
0.0668966
</td>
<td style="text-align:right;">
-0.0016692
</td>
<td style="text-align:right;">
0.1354624
</td>
<td style="text-align:right;">
0.0349832
</td>
<td style="text-align:right;">
0.0763195
</td>
<td style="text-align:right;">
0.0451136
</td>
<td style="text-align:right;">
0.1075254
</td>
<td style="text-align:right;">
0.0159217
</td>
<td style="text-align:right;">
87
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:right;">
-0.0084176
</td>
<td style="text-align:right;">
-0.0780811
</td>
<td style="text-align:right;">
0.0612459
</td>
<td style="text-align:right;">
0.0355433
</td>
<td style="text-align:right;">
0.0668966
</td>
<td style="text-align:right;">
-0.0016692
</td>
<td style="text-align:right;">
0.1354624
</td>
<td style="text-align:right;">
0.0349832
</td>
<td style="text-align:right;">
0.0763195
</td>
<td style="text-align:right;">
0.0451136
</td>
<td style="text-align:right;">
0.1075254
</td>
<td style="text-align:right;">
0.0159217
</td>
<td style="text-align:right;">
87
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:right;">
-0.0177245
</td>
<td style="text-align:right;">
-0.1256855
</td>
<td style="text-align:right;">
0.0902366
</td>
<td style="text-align:right;">
0.0550832
</td>
<td style="text-align:right;">
0.0702824
</td>
<td style="text-align:right;">
-0.0302439
</td>
<td style="text-align:right;">
0.1708087
</td>
<td style="text-align:right;">
0.0512899
</td>
<td style="text-align:right;">
0.0868420
</td>
<td style="text-align:right;">
0.0493007
</td>
<td style="text-align:right;">
0.1243832
</td>
<td style="text-align:right;">
0.0191541
</td>
<td style="text-align:right;">
91
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:right;">
-0.0177245
</td>
<td style="text-align:right;">
-0.1256855
</td>
<td style="text-align:right;">
0.0902366
</td>
<td style="text-align:right;">
0.0550832
</td>
<td style="text-align:right;">
0.0702824
</td>
<td style="text-align:right;">
-0.0302439
</td>
<td style="text-align:right;">
0.1708087
</td>
<td style="text-align:right;">
0.0512899
</td>
<td style="text-align:right;">
0.0868420
</td>
<td style="text-align:right;">
0.0493007
</td>
<td style="text-align:right;">
0.1243832
</td>
<td style="text-align:right;">
0.0191541
</td>
<td style="text-align:right;">
91
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:right;">
0.0408799
</td>
<td style="text-align:right;">
-0.0430149
</td>
<td style="text-align:right;">
0.1247746
</td>
<td style="text-align:right;">
0.0428042
</td>
<td style="text-align:right;">
0.3714313
</td>
<td style="text-align:right;">
0.2698790
</td>
<td style="text-align:right;">
0.4729837
</td>
<td style="text-align:right;">
0.0518134
</td>
<td style="text-align:right;">
0.3282080
</td>
<td style="text-align:right;">
0.2669032
</td>
<td style="text-align:right;">
0.3895129
</td>
<td style="text-align:right;">
0.0312786
</td>
<td style="text-align:right;">
92
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:right;">
0.0408799
</td>
<td style="text-align:right;">
-0.0430149
</td>
<td style="text-align:right;">
0.1247746
</td>
<td style="text-align:right;">
0.0428042
</td>
<td style="text-align:right;">
0.3714313
</td>
<td style="text-align:right;">
0.2698790
</td>
<td style="text-align:right;">
0.4729837
</td>
<td style="text-align:right;">
0.0518134
</td>
<td style="text-align:right;">
0.3282080
</td>
<td style="text-align:right;">
0.2669032
</td>
<td style="text-align:right;">
0.3895129
</td>
<td style="text-align:right;">
0.0312786
</td>
<td style="text-align:right;">
92
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:right;">
0.0777327
</td>
<td style="text-align:right;">
-0.0119735
</td>
<td style="text-align:right;">
0.1674390
</td>
<td style="text-align:right;">
0.0457693
</td>
<td style="text-align:right;">
0.2020776
</td>
<td style="text-align:right;">
0.1083557
</td>
<td style="text-align:right;">
0.2957996
</td>
<td style="text-align:right;">
0.0478182
</td>
<td style="text-align:right;">
0.1235292
</td>
<td style="text-align:right;">
0.0638629
</td>
<td style="text-align:right;">
0.1831955
</td>
<td style="text-align:right;">
0.0304425
</td>
<td style="text-align:right;">
93
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:right;">
0.0777327
</td>
<td style="text-align:right;">
-0.0119735
</td>
<td style="text-align:right;">
0.1674390
</td>
<td style="text-align:right;">
0.0457693
</td>
<td style="text-align:right;">
0.2020776
</td>
<td style="text-align:right;">
0.1083557
</td>
<td style="text-align:right;">
0.2957996
</td>
<td style="text-align:right;">
0.0478182
</td>
<td style="text-align:right;">
0.1235292
</td>
<td style="text-align:right;">
0.0638629
</td>
<td style="text-align:right;">
0.1831955
</td>
<td style="text-align:right;">
0.0304425
</td>
<td style="text-align:right;">
93
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:right;">
0.0578158
</td>
<td style="text-align:right;">
0.0039998
</td>
<td style="text-align:right;">
0.1116318
</td>
<td style="text-align:right;">
0.0274577
</td>
<td style="text-align:right;">
0.1145986
</td>
<td style="text-align:right;">
0.0530521
</td>
<td style="text-align:right;">
0.1761451
</td>
<td style="text-align:right;">
0.0314018
</td>
<td style="text-align:right;">
0.0541888
</td>
<td style="text-align:right;">
0.0294838
</td>
<td style="text-align:right;">
0.0788938
</td>
<td style="text-align:right;">
0.0126048
</td>
<td style="text-align:right;">
96
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:right;">
0.0578158
</td>
<td style="text-align:right;">
0.0039998
</td>
<td style="text-align:right;">
0.1116318
</td>
<td style="text-align:right;">
0.0274577
</td>
<td style="text-align:right;">
0.1145986
</td>
<td style="text-align:right;">
0.0530521
</td>
<td style="text-align:right;">
0.1761451
</td>
<td style="text-align:right;">
0.0314018
</td>
<td style="text-align:right;">
0.0541888
</td>
<td style="text-align:right;">
0.0294838
</td>
<td style="text-align:right;">
0.0788938
</td>
<td style="text-align:right;">
0.0126048
</td>
<td style="text-align:right;">
96
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:right;">
0.0265051
</td>
<td style="text-align:right;">
-0.0187240
</td>
<td style="text-align:right;">
0.0717341
</td>
<td style="text-align:right;">
0.0230765
</td>
<td style="text-align:right;">
0.0995076
</td>
<td style="text-align:right;">
0.0539740
</td>
<td style="text-align:right;">
0.1450413
</td>
<td style="text-align:right;">
0.0232319
</td>
<td style="text-align:right;">
0.0697061
</td>
<td style="text-align:right;">
0.0438625
</td>
<td style="text-align:right;">
0.0955496
</td>
<td style="text-align:right;">
0.0131857
</td>
<td style="text-align:right;">
97
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:right;">
0.0265051
</td>
<td style="text-align:right;">
-0.0187240
</td>
<td style="text-align:right;">
0.0717341
</td>
<td style="text-align:right;">
0.0230765
</td>
<td style="text-align:right;">
0.0995076
</td>
<td style="text-align:right;">
0.0539740
</td>
<td style="text-align:right;">
0.1450413
</td>
<td style="text-align:right;">
0.0232319
</td>
<td style="text-align:right;">
0.0697061
</td>
<td style="text-align:right;">
0.0438625
</td>
<td style="text-align:right;">
0.0955496
</td>
<td style="text-align:right;">
0.0131857
</td>
<td style="text-align:right;">
97
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:right;">
-0.0148852
</td>
<td style="text-align:right;">
-0.1161666
</td>
<td style="text-align:right;">
0.0863961
</td>
<td style="text-align:right;">
0.0516751
</td>
<td style="text-align:right;">
-0.0575326
</td>
<td style="text-align:right;">
-0.1558559
</td>
<td style="text-align:right;">
0.0407907
</td>
<td style="text-align:right;">
0.0501659
</td>
<td style="text-align:right;">
-0.0413498
</td>
<td style="text-align:right;">
-0.0567105
</td>
<td style="text-align:right;">
-0.0259891
</td>
<td style="text-align:right;">
0.0078372
</td>
<td style="text-align:right;">
98
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:right;">
-0.0148852
</td>
<td style="text-align:right;">
-0.1161666
</td>
<td style="text-align:right;">
0.0863961
</td>
<td style="text-align:right;">
0.0516751
</td>
<td style="text-align:right;">
-0.0575326
</td>
<td style="text-align:right;">
-0.1558559
</td>
<td style="text-align:right;">
0.0407907
</td>
<td style="text-align:right;">
0.0501659
</td>
<td style="text-align:right;">
-0.0413498
</td>
<td style="text-align:right;">
-0.0567105
</td>
<td style="text-align:right;">
-0.0259891
</td>
<td style="text-align:right;">
0.0078372
</td>
<td style="text-align:right;">
98
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:right;">
0.0281576
</td>
<td style="text-align:right;">
-0.1002531
</td>
<td style="text-align:right;">
0.1565683
</td>
<td style="text-align:right;">
0.0655169
</td>
<td style="text-align:right;">
0.0554109
</td>
<td style="text-align:right;">
-0.0736861
</td>
<td style="text-align:right;">
0.1845079
</td>
<td style="text-align:right;">
0.0658670
</td>
<td style="text-align:right;">
0.0193783
</td>
<td style="text-align:right;">
-0.0093700
</td>
<td style="text-align:right;">
0.0481266
</td>
<td style="text-align:right;">
0.0146678
</td>
<td style="text-align:right;">
99
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:right;">
0.0281576
</td>
<td style="text-align:right;">
-0.1002531
</td>
<td style="text-align:right;">
0.1565683
</td>
<td style="text-align:right;">
0.0655169
</td>
<td style="text-align:right;">
0.0554109
</td>
<td style="text-align:right;">
-0.0736861
</td>
<td style="text-align:right;">
0.1845079
</td>
<td style="text-align:right;">
0.0658670
</td>
<td style="text-align:right;">
0.0193783
</td>
<td style="text-align:right;">
-0.0093700
</td>
<td style="text-align:right;">
0.0481266
</td>
<td style="text-align:right;">
0.0146678
</td>
<td style="text-align:right;">
99
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:right;">
-0.0397864
</td>
<td style="text-align:right;">
-0.1198801
</td>
<td style="text-align:right;">
0.0403073
</td>
<td style="text-align:right;">
0.0408649
</td>
<td style="text-align:right;">
-0.0678231
</td>
<td style="text-align:right;">
-0.1513538
</td>
<td style="text-align:right;">
0.0157075
</td>
<td style="text-align:right;">
0.0426184
</td>
<td style="text-align:right;">
-0.0283579
</td>
<td style="text-align:right;">
-0.0692447
</td>
<td style="text-align:right;">
0.0125289
</td>
<td style="text-align:right;">
0.0208610
</td>
<td style="text-align:right;">
100
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:right;">
-0.0397864
</td>
<td style="text-align:right;">
-0.1198801
</td>
<td style="text-align:right;">
0.0403073
</td>
<td style="text-align:right;">
0.0408649
</td>
<td style="text-align:right;">
-0.0678231
</td>
<td style="text-align:right;">
-0.1513538
</td>
<td style="text-align:right;">
0.0157075
</td>
<td style="text-align:right;">
0.0426184
</td>
<td style="text-align:right;">
-0.0283579
</td>
<td style="text-align:right;">
-0.0692447
</td>
<td style="text-align:right;">
0.0125289
</td>
<td style="text-align:right;">
0.0208610
</td>
<td style="text-align:right;">
100
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:right;">
0.0692601
</td>
<td style="text-align:right;">
0.0184025
</td>
<td style="text-align:right;">
0.1201176
</td>
<td style="text-align:right;">
0.0259482
</td>
<td style="text-align:right;">
0.1279473
</td>
<td style="text-align:right;">
0.0423001
</td>
<td style="text-align:right;">
0.2135946
</td>
<td style="text-align:right;">
0.0436984
</td>
<td style="text-align:right;">
0.0650887
</td>
<td style="text-align:right;">
0.0218496
</td>
<td style="text-align:right;">
0.1083279
</td>
<td style="text-align:right;">
0.0220612
</td>
<td style="text-align:right;">
101
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:right;">
0.0692601
</td>
<td style="text-align:right;">
0.0184025
</td>
<td style="text-align:right;">
0.1201176
</td>
<td style="text-align:right;">
0.0259482
</td>
<td style="text-align:right;">
0.1279473
</td>
<td style="text-align:right;">
0.0423001
</td>
<td style="text-align:right;">
0.2135946
</td>
<td style="text-align:right;">
0.0436984
</td>
<td style="text-align:right;">
0.0650887
</td>
<td style="text-align:right;">
0.0218496
</td>
<td style="text-align:right;">
0.1083279
</td>
<td style="text-align:right;">
0.0220612
</td>
<td style="text-align:right;">
101
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:right;">
-0.0650177
</td>
<td style="text-align:right;">
-0.1255786
</td>
<td style="text-align:right;">
-0.0044568
</td>
<td style="text-align:right;">
0.0308990
</td>
<td style="text-align:right;">
0.1724354
</td>
<td style="text-align:right;">
0.0701062
</td>
<td style="text-align:right;">
0.2747646
</td>
<td style="text-align:right;">
0.0522097
</td>
<td style="text-align:right;">
0.2606961
</td>
<td style="text-align:right;">
0.2180421
</td>
<td style="text-align:right;">
0.3033501
</td>
<td style="text-align:right;">
0.0217626
</td>
<td style="text-align:right;">
102
</td>
<td style="text-align:right;">
15
</td>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:right;">
-0.0650177
</td>
<td style="text-align:right;">
-0.1255786
</td>
<td style="text-align:right;">
-0.0044568
</td>
<td style="text-align:right;">
0.0308990
</td>
<td style="text-align:right;">
0.1724354
</td>
<td style="text-align:right;">
0.0701062
</td>
<td style="text-align:right;">
0.2747646
</td>
<td style="text-align:right;">
0.0522097
</td>
<td style="text-align:right;">
0.2606961
</td>
<td style="text-align:right;">
0.2180421
</td>
<td style="text-align:right;">
0.3033501
</td>
<td style="text-align:right;">
0.0217626
</td>
<td style="text-align:right;">
102
</td>
<td style="text-align:right;">
15
</td>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:right;">
0.1766832
</td>
<td style="text-align:right;">
0.0672843
</td>
<td style="text-align:right;">
0.2860820
</td>
<td style="text-align:right;">
0.0558168
</td>
<td style="text-align:right;">
0.3651806
</td>
<td style="text-align:right;">
0.2169840
</td>
<td style="text-align:right;">
0.5133772
</td>
<td style="text-align:right;">
0.0756119
</td>
<td style="text-align:right;">
0.1737615
</td>
<td style="text-align:right;">
0.1409037
</td>
<td style="text-align:right;">
0.2066193
</td>
<td style="text-align:right;">
0.0167645
</td>
<td style="text-align:right;">
103
</td>
<td style="text-align:right;">
15
</td>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:right;">
0.1766832
</td>
<td style="text-align:right;">
0.0672843
</td>
<td style="text-align:right;">
0.2860820
</td>
<td style="text-align:right;">
0.0558168
</td>
<td style="text-align:right;">
0.3651806
</td>
<td style="text-align:right;">
0.2169840
</td>
<td style="text-align:right;">
0.5133772
</td>
<td style="text-align:right;">
0.0756119
</td>
<td style="text-align:right;">
0.1737615
</td>
<td style="text-align:right;">
0.1409037
</td>
<td style="text-align:right;">
0.2066193
</td>
<td style="text-align:right;">
0.0167645
</td>
<td style="text-align:right;">
103
</td>
<td style="text-align:right;">
15
</td>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:right;">
0.0794303
</td>
<td style="text-align:right;">
-0.0060591
</td>
<td style="text-align:right;">
0.1649198
</td>
<td style="text-align:right;">
0.0436179
</td>
<td style="text-align:right;">
0.0355574
</td>
<td style="text-align:right;">
-0.0973272
</td>
<td style="text-align:right;">
0.1684419
</td>
<td style="text-align:right;">
0.0677995
</td>
<td style="text-align:right;">
-0.0495578
</td>
<td style="text-align:right;">
-0.0835809
</td>
<td style="text-align:right;">
-0.0155346
</td>
<td style="text-align:right;">
0.0173591
</td>
<td style="text-align:right;">
104
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:right;">
0.0794303
</td>
<td style="text-align:right;">
-0.0060591
</td>
<td style="text-align:right;">
0.1649198
</td>
<td style="text-align:right;">
0.0436179
</td>
<td style="text-align:right;">
0.0355574
</td>
<td style="text-align:right;">
-0.0973272
</td>
<td style="text-align:right;">
0.1684419
</td>
<td style="text-align:right;">
0.0677995
</td>
<td style="text-align:right;">
-0.0495578
</td>
<td style="text-align:right;">
-0.0835809
</td>
<td style="text-align:right;">
-0.0155346
</td>
<td style="text-align:right;">
0.0173591
</td>
<td style="text-align:right;">
104
</td>
<td style="text-align:right;">
14
</td>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:right;">
0.0566356
</td>
<td style="text-align:right;">
-0.0516862
</td>
<td style="text-align:right;">
0.1649575
</td>
<td style="text-align:right;">
0.0552673
</td>
<td style="text-align:right;">
0.0737071
</td>
<td style="text-align:right;">
-0.0328632
</td>
<td style="text-align:right;">
0.1802774
</td>
<td style="text-align:right;">
0.0543736
</td>
<td style="text-align:right;">
0.0173967
</td>
<td style="text-align:right;">
0.0035179
</td>
<td style="text-align:right;">
0.0312754
</td>
<td style="text-align:right;">
0.0070811
</td>
<td style="text-align:right;">
105
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:right;">
0.0566356
</td>
<td style="text-align:right;">
-0.0516862
</td>
<td style="text-align:right;">
0.1649575
</td>
<td style="text-align:right;">
0.0552673
</td>
<td style="text-align:right;">
0.0737071
</td>
<td style="text-align:right;">
-0.0328632
</td>
<td style="text-align:right;">
0.1802774
</td>
<td style="text-align:right;">
0.0543736
</td>
<td style="text-align:right;">
0.0173967
</td>
<td style="text-align:right;">
0.0035179
</td>
<td style="text-align:right;">
0.0312754
</td>
<td style="text-align:right;">
0.0070811
</td>
<td style="text-align:right;">
105
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:right;">
0.0867000
</td>
<td style="text-align:right;">
0.0269936
</td>
<td style="text-align:right;">
0.1464064
</td>
<td style="text-align:right;">
0.0304630
</td>
<td style="text-align:right;">
0.0867345
</td>
<td style="text-align:right;">
0.0194022
</td>
<td style="text-align:right;">
0.1540668
</td>
<td style="text-align:right;">
0.0343538
</td>
<td style="text-align:right;">
0.0051992
</td>
<td style="text-align:right;">
-0.0080216
</td>
<td style="text-align:right;">
0.0184199
</td>
<td style="text-align:right;">
0.0067454
</td>
<td style="text-align:right;">
106
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:right;">
0.0867000
</td>
<td style="text-align:right;">
0.0269936
</td>
<td style="text-align:right;">
0.1464064
</td>
<td style="text-align:right;">
0.0304630
</td>
<td style="text-align:right;">
0.0867345
</td>
<td style="text-align:right;">
0.0194022
</td>
<td style="text-align:right;">
0.1540668
</td>
<td style="text-align:right;">
0.0343538
</td>
<td style="text-align:right;">
0.0051992
</td>
<td style="text-align:right;">
-0.0080216
</td>
<td style="text-align:right;">
0.0184199
</td>
<td style="text-align:right;">
0.0067454
</td>
<td style="text-align:right;">
106
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
hr
</td>
<td style="text-align:right;">
-0.0634490
</td>
<td style="text-align:right;">
-0.1734699
</td>
<td style="text-align:right;">
0.0465718
</td>
<td style="text-align:right;">
0.0561341
</td>
<td style="text-align:right;">
-0.0140315
</td>
<td style="text-align:right;">
-0.1488474
</td>
<td style="text-align:right;">
0.1207843
</td>
<td style="text-align:right;">
0.0687849
</td>
<td style="text-align:right;">
0.0406617
</td>
<td style="text-align:right;">
-0.0139214
</td>
<td style="text-align:right;">
0.0952448
</td>
<td style="text-align:right;">
0.0278490
</td>
<td style="text-align:right;">
107
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
hr
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
hr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
hr
</td>
<td style="text-align:right;">
-0.0634490
</td>
<td style="text-align:right;">
-0.1734699
</td>
<td style="text-align:right;">
0.0465718
</td>
<td style="text-align:right;">
0.0561341
</td>
<td style="text-align:right;">
-0.0140315
</td>
<td style="text-align:right;">
-0.1488474
</td>
<td style="text-align:right;">
0.1207843
</td>
<td style="text-align:right;">
0.0687849
</td>
<td style="text-align:right;">
0.0406617
</td>
<td style="text-align:right;">
-0.0139214
</td>
<td style="text-align:right;">
0.0952448
</td>
<td style="text-align:right;">
0.0278490
</td>
<td style="text-align:right;">
107
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
hr
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
hr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:right;">
0.1722593
</td>
<td style="text-align:right;">
0.1094294
</td>
<td style="text-align:right;">
0.2350892
</td>
<td style="text-align:right;">
0.0320567
</td>
<td style="text-align:right;">
-0.0813225
</td>
<td style="text-align:right;">
-0.2125462
</td>
<td style="text-align:right;">
0.0499011
</td>
<td style="text-align:right;">
0.0669521
</td>
<td style="text-align:right;">
-0.2504990
</td>
<td style="text-align:right;">
-0.3657436
</td>
<td style="text-align:right;">
-0.1352545
</td>
<td style="text-align:right;">
0.0587993
</td>
<td style="text-align:right;">
108
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:right;">
0.1722593
</td>
<td style="text-align:right;">
0.1094294
</td>
<td style="text-align:right;">
0.2350892
</td>
<td style="text-align:right;">
0.0320567
</td>
<td style="text-align:right;">
-0.0813225
</td>
<td style="text-align:right;">
-0.2125462
</td>
<td style="text-align:right;">
0.0499011
</td>
<td style="text-align:right;">
0.0669521
</td>
<td style="text-align:right;">
-0.2504990
</td>
<td style="text-align:right;">
-0.3657436
</td>
<td style="text-align:right;">
-0.1352545
</td>
<td style="text-align:right;">
0.0587993
</td>
<td style="text-align:right;">
108
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:right;">
-0.0968821
</td>
<td style="text-align:right;">
-0.1503780
</td>
<td style="text-align:right;">
-0.0433861
</td>
<td style="text-align:right;">
0.0272943
</td>
<td style="text-align:right;">
0.0429971
</td>
<td style="text-align:right;">
0.0141807
</td>
<td style="text-align:right;">
0.0718136
</td>
<td style="text-align:right;">
0.0147026
</td>
<td style="text-align:right;">
0.1183626
</td>
<td style="text-align:right;">
0.0853242
</td>
<td style="text-align:right;">
0.1514009
</td>
<td style="text-align:right;">
0.0168566
</td>
<td style="text-align:right;">
109
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:right;">
-0.0968821
</td>
<td style="text-align:right;">
-0.1503780
</td>
<td style="text-align:right;">
-0.0433861
</td>
<td style="text-align:right;">
0.0272943
</td>
<td style="text-align:right;">
0.0429971
</td>
<td style="text-align:right;">
0.0141807
</td>
<td style="text-align:right;">
0.0718136
</td>
<td style="text-align:right;">
0.0147026
</td>
<td style="text-align:right;">
0.1183626
</td>
<td style="text-align:right;">
0.0853242
</td>
<td style="text-align:right;">
0.1514009
</td>
<td style="text-align:right;">
0.0168566
</td>
<td style="text-align:right;">
109
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:right;">
-0.0993292
</td>
<td style="text-align:right;">
-0.3721975
</td>
<td style="text-align:right;">
0.1735391
</td>
<td style="text-align:right;">
0.1392211
</td>
<td style="text-align:right;">
0.1774003
</td>
<td style="text-align:right;">
-0.1938091
</td>
<td style="text-align:right;">
0.5486096
</td>
<td style="text-align:right;">
0.1893960
</td>
<td style="text-align:right;">
0.4445455
</td>
<td style="text-align:right;">
0.0944498
</td>
<td style="text-align:right;">
0.7946412
</td>
<td style="text-align:right;">
0.1786236
</td>
<td style="text-align:right;">
110
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:left;">
Insulin Blood Level
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Insulin Blood Level
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:right;">
-0.0993292
</td>
<td style="text-align:right;">
-0.3721975
</td>
<td style="text-align:right;">
0.1735391
</td>
<td style="text-align:right;">
0.1392211
</td>
<td style="text-align:right;">
0.1774003
</td>
<td style="text-align:right;">
-0.1938091
</td>
<td style="text-align:right;">
0.5486096
</td>
<td style="text-align:right;">
0.1893960
</td>
<td style="text-align:right;">
0.4445455
</td>
<td style="text-align:right;">
0.0944498
</td>
<td style="text-align:right;">
0.7946412
</td>
<td style="text-align:right;">
0.1786236
</td>
<td style="text-align:right;">
110
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:left;">
Insulin Blood Level
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Insulin Blood Level
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
iron
</td>
<td style="text-align:right;">
-0.0974214
</td>
<td style="text-align:right;">
-0.2141737
</td>
<td style="text-align:right;">
0.0193310
</td>
<td style="text-align:right;">
0.0595686
</td>
<td style="text-align:right;">
-0.2534898
</td>
<td style="text-align:right;">
-0.3963648
</td>
<td style="text-align:right;">
-0.1106147
</td>
<td style="text-align:right;">
0.0728968
</td>
<td style="text-align:right;">
-0.1527977
</td>
<td style="text-align:right;">
-0.1930307
</td>
<td style="text-align:right;">
-0.1125646
</td>
<td style="text-align:right;">
0.0205274
</td>
<td style="text-align:right;">
111
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
iron
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
iron
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
iron
</td>
<td style="text-align:right;">
-0.0974214
</td>
<td style="text-align:right;">
-0.2141737
</td>
<td style="text-align:right;">
0.0193310
</td>
<td style="text-align:right;">
0.0595686
</td>
<td style="text-align:right;">
-0.2534898
</td>
<td style="text-align:right;">
-0.3963648
</td>
<td style="text-align:right;">
-0.1106147
</td>
<td style="text-align:right;">
0.0728968
</td>
<td style="text-align:right;">
-0.1527977
</td>
<td style="text-align:right;">
-0.1930307
</td>
<td style="text-align:right;">
-0.1125646
</td>
<td style="text-align:right;">
0.0205274
</td>
<td style="text-align:right;">
111
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
iron
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
iron
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:right;">
0.0941249
</td>
<td style="text-align:right;">
-0.0214022
</td>
<td style="text-align:right;">
0.2096519
</td>
<td style="text-align:right;">
0.0589435
</td>
<td style="text-align:right;">
0.1409270
</td>
<td style="text-align:right;">
-0.0620594
</td>
<td style="text-align:right;">
0.3439133
</td>
<td style="text-align:right;">
0.1035664
</td>
<td style="text-align:right;">
0.0318801
</td>
<td style="text-align:right;">
-0.1412218
</td>
<td style="text-align:right;">
0.2049819
</td>
<td style="text-align:right;">
0.0883189
</td>
<td style="text-align:right;">
112
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:right;">
0.0941249
</td>
<td style="text-align:right;">
-0.0214022
</td>
<td style="text-align:right;">
0.2096519
</td>
<td style="text-align:right;">
0.0589435
</td>
<td style="text-align:right;">
0.1409270
</td>
<td style="text-align:right;">
-0.0620594
</td>
<td style="text-align:right;">
0.3439133
</td>
<td style="text-align:right;">
0.1035664
</td>
<td style="text-align:right;">
0.0318801
</td>
<td style="text-align:right;">
-0.1412218
</td>
<td style="text-align:right;">
0.2049819
</td>
<td style="text-align:right;">
0.0883189
</td>
<td style="text-align:right;">
112
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:right;">
0.1254239
</td>
<td style="text-align:right;">
0.0330185
</td>
<td style="text-align:right;">
0.2178293
</td>
<td style="text-align:right;">
0.0471465
</td>
<td style="text-align:right;">
0.3641221
</td>
<td style="text-align:right;">
0.2056000
</td>
<td style="text-align:right;">
0.5226441
</td>
<td style="text-align:right;">
0.0808801
</td>
<td style="text-align:right;">
0.2734519
</td>
<td style="text-align:right;">
0.0739366
</td>
<td style="text-align:right;">
0.4729672
</td>
<td style="text-align:right;">
0.1017954
</td>
<td style="text-align:right;">
115
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:right;">
0.1254239
</td>
<td style="text-align:right;">
0.0330185
</td>
<td style="text-align:right;">
0.2178293
</td>
<td style="text-align:right;">
0.0471465
</td>
<td style="text-align:right;">
0.3641221
</td>
<td style="text-align:right;">
0.2056000
</td>
<td style="text-align:right;">
0.5226441
</td>
<td style="text-align:right;">
0.0808801
</td>
<td style="text-align:right;">
0.2734519
</td>
<td style="text-align:right;">
0.0739366
</td>
<td style="text-align:right;">
0.4729672
</td>
<td style="text-align:right;">
0.1017954
</td>
<td style="text-align:right;">
115
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:right;">
0.4231644
</td>
<td style="text-align:right;">
0.1551776
</td>
<td style="text-align:right;">
0.6911512
</td>
<td style="text-align:right;">
0.1367305
</td>
<td style="text-align:right;">
0.2669283
</td>
<td style="text-align:right;">
-0.0956833
</td>
<td style="text-align:right;">
0.6295400
</td>
<td style="text-align:right;">
0.1850093
</td>
<td style="text-align:right;">
-0.1615499
</td>
<td style="text-align:right;">
-0.6010478
</td>
<td style="text-align:right;">
0.2779480
</td>
<td style="text-align:right;">
0.2242378
</td>
<td style="text-align:right;">
116
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:right;">
0.4231644
</td>
<td style="text-align:right;">
0.1551776
</td>
<td style="text-align:right;">
0.6911512
</td>
<td style="text-align:right;">
0.1367305
</td>
<td style="text-align:right;">
0.2669283
</td>
<td style="text-align:right;">
-0.0956833
</td>
<td style="text-align:right;">
0.6295400
</td>
<td style="text-align:right;">
0.1850093
</td>
<td style="text-align:right;">
-0.1615499
</td>
<td style="text-align:right;">
-0.6010478
</td>
<td style="text-align:right;">
0.2779480
</td>
<td style="text-align:right;">
0.2242378
</td>
<td style="text-align:right;">
116
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:right;">
0.1435756
</td>
<td style="text-align:right;">
0.0759342
</td>
<td style="text-align:right;">
0.2112170
</td>
<td style="text-align:right;">
0.0345115
</td>
<td style="text-align:right;">
0.3382447
</td>
<td style="text-align:right;">
0.2664863
</td>
<td style="text-align:right;">
0.4100031
</td>
<td style="text-align:right;">
0.0366121
</td>
<td style="text-align:right;">
0.1928945
</td>
<td style="text-align:right;">
0.1752425
</td>
<td style="text-align:right;">
0.2105465
</td>
<td style="text-align:right;">
0.0090063
</td>
<td style="text-align:right;">
117
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:right;">
0.1435756
</td>
<td style="text-align:right;">
0.0759342
</td>
<td style="text-align:right;">
0.2112170
</td>
<td style="text-align:right;">
0.0345115
</td>
<td style="text-align:right;">
0.3382447
</td>
<td style="text-align:right;">
0.2664863
</td>
<td style="text-align:right;">
0.4100031
</td>
<td style="text-align:right;">
0.0366121
</td>
<td style="text-align:right;">
0.1928945
</td>
<td style="text-align:right;">
0.1752425
</td>
<td style="text-align:right;">
0.2105465
</td>
<td style="text-align:right;">
0.0090063
</td>
<td style="text-align:right;">
117
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:right;">
0.1953833
</td>
<td style="text-align:right;">
0.0912480
</td>
<td style="text-align:right;">
0.2995186
</td>
<td style="text-align:right;">
0.0531312
</td>
<td style="text-align:right;">
0.1840786
</td>
<td style="text-align:right;">
0.0863764
</td>
<td style="text-align:right;">
0.2817807
</td>
<td style="text-align:right;">
0.0498490
</td>
<td style="text-align:right;">
-0.0122785
</td>
<td style="text-align:right;">
-0.0257504
</td>
<td style="text-align:right;">
0.0011934
</td>
<td style="text-align:right;">
0.0068736
</td>
<td style="text-align:right;">
118
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:right;">
0.1953833
</td>
<td style="text-align:right;">
0.0912480
</td>
<td style="text-align:right;">
0.2995186
</td>
<td style="text-align:right;">
0.0531312
</td>
<td style="text-align:right;">
0.1840786
</td>
<td style="text-align:right;">
0.0863764
</td>
<td style="text-align:right;">
0.2817807
</td>
<td style="text-align:right;">
0.0498490
</td>
<td style="text-align:right;">
-0.0122785
</td>
<td style="text-align:right;">
-0.0257504
</td>
<td style="text-align:right;">
0.0011934
</td>
<td style="text-align:right;">
0.0068736
</td>
<td style="text-align:right;">
118
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:right;">
-0.1854856
</td>
<td style="text-align:right;">
-0.4305058
</td>
<td style="text-align:right;">
0.0595347
</td>
<td style="text-align:right;">
0.1250126
</td>
<td style="text-align:right;">
-0.1534983
</td>
<td style="text-align:right;">
-0.4007283
</td>
<td style="text-align:right;">
0.0937316
</td>
<td style="text-align:right;">
0.1261401
</td>
<td style="text-align:right;">
0.0331746
</td>
<td style="text-align:right;">
0.0284172
</td>
<td style="text-align:right;">
0.0379321
</td>
<td style="text-align:right;">
0.0024273
</td>
<td style="text-align:right;">
119
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:right;">
-0.1854856
</td>
<td style="text-align:right;">
-0.4305058
</td>
<td style="text-align:right;">
0.0595347
</td>
<td style="text-align:right;">
0.1250126
</td>
<td style="text-align:right;">
-0.1534983
</td>
<td style="text-align:right;">
-0.4007283
</td>
<td style="text-align:right;">
0.0937316
</td>
<td style="text-align:right;">
0.1261401
</td>
<td style="text-align:right;">
0.0331746
</td>
<td style="text-align:right;">
0.0284172
</td>
<td style="text-align:right;">
0.0379321
</td>
<td style="text-align:right;">
0.0024273
</td>
<td style="text-align:right;">
119
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:right;">
-0.1446634
</td>
<td style="text-align:right;">
-0.2339950
</td>
<td style="text-align:right;">
-0.0553319
</td>
<td style="text-align:right;">
0.0455782
</td>
<td style="text-align:right;">
-0.1352252
</td>
<td style="text-align:right;">
-0.2234178
</td>
<td style="text-align:right;">
-0.0470327
</td>
<td style="text-align:right;">
0.0449970
</td>
<td style="text-align:right;">
0.0075283
</td>
<td style="text-align:right;">
-0.0057082
</td>
<td style="text-align:right;">
0.0207648
</td>
<td style="text-align:right;">
0.0067535
</td>
<td style="text-align:right;">
120
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:right;">
-0.1446634
</td>
<td style="text-align:right;">
-0.2339950
</td>
<td style="text-align:right;">
-0.0553319
</td>
<td style="text-align:right;">
0.0455782
</td>
<td style="text-align:right;">
-0.1352252
</td>
<td style="text-align:right;">
-0.2234178
</td>
<td style="text-align:right;">
-0.0470327
</td>
<td style="text-align:right;">
0.0449970
</td>
<td style="text-align:right;">
0.0075283
</td>
<td style="text-align:right;">
-0.0057082
</td>
<td style="text-align:right;">
0.0207648
</td>
<td style="text-align:right;">
0.0067535
</td>
<td style="text-align:right;">
120
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:right;">
0.0480458
</td>
<td style="text-align:right;">
-0.0360706
</td>
<td style="text-align:right;">
0.1321622
</td>
<td style="text-align:right;">
0.0429173
</td>
<td style="text-align:right;">
0.0487217
</td>
<td style="text-align:right;">
-0.0347622
</td>
<td style="text-align:right;">
0.1322057
</td>
<td style="text-align:right;">
0.0425946
</td>
<td style="text-align:right;">
0.0006956
</td>
<td style="text-align:right;">
-0.0095012
</td>
<td style="text-align:right;">
0.0108923
</td>
<td style="text-align:right;">
0.0052025
</td>
<td style="text-align:right;">
121
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:right;">
0.0480458
</td>
<td style="text-align:right;">
-0.0360706
</td>
<td style="text-align:right;">
0.1321622
</td>
<td style="text-align:right;">
0.0429173
</td>
<td style="text-align:right;">
0.0487217
</td>
<td style="text-align:right;">
-0.0347622
</td>
<td style="text-align:right;">
0.1322057
</td>
<td style="text-align:right;">
0.0425946
</td>
<td style="text-align:right;">
0.0006956
</td>
<td style="text-align:right;">
-0.0095012
</td>
<td style="text-align:right;">
0.0108923
</td>
<td style="text-align:right;">
0.0052025
</td>
<td style="text-align:right;">
121
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:right;">
-0.0675012
</td>
<td style="text-align:right;">
-0.1511666
</td>
<td style="text-align:right;">
0.0161641
</td>
<td style="text-align:right;">
0.0426872
</td>
<td style="text-align:right;">
-0.0618025
</td>
<td style="text-align:right;">
-0.1452865
</td>
<td style="text-align:right;">
0.0216814
</td>
<td style="text-align:right;">
0.0425946
</td>
<td style="text-align:right;">
0.0063811
</td>
<td style="text-align:right;">
0.0011702
</td>
<td style="text-align:right;">
0.0115921
</td>
<td style="text-align:right;">
0.0026587
</td>
<td style="text-align:right;">
122
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:right;">
-0.0675012
</td>
<td style="text-align:right;">
-0.1511666
</td>
<td style="text-align:right;">
0.0161641
</td>
<td style="text-align:right;">
0.0426872
</td>
<td style="text-align:right;">
-0.0618025
</td>
<td style="text-align:right;">
-0.1452865
</td>
<td style="text-align:right;">
0.0216814
</td>
<td style="text-align:right;">
0.0425946
</td>
<td style="text-align:right;">
0.0063811
</td>
<td style="text-align:right;">
0.0011702
</td>
<td style="text-align:right;">
0.0115921
</td>
<td style="text-align:right;">
0.0026587
</td>
<td style="text-align:right;">
122
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:right;">
-0.2631046
</td>
<td style="text-align:right;">
-0.4734756
</td>
<td style="text-align:right;">
-0.0527336
</td>
<td style="text-align:right;">
0.1073341
</td>
<td style="text-align:right;">
-0.2687360
</td>
<td style="text-align:right;">
-0.4790035
</td>
<td style="text-align:right;">
-0.0584686
</td>
<td style="text-align:right;">
0.1072813
</td>
<td style="text-align:right;">
-0.0026027
</td>
<td style="text-align:right;">
-0.0146655
</td>
<td style="text-align:right;">
0.0094600
</td>
<td style="text-align:right;">
0.0061546
</td>
<td style="text-align:right;">
123
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:right;">
-0.2631046
</td>
<td style="text-align:right;">
-0.4734756
</td>
<td style="text-align:right;">
-0.0527336
</td>
<td style="text-align:right;">
0.1073341
</td>
<td style="text-align:right;">
-0.2687360
</td>
<td style="text-align:right;">
-0.4790035
</td>
<td style="text-align:right;">
-0.0584686
</td>
<td style="text-align:right;">
0.1072813
</td>
<td style="text-align:right;">
-0.0026027
</td>
<td style="text-align:right;">
-0.0146655
</td>
<td style="text-align:right;">
0.0094600
</td>
<td style="text-align:right;">
0.0061546
</td>
<td style="text-align:right;">
123
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:right;">
-0.1975770
</td>
<td style="text-align:right;">
-0.4386627
</td>
<td style="text-align:right;">
0.0435087
</td>
<td style="text-align:right;">
0.1230052
</td>
<td style="text-align:right;">
-0.1932648
</td>
<td style="text-align:right;">
-0.4269751
</td>
<td style="text-align:right;">
0.0404456
</td>
<td style="text-align:right;">
0.1192422
</td>
<td style="text-align:right;">
0.0027995
</td>
<td style="text-align:right;">
-0.0034907
</td>
<td style="text-align:right;">
0.0090898
</td>
<td style="text-align:right;">
0.0032094
</td>
<td style="text-align:right;">
124
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:right;">
-0.1975770
</td>
<td style="text-align:right;">
-0.4386627
</td>
<td style="text-align:right;">
0.0435087
</td>
<td style="text-align:right;">
0.1230052
</td>
<td style="text-align:right;">
-0.1932648
</td>
<td style="text-align:right;">
-0.4269751
</td>
<td style="text-align:right;">
0.0404456
</td>
<td style="text-align:right;">
0.1192422
</td>
<td style="text-align:right;">
0.0027995
</td>
<td style="text-align:right;">
-0.0034907
</td>
<td style="text-align:right;">
0.0090898
</td>
<td style="text-align:right;">
0.0032094
</td>
<td style="text-align:right;">
124
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:right;">
0.0960106
</td>
<td style="text-align:right;">
0.0224214
</td>
<td style="text-align:right;">
0.1695997
</td>
<td style="text-align:right;">
0.0375462
</td>
<td style="text-align:right;">
-0.0159064
</td>
<td style="text-align:right;">
-0.0579694
</td>
<td style="text-align:right;">
0.0261566
</td>
<td style="text-align:right;">
0.0214611
</td>
<td style="text-align:right;">
-0.1105803
</td>
<td style="text-align:right;">
-0.1761043
</td>
<td style="text-align:right;">
-0.0450562
</td>
<td style="text-align:right;">
0.0334313
</td>
<td style="text-align:right;">
125
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:left;">
Combined SHIRPA and Dysmorphology
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Combined SHIRPA and Dysmorphology
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:right;">
0.0960106
</td>
<td style="text-align:right;">
0.0224214
</td>
<td style="text-align:right;">
0.1695997
</td>
<td style="text-align:right;">
0.0375462
</td>
<td style="text-align:right;">
-0.0159064
</td>
<td style="text-align:right;">
-0.0579694
</td>
<td style="text-align:right;">
0.0261566
</td>
<td style="text-align:right;">
0.0214611
</td>
<td style="text-align:right;">
-0.1105803
</td>
<td style="text-align:right;">
-0.1761043
</td>
<td style="text-align:right;">
-0.0450562
</td>
<td style="text-align:right;">
0.0334313
</td>
<td style="text-align:right;">
125
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:left;">
Combined SHIRPA and Dysmorphology
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Combined SHIRPA and Dysmorphology
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:right;">
0.0228924
</td>
<td style="text-align:right;">
-0.0247048
</td>
<td style="text-align:right;">
0.0704896
</td>
<td style="text-align:right;">
0.0242847
</td>
<td style="text-align:right;">
0.0454075
</td>
<td style="text-align:right;">
-0.0013249
</td>
<td style="text-align:right;">
0.0921399
</td>
<td style="text-align:right;">
0.0238435
</td>
<td style="text-align:right;">
0.0246614
</td>
<td style="text-align:right;">
0.0114095
</td>
<td style="text-align:right;">
0.0379132
</td>
<td style="text-align:right;">
0.0067613
</td>
<td style="text-align:right;">
126
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:right;">
0.0228924
</td>
<td style="text-align:right;">
-0.0247048
</td>
<td style="text-align:right;">
0.0704896
</td>
<td style="text-align:right;">
0.0242847
</td>
<td style="text-align:right;">
0.0454075
</td>
<td style="text-align:right;">
-0.0013249
</td>
<td style="text-align:right;">
0.0921399
</td>
<td style="text-align:right;">
0.0238435
</td>
<td style="text-align:right;">
0.0246614
</td>
<td style="text-align:right;">
0.0114095
</td>
<td style="text-align:right;">
0.0379132
</td>
<td style="text-align:right;">
0.0067613
</td>
<td style="text-align:right;">
126
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:right;">
-0.0017749
</td>
<td style="text-align:right;">
-0.2517581
</td>
<td style="text-align:right;">
0.2482083
</td>
<td style="text-align:right;">
0.1275448
</td>
<td style="text-align:right;">
0.0232601
</td>
<td style="text-align:right;">
-0.1776617
</td>
<td style="text-align:right;">
0.2241819
</td>
<td style="text-align:right;">
0.1025130
</td>
<td style="text-align:right;">
0.0112569
</td>
<td style="text-align:right;">
-0.0306073
</td>
<td style="text-align:right;">
0.0531211
</td>
<td style="text-align:right;">
0.0213597
</td>
<td style="text-align:right;">
127
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:right;">
-0.0017749
</td>
<td style="text-align:right;">
-0.2517581
</td>
<td style="text-align:right;">
0.2482083
</td>
<td style="text-align:right;">
0.1275448
</td>
<td style="text-align:right;">
0.0232601
</td>
<td style="text-align:right;">
-0.1776617
</td>
<td style="text-align:right;">
0.2241819
</td>
<td style="text-align:right;">
0.1025130
</td>
<td style="text-align:right;">
0.0112569
</td>
<td style="text-align:right;">
-0.0306073
</td>
<td style="text-align:right;">
0.0531211
</td>
<td style="text-align:right;">
0.0213597
</td>
<td style="text-align:right;">
127
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:right;">
0.0453256
</td>
<td style="text-align:right;">
-0.0241892
</td>
<td style="text-align:right;">
0.1148405
</td>
<td style="text-align:right;">
0.0354674
</td>
<td style="text-align:right;">
0.0981450
</td>
<td style="text-align:right;">
0.0208146
</td>
<td style="text-align:right;">
0.1754754
</td>
<td style="text-align:right;">
0.0394550
</td>
<td style="text-align:right;">
0.0528053
</td>
<td style="text-align:right;">
0.0378669
</td>
<td style="text-align:right;">
0.0677436
</td>
<td style="text-align:right;">
0.0076218
</td>
<td style="text-align:right;">
128
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:right;">
0.0453256
</td>
<td style="text-align:right;">
-0.0241892
</td>
<td style="text-align:right;">
0.1148405
</td>
<td style="text-align:right;">
0.0354674
</td>
<td style="text-align:right;">
0.0981450
</td>
<td style="text-align:right;">
0.0208146
</td>
<td style="text-align:right;">
0.1754754
</td>
<td style="text-align:right;">
0.0394550
</td>
<td style="text-align:right;">
0.0528053
</td>
<td style="text-align:right;">
0.0378669
</td>
<td style="text-align:right;">
0.0677436
</td>
<td style="text-align:right;">
0.0076218
</td>
<td style="text-align:right;">
128
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:right;">
-0.0635228
</td>
<td style="text-align:right;">
-0.1990947
</td>
<td style="text-align:right;">
0.0720491
</td>
<td style="text-align:right;">
0.0691706
</td>
<td style="text-align:right;">
0.0083352
</td>
<td style="text-align:right;">
-0.1335894
</td>
<td style="text-align:right;">
0.1502598
</td>
<td style="text-align:right;">
0.0724118
</td>
<td style="text-align:right;">
0.0756177
</td>
<td style="text-align:right;">
0.0525777
</td>
<td style="text-align:right;">
0.0986576
</td>
<td style="text-align:right;">
0.0117553
</td>
<td style="text-align:right;">
129
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:right;">
-0.0635228
</td>
<td style="text-align:right;">
-0.1990947
</td>
<td style="text-align:right;">
0.0720491
</td>
<td style="text-align:right;">
0.0691706
</td>
<td style="text-align:right;">
0.0083352
</td>
<td style="text-align:right;">
-0.1335894
</td>
<td style="text-align:right;">
0.1502598
</td>
<td style="text-align:right;">
0.0724118
</td>
<td style="text-align:right;">
0.0756177
</td>
<td style="text-align:right;">
0.0525777
</td>
<td style="text-align:right;">
0.0986576
</td>
<td style="text-align:right;">
0.0117553
</td>
<td style="text-align:right;">
129
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:right;">
-0.0317376
</td>
<td style="text-align:right;">
-0.1258062
</td>
<td style="text-align:right;">
0.0623311
</td>
<td style="text-align:right;">
0.0479951
</td>
<td style="text-align:right;">
-0.0104248
</td>
<td style="text-align:right;">
-0.1271922
</td>
<td style="text-align:right;">
0.1063426
</td>
<td style="text-align:right;">
0.0595763
</td>
<td style="text-align:right;">
0.0302674
</td>
<td style="text-align:right;">
0.0131900
</td>
<td style="text-align:right;">
0.0473448
</td>
<td style="text-align:right;">
0.0087131
</td>
<td style="text-align:right;">
130
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:right;">
-0.0317376
</td>
<td style="text-align:right;">
-0.1258062
</td>
<td style="text-align:right;">
0.0623311
</td>
<td style="text-align:right;">
0.0479951
</td>
<td style="text-align:right;">
-0.0104248
</td>
<td style="text-align:right;">
-0.1271922
</td>
<td style="text-align:right;">
0.1063426
</td>
<td style="text-align:right;">
0.0595763
</td>
<td style="text-align:right;">
0.0302674
</td>
<td style="text-align:right;">
0.0131900
</td>
<td style="text-align:right;">
0.0473448
</td>
<td style="text-align:right;">
0.0087131
</td>
<td style="text-align:right;">
130
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:right;">
-0.0190522
</td>
<td style="text-align:right;">
-0.1014670
</td>
<td style="text-align:right;">
0.0633627
</td>
<td style="text-align:right;">
0.0420492
</td>
<td style="text-align:right;">
0.0089592
</td>
<td style="text-align:right;">
-0.0823356
</td>
<td style="text-align:right;">
0.1002540
</td>
<td style="text-align:right;">
0.0465798
</td>
<td style="text-align:right;">
0.0268487
</td>
<td style="text-align:right;">
0.0063146
</td>
<td style="text-align:right;">
0.0473828
</td>
<td style="text-align:right;">
0.0104768
</td>
<td style="text-align:right;">
131
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:right;">
-0.0190522
</td>
<td style="text-align:right;">
-0.1014670
</td>
<td style="text-align:right;">
0.0633627
</td>
<td style="text-align:right;">
0.0420492
</td>
<td style="text-align:right;">
0.0089592
</td>
<td style="text-align:right;">
-0.0823356
</td>
<td style="text-align:right;">
0.1002540
</td>
<td style="text-align:right;">
0.0465798
</td>
<td style="text-align:right;">
0.0268487
</td>
<td style="text-align:right;">
0.0063146
</td>
<td style="text-align:right;">
0.0473828
</td>
<td style="text-align:right;">
0.0104768
</td>
<td style="text-align:right;">
131
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:right;">
0.0161699
</td>
<td style="text-align:right;">
-0.0231196
</td>
<td style="text-align:right;">
0.0554593
</td>
<td style="text-align:right;">
0.0200460
</td>
<td style="text-align:right;">
-0.0513056
</td>
<td style="text-align:right;">
-0.1167021
</td>
<td style="text-align:right;">
0.0140909
</td>
<td style="text-align:right;">
0.0333662
</td>
<td style="text-align:right;">
-0.0413354
</td>
<td style="text-align:right;">
-0.1135580
</td>
<td style="text-align:right;">
0.0308871
</td>
<td style="text-align:right;">
0.0368489
</td>
<td style="text-align:right;">
134
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:left;">
Urinalysis
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Urinalysis
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:right;">
0.0161699
</td>
<td style="text-align:right;">
-0.0231196
</td>
<td style="text-align:right;">
0.0554593
</td>
<td style="text-align:right;">
0.0200460
</td>
<td style="text-align:right;">
-0.0513056
</td>
<td style="text-align:right;">
-0.1167021
</td>
<td style="text-align:right;">
0.0140909
</td>
<td style="text-align:right;">
0.0333662
</td>
<td style="text-align:right;">
-0.0413354
</td>
<td style="text-align:right;">
-0.1135580
</td>
<td style="text-align:right;">
0.0308871
</td>
<td style="text-align:right;">
0.0368489
</td>
<td style="text-align:right;">
134
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:left;">
Urinalysis
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Urinalysis
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:right;">
0.0378015
</td>
<td style="text-align:right;">
-0.0880637
</td>
<td style="text-align:right;">
0.1636666
</td>
<td style="text-align:right;">
0.0642181
</td>
<td style="text-align:right;">
0.0253063
</td>
<td style="text-align:right;">
-0.1086076
</td>
<td style="text-align:right;">
0.1592202
</td>
<td style="text-align:right;">
0.0683247
</td>
<td style="text-align:right;">
-0.0113450
</td>
<td style="text-align:right;">
-0.0150702
</td>
<td style="text-align:right;">
-0.0076199
</td>
<td style="text-align:right;">
0.0019006
</td>
<td style="text-align:right;">
135
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:right;">
0.0378015
</td>
<td style="text-align:right;">
-0.0880637
</td>
<td style="text-align:right;">
0.1636666
</td>
<td style="text-align:right;">
0.0642181
</td>
<td style="text-align:right;">
0.0253063
</td>
<td style="text-align:right;">
-0.1086076
</td>
<td style="text-align:right;">
0.1592202
</td>
<td style="text-align:right;">
0.0683247
</td>
<td style="text-align:right;">
-0.0113450
</td>
<td style="text-align:right;">
-0.0150702
</td>
<td style="text-align:right;">
-0.0076199
</td>
<td style="text-align:right;">
0.0019006
</td>
<td style="text-align:right;">
135
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:right;">
0.0039175
</td>
<td style="text-align:right;">
-0.0957495
</td>
<td style="text-align:right;">
0.1035845
</td>
<td style="text-align:right;">
0.0508514
</td>
<td style="text-align:right;">
-0.0030447
</td>
<td style="text-align:right;">
-0.0961742
</td>
<td style="text-align:right;">
0.0900848
</td>
<td style="text-align:right;">
0.0475159
</td>
<td style="text-align:right;">
-0.0063502
</td>
<td style="text-align:right;">
-0.0099649
</td>
<td style="text-align:right;">
-0.0027355
</td>
<td style="text-align:right;">
0.0018443
</td>
<td style="text-align:right;">
136
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:right;">
0.0039175
</td>
<td style="text-align:right;">
-0.0957495
</td>
<td style="text-align:right;">
0.1035845
</td>
<td style="text-align:right;">
0.0508514
</td>
<td style="text-align:right;">
-0.0030447
</td>
<td style="text-align:right;">
-0.0961742
</td>
<td style="text-align:right;">
0.0900848
</td>
<td style="text-align:right;">
0.0475159
</td>
<td style="text-align:right;">
-0.0063502
</td>
<td style="text-align:right;">
-0.0099649
</td>
<td style="text-align:right;">
-0.0027355
</td>
<td style="text-align:right;">
0.0018443
</td>
<td style="text-align:right;">
136
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:right;">
-0.0025833
</td>
<td style="text-align:right;">
-0.0653065
</td>
<td style="text-align:right;">
0.0601398
</td>
<td style="text-align:right;">
0.0320022
</td>
<td style="text-align:right;">
-0.0193465
</td>
<td style="text-align:right;">
-0.0824670
</td>
<td style="text-align:right;">
0.0437741
</td>
<td style="text-align:right;">
0.0322049
</td>
<td style="text-align:right;">
-0.0169768
</td>
<td style="text-align:right;">
-0.0197231
</td>
<td style="text-align:right;">
-0.0142305
</td>
<td style="text-align:right;">
0.0014012
</td>
<td style="text-align:right;">
137
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:right;">
-0.0025833
</td>
<td style="text-align:right;">
-0.0653065
</td>
<td style="text-align:right;">
0.0601398
</td>
<td style="text-align:right;">
0.0320022
</td>
<td style="text-align:right;">
-0.0193465
</td>
<td style="text-align:right;">
-0.0824670
</td>
<td style="text-align:right;">
0.0437741
</td>
<td style="text-align:right;">
0.0322049
</td>
<td style="text-align:right;">
-0.0169768
</td>
<td style="text-align:right;">
-0.0197231
</td>
<td style="text-align:right;">
-0.0142305
</td>
<td style="text-align:right;">
0.0014012
</td>
<td style="text-align:right;">
137
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:right;">
0.0487366
</td>
<td style="text-align:right;">
-0.0044688
</td>
<td style="text-align:right;">
0.1019419
</td>
<td style="text-align:right;">
0.0271461
</td>
<td style="text-align:right;">
0.0353913
</td>
<td style="text-align:right;">
-0.0210323
</td>
<td style="text-align:right;">
0.0918150
</td>
<td style="text-align:right;">
0.0287881
</td>
<td style="text-align:right;">
-0.0174066
</td>
<td style="text-align:right;">
-0.0276044
</td>
<td style="text-align:right;">
-0.0072089
</td>
<td style="text-align:right;">
0.0052030
</td>
<td style="text-align:right;">
138
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:right;">
0.0487366
</td>
<td style="text-align:right;">
-0.0044688
</td>
<td style="text-align:right;">
0.1019419
</td>
<td style="text-align:right;">
0.0271461
</td>
<td style="text-align:right;">
0.0353913
</td>
<td style="text-align:right;">
-0.0210323
</td>
<td style="text-align:right;">
0.0918150
</td>
<td style="text-align:right;">
0.0287881
</td>
<td style="text-align:right;">
-0.0174066
</td>
<td style="text-align:right;">
-0.0276044
</td>
<td style="text-align:right;">
-0.0072089
</td>
<td style="text-align:right;">
0.0052030
</td>
<td style="text-align:right;">
138
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:right;">
0.0084703
</td>
<td style="text-align:right;">
-0.0282092
</td>
<td style="text-align:right;">
0.0451499
</td>
<td style="text-align:right;">
0.0187144
</td>
<td style="text-align:right;">
-0.0948208
</td>
<td style="text-align:right;">
-0.1630495
</td>
<td style="text-align:right;">
-0.0265922
</td>
<td style="text-align:right;">
0.0348112
</td>
<td style="text-align:right;">
-0.0835612
</td>
<td style="text-align:right;">
-0.1503108
</td>
<td style="text-align:right;">
-0.0168116
</td>
<td style="text-align:right;">
0.0340565
</td>
<td style="text-align:right;">
139
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:right;">
0.0084703
</td>
<td style="text-align:right;">
-0.0282092
</td>
<td style="text-align:right;">
0.0451499
</td>
<td style="text-align:right;">
0.0187144
</td>
<td style="text-align:right;">
-0.0948208
</td>
<td style="text-align:right;">
-0.1630495
</td>
<td style="text-align:right;">
-0.0265922
</td>
<td style="text-align:right;">
0.0348112
</td>
<td style="text-align:right;">
-0.0835612
</td>
<td style="text-align:right;">
-0.1503108
</td>
<td style="text-align:right;">
-0.0168116
</td>
<td style="text-align:right;">
0.0340565
</td>
<td style="text-align:right;">
139
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:right;">
0.0284617
</td>
<td style="text-align:right;">
-0.0131943
</td>
<td style="text-align:right;">
0.0701178
</td>
<td style="text-align:right;">
0.0212535
</td>
<td style="text-align:right;">
-0.0876811
</td>
<td style="text-align:right;">
-0.1270777
</td>
<td style="text-align:right;">
-0.0482845
</td>
<td style="text-align:right;">
0.0201007
</td>
<td style="text-align:right;">
-0.1130259
</td>
<td style="text-align:right;">
-0.1558048
</td>
<td style="text-align:right;">
-0.0702470
</td>
<td style="text-align:right;">
0.0218264
</td>
<td style="text-align:right;">
140
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:right;">
0.0284617
</td>
<td style="text-align:right;">
-0.0131943
</td>
<td style="text-align:right;">
0.0701178
</td>
<td style="text-align:right;">
0.0212535
</td>
<td style="text-align:right;">
-0.0876811
</td>
<td style="text-align:right;">
-0.1270777
</td>
<td style="text-align:right;">
-0.0482845
</td>
<td style="text-align:right;">
0.0201007
</td>
<td style="text-align:right;">
-0.1130259
</td>
<td style="text-align:right;">
-0.1558048
</td>
<td style="text-align:right;">
-0.0702470
</td>
<td style="text-align:right;">
0.0218264
</td>
<td style="text-align:right;">
140
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:right;">
0.0150703
</td>
<td style="text-align:right;">
-0.0534907
</td>
<td style="text-align:right;">
0.0836313
</td>
<td style="text-align:right;">
0.0349807
</td>
<td style="text-align:right;">
-0.0361259
</td>
<td style="text-align:right;">
-0.0952472
</td>
<td style="text-align:right;">
0.0229955
</td>
<td style="text-align:right;">
0.0301645
</td>
<td style="text-align:right;">
-0.0588092
</td>
<td style="text-align:right;">
-0.1679907
</td>
<td style="text-align:right;">
0.0503723
</td>
<td style="text-align:right;">
0.0557059
</td>
<td style="text-align:right;">
159
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:right;">
0.0150703
</td>
<td style="text-align:right;">
-0.0534907
</td>
<td style="text-align:right;">
0.0836313
</td>
<td style="text-align:right;">
0.0349807
</td>
<td style="text-align:right;">
-0.0361259
</td>
<td style="text-align:right;">
-0.0952472
</td>
<td style="text-align:right;">
0.0229955
</td>
<td style="text-align:right;">
0.0301645
</td>
<td style="text-align:right;">
-0.0588092
</td>
<td style="text-align:right;">
-0.1679907
</td>
<td style="text-align:right;">
0.0503723
</td>
<td style="text-align:right;">
0.0557059
</td>
<td style="text-align:right;">
159
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:right;">
-0.0011326
</td>
<td style="text-align:right;">
-0.1141113
</td>
<td style="text-align:right;">
0.1118461
</td>
<td style="text-align:right;">
0.0576432
</td>
<td style="text-align:right;">
0.1869490
</td>
<td style="text-align:right;">
-0.0392422
</td>
<td style="text-align:right;">
0.4131402
</td>
<td style="text-align:right;">
0.1154058
</td>
<td style="text-align:right;">
0.1794328
</td>
<td style="text-align:right;">
0.0568682
</td>
<td style="text-align:right;">
0.3019974
</td>
<td style="text-align:right;">
0.0625341
</td>
<td style="text-align:right;">
164
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:right;">
-0.0011326
</td>
<td style="text-align:right;">
-0.1141113
</td>
<td style="text-align:right;">
0.1118461
</td>
<td style="text-align:right;">
0.0576432
</td>
<td style="text-align:right;">
0.1869490
</td>
<td style="text-align:right;">
-0.0392422
</td>
<td style="text-align:right;">
0.4131402
</td>
<td style="text-align:right;">
0.1154058
</td>
<td style="text-align:right;">
0.1794328
</td>
<td style="text-align:right;">
0.0568682
</td>
<td style="text-align:right;">
0.3019974
</td>
<td style="text-align:right;">
0.0625341
</td>
<td style="text-align:right;">
164
</td>
<td style="text-align:right;">
8
</td>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
others
</td>
<td style="text-align:right;">
-0.1684902
</td>
<td style="text-align:right;">
-0.2596648
</td>
<td style="text-align:right;">
-0.0773156
</td>
<td style="text-align:right;">
0.0465185
</td>
<td style="text-align:right;">
-0.1515195
</td>
<td style="text-align:right;">
-0.2435956
</td>
<td style="text-align:right;">
-0.0594434
</td>
<td style="text-align:right;">
0.0469785
</td>
<td style="text-align:right;">
0.0196158
</td>
<td style="text-align:right;">
0.0049349
</td>
<td style="text-align:right;">
0.0342967
</td>
<td style="text-align:right;">
0.0074904
</td>
<td style="text-align:right;">
169
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
others
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
others
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
others
</td>
<td style="text-align:right;">
-0.1684902
</td>
<td style="text-align:right;">
-0.2596648
</td>
<td style="text-align:right;">
-0.0773156
</td>
<td style="text-align:right;">
0.0465185
</td>
<td style="text-align:right;">
-0.1515195
</td>
<td style="text-align:right;">
-0.2435956
</td>
<td style="text-align:right;">
-0.0594434
</td>
<td style="text-align:right;">
0.0469785
</td>
<td style="text-align:right;">
0.0196158
</td>
<td style="text-align:right;">
0.0049349
</td>
<td style="text-align:right;">
0.0342967
</td>
<td style="text-align:right;">
0.0074904
</td>
<td style="text-align:right;">
169
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
others
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
others
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:right;">
-0.1732553
</td>
<td style="text-align:right;">
-0.4003845
</td>
<td style="text-align:right;">
0.0538738
</td>
<td style="text-align:right;">
0.1158844
</td>
<td style="text-align:right;">
-0.2572491
</td>
<td style="text-align:right;">
-0.7186201
</td>
<td style="text-align:right;">
0.2041219
</td>
<td style="text-align:right;">
0.2353977
</td>
<td style="text-align:right;">
-0.0915619
</td>
<td style="text-align:right;">
-0.2522236
</td>
<td style="text-align:right;">
0.0690997
</td>
<td style="text-align:right;">
0.0819717
</td>
<td style="text-align:right;">
170
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:right;">
-0.1732553
</td>
<td style="text-align:right;">
-0.4003845
</td>
<td style="text-align:right;">
0.0538738
</td>
<td style="text-align:right;">
0.1158844
</td>
<td style="text-align:right;">
-0.2572491
</td>
<td style="text-align:right;">
-0.7186201
</td>
<td style="text-align:right;">
0.2041219
</td>
<td style="text-align:right;">
0.2353977
</td>
<td style="text-align:right;">
-0.0915619
</td>
<td style="text-align:right;">
-0.2522236
</td>
<td style="text-align:right;">
0.0690997
</td>
<td style="text-align:right;">
0.0819717
</td>
<td style="text-align:right;">
170
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:right;">
-0.0219679
</td>
<td style="text-align:right;">
-0.0863184
</td>
<td style="text-align:right;">
0.0423826
</td>
<td style="text-align:right;">
0.0328325
</td>
<td style="text-align:right;">
-0.0188907
</td>
<td style="text-align:right;">
-0.0912088
</td>
<td style="text-align:right;">
0.0534274
</td>
<td style="text-align:right;">
0.0368977
</td>
<td style="text-align:right;">
-0.0061802
</td>
<td style="text-align:right;">
-0.0972542
</td>
<td style="text-align:right;">
0.0848938
</td>
<td style="text-align:right;">
0.0464672
</td>
<td style="text-align:right;">
171
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:right;">
-0.0219679
</td>
<td style="text-align:right;">
-0.0863184
</td>
<td style="text-align:right;">
0.0423826
</td>
<td style="text-align:right;">
0.0328325
</td>
<td style="text-align:right;">
-0.0188907
</td>
<td style="text-align:right;">
-0.0912088
</td>
<td style="text-align:right;">
0.0534274
</td>
<td style="text-align:right;">
0.0368977
</td>
<td style="text-align:right;">
-0.0061802
</td>
<td style="text-align:right;">
-0.0972542
</td>
<td style="text-align:right;">
0.0848938
</td>
<td style="text-align:right;">
0.0464672
</td>
<td style="text-align:right;">
171
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:right;">
-0.0444272
</td>
<td style="text-align:right;">
-0.1082870
</td>
<td style="text-align:right;">
0.0194327
</td>
<td style="text-align:right;">
0.0325822
</td>
<td style="text-align:right;">
-0.1401304
</td>
<td style="text-align:right;">
-0.2117709
</td>
<td style="text-align:right;">
-0.0684898
</td>
<td style="text-align:right;">
0.0365520
</td>
<td style="text-align:right;">
-0.0963838
</td>
<td style="text-align:right;">
-0.1446043
</td>
<td style="text-align:right;">
-0.0481633
</td>
<td style="text-align:right;">
0.0246028
</td>
<td style="text-align:right;">
174
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:right;">
-0.0444272
</td>
<td style="text-align:right;">
-0.1082870
</td>
<td style="text-align:right;">
0.0194327
</td>
<td style="text-align:right;">
0.0325822
</td>
<td style="text-align:right;">
-0.1401304
</td>
<td style="text-align:right;">
-0.2117709
</td>
<td style="text-align:right;">
-0.0684898
</td>
<td style="text-align:right;">
0.0365520
</td>
<td style="text-align:right;">
-0.0963838
</td>
<td style="text-align:right;">
-0.1446043
</td>
<td style="text-align:right;">
-0.0481633
</td>
<td style="text-align:right;">
0.0246028
</td>
<td style="text-align:right;">
174
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:right;">
-0.0313217
</td>
<td style="text-align:right;">
-0.0918314
</td>
<td style="text-align:right;">
0.0291879
</td>
<td style="text-align:right;">
0.0308728
</td>
<td style="text-align:right;">
-0.1342236
</td>
<td style="text-align:right;">
-0.1874097
</td>
<td style="text-align:right;">
-0.0810376
</td>
<td style="text-align:right;">
0.0271362
</td>
<td style="text-align:right;">
-0.1037239
</td>
<td style="text-align:right;">
-0.1714836
</td>
<td style="text-align:right;">
-0.0359643
</td>
<td style="text-align:right;">
0.0345719
</td>
<td style="text-align:right;">
175
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:right;">
-0.0313217
</td>
<td style="text-align:right;">
-0.0918314
</td>
<td style="text-align:right;">
0.0291879
</td>
<td style="text-align:right;">
0.0308728
</td>
<td style="text-align:right;">
-0.1342236
</td>
<td style="text-align:right;">
-0.1874097
</td>
<td style="text-align:right;">
-0.0810376
</td>
<td style="text-align:right;">
0.0271362
</td>
<td style="text-align:right;">
-0.1037239
</td>
<td style="text-align:right;">
-0.1714836
</td>
<td style="text-align:right;">
-0.0359643
</td>
<td style="text-align:right;">
0.0345719
</td>
<td style="text-align:right;">
175
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:right;">
-0.0369177
</td>
<td style="text-align:right;">
-0.1277076
</td>
<td style="text-align:right;">
0.0538721
</td>
<td style="text-align:right;">
0.0463222
</td>
<td style="text-align:right;">
-0.0294978
</td>
<td style="text-align:right;">
-0.1006346
</td>
<td style="text-align:right;">
0.0416390
</td>
<td style="text-align:right;">
0.0362950
</td>
<td style="text-align:right;">
0.0077038
</td>
<td style="text-align:right;">
-0.0137850
</td>
<td style="text-align:right;">
0.0291927
</td>
<td style="text-align:right;">
0.0109639
</td>
<td style="text-align:right;">
176
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:right;">
-0.0369177
</td>
<td style="text-align:right;">
-0.1277076
</td>
<td style="text-align:right;">
0.0538721
</td>
<td style="text-align:right;">
0.0463222
</td>
<td style="text-align:right;">
-0.0294978
</td>
<td style="text-align:right;">
-0.1006346
</td>
<td style="text-align:right;">
0.0416390
</td>
<td style="text-align:right;">
0.0362950
</td>
<td style="text-align:right;">
0.0077038
</td>
<td style="text-align:right;">
-0.0137850
</td>
<td style="text-align:right;">
0.0291927
</td>
<td style="text-align:right;">
0.0109639
</td>
<td style="text-align:right;">
176
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:right;">
-0.0536346
</td>
<td style="text-align:right;">
-0.1266045
</td>
<td style="text-align:right;">
0.0193353
</td>
<td style="text-align:right;">
0.0372302
</td>
<td style="text-align:right;">
-0.0572459
</td>
<td style="text-align:right;">
-0.1071515
</td>
<td style="text-align:right;">
-0.0073404
</td>
<td style="text-align:right;">
0.0254625
</td>
<td style="text-align:right;">
0.0026007
</td>
<td style="text-align:right;">
-0.0558538
</td>
<td style="text-align:right;">
0.0610552
</td>
<td style="text-align:right;">
0.0298243
</td>
<td style="text-align:right;">
177
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:right;">
-0.0536346
</td>
<td style="text-align:right;">
-0.1266045
</td>
<td style="text-align:right;">
0.0193353
</td>
<td style="text-align:right;">
0.0372302
</td>
<td style="text-align:right;">
-0.0572459
</td>
<td style="text-align:right;">
-0.1071515
</td>
<td style="text-align:right;">
-0.0073404
</td>
<td style="text-align:right;">
0.0254625
</td>
<td style="text-align:right;">
0.0026007
</td>
<td style="text-align:right;">
-0.0558538
</td>
<td style="text-align:right;">
0.0610552
</td>
<td style="text-align:right;">
0.0298243
</td>
<td style="text-align:right;">
177
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:right;">
-0.0485897
</td>
<td style="text-align:right;">
-0.0839101
</td>
<td style="text-align:right;">
-0.0132693
</td>
<td style="text-align:right;">
0.0180209
</td>
<td style="text-align:right;">
-0.0826120
</td>
<td style="text-align:right;">
-0.1576473
</td>
<td style="text-align:right;">
-0.0075767
</td>
<td style="text-align:right;">
0.0382840
</td>
<td style="text-align:right;">
-0.0420616
</td>
<td style="text-align:right;">
-0.0813582
</td>
<td style="text-align:right;">
-0.0027650
</td>
<td style="text-align:right;">
0.0200497
</td>
<td style="text-align:right;">
178
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:right;">
-0.0485897
</td>
<td style="text-align:right;">
-0.0839101
</td>
<td style="text-align:right;">
-0.0132693
</td>
<td style="text-align:right;">
0.0180209
</td>
<td style="text-align:right;">
-0.0826120
</td>
<td style="text-align:right;">
-0.1576473
</td>
<td style="text-align:right;">
-0.0075767
</td>
<td style="text-align:right;">
0.0382840
</td>
<td style="text-align:right;">
-0.0420616
</td>
<td style="text-align:right;">
-0.0813582
</td>
<td style="text-align:right;">
-0.0027650
</td>
<td style="text-align:right;">
0.0200497
</td>
<td style="text-align:right;">
178
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:right;">
0.0737198
</td>
<td style="text-align:right;">
0.0205862
</td>
<td style="text-align:right;">
0.1268534
</td>
<td style="text-align:right;">
0.0271095
</td>
<td style="text-align:right;">
0.2415135
</td>
<td style="text-align:right;">
0.1865330
</td>
<td style="text-align:right;">
0.2964940
</td>
<td style="text-align:right;">
0.0280518
</td>
<td style="text-align:right;">
0.1642192
</td>
<td style="text-align:right;">
0.1369820
</td>
<td style="text-align:right;">
0.1914563
</td>
<td style="text-align:right;">
0.0138968
</td>
<td style="text-align:right;">
179
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:right;">
0.0737198
</td>
<td style="text-align:right;">
0.0205862
</td>
<td style="text-align:right;">
0.1268534
</td>
<td style="text-align:right;">
0.0271095
</td>
<td style="text-align:right;">
0.2415135
</td>
<td style="text-align:right;">
0.1865330
</td>
<td style="text-align:right;">
0.2964940
</td>
<td style="text-align:right;">
0.0280518
</td>
<td style="text-align:right;">
0.1642192
</td>
<td style="text-align:right;">
0.1369820
</td>
<td style="text-align:right;">
0.1914563
</td>
<td style="text-align:right;">
0.0138968
</td>
<td style="text-align:right;">
179
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:right;">
0.2906905
</td>
<td style="text-align:right;">
0.1716202
</td>
<td style="text-align:right;">
0.4097607
</td>
<td style="text-align:right;">
0.0607512
</td>
<td style="text-align:right;">
-0.2926013
</td>
<td style="text-align:right;">
-0.5272121
</td>
<td style="text-align:right;">
-0.0579905
</td>
<td style="text-align:right;">
0.1197016
</td>
<td style="text-align:right;">
-0.6004767
</td>
<td style="text-align:right;">
-0.9244113
</td>
<td style="text-align:right;">
-0.2765420
</td>
<td style="text-align:right;">
0.1652758
</td>
<td style="text-align:right;">
180
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:right;">
0.2906905
</td>
<td style="text-align:right;">
0.1716202
</td>
<td style="text-align:right;">
0.4097607
</td>
<td style="text-align:right;">
0.0607512
</td>
<td style="text-align:right;">
-0.2926013
</td>
<td style="text-align:right;">
-0.5272121
</td>
<td style="text-align:right;">
-0.0579905
</td>
<td style="text-align:right;">
0.1197016
</td>
<td style="text-align:right;">
-0.6004767
</td>
<td style="text-align:right;">
-0.9244113
</td>
<td style="text-align:right;">
-0.2765420
</td>
<td style="text-align:right;">
0.1652758
</td>
<td style="text-align:right;">
180
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:right;">
-0.0705522
</td>
<td style="text-align:right;">
-0.2214989
</td>
<td style="text-align:right;">
0.0803945
</td>
<td style="text-align:right;">
0.0770150
</td>
<td style="text-align:right;">
-0.0074675
</td>
<td style="text-align:right;">
-0.1729366
</td>
<td style="text-align:right;">
0.1580015
</td>
<td style="text-align:right;">
0.0844245
</td>
<td style="text-align:right;">
0.0704162
</td>
<td style="text-align:right;">
0.0476647
</td>
<td style="text-align:right;">
0.0931676
</td>
<td style="text-align:right;">
0.0116081
</td>
<td style="text-align:right;">
181
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:right;">
-0.0705522
</td>
<td style="text-align:right;">
-0.2214989
</td>
<td style="text-align:right;">
0.0803945
</td>
<td style="text-align:right;">
0.0770150
</td>
<td style="text-align:right;">
-0.0074675
</td>
<td style="text-align:right;">
-0.1729366
</td>
<td style="text-align:right;">
0.1580015
</td>
<td style="text-align:right;">
0.0844245
</td>
<td style="text-align:right;">
0.0704162
</td>
<td style="text-align:right;">
0.0476647
</td>
<td style="text-align:right;">
0.0931676
</td>
<td style="text-align:right;">
0.0116081
</td>
<td style="text-align:right;">
181
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
pq
</td>
<td style="text-align:right;">
-0.0650960
</td>
<td style="text-align:right;">
-0.1538776
</td>
<td style="text-align:right;">
0.0236857
</td>
<td style="text-align:right;">
0.0452976
</td>
<td style="text-align:right;">
-0.0648322
</td>
<td style="text-align:right;">
-0.1270688
</td>
<td style="text-align:right;">
-0.0025955
</td>
<td style="text-align:right;">
0.0317540
</td>
<td style="text-align:right;">
0.0015656
</td>
<td style="text-align:right;">
-0.0259865
</td>
<td style="text-align:right;">
0.0291178
</td>
<td style="text-align:right;">
0.0140575
</td>
<td style="text-align:right;">
182
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
pq
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pq
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pq
</td>
<td style="text-align:right;">
-0.0650960
</td>
<td style="text-align:right;">
-0.1538776
</td>
<td style="text-align:right;">
0.0236857
</td>
<td style="text-align:right;">
0.0452976
</td>
<td style="text-align:right;">
-0.0648322
</td>
<td style="text-align:right;">
-0.1270688
</td>
<td style="text-align:right;">
-0.0025955
</td>
<td style="text-align:right;">
0.0317540
</td>
<td style="text-align:right;">
0.0015656
</td>
<td style="text-align:right;">
-0.0259865
</td>
<td style="text-align:right;">
0.0291178
</td>
<td style="text-align:right;">
0.0140575
</td>
<td style="text-align:right;">
182
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
pq
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pq
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
pr
</td>
<td style="text-align:right;">
-0.0564860
</td>
<td style="text-align:right;">
-0.1048371
</td>
<td style="text-align:right;">
-0.0081349
</td>
<td style="text-align:right;">
0.0246694
</td>
<td style="text-align:right;">
-0.0754718
</td>
<td style="text-align:right;">
-0.1235224
</td>
<td style="text-align:right;">
-0.0274213
</td>
<td style="text-align:right;">
0.0245160
</td>
<td style="text-align:right;">
-0.0183785
</td>
<td style="text-align:right;">
-0.0319887
</td>
<td style="text-align:right;">
-0.0047684
</td>
<td style="text-align:right;">
0.0069441
</td>
<td style="text-align:right;">
183
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
pr
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pr
</td>
<td style="text-align:right;">
-0.0564860
</td>
<td style="text-align:right;">
-0.1048371
</td>
<td style="text-align:right;">
-0.0081349
</td>
<td style="text-align:right;">
0.0246694
</td>
<td style="text-align:right;">
-0.0754718
</td>
<td style="text-align:right;">
-0.1235224
</td>
<td style="text-align:right;">
-0.0274213
</td>
<td style="text-align:right;">
0.0245160
</td>
<td style="text-align:right;">
-0.0183785
</td>
<td style="text-align:right;">
-0.0319887
</td>
<td style="text-align:right;">
-0.0047684
</td>
<td style="text-align:right;">
0.0069441
</td>
<td style="text-align:right;">
183
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
pr
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
pr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:right;">
0.0725454
</td>
<td style="text-align:right;">
0.0354722
</td>
<td style="text-align:right;">
0.1096185
</td>
<td style="text-align:right;">
0.0189152
</td>
<td style="text-align:right;">
0.0681074
</td>
<td style="text-align:right;">
0.0300869
</td>
<td style="text-align:right;">
0.1061278
</td>
<td style="text-align:right;">
0.0193986
</td>
<td style="text-align:right;">
-0.0054233
</td>
<td style="text-align:right;">
-0.0154885
</td>
<td style="text-align:right;">
0.0046418
</td>
<td style="text-align:right;">
0.0051354
</td>
<td style="text-align:right;">
184
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:right;">
0.0725454
</td>
<td style="text-align:right;">
0.0354722
</td>
<td style="text-align:right;">
0.1096185
</td>
<td style="text-align:right;">
0.0189152
</td>
<td style="text-align:right;">
0.0681074
</td>
<td style="text-align:right;">
0.0300869
</td>
<td style="text-align:right;">
0.1061278
</td>
<td style="text-align:right;">
0.0193986
</td>
<td style="text-align:right;">
-0.0054233
</td>
<td style="text-align:right;">
-0.0154885
</td>
<td style="text-align:right;">
0.0046418
</td>
<td style="text-align:right;">
0.0051354
</td>
<td style="text-align:right;">
184
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:right;">
0.0328106
</td>
<td style="text-align:right;">
-0.0101032
</td>
<td style="text-align:right;">
0.0757244
</td>
<td style="text-align:right;">
0.0218952
</td>
<td style="text-align:right;">
0.0310473
</td>
<td style="text-align:right;">
-0.0207365
</td>
<td style="text-align:right;">
0.0828310
</td>
<td style="text-align:right;">
0.0264208
</td>
<td style="text-align:right;">
-0.0005046
</td>
<td style="text-align:right;">
-0.0085696
</td>
<td style="text-align:right;">
0.0075604
</td>
<td style="text-align:right;">
0.0041149
</td>
<td style="text-align:right;">
185
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:right;">
0.0328106
</td>
<td style="text-align:right;">
-0.0101032
</td>
<td style="text-align:right;">
0.0757244
</td>
<td style="text-align:right;">
0.0218952
</td>
<td style="text-align:right;">
0.0310473
</td>
<td style="text-align:right;">
-0.0207365
</td>
<td style="text-align:right;">
0.0828310
</td>
<td style="text-align:right;">
0.0264208
</td>
<td style="text-align:right;">
-0.0005046
</td>
<td style="text-align:right;">
-0.0085696
</td>
<td style="text-align:right;">
0.0075604
</td>
<td style="text-align:right;">
0.0041149
</td>
<td style="text-align:right;">
185
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:right;">
0.0031258
</td>
<td style="text-align:right;">
-0.0523919
</td>
<td style="text-align:right;">
0.0586435
</td>
<td style="text-align:right;">
0.0283259
</td>
<td style="text-align:right;">
-0.0046501
</td>
<td style="text-align:right;">
-0.1060530
</td>
<td style="text-align:right;">
0.0967528
</td>
<td style="text-align:right;">
0.0517371
</td>
<td style="text-align:right;">
-0.0077373
</td>
<td style="text-align:right;">
-0.0510162
</td>
<td style="text-align:right;">
0.0355416
</td>
<td style="text-align:right;">
0.0220815
</td>
<td style="text-align:right;">
186
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:right;">
0.0031258
</td>
<td style="text-align:right;">
-0.0523919
</td>
<td style="text-align:right;">
0.0586435
</td>
<td style="text-align:right;">
0.0283259
</td>
<td style="text-align:right;">
-0.0046501
</td>
<td style="text-align:right;">
-0.1060530
</td>
<td style="text-align:right;">
0.0967528
</td>
<td style="text-align:right;">
0.0517371
</td>
<td style="text-align:right;">
-0.0077373
</td>
<td style="text-align:right;">
-0.0510162
</td>
<td style="text-align:right;">
0.0355416
</td>
<td style="text-align:right;">
0.0220815
</td>
<td style="text-align:right;">
186
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:right;">
0.0773455
</td>
<td style="text-align:right;">
0.0071933
</td>
<td style="text-align:right;">
0.1474977
</td>
<td style="text-align:right;">
0.0357926
</td>
<td style="text-align:right;">
0.0997278
</td>
<td style="text-align:right;">
0.0316996
</td>
<td style="text-align:right;">
0.1677560
</td>
<td style="text-align:right;">
0.0347089
</td>
<td style="text-align:right;">
0.0228493
</td>
<td style="text-align:right;">
0.0088583
</td>
<td style="text-align:right;">
0.0368404
</td>
<td style="text-align:right;">
0.0071384
</td>
<td style="text-align:right;">
187
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:right;">
0.0773455
</td>
<td style="text-align:right;">
0.0071933
</td>
<td style="text-align:right;">
0.1474977
</td>
<td style="text-align:right;">
0.0357926
</td>
<td style="text-align:right;">
0.0997278
</td>
<td style="text-align:right;">
0.0316996
</td>
<td style="text-align:right;">
0.1677560
</td>
<td style="text-align:right;">
0.0347089
</td>
<td style="text-align:right;">
0.0228493
</td>
<td style="text-align:right;">
0.0088583
</td>
<td style="text-align:right;">
0.0368404
</td>
<td style="text-align:right;">
0.0071384
</td>
<td style="text-align:right;">
187
</td>
<td style="text-align:right;">
17
</td>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:right;">
0.1248464
</td>
<td style="text-align:right;">
-0.0035148
</td>
<td style="text-align:right;">
0.2532076
</td>
<td style="text-align:right;">
0.0654916
</td>
<td style="text-align:right;">
0.1353460
</td>
<td style="text-align:right;">
-0.0035862
</td>
<td style="text-align:right;">
0.2742782
</td>
<td style="text-align:right;">
0.0708851
</td>
<td style="text-align:right;">
0.0104789
</td>
<td style="text-align:right;">
-0.0032056
</td>
<td style="text-align:right;">
0.0241635
</td>
<td style="text-align:right;">
0.0069821
</td>
<td style="text-align:right;">
188
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:right;">
0.1248464
</td>
<td style="text-align:right;">
-0.0035148
</td>
<td style="text-align:right;">
0.2532076
</td>
<td style="text-align:right;">
0.0654916
</td>
<td style="text-align:right;">
0.1353460
</td>
<td style="text-align:right;">
-0.0035862
</td>
<td style="text-align:right;">
0.2742782
</td>
<td style="text-align:right;">
0.0708851
</td>
<td style="text-align:right;">
0.0104789
</td>
<td style="text-align:right;">
-0.0032056
</td>
<td style="text-align:right;">
0.0241635
</td>
<td style="text-align:right;">
0.0069821
</td>
<td style="text-align:right;">
188
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:right;">
-0.1384843
</td>
<td style="text-align:right;">
-0.2178736
</td>
<td style="text-align:right;">
-0.0590950
</td>
<td style="text-align:right;">
0.0405055
</td>
<td style="text-align:right;">
-0.0703570
</td>
<td style="text-align:right;">
-0.1795875
</td>
<td style="text-align:right;">
0.0388735
</td>
<td style="text-align:right;">
0.0557309
</td>
<td style="text-align:right;">
0.0611034
</td>
<td style="text-align:right;">
0.0227141
</td>
<td style="text-align:right;">
0.0994926
</td>
<td style="text-align:right;">
0.0195867
</td>
<td style="text-align:right;">
189
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:right;">
-0.1384843
</td>
<td style="text-align:right;">
-0.2178736
</td>
<td style="text-align:right;">
-0.0590950
</td>
<td style="text-align:right;">
0.0405055
</td>
<td style="text-align:right;">
-0.0703570
</td>
<td style="text-align:right;">
-0.1795875
</td>
<td style="text-align:right;">
0.0388735
</td>
<td style="text-align:right;">
0.0557309
</td>
<td style="text-align:right;">
0.0611034
</td>
<td style="text-align:right;">
0.0227141
</td>
<td style="text-align:right;">
0.0994926
</td>
<td style="text-align:right;">
0.0195867
</td>
<td style="text-align:right;">
189
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:right;">
-0.0116565
</td>
<td style="text-align:right;">
-0.0896490
</td>
<td style="text-align:right;">
0.0663361
</td>
<td style="text-align:right;">
0.0397928
</td>
<td style="text-align:right;">
-0.0106530
</td>
<td style="text-align:right;">
-0.0878483
</td>
<td style="text-align:right;">
0.0665424
</td>
<td style="text-align:right;">
0.0393861
</td>
<td style="text-align:right;">
0.0017027
</td>
<td style="text-align:right;">
-0.0057348
</td>
<td style="text-align:right;">
0.0091402
</td>
<td style="text-align:right;">
0.0037947
</td>
<td style="text-align:right;">
190
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:right;">
-0.0116565
</td>
<td style="text-align:right;">
-0.0896490
</td>
<td style="text-align:right;">
0.0663361
</td>
<td style="text-align:right;">
0.0397928
</td>
<td style="text-align:right;">
-0.0106530
</td>
<td style="text-align:right;">
-0.0878483
</td>
<td style="text-align:right;">
0.0665424
</td>
<td style="text-align:right;">
0.0393861
</td>
<td style="text-align:right;">
0.0017027
</td>
<td style="text-align:right;">
-0.0057348
</td>
<td style="text-align:right;">
0.0091402
</td>
<td style="text-align:right;">
0.0037947
</td>
<td style="text-align:right;">
190
</td>
<td style="text-align:right;">
9
</td>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:right;">
-0.4491432
</td>
<td style="text-align:right;">
-1.3293546
</td>
<td style="text-align:right;">
0.4310682
</td>
<td style="text-align:right;">
0.4490957
</td>
<td style="text-align:right;">
-0.4157377
</td>
<td style="text-align:right;">
-1.2918620
</td>
<td style="text-align:right;">
0.4603867
</td>
<td style="text-align:right;">
0.4470104
</td>
<td style="text-align:right;">
0.0316098
</td>
<td style="text-align:right;">
0.0264512
</td>
<td style="text-align:right;">
0.0367685
</td>
<td style="text-align:right;">
0.0026320
</td>
<td style="text-align:right;">
201
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:right;">
-0.4491432
</td>
<td style="text-align:right;">
-1.3293546
</td>
<td style="text-align:right;">
0.4310682
</td>
<td style="text-align:right;">
0.4490957
</td>
<td style="text-align:right;">
-0.4157377
</td>
<td style="text-align:right;">
-1.2918620
</td>
<td style="text-align:right;">
0.4603867
</td>
<td style="text-align:right;">
0.4470104
</td>
<td style="text-align:right;">
0.0316098
</td>
<td style="text-align:right;">
0.0264512
</td>
<td style="text-align:right;">
0.0367685
</td>
<td style="text-align:right;">
0.0026320
</td>
<td style="text-align:right;">
201
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:right;">
-0.0355898
</td>
<td style="text-align:right;">
-0.2280522
</td>
<td style="text-align:right;">
0.1568726
</td>
<td style="text-align:right;">
0.0981969
</td>
<td style="text-align:right;">
-0.0306550
</td>
<td style="text-align:right;">
-0.1963692
</td>
<td style="text-align:right;">
0.1350592
</td>
<td style="text-align:right;">
0.0845496
</td>
<td style="text-align:right;">
-0.0013855
</td>
<td style="text-align:right;">
-0.0237830
</td>
<td style="text-align:right;">
0.0210121
</td>
<td style="text-align:right;">
0.0114275
</td>
<td style="text-align:right;">
202
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:right;">
-0.0355898
</td>
<td style="text-align:right;">
-0.2280522
</td>
<td style="text-align:right;">
0.1568726
</td>
<td style="text-align:right;">
0.0981969
</td>
<td style="text-align:right;">
-0.0306550
</td>
<td style="text-align:right;">
-0.1963692
</td>
<td style="text-align:right;">
0.1350592
</td>
<td style="text-align:right;">
0.0845496
</td>
<td style="text-align:right;">
-0.0013855
</td>
<td style="text-align:right;">
-0.0237830
</td>
<td style="text-align:right;">
0.0210121
</td>
<td style="text-align:right;">
0.0114275
</td>
<td style="text-align:right;">
202
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:right;">
-0.2545083
</td>
<td style="text-align:right;">
-0.7633116
</td>
<td style="text-align:right;">
0.2542949
</td>
<td style="text-align:right;">
0.2595983
</td>
<td style="text-align:right;">
-0.2785114
</td>
<td style="text-align:right;">
-0.8373133
</td>
<td style="text-align:right;">
0.2802906
</td>
<td style="text-align:right;">
0.2851083
</td>
<td style="text-align:right;">
-0.0175090
</td>
<td style="text-align:right;">
-0.0664158
</td>
<td style="text-align:right;">
0.0313978
</td>
<td style="text-align:right;">
0.0249529
</td>
<td style="text-align:right;">
203
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:right;">
-0.2545083
</td>
<td style="text-align:right;">
-0.7633116
</td>
<td style="text-align:right;">
0.2542949
</td>
<td style="text-align:right;">
0.2595983
</td>
<td style="text-align:right;">
-0.2785114
</td>
<td style="text-align:right;">
-0.8373133
</td>
<td style="text-align:right;">
0.2802906
</td>
<td style="text-align:right;">
0.2851083
</td>
<td style="text-align:right;">
-0.0175090
</td>
<td style="text-align:right;">
-0.0664158
</td>
<td style="text-align:right;">
0.0313978
</td>
<td style="text-align:right;">
0.0249529
</td>
<td style="text-align:right;">
203
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:right;">
0.0061253
</td>
<td style="text-align:right;">
-0.0781241
</td>
<td style="text-align:right;">
0.0903746
</td>
<td style="text-align:right;">
0.0429851
</td>
<td style="text-align:right;">
0.0109098
</td>
<td style="text-align:right;">
-0.0731427
</td>
<td style="text-align:right;">
0.0949622
</td>
<td style="text-align:right;">
0.0428847
</td>
<td style="text-align:right;">
0.0055513
</td>
<td style="text-align:right;">
0.0000519
</td>
<td style="text-align:right;">
0.0110508
</td>
<td style="text-align:right;">
0.0028059
</td>
<td style="text-align:right;">
204
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:right;">
0.0061253
</td>
<td style="text-align:right;">
-0.0781241
</td>
<td style="text-align:right;">
0.0903746
</td>
<td style="text-align:right;">
0.0429851
</td>
<td style="text-align:right;">
0.0109098
</td>
<td style="text-align:right;">
-0.0731427
</td>
<td style="text-align:right;">
0.0949622
</td>
<td style="text-align:right;">
0.0428847
</td>
<td style="text-align:right;">
0.0055513
</td>
<td style="text-align:right;">
0.0000519
</td>
<td style="text-align:right;">
0.0110508
</td>
<td style="text-align:right;">
0.0028059
</td>
<td style="text-align:right;">
204
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:right;">
-0.0775673
</td>
<td style="text-align:right;">
-0.2905688
</td>
<td style="text-align:right;">
0.1354341
</td>
<td style="text-align:right;">
0.1086762
</td>
<td style="text-align:right;">
-0.0764571
</td>
<td style="text-align:right;">
-0.2893152
</td>
<td style="text-align:right;">
0.1364010
</td>
<td style="text-align:right;">
0.1086031
</td>
<td style="text-align:right;">
0.0071990
</td>
<td style="text-align:right;">
-0.0178434
</td>
<td style="text-align:right;">
0.0322413
</td>
<td style="text-align:right;">
0.0127769
</td>
<td style="text-align:right;">
205
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:right;">
-0.0775673
</td>
<td style="text-align:right;">
-0.2905688
</td>
<td style="text-align:right;">
0.1354341
</td>
<td style="text-align:right;">
0.1086762
</td>
<td style="text-align:right;">
-0.0764571
</td>
<td style="text-align:right;">
-0.2893152
</td>
<td style="text-align:right;">
0.1364010
</td>
<td style="text-align:right;">
0.1086031
</td>
<td style="text-align:right;">
0.0071990
</td>
<td style="text-align:right;">
-0.0178434
</td>
<td style="text-align:right;">
0.0322413
</td>
<td style="text-align:right;">
0.0127769
</td>
<td style="text-align:right;">
205
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:right;">
-0.1987993
</td>
<td style="text-align:right;">
-0.6457320
</td>
<td style="text-align:right;">
0.2481333
</td>
<td style="text-align:right;">
0.2280310
</td>
<td style="text-align:right;">
-0.1925482
</td>
<td style="text-align:right;">
-0.6285715
</td>
<td style="text-align:right;">
0.2434750
</td>
<td style="text-align:right;">
0.2224649
</td>
<td style="text-align:right;">
0.0052882
</td>
<td style="text-align:right;">
-0.0045957
</td>
<td style="text-align:right;">
0.0151720
</td>
<td style="text-align:right;">
0.0050429
</td>
<td style="text-align:right;">
206
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:right;">
-0.1987993
</td>
<td style="text-align:right;">
-0.6457320
</td>
<td style="text-align:right;">
0.2481333
</td>
<td style="text-align:right;">
0.2280310
</td>
<td style="text-align:right;">
-0.1925482
</td>
<td style="text-align:right;">
-0.6285715
</td>
<td style="text-align:right;">
0.2434750
</td>
<td style="text-align:right;">
0.2224649
</td>
<td style="text-align:right;">
0.0052882
</td>
<td style="text-align:right;">
-0.0045957
</td>
<td style="text-align:right;">
0.0151720
</td>
<td style="text-align:right;">
0.0050429
</td>
<td style="text-align:right;">
206
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
</tr>
<tr>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:right;">
0.1800273
</td>
<td style="text-align:right;">
-0.0882317
</td>
<td style="text-align:right;">
0.4482864
</td>
<td style="text-align:right;">
0.1368694
</td>
<td style="text-align:right;">
-0.0161048
</td>
<td style="text-align:right;">
-0.4112809
</td>
<td style="text-align:right;">
0.3790712
</td>
<td style="text-align:right;">
0.2016241
</td>
<td style="text-align:right;">
-0.1178703
</td>
<td style="text-align:right;">
-0.2449843
</td>
<td style="text-align:right;">
0.0092436
</td>
<td style="text-align:right;">
0.0648552
</td>
<td style="text-align:right;">
207
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:right;">
0.1800273
</td>
<td style="text-align:right;">
-0.0882317
</td>
<td style="text-align:right;">
0.4482864
</td>
<td style="text-align:right;">
0.1368694
</td>
<td style="text-align:right;">
-0.0161048
</td>
<td style="text-align:right;">
-0.4112809
</td>
<td style="text-align:right;">
0.3790712
</td>
<td style="text-align:right;">
0.2016241
</td>
<td style="text-align:right;">
-0.1178703
</td>
<td style="text-align:right;">
-0.2449843
</td>
<td style="text-align:right;">
0.0092436
</td>
<td style="text-align:right;">
0.0648552
</td>
<td style="text-align:right;">
207
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:right;">
-0.0765771
</td>
<td style="text-align:right;">
-0.3398075
</td>
<td style="text-align:right;">
0.1866533
</td>
<td style="text-align:right;">
0.1343037
</td>
<td style="text-align:right;">
-0.0747691
</td>
<td style="text-align:right;">
-0.3351316
</td>
<td style="text-align:right;">
0.1855933
</td>
<td style="text-align:right;">
0.1328404
</td>
<td style="text-align:right;">
-0.0746396
</td>
<td style="text-align:right;">
-0.2072980
</td>
<td style="text-align:right;">
0.0580188
</td>
<td style="text-align:right;">
0.0676841
</td>
<td style="text-align:right;">
208
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:right;">
-0.0765771
</td>
<td style="text-align:right;">
-0.3398075
</td>
<td style="text-align:right;">
0.1866533
</td>
<td style="text-align:right;">
0.1343037
</td>
<td style="text-align:right;">
-0.0747691
</td>
<td style="text-align:right;">
-0.3351316
</td>
<td style="text-align:right;">
0.1855933
</td>
<td style="text-align:right;">
0.1328404
</td>
<td style="text-align:right;">
-0.0746396
</td>
<td style="text-align:right;">
-0.2072980
</td>
<td style="text-align:right;">
0.0580188
</td>
<td style="text-align:right;">
0.0676841
</td>
<td style="text-align:right;">
208
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
rr
</td>
<td style="text-align:right;">
-0.0761505
</td>
<td style="text-align:right;">
-0.1876687
</td>
<td style="text-align:right;">
0.0353678
</td>
<td style="text-align:right;">
0.0568981
</td>
<td style="text-align:right;">
-0.0896869
</td>
<td style="text-align:right;">
-0.2063458
</td>
<td style="text-align:right;">
0.0269721
</td>
<td style="text-align:right;">
0.0595210
</td>
<td style="text-align:right;">
-0.0125023
</td>
<td style="text-align:right;">
-0.0214082
</td>
<td style="text-align:right;">
-0.0035963
</td>
<td style="text-align:right;">
0.0045440
</td>
<td style="text-align:right;">
209
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
rr
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
rr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
rr
</td>
<td style="text-align:right;">
-0.0761505
</td>
<td style="text-align:right;">
-0.1876687
</td>
<td style="text-align:right;">
0.0353678
</td>
<td style="text-align:right;">
0.0568981
</td>
<td style="text-align:right;">
-0.0896869
</td>
<td style="text-align:right;">
-0.2063458
</td>
<td style="text-align:right;">
0.0269721
</td>
<td style="text-align:right;">
0.0595210
</td>
<td style="text-align:right;">
-0.0125023
</td>
<td style="text-align:right;">
-0.0214082
</td>
<td style="text-align:right;">
-0.0035963
</td>
<td style="text-align:right;">
0.0045440
</td>
<td style="text-align:right;">
209
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
rr
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
rr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:right;">
0.0262100
</td>
<td style="text-align:right;">
-0.1171674
</td>
<td style="text-align:right;">
0.1695873
</td>
<td style="text-align:right;">
0.0731531
</td>
<td style="text-align:right;">
0.0338228
</td>
<td style="text-align:right;">
-0.1337162
</td>
<td style="text-align:right;">
0.2013618
</td>
<td style="text-align:right;">
0.0854806
</td>
<td style="text-align:right;">
0.0099680
</td>
<td style="text-align:right;">
0.0065815
</td>
<td style="text-align:right;">
0.0133545
</td>
<td style="text-align:right;">
0.0017278
</td>
<td style="text-align:right;">
210
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:right;">
0.0262100
</td>
<td style="text-align:right;">
-0.1171674
</td>
<td style="text-align:right;">
0.1695873
</td>
<td style="text-align:right;">
0.0731531
</td>
<td style="text-align:right;">
0.0338228
</td>
<td style="text-align:right;">
-0.1337162
</td>
<td style="text-align:right;">
0.2013618
</td>
<td style="text-align:right;">
0.0854806
</td>
<td style="text-align:right;">
0.0099680
</td>
<td style="text-align:right;">
0.0065815
</td>
<td style="text-align:right;">
0.0133545
</td>
<td style="text-align:right;">
0.0017278
</td>
<td style="text-align:right;">
210
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:right;">
0.1874259
</td>
<td style="text-align:right;">
-0.0500875
</td>
<td style="text-align:right;">
0.4249393
</td>
<td style="text-align:right;">
0.1211825
</td>
<td style="text-align:right;">
0.1133706
</td>
<td style="text-align:right;">
-0.1604807
</td>
<td style="text-align:right;">
0.3872220
</td>
<td style="text-align:right;">
0.1397227
</td>
<td style="text-align:right;">
-0.1542349
</td>
<td style="text-align:right;">
-0.2104415
</td>
<td style="text-align:right;">
-0.0980283
</td>
<td style="text-align:right;">
0.0286774
</td>
<td style="text-align:right;">
211
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:right;">
0.1874259
</td>
<td style="text-align:right;">
-0.0500875
</td>
<td style="text-align:right;">
0.4249393
</td>
<td style="text-align:right;">
0.1211825
</td>
<td style="text-align:right;">
0.1133706
</td>
<td style="text-align:right;">
-0.1604807
</td>
<td style="text-align:right;">
0.3872220
</td>
<td style="text-align:right;">
0.1397227
</td>
<td style="text-align:right;">
-0.1542349
</td>
<td style="text-align:right;">
-0.2104415
</td>
<td style="text-align:right;">
-0.0980283
</td>
<td style="text-align:right;">
0.0286774
</td>
<td style="text-align:right;">
211
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
</tr>
<tr>
<td style="text-align:left;">
st
</td>
<td style="text-align:right;">
0.0032888
</td>
<td style="text-align:right;">
-0.0544512
</td>
<td style="text-align:right;">
0.0610288
</td>
<td style="text-align:right;">
0.0294597
</td>
<td style="text-align:right;">
-0.0054976
</td>
<td style="text-align:right;">
-0.0811810
</td>
<td style="text-align:right;">
0.0701858
</td>
<td style="text-align:right;">
0.0386147
</td>
<td style="text-align:right;">
-0.0034902
</td>
<td style="text-align:right;">
-0.0175917
</td>
<td style="text-align:right;">
0.0106113
</td>
<td style="text-align:right;">
0.0071948
</td>
<td style="text-align:right;">
212
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
st
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
st
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
st
</td>
<td style="text-align:right;">
0.0032888
</td>
<td style="text-align:right;">
-0.0544512
</td>
<td style="text-align:right;">
0.0610288
</td>
<td style="text-align:right;">
0.0294597
</td>
<td style="text-align:right;">
-0.0054976
</td>
<td style="text-align:right;">
-0.0811810
</td>
<td style="text-align:right;">
0.0701858
</td>
<td style="text-align:right;">
0.0386147
</td>
<td style="text-align:right;">
-0.0034902
</td>
<td style="text-align:right;">
-0.0175917
</td>
<td style="text-align:right;">
0.0106113
</td>
<td style="text-align:right;">
0.0071948
</td>
<td style="text-align:right;">
212
</td>
<td style="text-align:right;">
11
</td>
<td style="text-align:left;">
st
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
st
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:right;">
0.0594276
</td>
<td style="text-align:right;">
-0.0782445
</td>
<td style="text-align:right;">
0.1970997
</td>
<td style="text-align:right;">
0.0702422
</td>
<td style="text-align:right;">
0.1574330
</td>
<td style="text-align:right;">
0.0091891
</td>
<td style="text-align:right;">
0.3056769
</td>
<td style="text-align:right;">
0.0756360
</td>
<td style="text-align:right;">
0.0937375
</td>
<td style="text-align:right;">
0.0775587
</td>
<td style="text-align:right;">
0.1099162
</td>
<td style="text-align:right;">
0.0082546
</td>
<td style="text-align:right;">
213
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:right;">
0.0594276
</td>
<td style="text-align:right;">
-0.0782445
</td>
<td style="text-align:right;">
0.1970997
</td>
<td style="text-align:right;">
0.0702422
</td>
<td style="text-align:right;">
0.1574330
</td>
<td style="text-align:right;">
0.0091891
</td>
<td style="text-align:right;">
0.3056769
</td>
<td style="text-align:right;">
0.0756360
</td>
<td style="text-align:right;">
0.0937375
</td>
<td style="text-align:right;">
0.0775587
</td>
<td style="text-align:right;">
0.1099162
</td>
<td style="text-align:right;">
0.0082546
</td>
<td style="text-align:right;">
213
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
</tr>
<tr>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:right;">
-0.1475403
</td>
<td style="text-align:right;">
-0.4396127
</td>
<td style="text-align:right;">
0.1445320
</td>
<td style="text-align:right;">
0.1490192
</td>
<td style="text-align:right;">
-0.1374401
</td>
<td style="text-align:right;">
-0.4261352
</td>
<td style="text-align:right;">
0.1512551
</td>
<td style="text-align:right;">
0.1472961
</td>
<td style="text-align:right;">
0.0095199
</td>
<td style="text-align:right;">
0.0059199
</td>
<td style="text-align:right;">
0.0131200
</td>
<td style="text-align:right;">
0.0018368
</td>
<td style="text-align:right;">
217
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:right;">
-0.1475403
</td>
<td style="text-align:right;">
-0.4396127
</td>
<td style="text-align:right;">
0.1445320
</td>
<td style="text-align:right;">
0.1490192
</td>
<td style="text-align:right;">
-0.1374401
</td>
<td style="text-align:right;">
-0.4261352
</td>
<td style="text-align:right;">
0.1512551
</td>
<td style="text-align:right;">
0.1472961
</td>
<td style="text-align:right;">
0.0095199
</td>
<td style="text-align:right;">
0.0059199
</td>
<td style="text-align:right;">
0.0131200
</td>
<td style="text-align:right;">
0.0018368
</td>
<td style="text-align:right;">
217
</td>
<td style="text-align:right;">
12
</td>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
</tr>
<tr>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:right;">
0.0605449
</td>
<td style="text-align:right;">
-0.0097669
</td>
<td style="text-align:right;">
0.1308567
</td>
<td style="text-align:right;">
0.0358740
</td>
<td style="text-align:right;">
0.0022671
</td>
<td style="text-align:right;">
-0.0859910
</td>
<td style="text-align:right;">
0.0905252
</td>
<td style="text-align:right;">
0.0450305
</td>
<td style="text-align:right;">
-0.0550333
</td>
<td style="text-align:right;">
-0.0979518
</td>
<td style="text-align:right;">
-0.0121148
</td>
<td style="text-align:right;">
0.0218976
</td>
<td style="text-align:right;">
218
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:right;">
0.0605449
</td>
<td style="text-align:right;">
-0.0097669
</td>
<td style="text-align:right;">
0.1308567
</td>
<td style="text-align:right;">
0.0358740
</td>
<td style="text-align:right;">
0.0022671
</td>
<td style="text-align:right;">
-0.0859910
</td>
<td style="text-align:right;">
0.0905252
</td>
<td style="text-align:right;">
0.0450305
</td>
<td style="text-align:right;">
-0.0550333
</td>
<td style="text-align:right;">
-0.0979518
</td>
<td style="text-align:right;">
-0.0121148
</td>
<td style="text-align:right;">
0.0218976
</td>
<td style="text-align:right;">
218
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:right;">
0.0942595
</td>
<td style="text-align:right;">
-0.0751596
</td>
<td style="text-align:right;">
0.2636786
</td>
<td style="text-align:right;">
0.0864399
</td>
<td style="text-align:right;">
0.3142208
</td>
<td style="text-align:right;">
0.1125613
</td>
<td style="text-align:right;">
0.5158803
</td>
<td style="text-align:right;">
0.1028894
</td>
<td style="text-align:right;">
0.2027583
</td>
<td style="text-align:right;">
0.1750477
</td>
<td style="text-align:right;">
0.2304688
</td>
<td style="text-align:right;">
0.0141383
</td>
<td style="text-align:right;">
219
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:right;">
0.0942595
</td>
<td style="text-align:right;">
-0.0751596
</td>
<td style="text-align:right;">
0.2636786
</td>
<td style="text-align:right;">
0.0864399
</td>
<td style="text-align:right;">
0.3142208
</td>
<td style="text-align:right;">
0.1125613
</td>
<td style="text-align:right;">
0.5158803
</td>
<td style="text-align:right;">
0.1028894
</td>
<td style="text-align:right;">
0.2027583
</td>
<td style="text-align:right;">
0.1750477
</td>
<td style="text-align:right;">
0.2304688
</td>
<td style="text-align:right;">
0.0141383
</td>
<td style="text-align:right;">
219
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:right;">
-0.1192293
</td>
<td style="text-align:right;">
-0.2542902
</td>
<td style="text-align:right;">
0.0158316
</td>
<td style="text-align:right;">
0.0689099
</td>
<td style="text-align:right;">
-0.0964842
</td>
<td style="text-align:right;">
-0.2564912
</td>
<td style="text-align:right;">
0.0635228
</td>
<td style="text-align:right;">
0.0816377
</td>
<td style="text-align:right;">
0.0267691
</td>
<td style="text-align:right;">
-0.0233285
</td>
<td style="text-align:right;">
0.0768667
</td>
<td style="text-align:right;">
0.0255605
</td>
<td style="text-align:right;">
220
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:right;">
-0.1192293
</td>
<td style="text-align:right;">
-0.2542902
</td>
<td style="text-align:right;">
0.0158316
</td>
<td style="text-align:right;">
0.0689099
</td>
<td style="text-align:right;">
-0.0964842
</td>
<td style="text-align:right;">
-0.2564912
</td>
<td style="text-align:right;">
0.0635228
</td>
<td style="text-align:right;">
0.0816377
</td>
<td style="text-align:right;">
0.0267691
</td>
<td style="text-align:right;">
-0.0233285
</td>
<td style="text-align:right;">
0.0768667
</td>
<td style="text-align:right;">
0.0255605
</td>
<td style="text-align:right;">
220
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:right;">
-0.0422347
</td>
<td style="text-align:right;">
-0.0623878
</td>
<td style="text-align:right;">
-0.0220816
</td>
<td style="text-align:right;">
0.0102824
</td>
<td style="text-align:right;">
-0.0355909
</td>
<td style="text-align:right;">
-0.0619127
</td>
<td style="text-align:right;">
-0.0092692
</td>
<td style="text-align:right;">
0.0134297
</td>
<td style="text-align:right;">
0.0092660
</td>
<td style="text-align:right;">
-0.0008158
</td>
<td style="text-align:right;">
0.0193478
</td>
<td style="text-align:right;">
0.0051439
</td>
<td style="text-align:right;">
223
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:right;">
-0.0422347
</td>
<td style="text-align:right;">
-0.0623878
</td>
<td style="text-align:right;">
-0.0220816
</td>
<td style="text-align:right;">
0.0102824
</td>
<td style="text-align:right;">
-0.0355909
</td>
<td style="text-align:right;">
-0.0619127
</td>
<td style="text-align:right;">
-0.0092692
</td>
<td style="text-align:right;">
0.0134297
</td>
<td style="text-align:right;">
0.0092660
</td>
<td style="text-align:right;">
-0.0008158
</td>
<td style="text-align:right;">
0.0193478
</td>
<td style="text-align:right;">
0.0051439
</td>
<td style="text-align:right;">
223
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:right;">
-0.1457383
</td>
<td style="text-align:right;">
-0.2373165
</td>
<td style="text-align:right;">
-0.0541601
</td>
<td style="text-align:right;">
0.0467244
</td>
<td style="text-align:right;">
-0.2097443
</td>
<td style="text-align:right;">
-0.2681948
</td>
<td style="text-align:right;">
-0.1512937
</td>
<td style="text-align:right;">
0.0298223
</td>
<td style="text-align:right;">
-0.0654284
</td>
<td style="text-align:right;">
-0.1374220
</td>
<td style="text-align:right;">
0.0065653
</td>
<td style="text-align:right;">
0.0367321
</td>
<td style="text-align:right;">
224
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:right;">
-0.1457383
</td>
<td style="text-align:right;">
-0.2373165
</td>
<td style="text-align:right;">
-0.0541601
</td>
<td style="text-align:right;">
0.0467244
</td>
<td style="text-align:right;">
-0.2097443
</td>
<td style="text-align:right;">
-0.2681948
</td>
<td style="text-align:right;">
-0.1512937
</td>
<td style="text-align:right;">
0.0298223
</td>
<td style="text-align:right;">
-0.0654284
</td>
<td style="text-align:right;">
-0.1374220
</td>
<td style="text-align:right;">
0.0065653
</td>
<td style="text-align:right;">
0.0367321
</td>
<td style="text-align:right;">
224
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
</tr>
<tr>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:right;">
-0.0320020
</td>
<td style="text-align:right;">
-0.1233659
</td>
<td style="text-align:right;">
0.0593619
</td>
<td style="text-align:right;">
0.0466151
</td>
<td style="text-align:right;">
0.3268957
</td>
<td style="text-align:right;">
0.2087111
</td>
<td style="text-align:right;">
0.4450803
</td>
<td style="text-align:right;">
0.0602994
</td>
<td style="text-align:right;">
0.3473552
</td>
<td style="text-align:right;">
0.2592006
</td>
<td style="text-align:right;">
0.4355098
</td>
<td style="text-align:right;">
0.0449777
</td>
<td style="text-align:right;">
226
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:right;">
-0.0320020
</td>
<td style="text-align:right;">
-0.1233659
</td>
<td style="text-align:right;">
0.0593619
</td>
<td style="text-align:right;">
0.0466151
</td>
<td style="text-align:right;">
0.3268957
</td>
<td style="text-align:right;">
0.2087111
</td>
<td style="text-align:right;">
0.4450803
</td>
<td style="text-align:right;">
0.0602994
</td>
<td style="text-align:right;">
0.3473552
</td>
<td style="text-align:right;">
0.2592006
</td>
<td style="text-align:right;">
0.4355098
</td>
<td style="text-align:right;">
0.0449777
</td>
<td style="text-align:right;">
226
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:right;">
-0.1405306
</td>
<td style="text-align:right;">
-0.2664120
</td>
<td style="text-align:right;">
-0.0146491
</td>
<td style="text-align:right;">
0.0642264
</td>
<td style="text-align:right;">
-0.0950040
</td>
<td style="text-align:right;">
-0.2507897
</td>
<td style="text-align:right;">
0.0607817
</td>
<td style="text-align:right;">
0.0794840
</td>
<td style="text-align:right;">
0.0403162
</td>
<td style="text-align:right;">
0.0051883
</td>
<td style="text-align:right;">
0.0754441
</td>
<td style="text-align:right;">
0.0179227
</td>
<td style="text-align:right;">
227
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:right;">
-0.1405306
</td>
<td style="text-align:right;">
-0.2664120
</td>
<td style="text-align:right;">
-0.0146491
</td>
<td style="text-align:right;">
0.0642264
</td>
<td style="text-align:right;">
-0.0950040
</td>
<td style="text-align:right;">
-0.2507897
</td>
<td style="text-align:right;">
0.0607817
</td>
<td style="text-align:right;">
0.0794840
</td>
<td style="text-align:right;">
0.0403162
</td>
<td style="text-align:right;">
0.0051883
</td>
<td style="text-align:right;">
0.0754441
</td>
<td style="text-align:right;">
0.0179227
</td>
<td style="text-align:right;">
227
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:right;">
0.0367062
</td>
<td style="text-align:right;">
-0.0660619
</td>
<td style="text-align:right;">
0.1394744
</td>
<td style="text-align:right;">
0.0524337
</td>
<td style="text-align:right;">
0.3626957
</td>
<td style="text-align:right;">
0.0914512
</td>
<td style="text-align:right;">
0.6339402
</td>
<td style="text-align:right;">
0.1383926
</td>
<td style="text-align:right;">
0.4472349
</td>
<td style="text-align:right;">
-0.0801891
</td>
<td style="text-align:right;">
0.9746588
</td>
<td style="text-align:right;">
0.2690988
</td>
<td style="text-align:right;">
228
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:right;">
0.0367062
</td>
<td style="text-align:right;">
-0.0660619
</td>
<td style="text-align:right;">
0.1394744
</td>
<td style="text-align:right;">
0.0524337
</td>
<td style="text-align:right;">
0.3626957
</td>
<td style="text-align:right;">
0.0914512
</td>
<td style="text-align:right;">
0.6339402
</td>
<td style="text-align:right;">
0.1383926
</td>
<td style="text-align:right;">
0.4472349
</td>
<td style="text-align:right;">
-0.0801891
</td>
<td style="text-align:right;">
0.9746588
</td>
<td style="text-align:right;">
0.2690988
</td>
<td style="text-align:right;">
228
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
</tr>
<tr>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:right;">
-0.0907957
</td>
<td style="text-align:right;">
-0.1703063
</td>
<td style="text-align:right;">
-0.0112852
</td>
<td style="text-align:right;">
0.0405673
</td>
<td style="text-align:right;">
0.1168446
</td>
<td style="text-align:right;">
-0.0023934
</td>
<td style="text-align:right;">
0.2360826
</td>
<td style="text-align:right;">
0.0608368
</td>
<td style="text-align:right;">
0.1978876
</td>
<td style="text-align:right;">
0.1368305
</td>
<td style="text-align:right;">
0.2589447
</td>
<td style="text-align:right;">
0.0311521
</td>
<td style="text-align:right;">
229
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:right;">
-0.0907957
</td>
<td style="text-align:right;">
-0.1703063
</td>
<td style="text-align:right;">
-0.0112852
</td>
<td style="text-align:right;">
0.0405673
</td>
<td style="text-align:right;">
0.1168446
</td>
<td style="text-align:right;">
-0.0023934
</td>
<td style="text-align:right;">
0.2360826
</td>
<td style="text-align:right;">
0.0608368
</td>
<td style="text-align:right;">
0.1978876
</td>
<td style="text-align:right;">
0.1368305
</td>
<td style="text-align:right;">
0.2589447
</td>
<td style="text-align:right;">
0.0311521
</td>
<td style="text-align:right;">
229
</td>
<td style="text-align:right;">
16
</td>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
</tr>
<tr>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:right;">
-0.0156634
</td>
<td style="text-align:right;">
-0.0857564
</td>
<td style="text-align:right;">
0.0544296
</td>
<td style="text-align:right;">
0.0357624
</td>
<td style="text-align:right;">
-0.1140149
</td>
<td style="text-align:right;">
-0.1840029
</td>
<td style="text-align:right;">
-0.0440269
</td>
<td style="text-align:right;">
0.0357088
</td>
<td style="text-align:right;">
-0.0997437
</td>
<td style="text-align:right;">
-0.1519566
</td>
<td style="text-align:right;">
-0.0475307
</td>
<td style="text-align:right;">
0.0266397
</td>
<td style="text-align:right;">
230
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:right;">
-0.0156634
</td>
<td style="text-align:right;">
-0.0857564
</td>
<td style="text-align:right;">
0.0544296
</td>
<td style="text-align:right;">
0.0357624
</td>
<td style="text-align:right;">
-0.1140149
</td>
<td style="text-align:right;">
-0.1840029
</td>
<td style="text-align:right;">
-0.0440269
</td>
<td style="text-align:right;">
0.0357088
</td>
<td style="text-align:right;">
-0.0997437
</td>
<td style="text-align:right;">
-0.1519566
</td>
<td style="text-align:right;">
-0.0475307
</td>
<td style="text-align:right;">
0.0266397
</td>
<td style="text-align:right;">
230
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
<tr>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:right;">
-0.0531307
</td>
<td style="text-align:right;">
-0.1011672
</td>
<td style="text-align:right;">
-0.0050941
</td>
<td style="text-align:right;">
0.0245089
</td>
<td style="text-align:right;">
-0.0593672
</td>
<td style="text-align:right;">
-0.1076067
</td>
<td style="text-align:right;">
-0.0111276
</td>
<td style="text-align:right;">
0.0246125
</td>
<td style="text-align:right;">
0.0045878
</td>
<td style="text-align:right;">
-0.0513396
</td>
<td style="text-align:right;">
0.0605152
</td>
<td style="text-align:right;">
0.0285349
</td>
<td style="text-align:right;">
232
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:right;">
-0.0531307
</td>
<td style="text-align:right;">
-0.1011672
</td>
<td style="text-align:right;">
-0.0050941
</td>
<td style="text-align:right;">
0.0245089
</td>
<td style="text-align:right;">
-0.0593672
</td>
<td style="text-align:right;">
-0.1076067
</td>
<td style="text-align:right;">
-0.0111276
</td>
<td style="text-align:right;">
0.0246125
</td>
<td style="text-align:right;">
0.0045878
</td>
<td style="text-align:right;">
-0.0513396
</td>
<td style="text-align:right;">
0.0605152
</td>
<td style="text-align:right;">
0.0285349
</td>
<td style="text-align:right;">
232
</td>
<td style="text-align:right;">
13
</td>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="clean-up-and-rename" class="section level4">
<div name="clean-up_and_rename" data-unique="clean-up_and_rename"></div><h4>Clean-up and rename</h4>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3625" aria-expanded="false" aria-controls="rcode-643E0F3625"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3625"><pre class="r"><code class="hljs">metacombo &lt;-metacombo[, c(<span class="hljs-number">1</span>, <span class="hljs-number">21</span>:<span class="hljs-number">23</span>, <span class="hljs-number">2</span>:<span class="hljs-number">13</span>)] 
names(metacombo)[<span class="hljs-number">3</span>] &lt;- <span class="hljs-string">"procedure"</span> 
names(metacombo)[<span class="hljs-number">4</span>] &lt;- <span class="hljs-string">"GroupingTerm"</span> 

<span class="hljs-comment"># Quick pre-check before doing plots </span>

compare &lt;- metacombo %&gt;%
  group_by(GroupingTerm) %&gt;%
  dplyr::summarize(MeanCVR = mean(lnCVR),MeanVR = mean(lnVR), MeanRR = mean(lnRR) )

compare</code></pre></div>
<pre><code class="hljs">## # A tibble: 9 x 4
##   GroupingTerm   MeanCVR   MeanVR   MeanRR
##   &lt;fct&gt;            &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;
## 1 Behaviour     0.000871 -0.00727 -0.00869
## 2 Eye          -0.152    -0.146    0.00656
## 3 Hearing       0.0143   -0.00893 -0.0145 
## 4 Heart         0.0225   -0.0126  -0.0312 
## 5 Hematology    0.0295    0.106    0.0665 
## 6 Immunology   -0.0723   -0.107   -0.0528 
## 7 Metabolism   -0.0503    0.0931   0.161  
## 8 Morphology    0.0730    0.143    0.0684 
## 9 Physiology    0.0236    0.0480   0.0227</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3626" aria-expanded="false" aria-controls="rcode-643E0F3626"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3626"><pre class="r"><code class="hljs"><span class="hljs-comment"># SHINY APP # Now that we have a corrected "results" table with each of the meta-analytic means for all effect sizes of interest, we can use this table as part of the Shiny App, which will then be able to back calculate the percentage differences between males and females for mean, variance and coefficient of variance. We'll export and use this in the Shiny App. **Note that I have not dealt with convergence issues in some of these models, and so, this will need to be done down the road**</span>

<span class="hljs-comment">## Note Susi 31/7/2019: This has been cleaned up already</span>
<span class="hljs-comment">#FILE TO USE: METACOMBO </span>
  <span class="hljs-comment">### note: to use</span>

<span class="hljs-comment">#trait_meta_results &lt;- write.csv(metacombo, file = "export/trait_meta_results.csv")</span></code></pre></div>
</div>
</div>
</div>
<div id="meta-analysis-phase-3" class="section level2">
<div name="meta-analysis,_phase_3" data-unique="meta-analysis,_phase_3"></div><h2>Meta-analysis, Phase 3</h2>
<div id="perform-meta-analyses-3-for-each-of-the-9-grouping-terms-lncvr-lnvr-lnrr" class="section level4">
<div name="perform_meta-analyses_(3_for_each_of_the_9_grouping_terms:_lncvr,_lnvr,_lnrr)" data-unique="perform_meta-analyses_(3_for_each_of_the_9_grouping_terms:_lncvr,_lnvr,_lnrr)"></div><h4>Perform meta-analyses (3 for each of the 9 grouping terms: lnCVR, lnVR, lnRR)</h4>
<p>This is the full result dataset</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3627" aria-expanded="false" aria-controls="rcode-643E0F3627"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3627"><pre class="r"><code class="hljs">kable(cbind (metacombo,metacombo)) %&gt;%
  kable_styling() %&gt;%
  scroll_box(width = <span class="hljs-string">"100%"</span>, height = <span class="hljs-string">"200px"</span>)</code></pre></div>
<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:100%; ">
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_group
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
counts
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
procedure
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
GroupingTerm
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_se
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter_group
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
counts
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
procedure
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
GroupingTerm
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnCVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnVR_se
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_lower
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_upper
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
lnRR_se
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
pre-pulse inhibition
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
Acoustic Startle and Pre-pulse Inhibition (PPI)
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0232963
</td>
<td style="text-align:right;">
-0.0802563
</td>
<td style="text-align:right;">
0.1268488
</td>
<td style="text-align:right;">
0.0370507
</td>
<td style="text-align:right;">
0.0091028
</td>
<td style="text-align:right;">
-0.0364640
</td>
<td style="text-align:right;">
0.0546695
</td>
<td style="text-align:right;">
0.0143431
</td>
<td style="text-align:right;">
-0.0052156
</td>
<td style="text-align:right;">
-0.0427126
</td>
<td style="text-align:right;">
0.0322815
</td>
<td style="text-align:right;">
0.0128092
</td>
<td style="text-align:left;">
pre-pulse inhibition
</td>
<td style="text-align:right;">
5
</td>
<td style="text-align:left;">
Acoustic Startle and Pre-pulse Inhibition (PPI)
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0232963
</td>
<td style="text-align:right;">
-0.0802563
</td>
<td style="text-align:right;">
0.1268488
</td>
<td style="text-align:right;">
0.0370507
</td>
<td style="text-align:right;">
0.0091028
</td>
<td style="text-align:right;">
-0.0364640
</td>
<td style="text-align:right;">
0.0546695
</td>
<td style="text-align:right;">
0.0143431
</td>
<td style="text-align:right;">
-0.0052156
</td>
<td style="text-align:right;">
-0.0427126
</td>
<td style="text-align:right;">
0.0322815
</td>
<td style="text-align:right;">
0.0128092
</td>
</tr>
<tr>
<td style="text-align:left;">
B cells
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0938959
</td>
<td style="text-align:right;">
-0.2500020
</td>
<td style="text-align:right;">
0.0622103
</td>
<td style="text-align:right;">
0.0426972
</td>
<td style="text-align:right;">
-0.0995337
</td>
<td style="text-align:right;">
-0.2068001
</td>
<td style="text-align:right;">
0.0077328
</td>
<td style="text-align:right;">
0.0250132
</td>
<td style="text-align:right;">
-0.0026281
</td>
<td style="text-align:right;">
-0.1298230
</td>
<td style="text-align:right;">
0.1245668
</td>
<td style="text-align:right;">
0.0393018
</td>
<td style="text-align:left;">
B cells
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0938959
</td>
<td style="text-align:right;">
-0.2500020
</td>
<td style="text-align:right;">
0.0622103
</td>
<td style="text-align:right;">
0.0426972
</td>
<td style="text-align:right;">
-0.0995337
</td>
<td style="text-align:right;">
-0.2068001
</td>
<td style="text-align:right;">
0.0077328
</td>
<td style="text-align:right;">
0.0250132
</td>
<td style="text-align:right;">
-0.0026281
</td>
<td style="text-align:right;">
-0.1298230
</td>
<td style="text-align:right;">
0.1245668
</td>
<td style="text-align:right;">
0.0393018
</td>
</tr>
<tr>
<td style="text-align:left;">
cd4 nkt
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0287688
</td>
<td style="text-align:right;">
-0.0566987
</td>
<td style="text-align:right;">
-0.0008389
</td>
<td style="text-align:right;">
0.0101634
</td>
<td style="text-align:right;">
-0.2018746
</td>
<td style="text-align:right;">
-0.3102294
</td>
<td style="text-align:right;">
-0.0935198
</td>
<td style="text-align:right;">
0.0331161
</td>
<td style="text-align:right;">
-0.2344450
</td>
<td style="text-align:right;">
-0.4005266
</td>
<td style="text-align:right;">
-0.0683635
</td>
<td style="text-align:right;">
0.0633501
</td>
<td style="text-align:left;">
cd4 nkt
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0287688
</td>
<td style="text-align:right;">
-0.0566987
</td>
<td style="text-align:right;">
-0.0008389
</td>
<td style="text-align:right;">
0.0101634
</td>
<td style="text-align:right;">
-0.2018746
</td>
<td style="text-align:right;">
-0.3102294
</td>
<td style="text-align:right;">
-0.0935198
</td>
<td style="text-align:right;">
0.0331161
</td>
<td style="text-align:right;">
-0.2344450
</td>
<td style="text-align:right;">
-0.4005266
</td>
<td style="text-align:right;">
-0.0683635
</td>
<td style="text-align:right;">
0.0633501
</td>
</tr>
<tr>
<td style="text-align:left;">
cd4 t
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1507387
</td>
<td style="text-align:right;">
-0.2427976
</td>
<td style="text-align:right;">
-0.0586798
</td>
<td style="text-align:right;">
0.0360690
</td>
<td style="text-align:right;">
-0.1699213
</td>
<td style="text-align:right;">
-0.2629450
</td>
<td style="text-align:right;">
-0.0768975
</td>
<td style="text-align:right;">
0.0348324
</td>
<td style="text-align:right;">
-0.0031242
</td>
<td style="text-align:right;">
-0.0411564
</td>
<td style="text-align:right;">
0.0349081
</td>
<td style="text-align:right;">
0.0148989
</td>
<td style="text-align:left;">
cd4 t
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1507387
</td>
<td style="text-align:right;">
-0.2427976
</td>
<td style="text-align:right;">
-0.0586798
</td>
<td style="text-align:right;">
0.0360690
</td>
<td style="text-align:right;">
-0.1699213
</td>
<td style="text-align:right;">
-0.2629450
</td>
<td style="text-align:right;">
-0.0768975
</td>
<td style="text-align:right;">
0.0348324
</td>
<td style="text-align:right;">
-0.0031242
</td>
<td style="text-align:right;">
-0.0411564
</td>
<td style="text-align:right;">
0.0349081
</td>
<td style="text-align:right;">
0.0148989
</td>
</tr>
<tr>
<td style="text-align:left;">
cd8 nkt
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0424402
</td>
<td style="text-align:right;">
-0.0782046
</td>
<td style="text-align:right;">
-0.0066759
</td>
<td style="text-align:right;">
0.0119223
</td>
<td style="text-align:right;">
-0.0300442
</td>
<td style="text-align:right;">
-0.1823594
</td>
<td style="text-align:right;">
0.1222710
</td>
<td style="text-align:right;">
0.0533765
</td>
<td style="text-align:right;">
0.0035372
</td>
<td style="text-align:right;">
-0.0573749
</td>
<td style="text-align:right;">
0.0644494
</td>
<td style="text-align:right;">
0.0205272
</td>
<td style="text-align:left;">
cd8 nkt
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0424402
</td>
<td style="text-align:right;">
-0.0782046
</td>
<td style="text-align:right;">
-0.0066759
</td>
<td style="text-align:right;">
0.0119223
</td>
<td style="text-align:right;">
-0.0300442
</td>
<td style="text-align:right;">
-0.1823594
</td>
<td style="text-align:right;">
0.1222710
</td>
<td style="text-align:right;">
0.0533765
</td>
<td style="text-align:right;">
0.0035372
</td>
<td style="text-align:right;">
-0.0573749
</td>
<td style="text-align:right;">
0.0644494
</td>
<td style="text-align:right;">
0.0205272
</td>
</tr>
<tr>
<td style="text-align:left;">
cd8 t
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1223681
</td>
<td style="text-align:right;">
-0.2179976
</td>
<td style="text-align:right;">
-0.0267387
</td>
<td style="text-align:right;">
0.0358727
</td>
<td style="text-align:right;">
-0.1581698
</td>
<td style="text-align:right;">
-0.2342579
</td>
<td style="text-align:right;">
-0.0820816
</td>
<td style="text-align:right;">
0.0270229
</td>
<td style="text-align:right;">
-0.0415806
</td>
<td style="text-align:right;">
-0.0510391
</td>
<td style="text-align:right;">
-0.0321221
</td>
<td style="text-align:right;">
0.0023119
</td>
<td style="text-align:left;">
cd8 t
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1223681
</td>
<td style="text-align:right;">
-0.2179976
</td>
<td style="text-align:right;">
-0.0267387
</td>
<td style="text-align:right;">
0.0358727
</td>
<td style="text-align:right;">
-0.1581698
</td>
<td style="text-align:right;">
-0.2342579
</td>
<td style="text-align:right;">
-0.0820816
</td>
<td style="text-align:right;">
0.0270229
</td>
<td style="text-align:right;">
-0.0415806
</td>
<td style="text-align:right;">
-0.0510391
</td>
<td style="text-align:right;">
-0.0321221
</td>
<td style="text-align:right;">
0.0023119
</td>
</tr>
<tr>
<td style="text-align:left;">
cdcs
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0362947
</td>
<td style="text-align:right;">
-0.3588637
</td>
<td style="text-align:right;">
0.2862742
</td>
<td style="text-align:right;">
0.0253867
</td>
<td style="text-align:right;">
0.1080248
</td>
<td style="text-align:right;">
-0.0565718
</td>
<td style="text-align:right;">
0.2726213
</td>
<td style="text-align:right;">
0.0129540
</td>
<td style="text-align:right;">
0.1642541
</td>
<td style="text-align:right;">
-0.1701520
</td>
<td style="text-align:right;">
0.4986601
</td>
<td style="text-align:right;">
0.0263183
</td>
<td style="text-align:left;">
cdcs
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0362947
</td>
<td style="text-align:right;">
-0.3588637
</td>
<td style="text-align:right;">
0.2862742
</td>
<td style="text-align:right;">
0.0253867
</td>
<td style="text-align:right;">
0.1080248
</td>
<td style="text-align:right;">
-0.0565718
</td>
<td style="text-align:right;">
0.2726213
</td>
<td style="text-align:right;">
0.0129540
</td>
<td style="text-align:right;">
0.1642541
</td>
<td style="text-align:right;">
-0.1701520
</td>
<td style="text-align:right;">
0.4986601
</td>
<td style="text-align:right;">
0.0263183
</td>
</tr>
<tr>
<td style="text-align:left;">
dn nkt
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0619371
</td>
<td style="text-align:right;">
-0.1359380
</td>
<td style="text-align:right;">
0.0120637
</td>
<td style="text-align:right;">
0.0257746
</td>
<td style="text-align:right;">
-0.1572129
</td>
<td style="text-align:right;">
-0.2814342
</td>
<td style="text-align:right;">
-0.0329915
</td>
<td style="text-align:right;">
0.0447163
</td>
<td style="text-align:right;">
-0.1727105
</td>
<td style="text-align:right;">
-0.2906356
</td>
<td style="text-align:right;">
-0.0547854
</td>
<td style="text-align:right;">
0.0441034
</td>
<td style="text-align:left;">
dn nkt
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0619371
</td>
<td style="text-align:right;">
-0.1359380
</td>
<td style="text-align:right;">
0.0120637
</td>
<td style="text-align:right;">
0.0257746
</td>
<td style="text-align:right;">
-0.1572129
</td>
<td style="text-align:right;">
-0.2814342
</td>
<td style="text-align:right;">
-0.0329915
</td>
<td style="text-align:right;">
0.0447163
</td>
<td style="text-align:right;">
-0.1727105
</td>
<td style="text-align:right;">
-0.2906356
</td>
<td style="text-align:right;">
-0.0547854
</td>
<td style="text-align:right;">
0.0441034
</td>
</tr>
<tr>
<td style="text-align:left;">
dn t
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0796127
</td>
<td style="text-align:right;">
-0.1844481
</td>
<td style="text-align:right;">
0.0252227
</td>
<td style="text-align:right;">
0.0420063
</td>
<td style="text-align:right;">
-0.2421038
</td>
<td style="text-align:right;">
-0.3431678
</td>
<td style="text-align:right;">
-0.1410397
</td>
<td style="text-align:right;">
0.0406314
</td>
<td style="text-align:right;">
-0.2298147
</td>
<td style="text-align:right;">
-0.2519708
</td>
<td style="text-align:right;">
-0.2076586
</td>
<td style="text-align:right;">
0.0072373
</td>
<td style="text-align:left;">
dn t
</td>
<td style="text-align:right;">
7
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0796127
</td>
<td style="text-align:right;">
-0.1844481
</td>
<td style="text-align:right;">
0.0252227
</td>
<td style="text-align:right;">
0.0420063
</td>
<td style="text-align:right;">
-0.2421038
</td>
<td style="text-align:right;">
-0.3431678
</td>
<td style="text-align:right;">
-0.1410397
</td>
<td style="text-align:right;">
0.0406314
</td>
<td style="text-align:right;">
-0.2298147
</td>
<td style="text-align:right;">
-0.2519708
</td>
<td style="text-align:right;">
-0.2076586
</td>
<td style="text-align:right;">
0.0072373
</td>
</tr>
<tr>
<td style="text-align:left;">
eosinophils
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0662225
</td>
<td style="text-align:right;">
-0.2806631
</td>
<td style="text-align:right;">
0.1482181
</td>
<td style="text-align:right;">
0.0325859
</td>
<td style="text-align:right;">
-0.0154112
</td>
<td style="text-align:right;">
-0.4051652
</td>
<td style="text-align:right;">
0.3743427
</td>
<td style="text-align:right;">
0.0865366
</td>
<td style="text-align:right;">
-0.0042422
</td>
<td style="text-align:right;">
-0.2409206
</td>
<td style="text-align:right;">
0.2324362
</td>
<td style="text-align:right;">
0.0508093
</td>
<td style="text-align:left;">
eosinophils
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0662225
</td>
<td style="text-align:right;">
-0.2806631
</td>
<td style="text-align:right;">
0.1482181
</td>
<td style="text-align:right;">
0.0325859
</td>
<td style="text-align:right;">
-0.0154112
</td>
<td style="text-align:right;">
-0.4051652
</td>
<td style="text-align:right;">
0.3743427
</td>
<td style="text-align:right;">
0.0865366
</td>
<td style="text-align:right;">
-0.0042422
</td>
<td style="text-align:right;">
-0.2409206
</td>
<td style="text-align:right;">
0.2324362
</td>
<td style="text-align:right;">
0.0508093
</td>
</tr>
<tr>
<td style="text-align:left;">
follicular b cells
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1160077
</td>
<td style="text-align:right;">
-0.7256692
</td>
<td style="text-align:right;">
0.4936538
</td>
<td style="text-align:right;">
0.0479814
</td>
<td style="text-align:right;">
-0.1050194
</td>
<td style="text-align:right;">
-0.6946364
</td>
<td style="text-align:right;">
0.4845977
</td>
<td style="text-align:right;">
0.0464039
</td>
<td style="text-align:right;">
0.0052427
</td>
<td style="text-align:right;">
-0.1872381
</td>
<td style="text-align:right;">
0.1977236
</td>
<td style="text-align:right;">
0.0151486
</td>
<td style="text-align:left;">
follicular b cells
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1160077
</td>
<td style="text-align:right;">
-0.7256692
</td>
<td style="text-align:right;">
0.4936538
</td>
<td style="text-align:right;">
0.0479814
</td>
<td style="text-align:right;">
-0.1050194
</td>
<td style="text-align:right;">
-0.6946364
</td>
<td style="text-align:right;">
0.4845977
</td>
<td style="text-align:right;">
0.0464039
</td>
<td style="text-align:right;">
0.0052427
</td>
<td style="text-align:right;">
-0.1872381
</td>
<td style="text-align:right;">
0.1977236
</td>
<td style="text-align:right;">
0.0151486
</td>
</tr>
<tr>
<td style="text-align:left;">
luc
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0180436
</td>
<td style="text-align:right;">
-0.2038464
</td>
<td style="text-align:right;">
0.2399336
</td>
<td style="text-align:right;">
0.0174631
</td>
<td style="text-align:right;">
0.2657035
</td>
<td style="text-align:right;">
-1.2251358
</td>
<td style="text-align:right;">
1.7565428
</td>
<td style="text-align:right;">
0.1173316
</td>
<td style="text-align:right;">
0.2215497
</td>
<td style="text-align:right;">
-1.4136389
</td>
<td style="text-align:right;">
1.8567382
</td>
<td style="text-align:right;">
0.1286921
</td>
<td style="text-align:left;">
luc
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0180436
</td>
<td style="text-align:right;">
-0.2038464
</td>
<td style="text-align:right;">
0.2399336
</td>
<td style="text-align:right;">
0.0174631
</td>
<td style="text-align:right;">
0.2657035
</td>
<td style="text-align:right;">
-1.2251358
</td>
<td style="text-align:right;">
1.7565428
</td>
<td style="text-align:right;">
0.1173316
</td>
<td style="text-align:right;">
0.2215497
</td>
<td style="text-align:right;">
-1.4136389
</td>
<td style="text-align:right;">
1.8567382
</td>
<td style="text-align:right;">
0.1286921
</td>
</tr>
<tr>
<td style="text-align:left;">
lymphocytes
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0805230
</td>
<td style="text-align:right;">
-2.2618128
</td>
<td style="text-align:right;">
2.4228588
</td>
<td style="text-align:right;">
0.1843458
</td>
<td style="text-align:right;">
0.1550159
</td>
<td style="text-align:right;">
-1.0892706
</td>
<td style="text-align:right;">
1.3993024
</td>
<td style="text-align:right;">
0.0979275
</td>
<td style="text-align:right;">
0.0602144
</td>
<td style="text-align:right;">
-1.0131287
</td>
<td style="text-align:right;">
1.1335576
</td>
<td style="text-align:right;">
0.0844739
</td>
<td style="text-align:left;">
lymphocytes
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0805230
</td>
<td style="text-align:right;">
-2.2618128
</td>
<td style="text-align:right;">
2.4228588
</td>
<td style="text-align:right;">
0.1843458
</td>
<td style="text-align:right;">
0.1550159
</td>
<td style="text-align:right;">
-1.0892706
</td>
<td style="text-align:right;">
1.3993024
</td>
<td style="text-align:right;">
0.0979275
</td>
<td style="text-align:right;">
0.0602144
</td>
<td style="text-align:right;">
-1.0131287
</td>
<td style="text-align:right;">
1.1335576
</td>
<td style="text-align:right;">
0.0844739
</td>
</tr>
<tr>
<td style="text-align:left;">
monocytes
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0214677
</td>
<td style="text-align:right;">
-0.2033706
</td>
<td style="text-align:right;">
0.1604352
</td>
<td style="text-align:right;">
0.0420605
</td>
<td style="text-align:right;">
0.0784876
</td>
<td style="text-align:right;">
-0.1811005
</td>
<td style="text-align:right;">
0.3380757
</td>
<td style="text-align:right;">
0.0585593
</td>
<td style="text-align:right;">
0.1025193
</td>
<td style="text-align:right;">
-0.1483375
</td>
<td style="text-align:right;">
0.3533762
</td>
<td style="text-align:right;">
0.0571438
</td>
<td style="text-align:left;">
monocytes
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0214677
</td>
<td style="text-align:right;">
-0.2033706
</td>
<td style="text-align:right;">
0.1604352
</td>
<td style="text-align:right;">
0.0420605
</td>
<td style="text-align:right;">
0.0784876
</td>
<td style="text-align:right;">
-0.1811005
</td>
<td style="text-align:right;">
0.3380757
</td>
<td style="text-align:right;">
0.0585593
</td>
<td style="text-align:right;">
0.1025193
</td>
<td style="text-align:right;">
-0.1483375
</td>
<td style="text-align:right;">
0.3533762
</td>
<td style="text-align:right;">
0.0571438
</td>
</tr>
<tr>
<td style="text-align:left;">
neutrophils
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.2587446
</td>
<td style="text-align:right;">
0.0130803
</td>
<td style="text-align:right;">
0.5044089
</td>
<td style="text-align:right;">
0.0557516
</td>
<td style="text-align:right;">
0.3799805
</td>
<td style="text-align:right;">
-0.2060446
</td>
<td style="text-align:right;">
0.9660057
</td>
<td style="text-align:right;">
0.1317980
</td>
<td style="text-align:right;">
0.1319372
</td>
<td style="text-align:right;">
-0.2669324
</td>
<td style="text-align:right;">
0.5308068
</td>
<td style="text-align:right;">
0.0924336
</td>
<td style="text-align:left;">
neutrophils
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.2587446
</td>
<td style="text-align:right;">
0.0130803
</td>
<td style="text-align:right;">
0.5044089
</td>
<td style="text-align:right;">
0.0557516
</td>
<td style="text-align:right;">
0.3799805
</td>
<td style="text-align:right;">
-0.2060446
</td>
<td style="text-align:right;">
0.9660057
</td>
<td style="text-align:right;">
0.1317980
</td>
<td style="text-align:right;">
0.1319372
</td>
<td style="text-align:right;">
-0.2669324
</td>
<td style="text-align:right;">
0.5308068
</td>
<td style="text-align:right;">
0.0924336
</td>
</tr>
<tr>
<td style="text-align:left;">
nk cells
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0414772
</td>
<td style="text-align:right;">
-0.0960406
</td>
<td style="text-align:right;">
0.0130862
</td>
<td style="text-align:right;">
0.0200411
</td>
<td style="text-align:right;">
0.0156533
</td>
<td style="text-align:right;">
-0.0703789
</td>
<td style="text-align:right;">
0.1016856
</td>
<td style="text-align:right;">
0.0315487
</td>
<td style="text-align:right;">
0.0471757
</td>
<td style="text-align:right;">
-0.0162213
</td>
<td style="text-align:right;">
0.1105728
</td>
<td style="text-align:right;">
0.0231831
</td>
<td style="text-align:left;">
nk cells
</td>
<td style="text-align:right;">
6
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0414772
</td>
<td style="text-align:right;">
-0.0960406
</td>
<td style="text-align:right;">
0.0130862
</td>
<td style="text-align:right;">
0.0200411
</td>
<td style="text-align:right;">
0.0156533
</td>
<td style="text-align:right;">
-0.0703789
</td>
<td style="text-align:right;">
0.1016856
</td>
<td style="text-align:right;">
0.0315487
</td>
<td style="text-align:right;">
0.0471757
</td>
<td style="text-align:right;">
-0.0162213
</td>
<td style="text-align:right;">
0.1105728
</td>
<td style="text-align:right;">
0.0231831
</td>
</tr>
<tr>
<td style="text-align:left;">
nkt cells
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
0.0033757
</td>
<td style="text-align:right;">
-0.1069890
</td>
<td style="text-align:right;">
0.1137404
</td>
<td style="text-align:right;">
0.0294661
</td>
<td style="text-align:right;">
-0.2458705
</td>
<td style="text-align:right;">
-0.4452333
</td>
<td style="text-align:right;">
-0.0465077
</td>
<td style="text-align:right;">
0.0426738
</td>
<td style="text-align:right;">
-0.1823355
</td>
<td style="text-align:right;">
-0.3233946
</td>
<td style="text-align:right;">
-0.0412763
</td>
<td style="text-align:right;">
0.0314580
</td>
<td style="text-align:left;">
nkt cells
</td>
<td style="text-align:right;">
4
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
0.0033757
</td>
<td style="text-align:right;">
-0.1069890
</td>
<td style="text-align:right;">
0.1137404
</td>
<td style="text-align:right;">
0.0294661
</td>
<td style="text-align:right;">
-0.2458705
</td>
<td style="text-align:right;">
-0.4452333
</td>
<td style="text-align:right;">
-0.0465077
</td>
<td style="text-align:right;">
0.0426738
</td>
<td style="text-align:right;">
-0.1823355
</td>
<td style="text-align:right;">
-0.3233946
</td>
<td style="text-align:right;">
-0.0412763
</td>
<td style="text-align:right;">
0.0314580
</td>
</tr>
<tr>
<td style="text-align:left;">
percentage of live gated events
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0934933
</td>
<td style="text-align:right;">
-0.3037340
</td>
<td style="text-align:right;">
0.1167473
</td>
<td style="text-align:right;">
0.0165463
</td>
<td style="text-align:right;">
-0.0412606
</td>
<td style="text-align:right;">
-0.1414443
</td>
<td style="text-align:right;">
0.0589231
</td>
<td style="text-align:right;">
0.0078846
</td>
<td style="text-align:right;">
0.0500941
</td>
<td style="text-align:right;">
0.0081191
</td>
<td style="text-align:right;">
0.0920690
</td>
<td style="text-align:right;">
0.0033035
</td>
<td style="text-align:left;">
percentage of live gated events
</td>
<td style="text-align:right;">
2
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0934933
</td>
<td style="text-align:right;">
-0.3037340
</td>
<td style="text-align:right;">
0.1167473
</td>
<td style="text-align:right;">
0.0165463
</td>
<td style="text-align:right;">
-0.0412606
</td>
<td style="text-align:right;">
-0.1414443
</td>
<td style="text-align:right;">
0.0589231
</td>
<td style="text-align:right;">
0.0078846
</td>
<td style="text-align:right;">
0.0500941
</td>
<td style="text-align:right;">
0.0081191
</td>
<td style="text-align:right;">
0.0920690
</td>
<td style="text-align:right;">
0.0033035
</td>
</tr>
<tr>
<td style="text-align:left;">
response amplitude
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
Acoustic Startle and Pre-pulse Inhibition (PPI)
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0333147
</td>
<td style="text-align:right;">
-0.0127585
</td>
<td style="text-align:right;">
0.0793879
</td>
<td style="text-align:right;">
0.0202947
</td>
<td style="text-align:right;">
0.2549274
</td>
<td style="text-align:right;">
0.1969787
</td>
<td style="text-align:right;">
0.3128761
</td>
<td style="text-align:right;">
0.0255003
</td>
<td style="text-align:right;">
0.2016062
</td>
<td style="text-align:right;">
0.1108136
</td>
<td style="text-align:right;">
0.2923987
</td>
<td style="text-align:right;">
0.0401164
</td>
<td style="text-align:left;">
response amplitude
</td>
<td style="text-align:right;">
10
</td>
<td style="text-align:left;">
Acoustic Startle and Pre-pulse Inhibition (PPI)
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0333147
</td>
<td style="text-align:right;">
-0.0127585
</td>
<td style="text-align:right;">
0.0793879
</td>
<td style="text-align:right;">
0.0202947
</td>
<td style="text-align:right;">
0.2549274
</td>
<td style="text-align:right;">
0.1969787
</td>
<td style="text-align:right;">
0.3128761
</td>
<td style="text-align:right;">
0.0255003
</td>
<td style="text-align:right;">
0.2016062
</td>
<td style="text-align:right;">
0.1108136
</td>
<td style="text-align:right;">
0.2923987
</td>
<td style="text-align:right;">
0.0401164
</td>
</tr>
<tr>
<td style="text-align:left;">
t cells
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1338701
</td>
<td style="text-align:right;">
-0.2750284
</td>
<td style="text-align:right;">
0.0072883
</td>
<td style="text-align:right;">
0.0326594
</td>
<td style="text-align:right;">
-0.1240786
</td>
<td style="text-align:right;">
-0.4120104
</td>
<td style="text-align:right;">
0.1638531
</td>
<td style="text-align:right;">
0.0668611
</td>
<td style="text-align:right;">
-0.0005749
</td>
<td style="text-align:right;">
-0.1663201
</td>
<td style="text-align:right;">
0.1651702
</td>
<td style="text-align:right;">
0.0374233
</td>
<td style="text-align:left;">
t cells
</td>
<td style="text-align:right;">
3
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1338701
</td>
<td style="text-align:right;">
-0.2750284
</td>
<td style="text-align:right;">
0.0072883
</td>
<td style="text-align:right;">
0.0326594
</td>
<td style="text-align:right;">
-0.1240786
</td>
<td style="text-align:right;">
-0.4120104
</td>
<td style="text-align:right;">
0.1638531
</td>
<td style="text-align:right;">
0.0668611
</td>
<td style="text-align:right;">
-0.0005749
</td>
<td style="text-align:right;">
-0.1663201
</td>
<td style="text-align:right;">
0.1651702
</td>
<td style="text-align:right;">
0.0374233
</td>
</tr>
<tr>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
0.0538655
</td>
<td style="text-align:right;">
-0.0056830
</td>
<td style="text-align:right;">
0.1134139
</td>
<td style="text-align:right;">
0.0303824
</td>
<td style="text-align:right;">
0.0869649
</td>
<td style="text-align:right;">
0.0065802
</td>
<td style="text-align:right;">
0.1673497
</td>
<td style="text-align:right;">
0.0410134
</td>
<td style="text-align:right;">
0.0024851
</td>
<td style="text-align:right;">
-0.0214504
</td>
<td style="text-align:right;">
0.0264205
</td>
<td style="text-align:right;">
0.0122122
</td>
<td style="text-align:left;">
12khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
0.0538655
</td>
<td style="text-align:right;">
-0.0056830
</td>
<td style="text-align:right;">
0.1134139
</td>
<td style="text-align:right;">
0.0303824
</td>
<td style="text-align:right;">
0.0869649
</td>
<td style="text-align:right;">
0.0065802
</td>
<td style="text-align:right;">
0.1673497
</td>
<td style="text-align:right;">
0.0410134
</td>
<td style="text-align:right;">
0.0024851
</td>
<td style="text-align:right;">
-0.0214504
</td>
<td style="text-align:right;">
0.0264205
</td>
<td style="text-align:right;">
0.0122122
</td>
</tr>
<tr>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
0.0238241
</td>
<td style="text-align:right;">
-0.0331809
</td>
<td style="text-align:right;">
0.0808292
</td>
<td style="text-align:right;">
0.0290848
</td>
<td style="text-align:right;">
0.0250266
</td>
<td style="text-align:right;">
-0.0488450
</td>
<td style="text-align:right;">
0.0988982
</td>
<td style="text-align:right;">
0.0376903
</td>
<td style="text-align:right;">
-0.0200763
</td>
<td style="text-align:right;">
-0.0431508
</td>
<td style="text-align:right;">
0.0029982
</td>
<td style="text-align:right;">
0.0117729
</td>
<td style="text-align:left;">
18khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
0.0238241
</td>
<td style="text-align:right;">
-0.0331809
</td>
<td style="text-align:right;">
0.0808292
</td>
<td style="text-align:right;">
0.0290848
</td>
<td style="text-align:right;">
0.0250266
</td>
<td style="text-align:right;">
-0.0488450
</td>
<td style="text-align:right;">
0.0988982
</td>
<td style="text-align:right;">
0.0376903
</td>
<td style="text-align:right;">
-0.0200763
</td>
<td style="text-align:right;">
-0.0431508
</td>
<td style="text-align:right;">
0.0029982
</td>
<td style="text-align:right;">
0.0117729
</td>
</tr>
<tr>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
0.0518127
</td>
<td style="text-align:right;">
-0.0148242
</td>
<td style="text-align:right;">
0.1184497
</td>
<td style="text-align:right;">
0.0339991
</td>
<td style="text-align:right;">
-0.0891510
</td>
<td style="text-align:right;">
-0.3321998
</td>
<td style="text-align:right;">
0.1538977
</td>
<td style="text-align:right;">
0.1240067
</td>
<td style="text-align:right;">
-0.0224536
</td>
<td style="text-align:right;">
-0.0444163
</td>
<td style="text-align:right;">
-0.0004910
</td>
<td style="text-align:right;">
0.0112057
</td>
<td style="text-align:left;">
24khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
0.0518127
</td>
<td style="text-align:right;">
-0.0148242
</td>
<td style="text-align:right;">
0.1184497
</td>
<td style="text-align:right;">
0.0339991
</td>
<td style="text-align:right;">
-0.0891510
</td>
<td style="text-align:right;">
-0.3321998
</td>
<td style="text-align:right;">
0.1538977
</td>
<td style="text-align:right;">
0.1240067
</td>
<td style="text-align:right;">
-0.0224536
</td>
<td style="text-align:right;">
-0.0444163
</td>
<td style="text-align:right;">
-0.0004910
</td>
<td style="text-align:right;">
0.0112057
</td>
</tr>
<tr>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
0.0170933
</td>
<td style="text-align:right;">
-0.0533187
</td>
<td style="text-align:right;">
0.0875053
</td>
<td style="text-align:right;">
0.0359252
</td>
<td style="text-align:right;">
-0.0344797
</td>
<td style="text-align:right;">
-0.1017901
</td>
<td style="text-align:right;">
0.0328306
</td>
<td style="text-align:right;">
0.0343426
</td>
<td style="text-align:right;">
-0.0497874
</td>
<td style="text-align:right;">
-0.0748197
</td>
<td style="text-align:right;">
-0.0247550
</td>
<td style="text-align:right;">
0.0127718
</td>
<td style="text-align:left;">
30khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
0.0170933
</td>
<td style="text-align:right;">
-0.0533187
</td>
<td style="text-align:right;">
0.0875053
</td>
<td style="text-align:right;">
0.0359252
</td>
<td style="text-align:right;">
-0.0344797
</td>
<td style="text-align:right;">
-0.1017901
</td>
<td style="text-align:right;">
0.0328306
</td>
<td style="text-align:right;">
0.0343426
</td>
<td style="text-align:right;">
-0.0497874
</td>
<td style="text-align:right;">
-0.0748197
</td>
<td style="text-align:right;">
-0.0247550
</td>
<td style="text-align:right;">
0.0127718
</td>
</tr>
<tr>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
-0.0077678
</td>
<td style="text-align:right;">
-0.0418582
</td>
<td style="text-align:right;">
0.0263226
</td>
<td style="text-align:right;">
0.0173934
</td>
<td style="text-align:right;">
0.0141682
</td>
<td style="text-align:right;">
-0.0189973
</td>
<td style="text-align:right;">
0.0473337
</td>
<td style="text-align:right;">
0.0169215
</td>
<td style="text-align:right;">
0.0184043
</td>
<td style="text-align:right;">
0.0056897
</td>
<td style="text-align:right;">
0.0311189
</td>
<td style="text-align:right;">
0.0064872
</td>
<td style="text-align:left;">
6khz-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
-0.0077678
</td>
<td style="text-align:right;">
-0.0418582
</td>
<td style="text-align:right;">
0.0263226
</td>
<td style="text-align:right;">
0.0173934
</td>
<td style="text-align:right;">
0.0141682
</td>
<td style="text-align:right;">
-0.0189973
</td>
<td style="text-align:right;">
0.0473337
</td>
<td style="text-align:right;">
0.0169215
</td>
<td style="text-align:right;">
0.0184043
</td>
<td style="text-align:right;">
0.0056897
</td>
<td style="text-align:right;">
0.0311189
</td>
<td style="text-align:right;">
0.0064872
</td>
</tr>
<tr>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0684217
</td>
<td style="text-align:right;">
-0.1895020
</td>
<td style="text-align:right;">
0.0526586
</td>
<td style="text-align:right;">
0.0617768
</td>
<td style="text-align:right;">
0.0585179
</td>
<td style="text-align:right;">
-0.1322507
</td>
<td style="text-align:right;">
0.2492866
</td>
<td style="text-align:right;">
0.0973327
</td>
<td style="text-align:right;">
0.1069442
</td>
<td style="text-align:right;">
0.0319934
</td>
<td style="text-align:right;">
0.1818950
</td>
<td style="text-align:right;">
0.0382409
</td>
<td style="text-align:left;">
alanine aminotransferase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0684217
</td>
<td style="text-align:right;">
-0.1895020
</td>
<td style="text-align:right;">
0.0526586
</td>
<td style="text-align:right;">
0.0617768
</td>
<td style="text-align:right;">
0.0585179
</td>
<td style="text-align:right;">
-0.1322507
</td>
<td style="text-align:right;">
0.2492866
</td>
<td style="text-align:right;">
0.0973327
</td>
<td style="text-align:right;">
0.1069442
</td>
<td style="text-align:right;">
0.0319934
</td>
<td style="text-align:right;">
0.1818950
</td>
<td style="text-align:right;">
0.0382409
</td>
</tr>
<tr>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.1133080
</td>
<td style="text-align:right;">
0.0451475
</td>
<td style="text-align:right;">
0.1814685
</td>
<td style="text-align:right;">
0.0347764
</td>
<td style="text-align:right;">
0.0559995
</td>
<td style="text-align:right;">
-0.0080678
</td>
<td style="text-align:right;">
0.1200668
</td>
<td style="text-align:right;">
0.0326880
</td>
<td style="text-align:right;">
-0.0567840
</td>
<td style="text-align:right;">
-0.0732083
</td>
<td style="text-align:right;">
-0.0403597
</td>
<td style="text-align:right;">
0.0083799
</td>
<td style="text-align:left;">
albumin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.1133080
</td>
<td style="text-align:right;">
0.0451475
</td>
<td style="text-align:right;">
0.1814685
</td>
<td style="text-align:right;">
0.0347764
</td>
<td style="text-align:right;">
0.0559995
</td>
<td style="text-align:right;">
-0.0080678
</td>
<td style="text-align:right;">
0.1200668
</td>
<td style="text-align:right;">
0.0326880
</td>
<td style="text-align:right;">
-0.0567840
</td>
<td style="text-align:right;">
-0.0732083
</td>
<td style="text-align:right;">
-0.0403597
</td>
<td style="text-align:right;">
0.0083799
</td>
</tr>
<tr>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.1043649
</td>
<td style="text-align:right;">
0.0451585
</td>
<td style="text-align:right;">
0.1635713
</td>
<td style="text-align:right;">
0.0302079
</td>
<td style="text-align:right;">
-0.3112471
</td>
<td style="text-align:right;">
-0.3980164
</td>
<td style="text-align:right;">
-0.2244778
</td>
<td style="text-align:right;">
0.0442709
</td>
<td style="text-align:right;">
-0.4216032
</td>
<td style="text-align:right;">
-0.4694832
</td>
<td style="text-align:right;">
-0.3737231
</td>
<td style="text-align:right;">
0.0244290
</td>
<td style="text-align:left;">
alkaline phosphatase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.1043649
</td>
<td style="text-align:right;">
0.0451585
</td>
<td style="text-align:right;">
0.1635713
</td>
<td style="text-align:right;">
0.0302079
</td>
<td style="text-align:right;">
-0.3112471
</td>
<td style="text-align:right;">
-0.3980164
</td>
<td style="text-align:right;">
-0.2244778
</td>
<td style="text-align:right;">
0.0442709
</td>
<td style="text-align:right;">
-0.4216032
</td>
<td style="text-align:right;">
-0.4694832
</td>
<td style="text-align:right;">
-0.3737231
</td>
<td style="text-align:right;">
0.0244290
</td>
</tr>
<tr>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0383407
</td>
<td style="text-align:right;">
-0.0423419
</td>
<td style="text-align:right;">
0.1190232
</td>
<td style="text-align:right;">
0.0411653
</td>
<td style="text-align:right;">
0.2795566
</td>
<td style="text-align:right;">
0.1615777
</td>
<td style="text-align:right;">
0.3975355
</td>
<td style="text-align:right;">
0.0601944
</td>
<td style="text-align:right;">
0.2246987
</td>
<td style="text-align:right;">
0.1793151
</td>
<td style="text-align:right;">
0.2700822
</td>
<td style="text-align:right;">
0.0231553
</td>
<td style="text-align:left;">
alpha-amylase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0383407
</td>
<td style="text-align:right;">
-0.0423419
</td>
<td style="text-align:right;">
0.1190232
</td>
<td style="text-align:right;">
0.0411653
</td>
<td style="text-align:right;">
0.2795566
</td>
<td style="text-align:right;">
0.1615777
</td>
<td style="text-align:right;">
0.3975355
</td>
<td style="text-align:right;">
0.0601944
</td>
<td style="text-align:right;">
0.2246987
</td>
<td style="text-align:right;">
0.1793151
</td>
<td style="text-align:right;">
0.2700822
</td>
<td style="text-align:right;">
0.0231553
</td>
</tr>
<tr>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.1531723
</td>
<td style="text-align:right;">
-0.2210551
</td>
<td style="text-align:right;">
-0.0852895
</td>
<td style="text-align:right;">
0.0346347
</td>
<td style="text-align:right;">
0.2748396
</td>
<td style="text-align:right;">
0.1950895
</td>
<td style="text-align:right;">
0.3545898
</td>
<td style="text-align:right;">
0.0406896
</td>
<td style="text-align:right;">
0.4357738
</td>
<td style="text-align:right;">
0.3655882
</td>
<td style="text-align:right;">
0.5059595
</td>
<td style="text-align:right;">
0.0358097
</td>
<td style="text-align:left;">
area under glucose response curve
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.1531723
</td>
<td style="text-align:right;">
-0.2210551
</td>
<td style="text-align:right;">
-0.0852895
</td>
<td style="text-align:right;">
0.0346347
</td>
<td style="text-align:right;">
0.2748396
</td>
<td style="text-align:right;">
0.1950895
</td>
<td style="text-align:right;">
0.3545898
</td>
<td style="text-align:right;">
0.0406896
</td>
<td style="text-align:right;">
0.4357738
</td>
<td style="text-align:right;">
0.3655882
</td>
<td style="text-align:right;">
0.5059595
</td>
<td style="text-align:right;">
0.0358097
</td>
</tr>
<tr>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0119165
</td>
<td style="text-align:right;">
-0.1228287
</td>
<td style="text-align:right;">
0.1466617
</td>
<td style="text-align:right;">
0.0687488
</td>
<td style="text-align:right;">
-0.0566968
</td>
<td style="text-align:right;">
-0.2457779
</td>
<td style="text-align:right;">
0.1323843
</td>
<td style="text-align:right;">
0.0964717
</td>
<td style="text-align:right;">
-0.0585577
</td>
<td style="text-align:right;">
-0.1331777
</td>
<td style="text-align:right;">
0.0160624
</td>
<td style="text-align:right;">
0.0380722
</td>
<td style="text-align:left;">
aspartate aminotransferase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0119165
</td>
<td style="text-align:right;">
-0.1228287
</td>
<td style="text-align:right;">
0.1466617
</td>
<td style="text-align:right;">
0.0687488
</td>
<td style="text-align:right;">
-0.0566968
</td>
<td style="text-align:right;">
-0.2457779
</td>
<td style="text-align:right;">
0.1323843
</td>
<td style="text-align:right;">
0.0964717
</td>
<td style="text-align:right;">
-0.0585577
</td>
<td style="text-align:right;">
-0.1331777
</td>
<td style="text-align:right;">
0.0160624
</td>
<td style="text-align:right;">
0.0380722
</td>
</tr>
<tr>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0917931
</td>
<td style="text-align:right;">
-0.2022487
</td>
<td style="text-align:right;">
0.0186624
</td>
<td style="text-align:right;">
0.0563559
</td>
<td style="text-align:right;">
0.2031265
</td>
<td style="text-align:right;">
-0.0131549
</td>
<td style="text-align:right;">
0.4194079
</td>
<td style="text-align:right;">
0.1103497
</td>
<td style="text-align:right;">
0.2675772
</td>
<td style="text-align:right;">
0.0643028
</td>
<td style="text-align:right;">
0.4708516
</td>
<td style="text-align:right;">
0.1037133
</td>
<td style="text-align:left;">
basophil cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0917931
</td>
<td style="text-align:right;">
-0.2022487
</td>
<td style="text-align:right;">
0.0186624
</td>
<td style="text-align:right;">
0.0563559
</td>
<td style="text-align:right;">
0.2031265
</td>
<td style="text-align:right;">
-0.0131549
</td>
<td style="text-align:right;">
0.4194079
</td>
<td style="text-align:right;">
0.1103497
</td>
<td style="text-align:right;">
0.2675772
</td>
<td style="text-align:right;">
0.0643028
</td>
<td style="text-align:right;">
0.4708516
</td>
<td style="text-align:right;">
0.1037133
</td>
</tr>
<tr>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0934739
</td>
<td style="text-align:right;">
-0.1787512
</td>
<td style="text-align:right;">
-0.0081966
</td>
<td style="text-align:right;">
0.0435096
</td>
<td style="text-align:right;">
-0.0639511
</td>
<td style="text-align:right;">
-0.2828066
</td>
<td style="text-align:right;">
0.1549044
</td>
<td style="text-align:right;">
0.1116630
</td>
<td style="text-align:right;">
-0.0156339
</td>
<td style="text-align:right;">
-0.1102310
</td>
<td style="text-align:right;">
0.0789633
</td>
<td style="text-align:right;">
0.0482647
</td>
<td style="text-align:left;">
basophil differential count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0934739
</td>
<td style="text-align:right;">
-0.1787512
</td>
<td style="text-align:right;">
-0.0081966
</td>
<td style="text-align:right;">
0.0435096
</td>
<td style="text-align:right;">
-0.0639511
</td>
<td style="text-align:right;">
-0.2828066
</td>
<td style="text-align:right;">
0.1549044
</td>
<td style="text-align:right;">
0.1116630
</td>
<td style="text-align:right;">
-0.0156339
</td>
<td style="text-align:right;">
-0.1102310
</td>
<td style="text-align:right;">
0.0789633
</td>
<td style="text-align:right;">
0.0482647
</td>
</tr>
<tr>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1314998
</td>
<td style="text-align:right;">
0.0329846
</td>
<td style="text-align:right;">
0.2300151
</td>
<td style="text-align:right;">
0.0502638
</td>
<td style="text-align:right;">
-0.0448684
</td>
<td style="text-align:right;">
-0.1340146
</td>
<td style="text-align:right;">
0.0442777
</td>
<td style="text-align:right;">
0.0454836
</td>
<td style="text-align:right;">
-0.1722378
</td>
<td style="text-align:right;">
-0.2207030
</td>
<td style="text-align:right;">
-0.1237726
</td>
<td style="text-align:right;">
0.0247276
</td>
<td style="text-align:left;">
bmc/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1314998
</td>
<td style="text-align:right;">
0.0329846
</td>
<td style="text-align:right;">
0.2300151
</td>
<td style="text-align:right;">
0.0502638
</td>
<td style="text-align:right;">
-0.0448684
</td>
<td style="text-align:right;">
-0.1340146
</td>
<td style="text-align:right;">
0.0442777
</td>
<td style="text-align:right;">
0.0454836
</td>
<td style="text-align:right;">
-0.1722378
</td>
<td style="text-align:right;">
-0.2207030
</td>
<td style="text-align:right;">
-0.1237726
</td>
<td style="text-align:right;">
0.0247276
</td>
</tr>
<tr>
<td style="text-align:left;">
body length
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
-0.0347988
</td>
<td style="text-align:right;">
-0.0824528
</td>
<td style="text-align:right;">
0.0128552
</td>
<td style="text-align:right;">
0.0243137
</td>
<td style="text-align:right;">
-0.0059677
</td>
<td style="text-align:right;">
-0.0526221
</td>
<td style="text-align:right;">
0.0406866
</td>
<td style="text-align:right;">
0.0238037
</td>
<td style="text-align:right;">
0.0282722
</td>
<td style="text-align:right;">
0.0233254
</td>
<td style="text-align:right;">
0.0332189
</td>
<td style="text-align:right;">
0.0025239
</td>
<td style="text-align:left;">
body length
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
-0.0347988
</td>
<td style="text-align:right;">
-0.0824528
</td>
<td style="text-align:right;">
0.0128552
</td>
<td style="text-align:right;">
0.0243137
</td>
<td style="text-align:right;">
-0.0059677
</td>
<td style="text-align:right;">
-0.0526221
</td>
<td style="text-align:right;">
0.0406866
</td>
<td style="text-align:right;">
0.0238037
</td>
<td style="text-align:right;">
0.0282722
</td>
<td style="text-align:right;">
0.0233254
</td>
<td style="text-align:right;">
0.0332189
</td>
<td style="text-align:right;">
0.0025239
</td>
</tr>
<tr>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0325368
</td>
<td style="text-align:right;">
-0.1066429
</td>
<td style="text-align:right;">
0.0415693
</td>
<td style="text-align:right;">
0.0378099
</td>
<td style="text-align:right;">
-0.0303742
</td>
<td style="text-align:right;">
-0.1044537
</td>
<td style="text-align:right;">
0.0437054
</td>
<td style="text-align:right;">
0.0377964
</td>
<td style="text-align:right;">
0.0018532
</td>
<td style="text-align:right;">
-0.0005002
</td>
<td style="text-align:right;">
0.0042066
</td>
<td style="text-align:right;">
0.0012008
</td>
<td style="text-align:left;">
body temp
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0325368
</td>
<td style="text-align:right;">
-0.1066429
</td>
<td style="text-align:right;">
0.0415693
</td>
<td style="text-align:right;">
0.0378099
</td>
<td style="text-align:right;">
-0.0303742
</td>
<td style="text-align:right;">
-0.1044537
</td>
<td style="text-align:right;">
0.0437054
</td>
<td style="text-align:right;">
0.0377964
</td>
<td style="text-align:right;">
0.0018532
</td>
<td style="text-align:right;">
-0.0005002
</td>
<td style="text-align:right;">
0.0042066
</td>
<td style="text-align:right;">
0.0012008
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0245675
</td>
<td style="text-align:right;">
-0.0420402
</td>
<td style="text-align:right;">
0.0911752
</td>
<td style="text-align:right;">
0.0339841
</td>
<td style="text-align:right;">
0.2335793
</td>
<td style="text-align:right;">
0.1694979
</td>
<td style="text-align:right;">
0.2976607
</td>
<td style="text-align:right;">
0.0326952
</td>
<td style="text-align:right;">
0.2096770
</td>
<td style="text-align:right;">
0.1938727
</td>
<td style="text-align:right;">
0.2254813
</td>
<td style="text-align:right;">
0.0080636
</td>
<td style="text-align:left;">
body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0245675
</td>
<td style="text-align:right;">
-0.0420402
</td>
<td style="text-align:right;">
0.0911752
</td>
<td style="text-align:right;">
0.0339841
</td>
<td style="text-align:right;">
0.2335793
</td>
<td style="text-align:right;">
0.1694979
</td>
<td style="text-align:right;">
0.2976607
</td>
<td style="text-align:right;">
0.0326952
</td>
<td style="text-align:right;">
0.2096770
</td>
<td style="text-align:right;">
0.1938727
</td>
<td style="text-align:right;">
0.2254813
</td>
<td style="text-align:right;">
0.0080636
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
0.0853708
</td>
<td style="text-align:right;">
0.0299665
</td>
<td style="text-align:right;">
0.1407751
</td>
<td style="text-align:right;">
0.0282680
</td>
<td style="text-align:right;">
0.2849370
</td>
<td style="text-align:right;">
0.2328875
</td>
<td style="text-align:right;">
0.3369866
</td>
<td style="text-align:right;">
0.0265564
</td>
<td style="text-align:right;">
0.2030973
</td>
<td style="text-align:right;">
0.1864076
</td>
<td style="text-align:right;">
0.2197871
</td>
<td style="text-align:right;">
0.0085153
</td>
<td style="text-align:left;">
body weight after experiment
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
0.0853708
</td>
<td style="text-align:right;">
0.0299665
</td>
<td style="text-align:right;">
0.1407751
</td>
<td style="text-align:right;">
0.0282680
</td>
<td style="text-align:right;">
0.2849370
</td>
<td style="text-align:right;">
0.2328875
</td>
<td style="text-align:right;">
0.3369866
</td>
<td style="text-align:right;">
0.0265564
</td>
<td style="text-align:right;">
0.2030973
</td>
<td style="text-align:right;">
0.1864076
</td>
<td style="text-align:right;">
0.2197871
</td>
<td style="text-align:right;">
0.0085153
</td>
</tr>
<tr>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
0.1053511
</td>
<td style="text-align:right;">
0.0412461
</td>
<td style="text-align:right;">
0.1694562
</td>
<td style="text-align:right;">
0.0327073
</td>
<td style="text-align:right;">
0.3038998
</td>
<td style="text-align:right;">
0.2435428
</td>
<td style="text-align:right;">
0.3642568
</td>
<td style="text-align:right;">
0.0307949
</td>
<td style="text-align:right;">
0.2008638
</td>
<td style="text-align:right;">
0.1816362
</td>
<td style="text-align:right;">
0.2200914
</td>
<td style="text-align:right;">
0.0098102
</td>
<td style="text-align:left;">
body weight before experiment
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
0.1053511
</td>
<td style="text-align:right;">
0.0412461
</td>
<td style="text-align:right;">
0.1694562
</td>
<td style="text-align:right;">
0.0327073
</td>
<td style="text-align:right;">
0.3038998
</td>
<td style="text-align:right;">
0.2435428
</td>
<td style="text-align:right;">
0.3642568
</td>
<td style="text-align:right;">
0.0307949
</td>
<td style="text-align:right;">
0.2008638
</td>
<td style="text-align:right;">
0.1816362
</td>
<td style="text-align:right;">
0.2200914
</td>
<td style="text-align:right;">
0.0098102
</td>
</tr>
<tr>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0981587
</td>
<td style="text-align:right;">
0.0272824
</td>
<td style="text-align:right;">
0.1690349
</td>
<td style="text-align:right;">
0.0361620
</td>
<td style="text-align:right;">
0.1286546
</td>
<td style="text-align:right;">
0.0533659
</td>
<td style="text-align:right;">
0.2039432
</td>
<td style="text-align:right;">
0.0384133
</td>
<td style="text-align:right;">
0.0315241
</td>
<td style="text-align:right;">
0.0003806
</td>
<td style="text-align:right;">
0.0626676
</td>
<td style="text-align:right;">
0.0158898
</td>
<td style="text-align:left;">
bone area
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0981587
</td>
<td style="text-align:right;">
0.0272824
</td>
<td style="text-align:right;">
0.1690349
</td>
<td style="text-align:right;">
0.0361620
</td>
<td style="text-align:right;">
0.1286546
</td>
<td style="text-align:right;">
0.0533659
</td>
<td style="text-align:right;">
0.2039432
</td>
<td style="text-align:right;">
0.0384133
</td>
<td style="text-align:right;">
0.0315241
</td>
<td style="text-align:right;">
0.0003806
</td>
<td style="text-align:right;">
0.0626676
</td>
<td style="text-align:right;">
0.0158898
</td>
</tr>
<tr>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1709230
</td>
<td style="text-align:right;">
0.0625642
</td>
<td style="text-align:right;">
0.2792818
</td>
<td style="text-align:right;">
0.0552861
</td>
<td style="text-align:right;">
0.2091372
</td>
<td style="text-align:right;">
0.1015600
</td>
<td style="text-align:right;">
0.3167143
</td>
<td style="text-align:right;">
0.0548873
</td>
<td style="text-align:right;">
0.0372537
</td>
<td style="text-align:right;">
-0.0130828
</td>
<td style="text-align:right;">
0.0875902
</td>
<td style="text-align:right;">
0.0256824
</td>
<td style="text-align:left;">
bone mineral content (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1709230
</td>
<td style="text-align:right;">
0.0625642
</td>
<td style="text-align:right;">
0.2792818
</td>
<td style="text-align:right;">
0.0552861
</td>
<td style="text-align:right;">
0.2091372
</td>
<td style="text-align:right;">
0.1015600
</td>
<td style="text-align:right;">
0.3167143
</td>
<td style="text-align:right;">
0.0548873
</td>
<td style="text-align:right;">
0.0372537
</td>
<td style="text-align:right;">
-0.0130828
</td>
<td style="text-align:right;">
0.0875902
</td>
<td style="text-align:right;">
0.0256824
</td>
</tr>
<tr>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0542638
</td>
<td style="text-align:right;">
-0.0881612
</td>
<td style="text-align:right;">
0.1966887
</td>
<td style="text-align:right;">
0.0726671
</td>
<td style="text-align:right;">
0.0492830
</td>
<td style="text-align:right;">
-0.1087868
</td>
<td style="text-align:right;">
0.2073528
</td>
<td style="text-align:right;">
0.0806494
</td>
<td style="text-align:right;">
0.0012286
</td>
<td style="text-align:right;">
-0.0187942
</td>
<td style="text-align:right;">
0.0212514
</td>
<td style="text-align:right;">
0.0102159
</td>
<td style="text-align:left;">
bone mineral density (excluding skull)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0542638
</td>
<td style="text-align:right;">
-0.0881612
</td>
<td style="text-align:right;">
0.1966887
</td>
<td style="text-align:right;">
0.0726671
</td>
<td style="text-align:right;">
0.0492830
</td>
<td style="text-align:right;">
-0.1087868
</td>
<td style="text-align:right;">
0.2073528
</td>
<td style="text-align:right;">
0.0806494
</td>
<td style="text-align:right;">
0.0012286
</td>
<td style="text-align:right;">
-0.0187942
</td>
<td style="text-align:right;">
0.0212514
</td>
<td style="text-align:right;">
0.0102159
</td>
</tr>
<tr>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0097946
</td>
<td style="text-align:right;">
-0.0464600
</td>
<td style="text-align:right;">
0.0660492
</td>
<td style="text-align:right;">
0.0287018
</td>
<td style="text-align:right;">
0.0135683
</td>
<td style="text-align:right;">
-0.0424600
</td>
<td style="text-align:right;">
0.0695966
</td>
<td style="text-align:right;">
0.0285864
</td>
<td style="text-align:right;">
0.0036564
</td>
<td style="text-align:right;">
-0.0000609
</td>
<td style="text-align:right;">
0.0073737
</td>
<td style="text-align:right;">
0.0018966
</td>
<td style="text-align:left;">
calcium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0097946
</td>
<td style="text-align:right;">
-0.0464600
</td>
<td style="text-align:right;">
0.0660492
</td>
<td style="text-align:right;">
0.0287018
</td>
<td style="text-align:right;">
0.0135683
</td>
<td style="text-align:right;">
-0.0424600
</td>
<td style="text-align:right;">
0.0695966
</td>
<td style="text-align:right;">
0.0285864
</td>
<td style="text-align:right;">
0.0036564
</td>
<td style="text-align:right;">
-0.0000609
</td>
<td style="text-align:right;">
0.0073737
</td>
<td style="text-align:right;">
0.0018966
</td>
</tr>
<tr>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0133816
</td>
<td style="text-align:right;">
-0.0797535
</td>
<td style="text-align:right;">
0.1065166
</td>
<td style="text-align:right;">
0.0475188
</td>
<td style="text-align:right;">
0.1017991
</td>
<td style="text-align:right;">
0.0206287
</td>
<td style="text-align:right;">
0.1829694
</td>
<td style="text-align:right;">
0.0414142
</td>
<td style="text-align:right;">
0.0934439
</td>
<td style="text-align:right;">
0.0580233
</td>
<td style="text-align:right;">
0.1288645
</td>
<td style="text-align:right;">
0.0180721
</td>
<td style="text-align:left;">
cardiac output
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0133816
</td>
<td style="text-align:right;">
-0.0797535
</td>
<td style="text-align:right;">
0.1065166
</td>
<td style="text-align:right;">
0.0475188
</td>
<td style="text-align:right;">
0.1017991
</td>
<td style="text-align:right;">
0.0206287
</td>
<td style="text-align:right;">
0.1829694
</td>
<td style="text-align:right;">
0.0414142
</td>
<td style="text-align:right;">
0.0934439
</td>
<td style="text-align:right;">
0.0580233
</td>
<td style="text-align:right;">
0.1288645
</td>
<td style="text-align:right;">
0.0180721
</td>
</tr>
<tr>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0167300
</td>
<td style="text-align:right;">
-0.0404735
</td>
<td style="text-align:right;">
0.0739335
</td>
<td style="text-align:right;">
0.0291860
</td>
<td style="text-align:right;">
-0.0588515
</td>
<td style="text-align:right;">
-0.1004209
</td>
<td style="text-align:right;">
-0.0172820
</td>
<td style="text-align:right;">
0.0212093
</td>
<td style="text-align:right;">
-0.0724619
</td>
<td style="text-align:right;">
-0.1149622
</td>
<td style="text-align:right;">
-0.0299616
</td>
<td style="text-align:right;">
0.0216842
</td>
<td style="text-align:left;">
center average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0167300
</td>
<td style="text-align:right;">
-0.0404735
</td>
<td style="text-align:right;">
0.0739335
</td>
<td style="text-align:right;">
0.0291860
</td>
<td style="text-align:right;">
-0.0588515
</td>
<td style="text-align:right;">
-0.1004209
</td>
<td style="text-align:right;">
-0.0172820
</td>
<td style="text-align:right;">
0.0212093
</td>
<td style="text-align:right;">
-0.0724619
</td>
<td style="text-align:right;">
-0.1149622
</td>
<td style="text-align:right;">
-0.0299616
</td>
<td style="text-align:right;">
0.0216842
</td>
</tr>
<tr>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0162603
</td>
<td style="text-align:right;">
-0.0733243
</td>
<td style="text-align:right;">
0.0408038
</td>
<td style="text-align:right;">
0.0291149
</td>
<td style="text-align:right;">
-0.1060637
</td>
<td style="text-align:right;">
-0.2023343
</td>
<td style="text-align:right;">
-0.0097930
</td>
<td style="text-align:right;">
0.0491186
</td>
<td style="text-align:right;">
-0.0940204
</td>
<td style="text-align:right;">
-0.1945774
</td>
<td style="text-align:right;">
0.0065366
</td>
<td style="text-align:right;">
0.0513055
</td>
<td style="text-align:left;">
center distance travelled
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0162603
</td>
<td style="text-align:right;">
-0.0733243
</td>
<td style="text-align:right;">
0.0408038
</td>
<td style="text-align:right;">
0.0291149
</td>
<td style="text-align:right;">
-0.1060637
</td>
<td style="text-align:right;">
-0.2023343
</td>
<td style="text-align:right;">
-0.0097930
</td>
<td style="text-align:right;">
0.0491186
</td>
<td style="text-align:right;">
-0.0940204
</td>
<td style="text-align:right;">
-0.1945774
</td>
<td style="text-align:right;">
0.0065366
</td>
<td style="text-align:right;">
0.0513055
</td>
</tr>
<tr>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0253715
</td>
<td style="text-align:right;">
-0.0826435
</td>
<td style="text-align:right;">
0.0319004
</td>
<td style="text-align:right;">
0.0292209
</td>
<td style="text-align:right;">
-0.0255734
</td>
<td style="text-align:right;">
-0.1014389
</td>
<td style="text-align:right;">
0.0502922
</td>
<td style="text-align:right;">
0.0387076
</td>
<td style="text-align:right;">
-0.0035151
</td>
<td style="text-align:right;">
-0.0902886
</td>
<td style="text-align:right;">
0.0832585
</td>
<td style="text-align:right;">
0.0442730
</td>
<td style="text-align:left;">
center permanence time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0253715
</td>
<td style="text-align:right;">
-0.0826435
</td>
<td style="text-align:right;">
0.0319004
</td>
<td style="text-align:right;">
0.0292209
</td>
<td style="text-align:right;">
-0.0255734
</td>
<td style="text-align:right;">
-0.1014389
</td>
<td style="text-align:right;">
0.0502922
</td>
<td style="text-align:right;">
0.0387076
</td>
<td style="text-align:right;">
-0.0035151
</td>
<td style="text-align:right;">
-0.0902886
</td>
<td style="text-align:right;">
0.0832585
</td>
<td style="text-align:right;">
0.0442730
</td>
</tr>
<tr>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0244492
</td>
<td style="text-align:right;">
-0.0737922
</td>
<td style="text-align:right;">
0.1226906
</td>
<td style="text-align:right;">
0.0501241
</td>
<td style="text-align:right;">
-0.0228690
</td>
<td style="text-align:right;">
-0.1548339
</td>
<td style="text-align:right;">
0.1090960
</td>
<td style="text-align:right;">
0.0673303
</td>
<td style="text-align:right;">
-0.0630751
</td>
<td style="text-align:right;">
-0.2215457
</td>
<td style="text-align:right;">
0.0953955
</td>
<td style="text-align:right;">
0.0808538
</td>
<td style="text-align:left;">
center resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0244492
</td>
<td style="text-align:right;">
-0.0737922
</td>
<td style="text-align:right;">
0.1226906
</td>
<td style="text-align:right;">
0.0501241
</td>
<td style="text-align:right;">
-0.0228690
</td>
<td style="text-align:right;">
-0.1548339
</td>
<td style="text-align:right;">
0.1090960
</td>
<td style="text-align:right;">
0.0673303
</td>
<td style="text-align:right;">
-0.0630751
</td>
<td style="text-align:right;">
-0.2215457
</td>
<td style="text-align:right;">
0.0953955
</td>
<td style="text-align:right;">
0.0808538
</td>
</tr>
<tr>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0321555
</td>
<td style="text-align:right;">
-0.1270972
</td>
<td style="text-align:right;">
0.1914083
</td>
<td style="text-align:right;">
0.0812529
</td>
<td style="text-align:right;">
0.0241491
</td>
<td style="text-align:right;">
-0.1438502
</td>
<td style="text-align:right;">
0.1921485
</td>
<td style="text-align:right;">
0.0857155
</td>
<td style="text-align:right;">
-0.0127047
</td>
<td style="text-align:right;">
-0.0177349
</td>
<td style="text-align:right;">
-0.0076745
</td>
<td style="text-align:right;">
0.0025665
</td>
<td style="text-align:left;">
chloride
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0321555
</td>
<td style="text-align:right;">
-0.1270972
</td>
<td style="text-align:right;">
0.1914083
</td>
<td style="text-align:right;">
0.0812529
</td>
<td style="text-align:right;">
0.0241491
</td>
<td style="text-align:right;">
-0.1438502
</td>
<td style="text-align:right;">
0.1921485
</td>
<td style="text-align:right;">
0.0857155
</td>
<td style="text-align:right;">
-0.0127047
</td>
<td style="text-align:right;">
-0.0177349
</td>
<td style="text-align:right;">
-0.0076745
</td>
<td style="text-align:right;">
0.0025665
</td>
</tr>
<tr>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
-0.0529450
</td>
<td style="text-align:right;">
-0.1534816
</td>
<td style="text-align:right;">
0.0475915
</td>
<td style="text-align:right;">
0.0512951
</td>
<td style="text-align:right;">
-0.0561198
</td>
<td style="text-align:right;">
-0.1827679
</td>
<td style="text-align:right;">
0.0705282
</td>
<td style="text-align:right;">
0.0646176
</td>
<td style="text-align:right;">
-0.0154221
</td>
<td style="text-align:right;">
-0.0577200
</td>
<td style="text-align:right;">
0.0268757
</td>
<td style="text-align:right;">
0.0215809
</td>
<td style="text-align:left;">
click-evoked abr threshold
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Auditory Brain Stem Response
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:right;">
-0.0529450
</td>
<td style="text-align:right;">
-0.1534816
</td>
<td style="text-align:right;">
0.0475915
</td>
<td style="text-align:right;">
0.0512951
</td>
<td style="text-align:right;">
-0.0561198
</td>
<td style="text-align:right;">
-0.1827679
</td>
<td style="text-align:right;">
0.0705282
</td>
<td style="text-align:right;">
0.0646176
</td>
<td style="text-align:right;">
-0.0154221
</td>
<td style="text-align:right;">
-0.0577200
</td>
<td style="text-align:right;">
0.0268757
</td>
<td style="text-align:right;">
0.0215809
</td>
</tr>
<tr>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0241232
</td>
<td style="text-align:right;">
-0.1071457
</td>
<td style="text-align:right;">
0.1553920
</td>
<td style="text-align:right;">
0.0669751
</td>
<td style="text-align:right;">
-0.1318792
</td>
<td style="text-align:right;">
-0.3968974
</td>
<td style="text-align:right;">
0.1331390
</td>
<td style="text-align:right;">
0.1352159
</td>
<td style="text-align:right;">
-0.1344413
</td>
<td style="text-align:right;">
-0.3838303
</td>
<td style="text-align:right;">
0.1149476
</td>
<td style="text-align:right;">
0.1272416
</td>
<td style="text-align:left;">
creatine kinase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0241232
</td>
<td style="text-align:right;">
-0.1071457
</td>
<td style="text-align:right;">
0.1553920
</td>
<td style="text-align:right;">
0.0669751
</td>
<td style="text-align:right;">
-0.1318792
</td>
<td style="text-align:right;">
-0.3968974
</td>
<td style="text-align:right;">
0.1331390
</td>
<td style="text-align:right;">
0.1352159
</td>
<td style="text-align:right;">
-0.1344413
</td>
<td style="text-align:right;">
-0.3838303
</td>
<td style="text-align:right;">
0.1149476
</td>
<td style="text-align:right;">
0.1272416
</td>
</tr>
<tr>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0352315
</td>
<td style="text-align:right;">
-0.0229205
</td>
<td style="text-align:right;">
0.0933835
</td>
<td style="text-align:right;">
0.0296699
</td>
<td style="text-align:right;">
0.1066373
</td>
<td style="text-align:right;">
-0.2200831
</td>
<td style="text-align:right;">
0.4333578
</td>
<td style="text-align:right;">
0.1666972
</td>
<td style="text-align:right;">
-0.0844078
</td>
<td style="text-align:right;">
-0.1320251
</td>
<td style="text-align:right;">
-0.0367905
</td>
<td style="text-align:right;">
0.0242950
</td>
<td style="text-align:left;">
creatinine
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0352315
</td>
<td style="text-align:right;">
-0.0229205
</td>
<td style="text-align:right;">
0.0933835
</td>
<td style="text-align:right;">
0.0296699
</td>
<td style="text-align:right;">
0.1066373
</td>
<td style="text-align:right;">
-0.2200831
</td>
<td style="text-align:right;">
0.4333578
</td>
<td style="text-align:right;">
0.1666972
</td>
<td style="text-align:right;">
-0.0844078
</td>
<td style="text-align:right;">
-0.1320251
</td>
<td style="text-align:right;">
-0.0367905
</td>
<td style="text-align:right;">
0.0242950
</td>
</tr>
<tr>
<td style="text-align:left;">
cv
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.1874544
</td>
<td style="text-align:right;">
0.0716631
</td>
<td style="text-align:right;">
0.3032457
</td>
<td style="text-align:right;">
0.0590783
</td>
<td style="text-align:right;">
-0.0895722
</td>
<td style="text-align:right;">
-0.2484833
</td>
<td style="text-align:right;">
0.0693388
</td>
<td style="text-align:right;">
0.0810786
</td>
<td style="text-align:right;">
-0.2401301
</td>
<td style="text-align:right;">
-0.3410322
</td>
<td style="text-align:right;">
-0.1392280
</td>
<td style="text-align:right;">
0.0514816
</td>
<td style="text-align:left;">
cv
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.1874544
</td>
<td style="text-align:right;">
0.0716631
</td>
<td style="text-align:right;">
0.3032457
</td>
<td style="text-align:right;">
0.0590783
</td>
<td style="text-align:right;">
-0.0895722
</td>
<td style="text-align:right;">
-0.2484833
</td>
<td style="text-align:right;">
0.0693388
</td>
<td style="text-align:right;">
0.0810786
</td>
<td style="text-align:right;">
-0.2401301
</td>
<td style="text-align:right;">
-0.3410322
</td>
<td style="text-align:right;">
-0.1392280
</td>
<td style="text-align:right;">
0.0514816
</td>
</tr>
<tr>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0187819
</td>
<td style="text-align:right;">
-0.0858957
</td>
<td style="text-align:right;">
0.0483318
</td>
<td style="text-align:right;">
0.0342423
</td>
<td style="text-align:right;">
-0.1272582
</td>
<td style="text-align:right;">
-0.1997426
</td>
<td style="text-align:right;">
-0.0547738
</td>
<td style="text-align:right;">
0.0369825
</td>
<td style="text-align:right;">
-0.1121373
</td>
<td style="text-align:right;">
-0.1816322
</td>
<td style="text-align:right;">
-0.0426424
</td>
<td style="text-align:right;">
0.0354572
</td>
<td style="text-align:left;">
distance travelled - total
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0187819
</td>
<td style="text-align:right;">
-0.0858957
</td>
<td style="text-align:right;">
0.0483318
</td>
<td style="text-align:right;">
0.0342423
</td>
<td style="text-align:right;">
-0.1272582
</td>
<td style="text-align:right;">
-0.1997426
</td>
<td style="text-align:right;">
-0.0547738
</td>
<td style="text-align:right;">
0.0369825
</td>
<td style="text-align:right;">
-0.1121373
</td>
<td style="text-align:right;">
-0.1816322
</td>
<td style="text-align:right;">
-0.0426424
</td>
<td style="text-align:right;">
0.0354572
</td>
</tr>
<tr>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0300111
</td>
<td style="text-align:right;">
-0.1345066
</td>
<td style="text-align:right;">
0.0744844
</td>
<td style="text-align:right;">
0.0533150
</td>
<td style="text-align:right;">
-0.0525735
</td>
<td style="text-align:right;">
-0.1483174
</td>
<td style="text-align:right;">
0.0431705
</td>
<td style="text-align:right;">
0.0488499
</td>
<td style="text-align:right;">
-0.0284086
</td>
<td style="text-align:right;">
-0.0492579
</td>
<td style="text-align:right;">
-0.0075592
</td>
<td style="text-align:right;">
0.0106376
</td>
<td style="text-align:left;">
ejection fraction
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0300111
</td>
<td style="text-align:right;">
-0.1345066
</td>
<td style="text-align:right;">
0.0744844
</td>
<td style="text-align:right;">
0.0533150
</td>
<td style="text-align:right;">
-0.0525735
</td>
<td style="text-align:right;">
-0.1483174
</td>
<td style="text-align:right;">
0.0431705
</td>
<td style="text-align:right;">
0.0488499
</td>
<td style="text-align:right;">
-0.0284086
</td>
<td style="text-align:right;">
-0.0492579
</td>
<td style="text-align:right;">
-0.0075592
</td>
<td style="text-align:right;">
0.0106376
</td>
</tr>
<tr>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.1120972
</td>
<td style="text-align:right;">
0.0431489
</td>
<td style="text-align:right;">
0.1810454
</td>
<td style="text-align:right;">
0.0351783
</td>
<td style="text-align:right;">
0.1743929
</td>
<td style="text-align:right;">
0.0875252
</td>
<td style="text-align:right;">
0.2612607
</td>
<td style="text-align:right;">
0.0443211
</td>
<td style="text-align:right;">
0.0600907
</td>
<td style="text-align:right;">
0.0354923
</td>
<td style="text-align:right;">
0.0846891
</td>
<td style="text-align:right;">
0.0125504
</td>
<td style="text-align:left;">
end-diastolic diameter
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.1120972
</td>
<td style="text-align:right;">
0.0431489
</td>
<td style="text-align:right;">
0.1810454
</td>
<td style="text-align:right;">
0.0351783
</td>
<td style="text-align:right;">
0.1743929
</td>
<td style="text-align:right;">
0.0875252
</td>
<td style="text-align:right;">
0.2612607
</td>
<td style="text-align:right;">
0.0443211
</td>
<td style="text-align:right;">
0.0600907
</td>
<td style="text-align:right;">
0.0354923
</td>
<td style="text-align:right;">
0.0846891
</td>
<td style="text-align:right;">
0.0125504
</td>
</tr>
<tr>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0084176
</td>
<td style="text-align:right;">
-0.0780811
</td>
<td style="text-align:right;">
0.0612459
</td>
<td style="text-align:right;">
0.0355433
</td>
<td style="text-align:right;">
0.0668966
</td>
<td style="text-align:right;">
-0.0016692
</td>
<td style="text-align:right;">
0.1354624
</td>
<td style="text-align:right;">
0.0349832
</td>
<td style="text-align:right;">
0.0763195
</td>
<td style="text-align:right;">
0.0451136
</td>
<td style="text-align:right;">
0.1075254
</td>
<td style="text-align:right;">
0.0159217
</td>
<td style="text-align:left;">
end-systolic diameter
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0084176
</td>
<td style="text-align:right;">
-0.0780811
</td>
<td style="text-align:right;">
0.0612459
</td>
<td style="text-align:right;">
0.0355433
</td>
<td style="text-align:right;">
0.0668966
</td>
<td style="text-align:right;">
-0.0016692
</td>
<td style="text-align:right;">
0.1354624
</td>
<td style="text-align:right;">
0.0349832
</td>
<td style="text-align:right;">
0.0763195
</td>
<td style="text-align:right;">
0.0451136
</td>
<td style="text-align:right;">
0.1075254
</td>
<td style="text-align:right;">
0.0159217
</td>
</tr>
<tr>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.0177245
</td>
<td style="text-align:right;">
-0.1256855
</td>
<td style="text-align:right;">
0.0902366
</td>
<td style="text-align:right;">
0.0550832
</td>
<td style="text-align:right;">
0.0702824
</td>
<td style="text-align:right;">
-0.0302439
</td>
<td style="text-align:right;">
0.1708087
</td>
<td style="text-align:right;">
0.0512899
</td>
<td style="text-align:right;">
0.0868420
</td>
<td style="text-align:right;">
0.0493007
</td>
<td style="text-align:right;">
0.1243832
</td>
<td style="text-align:right;">
0.0191541
</td>
<td style="text-align:left;">
fasted blood glucose concentration
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.0177245
</td>
<td style="text-align:right;">
-0.1256855
</td>
<td style="text-align:right;">
0.0902366
</td>
<td style="text-align:right;">
0.0550832
</td>
<td style="text-align:right;">
0.0702824
</td>
<td style="text-align:right;">
-0.0302439
</td>
<td style="text-align:right;">
0.1708087
</td>
<td style="text-align:right;">
0.0512899
</td>
<td style="text-align:right;">
0.0868420
</td>
<td style="text-align:right;">
0.0493007
</td>
<td style="text-align:right;">
0.1243832
</td>
<td style="text-align:right;">
0.0191541
</td>
</tr>
<tr>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0408799
</td>
<td style="text-align:right;">
-0.0430149
</td>
<td style="text-align:right;">
0.1247746
</td>
<td style="text-align:right;">
0.0428042
</td>
<td style="text-align:right;">
0.3714313
</td>
<td style="text-align:right;">
0.2698790
</td>
<td style="text-align:right;">
0.4729837
</td>
<td style="text-align:right;">
0.0518134
</td>
<td style="text-align:right;">
0.3282080
</td>
<td style="text-align:right;">
0.2669032
</td>
<td style="text-align:right;">
0.3895129
</td>
<td style="text-align:right;">
0.0312786
</td>
<td style="text-align:left;">
fat mass
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0408799
</td>
<td style="text-align:right;">
-0.0430149
</td>
<td style="text-align:right;">
0.1247746
</td>
<td style="text-align:right;">
0.0428042
</td>
<td style="text-align:right;">
0.3714313
</td>
<td style="text-align:right;">
0.2698790
</td>
<td style="text-align:right;">
0.4729837
</td>
<td style="text-align:right;">
0.0518134
</td>
<td style="text-align:right;">
0.3282080
</td>
<td style="text-align:right;">
0.2669032
</td>
<td style="text-align:right;">
0.3895129
</td>
<td style="text-align:right;">
0.0312786
</td>
</tr>
<tr>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0777327
</td>
<td style="text-align:right;">
-0.0119735
</td>
<td style="text-align:right;">
0.1674390
</td>
<td style="text-align:right;">
0.0457693
</td>
<td style="text-align:right;">
0.2020776
</td>
<td style="text-align:right;">
0.1083557
</td>
<td style="text-align:right;">
0.2957996
</td>
<td style="text-align:right;">
0.0478182
</td>
<td style="text-align:right;">
0.1235292
</td>
<td style="text-align:right;">
0.0638629
</td>
<td style="text-align:right;">
0.1831955
</td>
<td style="text-align:right;">
0.0304425
</td>
<td style="text-align:left;">
fat/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0777327
</td>
<td style="text-align:right;">
-0.0119735
</td>
<td style="text-align:right;">
0.1674390
</td>
<td style="text-align:right;">
0.0457693
</td>
<td style="text-align:right;">
0.2020776
</td>
<td style="text-align:right;">
0.1083557
</td>
<td style="text-align:right;">
0.2957996
</td>
<td style="text-align:right;">
0.0478182
</td>
<td style="text-align:right;">
0.1235292
</td>
<td style="text-align:right;">
0.0638629
</td>
<td style="text-align:right;">
0.1831955
</td>
<td style="text-align:right;">
0.0304425
</td>
</tr>
<tr>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0578158
</td>
<td style="text-align:right;">
0.0039998
</td>
<td style="text-align:right;">
0.1116318
</td>
<td style="text-align:right;">
0.0274577
</td>
<td style="text-align:right;">
0.1145986
</td>
<td style="text-align:right;">
0.0530521
</td>
<td style="text-align:right;">
0.1761451
</td>
<td style="text-align:right;">
0.0314018
</td>
<td style="text-align:right;">
0.0541888
</td>
<td style="text-align:right;">
0.0294838
</td>
<td style="text-align:right;">
0.0788938
</td>
<td style="text-align:right;">
0.0126048
</td>
<td style="text-align:left;">
forelimb and hindlimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0578158
</td>
<td style="text-align:right;">
0.0039998
</td>
<td style="text-align:right;">
0.1116318
</td>
<td style="text-align:right;">
0.0274577
</td>
<td style="text-align:right;">
0.1145986
</td>
<td style="text-align:right;">
0.0530521
</td>
<td style="text-align:right;">
0.1761451
</td>
<td style="text-align:right;">
0.0314018
</td>
<td style="text-align:right;">
0.0541888
</td>
<td style="text-align:right;">
0.0294838
</td>
<td style="text-align:right;">
0.0788938
</td>
<td style="text-align:right;">
0.0126048
</td>
</tr>
<tr>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0265051
</td>
<td style="text-align:right;">
-0.0187240
</td>
<td style="text-align:right;">
0.0717341
</td>
<td style="text-align:right;">
0.0230765
</td>
<td style="text-align:right;">
0.0995076
</td>
<td style="text-align:right;">
0.0539740
</td>
<td style="text-align:right;">
0.1450413
</td>
<td style="text-align:right;">
0.0232319
</td>
<td style="text-align:right;">
0.0697061
</td>
<td style="text-align:right;">
0.0438625
</td>
<td style="text-align:right;">
0.0955496
</td>
<td style="text-align:right;">
0.0131857
</td>
<td style="text-align:left;">
forelimb grip strength measurement mean
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Grip Strength
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0265051
</td>
<td style="text-align:right;">
-0.0187240
</td>
<td style="text-align:right;">
0.0717341
</td>
<td style="text-align:right;">
0.0230765
</td>
<td style="text-align:right;">
0.0995076
</td>
<td style="text-align:right;">
0.0539740
</td>
<td style="text-align:right;">
0.1450413
</td>
<td style="text-align:right;">
0.0232319
</td>
<td style="text-align:right;">
0.0697061
</td>
<td style="text-align:right;">
0.0438625
</td>
<td style="text-align:right;">
0.0955496
</td>
<td style="text-align:right;">
0.0131857
</td>
</tr>
<tr>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0148852
</td>
<td style="text-align:right;">
-0.1161666
</td>
<td style="text-align:right;">
0.0863961
</td>
<td style="text-align:right;">
0.0516751
</td>
<td style="text-align:right;">
-0.0575326
</td>
<td style="text-align:right;">
-0.1558559
</td>
<td style="text-align:right;">
0.0407907
</td>
<td style="text-align:right;">
0.0501659
</td>
<td style="text-align:right;">
-0.0413498
</td>
<td style="text-align:right;">
-0.0567105
</td>
<td style="text-align:right;">
-0.0259891
</td>
<td style="text-align:right;">
0.0078372
</td>
<td style="text-align:left;">
fractional shortening
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0148852
</td>
<td style="text-align:right;">
-0.1161666
</td>
<td style="text-align:right;">
0.0863961
</td>
<td style="text-align:right;">
0.0516751
</td>
<td style="text-align:right;">
-0.0575326
</td>
<td style="text-align:right;">
-0.1558559
</td>
<td style="text-align:right;">
0.0407907
</td>
<td style="text-align:right;">
0.0501659
</td>
<td style="text-align:right;">
-0.0413498
</td>
<td style="text-align:right;">
-0.0567105
</td>
<td style="text-align:right;">
-0.0259891
</td>
<td style="text-align:right;">
0.0078372
</td>
</tr>
<tr>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0281576
</td>
<td style="text-align:right;">
-0.1002531
</td>
<td style="text-align:right;">
0.1565683
</td>
<td style="text-align:right;">
0.0655169
</td>
<td style="text-align:right;">
0.0554109
</td>
<td style="text-align:right;">
-0.0736861
</td>
<td style="text-align:right;">
0.1845079
</td>
<td style="text-align:right;">
0.0658670
</td>
<td style="text-align:right;">
0.0193783
</td>
<td style="text-align:right;">
-0.0093700
</td>
<td style="text-align:right;">
0.0481266
</td>
<td style="text-align:right;">
0.0146678
</td>
<td style="text-align:left;">
free fatty acids
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0281576
</td>
<td style="text-align:right;">
-0.1002531
</td>
<td style="text-align:right;">
0.1565683
</td>
<td style="text-align:right;">
0.0655169
</td>
<td style="text-align:right;">
0.0554109
</td>
<td style="text-align:right;">
-0.0736861
</td>
<td style="text-align:right;">
0.1845079
</td>
<td style="text-align:right;">
0.0658670
</td>
<td style="text-align:right;">
0.0193783
</td>
<td style="text-align:right;">
-0.0093700
</td>
<td style="text-align:right;">
0.0481266
</td>
<td style="text-align:right;">
0.0146678
</td>
</tr>
<tr>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0397864
</td>
<td style="text-align:right;">
-0.1198801
</td>
<td style="text-align:right;">
0.0403073
</td>
<td style="text-align:right;">
0.0408649
</td>
<td style="text-align:right;">
-0.0678231
</td>
<td style="text-align:right;">
-0.1513538
</td>
<td style="text-align:right;">
0.0157075
</td>
<td style="text-align:right;">
0.0426184
</td>
<td style="text-align:right;">
-0.0283579
</td>
<td style="text-align:right;">
-0.0692447
</td>
<td style="text-align:right;">
0.0125289
</td>
<td style="text-align:right;">
0.0208610
</td>
<td style="text-align:left;">
fructosamine
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0397864
</td>
<td style="text-align:right;">
-0.1198801
</td>
<td style="text-align:right;">
0.0403073
</td>
<td style="text-align:right;">
0.0408649
</td>
<td style="text-align:right;">
-0.0678231
</td>
<td style="text-align:right;">
-0.1513538
</td>
<td style="text-align:right;">
0.0157075
</td>
<td style="text-align:right;">
0.0426184
</td>
<td style="text-align:right;">
-0.0283579
</td>
<td style="text-align:right;">
-0.0692447
</td>
<td style="text-align:right;">
0.0125289
</td>
<td style="text-align:right;">
0.0208610
</td>
</tr>
<tr>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0692601
</td>
<td style="text-align:right;">
0.0184025
</td>
<td style="text-align:right;">
0.1201176
</td>
<td style="text-align:right;">
0.0259482
</td>
<td style="text-align:right;">
0.1279473
</td>
<td style="text-align:right;">
0.0423001
</td>
<td style="text-align:right;">
0.2135946
</td>
<td style="text-align:right;">
0.0436984
</td>
<td style="text-align:right;">
0.0650887
</td>
<td style="text-align:right;">
0.0218496
</td>
<td style="text-align:right;">
0.1083279
</td>
<td style="text-align:right;">
0.0220612
</td>
<td style="text-align:left;">
glucose
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0692601
</td>
<td style="text-align:right;">
0.0184025
</td>
<td style="text-align:right;">
0.1201176
</td>
<td style="text-align:right;">
0.0259482
</td>
<td style="text-align:right;">
0.1279473
</td>
<td style="text-align:right;">
0.0423001
</td>
<td style="text-align:right;">
0.2135946
</td>
<td style="text-align:right;">
0.0436984
</td>
<td style="text-align:right;">
0.0650887
</td>
<td style="text-align:right;">
0.0218496
</td>
<td style="text-align:right;">
0.1083279
</td>
<td style="text-align:right;">
0.0220612
</td>
</tr>
<tr>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0650177
</td>
<td style="text-align:right;">
-0.1255786
</td>
<td style="text-align:right;">
-0.0044568
</td>
<td style="text-align:right;">
0.0308990
</td>
<td style="text-align:right;">
0.1724354
</td>
<td style="text-align:right;">
0.0701062
</td>
<td style="text-align:right;">
0.2747646
</td>
<td style="text-align:right;">
0.0522097
</td>
<td style="text-align:right;">
0.2606961
</td>
<td style="text-align:right;">
0.2180421
</td>
<td style="text-align:right;">
0.3033501
</td>
<td style="text-align:right;">
0.0217626
</td>
<td style="text-align:left;">
hdl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0650177
</td>
<td style="text-align:right;">
-0.1255786
</td>
<td style="text-align:right;">
-0.0044568
</td>
<td style="text-align:right;">
0.0308990
</td>
<td style="text-align:right;">
0.1724354
</td>
<td style="text-align:right;">
0.0701062
</td>
<td style="text-align:right;">
0.2747646
</td>
<td style="text-align:right;">
0.0522097
</td>
<td style="text-align:right;">
0.2606961
</td>
<td style="text-align:right;">
0.2180421
</td>
<td style="text-align:right;">
0.3033501
</td>
<td style="text-align:right;">
0.0217626
</td>
</tr>
<tr>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1766832
</td>
<td style="text-align:right;">
0.0672843
</td>
<td style="text-align:right;">
0.2860820
</td>
<td style="text-align:right;">
0.0558168
</td>
<td style="text-align:right;">
0.3651806
</td>
<td style="text-align:right;">
0.2169840
</td>
<td style="text-align:right;">
0.5133772
</td>
<td style="text-align:right;">
0.0756119
</td>
<td style="text-align:right;">
0.1737615
</td>
<td style="text-align:right;">
0.1409037
</td>
<td style="text-align:right;">
0.2066193
</td>
<td style="text-align:right;">
0.0167645
</td>
<td style="text-align:left;">
heart weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1766832
</td>
<td style="text-align:right;">
0.0672843
</td>
<td style="text-align:right;">
0.2860820
</td>
<td style="text-align:right;">
0.0558168
</td>
<td style="text-align:right;">
0.3651806
</td>
<td style="text-align:right;">
0.2169840
</td>
<td style="text-align:right;">
0.5133772
</td>
<td style="text-align:right;">
0.0756119
</td>
<td style="text-align:right;">
0.1737615
</td>
<td style="text-align:right;">
0.1409037
</td>
<td style="text-align:right;">
0.2066193
</td>
<td style="text-align:right;">
0.0167645
</td>
</tr>
<tr>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0794303
</td>
<td style="text-align:right;">
-0.0060591
</td>
<td style="text-align:right;">
0.1649198
</td>
<td style="text-align:right;">
0.0436179
</td>
<td style="text-align:right;">
0.0355574
</td>
<td style="text-align:right;">
-0.0973272
</td>
<td style="text-align:right;">
0.1684419
</td>
<td style="text-align:right;">
0.0677995
</td>
<td style="text-align:right;">
-0.0495578
</td>
<td style="text-align:right;">
-0.0835809
</td>
<td style="text-align:right;">
-0.0155346
</td>
<td style="text-align:right;">
0.0173591
</td>
<td style="text-align:left;">
heart weight normalised against body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.0794303
</td>
<td style="text-align:right;">
-0.0060591
</td>
<td style="text-align:right;">
0.1649198
</td>
<td style="text-align:right;">
0.0436179
</td>
<td style="text-align:right;">
0.0355574
</td>
<td style="text-align:right;">
-0.0973272
</td>
<td style="text-align:right;">
0.1684419
</td>
<td style="text-align:right;">
0.0677995
</td>
<td style="text-align:right;">
-0.0495578
</td>
<td style="text-align:right;">
-0.0835809
</td>
<td style="text-align:right;">
-0.0155346
</td>
<td style="text-align:right;">
0.0173591
</td>
</tr>
<tr>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0566356
</td>
<td style="text-align:right;">
-0.0516862
</td>
<td style="text-align:right;">
0.1649575
</td>
<td style="text-align:right;">
0.0552673
</td>
<td style="text-align:right;">
0.0737071
</td>
<td style="text-align:right;">
-0.0328632
</td>
<td style="text-align:right;">
0.1802774
</td>
<td style="text-align:right;">
0.0543736
</td>
<td style="text-align:right;">
0.0173967
</td>
<td style="text-align:right;">
0.0035179
</td>
<td style="text-align:right;">
0.0312754
</td>
<td style="text-align:right;">
0.0070811
</td>
<td style="text-align:left;">
hematocrit
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0566356
</td>
<td style="text-align:right;">
-0.0516862
</td>
<td style="text-align:right;">
0.1649575
</td>
<td style="text-align:right;">
0.0552673
</td>
<td style="text-align:right;">
0.0737071
</td>
<td style="text-align:right;">
-0.0328632
</td>
<td style="text-align:right;">
0.1802774
</td>
<td style="text-align:right;">
0.0543736
</td>
<td style="text-align:right;">
0.0173967
</td>
<td style="text-align:right;">
0.0035179
</td>
<td style="text-align:right;">
0.0312754
</td>
<td style="text-align:right;">
0.0070811
</td>
</tr>
<tr>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0867000
</td>
<td style="text-align:right;">
0.0269936
</td>
<td style="text-align:right;">
0.1464064
</td>
<td style="text-align:right;">
0.0304630
</td>
<td style="text-align:right;">
0.0867345
</td>
<td style="text-align:right;">
0.0194022
</td>
<td style="text-align:right;">
0.1540668
</td>
<td style="text-align:right;">
0.0343538
</td>
<td style="text-align:right;">
0.0051992
</td>
<td style="text-align:right;">
-0.0080216
</td>
<td style="text-align:right;">
0.0184199
</td>
<td style="text-align:right;">
0.0067454
</td>
<td style="text-align:left;">
hemoglobin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0867000
</td>
<td style="text-align:right;">
0.0269936
</td>
<td style="text-align:right;">
0.1464064
</td>
<td style="text-align:right;">
0.0304630
</td>
<td style="text-align:right;">
0.0867345
</td>
<td style="text-align:right;">
0.0194022
</td>
<td style="text-align:right;">
0.1540668
</td>
<td style="text-align:right;">
0.0343538
</td>
<td style="text-align:right;">
0.0051992
</td>
<td style="text-align:right;">
-0.0080216
</td>
<td style="text-align:right;">
0.0184199
</td>
<td style="text-align:right;">
0.0067454
</td>
</tr>
<tr>
<td style="text-align:left;">
hr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0634490
</td>
<td style="text-align:right;">
-0.1734699
</td>
<td style="text-align:right;">
0.0465718
</td>
<td style="text-align:right;">
0.0561341
</td>
<td style="text-align:right;">
-0.0140315
</td>
<td style="text-align:right;">
-0.1488474
</td>
<td style="text-align:right;">
0.1207843
</td>
<td style="text-align:right;">
0.0687849
</td>
<td style="text-align:right;">
0.0406617
</td>
<td style="text-align:right;">
-0.0139214
</td>
<td style="text-align:right;">
0.0952448
</td>
<td style="text-align:right;">
0.0278490
</td>
<td style="text-align:left;">
hr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0634490
</td>
<td style="text-align:right;">
-0.1734699
</td>
<td style="text-align:right;">
0.0465718
</td>
<td style="text-align:right;">
0.0561341
</td>
<td style="text-align:right;">
-0.0140315
</td>
<td style="text-align:right;">
-0.1488474
</td>
<td style="text-align:right;">
0.1207843
</td>
<td style="text-align:right;">
0.0687849
</td>
<td style="text-align:right;">
0.0406617
</td>
<td style="text-align:right;">
-0.0139214
</td>
<td style="text-align:right;">
0.0952448
</td>
<td style="text-align:right;">
0.0278490
</td>
</tr>
<tr>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.1722593
</td>
<td style="text-align:right;">
0.1094294
</td>
<td style="text-align:right;">
0.2350892
</td>
<td style="text-align:right;">
0.0320567
</td>
<td style="text-align:right;">
-0.0813225
</td>
<td style="text-align:right;">
-0.2125462
</td>
<td style="text-align:right;">
0.0499011
</td>
<td style="text-align:right;">
0.0669521
</td>
<td style="text-align:right;">
-0.2504990
</td>
<td style="text-align:right;">
-0.3657436
</td>
<td style="text-align:right;">
-0.1352545
</td>
<td style="text-align:right;">
0.0587993
</td>
<td style="text-align:left;">
hrv
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.1722593
</td>
<td style="text-align:right;">
0.1094294
</td>
<td style="text-align:right;">
0.2350892
</td>
<td style="text-align:right;">
0.0320567
</td>
<td style="text-align:right;">
-0.0813225
</td>
<td style="text-align:right;">
-0.2125462
</td>
<td style="text-align:right;">
0.0499011
</td>
<td style="text-align:right;">
0.0669521
</td>
<td style="text-align:right;">
-0.2504990
</td>
<td style="text-align:right;">
-0.3657436
</td>
<td style="text-align:right;">
-0.1352545
</td>
<td style="text-align:right;">
0.0587993
</td>
</tr>
<tr>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.0968821
</td>
<td style="text-align:right;">
-0.1503780
</td>
<td style="text-align:right;">
-0.0433861
</td>
<td style="text-align:right;">
0.0272943
</td>
<td style="text-align:right;">
0.0429971
</td>
<td style="text-align:right;">
0.0141807
</td>
<td style="text-align:right;">
0.0718136
</td>
<td style="text-align:right;">
0.0147026
</td>
<td style="text-align:right;">
0.1183626
</td>
<td style="text-align:right;">
0.0853242
</td>
<td style="text-align:right;">
0.1514009
</td>
<td style="text-align:right;">
0.0168566
</td>
<td style="text-align:left;">
initial response to glucose challenge
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Intraperitoneal glucose tolerance test (IPGTT)
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.0968821
</td>
<td style="text-align:right;">
-0.1503780
</td>
<td style="text-align:right;">
-0.0433861
</td>
<td style="text-align:right;">
0.0272943
</td>
<td style="text-align:right;">
0.0429971
</td>
<td style="text-align:right;">
0.0141807
</td>
<td style="text-align:right;">
0.0718136
</td>
<td style="text-align:right;">
0.0147026
</td>
<td style="text-align:right;">
0.1183626
</td>
<td style="text-align:right;">
0.0853242
</td>
<td style="text-align:right;">
0.1514009
</td>
<td style="text-align:right;">
0.0168566
</td>
</tr>
<tr>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Insulin Blood Level
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.0993292
</td>
<td style="text-align:right;">
-0.3721975
</td>
<td style="text-align:right;">
0.1735391
</td>
<td style="text-align:right;">
0.1392211
</td>
<td style="text-align:right;">
0.1774003
</td>
<td style="text-align:right;">
-0.1938091
</td>
<td style="text-align:right;">
0.5486096
</td>
<td style="text-align:right;">
0.1893960
</td>
<td style="text-align:right;">
0.4445455
</td>
<td style="text-align:right;">
0.0944498
</td>
<td style="text-align:right;">
0.7946412
</td>
<td style="text-align:right;">
0.1786236
</td>
<td style="text-align:left;">
insulin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Insulin Blood Level
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.0993292
</td>
<td style="text-align:right;">
-0.3721975
</td>
<td style="text-align:right;">
0.1735391
</td>
<td style="text-align:right;">
0.1392211
</td>
<td style="text-align:right;">
0.1774003
</td>
<td style="text-align:right;">
-0.1938091
</td>
<td style="text-align:right;">
0.5486096
</td>
<td style="text-align:right;">
0.1893960
</td>
<td style="text-align:right;">
0.4445455
</td>
<td style="text-align:right;">
0.0944498
</td>
<td style="text-align:right;">
0.7946412
</td>
<td style="text-align:right;">
0.1786236
</td>
</tr>
<tr>
<td style="text-align:left;">
iron
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0974214
</td>
<td style="text-align:right;">
-0.2141737
</td>
<td style="text-align:right;">
0.0193310
</td>
<td style="text-align:right;">
0.0595686
</td>
<td style="text-align:right;">
-0.2534898
</td>
<td style="text-align:right;">
-0.3963648
</td>
<td style="text-align:right;">
-0.1106147
</td>
<td style="text-align:right;">
0.0728968
</td>
<td style="text-align:right;">
-0.1527977
</td>
<td style="text-align:right;">
-0.1930307
</td>
<td style="text-align:right;">
-0.1125646
</td>
<td style="text-align:right;">
0.0205274
</td>
<td style="text-align:left;">
iron
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0974214
</td>
<td style="text-align:right;">
-0.2141737
</td>
<td style="text-align:right;">
0.0193310
</td>
<td style="text-align:right;">
0.0595686
</td>
<td style="text-align:right;">
-0.2534898
</td>
<td style="text-align:right;">
-0.3963648
</td>
<td style="text-align:right;">
-0.1106147
</td>
<td style="text-align:right;">
0.0728968
</td>
<td style="text-align:right;">
-0.1527977
</td>
<td style="text-align:right;">
-0.1930307
</td>
<td style="text-align:right;">
-0.1125646
</td>
<td style="text-align:right;">
0.0205274
</td>
</tr>
<tr>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0941249
</td>
<td style="text-align:right;">
-0.0214022
</td>
<td style="text-align:right;">
0.2096519
</td>
<td style="text-align:right;">
0.0589435
</td>
<td style="text-align:right;">
0.1409270
</td>
<td style="text-align:right;">
-0.0620594
</td>
<td style="text-align:right;">
0.3439133
</td>
<td style="text-align:right;">
0.1035664
</td>
<td style="text-align:right;">
0.0318801
</td>
<td style="text-align:right;">
-0.1412218
</td>
<td style="text-align:right;">
0.2049819
</td>
<td style="text-align:right;">
0.0883189
</td>
<td style="text-align:left;">
lactate dehydrogenase
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0941249
</td>
<td style="text-align:right;">
-0.0214022
</td>
<td style="text-align:right;">
0.2096519
</td>
<td style="text-align:right;">
0.0589435
</td>
<td style="text-align:right;">
0.1409270
</td>
<td style="text-align:right;">
-0.0620594
</td>
<td style="text-align:right;">
0.3439133
</td>
<td style="text-align:right;">
0.1035664
</td>
<td style="text-align:right;">
0.0318801
</td>
<td style="text-align:right;">
-0.1412218
</td>
<td style="text-align:right;">
0.2049819
</td>
<td style="text-align:right;">
0.0883189
</td>
</tr>
<tr>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.1254239
</td>
<td style="text-align:right;">
0.0330185
</td>
<td style="text-align:right;">
0.2178293
</td>
<td style="text-align:right;">
0.0471465
</td>
<td style="text-align:right;">
0.3641221
</td>
<td style="text-align:right;">
0.2056000
</td>
<td style="text-align:right;">
0.5226441
</td>
<td style="text-align:right;">
0.0808801
</td>
<td style="text-align:right;">
0.2734519
</td>
<td style="text-align:right;">
0.0739366
</td>
<td style="text-align:right;">
0.4729672
</td>
<td style="text-align:right;">
0.1017954
</td>
<td style="text-align:left;">
latency to center entry
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.1254239
</td>
<td style="text-align:right;">
0.0330185
</td>
<td style="text-align:right;">
0.2178293
</td>
<td style="text-align:right;">
0.0471465
</td>
<td style="text-align:right;">
0.3641221
</td>
<td style="text-align:right;">
0.2056000
</td>
<td style="text-align:right;">
0.5226441
</td>
<td style="text-align:right;">
0.0808801
</td>
<td style="text-align:right;">
0.2734519
</td>
<td style="text-align:right;">
0.0739366
</td>
<td style="text-align:right;">
0.4729672
</td>
<td style="text-align:right;">
0.1017954
</td>
</tr>
<tr>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.4231644
</td>
<td style="text-align:right;">
0.1551776
</td>
<td style="text-align:right;">
0.6911512
</td>
<td style="text-align:right;">
0.1367305
</td>
<td style="text-align:right;">
0.2669283
</td>
<td style="text-align:right;">
-0.0956833
</td>
<td style="text-align:right;">
0.6295400
</td>
<td style="text-align:right;">
0.1850093
</td>
<td style="text-align:right;">
-0.1615499
</td>
<td style="text-align:right;">
-0.6010478
</td>
<td style="text-align:right;">
0.2779480
</td>
<td style="text-align:right;">
0.2242378
</td>
<td style="text-align:left;">
ldl-cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.4231644
</td>
<td style="text-align:right;">
0.1551776
</td>
<td style="text-align:right;">
0.6911512
</td>
<td style="text-align:right;">
0.1367305
</td>
<td style="text-align:right;">
0.2669283
</td>
<td style="text-align:right;">
-0.0956833
</td>
<td style="text-align:right;">
0.6295400
</td>
<td style="text-align:right;">
0.1850093
</td>
<td style="text-align:right;">
-0.1615499
</td>
<td style="text-align:right;">
-0.6010478
</td>
<td style="text-align:right;">
0.2779480
</td>
<td style="text-align:right;">
0.2242378
</td>
</tr>
<tr>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1435756
</td>
<td style="text-align:right;">
0.0759342
</td>
<td style="text-align:right;">
0.2112170
</td>
<td style="text-align:right;">
0.0345115
</td>
<td style="text-align:right;">
0.3382447
</td>
<td style="text-align:right;">
0.2664863
</td>
<td style="text-align:right;">
0.4100031
</td>
<td style="text-align:right;">
0.0366121
</td>
<td style="text-align:right;">
0.1928945
</td>
<td style="text-align:right;">
0.1752425
</td>
<td style="text-align:right;">
0.2105465
</td>
<td style="text-align:right;">
0.0090063
</td>
<td style="text-align:left;">
lean mass
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1435756
</td>
<td style="text-align:right;">
0.0759342
</td>
<td style="text-align:right;">
0.2112170
</td>
<td style="text-align:right;">
0.0345115
</td>
<td style="text-align:right;">
0.3382447
</td>
<td style="text-align:right;">
0.2664863
</td>
<td style="text-align:right;">
0.4100031
</td>
<td style="text-align:right;">
0.0366121
</td>
<td style="text-align:right;">
0.1928945
</td>
<td style="text-align:right;">
0.1752425
</td>
<td style="text-align:right;">
0.2105465
</td>
<td style="text-align:right;">
0.0090063
</td>
</tr>
<tr>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1953833
</td>
<td style="text-align:right;">
0.0912480
</td>
<td style="text-align:right;">
0.2995186
</td>
<td style="text-align:right;">
0.0531312
</td>
<td style="text-align:right;">
0.1840786
</td>
<td style="text-align:right;">
0.0863764
</td>
<td style="text-align:right;">
0.2817807
</td>
<td style="text-align:right;">
0.0498490
</td>
<td style="text-align:right;">
-0.0122785
</td>
<td style="text-align:right;">
-0.0257504
</td>
<td style="text-align:right;">
0.0011934
</td>
<td style="text-align:right;">
0.0068736
</td>
<td style="text-align:left;">
lean/body weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Body Composition (DEXA lean/fat)
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
0.1953833
</td>
<td style="text-align:right;">
0.0912480
</td>
<td style="text-align:right;">
0.2995186
</td>
<td style="text-align:right;">
0.0531312
</td>
<td style="text-align:right;">
0.1840786
</td>
<td style="text-align:right;">
0.0863764
</td>
<td style="text-align:right;">
0.2817807
</td>
<td style="text-align:right;">
0.0498490
</td>
<td style="text-align:right;">
-0.0122785
</td>
<td style="text-align:right;">
-0.0257504
</td>
<td style="text-align:right;">
0.0011934
</td>
<td style="text-align:right;">
0.0068736
</td>
</tr>
<tr>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.1854856
</td>
<td style="text-align:right;">
-0.4305058
</td>
<td style="text-align:right;">
0.0595347
</td>
<td style="text-align:right;">
0.1250126
</td>
<td style="text-align:right;">
-0.1534983
</td>
<td style="text-align:right;">
-0.4007283
</td>
<td style="text-align:right;">
0.0937316
</td>
<td style="text-align:right;">
0.1261401
</td>
<td style="text-align:right;">
0.0331746
</td>
<td style="text-align:right;">
0.0284172
</td>
<td style="text-align:right;">
0.0379321
</td>
<td style="text-align:right;">
0.0024273
</td>
<td style="text-align:left;">
left anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.1854856
</td>
<td style="text-align:right;">
-0.4305058
</td>
<td style="text-align:right;">
0.0595347
</td>
<td style="text-align:right;">
0.1250126
</td>
<td style="text-align:right;">
-0.1534983
</td>
<td style="text-align:right;">
-0.4007283
</td>
<td style="text-align:right;">
0.0937316
</td>
<td style="text-align:right;">
0.1261401
</td>
<td style="text-align:right;">
0.0331746
</td>
<td style="text-align:right;">
0.0284172
</td>
<td style="text-align:right;">
0.0379321
</td>
<td style="text-align:right;">
0.0024273
</td>
</tr>
<tr>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.1446634
</td>
<td style="text-align:right;">
-0.2339950
</td>
<td style="text-align:right;">
-0.0553319
</td>
<td style="text-align:right;">
0.0455782
</td>
<td style="text-align:right;">
-0.1352252
</td>
<td style="text-align:right;">
-0.2234178
</td>
<td style="text-align:right;">
-0.0470327
</td>
<td style="text-align:right;">
0.0449970
</td>
<td style="text-align:right;">
0.0075283
</td>
<td style="text-align:right;">
-0.0057082
</td>
<td style="text-align:right;">
0.0207648
</td>
<td style="text-align:right;">
0.0067535
</td>
<td style="text-align:left;">
left corneal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.1446634
</td>
<td style="text-align:right;">
-0.2339950
</td>
<td style="text-align:right;">
-0.0553319
</td>
<td style="text-align:right;">
0.0455782
</td>
<td style="text-align:right;">
-0.1352252
</td>
<td style="text-align:right;">
-0.2234178
</td>
<td style="text-align:right;">
-0.0470327
</td>
<td style="text-align:right;">
0.0449970
</td>
<td style="text-align:right;">
0.0075283
</td>
<td style="text-align:right;">
-0.0057082
</td>
<td style="text-align:right;">
0.0207648
</td>
<td style="text-align:right;">
0.0067535
</td>
</tr>
<tr>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
0.0480458
</td>
<td style="text-align:right;">
-0.0360706
</td>
<td style="text-align:right;">
0.1321622
</td>
<td style="text-align:right;">
0.0429173
</td>
<td style="text-align:right;">
0.0487217
</td>
<td style="text-align:right;">
-0.0347622
</td>
<td style="text-align:right;">
0.1322057
</td>
<td style="text-align:right;">
0.0425946
</td>
<td style="text-align:right;">
0.0006956
</td>
<td style="text-align:right;">
-0.0095012
</td>
<td style="text-align:right;">
0.0108923
</td>
<td style="text-align:right;">
0.0052025
</td>
<td style="text-align:left;">
left inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
0.0480458
</td>
<td style="text-align:right;">
-0.0360706
</td>
<td style="text-align:right;">
0.1321622
</td>
<td style="text-align:right;">
0.0429173
</td>
<td style="text-align:right;">
0.0487217
</td>
<td style="text-align:right;">
-0.0347622
</td>
<td style="text-align:right;">
0.1322057
</td>
<td style="text-align:right;">
0.0425946
</td>
<td style="text-align:right;">
0.0006956
</td>
<td style="text-align:right;">
-0.0095012
</td>
<td style="text-align:right;">
0.0108923
</td>
<td style="text-align:right;">
0.0052025
</td>
</tr>
<tr>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.0675012
</td>
<td style="text-align:right;">
-0.1511666
</td>
<td style="text-align:right;">
0.0161641
</td>
<td style="text-align:right;">
0.0426872
</td>
<td style="text-align:right;">
-0.0618025
</td>
<td style="text-align:right;">
-0.1452865
</td>
<td style="text-align:right;">
0.0216814
</td>
<td style="text-align:right;">
0.0425946
</td>
<td style="text-align:right;">
0.0063811
</td>
<td style="text-align:right;">
0.0011702
</td>
<td style="text-align:right;">
0.0115921
</td>
<td style="text-align:right;">
0.0026587
</td>
<td style="text-align:left;">
left outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.0675012
</td>
<td style="text-align:right;">
-0.1511666
</td>
<td style="text-align:right;">
0.0161641
</td>
<td style="text-align:right;">
0.0426872
</td>
<td style="text-align:right;">
-0.0618025
</td>
<td style="text-align:right;">
-0.1452865
</td>
<td style="text-align:right;">
0.0216814
</td>
<td style="text-align:right;">
0.0425946
</td>
<td style="text-align:right;">
0.0063811
</td>
<td style="text-align:right;">
0.0011702
</td>
<td style="text-align:right;">
0.0115921
</td>
<td style="text-align:right;">
0.0026587
</td>
</tr>
<tr>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.2631046
</td>
<td style="text-align:right;">
-0.4734756
</td>
<td style="text-align:right;">
-0.0527336
</td>
<td style="text-align:right;">
0.1073341
</td>
<td style="text-align:right;">
-0.2687360
</td>
<td style="text-align:right;">
-0.4790035
</td>
<td style="text-align:right;">
-0.0584686
</td>
<td style="text-align:right;">
0.1072813
</td>
<td style="text-align:right;">
-0.0026027
</td>
<td style="text-align:right;">
-0.0146655
</td>
<td style="text-align:right;">
0.0094600
</td>
<td style="text-align:right;">
0.0061546
</td>
<td style="text-align:left;">
left posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.2631046
</td>
<td style="text-align:right;">
-0.4734756
</td>
<td style="text-align:right;">
-0.0527336
</td>
<td style="text-align:right;">
0.1073341
</td>
<td style="text-align:right;">
-0.2687360
</td>
<td style="text-align:right;">
-0.4790035
</td>
<td style="text-align:right;">
-0.0584686
</td>
<td style="text-align:right;">
0.1072813
</td>
<td style="text-align:right;">
-0.0026027
</td>
<td style="text-align:right;">
-0.0146655
</td>
<td style="text-align:right;">
0.0094600
</td>
<td style="text-align:right;">
0.0061546
</td>
</tr>
<tr>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.1975770
</td>
<td style="text-align:right;">
-0.4386627
</td>
<td style="text-align:right;">
0.0435087
</td>
<td style="text-align:right;">
0.1230052
</td>
<td style="text-align:right;">
-0.1932648
</td>
<td style="text-align:right;">
-0.4269751
</td>
<td style="text-align:right;">
0.0404456
</td>
<td style="text-align:right;">
0.1192422
</td>
<td style="text-align:right;">
0.0027995
</td>
<td style="text-align:right;">
-0.0034907
</td>
<td style="text-align:right;">
0.0090898
</td>
<td style="text-align:right;">
0.0032094
</td>
<td style="text-align:left;">
left total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.1975770
</td>
<td style="text-align:right;">
-0.4386627
</td>
<td style="text-align:right;">
0.0435087
</td>
<td style="text-align:right;">
0.1230052
</td>
<td style="text-align:right;">
-0.1932648
</td>
<td style="text-align:right;">
-0.4269751
</td>
<td style="text-align:right;">
0.0404456
</td>
<td style="text-align:right;">
0.1192422
</td>
<td style="text-align:right;">
0.0027995
</td>
<td style="text-align:right;">
-0.0034907
</td>
<td style="text-align:right;">
0.0090898
</td>
<td style="text-align:right;">
0.0032094
</td>
</tr>
<tr>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Combined SHIRPA and Dysmorphology
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0960106
</td>
<td style="text-align:right;">
0.0224214
</td>
<td style="text-align:right;">
0.1695997
</td>
<td style="text-align:right;">
0.0375462
</td>
<td style="text-align:right;">
-0.0159064
</td>
<td style="text-align:right;">
-0.0579694
</td>
<td style="text-align:right;">
0.0261566
</td>
<td style="text-align:right;">
0.0214611
</td>
<td style="text-align:right;">
-0.1105803
</td>
<td style="text-align:right;">
-0.1761043
</td>
<td style="text-align:right;">
-0.0450562
</td>
<td style="text-align:right;">
0.0334313
</td>
<td style="text-align:left;">
locomotor activity
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Combined SHIRPA and Dysmorphology
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0960106
</td>
<td style="text-align:right;">
0.0224214
</td>
<td style="text-align:right;">
0.1695997
</td>
<td style="text-align:right;">
0.0375462
</td>
<td style="text-align:right;">
-0.0159064
</td>
<td style="text-align:right;">
-0.0579694
</td>
<td style="text-align:right;">
0.0261566
</td>
<td style="text-align:right;">
0.0214611
</td>
<td style="text-align:right;">
-0.1105803
</td>
<td style="text-align:right;">
-0.1761043
</td>
<td style="text-align:right;">
-0.0450562
</td>
<td style="text-align:right;">
0.0334313
</td>
</tr>
<tr>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0228924
</td>
<td style="text-align:right;">
-0.0247048
</td>
<td style="text-align:right;">
0.0704896
</td>
<td style="text-align:right;">
0.0242847
</td>
<td style="text-align:right;">
0.0454075
</td>
<td style="text-align:right;">
-0.0013249
</td>
<td style="text-align:right;">
0.0921399
</td>
<td style="text-align:right;">
0.0238435
</td>
<td style="text-align:right;">
0.0246614
</td>
<td style="text-align:right;">
0.0114095
</td>
<td style="text-align:right;">
0.0379132
</td>
<td style="text-align:right;">
0.0067613
</td>
<td style="text-align:left;">
lvawd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0228924
</td>
<td style="text-align:right;">
-0.0247048
</td>
<td style="text-align:right;">
0.0704896
</td>
<td style="text-align:right;">
0.0242847
</td>
<td style="text-align:right;">
0.0454075
</td>
<td style="text-align:right;">
-0.0013249
</td>
<td style="text-align:right;">
0.0921399
</td>
<td style="text-align:right;">
0.0238435
</td>
<td style="text-align:right;">
0.0246614
</td>
<td style="text-align:right;">
0.0114095
</td>
<td style="text-align:right;">
0.0379132
</td>
<td style="text-align:right;">
0.0067613
</td>
</tr>
<tr>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0017749
</td>
<td style="text-align:right;">
-0.2517581
</td>
<td style="text-align:right;">
0.2482083
</td>
<td style="text-align:right;">
0.1275448
</td>
<td style="text-align:right;">
0.0232601
</td>
<td style="text-align:right;">
-0.1776617
</td>
<td style="text-align:right;">
0.2241819
</td>
<td style="text-align:right;">
0.1025130
</td>
<td style="text-align:right;">
0.0112569
</td>
<td style="text-align:right;">
-0.0306073
</td>
<td style="text-align:right;">
0.0531211
</td>
<td style="text-align:right;">
0.0213597
</td>
<td style="text-align:left;">
lvaws
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0017749
</td>
<td style="text-align:right;">
-0.2517581
</td>
<td style="text-align:right;">
0.2482083
</td>
<td style="text-align:right;">
0.1275448
</td>
<td style="text-align:right;">
0.0232601
</td>
<td style="text-align:right;">
-0.1776617
</td>
<td style="text-align:right;">
0.2241819
</td>
<td style="text-align:right;">
0.1025130
</td>
<td style="text-align:right;">
0.0112569
</td>
<td style="text-align:right;">
-0.0306073
</td>
<td style="text-align:right;">
0.0531211
</td>
<td style="text-align:right;">
0.0213597
</td>
</tr>
<tr>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0453256
</td>
<td style="text-align:right;">
-0.0241892
</td>
<td style="text-align:right;">
0.1148405
</td>
<td style="text-align:right;">
0.0354674
</td>
<td style="text-align:right;">
0.0981450
</td>
<td style="text-align:right;">
0.0208146
</td>
<td style="text-align:right;">
0.1754754
</td>
<td style="text-align:right;">
0.0394550
</td>
<td style="text-align:right;">
0.0528053
</td>
<td style="text-align:right;">
0.0378669
</td>
<td style="text-align:right;">
0.0677436
</td>
<td style="text-align:right;">
0.0076218
</td>
<td style="text-align:left;">
lvidd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0453256
</td>
<td style="text-align:right;">
-0.0241892
</td>
<td style="text-align:right;">
0.1148405
</td>
<td style="text-align:right;">
0.0354674
</td>
<td style="text-align:right;">
0.0981450
</td>
<td style="text-align:right;">
0.0208146
</td>
<td style="text-align:right;">
0.1754754
</td>
<td style="text-align:right;">
0.0394550
</td>
<td style="text-align:right;">
0.0528053
</td>
<td style="text-align:right;">
0.0378669
</td>
<td style="text-align:right;">
0.0677436
</td>
<td style="text-align:right;">
0.0076218
</td>
</tr>
<tr>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0635228
</td>
<td style="text-align:right;">
-0.1990947
</td>
<td style="text-align:right;">
0.0720491
</td>
<td style="text-align:right;">
0.0691706
</td>
<td style="text-align:right;">
0.0083352
</td>
<td style="text-align:right;">
-0.1335894
</td>
<td style="text-align:right;">
0.1502598
</td>
<td style="text-align:right;">
0.0724118
</td>
<td style="text-align:right;">
0.0756177
</td>
<td style="text-align:right;">
0.0525777
</td>
<td style="text-align:right;">
0.0986576
</td>
<td style="text-align:right;">
0.0117553
</td>
<td style="text-align:left;">
lvids
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0635228
</td>
<td style="text-align:right;">
-0.1990947
</td>
<td style="text-align:right;">
0.0720491
</td>
<td style="text-align:right;">
0.0691706
</td>
<td style="text-align:right;">
0.0083352
</td>
<td style="text-align:right;">
-0.1335894
</td>
<td style="text-align:right;">
0.1502598
</td>
<td style="text-align:right;">
0.0724118
</td>
<td style="text-align:right;">
0.0756177
</td>
<td style="text-align:right;">
0.0525777
</td>
<td style="text-align:right;">
0.0986576
</td>
<td style="text-align:right;">
0.0117553
</td>
</tr>
<tr>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0317376
</td>
<td style="text-align:right;">
-0.1258062
</td>
<td style="text-align:right;">
0.0623311
</td>
<td style="text-align:right;">
0.0479951
</td>
<td style="text-align:right;">
-0.0104248
</td>
<td style="text-align:right;">
-0.1271922
</td>
<td style="text-align:right;">
0.1063426
</td>
<td style="text-align:right;">
0.0595763
</td>
<td style="text-align:right;">
0.0302674
</td>
<td style="text-align:right;">
0.0131900
</td>
<td style="text-align:right;">
0.0473448
</td>
<td style="text-align:right;">
0.0087131
</td>
<td style="text-align:left;">
lvpwd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0317376
</td>
<td style="text-align:right;">
-0.1258062
</td>
<td style="text-align:right;">
0.0623311
</td>
<td style="text-align:right;">
0.0479951
</td>
<td style="text-align:right;">
-0.0104248
</td>
<td style="text-align:right;">
-0.1271922
</td>
<td style="text-align:right;">
0.1063426
</td>
<td style="text-align:right;">
0.0595763
</td>
<td style="text-align:right;">
0.0302674
</td>
<td style="text-align:right;">
0.0131900
</td>
<td style="text-align:right;">
0.0473448
</td>
<td style="text-align:right;">
0.0087131
</td>
</tr>
<tr>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0190522
</td>
<td style="text-align:right;">
-0.1014670
</td>
<td style="text-align:right;">
0.0633627
</td>
<td style="text-align:right;">
0.0420492
</td>
<td style="text-align:right;">
0.0089592
</td>
<td style="text-align:right;">
-0.0823356
</td>
<td style="text-align:right;">
0.1002540
</td>
<td style="text-align:right;">
0.0465798
</td>
<td style="text-align:right;">
0.0268487
</td>
<td style="text-align:right;">
0.0063146
</td>
<td style="text-align:right;">
0.0473828
</td>
<td style="text-align:right;">
0.0104768
</td>
<td style="text-align:left;">
lvpws
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0190522
</td>
<td style="text-align:right;">
-0.1014670
</td>
<td style="text-align:right;">
0.0633627
</td>
<td style="text-align:right;">
0.0420492
</td>
<td style="text-align:right;">
0.0089592
</td>
<td style="text-align:right;">
-0.0823356
</td>
<td style="text-align:right;">
0.1002540
</td>
<td style="text-align:right;">
0.0465798
</td>
<td style="text-align:right;">
0.0268487
</td>
<td style="text-align:right;">
0.0063146
</td>
<td style="text-align:right;">
0.0473828
</td>
<td style="text-align:right;">
0.0104768
</td>
</tr>
<tr>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Urinalysis
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0161699
</td>
<td style="text-align:right;">
-0.0231196
</td>
<td style="text-align:right;">
0.0554593
</td>
<td style="text-align:right;">
0.0200460
</td>
<td style="text-align:right;">
-0.0513056
</td>
<td style="text-align:right;">
-0.1167021
</td>
<td style="text-align:right;">
0.0140909
</td>
<td style="text-align:right;">
0.0333662
</td>
<td style="text-align:right;">
-0.0413354
</td>
<td style="text-align:right;">
-0.1135580
</td>
<td style="text-align:right;">
0.0308871
</td>
<td style="text-align:right;">
0.0368489
</td>
<td style="text-align:left;">
magnesium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Urinalysis
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0161699
</td>
<td style="text-align:right;">
-0.0231196
</td>
<td style="text-align:right;">
0.0554593
</td>
<td style="text-align:right;">
0.0200460
</td>
<td style="text-align:right;">
-0.0513056
</td>
<td style="text-align:right;">
-0.1167021
</td>
<td style="text-align:right;">
0.0140909
</td>
<td style="text-align:right;">
0.0333662
</td>
<td style="text-align:right;">
-0.0413354
</td>
<td style="text-align:right;">
-0.1135580
</td>
<td style="text-align:right;">
0.0308871
</td>
<td style="text-align:right;">
0.0368489
</td>
</tr>
<tr>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0378015
</td>
<td style="text-align:right;">
-0.0880637
</td>
<td style="text-align:right;">
0.1636666
</td>
<td style="text-align:right;">
0.0642181
</td>
<td style="text-align:right;">
0.0253063
</td>
<td style="text-align:right;">
-0.1086076
</td>
<td style="text-align:right;">
0.1592202
</td>
<td style="text-align:right;">
0.0683247
</td>
<td style="text-align:right;">
-0.0113450
</td>
<td style="text-align:right;">
-0.0150702
</td>
<td style="text-align:right;">
-0.0076199
</td>
<td style="text-align:right;">
0.0019006
</td>
<td style="text-align:left;">
mean cell hemoglobin concentration
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0378015
</td>
<td style="text-align:right;">
-0.0880637
</td>
<td style="text-align:right;">
0.1636666
</td>
<td style="text-align:right;">
0.0642181
</td>
<td style="text-align:right;">
0.0253063
</td>
<td style="text-align:right;">
-0.1086076
</td>
<td style="text-align:right;">
0.1592202
</td>
<td style="text-align:right;">
0.0683247
</td>
<td style="text-align:right;">
-0.0113450
</td>
<td style="text-align:right;">
-0.0150702
</td>
<td style="text-align:right;">
-0.0076199
</td>
<td style="text-align:right;">
0.0019006
</td>
</tr>
<tr>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0039175
</td>
<td style="text-align:right;">
-0.0957495
</td>
<td style="text-align:right;">
0.1035845
</td>
<td style="text-align:right;">
0.0508514
</td>
<td style="text-align:right;">
-0.0030447
</td>
<td style="text-align:right;">
-0.0961742
</td>
<td style="text-align:right;">
0.0900848
</td>
<td style="text-align:right;">
0.0475159
</td>
<td style="text-align:right;">
-0.0063502
</td>
<td style="text-align:right;">
-0.0099649
</td>
<td style="text-align:right;">
-0.0027355
</td>
<td style="text-align:right;">
0.0018443
</td>
<td style="text-align:left;">
mean cell volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0039175
</td>
<td style="text-align:right;">
-0.0957495
</td>
<td style="text-align:right;">
0.1035845
</td>
<td style="text-align:right;">
0.0508514
</td>
<td style="text-align:right;">
-0.0030447
</td>
<td style="text-align:right;">
-0.0961742
</td>
<td style="text-align:right;">
0.0900848
</td>
<td style="text-align:right;">
0.0475159
</td>
<td style="text-align:right;">
-0.0063502
</td>
<td style="text-align:right;">
-0.0099649
</td>
<td style="text-align:right;">
-0.0027355
</td>
<td style="text-align:right;">
0.0018443
</td>
</tr>
<tr>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0025833
</td>
<td style="text-align:right;">
-0.0653065
</td>
<td style="text-align:right;">
0.0601398
</td>
<td style="text-align:right;">
0.0320022
</td>
<td style="text-align:right;">
-0.0193465
</td>
<td style="text-align:right;">
-0.0824670
</td>
<td style="text-align:right;">
0.0437741
</td>
<td style="text-align:right;">
0.0322049
</td>
<td style="text-align:right;">
-0.0169768
</td>
<td style="text-align:right;">
-0.0197231
</td>
<td style="text-align:right;">
-0.0142305
</td>
<td style="text-align:right;">
0.0014012
</td>
<td style="text-align:left;">
mean corpuscular hemoglobin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0025833
</td>
<td style="text-align:right;">
-0.0653065
</td>
<td style="text-align:right;">
0.0601398
</td>
<td style="text-align:right;">
0.0320022
</td>
<td style="text-align:right;">
-0.0193465
</td>
<td style="text-align:right;">
-0.0824670
</td>
<td style="text-align:right;">
0.0437741
</td>
<td style="text-align:right;">
0.0322049
</td>
<td style="text-align:right;">
-0.0169768
</td>
<td style="text-align:right;">
-0.0197231
</td>
<td style="text-align:right;">
-0.0142305
</td>
<td style="text-align:right;">
0.0014012
</td>
</tr>
<tr>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0487366
</td>
<td style="text-align:right;">
-0.0044688
</td>
<td style="text-align:right;">
0.1019419
</td>
<td style="text-align:right;">
0.0271461
</td>
<td style="text-align:right;">
0.0353913
</td>
<td style="text-align:right;">
-0.0210323
</td>
<td style="text-align:right;">
0.0918150
</td>
<td style="text-align:right;">
0.0287881
</td>
<td style="text-align:right;">
-0.0174066
</td>
<td style="text-align:right;">
-0.0276044
</td>
<td style="text-align:right;">
-0.0072089
</td>
<td style="text-align:right;">
0.0052030
</td>
<td style="text-align:left;">
mean platelet volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0487366
</td>
<td style="text-align:right;">
-0.0044688
</td>
<td style="text-align:right;">
0.1019419
</td>
<td style="text-align:right;">
0.0271461
</td>
<td style="text-align:right;">
0.0353913
</td>
<td style="text-align:right;">
-0.0210323
</td>
<td style="text-align:right;">
0.0918150
</td>
<td style="text-align:right;">
0.0287881
</td>
<td style="text-align:right;">
-0.0174066
</td>
<td style="text-align:right;">
-0.0276044
</td>
<td style="text-align:right;">
-0.0072089
</td>
<td style="text-align:right;">
0.0052030
</td>
</tr>
<tr>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0084703
</td>
<td style="text-align:right;">
-0.0282092
</td>
<td style="text-align:right;">
0.0451499
</td>
<td style="text-align:right;">
0.0187144
</td>
<td style="text-align:right;">
-0.0948208
</td>
<td style="text-align:right;">
-0.1630495
</td>
<td style="text-align:right;">
-0.0265922
</td>
<td style="text-align:right;">
0.0348112
</td>
<td style="text-align:right;">
-0.0835612
</td>
<td style="text-align:right;">
-0.1503108
</td>
<td style="text-align:right;">
-0.0168116
</td>
<td style="text-align:right;">
0.0340565
</td>
<td style="text-align:left;">
mean r amplitude
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0084703
</td>
<td style="text-align:right;">
-0.0282092
</td>
<td style="text-align:right;">
0.0451499
</td>
<td style="text-align:right;">
0.0187144
</td>
<td style="text-align:right;">
-0.0948208
</td>
<td style="text-align:right;">
-0.1630495
</td>
<td style="text-align:right;">
-0.0265922
</td>
<td style="text-align:right;">
0.0348112
</td>
<td style="text-align:right;">
-0.0835612
</td>
<td style="text-align:right;">
-0.1503108
</td>
<td style="text-align:right;">
-0.0168116
</td>
<td style="text-align:right;">
0.0340565
</td>
</tr>
<tr>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0284617
</td>
<td style="text-align:right;">
-0.0131943
</td>
<td style="text-align:right;">
0.0701178
</td>
<td style="text-align:right;">
0.0212535
</td>
<td style="text-align:right;">
-0.0876811
</td>
<td style="text-align:right;">
-0.1270777
</td>
<td style="text-align:right;">
-0.0482845
</td>
<td style="text-align:right;">
0.0201007
</td>
<td style="text-align:right;">
-0.1130259
</td>
<td style="text-align:right;">
-0.1558048
</td>
<td style="text-align:right;">
-0.0702470
</td>
<td style="text-align:right;">
0.0218264
</td>
<td style="text-align:left;">
mean sr amplitude
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0284617
</td>
<td style="text-align:right;">
-0.0131943
</td>
<td style="text-align:right;">
0.0701178
</td>
<td style="text-align:right;">
0.0212535
</td>
<td style="text-align:right;">
-0.0876811
</td>
<td style="text-align:right;">
-0.1270777
</td>
<td style="text-align:right;">
-0.0482845
</td>
<td style="text-align:right;">
0.0201007
</td>
<td style="text-align:right;">
-0.1130259
</td>
<td style="text-align:right;">
-0.1558048
</td>
<td style="text-align:right;">
-0.0702470
</td>
<td style="text-align:right;">
0.0218264
</td>
</tr>
<tr>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0150703
</td>
<td style="text-align:right;">
-0.0534907
</td>
<td style="text-align:right;">
0.0836313
</td>
<td style="text-align:right;">
0.0349807
</td>
<td style="text-align:right;">
-0.0361259
</td>
<td style="text-align:right;">
-0.0952472
</td>
<td style="text-align:right;">
0.0229955
</td>
<td style="text-align:right;">
0.0301645
</td>
<td style="text-align:right;">
-0.0588092
</td>
<td style="text-align:right;">
-0.1679907
</td>
<td style="text-align:right;">
0.0503723
</td>
<td style="text-align:right;">
0.0557059
</td>
<td style="text-align:left;">
number of center entries
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
0.0150703
</td>
<td style="text-align:right;">
-0.0534907
</td>
<td style="text-align:right;">
0.0836313
</td>
<td style="text-align:right;">
0.0349807
</td>
<td style="text-align:right;">
-0.0361259
</td>
<td style="text-align:right;">
-0.0952472
</td>
<td style="text-align:right;">
0.0229955
</td>
<td style="text-align:right;">
0.0301645
</td>
<td style="text-align:right;">
-0.0588092
</td>
<td style="text-align:right;">
-0.1679907
</td>
<td style="text-align:right;">
0.0503723
</td>
<td style="text-align:right;">
0.0557059
</td>
</tr>
<tr>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0011326
</td>
<td style="text-align:right;">
-0.1141113
</td>
<td style="text-align:right;">
0.1118461
</td>
<td style="text-align:right;">
0.0576432
</td>
<td style="text-align:right;">
0.1869490
</td>
<td style="text-align:right;">
-0.0392422
</td>
<td style="text-align:right;">
0.4131402
</td>
<td style="text-align:right;">
0.1154058
</td>
<td style="text-align:right;">
0.1794328
</td>
<td style="text-align:right;">
0.0568682
</td>
<td style="text-align:right;">
0.3019974
</td>
<td style="text-align:right;">
0.0625341
</td>
<td style="text-align:left;">
number of rears - total
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0011326
</td>
<td style="text-align:right;">
-0.1141113
</td>
<td style="text-align:right;">
0.1118461
</td>
<td style="text-align:right;">
0.0576432
</td>
<td style="text-align:right;">
0.1869490
</td>
<td style="text-align:right;">
-0.0392422
</td>
<td style="text-align:right;">
0.4131402
</td>
<td style="text-align:right;">
0.1154058
</td>
<td style="text-align:right;">
0.1794328
</td>
<td style="text-align:right;">
0.0568682
</td>
<td style="text-align:right;">
0.3019974
</td>
<td style="text-align:right;">
0.0625341
</td>
</tr>
<tr>
<td style="text-align:left;">
others
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1684902
</td>
<td style="text-align:right;">
-0.2596648
</td>
<td style="text-align:right;">
-0.0773156
</td>
<td style="text-align:right;">
0.0465185
</td>
<td style="text-align:right;">
-0.1515195
</td>
<td style="text-align:right;">
-0.2435956
</td>
<td style="text-align:right;">
-0.0594434
</td>
<td style="text-align:right;">
0.0469785
</td>
<td style="text-align:right;">
0.0196158
</td>
<td style="text-align:right;">
0.0049349
</td>
<td style="text-align:right;">
0.0342967
</td>
<td style="text-align:right;">
0.0074904
</td>
<td style="text-align:left;">
others
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1684902
</td>
<td style="text-align:right;">
-0.2596648
</td>
<td style="text-align:right;">
-0.0773156
</td>
<td style="text-align:right;">
0.0465185
</td>
<td style="text-align:right;">
-0.1515195
</td>
<td style="text-align:right;">
-0.2435956
</td>
<td style="text-align:right;">
-0.0594434
</td>
<td style="text-align:right;">
0.0469785
</td>
<td style="text-align:right;">
0.0196158
</td>
<td style="text-align:right;">
0.0049349
</td>
<td style="text-align:right;">
0.0342967
</td>
<td style="text-align:right;">
0.0074904
</td>
</tr>
<tr>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1732553
</td>
<td style="text-align:right;">
-0.4003845
</td>
<td style="text-align:right;">
0.0538738
</td>
<td style="text-align:right;">
0.1158844
</td>
<td style="text-align:right;">
-0.2572491
</td>
<td style="text-align:right;">
-0.7186201
</td>
<td style="text-align:right;">
0.2041219
</td>
<td style="text-align:right;">
0.2353977
</td>
<td style="text-align:right;">
-0.0915619
</td>
<td style="text-align:right;">
-0.2522236
</td>
<td style="text-align:right;">
0.0690997
</td>
<td style="text-align:right;">
0.0819717
</td>
<td style="text-align:left;">
pdcs
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.1732553
</td>
<td style="text-align:right;">
-0.4003845
</td>
<td style="text-align:right;">
0.0538738
</td>
<td style="text-align:right;">
0.1158844
</td>
<td style="text-align:right;">
-0.2572491
</td>
<td style="text-align:right;">
-0.7186201
</td>
<td style="text-align:right;">
0.2041219
</td>
<td style="text-align:right;">
0.2353977
</td>
<td style="text-align:right;">
-0.0915619
</td>
<td style="text-align:right;">
-0.2522236
</td>
<td style="text-align:right;">
0.0690997
</td>
<td style="text-align:right;">
0.0819717
</td>
</tr>
<tr>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0219679
</td>
<td style="text-align:right;">
-0.0863184
</td>
<td style="text-align:right;">
0.0423826
</td>
<td style="text-align:right;">
0.0328325
</td>
<td style="text-align:right;">
-0.0188907
</td>
<td style="text-align:right;">
-0.0912088
</td>
<td style="text-align:right;">
0.0534274
</td>
<td style="text-align:right;">
0.0368977
</td>
<td style="text-align:right;">
-0.0061802
</td>
<td style="text-align:right;">
-0.0972542
</td>
<td style="text-align:right;">
0.0848938
</td>
<td style="text-align:right;">
0.0464672
</td>
<td style="text-align:left;">
percentage center time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0219679
</td>
<td style="text-align:right;">
-0.0863184
</td>
<td style="text-align:right;">
0.0423826
</td>
<td style="text-align:right;">
0.0328325
</td>
<td style="text-align:right;">
-0.0188907
</td>
<td style="text-align:right;">
-0.0912088
</td>
<td style="text-align:right;">
0.0534274
</td>
<td style="text-align:right;">
0.0368977
</td>
<td style="text-align:right;">
-0.0061802
</td>
<td style="text-align:right;">
-0.0972542
</td>
<td style="text-align:right;">
0.0848938
</td>
<td style="text-align:right;">
0.0464672
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0444272
</td>
<td style="text-align:right;">
-0.1082870
</td>
<td style="text-align:right;">
0.0194327
</td>
<td style="text-align:right;">
0.0325822
</td>
<td style="text-align:right;">
-0.1401304
</td>
<td style="text-align:right;">
-0.2117709
</td>
<td style="text-align:right;">
-0.0684898
</td>
<td style="text-align:right;">
0.0365520
</td>
<td style="text-align:right;">
-0.0963838
</td>
<td style="text-align:right;">
-0.1446043
</td>
<td style="text-align:right;">
-0.0481633
</td>
<td style="text-align:right;">
0.0246028
</td>
<td style="text-align:left;">
periphery average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0444272
</td>
<td style="text-align:right;">
-0.1082870
</td>
<td style="text-align:right;">
0.0194327
</td>
<td style="text-align:right;">
0.0325822
</td>
<td style="text-align:right;">
-0.1401304
</td>
<td style="text-align:right;">
-0.2117709
</td>
<td style="text-align:right;">
-0.0684898
</td>
<td style="text-align:right;">
0.0365520
</td>
<td style="text-align:right;">
-0.0963838
</td>
<td style="text-align:right;">
-0.1446043
</td>
<td style="text-align:right;">
-0.0481633
</td>
<td style="text-align:right;">
0.0246028
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0313217
</td>
<td style="text-align:right;">
-0.0918314
</td>
<td style="text-align:right;">
0.0291879
</td>
<td style="text-align:right;">
0.0308728
</td>
<td style="text-align:right;">
-0.1342236
</td>
<td style="text-align:right;">
-0.1874097
</td>
<td style="text-align:right;">
-0.0810376
</td>
<td style="text-align:right;">
0.0271362
</td>
<td style="text-align:right;">
-0.1037239
</td>
<td style="text-align:right;">
-0.1714836
</td>
<td style="text-align:right;">
-0.0359643
</td>
<td style="text-align:right;">
0.0345719
</td>
<td style="text-align:left;">
periphery distance travelled
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0313217
</td>
<td style="text-align:right;">
-0.0918314
</td>
<td style="text-align:right;">
0.0291879
</td>
<td style="text-align:right;">
0.0308728
</td>
<td style="text-align:right;">
-0.1342236
</td>
<td style="text-align:right;">
-0.1874097
</td>
<td style="text-align:right;">
-0.0810376
</td>
<td style="text-align:right;">
0.0271362
</td>
<td style="text-align:right;">
-0.1037239
</td>
<td style="text-align:right;">
-0.1714836
</td>
<td style="text-align:right;">
-0.0359643
</td>
<td style="text-align:right;">
0.0345719
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0369177
</td>
<td style="text-align:right;">
-0.1277076
</td>
<td style="text-align:right;">
0.0538721
</td>
<td style="text-align:right;">
0.0463222
</td>
<td style="text-align:right;">
-0.0294978
</td>
<td style="text-align:right;">
-0.1006346
</td>
<td style="text-align:right;">
0.0416390
</td>
<td style="text-align:right;">
0.0362950
</td>
<td style="text-align:right;">
0.0077038
</td>
<td style="text-align:right;">
-0.0137850
</td>
<td style="text-align:right;">
0.0291927
</td>
<td style="text-align:right;">
0.0109639
</td>
<td style="text-align:left;">
periphery permanence time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0369177
</td>
<td style="text-align:right;">
-0.1277076
</td>
<td style="text-align:right;">
0.0538721
</td>
<td style="text-align:right;">
0.0463222
</td>
<td style="text-align:right;">
-0.0294978
</td>
<td style="text-align:right;">
-0.1006346
</td>
<td style="text-align:right;">
0.0416390
</td>
<td style="text-align:right;">
0.0362950
</td>
<td style="text-align:right;">
0.0077038
</td>
<td style="text-align:right;">
-0.0137850
</td>
<td style="text-align:right;">
0.0291927
</td>
<td style="text-align:right;">
0.0109639
</td>
</tr>
<tr>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0536346
</td>
<td style="text-align:right;">
-0.1266045
</td>
<td style="text-align:right;">
0.0193353
</td>
<td style="text-align:right;">
0.0372302
</td>
<td style="text-align:right;">
-0.0572459
</td>
<td style="text-align:right;">
-0.1071515
</td>
<td style="text-align:right;">
-0.0073404
</td>
<td style="text-align:right;">
0.0254625
</td>
<td style="text-align:right;">
0.0026007
</td>
<td style="text-align:right;">
-0.0558538
</td>
<td style="text-align:right;">
0.0610552
</td>
<td style="text-align:right;">
0.0298243
</td>
<td style="text-align:left;">
periphery resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0536346
</td>
<td style="text-align:right;">
-0.1266045
</td>
<td style="text-align:right;">
0.0193353
</td>
<td style="text-align:right;">
0.0372302
</td>
<td style="text-align:right;">
-0.0572459
</td>
<td style="text-align:right;">
-0.1071515
</td>
<td style="text-align:right;">
-0.0073404
</td>
<td style="text-align:right;">
0.0254625
</td>
<td style="text-align:right;">
0.0026007
</td>
<td style="text-align:right;">
-0.0558538
</td>
<td style="text-align:right;">
0.0610552
</td>
<td style="text-align:right;">
0.0298243
</td>
</tr>
<tr>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0485897
</td>
<td style="text-align:right;">
-0.0839101
</td>
<td style="text-align:right;">
-0.0132693
</td>
<td style="text-align:right;">
0.0180209
</td>
<td style="text-align:right;">
-0.0826120
</td>
<td style="text-align:right;">
-0.1576473
</td>
<td style="text-align:right;">
-0.0075767
</td>
<td style="text-align:right;">
0.0382840
</td>
<td style="text-align:right;">
-0.0420616
</td>
<td style="text-align:right;">
-0.0813582
</td>
<td style="text-align:right;">
-0.0027650
</td>
<td style="text-align:right;">
0.0200497
</td>
<td style="text-align:left;">
phosphorus
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0485897
</td>
<td style="text-align:right;">
-0.0839101
</td>
<td style="text-align:right;">
-0.0132693
</td>
<td style="text-align:right;">
0.0180209
</td>
<td style="text-align:right;">
-0.0826120
</td>
<td style="text-align:right;">
-0.1576473
</td>
<td style="text-align:right;">
-0.0075767
</td>
<td style="text-align:right;">
0.0382840
</td>
<td style="text-align:right;">
-0.0420616
</td>
<td style="text-align:right;">
-0.0813582
</td>
<td style="text-align:right;">
-0.0027650
</td>
<td style="text-align:right;">
0.0200497
</td>
</tr>
<tr>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0737198
</td>
<td style="text-align:right;">
0.0205862
</td>
<td style="text-align:right;">
0.1268534
</td>
<td style="text-align:right;">
0.0271095
</td>
<td style="text-align:right;">
0.2415135
</td>
<td style="text-align:right;">
0.1865330
</td>
<td style="text-align:right;">
0.2964940
</td>
<td style="text-align:right;">
0.0280518
</td>
<td style="text-align:right;">
0.1642192
</td>
<td style="text-align:right;">
0.1369820
</td>
<td style="text-align:right;">
0.1914563
</td>
<td style="text-align:right;">
0.0138968
</td>
<td style="text-align:left;">
platelet count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0737198
</td>
<td style="text-align:right;">
0.0205862
</td>
<td style="text-align:right;">
0.1268534
</td>
<td style="text-align:right;">
0.0271095
</td>
<td style="text-align:right;">
0.2415135
</td>
<td style="text-align:right;">
0.1865330
</td>
<td style="text-align:right;">
0.2964940
</td>
<td style="text-align:right;">
0.0280518
</td>
<td style="text-align:right;">
0.1642192
</td>
<td style="text-align:right;">
0.1369820
</td>
<td style="text-align:right;">
0.1914563
</td>
<td style="text-align:right;">
0.0138968
</td>
</tr>
<tr>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.2906905
</td>
<td style="text-align:right;">
0.1716202
</td>
<td style="text-align:right;">
0.4097607
</td>
<td style="text-align:right;">
0.0607512
</td>
<td style="text-align:right;">
-0.2926013
</td>
<td style="text-align:right;">
-0.5272121
</td>
<td style="text-align:right;">
-0.0579905
</td>
<td style="text-align:right;">
0.1197016
</td>
<td style="text-align:right;">
-0.6004767
</td>
<td style="text-align:right;">
-0.9244113
</td>
<td style="text-align:right;">
-0.2765420
</td>
<td style="text-align:right;">
0.1652758
</td>
<td style="text-align:left;">
pnn5(6&gt;ms)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.2906905
</td>
<td style="text-align:right;">
0.1716202
</td>
<td style="text-align:right;">
0.4097607
</td>
<td style="text-align:right;">
0.0607512
</td>
<td style="text-align:right;">
-0.2926013
</td>
<td style="text-align:right;">
-0.5272121
</td>
<td style="text-align:right;">
-0.0579905
</td>
<td style="text-align:right;">
0.1197016
</td>
<td style="text-align:right;">
-0.6004767
</td>
<td style="text-align:right;">
-0.9244113
</td>
<td style="text-align:right;">
-0.2765420
</td>
<td style="text-align:right;">
0.1652758
</td>
</tr>
<tr>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0705522
</td>
<td style="text-align:right;">
-0.2214989
</td>
<td style="text-align:right;">
0.0803945
</td>
<td style="text-align:right;">
0.0770150
</td>
<td style="text-align:right;">
-0.0074675
</td>
<td style="text-align:right;">
-0.1729366
</td>
<td style="text-align:right;">
0.1580015
</td>
<td style="text-align:right;">
0.0844245
</td>
<td style="text-align:right;">
0.0704162
</td>
<td style="text-align:right;">
0.0476647
</td>
<td style="text-align:right;">
0.0931676
</td>
<td style="text-align:right;">
0.0116081
</td>
<td style="text-align:left;">
potassium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0705522
</td>
<td style="text-align:right;">
-0.2214989
</td>
<td style="text-align:right;">
0.0803945
</td>
<td style="text-align:right;">
0.0770150
</td>
<td style="text-align:right;">
-0.0074675
</td>
<td style="text-align:right;">
-0.1729366
</td>
<td style="text-align:right;">
0.1580015
</td>
<td style="text-align:right;">
0.0844245
</td>
<td style="text-align:right;">
0.0704162
</td>
<td style="text-align:right;">
0.0476647
</td>
<td style="text-align:right;">
0.0931676
</td>
<td style="text-align:right;">
0.0116081
</td>
</tr>
<tr>
<td style="text-align:left;">
pq
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0650960
</td>
<td style="text-align:right;">
-0.1538776
</td>
<td style="text-align:right;">
0.0236857
</td>
<td style="text-align:right;">
0.0452976
</td>
<td style="text-align:right;">
-0.0648322
</td>
<td style="text-align:right;">
-0.1270688
</td>
<td style="text-align:right;">
-0.0025955
</td>
<td style="text-align:right;">
0.0317540
</td>
<td style="text-align:right;">
0.0015656
</td>
<td style="text-align:right;">
-0.0259865
</td>
<td style="text-align:right;">
0.0291178
</td>
<td style="text-align:right;">
0.0140575
</td>
<td style="text-align:left;">
pq
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0650960
</td>
<td style="text-align:right;">
-0.1538776
</td>
<td style="text-align:right;">
0.0236857
</td>
<td style="text-align:right;">
0.0452976
</td>
<td style="text-align:right;">
-0.0648322
</td>
<td style="text-align:right;">
-0.1270688
</td>
<td style="text-align:right;">
-0.0025955
</td>
<td style="text-align:right;">
0.0317540
</td>
<td style="text-align:right;">
0.0015656
</td>
<td style="text-align:right;">
-0.0259865
</td>
<td style="text-align:right;">
0.0291178
</td>
<td style="text-align:right;">
0.0140575
</td>
</tr>
<tr>
<td style="text-align:left;">
pr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0564860
</td>
<td style="text-align:right;">
-0.1048371
</td>
<td style="text-align:right;">
-0.0081349
</td>
<td style="text-align:right;">
0.0246694
</td>
<td style="text-align:right;">
-0.0754718
</td>
<td style="text-align:right;">
-0.1235224
</td>
<td style="text-align:right;">
-0.0274213
</td>
<td style="text-align:right;">
0.0245160
</td>
<td style="text-align:right;">
-0.0183785
</td>
<td style="text-align:right;">
-0.0319887
</td>
<td style="text-align:right;">
-0.0047684
</td>
<td style="text-align:right;">
0.0069441
</td>
<td style="text-align:left;">
pr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0564860
</td>
<td style="text-align:right;">
-0.1048371
</td>
<td style="text-align:right;">
-0.0081349
</td>
<td style="text-align:right;">
0.0246694
</td>
<td style="text-align:right;">
-0.0754718
</td>
<td style="text-align:right;">
-0.1235224
</td>
<td style="text-align:right;">
-0.0274213
</td>
<td style="text-align:right;">
0.0245160
</td>
<td style="text-align:right;">
-0.0183785
</td>
<td style="text-align:right;">
-0.0319887
</td>
<td style="text-align:right;">
-0.0047684
</td>
<td style="text-align:right;">
0.0069441
</td>
</tr>
<tr>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0725454
</td>
<td style="text-align:right;">
0.0354722
</td>
<td style="text-align:right;">
0.1096185
</td>
<td style="text-align:right;">
0.0189152
</td>
<td style="text-align:right;">
0.0681074
</td>
<td style="text-align:right;">
0.0300869
</td>
<td style="text-align:right;">
0.1061278
</td>
<td style="text-align:right;">
0.0193986
</td>
<td style="text-align:right;">
-0.0054233
</td>
<td style="text-align:right;">
-0.0154885
</td>
<td style="text-align:right;">
0.0046418
</td>
<td style="text-align:right;">
0.0051354
</td>
<td style="text-align:left;">
qrs
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0725454
</td>
<td style="text-align:right;">
0.0354722
</td>
<td style="text-align:right;">
0.1096185
</td>
<td style="text-align:right;">
0.0189152
</td>
<td style="text-align:right;">
0.0681074
</td>
<td style="text-align:right;">
0.0300869
</td>
<td style="text-align:right;">
0.1061278
</td>
<td style="text-align:right;">
0.0193986
</td>
<td style="text-align:right;">
-0.0054233
</td>
<td style="text-align:right;">
-0.0154885
</td>
<td style="text-align:right;">
0.0046418
</td>
<td style="text-align:right;">
0.0051354
</td>
</tr>
<tr>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0328106
</td>
<td style="text-align:right;">
-0.0101032
</td>
<td style="text-align:right;">
0.0757244
</td>
<td style="text-align:right;">
0.0218952
</td>
<td style="text-align:right;">
0.0310473
</td>
<td style="text-align:right;">
-0.0207365
</td>
<td style="text-align:right;">
0.0828310
</td>
<td style="text-align:right;">
0.0264208
</td>
<td style="text-align:right;">
-0.0005046
</td>
<td style="text-align:right;">
-0.0085696
</td>
<td style="text-align:right;">
0.0075604
</td>
<td style="text-align:right;">
0.0041149
</td>
<td style="text-align:left;">
qtc
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0328106
</td>
<td style="text-align:right;">
-0.0101032
</td>
<td style="text-align:right;">
0.0757244
</td>
<td style="text-align:right;">
0.0218952
</td>
<td style="text-align:right;">
0.0310473
</td>
<td style="text-align:right;">
-0.0207365
</td>
<td style="text-align:right;">
0.0828310
</td>
<td style="text-align:right;">
0.0264208
</td>
<td style="text-align:right;">
-0.0005046
</td>
<td style="text-align:right;">
-0.0085696
</td>
<td style="text-align:right;">
0.0075604
</td>
<td style="text-align:right;">
0.0041149
</td>
</tr>
<tr>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0031258
</td>
<td style="text-align:right;">
-0.0523919
</td>
<td style="text-align:right;">
0.0586435
</td>
<td style="text-align:right;">
0.0283259
</td>
<td style="text-align:right;">
-0.0046501
</td>
<td style="text-align:right;">
-0.1060530
</td>
<td style="text-align:right;">
0.0967528
</td>
<td style="text-align:right;">
0.0517371
</td>
<td style="text-align:right;">
-0.0077373
</td>
<td style="text-align:right;">
-0.0510162
</td>
<td style="text-align:right;">
0.0355416
</td>
<td style="text-align:right;">
0.0220815
</td>
<td style="text-align:left;">
qtc dispersion
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0031258
</td>
<td style="text-align:right;">
-0.0523919
</td>
<td style="text-align:right;">
0.0586435
</td>
<td style="text-align:right;">
0.0283259
</td>
<td style="text-align:right;">
-0.0046501
</td>
<td style="text-align:right;">
-0.1060530
</td>
<td style="text-align:right;">
0.0967528
</td>
<td style="text-align:right;">
0.0517371
</td>
<td style="text-align:right;">
-0.0077373
</td>
<td style="text-align:right;">
-0.0510162
</td>
<td style="text-align:right;">
0.0355416
</td>
<td style="text-align:right;">
0.0220815
</td>
</tr>
<tr>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0773455
</td>
<td style="text-align:right;">
0.0071933
</td>
<td style="text-align:right;">
0.1474977
</td>
<td style="text-align:right;">
0.0357926
</td>
<td style="text-align:right;">
0.0997278
</td>
<td style="text-align:right;">
0.0316996
</td>
<td style="text-align:right;">
0.1677560
</td>
<td style="text-align:right;">
0.0347089
</td>
<td style="text-align:right;">
0.0228493
</td>
<td style="text-align:right;">
0.0088583
</td>
<td style="text-align:right;">
0.0368404
</td>
<td style="text-align:right;">
0.0071384
</td>
<td style="text-align:left;">
red blood cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.0773455
</td>
<td style="text-align:right;">
0.0071933
</td>
<td style="text-align:right;">
0.1474977
</td>
<td style="text-align:right;">
0.0357926
</td>
<td style="text-align:right;">
0.0997278
</td>
<td style="text-align:right;">
0.0316996
</td>
<td style="text-align:right;">
0.1677560
</td>
<td style="text-align:right;">
0.0347089
</td>
<td style="text-align:right;">
0.0228493
</td>
<td style="text-align:right;">
0.0088583
</td>
<td style="text-align:right;">
0.0368404
</td>
<td style="text-align:right;">
0.0071384
</td>
</tr>
<tr>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.1248464
</td>
<td style="text-align:right;">
-0.0035148
</td>
<td style="text-align:right;">
0.2532076
</td>
<td style="text-align:right;">
0.0654916
</td>
<td style="text-align:right;">
0.1353460
</td>
<td style="text-align:right;">
-0.0035862
</td>
<td style="text-align:right;">
0.2742782
</td>
<td style="text-align:right;">
0.0708851
</td>
<td style="text-align:right;">
0.0104789
</td>
<td style="text-align:right;">
-0.0032056
</td>
<td style="text-align:right;">
0.0241635
</td>
<td style="text-align:right;">
0.0069821
</td>
<td style="text-align:left;">
red blood cell distribution width
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
0.1248464
</td>
<td style="text-align:right;">
-0.0035148
</td>
<td style="text-align:right;">
0.2532076
</td>
<td style="text-align:right;">
0.0654916
</td>
<td style="text-align:right;">
0.1353460
</td>
<td style="text-align:right;">
-0.0035862
</td>
<td style="text-align:right;">
0.2742782
</td>
<td style="text-align:right;">
0.0708851
</td>
<td style="text-align:right;">
0.0104789
</td>
<td style="text-align:right;">
-0.0032056
</td>
<td style="text-align:right;">
0.0241635
</td>
<td style="text-align:right;">
0.0069821
</td>
</tr>
<tr>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.1384843
</td>
<td style="text-align:right;">
-0.2178736
</td>
<td style="text-align:right;">
-0.0590950
</td>
<td style="text-align:right;">
0.0405055
</td>
<td style="text-align:right;">
-0.0703570
</td>
<td style="text-align:right;">
-0.1795875
</td>
<td style="text-align:right;">
0.0388735
</td>
<td style="text-align:right;">
0.0557309
</td>
<td style="text-align:right;">
0.0611034
</td>
<td style="text-align:right;">
0.0227141
</td>
<td style="text-align:right;">
0.0994926
</td>
<td style="text-align:right;">
0.0195867
</td>
<td style="text-align:left;">
respiration rate
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.1384843
</td>
<td style="text-align:right;">
-0.2178736
</td>
<td style="text-align:right;">
-0.0590950
</td>
<td style="text-align:right;">
0.0405055
</td>
<td style="text-align:right;">
-0.0703570
</td>
<td style="text-align:right;">
-0.1795875
</td>
<td style="text-align:right;">
0.0388735
</td>
<td style="text-align:right;">
0.0557309
</td>
<td style="text-align:right;">
0.0611034
</td>
<td style="text-align:right;">
0.0227141
</td>
<td style="text-align:right;">
0.0994926
</td>
<td style="text-align:right;">
0.0195867
</td>
</tr>
<tr>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.0116565
</td>
<td style="text-align:right;">
-0.0896490
</td>
<td style="text-align:right;">
0.0663361
</td>
<td style="text-align:right;">
0.0397928
</td>
<td style="text-align:right;">
-0.0106530
</td>
<td style="text-align:right;">
-0.0878483
</td>
<td style="text-align:right;">
0.0665424
</td>
<td style="text-align:right;">
0.0393861
</td>
<td style="text-align:right;">
0.0017027
</td>
<td style="text-align:right;">
-0.0057348
</td>
<td style="text-align:right;">
0.0091402
</td>
<td style="text-align:right;">
0.0037947
</td>
<td style="text-align:left;">
respiratory exchange ratio
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.0116565
</td>
<td style="text-align:right;">
-0.0896490
</td>
<td style="text-align:right;">
0.0663361
</td>
<td style="text-align:right;">
0.0397928
</td>
<td style="text-align:right;">
-0.0106530
</td>
<td style="text-align:right;">
-0.0878483
</td>
<td style="text-align:right;">
0.0665424
</td>
<td style="text-align:right;">
0.0393861
</td>
<td style="text-align:right;">
0.0017027
</td>
<td style="text-align:right;">
-0.0057348
</td>
<td style="text-align:right;">
0.0091402
</td>
<td style="text-align:right;">
0.0037947
</td>
</tr>
<tr>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.4491432
</td>
<td style="text-align:right;">
-1.3293546
</td>
<td style="text-align:right;">
0.4310682
</td>
<td style="text-align:right;">
0.4490957
</td>
<td style="text-align:right;">
-0.4157377
</td>
<td style="text-align:right;">
-1.2918620
</td>
<td style="text-align:right;">
0.4603867
</td>
<td style="text-align:right;">
0.4470104
</td>
<td style="text-align:right;">
0.0316098
</td>
<td style="text-align:right;">
0.0264512
</td>
<td style="text-align:right;">
0.0367685
</td>
<td style="text-align:right;">
0.0026320
</td>
<td style="text-align:left;">
right anterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.4491432
</td>
<td style="text-align:right;">
-1.3293546
</td>
<td style="text-align:right;">
0.4310682
</td>
<td style="text-align:right;">
0.4490957
</td>
<td style="text-align:right;">
-0.4157377
</td>
<td style="text-align:right;">
-1.2918620
</td>
<td style="text-align:right;">
0.4603867
</td>
<td style="text-align:right;">
0.4470104
</td>
<td style="text-align:right;">
0.0316098
</td>
<td style="text-align:right;">
0.0264512
</td>
<td style="text-align:right;">
0.0367685
</td>
<td style="text-align:right;">
0.0026320
</td>
</tr>
<tr>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.0355898
</td>
<td style="text-align:right;">
-0.2280522
</td>
<td style="text-align:right;">
0.1568726
</td>
<td style="text-align:right;">
0.0981969
</td>
<td style="text-align:right;">
-0.0306550
</td>
<td style="text-align:right;">
-0.1963692
</td>
<td style="text-align:right;">
0.1350592
</td>
<td style="text-align:right;">
0.0845496
</td>
<td style="text-align:right;">
-0.0013855
</td>
<td style="text-align:right;">
-0.0237830
</td>
<td style="text-align:right;">
0.0210121
</td>
<td style="text-align:right;">
0.0114275
</td>
<td style="text-align:left;">
right corneal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.0355898
</td>
<td style="text-align:right;">
-0.2280522
</td>
<td style="text-align:right;">
0.1568726
</td>
<td style="text-align:right;">
0.0981969
</td>
<td style="text-align:right;">
-0.0306550
</td>
<td style="text-align:right;">
-0.1963692
</td>
<td style="text-align:right;">
0.1350592
</td>
<td style="text-align:right;">
0.0845496
</td>
<td style="text-align:right;">
-0.0013855
</td>
<td style="text-align:right;">
-0.0237830
</td>
<td style="text-align:right;">
0.0210121
</td>
<td style="text-align:right;">
0.0114275
</td>
</tr>
<tr>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.2545083
</td>
<td style="text-align:right;">
-0.7633116
</td>
<td style="text-align:right;">
0.2542949
</td>
<td style="text-align:right;">
0.2595983
</td>
<td style="text-align:right;">
-0.2785114
</td>
<td style="text-align:right;">
-0.8373133
</td>
<td style="text-align:right;">
0.2802906
</td>
<td style="text-align:right;">
0.2851083
</td>
<td style="text-align:right;">
-0.0175090
</td>
<td style="text-align:right;">
-0.0664158
</td>
<td style="text-align:right;">
0.0313978
</td>
<td style="text-align:right;">
0.0249529
</td>
<td style="text-align:left;">
right inner nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.2545083
</td>
<td style="text-align:right;">
-0.7633116
</td>
<td style="text-align:right;">
0.2542949
</td>
<td style="text-align:right;">
0.2595983
</td>
<td style="text-align:right;">
-0.2785114
</td>
<td style="text-align:right;">
-0.8373133
</td>
<td style="text-align:right;">
0.2802906
</td>
<td style="text-align:right;">
0.2851083
</td>
<td style="text-align:right;">
-0.0175090
</td>
<td style="text-align:right;">
-0.0664158
</td>
<td style="text-align:right;">
0.0313978
</td>
<td style="text-align:right;">
0.0249529
</td>
</tr>
<tr>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
0.0061253
</td>
<td style="text-align:right;">
-0.0781241
</td>
<td style="text-align:right;">
0.0903746
</td>
<td style="text-align:right;">
0.0429851
</td>
<td style="text-align:right;">
0.0109098
</td>
<td style="text-align:right;">
-0.0731427
</td>
<td style="text-align:right;">
0.0949622
</td>
<td style="text-align:right;">
0.0428847
</td>
<td style="text-align:right;">
0.0055513
</td>
<td style="text-align:right;">
0.0000519
</td>
<td style="text-align:right;">
0.0110508
</td>
<td style="text-align:right;">
0.0028059
</td>
<td style="text-align:left;">
right outer nuclear layer
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
0.0061253
</td>
<td style="text-align:right;">
-0.0781241
</td>
<td style="text-align:right;">
0.0903746
</td>
<td style="text-align:right;">
0.0429851
</td>
<td style="text-align:right;">
0.0109098
</td>
<td style="text-align:right;">
-0.0731427
</td>
<td style="text-align:right;">
0.0949622
</td>
<td style="text-align:right;">
0.0428847
</td>
<td style="text-align:right;">
0.0055513
</td>
<td style="text-align:right;">
0.0000519
</td>
<td style="text-align:right;">
0.0110508
</td>
<td style="text-align:right;">
0.0028059
</td>
</tr>
<tr>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.0775673
</td>
<td style="text-align:right;">
-0.2905688
</td>
<td style="text-align:right;">
0.1354341
</td>
<td style="text-align:right;">
0.1086762
</td>
<td style="text-align:right;">
-0.0764571
</td>
<td style="text-align:right;">
-0.2893152
</td>
<td style="text-align:right;">
0.1364010
</td>
<td style="text-align:right;">
0.1086031
</td>
<td style="text-align:right;">
0.0071990
</td>
<td style="text-align:right;">
-0.0178434
</td>
<td style="text-align:right;">
0.0322413
</td>
<td style="text-align:right;">
0.0127769
</td>
<td style="text-align:left;">
right posterior chamber depth
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.0775673
</td>
<td style="text-align:right;">
-0.2905688
</td>
<td style="text-align:right;">
0.1354341
</td>
<td style="text-align:right;">
0.1086762
</td>
<td style="text-align:right;">
-0.0764571
</td>
<td style="text-align:right;">
-0.2893152
</td>
<td style="text-align:right;">
0.1364010
</td>
<td style="text-align:right;">
0.1086031
</td>
<td style="text-align:right;">
0.0071990
</td>
<td style="text-align:right;">
-0.0178434
</td>
<td style="text-align:right;">
0.0322413
</td>
<td style="text-align:right;">
0.0127769
</td>
</tr>
<tr>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.1987993
</td>
<td style="text-align:right;">
-0.6457320
</td>
<td style="text-align:right;">
0.2481333
</td>
<td style="text-align:right;">
0.2280310
</td>
<td style="text-align:right;">
-0.1925482
</td>
<td style="text-align:right;">
-0.6285715
</td>
<td style="text-align:right;">
0.2434750
</td>
<td style="text-align:right;">
0.2224649
</td>
<td style="text-align:right;">
0.0052882
</td>
<td style="text-align:right;">
-0.0045957
</td>
<td style="text-align:right;">
0.0151720
</td>
<td style="text-align:right;">
0.0050429
</td>
<td style="text-align:left;">
right total retinal thickness
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Eye Morphology
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:right;">
-0.1987993
</td>
<td style="text-align:right;">
-0.6457320
</td>
<td style="text-align:right;">
0.2481333
</td>
<td style="text-align:right;">
0.2280310
</td>
<td style="text-align:right;">
-0.1925482
</td>
<td style="text-align:right;">
-0.6285715
</td>
<td style="text-align:right;">
0.2434750
</td>
<td style="text-align:right;">
0.2224649
</td>
<td style="text-align:right;">
0.0052882
</td>
<td style="text-align:right;">
-0.0045957
</td>
<td style="text-align:right;">
0.0151720
</td>
<td style="text-align:right;">
0.0050429
</td>
</tr>
<tr>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.1800273
</td>
<td style="text-align:right;">
-0.0882317
</td>
<td style="text-align:right;">
0.4482864
</td>
<td style="text-align:right;">
0.1368694
</td>
<td style="text-align:right;">
-0.0161048
</td>
<td style="text-align:right;">
-0.4112809
</td>
<td style="text-align:right;">
0.3790712
</td>
<td style="text-align:right;">
0.2016241
</td>
<td style="text-align:right;">
-0.1178703
</td>
<td style="text-align:right;">
-0.2449843
</td>
<td style="text-align:right;">
0.0092436
</td>
<td style="text-align:right;">
0.0648552
</td>
<td style="text-align:left;">
rmssd
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.1800273
</td>
<td style="text-align:right;">
-0.0882317
</td>
<td style="text-align:right;">
0.4482864
</td>
<td style="text-align:right;">
0.1368694
</td>
<td style="text-align:right;">
-0.0161048
</td>
<td style="text-align:right;">
-0.4112809
</td>
<td style="text-align:right;">
0.3790712
</td>
<td style="text-align:right;">
0.2016241
</td>
<td style="text-align:right;">
-0.1178703
</td>
<td style="text-align:right;">
-0.2449843
</td>
<td style="text-align:right;">
0.0092436
</td>
<td style="text-align:right;">
0.0648552
</td>
</tr>
<tr>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0765771
</td>
<td style="text-align:right;">
-0.3398075
</td>
<td style="text-align:right;">
0.1866533
</td>
<td style="text-align:right;">
0.1343037
</td>
<td style="text-align:right;">
-0.0747691
</td>
<td style="text-align:right;">
-0.3351316
</td>
<td style="text-align:right;">
0.1855933
</td>
<td style="text-align:right;">
0.1328404
</td>
<td style="text-align:right;">
-0.0746396
</td>
<td style="text-align:right;">
-0.2072980
</td>
<td style="text-align:right;">
0.0580188
</td>
<td style="text-align:right;">
0.0676841
</td>
<td style="text-align:left;">
rp macrophage (cd19- cd11c-)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
-0.0765771
</td>
<td style="text-align:right;">
-0.3398075
</td>
<td style="text-align:right;">
0.1866533
</td>
<td style="text-align:right;">
0.1343037
</td>
<td style="text-align:right;">
-0.0747691
</td>
<td style="text-align:right;">
-0.3351316
</td>
<td style="text-align:right;">
0.1855933
</td>
<td style="text-align:right;">
0.1328404
</td>
<td style="text-align:right;">
-0.0746396
</td>
<td style="text-align:right;">
-0.2072980
</td>
<td style="text-align:right;">
0.0580188
</td>
<td style="text-align:right;">
0.0676841
</td>
</tr>
<tr>
<td style="text-align:left;">
rr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0761505
</td>
<td style="text-align:right;">
-0.1876687
</td>
<td style="text-align:right;">
0.0353678
</td>
<td style="text-align:right;">
0.0568981
</td>
<td style="text-align:right;">
-0.0896869
</td>
<td style="text-align:right;">
-0.2063458
</td>
<td style="text-align:right;">
0.0269721
</td>
<td style="text-align:right;">
0.0595210
</td>
<td style="text-align:right;">
-0.0125023
</td>
<td style="text-align:right;">
-0.0214082
</td>
<td style="text-align:right;">
-0.0035963
</td>
<td style="text-align:right;">
0.0045440
</td>
<td style="text-align:left;">
rr
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
-0.0761505
</td>
<td style="text-align:right;">
-0.1876687
</td>
<td style="text-align:right;">
0.0353678
</td>
<td style="text-align:right;">
0.0568981
</td>
<td style="text-align:right;">
-0.0896869
</td>
<td style="text-align:right;">
-0.2063458
</td>
<td style="text-align:right;">
0.0269721
</td>
<td style="text-align:right;">
0.0595210
</td>
<td style="text-align:right;">
-0.0125023
</td>
<td style="text-align:right;">
-0.0214082
</td>
<td style="text-align:right;">
-0.0035963
</td>
<td style="text-align:right;">
0.0045440
</td>
</tr>
<tr>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0262100
</td>
<td style="text-align:right;">
-0.1171674
</td>
<td style="text-align:right;">
0.1695873
</td>
<td style="text-align:right;">
0.0731531
</td>
<td style="text-align:right;">
0.0338228
</td>
<td style="text-align:right;">
-0.1337162
</td>
<td style="text-align:right;">
0.2013618
</td>
<td style="text-align:right;">
0.0854806
</td>
<td style="text-align:right;">
0.0099680
</td>
<td style="text-align:right;">
0.0065815
</td>
<td style="text-align:right;">
0.0133545
</td>
<td style="text-align:right;">
0.0017278
</td>
<td style="text-align:left;">
sodium
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0262100
</td>
<td style="text-align:right;">
-0.1171674
</td>
<td style="text-align:right;">
0.1695873
</td>
<td style="text-align:right;">
0.0731531
</td>
<td style="text-align:right;">
0.0338228
</td>
<td style="text-align:right;">
-0.1337162
</td>
<td style="text-align:right;">
0.2013618
</td>
<td style="text-align:right;">
0.0854806
</td>
<td style="text-align:right;">
0.0099680
</td>
<td style="text-align:right;">
0.0065815
</td>
<td style="text-align:right;">
0.0133545
</td>
<td style="text-align:right;">
0.0017278
</td>
</tr>
<tr>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
0.1874259
</td>
<td style="text-align:right;">
-0.0500875
</td>
<td style="text-align:right;">
0.4249393
</td>
<td style="text-align:right;">
0.1211825
</td>
<td style="text-align:right;">
0.1133706
</td>
<td style="text-align:right;">
-0.1604807
</td>
<td style="text-align:right;">
0.3872220
</td>
<td style="text-align:right;">
0.1397227
</td>
<td style="text-align:right;">
-0.1542349
</td>
<td style="text-align:right;">
-0.2104415
</td>
<td style="text-align:right;">
-0.0980283
</td>
<td style="text-align:right;">
0.0286774
</td>
<td style="text-align:left;">
spleen weight
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Immunophenotyping
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:right;">
0.1874259
</td>
<td style="text-align:right;">
-0.0500875
</td>
<td style="text-align:right;">
0.4249393
</td>
<td style="text-align:right;">
0.1211825
</td>
<td style="text-align:right;">
0.1133706
</td>
<td style="text-align:right;">
-0.1604807
</td>
<td style="text-align:right;">
0.3872220
</td>
<td style="text-align:right;">
0.1397227
</td>
<td style="text-align:right;">
-0.1542349
</td>
<td style="text-align:right;">
-0.2104415
</td>
<td style="text-align:right;">
-0.0980283
</td>
<td style="text-align:right;">
0.0286774
</td>
</tr>
<tr>
<td style="text-align:left;">
st
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0032888
</td>
<td style="text-align:right;">
-0.0544512
</td>
<td style="text-align:right;">
0.0610288
</td>
<td style="text-align:right;">
0.0294597
</td>
<td style="text-align:right;">
-0.0054976
</td>
<td style="text-align:right;">
-0.0811810
</td>
<td style="text-align:right;">
0.0701858
</td>
<td style="text-align:right;">
0.0386147
</td>
<td style="text-align:right;">
-0.0034902
</td>
<td style="text-align:right;">
-0.0175917
</td>
<td style="text-align:right;">
0.0106113
</td>
<td style="text-align:right;">
0.0071948
</td>
<td style="text-align:left;">
st
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Electrocardiogram (ECG)
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0032888
</td>
<td style="text-align:right;">
-0.0544512
</td>
<td style="text-align:right;">
0.0610288
</td>
<td style="text-align:right;">
0.0294597
</td>
<td style="text-align:right;">
-0.0054976
</td>
<td style="text-align:right;">
-0.0811810
</td>
<td style="text-align:right;">
0.0701858
</td>
<td style="text-align:right;">
0.0386147
</td>
<td style="text-align:right;">
-0.0034902
</td>
<td style="text-align:right;">
-0.0175917
</td>
<td style="text-align:right;">
0.0106113
</td>
<td style="text-align:right;">
0.0071948
</td>
</tr>
<tr>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0594276
</td>
<td style="text-align:right;">
-0.0782445
</td>
<td style="text-align:right;">
0.1970997
</td>
<td style="text-align:right;">
0.0702422
</td>
<td style="text-align:right;">
0.1574330
</td>
<td style="text-align:right;">
0.0091891
</td>
<td style="text-align:right;">
0.3056769
</td>
<td style="text-align:right;">
0.0756360
</td>
<td style="text-align:right;">
0.0937375
</td>
<td style="text-align:right;">
0.0775587
</td>
<td style="text-align:right;">
0.1099162
</td>
<td style="text-align:right;">
0.0082546
</td>
<td style="text-align:left;">
stroke volume
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Echo
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:right;">
0.0594276
</td>
<td style="text-align:right;">
-0.0782445
</td>
<td style="text-align:right;">
0.1970997
</td>
<td style="text-align:right;">
0.0702422
</td>
<td style="text-align:right;">
0.1574330
</td>
<td style="text-align:right;">
0.0091891
</td>
<td style="text-align:right;">
0.3056769
</td>
<td style="text-align:right;">
0.0756360
</td>
<td style="text-align:right;">
0.0937375
</td>
<td style="text-align:right;">
0.0775587
</td>
<td style="text-align:right;">
0.1099162
</td>
<td style="text-align:right;">
0.0082546
</td>
</tr>
<tr>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
-0.1475403
</td>
<td style="text-align:right;">
-0.4396127
</td>
<td style="text-align:right;">
0.1445320
</td>
<td style="text-align:right;">
0.1490192
</td>
<td style="text-align:right;">
-0.1374401
</td>
<td style="text-align:right;">
-0.4261352
</td>
<td style="text-align:right;">
0.1512551
</td>
<td style="text-align:right;">
0.1472961
</td>
<td style="text-align:right;">
0.0095199
</td>
<td style="text-align:right;">
0.0059199
</td>
<td style="text-align:right;">
0.0131200
</td>
<td style="text-align:right;">
0.0018368
</td>
<td style="text-align:left;">
tibia length
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Heart Weight
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:right;">
-0.1475403
</td>
<td style="text-align:right;">
-0.4396127
</td>
<td style="text-align:right;">
0.1445320
</td>
<td style="text-align:right;">
0.1490192
</td>
<td style="text-align:right;">
-0.1374401
</td>
<td style="text-align:right;">
-0.4261352
</td>
<td style="text-align:right;">
0.1512551
</td>
<td style="text-align:right;">
0.1472961
</td>
<td style="text-align:right;">
0.0095199
</td>
<td style="text-align:right;">
0.0059199
</td>
<td style="text-align:right;">
0.0131200
</td>
<td style="text-align:right;">
0.0018368
</td>
</tr>
<tr>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0605449
</td>
<td style="text-align:right;">
-0.0097669
</td>
<td style="text-align:right;">
0.1308567
</td>
<td style="text-align:right;">
0.0358740
</td>
<td style="text-align:right;">
0.0022671
</td>
<td style="text-align:right;">
-0.0859910
</td>
<td style="text-align:right;">
0.0905252
</td>
<td style="text-align:right;">
0.0450305
</td>
<td style="text-align:right;">
-0.0550333
</td>
<td style="text-align:right;">
-0.0979518
</td>
<td style="text-align:right;">
-0.0121148
</td>
<td style="text-align:right;">
0.0218976
</td>
<td style="text-align:left;">
total bilirubin
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0605449
</td>
<td style="text-align:right;">
-0.0097669
</td>
<td style="text-align:right;">
0.1308567
</td>
<td style="text-align:right;">
0.0358740
</td>
<td style="text-align:right;">
0.0022671
</td>
<td style="text-align:right;">
-0.0859910
</td>
<td style="text-align:right;">
0.0905252
</td>
<td style="text-align:right;">
0.0450305
</td>
<td style="text-align:right;">
-0.0550333
</td>
<td style="text-align:right;">
-0.0979518
</td>
<td style="text-align:right;">
-0.0121148
</td>
<td style="text-align:right;">
0.0218976
</td>
</tr>
<tr>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0942595
</td>
<td style="text-align:right;">
-0.0751596
</td>
<td style="text-align:right;">
0.2636786
</td>
<td style="text-align:right;">
0.0864399
</td>
<td style="text-align:right;">
0.3142208
</td>
<td style="text-align:right;">
0.1125613
</td>
<td style="text-align:right;">
0.5158803
</td>
<td style="text-align:right;">
0.1028894
</td>
<td style="text-align:right;">
0.2027583
</td>
<td style="text-align:right;">
0.1750477
</td>
<td style="text-align:right;">
0.2304688
</td>
<td style="text-align:right;">
0.0141383
</td>
<td style="text-align:left;">
total cholesterol
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0942595
</td>
<td style="text-align:right;">
-0.0751596
</td>
<td style="text-align:right;">
0.2636786
</td>
<td style="text-align:right;">
0.0864399
</td>
<td style="text-align:right;">
0.3142208
</td>
<td style="text-align:right;">
0.1125613
</td>
<td style="text-align:right;">
0.5158803
</td>
<td style="text-align:right;">
0.1028894
</td>
<td style="text-align:right;">
0.2027583
</td>
<td style="text-align:right;">
0.1750477
</td>
<td style="text-align:right;">
0.2304688
</td>
<td style="text-align:right;">
0.0141383
</td>
</tr>
<tr>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.1192293
</td>
<td style="text-align:right;">
-0.2542902
</td>
<td style="text-align:right;">
0.0158316
</td>
<td style="text-align:right;">
0.0689099
</td>
<td style="text-align:right;">
-0.0964842
</td>
<td style="text-align:right;">
-0.2564912
</td>
<td style="text-align:right;">
0.0635228
</td>
<td style="text-align:right;">
0.0816377
</td>
<td style="text-align:right;">
0.0267691
</td>
<td style="text-align:right;">
-0.0233285
</td>
<td style="text-align:right;">
0.0768667
</td>
<td style="text-align:right;">
0.0255605
</td>
<td style="text-align:left;">
total food intake
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.1192293
</td>
<td style="text-align:right;">
-0.2542902
</td>
<td style="text-align:right;">
0.0158316
</td>
<td style="text-align:right;">
0.0689099
</td>
<td style="text-align:right;">
-0.0964842
</td>
<td style="text-align:right;">
-0.2564912
</td>
<td style="text-align:right;">
0.0635228
</td>
<td style="text-align:right;">
0.0816377
</td>
<td style="text-align:right;">
0.0267691
</td>
<td style="text-align:right;">
-0.0233285
</td>
<td style="text-align:right;">
0.0768667
</td>
<td style="text-align:right;">
0.0255605
</td>
</tr>
<tr>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0422347
</td>
<td style="text-align:right;">
-0.0623878
</td>
<td style="text-align:right;">
-0.0220816
</td>
<td style="text-align:right;">
0.0102824
</td>
<td style="text-align:right;">
-0.0355909
</td>
<td style="text-align:right;">
-0.0619127
</td>
<td style="text-align:right;">
-0.0092692
</td>
<td style="text-align:right;">
0.0134297
</td>
<td style="text-align:right;">
0.0092660
</td>
<td style="text-align:right;">
-0.0008158
</td>
<td style="text-align:right;">
0.0193478
</td>
<td style="text-align:right;">
0.0051439
</td>
<td style="text-align:left;">
total protein
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0422347
</td>
<td style="text-align:right;">
-0.0623878
</td>
<td style="text-align:right;">
-0.0220816
</td>
<td style="text-align:right;">
0.0102824
</td>
<td style="text-align:right;">
-0.0355909
</td>
<td style="text-align:right;">
-0.0619127
</td>
<td style="text-align:right;">
-0.0092692
</td>
<td style="text-align:right;">
0.0134297
</td>
<td style="text-align:right;">
0.0092660
</td>
<td style="text-align:right;">
-0.0008158
</td>
<td style="text-align:right;">
0.0193478
</td>
<td style="text-align:right;">
0.0051439
</td>
</tr>
<tr>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.1457383
</td>
<td style="text-align:right;">
-0.2373165
</td>
<td style="text-align:right;">
-0.0541601
</td>
<td style="text-align:right;">
0.0467244
</td>
<td style="text-align:right;">
-0.2097443
</td>
<td style="text-align:right;">
-0.2681948
</td>
<td style="text-align:right;">
-0.1512937
</td>
<td style="text-align:right;">
0.0298223
</td>
<td style="text-align:right;">
-0.0654284
</td>
<td style="text-align:right;">
-0.1374220
</td>
<td style="text-align:right;">
0.0065653
</td>
<td style="text-align:right;">
0.0367321
</td>
<td style="text-align:left;">
total water intake
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Indirect Calorimetry
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:right;">
-0.1457383
</td>
<td style="text-align:right;">
-0.2373165
</td>
<td style="text-align:right;">
-0.0541601
</td>
<td style="text-align:right;">
0.0467244
</td>
<td style="text-align:right;">
-0.2097443
</td>
<td style="text-align:right;">
-0.2681948
</td>
<td style="text-align:right;">
-0.1512937
</td>
<td style="text-align:right;">
0.0298223
</td>
<td style="text-align:right;">
-0.0654284
</td>
<td style="text-align:right;">
-0.1374220
</td>
<td style="text-align:right;">
0.0065653
</td>
<td style="text-align:right;">
0.0367321
</td>
</tr>
<tr>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0320020
</td>
<td style="text-align:right;">
-0.1233659
</td>
<td style="text-align:right;">
0.0593619
</td>
<td style="text-align:right;">
0.0466151
</td>
<td style="text-align:right;">
0.3268957
</td>
<td style="text-align:right;">
0.2087111
</td>
<td style="text-align:right;">
0.4450803
</td>
<td style="text-align:right;">
0.0602994
</td>
<td style="text-align:right;">
0.3473552
</td>
<td style="text-align:right;">
0.2592006
</td>
<td style="text-align:right;">
0.4355098
</td>
<td style="text-align:right;">
0.0449777
</td>
<td style="text-align:left;">
triglycerides
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.0320020
</td>
<td style="text-align:right;">
-0.1233659
</td>
<td style="text-align:right;">
0.0593619
</td>
<td style="text-align:right;">
0.0466151
</td>
<td style="text-align:right;">
0.3268957
</td>
<td style="text-align:right;">
0.2087111
</td>
<td style="text-align:right;">
0.4450803
</td>
<td style="text-align:right;">
0.0602994
</td>
<td style="text-align:right;">
0.3473552
</td>
<td style="text-align:right;">
0.2592006
</td>
<td style="text-align:right;">
0.4355098
</td>
<td style="text-align:right;">
0.0449777
</td>
</tr>
<tr>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.1405306
</td>
<td style="text-align:right;">
-0.2664120
</td>
<td style="text-align:right;">
-0.0146491
</td>
<td style="text-align:right;">
0.0642264
</td>
<td style="text-align:right;">
-0.0950040
</td>
<td style="text-align:right;">
-0.2507897
</td>
<td style="text-align:right;">
0.0607817
</td>
<td style="text-align:right;">
0.0794840
</td>
<td style="text-align:right;">
0.0403162
</td>
<td style="text-align:right;">
0.0051883
</td>
<td style="text-align:right;">
0.0754441
</td>
<td style="text-align:right;">
0.0179227
</td>
<td style="text-align:left;">
urea (blood urea nitrogen - bun)
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
-0.1405306
</td>
<td style="text-align:right;">
-0.2664120
</td>
<td style="text-align:right;">
-0.0146491
</td>
<td style="text-align:right;">
0.0642264
</td>
<td style="text-align:right;">
-0.0950040
</td>
<td style="text-align:right;">
-0.2507897
</td>
<td style="text-align:right;">
0.0607817
</td>
<td style="text-align:right;">
0.0794840
</td>
<td style="text-align:right;">
0.0403162
</td>
<td style="text-align:right;">
0.0051883
</td>
<td style="text-align:right;">
0.0754441
</td>
<td style="text-align:right;">
0.0179227
</td>
</tr>
<tr>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0367062
</td>
<td style="text-align:right;">
-0.0660619
</td>
<td style="text-align:right;">
0.1394744
</td>
<td style="text-align:right;">
0.0524337
</td>
<td style="text-align:right;">
0.3626957
</td>
<td style="text-align:right;">
0.0914512
</td>
<td style="text-align:right;">
0.6339402
</td>
<td style="text-align:right;">
0.1383926
</td>
<td style="text-align:right;">
0.4472349
</td>
<td style="text-align:right;">
-0.0801891
</td>
<td style="text-align:right;">
0.9746588
</td>
<td style="text-align:right;">
0.2690988
</td>
<td style="text-align:left;">
uric acid
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Clinical Chemistry
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:right;">
0.0367062
</td>
<td style="text-align:right;">
-0.0660619
</td>
<td style="text-align:right;">
0.1394744
</td>
<td style="text-align:right;">
0.0524337
</td>
<td style="text-align:right;">
0.3626957
</td>
<td style="text-align:right;">
0.0914512
</td>
<td style="text-align:right;">
0.6339402
</td>
<td style="text-align:right;">
0.1383926
</td>
<td style="text-align:right;">
0.4472349
</td>
<td style="text-align:right;">
-0.0801891
</td>
<td style="text-align:right;">
0.9746588
</td>
<td style="text-align:right;">
0.2690988
</td>
</tr>
<tr>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0907957
</td>
<td style="text-align:right;">
-0.1703063
</td>
<td style="text-align:right;">
-0.0112852
</td>
<td style="text-align:right;">
0.0405673
</td>
<td style="text-align:right;">
0.1168446
</td>
<td style="text-align:right;">
-0.0023934
</td>
<td style="text-align:right;">
0.2360826
</td>
<td style="text-align:right;">
0.0608368
</td>
<td style="text-align:right;">
0.1978876
</td>
<td style="text-align:right;">
0.1368305
</td>
<td style="text-align:right;">
0.2589447
</td>
<td style="text-align:right;">
0.0311521
</td>
<td style="text-align:left;">
white blood cell count
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:right;">
-0.0907957
</td>
<td style="text-align:right;">
-0.1703063
</td>
<td style="text-align:right;">
-0.0112852
</td>
<td style="text-align:right;">
0.0405673
</td>
<td style="text-align:right;">
0.1168446
</td>
<td style="text-align:right;">
-0.0023934
</td>
<td style="text-align:right;">
0.2360826
</td>
<td style="text-align:right;">
0.0608368
</td>
<td style="text-align:right;">
0.1978876
</td>
<td style="text-align:right;">
0.1368305
</td>
<td style="text-align:right;">
0.2589447
</td>
<td style="text-align:right;">
0.0311521
</td>
</tr>
<tr>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0156634
</td>
<td style="text-align:right;">
-0.0857564
</td>
<td style="text-align:right;">
0.0544296
</td>
<td style="text-align:right;">
0.0357624
</td>
<td style="text-align:right;">
-0.1140149
</td>
<td style="text-align:right;">
-0.1840029
</td>
<td style="text-align:right;">
-0.0440269
</td>
<td style="text-align:right;">
0.0357088
</td>
<td style="text-align:right;">
-0.0997437
</td>
<td style="text-align:right;">
-0.1519566
</td>
<td style="text-align:right;">
-0.0475307
</td>
<td style="text-align:right;">
0.0266397
</td>
<td style="text-align:left;">
whole arena average speed
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0156634
</td>
<td style="text-align:right;">
-0.0857564
</td>
<td style="text-align:right;">
0.0544296
</td>
<td style="text-align:right;">
0.0357624
</td>
<td style="text-align:right;">
-0.1140149
</td>
<td style="text-align:right;">
-0.1840029
</td>
<td style="text-align:right;">
-0.0440269
</td>
<td style="text-align:right;">
0.0357088
</td>
<td style="text-align:right;">
-0.0997437
</td>
<td style="text-align:right;">
-0.1519566
</td>
<td style="text-align:right;">
-0.0475307
</td>
<td style="text-align:right;">
0.0266397
</td>
</tr>
<tr>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0531307
</td>
<td style="text-align:right;">
-0.1011672
</td>
<td style="text-align:right;">
-0.0050941
</td>
<td style="text-align:right;">
0.0245089
</td>
<td style="text-align:right;">
-0.0593672
</td>
<td style="text-align:right;">
-0.1076067
</td>
<td style="text-align:right;">
-0.0111276
</td>
<td style="text-align:right;">
0.0246125
</td>
<td style="text-align:right;">
0.0045878
</td>
<td style="text-align:right;">
-0.0513396
</td>
<td style="text-align:right;">
0.0605152
</td>
<td style="text-align:right;">
0.0285349
</td>
<td style="text-align:left;">
whole arena resting time
</td>
<td style="text-align:right;">
1
</td>
<td style="text-align:left;">
Open Field
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:right;">
-0.0531307
</td>
<td style="text-align:right;">
-0.1011672
</td>
<td style="text-align:right;">
-0.0050941
</td>
<td style="text-align:right;">
0.0245089
</td>
<td style="text-align:right;">
-0.0593672
</td>
<td style="text-align:right;">
-0.1076067
</td>
<td style="text-align:right;">
-0.0111276
</td>
<td style="text-align:right;">
0.0246125
</td>
<td style="text-align:right;">
0.0045878
</td>
<td style="text-align:right;">
-0.0513396
</td>
<td style="text-align:right;">
0.0605152
</td>
<td style="text-align:right;">
0.0285349
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="prepare-data" class="section level4">
<div name="prepare_data" data-unique="prepare_data"></div><h4>Prepare data</h4>
<p>Nesting, calculating the number of parameters within each grouping term, and running the meta-analysis</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3628" aria-expanded="false" aria-controls="rcode-643E0F3628"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3628"><pre class="r"><code class="hljs">metacombo_final &lt;- metacombo %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()


<span class="hljs-comment"># **Calculate number of parameters per grouping term </span>

metacombo_final &lt;- metacombo_final  %&gt;%  mutate(para_per_GroupingTerm = map_dbl(data, nrow))

<span class="hljs-comment"># For all grouping terms</span>
metacombo_final_all &lt;- metacombo %&gt;%
 nest()

<span class="hljs-comment"># **Final fixed effects meta-analyses within grouping terms, with SE of the estimate </span>

overall1 &lt;- metacombo_final %&gt;% 

  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)),
       model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)),
       model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>))) 

<span class="hljs-comment"># **Final fixed effects meta-analyses ACROSS grouping terms, with SE of the estimate </span>

overall_all1 &lt;- metacombo_final_all %&gt;% 

  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)),
       model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)),
       model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>))) </code></pre></div>
<p>Re-structure data for each grouping term; delete unused variables</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3629" aria-expanded="false" aria-controls="rcode-643E0F3629"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3629"><pre class="r"><code class="hljs">Behaviour &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Behaviour"</span>)    %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

Immunology &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Immunology"</span>)    %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

Hematology &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Hematology"</span>)    %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

Hearing &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Hearing"</span>)   %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

Physiology &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Physiology"</span>)  %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

Metabolism &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Metabolism"</span>)  %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

Morphology &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Morphology"</span>)  %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

Heart &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Heart"</span>)  %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

Eye &lt;- as.data.frame(overall1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Eye"</span>)  %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se,
                  lnVR=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">5</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">6</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">7</span>:<span class="hljs-number">18</span>)] 

All &lt;- as.data.frame(overall_all1  %&gt;%  mutate(lnCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, lnCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,lnVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, lnVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                lnRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, lnRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, lnRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, lnRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) )[, c(<span class="hljs-number">5</span>:<span class="hljs-number">16</span>)] 

All$lnCVR &lt;- as.numeric(All$lnCVR)
All$lnVR &lt;- as.numeric(All$lnVR)
All$lnRR &lt;- as.numeric(All$lnRR)
All &lt;- All %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

overall2 &lt;- bind_rows(Behaviour, Morphology, Metabolism, Physiology, Immunology, Hematology, Heart, Hearing, Eye, All)</code></pre></div>
</div>
<div id="visualisation" class="section level3">
<div name="visualisation" data-unique="visualisation"></div><h3>Visualisation</h3>
<div id="plot-figure-2-4-in-ms-first-order-meta-analysis-results" class="section level4">
<div name="plot_figure_2_[4_in_ms]_(first-order_meta_analysis_results)" data-unique="plot_figure_2_[4_in_ms]_(first-order_meta_analysis_results)"></div><h4>Plot FIGURE 2 [4 in ms] (First-order meta analysis results)</h4>
<p>Re-order grouping terms</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3630" aria-expanded="false" aria-controls="rcode-643E0F3630"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3630"><pre class="r"><code class="hljs">meta_clean$GroupingTerm &lt;- factor(meta_clean$GroupingTerm, levels =c(<span class="hljs-string">"Behaviour"</span>,<span class="hljs-string">"Morphology"</span>,<span class="hljs-string">"Metabolism"</span>,<span class="hljs-string">"Physiology"</span>,<span class="hljs-string">"Immunology"</span>,<span class="hljs-string">"Hematology"</span>,<span class="hljs-string">"Heart"</span>,<span class="hljs-string">"Hearing"</span>,<span class="hljs-string">"Eye"</span>) )
meta_clean$GroupingTerm &lt;- factor(meta_clean$GroupingTerm, rev(levels(meta_clean$GroupingTerm)))


<span class="hljs-comment"># *Prepare data for all traits</span>

meta.plot2.all &lt;- meta_clean %&gt;% select(lnCVR, lnVR, lnRR, GroupingTerm) %&gt;% arrange(GroupingTerm)

meta.plot2.all.b &lt;- gather(meta.plot2.all, trait, value, c(lnCVR, lnVR, lnRR))

meta.plot2.all.b$trait &lt;- factor(meta.plot2.all.b$trait, levels =c(<span class="hljs-string">"lnCVR"</span>,<span class="hljs-string">"lnVR"</span>,<span class="hljs-string">"lnRR"</span>) )

meta.plot2.all.c &lt;- meta.plot2.all.b  %&gt;%
                group_by_at(vars(trait, GroupingTerm)) %&gt;%
                summarise(malebias = sum(value &gt; <span class="hljs-number">0</span>), femalebias = sum(value&lt;= <span class="hljs-number">0</span>), total= malebias + femalebias, 
                    malepercent = malebias*<span class="hljs-number">100</span>/total, femalepercent = femalebias*<span class="hljs-number">100</span>/total)  

meta.plot2.all.c$label &lt;- <span class="hljs-string">"All traits"</span>

<span class="hljs-comment"># restructure to create stacked bar plots</span>

meta.plot2.all.d &lt;- as.data.frame(meta.plot2.all.c)
meta.plot2.all.e &lt;- gather(meta.plot2.all.d, key = sex, value = percent, malepercent:femalepercent, factor_key = <span class="hljs-literal">TRUE</span>)

<span class="hljs-comment"># create new sample size variable</span>

meta.plot2.all.e$samplesize &lt;- with(meta.plot2.all.e, ifelse(sex == <span class="hljs-string">"malepercent"</span>, malebias, femalebias) )


malebias_Fig2_alltraits &lt;- 
ggplot(meta.plot2.all.e) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = <span class="hljs-number">50</span>, linetype = <span class="hljs-string">"dashed"</span>, color = <span class="hljs-string">"gray40"</span>) +
  geom_text(data = subset(meta.plot2.all.e, samplesize != <span class="hljs-number">0</span>), aes(label = samplesize), position = position_stack(vjust = <span class="hljs-number">.5</span>), 
    color = <span class="hljs-string">"white"</span>, size = <span class="hljs-number">3.5</span>) +
 facet_grid(cols = vars(trait), rows = vars(label),  labeller = label_wrap_gen(width = <span class="hljs-number">18</span>), 
      scales= <span class="hljs-string">'free'</span>, space=<span class="hljs-string">'free'</span>) +
 scale_fill_brewer(palette = <span class="hljs-string">"Set2"</span>) +
theme_bw(base_size = <span class="hljs-number">18</span>) +
    theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)), 
      strip.text.x = element_text(size = <span class="hljs-number">12</span>),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>,linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size=<span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.position = <span class="hljs-string">"none"</span>,
        axis.title.x = element_blank(),
      axis.title.y = element_blank()  ) +
    coord_flip()

<span class="hljs-comment">#malebias_Fig2_alltraits</span></code></pre></div>
</div>
<div id="prepare-data-for-traits-with-ci-not-overlapping-0" class="section level4">
<div name="prepare_data_for_traits_with_ci_not_overlapping_0" data-unique="prepare_data_for_traits_with_ci_not_overlapping_0"></div><h4>Prepare data for traits with CI not overlapping 0</h4>
<p>create column with 1= different from zero, 0= zero included in CI</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3631" aria-expanded="false" aria-controls="rcode-643E0F3631"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3631"><pre class="r"><code class="hljs">meta.plot2.sig &lt;- meta_clean %&gt;% 
    mutate(lnCVRsig = ifelse(lnCVR_lower*lnCVR_upper &gt;<span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>), lnVRsig = ifelse(lnVR_lower*lnVR_upper &gt;<span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>), 
         lnRRsig = ifelse(lnRR_lower*lnRR_upper &gt; <span class="hljs-number">0</span>, <span class="hljs-number">1</span>,<span class="hljs-number">0</span>))

meta.plot2.sig.b &lt;- meta.plot2.sig[, c(<span class="hljs-string">"lnCVR"</span>, <span class="hljs-string">"lnVR"</span>, <span class="hljs-string">"lnRR"</span>, <span class="hljs-string">"lnCVRsig"</span>, <span class="hljs-string">"lnVRsig"</span>, <span class="hljs-string">"lnRRsig"</span>, <span class="hljs-string">"GroupingTerm"</span>)]   

meta.plot2.sig.c &lt;- gather(meta.plot2.sig.b, trait, value, lnCVR:lnRR)
meta.plot2.sig.c$sig &lt;- <span class="hljs-string">"placeholder"</span>

meta.plot2.sig.c$trait &lt;- factor(meta.plot2.sig.c$trait, levels =c(<span class="hljs-string">"lnCVR"</span>,<span class="hljs-string">"lnVR"</span>,<span class="hljs-string">"lnRR"</span>) )

meta.plot2.sig.c$sig &lt;- ifelse(meta.plot2.sig.c$trait == <span class="hljs-string">"lnCVR"</span>, meta.plot2.sig.c$lnCVRsig,
                ifelse(meta.plot2.sig.c$trait == <span class="hljs-string">"lnVR"</span>, meta.plot2.sig.c$lnVRsig, meta.plot2.sig.c$lnRRsig))

<span class="hljs-comment">#choosing sex biased ln-ratios significantly larger than 0</span>
meta.plot2.sig.malebias &lt;- meta.plot2.sig.c %&gt;%
                group_by_at(vars(trait, GroupingTerm)) %&gt;%
                filter(sig== <span class="hljs-number">1</span>) %&gt;%
                summarise(male_sig = sum(value &gt; <span class="hljs-number">0</span>), female_sig = sum(value &lt; <span class="hljs-number">0</span>), total = male_sig + female_sig) 

meta.plot2.sig.malebias &lt;- ungroup(meta.plot2.sig.malebias) %&gt;%
                add_row(trait = <span class="hljs-string">"lnCVR"</span>, GroupingTerm = <span class="hljs-string">"Hearing"</span>, male_sig = <span class="hljs-number">0</span>, female_sig = <span class="hljs-number">0</span>, .before = <span class="hljs-number">4</span>) %&gt;% <span class="hljs-comment">#add "Hearing" for lnCVR (not filtered as only zeros)</span>
                mutate(malepercent = male_sig*<span class="hljs-number">100</span> / total, femalepercent = female_sig*<span class="hljs-number">100</span> / total)

meta.plot2.sig.malebias$label &lt;- <span class="hljs-string">"CI not overlapping zero"</span>

<span class="hljs-comment"># restructure to create stacked bar plots</span>

meta.plot2.sig.bothsexes &lt;- as.data.frame(meta.plot2.sig.malebias)
meta.plot2.sig.bothsexes.b &lt;- gather(meta.plot2.sig.bothsexes, key = sex, value = percent, malepercent:femalepercent, factor_key = <span class="hljs-literal">TRUE</span>)

<span class="hljs-comment"># create new sample size variable</span>

meta.plot2.sig.bothsexes.b$samplesize &lt;- with(meta.plot2.sig.bothsexes.b, ifelse(sex == <span class="hljs-string">"malepercent"</span>, male_sig, female_sig) )

<span class="hljs-comment"># *Plot Fig2 all significant results (CI not overlapping zero): </span>
<span class="hljs-comment">#     no sig. lnCVR for 'Hearing' in either sex; no sig. male-biased lnCVR for 'Immunology' and 'Eye, and no sig. male-biased lnVR for 'Eye'</span>


malebias_Fig2_sigtraits &lt;-  
ggplot(meta.plot2.sig.bothsexes.b) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = <span class="hljs-number">50</span>, linetype = <span class="hljs-string">"dashed"</span>, color = <span class="hljs-string">"gray40"</span>) +
  geom_text(data = subset(meta.plot2.sig.bothsexes.b, samplesize != <span class="hljs-number">0</span>), aes(label = samplesize), position = position_stack(vjust = <span class="hljs-number">.5</span>), 
    color = <span class="hljs-string">"white"</span>, size = <span class="hljs-number">3.5</span>) +
 facet_grid(cols = vars(trait), rows = vars(label),  labeller = label_wrap_gen(width = <span class="hljs-number">18</span>), 
      scales= <span class="hljs-string">'free'</span>, space=<span class="hljs-string">'free'</span>) +
 scale_fill_brewer(palette = <span class="hljs-string">"Set2"</span>) +
theme_bw(base_size = <span class="hljs-number">18</span>) +
    theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)), 
      strip.text.x = element_blank(),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>,linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size=<span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.position = <span class="hljs-string">"none"</span>,
        axis.title.x = element_blank(),
      axis.title.y = element_blank()  ) +
    coord_flip()</code></pre></div>
<p>Prepare data for traits with effect size ratios &gt; 10% larger in males</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3632" aria-expanded="false" aria-controls="rcode-643E0F3632"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3632"><pre class="r"><code class="hljs">meta.plot2.over10 &lt;- meta_clean %&gt;% select(lnCVR, lnVR, lnRR, GroupingTerm) %&gt;% arrange(GroupingTerm)

meta.plot2.over10.b &lt;- gather(meta.plot2.over10, trait, value, c(lnCVR, lnVR, lnRR))

meta.plot2.over10.b$trait &lt;- factor(meta.plot2.over10.b$trait, levels =c(<span class="hljs-string">"lnCVR"</span>,<span class="hljs-string">"lnVR"</span>,<span class="hljs-string">"lnRR"</span>) )

meta.plot2.over10.c &lt;- meta.plot2.over10.b  %&gt;%
                group_by_at(vars(trait, GroupingTerm)) %&gt;%
                summarise(malebias = sum(value &gt; log(<span class="hljs-number">11</span>/<span class="hljs-number">10</span>)), femalebias = sum(value &lt; log(<span class="hljs-number">9</span>/<span class="hljs-number">10</span>)), total= malebias + femalebias, 
                    malepercent = malebias*<span class="hljs-number">100</span>/total, femalepercent = femalebias*<span class="hljs-number">100</span>/total)  

meta.plot2.over10.c$label &lt;- <span class="hljs-string">"Sex difference in m/f ratios &gt; 10%"</span>

<span class="hljs-comment"># restructure to create stacked bar plots</span>

meta.plot2.over10.c &lt;- as.data.frame(meta.plot2.over10.c)
meta.plot2.over10.d &lt;- gather(meta.plot2.over10.c, key = sex, value = percent, malepercent:femalepercent, factor_key = <span class="hljs-literal">TRUE</span>)

<span class="hljs-comment"># create new sample size variable</span>

meta.plot2.over10.d$samplesize &lt;- with(meta.plot2.over10.d, ifelse(sex == <span class="hljs-string">"malepercent"</span>, malebias, femalebias) )

<span class="hljs-comment"># *Plot Fig2 Sex difference in m/f ratio &gt; 10%</span>
malebias_Fig2_over10 &lt;- 
ggplot(meta.plot2.over10.d) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = <span class="hljs-number">50</span>, linetype = <span class="hljs-string">"dashed"</span>, color = <span class="hljs-string">"gray40"</span>) +
  geom_text(data = subset(meta.plot2.over10.d, samplesize != <span class="hljs-number">0</span>), aes(label = samplesize), position = position_stack(vjust = <span class="hljs-number">.5</span>), 
    color = <span class="hljs-string">"white"</span>, size = <span class="hljs-number">3.5</span>) +
 facet_grid(cols = vars(trait), rows = vars(label),  labeller = label_wrap_gen(width = <span class="hljs-number">18</span>), 
      scales= <span class="hljs-string">'free'</span>, space=<span class="hljs-string">'free'</span>) +
 scale_fill_brewer(palette = <span class="hljs-string">"Set2"</span>) +
theme_bw(base_size = <span class="hljs-number">18</span>) +
    theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)), 
      strip.text.x = element_blank(),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>,linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size=<span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.position = <span class="hljs-string">"none"</span>,
        axis.title.x = element_blank(),
      axis.title.y = element_blank()  ) +
    coord_flip()
<span class="hljs-comment"># malebias_Fig2_over10</span></code></pre></div>
</div>
<div id="create-final-combined-figure-figure-2" class="section level4">
<div name="create_final_combined_figure_(figure_2)" data-unique="create_final_combined_figure_(figure_2)"></div><h4>Create final combined Figure (Figure 2)</h4>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3633" aria-expanded="false" aria-controls="rcode-643E0F3633"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3633"><pre class="r"><code class="hljs">Fig2 &lt;- ggarrange(malebias_Fig2_alltraits, malebias_Fig2_sigtraits,malebias_Fig2_over10, nrow = <span class="hljs-number">3</span>, align = <span class="hljs-string">"v"</span>, heights = c(<span class="hljs-number">1.22</span>,<span class="hljs-number">1</span>,<span class="hljs-number">1</span>), labels = c(<span class="hljs-string">"A"</span>, <span class="hljs-string">"B"</span>, <span class="hljs-string">"C"</span>))
Fig2</code></pre></div>
<p><img src="" width="672"></p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3634" aria-expanded="false" aria-controls="rcode-643E0F3634"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3634"><pre class="r"><code class="hljs">ggsave(<span class="hljs-string">"Fig2.pdf"</span>, plot = Fig2, width = <span class="hljs-number">6</span>, height = <span class="hljs-number">5</span>) </code></pre></div>
</div>
</div>
<div id="overall-results-of-second-order-meta-anlaysis-figure-4a" class="section level3">
<div name="overall_results_of_second_order_meta_anlaysis_(figure_4a)" data-unique="overall_results_of_second_order_meta_anlaysis_(figure_4a)"></div><h3>Overall results of second order meta anlaysis (Figure 4a)</h3>
<div id="restructure-data-for-plotting" class="section level4">
<div name="restructure_data_for_plotting" data-unique="restructure_data_for_plotting"></div><h4>Restructure data for plotting</h4>
<p>Data are restructured, and grouping terms are being re-ordered</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3635" aria-expanded="false" aria-controls="rcode-643E0F3635"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3635"><pre class="r"><code class="hljs">overall3 &lt;- gather(overall2, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= <span class="hljs-literal">TRUE</span>)

lnCVR.ci &lt;- overall3 %&gt;% filter(parameter == <span class="hljs-string">"lnCVR"</span>) %&gt;% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3 %&gt;% filter(parameter == <span class="hljs-string">"lnVR"</span>) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3 %&gt;% filter(parameter == <span class="hljs-string">"lnRR"</span>) %&gt;% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                   

overall4 &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

<span class="hljs-comment"># re-order Grouping Terms</span>

overall4$GroupingTerm &lt;- factor(overall4$GroupingTerm, levels =c(<span class="hljs-string">"Behaviour"</span>,<span class="hljs-string">"Morphology"</span>,<span class="hljs-string">"Metabolism"</span>,<span class="hljs-string">"Physiology"</span>,<span class="hljs-string">"Immunology"</span>,<span class="hljs-string">"Hematology"</span>,<span class="hljs-string">"Heart"</span>,<span class="hljs-string">"Hearing"</span>,<span class="hljs-string">"Eye"</span>, <span class="hljs-string">"All"</span>) )
overall4$GroupingTerm &lt;- factor(overall4$GroupingTerm, rev(levels(overall4$GroupingTerm)))
overall4$label &lt;- <span class="hljs-string">"All traits"</span>

kable(cbind(overall4, overall4)) %&gt;%
  kable_styling() %&gt;%
  scroll_box(width = <span class="hljs-string">"100%"</span>, height = <span class="hljs-string">"200px"</span>)</code></pre></div>
<div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; overflow-x: scroll; width:100%; ">
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
GroupingTerm
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
value
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
ci.low
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
ci.high
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
label
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
GroupingTerm
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
parameter
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
value
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
ci.low
</th>
<th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;">
ci.high
</th>
<th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;">
label
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
-0.0035049
</td>
<td style="text-align:right;">
-0.0240688
</td>
<td style="text-align:right;">
0.0170591
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
-0.0035049
</td>
<td style="text-align:right;">
-0.0240688
</td>
<td style="text-align:right;">
0.0170591
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0774453
</td>
<td style="text-align:right;">
0.0414171
</td>
<td style="text-align:right;">
0.1134734
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0774453
</td>
<td style="text-align:right;">
0.0414171
</td>
<td style="text-align:right;">
0.1134734
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
-0.0430831
</td>
<td style="text-align:right;">
-0.1125945
</td>
<td style="text-align:right;">
0.0264283
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
-0.0430831
</td>
<td style="text-align:right;">
-0.1125945
</td>
<td style="text-align:right;">
0.0264283
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0126792
</td>
<td style="text-align:right;">
-0.0140094
</td>
<td style="text-align:right;">
0.0393678
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0126792
</td>
<td style="text-align:right;">
-0.0140094
</td>
<td style="text-align:right;">
0.0393678
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
-0.0681817
</td>
<td style="text-align:right;">
-0.0980135
</td>
<td style="text-align:right;">
-0.0383499
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
-0.0681817
</td>
<td style="text-align:right;">
-0.0980135
</td>
<td style="text-align:right;">
-0.0383499
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0217865
</td>
<td style="text-align:right;">
-0.0165045
</td>
<td style="text-align:right;">
0.0600776
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0217865
</td>
<td style="text-align:right;">
-0.0165045
</td>
<td style="text-align:right;">
0.0600776
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0183839
</td>
<td style="text-align:right;">
-0.0128375
</td>
<td style="text-align:right;">
0.0496053
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0183839
</td>
<td style="text-align:right;">
-0.0128375
</td>
<td style="text-align:right;">
0.0496053
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0157302
</td>
<td style="text-align:right;">
-0.0111999
</td>
<td style="text-align:right;">
0.0426603
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0157302
</td>
<td style="text-align:right;">
-0.0111999
</td>
<td style="text-align:right;">
0.0426603
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
-0.0817932
</td>
<td style="text-align:right;">
-0.1476821
</td>
<td style="text-align:right;">
-0.0159043
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
-0.0817932
</td>
<td style="text-align:right;">
-0.1476821
</td>
<td style="text-align:right;">
-0.0159043
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
All
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0046553
</td>
<td style="text-align:right;">
-0.0086242
</td>
<td style="text-align:right;">
0.0179348
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
All
</td>
<td style="text-align:left;">
lnCVR
</td>
<td style="text-align:right;">
0.0046553
</td>
<td style="text-align:right;">
-0.0086242
</td>
<td style="text-align:right;">
0.0179348
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
-0.0178345
</td>
<td style="text-align:right;">
-0.0739862
</td>
<td style="text-align:right;">
0.0383172
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
-0.0178345
</td>
<td style="text-align:right;">
-0.0739862
</td>
<td style="text-align:right;">
0.0383172
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.1514171
</td>
<td style="text-align:right;">
0.0818826
</td>
<td style="text-align:right;">
0.2209516
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.1514171
</td>
<td style="text-align:right;">
0.0818826
</td>
<td style="text-align:right;">
0.2209516
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0910609
</td>
<td style="text-align:right;">
-0.0337688
</td>
<td style="text-align:right;">
0.2158905
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0910609
</td>
<td style="text-align:right;">
-0.0337688
</td>
<td style="text-align:right;">
0.2158905
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0359821
</td>
<td style="text-align:right;">
-0.0277944
</td>
<td style="text-align:right;">
0.0997585
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0359821
</td>
<td style="text-align:right;">
-0.0277944
</td>
<td style="text-align:right;">
0.0997585
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
-0.1112382
</td>
<td style="text-align:right;">
-0.1622150
</td>
<td style="text-align:right;">
-0.0602615
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
-0.1112382
</td>
<td style="text-align:right;">
-0.1622150
</td>
<td style="text-align:right;">
-0.0602615
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0802111
</td>
<td style="text-align:right;">
0.0315390
</td>
<td style="text-align:right;">
0.1288831
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0802111
</td>
<td style="text-align:right;">
0.0315390
</td>
<td style="text-align:right;">
0.1288831
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
-0.0050810
</td>
<td style="text-align:right;">
-0.0357003
</td>
<td style="text-align:right;">
0.0255383
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
-0.0050810
</td>
<td style="text-align:right;">
-0.0357003
</td>
<td style="text-align:right;">
0.0255383
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0106858
</td>
<td style="text-align:right;">
-0.0230440
</td>
<td style="text-align:right;">
0.0444155
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0106858
</td>
<td style="text-align:right;">
-0.0230440
</td>
<td style="text-align:right;">
0.0444155
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
-0.0744497
</td>
<td style="text-align:right;">
-0.1381380
</td>
<td style="text-align:right;">
-0.0107614
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
-0.0744497
</td>
<td style="text-align:right;">
-0.1381380
</td>
<td style="text-align:right;">
-0.0107614
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
All
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0156634
</td>
<td style="text-align:right;">
-0.0077457
</td>
<td style="text-align:right;">
0.0390726
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
All
</td>
<td style="text-align:left;">
lnVR
</td>
<td style="text-align:right;">
0.0156634
</td>
<td style="text-align:right;">
-0.0077457
</td>
<td style="text-align:right;">
0.0390726
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
-0.0199206
</td>
<td style="text-align:right;">
-0.0634388
</td>
<td style="text-align:right;">
0.0235976
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Behaviour
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
-0.0199206
</td>
<td style="text-align:right;">
-0.0634388
</td>
<td style="text-align:right;">
0.0235976
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0678160
</td>
<td style="text-align:right;">
0.0072225
</td>
<td style="text-align:right;">
0.1284095
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Morphology
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0678160
</td>
<td style="text-align:right;">
0.0072225
</td>
<td style="text-align:right;">
0.1284095
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.1422577
</td>
<td style="text-align:right;">
0.0364352
</td>
<td style="text-align:right;">
0.2480801
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Metabolism
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.1422577
</td>
<td style="text-align:right;">
0.0364352
</td>
<td style="text-align:right;">
0.2480801
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0163695
</td>
<td style="text-align:right;">
-0.0443364
</td>
<td style="text-align:right;">
0.0770753
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Physiology
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0163695
</td>
<td style="text-align:right;">
-0.0443364
</td>
<td style="text-align:right;">
0.0770753
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
-0.0574840
</td>
<td style="text-align:right;">
-0.1074213
</td>
<td style="text-align:right;">
-0.0075466
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Immunology
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
-0.0574840
</td>
<td style="text-align:right;">
-0.1074213
</td>
<td style="text-align:right;">
-0.0075466
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0388537
</td>
<td style="text-align:right;">
-0.0024274
</td>
<td style="text-align:right;">
0.0801348
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Hematology
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0388537
</td>
<td style="text-align:right;">
-0.0024274
</td>
<td style="text-align:right;">
0.0801348
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
-0.0048933
</td>
<td style="text-align:right;">
-0.0324240
</td>
<td style="text-align:right;">
0.0226374
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Heart
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
-0.0048933
</td>
<td style="text-align:right;">
-0.0324240
</td>
<td style="text-align:right;">
0.0226374
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
-0.0132366
</td>
<td style="text-align:right;">
-0.0335982
</td>
<td style="text-align:right;">
0.0071251
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Hearing
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
-0.0132366
</td>
<td style="text-align:right;">
-0.0335982
</td>
<td style="text-align:right;">
0.0071251
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0091186
</td>
<td style="text-align:right;">
0.0012071
</td>
<td style="text-align:right;">
0.0170302
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
Eye
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0091186
</td>
<td style="text-align:right;">
0.0012071
</td>
<td style="text-align:right;">
0.0170302
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
<tr>
<td style="text-align:left;">
All
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0124332
</td>
<td style="text-align:right;">
-0.0061474
</td>
<td style="text-align:right;">
0.0310138
</td>
<td style="text-align:left;">
All traits
</td>
<td style="text-align:left;">
All
</td>
<td style="text-align:left;">
lnRR
</td>
<td style="text-align:right;">
0.0124332
</td>
<td style="text-align:right;">
-0.0061474
</td>
<td style="text-align:right;">
0.0310138
</td>
<td style="text-align:left;">
All traits
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="plot-figure-4-second-order-meta-analysis-results" class="section level4">
<div name="plot_figure_4_(second-order_meta_analysis_results)" data-unique="plot_figure_4_(second-order_meta_analysis_results)"></div><h4>Plot FIGURE 4 (Second-order meta analysis results)</h4>
<p>Preparation: Sub-Plot for Figure 3: all traits</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3636" aria-expanded="false" aria-controls="rcode-643E0F3636"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3636"><pre class="r"><code class="hljs">Metameta_Fig3_alltraits &lt;- overall4 %&gt;%

  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = <span class="hljs-number">0.1</span>, show.legend = <span class="hljs-literal">FALSE</span>) +
  geom_point(aes(shape = parameter), fill = <span class="hljs-string">'black'</span>,
             color = <span class="hljs-string">'black'</span>, size = <span class="hljs-number">2.2</span>, 
             show.legend = <span class="hljs-literal">FALSE</span>) +
  scale_x_continuous(limits=c(-<span class="hljs-number">0.24</span>, <span class="hljs-number">0.25</span>), 
                     breaks = c(-<span class="hljs-number">0.2</span>, -<span class="hljs-number">0.1</span>, <span class="hljs-number">0</span>, <span class="hljs-number">0.1</span>, <span class="hljs-number">0.2</span>), 
                     name=<span class="hljs-string">'Effect size'</span>) +
  geom_vline(xintercept=<span class="hljs-number">0</span>, 
             color=<span class="hljs-string">'black'</span>, 
             linetype=<span class="hljs-string">'dashed'</span>)+
  facet_grid(cols = vars(parameter), rows = vars(label),
             labeller = label_wrap_gen(width = <span class="hljs-number">23</span>),
             scales= <span class="hljs-string">'free'</span>, 
             space=<span class="hljs-string">'free'</span>)+
  theme_bw()+
  theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)), 
      strip.text.x = element_text(size = <span class="hljs-number">12</span>),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>, linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size = <span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_blank(),
      axis.title.y = element_blank())

<span class="hljs-comment">#Metameta_Fig3_alltraits </span></code></pre></div>
<div id="section" class="section level8">
<p></p>
</div>
</div>
<div id="figure-4b-prepare-data-for-traits-with-ci-not-overlapping-0" class="section level4">
<div name="figure_4b:_prepare_data_for_traits_with_ci_not_overlapping_0" data-unique="figure_4b:_prepare_data_for_traits_with_ci_not_overlapping_0"></div><h4>Figure 4B: Prepare data for traits with CI not overlapping 0</h4>
<p>create column with 1= different from zero, 0= zero included in CI Male-biased (significant) traits</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3637" aria-expanded="false" aria-controls="rcode-643E0F3637"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3637"><pre class="r"><code class="hljs">meta.male.plot3.sig &lt;- metacombo %&gt;% 
        mutate(sigCVR = ifelse(lnCVR_lower &gt; <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>),
    sigVR = ifelse(lnVR_lower &gt; <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>),
    sigRR = ifelse(lnRR_lower &gt; <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>))

<span class="hljs-comment">#Significant subset for lnCVR</span>
metacombo_male.plot3.CVR &lt;- meta.male.plot3.sig %&gt;%
 filter(sigCVR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_male.plot3.CVR.all &lt;- meta.male.plot3.sig %&gt;%
 filter(sigCVR == <span class="hljs-number">1</span>) %&gt;%
 nest()

<span class="hljs-comment">#Significant subset for lnVR</span>
metacombo_male.plot3.VR &lt;- meta.male.plot3.sig %&gt;%
 filter(sigVR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_male.plot3.VR.all &lt;- meta.male.plot3.sig %&gt;%
 filter(sigVR == <span class="hljs-number">1</span>) %&gt;%
 nest()

<span class="hljs-comment">#Significant subset for lnRR</span>
metacombo_male.plot3.RR &lt;- meta.male.plot3.sig %&gt;%
 filter(sigRR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_male.plot3.RR.all &lt;- meta.male.plot3.sig %&gt;%
 filter(sigRR == <span class="hljs-number">1</span>) %&gt;%
 nest()

<span class="hljs-comment"># **Final fixed effects meta-analyses within grouping terms, with SE of the estimate </span>

plot3.male.meta.CVR &lt;- metacombo_male.plot3.CVR %&gt;% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.VR &lt;- metacombo_male.plot3.VR %&gt;% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.RR &lt;- metacombo_male.plot3.RR %&gt;% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )    

<span class="hljs-comment"># Across all grouping terms #</span>

plot3.male.meta.CVR.all &lt;- metacombo_male.plot3.CVR.all %&gt;% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.CVR.all &lt;- plot3.male.meta.CVR.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

plot3.male.meta.VR.all &lt;- metacombo_male.plot3.VR.all %&gt;% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.VR.all &lt;- plot3.male.meta.VR.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

plot3.male.meta.RR.all &lt;- metacombo_male.plot3.RR.all %&gt;% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.RR.all &lt;- plot3.male.meta.RR.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

<span class="hljs-comment"># Combine with separate grouping term results</span>

plot3.male.meta.CVR &lt;- bind_rows(plot3.male.meta.CVR, plot3.male.meta.CVR.all)
plot3.male.meta.VR &lt;- bind_rows(plot3.male.meta.VR, plot3.male.meta.VR.all)
plot3.male.meta.RR &lt;- bind_rows(plot3.male.meta.RR, plot3.male.meta.RR.all)


<span class="hljs-comment"># **Re-structure data for each grouping term; delete un-used variables</span>

plot3.male.meta.CVR.b &lt;- as.data.frame(plot3.male.meta.CVR %&gt;% group_by(GroupingTerm) %&gt;%  
        mutate(lnCVR = map_dbl(model_lnCVR, pluck(<span class="hljs-number">2</span>)), lnCVR_lower = map_dbl(model_lnCVR, pluck(<span class="hljs-number">6</span>)), 
        lnCVR_upper =map_dbl(model_lnCVR, pluck(<span class="hljs-number">7</span>)), lnCVR_se =map_dbl(model_lnCVR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
add.row.hearing &lt;- as.data.frame(t(c(<span class="hljs-string">"Hearing"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% setNames(names(plot3.male.meta.CVR.b))   

plot3.male.meta.CVR.b &lt;- bind_rows(plot3.male.meta.CVR.b, add.row.hearing) 
plot3.male.meta.CVR.b &lt;- plot3.male.meta.CVR.b[order(plot3.male.meta.CVR.b$GroupingTerm),] 

plot3.male.meta.VR.b &lt;- as.data.frame(plot3.male.meta.VR %&gt;% group_by(GroupingTerm) %&gt;%  
    mutate(lnVR = map_dbl(model_lnVR, pluck(<span class="hljs-number">2</span>)), lnVR_lower = map_dbl(model_lnVR, pluck(<span class="hljs-number">6</span>)), 
    lnVR_upper =map_dbl(model_lnVR, pluck(<span class="hljs-number">7</span>)), lnVR_se =map_dbl(model_lnVR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
plot3.male.meta.VR.b &lt;- plot3.male.meta.VR.b[order(plot3.male.meta.VR.b$GroupingTerm),] 

plot3.male.meta.RR.b &lt;- as.data.frame(plot3.male.meta.RR %&gt;% group_by(GroupingTerm) %&gt;%  
    mutate(lnRR = map_dbl(model_lnRR, pluck(<span class="hljs-number">2</span>)), lnRR_lower = map_dbl(model_lnRR, pluck(<span class="hljs-number">6</span>)), 
    lnRR_upper =map_dbl(model_lnRR, pluck(<span class="hljs-number">7</span>)), lnRR_se =map_dbl(model_lnRR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
plot3.male.meta.RR.b &lt;- plot3.male.meta.RR.b[order(plot3.male.meta.RR.b$GroupingTerm),] 

overall.male.plot3 &lt;- inner_join(plot3.male.meta.CVR.b, plot3.male.meta.VR.b) 
overall.male.plot3 &lt;- inner_join(overall.male.plot3, plot3.male.meta.RR.b)

overall.male.plot3$GroupingTerm &lt;- factor(overall.male.plot3$GroupingTerm, levels =c(<span class="hljs-string">"Behaviour"</span>,<span class="hljs-string">"Morphology"</span>,<span class="hljs-string">"Metabolism"</span>,<span class="hljs-string">"Physiology"</span>,<span class="hljs-string">"Immunology"</span>,<span class="hljs-string">"Hematology"</span>,<span class="hljs-string">"Heart"</span>,<span class="hljs-string">"Hearing"</span>,<span class="hljs-string">"Eye"</span>, <span class="hljs-string">"All"</span>) )
overall.male.plot3$GroupingTerm &lt;- factor(overall.male.plot3$GroupingTerm, rev(levels(overall.male.plot3$GroupingTerm)))

<span class="hljs-comment">#add missing GroupingTerms for plot</span>
overall.male.plot3 &lt;- add_row(overall.male.plot3, GroupingTerm = <span class="hljs-string">"Behaviour"</span>)
overall.male.plot3 &lt;- add_row(overall.male.plot3, GroupingTerm = <span class="hljs-string">"Immunology"</span>)
overall.male.plot3 &lt;- add_row(overall.male.plot3, GroupingTerm = <span class="hljs-string">"Eye"</span>)

overall.male.plot3$GroupingTerm &lt;- factor(overall.male.plot3$GroupingTerm, levels =c(<span class="hljs-string">"Behaviour"</span>,<span class="hljs-string">"Morphology"</span>,<span class="hljs-string">"Metabolism"</span>,<span class="hljs-string">"Physiology"</span>,<span class="hljs-string">"Immunology"</span>,<span class="hljs-string">"Hematology"</span>,<span class="hljs-string">"Heart"</span>,<span class="hljs-string">"Hearing"</span>,<span class="hljs-string">"Eye"</span>, <span class="hljs-string">"All"</span>) )
overall.male.plot3$GroupingTerm &lt;- factor(overall.male.plot3$GroupingTerm, rev(levels(overall.male.plot3$GroupingTerm)))</code></pre></div>
<p>Restructure MALE data for plotting</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3638" aria-expanded="false" aria-controls="rcode-643E0F3638"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3638"><pre class="r"><code class="hljs">overall3.male.sig &lt;- gather(overall.male.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= <span class="hljs-literal">TRUE</span>)

lnCVR.ci &lt;- overall3.male.sig  %&gt;% filter(parameter == <span class="hljs-string">"lnCVR"</span>) %&gt;% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.male.sig  %&gt;% filter(parameter == <span class="hljs-string">"lnVR"</span>) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.male.sig  %&gt;% filter(parameter == <span class="hljs-string">"lnRR"</span>) %&gt;% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                 

overall4.male.sig &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.male.sig$label &lt;- <span class="hljs-string">"CI not overlapping zero"</span></code></pre></div>
<p>Plot Fig3 all significant results (CI not overlapping zero) for males</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3639" aria-expanded="false" aria-controls="rcode-643E0F3639"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3639"><pre class="r"><code class="hljs"><span class="hljs-comment">######</span>

Metameta_Fig3_male.sig &lt;- overall4.male.sig %&gt;%
  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = <span class="hljs-number">0.1</span>, show.legend = <span class="hljs-literal">FALSE</span>) +
  geom_point(aes(shape = parameter),
             fill = <span class="hljs-string">'mediumaquamarine'</span>, color = <span class="hljs-string">'mediumaquamarine'</span>, size = <span class="hljs-number">2.2</span>, 
               show.legend = <span class="hljs-literal">FALSE</span>) +
  scale_x_continuous(limits=c(<span class="hljs-number">0</span>, <span class="hljs-number">0.4</span>), 
                     breaks = c(<span class="hljs-number">0</span>, <span class="hljs-number">0.3</span>), 
                     name=<span class="hljs-string">'Effect size'</span>) +
  geom_vline(xintercept=<span class="hljs-number">0</span>, 
             color=<span class="hljs-string">'black'</span>, 
             linetype=<span class="hljs-string">'dashed'</span>)+
  facet_grid(cols = vars(parameter), rows = vars(label),
             labeller = label_wrap_gen(width = <span class="hljs-number">23</span>),
             scales= <span class="hljs-string">'free'</span>, 
             space=<span class="hljs-string">'free'</span>)+
  theme_bw()+
  theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)), 
      strip.text.x = element_text(size = <span class="hljs-number">12</span>),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>, linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size = <span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_blank(),
      axis.title.y = element_blank())

<span class="hljs-comment">#Metameta_Fig3_male.sig</span></code></pre></div>
<div id="section-1" class="section level23">
<p></p>
</div>
</div>
<div id="female-figure-significant-traits" class="section level4">
<div name="female_figure,_significant_traits" data-unique="female_figure,_significant_traits"></div><h4>Female Figure, significant traits</h4>
<p>Female Fig3 sig</p>
<p>Prepare data for traits with CI not overlapping 0 create column with 1= different from zero, 0= zero included in CI</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3640" aria-expanded="false" aria-controls="rcode-643E0F3640"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3640"><pre class="r"><code class="hljs"><span class="hljs-comment"># female-biased traits</span>

meta.female.plot3.sig &lt;- metacombo %&gt;%
              mutate(sigCVR = ifelse(lnCVR_upper &lt; <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>),
              sigVR = ifelse(lnVR_upper &lt; <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>),
              sigRR = ifelse(lnRR_upper &lt; <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>))

<span class="hljs-comment">#Significant subset for lnCVR</span>

metacombo_female.plot3.CVR &lt;- meta.female.plot3.sig %&gt;%
filter(sigCVR == <span class="hljs-number">1</span>) %&gt;%
group_by(GroupingTerm) %&gt;%
nest()

metacombo_female.plot3.CVR.all &lt;- meta.female.plot3.sig %&gt;%
 filter(sigCVR == <span class="hljs-number">1</span>) %&gt;%
 nest()

<span class="hljs-comment">#Significant subset for lnVR</span>

metacombo_female.plot3.VR &lt;- meta.female.plot3.sig %&gt;%
filter(sigVR == <span class="hljs-number">1</span>) %&gt;%
group_by(GroupingTerm) %&gt;%
nest()

metacombo_female.plot3.VR.all &lt;- meta.female.plot3.sig %&gt;%
 filter(sigVR == <span class="hljs-number">1</span>) %&gt;%
 nest() 

<span class="hljs-comment">#Significant subset for lnRR</span>

metacombo_female.plot3.RR &lt;- meta.female.plot3.sig %&gt;%
filter(sigRR == <span class="hljs-number">1</span>) %&gt;%
group_by(GroupingTerm) %&gt;%
nest()

metacombo_female.plot3.RR.all &lt;- meta.female.plot3.sig %&gt;%
 filter(sigRR == <span class="hljs-number">1</span>) %&gt;%
 nest()  

<span class="hljs-comment"># **Final fixed effects meta-analyses within grouping terms, with SE of the estimate</span>

plot3.female.meta.CVR &lt;- metacombo_female.plot3.CVR %&gt;%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>), 
                                 control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.female.meta.VR &lt;- metacombo_female.plot3.VR %&gt;%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>), 
                           control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.female.meta.RR &lt;- metacombo_female.plot3.RR %&gt;%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>), 
                                 control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )  

<span class="hljs-comment"># Across all grouping terms #</span>

plot3.female.meta.CVR.all &lt;- metacombo_female.plot3.CVR.all %&gt;% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.female.meta.CVR.all &lt;- plot3.female.meta.CVR.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

plot3.female.meta.VR.all &lt;- metacombo_female.plot3.VR.all %&gt;% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.female.meta.VR.all &lt;- plot3.female.meta.VR.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

plot3.female.meta.RR.all &lt;- metacombo_female.plot3.RR.all %&gt;% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.female.meta.RR.all &lt;- plot3.female.meta.RR.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

<span class="hljs-comment"># Combine with separate grouping term results</span>

plot3.female.meta.CVR &lt;- bind_rows(plot3.female.meta.CVR, plot3.female.meta.CVR.all)
plot3.female.meta.VR &lt;- bind_rows(plot3.female.meta.VR, plot3.female.meta.VR.all)
plot3.female.meta.RR &lt;- bind_rows(plot3.female.meta.RR, plot3.female.meta.RR.all)


<span class="hljs-comment"># **Re-structure data for each grouping term; delete un-used variables</span>

plot3.female.meta.CVR.b &lt;- as.data.frame(plot3.female.meta.CVR %&gt;% group_by(GroupingTerm) %&gt;% 
                             mutate(lnCVR = map_dbl(model_lnCVR, pluck(<span class="hljs-number">2</span>)), lnCVR_lower = map_dbl(model_lnCVR, pluck(<span class="hljs-number">6</span>)),
                             lnCVR_upper =map_dbl(model_lnCVR, pluck(<span class="hljs-number">7</span>)), lnCVR_se =map_dbl(model_lnCVR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)]

add.row.hearing &lt;- as.data.frame(t(c(<span class="hljs-string">"Hearing"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% setNames(names(plot3.female.meta.CVR.b))   

plot3.female.meta.CVR.b &lt;- bind_rows(plot3.female.meta.CVR.b, add.row.hearing)
plot3.female.meta.CVR.b &lt;- plot3.female.meta.CVR.b[order(plot3.female.meta.CVR.b$GroupingTerm),]

plot3.female.meta.VR.b &lt;- as.data.frame(plot3.female.meta.VR %&gt;% group_by(GroupingTerm) %&gt;% 
              mutate(lnVR = map_dbl(model_lnVR, pluck(<span class="hljs-number">2</span>)), lnVR_lower = map_dbl(model_lnVR, pluck(<span class="hljs-number">6</span>)),
              lnVR_upper =map_dbl(model_lnVR, pluck(<span class="hljs-number">7</span>)), lnVR_se =map_dbl(model_lnVR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)]

plot3.female.meta.VR.b &lt;- plot3.female.meta.VR.b[order(plot3.female.meta.VR.b$GroupingTerm),]

plot3.female.meta.RR.b &lt;- as.data.frame(plot3.female.meta.RR %&gt;% group_by(GroupingTerm) %&gt;% 
              mutate(lnRR = map_dbl(model_lnRR, pluck(<span class="hljs-number">2</span>)), lnRR_lower = map_dbl(model_lnRR, pluck(<span class="hljs-number">6</span>)),
              lnRR_upper =map_dbl(model_lnRR, pluck(<span class="hljs-number">7</span>)), lnRR_se =map_dbl(model_lnRR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)]

plot3.female.meta.RR.b &lt;- plot3.female.meta.RR.b[order(plot3.female.meta.RR.b$GroupingTerm),]

overall.female.plot3 &lt;- full_join(plot3.female.meta.CVR.b, plot3.female.meta.VR.b)
overall.female.plot3 &lt;- full_join(overall.female.plot3, plot3.female.meta.RR.b)

overall.female.plot3$GroupingTerm &lt;- factor(overall.female.plot3$GroupingTerm, levels =c(<span class="hljs-string">"Behaviour"</span>,<span class="hljs-string">"Morphology"</span>,<span class="hljs-string">"Metabolism"</span>,<span class="hljs-string">"Physiology"</span>,<span class="hljs-string">"Immunology"</span>,<span class="hljs-string">"Hematology"</span>,<span class="hljs-string">"Heart"</span>,<span class="hljs-string">"Hearing"</span>,<span class="hljs-string">"Eye"</span>, <span class="hljs-string">"All"</span>) )
overall.female.plot3$GroupingTerm &lt;- factor(overall.female.plot3$GroupingTerm, rev(levels(overall.female.plot3$GroupingTerm))) 

<span class="hljs-comment">#add missing GroupingTerms for plot POTENTIALLY DELETE</span>
<span class="hljs-comment">#overall.female.plot3 &lt;- add_row(overall.female.plot3, GroupingTerm = "Morphology")</span>
<span class="hljs-comment">#overall.female.plot3 &lt;- add_row(overall.female.plot3, GroupingTerm = "Metabolism")</span>
<span class="hljs-comment">#overall.female.plot3 &lt;- add_row(overall.female.plot3, GroupingTerm = "Hematology")</span>
<span class="hljs-comment">#overall.female.plot3 &lt;- add_row(overall.female.plot3, GroupingTerm = "Hearing")</span>
<span class="hljs-comment">#overall.female.plot3 &lt;- add_row(overall.female.plot3, GroupingTerm = "Eye")</span>

<span class="hljs-comment">#overall.female.plot3$GroupingTerm &lt;- factor(overall.female.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )</span>
<span class="hljs-comment">#overall.female.plot3$GroupingTerm &lt;- factor(overall.female.plot3$GroupingTerm, rev(levels(overall.female.plot3$GroupingTerm))) </span></code></pre></div>
<p>Restructure data for plotting</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3641" aria-expanded="false" aria-controls="rcode-643E0F3641"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3641"><pre class="r"><code class="hljs">overall3.female.sig &lt;- gather(overall.female.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= <span class="hljs-literal">TRUE</span>)

lnCVR.ci &lt;- overall3.female.sig  %&gt;% filter(parameter == <span class="hljs-string">"lnCVR"</span>) %&gt;% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.female.sig  %&gt;% filter(parameter == <span class="hljs-string">"lnVR"</span>) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.female.sig  %&gt;% filter(parameter == <span class="hljs-string">"lnRR"</span>) %&gt;% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                                                                   

overall4.female.sig &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.female.sig$label &lt;- <span class="hljs-string">"CI not overlapping zero"</span></code></pre></div>
<p>Plot Fig3 all significant results (CI not overlapping zero, female )</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3642" aria-expanded="false" aria-controls="rcode-643E0F3642"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3642"><pre class="r"><code class="hljs">Metameta_Fig3_female.sig &lt;- overall4.female.sig %&gt;%
  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low,
                     xmax = ci.high),
                     height = <span class="hljs-number">0.1</span>, show.legend = <span class="hljs-literal">FALSE</span>) +
  geom_point(aes(shape = parameter),
             fill = <span class="hljs-string">'salmon1'</span>, color = <span class="hljs-string">'salmon1'</span>, size = <span class="hljs-number">2.2</span>,
             show.legend = <span class="hljs-literal">FALSE</span>) +
  scale_x_continuous(limits=c(-<span class="hljs-number">0.4</span>, <span class="hljs-number">0</span>),
                     breaks = c(-<span class="hljs-number">0.3</span> ,<span class="hljs-number">0</span>),
                     name=<span class="hljs-string">'Effect size'</span>) +
  geom_vline(xintercept=<span class="hljs-number">0</span>,
             color=<span class="hljs-string">'black'</span>,
             linetype=<span class="hljs-string">'dashed'</span>)+
  facet_grid(cols = vars(parameter), <span class="hljs-comment">#rows = vars(label),</span>
             <span class="hljs-comment">#labeller = label_wrap_gen(width = 23),</span>
             scales= <span class="hljs-string">'free'</span>,
             space=<span class="hljs-string">'free'</span>)+
  theme_bw()+
  theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)),
                strip.text.x = element_text(size = <span class="hljs-number">12</span>),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>, linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size = <span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(),
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.title = element_blank(),
        axis.title.x = element_blank(),
                axis.title.y = element_blank())

<span class="hljs-comment">#Metameta_Fig3_female.sig</span></code></pre></div>
<div id="section-2" class="section level23">
<p></p>
</div>
</div>
<div id="fig4-c-10" class="section level4">
<div name="fig4_c_10%" data-unique="fig4_c_10%"></div><h4>Fig4 C &gt;10%</h4>
<p>Prepare data for traits with m/f difference &gt; 10%</p>
<p>create column with 1= larger, 0= diff not larger than 10%</p>
</div>
<div id="male-fig-3-10-male-biased-traits" class="section level4">
<div name="male_fig_3__10%_(male_biased_traits)" data-unique="male_fig_3__10%_(male_biased_traits)"></div><h4>Male Fig 3 &gt; 10% (male biased traits)</h4>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3643" aria-expanded="false" aria-controls="rcode-643E0F3643"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3643"><pre class="r"><code class="hljs">meta.male.plot3.perc &lt;- metacombo %&gt;% 
        mutate(percCVR = ifelse(lnCVR &gt; log (<span class="hljs-number">11</span>/<span class="hljs-number">10</span>), <span class="hljs-number">1</span>, <span class="hljs-number">0</span>),         
    percVR = ifelse(lnVR &gt; log (<span class="hljs-number">11</span>/<span class="hljs-number">10</span>), <span class="hljs-number">1</span>, <span class="hljs-number">0</span>),
    percRR = ifelse(lnRR &gt; log (<span class="hljs-number">11</span>/<span class="hljs-number">10</span>), <span class="hljs-number">1</span>, <span class="hljs-number">0</span>))

<span class="hljs-comment">#Significant subset for lnCVR</span>
metacombo_male.plot3.CVR.perc &lt;- meta.male.plot3.perc %&gt;%
 filter(percCVR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_male.plot3.CVR.perc.all &lt;- meta.male.plot3.perc %&gt;%
 filter(percCVR == <span class="hljs-number">1</span>) %&gt;%
 nest()

<span class="hljs-comment">#Significant subset for lnVR</span>
metacombo_male.plot3.VR.perc &lt;- meta.male.plot3.perc %&gt;%
 filter(percVR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_male.plot3.VR.perc.all &lt;- meta.male.plot3.perc %&gt;%
 filter(percVR == <span class="hljs-number">1</span>) %&gt;%
 nest()

<span class="hljs-comment">#Significant subset for lnRR</span>
metacombo_male.plot3.RR.perc &lt;- meta.male.plot3.perc %&gt;%
 filter(percRR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_male.plot3.RR.perc.all &lt;- meta.male.plot3.perc %&gt;%
 filter(percRR == <span class="hljs-number">1</span>) %&gt;%
 nest()


<span class="hljs-comment"># **Final fixed effects meta-analyses within grouping terms and across grouping terms, with SE of the estimate </span>

plot3.male.meta.CVR.perc &lt;- metacombo_male.plot3.CVR.perc %&gt;% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.VR.perc &lt;- metacombo_male.plot3.VR.perc %&gt;% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.RR.perc &lt;- metacombo_male.plot3.RR.perc %&gt;% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

<span class="hljs-comment"># Across all grouping terms #</span>

plot3.male.meta.CVR.perc.all &lt;- metacombo_male.plot3.CVR.perc.all %&gt;% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.CVR.perc.all &lt;- plot3.male.meta.CVR.perc.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

plot3.male.meta.VR.perc.all &lt;- metacombo_male.plot3.VR.perc.all %&gt;% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.VR.perc.all &lt;- plot3.male.meta.VR.perc.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

plot3.male.meta.RR.perc.all &lt;- metacombo_male.plot3.RR.perc.all %&gt;% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.male.meta.RR.perc.all &lt;- plot3.male.meta.RR.perc.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

<span class="hljs-comment"># Combine with separate grouping term results</span>

plot3.male.meta.CVR.perc &lt;- bind_rows(plot3.male.meta.CVR.perc, plot3.male.meta.CVR.perc.all)
plot3.male.meta.VR.perc &lt;- bind_rows(plot3.male.meta.VR.perc, plot3.male.meta.VR.perc.all)
plot3.male.meta.RR.perc &lt;- bind_rows(plot3.male.meta.RR.perc, plot3.male.meta.RR.perc.all)


<span class="hljs-comment"># **Re-structure data for each grouping term; delete un-used variables: "Hearing missing for all 3 parameters"</span>

plot3.male.meta.CVR.perc.b &lt;- as.data.frame(plot3.male.meta.CVR.perc %&gt;% group_by(GroupingTerm) %&gt;%  
        mutate(lnCVR = map_dbl(model_lnCVR, pluck(<span class="hljs-number">2</span>)), lnCVR_lower = map_dbl(model_lnCVR, pluck(<span class="hljs-number">6</span>)), 
        lnCVR_upper =map_dbl(model_lnCVR, pluck(<span class="hljs-number">7</span>)), lnCVR_se =map_dbl(model_lnCVR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
add.row.hearing &lt;- as.data.frame(t(c(<span class="hljs-string">"Hearing"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% setNames(names(plot3.male.meta.CVR.perc.b))
plot3.male.meta.CVR.perc.b &lt;- rbind(plot3.male.meta.CVR.perc.b, add.row.hearing) 
plot3.male.meta.CVR.perc.b &lt;- plot3.male.meta.CVR.perc.b[order(plot3.male.meta.CVR.perc.b$GroupingTerm),] 

plot3.male.meta.VR.perc.b &lt;- as.data.frame(plot3.male.meta.VR.perc %&gt;% group_by(GroupingTerm) %&gt;%  
    mutate(lnVR = map_dbl(model_lnVR, pluck(<span class="hljs-number">2</span>)), lnVR_lower = map_dbl(model_lnVR, pluck(<span class="hljs-number">6</span>)), 
    lnVR_upper =map_dbl(model_lnVR, pluck(<span class="hljs-number">7</span>)), lnVR_se =map_dbl(model_lnVR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
add.row.hearing &lt;- as.data.frame(t(c(<span class="hljs-string">"Hearing"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% setNames(names(plot3.male.meta.VR.perc.b))
plot3.male.meta.VR.perc.b &lt;- rbind(plot3.male.meta.VR.perc.b, add.row.hearing) 
plot3.male.meta.VR.perc.b &lt;- plot3.male.meta.VR.perc.b[order(plot3.male.meta.VR.perc.b$GroupingTerm),] 

plot3.male.meta.RR.perc.b &lt;- as.data.frame(plot3.male.meta.RR.perc %&gt;% group_by(GroupingTerm) %&gt;%  
    mutate(lnRR = map_dbl(model_lnRR, pluck(<span class="hljs-number">2</span>)), lnRR_lower = map_dbl(model_lnRR, pluck(<span class="hljs-number">6</span>)), 
    lnRR_upper =map_dbl(model_lnRR, pluck(<span class="hljs-number">7</span>)), lnRR_se =map_dbl(model_lnRR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
add.row.hearing &lt;- as.data.frame(t(c(<span class="hljs-string">"Hearing"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% 
  setNames(names(plot3.male.meta.RR.perc.b))
plot3.male.meta.RR.perc.b &lt;- rbind(plot3.male.meta.RR.perc.b, add.row.hearing)

add.row.eye &lt;- as.data.frame(t(c(<span class="hljs-string">"Eye"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% 
  setNames(names(plot3.male.meta.RR.perc.b))
plot3.male.meta.RR.perc.b &lt;- rbind(plot3.male.meta.RR.perc.b, add.row.eye)

plot3.male.meta.RR.perc.b &lt;- plot3.male.meta.RR.perc.b[order(plot3.male.meta.RR.perc.b$GroupingTerm),] 

overall.male.plot3.perc &lt;- full_join(plot3.male.meta.CVR.perc.b, plot3.male.meta.VR.perc.b) 
overall.male.plot3.perc &lt;- full_join(overall.male.plot3.perc, plot3.male.meta.RR.perc.b)


overall.male.plot3.perc$GroupingTerm &lt;- factor(overall.male.plot3.perc$GroupingTerm, levels =c(<span class="hljs-string">"Behaviour"</span>,<span class="hljs-string">"Morphology"</span>,<span class="hljs-string">"Metabolism"</span>,<span class="hljs-string">"Physiology"</span>,<span class="hljs-string">"Immunology"</span>,<span class="hljs-string">"Hematology"</span>,<span class="hljs-string">"Heart"</span>,<span class="hljs-string">"Hearing"</span>,<span class="hljs-string">"Eye"</span>, <span class="hljs-string">"All"</span>) )
overall.male.plot3.perc$GroupingTerm &lt;- factor(overall.male.plot3.perc$GroupingTerm, rev(levels(overall.male.plot3.perc$GroupingTerm)))</code></pre></div>
<p>Restructure data for plotting : Male biased, 10% difference</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3644" aria-expanded="false" aria-controls="rcode-643E0F3644"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3644"><pre class="r"><code class="hljs">overall3.perc &lt;- gather(overall.male.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= <span class="hljs-literal">TRUE</span>)

lnCVR.ci &lt;- overall3.perc %&gt;% filter(parameter == <span class="hljs-string">"lnCVR"</span>) %&gt;% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.perc  %&gt;% filter(parameter == <span class="hljs-string">"lnVR"</span>) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.perc  %&gt;% filter(parameter == <span class="hljs-string">"lnRR"</span>) %&gt;% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                 

overall4.male.perc &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.male.perc$label &lt;- <span class="hljs-string">"Sex difference in m/f ratios &gt; 10%"</span>

overall4.male.perc$value &lt;- as.numeric(overall4.male.perc$value)
overall4.male.perc$ci.low  &lt;- as.numeric(overall4.male.perc$ci.low)
overall4.male.perc$ci.high &lt;- as.numeric(overall4.male.perc$ci.high)</code></pre></div>
<p>Plot Fig3 all &gt;10% difference (male bias)</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3645" aria-expanded="false" aria-controls="rcode-643E0F3645"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3645"><pre class="r"><code class="hljs">Metameta_Fig3_male.perc &lt;- overall4.male.perc %&gt;% <span class="hljs-comment">#filter(., GroupingTerm != "Hearing") %&gt;%</span>
  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = <span class="hljs-number">0.1</span>, show.legend = <span class="hljs-literal">FALSE</span>) +
  geom_point(aes(shape = parameter,
             fill = parameter), color = <span class="hljs-string">'mediumaquamarine'</span>, size = <span class="hljs-number">2.2</span>, 
             show.legend = <span class="hljs-literal">FALSE</span>) +
  scale_x_continuous(limits=c(-<span class="hljs-number">0.2</span>, <span class="hljs-number">0.62</span>), 
                     breaks = c(<span class="hljs-number">0</span>, <span class="hljs-number">0.3</span>), 
                     name=<span class="hljs-string">'Effect size'</span>) +
  geom_vline(xintercept=<span class="hljs-number">0</span>, 
             color=<span class="hljs-string">'black'</span>, 
             linetype=<span class="hljs-string">'dashed'</span>)+
  facet_grid(cols = vars(parameter), rows = vars(label),
             labeller = label_wrap_gen(width = <span class="hljs-number">23</span>),
             scales= <span class="hljs-string">'free'</span>, 
             space=<span class="hljs-string">'free'</span>)+
  theme_bw()+
  theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)), 
      strip.text.x = element_blank(),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>, linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size = <span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_text(hjust = <span class="hljs-number">0.5</span>, size = <span class="hljs-number">14</span>),
      axis.title.y = element_blank())

<span class="hljs-comment"># Metameta_Fig3_male.perc</span></code></pre></div>
<div id="section-3" class="section level18">
<p></p>
<p>Female Fig 3 &gt;10%</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3646" aria-expanded="false" aria-controls="rcode-643E0F3646"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3646"><pre class="r"><code class="hljs">meta.plot3.perc &lt;- metacombo %&gt;% 
        mutate(percCVR = ifelse(lnCVR &lt; log (<span class="hljs-number">9</span>/<span class="hljs-number">10</span>), <span class="hljs-number">1</span>, <span class="hljs-number">0</span>),          
    percVR = ifelse(lnVR &lt; log (<span class="hljs-number">9</span>/<span class="hljs-number">10</span>), <span class="hljs-number">1</span>, <span class="hljs-number">0</span>),
    percRR = ifelse(lnRR &lt; log (<span class="hljs-number">9</span>/<span class="hljs-number">10</span>), <span class="hljs-number">1</span>, <span class="hljs-number">0</span>))

<span class="hljs-comment">#Significant subset for lnCVR</span>
metacombo_plot3.CVR.perc &lt;- meta.plot3.perc %&gt;%
 filter(percCVR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_plot3.CVR.perc.all &lt;- meta.plot3.perc %&gt;%
 filter(percCVR == <span class="hljs-number">1</span>) %&gt;%
 nest()

<span class="hljs-comment">#Significant subset for lnVR</span>
metacombo_plot3.VR.perc &lt;- meta.plot3.perc %&gt;%
 filter(percVR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_plot3.VR.perc.all &lt;- meta.plot3.perc %&gt;%
 filter(percVR == <span class="hljs-number">1</span>) %&gt;%
 nest()

<span class="hljs-comment">#Significant subset for lnRR</span>
metacombo_plot3.RR.perc &lt;- meta.plot3.perc %&gt;%
 filter(percRR == <span class="hljs-number">1</span>) %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

metacombo_plot3.RR.perc.all &lt;- meta.plot3.perc %&gt;%
 filter(percRR == <span class="hljs-number">1</span>) %&gt;%
 nest()


<span class="hljs-comment"># **Final fixed effects meta-analyses within grouping terms, with SE of the estimate </span>

plot3.meta.CVR.perc &lt;- metacombo_plot3.CVR.perc %&gt;% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.meta.VR.perc &lt;- metacombo_plot3.VR.perc %&gt;% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.meta.RR.perc &lt;- metacombo_plot3.RR.perc %&gt;% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

<span class="hljs-comment"># Across all grouping terms #</span>

plot3.meta.CVR.perc.all &lt;- metacombo_plot3.CVR.perc.all %&gt;% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.meta.CVR.perc.all &lt;- plot3.meta.CVR.perc.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

plot3.meta.VR.perc.all &lt;- metacombo_plot3.VR.perc.all %&gt;% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.meta.VR.perc.all &lt;- plot3.meta.VR.perc.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

plot3.meta.RR.perc.all &lt;- metacombo_plot3.RR.perc.all %&gt;% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (<span class="hljs-number">2</span>*<span class="hljs-number">1.96</span>),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), verbose=<span class="hljs-literal">F</span>)) )

plot3.meta.RR.perc.all &lt;- plot3.meta.RR.perc.all %&gt;% mutate(GroupingTerm = <span class="hljs-string">"All"</span>)

<span class="hljs-comment"># Combine with separate grouping term results</span>

plot3.meta.CVR.perc &lt;- bind_rows(plot3.meta.CVR.perc, plot3.meta.CVR.perc.all)
plot3.meta.VR.perc &lt;- bind_rows(plot3.meta.VR.perc, plot3.meta.VR.perc.all)
plot3.meta.RR.perc &lt;- bind_rows(plot3.meta.RR.perc, plot3.meta.RR.perc.all)


<span class="hljs-comment"># **Re-structure data for each grouping term; delete un-used variables: "Hearing missing for all 3 parameters"</span>

plot3.meta.CVR.perc.b &lt;- as.data.frame(plot3.meta.CVR.perc %&gt;% group_by(GroupingTerm) %&gt;%  
        mutate(lnCVR = map_dbl(model_lnCVR, pluck(<span class="hljs-number">2</span>)), lnCVR_lower = map_dbl(model_lnCVR, pluck(<span class="hljs-number">6</span>)), 
        lnCVR_upper =map_dbl(model_lnCVR, pluck(<span class="hljs-number">7</span>)), lnCVR_se =map_dbl(model_lnCVR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
add.row.hearing &lt;- as.data.frame(t(c(<span class="hljs-string">"Hearing"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% setNames(names(plot3.meta.CVR.perc.b))
plot3.meta.CVR.perc.b &lt;- rbind(plot3.meta.CVR.perc.b, add.row.hearing) 
plot3.meta.CVR.perc.b &lt;- plot3.meta.CVR.perc.b[order(plot3.meta.CVR.perc.b$GroupingTerm),] 

plot3.meta.VR.perc.b &lt;- as.data.frame(plot3.meta.VR.perc %&gt;% group_by(GroupingTerm) %&gt;%  
    mutate(lnVR = map_dbl(model_lnVR, pluck(<span class="hljs-number">2</span>)), lnVR_lower = map_dbl(model_lnVR, pluck(<span class="hljs-number">6</span>)), 
    lnVR_upper =map_dbl(model_lnVR, pluck(<span class="hljs-number">7</span>)), lnVR_se =map_dbl(model_lnVR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
add.row.hearing &lt;- as.data.frame(t(c(<span class="hljs-string">"Hearing"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% setNames(names(plot3.meta.VR.perc.b))
plot3.meta.VR.perc.b &lt;- rbind(plot3.meta.VR.perc.b, add.row.hearing) 
plot3.meta.VR.perc.b &lt;- plot3.meta.VR.perc.b[order(plot3.meta.VR.perc.b$GroupingTerm),] 

plot3.meta.RR.perc.b &lt;- as.data.frame(plot3.meta.RR.perc %&gt;% group_by(GroupingTerm) %&gt;%  
    mutate(lnRR = map_dbl(model_lnRR, pluck(<span class="hljs-number">2</span>)), lnRR_lower = map_dbl(model_lnRR, pluck(<span class="hljs-number">6</span>)), 
    lnRR_upper =map_dbl(model_lnRR, pluck(<span class="hljs-number">7</span>)), lnRR_se =map_dbl(model_lnRR, pluck(<span class="hljs-number">3</span>))) )[, c(<span class="hljs-number">1</span>,<span class="hljs-number">4</span>:<span class="hljs-number">7</span>)] 
add.row.hearing &lt;- as.data.frame(t(c(<span class="hljs-string">"Hearing"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% setNames(names(plot3.meta.RR.perc.b))
plot3.meta.RR.perc.b &lt;- rbind(plot3.meta.RR.perc.b, add.row.hearing) 
add.row.hematology &lt;- as.data.frame(t(c(<span class="hljs-string">"Hematology"</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>, <span class="hljs-literal">NA</span>))) %&gt;% 
  setNames(names(plot3.meta.RR.perc.b))
plot3.meta.RR.perc.b &lt;- rbind(plot3.meta.RR.perc.b, add.row.hematology)


plot3.meta.RR.perc.b &lt;- plot3.meta.RR.perc.b[order(plot3.meta.RR.perc.b$GroupingTerm),] 

overall.plot3.perc &lt;- full_join(plot3.meta.CVR.perc.b, plot3.meta.VR.perc.b) 
overall.plot3.perc &lt;- full_join(overall.plot3.perc, plot3.meta.RR.perc.b)


overall.plot3.perc$GroupingTerm &lt;- factor(overall.plot3.perc$GroupingTerm, levels =c(<span class="hljs-string">"Behaviour"</span>,<span class="hljs-string">"Morphology"</span>,<span class="hljs-string">"Metabolism"</span>,<span class="hljs-string">"Physiology"</span>,<span class="hljs-string">"Immunology"</span>,<span class="hljs-string">"Hematology"</span>,<span class="hljs-string">"Heart"</span>,<span class="hljs-string">"Hearing"</span>,<span class="hljs-string">"Eye"</span>, <span class="hljs-string">"All"</span>) )
overall.plot3.perc$GroupingTerm &lt;- factor(overall.plot3.perc$GroupingTerm, rev(levels(overall.plot3.perc$GroupingTerm)))</code></pre></div>
</div>
</div>
<div id="restructure-data-for-plotting-1" class="section level4">
<div name="restructure_data_for_plotting37" data-unique="restructure_data_for_plotting37"></div><h4>Restructure data for plotting</h4>
<p>Female bias, 10 percent difference</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3647" aria-expanded="false" aria-controls="rcode-643E0F3647"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3647"><pre class="r"><code class="hljs">overall3.perc &lt;- gather(overall.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= <span class="hljs-literal">TRUE</span>)

lnCVR.ci &lt;- overall3.perc %&gt;% filter(parameter == <span class="hljs-string">"lnCVR"</span>) %&gt;% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci &lt;- overall3.perc  %&gt;% filter(parameter == <span class="hljs-string">"lnVR"</span>) %&gt;% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci &lt;- overall3.perc  %&gt;% filter(parameter == <span class="hljs-string">"lnRR"</span>) %&gt;% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                 

overall4.perc &lt;- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.perc$label &lt;- <span class="hljs-string">"Sex difference in m/f ratios &gt; 10%"</span>

overall4.perc$value &lt;- as.numeric(overall4.perc$value)
overall4.perc$ci.low  &lt;- as.numeric(overall4.perc$ci.low)
overall4.perc$ci.high &lt;- as.numeric(overall4.perc$ci.high)</code></pre></div>
<p>Plot Fig3 all &gt;10% difference (female)</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3648" aria-expanded="false" aria-controls="rcode-643E0F3648"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3648"><pre class="r"><code class="hljs">Metameta_Fig3_female.perc &lt;- overall4.perc %&gt;% 
  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = <span class="hljs-number">0.1</span>, show.legend = <span class="hljs-literal">FALSE</span>) +
  geom_point(aes(shape = parameter),
             fill = <span class="hljs-string">'salmon1'</span>, color = <span class="hljs-string">'salmon1'</span>, size = <span class="hljs-number">2.2</span>, 
             show.legend = <span class="hljs-literal">FALSE</span>) +

<span class="hljs-comment">#scale_shape_manual(values = </span>

  scale_x_continuous(limits=c(-<span class="hljs-number">0.53</span>, <span class="hljs-number">0.2</span>), 
                     breaks = c(-<span class="hljs-number">0.3</span>, <span class="hljs-number">0</span>), 
                     name=<span class="hljs-string">'Effect size'</span>) +
  geom_vline(xintercept=<span class="hljs-number">0</span>, 
             color=<span class="hljs-string">'black'</span>, 
             linetype=<span class="hljs-string">'dashed'</span>)+
  facet_grid(cols = vars(parameter), <span class="hljs-comment">#rows = vars(label),</span>
             <span class="hljs-comment">#labeller = label_wrap_gen(width = 23),</span>
             scales= <span class="hljs-string">'free'</span>, 
             space=<span class="hljs-string">'free'</span>)+
  theme_bw()+
  theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)), 
      strip.text.x = element_blank(),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>, linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size = <span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_text(hjust = <span class="hljs-number">0.5</span>, size = <span class="hljs-number">14</span>),
      axis.title.y = element_blank())


<span class="hljs-comment">#Metameta_Fig3_female.perc</span></code></pre></div>
</div>
<div id="plot-fig3-all-plots-combined" class="section level4">
<div name="plot_fig3_all_plots_combined" data-unique="plot_fig3_all_plots_combined"></div><h4>Plot Fig3 all plots combined</h4>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3649" aria-expanded="false" aria-controls="rcode-643E0F3649"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3649"><pre class="r"><code class="hljs"><span class="hljs-keyword">library</span>(ggpubr)
Fig3.bottom &lt;- ggarrange(Metameta_Fig3_female.sig, Metameta_Fig3_male.sig, Metameta_Fig3_female.perc, Metameta_Fig3_male.perc, 
           ncol = <span class="hljs-number">2</span>, nrow = <span class="hljs-number">2</span>, widths = c(<span class="hljs-number">1</span>, <span class="hljs-number">1.20</span>), heights = c(<span class="hljs-number">1</span>, <span class="hljs-number">1</span>))

Fig3 &lt;- ggarrange(Metameta_Fig3_alltraits, Fig3.bottom, ncol = <span class="hljs-number">1</span>, nrow = <span class="hljs-number">2</span>, heights = c(<span class="hljs-number">1.4</span>, <span class="hljs-number">2.5</span>))
Fig3</code></pre></div>
<p><img src="" width="672"></p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3650" aria-expanded="false" aria-controls="rcode-643E0F3650"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3650"><pre class="r"><code class="hljs"><span class="hljs-comment">#ggsave("Fig3.pdf", plot = Fig3, width = 9, height = 6) </span></code></pre></div>
</div>
</div>
<div id="heterogeneity" class="section level3">
<div name="heterogeneity" data-unique="heterogeneity"></div><h3>Heterogeneity</h3>
<div id="figure-4-second-order-meta-analysis-on-heterogeneity" class="section level4">
<div name="figure_4_(second-order_meta_analysis_on_heterogeneity)" data-unique="figure_4_(second-order_meta_analysis_on_heterogeneity)"></div><h4>FIGURE 4 (Second-order meta analysis on heterogeneity)</h4>
</div>
<div id="create-matrix-to-store-results-for-all-traits" class="section level4">
<div name="create_matrix_to_store_results_for_all_traits" data-unique="create_matrix_to_store_results_for_all_traits"></div><h4>Create matrix to store results for all traits</h4>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3651" aria-expanded="false" aria-controls="rcode-643E0F3651"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3651"><pre class="r"><code class="hljs">results.allhetero.grouping &lt;- as.data.frame(cbind(c(<span class="hljs-number">1</span>:n), matrix(rep(<span class="hljs-number">0</span>, n*<span class="hljs-number">30</span>), ncol = <span class="hljs-number">30</span>))) 
names(results.allhetero.grouping) &lt;- c(<span class="hljs-string">"id"</span>, <span class="hljs-string">"sigma2_strain.CVR"</span>, <span class="hljs-string">"sigma2_center.CVR"</span>, <span class="hljs-string">"sigma2_error.CVR"</span>, <span class="hljs-string">"s.nlevels.strain.CVR"</span>, 
    <span class="hljs-string">"s.nlevels.center.CVR"</span>, <span class="hljs-string">"s.nlevels.error.CVR"</span>, <span class="hljs-string">"sigma2_strain.VR"</span>, <span class="hljs-string">"sigma2_center.VR"</span>, <span class="hljs-string">"sigma2_error.VR"</span>, <span class="hljs-string">"s.nlevels.strain.VR"</span>, 
    <span class="hljs-string">"s.nlevels.center.VR"</span>, <span class="hljs-string">"s.nlevels.error.VR"</span>, <span class="hljs-string">"sigma2_strain.RR"</span>, <span class="hljs-string">"sigma2_center.RR"</span>, <span class="hljs-string">"sigma2_error.RR"</span>, <span class="hljs-string">"s.nlevels.strain.RR"</span>, 
    <span class="hljs-string">"s.nlevels.center.RR"</span>, <span class="hljs-string">"s.nlevels.error.RR"</span>, <span class="hljs-string">"lnCVR"</span>, <span class="hljs-string">"lnCVR_lower"</span>, <span class="hljs-string">"lnCVR_upper"</span>, <span class="hljs-string">"lnCVR_se"</span>, <span class="hljs-string">"lnVR"</span>, <span class="hljs-string">"lnVR_lower"</span>, <span class="hljs-string">"lnVR_upper"</span>, 
    <span class="hljs-string">"lnVR_se"</span>, <span class="hljs-string">"lnRR"</span>, <span class="hljs-string">"lnRR_lower"</span>, <span class="hljs-string">"lnRR_upper"</span> ,<span class="hljs-string">"lnRR_se"</span>)</code></pre></div>
</div>
<div id="loop" class="section level4">
<div name="loop" data-unique="loop"></div><h4>LOOP</h4>
<p>Parameters to extract from metafor (sigma2’s, s.nlevels)</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3652" aria-expanded="false" aria-controls="rcode-643E0F3652"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3652"><pre class="r"><code class="hljs"><span class="hljs-keyword">for</span>(t <span class="hljs-keyword">in</span> <span class="hljs-number">1</span>:n) {
  <span class="hljs-keyword">tryCatch</span>({
    
    data_par_age &lt;- data_subset_parameterid_individual_by_age(data, t, age_min = <span class="hljs-number">0</span>, age_center = <span class="hljs-number">100</span>)
    
    population_stats &lt;- calculate_population_stats(data_par_age)
    
    results &lt;- create_meta_analysis_effect_sizes(population_stats)
    
    <span class="hljs-comment"># lnCVR, logaritm of the ratio of male and female coefficients of variance </span>
   
    cvr. &lt;- metafor::rma.mv(yi = effect_size_CVR, V = sample_variance_CVR, random = list(~<span class="hljs-number">1</span>| strain_name, ~<span class="hljs-number">1</span>|production_center,    
                                ~<span class="hljs-number">1</span>|err), control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), data = results)
    results.allhetero.grouping[t, <span class="hljs-number">2</span>] &lt;- cvr.$sigma2[<span class="hljs-number">1</span>]
    results.allhetero.grouping[t, <span class="hljs-number">3</span>] &lt;- cvr.$sigma2[<span class="hljs-number">2</span>]
    results.allhetero.grouping[t, <span class="hljs-number">4</span>] &lt;- cvr.$sigma2[<span class="hljs-number">3</span>]
    results.allhetero.grouping[t, <span class="hljs-number">5</span>] &lt;- cvr.$s.nlevels[<span class="hljs-number">1</span>]
    results.allhetero.grouping[t, <span class="hljs-number">6</span>] &lt;- cvr.$s.nlevels[<span class="hljs-number">2</span>]
    results.allhetero.grouping[t, <span class="hljs-number">7</span>] &lt;- cvr.$s.nlevels[<span class="hljs-number">3</span>]
     results.allhetero.grouping[t, <span class="hljs-number">20</span>] &lt;- cvr.$b
     results.allhetero.grouping[t, <span class="hljs-number">21</span>] &lt;- cvr.$ci.lb
     results.allhetero.grouping[t, <span class="hljs-number">22</span>] &lt;- cvr.$ci.ub
     results.allhetero.grouping[t, <span class="hljs-number">23</span>] &lt;- cvr.$se
    
    <span class="hljs-comment"># lnVR, male to female variability ratio (logarithm of male and female standard deviations)</span>
    
    vr. &lt;- metafor::rma.mv(yi = effect_size_VR, V = sample_variance_VR, random = list(~<span class="hljs-number">1</span>| strain_name, ~<span class="hljs-number">1</span>|production_center,    
                                ~<span class="hljs-number">1</span>|err), control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), data = results)
    results.allhetero.grouping[t, <span class="hljs-number">8</span>] &lt;- vr.$sigma2[<span class="hljs-number">1</span>]
    results.allhetero.grouping[t, <span class="hljs-number">9</span>] &lt;- vr.$sigma2[<span class="hljs-number">2</span>]
    results.allhetero.grouping[t, <span class="hljs-number">10</span>] &lt;- vr.$sigma2[<span class="hljs-number">3</span>]
    results.allhetero.grouping[t, <span class="hljs-number">11</span>] &lt;- vr.$s.nlevels[<span class="hljs-number">1</span>]
    results.allhetero.grouping[t, <span class="hljs-number">12</span>] &lt;- vr.$s.nlevels[<span class="hljs-number">2</span>]
    results.allhetero.grouping[t, <span class="hljs-number">13</span>] &lt;- vr.$s.nlevels[<span class="hljs-number">3</span>]
     results.allhetero.grouping[t, <span class="hljs-number">24</span>] &lt;- vr.$b
     results.allhetero.grouping[t, <span class="hljs-number">25</span>] &lt;- vr.$ci.lb
     results.allhetero.grouping[t, <span class="hljs-number">26</span>] &lt;- vr.$ci.ub
     results.allhetero.grouping[t, <span class="hljs-number">27</span>] &lt;- vr.$se
    
    <span class="hljs-comment"># lnRR, response ratio (logarithm of male and female means)</span>
    
    rr. &lt;- metafor::rma.mv(yi = effect_size_RR, V = sample_variance_RR, random = list(~<span class="hljs-number">1</span>| strain_name, ~<span class="hljs-number">1</span>|production_center,    
                                ~<span class="hljs-number">1</span>|err), control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">1000</span>), data = results)
    results.allhetero.grouping[t, <span class="hljs-number">14</span>] &lt;- rr.$sigma2[<span class="hljs-number">1</span>]
    results.allhetero.grouping[t, <span class="hljs-number">15</span>] &lt;- rr.$sigma2[<span class="hljs-number">2</span>]
    results.allhetero.grouping[t, <span class="hljs-number">16</span>] &lt;- rr.$sigma2[<span class="hljs-number">3</span>]
    results.allhetero.grouping[t, <span class="hljs-number">17</span>] &lt;- rr.$s.nlevels[<span class="hljs-number">1</span>]
    results.allhetero.grouping[t, <span class="hljs-number">18</span>] &lt;- rr.$s.nlevels[<span class="hljs-number">2</span>]
    results.allhetero.grouping[t, <span class="hljs-number">19</span>] &lt;- rr.$s.nlevels[<span class="hljs-number">3</span>]
     results.allhetero.grouping[t, <span class="hljs-number">28</span>] &lt;- rr.$b
     results.allhetero.grouping[t, <span class="hljs-number">29</span>] &lt;- rr.$ci.lb
     results.allhetero.grouping[t, <span class="hljs-number">30</span>] &lt;- rr.$ci.ub
     results.allhetero.grouping[t, <span class="hljs-number">31</span>] &lt;- rr.$se
    
  }, error=<span class="hljs-keyword">function</span>(e){cat(<span class="hljs-string">"ERROR :"</span>,conditionMessage(e), <span class="hljs-string">"\n"</span>)})
}</code></pre></div>
<pre><code class="hljs">## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10). 
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10). 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y'</code></pre>
</div>
<div id="exclude-traits" class="section level4">
<div name="exclude_traits" data-unique="exclude_traits"></div><h4>Exclude traits</h4>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3653" aria-expanded="false" aria-controls="rcode-643E0F3653"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3653"><pre class="r"><code class="hljs">results.allhetero.grouping2 &lt;- results.allhetero.grouping[results.allhetero.grouping$s.nlevels.strain.VR != <span class="hljs-number">0</span>, ]
nrow(results.allhetero.grouping2) <span class="hljs-comment">#218</span></code></pre></div>
<pre><code class="hljs">## [1] 223</code></pre>
<p>Merge data sets containing metafor results with procedure etc. names</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3654" aria-expanded="false" aria-controls="rcode-643E0F3654"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3654"><pre class="r"><code class="hljs"><span class="hljs-comment">#procedures &lt;- read.csv("../procedures.csv")</span>

results.allhetero.grouping2$parameter_group &lt;- data$parameter_group[match(results.allhetero.grouping2$id, data$id)]
results.allhetero.grouping2$procedure &lt;- data$procedure_name[match(results.allhetero.grouping2$id, data$id)]
 
results.allhetero.grouping2$GroupingTerm &lt;-  procedures$GroupingTerm[match(results.allhetero.grouping2$procedure, procedures$procedure)]
results.allhetero.grouping2$parameter_name &lt;- data$parameter_name[match(results.allhetero.grouping2$id, data$id)]</code></pre></div>
</div>
<div id="dealing-with-correlated-parameters" class="section level4">
<div name="dealing_with_correlated_parameters" data-unique="dealing_with_correlated_parameters"></div><h4>Dealing with correlated parameters</h4>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3655" aria-expanded="false" aria-controls="rcode-643E0F3655"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3655"><pre class="r"><code class="hljs">metahetero1 &lt;- results.allhetero.grouping2 
length(unique(metahetero1$procedure)) <span class="hljs-comment">#18</span></code></pre></div>
<pre><code class="hljs">## [1] 19</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3656" aria-expanded="false" aria-controls="rcode-643E0F3656"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3656"><pre class="r"><code class="hljs">length(unique(metahetero1$GroupingTerm)) <span class="hljs-comment">#9 </span></code></pre></div>
<pre><code class="hljs">## [1] 9</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3657" aria-expanded="false" aria-controls="rcode-643E0F3657"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3657"><pre class="r"><code class="hljs">length(unique(metahetero1$parameter_group)) <span class="hljs-comment"># 149 levels: one more tha in effect size alanlysis, see above; CHECK!</span></code></pre></div>
<pre><code class="hljs">## [1] 152</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3658" aria-expanded="false" aria-controls="rcode-643E0F3658"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3658"><pre class="r"><code class="hljs">length(unique(metahetero1$parameter_name)) <span class="hljs-comment">#218</span></code></pre></div>
<pre><code class="hljs">## [1] 223</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3659" aria-expanded="false" aria-controls="rcode-643E0F3659"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3659"><pre class="r"><code class="hljs"><span class="hljs-comment"># Count of number of parameter names (correlated sub-traits) in each parameter group (par_group_size) </span>

metahetero1b &lt;-
  metahetero1 %&gt;%
  group_by(parameter_group) %&gt;% 
  mutate(par_group_size = n_distinct(parameter_name)) 

metahetero1$par_group_size &lt;- metahetero1b$par_group_size[match(metahetero1$parameter_group, metahetero1b$parameter_group)]

<span class="hljs-comment">#Create subsets with &gt; 1 count (par_group_size &gt; 1) </span>

metahetero1_sub &lt;- subset(metahetero1, par_group_size &gt; <span class="hljs-number">1</span>) <span class="hljs-comment"># 90 observations  </span>
str(metahetero1_sub)</code></pre></div>
<pre><code class="hljs">## 'data.frame':    92 obs. of  36 variables:
##  $ id                  : num  1 2 3 4 5 17 18 19 33 34 ...
##  $ sigma2_strain.CVR   : num  3.83e-03 1.09e-14 6.56e-03 4.85e-03 1.55e-10 ...
##  $ sigma2_center.CVR   : num  6.59e-15 6.78e-03 6.02e-09 2.60e-09 2.14e-02 ...
##  $ sigma2_error.CVR    : num  4.07e-11 8.57e-15 4.23e-03 1.46e-02 1.54e-03 ...
##  $ s.nlevels.strain.CVR: num  6 6 6 6 6 5 5 5 5 6 ...
##  $ s.nlevels.center.CVR: num  7 10 10 10 7 4 4 4 4 5 ...
##  $ s.nlevels.error.CVR : num  9 13 13 13 9 6 6 6 6 7 ...
##  $ sigma2_strain.VR    : num  7.60e-04 3.96e-12 3.55e-03 2.48e-03 1.06e-09 ...
##  $ sigma2_center.VR    : num  9.22e-11 1.64e-10 3.42e-10 3.26e-10 1.53e-02 ...
##  $ sigma2_error.VR     : num  0 0.006805 0.005798 0.016756 0.000245 ...
##  $ s.nlevels.strain.VR : num  6 6 6 6 6 5 5 5 5 6 ...
##  $ s.nlevels.center.VR : num  7 10 10 10 7 4 4 4 4 5 ...
##  $ s.nlevels.error.VR  : num  9 13 13 13 9 6 6 6 6 7 ...
##  $ sigma2_strain.RR    : num  1.50e-03 1.07e-11 1.92e-03 6.74e-04 0.00 ...
##  $ sigma2_center.RR    : num  6.67e-12 6.85e-03 1.38e-11 1.37e-04 9.43e-04 ...
##  $ sigma2_error.RR     : num  1.25e-13 3.00e-14 0.00 5.04e-11 1.12e-11 ...
##  $ s.nlevels.strain.RR : num  6 6 6 6 6 5 5 5 5 6 ...
##  $ s.nlevels.center.RR : num  7 10 10 10 7 4 4 4 4 5 ...
##  $ s.nlevels.error.RR  : num  9 13 13 13 9 6 6 6 6 7 ...
##  $ lnCVR               : num  0.0161 0.1353 0.066 -0.0517 -0.0781 ...
##  $ lnCVR_lower         : num  -0.0479 0.0551 -0.0181 -0.1464 -0.1949 ...
##  $ lnCVR_upper         : num  0.0801 0.2155 0.15 0.0429 0.0387 ...
##  $ lnCVR_se            : num  0.0327 0.0409 0.0429 0.0483 0.0596 ...
##  $ lnVR                : num  0.011 0.0449 0.023 -0.0487 -0.0523 ...
##  $ lnVR_lower          : num  -0.02836 -0.00751 -0.04854 -0.13647 -0.15025 ...
##  $ lnVR_upper          : num  0.0504 0.0972 0.0945 0.0391 0.0456 ...
##  $ lnVR_se             : num  0.0201 0.0267 0.0365 0.0448 0.05 ...
##  $ lnRR                : num  -0.00732 -0.06406 -0.03473 0.00518 0.02602 ...
##  $ lnRR_lower          : num  -0.0425 -0.1388 -0.0743 -0.0195 0.0012 ...
##  $ lnRR_upper          : num  0.02783 0.01063 0.00484 0.02983 0.05085 ...
##  $ lnRR_se             : num  0.0179 0.0381 0.0202 0.0126 0.0127 ...
##  $ parameter_group     : Factor w/ 161 levels "12khz-evoked abr threshold",..: 126 126 126 126 126 12 12 12 26 27 ...
##  $ procedure           : chr  "Acoustic Startle and Pre-pulse Inhibition (PPI)" "Acoustic Startle and Pre-pulse Inhibition (PPI)" "Acoustic Startle and Pre-pulse Inhibition (PPI)" "Acoustic Startle and Pre-pulse Inhibition (PPI)" ...
##  $ GroupingTerm        : Factor w/ 9 levels "Behaviour","Eye",..: 1 1 1 1 1 6 6 6 6 6 ...
##  $ parameter_name      : chr  "% pre-pulse inhibition - global" "% pre-pulse inhibition - ppi1" "% pre-pulse inhibition - ppi2" "% pre-pulse inhibition - ppi3" ...
##  $ par_group_size      : int  5 5 5 5 5 4 4 4 6 7 ...</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3660" aria-expanded="false" aria-controls="rcode-643E0F3660"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3660"><pre class="r"><code class="hljs"><span class="hljs-comment"># metahetero1_sub$sampleSize &lt;- as.numeric(metahetero1_sub$sampleSize) #from previous analysis? don't think is used: : delete in final version</span>

<span class="hljs-comment"># Nest data</span>

n_count. &lt;- metahetero1_sub %&gt;% 
  group_by(parameter_group) %&gt;% 
  <span class="hljs-comment">#mutate(raw_N = sum(sampleSize)) %&gt;%  #don't think is necessary: delete in final version</span>
  nest()

<span class="hljs-comment"># meta-analysis preparation</span>

model_count. &lt;- n_count. %&gt;% 
  mutate(model_lnRR = map(data, ~ robu(.x$lnRR ~ <span class="hljs-number">1</span>, data= .x, studynum= .x$id, modelweights = c(<span class="hljs-string">"CORR"</span>), rho = <span class="hljs-number">0.8</span>, 
                                                small = <span class="hljs-literal">TRUE</span>, var.eff.size= (.x$lnRR_se)^<span class="hljs-number">2</span> )),
  model_lnVR = map(data, ~ robu(.x$lnVR ~ <span class="hljs-number">1</span>, data= .x, studynum= .x$id, modelweights = c(<span class="hljs-string">"CORR"</span>), rho = <span class="hljs-number">0.8</span>, 
                                                small = <span class="hljs-literal">TRUE</span>, var.eff.size= (.x$lnVR_se)^<span class="hljs-number">2</span> )),
  model_lnCVR = map(data, ~ robu(.x$lnCVR ~ <span class="hljs-number">1</span>, data= .x, studynum= .x$id, modelweights = c(<span class="hljs-string">"CORR"</span>), rho = <span class="hljs-number">0.8</span>, 
                                                small = <span class="hljs-literal">TRUE</span>, var.eff.size= (.x$lnCVR_se)^<span class="hljs-number">2</span> ))) 


<span class="hljs-comment">#Robumeta object details:</span>
<span class="hljs-comment">#str(model_count.$model_lnCVR[[1]])</span>

<span class="hljs-comment">## *Perform meta-analyses on correlated sub-traits, using robumeta</span>

<span class="hljs-comment"># Shinichi: We think we want to use these for further analyses:</span>
<span class="hljs-comment"># residual variance: as.numeric(robu_fit$mod_info$term1)     (same as 'mod_info$tau.sq')</span>
<span class="hljs-comment"># sample size: robu_fit$N</span>

<span class="hljs-comment">## **Extract and save parameter estimates </span>

count_fun. &lt;- <span class="hljs-keyword">function</span>(mod_sub)
  <span class="hljs-keyword">return</span>(c(as.numeric(mod_sub$mod_info$term1), mod_sub$N) )  

robusub_RR. &lt;- model_count. %&gt;% 
  transmute(parameter_group, estimatelnRR = map(model_lnRR, count_fun.)) %&gt;% 
  mutate(r = map(estimatelnRR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnRR) %&gt;%
  purrr::set_names(c(<span class="hljs-string">"parameter_group"</span>,<span class="hljs-string">"var.RR"</span>,<span class="hljs-string">"N.RR"</span>))

robusub_CVR. &lt;- model_count. %&gt;% 
  transmute(parameter_group, estimatelnCVR = map(model_lnCVR, count_fun.)) %&gt;% 
  mutate(r = map(estimatelnCVR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnCVR) %&gt;%
  purrr::set_names(c(<span class="hljs-string">"parameter_group"</span>,<span class="hljs-string">"var.CVR"</span>,<span class="hljs-string">"N.CVR"</span>))

robusub_VR. &lt;- model_count. %&gt;% 
  transmute(parameter_group, estimatelnVR = map(model_lnVR, count_fun.)) %&gt;% 
  mutate(r = map(estimatelnVR, ~ data.frame(t(.)))) %&gt;%
  unnest(r) %&gt;%
  select(-estimatelnVR) %&gt;%
  purrr::set_names(c(<span class="hljs-string">"parameter_group"</span>,<span class="hljs-string">"var.VR"</span>,<span class="hljs-string">"N.VR"</span>))

robu_all. &lt;- full_join(robusub_CVR., robusub_VR.) %&gt;% full_join(., robusub_RR.)</code></pre></div>
</div>
<div id="merge-the-two-data-sets-the-new-robu_all.-and-the-initial-uncorrelated-sub-traits-with-count-1" class="section level4">
<div name="merge_the_two_data_sets_(the_new_[robu_all]_and_the_initial_[uncorrelated_sub-traits_with_count_=_1])" data-unique="merge_the_two_data_sets_(the_new_[robu_all]_and_the_initial_[uncorrelated_sub-traits_with_count_=_1])"></div><h4>Merge the two data sets (the new [robu_all.] and the initial [uncorrelated sub-traits with count = 1])</h4>
<p>In this step, we<br>
1) merge the N from robumeta and the N from metafor (s.nlevels.error) together into the same columns (N.RR, N.VR, N.CVR) 2) calculate the total variance for metafor models as the sum of random effect variances and the residual error, then add in the same columns together with the residual variances from robumeta</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3661" aria-expanded="false" aria-controls="rcode-643E0F3661"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3661"><pre class="r"><code class="hljs">metahetero_all &lt;- metahetero1 %&gt;% filter(par_group_size == <span class="hljs-number">1</span>) %&gt;% as_tibble
metahetero_all$N.RR &lt;- metahetero_all$s.nlevels.error.RR 
metahetero_all$N.CVR &lt;- metahetero_all$s.nlevels.error.CVR 
metahetero_all$N.VR &lt;- metahetero_all$s.nlevels.error.VR 
metahetero_all$var.RR &lt;- log(sqrt(metahetero_all$sigma2_strain.RR + metahetero_all$sigma2_center.RR + metahetero_all$sigma2_error.RR))
metahetero_all$var.VR &lt;- log(sqrt(metahetero_all$sigma2_strain.VR + metahetero_all$sigma2_center.VR + metahetero_all$sigma2_error.VR))
metahetero_all$var.CVR &lt;- log(sqrt(metahetero_all$sigma2_strain.CVR + metahetero_all$sigma2_center.CVR + metahetero_all$sigma2_error.CVR))
<span class="hljs-comment">#str(metahetero_all)</span>
<span class="hljs-comment">#str(robu_all.)</span>

metahetero_all &lt;- metahetero_all %&gt;% mutate(var.RR = if_else(var.RR == -<span class="hljs-literal">Inf</span>, -<span class="hljs-number">7</span> ,var.RR),
                      var.VR = if_else(var.VR == -<span class="hljs-literal">Inf</span>, -<span class="hljs-number">5</span> ,var.VR),
                  var.CVR = if_else(var.CVR == -<span class="hljs-literal">Inf</span>, -<span class="hljs-number">6</span> ,var.CVR))

<span class="hljs-comment"># **Combine data </span>
<span class="hljs-comment">## Step1 </span>
combinedmetahetero &lt;- bind_rows(robu_all., metahetero_all)
<span class="hljs-comment">#glimpse(combinedmetahetero)</span>

<span class="hljs-comment"># Steps 2&amp;3</span>

metacombohetero &lt;- combinedmetahetero
metacombohetero$counts &lt;- metahetero1$par_group_size[match( metacombohetero$parameter_group, metahetero1$parameter_group)]
metacombohetero$procedure2 &lt;-metahetero1$procedure[match( metacombohetero$parameter_group, metahetero1$parameter_group)]
metacombohetero$GroupingTerm2 &lt;-metahetero1$GroupingTerm[match( metacombohetero$parameter_group, metahetero1$parameter_group)]

<span class="hljs-comment"># **Clean-up and rename </span>

metacombohetero &lt;- metacombohetero[, c(<span class="hljs-number">1</span>:<span class="hljs-number">7</span>, <span class="hljs-number">43</span>:<span class="hljs-number">45</span>)] 
names(metacombohetero)[<span class="hljs-number">9</span>] &lt;- <span class="hljs-string">"procedure"</span> 
names(metacombohetero)[<span class="hljs-number">10</span>] &lt;- <span class="hljs-string">"GroupingTerm"</span> </code></pre></div>
</div>
<div id="last-step-meta-meta-analysis-of-heterogeneity" class="section level4">
<div name="last_step:_meta-meta-analysis_of_heterogeneity" data-unique="last_step:_meta-meta-analysis_of_heterogeneity"></div><h4>Last step: meta-meta-analysis of heterogeneity</h4>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3662" aria-expanded="false" aria-controls="rcode-643E0F3662"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3662"><pre class="r"><code class="hljs"><span class="hljs-comment">## *Perform meta-meta-analysis (3 for each of the 9 grouping terms: var.CVR, var.VR, var.RR) </span>

metacombohetero_final &lt;- metacombohetero %&gt;%
 group_by(GroupingTerm) %&gt;%
 nest()

<span class="hljs-comment"># **Final fixed effects meta-analyses within grouping terms, with SE of the estimate </span>

metacombohetero$var.CVR</code></pre></div>
<pre><code class="hljs">##   [1]  0.0044991186  0.0000642816 -0.0144265163  0.0050872554 -0.0077958010
##   [6]  0.0035156022 -0.0016450671 -0.0008696892  0.0052878381  0.0001600556
##  [11] -0.0022444358 -0.0004257810  0.0589805219  0.0019663188 -0.0101574334
##  [16] -0.0001192722 -0.0004167067 -0.0065819186  0.0025887091  0.0011066115
##  [21]  0.0007330397 -2.6597488778 -2.7109304575 -2.4666374444 -2.4190625440
##  [26] -6.0000000000 -1.6765385765 -2.2211382571 -2.4803820009 -2.3163922698
##  [31] -2.1462407635 -1.4870666914 -2.4398886718 -2.6594232970 -1.8709366522
##  [36] -2.7492091777 -6.0000000000 -2.2096017872 -2.8372243141 -2.5966411739
##  [41] -2.0372635699 -1.7993498392 -1.3237500184 -2.4470323335 -2.6705595776
##  [46] -2.5640560844 -2.7773725290 -2.8522607171 -2.4179073905 -1.6170447612
##  [51] -2.3170574175 -2.1378338336 -2.3582684091 -2.1601625056 -2.3122643035
##  [56] -2.4773261880 -6.0000000000 -6.0000000000 -1.9777983292 -2.0066354936
##  [61] -1.9181629170 -2.3654858439 -2.6013619833 -2.4904490520 -2.2446924631
##  [66] -2.8284106787 -2.5460751840 -2.2939104814 -1.9775239093 -2.1993504724
##  [71] -1.5779079404 -2.4494899888 -2.0902610847 -3.0974151169 -2.8422362261
##  [76] -1.1383433892 -1.9342984119 -2.6060756341 -2.2943035742 -1.4466019118
##  [81] -2.2190572693 -1.7189444245 -1.8633043362 -6.0000000000 -6.0000000000
##  [86] -6.0000000000 -6.0000000000 -1.6067160546 -2.3012113787 -6.0000000000
##  [91] -1.6270233655 -2.7634753695 -2.1370173646 -2.5779218865 -2.7175087198
##  [96] -6.0000000000 -1.4037959533 -1.7018930341 -2.3344943000 -2.7273106400
## [101] -6.0000000000 -4.1046049569 -2.1822373277 -1.3326681362 -2.5871679179
## [106] -2.0174660672 -3.3272866024 -3.2077188205 -1.6370100682 -2.7261740396
## [111] -2.4227226560 -2.4766881954 -1.8894986680 -2.4175072222 -3.1804162368
## [116] -2.5174764339 -6.0000000000 -1.7884303244 -2.3647153111 -2.8157523923
## [121] -3.2648326014 -3.1758796266 -2.9972690061 -2.2693356188 -1.5123342000
## [126] -2.9715994935 -2.3388729551 -0.4645348140 -2.1908600686 -1.0349121159
## [131] -6.0000000000 -6.0000000000 -0.9481380899 -1.2489473343 -1.3160742631
## [136] -2.0331918626 -1.6265101179 -1.3064359147 -2.8298766900 -2.1791320199
## [141] -0.8300329578 -2.1426880967 -1.3016303060 -1.9384089540 -6.0000000000
## [146] -2.8430641339 -2.1164664090 -1.6584679154 -6.0000000000 -2.1808169436
## [151] -2.2525802925 -2.7297180428</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3663" aria-expanded="false" aria-controls="rcode-643E0F3663"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3663"><pre class="r"><code class="hljs">heterog1 &lt;- metacombohetero_final %&gt;% 

  mutate(model_heteroCVR = map(data, ~ metafor::rma.uni(yi = .x$var.CVR, sei = sqrt(<span class="hljs-number">1</span> / <span class="hljs-number">2</span>*(.x$N.CVR - <span class="hljs-number">1</span>)),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">10000</span>, stepadj=<span class="hljs-number">0.5</span>), verbose=<span class="hljs-literal">F</span>)),
       model_heteroVR = map(data, ~ metafor::rma.uni(yi = .x$var.VR, sei = sqrt(<span class="hljs-number">1</span> / <span class="hljs-number">2</span>*(.x$N.VR - <span class="hljs-number">1</span>)),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">10000</span>, stepadj=<span class="hljs-number">0.5</span>), verbose=<span class="hljs-literal">F</span>)),
       model_heteroRR = map(data, ~ metafor::rma.uni(yi = .x$var.RR, sei = sqrt(<span class="hljs-number">1</span> / <span class="hljs-number">2</span>*(.x$N.RR - <span class="hljs-number">1</span>)),  
                control=list(optimizer=<span class="hljs-string">"optim"</span>, optmethod=<span class="hljs-string">"Nelder-Mead"</span>, maxit= <span class="hljs-number">10000</span>, stepadj=<span class="hljs-number">0.5</span>), verbose=<span class="hljs-literal">F</span>)))   

heterog1</code></pre></div>
<pre><code class="hljs">## # A tibble: 9 x 5
##   GroupingTerm data           model_heteroCVR model_heteroVR model_heteroRR
##   &lt;fct&gt;        &lt;list&gt;         &lt;list&gt;          &lt;list&gt;         &lt;list&gt;        
## 1 Behaviour    &lt;tibble [18 ×… &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;     
## 2 Immunology   &lt;tibble [19 ×… &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;     
## 3 Hematology   &lt;tibble [17 ×… &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;     
## 4 Hearing      &lt;tibble [6 × … &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;     
## 5 Physiology   &lt;tibble [26 ×… &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;     
## 6 Metabolism   &lt;tibble [9 × … &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;     
## 7 Morphology   &lt;tibble [16 ×… &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;     
## 8 Heart        &lt;tibble [29 ×… &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;     
## 9 Eye          &lt;tibble [12 ×… &lt;rma.uni&gt;       &lt;rma.uni&gt;      &lt;rma.uni&gt;</code></pre>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3664" aria-expanded="false" aria-controls="rcode-643E0F3664"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3664"><pre class="r"><code class="hljs"><span class="hljs-comment"># **Re-structure data for each grouping term; extract heterogenenity/variance terms; delete un-used variables</span>

Behaviour. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Behaviour"</span>)  %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Immunology. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Immunology"</span>) %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)


Hematology. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Hematology"</span>) %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)


Hearing. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Hearing"</span>)  %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Physiology. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Physiology"</span>)  %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Metabolism. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Metabolism"</span>)  %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Morphology. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Morphology"</span>) %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Heart. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Heart"</span>)  %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Eye. &lt;- heterog1 %&gt;% filter(., GroupingTerm == <span class="hljs-string">"Eye"</span>)  %&gt;% select(., -data)  %&gt;%  mutate(heteroCVR=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$b, heteroCVR_lower=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroCVR_upper=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroCVR_se=.[[<span class="hljs-number">2</span>]][[<span class="hljs-number">1</span>]]$se,
                  heteroVR=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$b, heteroVR_lower=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroVR_upper=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroVR_se=.[[<span class="hljs-number">3</span>]][[<span class="hljs-number">1</span>]]$se,
                heteroRR=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$b, heteroRR_lower=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.lb, heteroRR_upper=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$ci.ub, heteroRR_se=.[[<span class="hljs-number">4</span>]][[<span class="hljs-number">1</span>]]$se) %&gt;%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

heterog2 &lt;- bind_rows(Behaviour., Morphology., Metabolism., Physiology., Immunology., Hematology., Heart., Hearing., Eye.)
<span class="hljs-comment">#str(heterog2)</span></code></pre></div>
</div>
<div id="heterogeneity-plots" class="section level4">
<div name="heterogeneity_plots" data-unique="heterogeneity_plots"></div><h4>Heterogeneity PLOTS</h4>
<p>Restructure data for plotting</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3665" aria-expanded="false" aria-controls="rcode-643E0F3665"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3665"><pre class="r"><code class="hljs">heterog3 &lt;- gather(heterog2, parameter, value, c(heteroCVR, heteroVR, heteroRR), factor_key= <span class="hljs-literal">TRUE</span>)

heteroCVR.ci &lt;- heterog3 %&gt;% filter(parameter == <span class="hljs-string">"heteroCVR"</span>) %&gt;% mutate(ci.low = heteroCVR_lower, ci.high = heteroCVR_upper)
heteroVR.ci &lt;- heterog3 %&gt;% filter(parameter == <span class="hljs-string">"heteroVR"</span>) %&gt;% mutate(ci.low = heteroVR_lower, ci.high = heteroVR_upper)
heteroRR.ci &lt;- heterog3 %&gt;% filter(parameter == <span class="hljs-string">"heteroRR"</span>) %&gt;% mutate(ci.low = heteroRR_lower, ci.high = heteroRR_upper)                   

heterog4 &lt;- bind_rows(heteroCVR.ci, heteroVR.ci, heteroRR.ci) %&gt;% select(GroupingTerm, parameter, value, ci.low, ci.high)

<span class="hljs-comment"># **Re-order grouping terms </span>

heterog4$GroupingTerm &lt;- factor(heterog4$GroupingTerm, levels =c(<span class="hljs-string">"Behaviour"</span>,<span class="hljs-string">"Morphology"</span>,<span class="hljs-string">"Metabolism"</span>,<span class="hljs-string">"Physiology"</span>,<span class="hljs-string">"Immunology"</span>,<span class="hljs-string">"Hematology"</span>,<span class="hljs-string">"Heart"</span>,<span class="hljs-string">"Hearing"</span>,<span class="hljs-string">"Eye"</span>) )
heterog4$GroupingTerm &lt;- factor(heterog4$GroupingTerm, rev(levels(heterog4$GroupingTerm)))
heterog4$label &lt;- <span class="hljs-string">"All traits"</span>
<span class="hljs-comment">#write.csv(heterog4, "heterog4.csv")</span></code></pre></div>
</div>
<div id="plot-figure-4-5-in-ms-second-order-meta-analysis-on-heterogeneity" class="section level4">
<div name="plot_figure_4_(5_in_ms)_(second-order_meta_analysis_on_heterogeneity)" data-unique="plot_figure_4_(5_in_ms)_(second-order_meta_analysis_on_heterogeneity)"></div><h4>Plot FIGURE 4 (5 in ms) (Second-order meta analysis on heterogeneity)</h4>
<p>Plot Fig4 all traits</p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3666" aria-expanded="false" aria-controls="rcode-643E0F3666"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3666"><pre class="r"><code class="hljs">Metameta_Fig4_alltraits &lt;- heterog4 %&gt;%

  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = <span class="hljs-number">0.1</span>, show.legend = <span class="hljs-literal">FALSE</span>) +
  geom_point(aes(shape = parameter,
             fill = parameter, color = parameter), size = <span class="hljs-number">2.2</span>, 
             show.legend = <span class="hljs-literal">FALSE</span>) +
  scale_x_continuous(limits=c(-<span class="hljs-number">7.0</span>, <span class="hljs-number">1</span>), 
                     <span class="hljs-comment">#breaks = c(-2.0, -1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5, 2.0), </span>
                     name=<span class="hljs-string">'Effect size'</span>) +
  facet_grid(cols = vars(parameter), rows = vars(label),
             labeller = label_wrap_gen(width = <span class="hljs-number">23</span>),
             scales= <span class="hljs-string">'free'</span>, 
             space=<span class="hljs-string">'free'</span>)+
  theme_bw()+
  theme(strip.text.y = element_text(angle = <span class="hljs-number">270</span>, size = <span class="hljs-number">10</span>, margin = margin(t=<span class="hljs-number">15</span>, r=<span class="hljs-number">15</span>, b=<span class="hljs-number">15</span>, l=<span class="hljs-number">15</span>)), 
      strip.text.x = element_text(size = <span class="hljs-number">12</span>),
        strip.background = element_rect(colour = <span class="hljs-literal">NULL</span>, linetype = <span class="hljs-string">"blank"</span>, fill = <span class="hljs-string">"gray90"</span>),
        text = element_text(size = <span class="hljs-number">14</span>),
        panel.spacing = unit(<span class="hljs-number">0.5</span>, <span class="hljs-string">"lines"</span>),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = <span class="hljs-string">"solid"</span>, colour = <span class="hljs-string">"gray95"</span>),
        panel.grid.major.y = element_line(linetype = <span class="hljs-string">"solid"</span>, color = <span class="hljs-string">"gray95"</span>),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_blank(),
      axis.title.y = element_blank())

Metameta_Fig4_alltraits </code></pre></div>
<p><img src="" width="672"></p>
<div class="row"><div class="col-md-12"><button type="button" class="btn btn-default btn-xs code-folding-btn pull-right" data-toggle="collapse" data-target="#rcode-643E0F3667" aria-expanded="false" aria-controls="rcode-643E0F3667"><span>Code</span></button></div></div><div class="collapse r-code-collapse" id="rcode-643E0F3667"><pre class="r"><code class="hljs"><span class="hljs-comment">#ggsave("Fig4.pdf", plot = Metameta_Fig4_alltraits, width = 7, height = 6) </span></code></pre></div>
</div>
</div>
</div>



</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- tabsets -->

<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});

$(document).ready(function () {
  $('.tabset-dropdown > .nav-tabs > li').click(function () {
    $(this).parent().toggleClass('nav-tabs-open')
  });
});
</script>

<!-- code folding -->
<script>
$(document).ready(function () {
  window.initializeCodeFolding("hide" === "show");
});
</script>

<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3,h4",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>



</body></html>