<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Archiving and Interchange DTD with MathML3 v1.2 20190208//EN" "JATS-archivearticle1-mathml3.dtd"><article article-type="research-article" dtd-version="1.2" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:xlink="http://www.w3.org/1999/xlink"><front><journal-meta><journal-id journal-id-type="nlm-ta">elife</journal-id><journal-id journal-id-type="publisher-id">eLife</journal-id><journal-title-group><journal-title>eLife</journal-title></journal-title-group><issn pub-type="epub" publication-format="electronic">2050-084X</issn><publisher><publisher-name>eLife Sciences Publications, Ltd</publisher-name></publisher></journal-meta><article-meta><article-id pub-id-type="publisher-id">71503</article-id><article-id pub-id-type="doi">10.7554/eLife.71503</article-id><article-categories><subj-group subj-group-type="display-channel"><subject>Research Article</subject></subj-group><subj-group subj-group-type="heading"><subject>Ecology</subject></subj-group><subj-group subj-group-type="heading"><subject>Epidemiology and Global Health</subject></subj-group></article-categories><title-group><article-title>Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission</article-title></title-group><contrib-group><contrib contrib-type="author" corresp="yes" equal-contrib="yes" id="author-243178"><name><surname>Russell</surname><given-names>Marie C</given-names></name><contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0001-6907-6159</contrib-id><email>marie.clare.russell@gmail.com</email><xref ref-type="aff" rid="aff1">1</xref><xref ref-type="fn" rid="equal-contrib1">†</xref><xref ref-type="other" rid="fund3"/><xref ref-type="fn" rid="con1"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" equal-contrib="yes" id="author-247139"><name><surname>Herzog</surname><given-names>Catherine M</given-names></name><contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0003-3021-888X</contrib-id><xref ref-type="aff" rid="aff2">2</xref><xref ref-type="fn" rid="equal-contrib1">†</xref><xref ref-type="fn" rid="con2"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-247140"><name><surname>Gajewski</surname><given-names>Zachary</given-names></name><xref ref-type="aff" rid="aff3">3</xref><xref ref-type="other" rid="fund1"/><xref ref-type="other" rid="fund2"/><xref ref-type="fn" rid="con3"/><xref ref-type="fn" rid="conf2"/></contrib><contrib contrib-type="author" id="author-247141"><name><surname>Ramsay</surname><given-names>Chloe</given-names></name><xref ref-type="aff" rid="aff4">4</xref><xref ref-type="fn" rid="con4"/><xref ref-type="fn" rid="conf2"/></contrib><contrib contrib-type="author" id="author-247142"><name><surname>El Moustaid</surname><given-names>Fadoua</given-names></name><xref ref-type="aff" rid="aff3">3</xref><xref ref-type="other" rid="fund1"/><xref ref-type="other" rid="fund2"/><xref ref-type="fn" rid="con5"/><xref ref-type="fn" rid="conf2"/></contrib><contrib contrib-type="author" id="author-247143"><name><surname>Evans</surname><given-names>Michelle V</given-names></name><xref ref-type="aff" rid="aff5">5</xref><xref ref-type="aff" rid="aff6">6</xref><xref ref-type="fn" rid="con6"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-247144"><name><surname>Desai</surname><given-names>Trishna</given-names></name><xref ref-type="aff" rid="aff7">7</xref><xref ref-type="fn" rid="con7"/><xref ref-type="fn" rid="conf2"/></contrib><contrib contrib-type="author" id="author-101830"><name><surname>Gottdenker</surname><given-names>Nicole L</given-names></name><xref ref-type="aff" rid="aff5">5</xref><xref ref-type="aff" rid="aff8">8</xref><xref ref-type="fn" rid="con8"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-156025"><name><surname>Hermann</surname><given-names>Sara L</given-names></name><xref ref-type="aff" rid="aff9">9</xref><xref ref-type="fn" rid="con9"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-247145"><name><surname>Power</surname><given-names>Alison G</given-names></name><xref ref-type="aff" rid="aff10">10</xref><xref ref-type="fn" rid="con10"/><xref ref-type="fn" rid="conf1"/></contrib><contrib contrib-type="author" id="author-247146"><name><surname>McCall</surname><given-names>Andrew C</given-names></name><xref ref-type="aff" rid="aff11">11</xref><xref ref-type="fn" rid="con11"/><xref ref-type="fn" rid="conf1"/></contrib><aff id="aff1"><label>1</label><institution>Department of Life Sciences, Imperial College London, Silwood Park Campus</institution><addr-line><named-content content-type="city">Ascot</named-content></addr-line><country>United Kingdom</country></aff><aff id="aff2"><label>2</label><institution>Center for Infectious Disease Dynamics, Pennsylvania State University</institution><addr-line><named-content content-type="city">University Park</named-content></addr-line><country>United States</country></aff><aff id="aff3"><label>3</label><institution>Department of Biological Sciences, Virginia Polytechnic Institute and State University</institution><addr-line><named-content content-type="city">Blacksburg</named-content></addr-line><country>United States</country></aff><aff id="aff4"><label>4</label><institution>Department of Biological Sciences, University of Notre Dame</institution><addr-line><named-content content-type="city">Notre Dame</named-content></addr-line><country>United States</country></aff><aff id="aff5"><label>5</label><institution>Odum School of Ecology & Center for Ecology of Infectious Diseases, University of Georgia</institution><addr-line><named-content content-type="city">Athens</named-content></addr-line><country>United States</country></aff><aff id="aff6"><label>6</label><institution>MIVEGEC, IRD, CNRS, Université Montpellier</institution><addr-line><named-content content-type="city">Montpellier</named-content></addr-line><country>France</country></aff><aff id="aff7"><label>7</label><institution>Nuffield Department of Population Health, University of Oxford</institution><addr-line><named-content content-type="city">Oxford</named-content></addr-line><country>United Kingdom</country></aff><aff id="aff8"><label>8</label><institution>Department of Veterinary Pathology, University of Georgia College of Veterinary Medicine</institution><addr-line><named-content content-type="city">Athens</named-content></addr-line><country>United States</country></aff><aff id="aff9"><label>9</label><institution>Department of Entomology, Pennsylvania State University</institution><addr-line><named-content content-type="city">University Park</named-content></addr-line><country>United States</country></aff><aff id="aff10"><label>10</label><institution>Department of Ecology & Evolutionary Biology, Cornell University</institution><addr-line><named-content content-type="city">Ithaca</named-content></addr-line><country>United States</country></aff><aff id="aff11"><label>11</label><institution>Biology Department, Denison University</institution><addr-line><named-content content-type="city">Granville</named-content></addr-line><country>United States</country></aff></contrib-group><contrib-group content-type="section"><contrib contrib-type="editor"><name><surname>Cobey</surname><given-names>Sarah E</given-names></name><role>Reviewing Editor</role><aff><institution>University of Chicago</institution><country>United States</country></aff></contrib><contrib contrib-type="senior_editor"><name><surname>Rutz</surname><given-names>Christian</given-names></name><role>Senior Editor</role><aff><institution>University of St Andrews</institution><country>United Kingdom</country></aff></contrib></contrib-group><author-notes><fn fn-type="con" id="equal-contrib1"><label>†</label><p>These authors contributed equally to this work</p></fn></author-notes><pub-date date-type="publication" publication-format="electronic"><day>19</day><month>01</month><year>2022</year></pub-date><pub-date pub-type="collection"><year>2022</year></pub-date><volume>11</volume><elocation-id>e71503</elocation-id><history><date date-type="received" iso-8601-date="2021-06-21"><day>21</day><month>06</month><year>2021</year></date><date date-type="accepted" iso-8601-date="2021-12-01"><day>01</day><month>12</month><year>2021</year></date></history><pub-history><event><event-desc>This manuscript was published as a preprint at bioRxiv.</event-desc><date date-type="preprint" iso-8601-date="2021-08-02"><day>02</day><month>08</month><year>2021</year></date><self-uri content-type="preprint" xlink:href="https://doi.org/10.1101/2021.07.31.454599"/></event></pub-history><permissions><copyright-statement>© 2022, Russell et al</copyright-statement><copyright-year>2022</copyright-year><copyright-holder>Russell et al</copyright-holder><ali:free_to_read/><license xlink:href="http://creativecommons.org/licenses/by/4.0/"><ali:license_ref>http://creativecommons.org/licenses/by/4.0/</ali:license_ref><license-p>This article is distributed under the terms of the <ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>, which permits unrestricted use and redistribution provided that the original author and source are credited.</license-p></license></permissions><self-uri content-type="pdf" xlink:href="elife-71503-v1.pdf"/><abstract><p>Predator-prey interactions influence prey traits through both consumptive and non-consumptive effects, and variation in these traits can shape vector-borne disease dynamics. Meta-analysis methods were employed to generate predation effect sizes by different categories of predators and mosquito prey. This analysis showed that multiple families of aquatic predators are effective in consumptively reducing mosquito survival, and that the survival of <italic>Aedes</italic>, <italic>Anopheles</italic>, and <italic>Culex</italic> mosquitoes is negatively impacted by consumptive effects of predators. Mosquito larval size was found to play a more important role in explaining the heterogeneity of consumptive effects from predators than mosquito genus. Mosquito survival and body size were reduced by non-consumptive effects of predators, but development time was not significantly impacted. In addition, <italic>Culex</italic> vectors demonstrated predator avoidance behavior during oviposition. The results of this meta-analysis suggest that predators limit disease transmission by reducing both vector survival and vector size, and that associations between drought and human West Nile virus cases could be driven by the vector behavior of predator avoidance during oviposition. These findings are likely to be useful to infectious disease modelers who rely on vector traits as predictors of transmission.</p></abstract><abstract abstract-type="executive-summary"><title>eLife digest</title><p>Mosquitoes are often referred to as the deadliest animals on earth because some species spread malaria, West Nile virus or other dangerous diseases when they bite humans and other animals. Adult mosquitoes fly to streams, ponds and other freshwater environments to lay their eggs. When the eggs hatch, the young mosquitoes live in the water until they are ready to grow wings and transform into adults.</p><p>In the water, the young mosquitoes are particularly vulnerable to being eaten by dragonfly larvae, fish and other predators. When adult females are choosing where to lay their eggs, they can use their sense of smell to detect these predators and attempt to avoid them. Along with eating the mosquitoes, the predators may also reduce mosquito populations in other ways. For example, predators can disrupt feeding among young mosquitoes, which may affect the time that it takes for them to grow into adults or the size of their bodies once they reach the adult stage. Although the impacts of different predators have been tested separately in multiple settings, the overall effects of predators on the ability of mosquitoes to spread diseases to humans remain unclear.</p><p>To address this question, Russell, Herzog et al. used an approach called meta-analysis on data from previous studies. The analysis found that along with increasing the death rates of mosquitoes, the presence of predators also leads to a reduction in the body size of those mosquitoes that survive, causing them to have shorter lifespans and fewer offspring.</p><p>Russell, Herzog et al. found that one type of mosquito known as <italic>Culex</italic> – which carries West Nile virus – avoided laying its eggs near predators. During droughts, increased predation in streams, ponds and other aquatic environments may lead adult female <italic>Culex</italic> mosquitoes to lay their eggs closer to residential areas with fewer predators. Russell, Herzog et al. propose that this may be one reason why outbreaks of West Nile virus in humans are more likely to occur during droughts.</p><p>In the future, these findings may help researchers to predict outbreaks of West Nile virus, malaria and other diseases carried by mosquitoes more accurately. Furthermore, the work of Russell, Herzog et al. provides examples of mosquito predators that could be used as biocontrol agents to decrease numbers of mosquitoes in certain regions.</p></abstract><kwd-group kwd-group-type="author-keywords"><kwd>vector ecology</kwd><kwd>predation</kwd><kwd>disease dynamics</kwd><kwd>meta-analysis</kwd></kwd-group><kwd-group kwd-group-type="research-organism"><title>Research organism</title><kwd>Mosquito</kwd></kwd-group><funding-group><award-group id="fund1"><funding-source><institution-wrap><institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000002</institution-id><institution>National Institutes of Health</institution></institution-wrap></funding-source><award-id>1R01AI122284-01</award-id><principal-award-recipient><name><surname>Gajewski</surname><given-names>Zachary</given-names></name><name><surname>El Moustaid</surname><given-names>Fadoua</given-names></name></principal-award-recipient></award-group><award-group id="fund2"><funding-source><institution-wrap><institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000268</institution-id><institution>Biotechnology and Biological Sciences Research Council</institution></institution-wrap></funding-source><award-id>BB/N013573/1</award-id><principal-award-recipient><name><surname>Gajewski</surname><given-names>Zachary</given-names></name><name><surname>El Moustaid</surname><given-names>Fadoua</given-names></name></principal-award-recipient></award-group><award-group id="fund3"><funding-source><institution-wrap><institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000761</institution-id><institution>Imperial College London</institution></institution-wrap></funding-source><award-id>President's PhD Scholarship</award-id><principal-award-recipient><name><surname>Russell</surname><given-names>Marie C</given-names></name></principal-award-recipient></award-group><funding-statement>The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.</funding-statement></funding-group><custom-meta-group><custom-meta specific-use="meta-only"><meta-name>Author impact statement</meta-name><meta-value>While predators can clearly reduce mosquito populations by consumption, they can also have non-consumptive effects on mosquito body size and oviposition behavior, and these effects on vector traits can influence infectious disease dynamics.</meta-value></custom-meta></custom-meta-group></article-meta></front><body><sec id="s1" sec-type="intro"><title>Introduction</title><p>While it is well known that predation reduces vector populations through consumptive effects, non-consumptive effects of predators can also greatly impact prey demographics (<xref ref-type="bibr" rid="bib106">Preisser et al., 2005</xref>). Mosquitoes are vectors of a variety of debilitating and deadly diseases, including malaria, lymphatic filariasis, and arboviruses, such as chikungunya, Zika, and dengue (<xref ref-type="bibr" rid="bib147">Weaver and Reisen, 2010</xref>; <xref ref-type="bibr" rid="bib148">WORLD HEALTH ORGANIZATION, 2020</xref>). Consequently, there is motivation from a public health perspective to better understand the different drivers of variation in mosquito traits that can ultimately impact vector population growth and disease transmission. In addition, recent work has suggested that incorporation of vector trait variation into disease models can improve the reliability of their predictions (<xref ref-type="bibr" rid="bib23">Cator et al., 2020</xref>). In this study, systematic review and meta-analysis methods are used to synthesize a clearer understanding of the consumptive and non-consumptive effects of predators on mosquito traits, including survival, oviposition, development, and size.</p><p>Mosquito insecticide resistance is recognized as a growing problem (<xref ref-type="bibr" rid="bib54">Hancock et al., 2018</xref>; <xref ref-type="bibr" rid="bib57">Hemingway and Ranson, 2000</xref>; <xref ref-type="bibr" rid="bib82">Liu, 2015</xref>) leading some to suggest that control efforts should rely more heavily on ‘non-insecticide based strategies’ (<xref ref-type="bibr" rid="bib14">Benelli et al., 2016</xref>). The consumptive effects of predators on mosquitoes have previously been harnessed for biocontrol purposes. Past biocontrol efforts have used predators such as cyclopoid copepods (<xref ref-type="bibr" rid="bib69">Kay et al., 2002</xref>; <xref ref-type="bibr" rid="bib87">Marten, 1990</xref>; <xref ref-type="bibr" rid="bib120">Russell et al., 1996</xref>; <xref ref-type="bibr" rid="bib142">Veronesi et al., 2015</xref>) and mosquitofish (<xref ref-type="bibr" rid="bib107">Pyke, 2008</xref>, <xref ref-type="bibr" rid="bib121">Seale, 1917</xref>) to target the mosquito’s aquatic larval stage. The strength of the consumptive effects of these predators on mosquitoes can be influenced by multiple factors, including predator-prey size ratio and temperature. Predator-prey body size ratios tend to be higher in freshwater habitats than other types of habitats (<xref ref-type="bibr" rid="bib18">Brose et al., 2006</xref>), and attack rate tends to increase with temperature (<xref ref-type="bibr" rid="bib68">Kalinoski and DeLong, 2016</xref>; <xref ref-type="bibr" rid="bib29">Dam and Peterson, 1988</xref>), although other studies suggest a unimodal response to temperature (<xref ref-type="bibr" rid="bib139">Uiterwaal and Delong, 2020</xref>; <xref ref-type="bibr" rid="bib41">Englund et al., 2011</xref>).</p><p>Predators can also have non-consumptive effects on prey (<xref ref-type="bibr" rid="bib103">Peacor and Werner, 2001</xref>), and these effects are thought to be more pronounced in aquatic ecosystems than in terrestrial ecosystems (<xref ref-type="bibr" rid="bib106">Preisser et al., 2005</xref>). Non-consumptive effects of predators are the result of the prey initiating anti-predator behavioral and/or physiological trait changes that can aid in predator avoidance (<xref ref-type="bibr" rid="bib59">Hermann and Landis, 2017</xref>; <xref ref-type="bibr" rid="bib80">Lima and Dill, 1990</xref>). Such plasticity in certain prey traits may also result in energetic costs (<xref ref-type="bibr" rid="bib81">Lima, 1998</xref>). Predator detection is key for these trait changes to occur and can be mediated by chemical, tactile, and visual cues (<xref ref-type="bibr" rid="bib58">Hermann and Thaler, 2014</xref>). In mosquitoes, exposure to predators is known to affect a variety of traits including behavior, size, development, and survival (<xref ref-type="bibr" rid="bib10">Arav and Blaustein, 2006</xref>; <xref ref-type="bibr" rid="bib17">Bond et al., 2005</xref>; <xref ref-type="bibr" rid="bib114">Roberts, 2012</xref>; <xref ref-type="bibr" rid="bib119">Roux et al., 2015</xref>, <xref ref-type="bibr" rid="bib151">Zuharah et al., 2013</xref>). Experimental observations of predator effects on mosquito size and development are inconsistent and results sometimes vary by mosquito sex. For example, exposure to predation was found to increase the size of <italic>Culex pipiens</italic> mosquitoes (<xref ref-type="bibr" rid="bib2">Alcalay et al., 2018</xref>) but decrease the size of <italic>Culiseta longiareolata</italic> (<xref ref-type="bibr" rid="bib128">Stav et al., 2005</xref>). In addition, female <italic>Aedes triseriatus</italic> exhibited shorter development times when exposed to predation at high nutrient availability (<xref ref-type="bibr" rid="bib100">Ower and Juliano, 2019</xref>), but male <italic>C. longiareolata</italic> had longer development times in the presence of predators (<xref ref-type="bibr" rid="bib128">Stav et al., 2005</xref>). In some cases, a shared evolutionary history between predator and prey organisms can strengthen the non-consumptive effects of predators on mosquitoes (<xref ref-type="bibr" rid="bib21">Buchanan et al., 2017</xref>; <xref ref-type="bibr" rid="bib124">Sih, 1986</xref>).</p><p>This investigation assesses the consumptive and non-consumptive effects of predators on mosquito traits and describes how these effects could impact disease transmission. The roles of vector genus, predator family, mosquito larval instar (an indicator of prey size), and temperature are also examined as potential moderators of predator effects. Non-consumptive effects of predators are expected to cause a smaller reduction in mosquito survival than consumptive effects because, in practice, measures of consumptive effects always include both consumptive and non-consumptive effects. Based on previous findings, larger predators are more likely to consumptively reduce mosquito survival (<xref ref-type="bibr" rid="bib74">Kumar et al., 2008</xref>). In addition, <italic>Aedes</italic> mosquito larvae may be more vulnerable to consumption than other genera because of the high degree of motility observed in this genus (<xref ref-type="bibr" rid="bib35">Dieng et al., 2003</xref>; <xref ref-type="bibr" rid="bib89">Marten and Reid, 2007</xref>; <xref ref-type="bibr" rid="bib126">Soumare and Cilek, 2011</xref>). The oviposition response to predation is expected to be weakest among <italic>Aedes</italic> species that oviposit above the water line, due in part to their delayed-hatching eggs (<xref ref-type="bibr" rid="bib146">Vonesh and Blaustein, 2010</xref>). Predation is predicted to reduce mosquito size and lengthen development time, consistent with the reduced growth response observed in other insect systems (<xref ref-type="bibr" rid="bib59">Hermann and Landis, 2017</xref>). Certain non-consumptive effects of predation, particularly oviposition site selection and decreased vector size, are likely to play important roles in the dynamics of mosquito-borne disease.</p></sec><sec id="s2" sec-type="materials|methods"><title>Materials and methods</title><sec id="s2-1"><title>Literature screening</title><p>A systematic search was conducted for studies on predation of mosquitoes that were published between 1970 and July 1, 2019 using both PubMed and Web of Science search engines, according to the PRISMA protocol (<xref ref-type="bibr" rid="bib93">Moher et al., 2009</xref>). Mosquito vectors of the <italic>Anopheles</italic> and <italic>Aedes</italic> genera were specifically highlighted in our search terms because these genera contain the vector species that transmit malaria, yellow fever, and dengue – the three most deadly mosquito-borne diseases worldwide (<xref ref-type="bibr" rid="bib62">Hill et al., 2005</xref>). Searches included 18 combinations of three vector predation terms (mosquito predat*, <italic>Anopheles</italic> predat*, <italic>Aedes</italic> predat*) and six trait terms (survival, mortality, development, fecundity, dispers*, host preference). Abstracts from the 1136 studies were each screened by two different co-authors, using the ‘metagear’ package in R (<xref ref-type="bibr" rid="bib76">Lajeunesse, 2016</xref>, <xref ref-type="bibr" rid="bib108">R Development Core Team, 2020</xref>). If either screener thought the study had information relevant to predation of mosquitoes, or both screeners thought the abstract was ambiguous, the study was read in full. This resulted in 306 studies that were fully reviewed to determine if any predation data could be extracted (<xref ref-type="fig" rid="fig1">Figure 1</xref>).</p><fig id="fig1" position="float"><label>Figure 1.</label><caption><title>Flowchart demonstrating the literature search, screening process, data exclusions, and the resulting seven different vector trait data subsets.</title></caption><graphic mime-subtype="tiff" mimetype="image" xlink:href="elife-71503.xml.media/elife-71503-fig1.jpg"/></fig></sec><sec id="s2-2"><title>Study exclusion criteria</title><p>Data were extracted from studies that collected data on non-consumptive and/or consumptive effects of predators on mosquitoes. Studies were required to have a mean, error measurement, and at least two replicates for both control and predator treatments. The control treatment was required to have all the same conditions as the predator treatment, such as prey density and type of water, without the predators. Studies that were not published in English and studies that did not differentiate between predators of multiple families were excluded. Studies were also excluded if oviposition by free-flying female mosquitoes could have interfered with observing the consumptive effects of predators on vector survival. The final database comprised data extracted from 60 studies (<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>). The data included observations from laboratory experiments, as well as semi-field experiments, in which mesocosms of different treatments were observed in outdoor settings.</p></sec><sec id="s2-3"><title>Data extraction</title><p>Variables related to the publication, the vector, the predator, and the effect size (<xref ref-type="table" rid="table1">Table 1</xref>) were extracted from each study. Data from tables and text were recorded as they were published, and data from figures were extracted using WebPlotDigitizer (<xref ref-type="bibr" rid="bib116">Rohatgi, 2020</xref>). Error measurements that were not originally presented as standard deviations were converted to standard deviations prior to the effect size calculation.</p><table-wrap id="table1" position="float"><label>Table 1.</label><caption><title>Variables extracted from included studies.</title></caption><table frame="hsides" rules="groups"><thead><tr><th align="left" valign="top">Variable</th><th align="left" valign="top">Description</th></tr></thead><tbody><tr><td align="left" valign="top">Publication data:</td><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Title</td><td align="left" valign="top">Full study title</td></tr><tr><td align="left" valign="top">Journal</td><td align="left" valign="top">Name of journal that published the study</td></tr><tr><td align="left" valign="top">Year</td><td align="left" valign="top">Year of publication</td></tr><tr><td align="left" valign="top">Study environment</td><td align="left" valign="top">Environment where the experiment took place: lab or semi-field</td></tr><tr><td align="left" valign="top"/><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Vector data:</td><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Order, Family, Genus, Species</td><td align="left" valign="top">Taxonomic identification</td></tr><tr><td align="left" valign="top">Trait</td><td align="left" valign="top">Outcome that was measured (e.g. survival, development, etc.)</td></tr><tr><td align="left" valign="top">Stage</td><td align="left" valign="top">Life stage: egg, larva, pupa, or adult</td></tr><tr><td align="left" valign="top">Larval instar</td><td align="left" valign="top">Early (1st and 2nd instars), late (3rd and 4th instars), both, or NA (eggs, pupae, or adults)</td></tr><tr><td align="left" valign="top">Sex</td><td align="left" valign="top">Male or female</td></tr><tr><td align="left" valign="top"/><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Predator data:</td><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Phylum, Class, Order, Family, Genus, Species</td><td align="left" valign="top">Taxonomic identification</td></tr><tr><td align="left" valign="top">Starved</td><td align="left" valign="top">Whether the predator was starved: yes or no</td></tr><tr><td align="left" valign="top">Time starved</td><td align="left" valign="top">Amount of time that the predator was starved (in minutes)</td></tr><tr><td align="left" valign="top">Predation effect</td><td align="left" valign="top">Consumptive or non-consumptive</td></tr><tr><td align="left" valign="top"/><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Effect size data:</td><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Units</td><td align="left" valign="top">Units of extracted data</td></tr><tr><td align="left" valign="top">Control mean</td><td align="left" valign="top">Average of the outcome measured among the controls</td></tr><tr><td align="left" valign="top">Control standard deviation</td><td align="left" valign="top">Standard deviation of the outcome measured in the controls</td></tr><tr><td align="left" valign="top">Control number of replicates</td><td align="left" valign="top">Number of control replicates</td></tr><tr><td align="left" valign="top">Predation mean</td><td align="left" valign="top">Average of the outcome measured in the predator treatment</td></tr><tr><td align="left" valign="top">Predation standard deviation</td><td align="left" valign="top">Standard deviation of the outcome measured in the predator treatment</td></tr><tr><td align="left" valign="top">Predation number of replicates</td><td align="left" valign="top">Number of predation replicates</td></tr><tr><td align="left" valign="top">Experiment ID</td><td align="left" valign="top">Alphabetic assignment to mark observations sharing a control group or representing the same prey individuals as originating from the same experiment</td></tr><tr><td align="left" valign="top"/><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Additional data:</td><td align="left" valign="top"/></tr><tr><td align="left" valign="top">Experiment time (days)</td><td align="left" valign="top">Duration of the experiment in days</td></tr><tr><td align="left" valign="top">Data source</td><td align="left" valign="top">Graph or text</td></tr><tr><td align="left" valign="top">Number of predators</td><td align="left" valign="top">Number of predators with access to prey, or ‘cue’ if there are no predators with direct access to prey</td></tr><tr><td align="left" valign="top">Number of prey (vectors)</td><td align="left" valign="top">Number of mosquito prey that are exposed to predation</td></tr><tr><td align="left" valign="top">Arena volume (mL)</td><td align="left" valign="top">Volume of the arena where prey encounter predators</td></tr><tr><td align="left" valign="top">Time exposed to predator(s)</td><td align="left" valign="top">Amount of time (in days) when the predator has direct access to the mosquito prey</td></tr><tr><td align="left" valign="top">Temperature (°C)</td><td align="left" valign="top">Temperature during the predation interaction</td></tr><tr><td align="left" valign="top">Type of predator cue</td><td align="left" valign="top">Predator cues, or cues from both predator(s) and dying conspecifics; NA for observations with a consumptive predation effect</td></tr></tbody></table></table-wrap></sec><sec id="s2-4"><title>Data exclusions</title><p>A PRISMA plot of literature inclusion and exclusion is provided in <xref ref-type="fig" rid="fig1">Figure 1</xref>. Observations where insecticide was used were excluded because insecticides are known to interfere with consumptive and non-consumptive effects of predators (<xref ref-type="bibr" rid="bib32">Delnat et al., 2019</xref>; <xref ref-type="bibr" rid="bib63">Janssens and Stoks, 2012</xref>). In addition, observations from experiments with mosquito prey of two or more species were excluded because it was not possible to account for effects from apparent competition or prey-switching. Observations of vector fecundity, vector competence, behavioral traits other than oviposition, as well as observations where the vector trait was marked as ‘other’ were not analyzed because each of these traits were only recorded from three or fewer studies.</p><p>Due to protandry, the earlier emergence of males to maximize their reproductive success, mosquitoes respond to sex-specific selective forces that influence their development time and body size (<xref ref-type="bibr" rid="bib71">Kleckner et al., 1995</xref>). Under low resource conditions, female mosquitoes are likely to maximize body mass by extending their development time, whereas males tend to minimize their development time at the expense of lower body mass (<xref ref-type="bibr" rid="bib71">Kleckner et al., 1995</xref>). Observations of mosquito development time and body size in our database that were not sex-specific were excluded so that these vector traits could be analyzed while controlling for sex. In addition, among the observations of development time and body size, some predator means did not necessarily represent an evenly weighted average of the replicates. For example, if a total of 20 mosquitoes from three different predator replicates survived to adulthood, the mean development time and size of those 20 individuals may have been reported. To represent an evenly weighted average of the replicates, it is necessary to first calculate summary statistics among multiple individuals that emerge from the same replicate, and then report the average of the replicate-specific means. Observations that might have been influenced by uneven representation of replicates were excluded to prevent pseudo-replication from altering later meta-analyses.</p><p>For consumptive observations where life stage-specific survival was reported after more than 10 days of predator exposure, only data on survival marked by adult emergence were included for analysis. Effects observed among immature vector stages after such a long period of predator exposure were not analyzed because they could have resulted from a combination of non-consumptive effects on development, and consumptive effects on survival. Development time observations that were reported as the inverse of development time (units of days<sup>–1</sup>) were excluded because although their means could be converted to units of days, their standard deviations could not be converted to match units of days. In cases where multiple body sections of the same mosquitoes were measured to produce multiple size observations, only the wing measurement was included in the analysis to prevent pseudo-replication. Observations in which both the control and the predator treatments had standard deviations of zero were excluded because the meta-analysis methods did not support non-positive sampling variances.</p></sec><sec id="s2-5"><title>Exclusions and data substitutions for predator treatment means of zero</title><p>One study that was included in our database reported egg survival data as the hatch rate of field collected <italic>Culex pervigilans</italic> rafts (<xref ref-type="bibr" rid="bib151">Zuharah et al., 2013</xref>). However, mosquitoes have been shown to lay eggs independent of mating (<xref ref-type="bibr" rid="bib101">O’Meara, 1979</xref>), and hatch rates of zero have previously been observed in rafts laid by <italic>Culex</italic> females that were held separately from males (<xref ref-type="bibr" rid="bib131">Su and Mulla, 1997</xref>). Thus, hatch rates of zero were excluded from further analysis because these values may represent unfertilized egg rafts, rather than a strong impact of predators on survival. Twenty of the 187 consumptive survival observations had a predation mean of zero, and each of these zeros resulted from experiments that began with a specified number of live larvae. Consumptive survival zeros were each replaced with 0.5% of the starting number of mosquito prey to avoid undefined effect sizes. In addition, there was one zero out of the 36 oviposition predation means; this value had units of ‘number of egg rafts laid’ and was replaced with 0.5 rafts. Similar methods for replacing zero values in the treatment mean with small non-zero values have previously been employed (<xref ref-type="bibr" rid="bib134">Thapa et al., 2018</xref>).</p><p>The final analysis dataset included seven subsets: consumptive effects on survival, non-consumptive effects on survival, oviposition, development (female and male), and size (female and male). The data included 187 observations from 34 studies of consumptive survival, 24 observations from seven studies of non-consumptive survival, 36 observations from 12 studies of oviposition, 14 observations from seven studies of female development, 14 observations from seven studies of male development, 27 observations from 10 studies of female size, and 18 observations from nine studies of male size (<xref ref-type="fig" rid="fig1">Figure 1</xref>). These observations covered seven different classes of predator families (<xref ref-type="fig" rid="fig2">Figure 2</xref>).</p><fig id="fig2" position="float"><label>Figure 2.</label><caption><title>Mosquito predator classes (bold font) and families (italicized font) included in the database and the vector traits that they may influence (in parentheses); predator images not to scale, and placed randomly with respect to the different mosquito life stages.</title><p>Image sources: <ext-link ext-link-type="uri" xlink:href="https://phylopic.org/">phylopic.org</ext-link> (CC BY 3.0 or public domain): Actinopterygii (creator: Milton Tan), Arachnida (creators: Sidney Frederic Harmer & Arthur Everett Shipley, vectorized by Maxime Dahirel), Branchiopoda (creator: Africa Gomez), and Insecta (creator: Marie Russell). <ext-link ext-link-type="uri" xlink:href="https://biorender.com/">BioRender.com</ext-link>: Amphibia, Hexanauplia, and Malacostraca class silhouettes; mosquito larval instars, pupa, and blood-feeding adult. Trishna Desai: mosquito egg raft.</p></caption><graphic mime-subtype="tiff" mimetype="image" xlink:href="elife-71503.xml.media/elife-71503-fig2.jpg"/></fig></sec><sec id="s2-6"><title>Data analysis</title><sec id="s2-6-1"><title>Measuring effect sizes and heterogeneity</title><p>All analyses were conducted in R version 4.0.2 (<xref ref-type="bibr" rid="bib108">R Development Core Team, 2020</xref>). For each subset of trait data (<xref ref-type="fig" rid="fig1">Figure 1</xref>), the ratio of means (ROM) measure of effect size was calculated using the ‘escalc’ function from the ‘metafor’ package; this effect measure is equal to a log-transformed fraction, where predation mean is the numerator and control mean is the denominator (<xref ref-type="bibr" rid="bib143">Viechtbauer, 2010</xref>). Random effects models, using the ‘rma.uni’ function, were run with the ROM effect sizes as response variables; each model had a normal error distribution and a restricted maximum likelihood (REML) estimator for τ<sup>2</sup>, the variance of the distribution of true effect sizes (<xref ref-type="bibr" rid="bib143">Viechtbauer, 2010</xref>). Although these random effects models could not account for multiple random effects or moderators, they provided overall estimates of the ROM effect sizes and estimates of the <italic>I</italic><sup>2</sup> statistics. Each <italic>I</italic><sup>2</sup> statistic represented the percentage of total variation across studies due to heterogeneity (<xref ref-type="bibr" rid="bib60">Higgins et al., 2003</xref>). If the <italic>I</italic><sup>2</sup> statistic was equal to or greater than 75%, the heterogeneity was considered to be high (<xref ref-type="bibr" rid="bib60">Higgins et al., 2003</xref>), and high heterogeneity has previously motivated further testing of moderators (<xref ref-type="bibr" rid="bib144">Vincze et al., 2017</xref>).</p></sec><sec id="s2-6-2"><title>Assessing publication bias</title><p>Publication bias was assessed by visually inspecting funnel plots and conducting Egger’s regression test (‘regtest’ function) with standard error as the predictor (<xref ref-type="bibr" rid="bib129">Sterne and Egger, 2001</xref>; <xref ref-type="bibr" rid="bib143">Viechtbauer, 2010</xref>). If the Egger’s regression test showed significant evidence of publication bias based on funnel plot asymmetry, the ‘trim and fill’ method (‘trimfill’ function) was used to estimate how the predation effect size might change after imputing values from missing studies (<xref ref-type="bibr" rid="bib37">Duval and Tweedie, 2000a</xref>, <xref ref-type="bibr" rid="bib38">Duval and Tweedie, 2000b</xref>; <xref ref-type="bibr" rid="bib143">Viechtbauer, 2010</xref>). The trim and fill method has previously been recommended for testing the robustness of conclusions related to topics in ecology and evolution (<xref ref-type="bibr" rid="bib64">Jennions and Møller, 2002</xref>). Of the two trim and fill estimators, R<sub>0</sub> and L<sub>0</sub>, that were originally recommended (<xref ref-type="bibr" rid="bib37">Duval and Tweedie, 2000a</xref>, <xref ref-type="bibr" rid="bib38">Duval and Tweedie, 2000b</xref>), the L<sub>0</sub> estimator was used in this study because it is more appropriate for smaller datasets (<xref ref-type="bibr" rid="bib123">Shi and Lin, 2019</xref>).</p></sec><sec id="s2-6-3"><title>Testing moderators</title><p>Data subsets that had high heterogeneity, observations from at least 10 studies, and no evidence of publication bias according to Egger’s regression results were analyzed further using multilevel mixed effects models with the ‘rma.mv’ function (<xref ref-type="bibr" rid="bib143">Viechtbauer, 2010</xref>; <xref ref-type="bibr" rid="bib61">Higgins et al., 2020</xref>). All multilevel mixed effects models had normal error distributions, REML estimators for τ<sup>2</sup>, and accounted for two random factors: effect size ID, and experiment ID nested within study ID. Moderators, such as predator family, vector genus, larval instar (directly correlated to prey size), and temperature, were tested within each data subset to determine if they affected the observed heterogeneity in ROM effect sizes. For categorical moderators, the intercept of the multilevel mixed effects model was removed, allowing an analysis of variance (ANOVA) referred to as the ‘test of moderators’ to indicate if any of the categories had an effect size different than zero. For data subsets with observations from 10 to 29 studies, only one moderator was tested at a time to account for sample size constraints. For subsets with observations from a higher number of studies (30 or more), up to two moderators were tested at once, and interaction between moderators was also tested. The small sample corrected Akaike Information Criterion (AICc) was used to compare multilevel mixed effects models and to select the model of best fit within each data subset; differences in AICc greater than two were considered meaningful (<xref ref-type="bibr" rid="bib22">Burnham and Anderson, 2004</xref>).</p></sec></sec></sec><sec id="s3" sec-type="results"><title>Results</title><sec id="s3-1"><title>Random effects models</title><p>Each data subset (<xref ref-type="fig" rid="fig1">Figure 1</xref>) had an <italic>I</italic><sup>2</sup> statistic of greater than 75%, indicating high heterogeneity (<xref ref-type="bibr" rid="bib60">Higgins et al., 2003</xref>). Random effects model results showed that predators consumptively decreased mosquito survival with an effect size of –1.23 (95% CI −1.43,–1.03), p-value < 0.0001, and non-consumptively reduced survival with a smaller effect size of –0.11 (95% CI −0.17,–0.04), p-value = 0.0016. In addition, predators non-consumptively reduced oviposition behavior with an effect size of –0.87 (95% CI −1.31,–0.42), p-value = 0.0001, and mosquito body size was non-consumptively reduced by predators in both males and females; the female effect size was –0.13 (95% CI −0.19,–0.06), p-value = 0.0002, and the male effect size was –0.03 (95% CI −0.06,–0.01), p-value = 0.0184. There was not a significant non-consumptive effect of predators on either male or female development time; the female effect size was –0.01 (95% CI –0.09, 0.07), p-value = 0.7901, and the male effect size was –0.04 (95% CI –0.12, 0.04), p-value = 0.3273.</p><p>The Egger’s regression test results showed that the non-consumptive survival subset, both development time subsets (male and female), and the female size subset exhibited funnel plot asymmetry indicative of publication bias. The ‘trim and fill’ procedure identified missing studies in the non-consumptive survival subset and the female size subset, but the procedure did not identify any missing studies in either of the development time subsets. Three studies were estimated to be missing from the non-consumptive survival data, and accounting for imputed values from missing studies resulted in a shift in the predation effect size from –0.11 (95% CI −0.17,–0.04), p-value = 0.0016, to -0.13 (95% CI −0.20,–0.07), p-value < 0.0001. Two studies were estimated to be missing from the female size data, and accounting for imputed values from these missing studies shifted the predation effect size from –0.13 (95% CI −0.19,–0.06), p-value = 0.0002, to -0.10 (95% CI −0.17,–0.03), p-value = 0.0083. Shifts in effect size estimates due to the trim and fill procedure were minor and did not cause any of the observed effects of predators to change direction or become insignificant.</p></sec><sec id="s3-2"><title>Multilevel mixed effects models</title><p>The consumptive survival and oviposition data subsets met the criteria of high heterogeneity, observations from at least 10 studies, and no evidence of publication bias. Therefore, these data subsets were tested for moderators using multilevel mixed effects models. Predator families that decreased mosquito survival included Cyprinidae: –3.44 (95% CI −5.79,–1.09), p-value = 0.0042; Poeciliidae: –1.42 (95% CI −2.67,–0.16), p-value = 0.0270; Ambystomatidae: –5.18 (95% CI −7.94,–2.42), p-value = 0.0002; Aeshnidae: –2.93 (95% CI −4.80,–1.07), p-value = 0.0020; and Notonectidae: –2.14 (95% CI −3.07,–1.21), p-value < 0.0001 (<xref ref-type="fig" rid="fig3">Figure 3a</xref>). Vector genera that experienced significant decreases in survival due to consumptive effects of predators included <italic>Aedes</italic>: –1.23 (95% CI −1.81,–0.65), p-value < 0.0001; <italic>Anopheles</italic>: –1.34 (95% CI −2.01,–0.66), p-value = 0.0001; and <italic>Culex</italic>: –1.41 (95% CI −1.96,–0.86), p-value < 0.0001 (<xref ref-type="fig" rid="fig3">Figure 3b</xref>). Among all 187 consumptive survival observations from 34 studies, the best model fit, according to AICc value, was achieved when an interaction between predator family and vector genus was included in the model (<xref ref-type="table" rid="table2">Table 2</xref>). However, among the 163 larval stage consumptive survival observations from 30 studies, adding an interactive term between larval instar (an indicator of prey size) and predator family had a greater improvement on model fit than adding an interactive term between vector genus and predator family (<xref ref-type="fig" rid="fig3">Figure 3c</xref>, <xref ref-type="table" rid="table3">Table 3</xref>). Temperature did not affect the heterogeneity of consumptive survival data, either as a linear moderator: –0.01 (95% CI –0.10, 0.07), p-value = 0.7559, or a quadratic moderator: 0.00 (95% CI 0.00, 0.00), p-value = 0.8184. The best oviposition model fit, according to AICc value, was achieved when vector genus was added as a moderator (<xref ref-type="table" rid="table4">Table 4</xref>). The mean oviposition effect size was not significantly different than zero for <italic>Aedes</italic>: 0.32 (95% CI –2.14, 2.79), p-value = 0.7970, or <italic>Culiseta</italic>: –0.61 (95% CI –1.83, 0.62), p-value = 0.3329, but for <italic>Culex</italic> mosquitoes, oviposition was significantly decreased by predator presence: –1.69 (95% CI −2.82,–0.56), p-value = 0.0033 (<xref ref-type="fig" rid="fig4">Figure 4</xref>).</p><table-wrap id="table2" position="float"><label>Table 2.</label><caption><title>Candidate multilevel mixed effects models of consumptive effects from predators on mosquito survival, fitted to dataset of effect sizes (n = 187 from 34 studies), and ranked by corrected Akaike’s information criterion (AICc).</title></caption><table frame="hsides" rules="groups"><thead><tr><th align="left" valign="bottom">Moderator(s)</th><th align="left" valign="bottom">Test of moderators(degrees of freedom, p-value)</th><th align="left" valign="bottom">AICc</th><th align="left" valign="bottom">ΔAICc</th></tr></thead><tbody><tr><td align="left" valign="bottom">Predator family x vector genus</td><td align="left" valign="bottom">28, < 0.0001</td><td align="char" char="." valign="bottom">500.5</td><td align="char" char="." valign="bottom">0</td></tr><tr><td align="left" valign="bottom">Predator family</td><td align="left" valign="bottom">19, < 0.0001</td><td align="char" char="." valign="bottom">507.0</td><td align="char" char="." valign="bottom">6.5</td></tr><tr><td align="left" valign="bottom">Predator family + vector genus</td><td align="left" valign="bottom">23, < 0.0001</td><td align="char" char="." valign="bottom">508.1</td><td align="char" char="." valign="bottom">7.6</td></tr><tr><td align="left" valign="bottom">Vector genus</td><td align="left" valign="bottom">5, < 0.0001</td><td align="char" char="." valign="bottom">573.0</td><td align="char" char="." valign="bottom">72.5</td></tr><tr><td align="left" valign="bottom">None</td><td align="char" char="hyphen" valign="bottom">----</td><td align="char" char="." valign="bottom">576.5</td><td align="char" char="." valign="bottom">76.0</td></tr></tbody></table></table-wrap><table-wrap id="table3" position="float"><label>Table 3.</label><caption><title>Candidate multilevel mixed effects models of consumptive effects from predators, fitted to dataset of effect sizes where larval instar is not missing (n = 163 from 30 studies), and ranked by corrected Akaike’s information criterion (AICc).</title></caption><table frame="hsides" rules="groups"><thead><tr><th align="left" valign="bottom">Moderator(s)</th><th align="left" valign="bottom">Test of moderators(degrees of freedom, p-value)</th><th align="left" valign="bottom">AICc</th><th align="left" valign="bottom">ΔAICc</th></tr></thead><tbody><tr><td align="left" valign="bottom">Predator family x larval instar</td><td align="left" valign="bottom">25, < 0.0001</td><td align="char" char="." valign="bottom">429.2</td><td align="char" char="." valign="bottom">0</td></tr><tr><td align="left" valign="bottom">Predator family + larval instar</td><td align="left" valign="bottom">19, < 0.0001</td><td align="char" char="." valign="bottom">443.5</td><td align="char" char="." valign="bottom">14.3</td></tr><tr><td align="left" valign="bottom">Predator family x vector genus</td><td align="left" valign="bottom">25, < 0.0001</td><td align="char" char="." valign="bottom">455.0</td><td align="char" char="." valign="bottom">25.8</td></tr><tr><td align="left" valign="bottom">Predator family</td><td align="left" valign="bottom">17, < 0.0001</td><td align="char" char="." valign="bottom">456.8</td><td align="char" char="." valign="bottom">27.6</td></tr><tr><td align="left" valign="bottom">Predator family + vector genus</td><td align="left" valign="bottom">21, < 0.0001</td><td align="char" char="." valign="bottom">458.4</td><td align="char" char="." valign="bottom">29.2</td></tr><tr><td align="left" valign="bottom">Larval instar</td><td align="left" valign="bottom">3, < 0.0001</td><td align="char" char="." valign="bottom">503.1</td><td align="char" char="." valign="bottom">73.9</td></tr><tr><td align="left" valign="bottom">Vector genus</td><td align="left" valign="bottom">5, < 0.0001</td><td align="char" char="." valign="bottom">504.7</td><td align="char" char="." valign="bottom">75.5</td></tr><tr><td align="left" valign="bottom">None</td><td align="char" char="hyphen" valign="bottom">----</td><td align="char" char="." valign="bottom">508.5</td><td align="char" char="." valign="bottom">79.3</td></tr></tbody></table></table-wrap><table-wrap id="table4" position="float"><label>Table 4.</label><caption><title>Candidate multilevel mixed effects models of non-consumptive effects of predators on mosquito oviposition behavior, fitted to dataset of effect sizes (n = 36 from 12 studies), and ranked by corrected Akaike’s information criterion (AICc).</title></caption><table frame="hsides" rules="groups"><thead><tr><th align="left" valign="bottom">Moderator(s)</th><th align="left" valign="bottom">Test of moderators(degrees of freedom, p-value)</th><th align="left" valign="bottom">AICc</th><th align="left" valign="bottom">ΔAICc</th></tr></thead><tbody><tr><td align="left" valign="bottom">Vector genus</td><td align="char" char="." valign="bottom">3, 0.0149</td><td align="char" char="." valign="bottom">122.1</td><td align="char" char="." valign="bottom">0</td></tr><tr><td align="left" valign="bottom">None</td><td align="char" char="hyphen" valign="bottom">----</td><td align="char" char="." valign="bottom">125.2</td><td align="char" char="." valign="bottom">3.1</td></tr><tr><td align="left" valign="bottom">Predator family</td><td align="char" char="." valign="bottom">12, 0.8855</td><td align="char" char="." valign="bottom">167.9</td><td align="char" char="." valign="bottom">45.8</td></tr></tbody></table></table-wrap><fig id="fig3" position="float"><label>Figure 3.</label><caption><title>Effect sizes and 95 % confidence intervals for consumptive effects of predators, for different categories of moderators (with number of studies in parentheses).</title><p>(<bold>a</bold>) predator family with predator class in the right-hand column, (<bold>b</bold>) vector genus, and (<bold>c</bold>) larval instar.</p></caption><graphic mime-subtype="tiff" mimetype="image" xlink:href="elife-71503.xml.media/elife-71503-fig3.jpg"/></fig><fig id="fig4" position="float"><label>Figure 4.</label><caption><title>Oviposition effect sizes and 95 % confidence intervals for different categories of vector genus (with number of studies in parentheses).</title></caption><graphic mime-subtype="tiff" mimetype="image" xlink:href="elife-71503.xml.media/elife-71503-fig4.jpg"/></fig></sec></sec><sec id="s4" sec-type="discussion"><title>Discussion</title><p>In this study, laboratory and semi-field empirical data were obtained through a systematic literature review and used to conduct a meta-analysis that assessed consumptive and non-consumptive effects of predators on mosquito prey. Some results agree with previously observed trends, such as greater consumptive effects from larger predators (<xref ref-type="bibr" rid="bib74">Kumar et al., 2008</xref>, <xref ref-type="bibr" rid="bib104">Peters, 1983</xref>) and no oviposition response to predator cues among container-breeding <italic>Aedes</italic> mosquitoes (<xref ref-type="bibr" rid="bib146">Vonesh and Blaustein, 2010</xref>). However, this meta-analysis revealed additional trends. Mosquito larval instar had an important role in moderating consumptive effects of predators, likely because of its direct correlation to prey size. Furthermore, a small, but significant, decrease in mosquito survival due to non-consumptive effects of predators was observed, suggesting that mosquitoes can be ‘scared to death’ by predators (<xref ref-type="bibr" rid="bib106">Preisser et al., 2005</xref>). Both male and female body sizes were also reduced among mosquitoes that had been exposed to predators, and predator avoidance during oviposition was observed among female <italic>Culex</italic> mosquitoes. Effects of predators on different vector traits, particularly survival, body size, and oviposition behavior, have the potential to influence infectious disease dynamics.</p><sec id="s4-1"><title>Consumptive effects of predators on survival</title><p>Several larger predators reduced mosquito survival, including freshwater fish (Cyprinidae and Poeciliidae), salamander larvae (Ambystomatidae), dragonfly larvae (Aeshnidae), and backswimmers (Notonectidae) (<xref ref-type="fig" rid="fig3">Figure 3a</xref>). This finding is consistent with a previous analysis which showed a positive linear relationship between predator body mass and ingestion rate across taxa (<xref ref-type="bibr" rid="bib104">Peters, 1983</xref>). In addition, more effect size heterogeneity in the consumptive survival data was explained by an interaction between predator family and larval instar than was explained by an interaction between predator family and vector genus (<xref ref-type="table" rid="table3">Table 3</xref>). This result suggests that the relative sizes of predator and prey groups could play a more important role in determining consumptive mosquito survival than variations in predator responses to different behaviors of prey genera, which are likely to be shaped by the degree of shared evolutionary history between trophic levels (<xref ref-type="bibr" rid="bib21">Buchanan et al., 2017</xref>). Larval instar is an indicator of mosquito size, and previous modeling work has provided evidence of prey size selection by predators to maximize energetic gain (<xref ref-type="bibr" rid="bib92">Mittelbach, 1981</xref>). While smaller cyclopoid copepods are more effective against early instar mosquito larvae (<xref ref-type="bibr" rid="bib34">Dieng et al., 2002</xref>), larger predators including tadpoles, giant water bugs, dragonfly larvae, fish, and backswimmers are more effective against late instar larvae (<xref ref-type="bibr" rid="bib75">Kweka et al., 2011</xref>).</p></sec><sec id="s4-2"><title>Non-consumptive effects of predators on survival</title><p>Exposure to predation cues significantly lowered mosquito survival, and this non-consumptive effect has also been observed in dragonfly larvae prey (<italic>Leucorrhinia intacta</italic>) that were exposed to caged predators (<xref ref-type="bibr" rid="bib90">McCauley et al., 2011</xref>). The reduction in mosquito survival from non-consumptive effects of predators was significantly smaller than the reduction that was observed from consumptive effects. This is partially due to the practical constraints of most experimental designs, which cause consumptive and non-consumptive effects of predators on survival to be grouped together and reported as consumptive effects. The greater impact of combined consumptive and non-consumptive effects, in comparison to only non-consumptive effects, has previously been observed in pea aphids (<italic>Acyrthosiphon pisum</italic>) (<xref ref-type="bibr" rid="bib96">Nelson et al., 2004</xref>).</p></sec><sec id="s4-3"><title>Non-consumptive effects of predators on body size</title><p>While predators did not significantly impact mosquito development time through non-consumptive effects in either sex, mosquito body size was decreased by the non-consumptive effects of predators in both sexes. Smaller body size is associated with lower reproductive success in mosquitoes because smaller females lay fewer eggs (<xref ref-type="bibr" rid="bib16">Blackmore and Lord, 2000</xref>; <xref ref-type="bibr" rid="bib84">Lyimo and Takken, 1993</xref>; <xref ref-type="bibr" rid="bib98">Oliver and Howard, 2011</xref>; <xref ref-type="bibr" rid="bib130">Styer et al., 2007</xref>; <xref ref-type="bibr" rid="bib138">Tsunoda et al., 2010</xref>), and smaller males produce less sperm (<xref ref-type="bibr" rid="bib55">Hatala et al., 2018</xref>; <xref ref-type="bibr" rid="bib105">Ponlawat and Harrington, 2007</xref>). These effects suggest that predation could non-consumptively reduce mosquito population growth. The smaller size of mosquitoes exposed to predators could also limit disease transmission. Vector lifespan contributes disproportionately to disease transmission because older vectors are more likely to have been exposed to pathogens, more likely to already be infectious after having survived the extrinsic incubation period, and more likely to survive long enough to bite subsequent hosts (<xref ref-type="bibr" rid="bib23">Cator et al., 2020</xref>). It is well-established that smaller mosquito body size is associated with shorter mosquito lifespan (<xref ref-type="bibr" rid="bib9">Araújo et al., 2012</xref>; <xref ref-type="bibr" rid="bib56">Hawley, 1985</xref>, <xref ref-type="bibr" rid="bib111">Reisen et al., 1984</xref>; <xref ref-type="bibr" rid="bib112">Reiskind and Lounibos, 2009</xref>; <xref ref-type="bibr" rid="bib149">Xue et al., 2010</xref>). Therefore, non-consumptive effects of predators may limit the transmission of mosquito-borne diseases.</p></sec><sec id="s4-4"><title>Non-consumptive effects of predators on oviposition behavior</title><p>Predator presence also non-consumptively reduced oviposition behavior in adult female mosquitoes. Meta-regression results showed that <italic>Culex</italic> females significantly avoid oviposition sites that contain predators or predator cues, but <italic>Aedes</italic> and <italic>Culiseta</italic> females do not avoid these sites, despite a slight non-significant trend toward predator avoidance in <italic>Culiseta</italic> (<xref ref-type="fig" rid="fig4">Figure 4</xref>). Both <italic>Culex</italic> and <italic>Culiseta</italic> mosquitoes have an ‘all-or-none’ oviposition strategy (<xref ref-type="bibr" rid="bib66">Johnson and Fonseca, 2014</xref>), in which they lay hundreds of rapidly hatching eggs in rafts on the water’s surface (<xref ref-type="bibr" rid="bib30">Day, 2016</xref>). Such an oviposition strategy is conducive to evolving predator avoidance behaviors, and a previous meta-analysis showed significant predator avoidance in both <italic>Culex</italic> and <italic>Culiseta</italic> during oviposition (<xref ref-type="bibr" rid="bib146">Vonesh and Blaustein, 2010</xref>). Conversely, it is likely that an oviposition response to predation is not particularly advantageous for <italic>Aedes</italic> because the delayed hatching of their eggs (<xref ref-type="bibr" rid="bib30">Day, 2016</xref>) can prevent the level of predation risk at the time of oviposition from matching the level of predation risk present in the eventual larval environment (<xref ref-type="bibr" rid="bib146">Vonesh and Blaustein, 2010</xref>). The predator avoidance response in <italic>Aedes</italic> species that lay their eggs above the water’s edge in containers has previously been described as ‘non-existent’ (<xref ref-type="bibr" rid="bib146">Vonesh and Blaustein, 2010</xref>). Both <italic>Aedes</italic> species included in this study’s oviposition data subset, <italic>Ae. albopictus</italic> and <italic>Ae. aegypti</italic>, meet the criterion of ovipositing above water in containers (<xref ref-type="bibr" rid="bib67">Juliano, 2009</xref>). Predator avoidance during oviposition has previously been found to increase the mosquito population size at equilibrium (<xref ref-type="bibr" rid="bib127">Spencer et al., 2002</xref>). However, this study’s results and those of a previous meta-analysis (<xref ref-type="bibr" rid="bib146">Vonesh and Blaustein, 2010</xref>) suggest that models of oviposition site selection, such as those using parameters from Notonectidae predators and <italic>Culiseta</italic> prey (<xref ref-type="bibr" rid="bib70">Kershenbaum et al., 2012</xref>), are not generalizable to <italic>Aedes</italic> vectors.</p></sec><sec id="s4-5"><title>Implications for West Nile Virus disease dynamics</title><p>Predator avoidance during oviposition by <italic>Culex</italic> mosquitoes (<xref ref-type="fig" rid="fig4">Figure 4</xref>) may be of particular importance to West Nile virus (WNV) disease dynamics. Previous work has shown that <italic>Cx. pipiens</italic>, <italic>Cx. restuans</italic>, and <italic>Cx. tarsalis</italic> all avoid predator habitats (<xref ref-type="bibr" rid="bib146">Vonesh and Blaustein, 2010</xref>), and that <italic>Cx. pipiens</italic> is the primary bridge vector of WNV responsible for spill-over transmission from avian reservoir hosts to humans (<xref ref-type="bibr" rid="bib44">Fonseca et al., 2004</xref>; <xref ref-type="bibr" rid="bib51">Hamer et al., 2008a</xref>, <xref ref-type="bibr" rid="bib72">Kramer et al., 2008</xref>; <xref ref-type="bibr" rid="bib8">Andreadis, 2012</xref>). <italic>Cx. pipiens</italic> mosquitoes can live in permanent aquatic environments, such as ground pools (<xref ref-type="bibr" rid="bib3">Amini et al., 2020</xref>; <xref ref-type="bibr" rid="bib11">Barr, 1967</xref>; <xref ref-type="bibr" rid="bib33">Dida et al., 2018</xref>; <xref ref-type="bibr" rid="bib133">Sulesco et al., 2015</xref>), ponds (<xref ref-type="bibr" rid="bib83">Lühken et al., 2015</xref>), stream edges (<xref ref-type="bibr" rid="bib3">Amini et al., 2020</xref>), and lake edges (<xref ref-type="bibr" rid="bib145">Vinogradova, 2000</xref>) that are more common in rural areas, but <italic>Cx. pipiens</italic> are also found in urban and suburban residential areas, where they typically breed in artificial containers (<xref ref-type="bibr" rid="bib133">Sulesco et al., 2015</xref>), including tires (<xref ref-type="bibr" rid="bib83">Lühken et al., 2015</xref>; <xref ref-type="bibr" rid="bib97">Nikookar et al., 2017</xref>; <xref ref-type="bibr" rid="bib140">Verna, 2015</xref>), rainwater tanks (<xref ref-type="bibr" rid="bib136">Townroe and Callaghan, 2014</xref>), and catch basins (<xref ref-type="bibr" rid="bib45">Gardner et al., 2012</xref>). Small artificial containers, such as discarded tires, are generally unlikely to harbor larger predators, including freshwater fish (Cyprinidae and Poeciliidae), salamander larvae (Ambystomatidae), dragonfly larvae (Aeshnidae), and backswimmers (Notonectidae), because temporary aquatic environments cannot support the relatively long development times of these organisms. The mean dispersal distance of adult <italic>Culex</italic> mosquitoes is greater than one kilometer (<xref ref-type="bibr" rid="bib27">Ciota et al., 2012</xref>; <xref ref-type="bibr" rid="bib53">Hamer et al., 2014</xref>), and female <italic>Cx. pipiens</italic> have exhibited longer dispersal distances after developing in the presence of a fish predator (<xref ref-type="bibr" rid="bib2">Alcalay et al., 2018</xref>). Therefore, predator avoidance during oviposition may cause <italic>Cx. pipiens</italic> populations to disperse from permanent aquatic environments in more rural areas to artificial container environments in urbanized areas, where the risk of human WNV infection is higher (<xref ref-type="bibr" rid="bib19">Brown et al., 2008</xref>).</p><p>Predator cue levels may be altered by climate conditions, and these changes in cue levels can impact WNV transmission to humans. Drought has previously been associated with human WNV cases (<xref ref-type="bibr" rid="bib65">Johnson and Sukhdeo, 2013</xref>; <xref ref-type="bibr" rid="bib86">Marcantonio et al., 2015</xref>; <xref ref-type="bibr" rid="bib115">Roehr, 2012</xref>; <xref ref-type="bibr" rid="bib122">Shaman et al., 2005</xref>; <xref ref-type="bibr" rid="bib42">Epstein and Defilippo, 2001</xref>; <xref ref-type="bibr" rid="bib102">Paull et al., 2017</xref>), but the association has thus far lacked a clear underlying mechanism. Under drought conditions, the density of aquatic organisms increases and predation pressures can intensify due to compressed space and high encounter rates (<xref ref-type="bibr" rid="bib4">Amundrud et al., 2019</xref>). A previous study of a stream ecosystem found that impacts of fish predation are more severe during the dry season (<xref ref-type="bibr" rid="bib36">Dudgeon, 1993</xref>). In addition, reductions in water volume can facilitate consumption of mosquito larvae by crane fly larvae (Tipulidae), whereas mosquito consumption by tipulids was not observed at a higher water level (<xref ref-type="bibr" rid="bib4">Amundrud et al., 2019</xref>). Laboratory and semi-field studies have shown that mosquitoes respond to a gradient of predator cues (<xref ref-type="bibr" rid="bib118">Roux et al., 2014</xref>; <xref ref-type="bibr" rid="bib125">Silberbush and Blaustein, 2011</xref>). The frequency of larval anti-predator behavior is correlated with the concentration of predator cues (<xref ref-type="bibr" rid="bib118">Roux et al., 2014</xref>), and adult female mosquitoes prefer oviposition sites with lower predator densities (<xref ref-type="bibr" rid="bib125">Silberbush and Blaustein, 2011</xref>). Therefore, as predator cue levels increase due to drought, permanent aquatic habitats are likely to transition from suitable oviposition sites for one generation of female mosquitoes, to unsuitable oviposition sites for the next generation.</p><p>When suitable oviposition sites are absent, females retain their eggs until sites become available (<xref ref-type="bibr" rid="bib15">Bentley and Day, 1989</xref>). <italic>Cx. pipiens</italic> females can retain their eggs for up to five weeks, allowing them enough time to find container sites with low predation risk, often located in residential areas (<xref ref-type="bibr" rid="bib66">Johnson and Fonseca, 2014</xref>). The movement of gravid female <italic>Cx. pipiens</italic> to residential areas increases the risk of WNV spill-over to humans because these vectors are likely to have already blood-fed at least once (<xref ref-type="bibr" rid="bib28">Clements, 1992</xref>), suggesting that they have a higher risk of WNV infection, relative to non-gravid mosquitoes. This is consistent with studies that have reported associations between drought and WNV-infected mosquitoes in urban and residential areas (<xref ref-type="bibr" rid="bib65">Johnson and Sukhdeo, 2013</xref>; <xref ref-type="bibr" rid="bib102">Paull et al., 2017</xref>). In addition, vertical transmission of WNV from gravid females to their progeny may occur during oviposition (<xref ref-type="bibr" rid="bib117">Rosen, 1988</xref>), when the virus is transmitted by an accessory gland fluid that attaches eggs to one another (<xref ref-type="bibr" rid="bib95">Nelms et al., 2013</xref>). Because the rate of vertical transmission in <italic>Cx. pipiens</italic> increases with the number of days following WNV infection (<xref ref-type="bibr" rid="bib7">Anderson et al., 2008</xref>), extended searches for oviposition sites due to drought could increase the frequency of vertical transmission. However, the impact of vertical transmission on WNV epidemics is thought to be minimal because when transmission to an egg raft did occur, only 4.7% of the progeny were found to be infected as adults (<xref ref-type="bibr" rid="bib7">Anderson et al., 2008</xref>), and only about half of those infected adults are estimated to be female. In summary, the movement of <italic>Cx. pipiens</italic> females toward more residential areas, combined with potential limited WNV amplification from increased vertical transmission, suggests that the vector trait of predator avoidance during oviposition can serve as a plausible explanation for associations between drought and human WNV cases.</p><p>Another theory for the association between drought and human WNV cases is based on the hypothesis that increased contact between mosquito vectors and passerine reservoir hosts occurs during drought conditions (<xref ref-type="bibr" rid="bib102">Paull et al., 2017</xref>; <xref ref-type="bibr" rid="bib122">Shaman et al., 2005</xref>). The proposed aggregation of bird and mosquito populations during drought was originally thought to occur in humid, densely vegetated hammocks – a type of habitat that is specific to southern Florida (<xref ref-type="bibr" rid="bib122">Shaman et al., 2005</xref>), but WNV incidence is more consistently clustered in other regions of the US, particularly the Northern Great Plains (<xref ref-type="bibr" rid="bib24">CENTERS FOR DISEASE CONTROL AND PREVENTION, 2021</xref>; <xref ref-type="bibr" rid="bib132">Sugumaran et al., 2009</xref>). Northern cardinals (<italic>Cardinalis cardinalis</italic>), American robins (<italic>Turdus migratorius</italic>), and house sparrows (<italic>Passer domesticus</italic>) were among the bird species that most frequently tested seropositive for WNV antibodies in 2005 and 2006 in Chicago, where high numbers of human cases were reported (<xref ref-type="bibr" rid="bib52">Hamer et al., 2008b</xref>), and these passerine species are more abundant in residential areas, regardless of precipitation patterns (<xref ref-type="bibr" rid="bib6">Anderson, 2006b</xref>; <xref ref-type="bibr" rid="bib13">Beddall, 1963</xref>; <xref ref-type="bibr" rid="bib79">Lepczyk et al., 2008</xref>). Apart from drought, landowners’ participation in supplemental bird feeding, providing bird houses, gardening, and maintaining vegetation can strongly influence passerine abundance in residential areas (<xref ref-type="bibr" rid="bib78">Lepczyk et al., 2004</xref>). Furthermore, as terrestrial foragers that can obtain hydration from their diet of insects, fruits, and other plant material (<xref ref-type="bibr" rid="bib5">Anderson, 2006a</xref>; <xref ref-type="bibr" rid="bib20">Brzek et al., 2009</xref>; <xref ref-type="bibr" rid="bib85">Malmborg and Willson, 1988</xref>; <xref ref-type="bibr" rid="bib113">Renne et al., 2000</xref>), passerine reservoir hosts of WNV are less likely to move in response to drought than the mosquito vectors of WNV, which have obligate aquatic life stages.</p><p>While hatch-year birds are more vulnerable to mosquito biting, and thus contribute to the amplification of WNV (<xref ref-type="bibr" rid="bib52">Hamer et al., 2008b</xref>), it is illogical to expect an increased abundance of hatch-year birds during drought conditions. However, some have argued that in cases where drought decreases the abundance of juvenile birds, the ratio of mosquitoes to birds increases, and this could lead to higher WNV prevalence in the mosquito population (<xref ref-type="bibr" rid="bib102">Paull et al., 2017</xref>). Although reductions in both hatching success (<xref ref-type="bibr" rid="bib46">George et al., 1992</xref>) and survival of recently fledged birds (<xref ref-type="bibr" rid="bib150">Yackel Adams et al., 2006</xref>) have been observed during drought conditions, the impact of drought on avian abundance varies widely by species (<xref ref-type="bibr" rid="bib141">Verner and Purcell, 1999</xref>). In particular, synanthropic species, such as those likely to harbor WNV, are less negatively affected by drought (<xref ref-type="bibr" rid="bib1">Albright et al., 2009</xref>). Additionally, the droughts that impact avian abundance often occur over much longer periods of time than the seasonal droughts that predict WNV transmission to humans. For example, avian abundance has been modeled based on precipitation metrics spanning 32 weeks, and house wren (<italic>Troglodytes aedon</italic>) abundance has been predicted by precipitation averages spanning four years (<xref ref-type="bibr" rid="bib141">Verner and Purcell, 1999</xref>). Finally, birds with higher levels of stress hormones are more likely to be fed on by mosquitoes, and certain factors associated with residential areas, such as road noise, light pollution, and pesticide exposure, can cause avian stress (<xref ref-type="bibr" rid="bib47">Gervasi et al., 2016</xref>). Therefore, elevated avian stress hormones in these habitats may contribute to WNV prevalence in the mosquito population, independent of drought conditions.</p></sec><sec id="s4-6"><title>Implications for mosquito-borne disease modeling</title><p>Although the aquatic phase of the mosquito life cycle is often overlooked in mathematical models of mosquito-borne pathogen transmission (<xref ref-type="bibr" rid="bib110">Reiner et al., 2013</xref>), vector survival at immature stages plays an important role in determining mosquito population abundance, which is an essential factor for predicting disease transmission (<xref ref-type="bibr" rid="bib12">Beck-Johnson et al., 2013</xref>). The results of this study show that mosquito survival decreases among the <italic>Aedes</italic>, <italic>Anopheles</italic>, and <italic>Culex</italic> genera due to consumptive effects of predators (<xref ref-type="fig" rid="fig3">Figure 3b</xref>), and that there is also a reduction in mosquito survival due to non-consumptive effects. Other studies have demonstrated that aquatic predators dramatically impact mosquito survival and abundance. For example, a biocontrol intervention relying on the application of copepod predators eliminated <italic>Aedes albopictus</italic> from three communes in Nam Dinh, Vietnam, where dengue transmission was previously detected, and reduced vector abundance by 86–98% in three other communes (<xref ref-type="bibr" rid="bib69">Kay et al., 2002</xref>). Conversely, the annual abundance of <italic>Culex</italic> and <italic>Anopheles</italic> mosquitoes was observed to increase 15-fold in semi-permanent wetlands in the year following a drought, likely because the drought eliminated aquatic predators from wetlands that dried completely, and mosquitoes were able to re-colonize newly formed aquatic habitats more quickly than their most effective predators (<xref ref-type="bibr" rid="bib26">Chase and Knight, 2003</xref>).</p><p>While relationships between temperature and different vector traits, such as fecundity and lifespan, have been incorporated into models of temperature effects on mosquito population density (<xref ref-type="bibr" rid="bib40">El Moustaid and Johnson, 2019</xref>), models of predator effects on vector borne disease transmission have focused primarily on the impacts of predation on vector survival. Previous models have shown that predators of vector species can decrease or eliminate pathogen infection in host populations as vector fecundity increases (<xref ref-type="bibr" rid="bib94">Moore et al., 2010</xref>). The findings of this meta-analysis suggest that predators also decrease vector fecundity through non-consumptive effects on vector body size. In addition, the entomological inoculation rate (EIR) is likely to be reduced by effects of predators on mosquito fecundity and lifespan, as well as effects of predators on mosquito survival. The EIR has been defined as the product of three variables: (<italic>m</italic>) the number of mosquitoes per host, (<italic>a</italic>) the daily rate of mosquito biting, and (<italic>s</italic>) the proportion of mosquitoes that are infectious (<xref ref-type="bibr" rid="bib12">Beck-Johnson et al., 2013</xref>). Based on this study’s findings, predators are likely to decrease the number of mosquitoes per host by reducing mosquito survival through both consumptive and non-consumptive effects, and by reducing mosquito fecundity through non-consumptive effects on body size. In addition, predators are likely to decrease the proportion of mosquitoes that are infectious by shortening the vector lifespan through non-consumptive effects on body size. The relationship between mosquito body size and biting rate is unclear, with some studies showing higher biting rates among larger mosquitoes (<xref ref-type="bibr" rid="bib9">Araújo et al., 2012</xref>; <xref ref-type="bibr" rid="bib50">Gunathilaka et al., 2019</xref>), and others reporting higher biting rates among smaller mosquitoes (<xref ref-type="bibr" rid="bib43">Farjana and Tuno, 2013</xref>; <xref ref-type="bibr" rid="bib77">Leisnham et al., 2008</xref>). The links between factors that influence the EIR and observed effects of predators on mosquito prey demonstrate the necessity of including both consumptive and non-consumptive effects of predators in models of mosquito-borne disease.</p></sec><sec id="s4-7"><title>Conclusion</title><p>This meta-analysis on mosquito predation demonstrates that predators not only play an important role in directly reducing mosquito populations, but also have non-consumptive effects on surviving mosquitoes that may ultimately reduce further population growth and decrease disease transmission. While families of larger sized predators were effective in reducing mosquito survival, other factors, such as impacts on native species, as well as the economic cost of mass-rearing and field applications (<xref ref-type="bibr" rid="bib73">Kumar and Hwang, 2006</xref>; <xref ref-type="bibr" rid="bib107">Pyke, 2008</xref>), should be carefully considered before selecting a predator as a suitable biocontrol agent. Predictive disease models are likely to be more reliable when the non-consumptive effects of predation are incorporated. Although exposure of mosquito larvae to predators is commonplace in outdoor field settings, it remains rare in most laboratory-based assessments of vector traits. Therefore, mosquitoes observed in nature are likely to have smaller body sizes than those observed under optimal laboratory conditions. It is important for disease modelers to recognize these impacts of predation on vector traits as they can reduce mosquito population growth and limit disease transmission due to shorter vector lifespans. Within the WNV disease system, consideration of the oviposition behavioral response to predation cues by <italic>Culex</italic> vectors can improve current understanding of the association between drought and human cases. This study provides general estimates of the effects of predators on selected mosquito traits for use in predictive disease models.</p></sec><sec id="s4-8"><title>Future directions</title><p>Modeling efforts that aim to optimize the application of biocontrol predators should also consider incorporating predator effects on vector survival, fecundity, and lifespan. These additions to predictive models of various biocontrol interventions are likely to help public health officials choose the most cost-effective strategies for limiting disease transmission. In the 60-study database that was compiled, only one study was designed to directly measure the effect of larval-stage predation on vector competence (<xref ref-type="bibr" rid="bib119">Roux et al., 2015</xref>). Therefore, future efforts to assess the impact of predators on mosquito-borne disease transmission should prioritize experimental studies in which infected mosquito larvae are observed throughout an initial period of aquatic exposure to predators, followed by a period of blood-feeding in the adult stage.</p><p>Two studies from the compiled database examined the compatibility of predators with <italic>Bacillus thuringiensis</italic> var. <italic>israelensis</italic> (<italic>Bti</italic>), a commonly used bacterial biocontrol agent (<xref ref-type="bibr" rid="bib25">Chansang et al., 2004</xref>; <xref ref-type="bibr" rid="bib99">Op de Beeck et al., 2016</xref>). Previous studies have supported the simultaneous application of cyclopoid copepod predators and <italic>Bti</italic> (<xref ref-type="bibr" rid="bib88">Marten et al., 1993</xref>; <xref ref-type="bibr" rid="bib135">Tietze et al., 1994</xref>), but additional analyses are needed on the use of <italic>Bti</italic> with other families of mosquito predators. Populations of other insect pests, such as the southern green stink bug (<italic>Nezara viridula</italic>), are known to be regulated by both predators and parasites (<xref ref-type="bibr" rid="bib39">Ehler, 2002</xref>). The literature search conducted for this meta-analysis returned studies on water mite parasites (<xref ref-type="bibr" rid="bib109">Rajendran and Prasad, 1994</xref>) and nematode parasitoids (<xref ref-type="bibr" rid="bib31">de Valdez, 2006</xref>) of mosquitoes, and ascogregarine parasites have previously been evaluated as biocontrol agents against <italic>Aedes</italic> mosquitoes (<xref ref-type="bibr" rid="bib137">Tseng, 2007</xref>). A more thorough review of the impacts of parasites and parasitoids on vector traits, such as survival, fecundity, and lifespan, is needed before incorporating these potential biocontrol agents into integrated vector control plans.</p><p>Three studies in the 60-study database included experiments where two mosquito prey species were made available to the predator species (<xref ref-type="bibr" rid="bib48">Grill and Juliano, 1996</xref>; <xref ref-type="bibr" rid="bib49">Griswold and Lounibos, 2005</xref>, <xref ref-type="bibr" rid="bib91">Micieli et al., 2002</xref>). In these cases, the effect size measurement for each mosquito species could be influenced by interspecific competition, or a preference of the predator species for a certain prey species. Hetero-specific prey observations were excluded from this meta-analysis, but future analyses centered on the concepts of interspecific competition or predator preferences might further evaluate these data. In addition, this meta-analysis investigated consumptive and non-consumptive effects of predators separately. More research is needed to determine how models should combine these different types of predator effects to accurately reflect predation interactions as they occur in natural environments.</p></sec></sec></body><back><sec id="s5" sec-type="additional-information"><title>Additional information</title><fn-group content-type="competing-interest"><title>Competing interests</title><fn fn-type="COI-statement" id="conf1"><p>No competing interests declared</p></fn><fn fn-type="COI-statement" id="conf2"><p>No competing interests declared</p></fn></fn-group><fn-group content-type="author-contribution"><title>Author contributions</title><fn fn-type="con" id="con1"><p>Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing – original draft, Writing – review and editing</p></fn><fn fn-type="con" id="con2"><p>Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Validation, Visualization, Writing – review and editing</p></fn><fn fn-type="con" id="con3"><p>Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Writing – review and editing</p></fn><fn fn-type="con" id="con4"><p>Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Writing – review and editing</p></fn><fn fn-type="con" id="con5"><p>Conceptualization, Data curation, Writing – review and editing</p></fn><fn fn-type="con" id="con6"><p>Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Writing – review and editing</p></fn><fn fn-type="con" id="con7"><p>Conceptualization, Data curation, Visualization, Writing – review and editing</p></fn><fn fn-type="con" id="con8"><p>Conceptualization, Data curation, Supervision, Writing – review and editing</p></fn><fn fn-type="con" id="con9"><p>Conceptualization, Data curation, Supervision, Writing – review and editing</p></fn><fn fn-type="con" id="con10"><p>Conceptualization, Supervision, Writing – review and editing</p></fn><fn fn-type="con" id="con11"><p>Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Validation, Visualization, Writing – review and editing</p></fn></fn-group></sec><sec id="s6" sec-type="supplementary-material"><title>Additional files</title><supplementary-material id="supp1"><label>Supplementary file 1.</label><caption><title>Table 1: Publications included in the database and their types of vector trait data.</title></caption><media mime-subtype="docx" mimetype="application" xlink:href="elife-71503-supp1-v1.docx"/></supplementary-material><supplementary-material id="transrepform"><label>Transparent reporting form</label><media mime-subtype="pdf" mimetype="application" xlink:href="elife-71503-transrepform1-v1.pdf"/></supplementary-material></sec><sec id="s7" sec-type="data-availability"><title>Data availability</title><p>The database can be accessed here: <ext-link ext-link-type="uri" xlink:href="https://doi.org/10.5061/dryad.4qrfj6q9x">https://doi.org/10.5061/dryad.4qrfj6q9x</ext-link>. The R code file, showing all analyses, can be accessed here: <ext-link ext-link-type="uri" xlink:href="https://doi.org/10.5281/zenodo.5790092">https://doi.org/10.5281/zenodo.5790092</ext-link>.</p><p>The following dataset was generated:</p><p><element-citation id="dataset1" publication-type="data" specific-use="isSupplementedBy"><person-group person-group-type="author"><name><surname>Russell</surname><given-names>MC</given-names></name><name><surname>Herzog</surname><given-names>CM</given-names></name><name><surname>Gajewski</surname><given-names>Z</given-names></name><name><surname>Ramsay</surname><given-names>C</given-names></name><name><surname>El Moustaid</surname><given-names>F</given-names></name><name><surname>Evans</surname><given-names>M</given-names></name><name><surname>Desai</surname><given-names>T</given-names></name><name><surname>Gottdenker</surname><given-names>N</given-names></name><name><surname>Hermann</surname><given-names>S</given-names></name><name><surname>Power</surname><given-names>A</given-names></name><name><surname>McCall</surname><given-names>A</given-names></name></person-group><year iso-8601-date="2021">2021</year><data-title>Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission</data-title><source>Dryad Digital Repository</source><pub-id pub-id-type="doi">10.5061/dryad.4qrfj6q9x</pub-id></element-citation></p></sec><ack id="ack"><title>Acknowledgements</title><p>We are grateful to Dr. Lauren Cator for facilitating the early stages of this project and helping to edit this manuscript. We also thank Dr. Peter Hudson for his helpful advice in early discussions about the project’s aims. In addition, we thank all members of the VectorBiTE RCN (<ext-link ext-link-type="uri" xlink:href="https://vectorbite.org/">https://vectorbite.org/</ext-link>) for taking the initiative to forge productive collaborations between empiricists and modelers in vector ecology. This work was funded by NIH grant 1R01AI122284-01 and BBSRC grant BB/N013573/1 as part of the joint (NIH-NSF-USDA-BBSRC) Ecology and Evolution of Infectious Diseases program. It was also funded by a President’s PhD Scholarship from Imperial College London awarded to Marie C Russell.</p></ack><ref-list><title>References</title><ref id="bib1"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Albright</surname><given-names>TP</given-names></name><name><surname>Pidgeon</surname><given-names>AM</given-names></name><name><surname>Rittenhouse</surname><given-names>CD</given-names></name><name><surname>Clayton</surname><given-names>MK</given-names></name><name><surname>Flather</surname><given-names>CH</given-names></name><name><surname>Culbert</surname><given-names>PD</given-names></name><name><surname>Wardlow</surname><given-names>BD</given-names></name><name><surname>Radeloff</surname><given-names>VC</given-names></name></person-group><year iso-8601-date="2009">2009</year><article-title>Effects of drought on avian community structure</article-title><source>Global Change Biology</source><volume>16</volume><fpage>2158</fpage><lpage>2170</lpage><pub-id pub-id-type="doi">10.1111/j.1365-2486.2009.02120.x</pub-id></element-citation></ref><ref id="bib2"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Alcalay</surname><given-names>Y</given-names></name><name><surname>Tsurim</surname><given-names>I</given-names></name><name><surname>Ovadia</surname><given-names>O</given-names></name></person-group><year iso-8601-date="2018">2018</year><article-title>Female mosquitoes disperse further when they develop under predation risk</article-title><source>Behavioral Ecology</source><volume>29</volume><fpage>1402</fpage><lpage>1408</lpage><pub-id pub-id-type="doi">10.1093/beheco/ary113</pub-id></element-citation></ref><ref id="bib3"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Amini</surname><given-names>M</given-names></name><name><surname>Hanafi-Bojd</surname><given-names>AA</given-names></name><name><surname>Aghapour</surname><given-names>AA</given-names></name><name><surname>Chavshin</surname><given-names>AR</given-names></name></person-group><year iso-8601-date="2020">2020</year><article-title>Larval habitats and species diversity of mosquitoes (Diptera: Culicidae) in West Azerbaijan Province, Northwestern Iran</article-title><source>BMC ecology</source><volume>20</volume><elocation-id>60</elocation-id><pub-id pub-id-type="doi">10.1186/s12898-020-00328-0</pub-id><pub-id pub-id-type="pmid">33213441</pub-id></element-citation></ref><ref id="bib4"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Amundrud</surname><given-names>SL</given-names></name><name><surname>Clay-Smith</surname><given-names>SA</given-names></name><name><surname>Flynn</surname><given-names>BL</given-names></name><name><surname>Higgins</surname><given-names>KE</given-names></name><name><surname>Reich</surname><given-names>MS</given-names></name><name><surname>Wiens</surname><given-names>DRH</given-names></name><name><surname>Srivastava</surname><given-names>DS</given-names></name></person-group><year iso-8601-date="2019">2019</year><article-title>Drought alters the trophic role of an opportunistic generalist in an aquatic ecosystem</article-title><source>Oecologia</source><volume>189</volume><fpage>733</fpage><lpage>744</lpage><pub-id pub-id-type="doi">10.1007/s00442-019-04343-x</pub-id><pub-id pub-id-type="pmid">30697643</pub-id></element-citation></ref><ref id="bib5"><element-citation publication-type="book"><person-group person-group-type="author"><name><surname>Anderson</surname><given-names>TR</given-names></name></person-group><year iso-8601-date="2006">2006a</year><source>Chapter 6: Foraging Behavior and Food. Biology of the Ubiquitous House Sparrow: From Genes to Populations</source><publisher-loc>New York</publisher-loc><publisher-name>Oxford University Press</publisher-name><pub-id pub-id-type="doi">10.1093/acprof:oso/9780195304114.001.0001</pub-id></element-citation></ref><ref id="bib6"><element-citation publication-type="book"><person-group person-group-type="author"><name><surname>Anderson</surname><given-names>TR</given-names></name></person-group><year iso-8601-date="2006">2006b</year><source>Chapter 10: Human Commensalism and Pest Management. Biology of the Ubiquitous House Sparrow: From Genes to Populations</source><publisher-loc>New York</publisher-loc><publisher-name>Oxford University Press</publisher-name><pub-id pub-id-type="doi">10.1093/acprof:oso/9780195304114.001.0001</pub-id></element-citation></ref><ref id="bib7"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Anderson</surname><given-names>JF</given-names></name><name><surname>Main</surname><given-names>AJ</given-names></name><name><surname>Delroux</surname><given-names>K</given-names></name><name><surname>Fikrig</surname><given-names>E</given-names></name></person-group><year iso-8601-date="2008">2008</year><article-title>Extrinsic incubation periods for horizontal and vertical transmission of West Nile virus by Culex pipiens pipiens (Diptera: Culicidae)</article-title><source>Journal of medical entomology</source><volume>45</volume><fpage>445</fpage><lpage>451</lpage><pub-id pub-id-type="doi">10.1603/0022-2585(2008)45[445:eipfha]2.0.co;2</pub-id><pub-id pub-id-type="pmid">18533438</pub-id></element-citation></ref><ref id="bib8"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Andreadis</surname><given-names>TG</given-names></name></person-group><year iso-8601-date="2012">2012</year><article-title>The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America</article-title><source>Journal of the American Mosquito Control Association</source><volume>28</volume><fpage>137</fpage><lpage>151</lpage><pub-id pub-id-type="doi">10.2987/8756-971X-28.4s.137</pub-id><pub-id pub-id-type="pmid">23401954</pub-id></element-citation></ref><ref id="bib9"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Araújo</surname><given-names>M</given-names></name><name><surname>Gil</surname><given-names>LHS</given-names></name><name><surname>e-Silva</surname><given-names>A</given-names></name></person-group><year iso-8601-date="2012">2012</year><article-title>Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions</article-title><source>Malaria Journal</source><volume>11</volume><elocation-id>261</elocation-id><pub-id pub-id-type="doi">10.1186/1475-2875-11-261</pub-id><pub-id pub-id-type="pmid">22856645</pub-id></element-citation></ref><ref id="bib10"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Arav</surname><given-names>D</given-names></name><name><surname>Blaustein</surname><given-names>L</given-names></name></person-group><year iso-8601-date="2006">2006</year><article-title>Effects of pool depth and risk of predation on oviposition habitat selection by temporary pool dipterans</article-title><source>Journal of Medical Entomology</source><volume>43</volume><fpage>493</fpage><lpage>497</lpage><pub-id pub-id-type="doi">10.1603/0022-2585(2006)43[493:eopdar]2.0.co;2</pub-id><pub-id pub-id-type="pmid">16739406</pub-id></element-citation></ref><ref id="bib11"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Barr</surname><given-names>AR</given-names></name></person-group><year iso-8601-date="1967">1967</year><article-title>Occurrence and distribution of the Culex pipiens complex</article-title><source>Bulletin of the World Health Organization</source><volume>37</volume><fpage>293</fpage><lpage>296</lpage><pub-id pub-id-type="pmid">5300069</pub-id></element-citation></ref><ref id="bib12"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Beck-Johnson</surname><given-names>LM</given-names></name><name><surname>Nelson</surname><given-names>WA</given-names></name><name><surname>Paaijmans</surname><given-names>KP</given-names></name><name><surname>Read</surname><given-names>AF</given-names></name><name><surname>Thomas</surname><given-names>MB</given-names></name><name><surname>Bjørnstad</surname><given-names>ON</given-names></name></person-group><year iso-8601-date="2013">2013</year><article-title>The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission</article-title><source>PLOS ONE</source><volume>8</volume><elocation-id>e79276</elocation-id><pub-id pub-id-type="doi">10.1371/journal.pone.0079276</pub-id><pub-id pub-id-type="pmid">24244467</pub-id></element-citation></ref><ref id="bib13"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Beddall</surname><given-names>BG</given-names></name></person-group><year iso-8601-date="1963">1963</year><article-title>Range expansion of the cardinal and other birds in the northeastern states</article-title><source>The Wilson Bulletin</source><volume>75</volume><fpage>140</fpage><lpage>158</lpage></element-citation></ref><ref id="bib14"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Benelli</surname><given-names>G</given-names></name><name><surname>Jeffries</surname><given-names>CL</given-names></name><name><surname>Walker</surname><given-names>T</given-names></name></person-group><year iso-8601-date="2016">2016</year><article-title>Biological Control of Mosquito Vectors: Past, Present, and Future</article-title><source>Insects</source><volume>7</volume><elocation-id>E52</elocation-id><pub-id pub-id-type="doi">10.3390/insects7040052</pub-id><pub-id pub-id-type="pmid">27706105</pub-id></element-citation></ref><ref id="bib15"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Bentley</surname><given-names>MD</given-names></name><name><surname>Day</surname><given-names>JF</given-names></name></person-group><year iso-8601-date="1989">1989</year><article-title>Chemical ecology and behavioral aspects of mosquito oviposition</article-title><source>Annual review of entomology</source><volume>34</volume><fpage>401</fpage><lpage>421</lpage><pub-id pub-id-type="doi">10.1146/annurev.en.34.010189.002153</pub-id><pub-id pub-id-type="pmid">2564759</pub-id></element-citation></ref><ref id="bib16"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Blackmore</surname><given-names>MS</given-names></name><name><surname>Lord</surname><given-names>CC</given-names></name></person-group><year iso-8601-date="2000">2000</year><article-title>The relationship between size and fecundity in Aedes albopictus</article-title><source>Journal of Vector Ecology</source><volume>25</volume><fpage>212</fpage><lpage>217</lpage><pub-id pub-id-type="pmid">11217219</pub-id></element-citation></ref><ref id="bib17"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Bond</surname><given-names>JG</given-names></name><name><surname>Arredondo-Jimenez</surname><given-names>JI</given-names></name><name><surname>Rodriguez</surname><given-names>MH</given-names></name><name><surname>Quiroz-Martinez</surname><given-names>H</given-names></name><name><surname>Williams</surname><given-names>T</given-names></name></person-group><year iso-8601-date="2005">2005</year><article-title>Oviposition habitat selection for a predator refuge and food source in a mosquito</article-title><source>Ecological Entomology</source><volume>30</volume><fpage>255</fpage><lpage>263</lpage><pub-id pub-id-type="doi">10.1111/j.0307-6946.2005.00704.x</pub-id></element-citation></ref><ref id="bib18"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Brose</surname><given-names>U</given-names></name><name><surname>Jonsson</surname><given-names>T</given-names></name><name><surname>Berlow</surname><given-names>EL</given-names></name><name><surname>Warren</surname><given-names>P</given-names></name><name><surname>Banasek-Richter</surname><given-names>C</given-names></name><name><surname>Bersier</surname><given-names>L-F</given-names></name><name><surname>Blanchard</surname><given-names>JL</given-names></name><name><surname>Brey</surname><given-names>T</given-names></name><name><surname>Carpenter</surname><given-names>SR</given-names></name><name><surname>Blandenier</surname><given-names>M-FC</given-names></name><name><surname>Cushing</surname><given-names>L</given-names></name><name><surname>Dawah</surname><given-names>HA</given-names></name><name><surname>Dell</surname><given-names>T</given-names></name><name><surname>Edwards</surname><given-names>F</given-names></name><name><surname>Harper-Smith</surname><given-names>S</given-names></name><name><surname>Jacob</surname><given-names>U</given-names></name><name><surname>Ledger</surname><given-names>ME</given-names></name><name><surname>Martinez</surname><given-names>ND</given-names></name><name><surname>Memmott</surname><given-names>J</given-names></name><name><surname>Mintenbeck</surname><given-names>K</given-names></name><name><surname>Pinnegar</surname><given-names>JK</given-names></name><name><surname>Rall</surname><given-names>BC</given-names></name><name><surname>Rayner</surname><given-names>TS</given-names></name><name><surname>Reuman</surname><given-names>DC</given-names></name><name><surname>Ruess</surname><given-names>L</given-names></name><name><surname>Ulrich</surname><given-names>W</given-names></name><name><surname>Williams</surname><given-names>RJ</given-names></name><name><surname>Woodward</surname><given-names>G</given-names></name><name><surname>Cohen</surname><given-names>JE</given-names></name></person-group><year iso-8601-date="2006">2006</year><article-title>Consumer-resource body-size relationships in natural food webs</article-title><source>Ecology</source><volume>87</volume><fpage>2411</fpage><lpage>2417</lpage><pub-id pub-id-type="doi">10.1890/0012-9658(2006)87[2411:cbrinf]2.0.co;2</pub-id><pub-id pub-id-type="pmid">17089649</pub-id></element-citation></ref><ref id="bib19"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Brown</surname><given-names>HE</given-names></name><name><surname>Childs</surname><given-names>JE</given-names></name><name><surname>Diuk-Wasser</surname><given-names>MA</given-names></name><name><surname>Fish</surname><given-names>D</given-names></name></person-group><year iso-8601-date="2008">2008</year><article-title>Ecological factors associated with West Nile virus transmission, northeastern United States</article-title><source>Emerging Infectious Diseases</source><volume>14</volume><fpage>1539</fpage><lpage>1545</lpage><pub-id pub-id-type="doi">10.3201/eid1410.071396</pub-id><pub-id pub-id-type="pmid">18826816</pub-id></element-citation></ref><ref id="bib20"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Brzek</surname><given-names>P</given-names></name><name><surname>Kohl</surname><given-names>K</given-names></name><name><surname>Caviedes-Vidal</surname><given-names>E</given-names></name><name><surname>Karasov</surname><given-names>WH</given-names></name></person-group><year iso-8601-date="2009">2009</year><article-title>Developmental adjustments of house sparrow (Passer domesticus) nestlings to diet composition</article-title><source>The Journal of experimental biology</source><volume>212</volume><fpage>1284</fpage><lpage>1293</lpage><pub-id pub-id-type="doi">10.1242/jeb.023911</pub-id><pub-id pub-id-type="pmid">19376949</pub-id></element-citation></ref><ref id="bib21"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Buchanan</surname><given-names>AL</given-names></name><name><surname>Hermann</surname><given-names>SL</given-names></name><name><surname>Lund</surname><given-names>M</given-names></name><name><surname>Szendrei</surname><given-names>Z</given-names></name></person-group><year iso-8601-date="2017">2017</year><article-title>A meta-analysis of non-consumptive predator effects in arthropods: the influence of organismal and environmental characteristics</article-title><source>Oikos</source><volume>126</volume><elocation-id>04384</elocation-id><pub-id pub-id-type="doi">10.1111/oik.04384</pub-id></element-citation></ref><ref id="bib22"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Burnham</surname><given-names>KP</given-names></name><name><surname>Anderson</surname><given-names>DR</given-names></name></person-group><year iso-8601-date="2004">2004</year><article-title>Multimodel Inference: Understanding AIC and BIC in Model Selection</article-title><source>Sociological Methods & Research</source><volume>33</volume><fpage>261</fpage><lpage>304</lpage><pub-id pub-id-type="doi">10.1177/0049124104268644</pub-id></element-citation></ref><ref id="bib23"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Cator</surname><given-names>LJ</given-names></name><name><surname>Johnson</surname><given-names>LR</given-names></name><name><surname>Mordecai</surname><given-names>EA</given-names></name><name><surname>Moustaid</surname><given-names>FE</given-names></name><name><surname>Smallwood</surname><given-names>TRC</given-names></name><name><surname>LaDeau</surname><given-names>SL</given-names></name><name><surname>Johansson</surname><given-names>MA</given-names></name><name><surname>Hudson</surname><given-names>PJ</given-names></name><name><surname>Boots</surname><given-names>M</given-names></name><name><surname>Thomas</surname><given-names>MB</given-names></name><name><surname>Power</surname><given-names>AG</given-names></name><name><surname>Pawar</surname><given-names>S</given-names></name></person-group><year iso-8601-date="2020">2020</year><article-title>The Role of Vector Trait Variation in Vector-Borne Disease Dynamics</article-title><source>Frontiers in ecology and evolution</source><volume>8</volume><elocation-id>189</elocation-id><pub-id pub-id-type="doi">10.3389/fevo.2020.00189</pub-id><pub-id pub-id-type="pmid">32775339</pub-id></element-citation></ref><ref id="bib24"><element-citation publication-type="software"><person-group person-group-type="author"><collab>CENTERS FOR DISEASE CONTROL AND PREVENTION</collab></person-group><year iso-8601-date="2021">2021</year><data-title>West Nile virus: Final Cumulative Maps & Data for 1999-2019</data-title><source>CDC</source><ext-link ext-link-type="uri" xlink:href="https://www.cdc.gov/westnile/statsmaps/cumMapsData.html">https://www.cdc.gov/westnile/statsmaps/cumMapsData.html</ext-link></element-citation></ref><ref id="bib25"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Chansang</surname><given-names>UR</given-names></name><name><surname>Bhumiratana</surname><given-names>A</given-names></name><name><surname>Kittayapong</surname><given-names>P</given-names></name></person-group><year iso-8601-date="2004">2004</year><article-title>Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers</article-title><source>Journal of Vector Ecology</source><volume>29</volume><fpage>218</fpage><lpage>226</lpage><pub-id pub-id-type="pmid">15707281</pub-id></element-citation></ref><ref id="bib26"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Chase</surname><given-names>JM</given-names></name><name><surname>Knight</surname><given-names>TM</given-names></name></person-group><year iso-8601-date="2003">2003</year><article-title>Drought-induced mosquito outbreaks in wetlands</article-title><source>Ecology Letters</source><volume>6</volume><fpage>1017</fpage><lpage>1024</lpage><pub-id pub-id-type="doi">10.1046/j.1461-0248.2003.00533.x</pub-id></element-citation></ref><ref id="bib27"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ciota</surname><given-names>AT</given-names></name><name><surname>Drummond</surname><given-names>CL</given-names></name><name><surname>Ruby</surname><given-names>MA</given-names></name><name><surname>Drobnack</surname><given-names>J</given-names></name><name><surname>Ebel</surname><given-names>GD</given-names></name><name><surname>Kramer</surname><given-names>LD</given-names></name></person-group><year iso-8601-date="2012">2012</year><article-title>Dispersal of Culex mosquitoes (Diptera: Culicidae) from a wastewater treatment facility</article-title><source>Journal of medical entomology</source><volume>49</volume><fpage>35</fpage><lpage>42</lpage><pub-id pub-id-type="doi">10.1603/me11077</pub-id><pub-id pub-id-type="pmid">22308769</pub-id></element-citation></ref><ref id="bib28"><element-citation publication-type="book"><person-group person-group-type="author"><name><surname>Clements</surname><given-names>AN</given-names></name></person-group><year iso-8601-date="1992">1992</year><source>The Biology of Mosquitoes: Development, Nutrition and Reproduction</source><publisher-name>Chapman & Hall</publisher-name></element-citation></ref><ref id="bib29"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Dam</surname><given-names>HG</given-names></name><name><surname>Peterson</surname><given-names>WT</given-names></name></person-group><year iso-8601-date="1988">1988</year><article-title>The effect of temperature on the gut clearance rate constant of planktonic copepods</article-title><source>Journal of Experimental Marine Biology and Ecology</source><volume>10</volume><elocation-id>90105</elocation-id><pub-id pub-id-type="doi">10.1016/0022-0981(88)90105-0</pub-id></element-citation></ref><ref id="bib30"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Day</surname><given-names>JF</given-names></name></person-group><year iso-8601-date="2016">2016</year><article-title>Mosquito Oviposition Behavior and Vector Control</article-title><source>Insects</source><volume>7</volume><elocation-id>E65</elocation-id><pub-id pub-id-type="doi">10.3390/insects7040065</pub-id><pub-id pub-id-type="pmid">27869724</pub-id></element-citation></ref><ref id="bib31"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>de Valdez</surname><given-names>MRW</given-names></name></person-group><year iso-8601-date="2006">2006</year><article-title>Parasitoid-induced behavioral alterations of Aedes aegypti mosquito larvae infected with mermithid nematodes (Nematoda: Mermithidae)</article-title><source>Journal of vector ecology</source><volume>31</volume><fpage>344</fpage><lpage>354</lpage><pub-id pub-id-type="doi">10.3376/1081-1710(2006)31[344:pbaoaa]2.0.co;2</pub-id><pub-id pub-id-type="pmid">17249352</pub-id></element-citation></ref><ref id="bib32"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Delnat</surname><given-names>V</given-names></name><name><surname>Tran</surname><given-names>TT</given-names></name><name><surname>Janssens</surname><given-names>L</given-names></name><name><surname>Stoks</surname><given-names>R</given-names></name></person-group><year iso-8601-date="2019">2019</year><article-title>Resistance to a chemical pesticide increases vulnerability to a biopesticide: Effects on direct mortality and mortality by predation</article-title><source>Aquatic toxicology</source><volume>216</volume><elocation-id>105310</elocation-id><pub-id pub-id-type="doi">10.1016/j.aquatox.2019.105310</pub-id><pub-id pub-id-type="pmid">31580997</pub-id></element-citation></ref><ref id="bib33"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Dida</surname><given-names>GO</given-names></name><name><surname>Anyona</surname><given-names>DN</given-names></name><name><surname>Abuom</surname><given-names>PO</given-names></name><name><surname>Akoko</surname><given-names>D</given-names></name><name><surname>Adoka</surname><given-names>SO</given-names></name><name><surname>Matano</surname><given-names>A-S</given-names></name><name><surname>Owuor</surname><given-names>PO</given-names></name><name><surname>Ouma</surname><given-names>C</given-names></name></person-group><year iso-8601-date="2018">2018</year><article-title>Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania</article-title><source>Infectious diseases of poverty</source><volume>7</volume><elocation-id>2</elocation-id><pub-id pub-id-type="doi">10.1186/s40249-017-0385-0</pub-id><pub-id pub-id-type="pmid">29343279</pub-id></element-citation></ref><ref id="bib34"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Dieng</surname><given-names>H</given-names></name><name><surname>Boots</surname><given-names>M</given-names></name><name><surname>Tuno</surname><given-names>N</given-names></name><name><surname>Tsuda</surname><given-names>Y</given-names></name><name><surname>Takagi</surname><given-names>M</given-names></name></person-group><year iso-8601-date="2002">2002</year><article-title>A laboratory and field evaluation of Macrocyclops distinctus, Megacyclops viridis and Mesocyclops pehpeiensis as control agents of the dengue vector Aedes albopictus in a peridomestic area in Nagasaki, Japan</article-title><source>Medical and veterinary entomology</source><volume>16</volume><fpage>285</fpage><lpage>291</lpage><pub-id pub-id-type="doi">10.1046/j.1365-2915.2002.00377.x</pub-id><pub-id pub-id-type="pmid">12243229</pub-id></element-citation></ref><ref id="bib35"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Dieng</surname><given-names>H</given-names></name><name><surname>Boots</surname><given-names>M</given-names></name><name><surname>Tuno</surname><given-names>N</given-names></name><name><surname>Tsuda</surname><given-names>Y</given-names></name><name><surname>Takagi</surname><given-names>M</given-names></name></person-group><year iso-8601-date="2003">2003</year><article-title>Life history effects of prey choice by copepods: implications for biocontrol of vector mosquitoes</article-title><source>Journal of the American Mosquito Control Association</source><volume>19</volume><fpage>67</fpage><lpage>73</lpage><pub-id pub-id-type="pmid">12674538</pub-id></element-citation></ref><ref id="bib36"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Dudgeon</surname><given-names>D</given-names></name></person-group><year iso-8601-date="1993">1993</year><article-title>The effects of spate-induced disturbance, predation and environmental complexity on macroinvertebrates in a tropical stream</article-title><source>Freshwater Biology</source><volume>30</volume><fpage>189</fpage><lpage>197</lpage><pub-id pub-id-type="doi">10.1111/j.1365-2427.1993.tb00801.x</pub-id></element-citation></ref><ref id="bib37"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Duval</surname><given-names>S</given-names></name><name><surname>Tweedie</surname><given-names>R</given-names></name></person-group><year iso-8601-date="2000">2000a</year><article-title>Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis</article-title><source>Biometrics</source><volume>56</volume><fpage>455</fpage><lpage>463</lpage><pub-id pub-id-type="doi">10.1111/j.0006-341x.2000.00455.x</pub-id><pub-id pub-id-type="pmid">10877304</pub-id></element-citation></ref><ref id="bib38"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Duval</surname><given-names>S</given-names></name><name><surname>Tweedie</surname><given-names>R</given-names></name></person-group><year iso-8601-date="2000">2000b</year><article-title>A Nonparametric “Trim and Fill” Method of Accounting for Publication Bias in Meta-Analysis</article-title><source>Journal of the American Statistical Association</source><volume>95</volume><fpage>89</fpage><lpage>98</lpage><pub-id pub-id-type="doi">10.1080/01621459.2000.10473905</pub-id></element-citation></ref><ref id="bib39"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ehler</surname><given-names>LE</given-names></name></person-group><year iso-8601-date="2002">2002</year><article-title>An evaluation of some natural enemies of >Nezara viridula in northern California</article-title><source>BioControl</source><volume>47</volume><fpage>309</fpage><lpage>325</lpage><pub-id pub-id-type="doi">10.1023/A:1014895028451</pub-id></element-citation></ref><ref id="bib40"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>El Moustaid</surname><given-names>F</given-names></name><name><surname>Johnson</surname><given-names>LR</given-names></name></person-group><year iso-8601-date="2019">2019</year><article-title>Modeling Temperature Effects on Population Density of the Dengue Mosquito Aedes aegypti</article-title><source>Insects</source><volume>10</volume><elocation-id>E393</elocation-id><pub-id pub-id-type="doi">10.3390/insects10110393</pub-id><pub-id pub-id-type="pmid">31703421</pub-id></element-citation></ref><ref id="bib41"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Englund</surname><given-names>G</given-names></name><name><surname>Ohlund</surname><given-names>G</given-names></name><name><surname>Hein</surname><given-names>CL</given-names></name><name><surname>Diehl</surname><given-names>S</given-names></name></person-group><year iso-8601-date="2011">2011</year><article-title>Temperature dependence of the functional response</article-title><source>Ecology letters</source><volume>14</volume><fpage>914</fpage><lpage>921</lpage><pub-id pub-id-type="doi">10.1111/j.1461-0248.2011.01661.x</pub-id><pub-id pub-id-type="pmid">21752171</pub-id></element-citation></ref><ref id="bib42"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Epstein</surname><given-names>PR</given-names></name><name><surname>Defilippo</surname><given-names>C</given-names></name></person-group><year iso-8601-date="2001">2001</year><article-title>West Nile Virus and Drought</article-title><source>Global Change and Human Health</source><volume>2</volume><fpage>105</fpage><lpage>107</lpage><pub-id pub-id-type="doi">10.1023/A:1015089901425</pub-id></element-citation></ref><ref id="bib43"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Farjana</surname><given-names>T</given-names></name><name><surname>Tuno</surname><given-names>N</given-names></name></person-group><year iso-8601-date="2013">2013</year><article-title>Multiple blood feeding and host-seeking behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae)</article-title><source>Journal of medical entomology</source><volume>50</volume><fpage>838</fpage><lpage>846</lpage><pub-id pub-id-type="doi">10.1603/me12146</pub-id><pub-id pub-id-type="pmid">23926783</pub-id></element-citation></ref><ref id="bib44"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Fonseca</surname><given-names>DM</given-names></name><name><surname>Keyghobadi</surname><given-names>N</given-names></name><name><surname>Malcolm</surname><given-names>CA</given-names></name><name><surname>Mehmet</surname><given-names>C</given-names></name><name><surname>Schaffner</surname><given-names>F</given-names></name><name><surname>Mogi</surname><given-names>M</given-names></name><name><surname>Fleischer</surname><given-names>RC</given-names></name><name><surname>Wilkerson</surname><given-names>RC</given-names></name></person-group><year iso-8601-date="2004">2004</year><article-title>Emerging vectors in the Culex pipiens complex</article-title><source>Science</source><volume>303</volume><fpage>1535</fpage><lpage>1538</lpage><pub-id pub-id-type="doi">10.1126/science.1094247</pub-id><pub-id pub-id-type="pmid">15001783</pub-id></element-citation></ref><ref id="bib45"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Gardner</surname><given-names>AM</given-names></name><name><surname>Hamer</surname><given-names>GL</given-names></name><name><surname>Hines</surname><given-names>AM</given-names></name><name><surname>Newman</surname><given-names>CM</given-names></name><name><surname>Walker</surname><given-names>ED</given-names></name><name><surname>Ruiz</surname><given-names>MO</given-names></name></person-group><year iso-8601-date="2012">2012</year><article-title>Weather variability affects abundance of larval Culex (Diptera: Culicidae) in storm water catch basins in suburban Chicago</article-title><source>Journal of medical entomology</source><volume>49</volume><fpage>270</fpage><lpage>276</lpage><pub-id pub-id-type="doi">10.1603/me11073</pub-id><pub-id pub-id-type="pmid">22493843</pub-id></element-citation></ref><ref id="bib46"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>George</surname><given-names>TL</given-names></name><name><surname>Fowler</surname><given-names>AC</given-names></name><name><surname>Knight</surname><given-names>RL</given-names></name><name><surname>McEwen</surname><given-names>LC</given-names></name></person-group><year iso-8601-date="1992">1992</year><article-title>Impacts of a Severe Drought on Grassland Birds in Western North Dakota</article-title><source>Ecological applications</source><volume>2</volume><fpage>275</fpage><lpage>284</lpage><pub-id pub-id-type="doi">10.2307/1941861</pub-id><pub-id pub-id-type="pmid">27759255</pub-id></element-citation></ref><ref id="bib47"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Gervasi</surname><given-names>SS</given-names></name><name><surname>Burkett-Cadena</surname><given-names>N</given-names></name><name><surname>Burgan</surname><given-names>SC</given-names></name><name><surname>Schrey</surname><given-names>AW</given-names></name><name><surname>Hassan</surname><given-names>HK</given-names></name><name><surname>Unnasch</surname><given-names>TR</given-names></name><name><surname>Martin</surname><given-names>LB</given-names></name></person-group><year iso-8601-date="2016">2016</year><article-title>Host stress hormones alter vector feeding preferences, success, and productivity</article-title><source>Proceedings. Biological Sciences</source><volume>283</volume><elocation-id>1278</elocation-id><pub-id pub-id-type="doi">10.1098/rspb.2016.1278</pub-id><pub-id pub-id-type="pmid">27512147</pub-id></element-citation></ref><ref id="bib48"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Grill</surname><given-names>CP</given-names></name><name><surname>Juliano</surname><given-names>SA</given-names></name></person-group><year iso-8601-date="1996">1996</year><article-title>Predicting Species Interactions Based on Behaviour: Predation and Competition in Container-Dwelling Mosquitoes</article-title><source>The Journal of Animal Ecology</source><volume>65</volume><elocation-id>63</elocation-id><pub-id pub-id-type="doi">10.2307/5700</pub-id></element-citation></ref><ref id="bib49"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Griswold</surname><given-names>MW</given-names></name><name><surname>Lounibos</surname><given-names>LP</given-names></name></person-group><year iso-8601-date="2005">2005</year><article-title>Does differential predation permit invasive and native mosquito larvae to coexist in Florida?</article-title><source>Ecological Entomology</source><volume>30</volume><fpage>122</fpage><lpage>127</lpage><pub-id pub-id-type="doi">10.1111/j.0307-6946.2005.00671.x</pub-id><pub-id pub-id-type="pmid">22532705</pub-id></element-citation></ref><ref id="bib50"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Gunathilaka</surname><given-names>N</given-names></name><name><surname>Upulika</surname><given-names>H</given-names></name><name><surname>Udayanga</surname><given-names>L</given-names></name><name><surname>Amarasinghe</surname><given-names>D</given-names></name></person-group><year iso-8601-date="2019">2019</year><article-title>Effect of Larval Nutritional Regimes on Morphometry and Vectorial Capacity of Aedes aegypti for Dengue Transmission</article-title><source>BioMed Research International</source><volume>2019</volume><fpage>1</fpage><lpage>11</lpage><pub-id pub-id-type="doi">10.1155/2019/3607342</pub-id><pub-id pub-id-type="pmid">31687387</pub-id></element-citation></ref><ref id="bib51"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hamer</surname><given-names>GL</given-names></name><name><surname>Kitron</surname><given-names>UD</given-names></name><name><surname>Brawn</surname><given-names>JD</given-names></name><name><surname>Loss</surname><given-names>SR</given-names></name><name><surname>Ruiz</surname><given-names>MO</given-names></name><name><surname>Goldberg</surname><given-names>TL</given-names></name><name><surname>Walker</surname><given-names>ED</given-names></name></person-group><year iso-8601-date="2008">2008a</year><article-title>Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans</article-title><source>Journal of Medical Entomology</source><volume>45</volume><fpage>125</fpage><lpage>128</lpage><pub-id pub-id-type="doi">10.1603/0022-2585(2008)45[125:cpdcab]2.0.co;2</pub-id><pub-id pub-id-type="pmid">18283952</pub-id></element-citation></ref><ref id="bib52"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hamer</surname><given-names>GL</given-names></name><name><surname>Walker</surname><given-names>ED</given-names></name><name><surname>Brawn</surname><given-names>JD</given-names></name><name><surname>Loss</surname><given-names>SR</given-names></name><name><surname>Ruiz</surname><given-names>MO</given-names></name><name><surname>Goldberg</surname><given-names>TL</given-names></name><name><surname>Schotthoefer</surname><given-names>AM</given-names></name><name><surname>Brown</surname><given-names>WM</given-names></name><name><surname>Wheeler</surname><given-names>E</given-names></name><name><surname>Kitron</surname><given-names>UD</given-names></name></person-group><year iso-8601-date="2008">2008b</year><article-title>Rapid amplification of West Nile virus: the role of hatch-year birds</article-title><source>Vector Borne and Zoonotic Diseases</source><volume>8</volume><fpage>57</fpage><lpage>67</lpage><pub-id pub-id-type="doi">10.1089/vbz.2007.0123</pub-id><pub-id pub-id-type="pmid">18237262</pub-id></element-citation></ref><ref id="bib53"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hamer</surname><given-names>GL</given-names></name><name><surname>Anderson</surname><given-names>TK</given-names></name><name><surname>Donovan</surname><given-names>DJ</given-names></name><name><surname>Brawn</surname><given-names>JD</given-names></name><name><surname>Krebs</surname><given-names>BL</given-names></name><name><surname>Gardner</surname><given-names>AM</given-names></name><name><surname>Ruiz</surname><given-names>MO</given-names></name><name><surname>Brown</surname><given-names>WM</given-names></name><name><surname>Kitron</surname><given-names>UD</given-names></name><name><surname>Newman</surname><given-names>CM</given-names></name><name><surname>Goldberg</surname><given-names>TL</given-names></name><name><surname>Walker</surname><given-names>ED</given-names></name></person-group><year iso-8601-date="2014">2014</year><article-title>Dispersal of adult culex mosquitoes in an urban west nile virus hotspot: a mark-capture study incorporating stable isotope enrichment of natural larval habitats</article-title><source>PLOS Neglected Tropical Diseases</source><volume>8</volume><elocation-id>e2768</elocation-id><pub-id pub-id-type="doi">10.1371/journal.pntd.0002768</pub-id><pub-id pub-id-type="pmid">24676212</pub-id></element-citation></ref><ref id="bib54"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hancock</surname><given-names>PA</given-names></name><name><surname>Wiebe</surname><given-names>A</given-names></name><name><surname>Gleave</surname><given-names>KA</given-names></name><name><surname>Bhatt</surname><given-names>S</given-names></name><name><surname>Cameron</surname><given-names>E</given-names></name><name><surname>Trett</surname><given-names>A</given-names></name><name><surname>Weetman</surname><given-names>D</given-names></name><name><surname>Smith</surname><given-names>DL</given-names></name><name><surname>Hemingway</surname><given-names>J</given-names></name><name><surname>Coleman</surname><given-names>M</given-names></name><name><surname>Gething</surname><given-names>PW</given-names></name><name><surname>Moyes</surname><given-names>CL</given-names></name></person-group><year iso-8601-date="2018">2018</year><article-title>Associated patterns of insecticide resistance in field populations of malaria vectors across Africa</article-title><source>PNAS</source><volume>115</volume><fpage>5938</fpage><lpage>5943</lpage><pub-id pub-id-type="doi">10.1073/pnas.1801826115</pub-id><pub-id pub-id-type="pmid">29784773</pub-id></element-citation></ref><ref id="bib55"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hatala</surname><given-names>AJ</given-names></name><name><surname>Harrington</surname><given-names>LC</given-names></name><name><surname>Degner</surname><given-names>EC</given-names></name></person-group><year iso-8601-date="2018">2018</year><article-title>Age and Body Size Influence Sperm Quantity in Male Aedes albopictus (Diptera: Culicidae) Mosquitoes</article-title><source>Journal of medical entomology</source><volume>55</volume><fpage>1051</fpage><lpage>1054</lpage><pub-id pub-id-type="doi">10.1093/jme/tjy040</pub-id><pub-id pub-id-type="pmid">29618076</pub-id></element-citation></ref><ref id="bib56"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hawley</surname><given-names>WA</given-names></name></person-group><year iso-8601-date="1985">1985</year><article-title>The Effect of Larval Density on Adult Longevity of a Mosquito, Aedes sierrensis: Epidemiological Consequences</article-title><source>The Journal of Animal Ecology</source><volume>54</volume><elocation-id>955</elocation-id><pub-id pub-id-type="doi">10.2307/4389</pub-id></element-citation></ref><ref id="bib57"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hemingway</surname><given-names>J</given-names></name><name><surname>Ranson</surname><given-names>H</given-names></name></person-group><year iso-8601-date="2000">2000</year><article-title>Insecticide resistance in insect vectors of human disease</article-title><source>Annual review of entomology</source><volume>45</volume><fpage>371</fpage><lpage>391</lpage><pub-id pub-id-type="doi">10.1146/annurev.ento.45.1.371</pub-id><pub-id pub-id-type="pmid">10761582</pub-id></element-citation></ref><ref id="bib58"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hermann</surname><given-names>SL</given-names></name><name><surname>Thaler</surname><given-names>JS</given-names></name></person-group><year iso-8601-date="2014">2014</year><article-title>Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect</article-title><source>Oecologia</source><volume>176</volume><fpage>669</fpage><lpage>676</lpage><pub-id pub-id-type="doi">10.1007/s00442-014-3069-5</pub-id><pub-id pub-id-type="pmid">25234373</pub-id></element-citation></ref><ref id="bib59"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hermann</surname><given-names>SL</given-names></name><name><surname>Landis</surname><given-names>DA</given-names></name></person-group><year iso-8601-date="2017">2017</year><article-title>Scaling up our understanding of non-consumptive effects in insect systems</article-title><source>Current opinion in insect science</source><volume>20</volume><fpage>54</fpage><lpage>60</lpage><pub-id pub-id-type="doi">10.1016/j.cois.2017.03.010</pub-id><pub-id pub-id-type="pmid">28602236</pub-id></element-citation></ref><ref id="bib60"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Higgins</surname><given-names>JPT</given-names></name><name><surname>Thompson</surname><given-names>SG</given-names></name><name><surname>Deeks</surname><given-names>JJ</given-names></name><name><surname>Altman</surname><given-names>DG</given-names></name></person-group><year iso-8601-date="2003">2003</year><article-title>Measuring inconsistency in meta-analyses</article-title><source>BMJ</source><volume>327</volume><fpage>557</fpage><lpage>560</lpage><pub-id pub-id-type="doi">10.1136/bmj.327.7414.557</pub-id><pub-id pub-id-type="pmid">12958120</pub-id></element-citation></ref><ref id="bib61"><element-citation publication-type="book"><person-group person-group-type="author"><name><surname>Higgins</surname><given-names>JPT</given-names></name><name><surname>Thomas</surname><given-names>J</given-names></name><name><surname>Chandler</surname><given-names>J</given-names></name><name><surname>Cumpston</surname><given-names>M</given-names></name><name><surname>Li</surname><given-names>T</given-names></name><name><surname>Page</surname><given-names>MJ</given-names></name><name><surname>Welch</surname><given-names>VA</given-names></name></person-group><year iso-8601-date="2020">2020</year><source>Cochrane Handbook for Systematic Reviews of Interventions</source><publisher-name>John Wiley & Sons, Inc</publisher-name><pub-id pub-id-type="doi">10.1002/9781119536604</pub-id></element-citation></ref><ref id="bib62"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Hill</surname><given-names>CA</given-names></name><name><surname>Kafatos</surname><given-names>FC</given-names></name><name><surname>Stansfield</surname><given-names>SK</given-names></name><name><surname>Collins</surname><given-names>FH</given-names></name></person-group><year iso-8601-date="2005">2005</year><article-title>Arthropod-borne diseases: vector control in the genomics era</article-title><source>Nature reviews. Microbiology</source><volume>3</volume><fpage>262</fpage><lpage>268</lpage><pub-id pub-id-type="doi">10.1038/nrmicro1101</pub-id><pub-id pub-id-type="pmid">15703759</pub-id></element-citation></ref><ref id="bib63"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Janssens</surname><given-names>L</given-names></name><name><surname>Stoks</surname><given-names>R</given-names></name></person-group><year iso-8601-date="2012">2012</year><article-title>How does a pesticide pulse increase vulnerability to predation? Combined effects on behavioral antipredator traits and escape swimming</article-title><source>Aquatic toxicology</source><volume>110–111</volume><fpage>91</fpage><lpage>98</lpage><pub-id pub-id-type="doi">10.1016/j.aquatox.2011.12.019</pub-id><pub-id pub-id-type="pmid">22277250</pub-id></element-citation></ref><ref id="bib64"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Jennions</surname><given-names>MD</given-names></name><name><surname>Møller</surname><given-names>AP</given-names></name></person-group><year iso-8601-date="2002">2002</year><article-title>Publication bias in ecology and evolution: an empirical assessment using the “trim and fill” method</article-title><source>Biological Reviews of the Cambridge Philosophical Society</source><volume>77</volume><fpage>211</fpage><lpage>222</lpage><pub-id pub-id-type="doi">10.1017/s1464793101005875</pub-id><pub-id pub-id-type="pmid">12056747</pub-id></element-citation></ref><ref id="bib65"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Johnson</surname><given-names>BJ</given-names></name><name><surname>Sukhdeo</surname><given-names>MVK</given-names></name></person-group><year iso-8601-date="2013">2013</year><article-title>Drought-induced amplification of local and regional West Nile virus infection rates in New Jersey</article-title><source>Journal of Medical Entomology</source><volume>50</volume><fpage>195</fpage><lpage>204</lpage><pub-id pub-id-type="doi">10.1603/me12035</pub-id><pub-id pub-id-type="pmid">23427670</pub-id></element-citation></ref><ref id="bib66"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Johnson</surname><given-names>B</given-names></name><name><surname>Fonseca</surname><given-names>DM</given-names></name></person-group><year iso-8601-date="2014">2014</year><article-title>The effects of forced-egg retention on the blood-feeding behavior and reproductive potential of Culex pipiens (Diptera: Culicidae)</article-title><source>Journal of insect physiology</source><volume>66</volume><fpage>53</fpage><lpage>58</lpage><pub-id pub-id-type="doi">10.1016/j.jinsphys.2014.05.014</pub-id><pub-id pub-id-type="pmid">24862157</pub-id></element-citation></ref><ref id="bib67"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Juliano</surname><given-names>SA</given-names></name></person-group><year iso-8601-date="2009">2009</year><article-title>Species interactions among larval mosquitoes: context dependence across habitat gradients</article-title><source>Annual review of entomology</source><volume>54</volume><fpage>37</fpage><lpage>56</lpage><pub-id pub-id-type="doi">10.1146/annurev.ento.54.110807.090611</pub-id><pub-id pub-id-type="pmid">19067629</pub-id></element-citation></ref><ref id="bib68"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kalinoski</surname><given-names>RM</given-names></name><name><surname>DeLong</surname><given-names>JP</given-names></name></person-group><year iso-8601-date="2016">2016</year><article-title>Beyond body mass: how prey traits improve predictions of functional response parameters</article-title><source>Oecologia</source><volume>180</volume><fpage>543</fpage><lpage>550</lpage><pub-id pub-id-type="doi">10.1007/s00442-015-3487-z</pub-id><pub-id pub-id-type="pmid">26552379</pub-id></element-citation></ref><ref id="bib69"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kay</surname><given-names>BH</given-names></name><name><surname>Nam</surname><given-names>VS</given-names></name><name><surname>Tien</surname><given-names>TV</given-names></name><name><surname>Yen</surname><given-names>NT</given-names></name><name><surname>Phong</surname><given-names>TV</given-names></name><name><surname>Diep</surname><given-names>VTB</given-names></name><name><surname>Ninh</surname><given-names>TU</given-names></name><name><surname>Bektas</surname><given-names>A</given-names></name><name><surname>Aaskov</surname><given-names>JG</given-names></name></person-group><year iso-8601-date="2002">2002</year><article-title>Control of aedes vectors of dengue in three provinces of Vietnam by use of Mesocyclops (Copepoda) and community-based methods validated by entomologic, clinical, and serological surveillance</article-title><source>The American journal of tropical medicine and hygiene</source><volume>66</volume><fpage>40</fpage><lpage>48</lpage><pub-id pub-id-type="doi">10.4269/ajtmh.2002.66.40</pub-id><pub-id pub-id-type="pmid">12135266</pub-id></element-citation></ref><ref id="bib70"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kershenbaum</surname><given-names>A</given-names></name><name><surname>Spencer</surname><given-names>M</given-names></name><name><surname>Blaustein</surname><given-names>L</given-names></name><name><surname>Cohen</surname><given-names>JE</given-names></name></person-group><year iso-8601-date="2012">2012</year><article-title>Modelling evolutionarily stable strategies in oviposition site selection, with varying risks of predation and intraspecific competition</article-title><source>Evolutionary Ecology</source><volume>26</volume><fpage>955</fpage><lpage>974</lpage><pub-id pub-id-type="doi">10.1007/s10682-011-9548-9</pub-id></element-citation></ref><ref id="bib71"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kleckner</surname><given-names>CA</given-names></name><name><surname>Hawley</surname><given-names>WA</given-names></name><name><surname>Bradshaw</surname><given-names>WE</given-names></name><name><surname>Holzapfel</surname><given-names>CM</given-names></name><name><surname>Fisher</surname><given-names>IJ</given-names></name></person-group><year iso-8601-date="1995">1995</year><article-title>Protandry in aedes sierrensis - the significance of temporal variation in female fecundityROTANDRY IN AEDES SIERRENSIS - THE SIGNIFICANCE OF TEMPORAL VARIATION IN FEMALE FECUNDITY</article-title><source>Ecology</source><volume>76</volume><fpage>1242</fpage><lpage>1250</lpage></element-citation></ref><ref id="bib72"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kramer</surname><given-names>LD</given-names></name><name><surname>Styer</surname><given-names>LM</given-names></name><name><surname>Ebel</surname><given-names>GD</given-names></name></person-group><year iso-8601-date="2008">2008</year><article-title>A global perspective on the epidemiology of West Nile virus</article-title><source>Annual review of entomology</source><volume>53</volume><fpage>61</fpage><lpage>81</lpage><pub-id pub-id-type="doi">10.1146/annurev.ento.53.103106.093258</pub-id><pub-id pub-id-type="pmid">17645411</pub-id></element-citation></ref><ref id="bib73"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kumar</surname><given-names>R</given-names></name><name><surname>Hwang</surname><given-names>JS</given-names></name></person-group><year iso-8601-date="2006">2006</year><article-title>Larvicidal efficiency of aquatic predators: A perspective for mosquito biocontrol</article-title><source>Zoological Studies</source><volume>45</volume><fpage>447</fpage><lpage>466</lpage></element-citation></ref><ref id="bib74"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kumar</surname><given-names>R</given-names></name><name><surname>Muhid</surname><given-names>P</given-names></name><name><surname>Dahms</surname><given-names>HU</given-names></name><name><surname>Tseng</surname><given-names>LC</given-names></name><name><surname>Hwang</surname><given-names>JS</given-names></name></person-group><year iso-8601-date="2008">2008</year><article-title>Potential of three aquatic predators to control mosquitoes in the presence of alternative prey: a comparative experimental assessment</article-title><source>Marine and Freshwater Research</source><volume>59</volume><elocation-id>817</elocation-id><pub-id pub-id-type="doi">10.1071/MF07143</pub-id></element-citation></ref><ref id="bib75"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kweka</surname><given-names>EJ</given-names></name><name><surname>Zhou</surname><given-names>G</given-names></name><name><surname>Gilbreath</surname><given-names>TM</given-names></name><name><surname>Afrane</surname><given-names>Y</given-names></name><name><surname>Nyindo</surname><given-names>M</given-names></name><name><surname>Githeko</surname><given-names>AK</given-names></name><name><surname>Yan</surname><given-names>G</given-names></name></person-group><year iso-8601-date="2011">2011</year><article-title>Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands</article-title><source>Parasites & Vectors</source><volume>4</volume><elocation-id>128</elocation-id><pub-id pub-id-type="doi">10.1186/1756-3305-4-128</pub-id><pub-id pub-id-type="pmid">21729269</pub-id></element-citation></ref><ref id="bib76"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lajeunesse</surname><given-names>MJ</given-names></name></person-group><year iso-8601-date="2016">2016</year><article-title>Facilitating systematic reviews, data extraction and meta‐analysis with the metagear package for R</article-title><source>Methods in Ecology and Evolution</source><volume>7</volume><fpage>323</fpage><lpage>330</lpage><pub-id pub-id-type="doi">10.1111/2041-210X.12472</pub-id></element-citation></ref><ref id="bib77"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Leisnham</surname><given-names>PT</given-names></name><name><surname>Sala</surname><given-names>LM</given-names></name><name><surname>Juliano</surname><given-names>SA</given-names></name></person-group><year iso-8601-date="2008">2008</year><article-title>Geographic variation in adult survival and reproductive tactics of the mosquito Aedes albopictus</article-title><source>Journal of Medical Entomology</source><volume>45</volume><fpage>210</fpage><lpage>221</lpage><pub-id pub-id-type="doi">10.1603/0022-2585(2008)45[210:gviasa]2.0.co;2</pub-id><pub-id pub-id-type="pmid">18402136</pub-id></element-citation></ref><ref id="bib78"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lepczyk</surname><given-names>CA</given-names></name><name><surname>Mertig</surname><given-names>AG</given-names></name><name><surname>Liu</surname><given-names>J</given-names></name></person-group><year iso-8601-date="2004">2004</year><article-title>Assessing landowner activities related to birds across rural-to-urban landscapes</article-title><source>Environmental management</source><volume>33</volume><fpage>110</fpage><lpage>125</lpage><pub-id pub-id-type="doi">10.1007/s00267-003-0036-z</pub-id><pub-id pub-id-type="pmid">14749899</pub-id></element-citation></ref><ref id="bib79"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lepczyk</surname><given-names>CA</given-names></name><name><surname>Flather</surname><given-names>CH</given-names></name><name><surname>Radeloff</surname><given-names>VC</given-names></name><name><surname>Pidgeon</surname><given-names>AM</given-names></name><name><surname>Hammer</surname><given-names>RB</given-names></name><name><surname>Liu</surname><given-names>J</given-names></name></person-group><year iso-8601-date="2008">2008</year><article-title>Human impacts on regional avian diversity and abundance</article-title><source>Conservation biology</source><volume>22</volume><fpage>405</fpage><lpage>416</lpage><pub-id pub-id-type="doi">10.1111/j.1523-1739.2008.00881.x</pub-id><pub-id pub-id-type="pmid">18294300</pub-id></element-citation></ref><ref id="bib80"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lima</surname><given-names>SL</given-names></name><name><surname>Dill</surname><given-names>LM</given-names></name></person-group><year iso-8601-date="1990">1990</year><article-title>Behavioral decisions made under the risk of predation: a review and prospectus</article-title><source>Canadian Journal of Zoology</source><volume>68</volume><fpage>619</fpage><lpage>640</lpage><pub-id pub-id-type="doi">10.1139/z90-092</pub-id></element-citation></ref><ref id="bib81"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lima</surname><given-names>SL</given-names></name></person-group><year iso-8601-date="1998">1998</year><article-title>Nonlethal Effects in the Ecology of Predator-Prey Interactions: What are the ecological effects of anti-predator decision-making</article-title><source>Bioscience</source><volume>48</volume><fpage>25</fpage><lpage>34</lpage><pub-id pub-id-type="doi">10.2307/1313225</pub-id></element-citation></ref><ref id="bib82"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Liu</surname><given-names>N</given-names></name></person-group><year iso-8601-date="2015">2015</year><article-title>Insecticide resistance in mosquitoes: impact, mechanisms, and research directions</article-title><source>Annual Review of Entomology</source><volume>60</volume><fpage>537</fpage><lpage>559</lpage><pub-id pub-id-type="doi">10.1146/annurev-ento-010814-020828</pub-id><pub-id pub-id-type="pmid">25564745</pub-id></element-citation></ref><ref id="bib83"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lühken</surname><given-names>R</given-names></name><name><surname>Steinke</surname><given-names>S</given-names></name><name><surname>Leggewie</surname><given-names>M</given-names></name><name><surname>Tannich</surname><given-names>E</given-names></name><name><surname>Krüger</surname><given-names>A</given-names></name><name><surname>Becker</surname><given-names>S</given-names></name><name><surname>Kiel</surname><given-names>E</given-names></name></person-group><year iso-8601-date="2015">2015</year><article-title>Physico-Chemical Characteristics of Culex pipiens sensu lato and Culex torrentium (Diptera: Culicidae) Breeding Sites in Germany</article-title><source>Journal of medical entomology</source><volume>52</volume><fpage>932</fpage><lpage>936</lpage><pub-id pub-id-type="doi">10.1093/jme/tjv070</pub-id><pub-id pub-id-type="pmid">26336210</pub-id></element-citation></ref><ref id="bib84"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lyimo</surname><given-names>EO</given-names></name><name><surname>Takken</surname><given-names>W</given-names></name></person-group><year iso-8601-date="1993">1993</year><article-title>Effects of adult body size on fecundity and the pre-gravid rate of Anopheles gambiae females in Tanzania</article-title><source>Medical and veterinary entomology</source><volume>7</volume><fpage>328</fpage><lpage>332</lpage><pub-id pub-id-type="doi">10.1111/j.1365-2915.1993.tb00700.x</pub-id><pub-id pub-id-type="pmid">8268486</pub-id></element-citation></ref><ref id="bib85"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Malmborg</surname><given-names>PK</given-names></name><name><surname>Willson</surname><given-names>MF</given-names></name></person-group><year iso-8601-date="1988">1988</year><article-title>Foraging ecology of avian frugivores and some consequences for seed dispersal in an illinois woodlot</article-title><source>The Condor</source><volume>90</volume><fpage>173</fpage><lpage>186</lpage><pub-id pub-id-type="doi">10.2307/1368446</pub-id></element-citation></ref><ref id="bib86"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Marcantonio</surname><given-names>M</given-names></name><name><surname>Rizzoli</surname><given-names>A</given-names></name><name><surname>Metz</surname><given-names>M</given-names></name><name><surname>Rosà</surname><given-names>R</given-names></name><name><surname>Marini</surname><given-names>G</given-names></name><name><surname>Chadwick</surname><given-names>E</given-names></name><name><surname>Neteler</surname><given-names>M</given-names></name></person-group><year iso-8601-date="2015">2015</year><article-title>Identifying the environmental conditions favouring West Nile Virus outbreaks in Europe</article-title><source>PLOS ONE</source><volume>10</volume><elocation-id>e0121158</elocation-id><pub-id pub-id-type="doi">10.1371/journal.pone.0121158</pub-id><pub-id pub-id-type="pmid">25803814</pub-id></element-citation></ref><ref id="bib87"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Marten</surname><given-names>GG</given-names></name></person-group><year iso-8601-date="1990">1990</year><article-title>Elimination of Aedes albopictus from tire piles by introducing Macrocyclops albidus (Copepoda, Cyclopidae)</article-title><source>Journal of the American Mosquito Control Association</source><volume>6</volume><fpage>689</fpage><lpage>693</lpage><pub-id pub-id-type="pmid">2098479</pub-id></element-citation></ref><ref id="bib88"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Marten</surname><given-names>GG</given-names></name><name><surname>Che</surname><given-names>W</given-names></name><name><surname>Bordes</surname><given-names>ES</given-names></name></person-group><year iso-8601-date="1993">1993</year><article-title>Compatibility of cyclopoid copepods with mosquito insecticides</article-title><source>Journal of the American Mosquito Control Association</source><volume>9</volume><fpage>150</fpage><lpage>154</lpage><pub-id pub-id-type="pmid">8350070</pub-id></element-citation></ref><ref id="bib89"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Marten</surname><given-names>GG</given-names></name><name><surname>Reid</surname><given-names>JW</given-names></name></person-group><year iso-8601-date="2007">2007</year><article-title>Cyclopoid copepods</article-title><source>Journal of the American Mosquito Control Association</source><volume>23</volume><fpage>65</fpage><lpage>92</lpage><pub-id pub-id-type="doi">10.2987/8756-971X(2007)23[65:CC]2.0.CO;2</pub-id><pub-id pub-id-type="pmid">17853599</pub-id></element-citation></ref><ref id="bib90"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>McCauley</surname><given-names>SJ</given-names></name><name><surname>Rowe</surname><given-names>L</given-names></name><name><surname>Fortin</surname><given-names>M-J</given-names></name></person-group><year iso-8601-date="2011">2011</year><article-title>The deadly effects of “nonlethal” predators</article-title><source>Ecology</source><volume>92</volume><fpage>2043</fpage><lpage>2048</lpage><pub-id pub-id-type="doi">10.1890/11-0455.1</pub-id><pub-id pub-id-type="pmid">22164828</pub-id></element-citation></ref><ref id="bib91"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Micieli</surname><given-names>MV</given-names></name><name><surname>Marti</surname><given-names>G</given-names></name><name><surname>García</surname><given-names>JJ</given-names></name></person-group><year iso-8601-date="2002">2002</year><article-title>Laboratory evaluation of Mesocyclops annulatus (Wierzejski, 1892) (Copepoda: Cyclopidea) as a predator of container-breeding mosquitoes in Argentina</article-title><source>Memorias do Instituto Oswaldo Cruz</source><volume>97</volume><fpage>835</fpage><lpage>838</lpage><pub-id pub-id-type="doi">10.1590/s0074-02762002000600014</pub-id><pub-id pub-id-type="pmid">12386705</pub-id></element-citation></ref><ref id="bib92"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Mittelbach</surname><given-names>GG</given-names></name></person-group><year iso-8601-date="1981">1981</year><article-title>Foraging Efficiency and Body Size: A Study of Optimal Diet and Habitat Use by Bluegills</article-title><source>Ecology</source><volume>62</volume><fpage>1370</fpage><lpage>1386</lpage><pub-id pub-id-type="doi">10.2307/1937300</pub-id></element-citation></ref><ref id="bib93"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Moher</surname><given-names>D</given-names></name><name><surname>Liberati</surname><given-names>A</given-names></name><name><surname>Tetzlaff</surname><given-names>J</given-names></name><name><surname>Altman</surname><given-names>DG</given-names></name><collab>PRISMA Group</collab></person-group><year iso-8601-date="2009">2009</year><article-title>Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement</article-title><source>BMJ</source><volume>339</volume><elocation-id>b2535</elocation-id><pub-id pub-id-type="doi">10.1136/bmj.b2535</pub-id><pub-id pub-id-type="pmid">19622551</pub-id></element-citation></ref><ref id="bib94"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Moore</surname><given-names>SM</given-names></name><name><surname>Borer</surname><given-names>ET</given-names></name><name><surname>Hosseini</surname><given-names>PR</given-names></name></person-group><year iso-8601-date="2010">2010</year><article-title>Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models</article-title><source>Journal of the Royal Society, Interface</source><volume>7</volume><fpage>161</fpage><lpage>176</lpage><pub-id pub-id-type="doi">10.1098/rsif.2009.0131</pub-id><pub-id pub-id-type="pmid">19474078</pub-id></element-citation></ref><ref id="bib95"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nelms</surname><given-names>BM</given-names></name><name><surname>Fechter-Leggett</surname><given-names>E</given-names></name><name><surname>Carroll</surname><given-names>BD</given-names></name><name><surname>Macedo</surname><given-names>P</given-names></name><name><surname>Kluh</surname><given-names>S</given-names></name><name><surname>Reisen</surname><given-names>WK</given-names></name></person-group><year iso-8601-date="2013">2013</year><article-title>Experimental and natural vertical transmission of West Nile virus by California Culex (Diptera: Culicidae) mosquitoes</article-title><source>Journal of medical entomology</source><volume>50</volume><fpage>371</fpage><lpage>378</lpage><pub-id pub-id-type="doi">10.1603/me12264</pub-id><pub-id pub-id-type="pmid">23540126</pub-id></element-citation></ref><ref id="bib96"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nelson</surname><given-names>EH</given-names></name><name><surname>Matthews</surname><given-names>CE</given-names></name><name><surname>Rosenheim</surname><given-names>JA</given-names></name></person-group><year iso-8601-date="2004">2004</year><article-title>Predators reduce prey population growth by inducing changes in prey behaviorREDATORS REDUCE PREY POPULATION GROWTH BY INDUCING CHANGES IN PREY BEHAVIOR</article-title><source>Ecology</source><volume>85</volume><fpage>1853</fpage><lpage>1858</lpage></element-citation></ref><ref id="bib97"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Nikookar</surname><given-names>SH</given-names></name><name><surname>Fazeli-Dinan</surname><given-names>M</given-names></name><name><surname>Azari-Hamidian</surname><given-names>S</given-names></name><name><surname>Mousavinasab</surname><given-names>SN</given-names></name><name><surname>Arabi</surname><given-names>M</given-names></name><name><surname>Ziapour</surname><given-names>SP</given-names></name><name><surname>Shojaee</surname><given-names>J</given-names></name><name><surname>Enayati</surname><given-names>A</given-names></name></person-group><year iso-8601-date="2017">2017</year><article-title>Species composition and abundance of mosquito larvae in relation with their habitat characteristics in Mazandaran Province, northern Iran</article-title><source>Bulletin of entomological research</source><volume>107</volume><fpage>598</fpage><lpage>610</lpage><pub-id pub-id-type="doi">10.1017/S0007485317000074</pub-id><pub-id pub-id-type="pmid">28956526</pub-id></element-citation></ref><ref id="bib98"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Oliver</surname><given-names>J</given-names></name><name><surname>Howard</surname><given-names>JJ</given-names></name></person-group><year iso-8601-date="2011">2011</year><article-title>Fecundity of wild-caught gravid Culiseta morsitans (Diptera: Culicidae)</article-title><source>Journal of medical entomology</source><volume>48</volume><fpage>196</fpage><lpage>201</lpage><pub-id pub-id-type="doi">10.1603/me10095</pub-id><pub-id pub-id-type="pmid">21485354</pub-id></element-citation></ref><ref id="bib99"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Op de Beeck</surname><given-names>L</given-names></name><name><surname>Janssens</surname><given-names>L</given-names></name><name><surname>Stoks</surname><given-names>R</given-names></name></person-group><year iso-8601-date="2016">2016</year><article-title>Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes</article-title><source>Ecological Applications</source><volume>26</volume><fpage>355</fpage><lpage>366</lpage><pub-id pub-id-type="doi">10.1890/15-0326</pub-id><pub-id pub-id-type="pmid">27209779</pub-id></element-citation></ref><ref id="bib100"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ower</surname><given-names>GD</given-names></name><name><surname>Juliano</surname><given-names>SA</given-names></name></person-group><year iso-8601-date="2019">2019</year><article-title>The demographic and life-history costs of fear: Trait-mediated effects of threat of predation on Aedes triseriatus</article-title><source>Ecology and evolution</source><volume>9</volume><fpage>3794</fpage><lpage>3806</lpage><pub-id pub-id-type="doi">10.1002/ece3.5003</pub-id><pub-id pub-id-type="pmid">31015967</pub-id></element-citation></ref><ref id="bib101"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>O’Meara</surname><given-names>GF</given-names></name></person-group><year iso-8601-date="1979">1979</year><article-title>Variable expressions of autogeny in three mosquito species</article-title><source>International Journal of Invertebrate Reproduction</source><volume>1</volume><fpage>253</fpage><lpage>261</lpage><pub-id pub-id-type="doi">10.1080/01651269.1979.10553321</pub-id></element-citation></ref><ref id="bib102"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Paull</surname><given-names>SH</given-names></name><name><surname>Horton</surname><given-names>DE</given-names></name><name><surname>Ashfaq</surname><given-names>M</given-names></name><name><surname>Rastogi</surname><given-names>D</given-names></name><name><surname>Kramer</surname><given-names>LD</given-names></name><name><surname>Diffenbaugh</surname><given-names>NS</given-names></name><name><surname>Kilpatrick</surname><given-names>AM</given-names></name></person-group><year iso-8601-date="2017">2017</year><article-title>Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts</article-title><source>Proceedings. Biological Sciences</source><volume>284</volume><elocation-id>284</elocation-id><pub-id pub-id-type="doi">10.1098/rspb.2016.2078</pub-id><pub-id pub-id-type="pmid">28179512</pub-id></element-citation></ref><ref id="bib103"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Peacor</surname><given-names>SD</given-names></name><name><surname>Werner</surname><given-names>EE</given-names></name></person-group><year iso-8601-date="2001">2001</year><article-title>The contribution of trait-mediated indirect effects to the net effects of a predator</article-title><source>PNAS</source><volume>98</volume><fpage>3904</fpage><lpage>3908</lpage><pub-id pub-id-type="doi">10.1073/pnas.071061998</pub-id><pub-id pub-id-type="pmid">11259674</pub-id></element-citation></ref><ref id="bib104"><element-citation publication-type="book"><person-group person-group-type="author"><name><surname>Peters</surname><given-names>RH</given-names></name></person-group><year iso-8601-date="1983">1983</year><source>The Ecological Implications of Body Size</source><publisher-name>Cambridge University Press</publisher-name><pub-id pub-id-type="doi">10.1017/CBO9780511608551</pub-id></element-citation></ref><ref id="bib105"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ponlawat</surname><given-names>A</given-names></name><name><surname>Harrington</surname><given-names>LC</given-names></name></person-group><year iso-8601-date="2007">2007</year><article-title>Age and body size influence male sperm capacity of the dengue vector Aedes aegypti (Diptera: Culicidae)</article-title><source>Journal of medical entomology</source><volume>44</volume><fpage>422</fpage><lpage>426</lpage><pub-id pub-id-type="doi">10.1603/0022-2585(2007)44[422:aabsim]2.0.co;2</pub-id><pub-id pub-id-type="pmid">17547226</pub-id></element-citation></ref><ref id="bib106"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Preisser</surname><given-names>EL</given-names></name><name><surname>Bolnick</surname><given-names>DI</given-names></name><name><surname>Benard</surname><given-names>MF</given-names></name></person-group><year iso-8601-date="2005">2005</year><article-title>Scared to death? the effects of intimidation and consumption in predator–prey interactions</article-title><source>Ecology</source><volume>86</volume><fpage>501</fpage><lpage>509</lpage><pub-id pub-id-type="doi">10.1890/04-0719</pub-id></element-citation></ref><ref id="bib107"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Pyke</surname><given-names>GH</given-names></name></person-group><year iso-8601-date="2008">2008</year><article-title>Plague Minnow or Mosquito Fish? A Review of the Biology and Impacts of Introduced Gambusia Species</article-title><source>Annual Review of Ecology, Evolution, and Systematics</source><volume>39</volume><fpage>171</fpage><lpage>191</lpage><pub-id pub-id-type="doi">10.1146/annurev.ecolsys.39.110707.173451</pub-id></element-citation></ref><ref id="bib108"><element-citation publication-type="software"><person-group person-group-type="author"><collab>R Development Core Team</collab></person-group><year iso-8601-date="2020">2020</year><data-title>R: A language and environment for statistical computing</data-title><publisher-loc>Vienna, Austria</publisher-loc><publisher-name>R Foundation for Statistical Computing</publisher-name><ext-link ext-link-type="uri" xlink:href="http://www.r-project.org">http://www.r-project.org</ext-link></element-citation></ref><ref id="bib109"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Rajendran</surname><given-names>R</given-names></name><name><surname>Prasad</surname><given-names>RS</given-names></name></person-group><year iso-8601-date="1994">1994</year><article-title>A laboratory study on the life cycle and feeding behaviour of Arrenurus madaraszi (Acari: Arrenuridae) parasitizing Anopheles mosquitoes</article-title><source>Annals of tropical medicine and parasitology</source><volume>88</volume><fpage>169</fpage><lpage>174</lpage><pub-id pub-id-type="doi">10.1080/00034983.1994.11812855</pub-id><pub-id pub-id-type="pmid">7915101</pub-id></element-citation></ref><ref id="bib110"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Reiner</surname><given-names>RC</given-names></name><name><surname>Perkins</surname><given-names>TA</given-names></name><name><surname>Barker</surname><given-names>CM</given-names></name><name><surname>Niu</surname><given-names>T</given-names></name><name><surname>Chaves</surname><given-names>LF</given-names></name><name><surname>Ellis</surname><given-names>AM</given-names></name><name><surname>George</surname><given-names>DB</given-names></name><name><surname>Le Menach</surname><given-names>A</given-names></name><name><surname>Pulliam</surname><given-names>JRC</given-names></name><name><surname>Bisanzio</surname><given-names>D</given-names></name><name><surname>Buckee</surname><given-names>C</given-names></name><name><surname>Chiyaka</surname><given-names>C</given-names></name><name><surname>Cummings</surname><given-names>DAT</given-names></name><name><surname>Garcia</surname><given-names>AJ</given-names></name><name><surname>Gatton</surname><given-names>ML</given-names></name><name><surname>Gething</surname><given-names>PW</given-names></name><name><surname>Hartley</surname><given-names>DM</given-names></name><name><surname>Johnston</surname><given-names>G</given-names></name><name><surname>Klein</surname><given-names>EY</given-names></name><name><surname>Michael</surname><given-names>E</given-names></name><name><surname>Lindsay</surname><given-names>SW</given-names></name><name><surname>Lloyd</surname><given-names>AL</given-names></name><name><surname>Pigott</surname><given-names>DM</given-names></name><name><surname>Reisen</surname><given-names>WK</given-names></name><name><surname>Ruktanonchai</surname><given-names>N</given-names></name><name><surname>Singh</surname><given-names>BK</given-names></name><name><surname>Tatem</surname><given-names>AJ</given-names></name><name><surname>Kitron</surname><given-names>U</given-names></name><name><surname>Hay</surname><given-names>SI</given-names></name><name><surname>Scott</surname><given-names>TW</given-names></name><name><surname>Smith</surname><given-names>DL</given-names></name></person-group><year iso-8601-date="2013">2013</year><article-title>A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010</article-title><source>Journal of the Royal Society, Interface</source><volume>10</volume><elocation-id>20120921</elocation-id><pub-id pub-id-type="doi">10.1098/rsif.2012.0921</pub-id><pub-id pub-id-type="pmid">23407571</pub-id></element-citation></ref><ref id="bib111"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Reisen</surname><given-names>WK</given-names></name><name><surname>Milby</surname><given-names>MM</given-names></name><name><surname>Bock</surname><given-names>ME</given-names></name></person-group><year iso-8601-date="1984">1984</year><article-title>The effects of immature stress on selected events in the life-history of culex-tarsalisHE EFFECTS OF IMMATURE STRESS ON SELECTED EVENTS IN THE LIFE-HISTORY OF CULEX-TARSALIS</article-title><source>Mosquito News</source><volume>44</volume><fpage>385</fpage><lpage>395</lpage></element-citation></ref><ref id="bib112"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Reiskind</surname><given-names>MH</given-names></name><name><surname>Lounibos</surname><given-names>LP</given-names></name></person-group><year iso-8601-date="2009">2009</year><article-title>Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus</article-title><source>Medical and veterinary entomology</source><volume>23</volume><fpage>62</fpage><lpage>68</lpage><pub-id pub-id-type="doi">10.1111/j.1365-2915.2008.00782.x</pub-id><pub-id pub-id-type="pmid">19239615</pub-id></element-citation></ref><ref id="bib113"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Renne</surname><given-names>IJ</given-names></name><name><surname>Gauthreaux</surname><given-names>SA</given-names></name><name><surname>Gresham</surname><given-names>CA</given-names></name></person-group><year iso-8601-date="2000">2000</year><article-title>Seed Dispersal of the Chinese Tallow Tree (Sapium sebiferum (L.) Roxb.) by Birds in Coastal South Carolina</article-title><source>The American Midland Naturalist</source><volume>144</volume><fpage>202</fpage><lpage>215</lpage><pub-id pub-id-type="doi">10.1674/0003-0031(2000)144[0202:SDOTCT]2.0.CO;2</pub-id></element-citation></ref><ref id="bib114"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Roberts</surname><given-names>D</given-names></name></person-group><year iso-8601-date="2012">2012</year><article-title>Responses of three species of mosquito larvae to the presence of predatory dragonfly and damselfly larvae</article-title><source>Entomologia Experimentalis et Applicata</source><volume>145</volume><fpage>23</fpage><lpage>29</lpage><pub-id pub-id-type="doi">10.1111/j.1570-7458.2012.01300.x</pub-id></element-citation></ref><ref id="bib115"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Roehr</surname><given-names>B</given-names></name></person-group><year iso-8601-date="2012">2012</year><article-title>US hit by massive West Nile virus outbreak centred around Texas</article-title><source>British Medical Journal</source><volume>345</volume><elocation-id>e5633</elocation-id><pub-id pub-id-type="doi">10.1136/bmj.e5633</pub-id></element-citation></ref><ref id="bib116"><element-citation publication-type="web"><person-group person-group-type="author"><name><surname>Rohatgi</surname><given-names>A</given-names></name></person-group><year iso-8601-date="2020">2020</year><article-title>WebPlotDigitizer</article-title><ext-link ext-link-type="uri" xlink:href="https://automeris.io/WebPlotDigitizer">https://automeris.io/WebPlotDigitizer</ext-link><date-in-citation iso-8601-date="2020-07-14">July 14, 2020</date-in-citation></element-citation></ref><ref id="bib117"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Rosen</surname><given-names>L</given-names></name></person-group><year iso-8601-date="1988">1988</year><article-title>Further observations on the mechanism of vertical transmission of flaviviruses by Aedes mosquitoes</article-title><source>The American journal of tropical medicine and hygiene</source><volume>39</volume><fpage>123</fpage><lpage>126</lpage><pub-id pub-id-type="doi">10.4269/ajtmh.1988.39.123</pub-id><pub-id pub-id-type="pmid">2840833</pub-id></element-citation></ref><ref id="bib118"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Roux</surname><given-names>O</given-names></name><name><surname>Diabaté</surname><given-names>A</given-names></name><name><surname>Simard</surname><given-names>F</given-names></name></person-group><year iso-8601-date="2014">2014</year><article-title>Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species</article-title><source>The Journal of animal ecology</source><volume>83</volume><fpage>702</fpage><lpage>711</lpage><pub-id pub-id-type="doi">10.1111/1365-2656.12163</pub-id><pub-id pub-id-type="pmid">24138173</pub-id></element-citation></ref><ref id="bib119"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Roux</surname><given-names>O</given-names></name><name><surname>Vantaux</surname><given-names>A</given-names></name><name><surname>Roche</surname><given-names>B</given-names></name><name><surname>Yameogo</surname><given-names>KB</given-names></name><name><surname>Dabiré</surname><given-names>KR</given-names></name><name><surname>Diabaté</surname><given-names>A</given-names></name><name><surname>Simard</surname><given-names>F</given-names></name><name><surname>Lefèvre</surname><given-names>T</given-names></name></person-group><year iso-8601-date="2015">2015</year><article-title>Evidence for carry-over effects of predator exposure on pathogen transmission potential</article-title><source>Proceedings. Biological Sciences</source><volume>282</volume><elocation-id>20152430</elocation-id><pub-id pub-id-type="doi">10.1098/rspb.2015.2430</pub-id><pub-id pub-id-type="pmid">26674956</pub-id></element-citation></ref><ref id="bib120"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Russell</surname><given-names>BM</given-names></name><name><surname>Muir</surname><given-names>LE</given-names></name><name><surname>Weinstein</surname><given-names>P</given-names></name><name><surname>Kay</surname><given-names>BH</given-names></name></person-group><year iso-8601-date="1996">1996</year><article-title>Surveillance of the mosquito Aedes aegypti and its biocontrol with the copepod Mesocyclops aspericornis in Australian wells and gold mines</article-title><source>Medical and veterinary entomology</source><volume>10</volume><fpage>155</fpage><lpage>160</lpage><pub-id pub-id-type="doi">10.1111/j.1365-2915.1996.tb00722.x</pub-id><pub-id pub-id-type="pmid">8744708</pub-id></element-citation></ref><ref id="bib121"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Seale</surname><given-names>A</given-names></name></person-group><year iso-8601-date="1917">1917</year><article-title>The Mosquito Fish, Gambusia affinis (Baird and Girard), in the Philippine Islands</article-title><source>Philippine Journal of Science</source><volume>12</volume><fpage>177</fpage><lpage>187</lpage></element-citation></ref><ref id="bib122"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Shaman</surname><given-names>J</given-names></name><name><surname>Day</surname><given-names>JF</given-names></name><name><surname>Stieglitz</surname><given-names>M</given-names></name></person-group><year iso-8601-date="2005">2005</year><article-title>Drought-induced amplification and epidemic transmission of West Nile virus in southern Florida</article-title><source>Journal of medical entomology</source><volume>42</volume><fpage>134</fpage><lpage>141</lpage><pub-id pub-id-type="doi">10.1093/jmedent/42.2.134</pub-id><pub-id pub-id-type="pmid">15799522</pub-id></element-citation></ref><ref id="bib123"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Shi</surname><given-names>L</given-names></name><name><surname>Lin</surname><given-names>L</given-names></name></person-group><year iso-8601-date="2019">2019</year><article-title>The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses</article-title><source>Medicine</source><volume>98</volume><elocation-id>e15987</elocation-id><pub-id pub-id-type="doi">10.1097/MD.0000000000015987</pub-id><pub-id pub-id-type="pmid">31169736</pub-id></element-citation></ref><ref id="bib124"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sih</surname><given-names>A</given-names></name></person-group><year iso-8601-date="1986">1986</year><article-title>Antipredator Responses and the Perception of Danger by Mosquito Larvae</article-title><source>Ecology</source><volume>67</volume><fpage>434</fpage><lpage>441</lpage><pub-id pub-id-type="doi">10.2307/1938587</pub-id></element-citation></ref><ref id="bib125"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Silberbush</surname><given-names>A</given-names></name><name><surname>Blaustein</surname><given-names>L</given-names></name></person-group><year iso-8601-date="2011">2011</year><article-title>Mosquito females quantify risk of predation to their progeny when selecting an oviposition site</article-title><source>Functional Ecology</source><volume>25</volume><fpage>1091</fpage><lpage>1095</lpage><pub-id pub-id-type="doi">10.1111/j.1365-2435.2011.01873.x</pub-id></element-citation></ref><ref id="bib126"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Soumare</surname><given-names>MKF</given-names></name><name><surname>Cilek</surname><given-names>JE</given-names></name></person-group><year iso-8601-date="2011">2011</year><article-title>The effectiveness of Mesocyclops longisetus (Copepoda) for the control of container-inhabiting mosquitoes in residential environments</article-title><source>Journal of the American Mosquito Control Association</source><volume>27</volume><fpage>376</fpage><lpage>383</lpage><pub-id pub-id-type="doi">10.2987/11-6129.1</pub-id><pub-id pub-id-type="pmid">22329269</pub-id></element-citation></ref><ref id="bib127"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Spencer</surname><given-names>M</given-names></name><name><surname>Blaustein</surname><given-names>L</given-names></name><name><surname>Cohen</surname><given-names>JE</given-names></name></person-group><year iso-8601-date="2002">2002</year><article-title>Oviposition habitat selection by mosquitoes (culiseta longiareolata) and consequences for population size</article-title><source>Ecology</source><volume>83</volume><fpage>669</fpage><lpage>679</lpage><pub-id pub-id-type="doi">10.1890/0012-9658(2002)083[0669:OHSBMC]2.0.CO;2</pub-id></element-citation></ref><ref id="bib128"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Stav</surname><given-names>G</given-names></name><name><surname>Blaustein</surname><given-names>L</given-names></name><name><surname>Margalit</surname><given-names>Y</given-names></name></person-group><year iso-8601-date="2005">2005</year><article-title>Individual and interactive effects of a predator and controphic species on mosquito populations</article-title><source>Ecological Applications</source><volume>15</volume><fpage>587</fpage><lpage>598</lpage><pub-id pub-id-type="doi">10.1890/03-5191</pub-id></element-citation></ref><ref id="bib129"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sterne</surname><given-names>JA</given-names></name><name><surname>Egger</surname><given-names>M</given-names></name></person-group><year iso-8601-date="2001">2001</year><article-title>Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis</article-title><source>Journal of clinical epidemiology</source><volume>54</volume><fpage>1046</fpage><lpage>1055</lpage><pub-id pub-id-type="doi">10.1016/s0895-4356(01)00377-8</pub-id><pub-id pub-id-type="pmid">11576817</pub-id></element-citation></ref><ref id="bib130"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Styer</surname><given-names>LM</given-names></name><name><surname>Meola</surname><given-names>MA</given-names></name><name><surname>Kramer</surname><given-names>LD</given-names></name></person-group><year iso-8601-date="2007">2007</year><article-title>West Nile virus infection decreases fecundity of Culex tarsalis females</article-title><source>Journal of medical entomology</source><volume>44</volume><fpage>1074</fpage><lpage>1085</lpage><pub-id pub-id-type="doi">10.1603/0022-2585(2007)44[1074:wnvidf]2.0.co;2</pub-id><pub-id pub-id-type="pmid">18047209</pub-id></element-citation></ref><ref id="bib131"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Su</surname><given-names>T</given-names></name><name><surname>Mulla</surname><given-names>MS</given-names></name></person-group><year iso-8601-date="1997">1997</year><article-title>Physiological aspects of autogeny in Culex tarsalis (Diptera: Culicidae): influences of sugar-feeding, mating, body weight, and wing length</article-title><source>Journal of Vector Ecology</source><volume>22</volume><fpage>115</fpage><lpage>121</lpage><pub-id pub-id-type="pmid">9491361</pub-id></element-citation></ref><ref id="bib132"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sugumaran</surname><given-names>R</given-names></name><name><surname>Larson</surname><given-names>SR</given-names></name><name><surname>Degroote</surname><given-names>JP</given-names></name></person-group><year iso-8601-date="2009">2009</year><article-title>Spatio-temporal cluster analysis of county-based human West Nile virus incidence in the continental United States</article-title><source>International Journal of Health Geographics</source><volume>8</volume><elocation-id>43</elocation-id><pub-id pub-id-type="doi">10.1186/1476-072X-8-43</pub-id><pub-id pub-id-type="pmid">19594928</pub-id></element-citation></ref><ref id="bib133"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sulesco</surname><given-names>TM</given-names></name><name><surname>Toderas</surname><given-names>LG</given-names></name><name><surname>Uspenskaia</surname><given-names>IG</given-names></name><name><surname>Toderas</surname><given-names>IK</given-names></name></person-group><year iso-8601-date="2015">2015</year><article-title>Larval Habitats Diversity and Distribution of the Mosquito (Diptera: Culicidae) Species in the Republic of Moldova</article-title><source>Journal of medical entomology</source><volume>52</volume><fpage>1299</fpage><lpage>1308</lpage><pub-id pub-id-type="doi">10.1093/jme/tjv142</pub-id><pub-id pub-id-type="pmid">26364191</pub-id></element-citation></ref><ref id="bib134"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Thapa</surname><given-names>R</given-names></name><name><surname>Mirsky</surname><given-names>SB</given-names></name><name><surname>Tully</surname><given-names>KL</given-names></name></person-group><year iso-8601-date="2018">2018</year><article-title>Cover Crops Reduce Nitrate Leaching in Agroecosystems:A Global Meta-Analysis</article-title><source>Journal of environmental quality</source><volume>47</volume><fpage>1400</fpage><lpage>1411</lpage><pub-id pub-id-type="doi">10.2134/jeq2018.03.0107</pub-id><pub-id pub-id-type="pmid">30512067</pub-id></element-citation></ref><ref id="bib135"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Tietze</surname><given-names>NS</given-names></name><name><surname>Hester</surname><given-names>PG</given-names></name><name><surname>Shaffer</surname><given-names>KR</given-names></name><name><surname>Prescott</surname><given-names>SJ</given-names></name><name><surname>Schreiber</surname><given-names>ET</given-names></name></person-group><year iso-8601-date="1994">1994</year><article-title>Integrated management of waste tire mosquitoes utilizing Mesocyclops longisetus (Copepoda: Cyclopidae), Bacillus thuringiensis var. israelensis, Bacillus sphaericus, and methoprene</article-title><source>Journal of the American Mosquito Control Association</source><volume>10</volume><fpage>363</fpage><lpage>373</lpage><pub-id pub-id-type="pmid">7807078</pub-id></element-citation></ref><ref id="bib136"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Townroe</surname><given-names>S</given-names></name><name><surname>Callaghan</surname><given-names>A</given-names></name></person-group><year iso-8601-date="2014">2014</year><article-title>British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology</article-title><source>PLOS ONE</source><volume>9</volume><elocation-id>e95325</elocation-id><pub-id pub-id-type="doi">10.1371/journal.pone.0095325</pub-id><pub-id pub-id-type="pmid">24759617</pub-id></element-citation></ref><ref id="bib137"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Tseng</surname><given-names>M</given-names></name></person-group><year iso-8601-date="2007">2007</year><article-title>Ascogregarine parasites as possible biocontrol agents of mosquitoes</article-title><source>Journal of the American Mosquito Control Association</source><volume>23</volume><fpage>30</fpage><lpage>34</lpage><pub-id pub-id-type="doi">10.2987/8756-971X(2007)23[30:APAPBA]2.0.CO;2</pub-id><pub-id pub-id-type="pmid">17853595</pub-id></element-citation></ref><ref id="bib138"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Tsunoda</surname><given-names>T</given-names></name><name><surname>Fukuchi</surname><given-names>A</given-names></name><name><surname>Nanbara</surname><given-names>S</given-names></name><name><surname>Takagi</surname><given-names>M</given-names></name></person-group><year iso-8601-date="2010">2010</year><article-title>Effect of body size and sugar meals on oviposition of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae)</article-title><source>Journal of vector ecology</source><volume>35</volume><fpage>56</fpage><lpage>60</lpage><pub-id pub-id-type="doi">10.1111/j.1948-7134.2010.00028.x</pub-id><pub-id pub-id-type="pmid">20618648</pub-id></element-citation></ref><ref id="bib139"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Uiterwaal</surname><given-names>SF</given-names></name><name><surname>Delong</surname><given-names>JP</given-names></name></person-group><year iso-8601-date="2020">2020</year><article-title>Functional responses are maximized at intermediate temperatures</article-title><source>Ecology</source><volume>101</volume><elocation-id>2975</elocation-id><pub-id pub-id-type="doi">10.1002/ecy.2975</pub-id></element-citation></ref><ref id="bib140"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Verna</surname><given-names>TN</given-names></name></person-group><year iso-8601-date="2015">2015</year><article-title>Species Composition and Seasonal Distribution of Mosquito Larvae (Diptera: Culicidae) in Southern New Jersey, Burlington County</article-title><source>Journal of medical entomology</source><volume>52</volume><fpage>1165</fpage><lpage>1169</lpage><pub-id pub-id-type="doi">10.1093/jme/tjv074</pub-id><pub-id pub-id-type="pmid">26336214</pub-id></element-citation></ref><ref id="bib141"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Verner</surname><given-names>J</given-names></name><name><surname>Purcell</surname><given-names>KL</given-names></name></person-group><year iso-8601-date="1999">1999</year><article-title>Fluctuating Populations of House Wrens and Bewick’s Wrens in Foothills of the Western Sierra Nevada of California</article-title><source>The Condor</source><volume>101</volume><fpage>219</fpage><lpage>229</lpage><pub-id pub-id-type="doi">10.2307/1369985</pub-id></element-citation></ref><ref id="bib142"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Veronesi</surname><given-names>R</given-names></name><name><surname>Carrieri</surname><given-names>M</given-names></name><name><surname>Maccagnani</surname><given-names>B</given-names></name><name><surname>Maini</surname><given-names>S</given-names></name><name><surname>Bellini</surname><given-names>R</given-names></name></person-group><year iso-8601-date="2015">2015</year><article-title>Macrocyclops albidus (Copepoda: cyclopidae) for the Biocontrol of Aedes albopictus and Culex pipiens in Italy</article-title><source>Journal of the American Mosquito Control Association</source><volume>31</volume><fpage>32</fpage><lpage>43</lpage><pub-id pub-id-type="doi">10.2987/13-6381.1</pub-id><pub-id pub-id-type="pmid">25843174</pub-id></element-citation></ref><ref id="bib143"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Viechtbauer</surname><given-names>W</given-names></name></person-group><year iso-8601-date="2010">2010</year><article-title>Conducting Meta-Analyses in R with the metafor Package</article-title><source>Journal of Statistical Software</source><volume>36</volume><fpage>1</fpage><lpage>48</lpage><pub-id pub-id-type="doi">10.18637/jss.v036.i03</pub-id></element-citation></ref><ref id="bib144"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Vincze</surname><given-names>E</given-names></name><name><surname>Seress</surname><given-names>G</given-names></name><name><surname>Lagisz</surname><given-names>M</given-names></name><name><surname>Dinemanse</surname><given-names>N</given-names></name><name><surname>Sprau</surname><given-names>P</given-names></name></person-group><year iso-8601-date="2017">2017</year><article-title>Does Urbanization Affect Predation of Bird Nests? A Meta-Analysis</article-title><source>Frontiers in Ecology and Evolution</source><volume>5</volume><elocation-id>29</elocation-id><pub-id pub-id-type="doi">10.3389/fevo.2017.00029</pub-id></element-citation></ref><ref id="bib145"><element-citation publication-type="book"><person-group person-group-type="author"><name><surname>Vinogradova</surname><given-names>EB</given-names></name></person-group><year iso-8601-date="2000">2000</year><source>Culex Pipiens Pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control</source><publisher-name>Pensoft</publisher-name></element-citation></ref><ref id="bib146"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Vonesh</surname><given-names>JR</given-names></name><name><surname>Blaustein</surname><given-names>L</given-names></name></person-group><year iso-8601-date="2010">2010</year><article-title>Predator-Induced Shifts in Mosquito Oviposition Site Selection: A Meta-Analysis and Implications for Vector Control</article-title><source>Israel Journal of Ecology and Evolution</source><volume>56</volume><fpage>263</fpage><lpage>279</lpage><pub-id pub-id-type="doi">10.1560/IJEE.56.3-4.263</pub-id></element-citation></ref><ref id="bib147"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Weaver</surname><given-names>SC</given-names></name><name><surname>Reisen</surname><given-names>WK</given-names></name></person-group><year iso-8601-date="2010">2010</year><article-title>Present and future arboviral threats</article-title><source>Antiviral research</source><volume>85</volume><fpage>328</fpage><lpage>345</lpage><pub-id pub-id-type="doi">10.1016/j.antiviral.2009.10.008</pub-id><pub-id pub-id-type="pmid">19857523</pub-id></element-citation></ref><ref id="bib148"><element-citation publication-type="web"><person-group person-group-type="author"><collab>WORLD HEALTH ORGANIZATION</collab></person-group><year iso-8601-date="2020">2020</year><article-title>Vector-borne diseases</article-title><ext-link ext-link-type="uri" xlink:href="https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases">https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases</ext-link><date-in-citation iso-8601-date="2021-08-02">August 2, 2021</date-in-citation></element-citation></ref><ref id="bib149"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Xue</surname><given-names>R-D</given-names></name><name><surname>Barnard</surname><given-names>DR</given-names></name><name><surname>Muller</surname><given-names>GC</given-names></name></person-group><year iso-8601-date="2010">2010</year><article-title>Effects of body size and nutritional regimen on survival in adult Aedes albopictus (Diptera: Culicidae)</article-title><source>Journal of medical entomology</source><volume>47</volume><fpage>778</fpage><lpage>782</lpage><pub-id pub-id-type="doi">10.1603/me09222</pub-id><pub-id pub-id-type="pmid">20939370</pub-id></element-citation></ref><ref id="bib150"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Yackel Adams</surname><given-names>AA</given-names></name><name><surname>Skagen</surname><given-names>SK</given-names></name><name><surname>Savidge</surname><given-names>JA</given-names></name></person-group><year iso-8601-date="2006">2006</year><article-title>Modeling post-fledging survival of Lark Buntings in response to ecological and biological factors</article-title><source>Ecology</source><volume>87</volume><fpage>178</fpage><lpage>188</lpage><pub-id pub-id-type="doi">10.1890/04-1922</pub-id><pub-id pub-id-type="pmid">16634309</pub-id></element-citation></ref><ref id="bib151"><element-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Zuharah</surname><given-names>WF</given-names></name><name><surname>Fadzly</surname><given-names>N</given-names></name><name><surname>Lester</surname><given-names>PJ</given-names></name></person-group><year iso-8601-date="2013">2013</year><article-title>Lethal and sublethal impacts of predaceous backswimmer Anisops wakefieldi (Hemiptera: Notonectidae) on the life-history traits of the New Zealand mosquito Culex pervigilans (Diptera: Culicidae)</article-title><source>Journal of Medical Entomology</source><volume>50</volume><fpage>1014</fpage><lpage>1024</lpage><pub-id pub-id-type="doi">10.1603/me12136</pub-id><pub-id pub-id-type="pmid">24180106</pub-id></element-citation></ref></ref-list></back><sub-article article-type="editor-report" id="sa0"><front-stub><article-id pub-id-type="doi">10.7554/eLife.71503.sa0</article-id><title-group><article-title>Editor's evaluation</article-title></title-group><contrib-group><contrib contrib-type="author"><name><surname>Cobey</surname><given-names>Sarah E</given-names></name><role specific-use="editor">Reviewing Editor</role><aff><institution>University of Chicago</institution><country>United States</country></aff></contrib></contrib-group><related-object id="sa0ro1" link-type="continued-by" object-id="10.1101/2021.07.31.454599" object-id-type="id" xlink:href="https://sciety.org/articles/activity/10.1101/2021.07.31.454599"/></front-stub><body><p>This careful meta-analysis evaluates consumptive and non-consumptive effects of aquatic predators across multiple mosquito species, drawing from laboratory and semi-field studies. The authors find an important role for larval size in moderating consumption, significant non-consumptive impacts of predators on survival and body size, and variable effects of predators on oviposition behavior. These results therefore highlight multiple mechanisms by which aquatic predators might affect disease transmission.</p></body></sub-article><sub-article article-type="decision-letter" id="sa1"><front-stub><article-id pub-id-type="doi">10.7554/eLife.71503.sa1</article-id><title-group><article-title>Decision letter</article-title></title-group><contrib-group content-type="section"><contrib contrib-type="editor"><name><surname>Cobey</surname><given-names>Sarah E</given-names></name><role>Reviewing Editor</role><aff><institution>University of Chicago</institution><country>United States</country></aff></contrib></contrib-group><contrib-group><contrib contrib-type="reviewer"><name><surname>Meadows</surname><given-names>Amanda</given-names></name><role>Reviewer</role></contrib></contrib-group></front-stub><body><boxed-text id="box1"><p>Our editorial process produces two outputs: (i) <ext-link ext-link-type="uri" xlink:href="https://sciety.org/articles/activity/10.1101/2021.07.31.454599">public reviews</ext-link> designed to be posted alongside <ext-link ext-link-type="uri" xlink:href="https://www.biorxiv.org/content/10.1101/2021.07.31.454599v1">the preprint</ext-link> for the benefit of readers; (ii) feedback on the manuscript for the authors, including requests for revisions, shown below. We also include an acceptance summary that explains what the editors found interesting or important about the work.</p></boxed-text><p><bold>Decision letter after peer review:</bold></p><p>Thank you for submitting your article "Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission" for consideration by <italic>eLife</italic>. Your article has been reviewed by two peer reviewers, and the evaluation has been overseen by a Reviewing Editor and Christian Rutz as the Senior Editor. The following individual involved in the review of your submission has agreed to reveal their identity: Amanda Meadows (Reviewer #2).</p><p>The reviewers have discussed their reviews with one another, and the Reviewing Editor has drafted this decision letter to help you prepare a revised submission.</p><p>Essential revision: Both reviewers agreed in consultation that the discussion of WNV seems to overreach the results of the study. Please revise this section.</p><p>Optional: Please also address the clarification requests listed in the reviewers' reports below.</p><p>We thank the authors for the clear, well-documented code and description of the data file.</p><p><italic>Reviewer #1 (Recommendations for the authors):</italic></p><p>Line 82: The authors refer to experimental observations of predator effects on mosquito development and size as 'inconsistent'. While they refer to the sex-specific effects, what are their remarks on 'contextual or interactive effects ' driven by conspecific/heterospecific larval densities, for instance?</p><p>Line 170: It is unclear what "development time predator" means here.</p><p>Finally, the consumptive and non-consumptive effects of predation are known to interact with factors such as larval density or inter/intraspecific competition. There is experimental evidence of larval mortality resulting from consumptive effects leading to an increase in the population size of mosquitoes. I do not see this study analyzing the significance of such complex effects involving predation risk. The selection criteria employed by the authors to build the vector trait data subsets might have favored the bias towards studies investigating lone effects of predation threat. How can the differential influences of consumptive and non-consumptive effects of predators on mosquito traits be put to better use in disease models? If possible, the authors could consider discussing this aspect briefly in the manuscript.</p><p><italic>Reviewer #2 (Recommendations for the authors):</italic></p><p>Most of my suggestions refer to the "Implications for West Nile virus disease dynamics" section in the discussion.</p><p>Lines 539-562 This largely seems to be describing the effect of drought on WNV transmission dynamics, which seems to have very little to do with predator NCEs or consumptive effects. This is valuable space that could be used discussing the implications of traits shown to be impacted by predators in this study (such as body size). The authors do mention drought is known to move mosquitoes into more urban areas in search of breeding sites, but one important known driver is the consolidation of birds in mosquito breeding sites searching for water and potentially a high vector to reservoir ratio through a die off of juvenile birds (see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310598/, for example). I think if the authors decide to keep this section, these alternatives should be discussed as well.</p></body></sub-article><sub-article article-type="reply" id="sa2"><front-stub><article-id pub-id-type="doi">10.7554/eLife.71503.sa2</article-id><title-group><article-title>Author response</article-title></title-group></front-stub><body><disp-quote content-type="editor-comment"><p>Reviewer #1 (Recommendations for the authors):</p><p>Line 82: The authors refer to experimental observations of predator effects on mosquito development and size as 'inconsistent'. While they refer to the sex-specific effects, what are their remarks on 'contextual or interactive effects ' driven by conspecific/heterospecific larval densities, for instance?</p></disp-quote><p>Because only three studies in our database included hetero-specific mosquito prey, examining these interactions was deemed to be outside the scope of our meta-analysis. We now include three sentences in the “Future directions” section (Lines 648-654) that address the need for more research on this topic.</p><disp-quote content-type="editor-comment"><p>Line 170: It is unclear what "development time predator" means here.</p></disp-quote><p>We acknowledge that this sentence was not structured well, and we have revised it to improve its level of clarity (Line 170-171).</p><disp-quote content-type="editor-comment"><p>Finally, the consumptive and non-consumptive effects of predation are known to interact with factors such as larval density or inter/intraspecific competition. There is experimental evidence of larval mortality resulting from consumptive effects leading to an increase in the population size of mosquitoes. I do not see this study analyzing the significance of such complex effects involving predation risk. The selection criteria employed by the authors to build the vector trait data subsets might have favored the bias towards studies investigating lone effects of predation threat. How can the differential influences of consumptive and non-consumptive effects of predators on mosquito traits be put to better use in disease models? If possible, the authors could consider discussing this aspect briefly in the manuscript.</p></disp-quote><p>We are aware of certain instances where the consumptive and non-consumptive effects of predators seem to have opposing impacts on mosquito populations. For example, in a low food resource environment, consumption of some mosquito larvae could release the surviving larvae from the constraints of intraspecific competition, increasing the per capita food intake and allowing survivors to grow larger in size; these larger mosquitoes would likely have greater reproductive potential than those that developed in the absence of predation. Some experiments in our database were carefully designed to only examine non-consumptive effects; these experiments often expose mosquito larvae to a caged predator, or to predator cues that do not include a live predator. Other experiments in our database that measure non-consumptive effects do allow the predator to have direct access to mosquito prey. To examine how different types of predator cues might alter non-consumptive effects on mosquito body size and development time, we included two variables, number of predators (Num_pred) and type of cue (Cue_type), in our database. In cases where the predator(s) did not have direct access to prey, the Num_pred variable is listed as “CUE”. The Cue_type variable differentiates between cues that are only from the predator(s), and cues that include both the predator(s) and dying mosquito prey. Unfortunately, none of the four size or development data subsets met all the criteria that we required to test for moderators (Lines 261-264). Thus, investigating how different predator cue types could moderate the non-consumptive effects of predators on mosquito size or development time is beyond the capabilities of this meta-analysis.</p><p>Many past studies in the literature analyze consumptive and non-consumptive effects of predators separately. Our selection criteria did not create this separation, but our effect size calculations did limit our database to observations from manipulative experiments. An observational field study would be the most accurate study design for assessing how consumptive and non-consumptive effects combine in natural environments, but data from both predator and control treatments, as generated in manipulative experiments, are needed to determine effect sizes. To acknowledge the need for further evaluation of how consumptive and non-consumptive effects combine in natural settings, we have added two sentences to the “Future directions” section (Lines 654-657).</p><disp-quote content-type="editor-comment"><p>Reviewer #2 (Recommendations for the authors):</p><p>Most of my suggestions refer to the "Implications for West Nile virus disease dynamics" section in the discussion.</p><p>Lines 539-562 This largely seems to be describing the effect of drought on WNV transmission dynamics, which seems to have very little to do with predator NCEs or consumptive effects. This is valuable space that could be used discussing the implications of traits shown to be impacted by predators in this study (such as body size). The authors do mention drought is known to move mosquitoes into more urban areas in search of breeding sites, but one important known driver is the consolidation of birds in mosquito breeding sites searching for water and potentially a high vector to reservoir ratio through a die off of juvenile birds (see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310598/, for example). I think if the authors decide to keep this section, these alternatives should be discussed as well.</p></disp-quote><p>Insect oviposition behavior has previously been discussed as a trait that can be non-consumptively affected by predators, and limited mosquito oviposition sites during drought conditions has previously been identified as a potential cause of the association between drought and human WNV cases. Because our goal of connecting the meta-analysis findings to infectious disease dynamics is stated in the Introduction section, we maintain that our discussion of how drought could intensify the non-consumptive effects of predators on mosquito oviposition behavior, in the context of the WNV disease system, is deserving of space in this manuscript. However, we have edited the original WNV paragraphs (Lines 451-516) to eliminate approximately 70 words that unnecessarily contributed to the length of this section.</p><p>In addition, we have taken several steps to ensure that our discussion points on this topic are not overstated. Instead of claiming that predator avoidance during oviposition “is the behavioral mechanism underlying associations between drought and human WNV cases”, we now suggest that this trait “can serve as a plausible explanation” for these previously observed associations (Lines 514-516). We also revised the part of the Conclusion related to this topic from “can greatly improve current understanding”, to “can improve current understanding” (Line 618). Furthermore, we have removed mention of “paradoxical” and “counter-intuitive” as descriptors of the association between drought and WNV cases (previously included around Lines 479-480). Instead, we now include discussion of alternate theories, as well as discussion of several weaknesses that are apparent within these theories (Lines 518-557).</p></body></sub-article></article>