<html lang="en">

  <head>
    <title>Condensation of Ede1 promotes the initiation of endocytosis</title>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta http-equiv="X-UA-Compatible" content="ie=edge">
    <link href="https://unpkg.com/@stencila/thema@2/dist/themes/elife/styles.css" rel="stylesheet">
    <script src="https://unpkg.com/@stencila/thema@2/dist/themes/elife/index.js"
      type="text/javascript"></script>
    <script
      src="https://unpkg.com/@stencila/components@&lt;=1/dist/stencila-components/stencila-components.esm.js"
      type="module"></script>
    <script
      src="https://unpkg.com/@stencila/components@&lt;=1/dist/stencila-components/stencila-components.js"
      type="text/javascript" nomodule=""></script>
  </head>

  <body>
    <main role="main">
      <article itemscope="" itemtype="http://schema.org/Article" data-itemscope="root">
        <h1 itemprop="headline">Condensation of Ede1 promotes the initiation of endocytosis</h1>
        <meta itemprop="image"
          content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Condensation%20of%20Ede1%20promotes%20the%20initiation%20of%20endocytosis">
        <ol data-itemprop="authors">
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Mateusz Kozak"><span data-itemprop="givenNames"><span
                itemprop="givenName">Mateusz</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Kozak</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Marko Kaksonen"><span data-itemprop="givenNames"><span
                itemprop="givenName">Marko</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Kaksonen</span></span><span data-itemprop="emails"><a
                itemprop="email"
                href="mailto:marko.kaksonen@unige.ch">marko.kaksonen@unige.ch</a></span><span
              data-itemprop="affiliations"><a itemprop="affiliation"
                href="#author-organization-1">1</a></span>
          </li>
        </ol>
        <ol data-itemprop="affiliations">
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-1"
            id="author-organization-1"><span itemprop="name">Department of Biochemistry and NCCR
              Chemical Biology, University of Geneva</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">Geneva</span><span
                itemprop="addressCountry">Switzerland</span></address></li>
        </ol><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
          <meta itemprop="name" content="Unknown"><span itemscope=""
            itemtype="http://schema.org/ImageObject" itemprop="logo">
            <meta itemprop="url"
              content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
          </span>
        </span><time itemprop="datePublished" datetime="2022-04-12">2022-04-12</time>
        <ul data-itemprop="genre">
          <li itemprop="genre">Research Article</li>
        </ul>
        <ul data-itemprop="about">
          <li itemscope="" itemtype="http://schema.org/DefinedTerm" itemprop="about"><span
              itemprop="name">Cell Biology</span></li>
        </ul>
        <ul data-itemprop="keywords">
          <li itemprop="keywords">endocytosis</li>
          <li itemprop="keywords">phase separation</li>
          <li itemprop="keywords">Ede1</li>
          <li itemprop="keywords">S. cerevisiae</li>
        </ul>
        <ul data-itemprop="identifiers">
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID"
              content="https://registry.identifiers.org/registry/publisher-id"><span
              itemprop="name">publisher-id</span><span itemprop="value"
              data-itemtype="http://schema.org/Number">72865</span>
          </li>
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi">
            <span itemprop="name">doi</span><span itemprop="value">10.7554/eLife.72865</span>
          </li>
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID"
              content="https://registry.identifiers.org/registry/elocation-id"><span
              itemprop="name">elocation-id</span><span itemprop="value">e72865</span>
          </li>
        </ul>
        <section data-itemprop="description">
          <h2 data-itemtype="http://schema.stenci.la/Heading">Abstract</h2>
          <meta itemprop="description"
            content="Clathrin-mediated endocytosis is initiated by a network of weakly interacting proteins through a poorly understood mechanism. Ede1, the yeast homolog of mammalian Eps15, is an early-arriving endocytic protein and a key initiation factor. In the absence of Ede1, most other early endocytic proteins lose their punctate localization and endocytic uptake is decreased. We show that in yeast cells, cytosolic concentration of Ede1 is buffered at a critical level. Excess amounts of Ede1 form large condensates which recruit other endocytic proteins and exhibit properties of phase-separated liquid droplets. We demonstrate that the central region of Ede1, containing a coiled-coil and a prion-like region, is essential for both the condensate formation and the function of Ede1 in endocytosis. The functionality of Ede1 mutants lacking the central region can be partially rescued by an insertion of heterologous prion-like domains. Conversely, fusion of a heterologous lipid-binding domain with the central region of Ede1 can promote clustering into stable plasma membrane domains. We propose that the ability of Ede1 to form condensed networks supports the clustering of early endocytic proteins and promotes the initiation of endocytosis.">
          <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Clathrin-mediated endocytosis
            is initiated by a network of weakly interacting proteins through a poorly understood
            mechanism. Ede1, the yeast homolog of mammalian Eps15, is an early-arriving endocytic
            protein and a key initiation factor. In the absence of Ede1, most other early endocytic
            proteins lose their punctate localization and endocytic uptake is decreased. We show
            that in yeast cells, cytosolic concentration of Ede1 is buffered at a critical level.
            Excess amounts of Ede1 form large condensates which recruit other endocytic proteins and
            exhibit properties of phase-separated liquid droplets. We demonstrate that the central
            region of Ede1, containing a coiled-coil and a prion-like region, is essential for both
            the condensate formation and the function of Ede1 in endocytosis. The functionality of
            Ede1 mutants lacking the central region can be partially rescued by an insertion of
            heterologous prion-like domains. Conversely, fusion of a heterologous lipid-binding
            domain with the central region of Ede1 can promote clustering into stable plasma
            membrane domains. We propose that the ability of Ede1 to form condensed networks
            supports the clustering of early endocytic proteins and promotes the initiation of
            endocytosis.</p>
        </section>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="introduction">Introduction
        </h2>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Clathrin-mediated endocytosis
          is a process which eukaryotic cells use to produce small transport vesicles from their
          plasma membrane. These vesicles deliver cargo molecules to the endolysosomal trafficking
          network where they are sorted for recycling or degradation <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib24"><span>24</span><span>Grant and
                Donaldson</span><span>2009</span></a></cite>. This process is the primary route of
          internalization of extracellular and surface molecules in eukaryotic cells <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib31"><span>31</span><span>Kirchhausen et
                al.</span><span>2014</span></a></cite>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Clathrin-mediated endocytosis
          requires a complex protein machinery to assemble on the plasma membrane in a specific
          sequence <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib28"><span>28</span><span>Kaksonen et
                  al.</span><span>2005</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib71"><span>71</span><span>Sirotkin
                  et al.</span><span>2010</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib78"><span>78</span><span>Taylor
                  et al.</span><span>2011</span></a></cite></span>. Endocytosis starts with the
          arrival of pioneer proteins which select the site and initiate the assembly of the
          endocytic coat <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib29"><span>29</span><span>Kaksonen and
                Roux</span><span>2018</span></a></cite>. Different pioneer proteins <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib26"><span>26</span><span>Henne et
                  al.</span><span>2010</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib13"><span>13</span><span>Cocucci
                  et al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib45"><span>45</span><span>Ma et
                  al.</span><span>2016</span></a></cite></span>, lipids <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib2"><span>2</span><span>Antonescu et
                al.</span><span>2011</span></a></cite> and cargo molecules <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib41"><span>41</span><span>Liu et
                  al.</span><span>2010</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib38"><span>38</span><span>Layton
                  et al.</span><span>2011</span></a></cite></span> have been shown to promote the
          initiation step (reviewed by <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib23"><span>23</span><span>Godlee and
                Kaksonen</span><span>2013</span></a></cite>). However, the exact mechanism by which
          the endocytic sites are initiated remains poorly understood.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The molecular mechanisms of
          clathrin-mediated endocytosis have been studied extensively in yeasts, such as the budding
          yeast <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Saccharomyces
            cerevisiae</em>. The pioneer module in yeast includes highly conserved adaptor proteins
          which bind membrane and cargo, such as the adaptor protein complex 2 (AP-2 complex), Syp1
          (FCHo1/2 in mammals) and Yap1801/2 (AP180). Two conserved scaffold proteins, clathrin and
          Ede1 (Eps15), also arrive during the early phase. In contrast to the remarkably
          well-ordered assembly of the membrane-bending phase <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib63"><span>63</span><span>Picco et
                al.</span><span>2015</span></a></cite>, the early proteins lack a specific sequence
          of recruitment <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib10"><span>10</span><span>Carroll et
                  al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib59"><span>59</span><span>Pedersen
                  et al.</span><span>2020</span></a></cite></span>. Curiously, all the genes coding
          for the earliest-arriving proteins can be deleted without completely blocking endocytosis
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib9"><span>9</span><span>Brach et al.</span><span>2014</span></a></cite>.
          However, the frequency of endocytic events is decreased in such cells, and the ability to
          regulate cargo recruitment is drastically compromised.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Ede1, a homologue of mammalian
          Eps15, is one of the key early proteins. It is among the earliest to appear at the nascent
          endocytic site <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib10"><span>10</span><span>Carroll et al.</span><span>2012</span></a></cite>.
          The deletion of the EDE1 gene reduces the overall membrane uptake by 35 % <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib22"><span>22</span><span>Gagny et al.</span><span>2000</span></a></cite> and
          decreases the number of productive ndocytic events by 50 % <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib10"><span>10</span><span>Carroll
                  et al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib28"><span>28</span><span>Kaksonen
                  et al.</span><span>2005</span></a></cite></span>. Ede1 interacts via its three
          Eps15 homology (EH) domains and other interaction motifs with proteins such as the AP-2
          complex, Hrr25, epsins, Sla2, Syp1, and Yap1801/2 <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib46"><span>46</span><span>Maldonado-Báez et
                  al.</span><span>2008</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib64"><span>64</span><span>Reider
                  et al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib60"><span>60</span><span>Peng et
                  al.</span><span>2015</span></a></cite></span>. Several of these proteins depend on
          interaction with Ede1 to become enriched at the endocytic sites <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib10"><span>10</span><span>Carroll et
                al.</span><span>2012</span></a></cite>. Ede1 also oligomerizes via its coiled-coil
          domain, which is required for it to properly localise and function <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib8"><span>8</span><span>Boeke et
                  al.</span><span>2014</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib43"><span>43</span><span>Lu and
                  Drubin</span><span>2017</span></a></cite></span>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In recent years, liquid-liquid
          phase separation of biomolecules has garnered much attention as a mechanism for assembly
          of cellular organelles which lack surrounding membranes, such as P granules, nucleoli and
          stress granules <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib5"><span>5</span><span>Banani et al.</span><span>2017</span></a></cite>.
          Such membrane-less compartments can accelerate reactions, sequester molecules from the
          cytoplasm or establish spatial organisation <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib44"><span>44</span><span>Lyon et
                al.</span><span>2021</span></a></cite>. The phase separation framework can also
          apply to sub-micrometre compartments that balance the needs of concentrating select
          components with allowing a dynamic exchange and rearrangement of molecules. Examples of
          such compartments include transcriptional superenhancers <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib67"><span>67</span><span>Sabari et
                al.</span><span>2018</span></a></cite> and a wide array of membrane receptor
          clusters <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib11"><span>11</span><span>Case et al.</span><span>2019</span></a></cite>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In this work, we show that Ede1
          has a propensity to form cellular condensates. We demonstrate that the cytosolic
          concentration of Ede1 is buffered at a critical concentration. We identify the molecular
          features driving the condensation of Ede1 and show that they are essential for the normal
          function of Ede1 during endocytosis. Our findings suggest that Ede1 has a ability form
          molecular condensates, which promote the initiation and maturation of endocytic sites. The
          Ede1 condensates exhibit many of the hallmark properties of phase separated liquids.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="results">Results</h2>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="ede1-can-form-dynamic-protein-condensates">Ede1 can form dynamic protein condensates
        </h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In normal yeast cells,
          fluorescently tagged Ede1 localizes to endocytic sites at the plasma membrane <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib34"><span>34</span><span>Kukulski et al.</span><span>2012</span></a></cite>.
          However, we discovered previously that under certain experimental conditions Ede1 can also
          assemble into large condensates <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib8"><span>8</span><span>Boeke et
                al.</span><span>2014</span></a></cite>. These condensates were seen in cells that
          either overexpressed Ede1, or expressed Ede1 at normal levels, but lacked three early
          endocytic adaptors. Although these condensates are abnormal structures that have not been
          observed in wild-type cells, we reasoned that studying them in more detail might provide
          insights into the mechanism by which Ede1 promotes the assembly of the early endocytic
          proteins.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To visualize the condensates,
          we expressed Ede1 fused to enhanced green fluorescent protein (EGFP) from its endogenous
          locus in haploid wild-type cells, or in cells from which three endocytosis-related genes
          were deleted (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">yap1801Δ
            yap1802Δ apl3</em>Δ, called 3×ΔEA for short). These genes code for early-arriving
          endocytic adaptor proteins Yap1801, Yap1802, and the α-subunit of the AP-2 complex.
          Alternatively, we overexpressed EGFP-Ede1 from its endogenous locus under the control of a
          strong heterologous promoter.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We observed that part of the
          cellular Ede1-EGFP in the mutant strains localized into condensates that were much
          brighter than the normal endocytic sites (<a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1A</a>). The condensates in the
          overexpression strain were larger and brighter than those in the 3×ΔEA cells (<a
            href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1B</a>). The
          condensates usually associated with the plasma membrane, but were also observed away from
          it (<a href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1A</a>).
          In contrast, normal endocytic sites are always associated with the plasma membrane. The
          condensates in the Ede1 overexpression strain were often large enough that their shape was
          resolvable (<a href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            1B</a>). They appeared circular in surface view, and as dome-like structures limited by
          the plasma membrane in the side view. The Ede1 condensates were remarkably long lived and
          we have observed individual condensates for up to 1 hour (<a href="#fig1video1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—video 1</a>). This stands
          in contrast with normal endocytic sites, where Ede1-EGFP typically persists for 1-2
          minutes <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib75"><span>75</span><span>Stimpson et al.</span><span>2009</span></a></cite>.
          Despite their stability, some of the condensates appeared to undergo dynamic fission and
          fusion events, suggesting that they are not solid aggregates (<a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1C</a>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1" title="Figure 1.">
          <label data-itemprop="label">Figure 1.</label><img src="index.html.media/fig1.jpg" alt=""
            itemscope="" itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="excess-cytosolic-ede1-assembles-into-condensates-in-vivo">Excess cytosolic Ede1
              assembles into condensates in vivo.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Representative images of yeast
              cells expressing Ede1-EGFP in wild-type (wt) and 3×ΔEA genetic backgrounds, or
              overexpressing EGFP-Ede1 under the control of the <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">ADH1</em> promoter. Mutant cell
              micrographs are shown using the same display range as the wt (top) or their full
              display range (bottom). Two cells are shown for 3×ΔEA background to display the
              membrane-associated and cytoplasmic localizations of Ede1 condensates. Scale bars: 2
              μm. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>)
              Representative images of Ede1-EGFP at endocytic sites in wt background, Ede1-EGFP
              condensates in 3×ΔEA cells, and EGFP-Ede1 overexpression-induced condensates (OE). OE
              condensates are shown in two different orientations. Each frame is 1.5 μm × 1.5 μm;
              dotted white line represents the approximate position of the plasma membrane. (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) Two time series
              of Ede1-EGFP condensates undergoing apparent fusion (top) and fission (bottom) events.
              Scale bar: 1 μm. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">D</strong>) Representative images of
              diploid cells homozygous for the 3×ΔEA background, each expressing Ede1-EGFP and
              differing in the second Ede1 locus: <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">EDE1-EGFP</em>, <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">EDE1,</em> or <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">ede1</em>Δ. Scale bars: 2 μm.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1E"
          title="Figure 1E."><label data-itemprop="label">Figure 1E.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 12
library(tidyverse)
library(Hmisc) # mean_sdl and binomial confs
library(broom)
library(ggbeeswarm)
library(ggsignif)
library(lmerTest)
library(emmeans)
library(rstatix)
library(multcompView)

strains &lt;- read_csv(&quot;data/fig1/raw/strain_lut.csv&quot;, 
                    col_types = cols(second_ede1  = col_factor(NULL))) # order factor levels in csv file
#knitr::kable(strains)

# initialize a data frame with counts and get information about experiment from file names
files &lt;- list.files(path = &#39;data/fig1/raw/&#39;, pattern = &#39;dataset&#39;,
                    full.names = TRUE)

counts &lt;- map(files, read_csv,
              col_names = c(&#39;cell&#39;, &#39;condensates&#39;, &#39;dataset&#39;),
              cols(dataset = col_factor(NULL))) %&gt;%
          bind_rows() %&gt;%
          separate(cell, c(&#39;date&#39;, &#39;strain&#39;, &#39;stack&#39;, &#39;cell&#39;,
                   &#39;channel&#39;), &#39;_&#39;) %&gt;%
          left_join(strains, by = &#39;strain&#39;) %&gt;%
          select(strain, stack, second_ede1, condensates, dataset)

proc &lt;- counts %&gt;%
  group_by(second_ede1, dataset) %&gt;%
  summarise(x = sum(condensates), n = n(),
            p = binconf(x, n, method = &#39;wilson&#39;)[1],
            p_min = binconf(x, n, method = &#39;wilson&#39;)[2],
            p_max = binconf(x, n, method = &#39;wilson&#39;)[3])

proc_stats &lt;- proc %&gt;%
  select(second_ede1, dataset, p) %&gt;%
  group_by(second_ede1) %&gt;%
  summarise(mean = mean(p), sd = sd(p), n = n())

#knitr::kable(proc)

proc_stats &lt;- proc %&gt;%
  select(second_ede1, dataset, p) %&gt;%
  group_by(second_ede1) %&gt;%
  summarise(mean = mean(p), sd = sd(p), n = n())

#knitr::kable(proc_stats)

theme_frap &lt;- function(base_size = 11, base_family = &quot;&quot;,
                       base_line_size = base_size / 22,
                       base_rect_size = base_size / 22) {
  # minimal theme with border
  # based on theme_linedraw without the grid lines
  # also trying to remove all backgrounds but plot_background won&#39;t set to blank
  theme_linedraw(
    base_size = base_size,
    base_family = base_family,
    base_line_size = base_line_size,
    base_rect_size = base_rect_size
  ) %+replace%
    theme(
      # no grid and no backgrounds if I can help it
      plot.background = element_blank(),
      panel.background = element_blank(),
      panel.grid = element_blank(),
      plot.margin = margin(0, 0, 0, 0),
      complete = TRUE
    )
}

myplot &lt;- proc %&gt;% ggplot(aes(x = second_ede1, y = p)) + 
  geom_quasirandom(aes(shape = dataset), fill = &#39;gray80&#39;,
              size = 2, width = 0.3, show.legend = FALSE)+
  stat_summary(fun.y = mean, geom = &quot;errorbar&quot;, 
               aes(ymax = ..y.., ymin = ..y..),
               width = 0.5, size = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;, geom = &#39;errorbar&#39;,
               fun.args = list(mult = 1), width = 0.2)+
  #scale_color_brewer(palette = &#39;Set2&#39;)+
  scale_shape_manual(values = c(21:25))+
  theme_frap(base_size = 18, base_family = &quot;Helvetica&quot;)+
  scale_y_continuous(labels = scales::label_percent(suffix = &#39;&#39;))+
  theme(legend.position = c(0.95, 0.95),
        legend.justification = c(&quot;right&quot;, &quot;top&quot;),
        legend.background = element_rect(fill = NULL, colour = &#39;black&#39;,
                                         size = 0.5))+
  labs(title = NULL,
       y = &#39;Cells with condensates (%)&#39;,
       x = &#39;Second Ede1 allele&#39;)
myplot</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="the-fraction-of-cells-containing-condensates-in-each-strain-from-panel-d">The
              fraction of cells containing condensates in each strain from panel D.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Bars and whiskers show mean
              ± SD of three independent experiments. A range of 40–70 cells were analyzed per data
              point.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s1"
          title="Figure 1—figure supplement 1."><label data-itemprop="label">Figure 1—figure
            supplement 1.</label><img src="index.html.media/fig1-figsupp1.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="representative-3×δea-cells-expressing-ede1-tagged-with-mneongreen-msgfp2-or-mcherry">
              Representative 3×ΔEA cells expressing Ede1 tagged with mNeonGreen, msGFP2, or mCherry.
            </h4>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All three adaptors absent from
          3×ΔEA cells interact with Ede1, as well as membrane lipids and protein cargo. As Ede1 does
          not have known membrane-binding activity, it is likely that the cytosolic pool of Ede1 is
          increased both in the overexpression and the 3×ΔEA backgrounds, and the excess protein
          assembles into the condensates. To test whether the formation of condensates in 3×ΔEA
          background depends on Ede1 concentration, we generated diploid cells homozygous for the
          three adaptor deletions. We expressed Ede1-EGFP in these cells either from both <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">EDE1</em> alleles (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">EDE1-EGFP/EDE1-EGFP</em>), or
          from one allele in combination with untagged <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">EDE1</em> (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">EDE1-EGFP/EDE1</em>) or a deletion of <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">EDE1</em> (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">EDE1-EGFP/ede1</em>Δ). The condensates
          formed in both strains expressing two alleles of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">EDE1</em>, but not in the strain where only
          one <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">EDE1</em> allele was
          present (<a href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            1D</a>). This result suggests that the condensate assembly depends on Ede1
          concentration.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The EGFP tag used in these
          experiments has a weak tendency to dimerize and can induce protein clustering in some in
          vivo contexts <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib14"><span>14</span><span>Costantini et
                al.</span><span>2012</span></a></cite>. We expressed Ede1 tagged with monomeric
          fluorescent proteins mNeonGreen, msGFP2, and mCherry in 3×ΔEA cells and observed the same
          phenotype as with EGFP-tagged Ede1 (<a href="#fig1s1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 1</a>). The observed
          phenotype is therefore unlikely to have been caused by the choice of the fluorescent tag.
        </p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">It must also be noted that
          there is a large difference in brightness between genuine endocytic sites and condensates
          in mutant cells. Therefore, we chose to saturate the display of those images which show
          both classes of objects simultaneously, in order for the cells and endocytic sites to
          remain visible. This difference is demonstrated in panel A of <a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1</a>.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="ede1-condensates-exhibit-liquid-like-properties">Ede1 condensates exhibit liquid-like
          properties</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Because of their spherical
          shapes, concentration dependence, and dynamic behaviors, we hypothesized that the Ede1
          condensates might be phase-separated liquid droplets. To test this idea, we first
          performed fluorescence recovery after photobleaching (FRAP) experiments on Ede1-EGFP
          condensates in the 3×ΔEA background. After photobleaching, the condensates rapidly
          recovered most of their fluorescence (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2A</a>). The recovery half-time of a
          single-exponential FRAP model fitted to an average of 36 events was 22 s, and the mobile
          fraction was 63%.</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2" title="Figure 2.">
          <label data-itemprop="label">Figure 2.</label><img src="index.html.media/fig2.jpg" alt=""
            itemscope="" itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="ede1-structures-exchange-molecules-with-the-cytoplasm-and-respond-to-temperature-changes">
              Ede1 structures exchange molecules with the cytoplasm and respond to temperature
              changes.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A, B</strong>) Fluorescence recovery after
              photobleaching (FRAP) of Ede1-EGFP condensates in 3×ΔEA cells (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) and endocytic sites in normal
              cells (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>).
              Plots show mean fluorescence recovery ± SD; n = 36 across four independent experiments
              (panel A) and n = 14 across three independent experiments (panel B). Representative
              time series are shown below each plot. Each frame is 1 μm × 1 μm. (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) Time series of a
              partial bleaching of a condensate in a cell overexpressing EGFP-Ede1. A perceptually
              uniform color lookup table has been applied to highlight the changes in intensity.
              Each frame is 1.5 μm × 1.5 μm.(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">D</strong>) Average fluorescence recovery
              (n = 14) after partial bleaching of condensates in cells overexpressing EGFP-Ede1, as
              in panel (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>).
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">E</strong>)
              Representative cells after 5-min treatment with indicated concentrations of
              1,6-hexanediol. Maximum Z-projections. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">F</strong>) Ede1-EGFP was imaged in 3×ΔEA
              cells at different temperatures. Cells were grown and imaged at 24°C. The temperature
              was raised to 37 and 42°C and returned to 24°C for the indicated amounts of time.
              Maximum Z-projections. All scale bars: 2 μm.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We then examined the recovery
          of Ede1 in normal endocytic sites, photobleaching them during total internal reflection
          fluorescence (TIRF) imaging. We found that Ede1-EGFP also turns over fast at endocytic
          sites (half-time of 7.8 s and mobile fraction of 91%). The turnover at the endocytic sites
          was faster and the mobile fraction higher than in the condensates.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We also performed experiments
          where we bleached the Ede1 condensates only partially, in order to visualize diffusion of
          fluorescent molecules within the condensates. For these experiments we used cells
          overexpressing Ede1-EGFP, in which the condensates are larger than in the 3×ΔEA cells.
          When a subregion of an endocytic condensate was bleached, the fluorescence in the bleached
          and unbleached regions equalized within several seconds (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2C and D</a>; <a href="#fig2video1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—video 1</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The formation of
          phase-separated condensates depends on protein concentration and can be affected by
          environmental factors such as temperature <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib50"><span>50</span><span>Molliex
                  et al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib56"><span>56</span><span>Nott et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib20"><span>20</span><span>Franzmann et
                  al.</span><span>2018</span></a></cite></span>. When the 3×ΔEA cells cultured at
          24°C were incubated at 37°C for 5 min, the condensates dissolved while the endocytic sites
          persisted (<a href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            2D</a>). When the temperature was raised to 42°C, Ede1 signal became entirely diffuse.
          This effect was reversible for both the endocytic sites, which reformed after several
          minutes, and the condensates, which reappeared within 30 min after return to 24°C.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">1,6-Hexanediol is an aliphatic
          alcohol that disrupts weak protein-protein interactions <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib57"><span>57</span><span>Patel et
                al.</span><span>2007</span></a></cite> and is used to distinguish between solid and
          liquid protein aggregates <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib33"><span>33</span><span>Kroschwald et
                al.</span><span>2015</span></a></cite>. Both Ede1 condensates and endocytic patches
          rapidly disappeared in 3×ΔEA cells upon 1,6-hexanediol treatment (<a href="#fig2"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2E</a>). Interestingly,
          endocytic patches only fully dissolved at higher 1,6-hexanediol concentrations than Ede1
          condensates.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Taken together our results show
          that Ede1 both in the condensates and at the endocytic sites behaves in a highly dynamic,
          liquid-like manner.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Next, we sought to determine
          the concentration of Ede1 in the 3×ΔEA and Ede1 overexpression cells relative to the
          wild-type cells. We used spinning-disk confocal microscopy to limit the influence of
          out-of-focus condensates on the quantification of cytosolic intensity. We quantified the
          mean pixel intensity in entire cell volumes and in small cytosolic regions of cell
          cross-sections (<a href="#fig3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 3A</a>). The total cellular intensity was
          on average 122 and 321% of the wild-type in 3×ΔEA and overexpression cells, respectively.
          The cytosolic intensity was nevertheless uniform across all three strains and we could
          detect no statistically significant differences (p=0.45 in F-test).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3" title="Figure 3A.">
          <label data-itemprop="label">Figure 3A.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 12
#&#39; @height 10
# Clean raw data
cyto_full &lt;- dir(&#39;data/fig3_concentrations/cyto&#39;, pattern = &#39;dataset&#39;, full.names = T) %&gt;%
  map(dir, pattern = &#39;.csv&#39;, full.names = T) %&gt;%
  map(
    ~ set_names(.x,
                nm = (basename(.x) %&gt;% tools::file_path_sans_ext()))) %&gt;%
  map(
    ~ map_df(.x, read_csv,
         col_types = cols(), # suppress the column spec message
         col_names = c(&#39;frame&#39;, &#39;intensity&#39;), # set up names
         skip = 1, # skip the ImageJ header
         .id = &quot;filename&quot;)) %&gt;% # id observations by filename
  imap_dfr(~.x, .id = &#39;dataset&#39;) %&gt;%
  select(-frame) %&gt;%
  separate(filename, c(&#39;date&#39;, &#39;strain&#39;, &#39;image&#39;, &#39;channel&#39;, &#39;processing&#39;, &#39;window&#39;), &#39;_&#39;)

cell_full &lt;- dir(&#39;data/fig3_concentrations/cell&#39;, pattern = &#39;dataset&#39;, full.names = T) %&gt;%
  map(read_csv, col_types = cols()) %&gt;%
  imap_dfr(~.x, .id = &#39;dataset&#39;) %&gt;%
  separate(cell, c(&#39;date&#39;, &#39;strain&#39;, &#39;image&#39;, &#39;window&#39;, &#39;channel&#39;, &#39;processing&#39;), &#39;_&#39;) %&gt;%
  rename(int_mean = mean, int_median = median, int_sd = sd)

cyto &lt;- cyto_full %&gt;%
  select(date, strain, image, window, intensity, dataset) %&gt;%
  tibble(., localization = &#39;Cytosolic&#39;)

cell &lt;- cell_full %&gt;%
  rename(intensity = int_mean) %&gt;%
  select(date, strain, image, window, intensity, dataset) %&gt;%
  tibble(., localization = &#39;Cellular&#39;)

strains &lt;- read_csv(&quot;data/fig3_concentrations/strain_lut.csv&quot;, 
                    col_types = cols(nickname = col_factor(NULL)))

intensities &lt;- bind_rows(cyto, cell) %&gt;%
  left_join(strains, by = &#39;strain&#39;) %&gt;%
  mutate(strain = nickname,
         localization = recode_factor(localization,
                                      &#39;Cellular&#39; = &#39;Cellular&#39;,
                                      &#39;Cytosolic&#39; = &#39;Cytosolic&#39;),
         .keep = &#39;unused&#39;) %&gt;%
  select(-mCherry)

# Custom ggplot2 theme
# --------------------
theme_clean &lt;- function(base_size = 11, base_family = &quot;&quot;,
                        base_line_size = base_size / 22,
                        base_rect_size = base_size / 22) {
  theme_linedraw(
    base_size = base_size,
    base_family = base_family,
    base_line_size = base_line_size,
    base_rect_size = base_rect_size
  ) %+replace%
    theme(
      # no grid and no backgrounds if I can help it
      legend.background =  element_blank(),
      panel.background = element_blank(),
      panel.grid = element_blank(),
      plot.background = element_blank(),
      plot.margin = margin(0, 0, 0, 0),
      complete = TRUE
    )
}

theme_set(theme_clean(base_size = 14, base_family = &quot;Helvetica&quot;))

# generate normalized intensities (within each dataset)

# pull out scaling factor
wt_means &lt;- intensities %&gt;%
  filter(strain == &#39;wt&#39;) %&gt;%
  group_by(dataset, localization) %&gt;%
  summarise(wt_mean = mean(intensity), .groups = &#39;drop&#39;)

# join with the dataframe, generate new variable
intensities &lt;- left_join(intensities, wt_means,
                         by = c(&#39;dataset&#39;, &#39;localization&#39;)) %&gt;%
  mutate(normalized = intensity / wt_mean)

# generate summary statistics
intensity_stats &lt;- intensities %&gt;%
  group_by(localization, strain, dataset) %&gt;%
  summarise(n = n(),
            across(c(intensity, normalized),
                   list(mean = mean, sd = sd, median = median,
                        se = ~ sd(.x) / sqrt(n())
                        )), .groups = &#39;drop&#39;)

#intensity_stats %&gt;%
#  kable()

mean_ci &lt;- intensity_stats %&gt;%
  group_by(localization, strain)%&gt;%
  summarise(round(mean_cl_normal(normalized_mean), 2)) %&gt;%
  rename(mean = y, lower = ymin, upper = ymax)

#kable(mean_ci)

plot_base &lt;- ggplot(intensity_stats,
                   aes(x = strain, y = intensity_mean)) +
  labs(title = NULL, x = &#39;Strain&#39;, y = &#39;Intensity (a. u.)&#39;)+
  scale_y_continuous(breaks = scales::breaks_extended(6))+
  scale_shape_manual(values = c(21:25)) +
  scale_color_brewer(palette = &#39;Set2&#39;) +
  scale_fill_brewer(palette = &#39;Set2&#39;) +
  facet_wrap(. ~localization,
             scales = &#39;free&#39;)


plot_scatter &lt;- plot_base + 
  geom_quasirandom(inherit.aes = F, data = intensities,
                   aes(x = strain, y = intensity,
                       shape = dataset),
                   colour = &#39;gray75&#39;, #width = 0.3,
                   size = 0.8, #varwidth = TRUE,
                   show.legend = F
                   )

plot_violin &lt;- plot_base + 
  geom_violin(inherit.aes = F, data = intensities,
              aes(x = strain, y = intensity),
              scale = &#39;width&#39;,
              colour = &#39;gray75&#39;, fill = &#39;transparent&#39;
              )

plot_super &lt;- plot_scatter +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F, width = 0.3, size = 2) +
  stat_summary(fun = mean, geom = &quot;crossbar&quot;, 
               width = 0.5, fatten = 1) +
  stat_summary(fun.data = &#39;mean_sdl&#39;, geom = &#39;errorbar&#39;,
               fun.args = list(mult = 1), width = 0.2)
plot_super</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="condensate-formation-limits-the-concentration-of-ede1-in-the-cytoplasm">Condensate
              formation limits the concentration of Ede1 in the cytoplasm.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Fluorescence intensity was
              measured in wild-type (wt) and 3×ΔEA cells expressing Ede1-EGFP, or cells
              overexpressing (oe) EGFP-Ede1 from the ADH1 promoter. Gray points represent mean pixel
              intensities of entire cell volumes (<em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Cellular</em>), or small regions
              manually selected from cell cross-sections (<em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Cytosolic</em>). Large points: mean
              values from independent replicates; central line and whiskers: mean ± SD of replicate
              means. Pairwise comparisons based on a linear mixed model (n.s., not significant; ***,
              p&lt;0.001).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3b"
          title="Figure 3B."><label data-itemprop="label">Figure 3B.</label><img
            src="index.html.media/fig3.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="two-yeast-strains-were-imaged-for-8-hr-after-change-of-carbon-source-from-glucose-to-galactose-see-materials-and-methods">
              Two yeast strains were imaged for 8 hr after change of carbon source from glucose to
              galactose (see Materials and methods).</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Cells express EGFP-Ede1
              under the control of GALS promoter (green channel only), or Ede1-EGFP and Sla1-mCherry
              expressed from the endogenous loci (green and magenta, respectively). Scale bars: 2
              μm.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3c"
          title="Figure 3C."><label data-itemprop="label">Figure 3C.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 18
#&#39; @height 14
intensities3c &lt;- list.files(&quot;data/fig3_gal-induction/imagej/&quot;, pattern = &#39;.csv&#39; , full.names = TRUE ) %&gt;%
  set_names(nm = (basename(.) %&gt;% tools::file_path_sans_ext())) %&gt;% # names for the map output, wthout foder or extension
  map_df(read_csv,
         col_types = cols(), # this doesn&#39;t do anything but suppresses the column spec message
         col_names = c(&#39;frame&#39;, &#39;intensity&#39;), # set up names
         skip = 1, # skip the ImageJ header
         .id = &quot;filename&quot;) %&gt;% # id observations by filename
  separate(filename, c(&#39;date&#39;, &#39;strain&#39;, &#39;movie&#39;, &#39;channel&#39;, &#39;processing&#39;, &#39;position&#39;, &#39;signal&#39;), &#39;_&#39;) %&gt;%
  mutate(time = frame * 5 + 10) %&gt;% # imaging started ~15 minutes after galactose addition
  select(signal, movie, position, time, intensity)

mean_intensities &lt;- intensities3c %&gt;%
  group_by(time, signal) %&gt;%
  # signal variable combines strain and localization for now
  # generate statistics for each signal at each timepoint
  summarise(mean = mean(intensity), sd = sd(intensity), n = n(), se = sd(intensity) / sqrt(n())) %&gt;%
  # generate wide format data: each statistic gets its own column for each signal
  pivot_wider(names_from = signal, values_from = c(mean, sd, se, n)) %&gt;%
  # use the new columns to generate background-subtracted calues (x_corr)
  # and the ratio (corrected oe divided by wt for each localization)
  # and propagate the errors
  mutate(corr_wt.cyto = mean_wt.cyto - mean_bg,
         corr_wt.total = mean_wt.total - mean_bg,
         corr_oe.cyto = mean_oe.cyto - mean_bg,
         corr_oe.total = mean_oe.total - mean_bg,
         corr.sd_wt.cyto = sqrt(sd_wt.cyto ^ 2 + sd_bg ^ 2),
         corr.sd_wt.total = sqrt(sd_wt.total ^ 2 + sd_bg ^ 2),
         corr.sd_oe.cyto = sqrt(sd_oe.cyto ^ 2 + sd_bg ^ 2),
         corr.sd_oe.total = sqrt(sd_oe.total ^ 2 + sd_bg ^ 2),
         corr.se_wt.cyto = sqrt(se_wt.cyto ^ 2 + se_bg ^ 2),
         corr.se_wt.total = sqrt(se_wt.total ^ 2 + sd_bg ^ 2),
         corr.se_oe.cyto = sqrt(se_oe.cyto ^ 2 + se_bg ^ 2),
         corr.se_oe.total = sqrt(se_oe.total ^ 2 + sd_bg ^ 2),
         corr_ratio.cyto = corr_oe.cyto / corr_wt.cyto,
         corr.sd_ratio.cyto = corr_ratio.cyto* sqrt(
           (corr.sd_oe.cyto / corr_oe.cyto) ^ 2 + (corr.sd_wt.cyto / corr_wt.cyto) ^ 2),
         corr.se_ratio.cyto= corr_ratio.cyto* sqrt(
           (corr.se_oe.cyto / corr_oe.cyto) ^ 2 + (corr.se_wt.cyto / corr_wt.cyto) ^ 2), 
         corr_ratio.total = corr_oe.total / corr_wt.total,
         corr.sd_ratio.total = corr_ratio.total * sqrt(
           (corr.sd_oe.total / corr_oe.total) ^ 2 + (corr.sd_wt.total / corr_wt.total) ^ 2),
         corr.se_ratio.total = corr_ratio.total * sqrt(
           (corr.se_oe.total / corr_oe.total) ^ 2 + (corr.se_wt.total / corr_wt.total) ^ 2) 
  )

# go back to long format data: it&#39;s near unreadable, but easier to plot
mean_intensities_long &lt;- mean_intensities %&gt;%
  pivot_longer(!time, #process everything except for time
               names_to = c(&#39;.value&#39;, &#39;signal&#39;), # new variables
               names_sep = &#39;_&#39;) %&gt;% # generate values for new variables
  separate(signal, c(&#39;strain&#39;, &#39;localization&#39;), sep = &#39;[.]&#39;) %&gt;%
  mutate(localization = recode_factor(localization,
                               &#39;total&#39; = &#39;Cellular&#39;,
                               &#39;cyto&#39; = &#39;Cytosolic&#39;,
                               ))

raw_plot &lt;- ggplot(intensities3c,
                   aes(x = time, y = intensity)) +
  scale_color_brewer(palette = &#39;Set2&#39;)+
  scale_fill_brewer(palette = &#39;Set2&#39;)+
  stat_summary(aes(colour = signal),
               fun.y = mean, geom = &#39;line&#39;, na.rm = T)+
  stat_summary(aes(fill = signal),
               fun.data = &#39;mean_cl_normal&#39;,
               #fun.args = list(mult = 1), # mult = how many deviations
               geom = &#39;ribbon&#39;, alpha = 0.3, na.rm = T)
#raw_plot


base_plot &lt;- ggplot(mean_intensities)

corr_plot &lt;- mean_intensities_long %&gt;%
  filter(strain == &#39;wt&#39; | strain == &#39;oe&#39; ) %&gt;%
  mutate(time = time / 60) %&gt;%
    ggplot(aes(x = time)) +
    geom_line(aes(y = corr,
                  colour = strain))+
    geom_ribbon(aes(ymin = corr - 2 * corr.se,
                    ymax = corr + 2 * corr.se,
                    fill = strain),
                alpha = 0.3)+
    scale_color_brewer(palette = &#39;Set2&#39;)+
    scale_fill_brewer(palette = &#39;Set2&#39;)+
    facet_grid(rows = vars(localization),
               scales = &#39;free&#39;,
               )+
    scale_x_continuous(breaks = seq(0, 8, 2))+
    labs(x=&quot;Time (h)&quot;, y = &quot;Mean fluorescence intensity (a.u.)&quot;)

corr_plot</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="fluorescence-intensity-during-the-expression-induction-was-measured-in-regions-representing-entire-cells-2-and-4-in-panel-b-and-their-cytoplasm-1-and-3">
              Fluorescence intensity during the expression induction was measured in regions
              representing entire cells (2 and 4 in panel B) and their cytoplasm (1 and 3).</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Mean intensity is shown for
              endogenously expressed (wt) or overexpressed (oe) Ede1 after background subtraction,
              ±2 × SEM (n = 40 cells for each strain).</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We also induced overexpression
          of EGFP-tagged Ede1 using the weakened galactokinase promoter GALS <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib52"><span>52</span><span>Mumberg et
                al.</span><span>1994</span></a></cite>. We followed the changes in fluorescence
          intensity over 8 hr after switching carbon source from glucose to galactose (<a
            href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3B and C</a>;
          <a href="#fig3video1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3—video
            1</a>). The cells, in which overexpression was induced after glucose repression,
          initially showed no Ede1 sites at the membrane. After several hours, Ede1 appeared as
          transient endocytic sites, and later formed large and stable condensates. The intensity of
          the cytosolic regions in the overexpression cells never surpassed the cytosolic intensity
          of wild-type cells, even as the total intensity of the mutant reached approximately 150%
          of wild-type intensity by the end of the experiment.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">These experiments suggest that
          the cytosolic concentration of Ede1 is buffered by the formation of the condensates.
          Moreover, the cytoplasmic fluorescence intensity in wild-type cells is already at the
          limit observed during overexpression. This signifies that the total concentration in
          wild-type cells is above the critical concentration required for phase separation.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="ede1-condensates-recruit-other-endocytic-proteins">Ede1 condensates recruit other
          endocytic proteins</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We then imaged double-tagged
          strains to test whether other endocytic proteins colocalize with Ede1 condensates in the
          3×ΔEA background (<a href="#fig4" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4A and B</a>). We found that the
          condensates contain multiple early (Syp1, Ent1, Sla2) and late (End3, Pan1, Sla1) coat
          proteins, as well as the actin nucleation-promoting factor Las17, known to physically
          interact with the End3/Pan1/Sla1 complex <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib77"><span>77</span><span>Sun et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib19"><span>19</span><span>Feliciano and Di
                  Pietro</span><span>2012</span></a></cite></span>.</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4"
          title="Figure 4A and C."><label data-itemprop="label">Figure 4A and C.</label><img
            src="index.html.media/fig4.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="endocytic-condensates-recruit-many-proteins">Endocytic condensates recruit many
              proteins.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Images of representative cells
              expressing Ede1-EGFP and indicated endocytic proteins tagged with mCherry in 3×ΔEA
              background. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) Montage from timelapse imaging
              of Ede1-EGFP and Abp1-mCherry during apparent fission of an Ede1 condensate.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4b"
          title="Figure 4B."><label data-itemprop="label">Figure 4B.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 10
strains &lt;- read_csv(&quot;data/fig4/raw/strain_lut.csv&quot;, 
                    col_types = cols(target  = col_factor(NULL))) # order factor levels per csv file
#knitr::kable(strains)

files &lt;- list.files(path = &#39;data/fig4/raw/&#39;, pattern = &#39;dataset&#39;,
                    full.names = TRUE)
counts &lt;- map(files, read_csv,
              col_names = c(&#39;cell&#39;, &#39;colocalizes&#39;, &#39;dataset&#39;),
              cols(dataset = col_factor(NULL))) %&gt;%
          bind_rows() %&gt;% # combine datasets
          separate(cell, c(&#39;date&#39;, &#39;strain&#39;, &#39;stack&#39;, 
                   &#39;channel&#39;, &#39;processing&#39;, &#39;window&#39;), &#39;_&#39;) %&gt;%
          left_join(strains, by = &#39;strain&#39;) %&gt;%
          select(strain, stack, window, target, colocalizes, dataset)

proc &lt;- counts %&gt;%
  group_by(target, dataset) %&gt;%
  summarise(x = sum(colocalizes), n = n(),
            p = binconf(x, n, method = &#39;wilson&#39;)[1],
            p_min = binconf(x, n, method = &#39;wilson&#39;)[2],
            p_max = binconf(x, n, method = &#39;wilson&#39;)[3])

#knitr::kable(proc)


proc_stats &lt;- proc %&gt;%
  select(target, dataset, p) %&gt;%
  group_by(target) %&gt;%
  summarise(mean = mean(p), sd = sd(p), n = n())

#knitr::kable(proc_stats)

theme_frap &lt;- function(base_size = 11, base_family = &quot;&quot;,
                       base_line_size = base_size / 22,
                       base_rect_size = base_size / 22) {
  # minimal theme with border
  # based on theme_linedraw without the grid lines
  # also trying to remove all backgrounds but plot_background won&#39;t set to blank
  theme_linedraw(
    base_size = base_size,
    base_family = base_family,
    base_line_size = base_line_size,
    base_rect_size = base_rect_size
  ) %+replace%
    theme(
      # no grid and no backgrounds if I can help it
      plot.background = element_blank(),
      panel.background = element_blank(),
      panel.grid = element_blank(),
      plot.margin = margin(0, 0, 0, 0),
      axis.title=element_text(size=base_size / 2),
      axis.text=element_text(size=base_size / 2.5),
      complete = TRUE
    )
}

fig4b &lt;- proc %&gt;% ggplot(aes(x = target, y = p)) + 
  geom_quasirandom(aes(shape = dataset), fill = &#39;gray80&#39;,
              size = 2, width = 0.3, show.legend = FALSE)+
  stat_summary(fun.y = mean, geom = &quot;errorbar&quot;, 
               aes(ymax = ..y.., ymin = ..y..),
               width = 0.5, size = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;, geom = &#39;errorbar&#39;,
               fun.args = list(mult = 1), width = 0.2)+
  #scale_color_brewer(palette = &#39;Set2&#39;)+
  scale_shape_manual(values = c(21:25))+ # points with borders
  theme_frap(base_size = 18, base_family = &quot;Helvetica&quot;)+
  scale_y_continuous(labels = scales::label_percent(suffix = &#39;&#39;))+
  theme(legend.position = c(0.95, 0.95),
        legend.justification = c(&quot;right&quot;, &quot;top&quot;),
        legend.background = element_rect(fill = NULL, colour = &#39;black&#39;,
                                         size = 0.5))+
  labs(title = NULL,
       y = &#39;Fraction of colocalizing condensates (%)&#39;,
       x = &#39;Target protein&#39;)
fig4b
</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="fraction-of-ede1-egfp-condensates-that-colocalized-with-mcherry-puncta-in-each-strain-from-panel-a">
              Fraction of Ede1-EGFP condensates that colocalized with mCherry puncta in each strain
              from panel A.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Bars and whiskers show mean
              ± SD of three independent experiments. A range of 36–98 cells were analyzed per data
              point.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4s1"
          title="Figure 4—figure supplement 1."><label data-itemprop="label">Figure 4—figure
            supplement 1.</label><img src="index.html.media/fig4-figsupp1.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="ede1-condensates-do-not-colocalize-with-membranes-stained-by-fm4-64">Ede1
              condensates do not colocalize with membranes stained by FM4-64.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Representative cells
              expressing Ede1-EGFP in the 3×ΔEA background, or overexpressing EGFP-Ede1 under the
              control of the ADH1 promoter after a 60-min staining with FM4-64. Scale bar 2 μm.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Three proteins—Myo5, Abp1, and
          Rvs167—whose arrival overlaps with actin polymerization at the endocytic sites <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib76"><span>76</span><span>Sun et al.</span><span>2006</span></a></cite>
          localized to a minority of the condensates (42, 20, and 10%, respectively). We further
          examined the interaction of condensates and Abp1 using timelapse imaging and found that
          Abp1-mCherry patches assembled on the condensates transiently (<a href="#fig4"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4C</a>), which explains the
          partial colocalization. Abp1-mCherry was also present whenever the apparent fission of
          condensates occurred (<a href="#fig4" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4C</a>, <a href="#fig4video1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—video 1</a>). The
          appearance of Abp1 during condensate fission suggests that fission could be caused by a
          force exerted by actin filaments. Some of the proteins we see in the condensates, such as
          Las17, could potentially trigger actin polymerization.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Costaining with FM4-64 showed
          that endocytic protein condensates do not contain a significant membrane fraction (<a
            href="#fig4s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure
            supplement 1</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Overall, the colocalization
          experiments showed that the endocytic condensates are complex, and that the proteins
          contained within them are at least partially functional as they can recruit their
          interaction partners and are associated with cycles of assembly and disassembly of actin.
        </p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="ede1-central-region-is-necessary-and-sufficient-for-phase-separation">Ede1 central
          region is necessary and sufficient for phase separation</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Ede1 is a 1381 amino acid long,
          multidomain protein (<a href="#fig5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 5A</a>). Its N-terminal region contains
          three Eps15-homology (EH) domains that interact with asparagine-proline-phenylalanine
          motifs found on endocytic adaptors such as Ent1/2, Yap1801/2, and Sla2 <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a
              href="#bib46"><span>46</span><span>Maldonado-Báez et
                al.</span><span>2008</span></a></cite>. Such repeats of domains interacting with
          linear motifs are known to promote liquid-liquid phase separation <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib40"><span>40</span><span>Li et
                  al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib6"><span>6</span><span>Banjade
                  and Rosen</span><span>2014</span></a></cite></span>. The EH domains are followed
          by a proline-rich region and a coiled-coil domain <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib64"><span>64</span><span>Reider
                  et al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib43"><span>43</span><span>Lu and
                  Drubin</span><span>2017</span></a></cite></span>. The C-terminal half of Ede1
          contains a Syp1-interacting region <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib64"><span>64</span><span>Reider et
                al.</span><span>2009</span></a></cite> and a ubiquitin-associated (UBA) domain.</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig5"
          title="Figure 5A and B."><label data-itemprop="label">Figure 5A and B.</label><img
            src="index.html.media/fig5.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="the-central-region-of-ede1-is-necessary-and-sufficient-for-condensate-formation">
              The central region of Ede1 is necessary and sufficient for condensate formation.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) The domain structure of Ede1
              and prediction of disordered and prion-like regions. EH, Eps15-homology domain; UBA,
              ubiquitin-associated domain. Domains are drawn to scale according to UniProt entry
              P34216, and numbers above mark domain boundaries used in our constructs. The top plot
              represents IUPred2a disorder prediction score, with the shaded areas predicted to be
              disordered by MobiDB-lite consensus method. Prion-like domain (PLD) prediction score
              was calculated using the PLAAC software. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Representative cells
              expressing full-length (FL) Ede1 and its truncation mutants in wild-type and 3×ΔEA
              backgrounds. All constructs are C-terminally tagged with EGFP. Maximum intensity
              projections of 3D volumes, scale bars: 2 μm. </p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig5c"
          title="Figure 5C."><label data-itemprop="label">Figure 5C.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 6

load(&#39;data/fig5_ede1-truncations/truncation_data.RData&#39;)

proc &lt;- counts %&gt;%
  group_by(bg, Ede1, dataset) %&gt;%
  summarise(x = sum(nuages), n = n(),
            p = binconf(x, n, method = &#39;wilson&#39;)[1],
            p_min = binconf(x, n, method = &#39;wilson&#39;)[2],
            p_max = binconf(x, n, method = &#39;wilson&#39;)[3])

#knitr::kable(proc)

proc_stats &lt;- proc %&gt;%
  select(bg, Ede1, dataset, p) %&gt;%
  group_by(bg, Ede1) %&gt;%
  summarise(mean = mean(p), sd = sd(p), n = n())

#knitr::kable(proc_stats)

fig5c &lt;- ggplot(proc, aes(x = Ede1, y = p, group = bg, fill = bg)) + 

  stat_summary(fun.y = mean, geom = &quot;bar&quot;,
               position = position_dodge(),
               width = 0.5, colour = &#39;black&#39;)+
  stat_summary(fun.data = &#39;mean_sdl&#39;, geom = &#39;errorbar&#39;,
               position = position_dodge(width = 0.5),
               fun.args = list(mult = 1), width = 0.3)+
  geom_point(aes(shape = dataset),
             position = position_jitterdodge(jitter.width = 0.4, 
                                             dodge.width = 0.5),
             size = 2, show.legend = FALSE)+
  scale_color_brewer(palette = &#39;Set2&#39;)+
  scale_fill_grey(start = 1, end = 0.5)+
  scale_shape_manual(values = c(21:25))+
  theme_frap(base_size = 16, base_family = &quot;Helvetica&quot;)+
  scale_y_continuous(labels = scales::label_percent(suffix = &#39;&#39;))+
  theme(legend.key.size = unit(0.3, &#39;cm&#39;),
        legend.text = element_text(size=6),
        legend.position = c(0.5, 0.95),
        legend.justification = c(&quot;center&quot;, &quot;top&quot;),
        #legend.box.just = &quot;right&quot;,
        legend.margin = margin(0, 6, 6, 6),
        legend.background = element_rect(fill = NULL, colour = &#39;black&#39;,
                                         size = 0.5),
        legend.title = element_blank())+
  labs(title = NULL,
       y = &#39;Cells with condensates (%)&#39;)

fig5c</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="the-fraction-of-cells-containing-condensates-in-each-strain-from-panel-b">The
              fraction of cells containing condensates in each strain from panel B.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Bars and whiskers show mean
              ± SD of three independent experiments. A range of 37–78 cells were analyzed per data
              point.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig5s1"
          title="Figure 5—figure supplement 1a."><label data-itemprop="label">Figure 5—figure
            supplement 1a.</label><img src="index.html.media/fig5-figsupp1.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="levels-of-ede1-mutants-assessed-by-western-blotting">Levels of Ede1 mutants
              assessed by western blotting.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>) Representative western blot of
              EGFP-tagged Ede1 truncation constructs expressed in wild-type (wt) and 3×ΔEA
              backgrounds.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig5s1b"
          title="Figure 5—figure supplement 1b."><label data-itemprop="label">Figure 5—figure
            supplement 1b.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 16
#&#39; @height 10
bands &lt;- read_csv(&#39;data/fig5_blots/20200814_quant.csv&#39;,
                  col_types = cols (dataset = col_factor(NULL),
                        Ede1 = col_factor(NULL),
                        background = col_factor(NULL)))

plot &lt;- ggplot(bands, aes(x = Ede1, y = ratio_norm,
                          group = background, fill = background))+
    theme_frap(base_size = 14, base_family = &quot;Helvetica&quot;)+
    scale_y_continuous(labels = scales::label_percent(suffix = &#39;&#39;))+
    labs(title = NULL,
       y = &#39;Normalized band intensity (% of wt)&#39;)

plot + 
  stat_summary(fun.y = mean, geom = &quot;bar&quot;,
               position = position_dodge(),
               width = 0.5, colour = &#39;black&#39;)+
  stat_summary(fun.data = &#39;mean_sdl&#39;, geom = &#39;errorbar&#39;,
               position = position_dodge(width = 0.5),
               fun.args = list(mult = 1), width = 0.3)+
  geom_point(aes(shape = dataset),
             position = position_jitterdodge(jitter.width = 0.4, 
                                             dodge.width = 0.5),
             size = 2, show.legend = FALSE)+
  scale_fill_grey(start = 1, end = 0.5)+
  scale_shape_manual(values = c(21:25))+
  theme(legend.position = c(0.95, 0.95),
        legend.justification = c(&quot;right&quot;, &quot;top&quot;),
        #legend.box.just = &quot;right&quot;,
        legend.margin = margin(0, 6, 6, 6),
        legend.background = element_rect(fill = NULL, colour = &#39;black&#39;,
                                         size = 0.5),
        legend.title = element_blank())
</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="band-intensity-relative-to-full-length-fl-ede1-egfp-in-wt-cells-was-calculated-for-three-independent-experiments">
              Band intensity relative to full-length (FL) Ede1-EGFP in wt cells was calculated for
              three independent experiments.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Hog1 was used as a loading
              control. Bars and whiskers show mean ± SD.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We noticed that the
          proline-rich region contains a high number of asparagine and glutamine residues, a
          hallmark of prion-like domains (PLDs) which are proposed to regulate phase separation of
          many proteins <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib1"><span>1</span><span>Alberti et
                  al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib20"><span>20</span><span>Franzmann et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib21"><span>21</span><span>Franzmann and
                  Alberti</span><span>2019</span></a></cite></span>. We used PLAAC <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib36"><span>36</span><span>Lancaster et
                al.</span><span>2014</span></a></cite>, a web-based version of the algorithm used by
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib1"><span>1</span><span>Alberti et al.</span><span>2009</span></a></cite> to
          detect prion candidates in yeast proteome, to analyze the Ede1 sequence (<a href="#fig5"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 5A</a>). The algorithm
          detected a 99-amino acid-long prion-like sequence between amino acids 374 and 472,
          suggesting that this region could also be involved in the phase separation of endocytic
          proteins. We also consulted IUPred2a <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib49"><span>49</span><span>Mészáros
                et al.</span><span>2018</span></a></cite> and MobiDB-lite <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib55"><span>55</span><span>Necci et
                al.</span><span>2017</span></a></cite> algorithms to predict intrinsically
          disordered regions (IDRs) in Ede1. About 36% of Ede1 is predicted to be disordered; the
          unstructured regions are contained within the proline- and glutamine-rich region, and
          between the coiled-coil and the UBA domain.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To understand which features of
          Ede1 mediate phase-separation, we expressed a series of truncations of Ede1 in both
          wild-type and 3×ΔEA backgrounds, and analyzed their localization to condensates and
          endocytic sites (<a href="#fig5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 5B and C</a>). In our 3×ΔEA background,
          the N- and C-terminal regions were dispensable for condensate formation. Surprisingly, the
          Ede1 central region consisting of amino acids 366–900 (the unstructured PQ-rich region and
          the coiled-coil domain) localized to large condensates in both the 3×ΔEA and wild-type
          backgrounds. It was also the minimal construct to form these condensates, as constructs
          containing only the coiled-coil or the PQ-rich region showed diffuse cytoplasmic
          localization.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">For the wild-type background,
          our results are largely consistent with previously published results about the
          localization of Ede1 mutants <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib8"><span>8</span><span>Boeke et
                  al.</span><span>2014</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib43"><span>43</span><span>Lu and
                  Drubin</span><span>2017</span></a></cite></span>. Namely, the coiled-coil domain
          was necessary for Ede1 to assemble into endocytic sites, while the N- and C-terminal parts
          of Ede1 were individually dispensable.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We analyzed the concentration
          of truncated variants in both backgrounds by quantitative western blotting (<a
            href="#fig5s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 5—figure
            supplement 1</a>). The truncated Ede1 variants were expressed at higher levels than the
          full-length protein. This observation suggests that the loss of condensates in strains
          with truncated Ede1 is indeed caused by missing motifs rather than lowered concentration.
          We also confirmed that the concentration of full-length Ede1 increased in the 3×ΔEA
          background. It is unclear whether this represents a compensatory genetic mechanism, or if
          condensation is initially caused by reduced plasma membrane recruitment and subsequently
          interferes with protein degradation.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="the-functional-significance-of-the-ede1-central-region">The functional significance of
          the Ede1 central region</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To test the role of the central
          region of Ede1 in endocytosis, we created EGFP-tagged Ede1 mutants with internal deletions
          of amino acids 366–590 (Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">ΔPQ</sup>), 591–900 (Ede1<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔCC</sup>), and 366–900
          (Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>).
          Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup> failed to
          localize to endocytic sites, whereas the two single-domain Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">ΔPQ</sup> and Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">ΔCC</sup> deletion mutants were still
          punctate, but more diffuse compared to full-length Ede1-EGFP (<a href="#fig6" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 6A</a>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig6"
          title="Figure 6A and B."><label data-itemprop="label">Figure 6A and B.</label><img
            src="index.html.media/fig6.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="ede1-features-necessary-for-phase-separation-are-also-crucial-for-its-function">
              Ede1 features necessary for phase separation are also crucial for its function.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Representative cells
              expressing full-length Ede1 and three internal Ede1 deletion mutants: Ede1<sup
                itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQ</sup> (Δ366-590),
              Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔCC</sup>
              (Δ591-900), and Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup> (Δ366-900) tagged with
              EGFP. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>)
              Representative cells expressing Sla1-EGFP and indicated Ede1 mutants.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig6c"
          title="Figure 6C."><label data-itemprop="label">Figure 6C.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 16
#&#39; @height 12
# Data cleanup

strains &lt;- read_csv(&quot;data/fig6_sla1-initiation/strain_lut.csv&quot;,
                    col_types = cols(ede1 = col_factor(NULL)))

sla1_density &lt;- dir(&#39;data/fig6_sla1-initiation/density&#39;, pattern = &#39;dataset&#39;, full.names = T) %&gt;%
  #map(dir, pattern = &#39;.csv&#39;, full.names = T) %&gt;%
  map(read_csv) %&gt;%
  imap_dfr(~.x, .id = &#39;dataset&#39;)

# set pixel area; Orca pixels are 6.45um / 100x magnification 
pixel_area &lt;- 0.0645**2

# clean up dataframe
sla1_density &lt;- sla1_density %&gt;%
  separate(Cell, c(&#39;date&#39;, &#39;strain&#39;, &#39;movie&#39;, &#39;cell&#39;, &#39;channel&#39;), &#39;_&#39;) %&gt;% # separate filename into variables
  select(-c(channel, Threshold))%&gt;% # remove stuff
  rename(cross_area = Cross_Area, patches = Patches) %&gt;%
  left_join(strains, by = &#39;strain&#39;) %&gt;%
  mutate(area = cross_area * 4 * pixel_area, density = patches / area)

# The first dataset was acquired in 2018
# with a shorter exposure time than repeats
# Therefore it has to be processed separately
# Let&#39;s see how different it really is before we include/exclude it
# from the analysis
frame_length &lt;- 0.23

lifetime_00 &lt;- list.files(&#39;data/fig6_sla1-initiation/lifetime/old_exposure&#39;,
                          pattern = &#39;.txt&#39;, full.names = T) %&gt;%
  set_names(nm = (basename(.) %&gt;% tools::file_path_sans_ext())) %&gt;% # names for the map output, wthout folder or extension
  map_df(read_table2, comment = &#39;%%&#39;, col_names = F,
           col_types = cols(), .id = &#39;filename&#39;) %&gt;%
  group_by(filename) %&gt;%
  summarise(max = max(X1), min = min(X1)) %&gt;%
  mutate(lifetime = (max - (min - 1)) * frame_length,
         dataset = &#39;0&#39;,
         .keep = &#39;unused&#39;) %&gt;%
  separate(filename, c(&#39;date&#39;, &#39;strain&#39;, &#39;movie&#39;, &#39;channel&#39;, &#39;processing&#39;, &#39;cell&#39;, &#39;md&#39;, &#39;trajectory&#39;), &#39;_&#39;) %&gt;%
  select(-c(channel, processing, md)) %&gt;%
  left_join(strains, by = &#39;strain&#39;)

frame_length &lt;- 0.5

sla1_lifetime &lt;- dir(&#39;data/fig6_sla1-initiation/lifetime&#39;, pattern = &#39;dataset&#39;, full.names = T) %&gt;%
  map(dir, pattern = &#39;.txt&#39;, full.names = T) %&gt;%
  map(
    ~ set_names(.x,
                nm = (basename(.x) %&gt;% tools::file_path_sans_ext()))) %&gt;%
  map(
    ~ map_df(.x, read_table2,
             comment = &#39;%%&#39;,
             col_names = F,
             col_types = cols(),
             .id = &#39;filename&#39;)) %&gt;% # id observations by filename
  imap_dfr(~.x, .id = &#39;dataset&#39;) %&gt;%
  group_by(filename, dataset) %&gt;%
  summarise(max = max(X1), min = min(X1),
            .groups = &#39;drop&#39;) %&gt;%
  mutate(lifetime = (max - (min - 1)) * frame_length) %&gt;%
  select(filename, lifetime, dataset)

# Final touches on the lifetime, separated from main calculation
sla1_lifetime &lt;- sla1_lifetime %&gt;%
  separate(filename, c(&#39;date&#39;, &#39;strain&#39;, &#39;movie&#39;, &#39;cell&#39;, &#39;channel&#39;, &#39;processing&#39;, &#39;md&#39;, &#39;trajectory&#39;), &#39;_&#39;) %&gt;%
  select(-c(channel, processing, md)) %&gt;%
  left_join(strains, by = &#39;strain&#39;)

# Bind dataset 0 to the rest
sla1_lifetime &lt;- bind_rows(sla1_lifetime, lifetime_00)

#Sla1 density

# couple of small functions for extracting comparisons
# into a format understandable by ggplot

#&#39; Add letter group labels generated by Tukey&#39;s HSD
#&#39;
#&#39; This function performs ANOVA and Tukey&#39;s HSD,
#&#39; extracts the letter labels and attaches them
#&#39; to the original data.
#&#39;
#&#39; @param x: df or tibble, the data (long format!)
#&#39; @param yvar: chr, name of the dependent variable
#&#39; @param xvar: chr, name of the independent variable
#&#39; @param alpha: dbl, confidence level passed on to Tukey&#39;s test
#&#39;
add_tukey_labels &lt;- function(x, yvar, xvar, alpha = 0.95){
  aov_form &lt;- formula(paste(yvar, &#39;~&#39;, xvar))
  anova &lt;- aov(formula = aov_form, data = x)
  tukey &lt;- TukeyHSD(anova, which = xvar, conf.level = alpha)
  # Extract labels and factor levels from Tukey post-hoc 
  x_labels &lt;- as_tibble(
    multcompLetters4(anova, tukey)[[xvar]]$Letters,
    rownames = xvar
    )
  
  if (is.factor(x[[xvar]])) {
    x_labels[[xvar]] &lt;- factor(
      x_labels[[xvar]], levels = levels(x[[xvar]])
    )
  }
  
  x_labels &lt;- rename(x_labels, tukey_group = value)
  x &lt;- left_join(x, x_labels, by = xvar)
  
  return(x)
}

#&#39; Extract comparisons from rstatix tidy tests
#&#39; 
#&#39; This function subsets the selected comparisons in a Tukey,
#&#39; Dunn or similar test done by rstatix.
#&#39; It converts groups to a list of vectors that can be passed to geom_signif
#&#39;
#&#39;
#&#39; @param x: df or tibble, the comparison results
#&#39; @param rows: integer vector, the rows with desired comparisons
extract_comparisons &lt;- function(x, rows){
  x_subset &lt;- x[rows,] %&gt;%
    .[nrow(.):1,]
  
  x_comparisons &lt;- x_subset %&gt;%
    select(group1, group2) %&gt;%
    t() %&gt;%
    as.data.frame() %&gt;%
    as.list
  x_annotations &lt;- x_subset$p.adj.signif %&gt;%
    as.vector()
  
  significance &lt;- list(
    comparisons = x_comparisons,
    annotations = x_annotations
  )
  
  return(significance)
}

sla1_density_stats &lt;- sla1_density %&gt;%
  group_by(ede1, dataset) %&gt;%
  summarise(n = n(),
            across(density,
                   list(mean = mean, sd = sd, 
                        se = ~ sd(.x) / sqrt(n),
                        median = median, mad = mad)),
            .groups = &#39;drop&#39;)

#sla1_density_stats %&gt;% knitr::kable()

plot_blank &lt;- ggplot(sla1_density_stats,
                     aes(x = ede1, y = density_mean)) +
                         #shape = dataset, fill = dataset))+
  labs(title = NULL, x = &#39;Ede1&#39;, y = expression(paste(&quot;Sla1 patches/expression &quot;,mu,m^2))) +
  scale_y_continuous(breaks = seq(0.0, 1.0, 0.1)) +
  scale_shape_manual(values = c(21:25)) +
  scale_color_brewer(palette = &#39;Set2&#39;) +
  scale_fill_brewer(palette = &#39;Set2&#39;)

plot_scatter &lt;- plot_blank +
  geom_quasirandom(inherit.aes = F, data = sla1_density,
                   aes(x = ede1, y = density,
                       shape = dataset,# colour = dataset
                       ),
                   colour = &#39;grey75&#39;,# shape = 1,
                   show.legend = F, size = 0.8
                   )

plot_violin &lt;- plot_blank + 
  geom_violin(inherit.aes = F,
              data = sla1_density, aes(x = ede1, y = density),
              colour = &#39;grey75&#39;, fill = &#39;transparent&#39;
              )

plot_super &lt;- plot_scatter +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F,
                   width = 0.3, size = 2)+
  stat_summary(fun = mean, geom = &#39;crossbar&#39;,
               width = 0.5, fatten = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;,
               fun.args = list(mult = 1), 
               geom = &#39;errorbar&#39;, width = 0.2)
  
#plot_super

plot_super_violin &lt;- plot_violin +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F,
                   width = 0.3, size = 2)+
  stat_summary(fun = mean, geom = &#39;crossbar&#39;,
               width = 0.5, fatten = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;,
               fun.args = list(mult = 1),
               geom = &#39;errorbar&#39;, width = 0.2)

#plot_super_violin

tukey &lt;- tukey_hsd(sla1_density_stats, density_mean ~ ede1,
                   ordered = TRUE)

significance &lt;- extract_comparisons(tukey, c(1:4, 10))

plot_super_signif &lt;- plot_super +
  geom_signif(comparisons = significance$comparisons,
              annotations = significance$annotations,
              step_increase = 0.03,
              tip_length = 0.01, vjust = 0.8,
              margin_top = -0.1)
plot_super_signif</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="sla1-patch-density-in-ede1-mutants">Sla1 patch density in Ede1 mutants.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Large points represent mean
              measurements from independently repeated datasets. Central line and whiskers denote
              the mean ± SD calculated from dataset averages. Gray points show individual
              observations. Letters denote pairwise comparisons based on Tukey-Kramer test; groups
              which do not share any letters are significantly different at α = 0.05. Scale bars: 2
              μm.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig6d"
          title="Figure 6D."><label data-itemprop="label">Figure 6D.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#sla1 lifetime
sla1_lifetime_stats &lt;- sla1_lifetime %&gt;%
  group_by(ede1, dataset) %&gt;%
  summarise(n = n(),
            across(lifetime,
                   list(mean = mean, sd = sd, 
                        se = ~ sd(.x) / sqrt(n()),
                        median = median, mad = mad)),
            .groups = &#39;drop&#39;)

#sla1_lifetime_stats %&gt;% knitr::kable()

plot_blank &lt;- ggplot(sla1_lifetime_stats,
                     aes(x = ede1, y = lifetime_mean)) +
                         #shape = dataset, fill = dataset))+
  labs(title = NULL, x = &#39;Ede1&#39;, y = &quot;Sla1 lifetime (s)&quot;) +
  scale_y_continuous(breaks = scales::breaks_extended(6))+
  scale_shape_manual(values = c(21:25)) +
  scale_color_brewer(palette = &#39;Set2&#39;) +
  scale_fill_brewer(palette = &#39;Set2&#39;)

plot_scatter &lt;- plot_blank +
  geom_quasirandom(inherit.aes = F, data = sla1_lifetime,
                   aes(x = ede1, y = lifetime,
                       shape = dataset,# colour = dataset
                       ),
                   colour = &#39;grey75&#39;,# shape = 1,
                   show.legend = F, size = 0.8
                   )

plot_violin &lt;- plot_blank + 
  geom_violin(inherit.aes = F,
              data = sla1_lifetime, aes(x = ede1, y = lifetime),
              colour = &#39;grey75&#39;, fill = &#39;transparent&#39;
              )

plot_super &lt;- plot_scatter +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F,
                   width = 0.3, size = 2)+
  stat_summary(fun = mean, geom = &#39;crossbar&#39;,
               width = 0.5, fatten = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;,
               fun.args = list(mult = 1), 
               geom = &#39;errorbar&#39;, width = 0.2)
  
#plot_super

plot_super_violin &lt;- plot_violin +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F,
                   width = 0.3, size = 2)+
  stat_summary(fun = mean, geom = &#39;crossbar&#39;,
               width = 0.5, fatten = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;,
               fun.args = list(mult = 1),
               geom = &#39;errorbar&#39;, width = 0.2)

#plot_super_violin

tukey &lt;- tukey_hsd(sla1_lifetime_stats, lifetime_mean ~ ede1,
                   ordered = TRUE)

significance &lt;- extract_comparisons(tukey, c(1:4, 10))

plot_super_signif &lt;- plot_super +
  geom_signif(comparisons = significance$comparisons,
              annotations = significance$annotations,
              step_increase = 0.03,
              tip_length = 0.01, vjust = 0.8,
              margin_top = -0.1)
plot_super_signif
</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="sla1-patch-lifetime-in-ede1-mutants">Sla1 patch lifetime in Ede1 mutants.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Large points represent mean
              measurements from independently repeated datasets. Central line and whiskers denote
              the mean ± SD calculated from dataset averages. Gray points show individual
              observations. Letters denote pairwise comparisons based on Tukey-Kramer test; groups
              which do not share any letters are significantly different at α = 0.05. Scale bars: 2
              μm.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig6s1"
          title="Figure 6—figure supplement 1A, C—D."><label data-itemprop="label">Figure 6—figure
            supplement 1A, C—D.</label><img src="index.html.media/fig6-figsupp1.jpg" alt=""
            itemscope="" itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="recruitment-of-ede1δpqcc-to-other-proteins-cannot-rescue-the-endocytic-defect">
              Recruitment of Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup> to other proteins cannot
              rescue the endocytic defect.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>-mCherry-FKBP was
              recruited to Syp1-FRB or Sla2-FRB by addition of 10 μg ml<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">−1</sup> of rapamycin to the growth
              medium. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>)
              Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>-mCherry-FKBP signal in
              cells coexpressing Syp1-FRB and Sla1-EGFP. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>-mCherry-FKBP signal in
              cells coexpressing Sla2-FRB and Sla1-EGFP. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">D</strong>) Density of Sla1-EGFP patches
              in the same cells cultured with or without rapamycin. P-value from Welch’s t-test.
              Scale bars: 2 μm.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig6s1b"
          title="Figure 6—figure supplement 1B."><label data-itemprop="label">Figure 6—figure
            supplement 1B.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>strains &lt;- read_csv(&quot;data/fig6_syp1-fusion/strain_lut.csv&quot;, 
                    col_types = cols(ede1 = col_factor(NULL))) # order factor levels in csv file

sla1_density &lt;- dir(&#39;data/fig6_syp1-fusion&#39;, pattern = &#39;dataset&#39;, full.names = T) %&gt;%
  #map(dir, pattern = &#39;.csv&#39;, full.names = T) %&gt;%
  map(read_csv) %&gt;%
  imap_dfr(~.x, .id = &#39;dataset&#39;)

# set pixel area; Orca pixels are 6.45um / 100x magnification 
pixel_area &lt;- 0.0645**2

sla1_density &lt;- sla1_density %&gt;%
  separate(Cell, c(&#39;date&#39;, &#39;strain&#39;, &#39;movie&#39;, &#39;cell&#39;, &#39;channel&#39;), &#39;_&#39;) %&gt;% # separate filename into variables
  select(-c(channel, Threshold))%&gt;% # remove stuff
  rename(cross_area = Cross_Area, patches = Patches) %&gt;%
  mutate(area = cross_area * 4 * pixel_area, density = patches / area) %&gt;%
  left_join(strains, by = &#39;strain&#39;)

sla1_density_stats &lt;- sla1_density %&gt;%
  group_by(ede1, dataset) %&gt;%
  summarise(n = n(),
            across(density,
                   list(mean = mean, sd = sd, median = median, mad = mad,
                        shapiro.p = ~ tidy(shapiro.test(.x))$p.value)),
            .groups = &#39;drop&#39;)

#sla1_density_stats %&gt;% knitr::kable()

anova &lt;- anova_test(sla1_density_stats, density_mean ~ ede1)

tukey &lt;- tukey_hsd(sla1_density_stats, density_mean ~ ede1,
                   ordered = TRUE)

plot_blank &lt;- ggplot(sla1_density_stats,
                     aes(x = ede1, y = density_mean))+
  labs(title = NULL, x = NULL, y = expression(paste(&quot;Sla1 patches/&quot;,mu,m^2)))+
  scale_y_continuous(breaks = seq(0.0, 1.0, 0.1))+
  scale_shape_manual(values = c(21:25))+
  scale_color_brewer(palette = &#39;Pastel2&#39;)+
  scale_fill_brewer(palette = &#39;Set2&#39;)

plot_scatter &lt;- plot_blank + 
  geom_quasirandom(data = sla1_density,
                   aes(x = ede1, y = density,
                     shape = dataset, #colour = dataset
                     ),
                 colour = &#39;grey75&#39;,
                 show.legend = F, size = 0.8
                 )

plot_violin &lt;- plot_blank + 
  geom_violin(inherit.aes = F,
              data = sla1_density, aes(x = ede1, y = density),
              colour = &#39;grey70&#39;, fill = &#39;transparent&#39;
              )

plot_super_violin &lt;- plot_violin +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F,
                   width = 0.3, size = 2)+
  stat_summary(fun = mean, geom = &#39;crossbar&#39;,
               width = 0.5, fatten = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;,
               fun.args = list(mult = 1), 
               geom = &#39;errorbar&#39;,
               width = 0.2)

plot_super &lt;- plot_scatter +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F,
                   width = 0.3, size = 2)+
  stat_summary(fun = mean, geom = &#39;crossbar&#39;,
               width = 0.5, fatten = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;,
               fun.args = list(mult = 1), 
               geom = &#39;errorbar&#39;,
               width = 0.2)
  
significance &lt;- extract_comparisons(tukey, c(1:6))

plot_super_signif &lt;- plot_super +
  geom_signif(comparisons = significance$comparisons,
              annotations = significance$annotations,
              step_increase = 0.03,
              tip_length = 0.01, vjust = 0.8,
              margin_top = -0.1)

plot_super_signif</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="density-of-sla1-egfp-patches-in-cells-expressing-wild-type-ede1-ede1δpqcc-mcherry-fkbp-and-syp1-frb-cultured-with-or-without-rapamycin-or-no-ede1">
              Density of Sla1-EGFP patches in cells expressing wild-type Ede1, Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>-mCherry-FKBP, and
              Syp1-FRB cultured with or without rapamycin, or no Ede1.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Large points: mean
              measurements from independently repeated datasets. Central line and whiskers: mean ±
              SD calculated from dataset averages. Gray points: individual cells from all datasets.
              Statistical significance of pairwise comparisons was determined by Tukey-Kramer test;
              n.s., not significant; ***, p&lt;0.001. </p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Next, we tested if these Ede1
          mutants had endocytic defects by using Sla1 as a reporter of the late phase of
          endocytosis. We tagged Sla1 with EGFP in Ede1 mutant strains (<a href="#fig6" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 6B</a>) and quantified the density and
          lifetimes of endocytic sites (<a href="#fig6" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 6C and D</a>). In <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1</em>Δ and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup></em> cells, the mean number
          of endocytic events marked by Sla1-EGFP per μm<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> was reduced by 46 and 43% of
          the wild-type, respectively. Consistent with their effects on Ede1 recruitment, the <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">ΔPQ</sup></em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">ΔCC</sup></em> mutations caused
          intermediate reduction in patch density (by 24 and 26%, respectively). All differences
          from the wild type were statistically significant (p&lt;0.001 in Tukey-Kramer test). The
          difference between <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1</em>Δ
          and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup></em> was not statistically
          significant (p=0.86).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The Sla1 lifetimes were
          likewise affected by the deletion of Ede1 central region. In <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1</em>Δ, Sla1-EGFP lifetime was decreased
          by 29% and in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1<sup
              itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup></em>, by 28%.
          The deletions of individual regions again showed intermediate defects (13 and 18% for
          Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQ</sup> and
          Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔCC</sup>,
          respectively). All differences from the wild type were statistically significant
          (p&lt;0.01 in Tukey-Kramer test). The deletion of the entire <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">EDE1</em> gene was not significantly
          different from the <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1<sup
              itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup></em> mutant (p
          = 0.99).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup> mutant does not localize to
          endocytic sites. We wanted to test if the N- and C-terminal domains alone could support
          endocytosis if a strong interaction with another endocytic protein was introduced. We
          generated cells coexpressing Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>-mCherry-FKBP and Syp1-FRB or
          Sla2-FRB in order to link the Ede1 mutant to another component of the early coat via the
          rapamycin-inducible FKBP-FRB dimerization system <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib25"><span>25</span><span>Haruki et
                al.</span><span>2008</span></a></cite>. Recruitment to Syp1 caused the Ede1<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>-mCherry-FKBP
          signal to become more prominent around the bud necks, but did not rescue membrane patch
          formation, whereas recruitment to Sla2 partially rescued the patch localization of
          Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup> (<a
            href="#fig6s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 6—figure
            supplement 1</a>). The average Sla1 density did not significantly change in either of
          these yeast strains upon rapamycin treatment (p=0.53 and p=0.59 between treated and
          untreated cells in Syp1-FRB and Sla2-FRB strains, respectively).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Taken together, our results
          show that the central region is essential for Ede1 to promote efficient endocytosis and to
          regulate the timing of coat maturation.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1</em>Δ cells, many of the early
          endocytic proteins fail to localize to endocytic sites <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib75"><span>75</span><span>Stimpson
                  et al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib10"><span>10</span><span>Carroll
                  et al.</span><span>2012</span></a></cite></span>. We therefore visualized the
          localization of early proteins in Ede1 mutants lacking the central region.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Different proteins were
          affected by the Ede1 central deletions in different ways (<a href="#fig7" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 7</a>), consistent with the work done on
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1</em>Δ mutants. The
          localization of Apl1 (β-subunit of the AP-2 complex) was the most severely disrupted.
          Apl1-EGFP patches were less defined in Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">ΔPQ</sup> background, and undetectable in
          Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔCC</sup> or Ede1<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup> cells. In these
          cells, Apl1-EGFP signal was dispersed in the cytoplasm, with a faint presence around the
          bud neck. Syp1 and Yap1801 remained localized to the membrane in all of the mutants, but
          the signal became more diffuse along the membrane and the patches less defined. This
          effect was the strongest for Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>, with intermediate effects in
          Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQ</sup> and
          Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔCC</sup> cells.
          However, Ent1 and Sla2 still assembled into endocytic patches in all of the Ede1 mutants.
          Taken together, our results indicate that the Ede1 central region is essential to
          concentrate early endocytic proteins.</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig7" title="Figure 7.">
          <label data-itemprop="label">Figure 7.</label><img src="index.html.media/fig7.jpg" alt=""
            itemscope="" itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="ede1-central-deletion-mutants-are-defective-in-early-protein-localization">Ede1
              central deletion mutants are defective in early protein localization.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Maximum-intensity
              projections of 3D volumes are shown for representative cells with different early
              proteins tagged with EGFP. The strains express Ede1 species indicated at the top.
              Scale bars: 2 μm.</p>
          </figcaption>
        </figure>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="ede1-central-region-can-be-replaced-by-other-prion-like-domains">Ede1 central region
          can be replaced by other prion-like domains</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We wanted to test whether the
          loss of function in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1<sup
              itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup></em> cells in
          respect to Sla1 density could be rescued by heterologous protein sequences, such as IDRs,
          globular domains, or coiled-coils (<a href="#fig8" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 8A</a>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig8"
          title="Figure 8A-B."><label data-itemprop="label">Figure 8A-B.</label><img
            src="index.html.media/fig8.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="prion-like-domains-can-partially-replace-ede1-central-region">Prion-like domains
              can partially replace Ede1 central region.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Domain structure of the Ede1
              central region replacement constructs. Amino acids 366–900 of Ede1 were replaced with
              prion-like intrinsically disordered region (IDR) sequences, monomeric (mCherry) or
              dimeric (dTomato) fluorescent proteins, and dimeric (Khc) or tetrameric (Eg5)
              coiled-coils. All mutants were expressed from the Ede1 locus under the control of the
              native promoter. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Representative cells
              expressing indicated Ede1 mutants tagged C-terminally with msGFP2.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig8c"
          title="Figure 8C."><label data-itemprop="label">Figure 8C.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 16
#&#39; @height 12
#Data cleanup
strains &lt;- read_csv(&quot;data/fig8_sla1-density/strain_lut.csv&quot;, 
                    col_types = cols(ede1 = col_factor(NULL))) # order factor levels in csv file

sla1_density &lt;- dir(&#39;data/fig8_sla1-density&#39;, pattern = &#39;dataset&#39;, full.names = T) %&gt;%
  #map(dir, pattern = &#39;.csv&#39;, full.names = T) %&gt;%
  map(read_csv) %&gt;%
  imap_dfr(~.x, .id = &#39;dataset&#39;)

# set pixel area; Orca pixels are 6.45um / 100x magnification 
pixel_area &lt;- 0.0645**2

sla1_density &lt;- sla1_density %&gt;%
  separate(Cell, c(&#39;date&#39;, &#39;strain&#39;, &#39;movie&#39;, &#39;cell&#39;, &#39;channel&#39;), &#39;_&#39;) %&gt;% # separate filename into variables
  select(-c(channel, Threshold))%&gt;% # remove stuff
  rename(cross_area = Cross_Area, patches = Patches) %&gt;%
  mutate(area = cross_area * 4 * pixel_area, density = patches / area) %&gt;%
  left_join(strains, by = &#39;strain&#39;)

#Sla1 patch density in Ede1 internal replacement mutants
#sla1_density %&gt;%
#  group_by(ede1, dataset) #%&gt;%
#  summarise(n = n(),
#            across(c(patches, area), list(mean = mean, sd = sd,
#                                          se = ~sd(.x) / sqrt(n()))))

sla1_density_stats &lt;- sla1_density %&gt;%
  group_by(ede1, dataset) %&gt;%
  summarise(n = n(),
            across(density,
                   list(mean = mean, sd = sd, 
                        se = ~ sd(.x) / sqrt(n),
                        median = median, mad = mad)),
            .groups = &#39;drop&#39;)

plot_blank &lt;- ggplot(sla1_density_stats,
                     aes(x = ede1, y = density_mean)) +
                         #shape = dataset, fill = dataset))+
  labs(title = NULL, x = &#39;Ede1&#39;, y = expression(paste(&quot;Sla1 patches &quot;,mu,m^2))) +
  scale_y_continuous(breaks = seq(0.0, 1.0, 0.1)) +
  scale_shape_manual(values = c(21:25, 8)) +
  scale_color_brewer(palette = &#39;Set2&#39;) +
  scale_fill_brewer(palette = &#39;Set2&#39;)

plot_scatter &lt;- plot_blank +
  geom_quasirandom(inherit.aes = F, data = sla1_density,
                   aes(x = ede1, y = density,
                       shape = dataset,# colour = dataset
                       ),
                   colour = &#39;grey75&#39;,# shape = 1,
                   show.legend = F, size = 0.8
                   )

plot_violin &lt;- plot_blank + 
  geom_violin(inherit.aes = F,
              data = sla1_density, aes(x = ede1, y = density),
              colour = &#39;grey75&#39;, fill = &#39;transparent&#39;
              )

plot_super &lt;- plot_scatter +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F,
                   width = 0.3, size = 2)+
  stat_summary(fun = mean, geom = &#39;crossbar&#39;,
               width = 0.5, fatten = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;,
               fun.args = list(mult = 1), 
               geom = &#39;errorbar&#39;, width = 0.2)+
  guides(x = guide_axis(angle = -45))

plot_super_flip &lt;- plot_super +
  coord_flip()+
  scale_x_discrete(limits = rev(levels(sla1_density$ede1)))+
  theme(panel.border = element_blank(),
        axis.line.y = element_blank(),
        axis.ticks.y = element_blank(),
        axis.line.x = element_line())

plot_super_violin &lt;- plot_violin +
  geom_quasirandom(aes(shape = dataset, fill = dataset),
                   show.legend = F,
                   width = 0.3, size = 2)+
  stat_summary(fun = mean, geom = &#39;crossbar&#39;,
               width = 0.5, fatten = 1)+
  stat_summary(fun.data = &#39;mean_sdl&#39;,
               fun.args = list(mult = 1),
               geom = &#39;errorbar&#39;, width = 0.2)

sla1_density_stats &lt;- sla1_density_stats %&gt;%
  add_tukey_labels(&#39;density_mean&#39;, &#39;ede1&#39;)

plot_super_letters &lt;- plot_super +
  geom_text(data = sla1_density_stats,
            aes(label = tukey_group), y = Inf, vjust = 1.2)
  #stat_summary(aes(label = tukey_group),
  #             fun.y = Inf,
  #             geom = &#39;text&#39;, na.rm = T, vjust = -0.5,
  #             #fun.args = list(err = errors, mult = error_range)
  #             )

plot_super_letters</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="quantification-of-sla1-egfp-patch-density-in-strains-expressing-indicated-ede1-mutants">
              Quantification of Sla1-EGFP patch density in strains expressing indicated Ede1
              mutants.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Large points represent mean
              measurements from independently repeated datasets. Central line and whiskers denote
              the mean ± SD calculated from dataset averages. Gray points show individual cells from
              all datasets. At α = 0.05, all mutants are significantly different from wild type, and
              groups marked with an asterisk (*) are significantly different from Ede1<sup
                itemscope="" itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup>
              (Tukey-Kramer test; a complete table of pairwise comparisons and effect sizes can be
              found in <a href="#fig8sdata1" itemscope=""
                itemtype="http://schema.stenci.la/Link">Figure 8—source data 1</a>). All scale bars:
              2 μm. </p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig8s1"
          title="Figure 8—figure supplement 1."><label data-itemprop="label">Figure 8—figure
            supplement 1.</label><img src="index.html.media/fig8-figsupp1.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="ede1fus-and-ede1whi3-intrinsically-disordered-region-replacement-constructs">
              Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">FUS</sup> and
              Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">Whi3</sup>
              intrinsically disordered region replacement constructs.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Representative cells
              expressing Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">FUS</sup> and Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">Whi3</sup> tagged C-terminally with
              msGFP2.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">First, we replaced amino acids
          366–900 of Ede1 with different IDRs. We considered three factors for choosing the
          replacement IDRs: known phase separation activity, Q/N content, and similarity to the Ede1
          IDR sequence. We chose the region of Sup35 spanning the N and M regions based on its known
          phase separation activity in yeast cells <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib20"><span>20</span><span>Franzmann
                et al.</span><span>2018</span></a></cite>. We chose the IDR of Snf5 because of its
          high score in the prion-like screen by <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib1"><span>1</span><span>Alberti et
                al.</span><span>2009</span></a></cite>, reflecting a Gln-rich amino acid sequence,
          and the IDR of Whi3, because the method developed by <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib84"><span>84</span><span>Zarin et
                al.</span><span>2019</span></a></cite> indicated it as one of the sequences most
          similar to the PQ-rich region of Ede1. Finally, we also included the low-complexity domain
          of human FUS for its well-known tendency to phase separate and form hydrogels <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib58"><span>58</span><span>Patel et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib30"><span>30</span><span>Kato et
                  al.</span><span>2012</span></a></cite></span>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We also replaced the central
          region of Ede1 with several structured domains. We used the red fluorophores mCherry and
          dTomato as globular linkers assuming respectively monomeric and dimeric states. We also
          used the coiled-coil domains from two kinesin motors as oligomeric rod-shaped linkers: the
          kinesin-1 heavy chain (Khc amino acids 335–931) from <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Drosophila melanogaster</em> and the human
          kinesin-5 Eg5 (amino acids 358–797), which form dimers and tetramers in their respective
          contexts <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib18"><span>18</span><span>Cuevas et
                  al.</span><span>1992</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib70"><span>70</span><span>Scholey
                  et al.</span><span>2014</span></a></cite></span>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All of the Ede1 central region
          replacement constructs were expressed from the endogenous genomic locus under the control
          of the native promoter.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We assessed the localization of
          Ede1 constructs tagged with msGFP2 (<a href="#fig8" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 8B</a>, <a href="#fig8s1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 8—figure supplement 1</a>). We found that
          the localization was partially rescued by the insertion of Whi3, Snf5, and Sup35 IDRs, as
          well as the oligomeric linkers (dTomato, Khc, Eg5), in place of the deleted central
          region. The localization was not rescued by the FUS low-complexity region or the monomeric
          globular linker mCherry.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We also assessed the density of
          Sla1-EGFP patches in cells expressing untagged Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">mCherry</sup>, Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">dTomato</sup>, Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">Khc</sup>, Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">Eg5</sup>, Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">Snf5</sup>, or Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">Sup35</sup> (<a href="#fig8" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 8C</a>). All differences from wild type
          were statistically significant (p&lt;0.001). No single replacement mutant was able to
          fully rescue the Sla1 patch density defect present in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup></em> cells. Only <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">Sup35</sup></em> was able to
          significantly rescue the Sla1 density in respect to the deletion of Ede1 central region.
          In <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup></em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1</em>Δ cells, the mean density of Sla1
          patches was reduced by 40 and 48%, respectively. In <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">Sup35</sup></em>, the mean density was
          only reduced by 25% from wild type, respectively.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">These results support the
          hypothesis that prion-like domains can aid clustering of the endocytic proteins.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="ede1-central-region-can-cluster-a-heterologous-lipid-binding-protein">Ede1 central
          region can cluster a heterologous lipid-binding protein</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We hypothesized that the phase
          separation mediated by Ede1 central region is able to cluster membrane-associated
          proteins. To test our hypothesis, we fused the Ede1 central region to a diffusely
          membrane-bound protein. We created a GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH(PLCδ) construct, based
          on a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P<sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub>) probe developed by <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib74"><span>74</span><span>Stefan et al.</span><span>2002</span></a></cite>,
          by inserting the Ede1 central region between GFP and a tandem repeat of pleckstrin
          homology (PH) domain of phospholipase C δ1 (PLCδ). The original GFP-2×PH(PLCδ) construct
          is distributed homogeneously on the plasma membrane, while GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">366-900</sup> alone localized to bright
          intracellular condensates. In contrast, the fusion construct localized to the plasma
          membrane, forming puncta that resembled endocytic sites (<a href="#fig9" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 9A,B</a>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig9" title="Figure 9.">
          <label data-itemprop="label">Figure 9.</label><img src="index.html.media/fig9.jpg" alt=""
            itemscope="" itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="fusion-with-ede1-central-region-changes-the-distribution-of-a-pi45p2-probe">Fusion
              with Ede1 central region changes the distribution of a PI(4,5)P<sub itemscope=""
                itemtype="http://schema.stenci.la/Subscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sub> probe.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Maximum projections of cells
              expressing GFP-2 × PH and GFP-Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">366-900</sup> from a yeast
              centromeric plasmid under the control of TDH3 promoter. White dotted line shows cell
              outline. (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>)
              Cells expressing GFP-Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH from a multicopy
              plasmid. Examples of different structures classified as ‘<em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">D_iffuse’, ‘_P_atches’, or ‘_N_etworks’.
                (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">C</strong>) and
                (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">D</strong>) The same
                construct was expressed from four centromeric plasmids under different promoters.
                Individual cells were classified as in panel B. Plots show percentage of cells
                falling into each class per promoter (<strong itemscope=""
                  itemtype="http://schema.stenci.la/Strong">C</strong>), and mean cell pixel
                intensity per class (<strong itemscope=""
                  itemtype="http://schema.stenci.la/Strong">D</strong>). (<strong itemscope=""
                  itemtype="http://schema.stenci.la/Strong">E</strong>) Movies of cells coexpressing
                GFP-Ede1<sup itemscope=""
                  itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH and Sla1-mCherry
                were acquired using TIRF microscopy. Single frame from a representative movie;
                points labeled ‘1’ and ‘2’ mark the top and bottom of the kymograph (<strong
                  itemscope="" itemtype="http://schema.stenci.la/Strong">F</strong>). Scale bars: 2
                μm. All cells in this figure: _SLA1-mCherry::KANMX4, ede1Δ::natNT2</em>.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig9s1"
          title="Figure 9—figure supplement 1."><label data-itemprop="label">Figure 9—figure
            supplement 1.</label><img src="index.html.media/fig9-figsupp1.jpg" alt="" itemscope=""
            itemtype="http://schema.org/ImageObject">
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="fluorescence-recovery-after-photobleaching-and-hexanediol-treatment-of-the-fusion-construct">
              Fluorescence recovery after photobleaching and hexanediol treatment of the fusion
              construct.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Kymographs of representative
              photobleaching experiments performed on the GFP-2×PH or GFP-Ede1<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH constructs.
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">B</strong>) Effects of
              10% 1,6-hexanediol (HD) treatment on cells overexpressing GFP-2 × PH, GFP-Ede1<sup
                itemscope="" itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH, or
              GFP-Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">366-900</sup>
              from a single-copy plasmid under the control of the <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">TDH3</em> promoter.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We also noticed subpopulations
          of cells with different localization patterns of the construct (<a href="#fig9"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 9B</a>). We speculated that
          the variable patterns were caused by heterogeneity in protein expression level due to
          plasmid copy number variation. To test that hypothesis, we expressed GFP-Ede1<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH(PLCδ)
          from centromeric plasmids containing four different promoters of increasing strength <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib53"><span>53</span><span>Mumberg et al.</span><span>1995</span></a></cite>.
          We classified the localization of the construct in these cells as ‘diffuse’, ‘punctate’,
          or ‘networked’. We found that the tendency to cluster into different patterns correlated
          with promoter strength and the expression level. Low expressing cells had more diffuse
          localization of the construct, and separated into puncta or well-separated regions as the
          concentration increased (<a href="#fig9" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 9C,D</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The puncta formed by the
          GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH(PLCδ) construct were
          stable over long imaging periods, but dynamically recruited the late coat protein Sla1 (<a
            href="#fig9" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 9F</a>, <a
            href="#fig9video1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 9—video
            1</a>, <a href="#fig9video2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            9—video 2</a>). Sla1-mCherry persisted at these sites with similar lifetimes as during
          normal endocytosis indicating that the condensates can recruit endocytic coat components.
          Unlike full-length Ede1 at the endocytic sites, the chimeric construct does not undergo
          cycles of assembly and disassembly. When we photobleached the structures formed by highly
          expressed GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH(PLCδ) we saw no
          recovery (<a href="#fig9s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            9—figure supplement 1A</a>), indicating that without the terminal domains, Ede1 central
          region might form solid, rather than liquid-like, structures. 10% 1,6-hexanediol also
          failed to dissolve the GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH(PLCδ) structures (<a
            href="#fig9s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 9—figure
            supplement 1B</a>). Structures formed by strongly overexpressed GFP-Ede1<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript">366-900</sup> were partially
          dissolved by 10% 1,6-hexanediol. This suggests that the stability of GFP-Ede1<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH(PLCδ)
          might also be modulated by the PH domains interacting with the membrane. In addition, we
          noticed that 1,6-hexanediol treatment caused membrane deformations, or possible clustering
          of the PH domains expressed without the Ede1 fusion (<a href="#fig9s1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 9—figure supplement 1B</a>). This
          observation is consistent with the previous reports of wide-ranging effects of
          1,6-hexanediol <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib33"><span>33</span><span>Kroschwald et
                al.</span><span>2015</span></a></cite>, and underscores that 1,6-hexanediol
          experiments need to be interpreted with caution.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">These results show that
          directing the Ede1 central region to the plasma membrane is sufficient to create puncta on
          the membrane in a concentration-dependent manner. Surprisingly, these long-lived sites can
          repeatedly recruit endocytic coat components.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="discussion">Discussion</h2>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Ede1 is the key organizer of
          the early phase of endocytosis in yeast <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib75"><span>75</span><span>Stimpson
                  et al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib8"><span>8</span><span>Boeke et
                  al.</span><span>2014</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib43"><span>43</span><span>Lu and
                  Drubin</span><span>2017</span></a></cite></span>. Our results indicate that the
          large clusters of Ede1 observed previously in mutant cells <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib8"><span>8</span><span>Boeke et
                al.</span><span>2014</span></a></cite> are in fact phase-separated protein droplets.
          Moreover, we found that the cytosolic concentration of Ede1 in normal cells is at the same
          critical limit as in the mutant cells harboring Ede1 droplets. This suggests that liquid
          phase separation might be the mechanism through which Ede1 concentrates proteins at the
          early endocytic sites. We identified the central region of Ede1— containing a coiled-coil
          and a prion-like domain— as necessary for both the condensate formation, and for Ede1 to
          promote the initiation of endocytosis. We also found that heterologous prion-like domains
          can partially replace the Ede1 central region in endocytosis. We also demonstrated that
          the central region of Ede1 fused to a lipid-binding domain can condense on the plasma
          membrane. These findings suggest a potential link between endocytic assembly and the
          phenomenon of protein phase separation and raise questions about the material properties
          of the endocytic sites at different stages. They also highlight a possible novel role for
          disordered, prion-like regions found in numerous endocytic proteins <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib47"><span>47</span><span>Malinovska
                et al.</span><span>2013</span></a></cite>.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="ede1-forms-liquid-protein-droplets">Ede1 forms liquid protein droplets</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Ede1 forms large condensates
          under conditions where the stoichiometry between Ede1 and the endocytic adaptor proteins
          is altered, such as overexpression of Ede1 or deletion of three early adaptors (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib8"><span>8</span><span>Boeke et al.</span><span>2014</span></a></cite>, <a
            href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We showed that these
          condensates are liquid, phase-separated droplets according to the following criteria: (a)
          observation of liquid-like behaviors, (b) molecule turnover, (c) dependence on a critical
          component concentration, (d) dependence on temperature, and (e) susceptibility to
          dissolution by 1,6-hexanediol.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We show that the Ede1
          condensates undergo apparent fusion and fission events, the latter caused possibly by
          polymerizing actin filaments (<a href="#fig4" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4C</a>, <a href="#fig4video1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—video 1</a>). The Ede1
          molecules exchange between the condensates and the cytosolic pool (<a href="#fig2"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2A</a>) and, importantly,
          Ede1 molecules also rapidly diffuse within the condensates (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2C and D</a>). The formation of the Ede1
          condensates depends on the cellular concentration of Ede1 (<a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figures 1D</a> and <a href="#fig3" itemscope=""
            itemtype="http://schema.stenci.la/Link">!number(3)</a>). The condensates dissolve
          rapidly and reversibly in response to temperature changes (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2F</a>), and are sensitive to treatment
          with 1,6-hexanediol (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2E</a>). In agreement with our findings
          in yeast, <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib17"><span>17</span><span>Day et al.</span><span>2021</span></a></cite> have
          shown that Eps15, the mammalian homolog of Ede1, can phase separate in vitro.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The Ede1 condensates are
          clearly distinct from endocytic sites by the virtue of size, brightness, and long-term
          stability. We assign them no function, other than as a tool used to study the properties
          of Ede1. However, <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib81"><span>81</span><span>Wilfling et al.</span><span>2020</span></a></cite>
          studied Ede1 condensates in the 3×ΔEA and Ede1 overexpression strains in parallel to our
          work. They describe a selective autophagy pathway mediated by Ede1, and propose that
          autophagy of phase-separated condensates might be a major route through which cells remove
          misfolded or unneeded endocytic proteins. The ability of Ede1 to cluster endocytic
          proteins could therefore play a dual role in endocytosis and autophagy.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="endocytic-sites-solid-or-liquid">Endocytic sites: solid or liquid?</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The prevailing model of
          endocytosis focuses on the growing clathrin lattice as the driver of protein assembly
          <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib31"><span>31</span><span>Kirchhausen et
                  al.</span><span>2014</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib13"><span>13</span><span>Cocucci
                  et al.</span><span>2012</span></a></cite></span>. Indeed, clathrin is a major
          interaction hub in endocytosis, and a scaffold with a well-defined structure.
          Nevertheless, several lines of evidence suggest that this model of assembly might be
          incomplete.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In yeast, the early proteins
          can assemble in the absence of clathrin. In fact, many endocytic sites in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">clc1</em>Δ cells stall during the early
          phase, but persist on the plasma membrane <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib10"><span>10</span><span>Carroll et
                al.</span><span>2012</span></a></cite>. On the other hand, in the absence of Ede1,
          numerous early adaptors do not assemble at all, or assemble only for the duration of the
          membrane-bending phase <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib75"><span>75</span><span>Stimpson
                  et al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib10"><span>10</span><span>Carroll
                  et al.</span><span>2012</span></a></cite></span>. These two observations
          demonstrate that Ede1 can sustain the early sites independently of the clathrin lattice.
          We hypothesize that Ede1 performs this function by undergoing liquid-liquid phase
          separation on the plasma membrane.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">FRAP shows that numerous
          proteins involved in endocytosis and the actin cytoskeleton continuously turn over at the
          endocytic sites <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib72"><span>72</span><span>Skruzny et
                  al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib35"><span>35</span><span>Lacy et
                  al.</span><span>2019</span></a></cite></span>. Ede1 is one of such proteins (<a
            href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2B</a>). This
          observation is consistent with a phase separation mechanism, although it does not prove
          it. Alternative mechanisms could explain fast turnover, such as ‘treadmilling’ of actin
          monomers or dynamic binding of adaptors to the clathrin lattice. Even clathrin itself
          shows fluorescence recovery as individual triskelia are replaced within the scaffold <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib83"><span>83</span><span>Wu et
                  al.</span><span>2001</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib3"><span>3</span><span>Avinoam et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib12"><span>12</span><span>Chen et
                  al.</span><span>2019</span></a></cite></span>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Several hallmark criteria
          frequently associated with liquid phase separation can also be explained by other
          mechanisms of compartmentalization. This fact has become intensely debated in the context
          of the nucleus, where bridging of multiple DNA sites could create an appearance of
          phase-separated compartments <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib48"><span>48</span><span>McSwiggen et
                  al.</span><span>2019</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib61"><span>61</span><span>Peng and
                  Weber</span><span>2019</span></a></cite></span>. Similarly, weak binding to the
          clathrin lattice could explain the enrichment of proteins at endocytic sites with high
          turnover and susceptible to dissolution by temperature and 1,6-hexanediol.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Our observations point to a
          mixed model, in which the structured lattice exists alongside a liquid phase formed by
          unstructured interactions. The existence of large Ede1 condensates is in itself one of the
          predictions generated by a phase separation model. A significant consequence of phase
          separation is that above a critical value, further increase of total component
          concentration leads to changes in relative volume, but not concentration, of the dense and
          the light phases. This is in contrast with the scaffold-binding model, where the size of
          the assemblies formed by endocytic proteins would be limited by the clathrin lattice. In
          addition, we have observed buffering of cytoplasmic Ede1 concentration during
          overexpression and in different genetic backgrounds. The cytoplasmic concentration in
          wild-type cells reached the limit observed in Ede1 overexpression, suggesting that the
          normal Ede1 concentration is sufficient for its phase separation on the plasma membrane.
          The small fraction of wild-type cells which contain larger Ede1 condensates (<a
            href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figures 1E</a> and <a
            href="#fig5" itemscope="" itemtype="http://schema.stenci.la/Link">5C</a>, <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib81"><span>81</span><span>Wilfling et al.</span><span>2020</span></a></cite>)
          could very well be the consequence of natural variability in expression levels. The
          concentration buffering also suggests that the phase separation of Ede1 is driven
          primarily by homotypic interactions <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib65"><span>65</span><span>Riback et
                al.</span><span>2020</span></a></cite>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The qualitative criteria for
          liquid phase separation—sensitivity to temperature and 1,6-hexanediol—apply to Ede1 at the
          endocytic sites as well as to the large endocytic condensates. Curiously, the sites appear
          more stable against both of these treatments than the large condensates. This could be
          explained by the fact that adaptor binding confines Ede1 at the endocytic sites to the
          plane of the membrane. As such, the critical concentration could be lower than for the
          formation of 3D droplets, as shown previously in vitro for the Nephrin/Nck/N-WASP system
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib6"><span>6</span><span>Banjade and Rosen</span><span>2014</span></a></cite>.
          A complementary explanation could be that genuine endocytic sites are stabilized by other
          interactions, such as those within the clathrin lattice, or the lattice formed by Sla2 and
          Ent1/2 in the presence of PI(4,5)P<sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The small size of the endocytic
          sites prevents the direct visualization of liquid-like shape changes. Super-resolution
          imaging of endocytic proteins in fixed cells revealed that Ede1 and Syp1 form larger and
          more amorphous structures than clathrin and its adaptors <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib54"><span>54</span><span>Mund et
                al.</span><span>2018</span></a></cite>. The super-resolution experiments also
          suggest that even before it disassembles, Ede1 becomes progressively excluded from the
          center of the sites. Eps15 and FCHo1 behave in a similar fashion in mammalian cells <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib73"><span>73</span><span>Sochacki et al.</span><span>2017</span></a></cite>.
          As the intermediate and late coat proteins form stable patches with low turnover <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib72"><span>72</span><span>Skruzny et al.</span><span>2012</span></a></cite>,
          we propose that a liquid-like early module is displaced from the center of the
          invagination by the formation of a solid coat.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Ede1 is one of the most heavily
          phosphorylated proteins in yeast endocytosis <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib42"><span>42</span><span>Lu et
                al.</span><span>2016</span></a></cite>, and it can be ubiquitylated as well as bind
          ubiquitin. Phosphorylation can regulate phase separation <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib51"><span>51</span><span>Monahan
                  et al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib37"><span>37</span><span>Larson
                  et al.</span><span>2017</span></a></cite></span>, and the phosphorylation of Ede1
          might regulate its state at the endocytic sites.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Our chimeric construct
          GFP-Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">PQCC</sup>-2×PH
          combines a lipid-binding domain with the central region of Ede1. This construct forms
          bright structures on the surface of the plasma membrane, and the area covered by these
          structures appears larger in cells with higher expression levels (<a href="#fig9"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 9</a>). The puncta formed by
          GFP-Ede1<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">PQCC</sup>-2×PH
          repeatedly recruit transient assemblies of the late coat protein Sla1. This suggests that
          the chimeric construct can initiate functional endocytic events. However, the GFP-Ede1<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript">PQCC</sup>-2×PH puncta
          persist over long imaging periods and do not disassemble after Sla1 internalization.
          Structures formed by GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">PQCC</sup>-2×PH also do not recover
          fluorescence (<a href="#fig9s1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 9—figure supplement 1</a>). This suggests
          that while the central region of Ede1 can drive condensation, the terminal regions are
          needed to maintain the liquid state.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">It must be noted that we do not
          fully understand the nature of the microdomains formed by the GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">PQCC</sup>-2×PH construct. For example,
          all known interaction motifs of Ede1 are located inside the terminal regions. It is thus
          unclear how the central region could recruit other endocytic proteins.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Prion-like domains are enriched
          in yeast endocytic proteins <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib1"><span>1</span><span>Alberti et
                  al.</span><span>2009</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib47"><span>47</span><span>Malinovska et
                  al.</span><span>2013</span></a></cite></span>, many of which contain polyglutamine
          tracts longer than that of Ede1. These disordered, low-complexity regions had been
          previously considered mere linkers <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib16"><span>16</span><span>Dafforn
                and Smith</span><span>2004</span></a></cite>, but we show that the prion-like region
          of Ede1 is important for its condensation. Our results also show that unrelated prion-like
          domains can partially replace the function of Ede1 central region, even without the
          coiled-coil domain (<a href="#fig8" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 8</a>). How—or if—the endocytic proteins
          achieve specificity during recruitment of prion-like domains is an open question. It has
          also been proposed that phase separation of prion-like domains could provide force for
          membrane bending <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib7"><span>7</span><span>Bergeron-Sandoval et
                al.</span><span>2021</span></a></cite>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The coiled-coil domain of Ede1
          is also critical for its phase separation, and even more important to the function of Ede1
          than the prion-like domain (<a href="#fig6" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 6</a>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib43"><span>43</span><span>Lu and
                Drubin</span><span>2017</span></a></cite>). The coiled-coil of Eps15 can form dimers
          and tetramers <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib79"><span>79</span><span>Tebar et
                  al.</span><span>1997</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib15"><span>15</span><span>Cupers
                  et al.</span><span>1997</span></a></cite></span>, and fluorescence correlation
          spectroscopy (FCS) data suggests that cytosolic Ede1 can form dimers and higher-order
          oligomers <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib8"><span>8</span><span>Boeke et al.</span><span>2014</span></a></cite>.
          Multivalency is a critical characteristic of phase-separating proteins <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib39"><span>39</span><span>Li et
                  al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib4"><span>4</span><span>Banani et
                  al.</span><span>2016</span></a></cite></span>, and oligomerization via the
          coiled-coil domain could promote phase separation by increasing the valency of other
          interactions. Less commonly, coiled-coils can also form phase-separating networks in
          absence of other interaction motifs, such as in the case of centrosome scaffold SPD-5
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib82"><span>82</span><span>Woodruff et al.</span><span>2017</span></a></cite>.
          In our experiments, replacing the central region of Ede1 with heterologous coiled-coils
          partially rescued Ede1 localization, but not the late phase defect, of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1<sup itemscope=""
              itemtype="http://schema.stenci.la/Superscript">ΔPQCC</sup></em> cells.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="materials-and-methods">
          Materials and methods</h2>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="yeast-strains-and-plasmids">
          Yeast strains and plasmids</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The list of yeast strains and
          yeast plasmids used in this study is provided in <a href="#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1</a>. These materials are
          available upon request to the corresponding author.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Cells were maintained on rich
          medium at 24 or 30°C. C-terminally tagged or truncated mutants were generated via
          homologous recombination with PCR cassettes as described by <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib27"><span>27</span><span>Janke et
                al.</span><span>2004</span></a></cite>. N-terminal truncation and internal domain
          deletion or replacement mutants of Ede1 were generated by first constructing the desired
          mutant gene in a pET-based plasmid using PCR mutagenesis or ligation-independent cloning
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib39"><span>39</span><span>Li et al.</span><span>2012</span></a></cite>. The
          mutated Ede1 sequence was then amplified by PCR using primers containing 50 bp overlap
          with 5’ (forward primer) 3’ (reverse primer) UTR sequences of EDE1. The PCR product was
          transformed into <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">ede1Δ::klURA3</em> cells. The transformants
          were selected for on plates containing 5-fluorootic acid, and confirmed by colony PCR and
          genomic sequencing.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Sequences coding for IDRs
          replacing Ede1 core region in <a href="#fig8" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 8</a> were obtained from several
          different sources. The coding sequences of Snf5 and Whi3 IDRs were amplified by PCR from
          the yeast genome and were confirmed identical to the sequences in the S288C reference
          genome (SGD:S000000493 and SGD:S000005141, respectively). The coding sequence of amino
          acids 1–253 of the Sup35NM3 mutant <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib20"><span>20</span><span>Franzmann
                et al.</span><span>2018</span></a></cite> was cloned from a plasmid kindly provided
          by Titus Franzmann. The coding sequence of human FUS low-complexity region (amino acids
          2–214 from UniProt entry Q6IBQ5) was codon optimized for yeast expression, and synthesized
          with the rest of the Ede1 sequence by Synbio Technologies (New Jersey). The sequence
          coding for amino acids 335–931 of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">D. melanogaster</em> kinesin-1 was cloned
          from Addgene plasmid K980 (#129762), a gift from William Hancock. The sequence coding for
          amino acids 358–797 of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Homo
            sapiens</em> kinesin-5 was cloned from Addgene plasmid mCherry-Kinesin11-N-18 (#55067),
          a gift from Michael Davidson.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Plasmids used in <a
            href="#fig9" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 9</a> were
          based on pRS426-GFP-2×PH(PLCδ) <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib74"><span>74</span><span>Stefan et
                al.</span><span>2002</span></a></cite>, a kind gift from Scott Emr. The Ede1<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript">366-900</sup> coding
          sequence was inserted into this plasmid after the last GFP codon using
          ligation-independent cloning. GFP-2×PH(PLCδ) and GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH(PLCδ) were then
          subcloned to a pRS416-based plasmid p416-GPD under the control of TDH3 promoter <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib53"><span>53</span><span>Mumberg et al.</span><span>1995</span></a></cite>
          using BamHI and SalI restriction sites. GFP-Ede1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">366-900</sup>-2×PH(PLCδ) was also
          subcloned into p416-CYC1, p416-ADH1, and p416-TEF1 <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib53"><span>53</span><span>Mumberg et
                al.</span><span>1995</span></a></cite> using the same restriction sites.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The sequence of the msGFP2
          fluorophore <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib80"><span>80</span><span>Valbuena et al.</span><span>2020</span></a></cite>
          was cloned into a PFA6a-based tagging plasmid from Addgene plasmid #135301, a kind gift
          from Benjamin Glick.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="live-cell-imaging">Live cell
          imaging</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Yeast cells were grown to
          OD<sub itemscope="" itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">600</span></sub> between 0.3 and 0.8 at 24°C
          in low-fluorescence synthetic drop-out medium lacking tryptophan, or tryptophan and uracil
          if required for plasmid maintenance. Cells were attached to cover slips coated with 1 mg
          ml<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">−1</sup> concanavalin
          A.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="widefield-microscopy">
          Widefield microscopy</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Widefield micrographs were
          obtained on an Olympus IX81 widefield microscope equipped with a 100×/NA1.45 objective and
          an ORCA-ER CCD camera (Hamamatsu), using an X-CITE 120 PC (EXFO) metal halide lamp as the
          illumination source. The excitation and emission light when imaging EGFP- and
          mCherry-tagged proteins were filtered through the U-MGFPHQ and U-MRFPHQ filter sets
          (Olympus). The 3D stacks were acquired with 0.2 μm vertical spacing. The microscope was
          controlled using the MetaMorph software (Molecular Dynamics).</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="total-internal-reflection-fluorescence-microscopy">Total internal reflection
          fluorescence microscopy</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All TIRF movies were recorded
          on an Olympus IX83 widefield microscope equipped with a 150×/NA1.45 objective and an
          ImageEM X2 EM-CCD camera (Hamamatsu) under the control of the VisiView software (Visitron
          Systems). The 488 nm and 561 nm laser lines were used for illumination of GFP- and
          mCherry-tagged proteins. Excitation and emission were filtered using a TRF89902
          405/488/561/647 nm quad-band filter set (Chroma). Laser angles were controlled by iLas2
          (Roper Scientific).</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="fluorescence-recovery-after-photobleaching">Fluorescence recovery after photobleaching
        </h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Bleaching of Ede1-EGFP in
          endocytic condensates (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2A and B</a>) was performed using a
          custom-built set-up that focuses a 488-nm laser beam at the sample plane, on the Olympus
          IX81 widefield microscope described above. The diameter of the bleach spot was
          approximately 0.5 μm.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Bleaching of unperturbed
          endocytic sites (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2C</a>) was performed with a 405 nm laser
          line controlled by the iLas2 targeting system during simultaneous excitation with 488 nm
          and 561 nm lasers in TIRF mode on the Olympus IX83 microscope described above. The
          emission light was collected through a Gemini beam splitter (Hamamatsu) equipped with a
          Di03-R488/561-t1 dichroic, and FF03-525/50-25 and FF01-630/92-25 emission filters
          (Semrock).</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="spinning-disk-microscopy">
          Spinning disk microscopy</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Spinning disk confocal imaging
          (<a href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3</a>) was
          performed in the Photonic Bioimaging Center at the University of Geneva using a Nikon
          Eclipse Ti1 microscope equipped with a CSU-W1 spinning disk (Yokogawa) using a 100×/NA1.49
          objective, an sCMOS Prime 95B camera (Photometrics), and 488 nm and 561 nm lasers as the
          illumination source.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="induction-of-protein-expression">Induction of protein expression</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">For the induction of expression
          from GALS promoter during live-cell imaging (<a href="#fig3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 3</a>), cells were thawed and grown for
          several days on Synthetic Complete medium agar plates with 2% galactose as the sole carbon
          source. The cells were then cultured overnight in a low-fluorescence synthetic drop-out
          liquid medium with no tryptophan and 2% raffinose as the sole carbon source. The cells
          were diluted in the morning into the same medium with 2% glucose as the carbon source. The
          cells were attached to cover slips as described above. Finally, the carbon source in the
          medium was switched to 2% galactose before the start of the imaging.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="image-and-data-analysis">
          Image and data analysis</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All code used in this study is
          available as a single repository at <a
            href="https://github.com/matkozak/KozakAndKaksonen2022" itemscope=""
            itemtype="http://schema.stenci.la/Link">https://github.com/matkozak/KozakAndKaksonen2022</a>,
          (copy archived at <a
            href="https://archive.softwareheritage.org/swh:1:dir:2782495bab5f864ac750b4113d6c7cd87ac229d2;origin=https://github.com/matkozak/KozakAndKaksonen2022;visit=swh:1:snp:ca9e80e9e888a6be19acdd04741370e9e7e85441;anchor=swh:1:rev:5441acf218619f2b03d90633613cccc373c6fe8a"
            itemscope=""
            itemtype="http://schema.stenci.la/Link">swh:1:rev:5441acf218619f2b03d90633613cccc373c6fe8a</a>;
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib32"><span>32</span><span>Kozak</span><span>2022</span></a></cite>). General
          image analysis was performed using the Fiji distribution of ImageJ <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib69"><span>69</span><span>Schindelin et
                  al.</span><span>2012</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib66"><span>66</span><span>Rueden
                  et al.</span><span>2017</span></a></cite></span>. All display images were
          corrected for background fluorescence using the rolling ball algorithm of ImageJ, and
          movies were corrected for photobleaching using a custo m ImageJ macro. Plots and
          statistical analyses were generated using R.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="frap-experiments">FRAP
          experiments</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">FRAP experiments performed on
          Ede1-EGFP condensates were analyzed according to <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib62"><span>62</span><span>Phair et
                al.</span><span>2004</span></a></cite>. Mean fluorescence values were measured from
          regions of interest representing the background, the cell, and the condensate. A
          custom-written R script (available in the article repository) was used to subtract
          background fluorescence, correct for photobleaching and normalize the values between 0
          (corrected fluorescence immediately after photobleaching) and 1 (mean corrected
          fluorescence of 5 s before photobleaching). The recovery curves of individual experiments
          were aligned to bleach time and averaged. Condensates that showed lateral or axial
          movement during the acquisition were manually excluded from the averaging. The average was
          fitted to a single exponential equation from which the mobile fraction and recovery
          half-time were calculated.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">For FRAP experiments performed
          on native endocytic sites, the background fluorescence was first subtracted from the TIRF
          images using the ImageJ rolling ball algorithm. EGFP and mCherry fluorescence of single
          endocytic patches were measured within a circle with a radius of three pixels around the
          patch centroid position. A custom-written R script was used to calculate the fluorescence
          recovery much in the same way as for the FRAP of condensates, but no further corrections
          were made for background signal or imaging-induced photobleaching. To calculate average
          recovery, we manually selected only events in which Abp1-mCherry signal peaked at least 60
          s after bleach time to exclude the effect of Ede1 disassembly at the end of endocytic
          events.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="patch-numbers-and-lifetimes">Patch numbers and lifetimes</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">For estimating the number of
          patches per membrane area, we analyzed single nonbudding cells. The patches were
          thresholded and counted using a custom Python script available in the article repository.
          We estimated the cell surface area by measuring the area of the cross-section from maximum
          intensity projection and multiplying it by 4, under the assumption that an unbudded yeast
          cell is approximately spherical. For estimating patch lifetimes, we tracked endocytic
          events using ParticleTracker from the MOSAIC suite <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib68"><span>68</span><span>Sbalzarini
                and Koumoutsakos</span><span>2005</span></a></cite> and multiplied trajectory length
          by the frame rate.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="cytosolic-and-total-cellular-intensity">Cytosolic and total cellular intensity</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To obtain cytosolic intensity
          of Ede1-EGFP, 5 × 5-pixel square regions away from the condensates and vacuoles were
          manually measured in ImageJ. To measure total cellular intensity, individual cells were
          cropped in ImageJ. A custom Python script was applied to the cropped cells to generate
          masks based on Rvs167-mCherry fluorescence, and subsequently measure the Ede1-EGFP signal
          intensity in the masked region.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="cell-classification">Cell
          classification</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To calculate the percentages of
          Ede1-EGFP condensates colocalizing with mCherry puncta in <a href="#fig4" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4</a>, cells containing Ede1-EGFP
          condensates in <a href="#fig5" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            5</a> and cells showing different GFP-EDE1<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">366-900</sup>−2×PH localization patterns
          in <a href="#fig9" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 9</a>,
          single cells were cropped from imaging fields based on a neutral signal (GFP in the case
          of <a href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4</a> and
          brightfield image for <a href="#fig5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figures 5</a> and <a href="#fig9" itemscope=""
            itemtype="http://schema.stenci.la/Link">!number(9)</a>). Next, an ImageJ macro was used
          to display random images from the dataset and the experimenter would assess the presence
          of the tested phenotype with no knowledge of which strain was being analyzed.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="western-blotting">Western
          blotting</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">A 300 μl of ice-cold
          trichloroacetic acid was added to 5 ml of exponentially growing yeast cultures. The cells
          were pelleted by centrifugation, washed with cold acetone, and dried in a vacuum
          concentrator. The pellets were resuspended in 100 μl of urea buffer (25 mM Tris-HCl pH
          6.8, 6 M urea, 1% SDS) and homogenized by shaking with 200 μl of glass beads. The samples
          were heated at 95°C for 5 min, mixed with 100 μl 2× SDS loading buffer and centrifuged at
          16, 000× g for 5 min.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The samples were subjected to
          electrophoresis on 4–20% Precast Protein Gels (Bio-Rad) and transferred onto a
          nitrocellulose membrane using an iBlot2 device (ThermoFischer Scientific). The membranes
          were blocked for 30 min with 5% bovine serum albumin in PBS-Tween and incubated with
          primary antibodies overnight at 4°C. The membranes were washed in PBS-Tween, incubated
          with fluorescent secondary antibodies for 1 hr and washed in PBS-Tween. The fluorescence
          was measured on an Odyssey scanner (LI-COR Biosciences).</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="antibodies">Antibodies</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Ede1 constructs were detected
          using an anti-GFP mouse monoclonal antibody (ab291, Abcam) at 1/2000 dilution, and an
          anti-Hog1 rabbit polyclonal antibody (sc-9079, Santa Cruz Biotechnology) at 1/1000
          dilution was used as a loading control. Donkey antimouse IRDye 680 and anti-rabbit IRDye
          800 secondary antibodies (926–68072 and 926–32213 respectively, LI-COR Biosciences) were
          used at a 1/10,000 dilution.</p>
        <section data-itemprop="references">
          <h2 data-itemtype="http://schema.stenci.la/Heading">References</h2>
          <ol>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib1">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Alberti"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Alberti</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="R Halfmann"><span data-itemprop="givenNames"><span
                      itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Halfmann</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="O King"><span data-itemprop="givenNames"><span
                      itemprop="givenName">O</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">King</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A Kapila"><span data-itemprop="givenNames"><span
                      itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kapila</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Lindquist"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Lindquist</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2009">2009</time><span
                itemprop="headline">A systematic survey identifies prions and illuminates sequence
                features of prionogenic proteins</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">137</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Cell</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">146</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">158</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20systematic%20survey%20identifies%20prions%20and%20illuminates%20sequence%20features%20of%20prionogenic%20proteins">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib2">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="CN Antonescu"><span
                    data-itemprop="givenNames"><span itemprop="givenName">CN</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Antonescu</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="F Aguet"><span data-itemprop="givenNames"><span
                      itemprop="givenName">F</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Aguet</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="G Danuser"><span data-itemprop="givenNames"><span
                      itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Danuser</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SL Schmid"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SL</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Schmid</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2011">2011</time><span
                itemprop="headline">Phosphatidylinositol-(4,5)-bisphosphate regulates
                clathrin-coated pit initiation, stabilization, and size</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">22</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Molecular Biology of the Cell</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">2588</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">2600</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Phosphatidylinositol-(4,5)-bisphosphate%20regulates%20clathrin-coated%20pit%20initiation,%20stabilization,%20and%20size">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib3">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="O Avinoam"><span data-itemprop="givenNames"><span
                      itemprop="givenName">O</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Avinoam</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Schorb"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Schorb</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="CJ Beese"><span data-itemprop="givenNames"><span
                      itemprop="givenName">CJ</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Beese</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="JAG Briggs"><span data-itemprop="givenNames"><span
                      itemprop="givenName">JAG</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Briggs</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kaksonen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kaksonen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2015">2015</time><span
                itemprop="headline">Endocytic sites mature by continuous bending and remodeling of
                the clathrin coat</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">348</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Science (New York, N.Y.)</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">1369</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">1372</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Endocytic%20sites%20mature%20by%20continuous%20bending%20and%20remodeling%20of%20the%20clathrin%20coat">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib4">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SF Banani"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SF</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Banani</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="AM Rice"><span data-itemprop="givenNames"><span
                      itemprop="givenName">AM</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Rice</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="WB Peeples"><span data-itemprop="givenNames"><span
                      itemprop="givenName">WB</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Peeples</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="Y Lin"><span data-itemprop="givenNames"><span
                      itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Lin</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Jain"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Jain</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="R Parker"><span data-itemprop="givenNames"><span
                      itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Parker</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="MK Rosen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">MK</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Rosen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2016">2016</time><span
                itemprop="headline">Compositional Control of Phase-Separated Cellular
                Bodies</span><span itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">166</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Cell</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">651</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">663</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Compositional%20Control%20of%20Phase-Separated%20Cellular%20Bodies">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib5">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SF Banani"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SF</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Banani</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="HO Lee"><span data-itemprop="givenNames"><span
                      itemprop="givenName">HO</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Lee</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="AA Hyman"><span data-itemprop="givenNames"><span
                      itemprop="givenName">AA</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Hyman</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="MK Rosen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">MK</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Rosen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2017">2017</time><span
                itemprop="headline">Biomolecular condensates: organizers of cellular
                biochemistry</span><span itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">18</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Nature Reviews. Molecular Cell Biology</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">285</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">298</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Biomolecular%20condensates:%20organizers%20of%20cellular%20biochemistry">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib6">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Banjade"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Banjade</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="MK Rosen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">MK</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Rosen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2014">2014</time><span
                itemprop="headline">Phase transitions of multivalent proteins can promote clustering
                of membrane receptors</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">3</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">eLife</span></span></span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Phase%20transitions%20of%20multivalent%20proteins%20can%20promote%20clustering%20of%20membrane%20receptors">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib7">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="LP Bergeron-Sandoval"><span
                    data-itemprop="givenNames"><span itemprop="givenName">LP</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Bergeron-Sandoval</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Kumar"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kumar</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="HK Heris"><span data-itemprop="givenNames"><span
                      itemprop="givenName">HK</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Heris</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="CLA Chang"><span data-itemprop="givenNames"><span
                      itemprop="givenName">CLA</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Chang</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="CE Cornell"><span data-itemprop="givenNames"><span
                      itemprop="givenName">CE</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Cornell</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SL Keller"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SL</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Keller</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="P François"><span data-itemprop="givenNames"><span
                      itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">François</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="AG Hendricks"><span
                    data-itemprop="givenNames"><span itemprop="givenName">AG</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Hendricks</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="AJ Ehrlicher"><span
                    data-itemprop="givenNames"><span itemprop="givenName">AJ</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Ehrlicher</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="RV Pappu"><span data-itemprop="givenNames"><span
                      itemprop="givenName">RV</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Pappu</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SW Michnick"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SW</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Michnick</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2021">2021</time><span
                itemprop="headline">Endocytic proteins with prion-like domains form viscoelastic
                condensates that enable membrane remodeling</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">118</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">PNAS</span></span></span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Endocytic%20proteins%20with%20prion-like%20domains%20form%20viscoelastic%20condensates%20that%20enable%20membrane%20remodeling">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib8">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Boeke"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Boeke</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Trautmann"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Trautmann</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Meurer"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Meurer</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Wachsmuth"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Wachsmuth</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="C Godlee"><span data-itemprop="givenNames"><span
                      itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Godlee</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Knop"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Knop</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kaksonen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kaksonen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2014">2014</time><span
                itemprop="headline">Quantification of cytosolic interactions identifies Ede1
                oligomers as key organizers of endocytosis</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">10</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Molecular Systems Biology</span></span></span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Quantification%20of%20cytosolic%20interactions%20identifies%20Ede1%20oligomers%20as%20key%20organizers%20of%20endocytosis">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib9">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="T Brach"><span data-itemprop="givenNames"><span
                      itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Brach</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="C Godlee"><span data-itemprop="givenNames"><span
                      itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Godlee</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="I Moeller-Hansen"><span
                    data-itemprop="givenNames"><span itemprop="givenName">I</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Moeller-Hansen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Boeke"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Boeke</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kaksonen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kaksonen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2014">2014</time><span
                itemprop="headline">The initiation of clathrin-mediated endocytosis is
                mechanistically highly flexible</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">24</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Current Biology</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">548</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">554</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20initiation%20of%20clathrin-mediated%20endocytosis%20is%20mechanistically%20highly%20flexible">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib10">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SY Carroll"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SY</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Carroll</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="HEM Stimpson"><span
                    data-itemprop="givenNames"><span itemprop="givenName">HEM</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Stimpson</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Weinberg"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Weinberg</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="CP Toret"><span data-itemprop="givenNames"><span
                      itemprop="givenName">CP</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Toret</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="Y Sun"><span data-itemprop="givenNames"><span
                      itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Sun</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="DG Drubin"><span data-itemprop="givenNames"><span
                      itemprop="givenName">DG</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Drubin</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2012">2012</time><span
                itemprop="headline">Analysis of yeast endocytic site formation and maturation
                through a regulatory transition point</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">23</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Molecular Biology of the Cell</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">657</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">668</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Analysis%20of%20yeast%20endocytic%20site%20formation%20and%20maturation%20through%20a%20regulatory%20transition%20point">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib11">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="LB Case"><span data-itemprop="givenNames"><span
                      itemprop="givenName">LB</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Case</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="JA Ditlev"><span data-itemprop="givenNames"><span
                      itemprop="givenName">JA</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Ditlev</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="MK Rosen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">MK</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Rosen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2019">2019</time><span
                itemprop="headline">Regulation of Transmembrane Signaling by Phase
                Separation</span><span itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">48</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Annual Review of Biophysics</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">465</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">494</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Regulation%20of%20Transmembrane%20Signaling%20by%20Phase%20Separation">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib12">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="Y Chen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Chen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Yong"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Yong</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A Martínez-Sánchez"><span
                    data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Martínez-Sánchez</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="Y Yang"><span data-itemprop="givenNames"><span
                      itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Yang</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="Y Wu"><span data-itemprop="givenNames"><span
                      itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Wu</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="P De Camilli"><span
                    data-itemprop="givenNames"><span itemprop="givenName">P</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">De Camilli</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="R Fernández-Busnadiego"><span
                    data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Fernández-Busnadiego</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Wu"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Wu</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2019">2019</time><span
                itemprop="headline">Dynamic instability of clathrin assembly provides proofreading
                control for endocytosis</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">218</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">The Journal of Cell Biology</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">3200</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">3211</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Dynamic%20instability%20of%20clathrin%20assembly%20provides%20proofreading%20control%20for%20endocytosis">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib13">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="E Cocucci"><span data-itemprop="givenNames"><span
                      itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Cocucci</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="F Aguet"><span data-itemprop="givenNames"><span
                      itemprop="givenName">F</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Aguet</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Boulant"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Boulant</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="T Kirchhausen"><span
                    data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Kirchhausen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2012">2012</time><span
                itemprop="headline">The first five seconds in the life of a clathrin-coated
                pit</span><span itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">150</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Cell</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">495</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">507</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20first%20five%20seconds%20in%20the%20life%20of%20a%20clathrin-coated%20pit">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib14">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="LM Costantini"><span
                    data-itemprop="givenNames"><span itemprop="givenName">LM</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Costantini</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Fossati"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Fossati</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Francolini"><span
                    data-itemprop="givenNames"><span itemprop="givenName">M</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Francolini</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="EL Snapp"><span data-itemprop="givenNames"><span
                      itemprop="givenName">EL</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Snapp</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2012">2012</time><span
                itemprop="headline">Assessing the tendency of fluorescent proteins to oligomerize
                under physiologic conditions</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">13</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Traffic (Copenhagen, Denmark)</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">643</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">649</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Assessing%20the%20tendency%20of%20fluorescent%20proteins%20to%20oligomerize%20under%20physiologic%20conditions">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib15">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="P Cupers"><span data-itemprop="givenNames"><span
                      itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Cupers</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="E Haar"><span data-itemprop="givenNames"><span
                      itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Haar</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="W Boll"><span data-itemprop="givenNames"><span
                      itemprop="givenName">W</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Boll</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="T Kirchhausen"><span
                    data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Kirchhausen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="1997">1997</time><span
                itemprop="headline"
                content="Parallel dimers and anti-parallel tetramers formed by epidermal growth factor receptor pathway substrate clon…">Parallel
                dimers and anti-parallel tetramers formed by epidermal growth factor receptor
                pathway substrate clone 15</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">272</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">The Journal of Biological Chemistry</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">33430</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">33434</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Parallel%20dimers%20and%20anti-parallel%20tetramers%20formed%20by%20epidermal%20growth%20factor%20receptor%20pathway%20substrate%20clon%E2%80%A6">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib16">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="TR Dafforn"><span data-itemprop="givenNames"><span
                      itemprop="givenName">TR</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Dafforn</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="CJI Smith"><span data-itemprop="givenNames"><span
                      itemprop="givenName">CJI</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Smith</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2004">2004</time><span
                itemprop="headline">Natively unfolded domains in endocytosis: hooks, lines and
                linkers</span><span itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">5</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">EMBO Reports</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">1046</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">1052</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Natively%20unfolded%20domains%20in%20endocytosis:%20hooks,%20lines%20and%20linkers">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib17">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="KJ Day"><span data-itemprop="givenNames"><span
                      itemprop="givenName">KJ</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Day</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="G Kago"><span data-itemprop="givenNames"><span
                      itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kago</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="L Wang"><span data-itemprop="givenNames"><span
                      itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Wang</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="JB Richter"><span data-itemprop="givenNames"><span
                      itemprop="givenName">JB</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Richter</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="CC Hayden"><span data-itemprop="givenNames"><span
                      itemprop="givenName">CC</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Hayden</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="EM Lafer"><span data-itemprop="givenNames"><span
                      itemprop="givenName">EM</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Lafer</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="JC Stachowiak"><span
                    data-itemprop="givenNames"><span itemprop="givenName">JC</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Stachowiak</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2021">2021</time><span
                itemprop="headline">Liquid-like protein interactions catalyse assembly of endocytic
                vesicles</span><span itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">23</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Nature Cell Biology</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">366</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">376</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Liquid-like%20protein%20interactions%20catalyse%20assembly%20of%20endocytic%20vesicles">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib18">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Cuevas"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Cuevas</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="T Tao"><span data-itemprop="givenNames"><span
                      itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Tao</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="LS Goldstein"><span
                    data-itemprop="givenNames"><span itemprop="givenName">LS</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Goldstein</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="1992">1992</time><span
                itemprop="headline">Evidence that the stalk of Drosophila kinesin heavy chain is an
                alpha-helical coiled coil</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">116</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">The Journal of Cell Biology</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">957</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">965</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Evidence%20that%20the%20stalk%20of%20Drosophila%20kinesin%20heavy%20chain%20is%20an%20alpha-helical%20coiled%20coil">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib19">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Feliciano"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Feliciano</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SM Di Pietro"><span
                    data-itemprop="givenNames"><span itemprop="givenName">SM</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Di Pietro</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2012">2012</time><span
                itemprop="headline">SLAC, a complex between Sla1 and Las17, regulates actin
                polymerization during clathrin-mediated endocytosis</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">23</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Molecular Biology of the Cell</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">4256</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">4272</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=SLAC,%20a%20complex%20between%20Sla1%20and%20Las17,%20regulates%20actin%20polymerization%20during%20clathrin-mediated%20endocytosis">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib20">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="TM Franzmann"><span
                    data-itemprop="givenNames"><span itemprop="givenName">TM</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Franzmann</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Jahnel"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Jahnel</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A Pozniakovsky"><span
                    data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Pozniakovsky</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Mahamid"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Mahamid</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="AS Holehouse"><span
                    data-itemprop="givenNames"><span itemprop="givenName">AS</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Holehouse</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="E Nüske"><span data-itemprop="givenNames"><span
                      itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Nüske</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Richter"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Richter</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="W Baumeister"><span
                    data-itemprop="givenNames"><span itemprop="givenName">W</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Baumeister</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SW Grill"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SW</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Grill</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="RV Pappu"><span data-itemprop="givenNames"><span
                      itemprop="givenName">RV</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Pappu</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="AA Hyman"><span data-itemprop="givenNames"><span
                      itemprop="givenName">AA</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Hyman</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Alberti"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Alberti</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2018">2018</time><span
                itemprop="headline">Phase separation of a yeast prion protein promotes cellular
                fitness</span><span itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">359</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Science (New York, N.Y.)</span></span></span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Phase%20separation%20of%20a%20yeast%20prion%20protein%20promotes%20cellular%20fitness">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib21">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="TM Franzmann"><span
                    data-itemprop="givenNames"><span itemprop="givenName">TM</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Franzmann</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Alberti"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Alberti</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2019">2019</time><span
                itemprop="headline">Prion-like low-complexity sequences: Key regulators of protein
                solubility and phase behavior</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">294</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">The Journal of Biological Chemistry</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">7128</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">7136</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Prion-like%20low-complexity%20sequences:%20Key%20regulators%20of%20protein%20solubility%20and%20phase%20behavior">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib22">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="B Gagny"><span data-itemprop="givenNames"><span
                      itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Gagny</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A Wiederkehr"><span
                    data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Wiederkehr</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="P Dumoulin"><span data-itemprop="givenNames"><span
                      itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Dumoulin</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="B Winsor"><span data-itemprop="givenNames"><span
                      itemprop="givenName">B</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Winsor</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="H Riezman"><span data-itemprop="givenNames"><span
                      itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Riezman</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="R Haguenauer-Tsapis"><span
                    data-itemprop="givenNames"><span itemprop="givenName">R</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Haguenauer-Tsapis</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2000">2000</time><span
                itemprop="headline">A novel EH domain protein of Saccharomyces cerevisiae, Ede1p,
                involved in endocytosis</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">113</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Journal of Cell Science</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">3309</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">3319</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20novel%20EH%20domain%20protein%20of%20Saccharomyces%20cerevisiae,%20Ede1p,%20involved%20in%20endocytosis">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib23">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="C Godlee"><span data-itemprop="givenNames"><span
                      itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Godlee</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kaksonen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kaksonen</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2013">2013</time><span
                itemprop="headline">Review series: From uncertain beginnings: initiation mechanisms
                of clathrin-mediated endocytosis</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">203</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">The Journal of Cell Biology</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">717</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">725</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Review%20series:%20From%20uncertain%20beginnings:%20initiation%20mechanisms%20of%20clathrin-mediated%20endocytosis">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib24">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="BD Grant"><span data-itemprop="givenNames"><span
                      itemprop="givenName">BD</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Grant</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="JG Donaldson"><span
                    data-itemprop="givenNames"><span itemprop="givenName">JG</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Donaldson</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2009">2009</time><span
                itemprop="headline">Pathways and mechanisms of endocytic recycling</span><span
                itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">10</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Nature Reviews Molecular Cell Biology</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">597</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">608</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Pathways%20and%20mechanisms%20of%20endocytic%20recycling">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib25">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="H Haruki"><span data-itemprop="givenNames"><span
                      itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Haruki</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Nishikawa"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Nishikawa</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="UK Laemmli"><span data-itemprop="givenNames"><span
                      itemprop="givenName">UK</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Laemmli</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2008">2008</time><span
                itemprop="headline">The anchor-away technique: rapid, conditional establishment of
                yeast mutant phenotypes</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">31</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Molecular Cell</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">925</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">932</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20anchor-away%20technique:%20rapid,%20conditional%20establishment%20of%20yeast%20mutant%20phenotypes">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib26">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="WM Henne"><span data-itemprop="givenNames"><span
                      itemprop="givenName">WM</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Henne</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="E Boucrot"><span data-itemprop="givenNames"><span
                      itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Boucrot</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Meinecke"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Meinecke</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="E Evergren"><span data-itemprop="givenNames"><span
                      itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Evergren</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="Y Vallis"><span data-itemprop="givenNames"><span
                      itemprop="givenName">Y</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Vallis</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="R Mittal"><span data-itemprop="givenNames"><span
                      itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Mittal</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="HT McMahon"><span data-itemprop="givenNames"><span
                      itemprop="givenName">HT</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">McMahon</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2010">2010</time><span
                itemprop="headline">FCHo proteins are nucleators of clathrin-mediated
                endocytosis</span><span itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">328</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Science (New York, N.Y.)</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">1281</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">1284</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=FCHo%20proteins%20are%20nucleators%20of%20clathrin-mediated%20endocytosis">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib27">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="C Janke"><span data-itemprop="givenNames"><span
                      itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Janke</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="MM Magiera"><span data-itemprop="givenNames"><span
                      itemprop="givenName">MM</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Magiera</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="N Rathfelder"><span
                    data-itemprop="givenNames"><span itemprop="givenName">N</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Rathfelder</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="C Taxis"><span data-itemprop="givenNames"><span
                      itemprop="givenName">C</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Taxis</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Reber"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Reber</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="H Maekawa"><span data-itemprop="givenNames"><span
                      itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Maekawa</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A Moreno-Borchart"><span
                    data-itemprop="givenNames"><span itemprop="givenName">A</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Moreno-Borchart</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="G Doenges"><span data-itemprop="givenNames"><span
                      itemprop="givenName">G</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Doenges</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="E Schwob"><span data-itemprop="givenNames"><span
                      itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Schwob</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="E Schiebel"><span data-itemprop="givenNames"><span
                      itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Schiebel</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Knop"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Knop</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2004">2004</time><span
                itemprop="headline"
                content="A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter…">A
                versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins,
                more markers and promoter substitution cassettes</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">21</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Yeast (Chichester, England)</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">947</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">962</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20versatile%20toolbox%20for%20PCR-based%20tagging%20of%20yeast%20genes:%20new%20fluorescent%20proteins,%20more%20markers%20and%20promoter%E2%80%A6">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib28">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kaksonen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kaksonen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="CP Toret"><span data-itemprop="givenNames"><span
                      itemprop="givenName">CP</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Toret</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="DG Drubin"><span data-itemprop="givenNames"><span
                      itemprop="givenName">DG</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Drubin</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2005">2005</time><span
                itemprop="headline">A modular design for the clathrin- and actin-mediated
                endocytosis machinery</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">123</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Cell</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">305</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">320</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20modular%20design%20for%20the%20clathrin-%20and%20actin-mediated%20endocytosis%20machinery">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib29">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kaksonen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kaksonen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A Roux"><span data-itemprop="givenNames"><span
                      itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Roux</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2018">2018</time><span
                itemprop="headline">Mechanisms of clathrin-mediated endocytosis</span><span
                itemscope="" itemtype="http://schema.org/PublicationVolume"
                itemprop="isPartOf"><span itemprop="volumeNumber"
                  data-itemtype="http://schema.org/Number">19</span><span itemscope=""
                  itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Nature Reviews. Molecular Cell Biology</span></span></span><span
                itemprop="pageStart" data-itemtype="http://schema.org/Number">313</span><span
                itemprop="pageEnd" data-itemtype="http://schema.org/Number">326</span><span
                itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Mechanisms%20of%20clathrin-mediated%20endocytosis">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib30">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kato"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kato</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="TW Han"><span data-itemprop="givenNames"><span
                      itemprop="givenName">TW</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Han</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Xie"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Xie</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="K Shi"><span data-itemprop="givenNames"><span
                      itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Shi</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="X Du"><span data-itemprop="givenNames"><span
                      itemprop="givenName">X</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Du</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="LC Wu"><span data-itemprop="givenNames"><span
                      itemprop="givenName">LC</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Wu</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="H Mirzaei"><span data-itemprop="givenNames"><span
                      itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Mirzaei</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="EJ Goldsmith"><span
                    data-itemprop="givenNames"><span itemprop="givenName">EJ</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Goldsmith</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Longgood"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Longgood</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Pei"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Pei</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="NV Grishin"><span data-itemprop="givenNames"><span
                      itemprop="givenName">NV</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Grishin</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="DE Frantz"><span data-itemprop="givenNames"><span
                      itemprop="givenName">DE</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Frantz</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="JW Schneider"><span
                    data-itemprop="givenNames"><span itemprop="givenName">JW</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Schneider</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Chen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Chen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="L Li"><span data-itemprop="givenNames"><span
                      itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Li</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="MR Sawaya"><span data-itemprop="givenNames"><span
                      itemprop="givenName">MR</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Sawaya</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Eisenberg"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Eisenberg</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="R Tycko"><span data-itemprop="givenNames"><span
                      itemprop="givenName">R</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Tycko</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SL McKnight"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SL</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">McKnight</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2012">2012</time><span
                itemprop="headline">Cell-free formation of RNA granules: low complexity sequence
                domains form dynamic fibers within hydrogels</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">149</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Cell</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">753</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">767</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Cell-free%20formation%20of%20RNA%20granules:%20low%20complexity%20sequence%20domains%20form%20dynamic%20fibers%20within%20hydrogels">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib31">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="T Kirchhausen"><span
                    data-itemprop="givenNames"><span itemprop="givenName">T</span></span><span
                    data-itemprop="familyNames"><span
                      itemprop="familyName">Kirchhausen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Owen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Owen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="SC Harrison"><span data-itemprop="givenNames"><span
                      itemprop="givenName">SC</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Harrison</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2014">2014</time><span
                itemprop="headline">Molecular structure, function, and dynamics of clathrin-mediated
                membrane traffic</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">6</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Cold Spring Harbor Perspectives in
                    Biology</span></span></span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Molecular%20structure,%20function,%20and%20dynamics%20of%20clathrin-mediated%20membrane%20traffic">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib32">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kozak"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kozak</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2022">2022</time><a itemprop="url"
                href="https://archive.softwareheritage.org/swh:1:dir:2782495bab5f864ac750b4113d6c7cd87ac229d2;origin=https://github.com/matkozak/KozakAndKaksonen2022;visit=swh:1:snp:ca9e80e9e888a6be19acdd04741370e9e7e85441;anchor=swh:1:rev:5441acf218619f2b03d90633613cccc373c6fe8a"><span
                  itemprop="headline">KozakAndKaksonen2022</span></a><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher"><span
                  itemprop="name">https://archive.softwareheritage.org/swh:1:dir:2782495bab5f864ac750b4113d6c7cd87ac229d2;origin=https://github.com/matkozak/KozakAndKaksonen2022;visit=swh:1:snp:ca9e80e9e888a6be19acdd04741370e9e7e85441;anchor=swh:1:rev:5441acf218619f2b03d90633613cccc373c6fe8a</span><span
                  itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=https://archive.softwareheritage.org/swh:1:dir:2782495bab5f864ac750b4113d6c7cd87ac229d2;origin=https://github%E2%80%A6">
                </span></span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=KozakAndKaksonen2022">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib33">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Kroschwald"><span
                    data-itemprop="givenNames"><span itemprop="givenName">S</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Kroschwald</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Maharana"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Maharana</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Mateju"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Mateju</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="L Malinovska"><span
                    data-itemprop="givenNames"><span itemprop="givenName">L</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Malinovska</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="E Nüske"><span data-itemprop="givenNames"><span
                      itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Nüske</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="I Poser"><span data-itemprop="givenNames"><span
                      itemprop="givenName">I</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Poser</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Richter"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Richter</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Alberti"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Alberti</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2015">2015</time><span
                itemprop="headline"
                content="Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granu…">Promiscuous
                interactions and protein disaggregases determine the material state of
                stress-inducible RNP granules</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">4</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">eLife</span></span></span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Promiscuous%20interactions%20and%20protein%20disaggregases%20determine%20the%20material%20state%20of%20stress-inducible%20RNP%20granu%E2%80%A6">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib34">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="W Kukulski"><span data-itemprop="givenNames"><span
                      itemprop="givenName">W</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kukulski</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Schorb"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Schorb</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Kaksonen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Kaksonen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="JAG Briggs"><span data-itemprop="givenNames"><span
                      itemprop="givenName">JAG</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Briggs</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2012">2012</time><span
                itemprop="headline">Plasma membrane reshaping during endocytosis is revealed by
                time-resolved electron tomography</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">150</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">Cell</span></span></span><span itemprop="pageStart"
                data-itemtype="http://schema.org/Number">508</span><span itemprop="pageEnd"
                data-itemtype="http://schema.org/Number">520</span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Plasma%20membrane%20reshaping%20during%20endocytosis%20is%20revealed%20by%20time-resolved%20electron%20tomography">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib35">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="MM Lacy"><span data-itemprop="givenNames"><span
                      itemprop="givenName">MM</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Lacy</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Baddeley"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Baddeley</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Berro"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Berro</span></span>
                </li>
              </ol><time itemprop="datePublished" datetime="2019">2019</time><span
                itemprop="headline">Single-molecule turnover dynamics of actin and membrane coat
                proteins in clathrin-mediated endocytosis</span><span itemscope=""
                itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span
                  itemprop="volumeNumber" data-itemtype="http://schema.org/Number">8</span><span
                  itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span
                    itemprop="name">eLife</span></span></span><span itemscope=""
                itemtype="http://schema.org/Organization" itemprop="publisher">
                <meta itemprop="name" content="Unknown"><span itemscope=""
                  itemtype="http://schema.org/ImageObject" itemprop="logo">
                  <meta itemprop="url"
                    content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
                </span>
              </span>
              <meta itemprop="image"
                content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Single-molecule%20turnover%20dynamics%20of%20actin%20and%20membrane%20coat%20proteins%20in%20clathrin-mediated%20endocytosis">
            </li>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib36">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="AK Lancaster"><span
                    data-itemprop="givenNames"