{
"nbformat": 4,
  "nbformat_minor": 4,
  "metadata": {
    "title": "Charting brain growth and aging at high spatial precision",
    "authors": [
      {
        "givenNames": [
          "Saige"
        ],
        "familyNames": [
          "Rutherford"
        ],
        "type": "Person",
        "emails": [
          "saige.rutherford@donders.ru.nl"
        ],
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Ann Arbor",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Saige Rutherford"
      },
      {
        "givenNames": [
          "Charlotte"
        ],
        "familyNames": [
          "Fraza"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Charlotte Fraza"
      },
      {
        "givenNames": [
          "Richard"
        ],
        "familyNames": [
          "Dinga"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Richard Dinga"
      },
      {
        "givenNames": [
          "Seyed",
          "Mostafa"
        ],
        "familyNames": [
          "Kia"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Utrecht",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Seyed Mostafa Kia"
      },
      {
        "givenNames": [
          "Thomas"
        ],
        "familyNames": [
          "Wolfers"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Thomas Wolfers"
      },
      {
        "givenNames": [
          "Mariam"
        ],
        "familyNames": [
          "Zabihi"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Mariam Zabihi"
      },
      {
        "givenNames": [
          "Pierre"
        ],
        "familyNames": [
          "Berthet"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Pierre Berthet"
      },
      {
        "givenNames": [
          "Amanda"
        ],
        "familyNames": [
          "Worker"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "London",
            "address": {
              "addressCountry": "United Kingdom",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Amanda Worker"
      },
      {
        "givenNames": [
          "Serena"
        ],
        "familyNames": [
          "Verdi"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "London",
            "address": {
              "addressCountry": "United Kingdom",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "London",
            "address": {
              "addressCountry": "United Kingdom",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Serena Verdi"
      },
      {
        "givenNames": [
          "Derek"
        ],
        "familyNames": [
          "Andrews"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Sacramento",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Derek Andrews"
      },
      {
        "givenNames": [
          "Laura",
          "KM"
        ],
        "familyNames": [
          "Han"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Amsterdam",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Amsterdam",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Laura KM Han"
      },
      {
        "givenNames": [
          "Johanna",
          "MM"
        ],
        "familyNames": [
          "Bayer"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Melbourne",
            "address": {
              "addressCountry": "Australia",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Melbourne",
            "address": {
              "addressCountry": "Australia",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Johanna MM Bayer"
      },
      {
        "givenNames": [
          "Paola"
        ],
        "familyNames": [
          "Dazzan"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "London",
            "address": {
              "addressCountry": "United Kingdom",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "London",
            "address": {
              "addressCountry": "United Kingdom",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Paola Dazzan"
      },
      {
        "givenNames": [
          "Phillip"
        ],
        "familyNames": [
          "McGuire"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "London",
            "address": {
              "addressCountry": "United Kingdom",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Phillip McGuire"
      },
      {
        "givenNames": [
          "Roel",
          "T"
        ],
        "familyNames": [
          "Mocking"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Amsterdam",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Roel T Mocking"
      },
      {
        "givenNames": [
          "Aart"
        ],
        "familyNames": [
          "Schene"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Aart Schene"
      },
      {
        "givenNames": [
          "Chandra"
        ],
        "familyNames": [
          "Sripada"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Ann Arbor",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Chandra Sripada"
      },
      {
        "givenNames": [
          "Ivy",
          "F"
        ],
        "familyNames": [
          "Tso"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Ann Arbor",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Ivy F Tso"
      },
      {
        "givenNames": [
          "Elizabeth",
          "R"
        ],
        "familyNames": [
          "Duval"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Ann Arbor",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Elizabeth R Duval"
      },
      {
        "givenNames": [
          "Soo-Eun"
        ],
        "familyNames": [
          "Chang"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Ann Arbor",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Soo-Eun Chang"
      },
      {
        "givenNames": [
          "Brenda",
          "WJH"
        ],
        "familyNames": [
          "Penninx"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Amsterdam",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Amsterdam",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Brenda WJH Penninx"
      },
      {
        "givenNames": [
          "Mary",
          "M"
        ],
        "familyNames": [
          "Heitzeg"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Ann Arbor",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Mary M Heitzeg"
      },
      {
        "givenNames": [
          "S",
          "Alexandra"
        ],
        "familyNames": [
          "Burt"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "East Lansing",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "S Alexandra Burt"
      },
      {
        "givenNames": [
          "Luke",
          "W"
        ],
        "familyNames": [
          "Hyde"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Ann Arbor",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Luke W Hyde"
      },
      {
        "givenNames": [
          "David"
        ],
        "familyNames": [
          "Amaral"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Sacramento",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "David Amaral"
      },
      {
        "givenNames": [
          "Christine"
        ],
        "familyNames": [
          "Wu",
          "Nordahl"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Sacramento",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Christine Wu Nordahl"
      },
      {
        "givenNames": [
          "Ole",
          "A"
        ],
        "familyNames": [
          "Andreasssen"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Ole A Andreasssen"
      },
      {
        "givenNames": [
          "Lars",
          "T"
        ],
        "familyNames": [
          "Westlye"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Oslo",
            "address": {
              "addressCountry": "Norway",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Lars T Westlye"
      },
      {
        "givenNames": [
          "Roland"
        ],
        "familyNames": [
          "Zahn"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "London",
            "address": {
              "addressCountry": "United Kingdom",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Roland Zahn"
      },
      {
        "givenNames": [
          "Henricus",
          "G"
        ],
        "familyNames": [
          "Ruhe"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Henricus G Ruhe"
      },
      {
        "givenNames": [
          "Christian"
        ],
        "familyNames": [
          "Beckmann"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Oxford",
            "address": {
              "addressCountry": "United Kingdom",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Christian Beckmann"
      },
      {
        "givenNames": [
          "Andre",
          "F"
        ],
        "familyNames": [
          "Marquand"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          },
          {
            "name": "Nijmegen",
            "address": {
              "addressCountry": "Netherlands",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ],
        "name": "Andre F Marquand"
      }
    ],
    "authorNotes": [
      "†These authors contributed equally to this work"
    ],
    "editors": [
      {
        "givenNames": [
          "Chris",
          "I"
        ],
        "familyNames": [
          "Baker"
        ],
        "type": "Person",
        "affiliations": [
          {
            "name": "National Institute of Mental Health, National Institutes of Health",
            "address": {
              "addressCountry": "United States",
              "type": "PostalAddress"
            },
            "type": "Organization"
          }
        ]
      }
    ],
    "datePublished": {
      "value": "2022-02-01",
      "type": "Date"
    },
    "dateReceived": {
      "value": "2021-08-19",
      "type": "Date"
    },
    "dateAccepted": {
      "value": "2022-01-26",
      "type": "Date"
    },
    "description": "Defining reference models for population variation, and the ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging data from 82 sites (N=58,836; ages 2–100) and used normative modeling to characterize lifespan trajectories of cortical thickness and subcortical volume. Models are validated against a manually quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample (N=1985), showing they can be used to quantify variability underlying multiple disorders whilst also refining case-control inferences. These models will be augmented with additional samples and imaging modalities as they become available. This provides a common reference platform to bind results from different studies and ultimately paves the way for personalized clinical decision-making.",
    "isPartOf": {
      "volumeNumber": "11",
      "isPartOf": {
        "title": "eLife",
        "issns": [
          "2050-084X"
        ],
        "identifiers": [
          {
            "name": "nlm-ta",
            "propertyID": "https://registry.identifiers.org/registry/nlm-ta",
            "value": "elife",
            "type": "PropertyValue"
          },
          {
            "name": "publisher-id",
            "propertyID": "https://registry.identifiers.org/registry/publisher-id",
            "value": "eLife",
            "type": "PropertyValue"
          }
        ],
        "publisher": {
          "name": "eLife Sciences Publications, Ltd",
          "type": "Organization"
        },
        "type": "Periodical"
      },
      "type": "PublicationVolume"
    },
    "licenses": [
      {
        "url": "http://creativecommons.org/licenses/by/4.0/",
        "content": [
          {
            "content": [
              "This article is distributed under the terms of the ",
              {
                "content": [
                  "Creative Commons Attribution License"
                ],
                "target": "http://creativecommons.org/licenses/by/4.0/",
                "type": "Link"
              },
              ", which permits unrestricted use and redistribution provided that the original author and source are credited."
            ],
            "type": "Paragraph"
          }
        ],
        "type": "CreativeWork"
      }
    ],
    "keywords": [
      "normative model",
      "lifespan",
      "growth chart",
      "brain chart",
      "big data",
      "individual prediction",
      "Human"
    ],
    "identifiers": [
      {
        "name": "publisher-id",
        "propertyID": "https://registry.identifiers.org/registry/publisher-id",
        "value": "72904",
        "type": "PropertyValue"
      },
      {
        "name": "doi",
        "propertyID": "https://registry.identifiers.org/registry/doi",
        "value": "10.7554/eLife.72904",
        "type": "PropertyValue"
      },
      {
        "name": "elocation-id",
        "propertyID": "https://registry.identifiers.org/registry/elocation-id",
        "value": "e72904",
        "type": "PropertyValue"
      }
    ],
    "fundedBy": [
      {
        "identifiers": [
          {
            "value": "10100118",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "H2020 European Research Council",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "802998",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "H2020 European Research Council",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "215698/Z/19/Z",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "Wellcome Trust",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "098369/Z/12/Z",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "Wellcome Trust",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "VIDI grant 016.156.415",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "Nederlandse Organisatie voor Wetenschappelijk Onderzoek",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "R01MH104438",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "National Institute of Mental Health",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "R01MH103371",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "National Institute of Mental Health",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "P50 HD093079",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "Eunice Kennedy Shriver National Institute of Child Health and Human Development",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "895011",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "H2020 Marie Skłodowska-Curie Actions",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "G0902304",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "Medical Research Council",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "K23MH108823",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "National Institute of Mental Health",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "R01DC011277",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "National Institute on Deafness and Other Communication Disorders",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "R01MH107741",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "National Institute of Mental Health",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "UL1TR002240",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "Michigan Institute for Clinical and Health Research",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "UG3MH114249",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "National Institute of Mental Health",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      },
      {
        "identifiers": [
          {
            "value": "R01HD093334",
            "type": "PropertyValue"
          }
        ],
        "funders": [
          {
            "name": "Eunice Kennedy Shriver National Institute of Child Health and Human Development",
            "type": "Organization"
          }
        ],
        "type": "MonetaryGrant"
      }
    ],
    "about": [
      {
        "name": "Neuroscience",
        "type": "DefinedTerm"
      }
    ],
    "genre": [
      "Short Report"
    ],
    "references": [
      {
        "id": "bib1",
        "authors": [
          {
            "givenNames": [
              "F"
            ],
            "familyNames": [
              "Alfaro-Almagro"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Jenkinson"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "NK"
            ],
            "familyNames": [
              "Bangerter"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JLR"
            ],
            "familyNames": [
              "Andersson"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "L"
            ],
            "familyNames": [
              "Griffanti"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "G"
            ],
            "familyNames": [
              "Douaud"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SN"
            ],
            "familyNames": [
              "Sotiropoulos"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Jbabdi"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Hernandez-Fernandez"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Vallee"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Vidaurre"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Webster"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "P"
            ],
            "familyNames": [
              "McCarthy"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Rorden"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Daducci"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DC"
            ],
            "familyNames": [
              "Alexander"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "H"
            ],
            "familyNames": [
              "Zhang"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "I"
            ],
            "familyNames": [
              "Dragonu"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "PM"
            ],
            "familyNames": [
              "Matthews"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "KL"
            ],
            "familyNames": [
              "Miller"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SM"
            ],
            "familyNames": [
              "Smith"
            ],
            "type": "Person"
          }
        ],
        "title": "Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank",
        "datePublished": {
          "value": "2018",
          "type": "Date"
        },
        "pageStart": 400,
        "pageEnd": 424,
        "isPartOf": {
          "volumeNumber": 166,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2017.10.034",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "29079522",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib2",
        "authors": [
          {
            "givenNames": [
              "JMM"
            ],
            "familyNames": [
              "Bayer"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Dinga"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SM"
            ],
            "familyNames": [
              "Kia"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AR"
            ],
            "familyNames": [
              "Kottaram"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Lv"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Zalesky"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "L"
            ],
            "familyNames": [
              "Schmaal"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          }
        ],
        "title": "Accommodating Site Variation in Neuroimaging Data Using Normative and Hierarchical Bayesian Models",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "isPartOf": {
          "name": "bioRxiv",
          "type": "Periodical"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1101/2021.02.09.430363",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib3",
        "authors": [
          {
            "givenNames": [
              "RAI"
            ],
            "familyNames": [
              "Bethlehem"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Seidlitz"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Romero-Garcia"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Trakoshis"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "G"
            ],
            "familyNames": [
              "Dumas"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MV"
            ],
            "familyNames": [
              "Lombardo"
            ],
            "type": "Person"
          }
        ],
        "title": "A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder",
        "datePublished": {
          "value": "2020",
          "type": "Date"
        },
        "isPartOf": {
          "volumeNumber": 3,
          "isPartOf": {
            "name": "Communications Biology",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1038/s42003-020-01212-9",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "32887930",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib4",
        "authors": [
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Bethlehem"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Seidlitz"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SR"
            ],
            "familyNames": [
              "White"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JW"
            ],
            "familyNames": [
              "Vogel"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "KM"
            ],
            "familyNames": [
              "Anderson"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Adamson"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Adler"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "GS"
            ],
            "familyNames": [
              "Alexopoulos"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Anagnostou"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Areces-Gonzalez"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DE"
            ],
            "familyNames": [
              "Astle"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Auyeung"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Ayub"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "G"
            ],
            "familyNames": [
              "Ball"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Baron-Cohen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Beare"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SA"
            ],
            "familyNames": [
              "Bedford"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "V"
            ],
            "familyNames": [
              "Benegal"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "F"
            ],
            "familyNames": [
              "Beyer"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Alexander-Bloch"
            ],
            "type": "Person"
          }
        ],
        "title": "Brain Charts for the Human Lifespan",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "isPartOf": {
          "name": "bioRxiv",
          "type": "Periodical"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1101/2021.06.08.447489",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib5",
        "authors": [
          {
            "givenNames": [
              "TJ"
            ],
            "familyNames": [
              "Cole"
            ],
            "type": "Person"
          }
        ],
        "title": "The development of growth references and growth charts",
        "datePublished": {
          "value": "2012",
          "type": "Date"
        },
        "pageStart": 382,
        "pageEnd": 394,
        "isPartOf": {
          "volumeNumber": 39,
          "isPartOf": {
            "name": "Annals of Human Biology",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.3109/03014460.2012.694475",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "22780429",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib6",
        "authors": [
          {
            "givenNames": [
              "AM"
            ],
            "familyNames": [
              "Dale"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Fischl"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MI"
            ],
            "familyNames": [
              "Sereno"
            ],
            "type": "Person"
          }
        ],
        "title": "Cortical Surface-Based Analysis",
        "datePublished": {
          "value": "1999",
          "type": "Date"
        },
        "pageStart": 179,
        "pageEnd": 194,
        "isPartOf": {
          "volumeNumber": 9,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1006/nimg.1998.0395",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "9931268",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib7",
        "authors": [
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Destrieux"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Fischl"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Dale"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Halgren"
            ],
            "type": "Person"
          }
        ],
        "title": "Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature",
        "datePublished": {
          "value": "2010",
          "type": "Date"
        },
        "pageStart": 1,
        "pageEnd": 15,
        "isPartOf": {
          "volumeNumber": 53,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2010.06.010",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "20547229",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib8",
        "authors": [
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Dimitrova"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Pietsch"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Christiaens"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Ciarrusta"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Batalle"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Hughes"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Hutter"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "L"
            ],
            "familyNames": [
              "Cordero-Grande"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AN"
            ],
            "familyNames": [
              "Price"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Chew"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Falconer"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "K"
            ],
            "familyNames": [
              "Vecchiato"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JK"
            ],
            "familyNames": [
              "Steinweg"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "O"
            ],
            "familyNames": [
              "Carney"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MA"
            ],
            "familyNames": [
              "Rutherford"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J-D"
            ],
            "familyNames": [
              "Tournier"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SJ"
            ],
            "familyNames": [
              "Counsell"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Rueckert"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JV"
            ],
            "familyNames": [
              "Hajnal"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "G"
            ],
            "familyNames": [
              "McAlonan"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AD"
            ],
            "familyNames": [
              "Edwards"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "O’Muircheartaigh"
            ],
            "type": "Person"
          }
        ],
        "title": "Heterogeneity in Brain Microstructural Development Following Preterm Birth",
        "datePublished": {
          "value": "2020",
          "type": "Date"
        },
        "pageStart": 4800,
        "pageEnd": 4810,
        "isPartOf": {
          "volumeNumber": 30,
          "isPartOf": {
            "name": "Cerebral Cortex (New York, N.Y",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1093/cercor/bhaa069",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "32306044",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib9",
        "authors": [
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Dinga"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CJ"
            ],
            "familyNames": [
              "Fraza"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JMM"
            ],
            "familyNames": [
              "Bayer"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SM"
            ],
            "familyNames": [
              "Kia"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          }
        ],
        "title": "Normative Modeling of Neuroimaging Data Using Generalized Additive Models of Location Scale and Shape",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "isPartOf": {
          "name": "bioRxiv",
          "type": "Periodical"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1101/2021.06.14.448106",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib10",
        "authors": [
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Ducharme"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MD"
            ],
            "familyNames": [
              "Albaugh"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "TV"
            ],
            "familyNames": [
              "Nguyen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JJ"
            ],
            "familyNames": [
              "Hudziak"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JM"
            ],
            "familyNames": [
              "Mateos-Pérez"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Labbe"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AC"
            ],
            "familyNames": [
              "Evans"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Karama"
            ],
            "type": "Person"
          },
          {
            "name": "Brain Development Cooperative Group",
            "type": "Organization"
          }
        ],
        "title": "Trajectories of cortical thickness maturation in normal brain development--The importance of quality control procedures",
        "datePublished": {
          "value": "2016",
          "type": "Date"
        },
        "pageStart": 267,
        "pageEnd": 279,
        "isPartOf": {
          "volumeNumber": 125,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2015.10.010",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "26463175",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib11",
        "authors": [
          {
            "givenNames": [
              "ER"
            ],
            "familyNames": [
              "Duval"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SA"
            ],
            "familyNames": [
              "Joshi"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Russman",
              "Block"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JL"
            ],
            "familyNames": [
              "Abelson"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "I"
            ],
            "familyNames": [
              "Liberzon"
            ],
            "type": "Person"
          }
        ],
        "title": "Insula activation is modulated by attention shifting in social anxiety disorder",
        "datePublished": {
          "value": "2018",
          "type": "Date"
        },
        "pageStart": 56,
        "pageEnd": 62,
        "isPartOf": {
          "volumeNumber": 56,
          "isPartOf": {
            "name": "Journal of Anxiety Disorders",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.janxdis.2018.04.004",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "29729828",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib12",
        "authors": [
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Fischl"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AM"
            ],
            "familyNames": [
              "Dale"
            ],
            "type": "Person"
          }
        ],
        "title": "Measuring the thickness of the human cerebral cortex from magnetic resonance images",
        "datePublished": {
          "value": "2000",
          "type": "Date"
        },
        "pageStart": 11050,
        "pageEnd": 11055,
        "isPartOf": {
          "volumeNumber": 97,
          "isPartOf": {
            "name": "PNAS",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1073/pnas.200033797",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "10984517",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib13",
        "authors": [
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Fischl"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DH"
            ],
            "familyNames": [
              "Salat"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Busa"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Albert"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Dieterich"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Haselgrove"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "van",
              "der",
              "Kouwe"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Killiany"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Kennedy"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Klaveness"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Montillo"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "N"
            ],
            "familyNames": [
              "Makris"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Rosen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AM"
            ],
            "familyNames": [
              "Dale"
            ],
            "type": "Person"
          }
        ],
        "title": "Whole Brain Segmentation",
        "datePublished": {
          "value": "2002",
          "type": "Date"
        },
        "pageStart": 341,
        "pageEnd": 355,
        "isPartOf": {
          "volumeNumber": 33,
          "isPartOf": {
            "name": "Neuron",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/S0896-6273(02)00569-X",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "11832223",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib14",
        "authors": [
          {
            "givenNames": [
              "CJ"
            ],
            "familyNames": [
              "Fraza"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Dinga"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          }
        ],
        "title": "Warped Bayesian linear regression for normative modelling of big data",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "isPartOf": {
          "volumeNumber": 245,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2021.118715",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "34798518",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib15",
        "authors": [
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Fry"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "TJ"
            ],
            "familyNames": [
              "Littlejohns"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Sudlow"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "N"
            ],
            "familyNames": [
              "Doherty"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "L"
            ],
            "familyNames": [
              "Adamska"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Sprosen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Collins"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "NE"
            ],
            "familyNames": [
              "Allen"
            ],
            "type": "Person"
          }
        ],
        "title": "Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population",
        "datePublished": {
          "value": "2017",
          "type": "Date"
        },
        "pageStart": 1026,
        "pageEnd": 1034,
        "isPartOf": {
          "volumeNumber": 186,
          "isPartOf": {
            "name": "American Journal of Epidemiology",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1093/aje/kwx246",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "28641372",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib16",
        "authors": [
          {
            "givenNames": [
              "N"
            ],
            "familyNames": [
              "Gogtay"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JN"
            ],
            "familyNames": [
              "Giedd"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "L"
            ],
            "familyNames": [
              "Lusk"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "KM"
            ],
            "familyNames": [
              "Hayashi"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Greenstein"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AC"
            ],
            "familyNames": [
              "Vaituzis"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "TF"
            ],
            "familyNames": [
              "Nugent"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DH"
            ],
            "familyNames": [
              "Herman"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LS"
            ],
            "familyNames": [
              "Clasen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AW"
            ],
            "familyNames": [
              "Toga"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JL"
            ],
            "familyNames": [
              "Rapoport"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "PM"
            ],
            "familyNames": [
              "Thompson"
            ],
            "type": "Person"
          }
        ],
        "title": "Dynamic mapping of human cortical development during childhood through early adulthood",
        "datePublished": {
          "value": "2004",
          "type": "Date"
        },
        "pageStart": 8174,
        "pageEnd": 8179,
        "isPartOf": {
          "volumeNumber": 101,
          "isPartOf": {
            "name": "PNAS",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1073/pnas.0402680101",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "15148381",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib17",
        "authors": [
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Green"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MA"
            ],
            "familyNames": [
              "Lambon",
              "Ralph"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Moll"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JFW"
            ],
            "familyNames": [
              "Deakin"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Zahn"
            ],
            "type": "Person"
          }
        ],
        "title": "Guilt-selective functional disconnection of anterior temporal and subgenual cortices in major depressive disorder",
        "datePublished": {
          "value": "2012",
          "type": "Date"
        },
        "pageStart": 1014,
        "pageEnd": 1021,
        "isPartOf": {
          "volumeNumber": 69,
          "isPartOf": {
            "name": "Archives of General Psychiatry",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1001/archgenpsychiatry.2012.135",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "22638494",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib18",
        "authors": [
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Henrich"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SJ"
            ],
            "familyNames": [
              "Heine"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Norenzayan"
            ],
            "type": "Person"
          }
        ],
        "title": "The weirdest people in the world?",
        "datePublished": {
          "value": "2010",
          "type": "Date"
        },
        "pageStart": 61,
        "pageEnd": 83,
        "isPartOf": {
          "volumeNumber": 33,
          "isPartOf": {
            "name": "The Behavioral and Brain Sciences",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1017/S0140525X0999152X",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "20550733",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib19",
        "authors": [
          {
            "givenNames": [
              "TR"
            ],
            "familyNames": [
              "Insel"
            ],
            "type": "Person"
          }
        ],
        "title": "Mental disorders in childhood: shifting the focus from behavioral symptoms to neurodevelopmental trajectories",
        "datePublished": {
          "value": "2014",
          "type": "Date"
        },
        "pageStart": 1727,
        "pageEnd": 1728,
        "isPartOf": {
          "volumeNumber": 311,
          "isPartOf": {
            "name": "JAMA",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1001/jama.2014.1193",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "24794359",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib20",
        "authors": [
          {
            "givenNames": [
              "CR"
            ],
            "familyNames": [
              "Jack"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DS"
            ],
            "familyNames": [
              "Knopman"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "WJ"
            ],
            "familyNames": [
              "Jagust"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LM"
            ],
            "familyNames": [
              "Shaw"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "PS"
            ],
            "familyNames": [
              "Aisen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MW"
            ],
            "familyNames": [
              "Weiner"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "RC"
            ],
            "familyNames": [
              "Petersen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JQ"
            ],
            "familyNames": [
              "Trojanowski"
            ],
            "type": "Person"
          }
        ],
        "title": "Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade",
        "datePublished": {
          "value": "2010",
          "type": "Date"
        },
        "pageStart": 119,
        "pageEnd": 128,
        "isPartOf": {
          "volumeNumber": 9,
          "isPartOf": {
            "name": "The Lancet. Neurology",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/S1474-4422(09)70299-6",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "20083042",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib21",
        "authors": [
          {
            "givenNames": [
              "MC"
            ],
            "familyNames": [
              "Jones"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Pewsey"
            ],
            "type": "Person"
          }
        ],
        "title": "Sinh-arcsinh distributions",
        "datePublished": {
          "value": "2009",
          "type": "Date"
        },
        "pageStart": 761,
        "pageEnd": 780,
        "isPartOf": {
          "volumeNumber": 96,
          "isPartOf": {
            "name": "Biometrika",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1093/biomet/asp053",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib22",
        "authors": [
          {
            "givenNames": [
              "GB"
            ],
            "familyNames": [
              "Karas"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "P"
            ],
            "familyNames": [
              "Scheltens"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SARB"
            ],
            "familyNames": [
              "Rombouts"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "PJ"
            ],
            "familyNames": [
              "Visser"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "RA"
            ],
            "familyNames": [
              "van",
              "Schijndel"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "NC"
            ],
            "familyNames": [
              "Fox"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "F"
            ],
            "familyNames": [
              "Barkhof"
            ],
            "type": "Person"
          }
        ],
        "title": "Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease",
        "datePublished": {
          "value": "2004",
          "type": "Date"
        },
        "pageStart": 708,
        "pageEnd": 716,
        "isPartOf": {
          "volumeNumber": 23,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2004.07.006",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "15488420",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib23",
        "authors": [
          {
            "givenNames": [
              "SM"
            ],
            "familyNames": [
              "Kia"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "H"
            ],
            "familyNames": [
              "Huijsdens"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Rutherford"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Dinga"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Mennes"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "OA"
            ],
            "familyNames": [
              "Andreassen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LT"
            ],
            "familyNames": [
              "Westlye"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          }
        ],
        "title": "Federated Multi-Site Normative Modeling Using Hierarchical Bayesian Regression",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "isPartOf": {
          "name": "bioRxiv",
          "type": "Periodical"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1101/2021.05.28.446120",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib24",
        "authors": [
          {
            "givenNames": [
              "ET"
            ],
            "familyNames": [
              "Klapwijk"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "F"
            ],
            "familyNames": [
              "van",
              "de",
              "Kamp"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "van",
              "der",
              "Meulen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Peters"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LM"
            ],
            "familyNames": [
              "Wierenga"
            ],
            "type": "Person"
          }
        ],
        "title": "Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data",
        "datePublished": {
          "value": "2019",
          "type": "Date"
        },
        "pageStart": 116,
        "pageEnd": 129,
        "isPartOf": {
          "volumeNumber": 189,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2019.01.014",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "30633965",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib25",
        "authors": [
          {
            "givenNames": [
              "KE"
            ],
            "familyNames": [
              "Lythe"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Moll"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JA"
            ],
            "familyNames": [
              "Gethin"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CI"
            ],
            "familyNames": [
              "Workman"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Green"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MA"
            ],
            "familyNames": [
              "Lambon",
              "Ralph"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JFW"
            ],
            "familyNames": [
              "Deakin"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Zahn"
            ],
            "type": "Person"
          }
        ],
        "title": "Self-blame-Selective Hyperconnectivity Between Anterior Temporal and Subgenual Cortices and Prediction of Recurrent Depressive Episodes",
        "datePublished": {
          "value": "2015",
          "type": "Date"
        },
        "pageStart": 1119,
        "pageEnd": 1126,
        "isPartOf": {
          "volumeNumber": 72,
          "isPartOf": {
            "name": "JAMA Psychiatry",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1001/jamapsychiatry.2015.1813",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "26445229",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib26",
        "authors": [
          {
            "givenNames": [
              "CJ"
            ],
            "familyNames": [
              "Markiewicz"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "KJ"
            ],
            "familyNames": [
              "Gorgolewski"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "F"
            ],
            "familyNames": [
              "Feingold"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Blair"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "YO"
            ],
            "familyNames": [
              "Halchenko"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Miller"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "N"
            ],
            "familyNames": [
              "Hardcastle"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Wexler"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "O"
            ],
            "familyNames": [
              "Esteban"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Goncavles"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Jwa"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Poldrack"
            ],
            "type": "Person"
          }
        ],
        "title": "The OpenNeuro resource for sharing of neuroscience data",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "isPartOf": {
          "volumeNumber": 10,
          "isPartOf": {
            "name": "eLife",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.7554/eLife.71774",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "34658334",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib27",
        "authors": [
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "I"
            ],
            "familyNames": [
              "Rezek"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Buitelaar"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          }
        ],
        "title": "Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies",
        "datePublished": {
          "value": "2016",
          "type": "Date"
        },
        "pageStart": 552,
        "pageEnd": 561,
        "isPartOf": {
          "volumeNumber": 80,
          "isPartOf": {
            "name": "Biological Psychiatry",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.biopsych.2015.12.023",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "26927419",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib28",
        "authors": [
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SM"
            ],
            "familyNames": [
              "Kia"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Zabihi"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JK"
            ],
            "familyNames": [
              "Buitelaar"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          }
        ],
        "title": "Conceptualizing mental disorders as deviations from normative functioning",
        "datePublished": {
          "value": "2019",
          "type": "Date"
        },
        "pageStart": 1415,
        "pageEnd": 1424,
        "isPartOf": {
          "volumeNumber": 24,
          "isPartOf": {
            "name": "Molecular Psychiatry",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1038/s41380-019-0441-1",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "31201374",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib29",
        "authors": [
          {
            "givenNames": [
              "RJT"
            ],
            "familyNames": [
              "Mocking"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CA"
            ],
            "familyNames": [
              "Figueroa"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MM"
            ],
            "familyNames": [
              "Rive"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "H"
            ],
            "familyNames": [
              "Geugies"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MN"
            ],
            "familyNames": [
              "Servaas"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Assies"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MWJ"
            ],
            "familyNames": [
              "Koeter"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "FM"
            ],
            "familyNames": [
              "Vaz"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Wichers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JP"
            ],
            "familyNames": [
              "van",
              "Straalen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "de",
              "Raedt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CLH"
            ],
            "familyNames": [
              "Bockting"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CJ"
            ],
            "familyNames": [
              "Harmer"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AH"
            ],
            "familyNames": [
              "Schene"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "HG"
            ],
            "familyNames": [
              "Ruhé"
            ],
            "type": "Person"
          }
        ],
        "title": "Vulnerability for new episodes in recurrent major depressive disorder: protocol for the longitudinal DELTA-neuroimaging cohort study",
        "datePublished": {
          "value": "2016",
          "type": "Date"
        },
        "isPartOf": {
          "volumeNumber": 6,
          "isPartOf": {
            "name": "BMJ Open",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1136/bmjopen-2015-009510",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "26932139",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib30",
        "authors": [
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Monereo-Sánchez"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JJA"
            ],
            "familyNames": [
              "de",
              "Jong"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "GS"
            ],
            "familyNames": [
              "Drenthen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Beran"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "WH"
            ],
            "familyNames": [
              "Backes"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CDA"
            ],
            "familyNames": [
              "Stehouwer"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MT"
            ],
            "familyNames": [
              "Schram"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DEJ"
            ],
            "familyNames": [
              "Linden"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JFA"
            ],
            "familyNames": [
              "Jansen"
            ],
            "type": "Person"
          }
        ],
        "title": "Quality control strategies for brain MRI segmentation and parcellation: Practical approaches and recommendations - insights from the Maastricht study",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "isPartOf": {
          "volumeNumber": 237,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2021.118174",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "34000406",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib31",
        "authors": [
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Nesvåg"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "EG"
            ],
            "familyNames": [
              "Jönsson"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "IJ"
            ],
            "familyNames": [
              "Bakken"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "GP"
            ],
            "familyNames": [
              "Knudsen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "TD"
            ],
            "familyNames": [
              "Bjella"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Reichborn-Kjennerud"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "I"
            ],
            "familyNames": [
              "Melle"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "OA"
            ],
            "familyNames": [
              "Andreassen"
            ],
            "type": "Person"
          }
        ],
        "title": "The quality of severe mental disorder diagnoses in a national health registry as compared to research diagnoses based on structured interview",
        "datePublished": {
          "value": "2017",
          "type": "Date"
        },
        "isPartOf": {
          "volumeNumber": 17,
          "isPartOf": {
            "name": "BMC Psychiatry",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1186/s12888-017-1256-8",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "28292279",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib32",
        "authors": [
          {
            "givenNames": [
              "CW"
            ],
            "familyNames": [
              "Nordahl"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AM"
            ],
            "familyNames": [
              "Iosif"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "GS"
            ],
            "familyNames": [
              "Young"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Hechtman"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Heath"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JK"
            ],
            "familyNames": [
              "Lee"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "L"
            ],
            "familyNames": [
              "Libero"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "VP"
            ],
            "familyNames": [
              "Reinhardt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Winder-Patel"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DG"
            ],
            "familyNames": [
              "Amaral"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Rogers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Solomon"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Ozonoff"
            ],
            "type": "Person"
          }
        ],
        "title": "High Psychopathology Subgroup in Young Children With Autism: Associations With Biological Sex and Amygdala Volume",
        "datePublished": {
          "value": "2020",
          "type": "Date"
        },
        "pageStart": 1353,
        "pageEnd": 1363,
        "isPartOf": {
          "volumeNumber": 59,
          "isPartOf": {
            "name": "Journal of the American Academy of Child and Adolescent Psychiatry",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.jaac.2019.11.022",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "31972262",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib33",
        "authors": [
          {
            "givenNames": [
              "G"
            ],
            "familyNames": [
              "Rios"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "F"
            ],
            "familyNames": [
              "Tobar"
            ],
            "type": "Person"
          }
        ],
        "title": "Compositionally-warped Gaussian processes",
        "datePublished": {
          "value": "2019",
          "type": "Date"
        },
        "pageStart": 235,
        "pageEnd": 246,
        "isPartOf": {
          "volumeNumber": 118,
          "isPartOf": {
            "name": "Neural Networks",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neunet.2019.06.012",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "31319321",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib34",
        "authors": [
          {
            "givenNames": [
              "AFG"
            ],
            "familyNames": [
              "Rosen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DR"
            ],
            "familyNames": [
              "Roalf"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "K"
            ],
            "familyNames": [
              "Ruparel"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Blake"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "K"
            ],
            "familyNames": [
              "Seelaus"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LP"
            ],
            "familyNames": [
              "Villa"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Ciric"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "PA"
            ],
            "familyNames": [
              "Cook"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Davatzikos"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MA"
            ],
            "familyNames": [
              "Elliott"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Garcia",
              "de",
              "La",
              "Garza"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "ED"
            ],
            "familyNames": [
              "Gennatas"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Quarmley"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JE"
            ],
            "familyNames": [
              "Schmitt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "RT"
            ],
            "familyNames": [
              "Shinohara"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MD"
            ],
            "familyNames": [
              "Tisdall"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "RC"
            ],
            "familyNames": [
              "Craddock"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "RE"
            ],
            "familyNames": [
              "Gur"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "RC"
            ],
            "familyNames": [
              "Gur"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "TD"
            ],
            "familyNames": [
              "Satterthwaite"
            ],
            "type": "Person"
          }
        ],
        "title": "Quantitative assessment of structural image quality",
        "datePublished": {
          "value": "2018",
          "type": "Date"
        },
        "pageStart": 407,
        "pageEnd": 418,
        "isPartOf": {
          "volumeNumber": 169,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2017.12.059",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "29278774",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib35",
        "authors": [
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Rutherford"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Angstadt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Sripada"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SE"
            ],
            "familyNames": [
              "Chang"
            ],
            "type": "Person"
          }
        ],
        "title": "Leveraging Big Data for Classification of Children Who Stutter from Fluent Peers",
        "datePublished": {
          "value": "2020",
          "type": "Date"
        },
        "isPartOf": {
          "name": "bioRxiv",
          "type": "Periodical"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1101/2020.10.28.359711",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib36",
        "authors": [
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Rutherford"
            ],
            "type": "Person"
          }
        ],
        "title": "braincharts",
        "datePublished": {
          "value": "2022",
          "type": "Date"
        },
        "url": "https://archive.softwareheritage.org/swh:1:dir:cd28f07707409fed9c4e3bcfefaa08b9638dbccb;origin=https://github.com/predictive-clinical-neuroscience/braincharts;visit=swh:1:snp:ad9fb4794977fbb77f867431c767d66d31781b3f;anchor=swh:1:rev:ee2b7ebcb46bab0f302f73f8d6fc913f63fccda5",
        "type": "Article"
      },
      {
        "id": "bib37",
        "authors": [
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Rutherford"
            ],
            "type": "Person"
          }
        ],
        "title": "brainviz-app",
        "datePublished": {
          "value": "2022",
          "type": "Date"
        },
        "url": "https://archive.softwareheritage.org/swh:1:dir:5172634bcf0ed341052462df7780d000c5bd4f9e;origin=https://github.com/saigerutherford/brainviz-app;visit=swh:1:snp:70e2db995b8f63e9bdcb233217089d22000d2147;anchor=swh:1:rev:021fff9a48b26f2d07bbb4b3fb92cd5202418905",
        "type": "Article"
      },
      {
        "id": "bib38",
        "authors": [
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Rutherford"
            ],
            "type": "Person"
          }
        ],
        "title": "lifespanqcscripts",
        "datePublished": {
          "value": "2022",
          "type": "Date"
        },
        "url": "https://archive.softwareheritage.org/swh:1:dir:9c98ca93b3fb3b463607286eec7dfc9c4c3e97db;origin=https://github.com/saigerutherford/lifespan_qc_scripts;visit=swh:1:snp:84918033541e80549e91c96e85a29d191321d0a3;anchor=swh:1:rev:70894691c74febe2a4d40ab0c84c50094b9e99ce",
        "type": "Article"
      },
      {
        "id": "bib39",
        "authors": [
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Snelson"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CE"
            ],
            "familyNames": [
              "Rasmussen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "Z"
            ],
            "familyNames": [
              "Ghahramani"
            ],
            "type": "Person"
          }
        ],
        "title": "Proceedings of the 16th International Conference on Neural Information Processing Systems",
        "datePublished": {
          "value": "2003",
          "type": "Date"
        },
        "pageStart": 337,
        "pageEnd": 344,
        "type": "Article"
      },
      {
        "id": "bib40",
        "authors": [
          {
            "givenNames": [
              "CK"
            ],
            "familyNames": [
              "Tamnes"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "Y"
            ],
            "familyNames": [
              "Ostby"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AM"
            ],
            "familyNames": [
              "Fjell"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LT"
            ],
            "familyNames": [
              "Westlye"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "P"
            ],
            "familyNames": [
              "Due-Tønnessen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "KB"
            ],
            "familyNames": [
              "Walhovd"
            ],
            "type": "Person"
          }
        ],
        "title": "Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure",
        "datePublished": {
          "value": "2010",
          "type": "Date"
        },
        "pageStart": 534,
        "pageEnd": 548,
        "isPartOf": {
          "volumeNumber": 20,
          "isPartOf": {
            "name": "Cerebral Cortex (New York, N.Y",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1093/cercor/bhp118",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "19520764",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib41",
        "authors": [
          {
            "givenNames": [
              "RC"
            ],
            "familyNames": [
              "Tomlinson"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SA"
            ],
            "familyNames": [
              "Burt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Waller"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Jonides"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AL"
            ],
            "familyNames": [
              "Miller"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AN"
            ],
            "familyNames": [
              "Gearhardt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SJ"
            ],
            "familyNames": [
              "Peltier"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "KL"
            ],
            "familyNames": [
              "Klump"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JC"
            ],
            "familyNames": [
              "Lumeng"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LW"
            ],
            "familyNames": [
              "Hyde"
            ],
            "type": "Person"
          }
        ],
        "title": "Neighborhood poverty predicts altered neural and behavioral response inhibition",
        "datePublished": {
          "value": "2020",
          "type": "Date"
        },
        "isPartOf": {
          "volumeNumber": 209,
          "isPartOf": {
            "name": "NeuroImage",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.neuroimage.2020.116536",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "31935521",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib42",
        "authors": [
          {
            "givenNames": [
              "IF"
            ],
            "familyNames": [
              "Tso"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Angstadt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Rutherford"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Peltier"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "VA"
            ],
            "familyNames": [
              "Diwadkar"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SF"
            ],
            "familyNames": [
              "Taylor"
            ],
            "type": "Person"
          }
        ],
        "title": "Dynamic causal modeling of eye gaze processing in schizophrenia",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "pageStart": 112,
        "pageEnd": 121,
        "isPartOf": {
          "volumeNumber": 229,
          "isPartOf": {
            "name": "Schizophrenia Research",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.schres.2020.11.012",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "33229223",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib43",
        "authors": [
          {
            "givenNames": [
              "AS"
            ],
            "familyNames": [
              "Weigard"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SJ"
            ],
            "familyNames": [
              "Brislin"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LM"
            ],
            "familyNames": [
              "Cope"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JE"
            ],
            "familyNames": [
              "Hardee"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "ME"
            ],
            "familyNames": [
              "Martz"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Ly"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "RA"
            ],
            "familyNames": [
              "Zucker"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Sripada"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "MM"
            ],
            "familyNames": [
              "Heitzeg"
            ],
            "type": "Person"
          }
        ],
        "title": "Evidence accumulation and associated error-related brain activity as computationally-informed prospective predictors of substance use in emerging adulthood",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "pageStart": 2629,
        "pageEnd": 2644,
        "isPartOf": {
          "volumeNumber": 238,
          "isPartOf": {
            "name": "Psychopharmacology",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1007/s00213-021-05885-w",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "34173032",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib44",
        "authors": [
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "NT"
            ],
            "familyNames": [
              "Doan"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Kaufmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Alnæs"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Moberget"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "I"
            ],
            "familyNames": [
              "Agartz"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JK"
            ],
            "familyNames": [
              "Buitelaar"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Ueland"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "I"
            ],
            "familyNames": [
              "Melle"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Franke"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "OA"
            ],
            "familyNames": [
              "Andreassen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LT"
            ],
            "familyNames": [
              "Westlye"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          }
        ],
        "title": "Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models",
        "datePublished": {
          "value": "2018",
          "type": "Date"
        },
        "pageStart": 1146,
        "pageEnd": 1155,
        "isPartOf": {
          "volumeNumber": 75,
          "isPartOf": {
            "name": "JAMA Psychiatry",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1001/jamapsychiatry.2018.2467",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "30304337",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib45",
        "authors": [
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Hoogman"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JK"
            ],
            "familyNames": [
              "Buitelaar"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "B"
            ],
            "familyNames": [
              "Franke"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          }
        ],
        "title": "Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models",
        "datePublished": {
          "value": "2020",
          "type": "Date"
        },
        "pageStart": 314,
        "pageEnd": 323,
        "isPartOf": {
          "volumeNumber": 50,
          "isPartOf": {
            "name": "Psychological Medicine",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1017/S0033291719000084",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "30782224",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib46",
        "authors": [
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Rokicki"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Alnaes"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "P"
            ],
            "familyNames": [
              "Berthet"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "I"
            ],
            "familyNames": [
              "Agartz"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SM"
            ],
            "familyNames": [
              "Kia"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Kaufmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Zabihi"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Moberget"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "I"
            ],
            "familyNames": [
              "Melle"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "OA"
            ],
            "familyNames": [
              "Andreassen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "LT"
            ],
            "familyNames": [
              "Westlye"
            ],
            "type": "Person"
          }
        ],
        "title": "Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder",
        "datePublished": {
          "value": "2021",
          "type": "Date"
        },
        "pageStart": 2546,
        "pageEnd": 2555,
        "isPartOf": {
          "volumeNumber": 42,
          "isPartOf": {
            "name": "Human Brain Mapping",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1002/hbm.25386",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "33638594",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib47",
        "authors": [
          {
            "givenNames": [
              "M."
            ],
            "familyNames": [
              "Zabihi"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Oldehinkel"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "V"
            ],
            "familyNames": [
              "Frouin"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Goyard"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Loth"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Charman"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Tillmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Banaschewski"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "G"
            ],
            "familyNames": [
              "Dumas"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Holt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Baron-Cohen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Durston"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Bölte"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Murphy"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Ecker"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JK"
            ],
            "familyNames": [
              "Buitelaar"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AF"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          }
        ],
        "title": "Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum Disorder Using Normative Models",
        "datePublished": {
          "value": "2019",
          "type": "Date"
        },
        "pageStart": 567,
        "pageEnd": 578,
        "isPartOf": {
          "volumeNumber": 4,
          "isPartOf": {
            "name": "Biological Psychiatry. Cognitive Neuroscience and Neuroimaging",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1016/j.bpsc.2018.11.013",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "30799285",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib48",
        "authors": [
          {
            "givenNames": [
              "M"
            ],
            "familyNames": [
              "Zabihi"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DL"
            ],
            "familyNames": [
              "Floris"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "SM"
            ],
            "familyNames": [
              "Kia"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Wolfers"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "J"
            ],
            "familyNames": [
              "Tillmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "AL"
            ],
            "familyNames": [
              "Arenas"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Moessnang"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Banaschewski"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "R"
            ],
            "familyNames": [
              "Holt"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "S"
            ],
            "familyNames": [
              "Baron-Cohen"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "E"
            ],
            "familyNames": [
              "Loth"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Charman"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "T"
            ],
            "familyNames": [
              "Bourgeron"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "D"
            ],
            "familyNames": [
              "Murphy"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "C"
            ],
            "familyNames": [
              "Ecker"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "JK"
            ],
            "familyNames": [
              "Buitelaar"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CF"
            ],
            "familyNames": [
              "Beckmann"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "A"
            ],
            "familyNames": [
              "Marquand"
            ],
            "type": "Person"
          },
          {
            "name": "EU-AIMS LEAP Group",
            "type": "Organization"
          }
        ],
        "title": "Fractionating autism based on neuroanatomical normative modeling",
        "datePublished": {
          "value": "2020",
          "type": "Date"
        },
        "pageStart": 1,
        "pageEnd": 10,
        "isPartOf": {
          "volumeNumber": 10,
          "isPartOf": {
            "name": "Translational Psychiatry",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1038/s41398-020-01057-0",
            "type": "PropertyValue"
          },
          {
            "name": "pmid",
            "propertyID": "https://registry.identifiers.org/registry/pmid",
            "value": "33159037",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      },
      {
        "id": "bib49",
        "authors": [
          {
            "givenNames": [
              "RA"
            ],
            "familyNames": [
              "Zucker"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "DA"
            ],
            "familyNames": [
              "Ellis"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "HE"
            ],
            "familyNames": [
              "Fitzgerald"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "CR"
            ],
            "familyNames": [
              "Bingham"
            ],
            "type": "Person"
          },
          {
            "givenNames": [
              "K"
            ],
            "familyNames": [
              "Sanford"
            ],
            "type": "Person"
          }
        ],
        "title": "Other evidence for at least two alcoholisms II: Life course variation in antisociality and heterogeneity of alcoholic outcome",
        "datePublished": {
          "value": "2009",
          "type": "Date"
        },
        "pageStart": 831,
        "pageEnd": 848,
        "isPartOf": {
          "volumeNumber": 8,
          "isPartOf": {
            "name": "Development and Psychopathology",
            "type": "Periodical"
          },
          "type": "PublicationVolume"
        },
        "identifiers": [
          {
            "name": "doi",
            "propertyID": "https://registry.identifiers.org/registry/doi",
            "value": "10.1017/S0954579400007458",
            "type": "PropertyValue"
          }
        ],
        "type": "Article"
      }
    ]
  },
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Introduction\n",
    "\n",
    "Since their introduction more than a century ago, normative growth charts have become fundamental tools in pediatric medicine and also in many other areas of anthropometry ([@bib5]). They provide the ability to quantify individual variation against centiles of variation in a reference population, which shifts focus away from group-level (e.g., case-control) inferences to the level of the individual. This idea has been adopted and generalized in clinical neuroimaging, and normative modeling is now established as an effective technique for providing inferences at the level of the individual in neuroimaging studies ([@bib27]; [@bib28]).\n",
    "\n",
    "Although normative modeling can be used to estimate many different kinds of mappings—for example between behavioral scores and neurobiological readouts—normative models of brain development and aging are appealing considering that many brain disorders are grounded in atypical trajectories of brain development ([@bib19]) and the association between cognitive decline and brain tissue in aging and neurodegenerative diseases ([@bib20]; [@bib22]). Indeed, normative modeling has been applied in many different clinical contexts, including charting the development of infants born pre-term ([@bib8]) and dissecting the biological heterogeneity across cohorts of individuals with different brain disorders, including schizophrenia, bipolar disorder, autism, and attention-deficit/hyperactivity disorder ([@bib3]; [@bib46]; [@bib47]).\n",
    "\n",
    "A hurdle to the widespread application of normative modeling is a lack of well-defined reference models to quantify variability across the lifespan and to compare results from different studies. Such models should: (1) accurately model population variation across large samples; (2) be derived from widely accessible measures; (3) provide the ability to be updated as additional data come online, (4) be supported by easy-to-use software tools, and (5) should quantify brain development and aging at a high spatial resolution, so that different patterns of atypicality can be used to stratify cohorts and predict clinical outcomes with maximum spatial precision. Prior work on building normative modeling reference cohorts ([@bib4]) has achieved some of these aims (1–4), but has modeled only global features (i.e., total brain volume), which is useful for quantifying brain growth but has limited utility for the purpose of stratifying clinical cohorts (aim 5). The purpose of this paper is to introduce a set of reference models that satisfy all these criteria.\n",
    "\n",
    "To this end, we assemble a large neuroimaging data set ([Table 1](#table1)) from 58,836 individuals across 82 scan sites covering the human lifespan (aged 2–100, [Figure 1A](#fig1)) and fit normative models for cortical thickness and subcortical volumes derived from Freesurfer (version 6.0). We show the clinical utility of these models in a large transdiagnostic psychiatric sample (N=1985, [Figure 2](#fig2)). To maximize the utility of this contribution, we distribute model coefficients freely along with a [set of software tools](https://github.com/predictive-clinical-neuroscience/braincharts) to enable researchers to derive subject-level predictions for new data sets against a set of common reference models.\n",
    "\n",
    "table: Table 1.\n",
    ":::\n",
    "## Sample description and demographics.\n",
    "\n",
    "mQC refers to the manual quality checked subset of the full sample. ‘All’ rows=Train+Test. Clinical refers to the transdiagnostic psychiatric sample (diagnostic details in [Figure 2A](#fig2)).\n",
    "\n",
    "|          |               | N (subjects) | N (sites) | Sex (%F/%M) | Age (Mean, S.D) |\n",
    "| -------- | ------------- | ------------ | --------- | ----------- | --------------- |\n",
    "| Full     | All           | 58,836       | 82        |             |                 |\n",
    "|          | Training set  | 29,418       | 82        | 51.1/48.9   | 46.9, 24.4      |\n",
    "|          |  Test set     | 29,418       | 82        | 50.9/49.1   | 46.9, 24.4      |\n",
    "| mQC      | All           | 24,354       | 59        |             |                 |\n",
    "|          |  Training set | 12,177       | 59        | 50.2/49.8   | 30.2, 24.1      |\n",
    "|          | Test set      | 12,177       | 59        | 50.4/49.4   | 30.1, 24.2      |\n",
    "| Clinical | Test set      | 1985         | 24        | 38.9/61.1   | 30.5, 14.1      |\n",
    "| Transfer | Test set      | 546          | 6         | 44.5/55.5   | 24.8, 13.7      |\n",
    ":::\n",
    "{#table1}\n",
    "\n",
    "\n",
    "\n",
    "figure: Figure 1.\n",
    ":::\n",
    "![](elife-72904.xml.media/fig1.jpg)\n",
    "\n",
    "## Normative model overview.\n",
    "\n",
    "(**A**) Age density distribution (x-axis) of each site (y-axis) in the full model train and test, clinical, and transfer validation set. (**B**) Age count distribution of the full sample (N=58,836). (**C, D**) Examples of lifespan trajectories of brain regions. Age is shown on x-axis and predicted thickness (or volume) values are on the y-axis. Centiles of variation are plotted for each region. In (**C**), we show that sex differences between females (red) and males (blue) are most pronounced when modeling large-scale features such as mean cortical thickness across the entire cortex or total gray matter volume. These sex differences manifest as a shift in the mean in that the shape of these trajectories is the same for both sexes, as determined by sensitivity analyses where separate normative models were estimated for each sex. The explained variance (in the full test set) of the whole cortex and subcortex is highlighted inside the circle of (**D**). All plots within the circle share the same color scale. Visualizations for all ROI trajectories modeled are shared on GitHub for users that wish to explore regions not shown in this figure.\n",
    ":::\n",
    "{#fig1}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import required packages\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import joypy\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load file containing ages and site labels\n",
    "age = pd.read_csv('docs/all_age.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Separate each test set into its own dataframe\n",
    "age_controls_tr = age.query('test_label == \"controls train\"')\n",
    "age_controls_te = age.query('test_label == \"controls test\"')\n",
    "age_patients = age.query('test_label == \"patients\"')\n",
    "age_transfer = age.query('test_label == \"transfer\"')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0, 0.5, 'Site')"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 2280x1520 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAWvCAYAAABaZw2FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5wkV3W3/5zqMGFn8652tUqLkFACIYHABIMkkk0wycYJY8vggPwi2/yMeW14TQZjY4OwAWeQASNsg8lBCCQhjEBIQjmstDmH2cnTqaru+f1xq2d6enpCz/SErjmPPq3ZrrpV93aqU+eee85XVBXDMAzDaESw1AMwDMMwli9mJAzDMIwpMSNhGIZhTIkZCcMwDGNKzEgYhmEYU2JGwjAMw5gSMxLGlIjILSKyd6n7XIpxLGW/xmSW62exXMfVSsxItBARWS8iJRFREfmNpR5PFRG5LhlT9VESkWMicquIvF9Ezm5xf5eIyLtEZHsrz7sQiMgfi8hVSz2OuSIilyWf724RKYrIqIg8ICLXisj5izSGd4nIKxejrxnGUf89n+7xrqUe70yIyHNF5KsisldEyslv9k4R+ehcf7Misi75vK6Y7THZuXRkTMlrgTywB3gD8NmlHc4krgZG8J/7JuDpwJ8AbxGRP1fVD9e1fxEgc+jnEuCdwC3A3iaPnWufc+WP8WO8bhmMpSlE5B3Au4Be4HPAw/jxXgT8CvAmEVmvqsMLPJR3Av8OfHmB+5mJfwK+W7ftM8AjwPvrtt/Xoj4X5DsiIlcDnwB249/bA8Bm4InAbwM/SPY1yzr85wX+9zkjZiRayxuAm4GvANeKyONVddcSj6mWL6hqb+0GETkT+DrwtyJySFX/s7pPVSuLMSgRyQAdqlpYrD5nw3IaSz0i8nrg3fjv26tUdbBu/1vxF4NlZ+REZPVCGC5V/RHwo7q+PgMcU9Vpb9hEJAdkVLXUZJ8t/46ISBb4ALAfuFRVh+r2dwFdre53SlTVHi14AE8BFPhNYCNQBt43RdsM8BfAPqCEv6v5FfxdoQLb69qfCvwD/ktTAQ4D/wycMsuxXZecd9MU+58AxMDOuu23AHvrtl0E/DdwKHmNR/EXqpcm+6uvof5xXbL/quT5C5L3YBcQAldN0+ct+Lv9s/EGeBAYAr4EnF3Xtnr+Kxq8zgnnnmKcY+9/o7Ek258L3JiMowj8FHjDVP0B24DrgX5gFLgBeMI8vmt54AgwDGxu4rhNwMfxd6WV5O/HgY1TvIfPA96SfEZl4FHgt2rabZ/qPax7j68Dng/8L96TvaVm/yuBHybbR5J/v2Kmz66J16y1/dV9Ry8CPgwcxH//r0j2/wrwVfzvrYz31L4MXDybcc33cwe2JuP7QhOvU/AzBXcBheS7cTNwZU2bK6b4vKZ9X82TaB1vwH8RvqiqoyLyDeC3ROQdqurq2n4MeCP+Q/wbvBv5Cfw01QSSO/0f4S8M/4b/wZ6D/0JcKSKXad1dZLOo6qMi8gPgchE5T1V3NGonIhuBm5Kn/4g3cpuAy4CfAb4B/A/eqP0e/m7o4aR9vUf1N0AO+Bf8Bb9hnzWswr9fPwH+HDgX+APgGSJyqaoend2rncDrgI/gLwK10xEnpjpARH4Bb5yOAn+L/zH+KvCvInK2qr69wbhvBX4MvA14HPBHwFdE5ImqGs9h3M/GX0g+o6pTjrVu3GuB2/DfnU/iDdul+O/R80Tk6Tr57v4D+DvWf8JfLK8GrhORnar6Q/z79Dr8lM4P8DcujbgM+EX8Z/3vNWP6A7yRegR4H/6CdRXwZRH5fVWd6nyt4j/wRv5vk76PJNvfBPThX89R4PH47/MPReQpqvrYLM49n8/9GN5gPne632MdnwF+DfgC8CmgAz/9faOIvFpVv4r/Lb4Z/53/Ev63StLX1Mz1bsYeE6x4J/5LdV3Ntlfgv3gvrmt7UbL920BQs/1J+LuZCZ4E/s75OHB63XkuAyLgXbMY33VM40kkbf4uafMLNdtuYeKd98uTNr88Q39XMfXdfHXfDqC7wf4JfdZsU+Dauu2vSrb/4yz7bnTuvdTdaU7z+jN4wzgAbKvZnsffAcfAuQ3G/da68/5psv3n5vh9uyY5/v9r4pj3J8f8Qd32/5Nsf2+D9/BuIF+z/TS8sbi+7hxjnmKDfqt3qy+o274ef3HaCayp2b4Gf0MxDKyb7rOb5euezpO4Bcg2OGZVg20XJK/9E018X+f8ueNjhYr/jf8E+Cj+or+1Qdvq7+D36rZngTvxN5+SbNuetH3XbN9DW93UGl6N/9L/e822b+Av7q+va/uy5O9HtcbDUNX78e7oGMnd38vwrm9JRDZVH/iL20584KwVVOc910zTpuqxvFhEpms3G/5BVQtNHvPB2ieq+iW8sXnlPMcyW54KnAl8UlUP14yjAnwIv1rwFXXHOLwBrqXqjZ07x3FU3/uhaVtN5FX4O//6u/N/wntSr2pwzCe0Zs5dVQ/hp5yaHfe9qlofUH4h/m7777Rmzj35998DPfgpyYXkWlWN6jeq6iiAeNYkv7cT+O/az8zy3PP63FX1b/E3Zd8BLgT+EL8Q5qCI/JuIdNc0/w28Uf1y3TViHfA1vGGY63fNjESLeAP+S3RQRM4RkXPwH8yNwMuTD6zK45K/jVzI+m3n4T+j6vnrH+cBW1r0Gma88Kjq94FP4+80e0XkhyLybhG5cA79Pdpk+wFtPKX0MLBFRFbNYQzNUv3sHmyw74Hkb/3SxMM6ORh6Mvm7cY7jqH5Gq5s45nHAjvqLYvJ8B5PHDY1Xz5yk+XE3+qzn8l62mobfQRG5VES+jr/wDjL+e3sS/mZwNsz7c1fVr6nqS4C1wMX4qaID+BvPj9Q0vQD/XTjG5GvEu5I2c75OWExinojI44Ar8YGjqS58vwFcWz2kmdMnfz/LRC+llmIT55uOi5O/085/qupviciHgJcAP4t3i98uIn+sqh9ror9mvQidYnv9+zlVO5j/930uK4Wmm3ue68qj6kX00jkeP1umGnuz4270WS+HVVeTxpXEAG/FG+L34n8PoyTTnXgPZza07HNXH7+4H7hfRP4DeAwf7/yDZJ/gDcKvT3OaB6bZNy1mJObPb+M/pN/Fz1XX8z68J3Bt8rwanD6PyXdq59U934n/cuYbuOstQ0SeADwHeExVZ7zDV9UH8F+6vxaRdcDtwAdF5OPqJz6nu1DPlfUisrWBN3E+cLw6RYCPDQFsaHCOx+FXUtXSzFirwfeLGuyrelNzWbveLD/EB1RfKSIbVfXkTAfgx3WeiGRrvYlkueUTWJxx11L7Xn6vbt9ivpf1vApvCF6uqjfX7kgWbpSXYExjqOoJEdmFX025Ce89PIb/DH+sqtMHoefw27TppnkgIgF+6uV+Vf1XVf1C/QO/BO6JIvK05LCvJX//KDm+eq4nAT9Xe/7kx/9N4NUi8owG/YuIbJ7nazgTv6Q1AOpX5tS33VA75mSMA3jD140P4MP4aolGF+r58Gd143kV3rB+uWZz1ci9oK7tr+GXJNYzwuzH+VP8ssjfFpGtNefOMR6U/MoszzVnkjjB2/FTDP8pIpOmnUSkU0Q+UBM7+jJ+Fd3v1DX93WT7l+YxpGbewyo34u/Qr6kdf/Lva5Jz3jiPMc2Vqgcw4W5fRH4Xv6JswRGRbhG5fIp95+KNaC/jq/A+jf/9/uUUx9RONTX92zRPYn68CDgDvzR1Kr6Inxd8A3CHqj4oIv+MX1L3XRH5Ev5H+n/wq0meykRrfzV+ffmtIvLppE2An699Bf4L8q5ZjveXRKSacb0Rn3H98uR8f6yq/z3D8b8JvDkZ8078XfnleOP2X6panfq6Ax+4e7uIrMdfDPao6u2zHGcjevHGcht+9Uh1Cewxal6/qu4Qke8Cvy8iAtyDzwB/VTLmXN15fwy8QUTei49vOOBrNZ7JGKoai8ib8BfUO5LPcRi/rv4ZwAd0dssjGyK+BtBZqjrjdISqflJEzsAnzO0Ukc8BD+E/ywuA1wCnMH7h+Otk28dF5Cn479Gl+O/ljmT/XPkx8AIR+b94I6qq+vkZxj+QJPx9HLhdRK5Ldl2FX6b7+zrPpd1z5Fv4aajPiMjH8DkOz8ZPr+5ica6Z3cAtIvIAfhXkY3ijdT7+N9gJ/J/qwhdV/YKIfAqfYf8UfHJsL3A68Ez8+3l20vakiOwEfjXxSI4Bo6r6Naai2SVl9piwxOy/8Rf0J83Qbgd+KqoreZ7B/7iryTr3Ab+Mzx1Q6pLk8G7lh/B3yaXkXPfjl8VdOItxXsfE5JkyfuXVD/DTYWdPcdwtTFwCegk+NrITf+EfAu7FxyU66o79LfxFq0LjZLorZtNn7TbGk+mG8BfnrwDnNDjH1uSzGcLfOX0Lf+FsdO5T8Ia8D28gxpYgN2qfbL8cf5c7lHwedwO/M5vXkmzfToNliPgf9qEmv4OXJZ/JnmQsheS78WFqluMmbav5OAfxBv4g/iK9qa7dlJ/RFO/hufhVOEPV71jNvimXxyb7X4XP3xhNHrcBr5ztezmL92e6JbDbpzjmufgbs2H8b+0b+HIYU3435/O5N2iXxU9jX4+/dgzhf0eH8LkNV05x3Ovwv+nq93Jv0v5X6to9HT9lWY21TPu+VtfOGssAEfkaPst1jc4tycpoU0TkYrzBfb2qfmqpx2MYVSwmsQQktVfqt10MvBi4yQzEiuTn8EZiqlVshrEkmCexBIjIG/Fzi9/AB5/Ox8coAuDZqnr3Eg7PMAxjDDMSS4CIPB2/BvsS/CqDYfwc6LtV9a4lHJphGMYEzEgYhmEYU2IxCcMwDGNKLE/CgIXJkDaMlcJyKDGyYJgnYRiGYUyJGQnDMAxjSsxIGAtGFNsslmG0O2YkjAXjmw/0L/UQDMOYJ2YkjAWjvzBJ9MswjDbDjISxIDinhE5tyskw2hxbAmu0nEI55uhwSACETslmUr1C0DBSjXkSRsvpHQnZebwECLF5EobR1piRMFpOMVSi2Gfohc6MhGG0M2YkjJZTCB1OlUDEYhKG0eaYkTBaTrEc89jxIh1ZwRwJw2hvzEgYLaccK6s7swjgrMqwYbQ1ZiSMlhNFSjYQAoHQppsMo60xI2G0nCjxHkQgjNwSj8YwjPlgRsJoOZXYG4ZAIDJHwjDaGjMSRkvZ31emFFYtgxCalTCMtsaMhNFS9p8s01+IAa/EEtvyJsNoa8xIGK1FYCAp7CcCFpIwjPbGjITRUvoLESK+VtOargxhHC/xiAzDmA9mJIzWorBldQ6ANZ0ZfrRrZIkHZBjGfDAjYbSUqCYGoQqFinkShtHOmJEwWkptDCJWX+jPMIz2xYyE0VJqq3BEsYLY6ibDaGfMSBgtRWusROx8Qp1hGO2LGQmjpcQ1RiKMfblwwzDaFzMSRkupxq0D8Yl0ZiIMo70xI2G0FOcgE8BoOfYrncyTMIy2xoyE0VIcvkx4/2hEJVKLSRhGm2NGwmgp3pMQOnMBxYqz6SbDaHPMSBgtxan3JBSlFFrhJsNod8xIGC3FqZIJII6hGDpMvdQw2hszEkbLUFViByhIAKOVGLMRhtHemJEwWkbVa4hVyUi1IuzSjskwjPlhRsJoGU69oYgd3HeoSDlUsNC1YbQ1ZiSMlqGqdHcEOFXUwarODBaUMIz2xoyE0TIUUKd+6WvgN6hFJQyjrcku9QCM9OCAUsWhQEYkMRA23WQY7Yx5EkbLUOfNwkgpJhP4xDoxI2EYbY0ZCaNlKL5U02jFIYknYZNNhtHemJEwWof6x2jZZ1qrw2abDKPNMSNhtAxNQhCjia61Y6IIkWEY7YcZCaNlVCeXimFc3WCOhGG0OWYkjJZRXctUSKabHIpYyrVhtDVmJIyW4dQ/NnRnWd+dwTnLpTOMdseMhNFSnCoduYCSVYA1jFRgRsJoGarVZbBCOXQ4VSvwZxhtjmVcGy1DFVysCBA7y7Y2jDRgnoTRMhQljP0ckwCROsyVMIz2xoyE0TKcUyrxeCAiDNV8CcNoc8xIGC3DKUTOxyGCAEKXpGAbhtG2mJEwWoYC+UBQIBAhjNVWOBlGm2NGwmgZqkouK+w4UgAgjm26yTDaHTMSRsuIFUqhI4x1bNrJ4taG0d6YkTBahjqvIaFAOVIyWcHZdJNhtDVmJIyWoWhS+RXCyJEVQRGcWQrDaFvMSBgtQxVi54v7lSOlI5sYDrMRhtG2mJEwWoaiY0X9iqEjl/FfL2dLnAyjbTEjYbQMVR0TGQpjJRsI6lxSosMwjHbEjITRMpwTIjcuPqT45LooNiNhGO2KGQmjZahUp5sSo6BQiZXYLe24DMOYO2YkjJYRx4LKuNCQorjY508YhtGemJEwWobicM6NVWsShNApkTNXwjDaFTMSRstQNy5hCoBAZNNNhtHWmJEwWobDG4qqKxHgVznZ6ibDaF/MSBgtQ2Es4xoA8RoTkdkIw2hbzEgYLcM5L1taW9TPqVIJ46UblGEY88KMhNFSMhkhqDESmlSGNQyjPTEjYbSMWJWLT+uGCZ4EFEObbzKMdsWMhNEyBBgYjcY8Caf+C1axoIRhtC0rxkiIyKUiEovIDxvs05pHKCJ7ReSDIpKta7dFRD4qIrtEpCwih0TkWyLykpo2e2vOVRKRAyLyJRH5hSbHu15EPiMig8njMyKyrq7NR0XkzqSfvc29IwuAKuXIIYlNcE4REcqRTTcZRruyYowE8LvAJ4AnisgFU+w/FTgb+GPgauBPqjtFZDvwU+DngD8HLgZeAHwD+Me6c70nOdcTgF8F9gJfEpG/b2K8nwOeArwY+Pnk35+paxMA/w58uonzLhixkijSeSvhAMRXhDUMoz3Jztyk/RGRLuDXgecC3cAbgLfUNRtQ1aPJvw+IyI34C3OVT+BnVC5T1ZGa7Q+LyH/UnWu45lz7gR+KyMPAP4nI/6jqzTOM9wK8YfhZVb0t2fb7wA9E5DxV3QGgqtck+94CvGj6d2HhiWJfzC8bJCXCHWQCJbS6HIbRtqwUT+KXgH2qeh/+bvw3RSQ3VWMRuRB4FnB78nwD/qL9sToDAYCq9s9iDP8G9AO/OIu2zwRGgNtqtv0QGE3GtexQ9eU3yrGSy/ighFNFgNBSrg2jbVkRngTwO4xP1XwfKAAvB75Y0+YzInId/j3pAL4AfDTZdw7ei3h4rgNQ1VhEHsVPZ83EVuCE6rhaj6qqiBxP9rWUew+OcuBkZV7nGK5E9OQDyhWHUy9jOlqJqQTCzuMlvnZvf+2iJ8NIDb/9md3nnfibp+5Y6nEsFKk3EiJyDvBs4Ndg7GL7H3jDUWsk/hT4NpDBG4UP4+f7fwNadn0TxopWzEijds0cP2u2b+ygO5+Z1zkCgY4MfO/BAVblA579hHXs6S3S05HhlZdspCO3UpxWYwUym5mEtiX1RgJvDDLAfhlPBRYAETlDVQ8k246q6s7k3ztEZDVwvYi8E3gMf3G+APjSXAYhIhl8IPsns2h+FDhFRKTqTYgf/Gbg2Fz6n461XVnWds3/q3B8qIxL6jQVwpgwUnLdwsaeLKeuzc/7/IaxHDnxN089vtRjWEhSfXuXLGH9LfxqpEtqHk8G7gN+e5rDq7UkulW1D7gBeJOI9DToZ90shvM7wDr8NNZM/AjowccmqjwTWMXEOMWyIo79SqYgA6PlmGwmQCQwZTrDaGPS7km8FNgE/IuqnqzdISKfB64Wkfclm9aJyFa84TwXeAfwKONxiD/AX6DvFJG/wBsZAa7EG6Eza06/OjlXDjgDeA1wDT7w/f2ZBq2qD4vIt/GroX436eefgK9XVzYlr+EcvDHZBuRF5JJk10OqOr8gwxxQhWIl5oz1HZQqypbVGcLYmZ6EYbQxqfYk8Etdb643EAn/DZyFz3UA+BfgCHAQuB54EHixqkYAqroHvyT2RuCv8EbiJnwA/Pfrzv2O5Fw7gf8CHge8urpkdZa8FrgX+A7ei7kXeF1dm38F7gbejM/LuDt5bGuin5bhUIqh49xTuhksVFjTlaXiHJHV9zOMtkVqFtAYK5eWfAn2nihy1b/u4Emnr0JE2NSTY7AU8TuXn8oFp3a3ogvDWI6keuFe2j0JYxGJVSlFjrv2jbCuO8tgKSSKnYkOGUYbY0ZiCRCRt4nIyBSPby31+OaKS+RLKzGs7spQDpVKrJichGG0L2kPXC9X/hEfq2hEcTEH0kpip2OqdN97aIBzTukkjJTIMq4No20xI7EEJEtq+5Z6HK0mdAqqdOUzPPPxqzk+VKESO6wIrGG0LzbdZLSMOPblOFZ1BIyUYkbLMbGz2k2G0c6sGCORNj0JEXmyiFyfnL8oIjtE5E9FZMk+0zipDd7TmWG4FBHGShxDaKJDhtG2rBgjQfr0JJ4KnMDnTlwEvBOfn/FnTfTRUiLnUFW68xmGizFx7IjUEdnqJsNoW1ZETCKNehKq+sm6w3aLyFPwpcg/MN35F4pq4DoQGK7ErOoIqFT8iifDMNqTleJJrBQ9iTUsYUXKSsxYgb9yBIEEOMZXPBmG0X6sCE+CFaAnkXgRV+HLeTTFQCHi5EjU7GGTGCxEOLwAUTmMCYIskVMGizE7j5WQVOelGiuVZ//VA6cf/dvLDi71OBaK1BuJlaAnISLn4WMj16rqFycdNQOPHC2w63i52cMmsWVthnxGyGaE2Ck5EbpyWbpywu17hud9fsNYpnQs9QAWktQbCVKuJyEi5wM3A59X1TkFrZ9x9hqeMRv/ZgYeODBCd2eGrlwAArmcsCaAlz55PbnMSpnZNFYar33G5l1LPYaFJNW/3LTrSSSxk1uA/1bVN8/ivAtK5BRRwakSxUoggiBYmoRhtC9p9yRSqychIhfhS5XfDHwg6a96/NEGp11wIqeIeJfLGwm/0snZ8ibDaFtS7UmQbj2J1wCnAL+S9FX7WBKiWHn+hWtRp4ROERECAROmM4z2xfQkDGiRnsRtjw3wo53D7DhS4Kf7hnn2OWspxjF//cvnsK477U6rsYJJ9bq9tHsSxiLiFCqRI05uPBzVGMUSD8wwjDljRmIJSKuehKI4p0lsQkAVtZiEYbQ1NgewNKRTTyKGXEaohH45UwyoY8yzMAyj/TAjsQSkVU9CgQu2dXPbY4P+uYIIlENbA2sY7YpNNxktwzmlGDpKicqQOv+/YmiehGG0KyvGSKRQT2KziNwgIoeTsRwQkY+LyNo5vD0tIVJloBBxdCAp8SGgIpTMkzCMtmXFGAnSpyfh8CVCfiHp5yrg+fh8jyUhdkqhEpNJSnCoAs6mmwyjnVkRMYmU6kmcZKJx2icin8AbsCWhqkKXC5KgtfqKsIWKGQnDaFdWiieRej0JEdkGvBpfCn1JCJ1SihzZsWJ+SqzYdJNhtDErwpMgxXoSInI98AqgC/g60xctbEipEjNYimduWO2zOqaabVGsVCJHOXRkM0Ix8mJDkYNK7Dg2WEl5XqqxUrn03feuP/y3T1sysa+FJvVGYgXoSbwZeDdwHl629Fom15Kalh/vHubhI/NPzzh9fY4wUjpyAcXIISKIKP2jEf/z00blswwjFZzJEipCLjSpNxKkXE8iiX0cBR4RkZP4uMX7al7XjFxx/jquOH/dbJtPyd37hlBVVuczgLCqIyAj8FvP3jLvcxvGcuXqK0+9d6nHsJCkOiaRdj2JBlQ/zyVRynLOxx+ymXHHS0WtLIdhtDFp9yTSrCfxMmAjcBc+yH0R8CHgxzUe0aLinI7FJMa2qS/LEVhAwjDakrQbiZn0JD7IRD0J8NNKR4FbgbfV6kmIyFOAt+H1JE4DTuJ1HhrpSbwDqAAngDvxehJfbWLsrwX+Dq8nAfBV4E01+0vAG/FTYB3AAfxU2Aeb6KOlKEo5VjKJkYidFx6KHeQySzUqwzDmQ6qNhKq+fJp9uxkPSM/qNldVj+A9ginFg1R1exNDnK6vPnzQfKr93wW+24q+WoVDqMSOrmyGTODrNoE3FoZhtCepjkkYi4vG42XBLzi1m+5cgIiYkTCMNsaMxBKQVj0JkqklTZLohksxqHkShtHOpHq6aRmTTj0JdTinCN6jUPUJdWFkRsIw2hUzEktAavUkFC49azUH+0qcd2o39+0bBhEq5kkYRtti001Gy6hqXEeRY21XhpPDFZwqpXD2JT8Mw1herBgjkTY9ibq2m5KxqIhsaqafVqIKI+WY7o4MA4WQziTzerRsBf4Mo11ZMUaC9OlJ1PIp4J4mzr0gOPWxiM58huMDFb+6CWWkieKBhmEsL1ZETCKNehI1bf8oeU3vB17S6HyLRaxKHCurugMO9JVYlc8wGjlGzUgYRtuyUjyJVOpJiMilwP8FfhOvVLekRLHiVMllAw71l8lmhDhWChaTMIy2ZUV4EqRQT0JEVgHXA9eo6iEROXeuY6tqQcyHSnIOB3z/4X5GShGxKsXQ4RQKZTMURjp5wtvuyh/826dXlnocC0XqjUSK9ST+Dvihqn6xQbumuOmRfu7ZPzqvc4jAhVs7cU7JZoRABEGIQsfO4yU+dtPh+Q7TMJYrlzF9dea2JvVGgvTqSTwfOENEfqv2NQFHReSvVPXtsx3biy7awIsu2jDb5lPy8KFR8tmAgdGIMFZyGSGfFV7/s1vZtHrK2T3DaGve+uIzUmsgIOUxiZTrSbwI/zouSR6/k2y/Au9lLDpxNcM6dr64X1KmI1ZLpjOMdiXtnkRq9SRU9dG611PNj3hEVXtn6mOhqE2uFrzGtS55SN0wjLmSak+CmfUkzmKinsQR4CA+IPwg8OJaPQn8ktgb8XoS9wE34QPgjfQkjgA78TWaHofXk5iyxHgDXovXqvgO3ou5F3hdE8cvOrFTtCaUooCqoxKblTCMdiXVnkSa9SQatL+F1gXY54RzSuygGvtxDgKRea+cMgxj6Ui7J2EsIrFCXOM1xE4RgTC2mIRhtCtmJJaA1OpJqI6JDgHEsZIRoWKlwg2jbUn1dNMyJqV6EkqtPYhVCQKlYp6EYbQtZiSWgLTqSbgYnnXuOh4+NEImCIgVAgkILSZhGG2LTTcZLcOhdGZ9vSbw000iWODaMNoYMxJGywhjbxBy2frVTTbdZBjtyooxEmkUHaobd/XxxibfmpYRO2WkHNPTkQHAqRIEgqmXGkb7smKMBOkVHaqOu/r49yb6aCmRc4yUYrpy3kjEqohaWQ7DaGdWROA6zaJDdeNeMmLnl7+OliM6c/7e47QNHRwbrOBsdZNhtC0rxZNIpehQwkdFpFdE7hCRN4rIknymw0VfD3GkGNORy9CZC9i2No86BWFC/oRhGO3DivAkSKHoUMI7gJvxBuX5wN/iCxq+jyb41n0n+cnuSbavKZwqz3zcagqVmGwGOrPCcCkmjh2PHinw070jY+U6DCNN/OutR6/c/+GfmXZ2oJ1JvZFIsegQqvremn33JJoVb6dJI/Hiizfy4os3NnNIQ/b3FsYEh7auy1OOHF35gDe96HQ6sivFaTVWGu945VmpNRCwAowE6RUdasTtwBoR2aKq07VbEGJVXKxIRujKZSiUYhz4KSfDMNqSVN/epVx0qBGXACVgYBZ9tBx1vsgfQC4rlBJ9a4tbG0b7knZPIrWiQ0nexVa8QSkm43gP8M+qWp7l+9NSYvWxCQCSf/vy4WYlDKNdSbuRmEl06INMFB0CP610FLgVeFut6JCIPAV4G1506DTgJF4MqJHo0DuACnACuBMvOvTVJsb+WrwM6XeS518F3lSzP8Qbrg/jDdvupM+PN9FHa1H8cte8NxCqinNiK5sMo40RtUQnY/bB9GnZcWiEd3xhF2u7s2QCQYBCOebDv3k+G3qmXHFsGO1OqpftpTomYSwuDq3xIBTwcqaWcW0Y7YsZiSUgraJDcaw4B5VYyWYEBBTBWRFYw2hb0h6TWK6kU3QI+Jlz1vCTXUOUKo6NyRRTGJuVMIx2xYzEEpBW0SF10JUP2H+yBArrVmURB6XQjIRhtCs23WS0EKVUUVB8iXAHQUYpm5EwjLZlxRiJNOpJJO1+Q0TuSfrqFZFPN9NPK3FufOmrf64EEpgnYRhtzIoxEqRQT0JE/hD4EPA3wBPxCXVfaaKPlqJ4A1FdyxSpIth0k2G0MysiJpFGPYnEq/hL4JWqemPN4fdPd+6FJFavQjeWdK1ARhktx9MeZxjG8mWleBJp1JN4Eb5w4RYReSiZ+vqSiMymFPmCUI4iX4KjOt2kgAq5INW5RoaRalaEJ0E69STOxhv5/4efHusj0ZcQkQtUtTDbsX3n/pPcuWd4ts39eOqeO6c84/FrqESOTCA8+awerylRjvnfRwf40a6hps5vGO3Cv9xy5Hl7PvzMm5Z6HAtF6o1EivUkAnwBwT9U1e8AiMhr8XWnfgH4z9kO6kVP2siLnjR/PYl9Jwrc8gCs686yeXWek0NlVuUz/MmLz6S7M/VfNWOF8raXb0+tgYAVYCRIr57EkeTvQ9WDVHVQRA4zsSLtoqEKldCRDQJip4h4ASKLWxtG+5LqmETK9SSqS3nPqxlHD35V1b5Z9NFynCqlyJHNQBQrmeTbFVvGtWG0LWn3JFKrJ6Gqj4rIV4CPJiuf+oF3A8eBr8/2DWolzinlMCabkURDQlCUyEqFG0bbkmpPgpn1JM5iop7EEeAgcD3wIPDiWj0J/JLYG/F6EvcBN+ED4I30JI4AO/E1mh6H15O4pomxvxavVfEdvBdzL/C6ujavA34MfA3vWXQCz28maN1KnEI5cmQzwVjgRMCmmwyjjTE9CQNapSdxeIR3/tdOMoFwyroOotBBBv70ZY/jzE1drejCMJYjqV7jnXZPwlhE1EEpjMlmGM+8ViE0kWvDaFvMSCwBadWTcAKVyJFLItbeTDgry2EYbUzaA9fLlVTqSQTAhaf1MFyKx7KuBaEUWlkOw2hXzEgsAWnVk4jUsXlNnsFCIZlq8tuLZfMkDKNdsekmo2W4WMbKhTsvK2FVYA2jzVkxRiJtehIiclXduGsfT5vDWzRvvHFwfqZJAfFRiXJkRsIw2pUVYyRIn57EfyZ91D4+C+wB7myin5YROzdWKrxaAVaBQsViEobRrqyImEQa9SRUtUhNkFtEuvGF/f5alyj5JXSKc1XxIb9NVTFHwjDal5XiSaRRT6KeX8bXdvrULM7fcsphTByDU4dziqtqSsSQSXWqkWGkmxXhSZBOPYl6fg9f2+nIFPun5HsPnOSn+4ar/Uwe+5RPxp+WQ8cV569Dkykmny8hqMJP9w6x72Sp2WEZRlvwj987/IJdH37Wd5d6HAtF6o1EivUkxjeKXIT3Pl46l0E9/4kbef4T568ncfBkkZvkJD2dWRRhVWeGjChvfN4ZbD/FynIY6eRPX7o9tQYCVoCRIL16ErX8HnAAb+SWDL/81c9hjlRiVnVkcAqhs6CEYbQrqY5JpFxPotp3J74a7CdVdUmvxo6YOFYQknpNirPaTYbR1qTdk0itnkQNvwSsBT4503kXmthBJXbsPDrKedtWkw2E0CmRGQnDaFtS7UmQfj0J8PkdN6jq/ibOvSBU5UtFArZt6KB/JATFjIRhtDGp9iRU9eXT7NvNeEB6VoHpZOXQNcljqjbbmxjidH314YPmM7W7vBX9tYI4hjB2ZAOhHDqygc/CNiNhGO1L2j0JYxFxOAplx8su20ypEpPLCk79FJRhGO2JGYklIK16EnEMB/uK3LVrkFLoyGUyfrrJVjcZRtuS6ummZUwq9SQckMsEnLqug2MDZdatyuEipVix6SbDaFfMSCwBadWTcE45Y1MnI8WIu/cM8bwnbcKhxDbdZBhti003GS3DKXTmAoaKMSLida5ViJ15EobRrqwYI5E2PYmkzdNE5Lsi0i8iAyLyPRF5epNvTcsIY8U7Db7AnyqoU2KrFG4YbcuKMRKkTE8iyfz+NnAYXxn2mfjcjBuSkiKLThw51CmliqMzG+BzrhVnnoRhtC0rIiaRRj0J4HxgA/DOJNGPJBP8tcB5LIHwUMU5HFCsxHTmM95IqNe+NgyjPVkpnkQa9SR2ACeAN4hIh4h04L2h/fhs8UUljpUwUlBHqeLoygegvvR4EKyUr5lhpI8V4UmQQj0JVR0WkSuAr+Cnv8BPa70wUa2bNTc/eJJ7Ej2JCWOeYUPt01LFcfGZq4gdjJYjNq/tIHZKJYb79g5x6GSpdQXXDWMZ8YkbD73wsY88+8alHsdCkXojkVY9iWQK7ZP4irG/jh/3W4CviMhlqjo620FdedFGrrxo/noSOw4Nk895r2Hdqhxd+YCt2Rx//NLtbFqdn/f5DWM58uaXbE+tgYAVYCRIr57ErwOPB56tqnHS5tfxU1qvAj47l3HOB+erhFOJ1KvS4eutW8K1YbQvqZ4sTrmeRDfecNVegl2ybUk+V+dAEqdLAFRxsTaURDUMoz1ItZFgop7EA7UP4PPA60Wk+h6sE5GtIrJNRC6nsZ6E4PUkXiMi54nI+SJyNd7g1LI6OdcZIvIsEfkI8HGa0JPAT339k4g8Q0SeyWQ9iRuBNcAnROSCRML0U3jjdtMc3qt5EzmHSwyCAuVIUYTYjIRhtC1pNxKp1ZNQ1UeAXwCehPc8/hc4PRnzwSb6aRlx1Y9JKJQjVB2VyIyEYbQrqY5JpF1PQlVvxButZUG1RpOIEEYOVSAPYWRBCcNoV9LuSRiLSOgUTcxtJVIkAKdC2YyEYbQtZiSWgLTqSTjHWDG/SqxkREyZzjDanFRPNy1j0qknocrZp3Tx4P4RosiRCTKIKhXzJAyjbTEjsQSkV0/CccbGLlR13JMAIqsCaxhti003GS3DqRLGDsUHqzMZrylRNithGG3LijESKdWTeL6I3CYiwyJyRET+qn7Mi4lqQCX05cLDyJEJBFGx6SbDaGNWjJEgfXoSFwPfxOdRXJr083Lgg0300VJiVaKawHUQCBIk+ROGYbQlKyImkVI9iV8FHlLVdyWH7RSRtwL/JSLvVtXJZV0XmDhOciOAKFYC8fWbTHTIMNqXleJJpFFPogMo1R1XBDqBp86ij5binBI5H5fQJO3aKTj1sQnDMNqTFeFJkEI9CXypjjeLyOvwZUS24MuBgJ/qmjXff6iP+w6MVDuasX2jFqVKzNmbO6lEyukbujg8UCZ2jkoIP909yM5jbbuy1zCm5WPf3v+iHR/52e8s9TgWitQbibTqSajqd0TkLcDH8IX9ysB7gecwXsF2Vlx+4QYuv3BDM4c05MEDQ+w5OspLnnoKX/zREbpzGdZszPD2V58z73MbxnLlmp87M7UGAlbGdFOtnkQkIhHwZ8CLROSMmnZHVXWnqu5Q1W8A7wReKyKPZ6KexJyo0ZPYPYvmY3oSNcfX60mgqh/Glx8/E1/t9ivJrj1zHed8iJ2jHCqV0NGVT+IRalNNhtHOpNpIpFxPAvCekaoeTiRLfw04gF+Fteg4BwOjIXuPF+jIZqqiEksxFMMwWkTap5tq9SQmlAsXkc8DV4vI+5JN60RkK95wnktjPYnb8HoSf4E3MgJciTdCZ9acfnVyrhxwBvAafOXYWetJiEhVT+J3k37q9SQQkeoUmQNejfeQfrmqVLfYOIW+4QrHh8qs78mjDpyAqlLjFBmG0Uak2pMgxXoSCS8GfgDciTeIr1DVLzfRR2tRJXa+DEc28MX9VC1PwjDamVR7EitAT+J5reirVcQKsTrC2JHPBqDei/BqdeZJGEY7knZPwlhMFNRBGCvZjIB4w2Glwg2jfTEjsQSkVU9C8aU5VL06XeQUakp1GIbRfqR6umkZk049iRrRIVBOXd/B4b6ileUwjDbGjMQSkFY9CV+nqfpMePyWbu7fO0ho002G0bbYdJPRMpxqjSfhn1dCN2GbYRjtxYoxEm2oJ/F2EfmhiIyKSMOrrIicKSJfS9r0isjfiUi+mX5aSrKaaeypguIolk10yDDalRVjJGg/PYkO4H+AaxvtTMp8fANYja/X9Gv4ard/20QfLSVGqc4sjS19VWHYjIRhtC0rIibRbnoSAKr6jmTsvzRFkxcBFwFnqeqBpO1bgX8Vkber6tBMfbQaFymuGpQQvxxWgdFitNhDMQyjRawUT6Ld9CRmwzOBh6sGIuEGvAey6HoSqkqkXlMCIBAIY4cAoyXzJAyjXVkRngTtpycxG7ZSUxE2oRdfmHDr5OZT878P9/HQoZExKYlxEYvqv5P/10RGtKah4vUkzju1iyhyREkdjmIlJoqVe/YNsftEoZkhGUbbcO039v3cQx95zg1LPY6FIvVGoo31JGbDVOdqqo+fvWADP3vB/PUk9hwbpacrS2eHsrY7hwCb1uR5y8tbZRcNY/nxey84M7UGAlaAkWCinkR1mwCIyBk10zVHVXVn8u8dIrIauF5E3slEPYkvzWUQNXoSP5nTq5jMUbzxq2UT/rXWexiLgktiEM9/0iZ6h8tUQqvsZxjtTqpjEm2sJzEbfgRcICKn12x7IV6h7q4W9dEUiqJO2bA6Rxiqj0mIWJ6EYbQxafck2lJPIhnfmcAGYHvy/JJk184keP4dfDnzT4vInwAbgQ8lr3XRVzYBOOcL+4Whw6GEsZIRvz0TWBVYw2hH0m4kZtKT+CAT9STAz5gcBW4F3larJyEiTwHehteTOA04idd5aKQn8Q6gApzA6z28WlW/2sTY34P3gqrcnfy9ErglCYS/FL8094f4mk+fY/LS3kXDueqqJp95HUYKyfNc2r9phpFSUv3TbXM9iauAq2Zosx94WSv6awUKOGQskS5yikCiJ2EYRjuS6piEsbjE6ghEcImuRBQlMQkr8GcYbYsZiSUgrXoSsVMyAcTO+eQ65xXpQgtcG0bbkurppmVMOvUkYhCBdavywChhpASoeRKG0caYkVgC0qonESsEImxdl6cSxURxBk3KcxiG0Z7YdJPRMipRTDaAcugQhUrkCASKFTMShtGurBgjkVI9iY+KyJ1JP3ubOf9CEDvo6shSrDhUq1KmwmjZqsAaRruyYowEKdOTSAjw9aU+3cR5F4wodnTlAgZGQzIZwamiKAXTkzCMtmVFxCRSqieBql6TtHkLXl9iSalESmc+Q/9IhY5sQDl0qIOClQo3jLZlpXgSadSTWFbEsRJFjs6ODCeHynTkAhzem7DAtWG0LyvCkyCdehIt48eP9rPj0CTbN2sUGBgN2bgqSzYQeocqnLm5iygOqYTw0IERjg9WWjdgw1hGfOgre174wLXPvXGpx7FQpN5IpFxPoiU87Zx1XPq4tfM6hwgcPlmkWDnOPY+F9HSupisfsboryx+97GyrBGuklg99Zc+M08ftTOqNBOnVk2gZmUBaUqXVKUSxMlKKGS1FZAKvZpcJIJtZKTObxkrjgWufm+rle6n+5aZcT2LZETvH8GhIHDuGihEkMQkLSRhG+5J2TyLNehLVqbQeYBuQr2nzkKouehBAFcqR83NPjFd/jROdCcMw2o+0G4nU6kkk//5X4PIGbR6Hz81YVJwqUewT6UAIo4jujgxR7OjIpdppNYzUkmojsQL0JK5oRV+tIo69N6H+f5RCx3qTLzWMtsZu74yW4VAcigKxKpWKD+tEZiQMo20xI7EEpFVPIooVvBNBsewIAiGQZLthGG1JqqebljHp1JNwSlc+A0CxEpNPlr2akTCM9sWMxBKQVj2JIBC2re9AgVIlZtWaPIEIpdBqNxlGu2LTTUbLcM7hVBFVSpWYfFYIArECf4bRxqwYI5E2PQkRebKIXJ+cvygiO0TkT0VkyT7TOPaaEg6lWHF0ZDOIwKiVCjeMtmXFGAnSpyfxVHwOxuuAi4B34nMz/qyJPlpKJXY4N55Ah/i8OtOTMIz2ZUXEJNKoJ6Gqn6zbtDtJ9vtF4AMznX8hiJ1646DiDQSCUywmYRhtzErxJFaKnsSapI8loRK5CSuZVBV1OuZdGIbRfqwIT4IVoCeReBFXAa9t9tg7dg6w93hhXv0PFSLWdGaInCNyjkADIuezrh89NMpo6RDSgkqzhrHceO9/Pfas+669/LalHsdCkXojsRL0JETkPHxs5FpV/eJM7eu56IzVnLGxc15jCAKhVIk5cHyE1Z05clmhMx+wtjvHG154FoVyqqspGyubh5Z6AAtJ6o0EKdeTEJHzgZuBz6vqnILW3R0Zujsy8x7L4ZNFYgeBgIgQ4APXa7qzrOleCV81YyVy37WXDyz1GBaSVMck0q4nkcRObgH+W1Xf3KrzzhUFUB1zlVSx4n6G0eak/fYutXoSInIRcBPei/hA0h8ANSurFhXFlwsfMxJWAdYw2p60G4k060m8BjgF+JXkUcuSRIjVKa5aKjzBjIRhtDdS+4M2Viwt+RIcODHKp7+7j1vuP8GqrhwXnbkGUN7zuie2REPbMJYpqf5ypzomYSwuTgX1idY88aw1rO7KECdqdYZhtCdmJJaAtOpJONWxmIRzykgxohIqUWTeqmG0K2mPSSxXUqknETslnw1Q8fNXAoSRoxI7Vi314AzDmBNmJJaA1OpJIJy9dRXc48txaEaIYkdo002G0bbYdJPRMmJ1lBJda0fiScRKxaabDKNtWTFGIoV6EptF5AYROZyM5YCIfFxE1jbTTytx6uMSAKjPtnZOqVgVWMNoW1aMkSB9ehIOXyLkF5J+rgKez3i+x+Kj3lBUA9cigqoyXLS6TYbRrqyImERK9SROMtE47RORT+AN2JIQO4c6JZcJKEeOVWRwihkJw2hjVoonkXo9CRHZBrwaXwp9SQhjR+yUzqxQrsT4mSdlqBAu1ZAMw5gnK8KTIMV6EiJyPfAKoAv4OtMXLWzIvXsGOHiyNO+xdGR8raZcNmC0FBE7R6Wi7Dxa4Bt3Lkk5KcNYcN7+2UcuvufaK+5b6nEsFKk3EitAT+LNwLuB8/CypdcyuZbUtJy5uZt8dv6lwk9Zm+fRA0NsXJ2nFCkduYCe7izPe9ImMsFKcVqNFciSqUEuBqk3EqRcTyKJfRwFHhGRk8APROR9Na9rRtb35Fnfk5/3WEZLIbFTujsz9J8sEwQBGYHTNna15PyGsRy559orZv1ba0dSfXuXdj2JBlQ/z44F7GNKnCqlMEaAkVKUrHACZ7l0htG2pN2TSLOexMuAjcBdwAhwEfAh4Mc1HtGiog4K5YgdB0cQkbFlsM4qDRtG25J2I5FmPYkS8Eb8FFgHcAA/FfbBJvpoOeWKI5sNiB3EqgSA2QjDaF9SbSRU9eXT7NvNeEB6VoFpVT2C9wiumabN9iaGOF1fV+ET5Kba/13gu63oq1XECuXQkQsCYueIHUhgnoRhtDOpjkkYi4s6ZbQU0d3hv1bOKUGgE5TqDMNoL8xILAFp1ZOIVekfqdDT7fMUY6cEBFbgzzDamFRPNy1jUqkn4WIljByd+QBVTTwJoRLZ8ibDaFfMSCwBadWTiJzyy5efyS33HkOTirDZjFAJzUgYRrti001Gy4idgiqV0OGcI459vXDzJAyjfVkxRiJtehJ1bTclY1ER2dRMP60kihT1dgLn/GqnAEyZzjDamBVjJEifnkQtnwLuaeLcC0IYOzT5mwnAOedjEjbdZBhty4qISaRRT6Lmtf1R8preD7xkurYLTdVjKJdjujqyfnWTQLFiehKG0a6sFE8ilXoSInIp8H+B38Qr1S0pldBRCR3lSLni4s1UKjGIENoSWMNoW1aEJ0EK9SREZBVwPXCNqh4SkXPneq7B0ZCTw+X5joeRUkQ5dJQqEUf6ihQrMRor5VDZfXSSbTWMVPCav/zJ9rs++ry9Sz2OhSL1RiLFehJ/B/xQVb84Y8sZuG/vILuOjM57QOed1k0YObIZ4cRghe6ODNlcQBjF3PpAo/JZhpEKJlWGThOpNxKkV0/i+cAZIlItAlh9cUdF5K9U9e2zPdFzLtrEcy6a/6Koxw4NEcUxnfkMoPR0ZVnTleWXn3vGvM9tGMuVq15w1gNLPYaFJNUxiZTrSbwI/zouSR6/k2y/Au9lLDqqSiVyZJIs62wmQMRqNxlGO5N2TyK1ehKq+mhd+6or8Iiq9s6mj1ajijcSmcBXg80IEBA7n3ltGEb7kXYjkWY9iWWHc0oUK9lAKIQx2UwAojhzJAyjbRGbCjBoUTD9wX0DfO57eznYW+Bxp64mFwR0dGb4Py87l66OTCu6MIzlSKrd5FTHJIzFJU6qwGaCgDhWKlEMqr6mk2EYbYkZiSUgrXoSTpUwVjKBECUB7NgpkRkJw2hb0h6TWK6kUk9CFaLIsaozQzGM6e7MEEVKbAX+DKNtMSOxBKRXTwLCyPGKZ53Jp7+zm42r80SxM0/CMNoYMxJGy1DnKEe+8utoKcI5L0QUmp6EYbQtKyYmkUY9ibpxVx9vbKafVhInnoRz1QQ6H7QuluMZjzUMY3myYowE6dWTqI67+vj3JvpoKbG6JFfCocmiwDB2jBStVLhhtCsrYropzXoSdeNeUuJYyWT8VFNWAgQfyB4pm5EwjHZlpXgSqdSTSPioiPSKyB0i8kYRWbLPNHJKNhNw3+4BctnA61uHjpGCGQnDaFdWhCdBCvUkEt4B3AyM4KvC/i2+VtX7pjuonmIlZqQYzmsgUaxj9ZqGRkPyWe9JlMOYMHacGCzN6/yGsVx5yTt+uOGOjz4/dasVq6TeSKRYTwJVfW/N03uScuRvp0kj8cMHe3nowNA8BwNPPGs1HfmA0VJERz5DIIIqHOkrcv33D8x8DsNoTy4AJi2ISQupNxKkV0+iEbcDa0Rki6oem+1BL7h0Cy+4dMu8O3/kwBCd+QzDIyHrevLkskJ3Z5bfeN52VnWuhK+asRL5w5efm1oDASmPSaRcT6IRlwAlYGAB+5gapwQilMKYXFZQfGVYZ8l0htG2pP32LrV6EknexVbgR/hSHlfil97+s6rOT7B6jkQ4BCGKvLFQp6j6mk6GYbQnaTcSadaTCPGG68N4w7Y76fPjTfTRUtQJIr6onyI49Ul1VrrJMNqXVBsJVX35NPt2Mx6QnlVgWlWP4D2Ca6Zps72JIU7X11XAVdPs/zY+0L5siNUhAs45BJ+BjWDypYbRxqQ6JmEsLuq8tXWqKFCJYgLE9CQMo40xI7EEpFVPQh2AEsfJ30jJBJiRMIw2JtXTTcuYVOpJ+OkmIU5sQhg7gowQWVDCMNoWMxJLQFr1JJwDETjntB7O2NzNY4dGyGQCyhUzEobRrth0k9EylOoKACEMHeec1oMIlEIrFW4Y7cqKMRJp1JNI2v2GiNyT9NUrIp9upp9WUs2LyGcDKqFj+5Ye+gZLlEPzJAyjXVkxRoIU6kmIyB8CHwL+BngiPofiK0300VIipzgSIxE5KlGceBJmJAyjXVkRMYk06kkkpUD+Enilqt5Ys+v+mc69UESxA/V5EU69bGkgQrFkpcINo11ZKZ5EGvUkXoQvXLhFRB5Kpr6+JCKtLEXeFH4Vk7JpbQeoLx+eCfwqJ8Mw2pMV4UmQTj2Js/FG/v/hp8f6SPQlROQCVS3M9kRx7Ajj+eUyOFVKFSUTCId7C5y6oYuufIYgE9CRy1CsxC2rt24Yy4nL//Tm/O0ffUFlqcexUKTeSKRYTyLAFxD8Q1X9DoCIvBZfd+oXgP+c7YluuOsod+8amOdwlIsft5ZsErTu7MjQO1AiQLl39wA/erhR+SzDSAXPY5mVyGklqTcSpFdP4kjy96HqBlUdFJHDTKxIOyMvefo2XvL0bfMe0I59Q+w6NMwxgVWdWUZLMZ2dOd786vPmfW7DWK68/dcuTK2BgJTHJFKuJ1Fdyjt2BU7Gdiqwr0V9NEU0VthPKZQiCqWQzFIMxDCMlpFqI8FEPYkHah/A54HXi0j1PVgnIltFZJuIXE5jPQnB60m8RkTOE5HzReRqvMGpZXVyrjNE5Fki8hF8Ce+m9CQSDYntyfNLkkcPgKo+il/u+lEReXYSbP8UcBz4etPvVAuIVREE5+Drtx2kEjpc69RaDcNYAtJuJGbSkziLiXoSR4CDwPXAg8CLa/Uk8Etib8TrSdwH3IQPgDfSkzgC7MTXaHocXk9iyhLjDXgPXkPiQ8nzu5PHZTVtXgf8GPga3rPoBJ7fTNC6lTinSOCV6ESEQGRsSaxhGO2J2A/YoEXB9LsePcmPHzzBnY/0cri3yLOftJnBQsRf/f5TyGbSfj9irGBSvXDPfrlGy4idgsiYprWq/180z+W1hmEsHWYkloC06kk4BxIwbiQAAisVbhjtzEpYArscSaWehBvTk0g8B/V3ISY6ZBjtixmJJSCtehKxU84/bTW33HkI8J6EAmFkRsIw2hWbbjJaRtVjCJOqr15fQs2TMIw2xoyE0TKqHkPskhiEejNRqpjokGG0KyvGSKRNdEhErqobd+3jac301SriWEFgQpxalZGilQo3jHZlxRgJ0ic69J9JH7WPzwJ7gDub6KdlVBLrMDa9pOCA0VK4FMMxDKMFrIjAdRpFh1S1SM1KKBHpxld//WtdogzJUjlmdUfGL4EVYfupPTy4d4DBkdRWUTaM1LNSPIk0ig7V88vAKnz9pkUnjBzlKCZ2XlMilxE2r+ugEsXk81bmzzDalRXhSZBO0aF6fg/4uqoembFlHd+4/RB3POLLW+nY/5qr1aHAudt6CCNHJiNkMgFh6Ihi5Qf3H+fmu481OyzDaAtuuOvYK370dy9cMm35hSb1RiLFokPjJxW5CHgmvupt07z0Z07jpT9z2rzHse/oCA/s7qe7I0tHR47YKfmM8JbXXEineRNGSnnXb5FaAwErwEiQXtGhWn4POMASq2OpKuUoJp8LyGWFMHI4tTwJw2hnUh2TSLnoULXvTnzJ8E+q6pIWSYpVKVdispmAXCYgih3OWVkOw2hn0u5J1IoOTdCUEJHPA1eLyPuSTetEZCvecJ5LY9Gh2/CiQ3+BNzICXIk3QrWSoauTc+WAM4DXANfQpOgQsIEa0aFk18664PkvAWuBT87mvAuJc1CJlHwmIJsJiGKvLRFbFVjDaFvSbiRmEh36IBNFh8BPKx0FbgXeVis6JCJPAd6GFx06DTgJ3Etj0aF3ABXgBD5v4dWq+tUmxv4evBdU5e7k75XALTXbfxe4QVX3N3HuhUGVSiUmm5Wx6abYKc40SwyjbUm1kVDVl0+zbzfjAelZBaaTlUPXJI+p2mxvYojT9XUVcNUs2l3eiv5aQaxQCmPyuQy5rJ9uUsU8CcNoY1JtJIzFxalSKsd05jNIECS1nJx5EobRxqQ6cL1cSavoUOSUKHYIkAmEMHYoQiU00SHDaFfMk1gaUik6lM8GbFnfweBIhXxGiCIHilWBNYw2xozEEpBW0aGMwIn+EuVKTGdHbixrsBSakTCMdsWmm4yWMVqKGS1FxC7GqV/ZFKAUy1Yq3DDalRVjJNKmJ5G0eZqIfFdE+kVkQES+JyJPb6afVjJarNA7UGTtqg5fJtwpEghFm24yjLZlxRgJUqYnkWR+fxs4jK9Y+0zgCHBDUlJk0RkcCRkYqbC629vW2CmZTEChZIFrw2hXVkRMIo16EsD5+Izsd6rqnqTtXwCvBc5jCYSHRkshqhDFSiB+tZOgRJFNNxlGu7JSPIk06knswGdzv0FEOkSkA+8N7QcebFEfs8Y5ZbQYoeq1JdQ5OrJCT1eOjvyKuBcxjFSyUn69qdOTUNVhEbkC+Ap++gv8tNYLE9W6WfPtnxzmrkfHK5fU5r5pzUZttD950tWRZU2H4BSOnixwwfb1rOrO0T9U5gf3HZ1w/sa0qhq7YSwu37j98Ct/+Hcv+vJSj2OhSL2RSKueRDKF9kngR/iptAx+Cu0rInKZqo7O9lw///Rt/PzTt817TF+5dS/ZjHDkZImzt8Xc+Ugvp23q4jmXnMpLnnXmzCcwjDbkba994peXegwLSeqNBOnVk/h14PHAs1U1Tvr4dfyU1quAz7aon1lTKsdJ1VfHvmMjxE451leiEtnqJsNoV1Idk0i5nkQ33nDVLh1yybYl+VxLYewD107ZdWg4ESFyhJGzrGvDaFNSbSSYqCfxQO0D+DzwehGpvgfrRGSriGwTkctprCcheD2J14jIeSJyvohcjTc4taxOznWGiDxLRD4CfJwm9SQSDYntyfNLkkfVSN0IrAE+ISIXJBKmn8Ibt5uae5vmj6pSKkeoKsLE8rpRrBzva9tqI4axokm7kZhJT+IsJupJHAEOAtfjVwi9uFZPAr8k9ka8nsR9+Ivxy2msJ3EE2Imv0fQ4vJ7ElCXGG/AevIbEh5LndyePy5LxPAL8AvAkfFzif4HTkzEfbKKflhDFjnIY4yYEtb2RCAJh39HhxR6SYRgtQNTKOBstCKYXShH/8D8P8qMHTlAo+byI1aty5LMBL3r6aWxc22nBayOtpHppXto9CWORiGJHnMiVVlEFEaFQioljy7o2jHbEjMQSkEY9iTByRLFOdEkSL3W0GLZm3a9hGIvOSlgCuxxJnZ5EJYxRdCy57pT1XTxuWw+7Dg1RjhzOKZVE2tQwjPbBjMQSkEY9iVLFESBjHsP2U3vQ2OdMxE6JnTI0GrJpnRkJw2gnbLrJaAmVMAaBVZ1Znn7hZvqHSjhVH6eIvek4PtCWTpJhrGhWjJFIqZ7E80XkNhEZFpEjIvJX9WNeLMqJkXjcqau5++HjPLJ3gEoYkwmEyDkymYBjJwtLMTTDMObBijESpE9P4mLgm8B3gEuTfl4OfLCJPlpGJXSoKrlcQCl0CFAoxXR1ZImdEkVubGmsYRjtw4qISaRUT+JXgYdU9V3J850i8lbgv0Tk3aq6qNlrcexwDjTW6tpXRksh3Z1ZokgpVWI6LGhtGG3HSvEk0qgn0QGU6rYVgU7gqS3qY9bELtGRqFnsWipFdOYzZLNCOZy4zzCM9mBFeBKkUE8CX3DwzSLyOnwZkS34ciDgp7pmzXfvOsw9j3k7N+ky3iAjv35LJhAyKEOFkFUdmbE25SgmmxEO9xY51lfigu3r+ND1D1BTjdcw2p6v3nbwVbf+3c/NqTp0O5B6I5FWPQlV/Y6IvAX4GL6wXxl4L/AcxivYzooXPHUbL3jq/PQkbvzJQXIZYf/RYXLJtFIcQ0cuw9PO3wTAqZu6+PlnnEFXR+q/dsYK4i2/elFqDQSsjOmmWj2JSEQi4M+AF4nIGTXtjqrqTlXdoarfAN4JvFZEHs9EPYk5UaMnsXuu56hHVT+MLz9+Jr7a7VeSXXta1cdsqUSObEYoV8bLb4SxI5sNxhLsolgZLoSLPTTDMOZBqo1EyvUkAO8ZqerhRLL014AD+FVYi0oljMlkhDCe6MQIjNVzCgRODpYXe2iGYcyDtPv9tXoSE8qFi8jngatF5H3JpnUishVvOM+lsZ7EbXg9ib/AGxkBrsQbodoSp6uTc+WAM4DXANfQpJ4EsIEaPYlk185q8FxEqlNkDng13kP65apS3WJSCR2BCJWwvpCf4JySyUAmCOgdKOJtpWEY7UDajcRMehIfZKKeBPhppaPArcDbavUkROQpwNvwehKnASeBe2msJ/EOoAKcAO7E60l8tYmxvwfvBVW5O/l7JXBL8u8XA2/HB9rvBV6hqktSILBS8YlzYTjRPim+JEcOiJ1jtGjTTYbRTqTaSKjqy6fZt5uJAmqzOd8RvEcwpXiQqm5vYojT9XUVcNUMbZ7Xir5aQTmM6chniKI6T0IhTqabKqHSkbdlsIbRTqQ6JmEsDl7LOiaQgEq9kQDiJE5RCeMJehOGYSx/zEgsAWnTk/BlN5RAlLCBkQgjbxjKYdwo7cIwjGVMqqebljGp0pOIYsWpIiJUYkWAXDbg4nM2sH1bD/uOjIy1U/WrnYLAEuoMox0wI7EEpE1PIo4d6vwSK40VyQhPu3Azdz5wjP2HBrnk/M3Esa8E61QplCN6uqasimIYxjLCppuMeeM9BEVjByiPP30Nj+0doFiOEAn46cMnyGcDnPMa2KNFqwZrGO3CijES7aQnISLbReTfRGS3iBSTv3+ZVLOtbXemiHwt0ZzoFZG/E5H8XN6f+RDFDqcQKyCweV0nR/sKiAixKpFT+gaLFIshIjAwbAl1htEurBgjQXvpSZyPLyVyNXARfsntbzJecLBa5uMbwGp8vaZfw1e7/dtZ9tEyKmGMCDjnOGV9F4dPjI4VBnTOxygOHB1hdXcWAXoH2y7sYhgrlhURk2g3PQlV/TY+k7rKbhF5P76A3+8l216ENyBnqeqB5HW+FfhXEXm7qg5N10crqWZbR5Fy5pYe7nrkxFilV6c6VtVwtBhx7GSB7s4V8bUzjFSwUjyJNOhJrEmOr/JM4OGqgUi4AZ99vah6EqUwJgiEMHYEAbh4fBlsbV7EvqPDZDPScJmsYRjLk5VyS9fWehJJHae3AB+o2bwVOFbXtBdfmHBrM+e/5e4j3L9rCj2JKTbWburpzHD/7n4uO28Tvf1F0PH9ceylhnoHvD7SWaeuZveRY+w9ZnrXRjr44vf3v/qWv//5/1nqcSwUqTcS7a4nISJb8B7CjcBH6nZPda6m+rji0lO54tKmdIomcOcjJyiVI047pZvv/bhALjfRQe3uyNKR9xoT5XLEaRu7eNMvXTjn/gxjOXHNL12YWgMBK8BIMFFPorpNAETkjJrpmqOqujP59w4RWQ1cLyLvZKKexJwERmr0JH7SxDFbgZuAB4DXqU7IVz6KN361bMK/1noPY0EJw9jHIFQpVfyUUxWnSm3e3OHeUbZsWmUJdYbRJqQ6JtHOehIiciq+2uvDwK9Vq9HW8CPgAhE5vWbbC/EKdXfNpo9WUQkVERgcqVDvxDinE+RKY+eT73YdHFzMIRqGMUdSbSSYqCfxQO0D+DzwehGpvgfrRGSriGwTkctprCcheD2J14jIeSJyvohcjTc4taxOznWGiDxLRD4CfJxZ6kmIyDZ87OQofjnupuR8WxOPBOA7wIPAp5MckBcAH0pe66KtbAKoRDE9XTkOHx+lXr66Wq6jlv6hEjv2DSzeAA3DmDNpn25qVz2JF+GFj87FL6Gt5XHA3iQQ/lL80twf4ms+fY7JS3sXnEroWLMqx10nRicZBD9BlmTZJZzoL1GuxGgDA2IYxvJC1MpyGk0Guuv50i17yOcCvnjjrkmJciLClg1dBEEw5mV0d2a59AmbuPLpp3Pa5lXz6dowlgOpvtNJ+3STsQiUKzGlSkTsGuc/qDKhRLiIMFQM2bEnNTUODSO1mJFYAtKmJ+EU+ganr8dU67GqU472jlAOF12K2zCMJkl7TGK5kio9iVxWONFXaCgoJEyOS8SqlCuOSugYGqmwpqd1NQnDKKZScXR2ZMhk7B7IMOaLGYklIE16EqpKNhPQO1ga07Ju0IraXc558aEodjy4p49nPqmpBPGGDI6UufmOg+w/MkwcK6dv6eHCszdw4eM3WHDcMOaBGQljXkSxQ1UJKzqtfnUcK+Rq/g0MjYT0dFfmPYYHd/Zy4+0HyGUCspmAbAZO9Be5/f6jjBRDfqYFRsgwViorxh9PqZ7ER0XkzqSfvXN4W+ZNFCuFUgiixFOslFN8vkQVp764U7EcUanEcy74p6r8708P850fHSCfzUzyGEqVmH2Hh3hwV6MV0IZhzIYVYyRImZ5EQoCvL/XpWZ635YSRY7gQkssGuLixkYgT3etanHrPI4ocu+eQfa2q/O/dh7nzoWNjdaEa0TtQ4sDRYUoVU8MzjLmwIqabUqongapek7y+t+AT8BadOFZO9pcIgqBhTELx3kY2I5O2h5FjtBRy8Ngw521f31S/dz54jLseOk4+N7WBqHJyoMRdDx7n2Zdua6oPwzBWjieRRj2JZUEYx5wYKCHQME9C1a84ytatNFKFSuQYGg0JI6WZpM4de/v433uOzMpAgK8pNThSpmJLbg2jaVaEJ0E69SRaxg/uPcpDuwcmbNP6JOwpnp57xmoOHhth47pOP600aSWRUixHdHfmGKrJpVi/Wnlkb5muziwKXHv9/XR3Tb8UtrszS2dO+N7tB8g0WUG2UI64b1c/69d2N3WcYczEf9605xdv+vsXf3Hmlu1J6o1EyvUkWsJznryV5zx5biuA7t5xgvWr86xdlae/K4tM8VZ15AI68h1jpTlWdWXJZQLO2NLD+jV5tp3Sw+VPOW3avoZHK1z3lYe4+JwNTY8zmxHOPHU1P/ess2xJrNFSfv9V56fWQMAKMBKkV09iWXC8r0gmE6D4KaSprr+Kz4+oxibiWKnOQA2OhGxcO/1UUCWM+fy3H5uzBkUUK+VKzLGTBbZusnpRhjFbUh2TSLmexLLgWF/BX7hnsF8CE2ICsRuPQzjnp6SGRxvnTMRO+fJNuyiVw3l5AaVyzAO2HNYwmiLVRoJ060kgIueIyCXANiAvIpckj9bVuZiBoye9VvVMLk4UuwmGJI51wiReJXQ8uLvxBfwHdx3i8InCvMts9A+VCEPXVJDcMFY6aZ9uSq2eRPLvfwUur9l3d4M2C4aqcrS3kDyhXjZiAmHkJlzknSpasxhqcKTMmuHJC8527OnjnkdPzHol03Q49RVrj/YWONVKlBvGrEi1kVDVl0+zbzfjl7RZzWGo6hF8Yts107TZ3sQQpzrHdcB1s2h3xXz7mg+jxYhiKQZJqrxO8y5WIsfq/MSvm6KEkSOXDaiEjnIlZqQQ0tPtjUXfUIlv37affHb+BqJKFDke3tNnRsIwZknap5uMBaRvsEQYe3dgpgmcOFbqY87qmFAuvFiOeWBnL+Av5l+88bFJSXjzpX+4TLli+RKGMVvMSCwBadGTONw7MnbhVze59EY91RVOVSQQRorh2POBkTKDo/75TXccoFiKW75cNYwcYRRPGSQ3DGMiqZ5uWsakQk/iSG9hzINwMDbddN5Z63h0Xz+NzIbT8TuTOHZUwvE2caxEUcwju/t4cFcfHS2IQzQijpWH9/bx9IusOqxhzIQZiSUgLXoSB4+NjN3pV0MSuWzA9lN76B8scnxgslpd7BzZjL/4R7GSr1tp1NWR5fM3PMopGxYuM3qkGNI3UFqw8xtGmrDpJmNOxLHjaG+RTCCICC6p27R+TQcP7+ln49rOSccI41oSUNWiGI9nrO3J89CuPoaL4TQCRvNneDQkjqfXvzAMw5MqIzFfzQgRuUpERmqeX1FzjBORIRG5L9FxeFzd+a+q66P2MfmK2Xj8W0TkIyLyWKIRcVxEbhORa2qT+JJz/lKD468Tka/P9v2aDyOFcCyeEAi4ZL5p/eoOjp4YJZ8LGuYj1F+YY6djZbzXr+ngwV0niSOlt39hZ93CyI3leBiGMTVpm26qakb8pohcoKr1Bfl+F/g6XiPtqfjaTP34vIfpuAg/PdSDz9b+Y+B+EXlpXXJcAXh8/cGqOuPcRqJX8UNgCPgLfIJegC/l8Zv4nIzPzXSexeJ4X4FiOSKTCRAR4iTpobsry0ihgqo3CJma1UlR7CatcHJOGRiucOr2VTyyp99Xhw1jymFM7LTpQn6zxamyY28f22wprGFMS2qMRIs0I6biuKr2Jv/eKSJfxpfM+KSIPEFVq2sqteb8zfIP+PjvZao6WrP9AeB/ZJlVpdt9aAinviiWCHWCQ9UlT5O9hvqXUQ4dHZFjbU+eW+86OFabqViO6O0vsmXjwsQmBkcqdHVOWS3eMIyENE03zUszohkSo/ARfNnvS+c23Alj2YBXvPt4nYGo7XPZTKA7p/z0kV5yWf/1CUTG5UnVJ8k18hpip5MK9KkqHbmAR/b2TUi2CENHsRwtWE5DsRQRRXOXTjWMlUJqPAnmrxnRLA8lf8/Gl90AWFUb00i4T1WfNcO5zsXffu+o3SgiB/FFAQE+q6pvnONYp+VH9x/j4b0DgI7d/I9f8zW58APqRYZWdeV4aG8/Qc3KplI5JowdUexwThkeDenqzDBcGr8ISwWCTqFQmlircN3qDm675whBIIhU/RBhYKRCqRL7ah8L4UgJfPy/H2Dt6o7Wn9tYMfzHDTt/6bt//9JZFe5sR1JhJFqkGdF0t8nf2jv8Ar7KbC2T14HOnufgx/rPwKyC33PhmU/awjOftGXW7UvliP6B4oQ8hkf3D1AJHT2dWbo7s0SxY8uGbnrKNUZCYFVnju3bVo9ty2aEVZ051q/pINsg/uCcsnFt54JMO21a28mm9V087+lntPzcxsrht192XmoNBKTESNACzQhV3dVknxcmf3fXbNOa8zfDTryxOb92o6ruARCR+mU4w8DaBudZBwzOof+m6B8u+6WsNZN51amkapmOkULI6Vt6GC2P28hGE2anbOjmx/cdbmggwBuJvsESQSBsXt/V0tcxNFoxL8IwZqDtYxKt0oxoss8MfoXTLuCeZo5tRFKl9jtMoVfRgB341Vn1Y3oydVNWC8HhE6N05CdmQ8ex0tWRoVj0mg+FUkhXx+SMaac6Hr/AW/K+oelLZMROOd5X5NjJQkvLfFdCRyWMTfvaMKYhDZ5ErWbEhJLgIvJ54GoReV+yaV2i9hbg4wD1mhFTcUpijHqAi4E34wPWL6lZ2ZR0KY1qPZyoa9eIP8Avgb1LRN6FL0Ee4Y3Bk/FGpMqHgU+JyIN4WdNufGXaDfipqQXl2MnChKWp1ZpM+VyGUhJo9ip1gurkFU1RrOSzQndnlgPHR5hNDT9V5cRAkcgpWzd0zVtbokoYOvYfGeacM9e15HyGkTbSYCRaphkxDQ8mf0eAfXhJ0d9Kyo3X0g0caXD8ufgppSlR1d0icineI3ovcAYQ4g3YJ4CP1bS9Prnw/gnwl/hYyF3Ac+axBHfWHDs5MdFNnQ9457IBQ4WJXkF9roSqEscOsgEb13Zy98PHZx+UVi8c5JyyZWNXS0qIl8OYfWYkDGNK2t5ItFIzol7HQVVvmc1xjY6dC8kF/o+Sx0xtrweun09/cyGMYoYLFbI1d/KxUxTvSUxYsqq+VlP9XX8ldHR1QCWKKZajCeeaEYXBYR/n2Lqxe2wZ7lwZGqmwoUEJEcMwPG0fkzAWl8HhyqQ5fOcUdUo+G4xNN0EyDRVPjCEEIpTDmLU9efYcHJpzRvXQSJljfYUJ8Y25EDulXPbGyjCMyZiRWARE5Mxp9CNGROTMpR7jbDl0YmSSlGgUO0TEK8xVognbgwZTSeWKNxJ7Dw/NOf9B1RfqO9aC+kuRc+w5uOCLwgyjLWn76aY24TCT8yfq97cFh0+MTpoeqoSOM09dTTYT+Azm5MI/Wgzp7MhQm9Ps1FdfLVf8qqKmpprqiGPHaDGif6jM+jVzX8paKIYc7h3lwsdvnPM5DCOtmJFYBJLA+FzyJ5YdR05MvnPv7Mhw2qZudh8c8NnRyfZCKaK7I8tIeXwKKo6V9WvyHDw20pLifaVyxHChwppVuTmveBouhGyy8hyG0RCbbjJmTSX0Qet6VnVmue/RXrIZmZDHMFII6e6ceB8SOceWDV3sOTzYslIbhWLEsb65lxZX9VNggyPzSY43jHSSGiPRzloSjXQgRORlIlIQkfcnz98lIg/UtXm6iPQmx2frX0OrOTlQIoonB4qz2YD9h4dY1ZmndjFYoRTSVWckvO6EUii2LoEtih3lMGa0Ri97LufYsXegZWMyjLSQGiPBuJbEE0Xkgin2n4ovyPfHwNX4PIOZuAjYhi8p/u7k7/0icnldu0Jy/gmP2WhJ1CMir8PXnPpzVX37FG1eAHwPX3vqt2eR6zFv9h0ZmpRpDf4uPHYOv55p3Ij4hDomeBddHRn6B8uItLaobaEY0j80d09gpBDSP2SSpoZRTypiEinQkhhDRP4I+Gvgd1T1M1O0eQ2+4u27VfUv59vnbDl4fHTSaiVf9dWNiQxRf+3XcWMBsG1zD4/t6yOKlRYlTftu1GtQ9A2V2TCHIPZoMSKKHHE8Oa/DMFYyafk1tK2WRN243ovPoH71NAbi94H/AN60mAYidsrR3slB68GRCjj1Jb5rdSUSVJmwrasjw8BQueG01XwpV2JGCnPXxw4jx74jwy0elWG0N6nwJGhvLYkqL8TXoXqZqn5jijbnAv+INxD/2syAp+OOB4+x6+DQpO21mhLrV+d5eE8/uWww5iyEkWNwpMzFZ28gjByKX5aqNXGJyDlGRitksxly2YCB4TLlyBG7iEroaLVMRKEUUSiGZOaQiT04UubAsRE2b1gYNTwjnXzqazteecPHXvblpR7HQtH2RiJFWhIP4Mt/v1NEfqiqAw3aHAGOA28Wka+p6v4mzj8ll56/mYtmyBG4+5HjnHPmugnLVkWgM5+hUgm93oMqG9d0kO8Yd+J6unKcd9ZaNq7vZvP6Lh7adZKtNdoQC6G3l88HbNnQ3TB+Mh0icPZpa7jiaacvjMiRkUo+9bUd31zqMSwkbW8kaH8tiSpH8N7PTcB3ReSFqtpf12YEX6zw28AtInKlqu6bR58AZDPBjEltB4+P0JGb3KazI8PgYJFMIIwWI7o6s9TOJBVKIYEIgQirOrMcO1mYENdYiGtxsRQxMFzmtFNmU3V9ImHsGCmEC6atbaSPGz72sulr3bc5bR2TSIOWRC2qegi4AlgFfE9EJt3eq+oQXg/7EPD9+uW4C0EYxpMqv1bJZYMxQ1AoRXTmJ953FMsx+VwGERgphskS2IVF1QeiTw40v1qpVI55ZHffAozKMNqTtjYSTNSSeKD2AXweeL2IVF/jOhHZKiLbkuWrzWhJbBWRc0Tk1fiVTZcCr2+kJdHg0dSch6oewRuKPHCTiGxq0GYY+HlgL95QPL6ZPprlSG/BK9E1IJfNUCrFiAjFUki+boqnUAzpyGdY25Nn3+Hhlq5omo5KGDNUqDRduG9guEwpjFsqbmQY7Uy7G4mZtCTOYqKWxBHgIL7E9oPAi2epJXEEuBt4T/L3YlW9ta5dVUui/tH0nb6qHgOuTJ7eLCKnNGgzCrwEb+i+LyLnNtvPbHlg90nyDaaawGtUF8shQSAUiiFddUaiWI7IZwPWrMpz8Ojwos71jxZCTvQXfT2pWeKcUixFLSkcaBhpQOyOyWBydsMYcez4py8+wFSyGmdu7eGb399Nd2eWk/1FLnj8BvYcnmgMLjpnI1s2dvGdHx2YV0G/uaDA2p48Wzd2T6peOxVrVuU5bUsPVz7t9IUdnJEWUr3Kod09CWOBOXRihFJ56hIaPoFOCUR8yXBkksUJBPYcmrt2xHwQfC7H/qMjDI7ObrHZ0GiFUjnyCnqGscIxI7HAtLuWxB0PHp92KalLpEtFSJLYvABRLblshl0HWlfQr1kEXy12/+Fh9hweon+oPKMBGC1GPLK3fnGZYaw80rAEdrnTtloSo8WQA0cniwzV4lTHgryq44+J+Hn+Vd35eY8plw1Y1ZVjYLj5Ok0iwmghZGikQjYbsK4nz5qePD1d+UlLcfsGixw+np8xf8Qw0o4ZiQWmnbUkfnTf0RnrGEWxFxnSmtp+zjmqTmomE9A3WKanKzd14KMJHn/GWvIZ4eRAgUymuWS5KplAUKf0DZXpHSixtifP+jUdrO0Zr/kUxUqhFHGir2AZ2MaKxqabjIaMFkMe3NU3YxwhjnxpDU3+Y2zaydOZz3Ckd4QtG7vZtG7Gqukzks0E9A0UoQXhAsEbjJFCyP6jIxw8PjJBo7tvsMgDuyxnwljZtJWRSIFmhIrI/6vbXh3DJhG5SERKIvIrdW1ERL4vIt9Knt8iIh9r0EdL9CRUlW/+cN+sAs1R7IPWtVNMrsZIBAInB8o84XHr2bimY97BYOccx0+Osn7N/KeuahGgf6jM/iND9A2VkqqyMSOFiokRGSuatjIStL9mRAl4q4hsbrRTVR8E3g58XES21uz6I+CJwOtn2c+8uPuRExw6NkIwg5EQYeyir85faCthTC6ZogoCoVSJKVci4tAxWqjg5m0klL7BMhvWzN8rqceP33Hw+AiHjo9QDmNO9Je4Z8eJlvdlGO1C2xiJGs2If8FXcH1Dg2YDqnpUVQ+o6peBZjQjjqrqTlX9Ij7j+W68ZkTtxLcm7SY8mngZN+OzpP9imjYfwSfw/TOAiDwB+ABwdZKNvWCoKvc+2sutdx+eVU5BNhNQrvhsa1UfmyhXYjo6/NeqK59lYLhMd1eOgaESfUNlVq+asoL7rHBOiWJHpkYq9Zwz13LO6WtaliUdIPQPl9lzcIgDR4cZHCrTN2iCRMbKpG2MBOnQjHDAnwFvnKqUhqo6fD2qK0Tkd/CVar+kqv/VwnHU98nJwRJf/N4ubr7jEPns7ALC2WxAqeIT1pXqUtN4rH5TEHiNh7U9efqGSgwMlVi7qnlBoCq5bEB5LGdDiZJM6o5cQFSJJkxzzRfBB+WP9I5y271H+O7t+znRX5izVoVhtCvttLopDZoRqOo3k5jK+4FfnaLNXhH5Y8ZLiby4mYE3y6e//gj3PnqSjnymqaqsG9Z0MDhUYrQY0t2ZGaug2tOdp1wJcU4JI0d3Z47+wTL9Q2Uef2bAcKEyp5yJnu4co8WKX3lUjInCmM7OLEePj3C0d5RTN/ew99ho0+ediUIpYt3BIW5/4Kd0dWbZtLaTnu4cXR1ZspmATEbIBIIAY5XC0p2Ea9Twj1948Pnf+tgvfG+px7FQtIWRSJFmRJW3Aj8Wkb+ZqoGqflJE3gN8bAptiZbxaz//BF79vKmzqqciEOHrt+xk85oOegdKOAfdnVlO3byKM05dza6Dg2xe38W2zat48LETrO7Os2ZVnkuesJnsHESBVnfn6BsosHl9F7FzXHD2es7ZvoHb7jpIPpvh9FN6WL+ue8ZYylwQgRc8/XSeefHWCcuCo9hPf8WxTlDgs3I3K4kH713qESwkbWEkSI9mRPUkd4jIF4G/At47TdMoedQzhBcoqmcdMNjsePK5zKzrGtUTxUoul0FVyQRCGDo68xlCp5TLMUFGkADCSMlk/GenquTmYCQ6O7JEUUwgMDRcZuumVeSzgVeiC4RCKUSBXL61K5+qHO8rsvPAIJddtGVBzm+0J9/62C/0LvUYFpJlH5NIm2ZEDW8DnoMv+d0sO4CnyOQ5m6ck+xaNakyiOldfvZvu7S+MTb24WInjmEAEEShXmivfXSWbDSiVfRwijByrV+U51js+vXTwyBCrOucXGJ+O0WLIkd7ROelUGEa70g6eRK1mxISS4CLyeeBqEXlfsmldsnQ0wOtBN6MZkQV6gIuBN+MD1i9ppBnR4PgTde1mRFV3isg/45e3Nss/AG8C/l5E/gW/tPYl+Om4V8zhfHNCVSmVYoJAJgaNRekdKI3FHWKnxA7yeUFEKJXixn7QDGQzQjkcNzB33HeESuTG8jnKoQOUSujm7BnNxOHjI9z76AmuuOz0BZnWMozlxrL3JEipZkTCe2g8nTQtqrobeC7eEH4H+Ak+CP4aVV00vd04dmMeRO2qnzhyhKG3mflcQLEUEsf+Yl6uxDXB3ebIZgIqNRnRsdNJCX/FYsTIyMLd6ccODhwd5u5Hji9YH4axnFj2noSqvnyafbsZDzDPeFunqtcB19U8v2U2xzU6tllU9aoG244Dq6c5Zvs0++7Ay5guGWHsxgK0tZnU/o7e09OdZ3i04pfISiJCNEdNiSCJeUzHycEi69a2PtGultFixIGjI5x2Sg9bN61a0L4MY6lpB0/CWKaEoRubZoqqf2OHUx3Tsu7pzjE0PK4TXypFZKdQuZsJAeIZRLKHRip0d2QXfHXR4RMj3L/zJOVK86vCDKOdMCPRAtpdM2KuRJGfblId9yRGiyFR5AiSb1ZPV46hqtiPQqEczzpZrx5FUZ3e8XPO15JqZWJdY4Q9hwb5yYNHbbmrkWqW/XRTm9C2mhHzoVTxK5bAG4oodkSRo1iO6chlUJIposiNBbGLxQr53JQzbNNSVcGrnSFc1ZWjWIom5Cg49TWkuhZYKjWKlF0HBlnTnefJ5zUsx2UYbY8ZiRbQzpoR86FQCslk/F27OmWkECIiFEsh3Z1ZRsuxv8uuua6XKr7uklNtOuu60Q37xedtYt+hIQ6fqM20VsrliK4FXA5bpVCMeHhPH6u6cpxz5roF788wFhubbjLmTLkckwn8Bb9YTu7mxWtK9yQqdM7peMq6+FLf3utofoqmam+q5HMZjp4YpTOfmTDlIwiVcPFiBX2DZe7ZcYL9R4YWrU/DWCzawki0uY7ErLQfRKRbRD4gIjsTTYleEfmhiPxaTZuqJsW/NjjfXyf7vj7TmFrFaCkkCIRCMaJUjsfqPo0WQ7q7sgSBv1hXt7uqYVC/TLZZvJ72uDHYvKGLI8f9WxjHtdNNzivmLSLH+4rcfv8x9pmhMFJGWxgJ2l9HYjb8I/Ar+PGfD7wI+Cywoa7dAeBXRGRs7WViEF8H7G/heGakUo69xOdAafJCYoW1q/KcrEuqC4IARalEzd/pO+cmdLNuTQfHTxa8Z1JjdCqhm5VgUqs50V/kljsO8tCuPgtmG6lh2cckanQknotPZnsD8Ja6ZgM1ug4HRKQZHYlq3ZWdIvJl4Ba8jsQTarKotUndiLnwcuAtqlr1BPYCP23Q7j68Yftl4FPJtpfis65vBTYu7DA9qsrBY8PsPjhIV0d2ko0QgXWrO3h037j8ZzX5TYQ5TQc5pxOMkeBXVfkprPGLchg6MsHS3P+MFiNuvuMgx/sKXHL+ZtatnntpdMNYDrSDJ5EGHYnZcBT4eRGZTcGKf2OiSt3r8QZjwW9fo9ix+9AQX7l5NzsPDBEEifhPXRB6YKTMpvVdjIyGE471RkIIK81PB6kqz3nqaWxc2+H1HiIdkxnt7BhfVluJYrKZpSuZIQIP7jrJ57+9g+/fdZBDx0YmeDqG0U4se0+ClOhIzILfA/4D6BWR+4HbgK+o6o0N2n4O+BsRORcYxhcJvAZf5qNpHtnbx/7Dw4C3MqrjuQ+RU0aLESOFCsf7CgwMlUFg+7Y19A0VGS2EuM6svwjWXJcf3dvP3gODhFE8Pt0UK535DEMjFfqHioRNTsmsX7ORux86zulbeihVHPuPDBE7x/BomWwmYLDgDdLAcJmujiz7jw7P5e1oKXsPDVOJdtPVmWHT2m7WremgqyNLPheQywYEgRCIJHklMsEjExGTpWgDrv3sPZd942Mvv3Pmlu3JsjYSKdSRmBJVvVVEzgaegX/NzwO+IyL/rKq/X9e2X0S+hPcgBoBbVLW2jHpTbNvUQxiO5zIE4i9Q2UxALhfQkc8k+RDj5LIBX7xhB8OFkJMDpSmT13rqnq9ZleeMLas5+7Q1PPfpzeUYDg6XuP2O/Rw9McJTLzqV7/9kHxvWdpHLZti0rpszk6J+3V1ZNqzr4vImz79YqCqVyBGGPsAeJwH5qs20eEbbMbDUA1hIlrWRIB06ErPWflDVEPhB8vigiPw/4L0i8pequrfu+E/iDeEIvtrtnFnTk+dJ525q/kDBxyPEF9+b1SGBgCiruvNs2dhUBXeGhkuEkcMVQm65fR+CrwwbViK6u1aRSTK5s5mAro5M0+c3jLnwjY+9PNU5Uss2JpEiHYn5aD9Up77qb8gBvgdU8GXUvzyfAc4FVR2rW9TMclNVpVCMGibGzcTIaGXsuEwgY6W6S5V4TPgIqiVCbJ7GMFrBcvYk0qIjMSvtBxG5BV/e/E7gJN6j+QDekEx6HcnU28WAqGpLp75mQxQ5nINMMDFHYUYUiuVwUqB7NgyPVrwn0vC8inOaZHMD4o1FZoFLcxhG2lnORmImHYkPMlFHAnwc4Sh+KejbZqkjAX7KZh9wE/BbSQnyWqo6EvWcywzlOFR1t4g8F3gfXvuhE3iEydoPN+BzHd6PN1pHgRuB90xliFR1ySKzYVRTAbbJlTsjhbkp0w2PVpgu/SGOlUx1kZNTwsiMhGHMl2VrJNKiI5GcY0btB1X9S+AvZ2hz1Xz2t5JyGI8biSamm0SEcjnCOS9MlGtCQW5wuDxlvadqgcE8/nxOlUoY09mxbL/ihtEW2G2WMSfKlSgp3a0TVOlmorqyxzkvQNQMg8PTJLgLE7K4FZ95bRjG/DAjMQ9Wqo4E+Oqn2UxAFGtTQWiX6E84dRRLzRmJkUI45T4BwhoBIOd0TELVMIy5Y774/FiROhKQlAlPtCK0TuNhOqLYkctlEITBkTJbmpD/HBkZV7jLZQNExqu9+lyDcc9BRChV5hb7MAxjHDMS82Cl6kgAjBYiX+U1ck0tNq2uhAoC8dnbsz7OTZieuugJm4gix32PnCAIfJwjkxmPbwQCxaIZCcOYL2YkjDlRKIVJEDoey1eYDYoPKvtyGpUZ21epVOKx2Ec+l2F4pMLQcJlcRojVxzdqZVFFxC+1NQxjXiyrmEQTuhEFEdktIp8TkZ+ta7e9ru2IiOwQkX9N8gpq214hIl8RkSPJOe8TkddTh4hcLiJ3JToPu0XkjQ3a/KKIPCQi5eTvq5p43dfV60CIyMuSMb0/ef4uEXmgrs3TE92J60QkW69RsZBU4wmlSjQHhTmfUBc3sSqqHMZj7Tes6+TIsRGOHB9my2Y/XVUqR+Ry41/nIBCKZYtJGMZ8WVZGgtnrRlyAz6OoALeKyJ82aPvzSdsn4ZPkTgHuEpFfrWnzLOB+fKXZJ+IT3/5ZRH692kC8CNE38QX3LsUvU/17EfnFmjbPBP4TX6DvkuTvf4vIzzT5+qvnex2+NtWfq+rbp2jzAnzW9b8Dvz2LnJCWMlryXkCpyRVKVfoHyzSxKIpiMRwLkK9f00lv/yijhZCuzhyqSqkck69bTlu2mIRhzJtlM900B92IfcDNInIY+EsR+VJdfaWTNW33AN8Ukc8B/ygi31bVAVX9QN35/0FErgR+EV9pFeCNwGFVvSZ5/nBy8X8L40UG/xif+Pf+5Pn7k/P8MUlxwibehz8C/hr4HVX9zBRtXoOvjPvuJL9i0RkthDjnS3M060lEkWNopNxUIbvRUjjWPpMJqIQ+FlLNjyiXI3LZgGrydxy7OanfGYYxkeXkSTSlG1HD3+Jfxytn0fZv8MX2XjBNmzVAf83zZ+IzpWu5AbisZnxTtWmqlLiIvBfvqbx6GgPx+3hP5U1LZSD8dFHMSKHida2bpBI6SpWoqWOLpXAsQF5dRusH44hj50ucM15B1Tma8lQMw2jMsvEkmJ1uxCRU9aSIHMfrP8xErVbEJETkZcDz8aW6q2wFvlvX9Bj+vduEL9exNdlW36ZRvaepeCG+XtXLVPUbU7Q5Fy9z+iZVnaRzPVeGRyucHCzOun0uE3Civ8Dh4yOIyJz0pHsHSvT2F3lsX9+MWdcCnOwvUQ4dIhBGMaqKQxgaqZDPZggjbywGRypkMgHdXVnKYcTew4PTntsw5ss177/lnK99/BWpXeW4LIxEE7oRU56C2amyNdKKqI7h2fgppj9U1Z/U7a5v3+g8jdo0cy/7AN7LeaeI/FBVBxq0OQIcB94sIl9T1ZZoWv/04ePsOtCou8Zs2dBNb39x3tKcYeS4+ScHyGanNxKdHRniMKZQCsnnMowWQqLI61/0D5bp7MxyvK9IuRJz6PgI2WyAUyXICIXbD0x7bsNoAfU69KliWRgJZq8bMQkR2QRsZqL+w1Q00oogWSH1TeAdqvoPdcccZbJHcAoQ4au1Ttem3ruYjiN4z+km4Lsi8kJV7a9rM4KfKvs2cIuIXKmq+5rooyGXX3Y6l192+qzbHz85yiO7TtLdNZvZwKnZtK6LZ166jS0bZ06o++ZNO1mzqoON6zoplSM68t6wlMohZ25cSyV0dHVkOfPU1axe1cGanjwb1nXy4uc+fl5jNIyZeP2rnlh/U5kqljwmMU/dCIA/ARzwlVl09xa80M/Y9FFSofVb+CDwtQ2O+RGTYxgvBO5MRIKqbV7YoM1tsxjTGKp6CLgCWAV8T0Q2NmgzhC8WeAj4frL6alEZGqmQzc7/qyNA38A09ZhqGC1WAGVVd46hkfEkvEIxpKszi6oiAqVk2WtT5csNw5iSJTcSTNSNeKD2AXweeL2IVMe5TkS2JjWTrhSva/1/gT9roBy3MWn7OBF5sYh8FR8cf6OqDoLPk8AbiH8E/iNpv1VENtec5x+B00XkWhG5QER+B7gKHwSv8lHgeSLy5yJyvoj8OXAlcG2zb4aqHsEbijxwU+Ip1bep6lrvxRuKRb1d7h8sk2uBkUDgRF9hVk0LpQgFujpzjBYmJ+GpKlHscEl8JIodqAkPGcZ8WQ5GYibdiLOYqBtxBC8o9EmgA7hCVf+mwbHfTto+iL+InwAuU9XP17S5Cr/c9i1J2+rjjmoDVd2DFwl6Ll6t7u34uMUXa9rcBvwq3iO6D/hN4FdU9fZZvgcTUNVjeCMDfpnvKQ3ajCbjehRvKM6dS19zYWh06pLdzVAJ/dLV2TBaCEEhnw8a5mbEsTJaCMemoeJY56JrZBhGHUsek2ilbkRyzN4m2l6FNxQztfs+Xm50ujZfAL4wm36nGEf9thP4Kbcq70oetW0KTJwKe4x5al/MhoHh2ZfTmI5SOSLunjmu4fMxfGly1OdG1H/AsVNGRiusX9eVPHdmJAyjBSwHT8JoM/qbWC47HaVyNKvlX355a21uxMT9URQj+FLi3Z3+vkeVMVEkwzDmjhmJBUZSpjkRRjGFYmsK50WxEsc6Y55FGMaEsc+wds5NytQeLUZ0dWaJYu89jCfUaVNZ3YZhTGbJp5tWAKnSnBgerRDFSm5+q1/HiGJH/2CJzRu6p2wTRrE3JCI4ZdI00mixwqquHMOFEFWvMdGRz+Dw01DZjM07GcZcMSOxwKRNc+JYb4FstnUXXRHYd3hoWiNRKkWQLHFt5BmMFkJOPaWT4UIIKOVqHoUqYejIZtrfYXZOKZUjyuWIYimkUIqoVCLKZW9Ao8hrjsexwwGCkAmETEbI5TLkcxlW93Swbm0nPavy5GZIYDSMKmYkjKY4eHS4pRfdQimif3D6XIlCOcJf9kCdTlpZVSiGdHf5XAlVpVgKWbO6w0uYRjFdbfY1L5ZCTpwc5fDRYXpPFugbKDA8WiGOHVGsCJDJCEHgH7NZaeacEkUOp8qq7jynbV3DqVt6OHPbWjZu6G7JajUjnSz6LZasbM0IFZH/12B8KiKbROSipP9fqWsjIvJ9EflW8vwWEflYgz4WXE/i0LGRll5QhkYqMwavq9oV+Y4s5cpkjQjnlEAEBYZHwwklwyvh8q8Eq6r0Dxb50Z0H+OwX7+VfPnsn//ONh/jp/Yc5cGSQ0WJIEHiPoKszS2dnllwuQyYTzPqzCAIhn8/Q2ZEljh37Dw3w47sOcP2X7+fbNz/GY7t7iaxqrtGApfDDV7JmRAl4a12y3hiq+iA+D+PjIlJb5uOPkrFPMm6LyfBomYHh2WVIz5ZqufGB4amlTAtFXya8K58ZMxj1KIo6ZXikTGdHNjm3D3ovV6LI8cCOY3z2C/fy7/91Nz+9/zDDI2VyuQwdHdkFv7sXEbLZgL0HBrjh5l3ccMtOdu/vt2C/MYFF9cPFNCNuBk4H/gL4wynafARfw+mfgZeLyBOADwBXJdnYS8a9j5xYkPn94ZEyDz3Wy7OeclrD/dWlsp0dWYqlxiurBBmTRN22ZY0vQy5eOW+5UQlj7nnwCD+99wiVMPJGIb+0U2KZrLD/0ACHjw7yxPO38uQLt9DdnV/SMRnLg8X2JFa6ZoQD/gx441SlNFTV4TO3r0hKgPw78CVV/a8m+mk5o8UK9zxynMwCGInBkQqDw2WGRxt7E+VKjDpfDbY4zfJbFyuxUyTwGdeB0LLluq3AOeX+R47xyevv4va7DqLojGXSF5soVu5+4DC3/ngvh48OLfVwjGXAYt++rHTNCFT1m0k85v34Uh6N2uwVkT9mvAzJi5vpo1kqYczwaE0WtVb/+GDnkRMFbr3zAKoQy8JM3zy6r59CKeS8szewaV0X2WzgV+hkhIGhEpUoZk2mg9Fi1FBMKEyCsj73wjE0UiKKezh2ssDWza1J/psr2UzAwFCRb9/8GMPD48UR4wbxleXCwzt76R8qc8G5mzjjtHVLPZxlzRvefsOmL3/8lb1LPY6FYtGMhJhmRC1vBX4sIo1qTvmOVD8pIu8BPjaFtkTLuOP+o/z0wclVzQUg8EX1TplmiWqrqISO2+876qeUnH9jt2zqZseuk/QPltiwtouR0cZqeIMjZTKZgKGRCqVyzO4Dg6zu6eC+R47z4GONyoItPPlchrO2reahHcfZva8PkdmtRFou7Dk4xMGjQ2zcsIrRsgW1p+EpTJ5lSA2L6UmYZkSCqt4hIl8E/gp47zRNo+RRzxB+Sq2edfhS6E3x7KecxrOniAcsB677wn0UiiFrenJkMpCTyVNeYSVmw9ouOvIhuaxwxtbVnHHqGi58/CZe8Oztiz9ofPmSL33rYXIBXHTupGK+bUNPZ5ZnXHIKFz5hUp1JA7jmdU9JrYGARYpJiGlGNOJtwHPwK7SaZQfwFJl8W/qUZF+qKJRC4jFd68Z34j7r2t/zDI9U6OrM4pzOSYN7vqgq9z18jM9+4T5KpbAl2htLycn+Ao/s7OWxPUvjkRlLy2J5ErWaERO+aSLyeeBqEXlfsmldsvwzDzweb1x+E3jrVJoRQBdwPnA1fv7+dXWaEd/AL7v9j5qlpXFSaRUS3WgRuRb4J/y02FVMXLX0UfxS3D8HvgS8Cl/Oe0IOx2xR1Z0i8s/45a3N8g/Am/DLdP8Fv7T2Jcl4XzGX8SxX4tgX94ud4pxLSsBONhSFQkh3Zw4oMlII2bp5FVHk0EUu8hdGMd++eSd79velKqv52IkROjqyrOrKsW3rmqUejrGILJaRmEkz4oNM1IwAKOODtj/Ga0bc2uDYbyd/i8BB4Ad4zYh7a9pcxbhmRO1y233AdvCaESLyEvzy06vx9ZQmaUYk+RfvA94N7GIemhEJ78EbwaZQ1d2Jd/Q+/FxoJ/AI8BpV/eY8xrPsqEQxmpSbmMI+AL5GUxAIqkqhGJLvyHrDsohjHRgq8j/feIhCMUyVgaiy/2A/nR1Z1q7pZJUtj10xLIqRMM2IKTUjjgOrpzlm+zT77sDLmKaaMHREiTcxm6kjp4okj3IlWjRP4tHdvdxwyy4yAQuyTHh5IOze20c+l+HZTzuTIGifILwxd9qrqI2x4iiX47F4xGwygV2sZAK/MqpYCue09KwZnHPcctteHnjk2LLLeVgIotix90A/nR0ZnnbJ6Us9HGMRMCPRAhJNiIemaXKhqu5frPGkiWIpRIBsVqiEbsYlpLVCQ8OjlQVVpysUK3zpmw/TN1BcEQaiyshohaPHR9l3cICzTl+31MMxFhgzEq0hVZoRy4nRYgjii9OVpqjbVMVrTngjIUChGI0JD7U6P+Hg4UG+euMOUG371Utz4eCRAVZ159h6Ss+SlxQxFhb7dFtA2jQj5sKBQwOEkePssza09LyjxQqqjs58dkYjUSiGdHdkidVnkZNMURVLEd1drVFJck750V37ueu+wz443UbJca1F2HdwgI6ODM9+2llLPRhjAVl5t0BGyxkaLvGlbz7Ejp0nOHZiuKXnLhQjokjp6py6uF+V0UJIV1d+7LiOfAbn1HsjLRlLhc9/+f5xA7HCKZUjTvYV2LW3b6mHYiwgy8JIzKAxEYjINSJyd6IHMSQiN4nIi+vaVXUZBkWku27fBTXaE5uSbVVNissanOfrItIrIkUReURE/l5Ets/idXQmuhH3iUgoIrdM0a4l2hUi8gcisic5z10i8pyZxrgQ3PvQUbLZgOO9Izy443hLz10sRZQrMV0dWQozGYlihe7O7Ni/OzqygMwoajQTqsqju3q57j/vYWCoaAaihiPHRth7cMB7bkYqWRZGguk1Jj6HL13xz3hNhWcCdwBfF5GrG5xrEHhN3bY3ADMGjkXk94Hv4UtxvIZxTYsA+H/THFolg09s+xg+ga9RHy3RrhAvTPRRfBnxS5PzfSsJoi8aqsquPScREQrFiEo5ZrS2WOA8GS1WKIcRHR0ZSuXpL0SFQjg2rTRaCOnqyCDA0d656zCVyhFfveERvn3zY4jQVrWXFgOnypGjQ9x1r4Xd0sqSxySm05gQkV8GfgV4lap+ueaw/ysiHcC1IvI1VT1Ys+86vDjPvyfnyAGvw2dVv2OacZwO/B3wcVWt1XrYC/xQRNbN9FpUdRSvTYF4hbxGx7RKu+L/A65T1Wry4TUi8vP4ZMA/n2msraJUihgaLo+t7imVI+57+AjPvKw189QjhZBiMSKbCYgiN20IoDahLowc2YwwWgzp6mz+zl9VeWRnLzf/cA+qy6+k93JieLRC/2CRYyeG2bJ5yrQfo01ZDp7EdBoTrwUeqzMQVT6EL93xi3XbPws8vUav4WXACHDLDON4TXK+Dzba2cJKrPPWrhCRPPDUBm2+Q3P6FvPmRN/ohGWnvX2jFIqtE/rpGyhSiVxSt2kWWQ8K1XQKVV93CJGm1Nb6B4t87kv38Z3v70QESxqbBYeODvHQo72mapdCltyTYHqNiScADzc6SFUPicgQcF7drj7gq3hv4u14z+RTzHyFORcYUtWF9ptboV2xCT+11ajNdGJLDYljRxTP7cd96MgQmWxAnBiKuBJTKoWcODnKmtWdczon+Ozq4ZEKO/f1j3kHOrske+LYL3l1qhRKESf6iuza388ZW9dMuRpJBCqVmFt/vIcdu/vIZoRMZvx1GdMTV2JO9he4+4EjXHTelqUezqLya2/+av5/Pv6q1s2xLjOW1EjMUmNipl9po/3/BnxSRP4RX6n1jcA5Mw1nFn21ilZpV7RE3+I7/7uXex5uuuI5p2zs5vDhAY4em7iiqVSJuPvh42Tyc192KiKce9a6MeGh6suaMSYgXiwpkxEygT+uVAr52k07KVXiSe/OpvVdbN7QzSOPnWDfgf7Z9WE05OGdvQyPVvjWD/YQBMthkmLReAW+Bl0qWWpPYlqNCeBRxvUhJiAip+FlSB9rsPu7QAx8GrhJVQ8mBmk6HgXWisi2BfYmWqFd0Yt/fS3Rt3jx5Wfz4stnI/o3mX///E/ZtHaix5DJCE994iau/Nm5nbNK30CRvQcH6O7MsWFtF2t68jPWRerIZzh1YzenbO5hy6YenvC4jVzxjMbxkShy3PvQUe645yCrOjJcfL7pJcyXXDbgyqedwbOetqjrJ5aa1BoIWMKYxCw1Jj4HnCsir2xwircCFRoU3Et0oq8DrsB7FbPhC8n5/myK8a6b5XlmYt7aFapaAe6ars1iEEV1sqcJcawUSyF9A4V5nX9ktJJ4A35KbDZ3+MVSRDYJMlfCqOHSzNi5Ma3p2+7YjyorMmt6IRgeKTM0Uqavf2klY43WsZSexIwaE3g9iS8A14nIn+GDt114fYk3AdfUrWyq5X3A3+NjFDOiqgdE5M3Ax0RkLT6OsQfYhl991YlfqjstInIhPgC+CegRkUuS89+TNGmVdsWHgc+IyE+AH+Kn1LYl518URoshURSTyUz+Gg2PlHloxwl+9mfmvsppcLhENhMQBEK5Es8qublQDOnMJyutShFresbnl5xTdu09yfd/tI9CsUIulzHjsAAcPjrE/Y8c4/Jnbl/qoRgtYCmNxGw0Jp4P/CreIFyN13uIgDuBl6nqt6Y6eXJX3pQ4uap+QkR24JXwvgiswutOfAdvdGbDN4HaK+PdyV9J+miJdoWq/qeIbMTnb5wKPAC8RFX3NfOa58PQ0NRJav2DRTZtWIVLlqXOhYEhr1udywaUytGsPIlCKWLN6g7AL8etxiCOHh/hxlt30tdfJJ/P2JLWBaRciRkcLrH3wADbz1i31MMx5onYkjWDOQbs73/oCLf+eN+URmDb1tVcdN4WznncxjkN6hs3Pcb+w0OsXpWnt2+U3Qdmlu8OAuHCczYRO2Xt6g7O2b6eY8eG2b2/n1w2sKD0IhEE8ISzN3P5M7evhCXEqX6B5msbc6Z/sDztBeBE7ygHD898YZ+KwWEf78jlAoql2ZV9cE4JBM7YtoZyKeRL33yYXfv6yecyZiAWEeeg9+QoDz7a2jItxuJjRqIJRORbIjIyxeNtSz2+xWZoePqaSGHkGC1UOHJsqOlzqyoDyfnzucyMxf2qrFndwfbT13H7XQf46f1HgKSEuLHo9PYXONE7anWd2pylXgLbbvwOPnDeiBVXCnMmIwFw+NgwPbtPsvWU1U3dyRdLEWHoyOcC8rnMrCq5nn7qanq6c3zjezsolWM68hlEfDB7VYtKhRvNceDIIPc9dJTLnnzaUg/FmCNmJJpAVQ8t9RiWC6rK4HB57HkmI5x91nqOHh9heGR8WWwUOU70jrJjZy/nn7t51ucfHC4ROwf41U1hGE+r3XD+4zcyOFjk9ruOsW5Nx5i2dRwrYWiexFJRKIT09RcYLVRY1Z1f6uEYc8Cmm4w5UalERNH4xXfL5h5+fMd+KpWI0dHyhLYnTo6y/9AAA4OzXzt/6NgIHckKpNgpU1XHEIGLzz+FA4cGeGRnLyJC7BRJvtlR7NBFS6Q3GrH/8CD3zyGj31gemJEw5kSpFBFG43PN+VyGE30FDh8dJt9AznLX3pPcdd8hBmcxRQVw8MjwWFC8KkFaTxAIl1y4hYcfPc6Ro8Nj01lR5MgkZSHi2E0o+mcsPmHoOH5ylN6+0aUeijEHFt1IpEhg6IqaflRETiSB7SfXtLlFRD5W8/y6mvZhIjj0NyKyqu7cvy4iP0oC4qMicruI/EZdmyeLyPUiciAZ+w4R+VMRWZTPdHi0QpBclAMRhkfKoNDXX2BNT0eDi7qwY2cvN//vbvbsmz58EzvlyPFxDYjqhX7C2QQuuXAL99x/hN6+woSpqChySb0nj1OlXGldZVqjeY4cG+KRnY1SoozlzlJ4EmkRGKpyET6Z7aXAeuDbScb2VHw3aX920s8fAH9TM66/wmd7fwVfDvxS4H+AfxOR2jLmTwVO4LUyLgLeidfLaFhWpNUMjZTHspVXr+7g6PHhpForOHUUGwSaRYQjx4a59fa93H3f4SnLSp84OUqpPH58HLkJK9HHDcRhBoZKkwLiUaxkgmDMe4hjZWhk4hSYsbg4B4ePDrLv4MBSD8VokkUNXKdJYKiG46raCxwVkT8B/hd4Br6ESCPKqno0+ffnEjGhVwJXi8jT8TWp3qyq19Yc81ciUgY+IiL/o6o/UdVP1p13t4g8Ba+v8YEmxj8nRkbGcyTWrunk/oeOjO2LIkepFNI9RaCyUAjZc6CPXD7DE8+fXFb6trsO0ZEfz4iuRA6pyce4+PxTeODhY/QPTjYQVRQfXBcRyhWvbKc6bezbWGB6+wrsOzjAGdvWroQEu9Sw2J5E2gWGqpHZZtZbFmvavxY//k80aPcPwCgTazzVswbob6LvOTNaCMcu0AITPIeT/cUZV7Ic7x3l6LHhCWvowzDmJ/cc4sCRobFz57IBxWI45khceM4mduzs5WRfYdoltao6QQxpZLRC32BxwjZjcRER9uzrZ8eupqrlGEvMYi+BTa3AUFJH6Z3AMPCTWR7zdLxn9b1k0xOA3UmV1wmoallEdjH5Paie6yn4QoGvbXbs37x5J3c/dHRScLd+Oqj6dPOGbk4cHxqLG0ggE6Z9RgoVLjp/K/c9Mn22baniuPWOA2Tz2eQuX+jpztHVOf61zOczDCQew5nb1nCib5RjJ0ZmkXMhRLEbmxJzTjl2YpSDR3xin2Vf///svXd8JPlZ5/9+OiflMEGT8+7sbF57nbB9ZI7jwMCRwWDD3XFw8APuOOLBgTnSmXA+MMk54ICNs3ftzZ6dnbCTk0Y5q5U656r6/v6okqYldUvdUitOvV+Wd6a7+lvf0kj11Pf7PM/ns3HkdYPPPt25bWrOLt2Y+PFP/83bPrLR81gr1i1IyPY1GOq3bjhBTG+LH1RKLXV3/A4RSWJ+792YuYdfLHp/qXmVnLeIHAe+BPxlsVBgpXzXW4/wXW9d7ls2n4/+y2XamgM4RGio89JY75t3460Pebj/SOuSKqsul4MHju3lW9689Lk///VOGht8uJ3Cy+eHaKxf3vHO53VSH/Kwqz1U+UXZrAtKN/jObzrMI6d2bfRUasW2DRCwviuJ7Wow9FbMFc2kUqoS/YkXgZ8DCsBokYfE7LzeJCJepdS8TKuVlzkEPLvg9RPAc8A/K6XWJWmtlDKrmQC/300kmln0ZK4M0xEuFPKWHUfTDHKW7WVLU6DscZmMRnO9l6df6Kl4L1vTDdy2DPimRDcUQ2MxDh9oWoXFrc16sS6/RbK9DYb6lFI9FQYIgLRSqlspNbAgQAB8HHNFUqqS6+et9z5WNM/7MfMvn1JK/X9VzHlV5Av6XBdzKOhhJrLYXMhQikxueSmNQkHjZmf5hZdSisZ6H8+93F/VHIsb/Ww2HyNjcVv8b4uwXiuJbWkwVGuUUq+IyP/BrGbyYhoOKUzToT8A/kQpdQ5ARE5iriqeA/5IRHYWjTO+aPAakstpc/v9fp+LmRKd1PFEDm+JprqFRGJZgsHyq41cXuOlV/opFPSq8ghKmXkIwzBlq202H4PDMTp2RtnX0bjRU7FZgvX69VnOYGg/dw2G/idm0LgJnAVei2kwVKriBzANhpRSU9aqoiKs8b4VaMPMiXRirkigcoOhmqOU+jXMrbnvAy4DVzCrut65YDvpBzE9rX8IGFvwtaakM4W5pLZSoJXQRopEM9SFltfqyeY0dN0o2eymlOKZl3qJxBZvZ1WCUpAr2E10m5XpSJq+wYjZLGmzabFNh2ygyiR+V+8UX3n2Dm6Xk46ddXz9hW6czsXPGw/ev5NMBY5ye3c3cPxIK0cPtc57/drNcb74bBcj4/E5mY1qCPjdBH1uWprLCffabDR+n4tHHtjNQyd3Ln/w5mVbl8rZC3Gbqkmm8risoLCUraiCirwE8gWNwQWduOMTCZ4/049hGHPyH9Wi6wZ5zfYy2MxkshqjE4mKZOdtNgY7SJRBbIOhsiRTOUQEr8dJIpkr38WsFNkKfCCi8dw8ldd0Js9nv3oLl8tBLlddLqKYgmbYwn5bgJHRGFdujpeVabHZWGw/ifLYBkNlSKXNG7/f52YsbHZHH9zXRFODn9vdk6StwJDNaZYnxNLkrLyEppkB4bNfvoUyZiU1Vr4SMAyFYXVe2zIQm5eCZjAxlaard5pjh1uX/4DNumIHiTLYBkPlmRXL8/vcxBNZ3C4HAb+bF0/38OQT+7l2O4yIEI1lKzaaKRQMxieS3OyaZCaWweU0BfpyudUlnpWhSKULFSXRbTaOiakkw2M+9u1pxOe1b0ubCXu7yaZqUlaQ8HqdxBNZ9nQ0cKdnCgWEJxPUBUwpqkgsQ90S5a3zUbx0rp/bXZNz+Q5NN9BXqbWk6QapzCKVE5tNSN9ghEvXaqaUY1Mj7CCxwcgCfw0R+b0FPhWlvr4gIl1SYrNeRJpEJCsia9LnYRgG6az5dG8oMHRFfcjLzEwKEWFwKMruXfUopdA0A4dDMCrYcpqeyTAymsDtvqv+mq7BzT1f0ClVGK0URONZovFsWdc7m/UlX9AZm0jS1Wf7Tmwm7CCx8Sz01/hzTL+J2a9O4P8seO23MfWpvqnEeD8GaMA/r8Vkc3l9rq69UNAxFPPq3HVDgWIuMCgU2WW2jDTd4FpnmMYG37zkZTSeW3UuQSkoaDrxIt9tpWBoLM5oOEl4ynRMs3Omm4PwZJKB4ehcXstm47GDxAZS5K/xD5jd5u9QSiWVUuOzX5g3/HmvKaWuABcw1W8X8g7gk0qpxFrMOZvT0HTzjloo6AQDHuLx+YY+I2Nx2ppNsz1dXzpIGIZiYCiKrpulrpoVcDTNIJ2uzY0ik9NIZ/KWDSqMhhOkUvk5k6RoLMd0JG0Hik1C32CES9fLm1LZrC92kNhYlvLXWI5/An5AROpnX7Dkwh+mcg2rqkml8oiYlqW5XIH2tiDhicS8MtWJqSRtLUGUUsTiWbwuZ8mxlDIDyqxXtkKRTuXRdYPBkVjNDILMQJBlcDROz8AM8URunomRoRTT0QyT06k5TSqbjUPTDPoGI1y7Fd7oqdhgVzdtNEv5ayzHxzC3oX4Y0+4VzFXELaXUIv/wpfjaS71cvrlY7mnxg5xiZ2uQrr5pGut9hAJu6kNexicTi3q2Nd0gFs+glGL3rgauLfCWqAt5SCRypIoMhcbCCSZn0mRH4njcTjNI1PBpMpO1ViZS2itjKpJhzPKqKG7gs60nNoZ4Is8zZ/rQN3k/5LnLoz/xyb/5/g8vf+TWxJbl2CAsOfPbwL5ZuXIReRfwqFLqO4uOuw58Win1eyXG+CBwXCn1pIj4gFHgXUqp/1PldCr+IXjl1UEuXh2ltTlIX/80bW0hXj7TN+/JHGBPRwOGroin8jz0wC7SmcK81UYkmjHNg4o+Vx/ysqM9hMNW5LPBDOTHDrXy2kf3ULeE5PwmYFs/Rti/jRtHsb+GJiIapnT5t1n+GpXwj8BrLUXYtwEh7q5M1gRzu0nw+VxEE1kzQV3iV2RsLM7OHXVzNqLF0t2JZI7wVHJRYIkncwT8bnsv2gYw3QO7+6e5dH2MQgXyLjZrgx0kNoAK/TWWRSn1Emb1089gbjV9fhlXvFWTTJlbNi6nw0xil9nD1w2FQ6zKJ6XmyllT6Twj4/Hyek9GZXpPNvcGSkFn9xSvXhu1/ck3CDsnsTEs668hIn9YofT5+zCDTYM17poST5pCbJpuUBf0EI2Xl/GejqSpD3rnpMXT6QJDo+UDhDmuTjpTqMiLwubeQNMNbnSGcTkdPPbgbtuffJ2xVxIbQyX+Gt9S4VgfxHSsG8E0alozlFKkUuaKQCvoNNT5iMfKq3cOjcTYvbOOSDSD1+NicHT5iqVINIPXXboayubeJZ83uHprnMs3bCHA9cZ+XNsAlFLfs8R7vRTt8iulHlhmrDCwLsJE+YJOQTMd6QoFnWDQQ19/+e5YzTp2fDLBfU07KqoSmo5kOHaolYJtRGOzgFxOn5PtePjkTntFsU7YKwmbiskW2Zamsxoej2vZbuqZaAaP04EIFe0p5ws6DqfY+882Jcnldc5fGuHClZG5xkubtcUOEjYVk0oVqb/GsywpeqTMlUT/YIR9exsB0CsseDcMRTZnyzLYlEY3DC5cHuXM+UGS6dzyH7BZFfZ2k03FROM5XC4Hfp+LeDJLMFC6OXxW3A9MqW+Px8XUdIqg30Neq8RfokAhr5d381gCEdi9sx6XU9Cs7bGJ6XT1A9lsbgSu3goTjWd59NRuOnbVL/8ZmxVhBwmbionFMjgdgs/rIp7IsqM1NP8AZT7lLdwqSiZyxBM5drbXMRJeXlJqaiZDc1P1EUIEjhxs4dKlIcbGYigFra0B7ju+k8lIxlZ73WY4HMLwWJyJqRSPnNrFyWPteG0vippjbzfZVEwimZ9LFuoLGuQMQ1HQ9JK5hIGhCLvaQ4SCnooqU6LxDKFAZccWc2BPI+fO9TM2FsfhcOB0OohEspy7MEhzvZcqGsttthD5gs7p84N85dkuuvum7XxWjbGDxCZBRHaIyF+JSI+I5ERkxPLZ/i7r/X4R+bWi45+3vCV+fME4bxeR5FrMMRq/2yMR8LlJpnIoK/egL5FETGcK+P1u8gUNvYLtJqXMLatqumwb6n2EJxJMTSUXyYtrmsGlKyO01HntG8g2xeV0MDaR4MvP3uHLz96hq2/a7tKuEfbabBMgIgeA00ACszHuCmYA/2bgvcC+Mh/NAn8oIp9SSq15Bi8az4Iyq5w8HheRSGbJ4FBMJp0nlsjRUO8jVYFXQL5gkM4W8FTYVNfWHOCpp2+V1X3K53Vu35nkwIEmklndLp/cprhdToZGYvT2R2hrCXDkYAsH9jbS0hSwfc5XiB0kNgd/g9kb8bhSqngVcEtEPrrE5z4BfAfwX4B3r8XEDEORyuRNqe3hKJlcgSO04PW4CIfjFY8zMBRl755G6up83O6ZWvYmPTGVpKmhsrxEc6Of7u5JlFJLjhtPZEkmcojLaUu7bnPcbgfReJbzl4c5fX6QHW0h9u5uoL0lyI72IKGAB6fT3kipBDtIbDAi0ox5o//tBQECAKVUZImPJ4H/BfyBiLxPKRVdyRzyBZ1kKk8mUyCZyhNLmLaeM9EM0WiWXF5j/54GYoksdSEvqUyeYNBNqgpToEQyRzDoIZ/XKpLMjMQy7O1oJJMtLBtQmhp8nD/XX9HqoLd/hscf2cNUNIvT7uze9ogIXo+TaCxDNJahoOnouiIY8NDSHKCl0U8w4CEUcBMMegj43Xg9LlwuBy6nmde611cgdpDYeI5griJurfDzfw/8MqaC7P9YyQBf/Fon129P4HQKHrcTl9Ox6Ek7XzCrloJ+D7FYBn97CGUYVW3b5LIafUMz3HdsB7e6ll9N6LpOLJ7D5yvvw+TzuhgPJyhYftqVcP12mMMHW4gklw9ANtsRIZUukErHGByOAQpNV2gFHU035pSLDQUYCqfTgdMpOBzmlzjAIY65v5+7NPLvP/63P/i5jb6qtcIOEhvPqu5SSilNRH4L+KCIvGclY7ztu+7nbd91/5LHXLw2wuRUOx276rl0dQSvx4Xb5Vwk970Uo+Mx9nU0UigYPHBfO8Yy6YzGej/HD7fxpicPlD1GKcU/f/Ii9x1trXgeAC2Nfl7/xD6OH9tR1edsbEqwbQME2NVNm4EuzNrM+1Y6gFLqU8A14PdrNamFTM9kcDjMpXsimTUN46oMb7F4jvqQj77BGXwe15xtadlzRtIUCvqSpbCJRI6pmVR1EwHGxmOMhRPk80vLitjY3OvYQWKDUUrNYKq3/oKIhBa+LyKNFQ713zE9Kk7WbnZ3mYmYXcuGodB1UMstA8pgBgbF1ZtjtDT6l6yOMuU5NCanylf03uoMrygBqRSMjce5dHm46s/a2NxL2EFic/DzmM/lF0TkB0XkuIicEJH/jGlCtCxKqReArwK/UOvJGYYiEs0ApomQz+syvalXsJ8/NBJlR2sIw4DR8YTpbLcEM9EMnd1TJd9TStF5J7zixGIsliGRyhON2rIdNjblsIPEJkAp1Qc8CnwN+BPMwPAs8D3Af6xiqP/BGsiGZzJ5cnlzayivGYSCHpKJlbVlzEQyNDcFUEoxOh6nod63ZINbIpkjm9dLqs0mElli8fJ+FpUwPBzh+s2xVY1hY7OdsRPXmwSl1Bjwi9ZXqfcPLPj7W0occx3TN7umTEczKKVwOIRcViMU8jA2FlvxeFrB3HICIZ/TSaVz1IV8ZY+fmExy5foYr31svvV3d+8UTufqqpOyOY1EIsfAYIT9+5pWNZaNzXbEXknYLMvwSAyPxzmn/hoKekkk8iser3dghn27GwEYGY9TF1x68RNP5oglssQT81cNvX3TZTusq2F4JMrA4IzteGZjUwI7SNgsy2g4gYjg87mJx3M4nY5lK5OWIp7IEQp5MAxFLJ4l4Pcsm5sYGolx9eZd68pcTiM8sbyibCXohmJ6JsWtznBNxrOx2U7YQcJmSXRdZ2LKLDH1+9zEk8uYDVVIeCJBc6O5xWQYBsnk0iuTfEEnPJHkTo+ZxB4di81VRjU1+jl4oIV9exvxeFa22zYxaYoDaqsIfjY22xE7SNgsyfRMmpzlEud2OUin8xhKrVp1e3A4xt5dDSilmI5kcFWQW5iYTjE0EiOdLtDTO4Xb7aS9LYSuG3z9mds8/0IXQb9nRXkKpcxttas37CS2jU0xdpCwWZJbXVNzRi6GoTAMzCBRAzWL/qEIO1qDhCeTNDVWJubXPxRhYDjC4HCUQMCDwwGvXhwCzBv9hYsDNNT7KlanLSaeyBKJpEmnV55vsbHZbmz7IFGhT8MiXwbrvXPWewt9HCqWv1ju/AvmoEREt455r4jUFR3zFuv91gXjv01EnhWRqIikROSaiLxLRNqr/V4txDAMOnsm5/ohCpqOyykUcrXZkhkLJ2hrCVIoaIhDyFeg/1/QDEbH44yOxejY3cDZc/0L+iSEW7fHqQt5VzSnwcEZrtmrCRubObZ1kLB8Gi4C347p0/Ag8C3AlzB9GmYZAt6x4LMPYHYvT6/D+cFUc92F6R3xU8B3AX+6zPjvAj4FXAa+G7gf+CXgAPCfVzrvWbr7Zshk7/YnFAo6waCXeCpXM2G8m51hDu1rJpfVyGSXV5V1OISpqRR+v4fe3mny+cUrhmQyj1KKXK76FUEurzMzkyI8WZukuI3NVme790lU6tPwMeCXReSQUqrXeu0dwKeBN6/D+QESSqlx688jIvJJ4E3lBhaR1wC/CfyqUqrYS2IAeLYKOY+S5PMaL7zci8eS0/Z6nMQTOepCHmJW93UtSCTzOJ3C6HiMnTsalj2+sd7H+FiUHTtCnD3bh9vlpNTeV1f3JMeOtpNK56sOaMMjUepCPtpbQ7ZKrM09z7ZdSRT5NLynAp+GKeALwE9bn/UAPw780zqdf+Fn92GuPs4ucYofA1LA/y315kq9JQCisQwf/8xV8oW7T+l+v5tYLGP2SKRqa4J343aYjl31+HzOZXsV6uu8RKNpkskchYJBNqeRLyECmMtpOETIZqsX8NMNxeRUktt2SayNzbZeSVTr0/A+4O9E5H9iymFElVIvruJJstrzv0tEfg+zY9oHvIS5UijHUaBHKVW5808Zzl0a4vzFYXIFg0Q8iwGEgu55T9HNjX6mZlIc3N9MMlXbxG4urxOJZQn6PUSTOfxL+EdksgV27WrgxvVRwBIBzGpklEIcggiItbK41TlOS0uQnv6ZqufUOzBDQTd48exATRr2bLYvz7/c91Mf/dv/8MGNnsdasZ2DRLV396esz3wr5lbT+9b5/O/GXLkIsBf4I+BLIvJWpVSpUp2a7YO85pG9vOaRvUseo5QiGsuwe0c99SFvzbdhJieTHHhkDyfv28G/edORssfd6hynzyncuT2Ox710cjqf19nRXofH48blqv5Gn0plefj+Xbz2if1Vf9bm3uFnf+KJbRsgYBtvN1GlT4N1I/4g5tP7v7H+vG7nB6aVUt1KqS6l1LOYbnPfBLy1zPF3gMPW1tiak89r5PI6umEsKci3UpSCVCrP2Hh8yS2nqakUY+OV60Ylk/m5Po9qyeV0wuE4PX2lVWhtbO4Ftm2QWKFPw/swk8VfU0qNbsD5i5mtBw2Uef9jQJAy0uCrTVwvJJnKo2k6mrYyH4lKGBiOIijGy8htKKXIFzR6+6YrXskMDs3Q1hpasS7T6HicoaGI3Tthc8+ybYOERVU+DVZlUyvwgxtw/joR2Skiu6zKpT/DTKi/XGpgpdRZzBLZPxORd4vIG0Rkv9VP8WHMUtiaMT2Txut2mgnhNTKGT6byGAqu3yqdME6l8qRThaqS0fm8jtMh5EpIjVfKne5JrlwbWVZfysZmO7Ktg8RKfBqUUjNKqZrUeFZ5/t8FxoBR4IuYlUvfqpQq26ehlPp14Ietc3wZuAm8BxjELL+tGeHJJMGgh3giu6ZloemMxvBIlHRm8ZP7xGSCqekk1Z5+ciqJcxWBzTAUnXcmuHx11FaKtbnnEPuH3oYKlJg+++Xr5PM6wyNRRkbjazaRhnofu3fWcerkLp58fH7C+PLVYT73havLigEuxOEQHjy1m3hidU2AgYCHhx/s4NTJXXb/hE0x2/qHYVuvJGxqg1KKqakUPq8pFb6WxOJZvB434+MJhkbutpIopYhE0ys6v2EoDN0gk1ldtXA6nefCxUGuXBux1WJt7hm2cwnsmmI1vN1c4pD7lVKD6zWftSSdKZDOang9TlLptQ0SAJqm09k7SX2Dj6bGAKGgl2xOY3IiteIxx8MJQivUcyomn9c5c7af6ekUJ+/fxY72OntVYbOtsYPEyhkFHl7m/W3B1HQKpRRKga6rNb8phqeShIIeuvumcbudvO6J/UQiafoHp1ecNJ+cStLR0Ugsvvqciohwp3uSzq5JDh5oYdfOelqaAwSDHrPxToFC4RDB43Hh87kqPqduGOSyZnGAx+NasyIBG5tKsYPEClFKaUD3Rs9jPegbnMHjdqLrZo/Ean2ll2NqOkXHrnqS6QI9vdM01PtwANPTi9RNKkYpU6Awl9PwLdHRXSkiZnf3wOAMff3TFDQdpSvEAUoJmP/D5XKwo62OAweaOXywlaamxRXNSinGxmJceHWAsdE4BU1HgOaWAPv3t7J3bxMduxvszm+bDcEOEjZLopRiYCiKiJAvrLyMtLpzgmGY+ksiQiyeJRFNo2nGqm6UI6NR2lpDrMBqYkkcDsHrKf+rNDWTYnI6ye07Ezx4chf3378Ll9O8jlxO46tfvcHQcASXyxRTnP1vLJbj6tURLl0a5PixHRw91s6+vc329pbNumI/mpRgIz0oROQDRd4SmogMisjfikjTguOUiPxAmc9/sfqrLk0ylSMay+B2O0km8+u2/RGNZeZqrnJZjeHRyrusyxGJmAKFG1HRJyIkkznOnh/k1YtD5PMa8XiGj3z0HCOjsbnAUAqn00l3zxRPP32TV872EY9n13HmNvc69kpiAZYHxGkggekBcQUzmH4zpgfEPuvQWQ+KjxR9dtUeFBZfB34C89/nfsxO8EbgR1Y5btVcuT6G0+Ug6HczOZVct6fY8XCCE8fayOR0PB4H/f1TFDQDr2d1zzXZbIFCQcezxJP/WqIbBne6JggGPJw+3Y1hqIoDr67D5cvDDA9FeOSRvRw+3GavKmzWHHslsZhiD4hPKqU6lVK3lFLvAR4qOu5jwOtE5FDRa7MeFCvfPDfJKaXGlVLDSqmngU8A37bKMaufRF7j2s1xnA4Hfr+baGz9nmDzBR0RIeB3k81qzEQyFAoG+fzqSk8HhyPU162+ymmlOETo6GjgE5+8wPR09UFXRJieSfO1r93iG6e7SaXsVYXN2mIHiSI22oOizJwOWXNatSR4NeTzGp/54nVmtfx8XhfxRO3MhiohkylQH/IwNXVXyylvJZ9XKjKYTObxelwb1jl98GAzZ17uJZstkMvpJJMru8mLw8H162P8679eoad3ck1EF21swN5uWshGe1DM8h0ikuSutwTAr6x20HJcujrC5etjGLqBbijiyRyRaIZgwI3TShSn03myWW1dtzcGhiMcOdTKYP80hqHm5DhyeZ2spSE1W2VUDdORNOPhBJq+vjfWjt0NXL02yuhoDMQMgrqhmJpJr+r7eu3mOPed2MnO3Y1MzqTtgLHOfO35rrd/+G9/6AMbPY+1wg4S89loD4pZXgR+DvADPwscBv66RmMv4pEHO3jkwY4lj5mcSjIwFMHvXX35aDXsaAtyJpGlod63/MEVEg7HOX60nVR6/RZnLpeDPbsbeeaZWwSDd9Xddd2gLuihpWWRUHBVpFM5hvonOfVAB8eOtdPUFFztlG0q5Cd/6NEPbPQc1hJ7u2k+G+1BMUva8pa4ppT6r5hy4b+z4JgEUMoUuhFYfSnQAiankniWqMBZC0IhD9FohunplXdalyKb1XA6Hev6xL1/XxNnzvQuel3XDQqaQTa7OilyEUHTFBcvDfGJT7zKM8/epvNOmGQyZ4sS2qwKeyVRhFJqRkRmPSD+emFeQkQaS3hHvw8zSHx5tR4US/D7wFdE5O+LztEJPEZRDkREnJjJ9ffXegLhiSRO5/o+UzQ1BBgZjaFpBm53bQNULJZBGQocax/46ut9jI/HSaVyJSuZMpkCLqfDavJbfTc4QFfXJLduhUEpGht9NDQG8PncuKzgqOkGhYJGLqeTz2sUCjrKUHi8LurrfLS0hmhrC9HR0YhvnVePNpsLO0gs5ucxPRwuiMjvYMp7C6ZD3G9wtwQWMD0oRKQVWLOsrlLqeRG5Afy2NT8w7U7fb73+NczVxi8CzcDf13oO4cnVFmxVTyDgorvbVJxViqpzD0sxNBzh/hO7SK6DmdCO9jqe+uqNsqWuSikKmk4ymSMUqt222qxlazJVIJmqbHGZyWrEYlmGhqNomk5TY4CTJ3dx9GgbwWDt5mazdbC3mxaw0R4US/Bu4B0ist8658cxK6t+GrgAfBXYCbxJKTVeyxPrusFMNF3LISvC63ExPBJFYUpq1JJCwUAcrKnTHsDOHXXcvLG8D0U2q5HJFqhAtX3dcLmcJJI5Xj7TxzPPdNLdPWFvXd2D2H4SNrDMnSkSSfOhj1/Au47bDvV1PlqafXz2c1cREdwuBx6Pq6ariX17m0DA7V6bBbXDIezf28TXv3YLqaBhzu9zEwx5qa/bnE/sgYCbBx/cw4Ondts6UvPZ1h2N9r+0zbIMLyMbsRY0N/mZnLqbsNZ1o+arieGRKK3NwTV7Ot6zu5FLl4YqvoVkcwXLZnVzPril0wUuXhzk4sUh28r1HsIOEuuIiOwTkeQSX/uWH2X9GRiOrHvS2utzMRG+64BnKDAMs4+jVhiGIpnK1zz4ADidgkJZdquVRQmlQCvoJBJr79mxUvJ5nRs3x7h4ccjeerpHsBPX68uW86AwDGNN7UpL4XI6cDqE4dHovBusphtIQcdRw22n3r4pTp3cTazG3t0duxu4dHGo6n0I3VAEg152727A43HhdIjp5YGZP8lkCqRSuVW77K2GTKZAb+8kbreThx7as2HzsFkf7CCxjmxFD4qp6RSZbAHfOgriNTX5icUypNOFBTduoaAZgFaz/ISmGSSSWZSqnZnSbA9GJJKuSLyvrs7Lvr3NOJ1CNlMgFstw6eIg+XyBQsHc1hHM1VVDQ4DGxgBtrQG8Pjf5nM7UdGrdu6xnIhlGRqM0NgbYv795Xc9ts77YQcJmSa7eHMdb4x6F5agLeRkbj5Z9v2D5S7vdzppIl/f0TvHE4/uYmk4hsvpttT0dDVw4P7BsEGtvr2Pvnkamp1JcuTxILqcDZrByu514PM55gSuX05mYSDAxkUAphWEo2trqOHiwBb/fw9R00hpjfRgcjBAKemlrDxHwe5b/gM2WxM5JVMkGe020icjfWOfIiUhYRJ4RkW9dyXjLUdB0unsm112O2uF0EA4nljhCKGg6ubyGXgP9JaXg5q0wjQ2LXePmzcsh7N5Vz4F9Texor2Pnjnra2+bLabhcDrSCTixWXo8pEPDw2KN7cQi89GIXN26MkM/riNxthjMMteS1iQhOp4OZmRQXLgxw5kwPTjHnN9sfsR709U9x+ZKdn9jO2CuJKtgEXhP/gtk09w7Mbat24M1AyyrGLMvFyyNoBWNdK5saGnzkcwVGx+LLBCdB1w1yhobH41z1jTGZzDEyEmX//mZmImmK73nBgIf29hDpdJ4bN8eYmkoxW4HU1BTk5H07mZhKohTs6Wjk3Nm+snM/sL+FYNDNy6d70DTdEihcfKyuGzgcUlHBgIig64obN8dwuYSTJ3fj87mZmKytnEkpMhmNqekUXV0THDu2Y83PZ7P+2EGiOoq9JopbkG+JyEeL/v4x4JdF5JBSalawZ9Zr4s0rObGINAJvAr5VKfWM9fIAcH4l4y1HJJbhwqWh9S99bfQzPZ0im12YjyiFYChlSYc7cbudq8pThCcSZDJ5TpzYSTDowel0oBRMTCR54cVucrkCDofD2uIyTxSLZTh/YYBHH91HNJYhnzMd5xb2EYjAAyd3MxGOc+P6sPXa0pM1VxNGVZVlmqa4fHmYhoYADzywi5lIxiqrXTvGxmI0NPjZv78Fr9e+pWw37H/RCinymvjtKr0mfqfIa+L7WWGQwDQySgLfIyLfUEqtiduMUoqR0RhffOoWjg1wPdN1RTZbXeWOwvS/0HQDt8uBy7XyYBFP5Dh7rt+SARFMDUfB4ZCyDWQFzeDylWG+49vu42tfv73o5i8Cjzy8l5s3RqsyGqpmNTH/fEI8nuHll3s4eXI3rS1BpmoskliMUjAyEuXSpUGefPLQ8h+w2VLYQaJyNtRrQimlicjbgX8Afk5ELmFufX1KKXV2RYNaXL46wsWrI6RSeSanUigU/g14Imxq9DM1nWRsPI5hGFXnQgxNRyvoKArzvCbmRlnDoGcYisGhCIlYlrx2N3ksAk88vp/Ll4eIRlLWNVW+f2+qu+ZXPPULFwZobQ1x9OgO7nRPzFVL1ZwRs5Cg62Pn8foq68z3el14PS4cDnPrMJMtrLlMylrwpadv//QH3/vDNRfV3CzYQaJyNtxrQin1LyLyJcxtp9dhrmx+VUR+Syn1Rysd9+EHO3h4GT+J9UApxXMvdHHnzjgN9f6Nnk5VPHByF69eGMDrc+LU7uYZHjy1mzudYRLxzIq27pRSVqXTyn9VU6k8166N8Ogje8nkCqRSa9NjkUhkOXq0jTe+4ciSAV7TdMLhOMPDEWLRDLmMjtvtYFdrkKbmAB0dTdRtUmmSUvyHtz28bQME2EGiGoq9Jj673MFKKUNEZr0mnsQMFKvG2mb6mvX1v0TkH4HfE5E/V0qtvaTpGjITSZPJFshktJqUtq4XPq8LXTPIpE1Zjfp6H5pmcORIGyMj0RV5WRezktzEQnTd4Nz5fo4caaO1NWQl32tLPm92i/f1TXPoUOu895RSTEwkuHRxgP6BGfJ5HY/bsej7ousGfr+H+0/u4ujRHTQ32+ZJG40dJCpkE3tN3MT8d/QBWzpIXL02Siaz9S7h6JE2Ll8eRqEwDDB0RXNzAAyDwYGZVZcQ381N3E2YrwQRoadnisnJJKce6GA6kq55UntkJEow4OHAgRYcDsEwDAYGZnjlTA9T0yncLjMweD2lV1VOp4N8XuPSxUEG+mc49WAHJ07sXPcybJu72EGiOjbMa0JEWoBPYQaeq5hluI8D/x14Rim1vtoZNaag6cxE0wwORdYydVBzfD43mmaQzdytxsrmChw+tJcXnr9Ts2sxDIWuGThrUG0Wj2d5+eUeTj3YQSgUYHq6djLws4UHIyMRdN3gpRe7icXS5pZZFU2ZIkIkkuLMy72k03keemjPulfa2ZjYQaIKlFJ9IvIo5urgT4AOzL6HKyzhNVGj0yeBV4Bfwkyie4ERzHLbP6zROTaMO3cmCPjdhMOJLfXUePRwK5cuDaFQiPWU/9CDezh3tg/DMGomqT23mkBRC2VqBVy5MsyOHXUcPbqDSDSzaj0on8/Nno4G4vEsn/rkq7jdprz7alwFCwWNS5cG0XWDRx/dZweKDcD2k7CBDdamNgyDD330Am1tQZ59rnPLeBX4/W72723i1QuDc/ftvXuaAMVA/xRut6umncgOh+ByOWtu5Qpw3307aW4JMjWVIp+vTtqjvt5He3sdkUiKq1eGyWYLBPweAkEPjQ21KUBwe5yceqCDxx4/sBnzVZtuQrXEXknYbDh9/TMYymBycmutIo4dbefC+f65VYTL5WD37nrOvNwDWOqtNRQONAyFYRgow1GRiVE13Lo1jsvp4MSJnezYU0c6UyASSZcVDgwEPLS1hXC5HIwMR3ju2dvk85rVbOggl9Nwe5wYCmox1ULelIhxuR088sj+1Q9oUzF2kNgkWF4SN5c45H6l1OB6zWe9MAyDl073sLO9nnMXBrZMkGio9xGPZ8nntbk5n3pgN1cuDzO7I6TrpqRJLVcTmmYgouPxOKn1A6ymG1y7PgIoduxoZM+eBvx+jyWkaK7ulFJousHMdJLz5/pIJnJgaU4VrwAV5o09HsvQ2Fib1UQ8lmF0JEZ9/QSHD7fXZEyb5bGDxOZhy3lN1IKr10dJJnPs2tVAMllbT4e15PDhVl4+ba4YABoa/ORyGulUbq5pTylobg7Q3l4HCOFwnJmZ1Zee6ppBwVKKrTXm91+YmIgTDsfMAKesS5LZ1RF3mxWXWCbUejUBMDwcIVTnY+fOBoJBb20GtVkSO0hsErai18RqSSZzvHy2H3/AQyyWtqQwNnpWy9PWFmJ8LI6um5IdACdO7ODsmd65C/B6XTz66F6mJxP0docRETo6Gjl2tI1bt8eJxVauqmIos2/CIYJzDRVfS4kPVhPE12I1AdDXO4nb7eB1rzu8ZR4qtjJbI0Nos+3QDYPPf+k6ArS1hujumdqMCclFiMCBfc10dU0wGyB27axnfCyOoZuSEj6fiyee2M+F8310dYXJZAqk03m6uiY4c7qbfXuaOHhwdcK9um6gafrcOTcruZxGoaBTS0+kXE5jairJ7dvjtRvUpiwbGiSq8GZ404LP/Z6IXC/6+9ut42a/xkTkkyJycIlz3y8iz1meDFkR6RWRP7LE+GaPecuCcWe/ThQd84MickFEoiKSEpHLIvJTS5z3N60x3rPg9T8QkdvWGBHLJ+L1FXwP3ywirxZdw39a7jMbjWEonv5aJzNR03PB53MRidSuVn8tOXKojZs3x+blGQ4caKGvdwKsJ+/HH9/P2Vd60Czv7OJjzdLTIbRcgZMnd60qX6HpBvmCbq1oNicKKBTM1UQtGR+LMTmRqFoM0qZ6NixIWN4MF4Fvx2xEexD4FuBLmN4Ms2QxexKWIw3sAnYDP4q5v/95ESm3cZsHPgh8G3Ac+GVM6YxSPQcnrbFnv7qK3pu2PvOkdQ3vB/5pNtAVIyJPAj+L2Qy3kE7gvwCngDcCfcBXRaSsSL8VBL+M2eD3CPC/gf8rIt9f7jMbjaYZfOWpG/T0TeJyOnC5HCQSWQxj897oZvF6Xfh8LiYm7npdHDjQQk/PxFwR8alTu7l+bWQuQJRjYHCG6Yk4D57qWFWg0HXDVMDVTFe7zUgup1HQaruaMJVnI1y+PFS7QW1KspE5iUq9Gf4eU/X0bUqpzywxnlJKza4/x0Tk9zFNf45g3oAXHtzN/BzAgIi8BVM8byETSqmpMid9dsFLf2WtJN6EeQMHQEQagI9iBqLfLTHOR4r/LiK/Yh37MKZYYCn+EzCqlPpF6++3ROS1wK9hGhRtKsITcb7y9G2SydxcU1R7W4hbt8JbYm/5vuM7ePXVgXm5kx3tIc68HAYR6up8OARi0RLJ6RIJl9ExMzH80IMdXLk6suLvgWFYnhq6ab7kWKV8R62Zy03EMzXrmwCzczyVzDE1laC1ta5m49rMZ0NWEkXeDO+pwJthCPi/wP8WkWqC2uz6tiLdYhE5Ys3phRJvX7C2sJ4RkbcuMYaIyDdjrkxeXPD23wOfLhFUSo3jAX4OiAOXlzj0dcDTC157CnhcRCrTa15DlFKk03k6uyb45Gcu8cnPXCaTyc9zkfP73ExNb/7+iN27GpiYTMwzQ9q9u4GR4ejcA/z99+/k6tXST7bl+qTHxuOEx6I8eGr1KrwFTSeTLZDLWnkAw4BN0iw7m5uo9XSGh2fs3MQas1EriWq9Gf438E7r673LHIuI7AH+GzAM3Fnm2JeBRzFlLv4BU3JjljHgP2O6v3mAnwCeEZG3KKVeLBqjAVMiwwvowH9RSn2l6P2fxbzmn1hmLt8N/DOmRekYpgtdeImP7AS+vuC1MOa/a6s1xrLcuj1OV0/JhdI8FIChUNZdURlmOaRhNY1pukE2q5HLFUimCsSiaRTgcpW2Fw0GPAwMRcjmtE0dJDweJ80tAc6cnjUZNK9/b0ej1ThnemHEY2nUEnsqxmxj3YJDxiyr1lMnd3Hl2uornfOGDgV9bhtrnrdG0fdZYF3LycQhZDIzuNy1ve34A14+9s/nCdVtjLz8v37h2o++770/8rENOfk6sFFBoqqfTKVURET+N/A/ReTDZQ4LikjSGjuAme94m1IqLyI3gNk2zZeUUt9Z9LkfAuqAh4A/A34dMyihlOpk/lbVGSuX8mvMXykkMLeFQph+1+8WkX6l1DMichz4I+BNFUh5P2eN04qZu/ikiLxOKbXUzX7hXUnKvF6Wo0fb2be3uaJji+8pYjn6OByyos0NEeHTn7nEfcd3ruDT68fRI22c/kYPoZBn7ibb0hwkGk3jtFRNT9y3i/Nne5YNdiKCw7n4+zUxkcDpcvLYI3u40zW5Rlcyn/VeY+i6QTDgo7ExUNPYFI2kOHpsJ088cWBDHjb+9QvXlrUO2MpsVJCoypvB4v8CvwD8Spn305g3WAMIK6WKN4a/i7vbTvPKLJRSs/sDN60k9z+KyJ9ZfQulOAv88IIxDO7mNy6LyH2YK5JnMLeEWoHrRT/ATuCbrEqkoFIqZ42TssbpBl4RkS7M1dMflJnLOOZqoph2QMNMqFeEy+nAFfQsf2CNicXTTE+ncK1BU1it2L2rgb7eKVKp7LyO4v37W3j5G12ICKGQl1Qya5ajLneTsprRSjWhjY1FEYGjx9rpWodAsRFrt3xBJ53O09BQO1MhpSCdzjE6GuHYsfV/4Hjfe3+ktqVbm4wNyUlYyqiz3gyhhe+LSGOJz2QxE77/DWgrPazqVkr1LggQKKUGrPe6lVIjS0zNgRk4l7prPczy2zgOzK0ngH/FrFh6uOjrAua20sMs7QFRPE4pzmBWhBXzrcAFpdSmrw28cGEIxxo2g62WujovuqbT1TWBFAWIujov0UgKw9rOOXKkjTud4xVt3SjMm1q5vfnR0SjTkwmOHS31I771MXMTWk0rncAsiR0fi9dUAsXGZCN/Q38e82HmgtVrcFxETojIf6Z0iSjAh4F+4GdWe3IR+QnrvCdE5JCI/AfMbaZPzz7Zi8gvi8j3ishRETlpbXl9L/CeonF+S0S+xRrjPhH5Vczcw0cAlFJRpdT14i8gBcxYf1ciUi8ifygirxWRfSLymIi8D9gDfLLoXB8SkQ8VXcZ7gT0i8pfWud8JvB3489V+f9aafF6jq2cSxybNRXi9LtpaQ5x5pW/RI/ehQ610do5bekWmsF8+V3lMnhX+K8fISITx0SgPPrB7S3SgV0supxGP1/bhW9MMksmsncReAzasBHaF3gyGiPw6RaWlq0DD7M84inkbGAD+H/AXRcd4MG+4HZjbVDeAf6uUKj5/CPhbzBt6BrgN/KRS6uNVzuUkZvBrwfw+nAe+SSlVHDAXmhr1Wf0Yf4GZYB8F/qtSatOVvy7kyrURNN3AtQpLzrXC5XKwf18zX//6rUUqrn6/m3QqT6GgIyIcONBCb/dE1eeYXU2UCwLhiTjJVI6HH9lHV9ckyWRupZez6cjldTwFHcNQNe2yHxuLEQx5bSe7GmP7SdjAOucwCwWd93/olbIy1BuJy+Xg8KFWnn/+Dul0ftHN5oEHdnH54hD5vJmyeuKJA5w9szLJLYdDlr1JisCpB/eCZT26Gb9nK8HjcRIMeGhqCtR03H37mjl0uI3j61sMsa0j0uZ7jLPZ9ly4OFC1sc164PE4OXSwfIBwu53omkHO2loyVxXZFfciKKWWvekrBVcuDzLQN8WpB3axb1/zttiCyud1NN1Ar3HQGxuLER63cxO1xA4SNutKOp3j0uWRkn0TG0ljg589HY0888ytkgECTHnw27fG5t47dKiN3p6JFfcaKAUskcSeRUSIxdKcebmb6ak4px7YzdGjbZvue1gt2UyBWI01nQoFnVQqR2/v+pQR3wvYUuE264ZSiq9+7damWpyLwL69zSTiGSsHUVoO2+kU3C4HyWRu7n2/300qtVzry9IYSuEoc87FcxWmJhNMTsSpq/Nz/MQuEOjpmSKXK1exfReHwyzXravz4XY7cTod6LpBLqeRSGTXPe9R0Aw0zaCg6bhr6F09OholVOfj0KE2OzdRA+wgYbNuXL8+xuhobNOY2bc0B2lpDnDh1QEmJxKIw1F2UXDwYCudt+9qTNXX+4jH0ktnnytEGQoDKk7iigjJZJYL53vxet2cOLELn99Db9/UvKDlcAi7djXQ2hoCpSjkNeKxNIl4mlw2j64pXE4HXr+L5sYAB/Y14XA6yOd1hoYjqw6AlZBJ53E6hZbmYM3G1DSDVDLH0NAM+/atTpLdxg4SNutEeCLOS6e7NzxAiJj+FQ0Nfrp7Jjh/zvKodpTfuhGBUNBDJJKeiwcHD7Zy8/pwTWQtFIBSGEblgcKcl5DPa1y9OoTTKdx3fwder5t4IktbWx2apjM8MMX5O6MYOnM2o4uIQriox8Dv93DoSDt1R/xMTqUYGYmu+hrLoRuKQkEnkyng99dObmx0NEow5LWDRA2w/SRW6SexYMwfsd7/4oLXf0NEzotIXEQmReQLIvJAic8fE5HPiOlNkRaRi1b39lLfw03vJzE9neIz/3plSavLtcTpFFpbghw+1MrePU0MD0V46qs36bozWf7GWcS+fc10d09QXATmdjvI1dDLwCyJXT6RXQ6XywlK4fE4CPmcXDrXy/mXuxkbiaKUaTNaiWSIiJDNFrh5fYRXvtFFJpHhkYc66NjduKJ5VUImUyCVztdU/K9Q0Emnc4yNRWs36D3Khq0kxNRAOo2pe/QbmP0RDkzto/dytydg1k9iOQOeNHAYc8f7BPB3mH4SDyulSpXSzPpJXAKimNpN/4D5PfnvC449CcwU/X1RVkxEDmFqP71U4lxvwZRGP2/N738BXxeR+63u81lviNPAh4B/Y83pBLBIJbfonLN+Eu8DfhzTh+JvRGRys/RK9PVN89Wv3QSqs75cDSJQX+ejqSmAwyFk0nkGB2d49dWBuf4GEam4ka+lOcDNG3elvOvqfDU30YG7gQIw51bB9EIhL8eO70Qv6Ny5PW5VW0Eg6KW+3kcisfI8g4gwNhpldCRCx54mHn24g+7eaeLxlVuvlkIpyGULJBJZ6utrJ9cxNhojFPKxa1djzca8F7H9JO4yICvwkwAQU5b748BvAW/F1GoqPte3Lzj+J4AY8AbgC9bL7wKeVkr9atGhvSzNpvWTSKdzPPdCN3390+tShePzuWhpDuLzushmNcbGYty+PU46nUcZau5J2rHEtlIpdu1qoL9/Zp7W9/79zXR1jq2ZgqphKJSYgULKTLepKciRI22kkjmuXOg3TY7E8pEQSKfz5HIaDY1+kskcur7yx3QRYXQkytholPtO7mZPRyO3O8eppU9ULq/jyWk1bbDM5TRSKdtvYrVsSJCQu34Sv12ln8TnlxDeW8hK/SQ+X+LtCyLiBW4Cf6iUem7B++8C+pVSH5Ql/CaKqMNcNUWsczuAfwf8sYh8FXgMU37kz5VSn1hinHJ+Ej8lIu711m/KZjXGxmNcvzHK4FAEEVnTABEMemhrDaGUYnoqxdUrI0Rj6blO3tkVgzhXfjPftbOeb7zUNW8V5PO5yWTW9lurlEJXClF3t4EEaN9Zz4EDLURn0lx4pfeuqGCJgKXrBjMzKRobAuTy2qp7U5SCm9dHCQY9PPzIPvoHIszU0HY2lc7hdArNNUxij41G6arz2UFiFdh+Eqv0kxCRb8OUG3+4wmsB+CtMM6Ez1t/bMeU9fhP4HeB/YG45fVREUkqpL5YahBr5SXTeCTM4NFN6T1gVJVat7RDdMCjkNLI5nWyuQCKeJRpNo+kKh8OBew0Dg8Mh7N/XjD/gZnIiwTNXhslltYpyC9XS1hpiZCSCrhtzY3u9LnKZvNXcsPbbZ0qBQtGxt5F9e5uYCMd55Rtd83vkl9rMVxCJpAiFfPgD7pqUucYTWb7xQicn7t9NW2sb126M1iyfICJkcxrOGsq11NX7+cKXruLzrY0P1yc+denf/uN7f/RLazL4JsD2k1iFn4SItAIfAH50weqnLCLybszcwRuLciWzvxGfU0q92/rzZRF5HNP3ulyQgBr4Sezd20QgsFgqfPbpdfYGPCsj4XQ6zC2Bdc5Du5wOItEUZ8/2MzQ4gwjs31eZD8ZKOHasnWe+fou60N198sOH2xgemsa5DlVaInDgYBs7dtQxPDDNuZe7YbanosrvfSqVw+N10dgYqE0+RYQ7t8cJ1Xl58jUH6O6dIhJZ/bj5vI7P5yYY8OCoUaCYmEhy7Fg7R4+VtYtfLRfXauDNgO0nsTo/iQeAXZhJ6Nn3HQAiogEnrUCD9dpfWJ99q1KqON8whSnyd3PBuW6xwLtiATXxkwj4PQT2rL+fRDVMTiV5+vlbjI+bfRZe79q6swYDHqYnk4vKUusbfESvpdcqHQGYQeDo0XYaG/3090zyyp0xKydSfXAoJp/T0DWDxhrkKWZJJfO8/FIX9z+wm47djdzuDK96VZFJ53G7HDQ1B2v0HKJQhqKxwUfdGrjX/eN7f7SiFftWZUOChFJqRkRm/ST+emFeQkQalVLRBZ/JisjvYgaLUqsJZSWjS70xUOHUiv0kygWJh7m7jXMe0yuimD8EmjBXAH2zL4rIX2He8N+ilLq9YH55ETmP6Y1dzDFMddpynMGULi9my/hJVEIymePZ524zNBjB4XTgrrH1ZTl27W7guWdvzwsQTqdYwn5rs9VUHBy6O8N03hipSXAoZi5P0Rggl1t9ngLMed+6MUZ9g59HH95Dd+8UsdjKK6AMBal0HqfLSUONqp1GRyPcuOHlyScP1WS8e4mNrG76eeBlzKTw72B6SAhmddBvsEAW2+LDwK9iSmr3rObkVoVRFriGWQ77OCX8JDATyDcwcxI/jnlT/n6Yc5K7vmDcKOCyfCNmX/t/mPmM7wUiIjL79J8sCpB/imlX+hLwLOb34YcpCgJieUkopX7Seum9mIH2LzFLft+A6SfxIyv5nmwmNM3g1VcHePXiICKyLts7s/h8biKRFPm8Nq8aaufOBoaHZtaklPfw4XZaWgJrFhzmoUzLz1Cdj0DATTpdm+eJeCzDyy91cfJUBzt31nPnzsSKVxWFgkE6lcftdhDwr36Vm04XSKVyJJNZQqHaldneC9h+Eqv3k6iEn7f++8yC138f+D0ApdS/isjPYX4//gpzS+4nlVLFCbFt4yexFGNjMZ5++iaJZG5DOrQ7Ohp46cU7i8pl29pCdHfVdmehtTXE0aM76LkzTvft0bUNDvMQkokcXp/L6qfI1iz5fP3qME3NQR59eA+9/TNEVlgBlckWcCYduFxOPDWwuB0bjXLt2give93hVY91L2H7SdjAOvtJlKNQ0Hj+hS46O8MbJt/h8bhoavRz5uWeeR3iInDq1G5eebm7JisJp9PBQw/tJZnIcufWKMpYvQbUShGH0NDgJ5fXyVcgFFg5imMndtLQFKLzTphcbmVbW/V1XhqbAjXpnzh6dAePPb6fhoaa5ia2tYqgHSRsYIODhFKKgYFpvv7MbXI5vablj9Vy8GALr5zpIZWaLxfe1hbCgaKvb3LVQcJcPbRz5eIgqUR2w4LDfBSBoBePx7WqLu1SuD1OTj20F92A7p5JNK36LryGeh+NjQGcq+h5AQgEPBw50sbrXn9kVeMsYDP8A64ZtsCfzYaSyRT42tdvMzg4g8vl2NAA4XY7yeUKJJO5RVtNO3fWc/FC36oDxKHDbQR8bl5+8c7draVNgZBO5cllNeob/GQyBQqF2hhDFfI6r57rIxTyct/JDvK6QU/PVFXBImZJgTQ0+le1okin8yRTebsLuwrsIGGzIRiG4tatMV76Rg+GoTaFgc6ejkbOnu0tGQgcDqGQN8rKZFTCgw/uITqT4trtMWblMzYbum4QmUkSCvnwer1lm+9cLgeNTQF8Pje6rohG0mQy5aXFRYRUKs/5s71zwUIzFF3dla8sYrEMhlI0NPhXlaMYHpohGPDaQaJC7CBhs+5MTSV5+ms3mJnJ4HI5q5LHXis8HpfZPZ7ILlpF1Nf7zOSrrLz09ZFH9zEyME14PLbiMdYPIZnM4XI5qG/wk07l0TQDh0M4dLidxqYAhXyByFSSbCaP0+ng4IFmAiEviUSOrjvhsmq2xcEiEPRw4v7d4HDQ0zO5fM5ChEQ8i1YwaGj0E1ihtHg+rxOLZxgcnLalxCvAzknYwDrlJFKpHM8/f4e+vmmcLsemcg07fKiV09/oJp1ZbF16//27uHF9iOwK9ZoefXQ/A32TTIXjm2h7qVIUdfV+Dh9ux+d303NnnOmpZGmzJaVobApw3wN76O2dYmIiUdEZvF4XJ+7fjdPtpLdvuiJdLKdTaGzwU1fnW9FDhsMh3HffLl7/hiO1eEjZav+oVbHxa3ybZX01rGNeKyKfF5EZ65jbIvI/RcS3YKx+Efm19b+K8iSSWZ7+2k0++MFXGByK4HI7N1WA8PvdxOMZ0ulcyXl5PS4yK+wlOPlAByND01s0QEBDY4BTD+5hIhzj1bM9TE9aN/5S1yJCNJrhzEt3aKj3cf/9uyo6Ry6nceXSINcuDbB3dz0PPrCLYHDp3ghdV0xNpZiYTJhKv1Vel2EowuE4N26MVPnJew97u2mDqcRXQ0S+B/g08FHgWzD7SV6P2cPxzSLyLUqptfearALDMBgfj3P+/ABDwxGcTkfNtHhqzZ49jTz/bGdJdzqfz00ylWUlXdaHDreRSmQZH41uuQDhcAgPnNoDKM6e7sIwlKnq63Yun0MQ4c7tMXbubODRR/fx6qsDFT0UFAoG164M43QKx+/bRehQK3e6J8uuLMQhpNMF0qk8oZCXUJ0Xv89T8bd6aipJa1uITCaPvwYNe9sVe7tpgxGRL2NKfRwrIU/SBOQwG/1OK6W+d8H7jwIXgF9XSv2Z9Vo/8B6l1J9XMY2a/BBomsH0dJLbt8fp7p4knc5vulXDQhob/Wh5jatXh0sGiaNH2+nvmzT9rKuguSVIx+5Grl4cYKvtRuzY2cDhI21cvzpEYoEYoIjpgldpsrmtLcSeA21csjrnq8HhFB56eB/Zgk5v7/JSZIZh4Pe5CQa9BAJu3G7XsgHD53Nx/MSu1cp1bK1/4CqxVxIbSCW+GiLyfZiy339a4v2LIvIM8KOYCrbrhqYZpNN5ItEUo6MxxsZiTE4myeU03FZgcHs2/49Xe3sdT3/1RlmP61DISzyaruo24HY7OX5sh1nmuoXuHx6viwcf2kssmuLMS6UV9pUCTdMrDhSTk0mcTicnT+7m5s3qutUNXXHxQj9tbXU89vAert0cW1JryuFwkMvr5HIppqYVXq8Lv9+Nx+3C43XhdjlwOBzzAkc2qzE1maSvb5KDB9uqmt+9wub/Ld7eVOKrccz6b7ljbgI/u5pJ3LkzwchIBIVCGeYTmWEoNN2gkNfJ5TRyOY1MJk8mkyeeyKFpBkopHGJ2D2+17RSAgwdaOPtKL5ns4mQ1mGWeqVQWrchPohKeeGIfF872WTIXW2OlfvT4TpqaAly7MkhumcRxcaCopJdibCxKqN7H7o4GhoYqUtSfR3gizsxMksdec4ievilmZipb1RUKulnCq8BQCsHcRnO5nDhdDpyW9P3YWAylFNdvjOLxuE1JfMsVUJA5aXZh9sd8/s/CRz567sG//7sfu1r1hW0R7CCxsdTiziqs8k60c2c9hmEgDjF/cZyOOc+IzdC/sBaImE+R//LpVzl0qPQT5M6d9WZNfdBTcZA4eKiVsdEIhYKGcwt873bsbODQ4TZ674Tp7TSf9CuNh7pu4HY7y5a7FtPbPcEjjx8gly2QSq0sfXb10gCnHtzL3j1NxGvcFT4yMsN99+9m374WDEPNfSmlMJQyA771XzXnxDVHqvSo2wM7SGwslfhqzK7778dMcC/kPmucFVNf76O+fqEtxfbGMAw+/rFz+P3usgGgtSXI5YsDFXeB+/1uGur93L4+gmM1XXfrQMeeJvbsayY8FuXMi3dKl7Qug1LMWcVWktu8crGfJ994jMuXBlcoJijcvDHCkaM7aGsJkqiBy14x4bDZhX3y5O6qPvf3f/djq1Kk3uxs7p/kbY5SagbTk/oXRCS08H0RacT0sJ7GtGNd+P6jmFVQH13bmW4/Ll4cJBJJlw0QIpDLauh65dIRJ092cPF8X0XrOodD8Ps91Nf7CYW8eL2uNW8qbG2r4+FH9/HEaw+idJ1XXrpDX1fYfHOF24WzT9uVLIqVguuXBzl+fGdFQaUc3V1h0skMoUBtjaciMykGB6YZGal+S2w7Y68kNp4lfTWUUvtE5GcxvSbeh2m6VFwC+w1MaXGbCpmeTnHubD/uJaQdmptD9PdPVnzv3Levmf7eSQp5vWzg2bmrgd0dTQgKXVdkM3kKBR2n0ywt9Xhci8qEDWU6ymWzBXLZAtlMgVxew9ANdN2Y2xaZrTpyuhx4PC6zwifoIRD04nQIKMXUZILrlwcp5C2lV5Ga5JJ0XeFySUWrg0QiSyKeobU1xPT0yndpensmOXJ0R039MAAGBqbx+twEAh6amoI1G3crYweJDaYSXw2l1GdF5JuA38I0JApgmiH9I/DHm61HYjNTKOh8/nOXKFPMNEdTU4BLr1Ym6OdyOWhpDdF5c7Tk8e3t9Rw80sbY0AyXzvdizK5OSo294E4rInh9bnx+N16fm2DQTXNzAIfT9Bp3Ohw4HIJhKHTdQNN0CnmdVCpHZDpBOpW7e77Zc65BkYGmzeYnll959XSFefINR5mZTq0qmdbdFebEfbvxuJ3kayRGKCJ03RnH6XTw2GN7CYVqb3e61bD7JGxgq5TgrBKlFF/8whWGhiJL5hkcDmF3RyMvPnd7nqdEOR54oIPbN0ZIxLOLgsSDD+8lm8mbbnOwJavAKkbA7aosUAQCHo7fb5bFrraP5pFH9xONZ6kgf14xInDivl08/PA+6pe3UN3G/6h2TsLmHuLMmR4GB5cOEAAtLSH6eyYq+tWvq/eRz2kkEvMDhMMhvPZ1hxnqnzIDxBo9wW8qFOhaZeXC6XSedCpPY2Ng1ae9fGmAttYQSlXvU1EOpeDmjVHOn+tlaqoyDartih0kbO4Jrl4d5tLFoYpKehsa/YyMRCu62R0/tpPrV4aQoogiIjzx5CGuXxlkZiqx/YNDEWa5qKroe9d5a5RDh1pX/e1RCi692s/OHfUVleNWiojQ1TXBSy9109c3uapk+1bGDhI2254b10f4xktdFQUIh0PIpPNoFVQ17drVwMjwzKIKqEce28ft68Mk45l7KkDMouuzN9Plr/3WjZGadDoXCjp3bo3R3Oiv6c1cRJgIx3n+uTtcvDi4pGfGdsUOEjbrQj6vceYbd7hxdZBctnbVKEuhlOLChX5eeOFOxb0OO3bU03VnvKJ7+549zfR1T8x7aj54uI3JiTjRmdQ9GSBmmfWfWC5QRCNpvB4n7ho0HkajaeIxc7xak89rnDvby1e/coM7neM1c+3bCtjVTTZrjq4bfPafXyEaSePzuUjEs7z2DUfXVPhP03Sefvomfb1TVXWNB0MewuH4snM7cKCVrs6xeT1odfU+Gur9XDrfe08HiFkKBb2ijuzrV4d46LEDXLs6vOqfib7eSR5+ZB+FQhZV43yyw+FgYiLOyGiUPR1jHDu2g4OHWre9guymWkmIyAdE5IslXn9cRJQlqz372ttE5FkRiYpISkSuici7RKTdev/t1mdmv8ZE5JMicrDKOf2KiOgi8q4qP/cW67wxEQkseO++onm1Lnjve0Xk65ZvREZE7ojIB0XkiaJj3i4iiwQBrfeSIvL2aua61lw638vMTAqHQ0xXsGiKrluja3a+8fE4H/7QK/T3VRcgfD4301Mp1DI3NYdDaG4JMDY6P29x8tQerlzsX+m0tyWVJLILBZ3IdJKmptUnsQGuXB5kR3vdonLiWuF2OQiH4zz/fCcf//g5/tN//MivrsmJNgmbKkhUinXD/hRwGfhuTMmKXwIOAP+56NA0sAvYjamU+jDweRGpZj36DuCPgbdX+blZYsAPlhhzcOGB1nV9GrgGfC/mdb0TU9xvXVVea0UuV+DS+f555vVjI1EmwvGanyuRyPDFL1zhX/7lVXK5QsVbTLPs2tXA7Vujy5a9Hj22g5vXRuYVDh87vpOezjGzJ8FeRcxRaSK7pyvMgQOt1KIaWym4dnWI1pbgmiabnU4HBVOVdltr2my57SYReQ1m49mvKqXeXfTWAPCsJWUxi1JKjVt/HhOR3wc+gqm+2lnBuV6HKdP9e8APAd8JLFrpLMMHgJ8BPmiN6QZ+AtNQ6HeLzvVa67p+SSn110Wf7wNeFJE/qfK8m4JrlwYwdH1eJ3Ehr5HPa0yMR2nf2biq8Q3DYHQ0xqsXBhgejpjdyys1N1KKVKq0O90sbrcTn9dFdDo1d5zH66Ku3kfnjWE7QJRgtiN7OS3KO7dHOXCglf7+5b0jliOdyjM6EqGpOURqhbazNiZbLkgAP4apuvh/S72plIou8dlZB5VKRV/eCfyzUqogIh+x/l5tkPgI8N9E5LBSqgdz5ZMEnqcoSGCudJLA35QaRG3B+jtDN7hxdaikI10skuLOrbGqg4SmGSQSWcbGovT3TTMyEiWTzeNxO1elWNveXsedWR2jJTh+YifXLg/N86m7/4EOrl9etDC0KeJuR3b5H+OZ6RQHD+3A4YAK+vGWZWw0SktLCJdT0PQt9+uzadiMQeI7Suy3F//2HwV6lFJVPR6IyB5Mkbxh7iqrLnV8CPgPmBpKAB8CflNEdhatTiphBvg85mritzC3mt7P4keqY0CvUkormsPPM99s6H6l1OzdKFgmL1G14Ewmk1+Vjk450skM01PJOY2kYnuF4aEZ6hoD9PVNAqBrCt1Q6LqOppk+FtlsgUy2QDqdI5nIEY1myOUKaJqBy+WYt520lBlNJQSDHgYHzCfYcvE4EPCgawapZA7ElIyur/dTyBfIZvJW1LBvRuUoFDTcbhe6YZT9Nl2/NsR9J/dw48ZITQobrl4Z4rWvP8zwSGytUhQA21q7YzMGiReBn1vw2gPcldKu5idn9kYqmHpHF4G3Vah19MPAsFLqAoBSqldEzgM/hamxVA3/BLxPRN4LfCvwnzC3vJbjo5gqsLPXXxws05g5loVcqXJuXLs2wu1b1bmGLUdLa4jhvgmi0fJKq9FImqe/eo1gKIA4zOoRhwhOp5imME4HIqbpS129j7rl5RFWRCDgIR5L4/e5cCwh6nTqwT2cP9Mzb8Vy/8ndXDjTU5F8h41lVuR2lg0ShbyOruk0NvopFGrTQd15c4yHH91PvkrzqEq5eXPsL2s+6CZiMwaJtFKqu/iFBXmGO8CbRMRTwc1+9kZqAGGlVDWPy+8EjouIVvSaA2ij+iDxdUDHXI08q5QaFpGFQWL2utyzqySlVAyILbj+WdTC7xOAiFT9vPSa1xzkNa+pquhrWQzD4AN/9zx79zaXPUbXNE7d38Hr33y8pueuFsMw+PAHT7O7o6nsMcGgF8MwUCi8PnO3sqHBTzKZxVBqzWW+txOGbuByOS3/88Xv9/VO8MhjBwiHEzX7vkYjSR557ADH76vOK6IS/t2/e2jR7+F2YitWN30Mc0vlF0q9WSJx3a2U6q0mQIjISeC1wLdhBpnZr9cCByxF1opRpqjMB4C3YK4qSvFxzOv6xWrG3qzMTCfJpJc2hYlHMxiGUZVnw1rQ2z1Bchmns46ORq5eGpy30jh0pN1Sfl3rGW4/NE1HK+iUklvSdYPJcAKXs3bf2HgsS1/PJONjsZqNea+wGVcSS6KUOisifwr8mZVn+BfMPMNBzP3+buD3V3madwKXlFJfX/iGiDxjvf9ilWP+IWayfabUm0qpV4quaz9mKewgsIO7229bps1zsH8St2v5iuFUMstg3yQHj+xYh1ktxjAMTp/uMrdAytDQ4Gd0JGp6RVhPtvUNfmLRtNUHsF6z3V5omo5S4HY7Fm3XDQxM8sRrDzM2GquZDexA/xShOh8NDX78ge3dAFdLtuJKAqXUr2PmDB4FvgzcBN6DeVMtWR1UKSLiAX4c8yZdik8BPyAiDdWMq5QqKKWm1BJSldZ1/QfgFGayuxv4DBACvkkpNVTNOTeSof7pivbpJyfijI9F135CZei8NU5yGRvMnTsbuHl9ZN71HD7STucNexWxWnRdJ5/XMUpUH/V0hwnVeWt2LhHh9q1Rrl8dqkjO3MbE9pOwgRqX5Oiawfv/7tllO5dnOXb/bp584zG83traUS5HoaDxgfefnm/Ks4DW1hCxSJo7neNz++PBoJeOjkauXBywg0SNEDHd+VxOx7zSlEceO8DERAJXBavSSvEH3Dzw4F4efnR/rRLZ2/qnYEuuJGw2N7FoqioRv1gkxc2rw2s4o9J848U7d608y9DcHKS7KzwvgXr4SDu37VxETVFKUchrFBbkKW7fGqGlJVTTzulMukBX5zi3b6ydNMx24p4MEiLyY5bGUamvGxWO8ZUlxvjNtb6GzUx4LFpVY9vEeJx0OreuCeyJiTi3bo0tKd2xa1cjN6+PzLtBuVxODKXWTcn2XkPTdPJ5DV0zfxYy6QK6ptf8ZyMaSdN1J0xv9/INlPc6Wy5xXSM+D5wt816lv/3vpHwTTcnk9L1CeDw+rwrI7XYuKa2slGIyHOPW9WEeeGjfms8vn9f4wucuL1le6XAI/oCb4aGZeVsSh4+2W1akxT3XNrXEMAzyeQOX4cTlctJ5e5SHHtnP5GSypn0O42NRXG4HHo+LPftaajbuduOeDBJKqQSwKk9CpdRIjaaz7QgXJaKP37+b6ck4breL0ZFI2V/yyXCcltY6EokMdXVr18BqGAZf/Pxl8vnCko1z+/a3cOl837zXRCDgd5OIZdZU5tzGRLNWELrhNFWEpfb97MOD5vOciNCxRE/Pvcw9ud1ks3Zomk48Zkpkte9o4M6tUS6e7eX2tWH27mtBlviJu3NrlNvXR8gvkydYKYahePbrtxgbiy0ZIHw+N/lcgchMal4w2Luvhb7uCZQtvbFuKKXI5zRu3xilpS2Erte+Cnx4cIbLFwcYHJiq+djbgQ0NEtvMP2IpjwclIj+w4LVKrqfkeCXGvyoimogcq2bOa0EymSWfN3fs6hv9DPZOIiLE4xkunutlz54WQqHS8hqGobhysZ8rr/aRSdfWJtIwDJ5+6hqdnePL5kv27mvm4vm+RYqurW11jI1V5n1tUztEzH+/zltjuJwO0ulczSXAR4YjnH+ll+471ciy3RtsiZXEFvOPWJYqrqeSsV6DKRXyIcy5byiRqSQOh+BwCOlUbp7qZy5b4MwLt8ll8+zqaGTPvhZ8/vllr8pQXDrfz8VzPUxPrWpHcI5UKscn/vkcPd2TywaIxqYAYyMRspnCvGDQ0hoyt9HskvENYzIcJ1TnY3IizkQ4TiKRrWlCe3oqyZnT3Vy7OoSmbZm+1TVn0+cktqB/xHLnqOZ6KuEdmFIl/wp8SkR+q1hJdr2ZmU7idDqobwgQHokuKhNVQG9XmJ474zhdTk49vA+HCOmilYMI3Lg6hKYZ3HdqD+07qupbnKNQ0Lh8aYhXX+0HpZYNEA6H0N5ez9e+cg1ZsB21b38Lr7zUZa8iNpgbV4c4dmI3nZ3jpDN5XE4HwZAPv9+N1+tetdZTJp3n9IudxCNp7n9wD01NVYsqbzs2fZBg6/lHLMdqrmceYtqi/jCmJtRlzJXUd2MGjA1hZsqsQGlsDtJ1c7TsTVVEMHSDyxf6eOSJQ6TTOYqrhUSEO7dGcbud1Nf78VXoI6xpBjPTSa5dH6K3a5J8QTMbsSq4ue/b38LF832LnNQCAQ+pRBbDsCU4Npp0Oo9hGPh8LrJZDd1QxGNpolFwuRwEAh48Hhderwu327WioOEQB9evDTM6GuXBh/dy+OiOmjbzbTU2Q5DYbv4Ry7Gi6ynDDwFDSqlLAFZgewdVBol8Xpv3JL9SXC4nY6MRsyFKKdLpLFJBmejVV/t4+DWHGRmeWRRUervDaJrO/Q/tB6UwDIVhGBQ0g3yuQDZbIBbPEI9lmJpMEY2mKOR13J67CqOVbB0Eg15SiSwT4TgOkXl73ocOt3H1omnjYe82bTzXrw7x+GsOc+Xy4NzPi2B2+ifiWcDMb4lDcLuduC1DKqfTYcrRW9uhDodYUvTmuAt/9sLjMZ76cpRjxyc5fGwHrW31JR8SfvPXP93yN3/3k6u309ukbIYgsR39I5ails+i7wA+XPT3DwO/ISK7lVIVt5NeON/Hlcurl4U6cnQHdzrHQUFrWz3ZbKHi7ZnweJREPEMyOf+fanQ0SiDk458/8jJur9v8pQbE4cDlcuByO02BOBE8XiftO+qrnrcI7N/fylNfvILPN3/R6XI5cLmc5POaLQe+WVAwM51gx446orHssofr+l2lYaXMiillWDVqqqhWrdgVq+hPY2NRXnqhk+P376K5JUQ0miGRmHfeB4AXVnlVm5bNECS2i39EHPAX+0HAvGuZ1Siu5nrKIiIngDcAr1tQieUEfhqouDrr9W84yuvfcHSlU5kjkcjQdX0In8+Nx+PE7/dUHCTGhmZ4+PGDTEzEF31GFDz6yD5e/+YTq55jOZ556jqtbXWLOrD37m/h5rVhfH6XnY/YRIyORHjiSUsldqWe5lWSTRcYjE9x6HA7r33yIPv3t+HxumAbBwjYGtVNW8U/ohPz+/nIgtcfLXofqruepXgHZtf4Qwvm/HvAz8gG3NESsQxKKYIhH5HpRFU3VcNQ5PMa2fTiXbjpqTiavna+EwP9U3R2lpbo8LidzExVdy0260P3nXHq69bGrbAcLpeTwYFpvvaV6/zrv1zg8sUBfvHnPrh/XSexzmyGlcSSbBX/CKXUDRF5GvhHEfkVoAfTt/qvgE/OelNXeT0OEXl4wak0zIDzk8C7lFLXF8x3GvhdzNzKs5Vdfm2IRtK4XE5CdT5GBier/vxQ/xQ7djeSycwPFEpBPldgaGCKA4faazVdANLpHE9/+Sou5+LEZFt7HT1dYRSqotyKzfoSmUmx/0Ab8UR23VYTs7hcTqKRNGdf7gYz91nyoW87sBVWElvJP+KHgOeA9wI3MCuYPseC/oUqrscPXFrw9Tzw7zC3wf5l4QSUUmPAaczAtq7EYqk5zaN4NLP8BxZ+PpomEPSVXDEkE6Y5US3RdYPP/cuFeb0cxTQ2BRnsn7JXEZuYWzeGaW+vq3lzXaVYPxu17fzcZGzoSkIp9fYyr19gQYJXKfUpzBt2ubE+gGkRWu0c8pg33HLvvw94X4VjRTGb4n6pgmNXez1lA7xSqip71VoRj6St85s34JXcXPO5Atl0nuCCbYTIdJLmlrqazBPM5OUzT10nMpMuWd5YV+djfDSKbhh2wnoTk8tpxGNpnE7B9hFaG7bESsJmaxCJmGkgXdMrNhxayPhohIamwKLXNc2goOkkE8tXs1TC2TM9dHeFy9a/79jVwO2bI3aA2AJ0d4Vpa69f0jzKZuXcE0FCbP+INcfQ79aoFwr6irdoZqaSNDQGSgYZQzPo751Y1TwBLr3az6ULfWUDhNfnJhHPLGtIZLN5uHN7lIbGxQ8XNqtn0yeua4TtH7HGZLJ5tIKO1+siny2U7QYRWb4hTRmKbCaPPzjf3zidzjE1GV/xHJVSXLzQx9kzvSUT1bPs2dvEmRfvVOTRbbM5iEbS7N3Pom55m9VzTwQJ2z9i7UmnTGc5n99NIpEt+Yt68qF9hEJerl8ZIJUsn+tLxDMlO1sTscyKnxYNw+Abz3dy/frwkgHC7XGSzeRJp3N2kNhi3Lw2zKOPHyQcXtxrY7Ny7ontJpu1Jx7L4HI58Ps9JOOLK5vqGvzkMjm+8fXrHDq8Y8lqlInxWMkkdSZjBpZqFTqz2Tyf+eR5rl9bOkAA7NnbbEpw2PeYLYeuG4yOzCzqmrdZHVs2SMg96EUhIgesv+sism/BcU0ikrXef7ya89eCWDSNwyH4Ah4SJYLEoSM76LwxjFJm49xSie1kIosv4MYoUa6iFXSmJytbFCql6O4K85H3n2ZqMrmsSJvT5TD1fxK289xWZWQ4QjDkRSk7iV0rtmyQqJTt5kVhMYIpvVHMjwEb5uo+a+np8bhIp3Lz3nM4BMNQaHlzBTAVjtHSsrQEs9IV2czidJFSisH+pR3ElFJMTsT59D+f5ekvX8UwVEVVSnv3tXD10oC9itjiXLsywI6dDRvWO7Hd2NY5ie3mRVHEBzAD0f9Sd38T3mG9/rtrdM4licWsHgnDVGotfhLfsbuR0cG7N/bx0SjHH9hDZImGu1Q6RylH43Q6j8td+nNaQWdgYJqL53uZmEjgcjoqlnh2u53omk40mrJXEVscrWAwPDhNQ2NwUfe+TfVs95XEhnhRYAaXtex4/jLgA/4NgIg8ghnMPrmG51yS2GyPhG4s2kpq39nAWJEMeCGv4fG4lnzSmxyP0dwcWvR6MpGdCx26bhCLprl5fYQvfu4S7/+HF/nqFy4TmUnjdjmrutnv3d/CxfP9FR9vs7kZG43i87ntRWEN2OoriXvNi2IWzTrHzwDPYK4iPoEZEKvGMAwMfeVLc8NQZFJ5EPNpXkTmFgEOh2DoVg6i6KatlELXDJxzT/rzzx+LpjlwZAfRWAYU6IaBrhlEZlKE6n189IOnSSZz5HMFnE7HnHaPy+2sepvB53OTSmVJJTPz5m6ztbl6aYAnXneE0ZHIWq8Ot/XD9lYPEveaF0Ux7wMuichOzBzKv13pQKdf7OLcme7lDyzDseM76emZwOkQQnU+0un8XPlox95mhvomLX2k+X7XShlkMncrlRb+Y+XzGiPDM7isVYFDBAQKed3so/C78ftXX8ly+Eg7z339Bk6nw95q2mbcvjnC0eO7Fvo/1JqvruXgG81WDxL3mhfFHEqpThG5CHzcmu+Z4oquanjTW47zprccX8lHAdMwaKA3TH1DAAdCMHS3CW7fwVbOv3RnkUpnIp6htbWOWHyJX16l2LmjYZGOU0NDgAcf3c+xE7tXPOdibl0fprkphKt9Wz8Q3rM4BJ583WGO3Vebn5eF/OTPvGlbB4nt/lux3bwoFvJPmP7W/1TpfNeCeDSDy2WaDCUSd5PKImI6gJUoZY3OJGlYxmR+aiJBfUOpJnfF2HBktdMGIJcrcPrFTlzu7f6rcO8SHo8xPDjD5MSiZy2bCtjqK4kl2W5eFCX4EPAFILry6a+eaHRWItzDcN/dlcGOXQ2MDZW2/k3GMxw+vmtJGYWZqQQde1uYmZmfdkomczQs0xRXKS98/SaapuNw2EFiO9PdNYbX7yIY8hEIeJf/gM0c2/43Y7t5URSjlNKVUlNKqQ1VopvtkfD63CST6bnXd+xqZGxopmQQUIplk8SzeQx9QYd1Ip5BavCTOzw4TU9X2A4Q9wTCresjXL8yRKFgCzdWw5ZdSdyLXhRKqX6WSMYv9/5aMVv+6hChkNfnVTHphrGkq5thGDgd5VcFum6QyxUIFPU75LIFRARdN1bsSJbLFXjqS1dwuuwAca9gGIrrV4ZwuZw89Oj+dXez26rY3yWbVROLmqsHwzDmjF8am4NMT8SXXCkoVTpfUczMVAKf37PodU0ziMfSJT6xPIZh8OXPXaJQqE4Dymbro2k6Vy4OcO3yYEnZF5vF2EFiGWwviqUp5DXy1s1W1wwQMyrs3tPM8MDS1p/pVA7/MvvDUxMJmkokuJVSTIyvLBF55nQXY6NR21DoHqVQ0Lj8aj9XLw2aP7M2S7Jlt5vWEduLYgmymTxaQcPtdqEVWZZ6PC5ymUJJye9ZkvEsdXU+ZiLlVwT5vIbT5ViU4NY1nYnxGMfv76hqvjevDXP14gAue5vpniaf13j1bC+6bvDAQ3vxem3l2HLYQWIZbC+KpUkksigFLpeDnCXl7XQ6aGj086Zvvo+rF/qIl+mFSMTS7OhoWjJIACjd9L72+u5uOyWTOXy+xdtQS9F1e5QXn7tl70XbAGa+7MK5HjLpPKce3ktD49Il2fcq9m+LzaqIRlK4XE58fg9Jy2yopb0OXTN4+ZkbHH9gT1krulQySzDkW1ZGIx5PL0puJ+MZHM7KtouUUly9NMAzT123t5hs5iEIN64N8dJznfT3TtrKsSWwg4TNqojO3O2RSFrSBwcOt9PfNY5hKNLJXFnpjEolvCfDcRqa5u/WFQo6hmFWPy2Frus889R1Tr/YicNeQdiUQEQYHZnhmaeu8eq5vnkNoTZbMEhsF7MhEQmJSEFEfmzB6/9kzeWxBa+fFpEPWX/+PRG5XmLMWVOidTMdilpbRcWOdK1t9Qz1TgAw0B1m36H2JcdYyoAIzBWHz+dZ9JSnaRrxaPmtqvHRCB99/2m6bo/ZW0w2y6LrBq+e6+HLn7vEjatDc06I9zrb9jdns5sNKaWSwHnuKsfO8hbMRr+510UkADyB2Wy3qYhY3dBuj5PUrNmQMhODAMlEhrp6f9ktJ2DZMlgAw1KNnf85UxJ63muW4dC/fuo8n/3keTKZnN0LYVMxIkIsmual52/x2U+c49VzvUxPJe7pbahtmbjeQmZDz2F2g8+OtQ+YlSn/duDPrbfeiOlr8WyF464LumaQTpuBQRkKpRTBkI9kfP7TfT6v4XY7KGiLf9E0Ta9IeTWbzmPoOrjvxuB8vsD0RBzDMIhH03R3TdB5a5RYJIXT5bCDg82KcTgcJJNZLpzt4ezpLjr2NrN3XwvtuxpoaanD53ffM4rB2zJIsEFmQyIyazZUTZD4TRHZZ+kzvRU4B3wF+EMRcVmSG28F+pRSAxWOuy6k0zkKOR23x4luKJSCth0NRKeT83qsRwen2L2vlYHeyUVjJOMZU168lIOYutuLNxGO0tRcRzqTR9cMNE1nZEgRCaXpfO9z5LJmqazDIbjca+kca3MvIWL+PIXHY4yPRSkUdFxOB82tdTS3hGho9POR933je//q79/+rxs917ViqwaJ7WI2dBrIW5//oPXf55VSXSKSAB7D7NF4K2u4ijj9wm3OvtwDqEW7QguX2cV/PXKsnYH+SURMH4lMOkf7znr6bo/Oa7SeDMfZe3gHvV3jLFQNiUXSBIJepqYW/nMWI2QzBXbubqbrThiHA8ThIBHPct+pDvI5HX+Jrmwbm1rjdpm3zGQ8S/Juafe2VgzcqkFiW5gNKaUyIjIbBD6ImY+YFfR7AXir1dX9GPDXVVxTVbzhzSd4w5tPVP25Kxf7mRyP4XA4CAV9BIJemltCXJpOLPoHcABOEVggppdKZtnZ0bRMkDDxeF3sO9AyLwnd2l7Pv/+BE3h9djOUzYbxiY2ewFqyVYPEdjEbAnOF8HaromoX8LL1+gvA9wFXMP+dipPWcaCUsmyj9d91Ec6fmkwgIvj8bhKJzNzSPJXMLQoS05NxWtrqmJ6e/+3NZQt4fO4lJcNn0TSdQl7DWbRq0AoGE+EYe/e31uqybGxsitiumb2tYjYE5s1/P+YK4pxSajYn8jxmwvrbgNtKqbGiz3QCu0Rk14KxHsXcvuqr9DpWw5Rl4uL3e0gmMjgcglZGNG9kYJqOfaVv5DLf2bQsM5OJRdtKhq4zNFDas8LGxmb1bMsgoZQ6C8yaDb1bRN4gIvtF5C0i8mGWkOOugjmzIaXU9aKv88Cs2VAlvIKZLP+vmIFh9ho6MeVA3sHi0tengNvAx61rOyQi3w/8IfCX6+EvoWsGiZi5J+sPeEjE0gTrfKST2ZJ7fYW8hsfrKlkKq1AVKXJOTSZoaAzMey0ey1DI2/4ANjZrxbYMErB1zIaUUjngDFBHUZCweMF6/dkFn9EwVxj9wEeB68AfYDrZ/XaFl7EqEskMuZxZF+DzeUgkctTV+8nM9kqUIJvJ4/WV2eGsoA5dK+g4HGKZEVnziGdsqQ0bmzVE7uUmEZs5qv4h6Lo1yjNPXcPpdHD46E6ef/oaDz12gFQ8zc2L/SU/09AcpG1nI92d8wu/jp3sYGRohkIFss2nHtnP2GhknsT4oWM7ee3rjxKq81V7GTY2tWBbP6Vs25WEzdoyPDQ9V2VkGIbZSFfnIx4tn9aJzaRobAouWjUk49mKb/CxaAq3a34fhF7QGeibqPIKbGxsKsEOEmWwzYaWZmQoMvdnTTODhM/nJlVGFnwWpdSix65ELE1dQzm7jflMhuM0Ns+XdI5F08xMrUrN3cbGpgxbtQR2PbDNhsqQSedIJTM4HA5EhEJeQ0Rwe1xzSrDlCI9G2LG7kfGxu1W6qWSWYLCylcSJkx20tNZx6+YIDqvnIhZNs3N3Y0VltDY2NtVhB4ky2GZD5Rnsn7JkvpnrkXA6HThEyOcKS27Qjg5O8+jrjjI+GmXWtm5WMny5m/zOjibGh6cZ6wvTvKORRNqM1Uop8nmN8dEouzqaanilNjY29naTTdXcvjmCy8oL+AMekjFT6bVc+WsxhqHI57RFVU4KtazS5s5djQz3TDAzlcTvc6MV7pa+RqaT9PeEV3Q9NjY25dk0QWIz+USISH/RZ7MiMiQinxWRf1flNc2O8cYFrztFZNR67wcWvPewiHzcej8nIoMi8mUR+T4RcVjHlPWNEJEvisgHqplnNaRTOcaGo3N/DwZ9RKMps/w1Xb78tZiumyMcu2+BN7Va3lcCZQaSQl6jr2uc1qa7uYnITArDuCtRbmNjUxs2TZColHX0ifhf1uePYfZb9AOfFZGSyrJLMMRdPaZZvhNYdDcTke/GzIM0AD+NeW3fj9mP8VuY17KhvHL6DsU7Qh6vi1TCrE7KZiszacmkc3i8LlxF9qP5nIZrCWlvt8dJPpsHpdAKOplUDp/fTSF3Nz00OjzNzWvD1V+UjY1NWbZUkCjyifhvSqlfUUp9Qyk1oJR6Vin1Y5jNZLMopdS4UmpMKfUc8PuYIoBHKjxdwvr8oFLqtFLq/wN+HvgFEVloFLQUHwB+0FKMneUdwPsXXFvQeu1LSqnvUko9pZTqUUqdV0q9Tyn1OLChOY6xkQhdt0bnNa8ZhoFhKDw+N1ph+T6HWW5fHeK+B/fO/T0Wscpjy9DYFGTG0oqaZXhgklCRNWo0kiY8HiU8Hq14HjY2NkuzpYIE6+sTUYp/AiKYT/eVchW4hWlIhLUl9l0sCBKYHdStmHIiJVEb0PmolCKXLXD1Uj9f/MyFuYqiWXTNQBkKt9tFdolu64WkkllcLicey/shMp1cNkhEp+/WEei6QXg4QlNrCKPI53qgZ4JXXrpDV+cY2Uz+nnYUs7GpBZutumlT+ESUQymli8gd4FCVH30f8DOYQeYngZeUUv0LKnmOWf+dc8MTkVOYkh2z/Eel1EeL/v6iiCx8fPdhOutVzCvfuMPFc71z7nJKKQxl2orm8xoOhwN/0IvHPf/HRRxCPqchDsHjcZBKVmcgf/PKACcf3s+lc72kUzkCQW/ZCqdA0Esyfjcxns+ZWlDZdJ5CNo83aFYaiwgT43FGhq6QTuVwOs3SXIfIXDWVXSVrU0vu3Br7+b/4+59eldTPZmazBYnN4hOxFEL1MhYfA/6PiBzHDBZ/UOHnOjFzKWBKhi9cBf0opm5TMX9f5dx48o3HePKNx5Y/sASvvNTJ3v2tNDaFyKTyOJyVL04LeZ18XqOlvZ5UMofb42T3nua5yqlimpqDeL2ueQHE7/eQzxR49PGDvP5bHljR/G1sasC2DRCw+YLEZvGJKImV9D6GaTFaMUqpmIh8BngvZjL8syUOm13hnMBaPVjX2G2du1RgGi7x/UqXOG7NmJlK4vO5MQyDZHLpRrpSdF4b4vE3HOPS+T5QkM8WcIUWBwldNxatMgxDEY+m0HWDdDJLIGRrN9nY1JqtlpNYc5+IZXgnprFPOfXXpfgnTOe5jyqlSt1Nnwamgd9Y6eTWG6UU05NxAkEvWkEnV2F1UzGGoQiPRmhrryObLZRVg9UL+qJtKMMwyKTz5HMF7tywq5psbNaCzbaSWBKl1FkRmfWJ2AP8C2ae4SBmxVA3ZhVTLagTkZ2YWzx7gR8EfhF4j1LqhRXM/TkRaaNMF7dSKiUi7wA+JSJfBf4S6MLcKvtWzFxDaUefDSKf18ik8zS31pFO5UDJivQwB3omeO2bT9DfM0l9UxBtgRqsy+0kW6IHQyvouFxO4tE0Ls+W+lG2sdkybLWVxJr6RCzgd4ExzMDzScxA9Dal1C+udECl1JTlH1Hu/c8BT2Laj74f01joecy+ip/G9I7YNMQiKQp5Db/fQzadZwWK43N03xqlvsFPQ+NiqSt/wEMynlm0ktB1hQJmJuO4nA67ksnGZg3YNI9fSqm3l3n9AgueT5VSn8JsqCs31gcw+xNWOpcDK/3sgnGWfK4u9b5S6iJWuewSn+unzDO7Uuq7q5jiqhgbieJyu0CoyFluKaYn4hw4soNCQUfXdJxFyWt/wMNYmd4HQzdIJ3Nomk4ilqa+sXwZrY2NTfVsuZWEzeZhdHjadIrTDZS+uiABcOvqIKGgl1x2foWz3+8hkShdXqsVdPIFDUM3GOmfWvUcbGxs5nPPBYla+ERY4/zmEuN8ZS2vYTNgGAbjI1HAXNKkM6utLIZ0Msf0RIyWttC81z1eF/lsAZ/fvajHQdMMUJDLaUyMRVc9Bxsbm/lsmu2mdaQWPhFglrN+ssx71XWVbUHisTSZdA6v12zdSCdzNfFyuH1tmDd+6wOEw/E5mQ+Xy4nX6yIRyxAIza407p5LNwzcbhfNbSHikRT1S3Ru29jYVMc9FyRq4RNhjTPDFjYOWi19d8I4nU78QS8FTSdVZjtoJVx6pZsHHz9EJquRz2uE6nxEps1G/Gw6j9PtxNDvJql3721huC/MpZdvc/hEB8cf2sf9j1Qk+GtjY7MM99x2k83qUUpxxxL6Cwa9KN0glahct2k50sksNy71k0tnOHi4jVgkiViigvm8qRarrEoql9tJfWOA3tujCML0RIzwyAz9XWM1m4+Nzb3MhgSJ7eYdsYy/w/Mi8p4Frz0sIp8QkXHrnN3W9+TUcuOVGP+vRUQXkZ+tdL6rJTKTnHuyD4Z85As6mUztgoRSpu91960xvviJV5gOx/B6XITqzI7qWVFBgMP37eb25QEM3VSj1Qo6A91hwsMz6DVIptvY3Ots6pXEFvSOWJYiz4gQ8BPAfdY5x4A/rnIsL6Yy7h9jdoOvOUopTj93a06jyelyoGs6JUVDVnUeKOQ1HA5Bt/wjspk8Pr+HbLaAx2qeCwQ8JKJpQFAo0qkcumYQj6bovDJQ20nZ2NyDbNqcRJF3xK8qpd5d9NYA8GwJCY5x689jIvL7mEqoRyhSVV2CRNHnB4HTInIL+DsR+YzlR7FqRCSA2ST3lFLqe4re6gMuLLimSngbZkB7F/CLIvKAUmqh4F9N6ekcZ2RwGqfTjL+Gbj7VKxSyknbrZfD6PWTSeRAzaPj8HrIZA3EIzW11TIxG5jSddM1AK+jU6QYjA1PUNQSX9c22sbFZms28ktiK3hHL8e2YnhElVwzLXFMp3gl8RCmVBj7DGq4m8jmNi2d7ePapa3MBAsw+BWMNO50DAS+ZIp+KtOVIp5Ri195mhnrDc0FA1wx0XRGLpkgnc2TTOfq7xssNbWNjUwEbuZLYrt4RS3HU+u+t1Q4kIoeAN2EGU4APAZ8UkV9fSvqjFBfOdHHlQj9KYflJGChliu8pZW7hGLoiEPSYHdYWbo+TZCIDhiqny7dqfAEP6VRubnytoBOwGu48HidaQZ9bwWiajsfrIpPKk0rkuHimi/B4jK9/+SriFNNTAqhYYMpegNhUwI3Lg//l//zDz/y/jZ7HWrGRQWK7ekcsN16t+BngmaJtsucxczPfC3yimoEef91RHn/d0eUPLMHLz91gfDhiNbrV/q7a0BRkpG9ynk+FYSgamkMkIun5HhMi+HweGlruNuN17G3m377uGKH6xZpQNjY1YtsGCNjY7aa0JeU994X59D/LHeCwiHgqGQszWX0KCCmlHlNKnV/N5Iq8I3orODxm/behxHuNRe/Prmzuq8Hc3g58u4hoIqIBeWAP65TAniWZzJFKLBbfqxX+gIdMer6yei5bYO/BVob7J+avYJSZG1FFOlKxmRQ3L/WtydxsbO4FNnNOYst4RyilIsAU8NiCOdYzP3n+tHXc/yg1ThWJ6+8AWoDHMYPj7Nd3A99cXEK8lhiGQSFbIJmo3myoUpxOB1phvkK6rhv4Az5S8QyGsWChp8zcxCzhsQi6VR5rY2NTPZu2umkLeke8G/gfIjKK6SzXAvwOZlD4lHVNKRF5J6ZnxJe46xnRDHwfpvz5vy0a85i1SijmNmYA+4qlGFvMdRHpxNyK+t0K571i0qkcTpeVl1gjBDE3/IoWKmYlk46uG7hk/nOOAgoFfc5fQhmKbDpP/51RDp3oWLN52thsVzZtkADTO0JELgD/BTMwuDDLRT9H7b0jfhdzy2YSuICZ0/h8FWP8KZAE/jtmsjsKfAN4i1Jq7i6qlPqciLwOczXxEczVyjDwkvXZYkr5R7wFc8XwU2Xm8Sngp0Xk95RSa9pNFplK4PY4yaRWJnLYDgABAABJREFUL+5XDlUiJdTSXs/EyMzcEcUIZqmsP+idey08MoPP77GDhI3NChDbqMWGFSbnz77USSqR4aWnrq1ZJdCpxw5w4aXOeTmPBx47SNfVQbSChjgEp8OBw2m+7/V7cIjQ2Fo3b5wTD+7j4dcdJVhnJ7Btas62roPbzDkJm03O6NDUXCPdmlFiaK/XRS6bR0RQSs3LNxhlpDji0RQ3LtoJbBubatnWQcL2jlg7NE0nMplE0/U165FwOMzcwyLmTqjmNJxmMXSj5HNdeCSCVjBsPScbmyrZ1DmJGmB7R6wRM5MJCppBPqctMgKqFT5LkqN4q6mu3k8ilgaKYgXmasLpdHDikQO4nA7Co5F5n9N1g3yuQNeNIU48uH9tJmxjsw3Z1kHC9o5YO7pvjVLf4CMeTa9Zj4Qv4CGTnt883r67iYmRCGA21TkcYsqCGIr7Ht7LQOcobreTXftaiczMr4aeGI2YgcQOEjY2FbOtt5ts1gbDUPR1hQmEfCSj6TU7j3+BbhNAQ1OA6Iyp5jIr3qcMc2vK5/cQmYwxPR7F63NTyM9fLCZiaRCYnoiv2ZxtbLYbWzJI3Mt+FEXn+/ESx56z3vu1Ss+9EibHoiTiaQJBL7FYrXoXF+O3dJuKKb1mUXTsb2Oga2xuD2qwe5yGxsU2pulkluvne2o/WRubbcqWDBKVsh39KCyGMPtG5hCRB4CTwPQanRMwn95ffv4mTpcDt9tJNl2V/mJVmCuJu93cLreTwoLu69kS7ub2eqZGZ+a2vqbGozQ0BzGM+YnqsaFpHE4HhfzCHkUbG5tSbNucxHb0oyjiY8Avi8ghpdSsttQ7MCVE3lzjc82j6+YIE2MxnC6HqRJrqDWrEhfBKm81T9C2o4Gp8ei8Y5RSIIJYyevZIKGUQi/o5HMFfP67jXW6ZmDoBjcu9vHwkysTNbSxuZfYziuJ7ehHMcsU8AXgpwEsEcQft865JmiaztULfbz49HWcLvPHRtcNjLVt6p7XJ9G2q5HJscj8t5WiuTVEdDox93elFCgYH5qivoT669REjOjUqusZbGzuCbbySuJe9KMo5n2YK5X/CXwPEFVKvbiSSqMr53q5fnlg7garLB+JWT+JVCJLOp3H73fjtjSRHE7H3FbQWnXtK2W26Yk1vtvloJBfuN0EbbuaGekdm3vNXFHA6NA0D732KDcuDyKOu755E6MRHnryKB98z9N4fJWIDNvYlOfS2Z5f+NN/eMd7lj9ya7KVg8S96EdRzFPW+N+KudX0vpUO9NBrDvHQa6qPZa88f4t9B9tXetplqWsI4PW6cDhm/bSdiMiiktu6eh/pRBaH466pkMMpuFxO3G4XzW0hPN75wcDlcnD0+C5e/62n1mz+NvcGP/LOt2zbAAFbO0ikLQ+KORbkGe4AbxIRTwU3+1k/CgMI10JuvMiP4lwFh1fqRzGHUsoQkQ9i5l2eZEEiez2ITK1tKamhGXMBoa4hQGxm4cLRQmEuKeaCx908RjabQ5Xosh4fmubI/XtsD2wbm2XYzjmJ7ehHsZD3YVqYfk0pNbqayVaLUoqpNew3cLmc5LJ3Y3vbzgYmRiKLbugut5N8vvyO4uRohMbm0KLXCwUdraAxPbEo/trY2BSxlVcSS7Id/SgWopTqFZFWNkAaJJvNk80UirZ4aovX5yadyt1dSTQGuH1ldkfwLi3t9UyHY0WrCAvLrzsylWDPoR2kR6OLAkw6naPr+jCtOxrX5BpsbLYD2zZIwPb0o1iIJRmy7sRm0mgFHY93bX6EvD73/O0sq2JpIY0tdQz3jM0dUhwHlGJOAFAvMiKaZXI8Rn3D4oY7Gxubu2zJIKGUenuZ1y+w4FFTKfUpyjyJW+9/APjAKuZyYKWfXTCOjlmuu2QD3nLnq9V8lmNscAq3p9Jew+rx+txzkhwut5N8TlsUBAACQS/pRMZ0sFu4mDAUOATDMMhnc4uCRD5bQNcNUomM7TNhY1OG7ZyTsFlDxoZn1jTh6/W5SSXNINHSXs/UWLTkcbNTWOhpoYpem5mIE6wPlPx8Pq/RfX24JnO2sdmO2EFiCWw/itLousHEgs7nWuNyO8lnzYR0644GJsYWJ62BRVtQd9XD774xNR6luW2+U90ssZkk8djaiRTa2Gx1tuR20zpi+1GUIDqdIJvOzzXWrQWGUhiGWQLrcjsXNdGBWQGlafM1mLxeN/c/epDIVIKh3jBgbiu53U4M3cDhnP9cFJ1OsrOjyS6FtbEpgx0klsD2oyhN961RXO61y0cAVte3uZ002wG+8CZe3xwkVuQZoZTi4dcf4/JLt9h3dDc7djfNyYIrBblsAX/QO/88SlEo6EyHY7TubFzTa7Kx2YrY2002VWEYBt23Rtf8qdv0qlbUNQSIR0o30TU239VsAth7eAeDXWPkcxrd1wfZe6h9TjIkGUvjdpWes1bQ6bm9rm0mNjZbhi0VJLahj8QrIvIPC177CWvMX13w+rtEZND681usY1rLzGvN/CTGRyIkE2u/h68VdESEHR1NjA2WTpLXNwZIRu8GkB0dzYwNTN2d6+A0LW31gJmXaGytL3muyFSCQm7tJM9tbLYyWypIVMoW8pF4Fnjrgtfegik3Xur1WkuOV4VhKE4/cx2nc223mjxeN+mkKR4YrPORKGNs5HCIJSUOgZCPdDI7rwp2pH+CXftaUUoRj6QI1ftLihHGoykcDlkzoUIbm63MtstJbDEfieeA3xCRvUqpIeu1twL/G/gTEXFaarJB4Ang7yuY05px9XwPM5MJXK61DRL+oIdkPGtZky5x4y56a/+xXQx0zt8yMnQz8a2UgYgTZRglm+qUMmU6IlMJmttKrzZsbO5VtuNKYiv5SJzG7NJ+K4CI7Ac6gA9hdl/Pajm90ZrThqwkCnmNM8/f5Pw3Otc8QAD4/V6S8TShej/xaIpSD/izN/9ZAkHv3OpjDgXT41GaWswbv1bQ0AqlHel03aC/085L2NgsZCuuJLaNj4RSKi0i5zCDxIes/56zXn9h9u/Wf3uUUoMrnddSXL/UT+fVIQxloAyFYXlKFPIa0ZkUmVQOX8AzZza01jjdQjSSZP/hHQz3hq2GufmRoq4hQMLqb3C6HOiasUgbXgFjg5McfegAk+NRRgen8PrcTJbo8XC5nYy6HPT33c1pVJWat8tn71nOvnDrF//4H965VlbFG85WDBLbzUfiOeAnrT+/FXje+vPzwNuAP7Fef3aVcyrLA48c4IFHDqzV8FVj6AZj/dPsPdhO/+1RvL7FC7u2XQ0kIkkcDmH3vlbCQ1MlRjJXQT6/B7fbRSKS5v7HDyHO0j/2B4/u4g3f9mBNr8Vm+/N9P/6GbRsgYGtuN6UtWe+5L8yn/1nuAIctS89lx8JMVp8CQkqpx5RS51czuSIfid7ljrV4FthvVWa9hbtB4gXgDSLSDDzK/K2mWeW7iv0nthLZTJ5CQUPTdKsUdjH1jcE5f4nWnY1MjkZKHgfmNpM4BF3TcUDJMbWCjq6rxVtWNjb3OFsxSCzHlvGRsDgDZK3P7QRetibWidnI9yuYK77iINGFaZC00H/iEGbgqCTpvmlJJjIE63zmjb/MutDlcZHPm/kFh9NRNpiAJcvRaspyGErN86koxtB1hvsnVjd5G5ttxrYLEkqps5iy238mIu8WkTeIyH6rt+DDmKWwtaJORHaKyF4Reb2I/AXw/6jCR0IplcMMFP8VMx9RLNPxovX6raIqqtlO8H/EvMZ/LyIHReSbgI9iyoi8VJOr2yAiUwl2djQz3DdRvmlPGaCWDxAAU6NRWnc1AqakiK/E9hVAJp0jPFx+RWJjcy+y7YIEmD4SmH0LjwJfBm4C78EsU621j8QYpoHRJzENjd6mlPrFKsd5Dqjj7lbTLM9br5fKR/wSpjPdHwM3gA8C14DvVlu84H9mMoHL45qTCi+FWdikaGlvYHoZscF8Lo/H60YpxfR4jOZyTXXTSWSNTJRsbLYqssXvJza1YVP9EHz102dRSnHhhVslb9q+gIc9+1u5dbGXBx4/TPfVAXLZ0sVsYv3fI2+6j6uvdOFwOXn49ccZGZop6ap3/MF9vO7fPLBulVw224Jt/WRh/ybYbCoMQ+FwOBjsHi/7VN/QHCI2nURE8PjcZQME3I1+yVgaf9BnncMgXyYvoeU1JsftLScbm1nsIFEC20di48imc3j9bibHyxdoNTSFiM5Ywn5LdWQXMTkWoc3KS8xMxPH7S+clCgWdge7xku/Z2NyLbMU+ifXA9pHYIKbCMTKpLIZh4CiTtPYHPGSSWbw+N/kKhfmiUwkOHNvNUN8E4eFpjj+0n8mJxSrw0ZkkgQVy4uuBUsr0u3A47LyIzabCDhIlsH0kNo7oTJKBrvElN3mVMo1Jm9sbmA5Hlx9Umf8nDgFlNtg5XY6SJkSJaArHgbZ1MSEyDIOJ4Rk6L/YyNjhFPlsg1BjgwIkOOg62s2PvIpFfG5t1xw4SNpsGpRTpVJap8djSN2ilQCladjTQebFv+XEBQVCGYd78EQo5jUIujzfgWzR0IV8gHknR0Bxa5RWVm75itG+CM09dJjadwOF0zF1vfCbJldO36bsxxMnXHuXYQwcWBTIbm/VkXX/6NrEfRPHXH1vvH1jwekREXhSRN1dxrcWfnxKRL4rICev977Be37Pgcz3WNTuLXguISF5Efqba7+NWIh5NMR2Oo+vl8wymlanZROcu+vPyKKKTCeqbggCM9E/SuqNUwzoU8jqD3eGq5l4p2VSOpz72DZ76+EskY2mcLueigCgiJGJpLn/jNjfPdy+thGtjs8ZsykeUDfCDKP76wwXHfIf1+psx5TC+XGkgAr5eNO63AX7uaky9hJnfeMvswSKyF9iD2YH9SNE4b2ADVWDXi6G+SbpvDONY4qfSTFqblU3VFO4qZeY7ZgNDbCZJXUOg5A04Fk0Ri9aqAf8uI73jfPpvn2JscBJHBZ4c2XSOvlvD3Hy1p+ZzsbGplE0XJIr8IP6bUupXlFLfUEoNKKWeVUr9GPBXRYcrpdS4UmrM8m74fUyxvyMVni5hfb74a6HC7LT1+lXgP2IKAX5bhePnisa9CPwFcEJE/JYMyHnmmwvNqr4+U+L1AaXU8nsrW5RkIs3MRJzEMjfnhuYgsekEbo+LQhnZ77LniKUI1QfmzIVyuQJafnHiOz6TwlnDLR6lFFdfvs3Tn3gZTdOrynVMh2PEphKMD07WbD42NtWw6YIEG+8HsRSzvp1Vjy8idcAPAdeKpDeeY3EweN76Wvj6mqnAbjSpZJbnvnCJ0cHJZd3hgvV+EpEUzW31zISr0zFUVgJ79hxD3WFadi7ectJ1A62gkYyvvgBNKcW5Z65x4fkbK06E99wYZLg3jGEsLT9iY7MWbETiejP5QbxLRH5vwWs/rJQqtd8fxHSM0zEVWiuh+FqDwBDwXUXvPwf8lojsV0oNYAaDd1jHvVtEXIAPeBxTE6rc2LOsKOhfu9DLcO/E3d0bq3rI/DMo8/9m/zp7t6XocMybb+nPmMfM/4yhQNd0psIxErE0j77+KFfOdlt2pEu50SkMQ9Hc3kDPjaHyx5VB0wwMTUdTBjMTMQ6e6KDv1tiistPorkY+/+GXaKrWqa5omB0dzfTfGqL/5vCq7SZGesIM9k7grwusbiCbmvPSU9d+6Y/+8Wf/avkjtyYbESQ2kx/EuzGd5IoZW/D3F0XEsMYfA96ulLpW4fjF19oM/DzwtIi81rIrfRnIAW+1TIZ2AS8rpTIiksAMDk0sVoFdOPYsxd/Hijn1+CFOPb6sR9KaMjY0Rd+tUZzupffq6xoCuL0ugnU+CtlCSWmNpZiZiNG+u5mZKbPCOTodp31PI7o+/7hcrsCB47t4/becqmr8YnpvDBELR2tiiRqdSnDyNUd4+I0ncLntosTNxHf+4JPbNkDAxgSJtOUBMccC+e47wJtExFPBzX7WD8IAwiuQ+55eOJcS/CimcF5UKTVd5fjzrlVEXsX0evg54HesYPAKZvJamK8C+4L1ehNwRyk1stTY1viNVc5v03Dhxds4ltFLcjgd5LMF09FJza44qgsS0+NRDt2/Zy5IDHWHefRNJxjqn5q3HRSPpOjYv/J+iXgkyUtffBVZKgtfBUopIuEYN8938+DrT9RkTBubStiMOYmN9oNYyLBSqmcFAaIUCjOgFe8ZzOYlil3p4G5eYlvnI8AsfQ0Pzyx7Mw6GfESnEzhdTvSCvuSx5chl8nj9nrntL6UU0+EYbs/8FYxSkM8VmJmIlxpmSXTd4GufOF3zHMLo4CS5bAFdW9m129ishE0XJDbID6L4q3Tx/MrwFo17H2YyPgR8oeiY54B9wPcyP0i8ALyJxa50244LL92GCraNQg1+otMJmtvqmZ5YpuGuCvrvjLJ7bwtqwU09k8rRc2u4zKfKc/VMJ7GpRM07tpWhSERSdF7ur+m4NjZLsemCBGyIH0Tx18IE8Wr4lqJxzwJPAD+olHq+6JhXMKuyvFiudABKqduYW1MOtnGQyKRy9N0eq+iGGqzzE5tJ0txev6yHxFLks3ncrqKVg4LOy/3s6Giad9zEWBRjica+UqSTWa6e7sThqrRVpzrGBiZJRtPLVoHZ2NSKdc1JKKXeXub1CyzYXFZKfQqzoa7cWB8APrCKuRxY5v3+hXOqcvy3A/8/e+8dHsl13Wm/pzohD4ABJuecODMckhIpkRK5lmR5rc9rW97VruUgybK9a69zXFu2JXsd1muvLVsOshVoS5asLJIixTwkZzg5YjDAIOec0bm7qu73RxUwDaABdKO7gQam3ucBOaiucBto1Kl7zzm/34dS2C/GzOWnxNc2L3DuZNvn/BzznUuv12EqNa+Y3wyUwtANCgq9RBYwJFqM4b5xKjeUMdg3Pr1tciyIfzRA6bpC/BNWWiges3y2A5NhSsoKUzr3ueeuYZpmznSf4jGdeCxGX/sQW3ZvyMk1HBwSycuZhMO9QSgQoaWuO+UKJdMwMU01Jd20ZEYHJ6jcMHdVsb2xD5/PhS9BRnxiPERDTWdK5x0fnqSrObVZUSYM9ozR2Ty7CM/BITesySCRLT+IBc6/Y4HzB0RkRzbex1rn7Is1qdpB4HJrREIxXJpg6iaZmOnpcQO3x5V0yab2Ugvrq0pw2YFrqG8MPaantLxz4cWbZNwQkQITI35ELNkOB4dcs1YLrrPlBzEfvViltwu97rAAIwMTtvtcas8pZeXFjAyMU1FVxthw+hVHqSIi3HizgQffeZSOlgEMHcLhKL2dw2zdWT3vcePDfnrbBpdFsXXd+lIKCn30dQyx+/C2xQ9wcMiANRkksuUHscD5dWCx/gqHeTANk5efuprWU3dZeTFdzb1s3lZFV1PmSzohf9g2LZqr/6QUXH/zDqcePURbUz+9HcMUlRQuGCSunL6Vc7Og0opitu3ZSHdTH+eevUphSQHdzX1s27uJrXs24i3w5vT6Dvcma3K5ySG/uXLmDhOj6ZWIen1uQpMRikp8BCdDix+wCEN9Y1RtLJ/3dT1ucOtSMzv2biQYiBIORhnqS+59HQpE6G7pz2kuYuP29ayrLOHM05doqe0gMBHEPx6k4Vorr337ItfP1DPY4/hbOWSfVRsk0vFUkLXhTfGd+b5P2P64ff68tTTrbhvk1uUWXGmWiBqGaTenSQbZiLuMD/sprypdcJ9wMEpLbSfVG8tob+qjs2UwaW6i4XorKofae9VbKlGmyfXXalHm3Q5wI24QCUbRRKi/3ETD1Wa6Wxx/bofssmqDRKqsIW+KVc9Q3xgvfety2sldESEejSOaWIEiCz0CylRomiyakB4fCQAKI67T3tg3p9JJj+vcudaWs6Wm0vJiCop93L7QNOe1eEwHEZSyfkatt7vobu5jqCcb4gAODhZrMicxRYI3xa8ppf5fwksdwKtJJD6mHsP6ROQTwBexvCkaUricP+H4+Rix9+kXkZ/FUqx9D/DpFM6/alFK0VLXwxvfvbGkWUBpeREjA+OW4dBQ9pLWylQoZbLYc8Cd6+2cevQQna1DNNV2UVDoZdcBq4Wlp22AkD+c9swoFVwuja17NnD2mcskr+ZSKNMkGo5SUOQDrFmNr8BLaUXJ9DYHh0xY00GCNepNsVowDJOhvjEuvlbHYM9oSm5syaioKqX2UhObtlbS1z6YtbX/ybEApWVFBAMLl5KahslAzyg+n5vBvnHefLGG8ZEA+45t486V1pwECIA9R7dz7fVaTGP+5rx4TEc0uRsQFDTebEU04cSjh3Pes+Gw9lntQeJe8qbIGc23u+lsSd3TWU35TSjLM0IphakUylBEY3FC/ggTowH84yHEpeFZRP570euZJv6xIHsObmFyLJhJi8QMhvvGqd5aweTE4uv47Q29PPT4EepvdhLQNF579jpDvaNcP9eA2+NC0zSra9y+Jwv2v5c41vUby+nrGGJ8aCrBn/xEum7i9rgYHwlMr+JNjEJJWQk9nSOO/8Qy8OrTV3/6f3/mZ/55pceRK1Z7kLiXvClyxq4Dm9m4rTKtY6Z/sCKIWGviLrdGej/y1JgcD9J6u5N1FSV4PO6srf9HwjEqq9cRCcdTeuIOToR4+7vv48TDBwCovdjIhs3lM46dSnFMGTEtBRFh733bOfv0JdwpzFKUArdHo7C4YHrbYPcw973tELuObMdX6JTG5pJXn7765ZUeQy5Z7UHiXvKmSGQS2JtkeznW+NPqEXF7XJSuy98nzsGeETweN3pcR8hyGFJW8tmXQo/B5FgQUzeIRWMUFhfQXNMxZwktG2PbcWAL9ZebUvayiMd0XG6XHaTv0tnUg8utcf87jmZhVA7z8b8/8zOzVzPWFGu9ummtelM0AEdEZLbq3CmgQym1pvQaOpsHWFdZYim/ZnmiMjo0QWEaT9qdzf003+pioGuYwETm/RqzcbldeDwuhnvHUs4nKLviyzBm1uH6R4NEwzGGe53+CYels6aDxBrzpkjki4AO/KuIPCAi+0Tkw8AvA/83R9dcEXTdYKh3lPL1pQz1Lm5MlC79ncNUbapYfEeb4GQYl8dF3eXmnCSsd+zfxK0LDaS7VKXrRlJl3I47PXQ0zDY1dHBInTUdJGBNeVNMo5SawDIkcmHpVN3ACni/CvxjLq65UowNTRINWW5yuXhy1+MGLreGnobbWygQzonxj8fnxjRMAmOBtINhfB4RwkgoSigQobPJkRNzWBrimJc4kLV6oexz4ZUa6q60sufwVs6/cDMnJZ07D2wmGomhUljL8vo8VFaX0XitleJ1RbgzrNxKZO+xHdw8c5twILKk4wuKCygqLsA9y4rV7XVx8P69PPDEMackNjes6R/qmp9JOKxeTFPRfqcXr8+z5BtnKnS3DrJh2/qU5MC37Kqi5VYHsWicaDh7qR9foZdoKELIv/T3qcd0IknGpMcMwoEwbXVdmQzR4R7FCRKL4HhTrBxjw5P4J0KsqyxhsCf7+YgpDN2wDI2MxQWY3G4XgckQplLoukksmg3ledhxYDO3LzVlZEehx3VrTpgk1nU19TEyMO7YnjqkzWovgV0OHG+KFeLWxWZcLo11lSU03mjL6bVabndx+IE9+MdDeLxuPF43LrdlTKRMRTxu4PW5Gei8W5gWDUdxuTS8XndGZkNFpQX4RwNEgzEkw8c2wzSJRmJzeiPiMZ2wP0JbXRd7jt6zzx0OS8AJEovgeFOsDLFInI7GXkTEEviLpZ5YXgi3x8X6jeVUbCjD5/Ngt4yjDBMVjWNG4/jHA8SicfSYDgKa5sLrc1O9tZKCAjcnHtmPUtDTNoR/PEg4qFFYUrDotedj+77NXHj+WsYBAiAejePStKQNdN3NfRSXFqKOpNZ/4eAATpBwyFNunG9Aj+l4vG4i4aglkb3ETmuP182uQ1spLi1Aj8QZ7hmh7UYr0emSUXsJRjSKywqJRZJMEEUYH5wgOBECFC63i637NrP7wD4mx4OMDvmXlMQuLS9mpH+MeFTPivOpaZiWTIqtcptIPKYTCoTpbOxl58GtmV/M4Z5gWXMS96AHhBKRzyR57c/t174za3upiHxCRGpFJCQioyJyVUR+J9EjQkReE5FPJTnvj4jIql90DgUi1F1tRXNplFeV0t85sqT6EV+hl+MP7+fQiZ30NfVw45Uaas/epr99gGgoynT7tqUrAijCwQjeQs+c63l9bstT2t7fMEw6G3q48tINxnpH2Xd0G0Ul6auubt2zgYZrrVm1xjYMc95Ef1dzH8O9yc2THBySkZeJ6zXkAdEFfMAW9Jt6b27gx7H6NEjYXgGcB34K+CvgEfvr94GDwEdSvOaqxjRMXvja+ekkcnlVGQPdI2kvj+w+vJVDJ3bScLGRW2/cJjDqB9SiuQPTMAn5I3gLPDP8qjWXhpGsl0KEod5RLj53FZ/XzeYd61MeY0V1GX3tQxjx7CylTRGPxlGmSprAjkd1wsEIfe1DWb2mw9ol75ab1pgHRA1WAPsvwOftbd8PRLDECRPvKH+CFQQPKqUSW2QbgGflHlhENgyTV751kdGBcTRt6gatLDnsFM+hacLJtx+kp7mPtust2I48pDMVUaZJYCJEYZEPj8+DYRiWwY+a/zQKqL/UxIZtVew5voOO5gHrRr0AG3dUcfaZS1mdRcCUKq9JLBbH65urRN/d3EdRSQGbd83v2e3gMEU+ziTWmgfEZ5k5C/gIVsCYvoOIiIbVFf7FWQFiGrWGaxdNUzHQPcI3P/sqnU390wHC7XERCkRTdqLzeN08+PhRGi41MdBqS58v8Q4sWN3KkVCUouICouFYSnFmsHuYm2/UsXPfxgWNVjdsW097fTemnhvf03hUT55bAaLhGJFQjOF+Z9nJYXFWYiZxr3lAfAn4CxHZj1Ul9V7gF7CWuqaoxlJwnTH7EZFzwHH72zNKqe9LePlnRORDs661pPbflrou+rsXFoGbuj8udrued78EDwplQjweJ+iPMD7kZ2hgDGVacteJbNuzkfb67jnCdclwuTVOvO0A11+tIRaKWsEhC2HVMAyrQU2plF1TQ/4IV1+u4eTjx7h5oQmUtVxlVS9Z0uq7Dm2h5mxdRpLiC2H5TLiZGE0u8VF3pZloNIa3eLZGpEO6vPjV8z/yic/896+v9DhyxUoEiXvKA0IpNSYi38KaQYwDrymlOlNcPfoA4AP+ANg+67WvAJ+Yte29zDMDW4jNO6rx+nLnOTD1VkUE0WRa6XQxgTy3x8XX//FFNm1ffJ3/6EN7uflaLaZu4EmyxJIMj8+D263NuFHHYzpGwtO9t8BDLBLHNBUul2ZVDKXwu1MKas/d4YF3HKWlvtvyZ7J7Lrbv30zrbav7eXYFUjYxdAO3x5W0HNY0TDweF1UbyihyjIky5dJKDyCXrESQuBc9ID4H/AsQwEpEz2YIK4AcStyolOoCEJEJ5gaJiSQ/x8Ut1pJQVFJAUQZ1/rlidHCceFRftLR09+GtNF5pITAWTMhlzI/b68LtcRMJRggH9LsVsGJVRBUU+YjHdEzDxOV2ocfDiIBpmiAarhRv7HpMp/bcHY697RCtDVbPh8fnpqi0kJHeUVyu3K726nEDb4EHr8+ddDbR2zpIWUUJB0+mWofhkIxPfOa/dy6+1+olH3MSa9ED4hUgBlQB3579olLKxJoZ/JiIzA4G9yxNNV1zjHRms35TOf4RP0PdwylVQPkKvShT4R8LEI/qM1Z6lIJIKEZgPIgm4Cv0WA11ifuYKiX5jikioSgNV1vYtnsDSil2H9pGzZm6ZZLHUOhxg0gw+bNWOBghHIwRyqEulsPqJ++CxFr0gLCTzseB3QsYAv0OVlnsBRH5qIicEJG9IvIDwONYuZB7BmUq2u50L3jjd3tcVG1cR8OVZstTehEKirxEIzHLd2GRe3Q4GCUaitm5hER7Uis3sVjlUiL+sQBDXcNs3r6ekYFxQoHIsnU8x6JxDMOY9/12NvbQWrumH4QdMiTvggSsWQ8Iv1JqcoHXR4G3YlU+/SpwAajF6tt4GvhvuRhXvjI2NLGof8Tuw9u4/nptSjdsX6GXSDhGfJ6KnzmItaYfnAhRVFIwY2nINE3MNGcC/e2DiFIMdgxmveR1QZTC0A2rETAJIX+YcDBiVW85OCTB8ZNwgDz0kzjzzFWab3fO+8RduWEdmCaNV5oXfSqfMvNJ5tw2H5ommKY5XdFUVFqIrhvEbdVXEUHTZEbD3UIUFBcQnAxx6vFj3LrYiJ7lBroFEaGopICSsqKkZSHF64o4+tB+Dj+0b/nGtLZY0z1MeTmTcLi3icd02mxxv/nYuK2S5mstiwYIza5ISidAACAz2zNC/jACFBRZ0hvTy04phFfLKyKKqZvUnKnjvrceWF7JbmXlJsLzzCaCEyGC/rDVMOjgMIs1GSTE8YBY1TTf6iQemX/5Y+uejTRebcFMZZmpwGOL8qWOaIJpzD13NBwjHtUpKi0ErJmGaS6cxPb6vBhxY7qxLRbVaa/vYt+x5f2IxCJxDN2YNzh1NvbScqtjWcfksDrIO1mOLOF4QKxSTMPk5vmGeXsoXG6NomIfA53Jq5lKK0soLiskHtUJ+UOE/JGUm+CmEBFMlfzmr8d1TL9BcWmhJSceNzBRaK65Y/EV+tDj+pxZzHDPGFWbKymvKmV8OGcq9LNQxKJxtIBGUenccmf/WICgP4we13F71uptwWEpODkJB8ijnETDjTbOPnt93tLX3Ye30nC5mcnhybtBQmDX4e2UV5cy1j+OfyyAr8BL1ZZKTBSN11pTtgUVTaab3hbDV+jF43Wj28521gkEj9eN2+0iFIhYJbRJLwQPvesEN87dSaukNlMKSwqtRHySn++6qjIOPbCHQ6f2Ltt41ghrOifhPDI45A2xqM7lV2/PGyBcbg1NhMmRuwHC4/Nw39sP0l7bSUuCoJ/mEroae3B7XBx++CCB8SCttYt7PItIyjftaDhGNByznOx8tmqssp7YQ/7wwqFXwa0367nv4QPcePPOspXERkJRNE0oLi2cc2ubGJ4kOOnMJhxmkhc5CXF8JqZeS+ozkcJ4fz3V/fMVpRSvPXVpQc/oHfs3U3+xcfrm6y3wcOKxw9w8XctQpy19bTvZTc0E9LjBrTN1xEJR7nvbARa6c4td0ZQu8ZhOyB8mMBEkOBme06Q3H5FQjL62QXYe2JL2NZeKMi1f7vmS2D0t/TReb1+28TjkP3kRJFLlXvSZuFe4cfYOXc3982oZTc8iRv1W+alL4/ijh7n28k1i4egMPSXRmJPU7mnpp691gOOPHk5ekiTMCC5LYgmH9rUNUrKuyE6GLw/xaBw9rictwx0bnCAcjEyX+jo4rJogkeAz8RtKqV9VSp1VSnUopV5VSn0Q+GTC7kop1a+U6lNKncYSwjuG5TORCn77+MSv2cq1I/b2GuBnsQQA35Pi+WuAJiyfiSmmfCZem72ziPykPWOKisiAiDyZ4nXyHtM0uXy6lhtv3llQy2j7vs3UX26avhEff/shbp+tt6qgZgSI5JVJACN9Y/S3DXD04QNzAoWWxjLTQlg5vvSixe1zDRw+tWdZfafDwSjRcCxpUOxrH6D+asuyjcUhv1k1QYJ70GcCwDY6+rT92nHgPwIZl/GuNKZp0t81zLc+8yo15xsWvEGKWDLik0NWLmLn4a30tvQTGA/MUWQVWLAHYah7hMkRP7uObJt50CLHpcOU4muqmKai7mIjRx5cxoSxUoQDEcJJJEpG+seJRePzdmk73FvkU3bK8ZmY6zMB8HvAX89y6buaxnUWpbOxl6G+8SycSc34p+KuPLZpWg5zgYkQI/1jDA+MY+pmSh3L2/ZafRG6blBUWkjJumJarrfa17l7Tc2lpeQ90d3Uy5GHD1CxsYzRgQk0Se24dJkTKGTG/2YQGA8yOexnw9ZK+jqHsz6WZBiGScgfRteNOct8DVdb8Y+HKKssXZaxrGa+86+vv/MPPvs/0vnbX1XkU5BwfCZm+UzYyfitWCqyOaO8uoyJseyK6ArW0s9U/sDtceEr8OItSH8y53JpPP3pF6jeXMGRtx7g8ovXcLtdM2cfYonuqRSXbOovNfHgu09Sc7aeeExHmStRxTgziLTXd3H/E8cYG5wgkqrGVIbE4zqaS7tbnWUzMRpg+wENwzAoLM4/Gfk8Y/bD7Zoin4KE4zMxl2W5c5VVlHDfW/cvx6WWRM2ZejSXRvXOSgY6B9Gj+pwZiAJMMw09JAU1r9dy32NHuPxyDStT6j73mrfO1HP/f7iPq2/cTknZNhvocR2XW8NX4JkRxPvaBjhw/568/mzkA/e9dX9WZ/b5xmrKSdyLPhMDQA/wPRlcY1Wjx3XqLjXicglVWyppu9WRNH+hDDPtzupYVKezoYe9x3dmabSZo+smLTfbOXB817JeNxqOEQ5GZ/hiR0JRghNBetsGlnUsDvlFPs0kFkQpdVFEpnwmtgHfwMoz7AZ+Cmhmrp3nUikVkU2ztoWVUhNZOj9gRTIROY7V+T5flvCPgb8SkQHgWazlre9RSv1lwj5bROTkrOO6lVLLs7idQ7oaegkHwuw6sp2Gy80oU80JEgq1xJyCYrBzmOptVayrLGZiNFfPE+kxOjBB1dZK1m9ax0h/Vj9yCxIN3/0ITs0o2uq7KV5XxKad1Sm5/jmsPVbVb/0e9Zn4B+DngZ/G8pd4Hjg6a7dfAa7P+vqvuRjvcqJMxa1z9Xi8bnyFXoZ7RpLOIpZaujo186g738Chh/bl1G86XRqvtbF196akOku5JBqOEg5GpmcUpmHS1zFE4/W2ZR2HQ/7gaDc5QB5pNyUy1DPKs599iV1Ht9N+q5PR/rG5swhbBjtdZn/uS8qL2X1sBzVn78wpq10pNE148N0nuHnuzvL6TwDeAi+FxT58hV4Ajr51P0ce2r+sTX+riPz4wOSIVTWTcLi3uH3+Di6PC6/Pw9jAeNJZxFKWmZI9GAXGgwQnQmzcWbWkseYC01TcfP02J952aIaF6nIQi1je15GQVSPScquTxhvObOJe5J4KEo7PxOoh5A/T2dDD9gNbaLjSnPTGnqpa6+xj5qP1Vgfb92/B60tVvSX3RCNxas/f4dRjR5a1Ixss+Y7gZIhwMEokGGVscIKOOz3LOgaHlWfVJK6zhOMzsUpovNYKyjLtmXcWoae3BLNQgPAWeCguK6LuQgPHHz3ClZdr8mbZKTQZ4faFBu5/7DA33qyfV3YkF0z5fKMUHXd6WFdVxqad1dPLUA5rHycn4QB5lpMw4gZf++R3WL+lnMGOIQY6huYECdNUaQWJ+T7nHp+Ho48cRI/r+Ef8VGwsR3NrjA1OpiQtvpwUlvg4/ugRai40zChVXS6Ky4ooryrl2CMHOf62Q8t+/TwmP54mcsS9NpNwWAV0N/cSCUYorSih9mx9kpJXMI3MA0TxuiKOPnKQm6/XEg9ba+9dd7qp2lrJ/gf2MdA5RHAyNbOi5SAciHL1lRpOPn6U9oZexgaXrzwWIDAZQo8b9LYOUlJWxJ5ltmB1WBnuqZzESpKKZ0aCV8WDCa8XicjzItJm6zxh7/MjSc71KRF5LadvJMcopag5U0/FxnUMtA8mzTmYaTTOzRcgvAXWDOLqSzemA8QUwz2jdNZ1cezhA3n3iKjHDa68eJPK9aUcemBPStpX2UKwSmRvX2qkr32Q0f6xZbu2w8rhBIk8RkQqgJex9JverpRqWuEh5ZzxoUlG+sfZsKOattudSUteU+mLUErNGyA0l8bJx49x87VbqHnO1dPchx7TOXhqV9rvIeeI0Hi9jc66Lk48cpDtBzYva1LbNEwuvnST+qutdDT0Lqv9qsPy4wSJPEVEtmCJHgK8Qyl1TyS9a87UUVDsJTgWxNTn3nwWLXldIDgAIHD/E8eoO3+H+CLr+rfP36FiQzlVW8pTGPny4x8LceWlmwRGAhx/5CAH7t9NUcnyNN8ZusHtS03UXW7i7HNX6WjoXdBV0GH14uQk8pN9WA58d4D3K6VCi+y/JoiGY3Q19LLr2DZuvVE3dxZhzlfyqlJefjr2tkO013YSmlj8RxqPxBkfmmDD1vVWKWggVRHhZUSE4Z5RhrtHKCwtYMehbRSVFaHrOoPdI4z0j2fmtrcAE8OTlFWUEA3HaLrZQeXGdew8sJXqrRVUbaqgoNi37GW7DtnHqW5aJmw3uR/Dcp9LRAMKsTSoANqwRP+uAu9M5p8hIso+z+zsrRc4p5R6PJ2xRcNRNT7iT+eQNJm6Ucz6rKm7/3N7XLTcbKf2XAP7TuzkyvPX7RJUZZ9B0HXDmikscRT7799DaDJIX0t/yse43C6Ov+Mo4nZx7dVbGMtYfrpklMLt87BxZxXrN1eiuTUiwSi97UMExrOvT3Xowb0EJ8IE/Ja3l2EYiEBZRSnrN6yjeF0hhSWFeH0ePD43Ho8bl8eF26UhmmZJyoP1+5ZZpUKrIMb80x989cjvffbn6ld6HLnCmUksL4t5ZkzxFPDDWPpLX5jnXL+BpeOUyB8A29Md1O3LLbTc6kj3sKyglHUf2HvfDi48f42dB7fSeKUF07y7rCSaYJpmRs5xu45sR4/F0woQYC2rhIMRelr6uf/xY1w9fYv8v3MJhm7Q2zJAT3M/AhSWFrB172b2H9uOqRTdzf0EUphNpULrrQ5OPnaEWCxOsp9NcDJMcDKMrpsYcR1DNzFNE9NMWBpUd58Ypn7Lq2gSshtwgoRDVljMM2OKPweuAE+KiEsp9WSSffqTnGuCJQSJU+84wql3HEn3sKzS1dBDWXkxG7dX0XazHbfn7kdTKYVuGEteujjwwF7i0RjtSwyErTfb2f/AXtputXPysSPcWsRuNR+JR3Xa67pQSuHxutl1ZDsHTu5idHCS8eF59SVTpqOxh/seOcShB/YuW14kj3hupQeQS5wgkacopf5cROLAZ0XErZT6zEqPKVcopbjxeh1VWyvpax1Aqbty4IrkndWaS2PD9ipKyouJR+P4RwNMjvpnCOFVbq5g73076ajvYqhzaMnji0VieLxuJoYn6W3p48hD+6m/spgnVX4iIuhxg+ab7aibih37t7LnyHb6O4cIBTLoCVFw+3wDmkvj0Kk9FBT5sjdohxXFCRJ5jFLqr+xA8Wl7RvHplR5TLhgfmmS0f4yDD+3j/HcuzXhKN3RjTlJ6y95NbN5VTU9zH30tfXh9HkoqS9i8ZwMer3s6yIwNTnDlpeuQhcRt551udhzaRntdN5qmcfStB6i92LBs7nG5QBC6mnrpbu7j4IN7qdxQTndrestxiZhKUfNmPSJw8H4nUKwVnCCR5yilPiUiOvD3dqDIpm9GXnDt1VsUlBYwOTyJMu7OIkzDnFOZs/PwNtweF9devjm9LQSMD+W2+3i0b4ydh7fTfruLgc5hopEY9z92lJpzy6ullAuUUty53EzZ+hIOPbifrpY+4lF9aecyFTfP1IGCA/fvdvyx1wBOdZMDrKB2UzgQ5ut/8yx7ju/kxulbxGxpamUqq5opgYqN5WzeVU39hYaVGCqH3rKf9vpuwgHLwa2opIBjjx6h8UYr/rH8cLXLFM2lceKxI4wOTRCcDGd0rvseOciBE7soqSjJ0ujyltU7nUwBp5nOYUWpsbWZTN0gGrRuvkrNDRAiwv6Tu6i/uDIBAqD9dhe7j97VKwoFIlx+/hpbdm9k//27l93zIReYhsm107coLi6gvKoso3PVnLtDzbkGhnpHszQ6h5XACRIOK0Y8Gqf5Zjtb922i2bbHnM9pbs/xnTRdb11RvdpIMEJhSQGou+W5Cqg7d4fepl5OPnaEbfs3r/rnShGh7lITRlynalN5RudpvNnG1dO36GzsyaiE2WHlcIKEw4px+2Ij8WicwuICxgbHAZIGCBGhvKqU8YHxOa95Cjx4l9HbYKR3lMrNFTM3ijA5EuDKC9cJT4Q4+egR9p/cveo9F9pqOwn7wxkHioHOYc4/f4OGa63EonnYte6wIE5OwgFW4Plcj+t87a+/Q1lVCeHJMB11XRhJtJoA9ty3k/Ghccb67qqOVm6uYM+xnYT9YQzDpHhdESN9Y7Tf7szpuF1uF0fedoiaN+rm7/ZSiuJ1xew8uh1fkZfgZJje1gHCmZSYriDbD2yhpLyYoYSf/1IwDZMDp/aw//guNmxbn6XR5QWrfO64ME51k8OK0HClhUg4yp7NOzl76fy8AQKgfEMZbTV3/ZW37t/MuvWlXH3pOpIQ3jbsrObBd5/k+qs1S/K+TgVDN3C7XVhxdZ57gwjByRB15+4AUFJRwpZ9mygpL0aPGwx2jzDcO5ozTaVs09XYy46DW6msXsdoBlVkmkuj+WY7XU193PfwAXYf2U5RaWEWR+qQC5yZxDJi6zdVKaXeN2v7g8BlZuo3TTGJ1fL/x0qpZ2Yd98PA/wROAR6gFcui9ZNKqcE0hrasHwJdN/j6X38Hza1RWOSl/kLjvE/lFRvLKa8qpb3W6pau2FTOlj2bqH8zuQpCYUkBx955jGsv3SCeZOkqG2w/uJVQIMxw7/j8Owls3rWRjTurLckJZTnpuT1uisqK8BX5GB+ZJDARoq9tkJA/s0qi5WDPfTsRTZgYDWR8LmUqKjdXcOjUHnYc2LLaeyrW9EzCCRLLSJpB4r3ATaAc+DngvwOnlFK19jF/DPw28Engm0AXsBf4KaBRKfWJNIa2rB+Cm2fqOPPURQ7cv4faM3VJ8xBTnHznUW6duY1pmGgujQfedYIrL1ybMYOYja/Qy/EnjnPlxes5mVFoLo1jjx7m5uvJl5x2HtlO9ZYKepv76G/rTzrWsup17Lt/DyMDE7h9bkrKivFPhuhq7Flyj8JycPCBvUSj8azpPpmmSeWGcvYd38W2fZsoqyxZdZInrPEg4Sw35S8jSql+oF9Efhf4BeAJoFZE3gL8DvBrSqn/l3BMB/DqPHpQK4oyFROjfoZ7R3nlK2dxu92Yhoke15nvb2yqpHTK1ObQQ/touNS0YIAAS3L81uu1PPCuE1x+8XrKMuKpYhomLpcLayB3x15YUsB9bz9Ex+0urtW2I8x/95gcmuDai9fZdngbJeuKuPbKDUory9h3fBduj4u2uu6cKLZmSsPVFo4+fADDMKb7RTJB0zTGhye5/MpNrr56i93HtrN5ZzUbd1RTUla0JsqKVztOkMhzRMQD/LT97ZRs+AeBIPC3yY5RSo3nfmQLo0xFOBhhdHCCroZeulr6Wbe+hKGeYUzDZM/9O2i+0brg0v7m3Rvpa7NkIgqKfbjcbgKjqUmaR4IR7lxs5P7/cNzqzs7y0+lQ9zDVW9cz1GMlc7cf3ErVpnJuvHwDI26k/GjZXd9NYMTPQ+8+yZWXa6g9U4fL7WLPiV3sO76TtrouJoZzKeOePrXnGzjxjqMoc4JIKPNAAVYVlELRWttJc007AJt2WMGivKqU8uoySsqK8fjcq3GmsapxlpuWkTQ9JcKAaW/X7G0PKqVGReQ5YKtS6kQ2xhWP6SoSsoekElWb1V3pZtPENKdsQU0M3UCPG8RjBvFInHAoQmgyTGAyhH8swORokHgsjlIKl9uFy62x776dnP/OVUSE448d5vrLN1hopn7/E8e4cboGFNz32BEaLzfN8aNejIpN5WzZv5VbZ+uW8qOZF82lcd+jR6g938Dxx44w3DlEd2PPktcdSteXsu/UXq68UsPUz0QE9h7fRWl1Gc03OwhmaYknGygUpx4/Rn/3CNE0fydpX8s0MXQTt8dNaXkRZetLKSotorDYh6/QY/lUeD24vZZXheZ24XILIhoigqYBIlZwsX9BkvAzXviXtvhv9G9+7cmq3/3sz49k+j7zFWcmsfyk6inxo8Bt4ADwV8DPKKWmWlez+ih140wddZcsVVORuQ/3U39cU8YwYn+5XILmcuHyWEFg6gnP5XZRsWFmt+72/Zu58fpt3B6NHQe30t3QPX29ZGguDWWaoMBnJzXTDRAAY/3jeAt9HHxwHw1ZVG41DZOy9aWceuIYtWduEw1GM/ql+Ef8tN9q575HDlJ7vmH6B9NS047mEg48sA9voZemG20LVoItJ7Xn7nD/E/cxOR5YVv2qaDhGNBxjqiDXMAzLo0I3MQwTZZqWpqNdMKCY+re1/9RIpz7nd5+Tl/we3gJ8d6kH5zvOTGIZSTNx/ZBS6or9+jux7EyPKKWGReSTWAnqSqVUNh7jcv4h6O8Y5IV/fQ3RhIMP7OXc05cWvOqWPZuIhSIMdAxy5G2Hab3RMi3bsRR2HNmOaBrtdV1LPscUoglHHj6I261Rd+4ORkzP2nLWjsPbUKLRncQcyVfk48hbDxAJRxnszpMHV4ETjx7h4IP7VnuFUias6fUvp+N6FaCUeh2oA37f3vQloBir/HUO+Za41nWDM9+6hGhCeXUZ/e2Di/YIrN9SwUDXEGiCr8CTUYAA6KzrwuvzsGXPxozOU7a+lIfecz9d9V3ceq0Wj9ed1XxHZ3035dWlFBbPveFGQ1GuvVrDUPcwe47toHhdHvQYKEt/q/Faa86XnRxWBidIrB7+EvgZEdmulLqI5V73f0Xk/4nI20Vkp4g8LiJfAH5pZYc6k0svXCc4aVXqbNy5gbbajkWTjyKAqdi6bwu9zX1ZGUfT1WYqN1VQtaVi8Z3nDAgOPriP7Qe2cOX5q/hH/NZyhZ1wzSa3z9Rx5C37k55XRBjuHuXy89fx+bzsPLQNl3tl/4yVUtScvU3j9VZiESdQrDWcILF6+A7QDvwegFLqt7A8sE9h2SfWAZ8COoG88ZwY6Bii+XobmkujtKKEkd5RzEXW1NdVlTI+aHX2btxRxWBHOn2BC3P7bB0bd25gx6GtKR9TvmEdD73nfgY7B6l7s37GLCgejePxZDe1Z5qK5mstHDixe8H9mq61cvtcPVv3bGLDjqqsjiFdTENx843bNFx1ZhRrDScn4QA5yklEw1G++anvEo9ZlbsHH9jLxeeuYizSCX3woX20XG9F04SdR7bTkAP/iK0HtrBh5wbuXGok5E+uqbSuuow99+3EPxqg9XrrvCqmhaWFRHKgy3T00cO013cTWqQfQSnFhh1V7D62k/7OoRWtghKBE48dY/+pXRQW58Fy2PKwpnMSTnWTQ04wDJMXvvAGsWgMEaG4rJCJ4Un0mL7oUpOv0Es0FOHgWw7QmSPBvp7GXgbaB9n3wF4KigoIBcKEA1FcLo2SimLcHhcTQ5PUvFaLmcRjewY5es66c6GRk99znKunaxf8mYkIQ10jDHWPcODUXqq3VNLV1JfUGzzXKAU33qhF13X2n9xN6do3HFrzOEHCIesoU3HmWxcY7R9Dc1k3t637NnPlhRuLBgi3x008EgdlOb+Fc6hppMd07py3Zim+Ih8FJQWYhklXXWdaN9h4LI7b60aPZVdOw9ANepv72LZ3Ez2tA4sfoKDhSjMFxQUcfeQg4VCUwa7hrI4pVW69WU84EOHAqT1Ub11Tiq/3HE5OwiGrKFNx/rtXaa/rng4QxWVF+EcDKSU1N+3aQF9bP6WVpfizICSXKtFQlInBCfwj/rSfwPWYblU55YC+ln42bFuPlqI8hYgQDUW5+vJNRnpG2HNsB6WVy/80LyI032zj2qu1dDY4hkOrGSdIOGQN0zQ5950rNF5tnQ4QANsObKH+UmNKcgoVm8oZ6R1lx5FtdGahp2G5yOVNsPFSIwdOLpzEno2IMNg5zKXnryGmYs+xHRSWFuRohPOPYaBzkPPfuUrDlZY5Ce3QRJC2mjaarzYx0NZPPBqf50wOK4mz3OSQFfS4ziv//iZ9rQNo7rvBoKzSqmjSo4vnIgAEBabC6/UQX0XllPFoHI/PnRMF18BECJdbw1fgJhpJ7/yC0FbbSXtdF/tP7WHT9mp6WvuJRZbvhhyNRLnw/FWGe0fZf3IXVVvXc+XZS7Rcb0UZCsSS3th1Yjc7j+1i26Ftjj5THuHMJJYBEXlSRL6TZPuDIqJEZJfd46BEZE4to4i0i8ivJ3yvRORHkuz3KRF5LetvYBFG+sf45t89R197/4wAAVbndNPVlpT+6NdVlTE+MEFpZQmTKQr55Qt63PKKyBUNlxo5+MDeJc9YlKlovNLCjdduUblhHTsObcXlcWV5lPOjaRpttzvpbR3gm3/xTe5caABlda+LWPIunbWdXHv+Ks1XmjDN/JAecXBmEg4ZEA3HuPTCddpqO1EoNG3mM0f11vX0NFtVNqkEic17NtJ8tZk9x3fNcKJbLeRyySke1QlNhFhXWcLk2NIlxPWYQe2bdygo9nHgwX1oLo3e1oFpOfZcsvfELmpfq2G8bxTNpVFQXIDX57GbAa3PR3A8SP25egzd4ODDh5wZRR7gBAmHtFBKEZgIcuvsHVpvdaDrBpom06qaU2iasH5zBW8+dTHlP3RvgYdoOEpBkS9jGY6VIBaJ4y3w5Gwpp/l6K/e/6yTXXlu4JHYxrOR2jJrXb1NUVsjBB/dh6CZ9HYvLpSyVio3rmBwYZ7xvFNEEpRRhf5hwIIyvwIvHZ6m4appGYDTAQGs/Lo+b/Q/uz8l4HFLHCRIOi6LHdSZG/HQ19NJe18XE8KSlCisyb9XNjkPbuH3+DspUKd3Q3F6r9NVX6GNatnyVYegGvkIvd20/sosyFUMdg2zctp7BntHFD1gEESHsj3D91VuUrS9l//17iISjDHRmt2xW04RNO6q5+K1zM02E7H9GIzEi4Rgi4LWDRXttB2Ub1jExNMG66nVZHY9DejhBYvl4r4jMrunMJCf0BVtVNhEvcC7dE0UjMUKTIeIRnUg4RiQYZnIsiH/Uz9jABEF/mHgkhsvtItFubd4OZLvfYKx/3EpKptBttnFnNb2tfWw7sJWext5030LeYBqm9aScoyfyroYeHnzvKQZ6hslao6/A5KifKy/fYP3mSqvLfDzIcG/mgQhg+8Ft3DlXhzLMeR8YBEBZs7FYJI5CcePVGkZ7x1EeN6WVpRSVFeIr8OAt8OIr9OIt8OD2uNFcGppLQzQNzX54QRO0qWuJzNVgnLUhk5/k//2Zf3D/9uf+Z/56zmaIEySWj1R9JFLlN4DnZ237A2B7uie6/OINWmo60FwabrfL+sNLCF9FxT5Ioko6H/tO7ubsty9af7gpLotUbamkq76TnYe20Xq9Jd23kDdEIzEKinxZc2xLRvvtDnYd3EZX81w58UyZGJrk2is1bNxRxf4TuwlOhDIqInB7XBQW+fAPjlsPGWkQngjh9rnp7xiyZq+AqcCIGxi6gWEYmIayjbCsL8wp/wjr4UTNSLWoef6ZcUD/z8CXMz1JvuIEieUjpJSa4XozS9J70v7/OmD2fL8cmJi1rT/J+SZYQpB49AfewqM/8JZ0D5uXqy/fpLisEJcr9SaugiIfHq/HSnLD6lXDUQrRBJfLlW3H1GnG+8fZdWwnwclw1m1Zp9BjBs3XWtm8dyOnnriPrQe34PV60j6PUoqXPvsC66rWLSmPMtY7woFTe7j/3fenfewysmYDBDglsPlEE5Zd6QOJG0VkD1bgyL7KXQ4Y7R+j7kIDLlfqT42llSUM94ywafdG+lv7V2+AsNGjOport39azVdb2Jhj5VfRhP62Qd745nkufucKPc19aS+jjfaMMNQ5tOREe2gihDIMJgbHl3S8Q+Y4QSJPUEr5gc9geUT8JxHZLSLvAP4NuAicWdEBpkA8pvPKl95I+0ZStXU9vS19VG2tZDhfHNcyYErLKZdCFIGxAB7f8iwEaJpG++0uTn/lLNdeucnowHhKxymluPb8VTKN+sPdI7Ss4iXI1Y4TJPKLXwI+B/wZlr/1vwC3gPepPBe/Uabi9FfOEvJH0n5qdHtcREJRK7jkKOG73CjDzPmEqPFSE1v3Zua0lw7KVNw+38BLXzhN3YUGwsGFxRfHB8YZ7BzMuNdhpHsETRP0+JrNDec1jp+EA2RB7PrqyzepfbN+TkPdYni8bjbsrKKnqReP20VvY++qX24CENHwFfvQc6xHdPiRQwz1jS+7LLgyFeUb13H8HUfZdmAzbvfcWc3pL7xCb1NfVhridp/cTfWODex7YF/G58oBa+ATOz/OTMIhYxqvtnD73J20AwRYS009TX1s2rWR/taBNfPnppQ1k8j1I1jjlSa27Vu+2cQUogkTQ5O89tWzvP618wx0Ds0oifaP+ultzk6AABjsGGRiaHbthsNy4AQJh4xou93Bxe9eXfLNoLSyhLG+MTSXtri5zyojFonhzrE+khE38I/4KSj05vQ68+Fyueht7uP5z7/Cxe9emy6XvXW6JqsRMjgWRDQh5lijLjtOkHBYMs032jj77UtLvhmICHpMp7i8iMnhycUPWGUYuoHL5cr5bKLlRiubd29YUc8GTdNovNLMM59+gY66Ltpq2rKuuxQLRWm72ZrVczosjtMn4ZA2ylRcP32L2nN3MlodqthYTn/7AFv3bab5asuaWWpKJGZ3qud0lqRgsHOQ0opiAuPL52/tLfCy/eAWRMCM6yhTUbSuiK76TsYHxyksKcRb4F3SMmQyhruHcefI3MlhfpyfuENaxCJxTn/lDP3tgxn/8VduruDqC20cedshYuHVJ+iXCnpcp6jAS3SqSTBHdN/p4YHvPYV/LLgsyqnV29ZTXlXK7ddriEyGpmdLvkIvBcUF3P+u+6k9c5toyI+vyJeVYDE5NMnWA1vR43pOZdkdZuIsN60gyXwmROR9IhISkT8Wi4+KyHkR8YvIpIhcE5HfFJEye/+Pi0htrseqTEV7XSff/JtnGGgfys7ToVK4PW7C/lDuM7wryNRsItd01HWyflN5zq9TtbUSn8/NtWcvEp4M2dpIgsfjxogbjPeNcvPFq9z32BEUEJoMMzE8STgQtstYl/7LjkXjVgWcw7LhBIk8QkR+HPgG8L+UUr8LfAH4W+A54HuA48DvAU8AP7wcY1KmYrBrmO/80/O8/tU3iUf1mUqeS6S8uoyBjkG2HthMT0PPmlxqmkKP67jduc9NDHcNU1ZRQi4jbkGRj4rqMurfqEEpZsxaLCXfGIigxw1qX6vh6NsPW7pKpiIciDA54sc/HiQajmIaRtpjDYz46W/LvmaVw/w4c7Y8QUR+Cfhz4KNKqS+IyH8BPgi8Xyn1zYRd24FnZ+k+ZZ1YJEZHfTe3z91hYnhy2j0sW1RtXc+1l29w+OGDBMZmi+OuPSKhKN4CD3ostw1hzddb2HJgK4Nduelc33XfDq5/5yLmLAl4l0vDiOvYkQOASDDKWM8IG3ZUM9R1V44sHokTj8TBlgb3+Dy4PS57trXw08JIzwiVmyty8t4ckuMEiTxARP4I+DXgh5VSz9qbPwg0zgoQ0yilxrM5hnhMJzAeoLdlgM76bkb7x4jHdFwuLWuJx9koQ6HH4tbD5BqeSQDWU7N4rRtoDquQ/CN+fD4PufihVm4qZ7itn3gkNifv4fG5CdlLT4l01Xdx6r0PMtg1NMeYaoY0uFK43C48XjcuO2C4bAnwxPehx3R03cQ/4qd0fWlW359DcpwgsfK8G/h+LOmNZxO27wfuLMcALnznCi017cQicVwubXo5yZUjkbqqrZX0NPawae9GepvunfXlSDBCUWkh0XAspzGx8XIj+x7YR0/rYFbPu3HnBi598+ycQKBpgqmblqRKkqR5V10H2/Zvoaepb95ziwimYRINxyBs6T6JgGgaLreG5nKhaRqaSwgHQlx/5QaHHjls2Z967gYUsR9qxPaTEJFpgyyHpeEEiZWnFkvl9Q9E5M2EGcKyfarj8TgerxvPMpUXbthRxfkbrRx922E6b3XkTO4671AQC8fweN0Yeu48paPhOHpMp7DYh5klLax1VWUMt/cDao4bobfAaxUfzPN7HOoc4v73PkBPGh3YibMOQzdn/Ly67/RQXFnK859/GcMwUaaV87A8JZjjLaEEK2BAUrOh2WOSKa16Sfx+foZ7x378Nz/3C19I6Y2tQpwgsfL0AT8AvAq8LCLvVkqNAY3A4eUYwGM/9MhyXGaawa4hbleWWk+B7tz5LuQrmkujsKQQjy99f4ZUGeoa5vg7j3HokUNZCf6GYfDUX36Tig3lc17T4zrRoMACy5KDdj9M2J8Fa1ql2HFwKyfedTJnS6FpsmYDBDjVTXmBUqoHeBwoBl4RkfXAl4D9IpK0iinXietcUvP6baq2raevtY81Xfs6D7FwjHgsnlNRPmUq2m6103y1efGdU6CvsYfwRPJGvbA/xGIT3/6WPjbsqM6OrauCeDTOUNdQ5udyWBQnSOQJSqk+rEDhxZpVvAr8O/BvIvJ7IvKQiOwUkfeKyLPADyYcXiAiJ2d9HVju95AK4WCE/vYB1m+uoL+l/55dK44EIsTCMbsMdKkolGlaVp66gTJNEoPu5LCfyRE/g12Z5ybq36xPaqRk6AZ6LIX3oCAcCKPIzjJbeDJMz52erJzLYWGc5aY8Qik1ICJPAC9jBYl3AaeBnwJ+C8u5rgXLLvEbCYfuBa7POt1V4MFcjzld6t6sR5kK3b6x3atBAuybplL4inypN9sphR43iIajxKJxlGFOazaJJnh9XjwFVlmppmm0XG+leF0R6zevX3JDX3AiyFDnYNK5gjWLSI2OmnZ237/XUvvNkJGeEcqqneqm5cAJEiuIUupDSbYNAScSNv2T/TXfOT4OfDzLQ8sJekyn6Vor1dur6Gl0ngLBmlnpcZ2C4gI8Ps88QVNhGiaRUJRoyJ59yN3U7vQxyupviUas5HhBkQ9PgZfmay24PS4OPXxoSWPsvNU+o/9hCtMwiUdT7/uIhqJ4fR70eBy3J7N8TCQYQSnrM+XoOeUW56frsGzcPldPNBylYmM5TZcb7+lZxBSCdaPzR/24vR68BZ7pMmTTVOgxnXg0jmGY0/sv9nObOmcgrlOoG5iGwXD3CN0NPWw7uDWt8ZmmScvVpqTXTGcWMUV/ax/lVesIzJPfSIdYJE5/ax/bDm3P+FwO8+PkJByWhVgkTt2FBtweN3pUt+rqHaYREYy4Ttgfxj8eZHIkQGA8SDQUxbStUNMOqQpCgQghf5jGq82M9IzgH0+vu31icIKJwfE5203TJLYE173BjkHWb1ufFVnzyeEJBjuy2wviMBcnSDgsC5e/e4V4JM6GndV03ela6eHkNdZsITuNMoIlgxGaDHPtlRt03u5Myyu6s7YdSVJmGglEllaYpiAciGTlvY31jeFeBuHEex0nSDjknOGeEVpvdSCasK6qjMGOoawuNR1++CAnHj/GnuM7s3bOtYapWw5211++SdOVppRKUU3DpO1m65zflVJmRtLuHbfa2LQnc8tVI24Qj+lEQ1novXCYFydIOOSUeDTOq196fbqKJzAWsEs1s8P+B/Yx1NrHrReuEPeH2HloS9bOveZQMNI7ys3Xaqm/cGfRJZ+x/lECI/4528OBSEbyU9FgFG+hL8PyX4tIMEL3ne6Mz+MwP06QcMgZhmHw0hdPEwlGERG27N1Ey425T6ZLxePzUFDkZbRrEEToaeimYkM5HrfzsZ4PAQbaB7n1+m1qz9QtOKNov9k2pzdCKUUslLlB1GD7ACUVxRmfZ7RvjIk1aH2bTzh/TSvMAsZDapGvJxfbZ6XeE1hNVq/+2xsMd41MCwa6ve55u3aXwt6Tu2m53DBjW+OFevY/sCenSqurHStQDFDz+i1uvn6LiZG5N1nTMOi4NdenOmL3dmRKf2sf1durMz6Xf2QSl0tbUX/vtY4TJPKMBOOhjwOb7a+ftl/enPD1S7O+DwG/PGvbihCcCPHMPz5Pb0vfdIBYv6WSvua+rP4xFxT5iEzMFJaLBCJ4vR6y4Iu05hnpHuHGyze5c6GBxqvNhIN31/ZH+0Yt17kElFJEQzGyklK3xQ4znlTavSH+JIHOITs4fRJ5xGzjoYTt4wBKqdmWXBMJ+yhgIsk+y0Y4GKH2zG0ar7Zg6MaMpYrqbVVcePpC1paaKjdXMtozTDLfhM7adnYe2U5bnbNWvRiTw5Ncf+kGxx+/j5brrWw/tI1tB7fScqVpTlWT1cBmki2B4vZbbew4uouB9szKWIPjITpqO7jv8eNZGZfDTJwgkSfMYzyUl5imiR7TiUXiBMaDDHUO0dXQw2j/mFXTr8mMYFBUVsT44DimbmYtSGzes5GGs7VJdZzHB8bZeWIP3O66d2TIMyAWjnHlu1c58vYj9Lb0E5wIcvPVm7hcGi6XC832c4gEI2RTwT48Gaag2IdpmhmpuY72jrBuw7qsjcthJk6QyA/mMx5aFq6/UsPt8/UJmvwJuvyGAmzNfgW6boDCNoLRcHvdeH0eELHMXzxz69a3H9rK9RduJK23Xypujwszps97zwqNByku9hEMp9/wda9y+806Nu3ZyOZd1RgxnaluCrfbZQv5zeyvkDn/SPrqggy2D6C5NEb7x5Y4amAA1m+v4ot/9O9Z/YylSl9L/2/9+ud+8f8s+4WXCSdI5AfzGQ8tC/d/z3Hu/57cTdWHuoZpOHeH4nVFWTmft9CLqRtobm3emUnPnS72nNpHT5sjJ50OG7ZXU3u6Bm+BF1+RF5fbjVKKicEJ3J7s3y76W/s59vhx1CzP7HTxFXh52w+8hT0n9mRxdCmzZgMEOInrfKEPeCdWoHhZRNaM07tSiivPXc3qsk/19ir6m3oWvKlMickZMWcmkQ4lFcWM9Y0SCUUJjAWJR+OE/WE7F5F9lKkw4rplfZoBIz0jjPdlMBtxmBcnSOQJ8xgPrXqGu0cY7h3Jaod1cXkx4wOL3xDGBsYoLPJm7bprHV+xj+Co1ewoWLmnu0Eid9ftqO2geld1RueYGJpAc2uYWWzUdLBwgkQeMdt4SESqVnZEmaFMxYWnL2b9vKZugLH4zaCvsYeNuzc6NfQpsmXvZtoTZDg8Pi/RUBRlmpiGgZngXZFNgmMBisuKM+vAVtbssbexN3sDcwCcIJF3KKUGgCfsb0+LyIaVHE8mtN/uYHxgPKuzCE+Bh4g/mJK2nB7TcWmWuqrD4nh9HkITtkqsCKIJhn63OEApE9MwMc3sB4uBtn5KK0oyOsdIzyiDHZkbGjnMxAkSK4xS6kNKqffN2jaklDqhlLpPKTWolPq6UmrBO61SqkQp9WROB5sG8Wicy89eyXq1ScXGcobaB1MOPMPdw5StK8zqGNYiFZsq6G/tm5bp8BZ4iAaTKb0qlGEFi9l2qZnQ39pH1Y7MOrDHB8ZwuVw59Q6/F3GChEPWUUrx5jfP2d252WVddZndRJcaAy19VO/IbL37XmDDzmp66jsREcSWuTB1I3klq8CUW55hmNlJaiuYHJrIzGVOQWAsQHtNe+bjcZjGCRIOWae9toOuO93TkhxZRSnMeOpPilOGPUbcqXKaD1+Rl9BEEMP+uVqziBRE/ATr96GbWclXdNZ2sGXf5ozO09fSR2BsrnKtw9JxgoRDVhkfnODC0xcRye5H6+ijhxEBM26kfRMZaBugfH1pVsezlth2cBstlxsRAZfHhR4zrKWkVGO8TOUrMktuG7qBHo2TyRJWLBxDj+lJ3fQcloYTJByyRmgyxAufewk9lv014ert1WjxpQm5DbUPsH5Ldiwz1xoenwdlmtN+1W6v2zIUWuIk0KqEspPbS7jZt95oYcvezLQpe5t66bjdkdE5HO7iBAmHrDA54uc7//CcreyZ/WWmSDBMcXkxoz3p91wopeynXCehOZvth7fReL4elMLj8xALxzKTWbfzFcowMXUruZ1OsIgGo7h9nox+V/4RP4ZuEpwILvkcDndxgsQKsICHREhE/tj2g/iR+Y4TkV0p+E18fDnei1KKzvounv3H7xIN5SZAAOiRON4iHxMDo0s6vr+5l0pHBG4GviLLHS44HkBzaYhLQ4/Fs2eubSe3TT29stn2mjY27Mis8rurrou2m60ZncPBwgkSeUCCh8T/Ukr9bgqHdDHTN+IPge5Z2/4iN6O9S8gf5tUvvsbrXzmDETdyFiDA6nlwe9yY+tIqaUZ6hqnYuM5Zckpg1307qT9TC0rhLfASCYSzVdF6lxkzC2s2t1jprH94kqLyIqu6aokERv1E/GFG0qiEc0iOI/C3wsznIbEQSikDmPaNEBE/YCyHl4RpmIz2j3HrjVr6mvowjOzJfy+EHtdxuV0otUQhOAVGTLc6td1zlWrvNSq3VDLaPUQsFMXtdWPoBspII1mdLtMNecrqxTBBRLMkvUTm/E676jpZv7WSsYGJuedKkeZrLRSVFVO+sQKX8ztfMk6QWEHy2UPCNEzisTixcJzQZJDhnhGGOocZ7BwiEggjmqXAuhwBAiwpDi3Dktqehm7Wb17P6NC9XSLp9rqp3r6ey98+j4j1fWgilLsAMZuEDu7pFguRuwEDGO0ZYcfRnQz1DONyuRDEPi71QZq6SfO1Jtw+NwfecjC77+EewgkSK8eKekgkcu3F69x+sw49pqPHjelpvuZ2oWmC2+PG7XXP8KpeTjSXZiUyhYwCxeTgOLtO7GZseHJFfAfyhf0P7uXmi9dQysRX6CMailrJ6pXwZ5q+puVXgrLT3MqSey8uKaKnpe/u7mIFC8EOKtPBI8kpRRgfHEePmfQ09TLat/RZyULj76jt+Mlf/fwv/Uv2T54fOEFi5VhRD4lETr3nfk695/6VunxK1L9xi6g/xLrqdRnNXkzD5KH3nOTAI0eyOLrVxc2Xr+PzeSjcVImh68TCMVw58IrIlOGuYU5+7ynCoWhGznWRQBgzXsZbvv8U2w/vyOIIp1mzAQKcxPVKspCHhN/ePptyEnyt7yUsNdLMs6r9jT1Ew9mXC1ktdNV1UnemFs2loVAExvK7TLS/pY+yyswbIQfaBqg5XUN7TVtWPkf3Ek6QWEEW8JBoAB5I3FdEXMAJ+7V7jmggPG2tmgl6TCcWjDLQlvMcf94x3DXEua+fmS4sivjDed870t/cR/WOKsws6ENNDExw5fkrNF5utJbYHFLCCRIrzDweEv8P+IiI/LyIHBCRk8A/AZX2/+85phujslDC2tvYzUDCOve9wFj/KKeffGm6hNjQDSLBKCuTiEiPztudrN+YHbPGWDDGteevcOfCHUZ6RrJyzrWOEyTygNkeEsArwIftryvA88Am4LHlKHPNR0ITQUQkKw5pwbEApmEsSeJjNTLaO8LLn3mBeMzy1VBKERgLrPCoUmeke5h1G9dlzUJVmVD72i0aLtyhvbY9K+dcy4jTXORA9luoss5Xf+9f2HxwG5232rOSZC1ZX8auk3s49sSJLIwuf+lt7OHsV16fVngFK+BGw6tjFjFFaVUZm/dtYbBjKKvnrdq2nt3372Xv/XvRXEt+Zl49P8glkH8lDQ4Os9BjOpFgBCBrHdOBkUn0mE5gzE9JxdpTiFWmov5sLTWv3pyRqI1H43bifnXd1/zDk2w/ssPysV5i130yhrtHCIwHMA2TPSf34PF5snbutYKz3OSQ90TD0btBIouVKT11nbTfWHv6PvFIjJc//yLXX7o24+dlmibB8dWzzDSbhvP17Di8LevSKpFAlGsvXKPpUgNhfzir514LODMJh3lRpiIeieEt8q3oOEITAbBvdtm8QfhHJolH44z3j1G+KTuJ0ZVEKUVfUw/nv/Em0eDM3gKlFP6RyazkdFYKI24w1DVEWVUp/pHsBjtlmNx4+SaxaJy99++j1PEfmcaZSTjMi6HrvPHk8ys9DAIjd2U0sv0U2X69he47XVk950qgx3XOfeMsr3/xtCXXntCZrlAERv2YRvaWaVaKnvpuKjZV5Mb1ELj9xm1un6llpNepfJrCCRJ5RjIZ8ZXCiBt50YnrH/HfDQ5ZDhLRYITQmJ+ehtUbKILjAZ7726eTLp1ZASKAHtdZbXmI+ag7c5udR3fkRNFXRGi51kLNKzfpbe7N+vlXI06QSAMR2Soi/yQi3SISE5EeEflnEdmWxcv8EvBjKY7ncRF5SkT6bC+KGhH5SLYGEo/G8fi82TrdkjDihuWUZhdg5aJbtv1mK+N9Y6vySXu0Z5jnPvUMgbHAHOkKpRSBEb/lEbFGAgSAHo3T09hN9faqnJxfROhr7uP6C1dpu9mGkYFk+VrACRIpIiK7sXoWjgE/CezDupkfBS6LyK5sXEcpNZGGjtPbgFvAj9jj+gfgn0TkR7MxFj0ax+Ve2ZlEaCKIEYujVG4CBFhqoX3NPTRfbszJ+XPFSM8wL3/uRfSYPkfPytANJocn0OMGaylATDHUPojm0igqK8zZNSYGJ7nw7XPUvn6LyeF7Ug0HcIJEOvwdYALvUkq9opTqVEqdBt5lb/87ABF5r4icEZExERkVkRdE5HDiiUTk90WkQ0SiItIvIv+a8NqM5SYReYeIXBCRgIhMiMhFETkGoJT6E6XUx5RSbyqlWpVS/wB8E3h/Nt6wHoujeVb2IzIxNG7JWGOtu2uu3PgCDLcPEg1EVk31j3/Uzyuff3FG/wPYFUwTQSaHJzGNVZylToGGC/Vs3LUBlzt3n1FlQu3rtbz2xdM0XGggOJ7fWle5wAkSKSAilcB7gb9TSoUSX7O//3vg+2yRvmLgr4G3YMltTADPiIjXPtf7gV8Hfg7YD7wPuDTPdd3AU8BZLN2mtwKfBBaa/5YBY0t4m3PQY7m7KadKxB9msLUPEbFyJN7cjaflSgMdNW05O3+2iEfjvPyZF9CjOkopDMMgGo7iH/UzMThh+VTfAwhCzas32XXfrpxOlkSEwFiQK89d5rl/fJbLz16iraaN8cFx4rE4n/zwX629qVoCK5+VXB3sx/oY1s/zep39+n6l1DcSXxCRDwOTWEHjLLATSwH2RaVUHOjEWsZKRhmW8uszSqkWe9ud+QYpIu8Dvgd4++Jv6S41p2vorp+buN26bxNhf5hn/2623YVa+Ns0Eopzd727YduhbcSCYUZtjZ14JIbSTSbHcyOnMTk8SdmGClqutWCaVtJ3nqElJVvvG1TSaylg94nd1J2pZbx/bHqfu+5uKV9+zWDEderP3ebAWw7SerMt5yZYsVCUxosNNFy4Qywcx7AEEv8M+K2cXngFcYJEesx3F5j6ZCoR2Qv8EdZTfzXWbE0DpoTsv4aVnG4TkRewdJmeVkrNkaVUSo2KyJPACyLyCpam09eUUnPu6CLyduBLwC8qpZLOTObj+BPHOf7E8TnbO643Y8bivOMnH07ndFnDNAyuf/fKtG2pqRsUlBbiLshdMn2ovZ/7vuck+x8+nJfdtw3n69GA9VvWL7rvvcRI7wiP/OAj7H1g/0pcfs0GCHCWm1KlCStAHJ3n9cP26y3AM1jB4WexAsX9gI6l8op9gz9ovz4J/CVwVUSKk51YKfVh+zxvAD8ANIrI9ybuIyKPAt8Fft/OS2QFQzcRTVZMfz84HkKPxaeF3fS4jpZjr2JlKtqut+RlEnticJzrL167p1315iMw7KftRivtN9deB/1K43zaUkApNQq8APyciBQlvmZ///NYN2nBChh/opR6WSlVD5Qya8amlIoopZ5VSv0K8BBW8Jl3iUgpdVMp9X+UUo8Dr2FVV01d/x32tT+hlPrrDN/qDEzDAMWKlQCO9Y6gTDW9NKPHdNzL0LfhH54kOOpnqGMw59dKFT2u89oXX5m2lnWYy1DHIJ23O+iu71zpoawpnOWm1PmfwDksF7mPYc0u9gJ/jBUc/idWwngY+GkR6QK2Av8XayYBgIh8COvnfhEIAB8A4vb5ZmCX3f4s8DTQA+wBjmOVuiIijwPPYiXO/01ENtmHGkqpjOUyDd0atmVMs/wflcHOgRnfx8IxSipKCU2G5jkie7RebaKovJjKretx5Xj2kgpXnrlIYHRuL4TDTHrudOPyuHB7PWzau3mlh7MmcD5xKWInjh8EbgNfAFqxcgD1wENKqTZlrYt8AOtGXotVFvt7QGK+YRz4KeCMvc/7gR9WSiUrqwkBB7DyGI1YXrr/Bvwf+/UPAUVY1VJ9CV+Xs/CWMWL2TCK+Mk+vQ20DM7JAkUAYX0nBslzbNEw6a9tpvrLyy049DV203WxxAkSKdN7qoL2mlcG2gcV3dlgUZyaRBnY+4acX2edVrMa2REoSXv828O0Fjv9Qwr8HgB9eZN8Pzfd6puhxKx+wEhaXekwnMOKnfMNdq+94JLasyeTx3lFCuwMrKgAYCUQ4//WzoO7B0qUMaLveiqZpiCZU79yw0sNZ1ThBwmFejJiOWqGZRGB0klg4klSqSZkqZwJvs2m+3EhBcQHrNpQv2zWnMA2D0//yErFIPOelnWuR5itNU2IuVO/cuMKjWb04QcJhXvS4jqa5VkTTaLBtwG7kU3NukKZh4NKW56NrxHR6m3pw+7zsf+vBZbkmWD0Xl56+wGjfqLPMtEREhNarzeixOKah2Lhn0+IHOczB+fQ5zIse0wE1ncBeziqngdY+68k9ST/bcldbDbUNEJoMMjm0fPo9Defv0HrNyUNkg85bHdS/eZvuVaz0u5I4MwmHedFjOh6fZ9ousutGCxXbq1m3Mbfr88pUDHcO4XK7bYnrxBengtbyGiE1X2rA4/NweP2xnC87td1o5fqLV50lpizS19RLcCKIHtXZcWynE3zTwPlJ5Rl55ScRtdRXrQS2wj88Tt8y1KCH/CEigTBurxs9Gp/52mQIX9HyVDglEg/HGOoYoOXqnErlrNJ8uYGL3z437cTnkD0mBye4/NQFGs7VT4tGOiyOEyTSIA/9JI6IyGkRGRCRiIi0isifTIkJZoolQW1JhhtxnXgkzuTQeDZOvSBD7QMopXB7XMRnBYlYKIqvcGU8LvoaeghPBnOiFGsYBpeeOs+lZy6tWIf7vYAe17n+wlUuPX2e7vquuTNVhzk4y00pYje2nQPasDqeE5vpLovII0qp9kyvo5RKZ+E7htU7cR2r/+IE8M9Yv9ffzHQs8WgcRNCjOvFIjNB4AO8yPMX31HehaRourwc9OvOPOBaK4inwEY+tzJNg88UG3F4Phx49mpXlIKUUw11DnP/6WfyjfmcZZBkQEfqaeulp6GbnsV1sO7KDTXs3UVCcO2+K1YwTJFIn0U9i6g7VKSLvwgoYfwd8v4i8F/hdrF4JhdXY9su2RAdg+UlgNdRtwurSflEp9RP2a08CVUqp99nfvwP4c/t8BpYK7E8ppWqVUs1Ac8IYO+wu7Mey8Yanlnr0mBUkgmMBCkqLFjkqM5SpGGy3mqDcHhehYHjG69FQlKKKYkv1agWIhqIMdw7SeauYncd3L/k8sUiM/uY+6t64xWjfKCLiBIhlRtM0uuo66ahtp6C4gC0HtlK1YwNlVWWUri+joLgAzeX8TpwgkQIJfhIfS+YnISJ/D/zRLD+JGqAQ+BiWn8QRpVQswU/iv2G5ym0AksqsJvhJfBb4IOABTjGPn4SI7LPH+XRGbxjrZq3HrSBhxHWiwQjxSCzn4nLB8QDhyRCaJlZOIjZruSkcwVewvEnr2fTUd1G5ZT3RYARf8fwzK6WUZb8aiRIJRJgcnmSke4ihziEmBseJR+K43C4nQb3CaJpGLByj/WYbbTdaMQ1z2vWufFMlZVVlFFeUUlRaSHFFCYWlhXgLfXkh17IcOEEiNfLaT0JEzmEFDx/WctPvpPrGAOrP3r5r+m53r205uI2JwQk2RWLcfuMWex/Yj394knUTQV7+3At3D1ZJ/5nMMGEOs/0XCkoKwTAJjPkREcq3VBIJRGb0aUT8EVw+N/5Rf+pvUM37zSJb5+fa81eYHJ5ktH90+vipZbmY/aXby3WaJmguFy6Pa85s4V73T85XTMMkMBYkMBacsc2IG5imiTJNCkoK8BUV0N/S93u/8Plf/aMVHG5OcYJEeuSrn8QHsNRmT2AJCv4W8KepvqnDjx7l8KMzVdDj0Th1z1/GW+Bl76l9lG+swONzU1ZVxon35c5f4qV/+i5l68sAKK0sZai1b86U3+VyUVJRsuJP4IZh8MD3vYVN+xwhuXucNRsgwKluSpW89pNQSnUppeqUUl8Gfhv4A3upaskow7Se9EVQSqFHY1bVjYjdZJd94tEY432j09+7PW70SHIrznyoAOqqbWe0dzhnPw8Hh3zACRIpkM9+EknQ7OtltGBqGAbKMDENExGrTwCsm3MsPGfSkxUGWvtnnFvzuIgnuQErpdKyCs0VgtB4vp4Ox+jGYQ3jLDelTj76Sfw4EMFKgMewpMz/FPh6suWrdDB1A8MOEmgaMfuJ3jRN4uEorEs68cmIlkuNM5KBwlxZDms7KeU8loOIP8xA+wAVWyqo3Fq90sNxcMg6TpBIEaVUi4g8CPw+lp/EBmAIeA74gFKqG0BEPgD8DZZXRDPwa0BiMnscK2fwF1jVSnWk5idRBQww009CB/4XdxPrHViluH+V6fs1dANlGJi6gdvtJjxhNZApwyAajGR6+jnEIrHp0tcpFIpkUUJhBat8qS3puNlCxaYK1m2svGcqXhzuHZwgkQZ56CfxZeDLC41nqRgxHUSsckCPi3hkamIiRHLgDNdV20E8EpuZpE6wLp1NPuQkphCEhnP1eAu97H3wwEoPx8Ehqzg5CYek6HErSBi6gdvtIha0E8gihCaCCx+cJspU3DlbO6eKyQoQ85SsmssvX74QEX+IofZBBtv7V3ooDg5ZxQkSDkkxYjqSZCYhAuEszyRGe4aZHEymRqLmLTrOtyAB0HajmeGOwZwsxzk4rBROkHBIih43QCyDH83lIhaygoShG9OVTuliJrmxK6W4+uylu50mM15LHiP0WBzNnX8rpYJQ/8Zt2mvakr5XB4fVSP79pTnkBUbcnknoJppLiEetwKBH47g86X9sGt6oITIRoHLHJraf2DO9fahjgJHuoaSNcfPNFuKROB5vfn5049EYjefrcLld7H1w/4o3/Dk4ZEp+/qU5rDhTchGmYaBMpo2HYuEoRT5PWucKTQS4/fxllGlypLAAPabj9roxdIMLXz9rlbomY56lpngkhtvnwdDz82k9OBqg4Vw9Lo+LXSf2pBUolFJEAmGGOgaZHJrANE18RT6Ky0uo3LKeohyUHjs4LIQTJJYBEakGPgH8R2AzVhlsLfBnwPcA71dK7U/YfxvQBXxHKfX/JWx/N/AisFcp1Wpvux9L++mCUmrehrx0UaaJ2IlrZZrT+kmxcJTiytK0znXnlWvTM5PA6CRtF+vZ9+gxLj91jsCIH82lsWnfFtxeN911tqmRgKkWmEn4PBh6bpr6soF/aJxbL19HmYodx3bhXmTmo8d1+hp7aLxwh8G2AZRpzNB5Mk0Tb5GPfQ8eYNO+LVTv2uiU2zosC06QWB6+ARRhyYM3Y/VYvBNYD7wK/JaIbJvqtQCewBL+e4eIuJRSUypwjwOdUwHC5qeBvwd+QkQOJ0qSZ4Jhm7GYhglKYRoGomnEwzE0V+o3p1goSse15umn6d7bHRSVl3D7tRrarrWiuTTKN1WgofD3DFJRXcbY0CQen4dYKHnuIxaJUVReDMH8DRIAofEgl751jrHeEXYc38X6bdUzbvzKVPhHJ2m+2EDbjRaigTCay4XAHLVdTdPQI3HunL1N3Zla9ty/l+3HdrFxz+ZFA5CDQyY4n64cIyLlWP4O71ZKvWJv7sDymZiS9YhjBYYv2K8/Afwr8GEsddfLCdtfTTh3IfCjwDu4G4R+PRvjNuJTy00mpqkwdBO3VyMWjuJyp17v0HyuFj0Sn/aFjoWjRPwhGq42o2kuXG4Xm/dv4dpXXwcUx773IUYHxvEUeImFo0mXauKRGB5fbn22s4ZSNF24Q8P5Ojbs3ET55go0l4vgWICR7iHCk0FALD+JFIOvJkL7jVZarzWz+cA2dp3cw6a9mynMsdeHw72JEyRyT8D++gEROauUmlEfaftRXGJukPgolgzHE1jOdyVYOk//mHD4jwAdSqkaEfkC8FUR+V+2BHlGTNk6mrph6zdZN+t4JI6W4jKHHtdpefM2ognKNIlH48TCMVovNrD98HZ6WgbY+9ABGl6+hlLWNeLRGGY0jrfAa8l/JCHsD1FYUshYpm9yGdFEY7hzkOHOwRnbRZZeYKhpGgPNvfQ39uArKWDXiT2s315Fxdb1FJUV415CgYGDw2ycT1GOUUrptl7TPwM/IyLXgTexJL8v2rudxva1FpFdwBYsnai9wA9hOdM9ivX7ejXh9B/lbmB5HUvG4weYKQOyKO03W+mp72KqL8Fb7CM0MkloImjd2EMRIoHw9GwgPBHitSdftBVip9/njJrVdRvLGW7pYahjYLo7WkRAwD88TlVkI/vfepD+Ox0ERiamzzHSMcC6qlI8hV7G+kaSajQZMR3NLcQiyWca9yL6WJzbr93ENBV6zEATKFxXTHF5MR6fB7fXg9vnQdMERKZ/lyLWf0TmLR9wWAiB689d+djPP/lr/3ulh5IrJB/UNO8FRKQAa9npESz3uEeA31VK/YmI/Acsr4jdWDOHjyilHhORA8BVoAJLSPCHlFIH7PPtwzIg2qGU6rW3/TFwSin1fWkOb86H4Oq336TlUgOa28XRx09Q8/yl6fX0/Y8e4/ATJxd0ZYtHY3z3T7883V8x54JKoblcKGXOuLrmdnHgHcc59t6HeO6vvsnkcHLL7wNvO8Khx45RVOZU+zisOGs6vjrNdMuELQ/+klLqD5VSb8OyJP24iHixZg1RrMT041hy4CilGgE/lrrr41gzjik+iiUH3ikiuojoWF4S7xGR7ZmOd8ojQRkmpmnOeGI3DZNoIDzfoQDcevYi0cD8ncci1hLU7PBkLW8ZhMYDRBa4hhk3CAyn4U7n4OCwJJwgsXLUYS0fFdh5ivNYs4gnsIOEzevAfwIewF5qsg2FfhJLAfZkwtcJLG/tD2c6uKnEtULZFU53X1OGQcQ//w08NBGk42rj9JLGUq492NI7nRdJhqkUgx2OTpKDQ65xgkSOEZH1IvKqiPyYiBwXkd0i8p+B3wReUUpN2ruexso/bMSaWUzxOpapkYu7weP7saTD/1kpVZv4Bfw78BHJJCMKGDEr9+32uNGjMWYs/YvgH0m+DARw+/lLGbm1mbrBQFM38cj8+ffgeIDwePbVaB0cHGbiBIncEwAuYPlavw7cBv4E+BKW4dAUp7Fc7C4ppRIf01+zt9+2pcPBKnU9rZQaSXK9rwE7gXdlMugpRzi310M8Gp+RPxYgMJQ8SMTCUXputWWUUA5PBomGogvORALDk2hplOI6ODgsDae6KcfYDnG/Y38ttN8ZkiTAlFJ3Zm9XSv3AAudpTXaedNHj9kzC6yYeidlVRtZpI8EInkJf0uO6a1qJR2JzmsHSITQWoHh92YJBIjgRwOV1o0y15GUtBweHxXEexRySoketmYTL6yEejs3wlA5PhnDNEwTaLt3JKECApfXk9nkWno0oK3kdHHOS1w4OucQJEg5JMezlJo/PQzwyc7kpPBFE88xtqIuGIkz0jWZ8bT0SR3NpLFaebegGY73JVtwcHByyhRMkHOZgmuZ0ZZHb6yYWiZJY3hQJhJOKy420D6BHM272tsZgmCjdoHrXxnn3iYWijPYOZ+V6Dg4OyXGChMMclKGmvRzcPnu5KcFTWhmWKmxslmxGb13HHAvSJV1fKZRSuDwuDj58mMLC5NLk/pEJlOE0gzo45BInSDjMwTTN6aAwlbhODBIAZlxncnB8+nulFIPN3WQDZVoSH+XV5dw5fZ31W6uS7ucfmVySAZKDg0PqpBQkRKRaRP5eRNpFJCoiAyLyioi8W0T+TESaZu2/TUSUiDwza/u77e177O+ViPxIkus9KSLfSXFsu0XkiyLSbY+tV0SetX0WpvZpF5Gk6qgisssex4MJ25T99eisfV32+ZOOe7kRkaMi8nURabXH9PFsnFcZ5nQ+wO31oEdic/IDChhs7p3+PhqMEB4PZuPymIZJPBKjbEM5Q619eAu8SV3qjLglPjjlmufg4JB9Up1JfAN4C1Z9/gHgfcB3ueuHsM82yplihh9CwvbHmeuHsGRExAO8BFQD/8Ue248Al4DKDE/fhfV+E/k+YOldYtmnCGgHPga0ZeukiTOJZN+D1Q8RSGiom+gbme7SzhRDN4hMhilaV0QsEEYphTlP93VgzE/37c6sXNfBwWEuiwaJBD+E31ZKvaKU6lBKXVZK/YVS6t+Bs9z1Q5hiyg/Bj+WHkLg9UcU0U45iKaX+vFLqnD22c0qpTyR4NyyVJ4H/bEt0T/FTwOfTOYmI/KyINIpIRESGROQFW1Zj6vUPi0id/XqjiPxKYrf0Qsfbv4dfV0p9CUsBNiuYpmkJ7wGgUKaaM5MIjvpnlKgOt/dnrV9Bj8UJTwZx+zygFAKoeYJE1+12xnqGGWrvZ6C1b9pBz8HBITukMpNI9EOYI/uplAphPbnPDhKvYXUYPwGQ4IdwmuwxBJjA+xNvvFmiBqjH7ooWkQ1Y9qMpBwl7CevvsKxLD2J1QT+f8PpPY3Vf/z5wGPg14LeAn0vl+FwxlZgGUCa2EN+sIDFmNbNNMdLWnxXZbsP2rwhPhnC5XNOez9753NcUNJyv48W//w4Xv3GWtmtNKKWIR+PUvV5D1602QhOhOTMhBweH1Fj0xppjP4SMUEr1iMgv2uf/PRG5CrwB/LtS6nYWLvE54CNYiq0/AZxRSrWncTPcAQSBp5VSfixHupsJr/8e8JtKqa/b37eJyJ9hBYlPpXB8Vmi92sRI99D09+UbK4j4w2guDT0Ww9StHEWiqF/EH2bzoe1c+MYZNu/fSk9dx8LLTSlI0utxHTNugAihiaAVdExFYHiCwnXFjI8unPOY6Bvl2rMXabpwh77GblxuK8go06R61yaqdmzA5XGj5iqjOzgsmSvfOvdL/+PJX//kSo8jV6T09K2U+oaIPMtMP4RfE5HfVUr9CVaQ+JgdIJ7A1h8SkdeAv7Sf8p8AmhJ8nLOCUurvRORf7fO/FUsx9bdF5CNKqS8sfPSifAlr/AexgsUfpXn8S1g39jYReQF4EfimUsovItXAduDTIvIPCce4uSurMe/xS35HSdh+bOeMfoTwZAhPgQeXx41m32g1l4a3aKYUh8ulseXgdoorS3G5XEl7J9LBN2uiKi6hcF0xIrDtyE7e8963ZHR+lLIqtTI7i4PDDK5869yTKz2GXJLyEo0tZ/2S/fWHIvIZLD+Ev2ABPwQRmc8PAaycxboklysH5pcZnTs2P/A08LSIfAx4AeuGnlGQUEpNiMg3sSxDNwPfSvN4v4icwvKgfjeWtPefiMhDwNRj939npuprSsdPGQ1lA4/Pi8fnnf4+Foqiudx3PZeVpY80uwdC2ft6vG5AoWmZBYnZmDEDEYj6w7gLPPiKkutFpcNCRkkODkvhfzz56ynfq1YjmfRJLNkPIYEGe/s0djXUCfu1tFFWhvUOULLYvinyWawA92+z/alTHI+ulHpVKfW/gONAMfA+W9G1B9irlGqe/bXY8Vl4X/NixvXpuYwypxZnkiyxKfAPTzLeN5KxXlMyDF1HKYUR10FZCW0HB4flZdGZhIisx5Kf/hxWMndqZpDMD+HXAR9z/RD+nJl+CFP8P+DzInIba4ZSBPwCVvnqP6UwtpNYSd0vYAWtGPBOrKWhL8/afYu9fyKLLn0ppU7bS0NpL/GIyPuw8jJvAKNYAbQUKyEO8HHgb0VkHHgO8GBVg21VSv3pYseL5Wp3xD5XAbDJfo+BxECTLoZh3E1CKytQJEvDREMRispLGO8dyYnXtEoovTUNk/BEkNLq8qxfx8HBYX5SWW5K9EPYhxUEerDW6xPNv09j3bDPpuCHAIBS6sv2zeXXgD/FKuO8CjymlErFdqwbaMWqDtqFNTPqBP4C+LNZ+/6K/ZXILwCLNu0ppZYqEDQO/KA9viKgBfioLQuOUuozIhIEfgPr/Yex/CY+lcrxWAUC1xOutxf4WazA/PgSx4weN0BANME0DKv8NUkQiPjDFJQV0XmtKclZMkNzu6ab5cAyIgqO+p0g4eCwzKRS3ZR1P4RZr3+ZuU/9KWHfvGff+JPtt2uRXWb7NSz4WLzY6wn7nWVmaXCyfeZ9/4sdr5RqJwcm7GZMR0Qsw6FIbOpi1ldCsIgGrAqo8EQg20PA5XFb2lBTVVEiTPaNsOlgxvbdDg4OaeBoNznMYUrmYkomXERQgDlLTC8SCGPo+hyhv2zg9tpBwo6BSpkEhtd0ftDBIS/J6yAhIo+JSGC+rzwY3wcXGF82+jRWBH1qJmErwAKWyY8xsw9Cj8aJh6LkoqbU5XVb57YnLlF/GNNpiHNwWHbyXULzCnBypQexAE8DF+d5bdWW4sSjU9alHiKTU7HYqjJy++7KdnsKvYTGA0tqTpsqRY0GkxeMuT12kLCJTAbxFRemfR0HB4fMyOsgYSfAl1ylk2vs/ow15585ZRzktpebwFpq0lwz0x/FFaWWXPgSHvB3PniAeChC66WGpJVRLo+bUCA0/Vp4MkTlzrz+uDo4rEnyernJYS7LIVM+lax2e93E7XyDaZhzUuRFFSX4B8fnLEOlghHTMXV9XnVXl9eNHr271BWZDOH2OUHCwWG5uSeDhIi8JiKfSrL9Q4m5DhEpFZE/slVaw2L5aLwmIv9tSqnV/n7KfyImIn0i8ryI/JjkonnA6vx+ZtG9MmAqMHgKvMTsnIQyzTlP/IWlRQSGJzD19JVXlWFi6kZSnwiwZhJ6VLdd6kyUaWLqdmOdg4PDsnFPBolUsCXSz2M15v1frAbCR4F/wRLm25Gw++exbt57gB+wj/s08K1ZfhoZo5Tqt8uSc0Zw0hLSc/vcMyuXlJqppipWF/RsGfHF0FwaRjxOaMxPYUnyPIMVJOylLvuayjAIja94vYKDwz2FEyTm50+A3cBblVKfV0rdVko1KaU+j9UVndjsF7Jv3t22x8MnsNRv/xOWeiwAIvKrIlIjIkER6RGRz9jBCBFZZ89W/r/EQYjIe0QkbkuVz1luEpHfF5EOsVz5+m2xwyWjlCI0bllTCDJDvVXNqnBS5vxmQAvhKy0kNBYgNOqnsDy5eorb60aPWedWUw11hkFwZDLp/g4ODrnBCRJJsJeS/iuWXtMc6Q6lVGQxHSel1IvALeD9CZtN4JexzJJ+FMvt72/t/Sewur8/OOtUHwReVEoNJhnn+7GkUH4O2I+l6XRp8Xc4P/FoDD0SnXoPMxS+lVIYsbtBQemG1V+X5jW8BT7i4QihUT9FFcmDhMvjwohNJc1tbwuEse45PwYHB4cc4mQCk1MFVHBXY2mp1GGJ8gGglPrrhNfaReQ3gadE5CeVZQX3ReDLIlJqK8AWYs1Ifnae8+8E+rCCSBxLkuRKuoPsvNnCeP8YoOhv7CE4GkBcGnpMn5EziEdiSIGXaDCCr6SA4FgAQzdwuV1EQ6lrHyoUUX+Y8EQQX3EBkWB4Tr5Dj+uYpmV+pJSCEIRGJxnpHCRLLqkODlnhwpdP/+jPPPkbX1rpceQKJ0gkJ1sJZyGhQFRE/gOW3PdhLIl0F+AFNgG9WCJ/IazA8K9Y+Q0Bnprn/F/D0tSa8pt4HsugKK2cxfodG3F5rI/Cpv3bKPjA4wBEQ1Fa3qyd4xNhGiZlGyoIjE4iCKJpuNypf5R8JUWEBkenJT5cLtccFVltysFVKTRNQ3O7CAxPULFjI+u3V6fz9hwccs3llR5ALrlXg8QkC/tYDAFjWDfzTDiCJUCIiOwEnsVy+Pt9YAQrt/FlrECBUiouIl/DWmL6V/v/37QtYueglOqyDZG+B8va9C+BPxCRtyqlFrZxS6C4ooTiJMs+Q+39aG4X2qwgobldlG0op+t683Q4dXncSZVik+ErLkCPxqf3d7k0NM/Mj6LY3hVKKTRNcHvdhMYDbDu5j61Hdqb61hwccs7PPPkb2Ve4zCPu1ZxEA3AqSYnqKaDBXvr5CvBBEdk2+2ARKZAkft+z9vle4BgwZU36IFYw+BWl1HmlVCOWiutsvgh8j4gcwXIA/OJC17HzI88qpX4Fy0P8KPD2hY5JlVgoiqYlv/P7SgoJJQj7zVfKmgy3z0MsdDfvYepz14+mqqgsmXJrDFMls/EcaEU5ODgk514NEv+AVa76tyJyQkQOisivAP8NS2YcLNXbTuCiiHxYRI6KyD4R+XEsOfNNCecrEpFNIrJNRB4SkT8Avom1TDR1k2/C+nn/sojsFpH/hpXEnoFS6k0sy9IvAcMs4Alu93V8VETuE5HdwIex5ECy8mQTmQwllQi3Rwp2YFBKYaYRJFxu14x+B5W0GU9NnzuReDjGQGNWHXAdHBwW4J4MEkqpVixL0P1YvtGXsKqZ/rNS6jl7nzHgYeBJ4LewAsM54KewrFE7E075YawEcitWo9sjWLakP6SUMuzz1WDlD34VK6H9UazKpGT8G5Y735enjp+HcXs8Z4BarEqqH1ZKtaX0g1iEyGRoTkJ5CmUqlB0XBJLOBuZHTZfWGnF9emlp5i7Jey8GW3qY6BtJ41oODg6ZcK/mJFBKXQa+d5F9JoDftb/m2+fxNK75N8DfzNr81ST7/T5W3iLZOSTh398Gvp3q9dMlNJ9PhNhLPygES0Z8qpchJRKsKaKBML6iAmapkM+KEQqlrGWnwOA4iFgVVo5ftYNDzrknZxIOqREcS577LigtmtH5nE4+AixviKnlpOhkCF/J3Ju9zNifGZ3esWCY9st30rqmg4PD0nCChMO8hMaSdzcXl5cQGJq4m1A21LzLUklJmCVE/CF8SaQ5ZucizISZin9o3Om8dnBYJpwg4ZAUQzeIhpJXERVVlOIfuusSp8y5CrELkhAAIv4QBaVFix6SGCRCYwEKyhxvCQeH5cAJEg5JiYWi6NHkuky+Yh8R/92lqKmn/pR1/hL2i4eieIt8M2cOIjNKX60k+d0gUVJdjtvtpuHlK/TXZSVH7+DgMA/3VJCYLQWewv7tIjJfBdKaJjQRmFeW28oRzN441950PhKd7NRUBjshSLg8LvRYbOY+Np5CLyXry6j5+mvUPXuesc5BRjsHUrqug4ND+uRtkEjF80FEPm6ror6cZL+fs1+rTdj8Faz+iGVDRE6KyFdshdaIiDSLyJMicp/9ep+I/O6sY37PHvv7Z23/NxF5I+H7j4rIddtTe8JWmP3f2Rj3ZP8Ymjv5x0OZ5pxpg1KpeT1oLg3D9tBOOHhGYtpte0nMuJ7N1vv20Pr6DQzdQJmKjkv1DNS1p/iuHBwc0iVvg0Qa9AOPiciuWds/wsxeBpRS4WRqqrlCRN6H5YFdAvw4lszHf8Xqqfgze7fTwBOzDn0ca+zJtp+2z/0RrHLaf8TyAX8Eq39j8QX+FBhs7UuajBZNMOPGHF9r0zBmek3Mg7vAO6djWimFMu/OQlxeD3rsrkW4tfQEiODxeQiP+a3Jh2kSGQ+gFEz2j6b5Dh0cHFJhLQSJESxNpA9PbRCR48Ah7kpiTG2fs9wkIt8vIhdtL4cREXlmluRGgYh8WkQmRaRbRH4jlUGJSBGWGdELSqnvV0q9pJRqU0pdUUr9L+5Kgp8G3iYiPvs4H9YN/09JCBIicgBLxmOqA/sHsHSdPq2UalZK1SmlvqaU+tVUxrcQpmky2NKX9LXCdcUER+dWFpn6XOe6ZHh8HuLh2JztiX0Wbu9dwyGYWm4SKrZWMdTYbc9iZDqZPdk7ROflTAV7HRwckrEWggTAZ4GftH0gwOpC/irgX+ggEXkvlnTGS8ADWDfl15n5c/kVLF+IU8D/Af5cRB5JYUzfiyU5/mfJXlRKjdv/PA0UAm+1v38YK/D9K7BPRDba258AwsAF+/t+4C0ikvXls9HOQcLzOMAVlZcQGJ6YExCmpDn0RZacPMlmEubdvgmwxAITfSumqNy5iaGGjoSEthUkhpp6cHs9aTvkOTg4LM5a6bh+HvBgCeO9gfWU/oNYyqgL8XvA15VSH0vYVjNrnxeVUlO5kb8VkV/EUl09v8i599v/X/ARVynVLCLdWEHgDfv/rymlQiJyFWuJ6Sv29nMJMuCfwJLuaBGRZqxlrRexpDzipEFfQxcTfaOgFOHJEHUvX8OYp4PaW+iju3ck6dJSLBRFmVZuYt5ZhUA0FJ5xQw+PB/EUeImG74r+xcKRGddQpsLU9engoUwT01TEIzHikRjRYIQbT71JYXlpOm/dwSFjzn7+hXd99F9+c05edK2wJoKEUsoQkX/BykNUAiNKqbMisliQuB9Lm2khZgeNXmBDCsNKp3NgKi/xCfv/Uxakr9nffwUrWExLeiil+oBHROQY8E7gbVi+2r8iIm+fT148GSXryxjvHUGAiq1VvOdX3z/vvr6SQvrr2tF9nnn3MU1z3vyEp8CLPzRzuSniD1JQWkQ0Yi1jWctNM2cSxVVlBPpHp/U8LJmOu6/HAmFCgTAF65I73Tk45JDUHbdWIfkcJBbzfJjN57Bu6Lvsf2eL2U/litSW6Rrt/x/GEgZciFeBfxSRCqxlp4/Y218HPikih4GN2EnrGYNRqhZL3O/vRORRLLG//8LiwW+a0qp1HH7iZEr7hieCKFNNmxQlwzXvK1BQVmx7Sdy9w0cmQ6zbUk04YM0kfCWFGLqBJMiUV+3ezMCtlrvmRAo0t4anwAvARM8Qm47uSvl9ODhki8NPnDy70mPIJfmck1jQ82H2zkqpZiyHqAe5+yS+GNexlo5ywYtYUt+/nexFESlP+PY04AN+DRhSSrXY289ilex+EAiwuANWnf3/nD1O+0cm0lR8nYmnwEssMvPBKzIRpKD0bge1y+NGj86cbRSUFhJOSJhPJbOnCAyN4/J5UyrDdXBwSJ18nkn8A/A/sfIA/4w1pfuPWJ4P/2meY74P8Nky36nwx8Az9pr+l7DuOu8BPp3Ock0ylFJBEfko8DUReRb4ayyfh0ose9JTwPfb+3aISBvwiyRYldrnuGZvP6OUmr4Disg/YC19vQp0A5uBj2HZn76YydgXYqxrKLm0d4pomoY5y6Q6HonhKfBNK726vW6M6MwJnDITpGOnvp/1+KBHYoy09rLh4I4lj8/BwWEmeTuTSMXzIckxoTQCBPZ5fggruFzHWt55AkhP1nT+8z+FVc4awjIfasDypd4O/Oas3U8DpVh5iERes7fPNh96CWtp6qtYS1vfsre/23a9ywnj3cPpifnNIXmuQilzulpJNG2GVlNRRSmh4YnZB8xJ+kQDYfqdxjoHh6wiTtmgA/PduWfvpBTf/T//Tmh0wcriBdn7tqPUPnVmzvZD736Qlot3cPu87H3bUWqeOTfd1b31+B6CfcME+kdnBCh3oRdvoW/6+9KNlWw4uIP7fvDRJY/PwWEJZPLUlPfk7UzCIf+Ih6OWpWkmKJVUCNCI67Z9ESQ61wGUbajAb3dUzz40sYrKPziGu8CTlpWqg4PDwjhBYomIyAdtzaRkX7dXeny5YHJgnHhkbrd0Olgz17lRwj84RkllWdJjREsQAEyMMGqW74RSGLE4E91DGY3RwcHhLvmcuM53nsZqYEtGWs1sq4X+hi60DJLWwLx64uPdQ2w+uodwc68VQ6aKl4RpydmZ9UzWFk+Rj8J1xeiROJHJIEZMp6+2jYodG3FwcMgcJ0gsEaWUn0VkP9Ya/Xc6Mkxaz291GpkMUVBWZHlHKDXtn11aVU5wcNw++G5109aT+6jYuZHwmJ+oP0RxZRmbj+7Ct654roy5g4PDkrnngoSIfAj4lFIqpV4CEWm39/+LXI4r34kGI0xO3ayXiHsecb8plGlixOMzlpDKt1UxnuAXoXlcHPm+h+mvbeX2txutKie76U4phebxsOex4wzUd7B+7xbc3vk7wx0cHBYnr3MSa8FTYrZxkf2elIh8LMm+X7Vf+1TCtiftbUpE4iLSKiJ/ISLFy/UeAHpq25KK7qWDp9BLNBiedzZiGgYYxowlqZL1ZQQGrapm0YSj3/82Wl67xkhLz4yZBYCIoHSdjvO3Of/pb3P7qbMMNXbNKKd1cHBIj7wOEmmQt54S89AFfDixm1xE1mPJf3cl2f9lrGa5PVgNcz8HLNvMxjRNms7cuiuJsUS8hQXEQ/PL3Ez2jVJSXT4jbSGiTQeNQ+95iNY3bhCZCM5zBhulMOMG7educeHTT1H/3DnGOgcclVgHhyWwVoJEXnpKLMB3saQzHk/Y9mNYifDWJPtHlVL9SqkupdSXgH/DUrlFRLaLyFMiMioiIRG5IyL/NcPxzaD/TheTAyn3KM5LQWkh4Yn5S2jHe4Yo37x+Vt7C+vemo7uZ6BkiNJJMtmsmpmlOS4eYpknzq9d48++/SeNLl5noHXaChYNDGqyVIAH56SkxH3EsfamPJGz7iP0eUiGMJY0O8PdYbnRPAEeBXwbGMxjbDELjAa589bWME9YABWVFhMbm/3VMJa+n/CbcBV70cAyX18P6PZvpv5Usfs7F1M0Zy1AARjRO/XPnefNvv079s+cZbunBiK/JIjQHh6yylhLX+egpsRCfA66IyM8DB7DUa7/OzMAxBxF5C/CjwCv2pp3AN5RSN+3v29IdSCwUJTD1hK6sp+9YKELPrXY6rjVixJcu6JeIy+MmFgjPVwVrX18RGvUjCOs2VjLZN8redxyn7fUbc3cFBIVSdkCYigt2eZMVLGYeEw1GaHjxEneev0jFrk1sOb6Xkk3rKakuR1wujLiekg2rg8MU3/7Y545+5F9+a032RsEaChJ56ikxL0qpehG5iSVYeBL4d9toKNnu77WXyNxYgfAp4Bfs1z6JJTP+XqzA8S2l1NV0xtJ4pobOa03WNyII4PK6KSgpYuP+bWm/t/koq16H2+de8CYsIsQjMVxet1XZ1NGHqRtEJhfIQ0w32iVuMokGwnNmFIkM1HUwUNeBUpb0efmOjVTu3oyvpAjxuolFYkwOjBEaS+7S5+BgcxRwgsQKsdo9JRbjc1hJ6D1Ydqfz8QbwM/Y4ehOd55RSnxWRF7AUct8FnBORP1VKfTzVQRz73oc49r0PLWH46eEfGsdT4EVzz+84obk1NA0Ky4oorV5HUYmPppeuLHBWQZL9JpRVcusp9KY8vvDIOD0j41bOQsG6LVVUHdjG3gcOsG57NSXVFZk3EzqsRb660gPIJfkeJBqA/ygiomZmG+f1lBCRy1gubT+c4jWmPCX+OdPBLoGvYEmItyul5uveBgjZfhlJUUp1A/8E/JOI/BbwS8DHszjOrOAfGJthJJSMaCCMuKwg4vK4iYxEMWIL5w7mdmKDqRu4vEvLo4gICEz2jzDZP2JJmGvC1vsPsPnYHip3b6Gw3HHAc7g3yPcgsao9JRZDKeUXka3Akhf9ReSTWNVSjUAZ8F7umg/lFUNN3YuW0Ub8ITy2Neq6LZXUffuNRc6qQMmcKGFVSGVHnFNEQEHPtUa6rzawbvsG9j56gqoD2ymqcDy1HdY2eT13XgueEilcf0Iplcmitwb8LVZgeAkYAH4yG2PLJkopBpu6F93PChJeCstLCA/70e1KpyVe1UpeZxERYbJ7iGtffombX32V3pqWjJsMHRzyGcdPwgFS9JPIhEggzPN/+C+Lyni7PG42H91F8YYKOs7cYLxjYMH9Baxke5JJg8vrQTQtrbxEumhuN4e+72E2Ht5B2eaqnF3HIa9x/CQcHDJlpK0PXV/8iduI6YjLRUllKRNdizfGLxTdMvHiThVT17n99BmaXr3GwO20q48dHPKefM9J5DUi8kHg0/O83KGUOrqc48lnBhu60FKS9VAUlZcwdKcjrX6FZMnr6c7tZC9mERGh+8odAgOjxKMxtpzcn+J7dXDIf5wgkRn3nKfEUlCmYrApmSRVkn0VlG6soOmlhYq9QFwa3kIfsWDE7pOYm7yeOqER13F5c/9RH+8a5M5zFzB1k22nDixY6uvgsFpwgkQG3IueEkshGooQTrEhTTSNyHiAeCC5EGDpxgq2P3QYMxYnFozgKysC0ei8WEdodHJObsLQDRBhuW7XwZEJ6p55E6UU204dwOVx/sQcVjf39CfY8ZZYHgKDY+ixeEpP1tX7ttB3swkzyVLT1lMHKCwr5s6z5yDhdc3tYvc7TxKZCNJzvXHGMcowkGWYRSQSDYSof+48mCbbHjqMy5lROKxiVs3C6RryllAi8mNJXrtkvzbbe2LOe054/Z0i8oqIDNsKsC0i8m8iktwseoUYae9HUuxULtu0npHmnjk2p1tP7keUovX0tRkBAqwEdcsrV4kHw+x57MScY5Wplr1MNToZpOHFy3RfueP4WTisalZNkEiDfPeW6MJSqJ1GRI5h6b+MpHoSETmCJWpYg9XXcQz4H1hyJb5sDTYbjLT2paQi6/K6iQfDGLqBSrixlu/YiK+0kN5rjQscDYP1Hfh7h9n16PEZ2/W4vmjpbS4Ij/tpfvUKnZfqHHlyh1XLWgwS+e4t8SXgERFJnMH8lD22dJrq3oMlYvgrSqlbSqlWpdSLSqmfU0oNpTmmnGGaJmPdqcXhDfu303erBdFkujLJ7fOw/YGDtL9xc5GjLYYau4j5Q2w6sitxEFZj9gqouwaGJui8VEfHxbxsgndwWJS1GCQgv70lhoFnsIOYiHixDIdS9ZKYoh+oFpEn0jxuWQmN+Yn4U1M3Kakqw987PGO5aN/j99P80uW0rtl7vYlSW/57CiOuL6oBlSvG2vsZrO+g68ocuTEHh7xnrSau891b4nPAp0XkD7AsS8eVUm+kaezzNSzl2FdFZBBLsuQ08IV0ZxJ6LE4sI/mL5Iim0X2jxZoVLPTelGUwFLYNiaZiROmmSqKBMNEUg0wizS9f4dgPv5PaZ85iGibKMFDKjakbGduwLoXeG034SgrBJazfs2XZr++QO776i5/a8KF/+e2VtkTOGWsySKwCb4kXsKr63401y0lb1lwpZWD5ZH8M+A/Aw8BvAL8rIu9QSqWsb3/9W2fpvjmvyOyS8Bb52Pu2Y1z76qspJY13PnSIvpoWW0zPihK7Hj5K3VNnlnR9pRTNr15l/xOnuPPCJRAhHomiTA96fGW0luqeO8/R972Nm0+fIx512mjWEB/A0k9bk6ymILFmvCWUUqYdxH4H6+b+U4scstC5eoAvAF+wA0YjVrD4UKrneOgDT/DQB7K7ahULRTnzj9/GV1yAlC7+46nYVk3PpTo0twvTMKncu5XR1t6M8gjhMT+BwTE2HtzOUHOPtVEEX1HBsjTXJaP9XC1H/9OjbDt10JpZOKwF1myAgNWVk2gATsncNZl5vSWAy8CDWH7SqTDlLbEcfA54DHhJKdWbjRPa6rd9wIqbHdx65k3Ge4ZTWtrxFvmITARAKUTTUKbJ5mN76KvJfHbTe72JDYd34fZYvQpGNG4tf61QtZEyTRpfvEzvjSanNNZhVbCaZhJryltCKdUqIlVAeJFdq0Tk5Kxtg8D/h2V7+i2gBSgAfgK4D/jzbI41XQxdp6+uPaWyV4CNh3bQe7UBRNA0Yd2OjYy29WZNm7b5lavsffwUDS9eAgEjbqAUOVWHXYhYMEz7+dsgsPvtxxc/wMFhBVk1M4m16C2hlBpVSi0WJD5gjyXx61ex3n8RVvCsxbI4fSfwE0qpL+ZivKkSGBwnMpF6TC0oKSI0Mml9I7Dpvj30Z2EWMUXUHyI0OknFrk2Apdxq/T/3KrHzMdk7xFBjl1Px5JD3OH4SDpBlP4mOy3e48u+vpDSTKCgtYv2ODbS+dh1EKN1Uyfpdm+l4c3Z9QOYc++F3Uvf0GUxlVV65fB48BSszm5hi3xOn2HR0N+v3bl3RcThkhOMn4eCQDmOd/ektNd1snjYO2nb/frqv1OdkXK2vXWfPO+8HpabzEsYKVTpN0XT6GmNdA4TGJld0HA4O8+EEiSwhIh8UkcA8XymXo652LJvS1PPw3iIfkXGr0dxd4EOZJkaOykNDo5PokThlm9cDlsFRtu1N00WAhhcuMlDXseIBy8EhGaspcZ3vON4SQCwcJTyemnp6YUUJgYExq9JIhO0PHqT7Um5mEVN0nLvF0R96B7efPjMt/WEaJlqKAoS5QI/EaXn9Okopdr/9vpRnYQ4Oy4ETJLKE4y1hERyaIB6JpSQLvvHADtrP3Jjuxi6qKCU4nKzlJXsopWg/W8PuR4/TeqbGTmIrtMKV1UQMDo0z2NCBy+tm51uOrOhYMkGZingoTGjMT3Q8QDwSQymFpml4SwopWr+OgvJSXB5HPn214AQJh6wy1NKTsiy4p8BDdNKqgirdVMlk73AuhzZNYHCMDUd2UVK1jsDwhGUMlGOL01QYqG2jdEMFQ03dVO/ftrKDSYN4JMpoSw/9N1sYbu4iOmEFBxHNMgwUsVRwlUIQKvdtY+upA1Ts3kzZ1g2I5syc8plVEyTuFYMgEVFYZb1fX3TnPGTgTmdKyyXFVeuY7BmeXmract8eWl+7tgwjtGh74wZHf/Ad1D71BqZhokfjuAs8y3b9+Wg+fY2C0mKK15dRVJlXtiAzMHSD0ZYeWk9fZbS1l3goMqNxUnPNnCmIyPSMcbS1h5GWbnwlhex/91tYf2A767alq2zjsFzkZCH2XjIIEpFd9r8X+vp4GpfejKUSu+rQY3HGe1KbDWw4sI2+Wy1WVZMmaG4XRmT5UjfKVHRdqmPXw8fs5ro8KQVXcOfFS/TfbsvLRHYsGKbx+Yu8+oef5/zffo3Bunb0SCxt0UQRIRaMUPut16l/6gx9Tgd63rLSM4lpgyClVHvC9qQGQSzenZxtpgyCppvTkhgEdWHd2Kf4H1jjfyhhW8o+EUqp/qUOdqUZuNNJLBRJKQns9riJBy0f6+oDOxhu6FzkiOwz0T1E9aGdFFcUEw3FUIaZ8lJZLtHDUdrfvAXA7keP50UiOzwRoOn5C/RcbSAejiIiWVHTFRGGGjrx94+gR2NsPrEf9wr3rjjMZKX/Ila9QZBSylBK9U99YSWvDfvfFSRoKYlIkYjEROS7Ce/hp0WkKeF7JSI/Yv97apbyfhF5ybYorRORdyfs7xGRvxGRXhGJikiXiPxZmu8zY0zDpP6FyykFiLJNlYy1D0zrJ63fs5mRlp7sdvSlSMvpa+x55/2Ypom+zBanC+EfGGW4uZuuy7mt9lqM0MgkV598ltN/+Hnaz9ZYs4YcBK3IRJDab7xOzzUrCDnkDysdJGANGwQppeqBAeBxe9PbsRRrHxWRqVnc48Bri5zqj4G/AU5giRb+u4hM5WZ+EUtK5L9iSZZ8gCSChwuO01SYprmkL0M3iPhDXPrCi0z0jaCUWvSrat9W+mutpSZ3gRc9EpvjW71cKMOk5fR19j52fEHLi5Wgr6aFwNA4g01dS/79LPUrMDTGpX96itN//CQ9VxowYjqCWAn+HH3p4Sh3njlH7/UG9Fh82d/zUr/+9Sf+JB/uozljpZebYO0bBE3pP/07VkD4OpY21EP2ON4J/NYi5/grpdQzACLyO1hCfieBs8BOLHnwM8paWO8EzqU6OIBLX3yR9otLfGIVcHs9FFWUUlJVnsL+llS3ihtomrD91AH6bjRZSc0VyguERiYIjUxSvmMjgw2dWRYpyYyar53m2A+/k9f+5lvTfR25wFdaxI5T+xGg4+xNYuP+6aKC5SQ8EaDu22cYau6l5UL9sl9/ifyB/bUmWfEgcQ8YBL0G/LL978eBT2IJ8z0uIsPAVhafSSS+j6l25qn38STWbKpRRF4EngO+q5RK+Y7y1p/4Xt76E9+b6u4Z0/D8RXxlhYgIpZsr6bDX31eSnqsNHH7f2wiNTq6o8F8yOi/W8f+3d97xkV3l/X7eGfW+Rdv7rne9u8b2utsYe92wMWCMIZQQAqQQkkAahITAL4FQEkooCb0a3Bs27t27Xnt77129d81I0+/5/XGutKPRjDQjzWiKzvP53JXm3nPPfWdGe997znnf93vZBzay7Or1ceWfJIplWXSfaeLEM1vprW3FoSyKq9JXbT7o9UMgwNUfeztLrlyfNjsSIGcdBKTOSRiBoHNsAn4sIuehtS02AaXoEuedwGlbOGgsht+HUkrZoxiH/XqviCwDbkMr1P0WOCAityTiKKYKy7Jo2HMCEaFkVgWulm5QVkY8vZ94fgcXvPc6Tm3al7ZRTTQCg17qth0GUay49qKk9etzD9K46xj1Ww7i7ugZfmrPhIXylgOnqVhQTV9DO5WLTXhsOkmVkzgB3C4iokbGFsYUCBKRXcA1wF1xXmNIIOgXkzU2Dn6NdhLPJioQpJQ6JiJtwBfRDqFdRF4Dfgj0Mv4oIp5ruNCa14+IyN3AdmAVehoqoxjo6GWgsxeAuWuXcfrl3WmdagrHCoY4+cJOVt50KWde358RN8sh+ls66a5ppaC0mEUbVk+oD8uy8Pa66ThWR+POo/Q1tRP0BUbkMGQSp1/dTV5xAeXzZ6VkBGWIj1Q5iekqEBSLzegF75/a/dWKSAfaIX5sMraJyD+hI6j2o0ccf4weyTVOpt9UUfvmIZRSOjfC6SQwqMNg0+8iNN7+AZp2H2fpFeuon6LIopJZFZTPnUnJzAp9M1RKy7YqBZZChX06vl43TXuPU1hRSl5+Ps7CfBx5ThwOB9iZy8pSWMEggQEv3v4BXM2d9DZ20NfQiq9vEMuyhh1gJjnCSEK+AG2HzwLCio0b0m3OtCUlTsK+qV4HfA0tEFQEHGccgSAg7pu7UupZEXkvej7wn9HRUFvRDirpKKW6J3H6a8AHGDlq2IR2EJtGN08IF/r9n4e+1+4D3pFsR5kMrGCI5oOnERFmLptPx4l6ewSRWTeqvoZ28osKWHDRKl3GPInkFeZTsWA2FQtm48zPQ4UsBtq66KtpoXnnMUKBgP5MxhhZ5RUVamcigNI3enE69A3fjiCzQtZwomKkI8hkxxBJ58kGZq9egqu1i/J5s9JtzrTEiA4ZYIoe5DtONfLmDx9DHMKqGy/h6O9fx7Is+2k5sxCBuResoHh2Ja2Hzk64k7LqKioXVlNUVQaWRWDAS09dC311bXqBdmjZKIEbt9ihw878/EzzrymhqKqMZdddzKqbLstUB5eRRiWLtEc3GaYPp1/bizgEZ0E+QY8PKxQCkYxzEKAf5NsO1zBn/TIWXbKaxr1jLO8IFJQUUzq7ktLqKgrLinUfwRCuli7aDp7G09k7XORuhEOYwE1PKUXITvxzFqS/3lSq8fa68fUP0HrwDPMvWpVuc6Yd09JJiMhHgJ/FOFynlMqKuLtswj/opeuMDuKau3YpzfuGciPSbNgYKBT9je0UVZRxwZ3X0dPQSmFJ8XDVUqX0Pypk4XcP4m7rpnnXMXy9rnMOASbtFKJhhUJI0IE4QtNiUbfuzUMUV5WlXftjOjItnQRGIGjKqd95zC4EJ5TOrqRmk136KoOmOysWzGbWyoUUlhfryuFK4e0bwNvvpubV3QD0NXVgBUIMe7dw+yMdQIIOobS6inlvWUleUQHKUvYcxrk1m5GTcnqfI8+Jw+lAKYWnx01/cweDKdbkSAdWIIirpZv6rYdY9rbkhQEbxmdaOgkjEDS1WJZF7ZsHEYdQVFmGu6NXZw9nwFRT2dyZLNxwHo48J/1NHbQcOIm/P/qav4C+gYvo6KOhvZMcHJTNncmSqy/A3dpF/RsHCHn8CZ0vApLnpGR2FVVL5zH/LSvxD3pp3ndyeFoqF2jac5zyeTOxgtNj9JQpTEsnAdNHnyIT6K1vw93Ri4gw74Ll1Gzal/bciKolc1m44Tzc7T2ceWU3VhxluRUQ8Ppx5ufhyMsjaGtxy5CXmICzWPrWC3E4HRx/4nWYYKlspYBgiIHWbgZau0EpimZVsOz6S+iubaGntmVC/WYaVjBEX1MHtW8eZMX1JiR2qsiKyb0c0ae4SET+ICKtIuIVkXoReUxElkZpe5eIhETkvijHIvUr3CJyQkR+aVfQzTiOPbtd/yI6BNTn0ukm6fARBaVFrH33NVTMm8nRJ7fQsO1wXA4inFAgSMgfJL+oAGe+c7hw4XCxungQWPPOa3A3d1D32t4JO4gh9Gd5bg3E2+3i+O83UVCUz/wLV06q70yied9JVMjKuNIpuUxWOIkEGNaniNgfVZ9CKdU+FUaJSDXwCrq8+DvRpdA/CpwBosmP/QXwLeBOEZkRo9vb0DoWb0FXu50D7BGRDyXX+snh6XXTXdOCiDBjyTy6TjbqsM80VH2tXr2Y826+jDMv7aJx51FkEiYopbR+swX5RQXD6wJxOQuB82+/hpY9x+k5PV5FlkSMiryO0LjtCL5eN3PXL0veddKICln0N7VT+0ZkWTZDqsg1J5Gp+hRvRWtLfEIptUcpVauU2qyU+rxSakR1OxFZhK4a+x10eY2PxHqvtoZFjVLqWaXUHejSHD8Vkao47Uo5J17cqRPEgFkrF9B2tAaY+qCmFddfTFFlKcf+sEXnJyQJKxTSes4OsZ3F+COLFRsvofXAKdxxqvjFiwr7N5y2A6cRS1GxcHZSr5cumvefwgoGjZLdFJFrTgIyU5+i1e7n/TJ+NtAn0CXOu4B70KOKePkOurDieBV0pwS/x0fzvpMIgiMvD/+AF8sfnNJpJhHh/HdeTV9DG00pLLMRCtjOQrCnofLCnMU5hzFn3XJ8vW7669pSYseIaacwGrYepnrVIvIKsz+vwgqEGOzup3774fEbGyZNLi5cZ5w+hVJqu4h8A12h9Ud2McNNwH1KqbqhdrYD+QTweXvXo3b7S5VSe8axH+Co/TOhtZa9D7xM/a7j53Sew5+EsX/Yx3RUjwq70auoT8sLLlyJq7WLvqZOEGHJFWtp2n1cv89EjJsEIsL5776Ghp1H9YLuFBAKhggFQzgcDvIKCwBFKBBEWYqiylJmLJ3HqaffTKkNSoEwOov91PPbWXXrVRx9cktGFvRLhLOv7WXZ2y7i8cc2pz0Le6Cj76sf+d0X/19ajUghOeckMlWfQin1RRH5Lrqc91DJ8S+KyB1KqVfsZjehp6Wess9xi8gT6NFEPE5i6H9LQs/ql3z4Zi75cHIHHwGPj5e/9ltKZukllxlL5+kneccU/Ye25/0bdx2bMgcRjmVZWD49snDm5yMO4by3X8GJJ16fkusrhvzAuc875A3Qe7aZ+W9ZSU/DlCzHpZT84kKu+thtzL/ovHSbkrMOArJnumki+hTvQYv9ZIw+hVKqSyn1iFLqs8BaoJaRf2B/gX5PAyISFJEgWpb0wyJSEscl1tk/J1hsKHkce3Y7vgEdxVQ8oxxXW3dKldUiWXXDJbQcOIW7pWvKrhkNpSDoDzD3wpW07D2J5Q9OXaGfKFNPbYfOMGvVIjJQaiRhGncfx9029Q8A041scRIngEuizOfH1KdAa0FfBvwuzmsM6VNMCUopPzq6qQxARGaip8U+hpYmHdouAnzA++Po9nNopzkqDHgq8fS5adh1dHgaYN4FK2jec3zKpjgWbFiNu72XvvrUzPsnSn5xIWVzZtBzunF4LVtI/bRbjOUJGrcfYf4F2R8W63cNYgVD9GbI95yrZMt0U1brU4jIu9AjggfRQkACvBv9HoakDz+KXly/TykVijj/9+hRRrjDmyUi84BidPTWX6Pf80eVUmmry6CUYu99L9mLuFozQhyCf8A7JdevWjKXovJinbCXIay44RJqX9s7Yt/oAhupifgaKi8S7qBdzZ0suOx8zrmr7KXl0BlQ+ns3pIasGEkopc4C16E1E14EdqJvumPqUyTgILD7eS/6RrsPHdl0A5CMcflRdI7Ed+y+d6JFiD4HfMNu8+fA45EOwuYRdP5HuCTZ82ixoSNo3ewO4DKl1INJsHfCtB+vo/N04/AoYu76ZTTtPjElmXN5RQUs3LA6oxxE+fxZ+PoHCLhj61WlenQRHngwROO2wzkxmnA1deLId+LtG0i3KTmL0ZMwQJIeYoM+P698/R68rnP/Yc+7+TIOP/IaU/F3tv49b+PUCzuG1e4ygfXvvZ7jf0i85EYqRhd6HfucGzr/zus4/dpuxJHddZDmrFtO1ZK5rLk9nmj0lJDdw7FxyIqRhCHzUZZi12+fw9N/Lj+xfN5MeuvapmTBeslV62k5eDqjHMSsVYvoPtM4oZIbqRhdRI4oWvedYM7qUVVhso6O47U4C/JyqphhJmGcRBIQkY/YNZSibUfSbd9UcOrV3bQfqxsRsz533TKa955I+YJ18YxyCsuK6TmTxBIXSWDehStpm6T8abKdRbij6K1ro2JR9ZRGnaUCZSncHT3Ubz80fmNDwmTLwnWmM631KVoOneHEC7tG7CsoK8bv9uinuxQPxldcfzGNO46w7s7rEBR1Ww/hbu9N7UXHofr8pXQcq03uKIDkTEMNOQoR6KttpWx2JQPd2V05v2X/aUpnV6GUSntyXa5hRhJJQCnlUkqdjrHVjd9D9tJ6tIa9972IFRw51F+0YTV1bxwi1VWa5l+4ku4zTSy56gJOPrGZk0+8zsrrN+BwpvdGMWfdMjqP1ia932SOLJSC1oOnmLt+xZSsGaWSoMdH0OOj/VhO/3dLC9PWSUQr8DdO+1oR+VwqbcomlFLUbjvE7rufH9ZVGMJZkI9C4XMPpnSqKa8wnxlL51G1aA5nnt2qQz2Vova1PSx/a/qqps+9YAXth86kdACVLGdhBS2tGDjUaRbTtO8kfQ2t6TYj58gKJzEd9CRE5O4InYjI7WNhfeWLyGdFZI+97tEvIgdF5L9FZHGq30vQF2D33c9x8JHNwxVew1m4YTX1Ww+nPOx1xcYNNO46StDnJxi2YD3Y0UvxjApdkjwNzD5vEV0nG6bkWuGFZifqMBp3HmX+RasI+vyoLK6s6unqB8DdEXfkuyEOcm1NYlhPQilVG7Y/qp4EEDt4PYmE6Um8gNaT6AKW2r8P6Un8PfCvUU6/B50f8ozdV4Hdz8XAV4A3gF5gpd3fZ9HlSJJOKBikYedxjj+/HW//QNS5X2d+HvnFBQx09KV0FFG5eA6+Pjdz1i6jadvoaqB9dS3MXDKP7imuUTRz5UK6TjemJSZyousW3h4XxZVlBAe9hPKcOAvyh7Wzs60QYPuxOlCw+rar0m1KzpAVI4kEyFo9CaVUn60PMbyhE+yuAd6jlBoSH/hHdGLhjUqp7yuldttrHy8opf7OPp40LMvC1d7D4T+8wctf/S37H3oFn2sw5uLgokvXULvlQEqf4kWExZevpX7bYQpKigi4RyfEdx6vo/r8pVMufzfPnmpKJxMZXfQ1tFG1ZA5KKYI+P363B/+Al5AvoFXg0iASNRF6zjbjzM9LqmbIdCfXRhKg9SR+JCJfUbqKWaJ6Ev+NdjJ56LIckXoS/wF8G52Z/b8i8oZSasxS4YzUk3hAxbFKaJfy+E/gQ0qpA2GH/hh4SSkVNa04nr4jsUIWIb+foD9IYNCLp8dFX1MXvY1t9NS24u0bQKGjRmSMKq55RQU48p0pH0UsvfoC6rceoqiyDF+vO+pNMOjxkVdUkDIbolGxsBpXc+ekFO+STbTyH9GOtR08w8pbr6S3sUN/d6IFlaxQaLikrMPpwJGny6yI6A2HaI1vCbtKmgcf3TXN4BBW3nBpeg3JEXLRSWStnsQQInI+cB/wX0qpRyIOr7bPDW//ALoWFECdUmr9WPZEsuee52nYdRxHngOHU083OPPPZeEWlhfH1c+SK9dx+pU9QOrCEIsqyygoLcLV3Mniq9bTeaw2Ztug109+YR4B/9ToIS+8dA0nU6wVMRmi+a7hqalgCIeI1sAY+u7UkG6I1gxRSmEFgsMhtOGaI+cuElYnKsxxRP1rSJEzqd92mKIZ5Tz7pZ9PSThsb13bpz78uy/9NOUXShM55ySyXE8CEakEnkDXjoq3Tv0/2m3/HF30MCEu//jtXP7x2xM9bRTdZ5s588oeiqvKJ91XLFbfegXHntBCM2XVVbRsOxTzXtNX18KMJfPoONOcMnuGKJldhbfHNaHs6nQyYjRx+AzVqxfTerjGnqcaGjHo3x0Ox/A+BPunnBthZtD6hQqEuOi917Hw0vOn4nI56yAge9YkpoWehGjJ1fvQRQX/JMbU0Un0Gkt4v612efS0iSdYwRD7H3jRVq5LDbNXL6bjaC1Bjz3frNSYD6O9ta1ULZufMnvCWXzFWhqiLKBnE721rcxYNh9lWShLoUIWVjBEKBAi5A8S9AUIev0EPD4Cgz78A178bg8+1yC+/kH8bg9Br5+QP4AKhqZ8PSicxr0n8PTEHeFuGINscRI5rydh8zX0Ivd7lFL9MU59ALhFRC5LsYkJcWbTPlytqQs9dObnUbVkLq0HT4MI+SVFY1ZWBQj5/HpdIsU3q8LyEoJePyqQ/bWDfK5BCsvim14MRymFFQxpJzLow+f24HN7CHp8eopqikt/hLx+AgMeOk83Tul1c5FsmW7KeT0JEfkAOgT2E4DL1ooIx2PrRHzPPu9lEfkKsAU9gliF/iymZgI+jMHufk69uAtxpO6ZY8nV6znz8q7hOe/KRdX0NY4f3ipoPQWVwqmQxVetp2HLgfEbZgEte0+w4JI11CTh/aiQRTBkgS+AiOAsyLNDa51TImPbuOc4ecWFzF61KOXXymWyYiQxTfQk/hp9T7sbrRMRuf3AttOHXoT/OvCnwOvAceCHdt+3JMHeuLFCFjt//iQBry9l1yibOxNf3wDenv7hee+KhdW4mzrGPdfv9lBQUjRuu4niLNQ5BZlUfXYyeHvdFFWWJX30pUNrA/gHvPgGPIR8/pRPSXl73SjLwpUGjfNcwuhJGGASBRkOPfoaNa/vB0nR84bAmtuu5NBDr4zIBl5z+9WcfvqNcQNkZq1egqVUyhavl113Ee2HzuDtijU7mH0sunI9PXUtuKagSKKzIA9nfl7KRhdl82ax6LLzOe/tVyS97zAyZ8U+BWTFSMKQmTTuOUHtm4dS5yCAhZesoX7rYf3UGUa8SWL9TR1ULKxOiW3idFBcWZZTDgKgZf9J5l+8evyGSSDkD+oF8AEPIV8g6WVB3K1dIODpye4qt+nEOIkkMB31JLrPNnHwoVdSGs1UUFZMQWkRvXWtI8IrxSFxL4QGBjwUlBWnZFpjwYbVtOwdFTeR9YR8AZwFeVNa+8oKWQQ8PvzuQb3YncSpqKY9J7SuiWFCGCeRHJ5E11KKtk0+ASHD6KlvZcfPnxpV/TWSC+66DiYR1bL0rW/h9Es7R/VRMruKgY7ehPqSFDiJykVz6J/i2lBTRfepRmavSnmtyFEopQtIDpUFsfzBSZcEcTV3opTC22dCYidCtkQ3ZTRKKRfjlP3IFdqO1rD3d88T8IxdG6ewvITy2VUUF+fh8SXuKKrXLKHzWK2u7hoRmVRaXYUngUqfylJ69JGwFbGZbduXq3SeqOO8d16jQ0jTlCRnBUP4gyHEIboKQJ4TmWDRwaa9J0HBqlsuT4GluY0ZSRjiwrIsjj+7jV2/emZcBwFQPn8WLftOUDwjWg7k2DgL86laPIe2g2eItvJQWp3YSGKwo4fS2VUJ2zEWc9YuoyOHncRQMp0jzzl+4ymwJej143N7CAx6dbJeyEoo3KK/sV2vTXTn1vrRVGCcxBQyni6GLWw0lqbEprBzrhSRJ0WkW0R8InJcRP4jomptUnC19fD6dx7kxHM79FxxHBRXltFzqp6SWYmX6Fh2zVs49eLOmOsOBSVFBAbir/Luau6kYsHshO2IRcXCavob2nI7pAVoPXCa+RetSrcZIwgFQnay3iABT2IOo377YZr3n0y9kTmGcRKZxeXAfHu7zd53Rdi+uwBE5A7OJdHdjC769xXgk8CLtubEpFBK4e7oZdevnmbzt+6jr7F9zAqwkRSUFdPf0EZhRWIx91VL5+Jq7cLX5x5zWiGRG/RAWzelc2cmcMbYLLx0zbRYCHU1dVCxoDqt5TVionRkVGDQh881aEdH+bEC9hpGFJMH2nsJev30xZFfYziHWZPIIJRSw3+9IjKUJtpha0sM7S9Bl0N/Vin1ibDT60TkBLAbLWD07YSvbym8/QO0HTlL/fYj9DV2YIWsc2WhE0DQlUW1LKaKax7ZWZjPnPOXcvihV8ZumOBNywqGdFXbOO0Yi9LqKjxdfVlXyG+i+N2DFJQV4x/I7GRBKxg6N8oVcDiddllzBw6H6GoAItS+cZC8okIqUxQWnYsYJ5F93ArMBr4VeUAptVdEXkFrTsTtJDqO11O39TA99S14+wawgtbwqGHCpZbDy0jHeVNf/raLOPnsdj3NFOu6k5ArSEZ5jsVXruPUc+PJh+QOLXtPsDBJZTqmDBXhNGC4am1g0IOrpZNDj7xK1bL5FJQWU1BSSH5JEc7C/OHEvmFlPoNxElnIUJbTsRjHjwJ/mUiHZzfvo7umBUDrCRRO3LghwqemnHlOHEVjd1q9Zgk9Z5vxudxj1oAqqiqbUCijFdCjickMAIpnVuB3DaICU14eK214e90UV5Vpx5xBpcAnhAIraHHmlT2su/M6Dj3yGsrSlW6tkF351jr3ExHtNGydFUfeuQ27PLqI0HWq8e8/eM//+0G6316qME4i9xASLLNx5V/FqpE4cToOn6G2tBjJd3Lxh29i4ZUXjNl+sKuP1795r64bNAZVy+bh7e5PeIQz0NZN5aI5DPQNJHReOMs3buDUM1unRMgmk3C3dFG1dB6eHMoz6DzVwLo73sqyay9KRnc56yDALFxPNYnqYkRjKDxjXYzja4FTiZmVfLy9ruGpIc84ZStCgSDbf/wYfs/4RQJLZlYwmGAiHYCrpZOyeRNfvC6sKMXv9hDyZPbcfCpoPXiaOeuWpduMpNJb14qvf9AsYseBcRJTS0K6GDF4ER3V9M+RB0TkErQmxn2TMTIZeHvdw8plvt7YeYbKUuy9+xncbb1xPaEXVpROKNZ9sKOXkllVCZ83xKLL11K/ZT85XsstKiFfAGeeEzWFZTqmgtOv7qbnbDPWNAlCmCjGSUwtPwFWoHUxLhKRNSLyj2hdjO/E04FSagC95vBOEfm1iGwQkSUi8iF0eZA3yIDhr9d2DCGvn9AYuRWnXtpJ68GzcYfX6mipCfynVgoRHdqbKCWzKvH1uQkmkJuRa3SdrKdqYVxKvVmD5Q9St/UQDTtysrxa0jBOYgqZiC5GjH4et/uZA7yKnl76CvBL4O226l1a8XTp2TP/gBdHDAfQsu8Up17YkdDDuVJq4rV8FBMKXV142fnUbtrLdBxFDNF1soFZKxdOyMlmMv1NHfQ1tNF+rCbdpmQsZuF6ilFK7UKHsY7Xbjdj3JWUUtuAdyXRtKQy5CQCgx4KSkfLYXadbmL//S/GncE9zCQKBga9PpxOR0IqUpWL5tBf32ZLk05fJ6EsRSgQzMlF+7o3D1E8s4KSWVWUzZmRbnMyDjOSMCSdUCBIyK7vFBz0IXkj/8y6zzaz6xdPEPQlNuDJKyogODhxBTx3Sxdl1VUJnTPvwpU07jjCdHYQQ7QdOM2c1VNfGXYqOP7MVjpP1ONzTUqpOCcxTsKQdIIeH0GvdgCBAQ/O/HMD1o4T9ez86RNxFQmMpHhmBQMdPROO13e1dFKaQITT/ItW0bTrGCQ62slRXM2dlM2blXNTTgBYiiNPbKb14OmckaJNFsZJGJKOr3+AoN92EoNeHPl5KKWoe+Mgu3/xhwnrYZfMrGCwM3qk8MKrLmD5TZeNmd3t7XFRXBlfwcG8ogJKZlfRc6oh+5PIkoins5eistHTh7mAFQhx+Pebad53Ep97+gYpRGKchCHpDHb0DmdNB71+HE4n++99gUOPvkrQH5xwv8UzK/B0jtaRKF9YjcMBrppmFly6ZpxeVFyqdkvfeiFnX9w5acGbXKNp93HmX3Rebo4mACsQ5ODDr9Cw7TDu9vg1S3IZ4yQMSae/oW14gVOFLHyuARq2H5m01Kkzz0koihre/EvW0LztMD2nG6hcOm/sWlFKjdLLjmTmioW4mjrw949diXY6EvIFQCkcY5ROyXoUHH1yC6de3EHnqYacdYjxksPftCFd9JxuAEsR9PgIDHp1vf9k3GvDiwbaiEP0/pC+8bubO8eMUPG7PRQUxq6knldUwKzzFtG03SxWx6Jp51HmrV+ebjNSiojQuPMY+373HPVvHsLTM33FioyTMCQNpRSeXhddJ+rxD3pGlG5OhiaBUmpUP5XL5tNX0zz8uv3AKeaOIZTTW9tCxeLYSWErNl7CqWfenFSoba4z2NlHyezKnMvAjoa3b4ADD73Mnl8/Q8P2I3jGqB6QqxgnMYWI5rMicspWk2sUkf+yj/23iJwQEY+tUPetcJU5EfmyiBwWkY/Zx90i8hsRKRCRvxGRBhHpEpHvisiUfa9WyMLd3sPpl3fy+jfvpWbTXp2ZHH4vV0zaSYjDgRUYPdU0Y/kCes40Dr8ODnrJKyqMeb3+xnYqF1VHnUJYfNV6mncfJ+AaNNNM49B+8AyzVixMtxlTgojQU9fKvvte4I3vPsjxp7fSdqQGn2twWkxFmWS6qeUbwF8D/wS8DlQDG+xjA8CfAU3o4n0/BXzA/ws7fxnwHnQS3ULgMWAe0Aq8HTgfeBh40z6WFCzLIuQLEPT58bs9DHT24WrppKemhf6mDnz9Ayh0+QpPW3esTiZlQ/HMcjyd/aNu3nnFhYQiQhatYAin00EoyhqICll6UT1CgGjWqoUEBjx6qsxMM41L95km1t61ka4zzQkpFmYzIoK3182pF3egLIv84iJmn7eI2i0Hvv5H9/z7F9NtX6owTmKKEJEy4B+Bf1BK/drefRrYBqCU+mpY81oR+QbwOUY6CSfwCaVUH3BYRJ4HrgcW2qU4jonIm8ANJOAkTr+0i4adR7ACIULBEKFAEBUMEQoGCQ569f3U4cDhtLf8PCRMkMVZmA/AzOXz6T1RC1FuGiLgLJj4n1vZnBl42ntG3b+j3Z76zjYxY8UCOs80Re3LCgRxOgSx7alYMJuKRdWc+sMbsTs1jKLjWA0zl82jv7Ur3aakBaUsOk7WAyRPGzcDMU5i6liHlvOJqs0pIu8H/gFYBZShHYIzolm97SCGaANORtRqakPXdIqbVbdczqpbLk/klKgopXj9y7+goKxk5AERVm68hHUfvGVS/W/79r0UhvVdUFZCYGBwlCBOX10Li6/fgKstegjjQFs3Kzdewvl3bQR0xdo3vnkv+aXFOVl2IlW4mjpZ977rufKqC8gvKRr/hNzlr9NtQCoxaxJTR8y7j4hcBTwIvAC8Gz0F9SUgP6Jp5KS8irEvLd9r0OsnECUJKejx6QinSaAsa1SJ8LL5M3E1doyaggp5/TgLCmLmQ/TWNFNQXoJSCm+vmze/cz/ePrdxEBOgee8pGrcfTrcZhhRinMTUcRS9xnBTlGNvBZqUUl9VSu1SSp0Clk6pdUkgMDBIYGB0SYPAgGfSC8HhpT6GKJ07i4GWzhhnxM6HUCGLoM9P64HTvPHNe/FMQOnOoOmtacayFJ6e6Rf1M10w001ThFLKJSI/AP5LRHzohetZwKVotbmFIvIR9BrFrWiNiazC2zeAHsiMvOF6e1yUzZs1qb59bg9Bj2+E/nVecSEBd/SCbL5eF4WlRQRi6FH317fRsueEGUEkgfotBxCHgxU3XppuUwwpwIwkppYvAN9EL0YfQy8uL1JKPQV8G/g+cBC4Bfj3NNk4Yfx9A1FHDN6efvKKYiewxcNQ6fERKCtm2Yy+mhYqls4bfQoQ9Ado3n2M6rXLJmWTQTPY2Ye310WnXsQ15BjGSUwhSilLKfXfSqkVSqkCpdRipdQX7WNfUEpVK6XKlFJ3KaV+opSSsHO/rJS6IKK/TyulNkbs+5BS6v1T8oYi8LsGoz6VB71+xOGIq2ZSLNytXaMc0FhlPtwtnZQvGJkPoZQiOOgl5AtgBUJYwSAOZ2RsgGEi1Ly2l4HWbkKTqM1lyEyMkzAkDX+MqR8AKxSKWcE1Hgbae0Y4oIKKUvxjaWeHLGy9Un39YIjAgHeEnnHT9iMsuHT1hG0yhGEp6rbsp2nn0XRbYkgyxkkYkoZ/DMGWkC9A9ySmI1xNHSNel8ysYKB9HG0JpbCCQQIeHwGPb1R2rKfHRV5RAY58M5pIBq7mLnpqmmk7fDbdphiSiHEShqThdw/EPNa670TUshrxYFkWDoew5G0XDY8MimdX4unoHfM8T2cvhWUlY0qk1m/ax6LL106L8gpTQeP2I/TXt9Ef4dQN2YtxEoak4euL7SS8PS7cLV3Ub9mXcL/BQS+z1y1noK6Z2SsXAFBYVY63O1ZlToVSir66Fl06fAz8Ax6sYJD8ksKE7TJE58QzW+k8XstAZ2+6TTEkAeMkpggReVpE7o6z7TIRUSJyWYrNShrKsvD1usds07L7WNRku/HwuQbpP9tI16HTVC6bD0rpwrKhyBGCdg5Dg4KB1m4dejvOKKF+ywEWX7nejCaShADHHn+dlr0ncMfIejdkD8ZJZAEistF2GrPTbUssQsEQAc/Y2sBBrx8rZOFNsNxyyBeg48ApEEGFQkgoGFE2fKRzGEJZVlzF50K+AIMdPZTMrEjILsMYKDj+xBZqX9tNd4waWobswDgJQ1KwfAFCMRLXwgn5A/SG6T/Eg6/HRciOnOqva6F8/mydIwFRncMIVHz1+pp2HGHBpWvMaCKJiAh1Ww5y6L4XaNp5FP+A0Y3ORoyTSAEiUiIid9uaD20i8m8RxwtE5Ju2nsSAiOwSkVtj9LUMeM1+2WGPKO62j90mIltEpEdEukXkBRFZm8r3FotQIEjIP/7CtLIU3acbx20XzmBnj5YdBfpqmqlYOo/AgDdSpC4qA+3dlMyuisuu/sZ2Smeb0USycbf1sO/uZ9n7yydp3HkUT0+/ccZZhCnLkRq+g86afh9aH+I/gOuA39vHfwOsBP4YaARuB54SkcuVUgci+mqw+3kMWA90A0OPZKWcy9IuRhcFfEpE1kVUhk05QY9PT++Mk5zm63MPlxaPhbIUQV+AwKAHy1IMNHdoh6AU/v4BCspL6Dkb32ikv76VqqVzGYiWsR1By57jnPeuazn76h5TqiPJiAhdJxvpPNFAQWkRcy9cxcyVCymZM4OS2VUUlBbhzDe3o0zEfCtJxtaN+HPgz5RSL9j7PoF2BojISnRdpmVKqaHEgR+KyM3AXwF/E96fUiokIkNKPu1Kqc6wYyM0I+zr9ANXAG/Ea3PjzqO0Hz6rn9b13XhYWW74ic9+kh/6XTcZaqeYtWoRIa+f0Dg3V3dLF3klhWz73kMopbACQYI+PyGvn6DXR8Dr1zWanE7E4eCij95Kb+SctgJ3c3whlgOt3cy7NL7BlQpZ+PvdFJQWxTUqMkyMkF0WpXnXMaxgkFAwBEqRV1RIQWkR+WXFOPPzceQ59eZ0InmO4bpdoxy4jPxl+PAUOfraV/f87V33/sePpuRiacA4ieSzEijAFhMCUEq5ReSQ/fIS9F/z0Yg/9kLg1UQuZDucrwJXolXuHPa2JJF+Fl2xjkVXrEvklFF0HDpDXknRuE/gQY+X6nXLWHPXDXH162ru4MS9XSP7VYpg/0DcT/vicFBQWhzXInbH4bOsuv0alt90mRlNGOLikj97V846CDBOIhWMd2dxoJ+/L2e0FkSiK3tPoaez/sr+GUSXJJ9cNb0JEPTFN7vl6xvQGtRxMtjdT3DAM+JDHezopnBGOcH23vg6sSyUFUQcY09zgY7A8rsG6TxWQ/W6FXHbaTDkKmbhOvmcRt/8rxraISKlwFBxvn1oRzJPKXU6YosVKzh0Bx6e8BeRWcBa4BtKqZeVUseActLk+EO+QFxP3sqysCyLwODY4bJDDLZ2IRGLnIOtXZQtiD8aeLC9m5KZlXG3b951FFdjLJ0Kg2F6YZxEklFKuYFfAd8UkVtEZD3wa+wbvFLqJHAfcLeIvF9EVojIZSLyORG5K0a3dejRxztFpNpe9+gBOoG/FJFVInI98FP0aGLKifemD6CCIXz9sbOzhwh6fVqwKILBtm5KE9Cn6Ktvo2JR/Iquvl63VsKLY7HbYMh1jJNIDZ9Dh60+bv88jBYZGuIT6AinbwHHgafR0U910TqzRxj/AXwdrWH9Q6WUBXwQuNDu/0donQpf8t/O+PgHYhf3i8QKhfB0j38D7m/qIBhF6c4KBHHk5Y2bST3EYHsPJdVVcdsH0Lr/JC37TiZ0jsGQi5g1iRSglBoA/tTeoh0PAF+2t2jHa4lY21BKfRW9SB2+71XOTWMNUTYBkydNQuU2RBho7R53zr/7VAOezohKrxIWcRVFBS8qSrfTGdjxPRf117ex4Ip1BL3+SQsmGQzZjBlJGJKC3zX+9NEQIX8AT8zifBorZOFu6cIX0U5EhsWGEoo9siytMZEAXSfqaNh6MKFzDIZcwzgJQ1LwueIfSfj7B1BjlO8GrSwnDsfoSq+2kFBw0EteSVHc1xxo7Uo4m7rjcA0Oh4Ogd0rzEg2GjMI4CUNS8MexED2Et9eN5I2dmX325Z0UlpfgiygGWDp/NuVL5+mCfAmsM/TWNFO5bEHc7QFQiuZdR2nacSSx8wyGHMI4CcOksYIhQr74M5R9fW7yxijN4R/w0HHorF6KiNDFnnvJ+cy7dC2DrZ2UVM+I+5re7n6KZ1YkXDOot6YFX7+b3rqWhM4zGHKFnHcSieg4GCZGyB/EGqXtEBtf/wDOgthO4sQTr+uQWkuNimASEaxQCG9nL8VzZsQd4QSApaJoUIzPmee3032inoFxlPAMhlwk551EIojI9SKyR0S8InJWRD4Vpc37ROSoiPjsn++NOH6diDwpIk12xdaPR+lDxdh+FNbmFyJyRkQ8ItIhIn+IVeFVRIpE5EC6hIqsQICQP/70DBWyUJYV9ane1dxBy65jOjEvynGlFCGvH3E6cI4zZRWJu7mDsgRDYfVF4fjjmzn26Ku07D2Op7sPZSW2CG4wZCvGSdiIyHLgWWArsAH4L+D/ROR9YW2uBh5CJ8NdbP98RESuDOuqDJ238PfELrMxP2J7t73/4bA2u4GPo7Oqb0UH87wsItEewb+DXUAwHQR9fqxAYjl8Vmh01nXA42PPTx8/V+Ijwkk48vOwAkG8XX0Ux1H+O5KuE/XMWLU44fNAj2A6Dp1h3y+eZMvX7h7WSDCjC0Ouk1N5EiJSAvwYeD8wAPwg4vhd6NyE89A38EPAB5RSbcCngGal1Gfs5sfsm//n0GW6Af4BeE0p9XX79ddF5AZ7/4cBlFLPop0Nsaa5lFKtEXa9BziplNoc1uZnYU1qReRLwAFgBXAi4twb7Pd8e6zPJpUEPb54MxaGsYIhvD0uCkqLAT0Ftf37DzLY0YuIkFdcSGDQMyJHonBGOd7uPjxdvWFOIv4rB9yDFJaXJJQvEYmIEPL6adp2mMathyhfWM2yGy9j9tqlFM8wWhSG3CPXRhLhOg43oUcE1wGIyDzgQeC36Kfz64B7ws69Gngxor8XgMvCnt5jtblmogbbJTY+BPxijDal6CzteqA2bP8i4CfAR0i8OGDSCAz6Eq7KrEIhBlq7CHr91Ly2hze+9hsGWs5Vey2qKh+VI1E0sxJvrwtfdz9FMysnlOjm63VRUBJ/gcGxEBHczZ0cuuc59vzk9zRsPchAe4+ZijLkFDkzkhhPxwFYAOQDjyqlhspfHA7rYh7wckS3bejPaDbQYrdpi9Jm3iRM/2N0mfDfRh4Qkb9Bl+4oRY8eblJK+exjTvR01/8opfbbCnYTomnHEXprWxjSkRixVhAuDzqkKaHO6UggDopnlBH0+hMqrR3w+Nj3iz8Q9AdxFubjcDhGnF9UVYa3vWvEOcUzK+g9VY/fNUB+eQmuxnZK5sygvyE+bQmAtv0nmXvp+TTtOj7qmDgdVC6Zh7ulM6HcCBHB1djB4XtfIBQIUjyzgtJ5MykoLSavuBBH2NqJiNgDH0ls6GXIWE49+cY377z3y/+SbjtSRc44CcbXcTiAdgKHReRF+/dHlVLhd5jIlVKJsj9am8loMf4l8ESEHUPcB7yEXrf4HHr9461KqUHg39DVZr87iWsDsPDK9Sy8cv2Ez6/btIf8BBLbQE9RLb3hEtZ/6O0x2+z8xq9H9Fs4owJ/nxsVsnA4RFeDXTwPT7c77utagRBl86u57ivXUhoRQhvw+qh5bhtLr7uIymXzKZ0bfxFBw/Rl/QduzlkHAbk13TTmc5lSKgS83d4Ookcdp0TkIrtJK6NHBHPQVVW7xmkTObqIz2CRi4HLiDHVpJTqU0qdUkq9jl5zWI2eSgM9nXYDEBCRILpEOcB2EblvIvZMlERKcgzh6ezDmR87DDZaEUBHQR6hMN0Kb2dvQrkSQ7TsOkrnwVMj9gUGPGz/r99y9rltHP7dc3QdqzXqdAYDueUkxtNxQGm2KaW+ghb9aUZXUgU9Ark5os9bgN12Qb6hNrdEabN1gjZ/Er3GEDnNFQ2xt6EJ9U8AF6GjrC7m3KL1R4ApfbLx9cdfAXYId2sX+aWxRx9Bj4+QLyJiKmK8ZgWDOPKcCSfIuRvb8fUP0t+ofXtgwMOOb90zvCaigiF6TjVQ99qehPo1GHKRnJlusqeWhnQcOtAO4N+xdRxE5Cq0E3gB/eS/AViMVnIDrcXwaRH5PvAz4K3oENQPh13mB8DrIvIFdBnw96Kf5q8damCvjayyXzqAJfaIoTtM03ooEusjwLdUxF1ORFahRwwvAx3AIuBf0WXAn7bfb03EOUNzLmeUUlMaDuvrjX+6ZwgrEESFLIJeX1SluuCgl5DXN0q2dDRKZ2U7E8uZOPvctuES4i07juDpcY24Vtu+k1Qsm48VCuFIsG+DIZfIpZEEjK3j0Ie+8T8NnAL+B/iqUupeGL7p3o6OetoPfBH4O6XUUPgrSqmt6Eikj6GnrP4U+KBSakeYDZeh1ef2AcXAV+zf/zPC1g+iF6R/E+V9+ICNwHPoEdJDgAu4OjJ8NhPw9Ixd0TUWlj9I79noYnx+18BopxDNSSgmFE0kIrTtPUHNCzt0LamIRXcVsgi6PbQfOBWjB4NhepAzIwkYX8cBeMc4528GLhmnzaPAo2Mc30QccStKqd8Q3UGglGoYz9Yo59TGc91kY1kWAVfi000A/c0dSJ6D2VF0JfyuQUbF1YY5CSsYwpGfR9DjJa8wP7LEU1LoPF6HAuZdcn7yOzcYsoRcG0kYppiQ108owWzrIXpONZBXUhR1TcHXF+XpPux3f/8ABeWlespoAtnX8eCqbyW/uBBrnLLmBkMuY5yEYVIEPT6CnonpLYT8Abzd/bQfPD3qWGQi3XB+ho2/f4CCilIG27oomZN4hFM8KEsR9AXoOl6bkv4NhmzAOAnDpPD2uyeVYdy4/RCD7T2jRhPeaBrYYW3ySotZcO3F5JUUT6iOU7y4WzrpNk7CMI0xTsIwKTwdveCY+FJIyOPH1z9Ay+6jI/YPtveOeJ1XVEDA4wNgyS1XUVBUQPMrOyibO4OSWRUpK4XRfaKOfLu+lMEwHcmphetoiMjTQKdS6uPptiUXcTd1JFSOIxpN2w9RUH6ukK6yrFEjibyiQoIDHha8bQPu+hb6jtciTicDzZ14O3pY8ta30LAt+QpywUEfylL4+twUVpYlvX+DIdMxI4kwkqQn8QUR2SUi/bYOxFMickHY8XwR+aaIHBSRARFpEZH7RWRJRD9x6UmIyK0isk1EBkWkV0ReSeZnMh599ZOPyA0MeAl6fXSdagAg5AtgBUZmOzuLCxGnk4KyEnqP1+o1Cts3uWqbsXx+yudWTdqWaPjdg7TtPTF+Q4MhBzFOwiaJehIb0eXKrwFuRJf1eFlEZtrHS9Bhtl+3f74HndT3vIiEj+zG1ZMQkTvRlW3vsW2+Gvj1ZD6HRAgFg7ibO5PSV9O2w/TXaolQvRjuG3E8r7iQmWuX0fjS9tEnK0XLln3Mv2J9Ykp1cdJzuhFff+IJgwZDLpBT000Zoidxa8Q1P8q5RL6nlFJ9RJT2EJG/Ao6gHcIhu58x9STsKrD/C3xeKRVe++nYeJ9Tshho6dIlOZKQneHrcxPw+OirbdalMUIjNR9K58/GXd8WVdxIWQpE6Nx7nNmrF9N5KrkJ566GdhZcsQ6l1KSn1gyGbCPXRhKZqCdRjv6ce8ZoM6RWE7VNDD2JS9EjEJ+I7BWRVhF5UUQ2jHGdpKGU4tTTb6AmVQB3JLWv7qK/qQNvj2tEIp1SilnrV9C8aVdMW0SEnuM1zFi9mKRn1ilF0OtnoLVr/LYGQ46RMyOJDNaT+AG6zMe2aAdFpABdIuSpyJpLY+lJoEcUAF8FPgvUAH8LbBaR85VSzWPYNIKWPcdwNcavyRDyB2jZdVSXs3BIwgX2Yvbr9XPyD6+zYMNqQv7AsPZCfmkx/l4XId8YVVltn9J3qp7KhbPprptQYd6YuJo76P99G2WL5iS1X0P2c/yRVz5/x71f+Va67UgVOeMkyEA9CRH5Lrr437V2qfLI43nAvUAVcEeULsbSkxgaBX7dLhWCiHwSXcTwo8A3o9kUjdlrl1M+vzq+xqK1plfednW83SeEOISa57biLMhnSARp7mXraHk9voqsHXuPs+J9N9Hb2DG6rMck6D3VwJKNlzLXlOgwRHD8kVembB0wHeSSkxhXT0JE3o4uJf529Kjjv0TkeqXUAZKsJyEi30MXA7xBKXU2yvE84AHgLcBGpdSouQx7/aIPrXuxHT0d9T70NFmL3exoWPugiJwClkT2NRb5JUUJiwalEl9Pvz33r0cShVXltDW2x3eyUgQHPBQU5RMIJG/aye/y4MjPo2ROFY68XPpvY5gsd9z7leREb2QoubQmkTF6EiLyA7Qs6Y1KqVE6mfYax0PAhWgnEk8caaSexB50tdg1Yf060COqulFnZxGD7eeWZvSCdUv0+lBKnRvqWecWldt2HGLeJWtGt58kAbeHrhNZ/dEaDAmTM49EGaQn8SP0dM+dQI+9YA7gtm3MAx5BO6l3AyqsTZ9SyhOnnkS/iPwU+IqINKIXtD8NzEBPYWUlyrLw97mGX89av4KG59/UEU+RbRV6SklpTQlxOlAhha+7n8KqcgiFEtaZGIues004CvKoXr8yaX0aDJlOzjgJm8+hF3kfBwaB/7Nfw7kw1M+g1wAaiNCTEJHbge8Bf412MqP0JETkQ8DX0DoRZxitJ/E39s/IpLavoMNvF6FzI0CPBsL5BHA35/QkPmvb2obWxYjUk/hnwI+O2CoB9qJHJnEvWmcaIV9ghGyosyCfkNePIy/KzV6p4RUh7S/OzTi661spm1OFu8s1+rwJ0lfTzNyLzzOhsIZphSQrMsWQ1WTMH4G3q483vvBDQE81Fc+upH3bQRx5zlElu0UEcQhWSK89hLdxFuaz+NZrqHl1b1IXsFfd8TaqL1pFxaK5SevTkPXk9BNDLq1JGHIAX//AcLG+WRespGvfqCWdc+j5phGvh16FfAGc+Xl6yimJ9J5tpn2/UaszTB+MkzBkFN6e/uEnf2eek5DX1qqIrlw60kdYCsKytPvONlKxaHZS7es6VkNeUUHSckMMhkzHOAlDRuHp6EFEyC8rxm/XS9J+YPybslIKCStb3n34DLPXr6R80ZyklftWIS3X2nWsNin9GQyZjnEShozC26VLhM9Ys5SuI2f0TpEJ1e2zAkEKKkqpXruElW+/jNHxUROjeedRXI3Jzeg2GDKVnHcSIvK0iNydbjsM8THQovOSSufOYnAogU4g7rX1iMgjZ1EBTS9tp+nlHSy6cl1SbPR296NCFu7m+EuZGAzZSs47iUSYCj0Ju81XReS4rSfRIyKviMg1EW3G1ZMQkRkico+I9NnbPSJSlcSPZEpRSjHY0QMCasSCs8TvI6yRU06+rj6Uz89gcwcFZcXkFyYn6rt+0166TzYkpS+DIZMxTsJmCvUkQBfr+1t0SY5r0cX5nheR8LjKcfUkgPvRmhTvAG6zfw+vbJtVhHx+Qh4fpfOrcYWJGUkCIwml1LmF7+JCgoOe4bDYxpe2seLWK0c4kYni63XTV9tM2/6Tk+7LYMhkcipPIoaexDXY8qVj6UmIyDeBu5RS54X190tgvVLqavv1Q8BMpdQtYW1eBjqUUuGZ2eE2laET+e5USj0Vo02F3ea2oQq2UdpciC5SeL5S6oQ9qjiKLh74pt3mWmDLUJvxP7FhMuKPYLCjhze/+CMWXruBli17CA14AXA4nahQKKqR0fInhvbNOH8ZAvSdrAOlUEpRPGcGc6+9FOUQECEUDDHY3kvIH8DT2Yunsy/KVWKz/NarmHvZ+VQuGasQsCHHyek8iVzLuA7Xk2gC/gOtG/H7MD2JL6BFhMoIq/NEbK2Ij4lIvl2/6Wp0Fndkm0+PYdOYehJ2qfBPAv3okuLR2kTTk7gacDOybtSbaOd4DXq0klUMtnURHPSRX1w47CCAsWeb7NyIEWV6bcGi0kVzad9xcETJDk97D7W/P1cR3lFUQPHc2TgK8ll06Wqadh9nMIEs7bPPb8PT1cuiay+matUinZthMOQQOfMXnW16EiLyLrTTKrH7vsVWyAtvM5aexDz0CGb4/qiUUiLSPo49o2jbf5LB1u5ETpkEtkyRUrrkUiDAQFsPA61dlFVX4izII+T3x99beP2m4X0Kh9NBflkxQdcgABLjYc/y+hmo01VM3GcbWXbnRk4+uy2hLO3mHYdp3n6IsgXVVK1YSGFVOY48J+J02ovoQ4vpOf3AOW05cs+zn3jXff/5m3TbkSpyxkmQfXoSr6HXNWYDfwk8LCJXK6VawtqMpScRzZYx7YlF+cI5qFCS1dzGQARwOHDkOckrKmD+5UU4CvKpefZNZr/lPPpO1idwO9X1myTKOxYJdw3acch4Bf8sxfl3Xk/1pROPhFJKERz0EvT5UcEQylIm+S632ZluA1JJLjmJrNKTUEoNoMubnwa22zoQf4FWmhtqM5aeRCswR0RkaDQh+nG1Opo9Y1FSXUVJdVUip6QET3s3VasWU/tYAjLdSgsVRcqoKkuNHF1YVtiTfWz6TtZRuXoJZQuSm6ltyF3edd9/Hkm3Dakkl6KbskZPIgYOzmlFRCNST2Ibel0lXCLuavTU1FayDCsUYrC9Ww+DEqm3FFm/yaZoViW+zt6wdkPNx36id9U2U1BeNlw/ymCY7uTMSCKL9CQqgM8DT6HXIqrR4bCLgIftPuLRkzgmIs8DPxORv0TfKX8GPJ1gZFNGEHB7cBYU4GkfJdA3JkNLEpGULqjG3dTOCBei1PCIImZ/wRAhv5/B1i5KF8Qp6Wow5DC5NJIAPW//GvoG/hp6Yfp1+9iQnsTTwCngf4jQkwBuR0dD7Qe+SBQ9CfQU0seAg8CfEl1PohytJ9EStn3OPh4E1ts2nkI7i1nAdUqpg3abIT2J59AjpIcAF6P1JD6CXmt5Ee38DqAdVNYx2NHDjPMW0X34TFL6K5k/m8HWzhFjDGXFty5gBYJ0HTT5DwYD5FiehGHCpP2PoO6l7QQHvJx95KURawlEaEZEw5HnREXkSiy/cyO1T7ymuwjbL3lOxOmIGe0EUH3lBeSVFrHmo++e0HsxTDtyOmwt10YShiyl50wDVjDIqEp+MnpXNOL2ckqNG8k10NBGfnFyqsYaDNmOcRKGtGOFQkgI+k+ProUk8XqJMRgRvxzHlJOntYu80mITtmowYJyEIQPwdvdTMn8WvSfqRh+UOJxEmCIdQH5ZMQH34MgmYW3169h9KstCBYP4e5Onj20wZCs5E91kyF66j9bgcDqwfFEyreMpABuRdV0yfzaDdsnxUc1geMpprCinkD+Aq66FwhkVcb6L7EIphaeti849R/H19FNQUUbp4rmULZlP0ayqdJtnyCBy3kmIyNPYBf7SbYshOp2HTlFYUTbh84crvw47iWp6Dp+O3hbAUohznLVGBX2n6ph98ZoJ25WpBAYGOfHL39N7+Awhf2A4wVApReWaZSx6x7VUrVlGXklRmi01ZAJmuimMTNKTCGsrIvK8iCgReX/EsVp7f/j238n4LKYKf/8A+aXF9ByZROhrhNBQ4YxyfD39YzQff8rJ191HcNAX83i24m5sY++//5iuvcexAsERn5uI0H+yjmM/fojOPUfxdkStSWmYZhgnYZOBehJDfBYYKwX5P9G1nYa2r8X1hjOEupd2UDSzkoFJyIHqmiTnXg9NKY19khoVNhvOYGsXzsKCCduUifTXNHHoW7/B19U3ZnkSFQhy8jdP0HP0DIMJJjcaco+cchIiUiIid4uIW0TaROTfIo7fJSIHbbW3bhHZHHZj/hTQrJT6jFLqmFLqF8BvOZcEB/APwGtKqa/bbb4ObLL3A6CUulUp9Rul1GGl1CF0cls1OpFvqM29SqlXlFJnlVJHgH9CJ+BdHGHvZcDfo8uEx8KllGoN29xxf2Bpxtfvpnnrfl0CI9pN3SEQZwLcCOKo4KpCFojOv4g2otARTrkz3TLY1sWR791DoH8gvhMsxel7n6H/VP2oIADD9CLX1iRyRk9CRMqBB4C/Ukq1j/Hk9zm7TEgD8AjwbaVU/LW200TA42Xv9+6nsKoCV01z1DbicIz5tB+JAvKKCwl5Y7/9wpkVzH/bBr1obVn6iVocWIEA7bsO4+/RPjbo8SIOBz2nG/D3ufF09BAY8BDy61wOR34ezsICCqvKyC8tpnjODEpmzyCveKzyW6MJ+QP4+tz4+9xYgSDO4kIKq8opKCvBkTdOxdo4CQ56OfQ/v8Xf5x63wGE4KhCk5pGXUCGLedduQBw59UxpiJOccRI5qCfxU+B5pdSzY/T9v8A+dJXaK4D/Bpajq8nGTeeRM3g6ehM5JQHUueJ6lkXIH6D7eC1dh89gBUMsu/VqGl/ZkZya50Dporm46luiHpv/tksoqCyl+cVthDwj1xvySoqYd92lOArzaXhhK0FvgOCAhx1f+TnEc3O0HUfpgmoqlsyjZO4sHPlOHE7n8M1VKQsrEMLb3c9gezfuxnZ8vf06mzxsJCUiFM4op2zRXMoWzqGgvATJc+LMc4LDce5GL8P/xKRy2XyO/+xRPM2diIyuljse/q4+OnYcwtPVS/6MqoTOnS4c/sXjb3/HfV+LfMDMGXLGSZBDehIi8lHgIuCyGO916P19N+zlQRHpBx4SkX9RSsU9mZxfUkSfK85piAkiDgfO/DwKK8tYfts1LL9dz77ll5XQtmUvwWhZ0AIS70jC0noRlSsW0r7t4Khb59I7rqf/dD3tW/ZEPT046KXx+TfJryhjxV0307H7COJwsOo91zHzLedFPWcslKXw9w8Q9HixAvo9OPLyKKgoo2L5goR0tq1AEF+fm6DHh+Xzo0JWXIl+ZYvm0PjSNgYbWxPSCY+k5+BJKs9bykBTG/mTiEIzZCe55CRySU/iJmAd4I6YHnhIRLYppa6N7M9mqNDgqjCbx6Vy+UIqly+Mt3lS6TpyhqDXjzhHP60nNNWkFOJwkF9RSiDC4S2+7Rp6j5zBdWZ0RvcQQ59ysN/N2fufZf7Gy8kvKcLb62LmmmVx25FJuOtbOL3nGI7xhJbioOG5N1j54Xcw960X4zASrSNY+e7rcnYUAbm1cJ1LehJfBC5EjzSGNtCL6H86Rh9D7aLPt2Qg7TuPxHyqHquo3yjsMFhRjJi6qb58Pd727jEdRDRaNu2ia/8JiqurslJbIuQLcOzHDxHyJieM1/L56dh9hJbXo4/EDLlLzjwS5JKehFKqCb3wTli/AA1DoxI7HPcq9LRVH9rpfQ94UilVn+DHlxasYIieo6MGWRqlQCV2c84vLxlRSqNwViWlC6qp/8Nr454bTbqo98hpvN29FM6oYOZbzsuakFilFGfufZrBls6EFqrHo/fwaWZdtJrB5g5KjNbGtCGXRhKQO3oS8eBDj4I2oR3dfwK/YKRTy2g87d14u/uiHtPyo4n1N2PtcnqO1wy/XnzbW2l8dsvEDVQKX1sXJ371OJ17j+F3ZUcoaO+xs7RtP5BUBzFE44vb6D58Kun9GjIXoydhgDTpSZx9/DVqntoc9WZmBYIJrUkArHz/zdQ8+hIAc668AH9vP/3RigbGINotVZwOHS7rEFZ+5J3MunhNRtc2Cnp97PniD/F19absGkvu2EjZ8gXM3rA2ZdfIMoyehMGQbJRSdOw9Fv1pVzGu5kMkxXNmDI9KnIUFlC2dn5CDsC8by1idXPa7p2jZtHtS2eGpRCnFiV88hrczteU0Gl/Yir/HhZWIFrkhazFOwpAWvN19eNpj3cxUQhoSBVXlLL71Glq37EUBC266guYXt417XrwMjbZFhPonN9Hw7Bb6TiXmgKaCzt1H6T5wMiXTTOFYPj/uhhZat+xN6XUMmYFxEoa00LH7GKFAIOqxaMJA+RWllC6cQ9GsyhFlNwqqyll6+1s589ALWIEgeaVFOPKdE9aCiOqaIhLd2rceoOahF+g+eCpjIp/8Ljdn7nsm4Sm6idK2ZR9YipA/+ndoyB1yJrrJkD0opWjbcSjmE+/QVFPpornMvWI9IuDvdRHsH8BZlE/hrBlIfh69pxqoWL6AmsdewbJvVgtvuJyW13Yl0Vb9M9LS/tMNnPjlo6z48O1UrVtJYWX6ksxUyOLo/96Pr6c/5aOI4WsGQ/SdrkcFgiy8NWoBY0OOkPNOwuhJZB6+nn4GmzuiH1TgLC5k6W3X4G3rpPGJVyHG3HfF+cspmTOD0oVz6D/bSH5ZCeJwEIy3iF0MRoTDRpQhDyfQP8jxnz7CondcS/Vl6yhfuXjKbtLh1Dz6En2nGqb82h3bD1G5aglBjy/hmlWG7MFMN4UxhXoSkRoQQ9uPwtr8QkTO2BVrO0TkDyKyNqKfL4rIm7YuRdaEqbVuO0gwxjRF+bL5LH/ntTQ/+zodr++J6SAAXCdqOfXTR6hYNIdl73ob8667JKmjCI0aM3ZFRGh6/k2O/vRh2rcewNcdW8ciFXTtP07zqzvSE15jWfQcPk3r5t3puLphijBOwmaK9STmR2zvtvc/HNZmNzqZby1wK/pW9bKI5Ie1KQR+D3x/Qm86DSjLonXbwahPvbM3rKFy2QJqH3yO0IBn/M5EUEDb5t107zlK5eK5KH9yCuCqUb+Mjb+zj+M/f5STv9Y5FYF47J8kA01tnPz1E1i+9K0LdO07jqMgn+CgN202GFJLTuVJiEgJ+gb9fmAAnSF9DfZ0k4jcBXwZOA/wAIeADyil2kTkm8BdSqnzwvr7JbBeKXW1/fohYKZS6pawNi8DHUqpqElsdnXaPuBOpdRTMdr8Ap1MF1MrU0QuRBcpPF8pdSLi2PuBR5RSE32gnLI/goHmDnb+x09GLU7P3nA++fl5tG3aGfdTsTgcwwvHIkJeWTFL7rqZ2t+/TMA9+Zv0kB3idOhKrnFO5yilmHnhauZddwkV5y2lsKp80rZE4u3s5eC376agqpyyxXPJKym2s9RjfJUi+PvcDDZ3MNjcntSb+qxL11GxcjGLb49VUiznyek8iVxbk8hGPYkydBb3V2J1YNeg+gRQD9SOca2Mp+HF7Vgha8RIYsba5RSUFtH24taJ/28TIeAapPah51n2gVup+f0rBCf5NB++NhGtbEdsU4SeQ6foPniSkvnVLLj5SirOW0LpwrlJ0Yjw9bro3H2E2Zecj+tkPe2b9xCMQxioYEY5JYvmMffqC8krLUGhGKhvpefIGaxAcML2dO09xoz1KwgOeo0udg6SM04i2/Qkwvhj9LTRb6O8p78BvgWUoiVPb1JKJV14OeAexNszsZDRRMgrLqR977ERRfhK5s2icvkC6h99aQIO4lz+wlB/Ia+f2kdeZPkHbuXswy9OusDdsHOwLNQERHcGWzo49bunEIeD2ZetY9aG8ylZOBdHUSEqgRuzOB0UVpXTe/QMtQ+9wOAEEvp8PS58PS56DtllNUQoX76QhTdfhaMwn76TdbqWVqKzC0rRe7wWb1c/1VddmLBd2c7Wf/3fC2697+uHx2+ZneSMkyD79CSG+EvgiQg7hrgPeAm9bvE59PrHW5VSSS0idPap1+k6fDqZXY6iZO4s8ouL8HX2Dk/b5BUXMv+6S6i99+mEHYR2DMMvRuQrhDw+6h59iRV/dAun73t28rkMSq+lTEhKdaiLkEXHtoN0bD2AFOQx8+K1VKxcBPn5DHb04G5ojbqOUVBVwbLb30qo383B/3ySQF8S1WmVwnW2EddZ/RxVtX4ly++8AU9HD21v7k9odNGx7SDLP/B2Dv74oemoYHcFIx84c4pcchJZpSdht7kYLSz0b9GOK6X60OsZp0RkO3rK6n3APWO910RZ8+HbktldVCzLYvdXfo4zLFRyxV030vDEqzCRm7gAlrK/9NE37+CAh8Zn32D5+27m7MMvxL2eEA2F1qqQJMmJAvTsP073vmM4CvKZuX4l8y9bS/GcmRTOrCSvtARxgAop/K4BTv3iUQZqmhOa8poIfUfO0HfkDEXzZrHszhvwtPfQvuNg3CVSBls6WHL9pSy+7a3jN84tfp1uA1JJLjmJcD2JoXLaQ3oSZ0DrSaBHGttE5D+BI+hKqgfs/XdG9BlLT+LbEW2i6Ul8CNg4jp7EJ9FrDJHTXNEQe8vKgPT+0w24m9uHX8+94gK69x0n1D/RJ2Oxb94S8wnf19lD567DLH7HtTQ8/+YErwMohRJJ+g1aRFCBIF37T9C1/4Qu/6FA8vNY+Par8Xf30v763nML6Em+fiy8rV3UPvQCJYvnsfx9N9O+8zDu2ug65OF07DhExaolhPwBnAX547Y3ZAc5My5USrmBIT2JW0RkPdrDD+tJiMiXRORyEVkC3MFoPYlFIvJ9EVkrIn+BDkH9TthlfgDcaOdCnG/rStxAWAiqnevwCXTJ7h4RmWdvI1Jy7UisjwC/VBEhZiKySkT+RUQuFZElInIN8Ai6PPjTYe2W2KORZfbri+0tozQmlVKceeyV4Zt50axKimZW0J+UktMyZmiWu6YJX1cfszecP/FL2KkSqS7BISLkl5ew4gO30LP7CB1hDiIdDDa0cvbeZyipnsGSd1437qK7Cln0n22k9XWTN5FL5IyTsMkGPYkhPohekP5NlPfhQ+dbPIceIT0EuICrlVKtYe3+E9jHuZHNPnsbUxt7qnHVNtN/9pyG0qKbrqDp6c2T7jd8wXosOnceonTR3AkL5SgA0SJJKmQlvrAbJ0Wzq1hyx/XUPfLihBamU4JStL+xj9bXdrLsrpspnjdrzOYd2w8iDidWcOLRUobMIqfyJAwTJmV/BEop9nztl/Tb0xVzLltHoLOH/qNnJtXv0OJo3E/3ovUgah5/ZUI5Ag6nY1hOVRyi1yiSuEBbtnwhsy9eQ90jL6EytQS3CAvfca0Owd1zNGazeddfSvnyhczfePkUGpdWcjpPItdGEoYMo2PvcVy1WnI7r7SI0oXVk3YQ50jAtylF3eOvsPy9N03+qpbCCob0yMKa/MiiYtUSZpy/jNoHn89cBwGgFE3PbsHy+Vh0y9Uxm7VtPaA/o0x+L4a4MU7CkDKCPj+nHnoeZd/MF990Jc1PJWOayQ5WSjAkNTjgoeXVnSy94/oJ5AJE2WVZ2lkEgsNTUcqyUJayF6H1ppTS+yz7eCiEsp1M+crFlC2bT/0Tr6Hsy8SzpZPuPcfoOXSS5XfdhDhH30JUIMhAQyvt2xNR4zVkKsZJGFKCUopjv3oCb6dWiytbMg9vW+e4mcGSnxdHuGqswNfxGWxuZ6CuhblXX5TQeQoV0yyF7TBCIXuEEcQKBAnZm3YiweHRhxWysCyLqrXLKVs6n6ZnEtfhTrcDGahrofnFbSx/3y048kcHSba9sQ/LH8wYvQ3DxDFOwpASWt7YT+e+E8PlN+Zd9RbaNu8Z85ziebNY8eF3sOyumxjzdicSVZgoXrr3nyC/opTy5QvjP2lo9TpJzLxwNSXzq2l+7o2k9TnEVDkOX1cvDU++xvL33YyzqGDEMSsQZLCpjY6dOZtjNm3IeSchIk+LyN3ptmM60XuqntMPvTj8FDl7wxq6dx9BxnmqnH/jFdTc+zSBfjeFMypithMRJhtw0fzCVuZccQEF8YoFKTWphLxwZl28hqLqKlpeSp7E6nikymkE+tzUPfoSy+68EUdEbkTr63sJeryT/q4M6SXnnUQiTKGeRJmI/J+INNp6ESdE5B8j2oypJyEiG8fQpfijZH828dJ7qp7DP3qYoEdHEEmek8oVi+gbp+xH5Zpl9J+qB8uie98xZl4cPa9h4hNNo6l77GWW3rExrqJ7iuT4iFkbzqdgRgWtL+8Yv3EKSabDCA54qP/9Kyx7740jPkvLH2CwuXPMSChD5mOchM0U60l8F3gn8FG0XsTXgf8WkY+GtRlPT2Iro3Up/gtwo/MrphSlFE2v7eLgDx7A7zqnDLfguktofXn7uOfPunw93bv01ISvs5fCmRVEvYU5JGnz3FYgSMNTm1j+/lvGbZsMZl2yloLKMtpe3Tkl14uXZDiMgGuAxqc2seyum0aEBrds3k2gf8CMJrKYnHISIlIiIneLiFtE2kTk3yKO3yUiB+2n824R2Swic+3DnwKalVKfUUodU0r9Al2ZNTwJ7h+A15RSX7fbfB3YZO8HQCl1q1LqN0qpw0qpQ2hHUI1O5BviGuAepdRrSqlapdTvgO3AlWH9/EwptcU+vhf4ErqS7Qr7uF8p1Rq+oes6PWBnn08Zns4e9n37d5y8/7nhEQRoGdKCkiK8LSNrFzqLChDnuSfOWZeupXvU02asx3ZJ6nyJv8dF2+t7WH7XTSlLkgOYfek6CspLaUu6cl5ymYzD8Pe4aHruTZa+Z+PwZ6n8ATxtXXTuPZZEKw1TSU45CUbqSdyEHhFcBxCmJ/Fb9NP5dYwslBdLT+KysKf3WG3GUoKPpifxBvBuEVls23YNemTyfLQO4tGTEJGNwGrg52PYkjSCXh/dR8+y/3v3sfPff0rP8ZpRi8kL3raBlohRRNmyBSx5740s/9CtzHjLKgpmlFOxein9x0bWQFShEA7nyGmgoQzrZN/KB5va6d5/nCXvvC7JPWvmvvVinMWFtG3KbAcRyUTWMXydPXRuP8iiW68ZdhQtm3YT6HWZ0USWkjMF/rJMT+Lv0LWi6kVkqH7BZ5RST4efmKCexCeBA0qphAvnhPwBgoMeXRI7PKY/ZGEFAoS8fgIDXnxdvbib2nHVNOHp7NXqb45zT/zhN4G80mKcTieB7r4R15pz7QZq73sGlGLGhvOZc9VFNDw2ur6ht62LojkzGWzpDP9AUhZS6TrTiKOggCW3v436Z6OHpKqhGk4J9LvotrfibeuiOweepON93+7aZvIry5lz1YW0bz+I5fXhae+mZfNuZl28BpCIgaJE+S172PzX36i+5f5vRCv1nxPkjJMgu/QkPoOefroDqEOPar4jIrVKqfDRRFx6EvZ6x13AP0WzYzzOPv4aLVv2gQMEnakmDkHEoX/m5+HMz8dRmAcIkp9Pyfyx6yDNu/pCGv/wyggFurJlC3Cdrh9+wuzZd5weohfJ9bR3UzRnJp7WrqjHU0HfsbNYfj/L3nsjtY+/OrqBHeEUz43MkZ/HkvdspHvfCVyn6sY/IYdQQPeBE8y9/jIq1yyj5/Bpml/axqJ3Xc/2L/54ZABAbgwu/hL4RrqNSBW55CSyQk9CRIrRC8x/FKZ5fdCu5vo5wqacEtCT+BhgoZ1Kwpz3wbdz3gffPpFTY9J/qo5Q/+AIDYaZl6yl8cnX4jrf195N+YpF9Iadr4KpL/PgOtNIyOvnvI+8k9onXh0pgaqU1rt2jh0NVTS7igW3XE3jk5vwd/dl5dNxMmjfvJsl770Rf08fno5egq4Bzv/Ibcy95uJ0m5ZsctZBQG6tSYTrSQAj9CQArSehlNqmlPoKcDnQjK7GCnoEcnNEn7H0JCLbRNOT+GPgxih6Evn2FnnHCzH29zGWnsRfAA/bTiXtWCGLmvufG1W7x5HnjFuyM+AaIL+89NxiskLfpJNsazQGm9qpfewllrzrOmZeuDr+Ex0O5t94BbMvXUfNvU/j786IryOt1P9hE/NvvBJnYT6tr+8dzj43ZA85M5Kwp5aG9CQ60A7g3wnTk0A7gRfQT/4bGK0n8WkR+T7wM/R00MfRuhBD/AB43daReBx4L1pP4tqhBraexEfRAkY99oI5gFsp5VZK9YvIZnTIqxs93XQ9uuz45+0+VqFHDC8DHcAi4F+J0JOw214LrEOvSWQE/SdqcJ1tGLGvYGYlvs6eGGfEgbJSrswWTsjjo+bB55l50RpWfPgddO07Rt/xWtuWkYl1joJ8Zl+2jpIFc2jfvDtzynxnApZF/WMvs+TOG6l59CV6j54BBfM3ZlQ1e8MY5IyTsPkcepH3cWAQ+D/7NZzTk/gMUAU0EKEnISK3A98D/hrtZEbpSYjIh4CvAV9BK95F05MArScRzleAL9u/fwg95XQfMBPtKP4f8EP7+JCexGdtW9vQuhiRehKg50OPKaUmIb2WPFTIoubB50dFk8688Dx6JrJ4a1ngdKIsKy3TNt0HTtB98CQzL1rNsvfpgaYVCGCFLPKKChGHAysYpGvXEdozPLw1XQQHPLS9vodFt1xF40vbqVq3kqDHR15xVoosTjuMnoQBkrh82H3wJEe+87tRXS59703UPRw1wjcmS+66mfonXgWHY3g9IhP+Wh35eTjy8wj5/BCn/rMBZl22HhxC0B9k9iVrWXjLVeOflB3k9LJTLq1JGNKMCoWoffgFIm/l4pyYUpkVCiFOhy7BnSQbk4EVCBIa9BoHkSBdu49QMm82vo5uxCF4JjP9aJgyjJMwJI3uAycYqI+cDUMnyx2vSbg/f08/BVXlU7ZgbUg9jc+8zoKbrqTx+a30HBq7npchMzBOwpAUrFCIukdGJ8UBVK5eSv+JiTqJiowaRRgmhwpZND61ibnXXIi3o5ueI8lSKTSkilxbuDakia49Rxloih7VMzRllCj+nn5KFsxJ2iiidPE85lx7McofsBMGHbRs3o23rTvhvqYy0irX8Pe46DtyhoJZlXg7e7GCQRx55laUqZhvxjBprGCIuscig7k0lWuX0xdRlyle/D39VK5fNRnThplx4WrKlsyl4cHnhnMvJM/Jgne8DU9nD+3bDo3TgyGZ9B45w8J3XEv3/uOglAmJzWDMdNMYiMgmEfnh+C2nN507D+Fpbh99QIRZG86n99CpCfUbHPCQX1rM0EL4RKedSpfMo2zpPFqe3jyi0qsKhmh6ahP4gyy8+cqY5xtSQ9Pzb1J53hJ8vf0MtORs6aOsxzgJw6SwgkHqH3/lXHKZCEveeyNL7tjI0vfeqKvApjHMWpxO5m28TDuIGHTvOYKvvYsFN12RUN9mrWSSKEX9E6/idDrpP15r9LAzFOMkDJOi/Y19DIYV4Zt16Tp69h+n/rGXqHvoeTxNUUYYCTDZPJ6Ft15N6wtvjuuoeg+eJOQepPqqC8ZsZ0guQdcgnTsPM9jaQdubB9JtjiEKxkmMj0NEviEinSLSLiLfEREHgIgU2MfqbDnTsyLyd/axIXnRd4nIflsSdY+IXDreBUWk1JY/fX/E/ltEJDAklCQi/21Ln3pEpFZEviUiRan4EKJhBQI0PLV5ZKXXpfNxnUx+1dOJuIr8yjIc+U58bfFVku3acZCCkmJmXLAypXYZRuI6XY816GOwuR1XXUu6zTFEYJzE+HwEXQn2GuDTaBW6oaKAv0XXXPontJDRnwO9Eed/B/gX4DLgLPCMiJSMdUGl1ADwAPBnEYf+DHhaKTUURjRg71uLLgfyIeCLiby5ydDy6i487ecig5xFBYQGPWOckTgyCWHpBTddSVsc0qnhtL26g/LlCylfsSDuc4yjmDwtL28nv7SI/lN1BD2xJFMM6cCU5RgDEdkEFCqlrg7b9xK61tI3gZPAOyI0IIbabQReA/5EKXWfva8MLYL0OaXUL8e59mVoSdOlSqkmEZmBrif1R5HiRGHnfMruO6GQoCM/fVS1vbk//hNEWPmBW6i575kRYaAzL15DyD2oNSOSxMJ3XU/zi1sJ+RPL2C6YUc7cay6m5ZnYaxFjseQDt9KyZS+elqnTs5juOEuKWPq+m/H3D1D39JYRRRQzGRUK/eCm+//rH9JtR6owIbDjczDidTNaQ2IDWsNhPIGEaCJI68a7qFJqt932Y+h69X+M1pN4bqiNPR31D8AqoAxd8XZssYMorP/U+1n/qfeP3zCMuidexZHnHDnVtHwhTWMsEE8Ef6/Ouva2J1bCYd51l9L+8rbxG8ag/tGXWPbHt9Pw7Bb83a4J92OIH2vQS8eWvcy4ZC0X/N2HmHPFW9JtUrz8Q7oNSCVmuml8AhGvFfpzm4rHnF+ita1BTyvdPaRwZ5c+fxBd+vzdaKf1JbRWRUoJery0vrpz1FRQInoR8RLocenSHAngyM/DmZ83UjAoUSyLuoeeZ8m7N5JXXjzxfgwJ4a5txt/VR//JOroPTyx02pBcjJOYOHvRn98N47SLJoIUb83se4GFIvJp4BLgN2HH3go0KaW+qpTapZQ6BSyN1/jJUPfYy/h6+kcfSMHUpb8vcSdRffVFdGzbP+lrq0CQ+oeeZ9n7bia/YsxlJEMSadu8m4LyUnqP1dJ/pnH8EwwpxTiJCWLflB8Gfiki7xOR5SLyNhH5aETTL9lRSeuBXwN+4P44r9EHPAL8D/C6fc0hTqIdyEdEZIWI/DUjBZJSgr/PRcfWA6NGEZLnxEpw3SCu6/W6KKhMzEmULKzGO8nQ2yFCXh91DzzL0vfeREFVWVL6NIxP/eOvUlBaRM+RU7jrTcRTOjFOYnL8KfqG/7/AceBuoDKizb+ib/J7gfOAd9nRS/HyK6DA/jmMrY/9beD76HWTW9BKfCnlzG+fwu8abX5BVQX+nuTLdQbdg1rGNE7Kli3AXZPcp0/LF6DugWdZcsdGCmZWJLVvQ3Qsn5/W13YRdA3SffAkrrrmdJs0bTEL12OglNoYZd/Hw373oSVHPz9GN1uVUhdOwoz5aFW9R6PY8gXgCxG7fzKJa43JQGMbPYdORQ1LLZxZgS+lms7xldSbdek6mp58NelXt/wBah94lmUfvp2GpzfjM4vZKWewsY3SJfNw17cQHPSiAkEqVi1Jt1nTDjOSyFBEpERE1gH/BvxCKTWYTnuUUpz69RMEvdFj2AtnVuLrSo2TiDdMW/KcICR98XzYjkCQ2vufYfE7r6NwZmJTYIaJ0bH1AFWrl9H+5n6aXt5Oz9Ezk87CNySGcRJpQkSeExF3jO3f0KOTA0A38NX0Wgvd+0/gPtsQM7mtYEY5/pSOJMZn1iXr6Nl7NKXXUMEQtQ88axzFFNLwh9dY/I630rnzMGfuf5bu/ScIef3pNmvaYKabUoRSahNjz4/8BRArtrJbKdUNfDnJZk2IkD/A2fufQVmxn+Ac+flY/sho4eQQb9Z12YoFNOxMff2fIUex7I/fSe3jLxN0eVN+zXRTuXYFMy9ejfIHEKeTxmffIOCemsGtFQjS9PxWFt92LfXPvM6RHz3IivffwowLz6N0wZwpsWE6Y0YSaUIp1aSUOh1jG651ISJ3i0jUDOtIROTjIuJOtq31j7+Kp3WczOMUTgFYwaCeShqDghnlBKKF5aYIFQxR/8gLLLvrFiQ/4fzFrGLOtRsorq6k8f6naX70BVr+8ArL7rqRghlTN5LytnXRf7qeOVddCMEQZx54jlO/eoKufccJJrkUjGEkxklkPn8P/EmcbR8CViTz4t7OXto27ZpUDaXJEk8YbPVVF9G1PTI5PrWEPD6antrE8vffQq5WcJpx0WocDqF7867hYbHl9VF//9MsvWPjuM47mfQeOoUjz0nFykWICP1nGjj8/Xs5fd+z9Bw5Y6agUoRxEhmOUqpPKR+UDaMAACaxSURBVNUbZ1uPUio5CQKAsixO/uxh/FM0rRALf+/4CXX5laUE+qY+4sjf3Uf37iPMvzExLYpsoGBGBZWrl9K1eeeoYyoQpOXpTSx557VTqhfS+upOZqxfRaEdiiwitL+5n4Pf+g0n7/4DnXuP4e9P+mB6WmOcRIYzNN0kItUi0iIi/x527EK7BPn77ddJnW5q27KX/pN1444iJM+JCqYmogggMI6TKF+5mIHTDSm7/ni4TtXhcDooX7kwbTYkHREWv/t6Wp54OebCmr+zB8vjo2TujCk1rf73r7DolqtxFhYM7xMROrYf5MgP7uPAf/2Khme30Hu8ZnKlWQyAcRJZg1KqA/g4OoP7ahEpRpcTf0ApNSqHYrL4+93UPfZyXA+JOpEudesB/t5+CmbETmKbueF8evbFW+kkNbS+tI05V1+MszjlpbOmhHk3XE7XG7tR4wQjtL+6nfk3XDGlowkVClH3+1dYeucNiHPkLUxE8LR0UvPwixz4r1+x98s/5vQ9T9O+7SD9ZxvxuwaMAl6CmOimLEIp9YKI/Bi4D9gMFAKfSfp1LIvjP3wAX09/9FGEGv4HgMIZFfg6e5NtxjAB1yD55dFrJzny80BZqFAoZdePl8Y/vMrid2+k9uEXmZr6j6mhcFYVBeUldJ8Zf3SmAkECfS6KZpbj7Zm6aZ6ge5CmZ7aw7D03UPP7V6K2ERG8Hb00v7KDJltXJK+4iOL5syhbtpDi6hkUVFWQV1pEXmkx+SXFOArzceTlIfl5OJwOxOEApwMRSeu6XDoxTiL7+BfgNnRJkGuUUpP+n3n24RdpfmU7WIrqq9+Cp7Gd/mM1KEYvx0b7b1JQVYb7bAoLsSmFLQY4ilmXrqN7z5HUXTsBgq4BBs40MnPDGrr3nUy3ORNm4e3X0vRAXAF1AHS+uY85111G/RRrQPi6emnbspel77mBtu2j64nFIuTx0XfsLH3HAKWwQhYqEMQKhlChECpkoSy9YSn9UwEOQZwOvTkcIIIAAdfg5zbe/9/fSeV7TSfGSWQfy4DF6D/bFcCOyXa44gNvZ8UH3g7o0hsHv/4LJD8v7mfhwtlVdO9O7Y1aKWVnVI+0qmzFQrq370/ptROhe88Rln7oHbjONhMczL78iTnXXEzv7sMJZa0H+93kl5fiyHeiYjjzVOFp66Lv6BlWvP8WZl+eNn3ynHUQYNYksgoRyUdPNT0JfA74iYgkrZhNyOvn2A/uTThJyllQkLJEurEomFGBv3vqciPipfHJ11h8+9RG/SSD0sXzKCgvwX30dMLnuk/XUbF0XgqsGp++E7U0v7KDrr3pXZfKVYyTyC6+ilbF+2vgB2h503sk1lxMAqiQxdHv38Nga1fic69TcDMUkVHXmX3FBXQlQTci2YQGvfQdPcOsDWvSbUrcFM+bxZxrLqLt6fGEFqPTd/AkVResTptj7Dt6lqbn36Rr7zFT2ynJGCeRJYjI9cBngT9VSvUq/T/h48Ba9DrFhFFKceq3f6D3yJmMXZxTljVqqqmgIj25EfHQe+AE5csXkVdSlG5TxqVkQTVzr7uUhvuenvBN3vL5cRblIyp9kUN9x2tofPYNuvcdN44iiZg1iQwnvDQ5EdKkSqlW9Mhi6PXdaE2LhGh5eQcdW/ZNfNFxCv5D+vvcFJSX4HfruPey5QtxpzE3Ih6ant7E4vfcSM0jL03pgm4ilCycw9xrLqLxvqeQSX6PvvZuimdWMtibvmS2/pO11Lq13smMC1fjmMKM8FzFjCQM9J+sxZpgCKnkObFSmEg3RGSuxMyL19CzNzOimmJxbtrp/HSbEpXCWVXMvfZiGu+f+AginL5Dp6havzIJlk2OweYOTv7q93TtOUrAJNNNGuMkDJMi1Yl0QwR6XeTb9ZskzwlKoYLpz40YDz3ttDDjpp0kP49Ft19L4wPPJG0k6OvoprB6RkYs2Addgxz/ycO0v7GXweaOdJuT1RgnYZgUhbNSJzYUTnj9ptmXrqMnxSG3yaTp6U0sfkdmRTstuWMjLX94BVLgaNO5LjECy+LMvc/Q+Mzr9B47a9YpJohxEoZJUTijAl8KtK0j8fe5KagsA6B06XwGkqxjnUpCg176jmXOtFP1NRfhOnKaQGfPpPpxFhex+EPvYPGHbqfyLecBMFjXTNmiuckwMymICG1b9nLyp4/Qse0Avt7MDHTIZIyTMEyKghkV+KdgJIFlIQ4HxXNn4m1OWqHbKSNTpp1Kl8ynsLwU18Hjk+rHUVTI4g/fTutTm2h68BnKVi6haP5s+o+eoWpdUqvVJwVfTz/Hf/IwtQ8+T+/RM4QCU5/Xk60YJ5FFiEitiHxujONxCxQlC2dB6hTpojH7ygvp3Lp/yq6XTNI97ZRXUsTcazdMOBdiCEdhAUs+fDvNjzyPNTCIAG1Pv8bcG64k6HKTV1aSUVNrQ4gI7Vv3c+hbd9PwxKv0n6qbkqCLbMeEwOYWf082V5YbD4cDBzomPxsZmnaafcn5dO47MbUXF2HJnTfQ9Ojzk7qBO4oKtYN47EVCroHh/SoYwt/dR+GsKlQwiNMphDJkaWIUlkXDU6/T8MwbLLjpCmZuWEv5iuzIaUkHZiSRQyQiUJTEi07ZpUoWVNO969CUXS8V9B44QcnCORRVV03pdRe8/Wo6N+/CmoSAVMmyhdpBPPoCoSjCPl1bdjP7rZfQf7yGylWLJ2Pu1GBZNL+0nUPf/DWHv/Vrml/eQf/pBkJZ+hCSKsxIIoMQkU3AUaAX+CRgAb8DPq/U6JAREfkT4MfAnyilnhSRu4HZSql3TZXNU4nkOxlsaE23GZOm6cnXWPYn76bmkZewEiikN1Gq1q8k1O/CM8HFfkdRIfPfeT2Bnj7q7348ZtJdaMCDs6QI94ka5r/nJrpPZnay4xAigutsE66zTaAUJQvmMPPStZQtW0DRnFkUVc8gr6QoY6sRpBrjJDKPj6DrMl0DXAzcD+xBCwwNIyJ/B3wFeJdS6vUptlHbkOfEmqIFwOL51biO1UAOCMaokEXTk6+x9I7rqXn05ZRmYxfOqqLq/GU0PvBM1HnIGZeup+y8pYiA+2wj3TsPjRgdzrzyQspWLqbtmc0E+lzjzmX62roonF2lM52VBVNcFXbSiDDY0sHg0x3DIbP55SWULpyrR4BzZ1I4sxJnsa1BUVrMrn/89pLrHvhmfZotTxnGSWQeR5VSQxKlJ0XkL4GbCHMSIvKfwF8BNyql9k32gkopimYnLkFZOKuSgGtwShZBqq++kJbn3tA1/DNwUTRRAj399Ow5yqLb3krnntRUL5X8PBa/6zrqfvVo1Hnlqg1rySstoulB7UBKVy9j6UffjaehFWUpSpbMo3ffMRrvfxohvsWu3r1HmHnNJYRcA5TMrsKS3CiL4evqC8sHsjUogkFUIATwb8Cn0mddajFOIvM4GPG6mbD6TOjF6XLgcqXUqWRccO2nPzzhc2vufUZnQKcQR2EBIkLI49UKYc4sezqNgftsA0ULqln50Xcyc8PapPevlOL0/92H8vpGjVacpcWUn798xAhj4GQtAydrya+eiTgcdG3eGbdzGCLY5ya/opSOLXuZd92lLHzvzcl6O5lMzjoIMAvXmUjk/I1i5Pf0hr1v4nf2JOJp60z5NaqvuYiOLXuHX+fAQGKYzjf24j5VR9+xs0ntV1kWtb95nO6dB6NOZ8296Span90c1QEEOrrxt3VOeISoAiF87Z3klRZjZUHpFMPYmJFE9rEH+C7wkogopdRX02mMt70r5dcoqp5J24jrKHIp0rfpyddwFBXiLCykbMXCSfWllGKwrpmaXz3GwJmGqB7VWVqMOJ0E+9wp+RTdp2spP28ZIY8P1/GzVF5wXgquYpgqjJPIQpRSu0Tk7cCLtqP4WjrsCAUChAZ9Kb1G5fqV9B6KmFXLLR8BQP1DzzE0t1O2PHFHoSwL96k66u57Ck9di84libEgPufGq+h4ZVvKPkL38RrmvvN6BmqbCHl9xklkOcZJZClKqZ1hjoJ0OIrQgJfQYGpLMVetX0XdA8+e26FUxmozTAYRof7B51DvC6JUiPIV8avS+vtc1Pz8EfoOnTynTR3jM3IU5OMsKogrUmmiWP4AjoJ8eg8cZ9Hq21J0FcNUYZxEBqGU2hhl38fDfl8WcWwnUBWt7VTg73cT9PlTFj9eWD0Db1tXbi1CjIGI0PDYSwR63Vi+IJVrx66BpJSiY9NOGh9+nkBPf1zOc/bbLqVry+6UD8RCHp+uBqsUvs4eCicQPWfIDMzCtWHC+Nq7U9r/nGs20PnmyAjfXHcXIkLbq9tpfPxleg6ejLnwqyyLsz9/mJpfPUag1xXf6EqEwrmz8LakXl/BffwsFWtX4u/soStLa20ZNMZJGCbMQENrykYRjsICEAh5o6955Prgov/oGU796H46t+3H1z26ym7jwy/QuXk3iRRImnHpOnp3H56S5ZyBM/WUrlhM74ETWp/ckLUYJ2GYMAN1zSnrW4e97ondINe9BLrMxemfPkTDIy/Qd+wsypaYHahppPXFNxL+DMrPX4H7RE0qTB2FClmI04G3qQ1ncVFMZ2/IfIyTMEwIZVmpq6MkQlH1TL0eEfXiue8ghhAROrbs4fh3f0vrqzvw9/Zz9hePYnkSu+lWbVhL34FjUxoUFuwfIK+ilKB7gJ7dh6fwyoZkYhauDRMi4BrE3ze6EmgymHXpOrp3xb6p5GAE7LhYHi9tr2zH397NYKKF+kSouGAVDb/7w5R+bv1HTlG5fhWu4zUoo9uQtZiRhGFCDNQ2pmwKoXzVYlyn6sZtN900i2dfdRGtz72u33cC7736hivo2rJnyh2rp6GV4sXzcB07Q35VhVmbyFKMkzBMiI6tB1KyaF2+ein9x+OYN1cq90OdwsivKifoHkTZ0U4K4nIU+VXlFFSVJz76SAZKISKoYBDL58d9OmcLpeY0xkmkERHZJCI/FZEfiEiPvX1bRNdXtuVKvyQiPxORfhFpFJF/juijQkR+IiItIuIVkWMi8sFU2h0c9NB75HRK+p558fl07zk6bruh2+N0GU1Uv+1SOjfvGrFvXEfhcLDgzptofXpT2qbn/J09FFTPwNPUTs/e8b9XQ+ZhnET6+Qj6e7gaXf77k8A/hB3/R+AQcAnwTeBbInI1gOhH+eeA64FPAOuAfwJSJq1lBYOc+ukj+HtdSe+7eMEcPM3tcU+lKHs0ket+QpxOnAX5BMPkQodQxHaUC997M+0vvJFWudf+w6eovGA1fQdOaO1rQ9ZhFq7TTwvwd0r/Tz8uIqvRN/rv2sdfVEr90P79/2yxoZuAbcDNaOeyXik1JEqQcDnRhideoefgSX2zsdTwnLey7Duw0vtCXh++jh4KKsspnFk5mfcclXk3XUndfdHFcWIyZF/SrckcZmxYS+84T+FKKZ1PZ38Q8++4gf7DJ/A2t6d1kd/X1sXsjVcQ6O1DBUMc+PcfIvm5ddvpP3r2f6994Ft/l247UkVufVvZyXY18lFwG/BVEamwX4+lL7EBaAlzEBNi8Z03sfjOmybTRVLoOXACLCtn9CKSRfl5S2m4/+lx2ykFzsICFt51Cz17jzBwoiZzosBECA16qL7iAha8a2O6rUk2OesgwDiJbGAsfYmMuQdMFmVZuhLqaCnvaU1+ZRn+3v642s64dD3la5fT/twW/F29GfPHMXi2kbLli+g7dIoZl61PtzmGBDGPbOnnShkZJnQV0KyUiufOsBeYLyLJlzWbYnoOnGCwoS3dZmQcMy+7gJ4dkYPJkeTPqGDpR9+NCgRovPcpAhnkIAD6Dp2k4sLVDNY2kVdWguWfGl10Q3IwTiL9LAC+LyJrROT9wD8D34vz3FeAHcBjInKriCwXkVtE5M4U2ZoSrGCIuoeeNaOIKBTMqMDf1RvzeNG82Sx41/U0Pfw8/QdPZJRzGMLy+nAWFYJShDxeeg8cT7dJhgQwTiL93Ac40Tf7XwC/Ik4noZSygHcAbwL3AseAHwAFKbE0RbS/thNPQ3u6zcg4HEUFYyYsSp6Tee94Gw33PY3y+TPSQQwR6HWRX1WG+2Qd7jNpyNkwTBizJpF+gkqpTwOfjjwQqR9h79sY8boX+Et7yzqCg16annotF3WEJk3VBefRf/BEzONzbryK9ue3IFmQydy37xhVF6+la/tBKi9cY0djmS89GzAjCUNaqbn7CXxjTKdMZ0qXLmCgpinqMclzUjCzckq0IZKBr62Tonmzsbw+rGAQT2OKikMako5xEoa00XfsLF17jpgnymiIgBU7U3DGZRfQu/NARk8xRaKCISTPga+tk+5xFuMNmYNxEmlEKbXRnmqadgQ9Xk7/7GFUGrOBM5mylYtxn4ld5LBsxSIGzmbX3L7r6Bkq1q6kd/8JLSplyAqMkzBMOSoU4vj//BZfR2rlT7OZynUr6T8cvT6Ws7iIoHswq0YRAO4TZylfuwJ/RzeO/DyC7sF0m2SIA+MkDFOKUorTv3iU/mNnzTTTGDjy82LmE1ReuHrMBe1MRYUs/Z0LBPrcdJkpp6zAOIkMwa4I+8PxW2YvKmRx5peP0bl1v4lmGoPC6hn4OntiHi9dtoDB2ugL2pmO63gNFeevoO/QSQJxZpIb0otxEoYpITjg4cg3f0n75l2QBSGb6WTGxefHLuiX5d7VdfgkFRecx8CZBvIrSrFsfQxD5mKcRAYgInejy33/rYgoe1smIteJyA5bJ6JNRL4nIgVh542pR5EJWP4ArS9v48AXvkf/kdNZN4+eDvIrywn0RH/KLlkyn8G65qz9HFXIQhy6XG3Q7aH/8Ml0m2QYB5NMlxn8PbAaOA78m73PidaKuAf4OLAS+CVgAZ8NO/cjwN3okuEXorO2WzhXanxKUaEQAbcHT1MbndsP0HvgBL7OHkTErEHEgbO4kJDHG/N4+fnL6d1xYAotSj7uE3rKqf+QLk9fdXHWlx7LaYyTyACUUn0i4gcGlVKtACLydfTN/m/s8hvHRORfgZ+JyP9TSg2FhoynRzEubZt30bP32HBM/pCOxLCWcpi2xIh99s+Qz0/QNUjANYAKBnHk5+MoyMORp/+8CirLk/NBTQNmbFhL/+HYI66CynICva6sHUkA9B08ycI/upWGh1+g4uLzOf7932XxA4TQtf3AD6954Ns5G8punETmshbYZjuIId5A12VaxTmdiZh6FHFWkmXu9Zcz9/rLk2GzYZKoUIgDn/1m1q89jIllYQVCOAryEGD+zVdTecF56bZq4vz9n+SsgwCzJpHJhOmMjSKXhdimNd7WTvydvVGPFVbPxNfRndWjiCF6tu9n1lUX0bv/OO5TsZMGDenHOInMwY9ehxjiKHB1xCL0tXa7M2H7JqNHYcgwurYdQMWI+Clfswz38YTVaTMSb3M7RQvn4jp2lryKUqxAMN0mGWJgnETmUAtcYUc1zQZ+jNaa+LGIrBWRdwL/DfwwbD0CJqdHYcgglFJ07zocc6qpaH511hT0iwdfaydF82bha++ma3t2L8bnMsZJZA7fQY8SjgIdQD5aK2IDsB/4NfAA56KfhpiwHoUhs/B39+Fr6xyjRW7NMnZv28esqy+mY/MuQoOxI7oM6cUsXGcISqmT6DDWcGqBK8c5NaYehSG76N5xEMvrizqSyCsvIejKvnpNY2F5fDgK8gn2u7ECAdxnGylbsSjdZhkiMCMJgyEDUErRuWV3zKmm8tXLcZ+omWKrUk/fvmPM2LCWjle24z5Vm25zDFEwTsJgyAB87V14m2OvN5QsXcBAltZrGgv3iRrK1yzH29KBCoZw1zSk2yRDBGa6KYuJlDI1ZC+tL7yJ5fPHHEmI05GzNa8Cvf3kV5XR/IdXWVxSROmyRVmcXJd7mJGEwZBmQv4APWNENTkK8rH8/pxajwin6829zH7rJQT73QzWNtG981C6TTKEkfFOYrwS2iJyt4g8PZU2GQzJpPP13fjHEGAqXbmYgdP1U2jR1BLsc5NfWQ4o2l7ahuXzEeh1pdssg03GO4lUISJ3icgLItJhV13dGKXNJ0XkNRHpHarMGqXNDBG5R0T67O0eEakKO36RiDwgIg0i4hGREyLyz+FJcnZuhIqy3TbOeygUkf8TkU4RGRCRJ0XEhIdkESF/gJanNo1ZhqNs1VLcOewkAFzHtLQpStHwwLP0HT2NytHptWxj2joJoBTYii6GF4sS4EXgy2O0uR+4BJ3TcJv9+z1hxy9F5z18FFgP/Afw78C/RunrNmB+2PbqOO/h+8D7gA8DbwMqgKdFxDnWSYbMofHBZ8fJjQBnUYEOjc1h+g6coPKiNaAUgV4XLc++Ts+eI4wsS2ZIB2lfuBaRTcBhO9Z/aN/dwGyl1LuitL8JeAz4F6XUz8L2fwn4DPrm/wi6eqon1nWVUvfY580eo8337TaXxbB9LfrGfq1Saqu976+ALSKyRil1Qin164jTzorIJeib+zcijnUNVYEdDxGpBP4c+IRS6iV730eBOuBm4IV4+jGkj+4dB2nftHPsYn4i0+OJ2rKw/EEchflY/iCDZxpoeXoTjoJ8Ki84D3Ga5550kVUjCRF5H/A48MlwB4EW7LkIuAl983078M0pMOlqwI0ekQzxJjAAXDPGeRVANH3K34tIu4i8aZfYGItL0VnZLw7tUEo1AMfGubYhzYS8PhoeeYGaXzyC5Rl7hFCyZD6ehtacXbQOp3fnQWZe8Zbh1+6TdZz+4f20vbyNwcZWrJBRsUsHaR9JxIuIfBL4NvB+pdSLEYdD6CdqN3BYRP4F+JWIfEEpNZBCs+YBHeGlupVSSkTa7WOjsEcRH0eLBQ3hBj6HdjBB4A7gIRH5mFLq3jGuHQIi5yraYl07Fh2bd0XMeauov+rXKuah8GNRDsY8NuaUwog+Y7dTWXDtQJ8bb3M7QY8XZ1Eh4nCQV1YS+/pA1cVr6Xxt+5htcgVPYyuzrrsMZ+nxESGwTY++SMMDz5BXUkzhnJnklZXiKCpAHA7E6bB/pm+k0fbimz+68sH/+du0GZBissVJvAf4K+A6pdS2KMcP2g5iiG1o3YWVIvIWIHzU8Q6l1JYk2hbt7hG1zLeIrAGeAb6vlHpsuAOlOoH/CWu6254G+zwQy0nEYqwS41Gpvv5yqo2eREZi+fx0vb4z3WZMGf6uXpZ85F3MuWG8ajSZw7I/uytnHQRkxnSTBaNG0/kRrw+iFdj+PKIsdjw8CVwctu1O2MLYtAJzwm2yf69GP9ETtv98YBPwoFIq2qJ1JDuAsZRYWtGF/SLXVOZEXtuQvXia2wl096XbjCmje9t+iFEq3ZAeMsFJdKAjecK5KOJ1DbARvdbw8yiO4i0iUhr2+ips3QWllEspdTpsi7mYPQG2AWWMLMx3NecipwAQkXVoB/GIUuof4+z7YrRjjMUeIADcEnadRWhFu62xTjJkFz27D6fbhCkl2O9GKUWgz+RJZAqZ4CReBd4hInfYmgjfBRZHNlJKnQVuQEcTRTqKPODXIrJeRG5B6y78Yqz1CBGZKSIXAxfYu1aJyMUiMi+szTy7zWp71zq7zUzbpmPA82jd6atE5Gr01NbTSqkTdh/rgdfQTuIbdp/zIq7zMRH5Y1s3Yo2IfA74W+D/wtpcISLHReQK+9p96LLg3xaRm0VkAzr09iDwcqz3bcgelFL07TuabjOmHNfhUybrOoPIBCfx67DtTfQi7uPRGiqlzqBHFLehb8xDjmIzcAR9M34c7Xg+P8517wD22eeA1mLYB3wqrM2n7H332a+fsV/fEdbmI8ABdJTRC/bvHw07/kfoKaAPokcG4Vs4X0JPhe0CPgT8mVIqXBeiBFhj/xziH4HfAw9x7rN7t1LKjNdzgECfK6dEhuKld+8RHHkm5DVTEJOsYiDX1GxyhI5Xt1P784fTbUZaWPSRd1N50RpKlixItynxkNMRytkS3WQwTDs6tyQzxiK76NlxAMlzZouTyGkyYbrJYDBE4O/tx1PXnG4z0sbA6XqchQVYgWC6TZn2GCdhMGQgHS9tm/a6z56mNrre2JNuM6Y9xkkYDBmGFQjS9cb0nWoaovPVHWApU+QvzWS8kzB6EobpRtebe/G1daXbjLQT8njxdfbQOw3DgDOJjHcSqSLD9CS+HENPQonInDHeg9GTyDFCPj/NT7yUbjMyhvbntxByD06PSrgZyrR1EmSWnsR3GKkjMR+d+7FJKdU+xrW/j9GTyBmUUtT/5vf4W80oYoiQx0vP7sN0bd2XblOmLWkPgTV6EmAXJ3SH9bsYfdP/KDEwehK5hVKK1mc3m5thFHp3HqJk8XxcZ+opX7kk3eZMO9LuJBLB1pP4DfAXSqnwLKPrAQ9aT2IhOnv7m8Dfpdik8fQkTsQ4L5aexBB/DvSinWEsoupJiMiQnoRxEllCwD1Aw+/+QPf2Ayh/IN3mZCTNj71IoN+NWBYlKxbjMCJEU0bWOIkc15MIP+4A/gz4nVJqLEWapOlJdO84iKchRi3ByMiSEdIJY+gtqBgv4tVziLO/UefHed2RfYxx3Rg2xa9DEf26ylL42roYrGsm5PHiKMhHnE6k2Nz8YtH1xl46X99N8cI5FC+cR15FKY78PBBBxAGO9CQ+Nz/6wo8uf/C7OVsuPFucRE7rSUTwDnSBw19O0J6E9SRmXH4BMy5bP8HLGeIm4Sr3hoRIU6hs86MvfCYtF54iMsFJxKsnodB6EtvVmI9xo3gSrc0wRFPiJsZkWE9iyKZx9CReY3w9iU8CW5VSR+K49pCeRHgVuDnA64m8CXFM5/gFg2FyXP7gd3M69CoT7g5GT+JcuwXAO9EVacfD6EkYDIaUkwlOYtrrSYTxZ+hF71GlP1OsJyHZsNmRY2m3I9ttzBY7s8FGe8ttlFJp3dBTSz9CL8B2Av8J3I2+0YK+uf4wrP1KoAH4OfoLuht4Gp170I6ONvotUDLOdT+OnsKK3L4c1ubLMdp8PKzNTLQOdb+93QtUxdGHirBH0COmH8ewd6N93sawfUVoYaIuYBB4Clic7u80hX8ru9NtQy7YmC12ZoON02EzehKGrEFEdiulouasZArZYCNkh53ZYON0IBOmmwwGg8GQoRgnYcgmfp5uA+IgG2yE7LAzG2zMecx0k8FgMBhiYkYSBoPBYIiJcRIGg8FgiIlxEoaMQUS+ICK7RKTf1vl4SkQuiGgjtv5Gs63PscnORUmXzf9m6378MGxfRtgoIvNF5Lf2Z+kVkaMicn0m2SkiThH5qojU2DbWiMjXRCQvrE3a7ZzOGCdhyCQ2Aj9GV7G9EQgCLw8lL9p8Hvgsuiz85ejcmJdEpHxqTQURuQr4S3QCYzhpt1G08NWb6Pybd6Iz8T9j25IxdgL/AvwtumLz+cDf26+/kGF2Tl/SnahhNrPF2tAlT0LAu+3XArQAXwxrUwy4gL+aYtsqgTNoZ7YJO+EzU2xEa5W8OcbxTLHzaeC3Eft+y7lk2oywczpvZiRhyGTK0aPdIe2N5egy6OEaGh50QcNrpti2nwOPKqVejdifKTbeCewQkYdEpF1E9ovIp8PK2WSKnW8AN9gFMIfqnN0IPJthdk5bMqEKrMEQix8A+9GFFOGcTkZbRLs2tNjUlCAifwmsIrpyYEbYCKwA/gb4HrqW2cXoEi4APyRz7Pwm+mHgqIiE0PekryulfmwfzxQ7py3GSRgyErvQ47VoadhQxOHI5B6Jsi9Vdq1BT+W8TSnlH6Np2my0caBrHw3N7e8TkfPQ8/0/DGuXbjs/CPwp8MfAEbQz+4GI1CilfhXWLt12TlvMdJMh4xCR7wEfBm5UuvrvEK32z8gKunMY/aSZKq5Ga3gcFpGgiATR8rl/Y//elQE2gp7HPxqx7xgwJBKdCZ8laLXJ7yilHlRKHVJae/67nFu4zhQ7py3GSRgyChH5Afqp8kal1PGIwzXom0a4hkYR8DamTkPjCeAt6CfeoW038KD9+8kMsBF0ZNOaiH2rgTr790z4LAFK0MEJ4YQ4d2/KFDunLWa6yZAxiMiP0PP8dwI9YZobbqWUWymlROT7wBdF5Dj6hvwldHn4+6fCRqVUL9AbYfcA0K2UOmy/TquNNt8DtorIF4GHgA3oMNN/g2Et9kyw8yngX0WkBj3dtAH4J+B3GWbn9CXd4VVmM9vQRgzdDUZqfAhao6MF8AKbgQvSbPcmRmqeZISN6PyIA7YNJ9FOQjLJTvSi9ffRIxwPcBa95lOUSXZO580U+DMYDAZDTMyahMFgMBhiYpyEwWAwGGJinITBYDAYYmKchMFgMBhiYpyEwWAwGGJinITBYDAYYmKchMGQBkTkl7ZY0XfTbYvBMBYmT8JgmGJEpBhdaqICLaCzUCkVTK9VBkN0zEjCYJh63ot2EM+iC9Xdll5zDIbYGCdhMEw9H0MLKX0cXYriTyMbiMiHReS4rft8SETusLWdN0W0my0iPxGRJhHx2ed8cirehGF6YAr8GQxTiIgsAG4Gfq6U6hCRJ4C7RGSGUqrHbnMLcB/wJFrbeTa6vlERugbTUF8V6GqvxejaRjXArcBPRKRQKTUkMmQwTBjjJAyGqeWj6BH87+zXv0VrZ3wQ+Km97ytoLYj3qqEKdyKHgD2EOQng74GlwFuUUqfsfS+LSBXwHyLyE7PWYZgsZrrJYJha/hQ4pZQakmR9GWi29yMiTuAy4DEVFlWilNqLHimEcxuwA6gRkbyhDXgBmAWsS+k7MUwLzEjCYJgiRORy9I37m/bT/hC/Bz4tIquBPiAfHfUUSaQS2xy01nYgxiVnTcpggwHjJAyGqeRj9s9/sbdI/hT4D/RNf06U43OB+rDXXWhn8vcxrndiYmYaDOcweRIGwxQgIgXoaaXTwL9GafI9YCawDL0YXYFeaxhak7gULZO6WSm10d73ZeAzwFqlVLSRh8EwaYyTMBimABG5C3gM+LhS6rdRjn8K+AlwI3qE/yLwB+Dn6OimL6OjmI4ppW60z6kEtqPXFr+HHjmUAucDb1NKvSe178owHTAL1wbD1PAxwAU8EuP4A+iciY8ppV4CPgKsBR5HT019Fp2l3Td0glKqD7gGnZT3L+gF618D7wFeS8m7MEw7zEjCYMgCRGQReqrq60qpr6bbHsP0wTgJgyHDsGs7fRcdHtsJrAA+j164Xq+UakmjeYZpholuMhgyjxAwD/ghOox1ANgC/JFxEIapxowkDAaDwRATs3BtMBgMhpgYJ2EwGAyGmBgnYTAYDIaYGCdhMBgMhpgYJ2EwGAyGmBgnYTAYDIaY/H+cp6Papubl6gAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 360x1440 with 83 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for Figure 1A (train age)\n",
    "pd.set_option('display.max_rows', 500)\n",
    "pd.set_option('display.max_columns', 500)\n",
    "pd.set_option('display.width', 1000)\n",
    "def color_gradient(x=0.0, start=(0, 0, 0), stop=(1, 1, 1)):\n",
    "    r = np.interp(x, [0, 1], [start[0], stop[0]])\n",
    "    g = np.interp(x, [0, 1], [start[1], stop[1]])\n",
    "    b = np.interp(x, [0, 1], [start[2], stop[2]])\n",
    "    return (r, g, b)\n",
    "plt.figure(dpi=380)\n",
    "fig, axes = joypy.joyplot(age_controls_tr, column=['age'], overlap=1.0, by=\"site\", ylim='own', fill=True, figsize=(5,20), legend=False, xlabels=True, ylabels=True, \n",
    "                          colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)), alpha=0.6, linewidth=.5, linecolor='w', fade=True, x_range=[0,100])\n",
    "plt.title('Age Distribution, Control Train Set', fontsize=18, color='black', alpha=1)\n",
    "plt.rc(\"font\", size=14)\n",
    "plt.xlabel('Age', fontsize=16, color='black', alpha=1)\n",
    "plt.ylabel('Site', fontsize=14, color='black', alpha=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0, 0.5, 'Site')"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 2280x1520 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAWvCAYAAABAW+0LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxkZ1X//z63qnqbnn3NPtlXAgkRBIQkbJrIrrghGkEF/BKVn4gKyr4pKEEBEREQkKCIECCQBUIIZE9IJpkkM5PJ7EvP9L7Veu9zfn88t3qqq6uX6q7p7rp93q9XTU/f+9z7PFV96557nvOc8xFVxTAMwzAAgoUegGEYhrF4MKNgGIZhjGFGwTAMwxjDjIJhGIYxhhkFwzAMYwwzCoZhGMYYZhSMGSMit4vInoXucyHGsZD9GhOxv8Xxw4zCcUREVotIXkRURH53ocdTRkS+FI+p/MqLyBERuUNEPiQiZzS4v2eIyHtFZHMjz3s8EJE/F5FrFnocs0VELov/vrtEJCcioyKyVUSuE5Hz5mkM7xWRV81HX9OMo/o6n+r13gb2O6vrXUReICLfEZE9IlKIv5MPiMgnZ/udFJFV8ViumOkx6dl0ZMyY1wEtwG7gjcBXF3Y4E3gLMIK/DtYBzwL+Ani7iPyNqv5TVfuXAjKLfp4BvAe4HdhT57Gz7XO2/Dl+jF9aBGOpCxF5N/BeoAf4GvAEfrwXAr8JvFVEVqvq8HEeynuA/wS+fZz7mY5/A35Yte0rwDbgQ1XbH2lgv8+gzutdRN4CfAbYhf/s9gPrgYuAPwB+Gu+rl1XxWIjHMy1mFI4vbwR+DNwAXCciZ6rqUws8pkr+V1V7KjeIyKnA94B/FJGDqvrf5X2qWpyPQYlICmhV1ex89TkTFtNYqhGRNwDvw19vr1bVwar978DfHBadUROR5cfDUKnq3cDdVX19BTiiqovmAU1E0sCHgX3AJao6VLW/HWiftwGpqr2Owwu4FFDg94C1QAH44CRtU8DfAXuBPP6p5TfxT30KbK5qfwLwr/iLqAgcAj4HbJjh2L4Un3fdJPvPASJgZ9X224E9VdsuBL4BHIzfYxf+xvSr8f7ye6h+fSnef038+4vjz+ApoARcM0Wft+OfwM7AG9xBYAj4FnBGVdvy+a+o8T7HnXuScY59/rXGEm9/AXBrPI4c8HPgjZP1B5wIXA/0A6PAzcA5c7jWWoDDwDCwvo7j1gGfxj+VFuOfnwbWTvIZvhB4e/w3KgA7gN+vaLd5ss+w6jP+EvAi4Gd4T/X2iv2vAu6Mt4/E/3/ldH+7Ot6zVvZXsf2y+Prpid/bduBdQLqR1/skY9oUt/nfOt6H4D39B4Fs/Lf/MXBlRZsrJhnLlJ+beQrHjzfiv/DfVNVREbkR+H0Rebequqq2nwLejP+jfhzvNn4GP+00jvhJ/m78jeA/8F/Qs/AXyJUicplWPSXWi6ruEJGfApeLyLmqur1WOxFZC9wW//pZvFFbh/+CPRu4Efg/vBH7Y/zT0BNx+2qP6eNABvh3/A2+Zp8VLMN/XvcBfwOcDfwJ8Isicomqds3s3Y7j9cAn8DeGyumF7skOEJGX428mXcA/4r+cvwV8XkTOUNV31Rj3HcA9wDuB04E/A24QkYtUNZrFuJ+Hv7F8RVUnHWvVuFcCd+GvnS/gDdkl+OvohSLyLJ349P5h/BPrv+FviG8BviQiO1X1Tvzn9Hr8FM1P8Q8qtbgM+DX83/o/K8b0J3ijtA34IP4Gdg3wbRF5k6pOdr45ISJX4/+GO/F/wz7gOcD78VNBr43bNfJ6r+QI3gC+YKrvWxVfAX4b+F/gi0Arfrr6VhF5jap+J+77bfhr+lvx2Ij7mpzZPp3Ya0or3oa/sL5Use2V+Iv8qqq2F8bbbwKCiu1Pwz+tj/MU8E/GR4GTq85zGRAC753B+L7EFJ5C3Oaf4zYvr9h2O+OfrF8Rt/mNafq7hsmf1sv7tgMdNfaP67NimwLXVW1/dbz9szPsu9a591DjSXKS95/C3xgGgBMrtrfgn3Aj4Owa435H1Xn/Mt7+y7O83q6Nj///6jjmQ/Exf1K1/f/F2z9Q4zN8CGip2H4S3jhcX3WOSZ+MOfa0+uKq7avxN6udwIqK7SvwN9RhYNVUf7sZvu9xngL+u9qFN9TVXsHbKq+dRlzvUxzzF/ExIf5B55P4m/ymGm3L1/kfV21PAw/gHyYl3rY5bvvemY7FVh8dH16Dv8j/s2Lbjfib+Ruq2r4s/vlJrfAgVPVR/LTCGPHT3cuA7wB5EVlXfuFvZjvxwdBGUJ7XXDFFm7JHcpWITNVuJvyrqmbrPOajlb+o6rfwxuVVcxzLTHkmcCrwBVU9VDGOIvAx/Oq+V1Yd4/AGt5Ly0+fZsxxH+bMfmrLVeF6Nf7Kvfvr+N7yn9Ooax3xGK+IqqnoQP4VU77i3qGp1APgleC/qn7ViTj3+/78AnfgpxkbzEmAj/ml7VdV36vtxm/J3qpHX+zhU9R/xRucW4ALgT/ELUw6IyH+ISEdF89/FG8lvV413FfBdvCGY7bVkRuE48Ub8F+6AiJwlImfh/1C3Aq+I/4BlTo9/1nIZq7edi/+blc9f/ToXf4E3gmlvNKr6E+DL+CejHhG5U0TeJyIXzKK/HXW2H9DaU0RPABtFZNksxlAv5b/dYzX2bY1/Vi8lPKSq+aptvfHPtbMcR/lvtLyOY04HtqtqWLkx/n07E8cNtVe/9FL/uGv9rWfzWTaC8+OfX2Di92lbvG8jNPx6n4CqfldVrwZWAhfjPZX9+AfJT1SNeTl+2ql6zO+tHPNssJhCgxGR04Er8YGgyW50vwtcVz6kntPHP7/KeC+kklwd55uKi+OfU85vqurvi8jHgKuBX8K7we8SkT9X1U/V0V+9XoJOsr3685ysHcz9+p/NSp6pYgazXRlUvmleMsvjZ8pkY6933LX+1gu1Kqrc718CD0/SptILbNT1Pinq40qPAo+KyH8BT+LjkX8S7xO8AfidKU6zdYp9U2JGofH8Af6P9kf4ueZqPoh/0r8u/r0cTD6XiU9i51b9vhN/k2up4X43DBE5B3g+8KSqTvsEr6pb8RfhP4jIKuBe4KMi8mn1E5tT3Zhny2oR2VTDWzgPOKqqo/HvffHPNTXOcTp+pVMl9Yy1HDy8sMa+8tPjbNaW18ud+HnxV4nIWlXtne4A/LjOFZF0pbcQL488h/kZdyWVn+WPqvYdz8/yyfjn6Ey/U/N5vatqt4g8hV/NuA7vHTyJ/xvdo6pTB41nMRabPmogIhLgXctHVfXzqvq/1S/8UsSLROQX4sO+G//8s/j48rmeBvxy5fnjL/v3gdeIyC/W6F9EZP0c38Op+CV3AX5J3lRt11SOOR7jAN7QdeCDeHBstUOtG/Nc+Ouq8bwab0i/XbG5bNReXNX2t/FLQ6sZYebj/Dl+WfAfiMiminNnOBY8vmGG55o18Tz/u/BTCv8tIhOmkUSkTUQ+XDEX/m38Krc/rGr6R/H2b81hSPV8hmVuxa/Wu7Zy/PH/r43PeescxjQZN+NjfX8tIhPGLCLt5fEcr+tdRDpE5PJJ9p2NN4o9HFsF92X89/MjkxxTOXVU93fPPIXG8lLgFPxS0cn4Jn7e743A/ar6mIh8Dr+E7Yci8i38l/L/4Vd7PJPx1v4t+PXdd4jIl+M2AX6+9ZX4C+a9Mxzvr4tIOaN5LT6j+RXx+f5cVb8xzfG/B7wtHvNO/FP35Xhj9j+qWp7Kuh8fYH2XiKzGf/l3q+q9MxxnLXrwxvFE/EqU8pLUI1S8f1XdLiI/BN4kIoKfIngGPpC6E78MtpJ7gDeKyAfw8QkHfLfC8xhDVSMReSv+Bnp//HccxueY/CLwYVV9svq4mSK+ts9pqjrt1IqqfkFETsEnqO0Uka8Bj+P/lufjl1Vu4NiN5B/ibZ8WkUvx19El+Otye7x/ttwDvFhE/gpvNFVVvz7N+AfiBLtPA/eKyJfiXdfgl82+See41HqSfkdF5PfwRnK7iHwBf12swnudr8FfK7dz/K73DuB2EdmKX4X4JH624by4zzbg/5UXoqjq/4rIF/EZ6pfik017gJPxS2nPIo6/qGqviOwEfiv2OI7gvaLvMhn1Lumy15TLyr6Bv4E/bZp22/FTS+3x7yn8l3kffonfI8Bv4NfuK1VJaXg38mP4p+B8fK5H8cvYLpjBOL/E+GSWAv5p6af46a0zJjnudsYvyXwGPraxM77wh4At+HnW1qpjfx9/kypSO3ntipn0WbmNY8lrQ/ib8Q3AWTXOsSn+2wzhn5x+gL9R1jr3Brzh7sN/sceWBNdqH2+/HP8UOxT/PR4C/nAm7yXevpkaywbxX/SDdV6Dl8V/k93xWLLxtfFPVCyPjduW82EO4G9wB/A35XVV7Sb9G03yGZ6NX0UzVL7GKvZNulw13v9qfP7EaPy6C3jVTD/LGXw+45akVmy/CB+rOxhfo0fivv8OWNOo632SMaXx087X4+8NQ/FxB/G5BVdOctzr8d/Z8nW3J27/m1XtnoWfYhxlBslr5bWsxiJERL6LzyJdobNLajKaFBG5GH/DeYOqfnGhx2MsHSymsAgQX9uketvFwFXAbWYQliS/jDcKk60yM4zjgnkKiwAReTN+7vBGfDDpPHyMIQCep6oPLeDwDMNYQphRWASIyLOAD+DnLNfg58d/BrxPVR9cwKEZhrHEMKNgGIZhjGExBcMwDGMMy1Mw4PhkHBvGUmHRCRfNBfMUDMMwjDHMKBiGYRhjmFEwGkopspkow2hmzCgYDeWup4bJlarVRg3DaBbMKBgNpRg6QvMWDKNpMaNgNBSnNoVkGM2MGQWjoThVQmdGwTCaFTMKRkNxCkWLKRhG02JGwWgwSiE0o2AYzYoZBaOhKELBCn0bRtNiRsFoOCXzFAyjaTGjYDScoq0+MoymxYyC0VAEKIQOK8luGM2JGQWjoagqkVO2HcnzwN6RhR6OYRh1YqWzjYZSDif0j4QMWcTZMJoOMwpGQ3GqCDBUCCmZTTCMpsOMgtFQQqdIIGQLjiBIlPaIYSwJLKZgNJQoUlIijBYdaitTDaPpMKNgNJRyTCFXcnS0BbYKyTCaDDMKRkOJVAkjXxRvRWvATY8NLPSQDMOoAzMKRkOJIqXkFOd8cbzhrEWbDaOZMKNgNAxVpRApI4UIp6AohcgCC4bRTJhRMBqGKqgKu3sKtGcCSpFi0gqG0VzYklSjYWj876p2f1lFkc9ZMAyjeTBPwWgY1QuNzFMwjObDjILRMFyVVfDFUs0qGEYzYUbBaBjKeG/BqWITSIbRXJhRMBqGAi1pobPVX1Z+Wap5CobRTJhRMBqHQmdrwFPdeYZyoTcIZhQMo6kwo2A0DFVf9+jIYJHekdJYApthGM2DGQWjYahC6By5oiIiOGz1kWE0G2YUjIahQCmCQhiRTgnOgSU0G0ZzYUbBaBjeU1AiFQIp/99cBcNoJswoGA1DUUqhkhIIRCiFWOlsw2gyzCgYDUOB9owggZASpRQ5wsiMgmE0E2YUjIbhFFrTgnMKIhQitXxmw2gyrCCe0TgUBnNePyElQrHkMLNgGM2FeQpG41CI4jWo6ZSQLTkzCYbRZJhRMBqG4ovgqUJbRmKvwWofGUYzYUbBaBhOvYaCAt3DIb0joSWvGUaTYUbBaBgSZzA759jXV2R9ZxoRswqG0UyYUTAahqKoKm2ZgDXLUkgAahnNhtFUmFEwGoZTiICOlhSZQAgjRQKLKRhGM2FGwWgYqoBCKhD29hYohVY62zCaDTMKRsNQVVQhFShdQ0UCu7oMo+mwr63RMJwqTn3ZbO8lyFjegmEYzYEZBaNhOECd+jIXgMPZklTDaDLMKBgNQxEi4gQ2v4HQVh8ZRlNhRsFoHA5KkSL4iLPPbjZXwTCaCTMKRsNwio8liCAIaouPDKPpMKNgNA6BlpQg3i7gvQWzCobRTJhRMBqGoKzsSMX/9/9GoRkFw2gmzCgYDUNVvdKaeE9B8EFnwzCaBzMKRsNQhTBSCiWHiCDicxcMw2gezCgYjUMgV3JsOZAF/LJUZ0tSDaOpMKNgNAxViFRpTcURBYVQ1ZalGkYTYUbBaBiq3jMYMwHi5TnNJhhG82BGwWgYCuPKWvgUNjWdZsNoIswoGA2l0jMQjhXJMwyjOTCjYDQOZUIKs3NebMcwjObAjILRMBzlvIRjRkAVQiuVahhNgxkFo2G4eOqobAJExCe02bJUw2gazCgYDSNyiquojOrUZzfb9JFhNA9mFIyGoYDjWKDZOQjKpS8Mw2gKzCgYDaN6+khVURGrlGoYTYQZBaNhuCr9BKf+AitapVTDaBrMKBgNI3TQmpYxV8EpPqZgNsEwmgYzCkbDcOq4+OSOsSWoqoog5Au2/MgwmgUzCkbDcA5GCu5YoFkhCCAbRgs7MMMwZsySMQoicomIRCJyZ419WvEqicgeEfmoiKSr2m0UkU+KyFMiUhCRgyLyAxG5uqLNnopz5UVkv4h8S0ReXud4V4vIV0RkMH59RURWVbX5pIg8EPezp75PpPGoQCH0FfGedlLHWHmLfNE8BcNoFpaMUQD+CPgMcJGInD/J/hOAM4A/B94C/EV5p4hsBn4O/DLwN8DFwIuBG4HPVp3r/fG5zgF+C9gDfEtE/qWO8X4NuBS4CviV+P9fqWoTAP8JfLmO8x43nFOcUyLnOHl1C4PZkCAQsmYUDKNpSE/fpPkRkXbgd4AXAB3AG4G3VzUbUNWu+P/7ReRW/I24zGfwNd4uU9WRiu1PiMh/VZ1ruOJc+4A7ReQJ4N9E5P9U9cfTjPd8vCH4JVW9K972JuCnInKuqm4HUNVr431vB1469adw/AmjuHw2Pp5QihRRyBVt+sgwmoWl4in8OrBXVR/BP23/nohkJmssIhcAzwXujX9fg79Jf6rKIACgqv0zGMN/AP3Ar82g7XOAEeCuim13AqPxuBYdYaRxRrOyuiPNstYAFwvslMxRMIymYUl4CsAfcmzq5SdAFngF8M2KNl8RkS/hP5NW4H+BT8b7zsJ7CU/MdgCqGonIDvz01HRsArq1QrJMVVVEjsb7GsqWA6Ps7y3O6Rx92ZCVbUIUQWsG+kZDQqeMlhw7juT47pZ+pEHjNYzFxB98Zde53R9/5vaFHkejSLxREJGzgOcBvw1jN9f/whuKSqPwl8BNQApvBP4JP1//u9Cw+5nAjDVnarWr5/gZs3ltKx0tqTmdIxAQHI/sH+WkVW1kCxHrO9OcvLqFVzx9NctaE3+pGUuXmcwUNA1L4Zv6h/gb/T6RsXu7AIjIKaq6P97Wpao74/9vF5HlwPUi8h7gSfzN+HzgW7MZhIik8IHn+2bQvAvYICJS9hbED349cGQ2/U/FyvY0K9vnfins781SCpXlbQFDuZBMIGSCFKva02xe19aAkRrG4qP74888utBjaCSJjinES0p/H79a6BkVr6cDjwB/MMXh5ehoh6r2ATcDbxWRzhr9rJrBcP4QWIWflpqOu4FOfGyhzHOAZYyPMywqQhUKkaM9EzBUcChCIGp6CobRRCTdU/hVYB3w76raW7lDRL4OvEVEPhhvWiUim/CG8mzg3cAOjsUR/gR/Q35ARP4Ob1QEuBJvdE6tOP3y+FwZ4BTgtcC1+ED1T6YbtKo+ISI34Vcr/VHcz78B3yuvPIrfw1l443Ei0CIiz4h3Pa6qcwsSzAINlWLJsbI9w0g+pKMlRSAQWaDZMJqGpBuFNwI/rjYIMd8APorPNQD49/in4qdv7gDeqaohgKruFpFLgXcCfw+cBPQCW4A3VZ373fGrCHQDDwCvUdXv1DH21wH/DNwS//4d4K1VbT4PXF7x+0Pxz9PxuRHzSohPXmtNBwxnI1a0phERSmYVDKNpSLRRUNVXTLFvF8cCyDMKJKvqYfwT/7VTtNlcxxCn6qsPH+Seqs0VjeirUTinDOcjMikhV4xIx1eX2QTDaB4SHVMw5henMJSL6BsJGS46OlpSOI2ILKZgGE2DGYUFQETeKSIjk7x+sNDjmy2ROool5eH9o6iDKILRggWaDaOZSPT00SLms8D/TLIvN58DaSSRg1AdK9Jp2lr880Yh9OUuDMNoDswoLABxvKBvocfRaMLIq6wdGijwa5euY8eRLA7TaDaMZsKmj4yGETpvAAKB4ULISD4ijDBPwTCaiCVjFJKmpyAiTxeR6+Pz50Rku4j8pYgs2N9U1eFQNq1q5fBAkcg5QqcWaDaMJmLJGAWSp6fwTHwOxOuBC4H34HMj/rqOPhpK5ARV6GgJODpUIoUQOkUbX67JMIzjxJKIKSRRT0FVv1B12K44ue7XgA9Pdf7jRegUVYicUggdK9oyRJHDqdVHNYxmYal4CktFT2EFC1ixsRQ5TlzViqpSKDnSAWNKbIZhNAdLwlNgCegpxF7CNfjyGHUxkA3pHQnrPWwcoSqjeccvntnJln2j5EsRQRBQKIYM5Bw7j+QRcxiMBPK8v996ctc/XnZgocfRKBJvFJaCnoKInIuPbVynqt+ccNQ0bOvK8tTRQr2HVY0BTlqZRgCnCgS0pKA1k2JVW8C9u4fndH7DWMS0LvQAGknijQIJ11MQkfOAHwNfV9VZBZl/8YwV/OJM/JdpeOLQCKlAiJwiorRkApaLcvXFa0gF5iYYyeR1v7j+qYUeQyNJdEwh6XoKcezjduAbqvq2GZz3uKMqjBYiSpGSFsYCz4ZhNAdJ9xQSq6cgIhcCt+G9hA/H/ZWP76px2uOOc0rPSJH+0RBVQITQRVjummE0D4n2FJheT+E0xuspHAYOANcDjwFXVeop4Jeo3orXU3gEf1N+BbX1FA4DO/E1jk7H6ylMWnK7Bq/DazXcgvdStuBzEsq8FtgA/GbcV+VrQQgdbDucO5bBrIo6bywMw2gOEu0pJFlPQVXfC7y3EX01Chf5PIVy7EbBMpoNo8lIuqdgzCMR4HR8ToJTtekjw2gizCgsAEnVUwidUmkSnPrAs00fGUbzkOjpo0VMIvUUVJWUjNuAiGI2wTCaBzMKC0BS9RQiBy+5cDVf/GkXqSDA4Q2FKa8ZRvNg00dGw9D4n/J0kaqAQr5otY8Mo1lYMkYhgXoK60XkZhE5FI9lv4h8WkRWzuLjaQjOVQvqKEhALjSjYBjNwpIxCiRPT8HhS268PO7nGuBF+HyLBSFSx0g+ojXjLysFRJV8MZr6QMMwFg1LIqaQUD2FXsYbo70i8hm8wVoQVGEgF/Lrl63n+nuP+qkkHDmbPjKMpmGpeAqJ11MQkROB1+BLgy8IUaQc7Cvw6P4RoqistxYwakbBMJqGJeEpkGA9BRG5Hngl0A58j6mL/NUkX4wYzM9siqe84rR6PZFzSi50hJEjUiEVCE6V0DkKJceRwWLjCpAbxiLikvdtWX3oH39hwcStGk3ijcIS0FN4G/A+4Fy8DOd1TKzFNCX37BrmicNzT484a30rig84t7UIgQhBENCXDfm/n9cqP2UYieBUFlDxsNEk3iiQcD2FOHbRBWwTkV583OGDFe9rWq44bxVXnLdqps0n5fFDo6QDwSmsaE3T0RKwIgz4vedsQEx2zUgob7nyhC0LPYZGkuiYQtL1FGpQ/nsuiBKUOsU5pRgqmZSg+OCz5a4ZRvOQdE8hyXoKLwPWAg/ig9IXAh8D7qnweOYVjYvflSJHW0uAc37kkVNTXjOMJiHpRmE6PYWPMl5PAfw0URdwB/DOSj0FEbkUeCdeT+EkoBevc1BLT+HdQBHoBh7A6yl8p46xvw74Z7yeAsB3gLdW7M8Db8ZPabUC+/FTWx+to4+G4uMJSilSlgcBqkoAViXVMJqIRBuFhOsp/BD4YSP6ahTO+VLZxVBpSfnYAuKXqjLpAmDDMBYTiY4pGPOL41ipi3RaiJwiCpGaq2AYzYIZhQUgqXoK6nRMaS0l3lMIAtNTMIxmItHTR4uYZOopiKAVBiCMHKlAsHp4htE8mFFYAJKqp6DqiBRe9cx1bN0/RHtrC+kUpqdgGE2ETR8ZDSNyvt5ROhCyeQeqBGJ6CobRTCwZo5A0PYWqtuvisaiIrKunn0YSRj5XoRg6CqFjeXtAQEDe5o8Mo2lYMkaB5OkpVPJF4OE6zn1ciNRnMJdCJVd03kiII1swPQXDaBaWREwhiXoKFW3/LH5PHwKurnW++cI55/MUIkc65aukRhFkC+YpGEazsFQ8hUTqKYjIJcBfAb+HTxNYUEqRr3MURkomFauvKeRL5ikYRrOwJDwFEqinICLLgOuBa1X1oIicPduxhZGPA8yFYqSUIodTKIbOF8RTKIURkWJTSEZiOeedD7Yc+MdnFRd6HI0i8UYhwXoK/wzcqarfrNGuLm7b1s/D+0bnehqefnIHqQDyJW8UBHAEbO/K8ciBuZ/fMBYplzF19eKmIvFGgeTqKbwIOEVEfr/yPQFdIvL3qvqumY7tpReu4aUXrplp80l5sivLc89eQf9ISGdbio62FJnQ8eYrT6A1vVRmKo2lxjuuOiUxBgESHlNIuJ7CS/Hv4xnx6w/j7VfgvYgFwHHSqjZGCz7QjMZF8ix5zTCahqR7ConVU1DVHVXvp5yfsE1Ve6br43ig6oV18qWI9tYM7S1CrqhECx4CNwxjpiTaU2B6PYXTGK+ncBg4gA/gPgZcVamngF+ieiteT+ER4DZ8wLqWnsJhYCe+xtHpeD2FSUtu1+B1eK2GW/Beyhbg9XUcP++U8xQKoZIOhHM3dVAK1cpcGEYTkWhPIcl6CjXa307jAuKzojxNlCtGtGcCBrMhxVBt+sgwmoikewrGPOJUefzgCH3DJVrSAbmiI3LOlNcMo4kwo7AAJFZPQWF/b56WTEBrJiBfcoDXVzAMozlI9PTRIiaRegoOnwgH0JYOGC2EOBVKVhDPMJoGMwoLQGL1FJzXZr7i/FW0ZQKODkWgSs6MgmE0DTZ9ZDQM56C1JSATCD/bPkAx9HGGgukpGEbTYEbBaBiRKm0pH2De35enJS2ICLmSxRQMo1lYMkYhiSI7VeMuv95c50fTMCKntLYEZIsRTpVymaZCyTwFw2gWloxRILkiO+Vxl1//WUcfDaUUOTKZlJffVG8SnJXONoymYkkEmpMsslM17gWlFIGo4lTR2CgoSsmWpBpG07BUPIVEiuzEfFJEekTkfhF5s4gsyN80V4xwTtHYICCK82kKpIMFTbQ2DKMOloSnQAJFdmLeDfwYb0BeBPwjvgDgB6mDHzzSy/27RmYs9FAL55RfOqsTBxRCRyYIiJwiqmzZO8I9O4fncHbDWLx8/o6uK/f907On9P6bicQbhQSL7KCqH6jY93Cs2fAu6jQKV128lqsuXlvPITXZfTRLW1oYAV580RqKkcNphrf9yim+lLZhJJB3v+q0xBgEWAJGgeSK7NTiXmCFiGxU1anaHRdUfWC5EDpWtKfZ05MlQIhUSS9srT7DMGZIomMKCRfZqcUzgDwwMIM+Go7DV0QdyUWEkdKWSREEYlVSDaOJSLqnkFiRnTjvYRPegOTicbwf+JyqFmb4+TSUct2jwXzI9x/q5tnnrMQ5h9kEw2gekm4UphPZ+SjjRXbATxN1AXcA76wU2RGRS4F34kV2TgJ68eI3tUR23g0UgW7gAbzIznfqGPvr8LKat8S/fwd4a8X+Et5Q/RPekO2K+/x0HX00lEhB41miCD+dFEZYlVTDaCISbRSSLLKjqjfhA+OLhihy4I59mOXFUzZ9ZBjNQ6JjCsb8Ek5Q0xEipyayYxhNhBmFBSCpIjulSMf5XOXqR+YpGEbzkOjpo0VMIkV2IqectKqVh3QIEUHjkhcWUzCM5sGMwgKQVJGdkoN0Csrugsb/FExkxzCaBps+MhqGixzLWtNjAeZypdSciewYRtOwZIxCEvUU4na/KyIPx331iMiX6+mnkYSRsqwtVRFX8AXycqanYBhNw5IxCiRQT0FE/hT4GPBx4CJ8AtsNdfTRUCJV8qWIjoy/rMrls3MF01MwjGZhScQUkqinEHsNHwFepaq3Vhz+6FTnPp6UImUk7+hsT1MYCVFAEIbyZhQMo1lYKp5CEvUUXoov9LdRRB6Pp7K+JSIzKc19XCiWlKFsiZXt/lnDL0V1ZExPwTCahiXhKZBMPYUz8Eb9b/HTXX3E+goicr6qZmc6tlse7eWB3dPrHUxYWFqxwaly5vpWRvIhbZmAyDlKTolU+NmTg9y7a2imwzGMpuLfbz/8wt3/9JzbFnocjSLxRiHBegoBvuDen6rqLQAi8jp83aaXA/8900G99GlreenT5q6nsGXvIA/sHKAlJaxoS7GsNU1LOuLtV5/KstbUnM9vGIuRd75ic2IMAiwBo0By9RQOxz8fLx+kqoMicojxFVvnjSiCyPkPKnR++ijAMpoNo5lIdEwh4XoK5aW151aMoxO/6mnvDPpoOA4lUiWMlEC84I6KWEazYTQRSfcUEqunoKo7ROQG4JPxyqR+4H3AUeB7M/2AGop6TyFXcnRkUkSRoyUjVhDPMJqIRHsKTK+ncBrj9RQOAweA64HHgKsq9RTwS1RvxespPALchg9Y19JTOAzsxNc4Oh2vpzBpye0avA6v1XAL3kvZAry+qs3rgXuA7+I9hzbgRfUEmRtJKVKiSMkWIlozglO/JNWmjwyjeZCKBS7G0qUhF8FdO/r5j9sOcKA3z/oVLbS1pOhsS/HXrzyDTataG9GFYSxGErXmOumegjGfqA8qjxYcbZlU7ClAKbQHD8NoFswoLABJ1VOIVHHOl8pOB7HymgiFyGofGUazkPRA82IlkXoKqvC0UzvZfjjrl6VGioiStyqphtE0mFFYAJKqpxAE0Jo+5nyWnENEKJmnYBhNg00fGQ0jcj5pDWBZa4rLTl8JTslb6WzDaBqWjFFImp6CiFxTNe7K1y/M4iOaO+qXpKrCtkOj7O/JUYyUbNGqpBpGs7BkjALJ01P477iPytdXgd3AA3X00zDK+gkA/aMhkQMXKfmSrT4yjGZhScQUkqinoKo5KoLSItKBL4T3D7pAySeh86uPfPe+dp9zSmQxBcNoGpaKp5BEPYVqfgNfG+mLMzh/w8kXIxRfQruS0CmSqNQew0g2S8JTIJl6CtX8Mb420uFJ9k/Kj7b28vO9w+V+arbRSX/xvxZKjmefsdJ7C6qIKk6h5ODBPUNsO7wglTcM47jz2R8devFT//TcHy70OBpF4o1CgvUUjm0UuRDvXfzqbAb1oovW8qKL5q6nsOdIlp/vGmB5W5rWlhTL2lKkAuEvrt7M8rbEX2rGEuUvf3VzYgwCLAGjQHL1FCr5Y2A/3qgtGE7GTx+Jes/DWUjBMJqGRMcUEq6nUO67DV8t9QuqurC3X3VEkddRAG9FFdNTMIxmIumeQmL1FCr4dWAl8IXpznu8cbHaGpVGwblJ4xSGYSw+Eu0pkHw9BfD5FTer6r46zn1ccMRqaxVhD42FdwzDaA4S7Smo6ium2LeLYwHkGQWS45U918avydpsrmOIU/XVhw9yT9fu8kb01wjUKaXIkYofNSJVCMT/NAyjKUi6p2DMI059ZdRUHNB3zl9gpdBcBcNoFswoLABJ1VNwCoVSRBB4o6DqE9cKZhQMo2lI9PTRIiaxegpnburgyS6fqOYcIFCw2keG0TSYUVgAkqqnEDplTWcGiUPNTpVUIORKViXVMJoFmz4yGoZTx5GBAmuW+bJSqhBgymuG0UwsGaOQND2FuM0viMgPRaRfRAZE5Eci8qw6P5qG4SKle7DI8nZvFJwqEgijhXChhmQYRp0sGaNAwvQU4szqm4BD+Mqpz8HnRtwcl+iYd1SEoVxIa0vgy1uoL3VRMOU1w2galkRMIYl6CsB5wBrgPXFiHXGm9euAc1kAoZ0ochRKjraW1Lgy2s7KXBhG07BUPIUk6ilsB7qBN4pIq4i04r2dffhs7HklX4xQFUqRNwCXn7+aMHTeWzBBBcNoGpaEp0AC9RRUdVhErgBuwE9ngZ+mekmsyjZjfvxYLw/HegpQUZu74gFfa/2vYn+u6Hj+easoxCuNWlJCNhfS2Z7mwd3D7O5u2pW2hjEln7n14Eue/MTzbl3ocTSKxBuFpOopxFNiX8BXVP0d/LjfDtwgIpep6uhMB3XlhWu58sK56ykcGcgjQFvGO6AbVrWwaVUL1/7KaaxaNqljZhhNzduu3pwYgwBLwCiQXD2F3wHOBJ6nqlHc5nfwU1SvBr46m3HOBeeUQqi0tQTkChHpIEBUsJCCYTQPiY4pJFxPoQNvqCqX9rh424L8XSP1UpyH+gr0jxQpliIQnaDbbBjG4iXRRoHxegpbK1/A14E3iEj5M1glIptE5EQRuZzaegqC11N4rYicKyLnichb8AamkuXxuU4RkeeKyCeAT1OHngJ+KuvfROQXReQ5TNRTuBVYAXxGRM6PJTm/iDdmt83is5ozzilhpHQPFciVHOm0gInsGEZTkXSjkFg9BVXdBrwceBres/gZcHI85gN19NMwnPplqOkgYDgX0ppOETA+IG0YxuJGTBXLYObB7ynZ1TXKmz77KBtWtjCYDXnaqcvp7Ejz+1eczMlr2xvRhWEsRhK15jrpnoIxj0ROUZRSpPSPliAAh1AI7cHDMJoFMwoLQFL1FKK4tMXBvoKfMlKInDORHcNoIpbCktTFSCL1FJyDC07q5KE9wz6LWcFFJrJjGM2EGYUFILF6CpHj4s0reHD3EIEIiBBGjqJNHxlG02DTR0bDiBRQRceWoCqRg5IZBcNoGpaMUUionsKLROQuERkWkcMi8vfVY55PVHWsIB6AOu89FEJTXjOMZmHJGAWSp6dwMfB9fB7DJXE/rwA+WkcfDcU5pRQdix+oQMmmjwyjqVgSMYWE6in8FvC4qr43PmyniLwD+B8ReZ+qDtc69/EkcozzFAQoRkrkLNBsGM3CUvEUkqin0Arkq47LAW3AM2fQR8MJI4dzoBW5cIViZHoKhtFELAlPgQTqKeBLX7xNRF6PL8uxEV9eA/zU1Yz5yeN9PLJ/ZEI9iskmfWolwZdCx0WnLCNy3jBEoqhCthDx812D7DzStCttDWNKPnXTvpdu/8Qv3bLQ42gUiTcKSdVTUNVbROTtwKfwhfAKwAeA53OswuuMuPyCNVx+wZp6DqnJzkMjPLhzgJUdaVoyKTpaAjasaOGvXnkm6ZR5C0YyufaXT02MQYClMX1UqacQikgI/DXwUhE5paJdl6ruVNXtqnoj8B7gdSJyJuP1FGZFhZ7Crhk0H9NTqDi+Wk8BVf0nfDnuU/HVYG+Id+2e7TjnQqRKqeTIxAagrNNspbMNo3lItFFIuJ4C4D0fVT0US3D+NrAfv0pq3nHqA81BcMwrUFUrnW0YTUTSp48q9RTGlc8Wka8DbxGRD8abVonIJryhPJvaegp34fUU/g5vVAS4Em90Tq04/fL4XBngFOC1wLXUoacgImU9hT+K+6nWU0BEylNeDngN3gP6jbIS23zjIkcxcmRSAcV4FVLkBGdGwTCahkR7CiRYTyHmKuCnwAN4A/hKVf12HX00lFCVMHRj8QONq+JFZhMMo2lItKegqq+YYt8ujgWQZxQFVdXD+Cf+SW/uqrq5jiFO1VcfPsg9VZsXNqKvRhE5X/wuHT9qeJOg5ikYRhORdE/BmEcipxRDJZXyl5WqoGpynIbRTJhRWACSqqcA+OmjONAcOe81mFEwjOYh0dNHi5iE6ikohdDR0eIvq42r2ugfLRBZlQvDaBrMKCwASdVTiCK/JLUcaD77hA7ufLzbRHYMo4mw6SOjYTiUYsmRGps+UpyDfNFKZxtGs7BkjEIT6im8S0TuFJFREak5KS8ip4rId+M2PSLyzyLSUk8/jSRyPlEtiK8q55RAIGdGwTCahiVjFGg+PYVW4P+A62rtjMtm3Agsx9c7+m18Ndh/rKOPhhI5xpW0iNQbhXzRpo8Mo1lYEjGFZtNTAFDVd8dj//VJmrwUuBA4TVX3x23fAXxeRN6lqkPT9dFoIudwCm0tKVICYaikUsJowTwFw2gWloqn0Gx6CjPhOcATZYMQczPew1gQPYVS6FCnrOzIsKYzQ+iUlFiZC8NoJpaEp0Dz6SnMhE1UVEyN6cEX8ts0sfnk3PlEH48d9LauuqCpVv1Hq/aU2xdLjpNWt1KKlO8/2MXTN6+kUHI4VR7aM8SenqZdaWsYU3LdjXt/+fFPPP/mhR5Ho0i8UWhiPYWZMKkOTj0ned75a3je+XPXU3ho9wDLO9K0RylWtKdpaxFWd2b4q1edOedzG8Zi5Y9ffGpiDAIsAaPAeD2F8jYBEJFTKqZfulR1Z/z/7SKyHLheRN7DeD2Fb81mEBV6CvfN6l1MpAtv7CpZh3+v1R7EvOAcSIVHEYZqUpyG0WQkOqbQxHoKM+Fu4HwRObli20vwCmwPNqiPunCuUlDHF8KTeLthGM1B0j2FptRTiMd3KrAG2Bz//ox418442H0Lvrz3l0XkL4C1wMfi9zrvK4/AL0f15bKFQIRCyREEEucumMdgGM1A0o3CdHoKH2W8ngL4mY8u4A7gnZV6CiJyKfBOvJ7CSUAvXueglp7Cu4Ei0I3XO3iNqn6njrG/H+/llHko/nklcHscuP5V/FLZO/E1k77GxKW280akXn0N8TkKXmhHCJ0y6VIvwzAWFYk2Ck2up3ANcM00bfYBL2tEf41AnaIKIlAoxdNHYlVSDaOZSHRMwZhflNhTAPKlCFUlJUpk0muG0TSYUVgAkqqn4CqqWYzmQgAUoWSegmE0DYmePlrEJFJPIXKOE1a30D8a4ihPG4l5CobRRJhRWACSq6egXHTqCn6+sx8JfIBZnaNoegqG0TSYUTAaRqhKthjR1pIiRAgjhwJZK4hnGE3DkokpJFRP4ZMi8kDcz556zn88KJWUbD5k/YoWWtNCGPlkttF8uNBDMwxjhiwZo0DC9BRiAnx9pi/Xcd7jRhg5QgfL2lJ0ZAKiyC9RHc6bp2AYzcKSmD5KqJ4Cqnpt3ObteH2FBaUYOlR9fkJLOqAUK7EN50oLPTTDMGbIUvEUkqinsKiIIqUUrzJyCumUEEUu3reQIzMMox6WhKdAMvUUGsY9O/rZfnCCrZuWykDHSC5ExAvtRKkgNhJ+5dFj+4cZyJq3YCSTj92w+yVbr3vBrQs9jkaReKOQcD2FhvALZ63iktNXzukcgcADO/s50pdjcLjImhUtjBZgRSrgTb98Gp1tib/UjCXKx27YPe10cDOxFL6pSdVTaBipQEg1oIpp2doNZoucvK6dgWxIJiWIQGtmqcxUGkuNrde9IFHL6xL9TU24nsKiw0VenrMU+VLZuXyIgmU0G0YTkXRPIcl6CuWpsU7gRKClos3jqlqcST+NxBHrKaj/YFozASmrkmoYTUXSjUJi9RTi/38euLxGm9PxuRHzinPqS1uIkE4LF562gu0HRihFVubCMJoFUbWnOKMxwe8fbTnKTQ8e4WBPlmIp4swTOsmXHH/6irM584RljejCMBYjiZIVTHRMwZhfFF/aQoGjQ372KnKQL5mnYBjNghmFBSC5egoOF4sqlNfeqlMzCobRRCQ9prBYSaSegnNKZ0eaowMFv0HVazVb6WzDaBrMKCwASdVTkEC48JTl7Djgs6PL4apCyepcGEazYNNHRsOInCNXiHCx4hrip5AKRTMKhtEsLBmjkDQ9BRF5uohcH58/JyLbReQvRWTB/qZR5HWay2kJqqDOYWkKhtE8LBmjQPL0FJ6Jz4F4PXAh8B58bsRf19FHwwgjn7imKFEcbFYFQYhs2bNhNA1LIqaQRD0FVf1C1aZdcXLdrwEfnu78jaYURvG4iKePIIpnkcxTMIzmYal4CktFT2FF3Me8M1qIvEFQHat1FDlHIMcCzoZhLH6WhKfAEtBTiL2Ea4DX1Xvs/TsH2HM0O/vOFbYdHOGsjR1EkV+CGkZKMVTUKY/vH2YkF9JilVKNBPKB/3nyuY9cd/ldCz2ORpF4o7AU9BRE5Fx8bOM6Vf3mdO2rufCU5Zyytm1OY3jhxesYzBa59YE8HW0p2lqgoyVACHjr1aeTK0Zj00qGkTAeX+gBNJLEGwUSrqcgIucBPwa+rqqzCjJ3tKboaE3NeSzZfIgiPsAs4mU5A1jenmZ5+1K41IylyCPXXT6w0GNoJIn255OupxDHPm4HvqGqb2vUeWeLAqo65hH4dAUZK31hGMbiJ+mPb4nVUxCRC4Hb8F7Ch+P+AKhY+TSvOOfi1UcQBN5ACEIpUloT/fhhGMkh6UYhyXoKrwU2AL8ZvypZkFK+CnGegpLGL00NAl85tXXStV6GYSwmTE/BgAYFv3cfGeWGuw7y/Qe6aMmkOHldOyva07zrt85n5TKzCkZiMT0Fw6iFc+r1meOviPMpzYSmvGYYTYMZhQUguXoKSrEUkY6tgnP+AitF5o0aRrOQ9JjCYiWZegpAIJBKCZHC8vYUEoh5CobRRJhRWACSqqcQIJxxwjLu39FHpPD8C9dyx9Ze8xQMo4mw6SOjYSiObD4infKXVeiUYhiRL5inYBjNwpIxCgnUU1gvIjeLyKF4LPtF5NMisrKefhqJc76EdkdbQHtrikLR4SJltFhaqCEZhlEnS8YokDw9BYcvufHyuJ9rgBdxLN9i3olUKUWOZ5+3jqedupxsIUKB0bwprxlGs7AkYgoJ1VPoZbwx2isin8EbrAXBOaUUOm5/tJsrLt7A4GgJpzCaM6NgGM3CUvEUEq+nICInAq/BlwZfEEKnOIW+oSIP7uynZ6gIOHKlcKGGZBhGnSwJT4EE6ymIyPXAK4F24HtMXeSvJlt2D3CgNz+ncYSR0t4SEEVK6By7u0ZZvSyDc7D3SI4bH6gqx3Rciogbxvzzrq9uu/jh6654ZKHH0SgSbxSWgJ7C24D3AefiZTivY2Itpik5dX0HLem5l87etLqFR5/qY1lrmnQ6RWuLP+dLLtkwtiLJMBLIgqgdHi8SbxRIuJ5CHLvoAraJSC/wUxH5YMX7mpbVnS2s7myZ81gKxQgXaymkAkEdpAJh0+o21q9snfP5DWMx8vB1V8z4u9YMJPrxLel6CjUo/z0X5A7s1Mtvln0hpw6RuAaSYRhNQdI9hSTrKbwMWAs8CIwAFwIfA+6p8HjmFadQcorEpilykE55JTbDMJqDpBuFJOsp5IE346e0WoH9+Kmtj9bRR0NRdRRL7lhBPMV7CqbNbBhNg+kpGNCg4PdQtsRHrn+cJ/YPEymctqGDjrYUb3352Zy6oaMRXRjGYsT0FAyjFhopxdCRTpU9Ba+tULIqqYbRNJhRWACSqqcQqqNQOlYQTxUQoVCyjGbDaBaSHlNYrCRST6HsEGRiTyFyiqAUQ5uiNIxmwYzCApBUPQWnyksu2cTXb98LeE8hQCiFNn1kGM2CTR8ZDSOKdFz8QGON5rxNHxlG07BkjELS9BSq2q6Lx6Iisq6efhpJGDmfqBavxXAKglCy6SPDaBqWjFEgeXoKlXwReLiOcx8XSpESRko6EDasasWpIqLkiuYpGEazsCRiCknUU6h4b38Wv6cPAVdP1fZ4E4URuUJER2uK5160jh/c34WIxRQMo5lYKp5CIvUUROQS4K+A38MrsS0ohVDJFyOWt2XYtn+I9hZ/eVlGs2E0D0vCUyCBegoisgy4HrhWVQ+KyNmzPdfgaIne4cJcx8NILqRQcgQpeHzfEJs3LCNySrbg2NU1wZYaRiJ47Ufu2/zgJ1+4Z6HH0SgSbxQSrKfwz8CdqvrNaVtOwyN7Bnnq8OicB3TBqcsoRY5t+4cZLTg62lOkUz6j+Y6ttcpPGUYimFA5uZlJvFEguXoKLwJOEZFy0bzym+sSkb9X1XfN9ETPv3Adz79w7ouWdh0eIQwd7S0pVIRMILS3pHn5s09g3QrTUzCSyTUvPm3rQo+hkSQ6ppBwPYWX4t/HM+LXH8bbr8B7EfOOc45S5AjiKqmqXqbTYgqG0Twk3VNIrJ6Cqu6oal9+1N+mqj0z6aPROKBQOlYQT1GcA7fgIXDDMGZK0o1CkvUUFh1RqIShI5Uqz2QJoYuIrDy7YTQNiTYKqvqKKfbt4tg8/IwCyap6GP/Ef+0UbTbXMcSp+roGuKaO9rezwHXdHb50dio4NowwVIpW5sIwmoZExxSM+UWdUgodmfSxy8qhpqdgGE2EGYUFIKl6Cg5vFAIRRGDzpg5cZKWzDaOZSPT00SImkXoKLoJS6OhsT9OWSbGiPUMpjCiVzFMwjGbBjMICkFw9BYgULn/6Rv73pwfI5UOKoY8zGIbRHNj0kdEwInUEAeQLES0ZIVuMcM6MgmE0E0vGKCRRT6Fq3OXXm+vpp5E45xPWnFPOO3kFA8NFnIOClc42jKZhyRgFkqunUB53+fWfdfTRUFzkEASnyurODHsOj6DOmciOYTQRSyKmkGQ9hapxLyihgogSOaW1JUUUOTRIUbIyF4bRNCwVTyGRegoxnxSRHhG5X0TeLCIL8jdVVcLYU1D16mupVOBLXajFFAyjWVgSngIJ1FOIeTfwY2AEXzX1H/G1nj441UHV5IoRI7nSnAaSLzpKISAQxZ5BJh1QKISUSsrRgTyyoPnWhnF8uPrdd665/5MvSsxqwsQbhQTrKaCqH6j49eG4PPe7qNMo3PlYD4/vH5rzeC45fSUp8cHmYsnRkhGkKAxkS3z9J/sXuAiHYRw3zgcmLGBpVhJvFEiunkIt7gVWiMhGVT0y04NefMlGXnzJxjl3/uSBIVozKUqRUgpDWjMplrUqv/WCU1jeMelsnWE0NX/6irMTYxAg4TGFhOsp1OIZQB4YOI59TIpTRQSKpYihbIl0EID41UiGYTQHSfcUEqunEOc9bALuxpfGuBK/FPZzqjo3weVZourdKeeUgZESy9pSpHI+09kwjOYg0Z4C0+spnMZ4PYXDwAHgeuAx4KpKPQX8EtVb8XoKjwC34QPWtfQUDgM78TWOTsfrKUxacrsG78drKHws/v2h+HVZ/HsJb6jujsfyZ3G/f8EC4VRJiRA5pX+4wEWbVxE6U14zjGZC1Fx7o0HB7627B/j3G59keLREV1+O5160nr1Hs3zojc9gw6q2RnRhGIuRRC2hSLqnYMwjThVEGBgpUop0bCrJ5DgNo3kwo7AAJFVPIXRubPoIgDjD2QLNhtE8JD3QvFhJpJ5CFClBAIp3DbwxEAomx2kYTYMZhQUgqXoKqhAEwiueeyrf/MlevEnwiWyGYTQHNn1kNIzIOVISoKq0t6RwkSJAwYyCYTQNS8YoJFFPIW73uyLycNxXj4h8uZ5+GkkYKQSQzYe0t6aJnJJKiRkFw2giloxRIIF6CiLyp/g8ho8DF+ET2G6oo4+GEjkIxOs0p1M+4JwKhGJoMQXDaBaWREwhiXoKcWmNjwCvUtVbK3Y9Ot25jxelyK8+yhUc6UAIIyUIhGzejIJhNAtLxVNIop7CS/GF/jaKyOPxVNa3RKSRpbnrIgwdqUDIFULSqQDnFBGhFNn0kWE0C0vCUyCZegpn4I363+Knu/qI9RVE5HxVzc70RFHkKEVzyyVQVQolhwRCsXRs+khQWjIBuWKUrLRPw4i5/C9/3HLvJ19cXOhxNIrEG4UE6ykE+IJ7f6qqtwCIyOuALuDlwH/P9EQ3P9jFQ08NzHE4ygWnrCAIoBA6MumASJV0KmDLUwPcuy1xK3ANo8wL8feORJB4o0By9RQOxz8fL29Q1UEROcT4iq3TcvWzTuTqZ5045wFteaqffUdHOOwc7e1pIgetmYC3vvJsWjOpOZ/fMBYj7/rtCxJjECDhMYWE6ymUl9aeWzGOTvyqp70N6qMuosgRID6zGZ+3IBXynIZhLH6S7ikkVk9BVXeIyA3AJ0XkTfgg9vuAo8D3ZtJHo4nUl7lw8QyZcxCIWOlsw2giEu0pkGw9BYDXA/cA38V7Dm3Ai+oJMjcS5wDxngLil6RKZYE8wzAWPaanYECDgt93PdbNlp193P9ENxtWtdM/WmTT6nb+7NfPZ82K1kZ0YRiLkUQtrEu6p2DMI6qK4pXWVnRmSMWB/cgePAyjaTCjsAAkVU+hnKwWOVjRkaElHYD4ktqGYTQHSQ80L1aSqafgFEFwqvzgnoM8/aw1IFhGs2E0EWYUFoCk6imEobJ54zJujxxrV7ayclmaXMlRKJpRMIxmwaaPjIYRqtLWElAKHetWtDI4XEQVckUriGcYzYIZBaNhFEsRKEShsjyOKSiQK4QLPTTDMGbIkjEKSRPZEZFrqsZd+fqFevpqFE6hGDkk8HGETDqFOiVvnoJhNA1LxiiQPJGd/477qHx9FdgNPFBHPw3DKYxmS7RlAtTnrxE5ZTRnnoJhNAtLItCcRJEdVc1RsVJJRDrw1VH/QRcoI7FUiiiVItauamMkV2JFexqnStGWpBpG07BUPIUkiuxU8xvAMuCLx+n8U1IoRZRCJV8IOWltB/2DBQBc5IPPhmE0B0vCUyCZIjvV/DHwPVU9PG3LKm689yD3b6tVHspT8zm/aqMDzj15OaOFiFM2dnLHI0cAiNRx7xO93P1YT73DMoym4OYHj7zy7n9+yYJpozeaxBuFBIvsHDupyIXAc/BVYevmV599Er/67JPmPI5t+wb44f05njo45LObA2jLpPmz15zLymUtcz6/YSxG3vv7JMYgwBIwCiRXZKeSPwb2s8DqT0796+6tR/0GBafOSmcbRhOR6MnehIvslPtuw5fQ/oKqLmjqsCq4yIEIZQMcRWBVLgyjeUi6p5BYkZ2Kpr8OrAS+MJPzHk+cczhV71PFTpk6NU/BMJqIpBuF6UR2Psp4kR3wt7Qu4A7gnZUiOyJyKfBOvMjOSUAvsIXaIjvvBopANz5v4DWq+p06xv5+vJdT5qH455XA7RXb/wi4WVX31XHu44JT7xWUbYKqL5ttIjuG0Twk2iio6ium2LeLYwHkGQWS45U918avydpsrmOIU/V1DXDNDNpd3oj+GoFqXD67amMptPkjw2gWEh1TMOYXVSWqDCDEGc1FMwqG0TSYUVgAEiuyo94IjE0WxauRrPaRYTQPiZ4+WsQkUmQnnRLOOHE5P33kKCKC4KeTiiXzFAyjWTCjsAAkVWSnLRNwsHuUoGL5kTqlFJqnYBjNgk0fGQ0jmw/pGcixenmr3yBiMQXDaDKWjFFImp5C3OYXROSHItIvIgMi8iMReVY9/TSS4WzI4EiRlZ3Hag0qSrZgnoJhNAtLxiiQMD2FOLP6JuAQvqLrc4DDwM1xiY55ZzhbZCQfsmJZBl+9208jRZbSbBhNw5KIKSRRTwE4D5/x/B5V3R23/TvgdcC5LIDQzuBokTB0pII4nqDgVLGQgmE0D0vFU0iinsJ2fLb0G0WkVURa8d7OPuCxBvUxYwqlyCusSUXqmnhfobVFWCDdH8Mw6mRJeAokUE9BVYdF5ArgBvx0FvhpqpfEqmwz5ub7DvHgk71Mdt+utV2rGqzoSKPOoc7vdE5RBY2UB7b3cf/2PoLxRWoNIxHceO+hV935zy/99kKPo1Ek3igkVU8hnhL7AnA3fmoshZ8Su0FELlPV0Zme65efdSK//KwT5zymr9/6JJm0EARCWyZFJh2woiPD2157Ph2tib/UjCXKO1930bcXegyNZCl8U5Oqp/A7wJnA81Q1ivv4HfwU1auBrzaonxkzkgt9BnMpIpOpiCtYQTzDaBoSHVNIuJ5CB95QVS7tiSdv5v/vqqrkChHO+Z/L2tKg6gdkNsEwmoZEGwXG6ylsrXwBXwfeICLlz2CViGwSkRNF5HJq6ykIXk/htSJyroicJyJvwRuYSpbH5zpFRJ4rIp8APk2degqxhsLm+PdnxK+yUboVWAF8RkTOjyU5v4g3ZrfV9zHNnVLofN0jVUZzIR2taZz6D8xKZxtG85B0ozCdnsJpjNdTOAwcAK7Hr+C5qlJPAb9E9Va8nsIj+JvvK6itp3AY2ImvcXQ6Xk9h0pLbNXg/XkPhY/HvD8Wvy+LxbANeDjwNH1f4GXByPOYDdfTTEEqRw0U+uJzNl2gfMwomsmMYzUSiYwpJ11NQ1VvxRmrBKZXcWIXUXCGioy3ltRUCXynVMIzmIOmegjFPFEoRzvnwhnNKEAhh5AgkME/BMJoIMwoLQBL1FHKFCAmCY0FlhVIUgfisZsMwmoNETx8tYhKnp5AvhmPJaVdeegIDI0WiEgQi5ikYRhNhRmEBSKKeQr7gvQIEVne2cLR3lIiAdDow5TXDaCJs+shoCMXQIUB7a4o9h0dYtbyVQjEiECFXCBd6eIZhzJAlYxQSqqfwIhG5S0SGReSwiPx99Zjni2LJoQqt6YD+4QLplACOQKBgcpyG0TQsGaNA8vQULga+D9wCXBL38wrgo3X00TBKYUQYKS2ZFMViSBRBOggQCSiUbPrIMJqFJRFTSKiewm8Bj6vqe+Pfd4rIO4D/EZH3qerwdH00kmLRETlHSzpgZNT/H4FAlGzejIJhNAtLxVNIop5CK5Cv2pYD2oBnNqiPGVMIIwolRyaTolCKiCJFEBRIp61UtmE0C0vCUyCBegr4An1vE5HX48tybMSX1wA/dTVjfvjgIR56sh9Ux9X1LqcXKDpW8FvjfyrbrVnewq4DA2TzIZ3taYrFiGLoa/OFTrn70W7uf6JWpRHDaH6+c9eBV9/xz788q+rJi5HEG4Wk6imo6i0i8nbgU/hCeAXgA8DzOVbhdUa8+Jkn8uJnzk1P4b9uepKewTyj5fLZxYj21hTrVrXx9t9+2pzObRiLmbf/1oWJMQiwNKaPKvUUQhEJgb8GXioip1S061LVnaq6XVVvBN4DvE5EzmS8nsKsqNBT2DXbc1Sjqv+EL8d9Kr4a7A3xrt2N6mOmlIPJIr68xWi+REs6wEW28sgwmolEG4WE6ykA3vNR1UOxBOdvA/vxq6TmlVwhiqeVfL5CNhfSkgkII8tmNoxmIunTR5V6CuMmtUXk68BbROSD8aZVIrIJbyjPpraewl14PYW/wxsVAa7EG51TK06/PD5XBjgFeC2+smpdegrAGir0FOJdO8vBbhEpT3k54DV4D+g3ykps80UUOcLIecUfB4hXYWvLpBktmqdgGM1E0o3CdHoKH2W8ngL4aaIu4A7gnZV6CiJyKfBOvJ7CSUAvsIXaegrvBopAN/AAXk/hO3WM/f14L6fMQ/HPK4Hb4/9fBbwLHxjfArxSVee9oF4Y6yhUBqTDyCEB5ArF+R6OYRhzINFGYQnoKbywEX3NlTDy2cxIbBhiIodNHxlGk5HomIIxP4SREjlvGNRVbnekggC10tmG0TSYUVgAkqanEIZuTF1tnKcQOtJyLN/BMIzFT6KnjxYxidJTKJR8NVRVbwBEhBXLMpx+0nLyRUcxjGhrsUvNMJoB+6YuAEnTUyiUHEHgXQLnlPbWFBeevpqb79oHCiesaec5F29izcq2hR6qYRjTYNNHxpzJF0NSgZBKCYVixMVnreXerUcolhxBKuChHT088PhRilYt1TAWPUvGKDSTnoKIbBaR/xCRXSKSi39+JK72WtnuVBH5bqy50CMi/ywiLbP5fOZCoRiRCoQgEFpbU/QN5imVonipqpLLh+zrGuH6m59kcKQw38MzDKMOloxRoLn0FM7Dl+Z4C3Ahfgns73GsQF+5bMaNwHJ8vaPfxleD/ccZ9tEwCqUIEUgFwsbVbezY24+IUAr9UqTBkSIPbOsmDB13buma5myGYSwkSyKm0Gx6Cqp6Ez5TucwuEfkQvuDdH8fbXoo3GKep6v74fb4D+LyIvEtVh6bqo5GUQoeIkE4JA6NFnFNEhChypAOv0ZxJBxzuzRI6W4pkGIuZpeIpJEFPYUV8fJnnAE+UDULMzfjs5nnVUyjGcpvrVrWxfc+xISqAHEtgO3h0lNZ0QN40mw1j0bIkPAWaXE8hroP0duDDFZs3AUeqmvbgC/ltquf8tz90mEef6p9Y01un+DVOPljWnqarL8veQyO85NkncrQ/B8gxLQZVhkdLjOZ80njPYJ4Pf+nnrF87oa6gYTQl3/zJvtfc/i+/8n8LPY5GkXij0Ox6CiKyEe8B3Ap8omr3ZOeqq48rLjmBKy6pS5dnHDfcsZu1na2kxb/BTIXSWiDCquUttGRSAAwMF3jaWWv5zZeePev+DGMxce2vX5AYgwBLwCgwXk+hvE0AROSUiumXLlXdGf9/u4gsB64XkfcwXk9hVoIaFXoK99VxzCbgNmAr8HodXy+iC2/sKlmHf6/VHsRxpVhyrOhsYe+hYZxTn7NQJp4+aokn6/JFRy4fMjhSYGVn63wO0zCMGZDomEIz6ymIyAn4aqhPAL9drtZawd3A+SJycsW2l+AV2B6cSR+NIl+IWLEsw74jwyDjnSpViCqK4rlIGcmVePRJk+c0jMVI0j2FptRTEJET8QbhEH557LoKL6c71ku4BXgM+LKI/AWwFvhY/F7nbeURQK4UsawUUSy6CfNsYeRIVWyMnONIb5aRXGk+h2gYxgxJtKfA9HoKpzFeT+EwcAC4Hn/DvapSTwG/RPVWvJ7CI/ipnVdQW0/hMLATX+PodLyewqQlt6t4Kd4wXY5f0nq44nVKPJ4Ib/SywJ3AfwP/x8SltsedKFL6hwqITAy9hKEiFdNJkVMKRUe+EDEwbIlshrHYECtrbFBnYLqSKHJ87Zad7Dk4xNG+LLsPDVMZUmhrSbO8I0NLS2psW2d7hl+8aAMb13bwS5ecOKeBG8YioFELURYFSZ8+Mo4zYaQsa0vT1TOKIBO+HaXIjQ88A06VnoECyzomTRUxDGOBSPr00aIkSXoKpTAico5i6HA1vE6f3TxeU0EVRnJFiqWIbN4S2QxjMWGewsKQGD2FUqQMjRQRkSnnoJwqqTjmIPh6SWGobNvdx6XnbwAgX4yIIkd7a3qCd2EYxvxgRmEBSJKeQilyHOnNEQjoJHWNvEynkopv9EEg5AoRo7kSYeTYdWCQn/38IP3DRZwqm9Z2cO7pq7ngjDUmzmMY84x944w5EYVKd3+OVBBQKE4+FRQ5pRxBcKqEJce6VW3c88hhwkhpa0mTSfvZzP6hAnc+dIiu7izPvHADG9d0zMM7MQwDllBMIaF6Cp8UkQfifvbM4mOZM7liiZFcSBAIUaTVuWtjRM6N/d855ZzNK7nn0S52HxqmVHIT2qeCgN0HB7nv0S4OdY8er+EbhlHFkjEKJExPISbA12f68gzP23D6BgqoOgKBkpt4cxe8l1DJSRuWsevgEF09WQRhYKRY89wiwr7Dw2zZ0W3iPIYxTyyJ6aOE6ilQToYTkbfjE97mna7eLKlUgARCFNaOKYSRG0ts62hLk04JT+0fZNWyFgqliJbM5M8mIsLeQ0O0pAOuuOxkUqml9BxjGPPPUvmGJVFPYVFwuDtLIEJKfNC5GsXnMpSDzOecupL7th4Zy2dQp0ROx1TaauEc7O8a5r6t81rnzzCWJEvCUyCZegoN46dbunh81wAAWl5YWplXMOE//r9nnbycLU/20DuYJ1zWQrEUMXEGSSkWIwKBlctbeXxXPyPZEm0tKXoHCyAQqfLIk720tU59OY7mHfc9MX07w5hP/vu23b92279c9c3pWzYHif92JVxPoSE8/+mbeP7T69LlAaBYirjxjt2sXdnG8o4Mg5PEBlIpoaMtw3mnreJH9+6jvdVPIS1ry5BOCel0wOrlaU7dtHzK/oJAOfvkFbzo2aeOeR6GsdC86dXnJcYgwBIwCiRXT2HBGRgqUChFY/ECRWsUuvAF807d1Mn2veNnvyLnSKdShKHzuQyqNYvqlXEOevrzPPTEUS67cGNj34xhGEDCYwoJ11NYcA73ZsfcHlWm9IHWrmzlQNfwuJt+WKGzEDnHSHb6ctoDwwW6+3NWHsMwjhOJNgqM11PYWvkCvg68QUTKn8EqEdkkIieKyOXU1lMQvJ7Ca0XkXBE5T0TegjcwlSyPz3WKiDxXRD4BfJr69BR+gldX+3O8nsKm+JWqaHeWiDwDOBFoEZFnxK+WWXxWdXO4Z2TMEKjqpDbhhHUd7Dk0NKH+UWWtpDBSBkdrTz9Vc7Q3y/1bD89y1IZhTEXSp4+m01P4KOP1FMDf5rqAO4B3VuopiMilwDvxegonAb3AFmrrKbwbKALdwAN4PYXvzHDcZT2Fs/FLWis5HZ/3APB5vOZCmYdqtDluHDqam+gp1Jj9OXnDMu7femT8virPolRyuJaZzY6N5kOGsiV6+nOsW90+/QGGYcwY01MwYBZ6CqUw4p++uoWdBwZJpwLaWlLsPzJCUBUTWNnZwvpVbTy5rx+QsUJ3IpBOBayoKJ+9rD3DSRuW0ZJJMR2tLSlOP2kFL3zWKfUO3TAaTaJWPSR9+sg4TgwNF8nlS2MxAue05jfjjJNWsH1PH4EIrmr6qBrnlP4ZqrEVihFDo0UOdA3PYvSGYUyGGYUFIAl6Cl19WZxTAvHrjZwyoe5R2SsohYqDCZZAVYkqthVLEcUadZAm42hvlm17+jFv1zAaR9JjCouVptdT6OrNUooFdESEsCqbOZMOePZFG3j0yV5A0Unu9VGopDLeeEROiSJHVFFmeyrCSBkYLvLUwUHOOnnVHN+RYRhgRmFBSIKewtG+3NhTfRAIpaKjcmr11E3LWbO8ha6eEYIgmDQHoRS5cbWPnFMGRwqsWdE2o3F092fZc2CIM09aOWWOg2EYM8Omj4y6iZzXUMgVfK5AIBBVeQob17TT1ZOl/MDvjcL48zjHBAnPUugYzc08B0EVegfzbN+96MpCGUZTkiijMFfNBBG5RkRGKn6/ouIYJyJDIvJIrGNwetX5r6nqo/I1o8feWK/hEyLyZKyRcFRE7hKRayuT5uJz/nqN478kIt+b6ec1W0ayRfKFcCz5LAiEsKo89uoVLXT3Z+ls9ykTtWIOTnVCwLkUOpzTmnrPk9E3mGf/kZEJJboNw6ifRBkF5qiZMAUX4hPELgXeF/98NE5yqyQbn3/cS1Xz03VQodfwK8DfxX28EPg48CJ8Ab9FwZG+HIWSG7uhByLjPIVMOiCfDxkYKtBZXnKqtVcnoTousxl8qe2hSeooTXIKjvRl2bqzp853YhhGNYmJKTRIM2Eyjqpq+Y6zU0S+jS9B8QUROUdVyyUxtOL89fKvgMPrNVRKjW0F/k8W0YT5oaMjDI4USafinINgfKD5tBM62dc1RDYfsn5tO/RVVVqteCeRg0IpIp06dimWQl/yYtXy1hmPaWikSFdPlgvOcGOynoZh1E+Svj1z0kyoh9gIfALvcVwyu+GOG8savKLbp6sMQmWfi2ZuZG/XMMMVdYoCGa+udsHpa9i2u598MaK1IhHNJzGPfxtOlTBy46afwtD/Xu900OHuER7efrTOd2MYRiWJ8RSYu2ZCvTwe/zwDX8YCYFllTCLmEVV97jTnOhv//Ly9cqOIHMAX0QP4qqq+eZZjnZK7Hz3CE3sGgGNz/KrxDVzjp/z49/Wr2rjprv1kMqmxB/5MOiAM3VjQIJWCQiEiCITWTAoXBxRU/dRQddZzKYR8ISKdDuLAtBCpMjBcoK1liku0hu9UiuDhHX2kZ5AVbRiN4L9u3vnrP/yXX51RoctmIBFGoUGaCXV3G/+sfJzN4quwVjIXceHn48f6OWBmazRnwXOetpHnPG1mpaiHs0X2HBwcd7MuhY58ISSdCjhl4zJ27x8glRIC8VoJ7W1pRIRMSujsyNDeMv0NOwiE5ctaOGXjhKK0Ux8nytmnruQFzzy5ruMMY7b8wcvOTYxBgIQYBRqgmaCqT9XZ5wXxz10V27Ti/PWwE29czqvcqKq7AUQkW9V+GFhZ4zyrgMFZ9D9jjvbmJmgmOHfMwzjv9NV8/cZtx7yBqhkgH5Ce3ig456eV8oWwLqW1QtHRN1jg4NERTtpQn0ExDCMBMYVGaSbU2WcKv3rpKeDheo6tRVzF9RYm0WuowXbgmTXG9HSqpqAazf4jI+OSzYBxQeYocuSL0bGdwvgpqTrCBIViRO/QtAu3JnC4Z5Qndvf5aSvDMOoiCZ5CpWbCuBLZIvJ14C0i8sF406pYzSzAz+NXayZMxobY+HQCFwNvwweYr65YeRR3KbV0Lbur2tXiT4A7gQdF5L34ktwh/ub/dLzRKPNPwBdF5DG8TGcHcC2wBj/VdNw40js6IXO4FDmCANpbU/QNVN3EY0U1kLoMAviAc6nkKIX1rShSha7uUR7a1s0zL9hQX6eGscRJglFomGbCFDwW/xwB9uIlMn9fVXdVtesAaqm/nI2fIpoUVd0lIpfgPZ4PAKcAJbzB+gzwqYq218c35r8APoKPZTwIPH8OS2KnxTmlZ7AwIb5bCn3w+KxTVrL30PCEQHLZGjhVUnVWGc4XI3r6c5ywflldxw2NljjcPUrvQJ61q45bOMYwEofpKRgwQz2FwZECn//WE7S3jo8JHO7J0juY57kXb+Suhw5xuPvYqtpnXrCBh3b0kE77YzLp8RoKM2FZR4ZNaztoryO2ABAEcM5pq7n8spNnVGDPMGZJoi6upo8pGPNHV0+WVI0rJowcrZmAMFJG8xN1lsc9d0wh2zkZ2VyJ3sF83SWynYM9B4f5+eNH6uzRMJYuZhTmARE5dQr9hBEROXWhxzgT9nUN15zbL4WOkzZ00j+UJ1tVzC6MHOmqxUb1BoBVfcby0f76q4rniyFPHRhi596Buo81jKVIEmIKzcAhJuYvVO9f9BzqnhhkBiiGjo62NIMjBUqhG/Olg0BYvaKNlnSKsnaOwoz1EipxTukdyBOIsG5V+4TielPRN5jnsV29LO9sYePauhaaGcaSw4zCPBAHsmeTv7BoKJWiuN7RRE9B8JVTgXG1jU7e2MmmteNv4IJfVdQyi/pEzqkX9wkd61e317Ui6cCREe5/7AjPffom1qxsr7tvw1gq2PSRMSN6BvOUwonyac4pJ65fxlMH4py5CgOwblUbu/YP0l5V/2guJa4Fr5+w++AQvYP5GZfYFhH2Hhri7i1d9PRX5wIahlEmMUahmbUUaukgiMjLRCQrIh+Kf3+viGytavMsEemJj09Xv4dGsufQ0LjidmVK8dRR/1BhQnZaEAjdfVlWLW8Z2zaZLGc9CF7P+eDREfYeGmZwZGaVRESEPYeG+MmDB9nfNTz3gRhGAkmMUaCJtRSqEZHX42s2/Y2qvmuSNi8GfoSv3fQHM8i1mBP7uoYJasQBwigiV15xVP3Qrkr/cIEVncdKYEcNXAIdiDCaK7Gva5j9R0bIF6f/CESEI705brtvP1t39ljWs2FUkYiYQgK0FMYQkT8D/gH4Q1X9yiRtXouvCPs+Vf3IXPucjihydPflaxqFZe0tbN3Zg4hQywkYyZZobxt/mal6ZbUJSW6zRBAGhgsMjRbZuKad1Svapg1kj+ZCfvLAAY705Xjm+etZtdwS3AwDkuMpNK2WQtW4PoDPUH7NFAbhTcB/AW+dD4MA0DOQp1CaWKVD8dWye8qlLaq8AFUfVE4HMi7HwCkUSg2YR6pAAHXKoe5Rdh8cYnh0euU2kYBtu/r41o+eYsv2boo13qNhLDUS4SnQ3FoKZV6Cr+P0MlW9cZI2ZwOfxRuEz9cz4Km4/7EjPHVgaMJ2VWhvTXOkb5R9h4fHlqOWb++5QsTmEzophY7WTIpCMULjGkftrSlyhRAXr0YqhW7s+BI+f6FQiI5LLujQaImunlFWr2ijoz0daz5PfczDO3o54+QVnHbCcoqhwzXWZhkJ5ovf3f6qmz/1sm8v9DgaRdMbhQRpKWzFl8N+j4jcqaoDNdocBo4CbxOR76rqvjrOPymXnLeeC89cW3NfEAjX37SdM09ZNW67ABvXtvPYU71sWttBR1uaVErGSmCsXdkWaywIgrB2RSuZGoHq41llJXLK4HCRlZ0trOzM0NnRMiYhOhl7Dw1z7ubVXHDGGtattqWrxvR88bvbv7/QY2gkTW8UaH4thTKH8d7NbcAPReQlqtpf1WYEX9zvJuB2EblSVffOoU8A0qmgZv4B+PLVQyNFMtVpyUBHe4ajvVlEhJZMQLHoxu0bHvHTSgI455AaOgrHW3k6SPlg9HC2SEdbkeUdGdasbK35fso8tX+Ag0dGuPictTztnHVTq78ZS56bP/Wy6ecqm4imjikkQUuhElU9CFwBLAN+JCITHt9VdQiv53wQ+En18thGs/fwUM2plFQgDI0UiOIn/ZZ0ikLF6p9l7WlGs/HvUn9pi0YTiJAvhBztz7Hn0HBcS6l2WxGhUIq459Eubr17ny1fNZYUTW0UGK+lsLXyBXwdeIOIlN/jKhHZJCInxstJ69FS2CQiZ4nIa/Arjy4B3lBLS6HGqy6xYFU9jDcMLcBtIrKuRpth4FeAPXjDcGY9fdTDY7v6aK0hn7l2VRvb9/RTno3JpAOKFeI6ba1psvFSVQFctDgm6QXv/RzuHuVQz2jNhLwyqSBgf9cIP7xnPw9v715ww2YY80GzG4XptBROY7yWwmHgAHA9XiPhqhlqKRwGHgLeH/+8WFXvqGpX1lKoftX9JK+qR4Ar419/LCITlGJUdRS4Gm/YfiIiZ9fbz3SUwogDR0Zr7mtvTXMknjoCyGSCcSuURBhbcRRGjkAW36XWN5jncM/oeKW4GuQKIfc8cpi7thymME1bw2h2TE/BgEn0FHbs6+fGn+6dkMmcSgmd7Rl+8uBB0nE+wNmnrmLL9qPkC/6mecl567l3yyFEhGc/bRNP7usn09oyoY+FRoEVy1rYuLZ92tiBqnLe6at59tM20dmx+N6LsWCYnoKxNHjwse6apS3WrWxjR8XUEUAmLeOmjyofNgqliJbM4gzWCjA0WuRIb25aL0BE2L5ngLu3dM24tIZhNBtmFI4zzaqlMDRa4HBv7cJxbS0pjvQdmzoCf8OcbG1/qRTVVdF0vhFgeLTIkb4sxXD66aEn9/Vz7yNdDJlhMBLI4nx8SxZNqaVw9yNdNctbZ9IBPWUVtKr1pIoiCKlAiKJjnkK+ENHemqKYm/t8/IrOFqLIMZprfKmnoZEiIsIJ6zomXaLrEXYeGEREeN4lJ9LRZl8jIznY1XycaUYthWyuxBO7B2oahfWr27lnyyFSwfh9qjqmpdDRlmY0WxzzJHKFkLWr2qABRuGMk1ZQKJR46sAQxdAbnpM2LONIb5Ywmnt8bGC4gAAnrO+Y8B7HofDU/kHSKW8YWmpMsxlGM7J4fXpjwfjhffvHAsjVpAKhf3hiro5WiOt0tGcYzR3Tas4XIlpbJy1FVRf5Qsh9Dx/mrJNXkA6gsyPDmuWtbFrTmIJ2AvQPFzjckyWcZhmtU2X73gHufbTLlqsaiaGpjEICNBNURP62ant5DOtE5EIRyYvIb1a1ERH5iYj8IP79dhH5VI0+5qynsPfwMLsODNWsiNrZnmHv4aGaSy1UdSwZbFm1USiGtKQD5rrSLZ0KKBQiIlXuf7SLc05dybmbV3PPQwdpy6QadmMWoH+owOHu6WMMzilP7h3k3q1dc35/hrEYaCqjQPNrJuSBd4jI+lo7VfUx4F3Ap0VkU8WuPwMuAt4ww35mxdBIge/8ZPekUyFrVrayY+9ATYMx3lNIM1Ix5+8cNbWd66WzI8PQSAERIYyUR7Z388CWQ5Qih1MIG1jlVICBkQIHjowwUmHgapEvhuw+MMijT/ZM2c4wmoGmMQoVmgn/jq9w+sYazQZUtUtV96vqt4F6NBO6VHWnqn4Tn1H8EF4zofIOqXG7ca863saP8VnIfzdFm0/gE+Y+ByAi5wAfBt4SZzsfF4725/jyjduZTIYgCIRcPiRfqB3gdapjHkR1drNTFyezzW2MbS2pY4I+eE2EoVEfu8gXQxq9wEmAbC5k76FhjvRmKU0xnTQwXOSp/YPsPTSx2qxhNBNNYxRIhmaCA/4aePNkpSlU1eHrOV0hIn+Ir+T6LVX9nwaOYxxbtnfzte/vQJj8iX7DmnYe2dk7qXjNxBv+sQ1RND7DebZkMsGk6moDQwVWLD8+CWWqytH+HE/uHeBwzyijuVJNbejDPVke29VnOQxGU9NMq4+SoJmAqn4/jol8CPitSdrsEZE/51hpjqvqGXi93P/YUY5OI2bf2ZFm94HBmlNHQeCf1MuaCVGkOKdjK1adi5BYOjOYcqnn1DiFkdFSzXpFR3qznLN5NV39x7d43dBokch51bi21hSZVEAmExCIxBrQgwwMFWhrDUiNvddEJbwaVXz2fx970Q8+9fIfLfQ4GkVTGIUEaSaUeQdwj4h8fLIGqvoFEXk/8KlJtBUaxu+9/Lwps3lF4L7HjnDJeetrrt/3iWnKhjW+4OyytjStLelxBiQdCOeetpoVy1snHD9TTjthOV1dgyxrr+0grlvdTmdnW03DdbzxEqP+Z3dfjovOXsN5p69BRCwAnXge27LQI2gkTWEUSI5mQvkk94vIN4G/Bz4wRdMwflUzhBfkqWYVMFjveFoyqSnX2YdhxLZd/bS31r5c2ltTDI0UCQIhEME5RxBU5bYJRM7NKbM5kw5wbgpt5/imPJVWwnyxv2uE9as7uPicCUVujYTxg0+9PFErDBZ9TCFpmgkVvBN4Pr4Edr1sBy6ViQGAS+N9DWXrzj5KUyzNTKWCsaWb7W1phkcnrtYRoDhJPGCmjCXITd6AkezimM/P5kO27e6zwLPRdDSDp1CpmTCuRLaIfB14i4h8MN60Kl7KGeD1jOvRTEgDncDFwNvwAeara2km1Di+u6rdtKjqThH5HH65ab38K/BW4F9E5N/xS12vxk+vvXIW55uUMHLc82jXlE/f6VRAMa6O2tGWZqQim7mSuZaddk6ntAnD2SLp4y3lVgc9A3ke3dnLis4WVq9oTHKdYRxvFr2nQEI1E2LeT+3poSlR1V3AC/CG7xbgPnzQ+rWq2lC92Ed2dI9TVKtFOh2Qj3MEli/LMDgyMeO5GEZzTi7zc/aT7+/uy7Kyc/Yxi+PBvsNDPPDY0UmX8hrGYmPRewqq+oop9u3iWEB42kdEVf0S8KWK32+fyXG1jq0XVb2mxrajwPIpjtk8xb778bKcx41CKeKuLVN7CQDplIx5Ae1taUZGJxqFQtGRTs/tKd5nTVdkyVWRL0Sk00IxchUrfxYa4an9A7RkAn7pkhMX0bgMozZ2hRqTcvv9+2f0dF8uP+GpXUI7lw9pm6PIjnM6rQWPImW4hqeykDiFbbv7uG/rEauRZCx6zCg0gGbVTJiKrp5RHt/VP00JaU8qkLFAs4sctWb+s/mQ9ta5rQpyzlVX655AT1+WxajnEznYurOHBx47YktUjUXNIvz6NCVNqZkwGaXQccOPd9UsnV2L8qqgdDqgWIpq3rhHcyU2rm2f07ic03EzR50dvvBe5T22dyDP+euWEak2pN5SIymFyiM7epBAuOyCDYtufIYBZhQaQjNqJkyGc8p3bt9FoRTNyEuAOAAMrFvdxqHu0Zo3u2IpJJP2lUxnm1zmp4+OHXvpBRt5YmcP3QPH6hG62ECFkSOzCDUOiqHj548fwUXKZRdusBiDseiwK9IYQ1W5/f4DHDgyPGODAH5aR1VZt6qd7kkkPAtF56eZ5lDJtLJ0hgBHekbp7MhMmI5RdNIaSYuByMEDjx/hpz8/SG6aCqyGMd80hVFoch2FGWkfiEiHiHxYRHbGmgo9InKniPx2RZuyJsPna5zvH+J935tuTLVwTrntvgM88mRP3RnBzvmloiJMmuQWRo4gJXNamlkprLasI8PgcAEf2B5vFARZ9DdbEWHrzj5uvnsv+48c33pNhlEPTWEUaH4dhZnwWeA38eM/D3gp8FVgTVW7/cBvisiy8obYAL4e2DebjgvFiG/8cCePPtkzK1nJKPJeQKnkpswjcKpk87M3CuqOxQk62jOMjPrsZVe13ClyblrVtMVAEAiHurN8/4493L3lMKP5xW3IjKXBoo8pVOgovACfPPZG4O1VzQYqdA32i0g9OgrluiU7ReTbwO14HYVzKrKUtU7dhNnwCuDtqlp+0t8D/LxGu0fwhuw3gC/G234Vn9V8B7C23o5vvXsfR3tHZ60zHEbKutVtHO4emXJ1kAt1UpnP6RAZf/Nf1p6h6+gI69dAGCqZihp5+UI0pxpL803klAceP8q23X1ceKYvpLdikSXhGUuHZvjmJEFHYSZ0Ab8iIrUK3VXzH4xXYXsD3kDMeq3jlCL10xA6x/o1HRyeJMhc2W62hicIfEnuMu1taUZHi36ZatXbzhdCWhdhkHkqUoGQK0Tct/UoX/rO43z3jt08tO0o3X3ZKetOGUajWfSeAgnRUZgBfwz8F9AjIo8CdwE3qOqtNdp+Dfi4iJwNDOOL6l2LL5tRNwe7R9jXNbt57SAQNq5uJ3KO0WyRqVyFYskRRW5WfbW2pFjemhqTxiyUIvLFkJFsCQIZJ5nZN5Rn+bIWBmb5nhYDh7qzqEKpFJFKCauXt7Gys4W2tjTtLSkymRTplJBOBYiABAGB+I+/bJhr/SVExOQdGsx1X334shs/9YoHpm/ZHCxqo5BAHYVJUdU7ROQM4Bfx7/mFwC0i8jlVfVNV234R+RbeQxgAblfVfVM9pU/F6192PsM1SlPMBBF4eFs3R3tHWbW8dcollh2taTasaeFXnn963ctSReD+Rw6PubanbFzOtuWtZNIBp25azrKOY9Mtba1pNqzt4Pm/cMps3lJT4JxSCp3Xp46UyLkxPYfKuI4lys0LAws9gEayqI0CydBRmLH2gaqWgJ/Gr4+KyN8CHxCRj6jqnqrjv4A3fCP4arCzpqMtTUfb7C+F9tYU3X05WjKpKaePgpRfKdTZkWH5svpLXmRSAe3xOFOBEMRLXJcvax3bDr4WU1trio1r66qYbhiz4sZPvSIROUplFm1MIUE6CnPRPihPZXXW2PcjoIgvK/7tuQxwrgRBQFf3yLQZuiKQLZQYGJ6dkxVGx+bWo8gnqeULIa0tQVU7HRPcMQyjPhazp5AUHYUZaR+IyO34ct8PAL14j+XDeMMx4X3EU2kXA6KqC6osUypFDI+Wpp0SUoWw5Djal+WUTZMWh52UymWmYeiQQCgUIloyKaoXoCp+emW2gW3DWKosZqMwnY7CRxmvowA+DtCFX5r5zhnqKICfgtkL3Ab8flySu5KyjkI1ZzNNeQtV3SUiLwA+iNc+aAO2MVH74GZ8rsGH8EaqC7gVeP9khkdVF0UkdWA4j1MlmCaCWSo5IufipLP6KYXHbv1RXBzPxaW0q8tnqPP5F2YUDKM+Fq1RSIqOQnyOabUPVPUjwEemaXPNXPYfD1SV/sE8qRkEjkuhwzlw0eymdcLw2HGl0FWsCPCB1iA4ZgAc3igsX4ZhGHWwaGMKRnNQLEX0DuRnVPGzFEao05qltWdCefookw4oFsOxPlUZl8PgtzlKc6izZBhLFTMKcyCJOgr1UgodvQMzq/ZRLPk4QDhLT6FY8kYhnQ6qCt4pYVWClyBzKqlhGEuVRTt91CQkSkdhNuQKIQPDhRlNH+ULISs7WymFEcVS/fP9UXjMU8gXItpaUt7QcMxglAkCIbvIi+IZxmLEjMIcSJKOwmzpH8yjzkEw/Q0+X4hobUkRRsrAcIENa+rLIyiFEYiQSafI50MuPn8DR+LSGtWlIEQgawXmDKNubPrImBNH+7LMtG5CGDkkABQOHR2tqx/nlDAukZ1JBwSBcLBrmEw6YCRbnHAhSzC3Mt2GsVRZVEahDt2ErIjsEpGvicgvVbXbXNV2RES2i8jn43X9lW2vEJEbRORwfM5HROQNVCEil4vIg7HOwS4ReXONNr8mIo+LSCH++eo63veXqnUQRORl8Zg+FP/+XhHZWtXmWbHuwpdEJF2t0TAf9PTl6itZoVAohHT31RbjmYzIubHCI5lMQEdbhq7uUZxT+gZyBNUaEHE/hmHUx6IyCsxcN+F8fB5DEbhDRP6yRttfids+DZ+UtgF4UER+q6LNc4FH8ZVYL8Inmn1ORH6n3EC86M738QXqLsEvG/0XEfm1ijbPAf4bX9DuGfHPb4jIs+t8/+XzvR5f2+lvVPVdk7R5MT6r+T+BP5hBTkbDUVWO9mXrMgqqSt9Qvu71R87pWIZyIEJHe4q+gSwjowVUlZb0+DFEkU5IaDMMY3oWTUxhFroJe4Efi8gh4CMi8q2q+kS9FW13A98Xka8BnxWRm1R1QFU/XHX+fxWRK4Ffw1ciBXgzcEhVr41/fyK+2b+dY0X5/hyfaPeh+PcPxef5c+JifnV8Dn8G/APwh6r6lUnavBZfOfZ9cX7DgpDNlejpz9V1jCqM5kNKpYhSKZqxjnLklLLAWjlhTR30DxVYtbJ1wnki51C32J55DGPxs5i+NXXpJlTwj/j38aoZtP04vjjdi6doswLor/j9OfhM5EpuBi6rGN9kbeoqrS0iH8B7Iq+ZwiC8Ce+JvHUhDQLA7kNDDI7Ul50s4pPKRnIltu3um/FxLlLK5T+d856AKgwO5ensaKWlavooimabDWEYS5tF4ykwM92ECahqr4gcxesfTEelVsIERORlwIvwpavLbAJ+WNX0CP6zW4cvf7Ep3lbdpla9pMl4Cb7e08tU9cZJ2pyNl+18q6pO0GmeLcOjRXoHZ/7ErwpHe7PsPTTE0FARrSOkEEbK6GiRA4dHcPHT/4rOlikV28B7CsPZIsXQkc2XCEOHohTiJamqjCv/nckEhJFjz6HByU9qGA3g2g/dftZ3P/3KxKxCXBRGoQ7dhElPwcxUx2ppJZTH8Dz8lNGfqup9Vbur29c6T6029TysbsV7Me8RkTtVdaBGm8PAUeBtIvJdVZ2VJnM1P3/iKE/tr9XdJCi0taQ45YTldHSkSU+hoVBNOiVsXN/BGaesBIVHn+yhWIymXcC0YXU7Xb1ZMumAVStaxgyDiBA6Rz5b4HBvdizLOV8MWd7Rwm337p/6xIYxd6p11JuaRWEUmLluwgREZB2wnvH6B5NRSyuBeAXT94F3q+q/Vh3TxcQn/g1AiK9mOlWbau9hKg7jPaPbgB+KyEtUtb+qzQh+6usm4HYRuVJV99bRR00uv+xkLr/s5LqPO9o7yonrO+lon8ksn2fl8lZWr2zlqufPxLE7Rk9/lm07e1nWkeGE9Z0cPjxMa4ufMkoHAeocZ5+6ekzkp6Mtzfo1HVx9xZl19WMY9fKGV19U/RDZ1Cx4TGGOugkAf4Gvf3bDDLp7O17YZmw6KK5g+gN80Pa6GsfczcQYxEuAB2JRnHKbl9Roc9cMxjSGqh4ErgCWAT8SkbU12gzhi+sdBH4Sr45aEPoG8zMOFJfJF0KknvmmmDB0lGWkU6mAoYpYRjlRrbL+0WxLaRjGUmfBjQLjdRO2Vr6ArwNvEJHyOFeJyKa45tCV4nWZ/wr46xrKaGvjtqeLyFUi8h18MPvNqjoIPk8BbxA+C/xX3H6TiKyvOM9ngZNF5DoROV9E/hC4Bh+0LvNJ4IUi8jcicp6I/A1wJXBdvR+Gqh7GG4YW4LbYE6puU9Zl3oM3DAvyONw7kCedqu8GXyhGOI4tL50ppXiqKJ0SAhhnFArFEHVunN5CubS2YRj1sRiMwnS6CacxXjfhMF5A5wtAK3CFqn68xrE3xW0fw9+0u4HLVPXrFW2uwS9/fXvctvy6v9xAVXfjRXFegFdjexc+7vDNijZ3Ab+F93geAX4P+E1VvXeGn8E4VPUI3qiAX3a7oUab0XhcO/CG4ezZ9DUXBoYLM6qOWk0YurqzjcPQEcQlLiJVCoVjZS1GsyVaWzIUK4rk2eojw5gdYpKFBvUFxMf4zxu2ks3WnzO3aX0Hz774RE7cUEtltDY7dvdx0093sWZlO+2tKb598zaC2CCtW9PByZuWMzhaYuP6Y+c89YQVXH3FGbMyXIZRB4m6wBaDp2A0IZFTRkZmV3AuEOHQkfpE40plTyETeC+jIi4xmi3WjG04dUTOHnoMox7MKBxnJKGaC9lciWI4OxGbfFxuux7CyMcUWuIKqSLHbva5fEg6FZCqEd8olazYhWHUw2JZkppkEqm50DeYm+WkE4xkQ1atqO/gYilCBNraUgwOTxT1iSJHJj3+GUfVl9tut8vcMGaMfVuOM0nVXDh0ZHQsT6BeiqWIKFKiyI3lFUxH2VNoa0nTPzhR/jNyOsFTUFVKoXkK9VIKIw4cHOTQ0RGccyxrb2Hj+k42beic8d/LaF7MKBizoqt7ZE4B3FLoONKT5cSNMws2h/E0UEsmxWCNqSfnfJG88dswneY6CEPHA1sO8vNHD1MshbRkUoiIN64lx1mnr+H8c9Zz+imrLXifYObd7MvS1kxQEfnbGuNTEVknIhfG/f9mVRsRkZ+IyA/i328XkU/V6GNe9BScU7rq1EOoplSKeHJvdcL25ITxE386FTAwVFsTulgIY+NwDBPamRn9gzn+8xsPc9/DBxCB1pb02I1fRGhpSbHv4CA//tluHnzk0Njfw0geC+ELLmXNhDzwjqrkuDFU9TF8HsSnRaSybMafxWOfYMwWgv6hPLn83G62fYN5inU8xZfixDRfEntiPKJQDHGRGyfLGQSQneM4lwL7Dg7w1W9uoVAokakWK6qiWIp48NFD3PvQgbr+fkbzMK9GQY5pJvw78L/4m341A6rapap7VfXHqnoN8FG8ZsJZVW1747a7VfX7qvoKfMLbZ0VkFYCqflhV/1ZV71TVXXFto//DayaUGdNMUNUnVPXf8eI1lXoOf06smRC3+RBwe7x9pvwYn4X8d1O0+QQ+4e5zACJyDvBh4C1xtvOCs/XJHlrrLG9RTeSUbK7E4aMzW5pajg3k8iFaY1l4NheSzqTG3ahEhJzpNE/Jrr193HDTNtKpYMZTQi5Stm4/wv0PHyCKzGNIGvPtKSx1zQQH/DXw5slKU6iqw2dGXxGX1PhP4Fuq+j919HPcKBZDtu7oqU+CcxKO9mXZsXdgwpRPLUphRDodMDJSGLcctcxotkhrS2rcdJGviWRPs5Ox7+AAN/5wB+l0/bcBFyk7dvXywJaDdZcsMRY38x1oXuqaCajq9+N4yofwpTFqtdkjIn/OsbIeV9XTR73kCyGjuSmeqNWrnQ2Plrjlrt0US1FDjEKxBFt3dFMqRZy9eQ0d7WkCZEJ+aColDI8UaUkHHOnNosoEqc3hbInWTIqegdyYYcgXIvoHc/QO1KcOl3REYGS0yDe++ziplBAVZ2c4C8WIXXv7QeCs0yeU6FoyvPFdN6/79qdf1bPQ42gU82YUxDQTKnkHcI+I1KrZ5DtS/YKIvB/41CTaCg3jZw8e4ImnplZBEyCdCVjR2cLKZa0N7f9Ib5Yde/txYe16RSesX8ZjO3s485RV7Ds0EFdAHd9yaKQAAiPZEoOjA0BsyEaK7D1UX/Z0kkmlhM0nruDmHz+JczrnVUS79g9SCB13P3yYVHrJLma8lImzCE3LfP4VTTMhRlXvF5FvAn8PfGCKpmH8qmYIP0VWzSp8afC6ePFzN/Pi526u97B5ZWS0yHlnrOGRx47Qmqk93SEinLShkxUr2gFYt7qdFZ0t/HKd2g1JJnKOr3/7Uc7ZvLoh3h5AqVDiGeeu5wW/uLlh52wmrn39pYkxCDBPMQUxzYRavBN4Pn4FVb1sBy6ViY95l8b7EkexFJJKCUOjtZejgk9wS1esnomc4iwOOo6f3L2Hvv5cQ2/eYaT09I7yyONdDTunsXDMl6dQqZkwrkS2iHwdeIuIfDDetCpejtkCnIk3Jr8HvGMyzQSgHTgPeAt+/v31VZoJN+KXwf5XxVLPSFW74/9/FniriFwH/Bt+musa4qmumE/il8b+DfAt4NX48tbjcihmiqruFJHP4Zeb1su/Am/FL5v9d/xS16vj8b5yNuNZzJQzkwtFnwmdmuSG5pwSVGQ1R5HXcTY8O3f38ugTR2iZ48qxWnT3ZVm1sp1srlSXEp+x+JgvozCdZsJHGa+ZAFDAB1nvwWsm3FHj2JvinzngAPBTvGbCloo213BMM6FyieleYDN4zQQRuRq/HPQt+HpEEzQT4vyHDwLvA55iDpoJMe/HG726UNVdsffzQfxcZhuwDXitqn5/DuNZlESRoyWTpm8gN3WNYvUJbC2ZNEEgXlOhxsqmXL7E4FCegaEChViDobUlzYrOVlasaGVZeyZxGbsjI0Vuun3ncTEIZQ50DfLzRw7xS88+7bj1YRx/TE/BgFmXtpsfcoUS37vtKYaG8vzknj2T3rAvOmc9xZKjc0UbLZkULZkUJ2xYxtWXn8nIaIFHtx1hx65ehoYKfqqporJqFOnYsteN65dz8gkrOPmEFZy4cXndkqOLjcg5/uubWxgZLR53Y3fqyau45KITOHHj8uPazyIjUU8QS3a5gNE8hCVHR1uG3fumXiE1mivS1pohDB0tmRSrV7ayenkr37l5G3v295NKBQSBkE4HE9bmp9Mytq2vP0tv3yj3P3yQjeuWcfYZazlr8xpWrWw/bu/xePLTe/YwOFSYVT5CvXQdGWJ7W5oTNnQmzttaKljJwwYgCdVMWCyUQgeqDAxNLf+ZzYW0tKRAlTNPXcX+AwPccNMT7D80SCaTqiu4KiK0tqQYGMpz30MH+MZ3H+PO+/fSNzC3mk/zzb6DAzzyxJF5MQgAxZJjeLTo8xeMpsQ8hcaQSM2ExUK+EJIvhgyNTL7yCGAkW2Tdmg5aW9L86Cc7yRVCOjsyOFWfFDdLRIQwcmx5rIvtT/XytPM2cP7Z6+lscL5Go8nlS3zvhzumrWfUaLqODLOsvYUzTrNqqs2IGYUGkFTNhHrp6RvlaPco5561rqF198t1koZHilO227S+k9ZMwI9/tovWlhSBCIpfMtmI+6KIUCiE3PfQQXbv6+dp52/inDPWLkqNAeeUG27ahjpF5jl3IHLKSLbAtp09nH92zdqPxiJm8V3NRlNSKIb897cf5b6f7+e+nx9o6LlzhZBsrsRUayLOPn0NURRx5737CAIZ94TaaE2FIBB6+3P8+M5d/OTuPXT3jjb0/I3gnp8f4GjvyIIlkx3tHuVQ1/CM6loZi4tFYRRkao2FQESuFZGHYj2EIRG5TUSuqmpX1iUYFJGOqn3nyzHthXXxtrImw2U1zvM9EekRkZyIbBORfxGRzTN4H22xbsIjIlISkdsnadcQ7QYR+RMR2R2f50ERef50YzxebH3iCE6VXCFkYDDHoSNDDTt3b1/Wl8ye5P5y9ulrKBZCnnyqFxFf26eMIMdNU0FE2Lazm5tv38nWbUcWTcXQA4cHeWDLgXmfNqokjFzsLXRP39hYVCwKo8DUGgtfw5eC+BxeU+A5wP3A90TkLTXONQi8tmrbG4F90w1CRN4E/Ahf2uK1HNN0CIC/neLQMil8Itmn8AlztfpoiHaDeCGeT+LLal8Sn+8HCxXUfvzJo6TjaZSunhG2P9m4m8GBruF40exEq7D55FWUSiE7d/ciIriqskjOHV9JThFheKTAHffu5Wf37qV/gYvvZbNFvnPT9gU1CGWOdo/SdWTYqqg2GQtuFKbSWBCR3wB+E7hGVf811kN4TFX/CvgX4DoRObnqlF+iQowmLn39+nj7VOM4Gfhn4NOq+vuxlsOeWIfh/zE+8a0mqjqqqm9W1c/hk+lq0Sjthv8P+JKq/nvc5lp8sl8tQ3lcyeVK9Pcfuxnm8yH5QkjPHNXZyuzaN4DqxMXgG9cto6MtzZO7esemi5xzuIqbUBi5ecnCEOCxHUf50c+eYseungW5EYah43++9xjUKC2+EHhvociOXbVyVo3FyoIbBabWWHgd8KSqfrvGcR/Dl8L4tartXwWeVaFX8DJgBH9TnYrXxuf7aK2dDaxUOmftBhFpAZ5Zo80t1Kfv0BAOHx2eMLXT15/jsW111wqcQLEU0t2XHcs8LrOis5WTNi3nkce6kApzUSw5gkDG7EBZNnI+7tEiQndvlp/cvYf7Hj5Ifh5V35xTbvzRDoaHp162O98c6R7hwKEh8xaaiMWw+mgqjYVzgCdqHaSqB0VkCDi3alcf8B28t/AuvOfxRaZ/XjwbGFLV4718tBHaDevwU1W12kwlLlSTKHJxOerZsWdfP0FKiCqCiv1DedauXcbgcIG21tldZqrK4091k0oJo9kSxKuJUinhwnPX89N7duOgyihEdLSlcc4RBP6ZJ1cIGRwpsLyjZV5yT6NixL0P7ae7d5Snn7+JDes7j2t/Ir7Q3e59faTTqXF/h4Umcspo7C1sPmX1Qg/nuPDbb/tOy/99+tVTL41rIhbUKMxQY2G6K7zW/v8AviAin8VXMn0zUC3lOWE4M+irUTRKu6Eh+g63/GwPDz8xu6f6U05YwdbHDzE8XJiwrxQ67nvkEJnWllmdG2DzySvpXNZCNnusRMMzLzqBB7ccRB0EVU/FYehIpQI0cmOF85xTDh0ZJpqD4ZsNTzzZyz0/P8gF56zncG+WYqnxsY0zT13Fnr397NrXN+GzWCzsOTDA/q5hhnJPLvRQjhevxNdwSwQL7SlMqbEA7OCYPsI4ROQkvKxmrSvth0AEfBm4TVUPyER952p2ACtF5MTj7C00QruhB//+GqLvcNXlZ3DV5bPTHIgix7/1DiMnrJiwL5USLjp3Ay96/pmzXhr50/v305IStjx+hJXLWznztNV0HR2mVIxoaal9+UoAG1YtY+3qxVGWor8/yyXnrucZF21izaqO6Q+YIarKvQ8doOvwIE8/b0PDzns8OPWkFb4m0qaJ10kCSIxBgAWMKcxQY+FrwNki8qoap3gHUMQHp8cR6xx/CbgC7zXMhP+Nz/fXk4x31QzPMx1z1m5Q1SLw4FRt5ouRbJHCJHkAUaQUiiG7905ds2gqDh8ZpqUlxUi2yMrlrQhw4ODg+HWnVaiLldgWCUHgl67+4LadPL7jaEOWrjqn/PjO3dz30EEy81TCYi709GXZ/lRiFCsTzUJ6CtNqLOD1FP4X+JKI/DU+2NqO11d4K3Ctqk62yueD+BVKM7ojqep+EXkb8CkRWYmPQ+wGTsSvjmrDL52dEhG5AB+wXgd0isgz4vM/HDdplHbDPwFfEZH7gDvxU2QnxuefN/r6s1N6AX39WfYcGODM09fWfe4ocvT05zitYwVhGHHWaau5/a5dUxoEgHwxpF0W2gkej4gwNJzntp/tZt+hQS4+b+Osn5rzhZAbbn6CI90ji2Lp6UzI5kpeM3sgx+pVi8ODM2qzkN+cmWgsvAgvbv9WvJH4BH6a5QHgZar6g8lOHj911/VooqqfEZHteKW3bwLL8LoLt+CNzEz4PlBZUP6h+KfEfTREu0FV/1tE1uLzJ04AtgJXq+reet7zXDnaPTrlk+potkQYRuTyJdrb6hNfGRopkC+GRE45a/NaHnm8C+emtQkUChGdHbOPYxxPUilh154+du/p54Jz13P+2etZv3bZjFYMOadsf6qH2+/cjVNtGoNQprdvlEeeOMLlz9m80EMxpsD0FAyYQ4D9+z/awd79U1fEPHHjck7YtJxnXXJKXefeuv0oP75nL2eeuoodT/Xy0NbDM7p5CrBuTTsnbFhOe9vi8hgqUfVyoWdtXs1pp6zm1JNW0lFD4CeXL/HUnj7uf/gAw8NFMi3NZQwqOePU1fzSs09j2SI12rNkcUb4Z8ni/cYYTUF///QJan0DOZYtq/8msP/wEOlUwPJlLTz82MwMAngLVyhGDA4XFrVREBFSKdi9f4And/ehqqxd3cGK5a2k0wHFUkRff47h0SLgPYNmNgjgr4WHt3bxvGdZNfnFyuL9xixCROQHwGT1hT6sqh+ez/EsNFHkGBzOT3uzzhdCSiXH6GixLuNw8MgIJ2zo5N4H96OqdSVl5fMhUefiqEU0E8p6B0MjhQlB8mYIJM+UgaE869YUKRYjr31hLDrMKNTHH+ID3bWY/RKbJiWbL1EquRl9uYvFkMd3HOEXZjiFlCuUcJGSzxfZ3zVcd5auU19mwYTkFx99Azm2PN7FLzzjpIUeilEDMwp1oKoHF3oMi4nh4fy4OkNlzjhtNflCyP6Dg2NaA/2DOZYvn7koTXdPlhM2LOMnd+9GnVL/tK1SLEYMjRTMKCwy+gdzDI3kiSK3KLUoljr2FzFmTV9/fsLUxro1HTz5VA8/f/gA6dSxG3kuH1IqRRSLM6sH1NM/ymPbuhCYVQkOp16Yx+r5Lz5UoX8gz2Pbjy70UIwamFEwZk3/YG7Ck97yzlZ27u5laKRIW1t6XKJWPh+ya4aJbPsODHKwa4RUKiAM6xfJcc4v4XROfaVUY1HR0zdKT3/WjPYiZN6NQoIEda6o6EdFpFtEfiAiT69oc7uIfKri9y9VtC/FAjsfF5FlVef+HRG5W0RGRGRURO4Vkd+tavN0EbleRPbHY98uIn8pIvP2Nx0cGq+ZvKyjhYNdg2MVSV2kjFQETQeGchztnl6lbHi0wO137yGVElKBzPqm7tQbhJHRxNQqSwyq/vp5cpdlOS82FsJTSIqgTpkL8cljvwqsBm6KM6In44dx+zPifv4E+HjFuP4en019A7489iXA/wH/ISKVZb2fCXTjtSIuBN4DvJtJynQcD6qNwoZ1Hex4snssw3l4pEBlCkQ2F1IMo2nLKH/v1h1jHoaI4GZZyM6X2YjI5krTNzbmne6eUQ4dGbGy2ouMeQ00VwjqvADowN+E3x7vKwvqvLpKP+GvRKQVL6jz3aqyFl/Cl8j+z/gcZUGdz+JvkJONo1JQ508rdu0B7qyzztFRVe0BukTkL4CfAb+IL8lRi4KqdsX//5qIXAm8CniLiDwLX9Ppbap6XcUxfy8iBeATIvJ/qnqfqn6h6ry7RORSvL7EcV8a69z45agiPjcgXwjHSlb39ufYuGF82ehsrkTXkWFOmKTEw4HDg9z/0IGxaam53DA07q/Vlj4uSiKnDA3n2b2vnzNOW7PQwzFi5ttTSLqgTll+rJ7lLrmK9q/Dj/8zNdr9KzDK+BpJ1awApk4vbhD5QjgmYAOwZlUHu3b3jls6OjJaoL0tM+7GPjCYZ8+BgZrnLBRDvvyNLZQq5pmdzq2eebHkCENH/2B+UekMGJ4jPSPsPTi40MMwKpjvJamJFdSJ6xC9BxgG7pvhMc/Ce04/ijedA+yKq6COQ1ULIvIUEz+D8rkuxRfWe129Y//+j3fy0ONdNdXJaj2pq8KZp6xi647usSf6S592Ao/U0GTI5kps3d6NVBTNK5QibrlzzzgDcsKGTnp6RjnYNUwmc+xZRRtwI3fO6zy7Q0PA9LWTjPkljOCO+/aRzjSnR/fQY0d/938/85qvLvQ4GsW8GYUEC+rsiW9uy/DaDq9V1anW2v2KiIzgP/sMPnZwbcX+qcZVc9wici5wI3BdZWG9mXL1lWdx9ZXTfWTjeWpPL709w2QyKVIpYfWKNlZ0toxNHZXpaEtzxqmrWN55LEfhhPXLePWvnM+6tcfi6739Wf7rm1u46Nz1444fHMqTzZfmJDHZ1pZi3Zp21lh1zkVJJiNc/guncsXzTl/oocyWxBgEmF9PIamCOlfiPZZuVR2aQfs7gD8GSsChCg2F8rieLyKtqjqu1kEcVzkDuK1q+3nAj4Gvq+q8BpnLpRnWr13Gth3dNW/cCuTzpXFGYWCowI5dPWNGwTnHjT/cPna+SoolN+cn+zB0FIr1L2s15odSyTE0WuDA4UFOPmGqNRrGfDAvMQVJtqDOblV9aoYGASCrqjtVdW+VQQC4Hu9x1Fpp9Sfxvq9VjPMCfPzkG/r/s/fecZKkd33/+1udw8Sdmc15b+9uLwfdnRKSbIQxxryIJgiwkAAbjIwN2PgHNsEEkywbG2ORZAklFBESKF/Qpc05zM5OzrFz7q6q5/dHdc/2zHTPdM/0xK33S6O96a566qmZnudbzzd9lPr3dcx5zSSSd+Ux/T4X07OVW1GkM4Uli30imSOTLcxnGF26Pkk0VllwvqBbKsxroaCbO6uN5Q5kejZJ3+A91ylmS7JRO4UdKajTaJRSZ0Tkv2NlG3mwBHYUlsjObwG/r5Q6ByAiD2HtGl4EfldE9pSNM7Vk8AYTT1jpqE6HRjSWqdqwLpnK4/Us/ZjF4jm6e2c4fKCN0xdGF8QRyllN4dpilLIyXZSy4wlbFV03iSeyDI9FOHygbbOnc0+zUdlHKwnqHOauoM6vYxmJW8BZ4FksQZ1KGTmAJaijlJor7hpqojjeO4FOrJhGD9aOA2oX1Gk4SqlfwnK1fQ9wBbiKlXX1k4vcQz+Apcn8g8Dkoq91p1SjsKvdT/9geEksoUQqVbl99excirlQmr/7ym0cjuordb6K1Ge9mEpRaNBYNuvD1GySwZGoXbewydgiOzZQZ9DdNE0+8KFziCYcPdTGV5+/U9XDIwIPP7iHbE5fspPQdROv11W1YlkpLF3fBjzeez0OWpu9tDZ71zyWzfqxt6uJUyc7OXm8Y7OnUg87av9p9z6yqZtsTkc3TDQRUuk8pll9g6aU9RezWKy+UDDoGwphGiaGXvl83TBpVGmBrpvk7WDzlmd6Lsn4VNzuibSJ2EahCsU+RskqX7+y2fPbTNKZArph0tzsYWw8uqAGoRJKqQULslIwNhlHRLjdP0triwe9gmunUFi5JUat6IZqmIGxWT9MUzEbSnPj9rqHxWyqYOspVMcW1KlCPJHD4dBoafJy5fr4vFvowZOdeNxObvbMLPTfF1tg+IutC8PRNLmcjmhiuYj65ji4v4XFXiSrZUbjdua6YWCaUCX8YbNFCEXSzIb8tjrbJmH/eVRBKTVeTB2t9HWPGwVLR0EpRTZr6SN07goQiWZ4/ewQxw+3LXjCNwyFXrCOy+UNZkOpBbuLRCqPy+Ugk12YoZvNLo1DrAXTVKSzdsfU7cD4VJzLNxrWcMCmDmyjYFM38UQOh6aRzuQpxdj2722mv38O01TkcjqOssU8lc7j9jgxTcXoeLTiQj89k2TxpiCdq02Qp1YMQ9lttLcJqXSecDRDKJze7Kncc9hGYZORRfoSIvIbi3QaKn19UUR6pcLqKiJtIpIVkXWrs0gkcwQCbqZnk4iApgmFvDEvzTk4HGb/3rtdUFPpAl6Pk6mZRNVMo+m5JK3N3vkdhmE0PoU0XzCoPWnZZrMZm4hxs2fGTlHdYGyjsPks1pf4Iyy9hdJXD/DfF732n7H6O31LhfHeBejA36zXhGPxLM1BDzOzKUSEjl0BJqbudrpMpvIE/K75DJJkKofL6SCeqFy1DKUCM+af5FOZfMUGfWtBKdBN09ZX2CbohmJqNsmtO7Zs50ZiG4VNpExf4i+wqrnfq5RKKqWmSl9YC/yC15RSV4ELWN1hF/Ne4FNKqcR6zFkpRTyRw+12kEhY7Zk6d/mZmIovWPANQ2EWdwXpdHERXiE8EItnKD3Kz4UzDQ0yl8hkdRK2C2nbEIqkmZxOkkrbv7ONwjYKm8ty+hIr8VfA94vIvJ+m2D77cWrvAVU3+bxOQTfJFwyM4gLu0DT0wkK/zPRskl3tPlCWf7iWePH0bJLWFj+z4TTZBscTSpimIpHMEY5m7Fz4bcLQaITLNyZtN9IGYaekbi7L6UusxMex3Eo/hCVfCtYuoVsptUT/ejm+/soAV24tzQtf/DeolOLogVZu9c7icGokiu6gdDpPQTcW7BTGJmI89sheBkeimMoqRIvGsitmEx3Y18LkdBKXS1u3RaCgKyZnkoxOxNE0qSnDye6ZtLnMhjNcuTVFNr/1gkLnrkz82Kf+9Ps+svKR2wPbKGwSNepLVEUpFReRz2C5kP5cRLzFsX6n3rm8863HeOdbj9V07Mh4lFg0jWmYtDR78fvc5AsGLpdjyeLq0DQcDsGpaTgcGsGAC5dr+Y+c1+Pk0L4mWlts7QObhRw52MrTj+2jc1dw5YM3lh1jEMA2CpvJsvoSSqnRGsb4S+DlYsfUx4Ag6/wBjcWzNDd5GBoOIyK0t/kIhVNLDIJhmCil5ttc6LqJ1NAiJhrLVNRVsLEZHovi87p409M+u6htHbH/+jaBGvUlVkQp9QpWdtJ7sFxHX1hB9W3NxOJZ/H430WKX1OYmL5FIZsExpqkwTUU0lqG12RLXSSRzBHwrh0tmQ2naWuymdTZLUQruDMxx8fqEHQ9aR2yjsDmU60vcKP/CSiV9j4jU+rv5IJZReAfrGGAuEU/mcDpkvvrY5dTI5e8GhU1TzTe/m51LzW/1k6k8gYB7xfHzBQNN0zCWabJnc+9iGIo7fXNcvWn3RlovbKOwOdSiL/GtNY71YSxFtnEsYaJ1JRrPUNDvFqqZpjkfkC43CGDtKlqaPCilSKZyBGswCqVx5tNYbWwWkc4WuNkzw42e6c2eyo7EjilsAkqp71rmvQHKMvqVUg+vMNY0UNtqu0aUUsTjOdxO53x8QJlWZo5hmBW39KVXMlkdr8dZVaGtnFg8g3MdahRsdg6JVI5rt6ZwahoP3Ne52dPZUdg7BZuayRcMCgWTQkFHBNxux7zWcjUfr1IKVaf/d2YuRYsthmOzArF4jgtXx7l1x26F0Uhso2BTM9lMAdGsXkYiQlPQw2wotWw7ingiR3PQ2sgoqClAmMsbOBxi/6HbrEgilefMxVGu3pyyg88NwjYKNjUTS+QI+N3EEzkKuoHDoc1rNVcjFE7T3haY/76aytpijGK31XpoCrg5driNA3uaaG7aEI+azRYglzc4c3GU1y+MFDv32qwF2yjY1Ew4msbvdTExHSeTKRAMuEkmljcK0ViGthZvMdicx+upLYwVi2frUr5tCrhpCrj5+te7eeHFOyQiabwu++N9r6CAqzen+PrL/QyPRuxd5hqw/2psaiKb1bnePU0skSUey4AImiboK2zZTVPNC+pEYxlaa6xBmA2laAp4ajpWE6GrI8DLr/YBgsOh0TcQQpTC0Nenh5LN1kPThImpBF9+sZfXzo8QjWVWPslmCbZR2CKIyG4R+WMR6ReRnIiMF3Wiv6P4/pCI/FLZ8S8VtRV+dNE47xaRZCPmpJQiEsvwlRd7+cLXbzM0GkHTtLuGQM3/30oDoUxFOFq7UchkdZyO2vof7d/bzIWLw0umcrN7il0tXtvXfI+hFFy7NcVn/uEWZy6OErGNQ13YKalbABE5ArwGJLCqnK9iGex/DHwAOFTl1Czw2yLyaaVUrhFzKbl57gyEuHVnhlAkg9ulcfRQG7FEjj1d5oJjUazo5snldLxuB3ndnF/oa2lCZ5qKbE7H561eCa2JAIq5uRTaIvFlpWB2NoXm1MBda/NZm52AiFAoGFy6PsGFaxPcf3wXRw62cXBfS80uzHsV+6ezNfhTrKX1aaVU+VN+d7FJXjU+CXw78G+A96/24plsgZHxGCPjUcYmE8TiWZwOyw3jKesxoxdMFhYa1/YEHoqkaWvzMz2XAqyaBqdz5d41sUR2QTFcJfZ0Bbl5c7KqkRkZi/Lk4/sJJ/I4HPbG+F5DRHAI9A2G6b4zi9vt4MjBNnZ3BNjd1cSuVh8e20gswP5pbDIi0o61sP/nRQYBAKVUZJnTk8B/BX5LRD6olIquZg5f/2Y/Q2MRnA4NEVlgCEqUZDRL2UNej5NsVq/piT8USvPAyS6m51KkMwXcLge1eHRm5pIcPdyOYVQ/2ON2MDOTWHYe0WiGgm7i8NcWo7DZmbhcDpSCwZEIA8NhcjkDp0ujrdlLe5uf1mLX30DAScDvwedx4nJpOJ1Wl1+Hpq2L8NNWwzYKm88JrF1C9yrP/3Pg3wH/qfhVN6ZSGAbLPpVnMjo+r5N4MosAwYB7XnltJfIFA5dbQ5kmE1Nxdnc2MT61sjBcKlXAqWnEElmcFZ7y/T4X4xMxDFMtq3cwMBzhkYf2EIrnazJiNvcIIui6YjacYTZsxR2UsrTBdcPEMBQKKx5mKlCmwumwjISmWYFt0YTL16e+7xP/9wdq0UDZFthGYfNZ0yqllNJF5FeBD4vIn6xmjO/+9gdXPObC1XGUaTI0Eqa5ycueziamp2O4XLW1MHZoGgG/G6Usl08g4K7JndPW4uWxh/fw1KP7l7ynlOJjn7zIAyc6Vhyno83Hm95wiPtOdNU0XxubOtgxBgHs7KOtQC+Wc37llbkKSqlPA9eB32zUpBYTDqfx+VzE4tbuwO93kUjWXihkGOa8lFssnsWssQtqOJaZv+Zi4oks4Ui6pnFC4RSj49GajrWxuZexjcImo5QKY3U3/TkRWSIpJSKtNQ71H7E0Gh5q3OzuMhtK4XJq8xWjLpdjQcvslQhHMrS2+gFLc7ejPVCTfzafN8jlCsQrFMn19s1WdCtVIp0uoOuKVMqueLWxWQ7bKGwNfhbLjXRBRH5ARO4XkQdE5GewRHdWRCn1TeArwM81enKGYRYzgdR8n6N6m9zNhVLsarMkNpWCS9fGaQq4cdTgfYonclzvXtomubdvtq7AXyaT5/qtiZqPt7G5F7GNwhZAKTUIPAl8Hfh9LEPwAvBdwL+qY6j/xDq00U4kc+TzBgXdmC8mq7eNQDan43U7588zDMX5y6O4HA4cjuUX9kgsQzZbWOBySqfzhMK1uY5KzM4lydg6DTY2y2IHmrcISqlJ4H3Fr0rvH1n0/dsrHHMDS/e5oUzPJtEcVjFQKXtnNVXCSqlFNQrCtVtTPHpqD4VCHk2rPHWlLOW2nr45HjxpBYqHR5fL1K2Mrpvk8jpzoSQdW0/83cZmS2DvFGxWZHQ8hs/rIp0pIAJOp0Y+b9Q9jm6YFVNHr3dP0drsX1aCczaUYmrmbhlH/+AcTmf9H99EIsdtW7HLxqYqtlGwWZHx6Tg+r4tEIoeIEPC7SSSzdef8z4VStDb7lryuFAyPRXAsEx8o6CbpTJ6p6QSGaTIxHqv7PgAikTQF3bS7aNrYVME2CjbLks0WiMWzVuFasVgtGHCTrCMdtUQonKaj3V/xvdm5FAGfm0KhekbTTCjFnYE5wuE0mWzl2IDDoXHoYBuHD7Vx6GDrEl1oUykymQITk/G6529jcy9gxxRslmVsMoYywed1EYtbVZ8Bv5uR0XDdY+XyRrHVQOWGeL0Dcxw+0EqhSluLbFYnl9fp7Z+tWDTn97nYu7eZM2eHiEYziCjuO7GbXW0+5sLp+WtGommGhkPs39dS9z3Y2Ox07J2CzbLc7LGaiIlY7SoAPB4nmfQqdQpUdfW1ZCqP06WRzVXPEMrmdG7cnFqSiup2Odizp5mvf+M2sVjGakEgGn39s/QPhGht8c27jBKJHLmCYbfUtrGpwI43CjXqFCzRJSi+d6743mIdg5rbSax0/UVzUCJiFI/5gIg0lR3z9uL7HYvG/14ReUFEoiKSEpHrIvI7IrLmfg65vD5fBWwY6m4TOwWqxg6pi4klMviXaYU9OBwh6Kv+vsvpYGw8usR9dPhwO998udcS9Vm0CwmFU8zMJBa0TE4n84yO1Z/BZGOz09nRRqGoU3AJ+CdYOgWPAt8K/AOWTkGJUeC9i859GKs6OLQB1wer2+leLO2Efwl8B/AHK4z/O8CngSvAdwKngJ8HjgA/s9p5l7h4dWJ+6dd1Y75NhVJ3i9jqZXomSVdn9XTQeCKH2+0kl6+8W8jnCyTTeZLJ/PyT/57dTXR3Ty7btXVsPIrLqc3vUubCScYmVhestrHZyez0mEKtOgUfB/6diBxTSg0UX3sv8BngbRtwfYCEUmqq+N/jIvIp4K3VBhaRZ4BfAX5RKVWupTAMvFBHe4yKxBMZLl+fwOnQ0ETIZPV5l41aoSvpciRTeQJ+17JCO8OjEbo6g0v2Ii6Xg1g0iwjEkzkcDqFjVwCPx8nQcHjF6uYbtyZ57NEDRKIZKz6RLaAbZs2tMmxs7gV27F9DmU7Bn9SgUzAHfBH4ieK5buBHgb/aoOsvPvcQ1u7i7DKXeBeQAv53pTdXq62glGJiKs4n/vba/MLv87mIFSUNNU0orCB8s+I1qB5XAIjEsgQCbvRFx7S1eJmYjCEiKGXJewaDXi5cHKnpuoahmJ1NItxtzDc4NLfq+7Cx2Yns5J1CvToFHwT+TER+Hau9RFQp9fIa+u/Xe/3fEZHfwKpI9gKvYO0EqnEf0K+UWnPfhrOXRjl/eYxcXicWz+JwaPh97nmjEAy4mQunMUyF3+8kEc+gqL/VRYlQOGWltWaqT314NEpT0EOqLKDtdDYxOR2fF3xzODRyuQKjY1FEBNFAVuhE3t0zzXPPHObarWlGx6Mk0wVefH14bf3Lbe5pXnp98F9+7P/+iw9v9jwaxU42CvX+nX+1eM47sVxHH9zg678fa2ciwEHgd4F/EJF3KKUqPVY3bB179smDPPvkwWWP+etPXmRXu5/2Vh9jE1Famryrvl4imeeB+zrJrlAVff+JDr7lTcfm3TtT03GG+mfn5RP37W3hVvckzU2eugrpJqfiPHhfB7qh2NMV4K1vOo53meC3jc1y/NSPvWHHGATYwe4j6tQpKC68H8Z6Ov9Hxf/esOsDIaVUn1KqVyn1Apaa2rcA76hy/B3geNHVta4YhjmvneAtVjavhULBQNPECl4vw8xsiju9M/Pfj49HcZdJhXrcDubmknVXVodCKfx+N/m8TiSa4fadmZVPsrG5R9ixRmGVOgUfxArufl0ptaYeyw3QSSitmJVLgK3geIAqrbLXGmguJ50tzC/gHo+DZAM0CbI5nfQy7iOwuqPOhdPzbqrR8di8AWht9TE0vOrEMIZHwvh9TqLRDPFiUZ6Njc0ONgpF6tIpKGYedQA/sAnXbxKRPSKyt5hZ9IdYAfDXKw2slDqLlbL6hyLyfhF5s4gcLtYzfAQrNbUhxKKZuzoKxU6na2V8IkZ7y9I+SIuZmUsxMhZF1w2mpu+2ptjVFmBgcG7VmsvhcBq/30M2WyCdLjA9Y7e9sLGBHW4UVqNToJQKK6Ua8uhY5/V/DZgEJoC/x8oseqdSqurjsFLql4EfKl7jS8At4E+AEax02IYwNZucbyth6KohzeSSqTxut2NFAzMXSjEyHiUSzZDLWUFnp1MjnsgsyU6qF2u34CIUTnGnd3ZNY9nY7BTE7hZpA8uXJ3/5Gz0MFfUL9nY18eIrfTgakNt//4kO4skcweDyQetDB1poDri5fmMSTRP27W3h5s2JmvWZl+PJJw4QCqd58IE9vPm5o3bA2WY17KjktR29U7BpDNNzCQBErNYXa0jTXcDYRJy2GlxI+bxBd8/0fHGa1+MgFE41ZA4joxE8bmu8azcnGzKmjc12xjYKq0REDolIcpmvQ5s9x0aQz+vzbbI9bifJZHbV1cyLSaXzuN3OFbOQ/D4XI6NREskcXq+T2bkltYCrZm4uRVPQy+xsknQqR6FQv3iQjc1OYifXKaw3E8DjK7y/7QlF0hQKBg6HhtfrZGo607CdAkAkmsFU5RKdSykUDNLpPG6Xg67OJs6eG2zoHEbHIrS2+pmdS3Hj5iRPPH6gYWOvhGma5PNWx1ZNEzweZ0PvzcamXmyjsEqUUjrQt9nzWG8GhsLzxWJ+n5tYtLHpm2MTUR45tZdkOl9xMXS5HMRiWUQT0pkCmUyeZDKHpjVukzszm+TQwXZm55J0dgTI5XU87vX501BKEQoluXNnhvGJKOFQGsMwMYu9oFpafOzf38LevS0cPtSOz7fuZSg2NguwjYLNsgyOhOcXa4/bQSK1tsK1xRiGleKazRYqLoBtLT76+2cQEbxeFzMzieJTdUOnwdh4lOZmD6PjUQLXxnnD04cbOr5hmvT1znD27BDRWBqX6+6OQHNo837cZDJHT88Mt25N0dbm46FT+7jvvk78fk9D52NjUw07plCBzdRgEJEPlWkr6CIyIiL/V0TaFh2nROT7q5z/9/Xf9VKSyRyhyN2dgalYF2Gaick4Pk/l55Ng0D0fQzh4oJXevlkMY/Wtu6sxNR2nuclHMpljZi7JxGTj2mpPTET56EfP8vWvd5POFHC7XSu6iBwOjXg8x2uv9/Pii3cYGJi1daVtNgR7p7CIogbCa0ACSwPhKpbx/MdYGgilAHJJg+GjZeeuWYOhyDeAH8P6/ZzCqrRuBX54jePWxaVrEwvaSuu65ft2OBrr8w5F0hw+1Eo0nluS6qrndXTdxOHQcLk00pk8IhoixoKWF41gYjJKIOBhdCxCMOClrdWPbxnBn5XQdZOXX77Dre4pnE4HTlf9f26apjE6FiUUShGPZ3n4kf12q2+bdcX+dC2lXAPhU0qpHqVUt1LqT4DHyo77OPBGETlW9lpJg2Gt6TE5pdSUUmpMKfU14JPAt61xzLpIZ/Jc714oe5lvYDrqYiLRLPqizB+320G0KK3p97lIJrKUUsLzBYP8Cg316mViMk5Lsw+loOfOFJevWp1jV0M2m+eTn7zAre7pZYPotZLOFDh3fogLF4bJZtfcGNfGpiq2UShjszUYqszpWHFOG7YSpNN5PvX5hV04vB4n8Xjj0lEXMzwaYVe7f4GLpK3Vx1ix39HBA60MDoYWGKV8QSeb0zEa6NKanomjieUqu3p9nNdPDxKps0gumczy0Y+dJ57I4nQ27k/MNOHatTEuXhohnV57/ykbm0rY7qOFbLYGQ4lvF5Ekd7UVAH5hrYNW4/K1cS5eG8fQFeFomlQqTyDgRiu7D/euALOzyTW3lliOdCpPJJKef7Le2xVkcjKGwtJmjiWyS/QS8nmDXM7awWha8d01/Ph7emd45qnD3LpjBbeHRiK8dmaQE8c7CQQ8eLzOeZEfXTfQCya6blLQDXweJ52dAb72lZsoEVBQ0M2Gx2GGR6PMzCZJZHV2WDHttuTrL/W++yP/9wc/tNnzaBS2UVjIZmswlHgZ+GnAB/wUcBz4Xw0aewlPPLqfJx7dv+JxH/vkJVqbV65AXi1Op8Zbnj3C295yHIBoLM3wcJhgwI3P66Qp4FlRcrMRxBNZjh5qo3xbFImkmJmJo5SlPmeaVg8op1MrxjscdB7ZxRc+f5V8wUBEcLud+P0ufD4XPq+roWm0szMJHn5oL08+echuzbHJ/PgPPvmhzZ5DI7HdRwvZbA2GEumitsJ1pdS/xWqf/V8WHZMAWiqc2wo0XJHeMAxiyWyjh11AoWCSTOUZn4gCMDQSwekQOjuC9PfPbohBAKv1RVubf0GzvtIi7/E4cbkceDxOvF4XTqcDEeHYkV28/HIvumEFxUt6EfF4lsnJOGPjUcLhFLlcgRVaTdWEaSpudU9y5cqoXYVt01Bso1DGZmswLMNvAr8sIvvKXusBnlo0PwdWMLyn0RNIpvIUcuu/+ExOxegfDKOUYngkbFVSe5wNaX5XD319MwQDtT2BHzrQxo3r4ySTuYqBeMtAmERjGcbGo0xNJ0gkspjm2lxxuq64eWuSy1dG1zyWjU0J2ygsZbM1GJaglHoJuAn857KX3w+8R0T+jYicFJHHgT8H2ov/NpRQOL0hT+q6rpgLJRkbjzE1lcDh0Egmsxueox+NWfGLla7b1OQhmcwyOhap6ecjIqTTeWZmE4yNR4lE0hQKq8twAmt3dfPGBFeujNl1DDYNwTYKi9hsDYZleD/wXhE5XLzmJ7Ayn34CuAB8BdgDvFUpNdXoi09MxhqaSbMcM7MpxiaipJI5drX7GRwKrVsq7HLcuDVJx65A1UCxCOzZ3cyFC8N1z0/E2j1EomkmJmJEIukVGwNWI5c3uHFjgus3xm3DYLNmbD0FG6jByf2pv71KOLwxLpymoIdUOsfUVIxn33CY51/oaXgFc600N3s5cayDWAVd6sOH2rh6ZYxQqH6d6MUoBR6Pk5ZmL01NHlaTVRQMunnyiUOcOrV3TXOxqZsdlQJm7xRsVsQwjIbpF9RCe7uf0dEIiUSO2bkk2Zy+aUYhHs8yORUnGFjYl8nvc5FM5pibW7tBAGvXkc/rzIWShMPpVUmeJpN5rl4bo7vb1oWwWT22UdhAtqsGQziaIdfg6uHl0ATS6QK7dzczNBwml9PJZPLzLaY3msmpOJFImtaWuwpx+/e1cOniSMPjLEpBNJYhHE6RX0U1dSyW5dq1cW73NNyDaHOPYNcpbCzbUoNhcDCMuwGtGmrB6dSIxbMooKszyJmzg2iahqmsCmZdF1wux7xm9EYxMhohmy1w4kQnogn9/bMUCsa6Bd8TyRwKaG3x4XY7cbsdtLT48PvdOB0aSilMU5HOFIjF7upXg6VRcf78MIZucurUXlufwaYubKOwgWxXDYbegY2rEdjV7qe37+71TEMh89eWonGwdi0bbRhmZpOEI0n+yTtPcfnCMH6/C103Uepu19a7/659R+NyOdizt5mAz008nmFkOEQkkiaXK6CU1Um1rc3P7t1N7NndhGjCzEwCw1CkUnnOnBkkmy3w8MP75zUxbGxWwv6k2CxLMpUjHMng2qCdQsDvZnY2QXtbgOnpRMUQnlKWGpsIDWk2Vw+HD3Xwwos9zM4mcLtduN0OHJpmFT+LoAkgoImGaFbrjULBqLk9iMOhcfTILpqavMxMxzn9Wh+maTUHvFsRLYhYBWyhUIpQKIVSiqagh/sf2IPL7WR2NklBNzl7bohQKMXDj+xn395KtY42NguxjUKdiMhurArm7wQOYDXGuwb8b6XUl0RkCDgM/JhS6qOLzj0HvAH4D0qpPyq+9hJwQyn1czVcuxOrkO07gL1AFLgB/J5S6uv1jlcL125OLuiBtJ5ompXDbxiKfXubuXh5pKrrw9oxmIjIknbb6zm/pqCHudkkIhqFglFTNXEg4MbndZEvVI+JBIMejh3dhWkqeu9ME46kQFmpqyKg64LbXbQ4FRARkqk8Fy4M0xT08NDD+8jmdOLxHAODIYZHwpx6cA8nTnTR2RlsaMsNm52FbRTqYAtoLXwWq+XFe7HcUF3A24BdaxizKvm8zrUbkxu26Ha0BxgYCt19ws7riFS/tmkq8nkDj0c2xL11/GgHt7qnUGpBW6QVSaXypFJ5Wlt8aA5BL8ss2rUrwOFD7USjaS5eGJpvBy4i8+u/UmAYJoU8uFaQCS0ZhzNnBjlyuJ19+9uYmU1iGIpr1ye4dGmUrt1N7NvbQrDJi9fjRDTB0E1yOZ2CbpDP6dYcFfgDboJBD/v2ttDa6rfjE/cAtlGoj3KthfLW2t0i8rGy7z8O/DsROVaseIa7WgtvW82Fiy023gq8Uyn1fPHlYeD8asZbCaUUz3+zD6MocLMRBINuJifjNDV5iUXT1JL+bZjmvKbyehoGh0Pw+11EwqlVL4zRWIZg0I3T4bDiAHuamZqM89qrfZimWdwVVNkZmQpDFJpR2+9DRBgeiTA5GeOxxw+Ry+skEjlcbieRSIZIJFOMhaiikbN2JJWuX2qhcfJkFyeOd3H4cLttHHYw9h6yRraA1kKy+PVdIuJd6eC1UNANnv9mL32DcxtmEBwOjVQ6j2GaHNjXwuBwuMaFR+Y1ngsFY93qGU4c7+Tmzck1B5Cbgl4ef2w/+ZzOKy/3cufOFEqpmu7VMMz5wHat5Asm584NEo+m2benecEOx2o3rs038Ks2B03T0DSNvr45vvGNbs6fHyLVYK1um62DvVOonU3VWlBK6SLybuAvgJ8WkctYrqxPK6XOrmrQIlevT3D1xgT5vEEkmiYczeDzOjdU9vHQwTauXR+nUDBwOqXYXK72802UtWBSwKEJoi1WXpBaNh4V0TTBoWmE5wv46jcMTU0eHn5oH1OTMZ5//jZOp4ZSpSyl2sczTbWq5nfdt6cYGg7zxBMHmZiMr6nB4PBohJHRKOYafqY7iX/42u2f+PAHfuj/bfY8GoVtFGpn07UWlFKfFZF/wHIjvRFr5/KLIvKrSqnfXe24jz2yj8ce2bfygetIPq/zVx8+y+FDbbhdDpqCG6OdUAvHju5icGhu2afp5Th1ai8Oh3Du7CCmYbmJDEPhdjtWXYzncjlWlXl16dIIJ0/u5sTxXUxOJVa9s5qdTXD//bt59JH9dHQsaSh8T/EvvvfxHWMQwHYf1cOW0FpQSmWVUl9XSv1XpdSbsFxSv1F0UW1b+gbm0HWDro6mBXUKW4GWZh9zs4m6DYLH4+S5544yNRHl6qURywCUjbHa4jfTVBiGiVqFQRER7tyZ5urVcfbuacbvW51AT2mcW7cmSSZtV9JOwjYKNbKFtRZuYe341jXOsJ4opbh0ZQyXy4HDKSQS6yvmUw8H9rcyODRX9xN1MOjhyScOcuHcIHOziYrpSqWsotWYv5IE6GpcWSKWe+61V/swdIN9e1twuVazFAh3eme4dm1sVb2abLYmtlGoj03TWhCRXSLygoj8qIg8KiJHReQHgP8IPK+Uiq/1GpuFVSmcxut1MjeX3LTmd5XY3dnE+Fi0rl1Ca6uPh07t4fTr/eRz+rL5q4ZRZ35rGbpuUCisYTEW4XbPNOfODuDzuti/rwW3uz6XlK6bDAyGuHxldPXzsNlS2DGFOlBKDYrIk1guod8H9mPVHVxlGa2FBl0+CZwBfh4r6O0BxrHSX3+7QdfYFF4/M4jLqdHV2cT5C0NbxnXU1RlkbCJSc3YQWIVq95/s4szpAcu9U8N5um7gctUfX1DKOtehCdoakgIKusmVK6O4XBoPPLCXrs4gubxBKJSqaU7JZI652STDwyEOH16XkhmbDcTWU7CBRogGr5JwJM3H/uYCLpeDo0d28fVvdG+ZHPgnHj/Aq6/U3qrK5XLwhqcP8fpr/ZiGWdcOwOFYXRAbrCaCbrezYT830zDp2t3E4UO78AfciAiRaGbZ2IEIPPjgHt743LEN70m1BdgaH9gGYe8UbDYNpRQvfrMXp1MjGHAzORnb7CnN09zsJRxKYtnL2v7mn3ryIOfPDdVtEIBiNpKGYai6vUm6biJiFF0/a1+fNIfG3FyK2dkkpqkI+N0cONBKZ0cQj8c53947lcrPn6MUjI5G8XpHeOYNR9c8B5vNwzYKW4SilsKtZQ45pZQa2aj5bAQTEzEmJmO4XA46O4O8/Er/ltklHD2yi3NnB6l1kT314B76+mbIZQtrihE4HNqqYiqWYQCXq3F/0lZfKSGb0+nrn0P1zVpGIuBm//5WdrUH8PpcGIZibi5JIpElHssyMxOnq6u5YfOw2Vhso7B12JZaC6tF1w2++vxtXC4HItaTcjZb2BLxBK/HSS5bKGomrzyftjY/IjAzFa/bIGiasG9fK21tfpRSxGJpJicT1OvRU8oq3hMMnOvkvpk3Elmd/v45lJpFmYrWVh/HjnUSbPYSjWW43TNDZ2fTljHwNvVhxxRsYBNiCl9//jY9vbM4nRq7dgWYnooxVHNri/XloVN7uXF9nHQ6v+KxIvDG547y2qv9dbWfEBFOndpLMOBidDRCKGTVQXR2NnHgQBvxRJY7d2bq3jVomqy6sG2tmKbJwYPtPPDAbg4f3sX99+/Z8DlsEpv/oW0g9k7BZsO52T3F7d5ZXE4rY6a1xcf580NbwiA4HIKmQSqdr+kv/cEH9tB9axJl1h5H8HqdPP30YW7eGCcaWah9PTYaZnw0zK5dQZ579giXr4yRzdYuy2maar6d90YbBk3TGB+PMj4W4fiJTvJ5nZMnd+PxrK5AzmZz2NQ6BRHZLSJ/LCL9IpITkXER+bKIfEfx/SERUSLy1kXn/YaI3Cj7/t3F40pfkyLyKRGpGvESkVMi8qKITItIVkQGROR3yyuDReTti8YtfT1QdswPiMgFEYmKSEpErojIv1zmur9SHONPFr3+WyJyuzhGRESeF5E31fAzfJuIXCy7h3+90jmbSW//LC+93DdvEDweJ9Ho6oTq14NjRzq40zNDLY/oPp8lshOaS9ZsEHw+F08/fZgzp/uWGIQSCghHUpw93c+jj+ynpaW+usRSS/FCwajpPhqOCGOjEb74has8/43bDAzMNkSJzmZj2LSdQh3aBFmsmoCVFsg0cBxrK/cA8GfAF0TkcaVUJSWUPFbrictYYjWPYTWbc2IVhJXzEFBebzBb9t8hrDqB20ABS3znr0RkVin1pUX3/BzwU1QodAN6gH8DDAI+4N8DXxGR+5RS05VuuGj0voRVOf2jwFuAPy1e+7OVztksTFNx8fIIZy+MLGi0t3dPM6fPDGwZ0Zdgk4dwOFnTruWhU3u5fKn22L/L5eCppw5x5rTVknw5lKnQFZx5vY9nnjtGb98ssVjtld5KKfJ5HdN04HJpG/7zzeUN3B4nQ0MhJidjzD2atNxlwW1beH/PsJnuo1q1Cf4cqyvo9yqlPrfMeEopNVX870kR+U0skZsTWAvu4oP7WKiXPCwib8dqS7GYGaXUXJWLvrDopT8u7hTeirVgAyAiLcDHsJrj/VqFcRartP1C8djHsdprVOJfAxNKqfcVv+8WkWeBX8IS5Nl0lFLMhVJ844UeQuE0TufdxUnEWvxSqfyWcB0d2N/K8OBcTSI6bW1+EokshfzyFcvlPP30IS6cH1rRIEBZIqwI588O8Owbj3Pj5iTpdKGma5XQdQPDMHA5HTicG2scctkCsViG9nY/Fy8MEw6nOHVqH4cOtW/YHGzqZ1Mez+rUJhgF/jfw30SkHiOWKf5bk0NTRE4U5/TNCm9fKLqknheRdywzhojIPwbuB15e9PafA5+pYEQqjeMGfhqIA1eWOfSNwNcWvfZV4GkR2TRHrmmaxOIZrt4Y528+c4m/+fQlorHMAoMAsGd3M7duT27SLJeyu6uJ0fHaWlqcPNnF7e6pmg3Cww/vo/fONLnsysHrElYlNSiEc2cGeOzRAzgc9RtPpSBfMMhkCuSKuhOmaa67aylfMOc1IDRNGB4K8dprfdy6OWG7k7Ywm7VTqFeb4L8BP1n8+sBKB4vIAeA/AGPAnRWOfR14EqttxF9gtbAoMQn8DJa6mRv4MeB5EXm7UurlsjFasFpOeAAD+DdKqS+Xvf9TWPf8YyvM5TuBv8GS3JzEUlmr6Doqsgf4xqLXprF+rx3FMVak+/YUvf0VN0KgQFFU6MJ6skeBWVTt0g3LTZHP6WSyBWLxHNlsARFwr6CGtruriaHhyGrT+hvKrvYA4xNRDN1c0Sjs7mpiejJmBZdroK3NjyaK0Fyi7nmV1k7ThIvnB3nDU0c4fWYAtcqEl7xpQMGYX5SlqPZWUl1bIMJjHbCq65QwDJNsroCjGPSemIozMhJheDRCvoaf9Xbg81+8/iMf/MAPf3yz59EoNsso1PVJUEpFROS/Ab8uIh+pclhARJLFsf3AJeB7lVJ5EbkJHC4e94pS6p+WnfeDQBNWTOEPgV/GMkIopXpY6Ho6XYyF/BILdwIJLDdPECsm8n4RGVJKPS8i9wO/C7xVKbXSY+KLxXE6sGIPnxKRNyqlllvcFz9ySZXXq3LffV0cOlh5S7/gb1ZAKC4gS0Rs6kMEXjs9wMkTnRum7rYc953o5Pnnu2luXtnn/eCDe3jlld6a6gFEhIcf2c/rr/auegEUEUvbWTe50zPJk08cpOfOzLovqI16lne7nDQ3exe0vxgenOWRRw/w4IN7t3120ue/eP1vN3sOjWSzjEK5NkGtP9D/Dfwc8AtV3k9jLagmMK2UKk/t+A7uupEy5ScppUrtHW+JiAP4SxH5Q6VUtTzAs8APLRrD5G584oqIPIi143gey8XTAdwo+yN2AN9SzBQKKKVyxXFSxXH6gDMi0ou1O/qtKnOZwtotlNMF6FgB8JpwOjScgY2VY8jldW73zGyJPjk+n6W9rBfMFRvLdXQEmZ6KU1PgAcuA3LoxVlfK6mLmdZQ1IRrLsCuVo6uridm5ytlLjaJRJiebK+BMW/Uo5dy4PoZS8NhjB2hq2r4B6A9+4IczKx+1fdiUR7TVaBMopbJYAdr/AHRWHlb1KaUGFhkElFLDxff6lFLjy0xNwzKUy61Uj7OyW0bDciUBfB54pHhe6esClpvocawsqFrGqcRp4FsXvfZO4IJSqr6I5AZz/vzwlklD3be3hWvXJ2rqNHr4UBt9fdM1PaV7vU48HieRcGrNbhil1HzH0v6+Gbq6mnC7N3+HVQuGYVVbZ3OLn7OEWzfHuXJllHh8R62r25rNzD76WeB1rCDuf8FK0xTgHVgpqocqnPMR4BeB9wD9a7m4iPwYVrrrdayF+Wkst9FnSk/uIvLvgCHgJlZM4UeB7wa+r2ycX8XaPQxgLeDfgRU7eB+AUiqKlfJafu0UEFZK3Sh+34yVBvtFLIPTiZWeegD4VNl5f10c88eLL30Ay7D+T6wU3DcD7wZ+eLU/l40gk8lz/cbElnAbeTxOEolsTS022tsDTE/FMc3aWmk/9NA+rl1pTLuqUmyhtEG5fGmIZ587zuUrY2yHgtpMJo/DqeH1LFxylILuWxMoBU88cYCmJt8mzdCmxKYZhVVqE5gi8suUpXquAR3L+NyH9Vc1DPwf4H+UHeMG/qg4twyWcfhni+oPgsD/xVrAM1j1Cj+ulPpEnXN5CMvY7cL6OZwHvkUpVV7TsMBQFn+G31Gc889g9Uf6t1utRmExz794p47eo+vLvr0tvPZ6f00P8ocPtfH6a7U17WtvD5BMZNfUIG8x826kosbzjetj3H+yi9s96x9fWCumsuRH0+k8fv9CV6VScLt7Ak3g8ScO2rUMm4zd+8gGNrD30eRkjM9+/sqm9OZZjMvloHNXgJdf6V0xf9/nc3FgfytXLo/UtAA/++wRzrxeXz+kWtE0md/VHDvehWEoZmaXZHZvOQRoavaya1eg4gOBiPDQw/t46qnDeL3bKvi8tS1ynWz+/t3mnqGgG3z5q7e2hEEA2L+vhctXxmpa5I8f6+B292RNx3Z1NTEzE685ZbVelCqmBgMD/TN0dQbxeLbGz3Q5FJDP6SSraHArpei+NcGVKyPz/ZtsNh7bKNhsCEopnn+hh0x2a8S/3S4HuVyBRCKz4kJfin1ka5z70aMdDPTNNMxttBilFKa6G2e4dGmIUw/uYRMF9Gomm9PJ5fSqdXOGobh5Y5Irl0esAjubDcc2CjYbws1bk/T1z26J4DLAgQOtXLo0WvMuoef21IrHAeze3cz0VHT+Sb4cp1Nj//5W7ju5m2PHO2lflKJZD6VsJKW4G1+4v2vV420k2ZxOLFY920jXDW73THH58qhd+bwJ2K2zbdadkZEw33ylb8u4jbxeJ8lkjlQqX5Ooj9/vIhpdeUcBcPToLl5/tXfBLsHjcfLII/tRSjE9GWN2MorDodHeHuDEsU4M06T3zgzxKm6ValiGwYoxxOOW6tnuziDTWzy+kM8bFDwGhqGqtu1Ip/IMDszidjt45JEDGzzDexs70GwD6+h3GBkN8/dfurklFNVKnDjewUsv3iFfg9/6wP5WUskcY2MrCwB1dTUR8Lvo752eNwp79rZw5FA7ly8OW83zKuBwatz/wF78QQ+3bk2STObquh8RK/AsAk+/4Sh9/bPkclvbJ+9wCE1BL+3t/mWPO3CwnQcf3MOxY5VKk7YMW+fD3QBsPYU16iksGvOHi+///aLX/z8ROS8icRGZFZEvisjDFc4/KSKfE0ubIS0il4rV0cv9DLeknoJSiqvXxvnil25sKYPQ3ORlZjpBNldbfKCrq4nxsUhNu4QjR3Yx0D87bxAOHmynsyPI2dP9VQ0CgKGb3LoxzpULQxw/1sFTTx7C4659V6WUwjRMTFNxeZvEFwzDEgNaWtC2kLHRMEODoVX1jbJZHbaewtr1FEr3cwyrd9IrFa71dqxW4eeL8/uvwDdE5FSxurukjfAa8NfAPyrO6QGgqi9AtqieQjqd4ytfu8XEZHzLuIxK7NnTxFe/equmFtJtbX5mZxMoFCt1empq8hKPZ+bbWezaFWTXLj9XL43U/Bip6ybXr4zi8bl49NEDZDIFbnVPzlcyL0epWWE+b3L16igPP7yf69cntnT9QrpY0OZxO5eNyff1TePxOHnqae92S1Xdlmya+0hEvoTV5uHk4vbZItJWbII3BPwdVhvpd5X0FETkN4DvV0o9XPz+3VhtuINlY7wLS0/hgWJju1rm9H7gjUqpNxa/fztWk7rOanoKxeNcwKtYC/87gA6l1Hcuc3wQiAHfrZT6YvG1j2O16nhXLXMtnvP7WE3/7it77S+Bh0r3UCMN+RAkU1nOnR/mdo/lPtG22IK0d08zIyNhhofDNe1eHn/sAGdO99e0KD/55CGuXBpC101rAXvyEKdf61uTX6G5xceDp/YxG0rS17fkOWRZ9u5toWt3CwMDc+uWBdUIPG4HwSYvLSs0InS7HTx4ah/PPHN0S+08i2y5Ca0FW0/h7pzWoqfwO8CQUurDNc6tCetnHyleWwP+OVZTvq8UXUznReQHVxhnU/UU8nmd2bkkFy4O88lPX+RDf32W2z0zaJq25QyCy+XA43EwUqNB8HpdpNP5mvozeTxODN1AL8YonnjiEJcuDK15pYjHMpw93U8ynuHNbzrOvr0tNZ87ORkjlczQ0REgn9fRdaPY9nxruZVyeYN8TqegLx8DyecNBgdnuXp1dNnjbNaOraewRj0FEfk2rPbbj9d4LwB/jCWec7r4fRdWu4xfAf4L8J+wXEgfE5GUUurvKw1Cg/QUenqmGRopesdKOfAolGkJ5ui6SS6vk8sWyOV0UqkC8XgG3TARAafLueVzmx9+aC8vvXiHXF6vWUTn1o1xq1BshYX05H1d3O6eBIQjRzoYHwuTX8FXXg8zU3FmpuIcPtrBc88eJRrN0N8/u2KBV1/vLA8/so+Odj9jE7H5162g9EINhaYmD83NflpafJaLpqiXAdZGQxBMFKFQiqmpeEOLywpFo7VSQ8LpmQSmqRgZC+P3L9cncmP55Kcv/7O//MCP/MNmz6NR2HoKa9BTEJEO4EPAjyza3VSl6KJ6C/CWslhH6a/h75RS7y/+9xUReRqrMV41owAN0FM4dKidYNBj6SUU3T5SbKXgcGg4NNnWG2SHJty8NcmePc01xTg0TdjT1cRtTQgGll98NE0IBDzkcwXcHif79jZz9vW+dfHljwyFGBmco6XNzyMP78PtcZLLG8zNJZkLJSsaou7uKR577CBOl4NsVicY9NLc7C32H1LzQepEPEs0mqJ/Kkouk6/44dE0oaOzmVP378btcTE+GWNmpjEB4ELBIOB24vMv38J9ZiZJR0cT+/e1bqV225c2ewKNxNZTWJuewsPAXqygcel9DUBEdCzf/rxREZH/UTz3HUqpgbIx57Ca4t1adK1uFmk3LKIhego+n4v9+1trPXzbEYtluHRxBK+3Ns2I/ftbrQZtmrbi4n7ivi7u3JkCgVMP7eXWzXHWtdufCLFohquXhgFwe5x0dDZx/31duN1O67qLr68UDz6w2zIeMwmGB+KkkhnKC4bL71M0rer052YTzM0mUEpx5GgHb3jqIIPDESKR9JpuSy+213Zogsez/LI0MhyiKejhvhNdW0KP4y8/8CNbR1O2AWyKUVBKhUWkpKfwvyoEmluLLafLz8mKyK9hGYdKuwWllOqr8DpKqeEap1aup1DNKDzOXbfMeSythHJ+G2jDesIfLL0oIn+MtcC/XSl1e9H88iJyHkvbuZyTWN1bq3Eaq5V3OdtCT2Gj0HWTz3/+al3BVq/Xycxssqan/WDATSScwudz43RoJGKZjQnsFq+RzxtMjEeZGI+uGC8INnsxTcjldEDWNE0RS3N5eGiO+x/Yy/69e7h1e4q1dKZIpXM4nBpOl8PanVbBNBU9d6ZxuR08/fSRLZ1htR2x9RTWoKdQ3I3cWDRuFHCWtBKKr/0frHjEdwMRESk93SfLDOIfYMlvvgK8gPVz+CHKFn3ZIXoKG4VSim98o5tEMofTWVvUo6MjQH/fTE3HHjjQxuDALKB44ME93Lo6tr67hJVYYXFMJrIEgl58PheZTKOeGYSe21P4A26eePIwPXdmSabqK74rHyuRyKJpQlurf9nbyed0hgbnCAY8PHhq3yqvZ1OJTYsPKqUGsQK8X8eqQ7iGtRh+F8voKWD5/BvhTCzpKZwvXvvXsfQUfqLsmJKewjWs+oO3YOkpfK7Oa/0sVtzieaxdRunrl0oHKKU+j5V6+0tYhup9WLoM5QGsQ5QZy+LP8DuAb8EKXP8q20BPYaO4fHmU/v7Zmg0CQFtbgMHBUM3dUCcmoni9LkRBLtc47YT1QUglc+i6QVNTYwO16VSe11/p5fDBFro6l4gp1oxSkEhkicUzKwbFwuE0wyNhpqZiKxxpUw92mwsb2Orlr6ugt3eGr32tG0cdBqEp6MFUimtXx1ZMW+3oCOJ2C313pnn8iUP03Bgnk85vcaNwF6dTo7nFRyKZwzQa9+tXSvHAqb2YShgZi656HJdTo6XFR/MK9QtKKR56aD9Pv+EwPt/G6oyXsT1+6TWy1TMJbWzqZnBwjq9/vT6DALB7TzO3uydrqmM4eLCN/r5Z3G4nDk3IZLaPQQAr1hIOp/D73Ph8jStpERF6uqfIZ/McP7Zr1eMUdJNYLENihSaBIkJPzyQ3ro/XVGRoszK2UbDZUfT0TPOlL99cMed9MR6Pk3gsQ36ZHkUlgkEPsVgaZZqcuG83vbentudeS0EsmkIvGDQ3e6mh80fNDA+FSETTnFijYYhE08Tj2WV/vIahuH17ips3xld9LZu72EbBZkeglOLM2QG+8Y3uVWk27NvXwtWrozX1RDp+vIOeogpbU9BNPJbe9F2CpgkdHUEOHmqns6upjlYQQjZbIBpN4fd7lugnr4XRkTDRcGpNhkHXFeFIilg0s+xOIJ3O098/y9BQ1W40NjVi6ynYbHtyOZ0vf/kG4+NRHKtowOcqqrCl0/kVjYLb7aSQNygUDA4caGN8NLKpGUfNzT7uf3APpmkSmk2SyeTx+1wcfsqq1bx5fYxMduXdjzKtXYPL7aSlxUs6U6CQX3vV8viYVdN54tgu+gZqLp1ZgGlCOJJC1w1aWnxVaxOmp+P09c3S0uKjrW31Akb3Onag2Qa2p/MDpRQDA3O88MJtCrpadaO0o0d3cfbMIMlkdsWso1On9nLr5hjpVI5nnzvG2Vd72QyLoGnCY48fpFDQ6b45gVmhR5Pb7eTRJw8xPRljZKSmgvsiikDQi9vtJJXKYTQgEH3wUDvBFh8Dg+GVD646LYXb7aSl1Ucw4Km6OXv4kf284Q1HrGK+jWH7BJNqwHYfbQFkBV2J4jHPisgXRCRcPOa2iPy6iHgXjTUkIr+09Co7B6UUs7MJPvmpi3z5yzcxiupjq8Hp1CgUDJI1aDVrmuB0aqRTeZqbfVah2iaY05ZWH2988wn6eqe5eW2sokEAq2HhhTMDeL0u7n9gdx1XsFJXo5EUXq+LpqbqC3CtjI6EScWzHD3SvvpBRMgXDGZmEszOJshkChV//Le7J7l6xZbyXC32TmGTWaQr8Wss1JX4j0qpQyLyXcBngI9hVXSHsPQl/giriO9blVL54nhDWN1n/6iOaWyLD4FhmoyNRjh7dpDpmQROp2PN1axHjuzi4oUhYrGVjcJ993UxMjxHJJzk8ScOcfPKaEMbw9XC/gNt7N3bwsXzg3V1PD1ytBOXx8mdnuk6r6jQHA6am70YpiKdytd5/kKOHuvA7XUzVNfOpcrMlCIY9BAMevD5XAs68waCXh55ZB+PPXZwzdepgR21U7BjCpvPn2J9qJ5e1O6jW0Q+JiJ+4K+ALymlygvrhkWkB7gA/DxWM78dh65bT4bdtycZHAiRyRZwuZy4XGv/6LrdDvL5ArFoGlkhliBiZR1Fwik0TXA5NQoFq13ERvHAqX2gTC6eG1j54EUMDc5y8oG9HDrUVqcrSTANk2jEijc0N3vJ5fRiq4z6GRyY49jxTg4fbGV4NLqqMeZnJkIqlSeRyOLxOAkELOPgcTtJJbP09c7g87k5ebKeXZKNbRQ2kTJdif9cTVdCRL4Hqw32H1R4/5KIPA/8CNvcKChlyTOm03nC4RSTUzEmxmOEwinyeQOXy9oVNMIYlDh4oI3XXuurKXPo4ME2BvtnAMX+/e2MjYQ3LMAsIjz19GEmJyJMjK3+CfvO7UmeeuYo0WiaeLzeVhRCIW8QCSfx+dw0N3tJp/Poev3Njgb6ZzlxXxcHD7QyuoYCtxKaplEomEQjacIhhdOl4fO6iEQzSFG7+siRji3RPG87YBuFzaUWXYmTxX+rHXML+Km1TKKvf4bJiXjNx6uSt0ktfVUp63WFsrQIzGJ7ZgWGYVIoGPOiL9msTiqVJ5XKkUnnMYrHaprg0LR1XXCDQQ/jExEi4RRSQzyirc3PrWIe/O7dLZw/Xey9uM7uV7fbyRuePcrN62PEo2vrRApw+cIQb3zrSU6/1ouur27u6XSedCZPU5MXr8dpVUXX+XPouT3J/Q/uZXdXkJHRtbuSyinohtXbScHkRJREIsvnPncF0SAQ8BAIePB6XLjcDlwuDafTgcNhaUw4NA3RLP2IUit5gcquxaLOxEc+evaRP/+zd11v6E1sIrZR2FwaseyVmiWvmq7OJtLp2hukLZl08Y8DsJ7MKOoyFJ/SHA6t+CU4nY4tIafodjv51KfOc+x454rHtrcHSKdy+P0uvF4XyjTRiovIetLc7OPhR/Zz4ewA+WyhIaUQSimunB/kyaeOcPHC0JrqK0opvK2tPoC6XUqjwyFOPrCXp548SDiSWfmEVRKNpnnqqUMcP95RUZzHMEwKuolhmJiGaT2cmApTqeJDTvEBx3raWUDx27Vb6y2EbRQ2l1p0JUrKcaewAtKLebA4zqppbvbx6CP71zLEtuPSpREKBRPvCr37Afbva+H5r9/E4dA4dryT/jtTaLK+iXt797eyb28LZ17ttbKLGmiA0pkCkVCSAwfbGV+j+0aZilg0jcvtpKnJSyFvYNTcP1vouzPF/Q/uo6srSDy2fEuLtdDfN4PH4+TJJw8RWEE4qV7+/M/etaaOzVsNOyV1E1FKhbE0lX9ORJa0lhSRViwN5hCWvOji95/EylL62PrOdGeRTuc5d3YQVw29kQIBDzPT8Xnfuc/nIh5fv8VL04THnjhE0O/mwpn+hhuEEgP9s+zf14rb1YglwIo3hEOWrtVKIjkLzhShp3uCQqbQ8M6ti7l1c4IrV0ZJp9eWQbXTsY3C5vOzWB6ZCyLyAyJyv4g8ICI/A1wrajb8FPDPROSDIvKEiBwSkR8CvgC8iqX5bFMDSim+9rWb1Opx27evhRs3xhFNaG8PMDedWLcE3qZmL8+96TiDfdPc6Z4oiiOvn4vq8oUhnnjqcEPz+ROJLIm4lQ1Ua0NCEaH71jhGwSDgb1xzvkrcuD7O5UvDpFat+bDzsY3CJlOLroRS6m+xNBO6iu/1Ar8J/CXwbaUaBZuV6emZZmw0WlM8wO93EwolKRSb5B082M7gwOy6xBKOneji+IkuTr9yh1gktSG9lPIFg5HBOU7c19XQcXXdJBJOYegmHq+rpp+XiHDrxhhiqnU3DNevT3DxwjDx+PrFMbYzdvGaDWyT4rW1kkxm+ehHz9Yc3T9xXxfffKGbfMFA04SHHtrPudN980H1RuByOXj8yUOMj0UYHy42c9vg5npPPH2E3jvTpNZYmFYJTRNaWnyYxZTjlVBKcfKBvfgCXmKx9Vu0lVLcd3IPjz12gI6O1YsCFdn8zIkGYu8UbO4JdN3kbz93ueYUUr/f0l7O5u7uEob6ZxpqPjs6gzz1hiNcuzRsGYR1dhdV49qlYR597OC6tIUwTUUkkiKf1y2FuhXuT0To7ZkiOpegY9f6NbUTEXrvTHHm9ACjo2vox7QDsY2CzY7HNBVf/cp14vGVG96V2LevhWtXR+fTZ3d1BJmdiTfMdfTAqb10dTVz+uUespss0GOYip5b4zz08HppHQuZdIFIJI3LqdXUqG5kJMTI0Cy7dzetWw8jEWF8PMKrr/Zy+/akLdJTxDYKNjsapRSvvHKHoaFwzVrNfr+bSCRNNluY/z4RzzSkTs3h0HjmuWOEZuLcvDqyabuDxYRCKQRoa/Ot2zWUqYhG02QzeatX0Qr1KrMzCbpvjLNvb8u6/ojisSwvf7OXC+cH7QA0tlGwWSd6eya5c2tiU+eglOK1V/u4cX2iZoMAsP9AK1eujMwvWkePdtDXM7XmXYLH4+TZNx3nxpURZqZiW8IYlHPz+hgPntpX18+qfoRsViccSuFwaCumrybiGa5cHGLP7uZ1LXpUSnHx4ggvvHCboaG5e7rDqm0UbBpOKpnl+S9fY3IyQnqTnrwMw+RrX73J1aujdS1yzc1epiZi8xlHAC63c8257W63g6eeOcr51/tIJbNbziCAFW65eG6Ap54+su6LolIQi6ZJJXP4fK5l1fKy2QIXzvbT1RFYlaperWiaMDEe5atfucXp1/uJRFLrdq2tzJYyCiLyIRH5+wqvPy0iqthmuvTa94rICyISFZGUiFwXkd8Rka7i++8unlP6mhSRT4nI0Trn9AsiYojI79R53tuL140VO52Wv/dg2bw6Fr333SLyjaJuQkZE7ojIh0XkDWXHvFtEljTQK76XFJF31zPXRjPUP4MIJONZrl8d3vDrJxJZPvk35+nrn8VZpxLbnj0t3LgxNr8r6OpqYnI8sqYAs9Op8fSzxzh/uo98rrAlDUKJbFant2eSRx87sAFXE/J5g9B80Vv1VFRdNzl3pp+WJg9u93ovW4pr18b4u89f4cKFoXUtVtyKbCmjUCvFBfrTwBXgO7FaQPw8cAT4mbJD08BeYB9WJ9HHgS+ISD0rxXuB3wPeXed5JWLAD1QYc2TxgcX7+gxwHfhurPv6SaxmeNumC+ro0ByaphGajZPLrK7F8mrQdYNz5wb56EfPEI9ncNb5VNnREWSgb2ZB5899+1sZGQqtyXX09DNHuXimn3x2axuEEqG5JNFwivsf2LMxF1SWmyiZyOD1Vt81KAWXLliV6P51rmUQEXI5nQvnh/jMpy/w+uv9TE/HMGtu4bF92Xa9j0TkGeBXgF9USr2/7K1h4IVia4gSSik1VfzvSRH5TeCjWN1Je2q41hux2lb/BvCDwD8FluxkVuBDwHuADxfHdAE/BnwAS1SndK1ni/f180qp/1V2/iDwsoj8fp3X3RSUUkxPxwCrQZphmKSSWQJB7wpnrp5sNs+NGxNcuTxKLleoe3cAluugtdXH+bMD875rp1NDLxiYprnq2oRHHjvAne6JTc8wqpeR4RBHj3Vy/wN76Lk9tfIJa0YoFEzCoSTBJi8ej4t8Xl/ixhIRbl0f59iJLlqavcTqbgFe56xEKBQMrl0d5dKlIQ4e2MWhw+0cPNhGW9v6urM2i+14R+8CUlgKZEtQSkWXObdUDVPrY8ZPAn+jlCpgGZOfrPG8cj4KPCMix4vffyeQBF5adNyPFF//00qDqG0S+cpmC2Qyd/3vhbxOb09jFxVdNwmHk1y5MspnP3ORD37wNc6dHcQwzFUZBLA0hC9eGL7bFhw4fKSDvjvTq3Yd7dnbQjadJzSb2FYGocTgwCzxaIqnnj68gZ1thWQiRzyexu12Vv19DvTNEJpN0Na6ftlSC2YlgsvpZGoqxtkzA3z84+f4xMfP8dKLPfzrf/XR79uQSWwQW3Gn8O0V/OXlxus+oL+4UNeMiBzAaio3xt3Oo8sdHwT+BfCO4kt/DfyKiOwp233UQhirR9F7gF/Fch39P5YuNSeBAaXUvL9FRH6WheI6p5RSJbdToEpcoe6Kn0wmP+/XXSu5TJ5UMjefiz4zHcM0FWO7W4pHqLupnfOdiIuaC6bC0BWGYaIXtRdyOZ1sJk8ylSOZyBGJpMlkLHEXl0tDK1NMW43gC1hN7tKpnFWHoMn802lTk5dIOAXCAmNRCy6Xg8NHdnHmlTvFetdtYdOXMDEeIR7L8MyzRxkfjzAysjGFXrquCIeT+P1uvF4X2ezSXcPoSBjDMOnc3cLs3MYHhcPhFOFwCqw14rMbPoF1YisahZeBn1702sPcbS1dzyNLaeEUwA9cAr63xl5BPwSMKaUuACilBkTkPPAvsXoU1cNfAR8UkQ8A7wT+NZYLayU+htUltXT/5cYxjRUjWczVOufG9evj3O6erPe0JYhAe6tvgd5xKJTEH/Ty/Ddu3RWzKSqWLXbJiAiiWUpamiY4Hdpd/QUBf8CNP+Be8zwXc+BAG1/+h2sEAu75eQebvKQSWRza6nQTnnjyMFcvDs0LtWxnUqkcp1+9w7797Tzz7FEMQxEOJYlFM/OCSYah1iVjKZ/TKeQNmpt9OFwaxiLDH42k8XhcHD+2C3OTuk3cujX5PzflwuvEVjQKaaVUX/kLi+IEd4C3ioi7hsW9tHCawHSx42it/CRwv4iUR0o1oJP6jcI3AANrt/GCUmpMRBYbhdJ9uUq7IKVUDIgtuv8SavHPCUBE6v7LfOaZozzzTF1JWVU593ovBw+2L3itpdnHW952mK49LVXO2lxef72PlhYfTufdTdbRYx2cebUPr69+I9TZ1UQiniGX03eQz1mYnooyNRnB4XSwq6OJzq4gHo8Lh1PD4VgoniQComnkcwVGR8JrTunNZvM4DSetrT4CAc8SQ5tK5nj44f2cemQjsqYW8s//+WNL/g63M1vRKKzEx4F/C/wc8P7Fb4pIa1lcoeLCuRIi8hDwLNZTfbmryAe8JiLfopR6udbxlFKmiHwIK7C8OBOpxCew7ut9VLiv7UK8QhOzVCrLQO/0ljQKobkEVy6NLKhlEBFMU5FO5xa4p2pBxIpFvPpi93YMI6yIiGAaJrPTMWaLCQWLubtjEPxBD8eOdxEIeunvnyGVXGVgWARdN5idSZBpKtDS4lvQLiMaTnG7exLRhAcfurcEoxrNtjMKSqmzIvIHwB8W4wSfxYoTHMXy1/dhtZVeCz8JXFZKfWPxGyLyfPH9mo1Ckd/GCo5XdMoqpc6U3ddhrNTUEWA3d91pK7eZ3GQq6QiH55Ls6mjahNksj64bfPELV1m87u/e3Uzv7dVVMB8/sZuem+Mopba922i1lN93JpXj5rVRRIRHHj+EYSr6+2ZWP7YmpJJZMuk8rW1+gkHv/A5lbjZB/51pnE6N++7fu+b7uFfZlntbpdQvY/n8nwS+hCVe/ydYi2jF7J1aERE38KNYi3IlPg18v4jU9dirlCoopeaUUlWjocX7+hfAI1jB6T7gc0AQ+Bal1Gg919xolFLEoks9dIWCQT5vbFp1cyWUUnztKzdJp3NLFu+mJi+TE7VpLpTjdDoIBNzMTDeucd5OQSnFtcvDzEzFePSxg2vbRYlgKkVoLsnMTJxs7m7OycRElIH+WUaH5tY+6XsUW0/BBhqUGpPPFfjQn71U8Q9+38F29h1o54mnGxO7WCtXL4/w2mu9S3z+gYAHhyZcvTxSdxrmgw/to7d7gkQ8YxuFZQgEvTz6xCGuXB5pSJNBULS0Bmhu8s7/Pu+7fw8PP3qAzq7mRlxgJXbUL3tb7hRstibZbKGqkMrMVIzMFtkpjAyHeO21vopB4D17W+jpnqzbILjdTpwOjUQd7bnvVVLJLNcuj/DYY4dozPOIEI2kmJqMkU7nUUrR2zNFz+1Jksl7q0VFI7gnjYKIvKvYI6jS180ax/jyMmP8ynrfw1YkncpVFbHRCwbZbIHpqejGTmoRMzNxvvQP13A4li7cDodGLlsgl6mrBAaA++7fzc2ro2zXeoSNJpXM0n1znAdP7WtIKquIUNANpqdjhOaS5PM6PbcmuXFtrCbFN5u7bLtAc4P4AnC2ynu1rgg/iZWNVIl7UsopmcguK9Y+PhoiGPSye0/rxk2qjJmZOJ/7zIXid0uNwr79rdy4Olb3o5LH6wIFqQrxCZvqxKIpZqZiHDrUzuhopCFjigjJZJZUOkdri59bN8ZwOjWeesNR+3dTI/ekUVBKJYDEGscYb9B0dgypVG5Zt4sgeH1OLp7t48jR3ezq2riMpJGREF/6+2vWPCosDiJWFXIklLxbZFcjJ+7r4tbVUWuXZC88dTE+GubRJw4TCLgbpxEtglIQjqRIFFNgNU3jyaePNGb8Hc49aRRs1od0qvqTss/nZv+hdj7/iTP4m7w899Y8b+p4oO46gHoxTcWli0OcOztYdBlVnt+ePS3cvjVRd8jQ6dRwaBrpdN5+El0lN66O8Oyb72tg4NlCirUNvXemASEWT/P444dpbfPbv6tl2NSYguws/YTlNA6UiHz/otdquZ+K41UY/5qI6CJysp45N5pqKafNLX72H2rn5a/fpKCb5HM6sUiKvgY3yltMKpXjs5+5wNnTAxVjCOUEg14mxyJ1LxbHTnRx+9Y4dixh9Zim4vqVYU6e3LMurTJEhL7eaSbHo3zuMxf4+tdu0n1znHg8c08rrFVjWwSat5l+worUcT+1jPUMVuuNv8aa+6aRWpTp0dYe4OSDe9E0eOmr19F1w+pTnykwPRllYjS0LvMoFHROn+7nIx9+ndBcAqdr+Y95R0eQgf7pupd1ESHgdxOPpO0nzzWSTOQoFHSam9avxfqNa6O0t/sZGpzlxRdv85EPv87nPnuR11/r5dbNcaamYiSTWXTduKeNxZZ3H8n2009Y6Rr13E8tvBer9cfngU+LyK+Wd1rdSJKJu0ZhV2cTohQvfOkahqnQyhrLKWB2Os6+g7saVvmrlCKRyHLl8gi3b0+iF4xiyunKY7fvCnLx3GDd8zh8ZBd9d6ZRqFXrLdjcpfvGOM+9+T4uXx5mfVL/hUsXhnj6mWNMTccBqwp6bjaBaVpdeTVNw+nUcLtdeD1OXB4nLpcDTay4BJqgiWD9p4bmED73mYv/+k//7Mc/sA4T3hS2vFFgk/QTRKSkn9BQo8Da7mcBYsl8/hDwdqxdRxpr5/H5tU2xfkzTXBAobGsP8MKXryNCxeBzJp1Hz+tEIyna2oN1X08pRS6nE4mkGOibZXBolmgkjcNhdVittRFdV1czfT1TqzJO7buCdJdJd9qsDaUUt2+Nc+xoJwOD61ORbBiKa1dGePTxQ0xOxeZ/d5qm4fHc/cwUCjqFgm4pnKzMfesy2U1iKxiFnaafsBKrup8q/CAwqpS6DFA0ZO+lTqOQz+tr7mKpTEUuW0DThF0dQfp7plCmWTUbxzAVumFy+dwAjz19zHLdqKKuglKYhkLXDfIFg3xOJ5stkErlSCayJBJZwuEkuayObijcbofVlVMs41SPYmJTs5dzp/ssbYc6XAZ797UyOjSHMu2Mo0YSDqU4cqwLpyYUVqmPsRLpVJ6e7gmOHO9idnZNSYgl1lcbdIPZCkZhJ+onLEcjV5D3Ah8p+/4jwP8nIvuUUhO1DnLh/CBXr6ytrdLRox1MjEfQNI2O3S303p5cUc82FknT1ztN70AxtlBMDhKkuMPQcDisL6fT+rf001vN7mIxXV3N9N6ZxOVy1P20f+jwLl55sXsHtcbeOty8PsqjTxy2up6uk8FNpfKE55Ls29faAOMz8dGGTGqLsBWMwk7RT4gDvnI9BFhwL6U+w/XcT1VE5AHgzcAbF2VKOYCfAGrOnnrTm+/jTW9e2w54ejJC360xPB4Xba0+yw+rLf/xioRTHDncwff/2JvXdO3VkkhkuH1jjAMH2lc+uIymZh+pVBaP12m7jtaJbDrP/v2tiKyv0RUFTz91mGMndq96jH/xg8+ca+CUNp3t8JjzcSyJyZ+r9GaFQHOfUmqgHoMgd/UTvg3LqJS+ngWOiMi31DBMD9bP84lFrz9Z9j7Udz/L8V6squzHFs35N4D3yAavVulUHodDw+VykIxna/KoRMNJvH635bvdYJRSfOMrN1a1qO/Z00LPrfV7irWBgf5pdu9uwTDWx4VUYmY6zq0bE4zYXVXn2Qo7hWXZLvoJSqmbIvI14C9F5BeAfizd5T8GPlXSVq7zfjQReXzRpXQsA/PjwO8opW4smm8IS8znHcALtd3+2kmnLaPQ0hZgery2fH/TVCjTpK9nkgcfPrgBs7zL0MAskxPRqsLw1fD5XETCSfSCXnfls03tKAXDQ7O0tQXJ5tb3ocFyewIChw53rOu1tgPbYaewnfQTfhB4EfgAcBMrw+jvWFQ/UMf9+IDLi75eAv45lltriVi4UmoSeA3LkG0YmWLfn+YWX1VFrkrousmdmxvbMSSX03n+azfrNggA+w60cePaqG0QNoCZ6TjBJg+6sf47ybHRCFcuDjO8TllP2wlbT8EGGlCO+/ILt+i5Oc6x+3bz0lev1+xaefTJI6RTOX78X71j5YMbgFKKv//8ZcbHwnW32HC5HXR1NvHayz22Udgg/AE3J07uIRbdmBbY7R1BHnviEPed3FPPaTvqw7Atdgo2W59SiwujYFhpmjWSiFvynRsVV7h2ZZTRkdCqei4dONjOtcsjO2wJ2NqkU3kM3Vwxk61RhOeSnH6tjxvXRtc9nrFVuSeMgtj6CetOOmGJy+Sy9fna47EMbreTibH17zY+NRHl9Kt3VuU2cjg0TNMkkbBV1Taa27fG2b27ecNaT2TTeV57+Q7nz/STSGRWPmGHseUDzQ3C1k9YZxLJLIGgh0gkOb9oilTV3JknHk1z8EgHY8MhDh/tWrf5RaMpvvD5S6vuyrrvQBs3r43Zu4RNwDAsPWanU8MwNsYwiFiSrNPTMR597BCHj3bWrca3XbknjIKtn7C+GIZJPq/T1h5kqG8agM7dLRw51kksnKLn9kTVp+tCwUAp0PX1U8eKRdN85hPnUObq+ixZWgsaoZmEHUvYJAYHZnjmjceZnIhv2OIsIkxPxvn65HUefGg/Dzy0n87OjdMA2SzuCfeRzfqSz+uYhonf7yYetWIEBw/v4tXnb2Iqk4Dfvez5yjTnu2Q2mqmpKJ/6+BkMw1y122fPvlZu3xxHiZ2UsZkM9M4SbFr+s7Q+CLdujPOFz17gtVfuMD0V29FdVLetUbgXtRhE5Ejxe0NEDi06rk1EssX3n67n+msln9Mp6AaaJuTzOj6/m3gsDUpx58Y4R07sXuGPSIiGk4wON66Vtmkqrlwa5vOfvlAURFudQRCBgN/N5HjUjiVsMnNzcXw+96YsyCKCYShuXB3ls586z1e/dI3um+M7MuawbY1Crew0LYYi41itLMp5FzC9jtesSiaTR5RgmArTNNmzr42J4dC88pWmsWxwIZ8vkIhlGqavEIuk+czfnOX1V+6sWdlt7742um+Mo2wRnS3B7ZvjtLX7N+36IoLToTEyFOKl57v5+Idf530//eG1Fs9uKXa0USjTLvgPSqlfUEq9qpQaVkq9oJR6F1a1cQmllJpSSk0qpV7Eqip+GEuLoZZrlWsxZLC0GNaLD2EZnvJH1/cWX99w0qkcmkMwDCsu0NzqIxK+u/EZG5xj7762qufHY6WMHln1U6BSitBcgi998Qof/8jrRMKpVWUZlSMi+P0uJmqs0LZZf9LpPHp+a4jgOBxa6XOxowINO9oosElaDFjCPutZUfwlwAv8IwAReQLLeH1qHa9ZlVQyh8Ohoectv71pKsrr4WamYnQsk1IYj6bxBz3k8wVCc7XnA+i6wdxMnDOv9/KxD7/GJz96htHhUPkf65rYt7+Vm9fH7F3CFuN29zhdXU1bwjDsRLZ79tG9psVQQi9e4z3A81i7hE9iGcC6MU0Tcw2pfqlEBqfLQTaTQxNB6aZlE8rWZWVaGglaBa3kZCKLz+8mNJuk+8Y4T7zB8hsbusIwzXk9hXQqRzyWJhHPMjubIJnIksvpRT0FweG0fvWNWCw0TfB4nUyVdgn2+rNlMHTF7Ewcp0tDL2yJX8yOerje7kbhXtNiKOeDwGUR2YMVA/lnqx3otZd7LaGZVbCrI0gqniGVypFJ5nC4nIRDySW7hanxCG27AkxNVu6LlM/pXLs6yjMuB3/xf17E4bTkO0XEkkh0WR1Yy/ULfH43vhUym1bLocO7uHxhEK1Buw6bxjI2EubJZ44SjaTRNl/T4iubPYFGst2Nwr2mxTCPUqpHRC4BnyjO93R5xlU9vPXt9/PWt9+/mlMB+PvPXcDQTYYHZ9i3v5XIXGKJ+Mz0RIRHnz5KLFpZ5N7tdnLgQBu5TJ5/9M5TPPbk4VXPpxHMzsS5dX2Mg4d3beo8bKoTDac49cgB3vDc8U013D/+nrfuKKOw6SZ2ndlpWgyL+Sssfea/qnW+60EykcHrd5GMpWluDRANLc2uNU2FVmwVUQmlFPlcgWQiy53ucXpujZNb55bJ1TBNk2985TqOCq4um61DPq8zNRmlt2dys6eyo9juO4Vl2WlaDBX4a+CLQHT1018bSinSqTxdux1kMnoxC6nywp+KZ/B53eQLS6uXk8ksTpeVLRQNp3jhq9dp7xji1CMHeOCh/bhcG/dRvXV9rJi9tNOfmbY/UxNR2tqD7NvfRrCpWhcam3rY8Z/6nabFUI5SylBKzSmlNueRGtALBrphYhgKpUxQqmq2zthIiP0HK0tfJmIZAkHP/PdOp4N4NM2lcwNcPj+4YZkmmXSO06/02gZhG9F7e5LuG+PFOJbNWtm2OwWl1LurvH6BRQFmpdSnsRboamN9iFXk+BfjFJ3LvP9BrIBwLWNFsYrqfn6ZY4ZYJni+0vvrQT6nY+jGfI2CUmpJ5lGJVCJLsMmLUkt7EMWjaXbvbSEeX9g3P5/TiYST9HZPcPLU/vW6DcBycX35i1cw1epbYthsPLpu0N87g9fn5pHHD618gs2y2I9DNmsimytYOwXdWkhX0lIwDBMqxBXyeR2n01FxRzA1HmV6ev37zVy9NMz0ZMw2CNuQeDzNyNAcQ4Ozmz2VbY9tFFbA1mJYnlQii9vlJJ8rWAVsurHsojo9EaFzd2VvmlKWO2ox+bxOIW8wPRlt1LSXMDMV5ezrvfO1Djbbj/GxMP2908zO1C4Ha7OUbes+2kBsLYZlSBRdQolElkDQSzqZW/b46Ykojz59lNnZREXjkcsWcLmXfizjsTS9tyfZs0y7jNWSTGb5wmcvYW8Qtj99PZO4nA5cTzppbQ1s9nS2JbZRWAFbi2F5Uoks/oCHybEQ/oCH1ApGwTQVDofG0288TjZd4MbVkXnjkEhkqgZ4Q7MJ2nc1VYxHrIVsNs9nPn4Ww1x+h2OzPRARum+OAfDoEwdpbQtu8oy2H/Ze2WZNJJNZfD43iWgGn99NsoZWwr6Ah7GBWfLZHB7X3aZ14bkEzVWe7kxTUSjozEzFGzb3VCrH3/z162Szedsg7CBKhuHC2UGmp21XUr3YRsFmTSRiadweB6lUDn/AQ2aFnQKAJsLcVJTRwVn2HbjrDopHM/PZSZXIZgr03WlModL0VJRPfPhVcrnCPSOzeC8hIvT3TvH6N3vo7522m+fVwbYzCjtFXEdEgiJSEJF3LXr9r4pzeWrR66+JyF8X//s3RORGhTFLIjwbJrITi2UwTYVSCqdTo7CCrKamCYlYuvhvhqYW3/wfrJXOqioGmwEioWTV92rF0E3OvNbL337q/JrU2Gy2PiLC7EycF792k3On+y3hJ5sV2XZGoVa2uriOUioJnOduZ9USb8cqrJt/XUT8wBuwitu2DIZhkssVMA2FKhqG5cR0APbsb2O62Hm0VNOgyiqg8zmdfH7hwi8Ch4910tTixVSKXLauprcAmIZJ750pPvqhV7h8fhBNE9sg3COYyuTKxUG++LmLXLk4tCPV0hrJjgw0l4nr/KJS6v1lbw0DL1ToeVRqbz0pIr+JpYdwguo9h8qvVS6u84NY4jpLdjJVeBGr2ro01iGg1Lb7nwB/VHzrLVi6Di/UOO6GkM3m0QtWjQIiVivBFdi9t5WrZ/vwBjxomkahYODQ7vZTHR8Ls2dfG5nM3f6FJ+7fy5VzAzQ1+9A0jaGBWe4/tW/Fa5mGSSSS4vbNCe7cniCdzludVu2003sOESGVynHmtV4unOvn5Mm97D3Qxr4Dbfj9HvsBoYwdaRTYJHEdESmJ69RjFH5FRA4V+xu9AzgHfBn4bRFxFltYvAMYVEoN1zjuhpBO5VBKUcjrWJIDK/ttHQ5LhCefLeDxOImFkzS3BogVK5nj0TT3PbCXZDKLw6Fx/ORurl8eIjSXIBxKsmdfG0P90xw/uRvTVBi6iW4YFPIG6XSOeCxDNJxiejpOaC5BLlPA6bLaX7tc66mQarMd0DTBNBS3uye4cX0MTaCjs5mOriZa2gIEAm6CQS8+nxun24HTYT1EaJrM7y53ugHZrkZhp4jrvAbki+d/uPjvS0qpXhFJAE9h1Ui8g3XcJbz2zducfb2f0vN6JQ/Q4kCdUnDseCfhUBJNhGymQKFgLNFRKKe1PUAklEIBhYKBz+8hNJtg9/42Jst0Frqvj3L4WBdOl5OLZ/rvCt0AgwPTeH1u3v/f/mH+j7T0B+t0OXC7nTiKuswags+3PnoLNtsfp8N6SIjHMsRjGRRg6AaFgkFBtz7LJbeoaRZdncXPtiaCFD9/I0Nz3//Hf/7uav3Pth3b1SjsCHEdpVRGREqL/oex4gmlBnjfBN5RrJp+CvhfddxTXbz5bQ/w5rc9UPd550/3glLMTcdp7whSKFY1V+PI8d30XBtZ8MtJJjKcbD2Az++eX/jTqTzD/TMoIJ3MEQh6548PzSR46o3H+cEffwtNzXZXTJstwY4xCLB9jcJOEdcBawfw7mLG017g9eLr3wS+B7iK9XsqDzLHgUq9IlqL/25IcnYsksYf8BCPW/8mE8uno3q8VjuMEqVCNLG+obykOJ22fm2yKF3UMExMw+TiuQHe/q0PNexebGxsLHZqxG27iOuAtdgfxtohnFNKlWIaL2EFmL8NuK2UKk/Q7wH2isjeRWM9ieWOGqz1PtZCJJzC43WRSmQIBDykk3ezOh567BDPvuUke/e1AtC1t5XZqYW2Kp/XcbkcKFRdbY+T8SwTI6GG3IONjc1CdqRRUEqdBUriOu8XkTeLyGERebuIfIRl2lPXwby4jlLqRtnXeaAkrlMLZ7CC2/8WyxCU7qEHq73Ge1maivpV4DbwieK9HROR7wN+G/ifG6GvYJqmlfetFIZhVSkni4VrlisIzn6zm+YWH488cZgT9+9hpG9hmKWQ13G7nVYMo4oiWyXGRkL4/W67f76NzTqwI40CbB9xHaVUDjgNNFFmFIp8s/j6C4vO0bF2EEPAx4AbwG9hKbX95xpvY01kMnnyeWNeXMfjdZEv1g8cOtbF0B3LAPTcGGOwZ5KzL3UvCWArUyGakE5l8flrDwgnE5ZK28TYtu4laGOzJRG7/NuGaulCyzA+GubznzrL8ft28+oLt3j86aOcf7UHQXjqjSe4+OqKJR4ANLX4aWr1g8BcqPaK0yefOYbL4+Sffc+GFW/b2FRjR+Wo7tidgs36MjkRweNxksvqC6qTAajDrWMYJsl4pm593UwmT2SunpwAGxubWrCNQhVscZ3lmZmM4g94SMTTRcU163V/wEMymV3+5DIKeZ1CXicQrN4IrxJzM3Hcbo1IeHG5io2NzVrYrimpG4EtrlMF0zSZnorR2hZgat6vby3oHV3NhOpoV1woGHi8rrqqRHd1NnHkWCdt7QEG7kzx1HMn6pm+jY3NMthGoQq2uE514rEMmXSevfvbiMfSuD1OctkCIkJLW4CJ4Tp0cudFcxTKMBHn8q0o/AEPh450cPobNwgEPRy7fx9NQS8nHz6wtpuysbEBbKNgswr670zhcGi43Q7SqTwtrX7SRZeRy+VYXXtrpWpyHz3w0H4uvXoblEITjYHbE1Y/G9PkgUcP1X9dGxubBWyZmMJW0kkQkaGyc7MiMioifysi/7zOeyqN8ZZFrztEZKL43vcveu9xEflE8f2ciIyIyJdE5HtERCseU1U3QUT+XkQ+VM8860EpRU/3eHEhVpimiT+4cjXzcpimSaFg4FymRQZAsMlLKp5Gz1vBbV030HWT8eE5+rvHGeytpd2UjY3NcmwZo1ArG6iT8F+L55/EqncYAv5WRCp2Xl2GUe72MyrxT4ElBWYi8p1YcYwW4Cew7u37sOohfhXrXjaV6akosbCVOmroJspU+AMe0qliNfMqUpzzeYNMOk9Ty/IZSEeOd9F3c2w+/pDPGzhdDvI5nf6eSXpvjDIzEan7+jY2NnfZVu6jjdRJABJl548Ar4lIN/BnIvI5pVStgjcfAn5BRN5XFNYBy0j8P+DXyu4tUHztH5RS31t2fj+WGM8HZZN79uq6wfNfvj7fSjiXKyCa1Yk0nbK0CgqF+oup9YJOJpWjqcVHfJkdh8vlsGIXxe9Nw0DT3OTzOo6MRt+tcdxuJx6fixZbsN3GZlVst53CRuokVOKvgAjW03utXAO6sQR4KLq4vgPLAJTzbVhiPX9QbSC1SZWGpmkSmkvw2U+cIRHPICL4Ax5iYatOQDRBmcpa1GP1q1opU5FKZGleputpa1uA8Exs6U5EWednMnli0TRXzw9w7dwA8Zhdw2Bjsxq22k5hS+gkVEMpZYjIHeBYnad+EHgPllH5ceAVpdTQogf/k8V/53cxIvIIVguMEv9KKfWxsu9fFpHFTYO8WDuimjnz6h0unRuY7x1vfYGpFIZhohcMPB4ngaAXR7EHfSDoZah/2nLlKIVCEQhaPv/VYBgmDk2b75y6mH0H27lzZWjJe6X5CkKhYBCNpPjaFy4SiaSYmolT0FXFctMdrpNis4Hc6Z782f/x5z+xptY5W4mtZhS2ik7Cclj5k/XxceC/i8j9WMbht2o8rwcrFgJWC+3Fu5wfwep7VM6f1zk3nnvLSZ57y8mVD1zEx/7yJXxeN83NfjweF20dTYSmY2grBIyr4XBo7N3Xhsu99GO5Z28rdy4rPN5FPZJEaGr20doeWPDy7HiIR544yv2PHqS9o3lV87GxqZEdYxBg6xmFraKTUJFikPoklmRmzSilYiLyOeADWMHrv61wWGkH8wDF3UHxHvuK165kiMYq/LxW96heJ/m8Tjpl/Qp0w0AQPF4XmUx+VY1gCgUD0aCQLywxCppDyKZzKBNkkb0xdAO8lT7Gwq3L1s7iwccO0dJuxxhsbGphu8UU1l0nYQV+EkvIZjVKS3+Fpaz2MaVUpT4QXwNCwP+32sltJMl4hny+gKYJhZwOUtzGrTLqoRd0FKD0pTUOLa3FyukK1kYVYwqmUfnC3VeGuHNzjFy2Lo+jjc09y1bbKSyLUuqsiJR0Eg4An8WKExzFyujpA36zQZdrEpE9WC6bg8APAO8D/kQp9c1VzP1FEemkSpW0UiolIu8FPi0iXwH+J9CL5fp6J1asYBVVYevD9GQMh8OB1+cmlczebYqHYjVNI81isNlTQVO5rT3A4M3Rqq0wlIJsNo8/4Kk4bu+NMTQRnnrL/XXPy8bmXmO77RTWVSdhEb8GTGIZmk9hGZ7vVUq9b7UDKqXmivoJ1d7/O+A5LDnN/4clpPMSVl3DT2BpJ2wJpiYiOBwaXp+LdLJ0S2tLjkrEMvgqLOyaJmTS1VNVDcMkn6ueCptJ54hGkgzcmax6jI2NjcWW2Skopd5d5fULLHr0VEp9GquArdpYH8KqD1jtXI6s9txF4yz7yFzpfaXUJYrpq8ucN0SVx3Gl1HfWMcVVMzluFYl5fW4SCStN1ajiwqmVeCzN7n1tRKIL01r1goGpFFqVnUIhb+ByLV+TODowQyDo48iJPWianXpkY1ONbbdTsNl8spk8yWLqqdfnJpWwlNMyRTfSasllCjidGqZxN8vW53cTCyWQZVxSpbRUw6gu6WnoJqlEmjvXR1Y9Pxube4F7zig0QiehOM6vLDPOl9fzHjabmakoesFagDWxgsSBJi/JRO06CpXQCwYiQj5/Nyjc0hZgdjKyorExTUUmtXxC2vhwiEgoWZdug43NvcaWcR9tII3QSQArvfRTVd6rv6x3G9HXM4Wz6K4xTavQLRD0Mj2+NokI0zStYrm8Dj4rthAMegjNJWlpC3Dy4QNcvzBINrN08S/kdRzO5Z9xSoI+U+MR9h5oX9NcbWx2KvecUWiETkJxnDDbWChntZimycjA7PyTu2FYTfECQQ+pxNptYSySwu+/m4GklMIoGBy7fy/nX7rFI284xrWLSyubDcOSAzUNc9niudBMDGeP0zYKNjZVuOfcRzZrY2oiSrosE8g0TBDB4dRW1QxvMbNTUdp23S000/MGmsNyKeVzBQzdwFElUFwoGKSSy7fwDs8mQCkMvXr8wcbmXmZTjMJO005YQd/gJRH5k0WvPS4inxSRqeI1+4o/k0dWGq/C+P9LRAwR+ala57sWzr3Wi7OojuZ0Ocikc0ip8cfyyVY1kUnncbudmIZpjZ/Ksmd/O5PDc4gIo4Oz7D3QVvHcQl4vurOWjxnksgWG+uz0VBubSmzpncI21E5YkTLNhCDwY8CDxWtOAr9X51gerM6xv4dVbb2uTE9GmRoPz7tuvF4XycTiwrW1USgYCJDL5mhq9hGeidNe7KkEWN93Nldc+EtFbKkVBH9ikSSTI6E1z9XGZieyZWMK21Q7YVlExI9VlPZVpdR3lb01CFxYdE+18L1YBux3gPeJyMNKqcUN8hpCNpPnK5+/iKbdfY7w+T1Mji5uars2TMNkbjZOMOijucXHUPcY7Z1NSyQ+lWkijqU2Xy+Y5HIFXFkHHm/lLunh2QRde9swTWXXLNjYLGIr7xS2o3bCSvwTLM2EijuCFe6pEj8JfFQplQY+xzrsFgoFnYHeaf7m/71CLqsvCPAGgh6ikRSaJlZjugYxMxmjvSOIy+UgncwtcQlF5hK0tAWqnp/NFkgmcqSSuYq1C0op8vkCU2vMlrKx2Yls5k5hp2onLMd9xX+71zqQiBwD3oplPAH+GviUiPzycq00KnHhdC9Xzg/OF4GZhsJUinTKWlS9PjceT9G+llUtaw4hm8kRCHhJJbOrUeKsiF7Q0Qs6+ZzVcE/PL/wITAzPceKhA8RvjS85V0R4+i0nMXWD/tvjjA3H0TRBNFlQEe0Perl1fQxvwLeaVk02NvPcvDLyb/77X7zn/2z2PBrFZhqFnaqdsNJ4jeI9wPNlbq+XsGIr3w18sp6Bnn7jfTz9xvtWPnAR6VSO/u4JdnU2EQun8PmXNrNbDSLC1FiEg4c7OHFqH/lsAa+vfNOnCDZ52be/bUn66cGjXQzemWBmPMxTb3kAf2BugctrfgRT8egTh3nLtz3akDnb3NPsGIMAm2sUdpJ2Qqz4b0uF91rL3i/tXB4EXl/j3N4N7BOR8jxQDcuFVJdRWC2pZBa9YOD1uZlIzjVsXMMwcTo15qbjeL0uJmdiS44pFHcSXv/CBnoen4uZCasCOpXIoBd03J6lxiqTzqEU5LL5pcI9Njb3MFs5prBttBOUUhFgDnhq0RybWRjs/lrxuP9UaZw6As3fDuwCnsYyhqWv7wT+cXlK73oSCSVwOK1Oqan42lpcLKap1c9w/xQut5N4dKlu0PR4hKbWhXGF3fvb6Ls5Nq/jPD40S0dXJTttoRcMRvqnGzpvG5vtzpY1Ckqps1gi9n8oIu8XkTeLyGERebuIfAQrNbVRNInIHhE5KCJvEpH/gbUlrEc74f3AfxKRHxWR48XsqY9hGYFPF+8phWVsvl1E/kFE3lmsSXhSRH6Lpa2xTxZrGsq/vMUxvqyUuqSUulH29SUsA/SeNf9EaiA0k8Dh0HA4tAX9ihpBIOhlbjKGiJBN3Q2RKAX5nM70WJiWtsCCAHRre5DJkbn5YHgynsHn92CalQvVkokMU2ORhs7bxma7s2VTUsHSThCRC8C/wRLRcWKlb/4djddO+DUgD8wCF7BiEl+oY4w/AJLAf8QKTkeBV4G3K6Xm+z8opf5ORN6ItVv4KNZuZAx4pXhuOZX0E96OtSP4l1Xm8WngJ0TkN5RS61q2O1esHSj1P2ooCnTdsArSlLKeXpRVoKYU6LqJMk1SySzBJh+7upoZ6ZtGKbUgQ8o0FblMHl/Au+QS0VCCtg5bptPGppxNMQo7VDvBwEqfXbHgTSl1EUvJrdr7QywflK6aaquUKhm4dUUpRWjOaiGlTNXwnH9TKYxijknCCAABAABJREFUgzxlWm0pTNNcYHwGeybZc7CdTLpA195WXrxwaUlPpHQqW/UHmc/pmCZk03m8DQqS29hsd7as+8hma5NJ58kXdY91o7EqoU6XYz4N1dJftgyDMhduR8KzCUTTOHb/Xq6c7a3oJgrNxGhpr74bMAoGo4N2XMHGpsSONgpiayesG+G5BIZhIiLoeYM1aOssobU9QHg2iS/gJZ3MWm2Vqvinbl4Y4MW/v0RoKl5RcyEaStK8KPZQTiadY2LULmKzsSmxpWMKDcDWTlgnRgdncboc+PxukvHMmhTXFtO2q4mhnkkCQasoDph3Ty1d2y1NNpfbyQOPHcLp1BjumyZS5tpCldJcl7bFiIQSNLX4GzZ3G5vtzo42CrZ2wvoxOmRpKvj8nvmAc6PwBzykkhk69rSQCBcXd6UQ0bBi54sMkMBjz53g6mu3yWZyPPKGE2iaEJqJW+eiyOcKFY1CNm2VwORzOm7Pjv5zsLGpiR3tPrJZH7LpHLGwVQ7iC7hJVKgjWBPKerov3ylYL1d2Ad3/6GG6LwyQSWVBwfVzfRw62jmvxGYUDMxl9BP0gsHUqN011cYGtqlRkHtYj6Hsej9a4dhzxfd+qdZrr4be7knM4gLt9bpJJhvrQSt6fPB4XeQyd718pqmWuKmcLgdej4toKE75DuLauV4eeOQgSilikRSB4MLK53LyuQKjgzMNvQcbm+3KtjQKtbIT9RiKjGLVbcwjIg8DDwHr+shrmibXLg7iKPYcUmppVtBaCDR5ScYq7zwW1yAAnDi1n94bI3ePKf6byxQo5A18fjexcJLgMnGDSCjR+DoLG5ttyo41CmV6DP9BKfULSqlXlVLDSqkXlFLvAv647HCllJpSSk0WtRN+E6s534kaL5conj+ilHpNKfXvgZ8Ffk5E3tHI+yryceCNxU6pJd6L1ZKjsQIHi7hxaZhk/O6ibRrmikpn9dC2q4nQTCmTqJKQzkIxn6ZmH8lY6u576u67vdeHOfHAfhKxNP6At+o8U4ksIlStfLaxuZfYsUaBnanHUGIO+CLwEwAi4gZ+tHjNdcEwTG5cHubcK7dxlAVsdcNs6FN2a3uASKh6bkD5bqG9q5m56eiS91FWWKKQ1zFME5fTgSreQzUKBX0+MG1jcy+zndMt7kU9hnI+iKUM9+vAdwFRpdTLq0kNvXpugBtXhuf1FEouIbP4bzaTJxHP4vW6FmToOJ0a6WQWaFybC82hYZRU1iqMaZoKp9PKQjp0rJMb5/qWHFPaESgFd64Nc/zUQfSCzvR4ZIFBK6elPcjnPvIqzW122wub+rh8tv/n/uAv3vsnKx+5PdjORuFe1GMo56vF8d+J5Tr64GoHeuyZYzz2zOps12vP3+DQ0a7VXnoJLS1+3B4XPr8bPW8pvS02dCJWXYLH68I0zGXba+Qyebw+F5lMnqZm7zKLvuLhxw/z5nc+0rB7sbk3+OGffPuOMQiwvY3CvajHMI9SyhSRD2PFTZ5jUeB5owjPrbkMZB6HQyOTziFiKaOlktmKRXFKQbDFTzSUwLK5y9v/gdvjHDyxp6pmM0A8kmb/oc6KwWwbm3uJnRxT2Il6DIv5IJYk59eVUhNrmexqUErNVw43gqYW/3yQ2R/wkIpXTnVVSrHvUAcTgzM1LeDRuQT+gBefr3rTO6UU+UKBZJVr2tjcK2znncKyKKXOikhJj+EA8FmsOMFRrKfqPqwso0bQJCJ7sALTB7E6oL6P1ekxTACnsUR0/gtlegyLUUoNiEgHm9RqI58tkM/qSIO6oza1+hntt9RF/UEvU2OVs2uVAp/fbe0kahx7YmiW5rYA8UR1+epCTmd0YIZTTxypc+Y2NjuHnbxTQCn1y1h1A08CXwJuAX8CjNB4PYZJLEPzKSzD871KqffVMcYfAL+OpalwFfgcVvbUAj2GxSilwsu9v57EY2kKhcZ1SPV4XfNP6l6/m2y6spqb5hBM3bCq3GpkbGCK9s7mZdNOE7E0kdC6ZvTa2Gx5tuVO4V7WY1jpeo2aTy3MTsVwumqt71sZ0zAxDYVoVnBZmZX3AV1725ger69GTymIhpPIMnH/WDjFngO76hrXxmansaN3Cjbry+R4uGHCOiIyr88AFHWWKy/gXftamR6LUG+/7uE7E+zZ31b1fcMwKeT1+SZ5Njb3IrZRWAZbj6E6Simmxxunb9zU4mNuKja/z7PqJSof63Q5MXS9eFzt1zB0Ez1vYC4jCqTnbdEdm3ubbek+2kBsPYYqZLN5kvHMfA+ktdLSHuTWxYG72URVFnsR7sYSitmoHq+LU08e5cb5/mVjHIZh0t89xomHDzE3UzlrKpnMMD0R5b6HDq7+ZmxstjG2UVgGW4+hOpMj4Yb2PCoPMjtdDvK5yja3uS1ItKSxgEIQHnj8CAM3x3jwiSNcO9tX1a1k6AZKKbSSYang+oqGknR0VSoXsbG5N7DdRzaroq97rKJozWoxCgaGYRmZQNCS4axUg7B7fxszE3fdViJW0VssnMTpci4bSNZ1E4dD4/aVIfYdaq9o1Ap5Hd0w7LiCzT3LtjIKO1BH4YyI/MWi136sOOYvLnr9d0RkpPjfby8e01FlXuuqp1DI64wNN65Dt8OpkU5l5x/wfQEPyUTldNRgs49U7G59YVNrgMis1chuejRE1/72qtdRpoloQiGnMzsZobnZW/E4PWcw3De1yruxsdnebCujUCvbSEfhBWBxa+23Y9VRVHr9xRrHXVe6rw2j5/WGjdfaHmR6PDK/MwgEvaQTVUIti57uu/a1MTtp7Rymx0Ls3r9r+ehzsYPq2MAMHq+LYAXxnWg4wZzdMdXmHmXHGYVtpqPwInBcRMqjmu8A/htW3yZH8Z4CwBuwjMimks3kufR6X9Vuo6uhtT3IzGR0/nt/0LNAhrOE2+NcEmsItvjn5UD1goHTtXKYrOQ2unG+H5dL48DRDrx+qwWGw6mRy+kEAp6GxkxsbLYLO84osL10FF4D8hR3BSJyGNgP/DWWWE6pF9JbinPa1J1CPJbmcx95FV1vXBWzhaKQu7vzEBHMCtoHnXta53cF5ZRHHkxz+a6pcNcoiAjdl4e4db4fn8fB/oPtdHQ243LA4O0xXvi781w/18vMxI7KEbCxWZbtmH20Y3QUlFJpETmHZRT+uvjvueLr3yx9X/y3Xyk1Un201XPj8hA910eLrhWFaZbpKihFIa8TnktQyOl4A556a8aWxeHUSMTSGKYx7z4ylSpmmy58Uu/Y08LN873LjheZjdPS3kRodqn7R2A+ZbXcCMXDKa6f7V9gLLwBt9WW2+GgdVeQ+x8/QjiUblifJ5udw9lvdr/v9/7iJ9dLenfD2Y5GYafpKLwI/Hjxv98BvFT875eA7wV+v/j6urmOHn7iCA9vYhO4l79ylYNHOueNQnOLH7fbueSJ3+1xYhpq/nWHQ0MtKkQLTUXZe6SzqnqbaZi4XE5M5/K/HtNU+AJeWlotbeeZ0Tnuf+wIjz53n91a22YB3/Ojb94xBgG2p/soXWxzPf+F9XRf4g6Wn756n+SysbCCy48AQaXUU0qp82uZXJmOwkCNp7wAHC5mTr2du0bhm8CbRaQdq6Ffueuo9Bhcs/7CVkUpxdjQ7IKF1jTNpZZdQJkLW1+UxxNKJOMZgs3+qsFmQzdwOFf+2KvibskoFsql4hlmxsPcubYumzUbmy3DdjQKK7FtdBSKnAayxfP2AK8XJ9aDVTj3C1g7unKj0IslCLRYf+EYlqGopr+w5UjGMyRjdzONNIdGPqcv2e+1tgWJhhILjEdza4BEtMqvrYpRUEpZxQ01BJFNwySTuttqe2xgmlg4STZj1zDY7Fy2o/toWbabjoJSKicip4F/ixVPKM/FfLn4erdSaqrsnISI/CXWPeaAa8Xr/z5WW45X1n5rG8PQnSmk7NHE63ORSmSWuGg69rYy2ju54LWmFj8zo3NLxiypp1Vd9ot9lVbyAuXz+pICvcnhGTRN4+m3Pbj8yTY225SduFPYbjoKYO0CmrjrOirxUvH1SvGEn8dSXvs94CbwYeA68J1qG+VS9nWPo2l3P4Zen4dUfGk6aiDoJRlb6Cry+FzkskvzCeLhJM1tgWWva9bwI1KmwlQKvSwTKjwTR9f1BTsIG5udhGyj9cNm/diUD0E6leXjf/qNBRk9+w930HtjlFh4YYLZo88c5+I3by14un/ijSe5/OrtJeO2dzXT1BpguL9yt1N/0EsuW6ip1sLlcuDxumlq8c2/1rWvjd0HO3j6badWPN/mnmBHZR7syJ2Czfag5/rokgIxn99DYpFOstvrIpfJU6vtioWStOxqqho3KPVAqoVCwWqiVz7S7GQEXTfWoV7DxmbzsY1CBWwdhfXHNE26Lw+jLV6cBUx9YeFa555WZiciC+IMIlaX1EoYxvKLfq0ZSCV03VjgLlIK0sksd64O1TyGjc12YccFmhuEraOwzkyOhEjE0kvkPE1DoZS5wAC0dTQx1jux4Dh/0Ee6StO8eapEkw3dRPNrllBPDTUHuWwBp8tRkm8ArOZ7/mDlhnq1UKrYXmIUbWw2GdsoVMDWUVhflFKcfuFmRX1n0zCXrOUOh4ZuLKxdaG4LEI9UzyI2TavIbWmzDCi5ocoX+ZUo5HXSqRyBgNVAL5vOYRQM4tEUza3LB7XBClrPTobpuTzI5PAcuXQOh9PBrj2t7D+2m72HO2jf3WoXxtlsOrZRsNlwhu5MEZ5NLHHhiCbkc4WFD+9SfKpeZCmaWvyMVwkkAyQiSZpaA8QWFbfNo6yFWhy1LcL5nI7L5cQwFY5iYDwRS3H70iDP/KOHlz13birCy1+4QGQ2hqZp8wu/YZhMDs8yMTSD2+PioWdOcPTBA1Y8xMZmk9jQvesW1kMo//q94vtHFr0eEZGXReRtddxr+flzIvL3IvJA8f1vL75+YNF5/cV7dpS95heRvIi8p96f41Yjnyvw8leuVvTpW0HmhYt4264mInNL+xj5g17SyeoeuGgoQesyi+vi4HEtpFM50sns/HmzExFM06zaTdUwDE5/5TJf/OALxEIJHA5HxZ2AiFDI61x+pZtz37jGYPeY3aHVZtPYkg7NTdBDKP/67UXHfHvx9bdhtZf4Uq2GB/hG2bjfBvi426PpFaz4xNtLBxdbaB/AqnB+omycN7MFuqSuFUM3+OInTlOoosXgD3hIRNMLFs7OvW3MjIWWLKYrFSXHIyma24JV39cLRt360kop0snsvGHQCwaFgsFsmRJciWwqxxc++IKlO122O1gOEWF8cIbLL9+i5/Jgsa2Hjc3GsuXcR2V6CL+olHp/2VvDwAsV2lSUKn0nReQ3gY9i6SHU0uohUV4pXIVQ8ZgpEflXWNXR3wb8WQ3j58rGnxKR/wF8UUR8SqmUiJzHanb30eIxpa6oJZGdC2WvDyulBmu45pYkm8nzD588TWgmXnUxDjR56b+5sD7B53eTrqCtsNJjvqWt4KgabNYLBl6/G12vHHWohmkqErEMShWNWDjJQPfYAsW3WCjBFz/0EoV8oW7DA5ZBu/b6bUzD5IGnji0o7rOxWW+2nFFg8/UQlqPk26h7fBFpAn4QuF7WyuJFrB1OiVKX1BHge4A/LHt90wV26kUpRSqR5daVIW5eHLJSQZdZJF0eJ+n0wkphVWNLinoxTRPRNFBG3YMrpYhHU2QzeXK5Ai2dzRi6icOpMT0W4qsffxXDMGraHVQjncxx/UwvSilOPX3Cbtlts2FshlHYSnoIvyMiv7HotR9SSlXy1wewFNEMrA6mtVB+rwFgFPiOsvdfBH5VRA4rpYaxFv/3Fo97v4g4AS/wNPB/lhm7xKoeKXuujzDQPWE9fJd87equGE25f7u0SKOKdQLW/+a1F0xTkUnlSCWyxCMpRBPcHteKwjcA2XQeo2DMpwT5Ah5S8UxxTnfP9/jcZGpsSqdMBdWurRS6bq568c6m82TTOcLTMT774ZdoCvq4cbobEQ0REGRBepMs+Y/liczFyaSzTI+HyRZWP0+b9eWVr17/+d/9y5/645WP3B5shlHYSnoI78dSSitnctH3L4uIWRx/Eni3Uup6jeOX32s7llTn10TkWaXUKFZH1BzwDrFEdfYCryulMiKSwDIGbSztkrp47BLlP8eauf+RQ9z/yKF6T2s4MxMRBroncHusj+Weg7uY6J/C41vYBb1jdwvpeGZFQ2PohnVulcXU4XTQtitIsNlX8f1a6drXhl7Q6b0ySOeetjWNtQQFmUSGE48c5v4nag1l2Wwk//QHntsxBgE2xyikixoI8yyKE9zB0id217C4l/QQTGB6Fe2vQ4vnUoEfwWo0F1VKheocf8G9ishFLK2Dnwb+S3HxP4MVbBYWdkn9ZvH1NuCOUmp8ubGL47fWOb8tRWgmjtN1d7MTbPYRml0qDRFs8TMztvKvIhFNE2zxkazQYA8so7FWt8yhE3sYH5xmvG+KpqIgT6OZnYjgD3rx+t0cvn//ulzDxqbEVoxgbbYewmLGlFL9qzAIlVBYBqx89XgRy21UrrpG8b9Lr2+7eMJqmJuKLgiqKlNhVAgEB5t9JKvpKJQRjyRpbl0mA0k31hSrOHL/PsLTUXqvDKFMRSG/fr2Qhu9MMjUyR2gqum7XsLGBLWgUlFJngZIewvtF5M0iclhE3i4iH8FKTW0UTSKyZ9FXJTWz1eIpG/dBrOB5EPhi2TEvAoeA72ahUfgm8FaWqq7tWGYn76Z2Ohwa2XSuYt6ppklFY7GYRDS17NO7Mq2AiLmK1M/jpw4wPTLLwI1RwMpmymXWt512z+VBhu9MFJsD2tisD1vOKMCm6CGUfy0O6K6Fby0b9yzwBuAHlFIvlR1zBitrykNRdQ1AKXUby9WkcQ8YBUM3iZdVH7fuCjI9Hl5TcFUvGDidjmULwUxTVdRkWI7/n733jo8sO+v0n7eyclbnVuc8PT15HMaecQa87C5mFxazYBsDP8KS04LBeFnCArsLiwkGYw/Y2Dhhe+yxJ6cO09NJ3WrlnHMqVa66957fH7ekLklVqiqpJJXU9/lMTbduPFVdOu8957zv93vknv30tw/T2zq0sAIWi2nx+LV+tQWGoWir76G1vtuqYbBYNzZ0TUEp9aEU26+xZIFZKfUVzAK2VNd6EnhyDW05kGZ/79I2ZXn9DwEfyuC4KIunkxL37Vrh2sm2L/sctwq+uSCRUBSHy/xKlleV0JFChdRY8GrO8K2ucKiu60QjMQoK01t62+w2jp2to+VaZ9KCuvkpJKdr/X6tIqEofa3DuNxOTj5weN3uY3H3kpcjBYu7j9HB6UWKoSIkrXx2eZxEw9lMnyiUkXqqSYtmtq7gdDk4ce4AN19rYmJgeUAAc7SwEVM70+NexgamGOxKV3dpYZE92zIoSI78EFa4/v4Vru8Xkc3P79xiDHSNLgQFh9NOKBBOOu1TWl6EdzqQ8bSSrhsrdvpmbQUrVjYXFLk5cmYfl5+tNx3hUmQsaTGdjTKx620dYrR/Ev9cCsE/C4tVko8VzbkgV34IqRjGTIVdab9FhhiGwejAneSuyppShnsnkh5bUl7IaF/yfckIzIUoKi0kuIKnsq6bJjqJlpvzlFWVULOrnAvfvoYWS1OlLFC1s4LavZUYumJiaJpoJBdft+S0XOvC5XZw5tFjlhSGRc7YlkEhV34IK1xfA9LVN1hkyOyUj1Agij3ur1BaUUTz1c6kHXBRaQH+VHLYSfDNBikpWzkoxOKy2EuXHnbuq8Jut3HpOzdQSq0YEHbV1bCrrprh7jEaLrRSWOyh7sQeEBjtz0U283J03aCtvhen28XJBw6tyz0s7j6sxwuLTaflZh+2RCltQ6HFkiup2kQwspCVTpeWCvNTSMaip/oDx3cTCoSpf60ZYMWAcPKBQ9htNq48d4vBzhEioQhz0z5uX2plpGecPQdr100KO+AL0d8+zEDn0kJ8C4vVsWWDQjaeArI9vBm+nernhO2Px69fncl18wEtptPVPLTQ6RYUupmdSjPIy6KDjYSieApcaTvlSDhGNBxDbMKxs3UMdo7QXp9elPbMI0cZH5ikt6XfHGaIoBJ0oyaHpxnuHqN6Z3nGbc6Wkb4JBjvH8K3gRGdhkSlbNihkyjbyZtiWtN7sI5yQsVO7u4L+zpGkT+YOp51YJPkIYiUyiSGmDajiyJl9NL7exnDXWNr1g7NvPs5gxzBj/ROL9JWUoRYVxI0PTgIKZxL70VzRdquHnpYBdG39qqot7g625ZrCPNvMm2Hb4feFuHq+BbvjTmfp9jjxpVgzKK8qYXpibnUFbWn0t50uB6cePMzVF24TDkZWFNsTEc699QRdDb1Mj80uu66pHrt4W9v1bu5/4gy9bcPrsyisoPFyOy6PixP3W+sLFqtnu48UtqU3w3ZgatzL1z/7Krp+JxXU4bQT9IdSVutWVJcwM75cIC89akUpC5fHyX1vOc6NVxrxz/rNUUOK42024b63naTtRlfSgHDnjovvqZSiv22IssrUWkxrJRrVaa/voa/NSn6zWD1bfaRwN3kzrBvN9T2MDkzn4Epq8VRN3JtBKYUyQItp+OZCjA5MEY3EcLkXx8N9h2rpah5MaVDjLoz7K2RJ0BfBXeBKKmfhcNq595GjXHuxgVg4BiIYuhGvbxDTFyHeFrvDzrm3nqT5cvsdQb4Uc1Nm0bWBYdx5HyN9k+w+tJP+jtF1SyH1Tvmxuxx0tw0v8qCwWD9eeur6T/7PT//UP2x2O3LFVg8Kd5M3w7px9Mw+9h3asS7XFgARbDbB7rCx0j+JUoov/c2zuOtqku4vKy/E6XZkPX0UDkXYsbtiWYGazSacvO8gV15sAAUuT2qpC5fHydk3H6PhfAtBXygztzaRZU5zfa1D7D+yg9mppc8yuWOkd5x733KCQ2f24XKnl++wWBsvPXX9i5vdhlyy1YPC3eTNkMgckEz4phyz/VnVaDidDpxlm/9VGOgeIxqJ4XAsX5C1O+yEQ1EzwSfL6wbmQuzcX43Pu3it4vi5A9w430zQF1rRV6G4rJAT9x/ixsu3TYmNTD0Y4qmuiYFhdsLLwVN7mZn04XCu32fecr2LgmI3px88all5rjP/89M/tX4RfhPY7msK29WboQ04JSJLS3DvB/qUUuur4bxONF3pTBoQAMqrSzIy1klGYC5EQZFn0ba6Y7voauhjbtK34shj7+EdHDi+h6vP3zQDQhajFEPdsStNZLBzhNLyomzeQtYYuqL5ShftDX3reh+L7ce2DgrbzJshkc8DGvDPIvKAiBwRkQ8DvwT82Trdc10Jh6KMDEym3F9eWcz48MyqMo/MamS1UDtQs6sC/0yAoZ6xlE/RniI39z12EqUrbr7WZKZ6rvLeSl8cFiaGpqncUYahp/eEWAtBf5ie5gGrsM0iKzZ/zmCdUUr9pohcA34O+AnM99wDfJPcezP83pJt/wL8aA7vAYBSyisijwF/gqnzVIYpu/ErLF/X2BK03OjG0IxFSqmJiE3MheBVopRZi1BYUkBpRSGvP3MzaYBxeZwcPVsHwK3XmolG5kcHq5uCUUqZKapLzvdOzmGzr/+0zmj/JKUVxRSXFVJRs17PKBbbCVmv8nuLLcWmfgl03eBf//rZlJLYIsL+Izu5/HzDivUDK3Hm0SMMdo9z7i3Hufj0DWKR2KKgUFjs4dDpfSjDoP1GN6FABFi5tiFTbDbBZrMtarvdYePMo8cZ6p1Yk5FQptz7lhOcevAw7gJr4Xkd2FaLNtt+pGCR//S0DBIKhJdl6sxTUlHE5MjMmvpnPapz+OQemq90LgoIZVUlHDy5h6AvRPMbbUTnRyNrGB0sRRkKJYtHC7pmoMV09JiGw7X+pSrN1zqxO2zc88gxa+HZYkWsoJAGEfkgqSuO+5RSp9d4/f2YdqOpOKWU6l/LPfIZXTe4+mpTyoAAZtFa4xvJVVMzRcXvNRF3THMXmJW//tkA9a803lkzWIendrNkQaGjsCdMGfW1DbGzrtb0aFhnYhGNrsZ+HE47px48su73s9i6WEEhPZY3wzrSdL2bwFzqUQKAy+Uk6E9dtGazCTv2VeNyOxgfniHkDy8+QKB6VzlXnmsAEXbV1VC7t5LbF1vuZBSt8xSOoRR2pVBKFm7lnw1QfE8B0+PeRVIf64V3ys9IzwSeQjeHTu1b9/tZbE2soJAGy5th/Qj6w9Sfb1kxIABomoZhGNhk+XE1uyuoO7qL/pYBvDNRDhyuxeFy0nStm3mViWP31HH7UjtKKY6erSMWjnH9xdvkas0gUwzDAGFx3cLkXNr3n0sGukYpLC2gtKKY6l0VG3Zfi62DFRQsNgVDN3juK6+jayu7mRUUe5id9CNJ5vdr91RSs7OMa8/cYL6Dnx33UlJezANvPcH1C60UFBfgcNqZHJnh/sdOMj48zXDX6Hyp9bq9v2QozPoBEqaRBjpGOP3IUYb7JjdkwRmg/WYPbo+T4rJCPIXuDbmnxdZhQ+sU7kIPBCUin06y70/j+769ZHuJiHxCRBpFJCgi0yJyXUR+O9EjQUReEZFPJrnuD4pI3qeTGYbite/cYHJsNm1HWFlTykj/8gwdT5GbvQdraLrQsuBjMI9v1k/LlXbufeQox87V0fhGO4fP7GN2ao7hrpFNzRVRKJRhLIjl6ZqOUgptHW07l7VBQWt9D631PeteK2Gx9cjL4rVt5IEwAPxQXABv/r05gP8KLFo8FpEK4HXMWor/C7wp/vo94DjwkQzvmdcYusH579ygs3EAewaicIXFHuaSmO6ceuAQDa82kSqb1u8NMj4wQTQQpqKmFJfLTl/LEPmQPWgoha4Z8VEDDHaNbngNQTQco6dpkOard+XMpcUK5N300TbzQGjADFj/GfhsfNv3AWFMMb+qhGP/CDPoHVdKDSVsbwOelo2aW1hH5mb8vPBvbzA9kfk8uqbpGLpalEa5Y28VU4OTaFFthTUBYXZ8jsod5ew7VMPNC23Y7bZsTNvWFYVC03Xs2Jge9VJ3fA9z3sC6qacmwzvtY2xgCk9RH0fuqduw+1rkN/k4UthuHgj/yOKn/I9gBoiF7klEbMAPA59fEhAWUFu0yjAW0xjpn+DZL13iq//wIrOTvoxGCADuAhe+af+yh/t9R3bQ1zyw4kO/p9BFKBimu7GPgkKPKeOdh5+grhumpPhMAC1qLqhvJANdo0yOzMTd4SwsNmekcLd5IHwB+HMROYqZxfQ+4L9hTl3NU4OpcLpodCMil4Cz8R/PK6W+J2H3T4nIh5bca1V5jT2tQwz3Z9EpxHtXFf+7MswnX13TCQejRMIx/N4gs1NzREIxRMC+CivKfVXFDHSPLjLi2X2ghsH2YdMEJ8UoQWwS90IQYhGN/tYh6o7vob8jvp6QZ9FBAV2NfRw7d4jGq104nHbsdhs2u1kFLfGU2YV3u+xtr20QefXlJnTNoOVW37oqt25Xnvvy6z/4iU//f1/d7Hbkis34BtxVHghKqRkR+TrmCGEWeEUp1Z/hbNAPAW7g48DSxPIvAZ9Ysu19pBhhrcTOfdUZdwbzzZ5vv9hMrwSb3YbDYc9pvr3T6eArf/ccroSK3+PnDvD6U1dxulMP1jxFphlPYbEH/2yA0b4JHnjnWYa6RlBi29AU0ExRBhQUuanaWYrTufi9KWVqKM2bFiX8b9Exa6GjoY9TDx1mx/6aDZ3C2iZc2ewG5JLNCAp3owfCZ4B/AvwsF80DmMAMGCcSNyqlBgBExMvyoOBN8jmmWx9JSkGRm32H18dkZy34ZgNoMW1BTrukooipoSlQKmXWks1uQ9d03G4n4cCdIrb2G10cv/8QbfW9G1makBXDPWNUVJUSCmb6TJNbhrrGKSjycM+jxzbl/luVT3z6/9tWigP5+EiwHT0QXgSiQDXwjaU7lVIG5pP/j4qIVWoaZ3RgctGwcee+anpu96+Yxur2OAkHItgcNrSYvrDdNxPA5XLicjvybfZoAVNSu5zNWj6aX3juvL2t+jiLLMm7oLAdPRDii8RngYMrGOD8Nmaa6mUR+aiI3Csih0Xk+4HHMdcy7iqGuscXpLRtdhtaNEYskvop2ulyEA5FcRe6CQeWf8yt1zo5cf+hvM7NDwfCqA1ebE5ksGuUyZFpJkdmNq0NFptL3gUFMD0QMLNx7ge+gykY90nMTjPXHggjS15/ncPrL6CU8iml5lbYPw08gpmZ9CvAZaARs27iKeC/rEe78hVlKIZ7xxd+3rW/mp7GPlIuOYlp2RmLxLCJmAJ3S4iGY0RDUUpKlxrW5Q89LQPU7q1Kf+A60lbfQ3/HCOHgljTws1gjlp+CBWyyn0IyfDMBvvw3zywsXB8/d4BLT11J2VJ3gZNQIILT5SAajiUNCmCOOO57/Aw3L7ZsmKxEtpx77BT9naMbIpKXCpfHyemHj3D20eOW1HZ6ttUHlJcjBQuLga7Rhc7IXeBibspnpqEmQWxiSmPH9IWF5lQYusHM6CxVtfnrQjY+OElB4eaa4UTDMbobB2i50bWp7bDYeLZlUBCRD4qIP8WrKQfX37/C9f1xjwSLNdDbOrSQGrljbxV9zQMpn+zdBS6CcyGcbgexDDSEulv6qTuxZ9MWdNMx0jtBzZ6qTW+fd9rPUM84fW3bWr3dYgnbtVLF8kDYwkQjMcaH7yx0uj1O5qb9ScfodocdLaqhDIXL48Jd4MLlceKfDeCbSZGQpmCwfYQ9h3Yw3DOe/JhNRClFyB9GGQrZAB/nlRjqGqOktJDSyiLL4/kuYVsGBcsDYWsz1D22UJ/gcNoJzgXN6qwkIwWX28HcrJ+TjxyluLSA0d5xIqEoO/dXc+KBwwz3jDHUNbb4JAWjfeM8+O578zIoAPQ093PsvsOMDa4lEzo3tN7swV3ooqikEJdn/a1DLTaXbRkULLY2TVe7FgrWavZUMtA2lHTqyOV2oukGD7/rHF0NPbQmpFFODJiyHXuO7ub+J85w87WmBVXSeTpv9XLo1D66mwfW8d2sjmg4hs1mCgI6NnHBGQAFTVc7cTgdnHn4qLXwvM3JizUFy2dhYV9Sn4UM2vtrmR6f7/i8AcaHphd+Li4pZHp0dtlxIuAqcHLPo8e4+eptZpIcAzDUMUzH9S4eeve92B13vu4KmB2fo7isYNH2fKK3ZZCanfkxZaNFddpv9tJa373ZTbFYZ/LztyEFd6PPwt3G1RdvL8wS2WxCJBhKKuzjLnBx9NwBbr7aGDeoSb0oG5gL0nihhQffeRbb/Bx9XD+o7WoXR88eyPXbyAlz036KSgtXzKbaSHyzAfrbR+huGdzsplisI1smKCT4LPy6UupXlFIXlFJ9SqmXlFIfBP4y4XCllBpVSo0opV7GFI47g+mzkAm++PmJr6XKrlPx7Q3AT2MK5r0nw+s3AB2YPgvzzPssvLL0YBH58fiIKCIiYyLyZIb32VKMDU7R2z6yMFVUvauC4a6xZVNHdqedA6f30dXQSzQURWzpfRJC/jAtb7Rz7m2nmQ8gSpk+0YIZZPKRwc4RSiuLN7sZC4z0TTDcPWZJbW9jtkxQ4C70WQCIG/t8Kr7vLPC9wJrTavON6XEvz335EraEAFBWWcxY/8TiAwWqdpShRWNMD88gIinrF5binw0w3DXC8fsPLWxTKNqudXHs3gO5eBs5Z2Jomsqa0ryS5uho6KOvfQT/7HrJjVlsJvm00Gz5LCz3WQD4XeAvlrjQXc/iPmnpaRlkejylAkeOUaBMS0pDV4QCIXrbhpkZn1u8gCnmtE8sqi0aKRQUu9l7dDdXnr1hHiaSlTHNeP8klTsqqNxZxvSoF5SZAhucC1FUUsDcTCDv6lMHOkdwF7iYmdiof6P0XHnxNlpMx+G0Y7Nv8kL4JvPtf3717R//x5/J5nc/r8mnoGD5LCzxWYgvnu/BVFldN0orivHPhdIfmCMEEJsNp8vO7gM1nHzg8LJjHE47Da81U7Or4s55Iuyoq6G3qQ9ZwWQnHa3XOnjoPfdxY6oBTTNHGZ03e7jvHfdw/ZX8G4SN9k3w4DvuYXZiLq8yfxpfb+fetx7HUeC62z0Ylj7MbmnyKShYPgvL2ZAeoGpnOVU7yzfiVhmjxTRG+8Zxuhd/RT1FbiYGpkBMc59VTasoaLzYwpm3nOTmK00ggmEoxnrH2Xd4J8N9+Ve7MNI7Ts2eCoL+/BKp62oc4Oybj3PqwSN5FbA2knseOZrTkftms5XC+93oszAGDAHvXMM9tiTTozOE/HdMclBQtbuSzvruRdlIqxWCCPnDeMe97DpYu7BtsHOU6t0VOFz59KxkMto3QdXO8rxaWwCIhGM0Xemgtb4747Udi/xmywSFu9hn4Q+BXxKRXxaRYyJyTkR+dckxu+PbE1/VuW7vRtLfNrKofiASjuF0O/FOeE2/Ypv5dL8WepsH2HtkJw7HnSfcxoutnH7wyKbrDiWjp7GfqjypW0gk6I/QeLmD9lu9efm5WWTHlgkKcNf6LPwt8HPAT2L6KzwDnF5y2C8D9UteP7we7d0IDMOgr+WOAF4sqrGjrpqu+u6FoYFATjqgptfbOP2mEwujj1hUY7hrlIMn9q752rlmZmKOwiIPhp4fdQuJBHwhbl9up/1mjzVi2OJYfgoWkGd+CrOTc3z9r7+D3WE3pa4n5rjnLSe48fxNQBbWl9c6Upjn0NkD+Gb8jA/eqaQ++fARxoam8U6tm4TWqigs8XDo9H7GhvLTGa2gyMO5txzn6LkDd9Pi87ZaTLlr/tUstg6DHcPY7DaUoZgZn2Pfsd30NQ3cGSXI2qeOEulu6OXAyb0kZla2XOng8Ol9ebe+EPSF0WI69k1WT01FKBDm+quNtF7vRotpm90ci1VwVwUFy2dha9DTOABKmB6fw9ANKneUMzU8vZCCuh7DmubL7Zx69HjCIrZw8+VG7n3ziQWf6Hyh7UY3ew7tyNv5+2hE5+rLjTRe7iDgC6Y/wSKvuKumj0SkBNiRYndMKdW3xus7MHWYUtEbl93ON/LmSxDyh/nS//kmMxM+dE1nx/5q7AKD7cN30lANI62sRTpEhNLqErSIRmDO7LiO3neIqbEZpka8C8cVFLk585YT3HiteW03zDE79lVTXFHE3Ez+drpKKY7cs58T9x2kZs/m+k6vM/k5bFsl+TU2Xmcsn4X8p691gOkxr2kwI7DrYC03Xri1qFBtrQHh8L0HKKsuYWZ0FqfbSXlNKS1XOui42c3D77mPmbGGhempUCBC69VO7nvsFPUXmvMmfI4NTLL7YC3e6UDeek2LCF2NA0yNznLPo8c4cGLPpvpOW2TGXTVSsEjJpn8JlFKMD03zrX943kw7xRSpO3h6H00XWsw0VBGUUqufNhE49/YzjHSPMpGgqSQ24dwT99DZ0IuhGew7sZemyx2LTi0uL+Tkw0epv9CSN9k17gIXJx88wmDPeN4GhkROPnCII/fsp2pnRfqDtxb5/+FnQX5Nlm5jMvGMSPBqeDBhf6GIPCMiPXGdJOLH/GCSa31SRF5Z1zeyDkTCUV74yiU6G3rxTt7Jzq07tZfuht6FUYLY1paGeu7tp+lt7FsUEACUoah/qYHj9x8mEoqix3TKa0oWHeOfDdJ0uY37HzuFw5UfT7uRUJSp0VmKSws2uykZ0Xyti+e/dJHbl9vxeS0xvXzFCgp5jIhUAC9g6h+9RSnVkeaULUUsGuPGa818+a++y2jfJOFABJUgbldQ5CHkMzWZRFjTE/rR+w8x2jPG3GSKkhAFDa82cc9bT9J2rYPj9x1a9vgXnAtz89VG7n3TCYrypCMe6BimoraMPBjspUVECIdiXHu5ke987jUaLrUyM+HN2wXzu5W7ak1hKyEiu4FnMddA3qaUys/E9CxRhsI75aPpagc9zYNEIhp2u41ddTUMtg8vTIPU7qtmvHfc7OvEnOLRtdVJPFTsKMdutzHeN7HicdFwlOnhaXbW1dB6rZMTDx+m5UrXkmM0rj1/i3vffprB7lGmx7wprrZxNF1u49QjxxhM4j2Rj4gIIX+Y6682c+O1Fg6c2MOeQ7Xs2l9DUVnhlngP2xkrKOQnRzAd5lqBDyil8jfFJA2GbhAMhJkamWGgc5TBrlGCvhBisyEi2OPpniUVRTQN3ykeS1xgFln94rLdYePouQNcfa4+o4nfvuYBHnzvfVx5rp5d+g4qd5Qt6/gNQ1H/0m2OP3SE0spieluGVte4HBENx5ganqG4tICAL5z+hDxhvvPvbR2iu3kAQbFjXw27DtRSWllMZW0pRSWFON0OK1BsINZC8wYRd0v7UUx3tURsQAEwb+XZgymSdx14ezL/CBFR8ess1TtwAZeUUo9n07ZIKKJmJxcnZamEv8x/R8zpG4VhKJRhoOsKXdPRNB09phMJx4gEIwT9IfzeEL7ZACF/2LSTFEmZ72+z2zh4fDfXn7+F2ASXx8Xhe/bTdKF5IQ1VX6UQ3NnHTtF1q5tQFtLgtfuqcRd56Gsb4qF3n6P+lSZiseTSErsO1lK7v4bbb7Rv+gzOfW87RX/XKIa+9X+nlWF+txxOOwXFbkoriikuK8Jd6MLtceJ0ObE77TidDuwOG3aHHZvdhs1mw2aXhSCy6M94XFkWXtYYb/7+418+/Lv/+LPbxrzaGilsLOk8I+b5JvADmPpFn0txrV/H1EFK5OPAvmwb1XS1i67bfQtP4wu/I4m/LCKm3hDmL5hNBLELNjF/Ce0OO3aHfSFz1FPowlOYmcVlRU0p/a1DuAuciAhHztXR09CH2G1mE1b5S1teW0YkGMkqIACMD0zywLvP0dc6SMOFFs4+dpIbLzcm9W8Y7Zsg4A3w0BNnaL3eTTSSlQdUTmmr7+bcY6fwz4WwbUMZay2moXk1Al5z5KhrOrpuYOjGwoOKmn+IUSpuw70kQKpFf6zWkmMpOwArKFisinSeEfP8KXANeFJE7EqpJ5McM5rkWl5WERTuf9sp7n/bqWxPyxmGYdB9q5fymlIAyqpKCAfCOOI57VpMW9X0wbH7DnH9ufpVtWmke5Tdh3Yy0jPOcOcIR+89QE8Kw/pQIMKt15o597bTTIxME/Rv3hTO2MAkJx48zOmHjm5aG+5CXt/sBuQSK/soT1FK/Snwa8A/ishHN7s968nMuJdgXA6hckc5w12jC/sMQ61qPeHQPXX0NPatOrNluGuU3Yd2gFKM9U8iAtW7U+fX65rOtZduUVRSQNWOzZO39s8GmBicYqBjqVGghUVmWEEhj1FK/V9Mn4hPichPb3Z71ovOmz0L6w1VuysXZSGtRiba5XFSVl3C1NBa/I/APxOguKIIgI76HnbV1VK4QiqqILRc6cA/G2TvJmoT9bUOMT44id+qBbBYBVZQyHOUUp/E9FP4GxH52c1uT64xDIO+5kFEBKfbQcgXWnAXM/TVaRydfPgozZfb1ty2ntu9HDpTtzAv3fBaEyfuP4w7zVrJUOcIPY39HDq5byG7aqNpudZJd9OAuchvYZEFVvaRBWxi3szU6AxPfepZ7A47dSf30nGtC9+MH4VCi2bfoVXuqqByR5lpyJMDzj1+D7fONzFfU2e323jg3ffScKmNWJpFZYfLwbm3nWZ0YIJwMJ2teO4pLPZw+pFjnHzoiJXSub5sqw/XGilYbCqtVzsXpo5cbie+GT/A6grVBI6craPrZu4SQXqb+6k7dWftXtcN6l+6zdm3HMflca54rhbVuPrCTcorS6iIL6JvJEF/mO7mAboa1iT+a3GXYQUFi01D1w0G2sz1g4raMoa7R1FKmdLYq5C0OHLvQTpv9eR03DM77qWipmxRamMsqnHjhQbOPHqcwpKV5S4E4falVqLBCHsO1uauYRkyNTJDT8sg/e3DG35vi62JFRQsNo3xgQlC8fTNmr1VDLaZHVc2owSny4G7wIW7wEVxWQEzI7lXAwl4gxSVLe78tZjO9edvcvTcASrSZBuJCH2tQ/S3DnHw5F5sG+yaNtwzRndTP0PdYxt6X4utiRUULDaNpssd2ByC0+UwK59jesYLo6VVJTz4rns5/sAhDp3ex5vf/wBz0/51aWdvcz8HTu9fVghlGIobz9+iqracQ2fSl4fMjHu5db6JumN7Mi7syxV9rUO013cz3GMFBouVsYKCxaYQDUcZ7TEF3HYf2klXfQ+6rmeUbVSzt4qDp/dx4/kbtFxsobu+m9e/+QYRX5D7Hr8n56t+0VAUd4ELJEnjRGi71sncxBznHjuVdp0hGopx9fmbVNaUbfg6Q3/7MI2X2xmwppIsVsAKChtIlp4K8y+viFwWkX+X5LwfEJGXRGRWRAIicltE/lBENn7yOku6bvctGLu7PE6mx2czCgjF5UXsPbKL26/cXuijXQUuYuEYo91jdDf08MC7z5HrhKrx/gl27KtJuX+sf5Lb55s4fv8hdh9O5fgaR8Gt881EAhH2H921obkrI73jXHnxFp0NvVa6qkVSrKCQv7wP2AU8AlwBviYiZ+Z3isgfYiqp3gTeD5zCLHQ7APzMBrc1K5ShaHmjA5vdRmllCb1NA5DJwrLAqUeOcvvV2wv9qLvQTSQYWTjEN+Wjq76bs4+dXrtvZwLDnaPsObJrxWtGIxo3X7qNHtG4722nKSorTHmsiNDfNkTb9S4OndyHp9Cds7amwz8b5OK3r3PjlUZmxmc37L4WWwMrKOQvU0qpUaVUK/A7gBN4AkBEHgZ+G/h1pdSvKKUuKKX6lFIvKaU+CPzl5jU7PVNjM8xOevFN+ykuL2KwfTgjZbIjZw/Q29CLihe3iS2uoLrkidc74WV6eJrDZw/krM1KKbSYnt51TYThrlFuvHiLPQd3cPLhIzicqc8JeINcfe4m5ZXF7KpLPRLJOQJNVzpMJ7TX25ibXjfrcosthhUU8hwRcQI/Gf9xvlrqg0AA+Ktk5yilZte/ZdmjxTRmJrw897nXmB7zojDXFhLd1lJhd9gprSxmMkG6wlPoJhyIJD1+uHOEwpICSiuLc9V8+lsHqDu5N6NjDUPRcrmN7ps9nH74mHleirinlOL2pVaGOkc4dGofhcUb4+q2YHbz8m2e+syLvP5MPT3NAwR9IcsN7S7GqmjeQLL0VAgBRny7Lb7tQaXUtIh8B9ijlLo3F+3SYpoKpehcTZJ8R0x1YhTK/LthYChQuoGmaUTDMSKhGL5ZP94pH1Ojs/hmAhw6vY8rz9wAhBMPHqbndq8pbZ1mpHDi4aMMtw0SiBe32R12HC7HoqmjpYgID37P/Vx9th5jDVaeidz/rnu5/kJDdprLSlG9t4qDZ+roaxtmMsFMaBkCx+8/RHFFMUM9Y0TDGyvFPS8xUrWznMod5ZRWFuMpcJs+BgUunG4n9rhvgdhM3wKJ65uLkCLwbauC32X8v199svZ3/vHnVrb120JY0tkbT6aeCj8CNAHHgP8L/JRSar43yelvWf1rzTRfycb+WRb1iWafEN9mM70W7A47Tpcdh9MJYtYTHL//EP2tAzicdsQmFJYUEPaHkTTa/3aHjcIi90JAAHMtITi3siGdUoqmCy2cfdtpbr58Oyfi+b5pH6UVRfi8WZjhiTA1PM3k0BQHTu/n/sdP03m7l1AKl7Tu2304nA5OPHiE4soiZid9REIbL5PhnfLhnfKhDINYVDNThuPeBai4em3ctyDumhpfcrnrHjS/D3hysxuRK6yRwgYSHylUK6Xev2T7g8BVFo8UHlJKXYvvfzvmovIppdSkiPwl8BNApVIqF73FhnwJouEoX/6Lb2PoOlW7Kwh6gwy0DqXV5Tl0to7J3nG847MggtPtRCmVVntonn0n9mIoxWAO5KSdbifHHzpCy5XO9AenwGYXjj14BE+Rh+Hu0ZTFekopbDY7x+8/xN6ju6jdV43DZT3H5SHbaihkrSlsAZRSrwLNwO/FN30BKAJ+PtnxKYx7Np2brzajxcyOvHpXJUOdIxkJtZVVleCd8C486TtcjowDAsBA6yA1e6ooLFp7hk8sEsPhdKxpzt3QFa1vdNByuZ3dB3awY3910uNEBKUMWq938uznX+XpJ1+k4Xwzw91jmzJysLg7sB47tg7/G/iKiPyZUuoNEflT4M9EZC/wNWAQc6TxE0An8InNa+pywsEI7Te6sNlsFBR78E7OYWhG2qBQtauCyYFJc15CBJfHSXQVHeLt15q4/z3nFtYz1sJw5wi7DtQw2je5putEghHqX75NxY5yjpw7yPSEF+/EXNJj7Q4b3ok56scb0TUDd4GLHftrqN5VSXFlEaWVxRSXFuIp8qT0wrawyARr+mgDWe30UfwYAVqA15RSPxXf9p8wvRbuwwzwPZj+zn+hlMpm4WvdvwSvfu11epsHEJtw5NxB6l+4ldEi6r1vP82tF24uCOQVlBSkXUtIRXltGTsP76TljWzWT5Jz3zvOcut8c84kqZVS7Du+h50HaxnpGyfsX2nhf8m5cZN7m8NOUUkh5bVlVNSWUVxWQFF5EeU1ZRSVFFjBYv3YVtNH1khhA1FKfSjF9mss/mIt+5IpM3qfWLLtK5hrDXnN9NgsvS2DiE1wOO1oUY1IKJq2Q7U77WjRmFmXIIKrwEU0lHlnuZTZcS81+2qo3l25cgZQBoQDYdweJ9GItqbrzCMiDLYPM9Q5wrH7D1O7p4qh7jH0WPqqY7HJwlpDKBAi1BNipCeuOKsbCELV7kr2HN5J5c5yavfXUFjsyUm7LbYf1kjBAtZxpKDrBt/4m+/i9wYQEQ6c3EvHjW68k3Npg0LdqX3MDk8xOzoDImsaJSRy/3vuo+VyG0F/8uyfTCgo9rD/1D46b/Yu2+cp8lBaVYzL7SIaieKd9K2YOpsMV4GTEw8fQynFSM94zuoGDN2goMjDwTP72XlgBzsP1OByr6zXZJEWa6RgYZEpN15swDftx+awIWJm73in0gcEgPKaUnrruxYyjmLh3Cyu3nzxFg+8935uvHgLLYMn8WSE/GEKiz0opZD4Wsehe+pwF7gIeoN4J7z4/V5cbid1x3ZRUFKIfy5IT2P/Qi3ASkRDMW690khZTSnHHjiMbyaw5tENgM1uIxKO0nqtk6bLbeysq+Xgmf3sPbKL4vKiNV/fYutjjRQsYJ1GCiM9Yzz/hdcWft59eCej3aOM90+mDQruQhcHT+6j5WJzTkcJC9cvcHH2ibPUv3iL2CoDw96ju3F6nJTVlqNHYnTf7CY038al708pSqtLOfrQUYa6Rhnrz3yRWinF7sM72XtsN+ODk/hnc/c5zF+/uLSQYw8eYe+RXVTUruwPYbGMbTVSsIKCBaxDUPDN+HnqU8+h63c63OMPHObSN69kdP7R+w8x1DJAYDaAw+VAhJxX97oKXNz7jrM0vNpEOMvpnR11New5uhu7Xbj1YgNaVMusOE4pDp49gKe0kJZrnUiW/cmRcwcpry1jdGAiZfHbalFK4Sl0c+LBo+w7vpvKHeW5u7ah8E56mRmeRotpON0uyneWU1JZgt2RRk8q/7GCgsW2I6dfgoA3yFN//xzRyJ3F5F0Ha5kYnGK0eyyjqaN7336am8/VA1BQ4iE4F8plExdwuByceew0EwMTDHaOrnis3WGj7tR+KmrLGOsdY6hjGHeBi1hEy9o+tGJHOXX31HHzfHPWgcFmF46cO0RZTSmjfRMEfbn9bJRSuNxOjj9whLqTe6ncWb6mLKvp4WkuffUCs+OziM1m1l8YCqUM9p3cz/4z+9l1dDeewi27+G0FBYvsyDAV9QDwMlCjlJpcclwv8Eml1J/Hf1bAf1JKfXXJcZ8EziilHs+yiTn7EkyPzfLsP71CNLo4u+jEg0e4+M03MrqTOXW0l5aLLYjdhqvARXgNi8KZsPvILnYe2snUyAyjvWMLQnvuAhdVe6qo2VMFKPqaB/COzS6cJyJ4ilIL861EaWUxhx84Qv1rTVkHBjCzjg6fO0hFbRmzk3NMj86mPScbFiqqHzjM/hN7qN1blXVaa3d9F2889caKQdMwDOpO7+fAvYfYe3xvWtmTPGTLNXglrIVmi5xgGAYtVzu58eJtDENfFBB2HdxBV0MPylAZPXHuObKbwbaheLGai2iWUzurYbhzhOHOEcp3lFN3cu/CU2s4GGF6ZJrbr9xOmgE0v9C8Guam/XTXd3P2TSdouNSa9XWUoei80Y1CsefwLg6e2kcspjE+MJmTqbaFiuprHTRfaefg6X3sO7ab3Yd2ZuT/MNAywOVvXk77IGCz2RhoGWS8b4Lg4wEO3HMQ9wb6S1gsxgoKFmtCGYrxoSlef/oas+NebHbbos7NZhNKKopozKLQq6SiiK4pU9/fZpecKZxmwuzYLLMJI4FMiISiZqX1Kjpi7+QcI53DHL//EO31PVmfDyCYHg5DnSMUlRVy4PQ+isqKCPrCjA9OZpTtlA6bTehrGaSnsZ+isiIOn62jdl81tXurcHmW+037Z/1c+trFrMagkWCE+mduEItoHDhzgOIcyp5bZI4VFCyyRhmKwFyQ3tZB2q93MTflMw1vkkwt7Du2h5Y32jN+onY4HWiRGCiF3eUwF3DzHF3TTQ9nVvd0PjE4RWFZIbsP1jLcM77qdogIwbkQza+3owxF1a4K9hzfjafQTSQUZXxwKivNqGTY7DZC/hCNl1rRNZ3C4kL2HN1JzZ5KKmrLKa0qweV28toXXkGLalmPfgxDcfvlBpRhcODsQUoqS9bUXovssYLCxvE+EfEv2bYW3YHPxdcqEnEBl7K9kKEb6JqOoRTKUBiGQhkGekwnFtWIBCMEfCG8kz5mxmeZGp4hHDTn+MUmC3PAS6dXnG4nNoeNmbFZkLj3Qhp2HqpluMN0YnO5nTlfRF0vouEoTreD2CornPuaBrjnbaeYm/bj8wbW3iCb6XA3OTqNKKG0poR9x3ZTUFKAoRuMDUwRDqxtncZmtxEOhelq6KXrVi+aplOzu5LCQhf9rYM4nA5s8e+HTZb4L8SDxZ2YcSd4KF3R+GqjWex47hCeojsL0Pk4ef9nP/W3jt/6zM/n/9NLhlhBYePI1EchU34deGbJto8D+7K90JVn67l9qdVc7BTziXPhl9lui3sjOLHbzV9Jp8uO05W+0OngPfu59uxN05AlwyfGql2VDNzuRWyypdy/tJhOYTwTabU9V+P5Zh78nge4eb4lJ1M+iQRmg7Re6UQZioISD/tP7mXv4Z2ITZgd9xLK0UJ+3ck9XPrKeZSuiGpmseEd34W4IdPCxjuoZX+BC1+7xOzkHE3XuhEko4eKTeI/AV/c7EbkCisobBxBpdQiEf4lEtfz8phlwNLKpnLAu2TbaJLreVlFUHj0ex/g0e99INvT0tLd0Iu7wElBUWaphiKCy+XAbrfjKjDVUHOkN7chxCIaLo9zTR1604Vm7nv7abobB3ImtpeMyYEpxvsmzEyvU3XUPFTNzoO1a7YCvf3qbUrKi7HZciO+Nz04wdve/wAn3nxyXT+PNbJtAgJYQSGf6MC033wA6JrfKCKHMANF2ya1a1VEwzHeeOYGNlvmhUmVuyoY7RoBFDabDV1bXaXxZqFFYxSWFppif6u8RjQUpfd2HzsP7Miq6nk12Gw2YmGN9htdtF7roKC4gCPnDrCjrpYd+2uyNvTRohqtl1pyFhAA/NMBRnvGcBW6OXzf4Zxd1yI1VlDIE5RSPhH5NKZHQgRowHzq/1/AG8D5zWxfNiilePWrF4mFYlnlnFfuLKf7Rid2hwMttjWnaCOhKA6nPSN101RMD09TsaOCotICAutUtLcUm81GJBih6VIbDRea2XVwJwfP7Gf3oZ0ZayJ113cRCURyLtE90jFMaVUJU0OTVO1JbkhkkTusoJBf/CLwm8CfAHXAGPA88NtqC02wd97sZrhrNOsnRkM30GManiJPTnWONhI9puH2uNBi+poWRbvquzj3rnsJByMp7TrXC7vNznjfBGO94xSVF3L0vsPsPbqbih1lKadwDN2g6ULTunk2tF9px1PsobS6DKel6rquWBXNFpDDimbv1Bzf/tRzWc+rl1WXonSd3tu9ptLoFg0KADa7HZfHueZ0WrvTzn3vOkfX7f4ctWx1KKVMb+oHj7Dv+B6q91QuCw7DHUO8+E8vYrevn46Ru8jN6bed4fgjx/NtfSGvGrNWLCsmi5wRDcd49rMvrWotoHpPJUMdQzjdTqI5ksjeLIx5EcA1dlx6TKf1Sjt7j+7KQatWj4igRTUaL7bw/Odf4caLDYwNTCzKDrv9auO6BgSASCBCf2MvfY1963qfux0rKFjkBC2m8cyTLxIORFb1FGezCbFwDLvDhhbdWgvMyQgHIrg8zjUPwfxTPmZGZqjcsfly1iKCHtNpfr2NFz//KjdebGBicBL/rJ+pgWzcX1fP5MAU471jTA9Pbcj97kasNQWLNaNpOs/+88vMjM2uKvOksLSQ2bFZxCbx+fPtMKWpiIaiOJ1rXzQfbB3g9GOncRe4iITyYxSlawZNl1oZ65/A47ITi2o4XQ42Yial41oHhWWFFJUXWxpJ64A1UrBYE7FIjGc++wKTA1OrTkXcUVfNQMsgLrcra9vKfEaLmYVskoMUzaYLTew9sjOv5tJFhKqdFfQ19nLovsPsO7WPg/ceoGpv1freF6H5QjM9t7oxjI1dhL8bsEYKFqvGN+3jmX96idBceE1ZJ06ng6AvhKfQhdpmv+ThQJjC0kJTLG8tSR0KGs83cfJNJ+hpHsyL4OBw2jG0GMcePMrN525gxEdEe0/vZ8/xPQy0DmCT9Xnu1CIabZfbsDsdHHngSF58HtsFa6SwiYjIkyLy7SXb3i8iQRH5QzH5qIi8LiI+EZkTkRsi8hsiUho//vdFpHEj220YBi1X2nnq754l5AuvSf/eXeDCP+PH4bDl3FktXwj5Qrg8TtY6tRL2hxlsHWJXXU1uGrZGdh3agcvl4tbz8YAgAiIMNg8w0NjL3uN7CQfD6/Y0H5gN0HWtg55bq1OXtUiONVLII0TkvwKfBn5DKfWXIvJ54APAH2HWMIwDp4Gfj//9yY1sn1KKyaEpLj11ldkJb1aaRqmorauh52Y3DreTwGwOhODyEKUUIX+YgmLPmkcMEwMTeIrdVO4sz7mpTrbU7q+h+eVb6EmsSGdGZ7A77Ow+vIuuWz24C1w4XQ4cLmdOn+qnR2bovtmF3WGn7kxdzq57N2MFhTxBRH4R+FPgo0qpz4nIfwY+CHxAKfVvCYf2Ak8v0U1aV3RNZ7h7lIZXm5gcno4L5uVmkFlQ5CEwE8DusLE9FpiTowyDkD9MYUmBuVi8hsAw0DLIkfsPU1pVzNzUUuHdjaGorBBRBiPtgylTbycHJymtKaNyZwVTw9OE/GHsDrOGw+F04HCZKqprHUGN94xD3MBp/+n9a7qWhRUU8gIR+QPgV4EfUEo9Hd/8QaB9SUBYQCk1u17tUYYiFAgzMThFb1MfIz3jhANh7HZ7TnVtHE4HIX8Iu8NGJLR9FphToQyD4FyQguICNE3HWIO2U+eNLk6++QTKUPhmNn6EdfjsATqupJfj6q7v4r73PcDM2AyGblY+m9alYUBwuBw4XQ5sDlON175g0pRdoBjvm1iQfK+758Bq3pJFHCsobD7vBr4PeH9CQAA4CrRuRANmxmcZ7h7DP+PHOznHzNgskWAUQzewO8yCpPUoTKrZV8VQ2yBik5xLRecrSimCviDuAjeuAteappOaL7Zw6i2nEBHmpjduxCAilFQW0d/Qm1GBXsuFJk48cpymiy0JU0fmn1pUW6j8VkqZcu22eIBw2MwpygVPBlnwZEDirtZ3/sfkwASGbqBpOofOHbIWn1eJFRQ2n0ZMFdSPi8jFhBHAhn2jb59vZqRnnDu/rpKRB+9aqagtp/t6Z7xTuLt+gSOhKBIxP2eb3UYsqq1obp8MAVpeb+XUm07gdDvwz26MNEjtvmom+8bMTLEMOt6wP0wsHKW4oojgCgJ/8W4epRRaTENLzDtQCqVY8GRY2LbkGpND00yPztDb1E/7rd6Fda95c5/lrU3R/iSbU73VyeGZ//obn/lvn0v5xrYYlvbRJhJ3TqsGfhp4CfAB71ZKzYjIN4GTSqljaa7x+8APKqXOrKEpm/IlmBiY5Om/+y6+Kd+WMtTJJQrzydtT6MbpduJwObJ+wlVKcejegxy+/xA7D+xYn4YmoOs6X/vjLzPRN55xW20OO2efOEvP7b4NeYIvqynl2MPHOfLg0TVlx2XItnqisVJS8wCl1BDwOFAEvCgiVcAXgKMi8gPJztnIheb1oqu+Cy0au6sLkARAKcKBMHNTPuam5ggHQmbhW4aBUkToaeil6UIzg22D69pegLmJOSb7Mw8IAIamMz06E/eyXn+8E3O0X2mj/Wr7XfvAsVqsoJAnKKVGMAODC3PU8BLwr8C/iMjvishDIlInIu8TkaeB/5BwukdEzi15rTjC2GwM3aC/ZWDVWknbERFTBC8wF8I7MYdvxk84EEbXNDIZzI10jnLr5QZ6GnqznorKhu76rlUtgww09bHryK51bVsi3ok5Bpr76K7vSn+wxQLWmkIeoZQaE5EngBcwg8K7gJeBn8D0WTAwXdm+CHwt4dTDQP2Sy10HHlzvNq+W6ZFp5iZ96JqxpSw3N4L5tdNYJEY0EkMEc2Ha40yb5z8z6uX6szeIRWMcvOdAzr0HopEoXTc6VxXIlaHwTc7hcDvWZEKUDeO9ExSVl+Au8rD3+N4NuedWx1pTsIBNWFO4+G+XuPH8zQ17atwOKMDtceEqcOF0pykCEzj7+BkOnT1IcUVxztow0jXC1//0K6v+xtgcdk6/7Qz9zevrQb0IgTNvv4fD9x2iqDx3n8XiO2wfrOkjiw1H13U667vvmjTUXCFANBzFN+Mn4A0QjaxQBKfg1ku3ufXKbcZ6x3Jyf2UohtsG1xTIDU1Hj2p3PCc2AgXtV9roudVjPYRkgBUULDac8d5xvONz1lrCKhEgGorin/YT9MUXpZM8uosIPbd6ufH8TXpvr32dwT/rp79p7S5wvbd72Hlo55qvkw3RYJSp4Sk6rnVs6H23IlZQsNhwXn/qjbs64yiXhANhfFM+Qv5wyqfvqaFprj5zg/arHWuqHB/rGWO8Z3TNwTzoDVJQUrBmn4lsGWobIhIIE/aHN/S+Ww1rodliQ5mbnGOwbTiueZM7bDYbRx88grvACUph6IrO+m7C28ifIRVmlXSISDBCQbEHl8e1zMMhEohw7dkbhINh9p/aT8WO8qzuEYvEmBmZRtO0hSKztTDeM0ZpZQlBX+pitpyjoPd2Lwjc8/jZjbvvFsMKChYbRiwS4/K3r2IYBrYcTh3ZHTbue+c52l9vxj/hBRROj5MTb72HiaEphrtzM6eezwhmmq/fG8QRjFJQZBbDJQYHZSgaXmkkMBvgwJk6dh/dnfH1B9sGmRyYiFfbrb29o90jnH3nOfoa+zd0GtE35SMajjE5OEn13uoNu+9Wwpo+stgQdF2n5Uo7nfVdOQ0IAGceO03Law34J2bNDkuEWETj9gs38HgcHDi9L6f3y2cE0GMavpkAvhk/kVBkkXGRiNB9q5eG15oyrmdQhmJmZJqRjqHcdeDKlL+QTSim72vsY2gDivy2KlZQ2GRWMNpRaV5Ppjtms97TUnRN58V/eRXflI9Yjj2GdxyoZWZ4ktCsf7k4jQi9N7ux6Tr7jmf+VLwdEDHF5vyzAbxTvmVFcJMDk9Q/f5POG51p5/YnhybRolrO5+L7G3vZeXhXTq+ZCWFfiEgowmjX6IbfeytgBYU8I2608zXg94Fd8ddPxnfvSnj94pKfg8AvLdm26fhn/Xzr776L3W6j93Zfbi8usPfYHgZu964ozNbb0ENxiYfKHWW5vf8WQDDTQANzQbwTc/hnA0RCEQzdIOgLcuO5m7Rf7SAUSN3hN73WRNAbyLlcRNgfxuVxoWkbu+AMMNA0wGiPFRSSYa0p5BFLjXYSts8CKKWWfou9CccowJvkmE0hHIxw+7Um2q91ous6e47soul8c07nj/cc3c1gUy+iVFq1zrZLLZx77wME50KEczxa2QrMfzrRUNRUaAVcHhcOt4Or37lONBzj4NkDlFWXLjrPP+NHBAZbczh1lMBo1zDl1aUbpvA6TyQYIRaJMtI1wq5NGK3kM1ZQyBNSGO3kPcpQaJpGNBwj6A0yNjDBQOsgU0PTGLqB2ISq3ZUMd4ygDCOnHUvt/lpufueNjK/Z+NJN7nn3/Vx//lZGks/blYUAEY4SCZsFcK995TzecS/FVcWUVpVSWFpAWXUZ1797jYLSAuYmZtalLeN949z7rnP4ZgIbXrcy0DyA0+20gsISrKCQH6Qy2tkQ6l9qoOlSqzk9ENeoNxcgTQ37BS37+f3xPzXNQBkKm02wOew4nXZcBS4Qwe60Y3eaxjw7D+zg9W9cXpYmuRYqdpQzMzSZ0ShhHi2m09/Qw5F76+i8PZCztmxlTJ0lAQU3X27gyH2HmB6ZYax3gsP3HeT2a42cevNJYhFt8TmL/rLsilkRmAkQ8gcJBzd4BDcG1fuq+edPfAG7Y/Vd4UjX6G/+2md+4X/lsGWbiqV9tMnEPRXuwTTamQbes9RqU0R+EPiKUirlb5yI+IGfV0o9uYpmrOuXoOtmNxe/dglbDt3bjj54mFvPXEWPZD8fffKtpxkbnCIWswroklG7v5p733kv/Q29TI9ME5j15zbzaAmuAhdHHjzKcOfGz3wWlRdRd/YA5955bi2X2VbDTmuhOT8YAd6OGRheEJGKTW5PzjB0g5sv3sppQBCboHQDPRxLf3ASWl9voe7kXksHJwUTA1OM9YzRcqmZyt2VjPWMrOvUTjQUxeF0LEqd3SgCswGMmM7c1NyG3ztfsYJCnpDCaGfL03Wzm8Bsbo3la/ZVM9w6sOrhjdINhtuHqKxZF8XMLc+eY7tpvtCIb9ZPNBTF0Na/sx7uGKaspjT9gevASOcIvQ29m3LvfMQKCnnEUqMdEdnSJZdaTKP+hdyOEsBcT1irBs9Y1wiVuypRxgaqdW4BbHYbhSUFTA5MsePgTgZb+uNP8Os7qpocmKBiV+WmuKR5J7wYuk4kaGkigRUU8g6l1BjwRPzHl0WkdjPbsxbqn79JeIX891UhoEc1VA6eXjuvtbP7wJb9eNeFvcf30HG1HaUMavZVM943hoprSa13hx2Y9ZPDXISsGO0apeuG5dAGVvbRpqOU+lCSbRPAvQmbvkqaxSylVF7NhcxNzdFxtRNbjn/LK3ZUMNE3ikKtWZjNP+UzPYN1A+zW85HdacflcTIzOo3daTf9LgwFQny0IGCzrdv6Ql9DL8ffdIKBdaqJWInp4Wl2H9uDrunYHbkd2W41rN8Ei5yj6zovff4V9HVYOKzaU5nTTJiOq+3sObqx2v75yoEzdbRcbEYpxd5jexlqTUjbFeIjBmPdppNikRi6pudEhXU1jPeO0X3TGi1YQcEi51x7+hq+Kd+6PO0JalVpqKkI+0LY7TbUJkgt5BMFJQVEQxECM35EhPKdFcwMTyUZn5qBYb2mk7qud7L72OYUk433jRMJRO76rDQrKFjklM4bXXRc78ppoRrA6cdO4S5wEpz157wz6rnZxe5DO3J6za3G/lP7aLnUjEJRWFpIcNafejAgoJSxLqOGaCi6cP0NR8HU0BQDrXd3YaMVFCxyxlD7EFe+fXVdJCR21NWggiHGunKfMx+cDeApdKPHVlf3sNWp2FnBRP8EsXAMEaHungP0NfRkUJJljhp0LbfBoetaJ3uO7snJtbJluGOYucm7u2bBCgoWOaHndh+v/ut5jHUaekeCEQpKC5gdmV6X6/c19rJj37YoDckOgZ2HdtBT34mIudhst9uIZupYJ7A0OKx1JBcJhE0jphy782WCMhTesVnGere/MVMqrKCwCazgoRAUkT+M+yH8YKrzRORABn4Lv78R70XXda585xoXv3Zx3QICQCwUw+F2mhkx64B3bJaSylIM7e6qW9hzdDddNzoWPLMPnj1IT31n9hdKCA6GpqPrOsZCgMj+e9FxpY09J/ZsSt3CQOsAk/0TG37ffMFKSc0D4h4KnwZ+Qyn1lyLy22lOGWCxX8LPAB8BHkrY5s9tKxejlGK8b5xL37iMb9qf89TTZfcz9Jw7ti1lenCCwmIX4fDdERgcLgcFJQVM9IwhIthsNorKivBP+Vav5jN/Xlw4caFPFwHBzCySpaJ6d242/0+sx3SCswFcHuciMb6NwNAM/DO+u9ay0woKm0wqD4WVUErpwIJ6mIj4AH0jvBSioSiD7UM0XWhmdmwWsdnWPSCYiCnFvY6BYahtkDNP3EtPy8bnyW8GB+6po/l8I4ZSiAgHzx2i+0ZHbm+y8DGq+H/zf7LiQjYIHVfbue+9D9B4vgm73YbNbot/32TR39dDj66/aYCi8mIrKFhsLPnqoTDvkaBFNMLBCHOTc0wMTDLeO87shJdYNIbdbs95htHKbVrfgGDeQxGLREHXwOFc13ttNiVVJQRm/ARnTR8Dh8tBYWkBc+PejdP8XLkcE2UoBlv62VFXy2D70Pxm8494IBObmKOceNCw2WzY7IuDhoj5QiQhB2LlNxmLxAjOBZkYnKBmb80a3+jWwgoKm8emeigkcvWZ6zRfaEaLamiahtKJ/2LZsdltOF0ObA77wi+U07WxXxub3UYsHMHusK27N05/Qy/77jnA6MDU+t5ok9l/Yg+vf+PSwud54tETtF9q2dxGJWG8d4xz776fke4RU5gv3t6FB4T4NJVuGOjx5DGV8L+F6au4T8j8ASLcCRIyXy4ni2LF7VdvE/AGmByeWfCdkCXTXYjQ19j347/y2V/8p9y+883DCgqbRyOmVPbHReTiUg+FjeSh9z3AQ+97YLNunxH137mC0+OmvLZ83e9VUVvOA9/zEGU71v9em0X9czcorSjFZrdRsauSWDhKLBzD7sy/LqHjajun3nyKwbaNn9YrKCngrR84wa7Du1c6bNsEBLCyjzaTlTwUfPHtSyknwZf5bsI35cPutG9INsrU4AS9t7rX/T6bhX/GT9vlNmx2G+4iN9X7qum80pa3VjFhf5hoKILL49rwe/c29DI5OHlXVTlbQWETWcFDoQ1Y9OguInZMkby2jWxjPhCLRglMz23YU+LkwARiE/RtmJ6qDMWFL7+Gruk4PU4O3XeY+meurms6cS7ovNbBvpN7NzxF1dAMpoam6VpNmu4WxQoKm0wKD4X/A3xERH5ORI6JyDng74HK+J93FYFpP5FQhDtpK+uMguCsn4HG3g242cbSVd/J5OAUpdWlHL7vMNe//cZCJXM+owxFd30Xtfs3ftF3uH2IkC8U/w5uf6ygkAcs9VAAXgQ+HH9dA54BdgKPbUTaab4xO+5Fi2iAbNiT4kj7EL4p34bca6MI+8N0Xevk+KMnKK4o5o1vXiISjOR9QJhndnQGp8eJ3bnB0tYKum500X2X+C3k36rSXUCGHgpfjL8yud6fA3+ek8blIXNjM8Qi87pEGxMUIsEIuqYT8gUpKCnckHuuJ4Zu0HGtHS0ao/6Zq2hhzUy22SIBYZ7WS82cfec5em71bmjbg94gM2OzDLUPsefY5ugybRRWULDIa7SoRtAbJBaOArCRU8qTfWN4ij2ceMvpjbtpjomGorS93sLtVxqYGZkC5nP2N7tlq8PQDEY6hqnYWc7s2MbmXPQ19FJSVULVnio8RZ4NvfdGYk0fWeQ1c5NeFAotHMNcU9i4qDA1MIke0zdFf2etKKXovtnFN/7317j53HVmx2YQWT/XtI1krHuU0urSDQ9sSilaL7bQc6tnW2cjWUHBIiXKUGiRzZWTHu8exeFyoMU01MbGBJRS+Gd8TA1MbtxNc4AyFNeevsLlr11EC0fxzwY2atZtw2i92My+k/s2PGDHIjE6r7XTdWP7ZiNZQcEiJVpM4/w/PbepbRjrG41rK5m//BttvjLcNshE39aRUVbKDAgdl1sBmJvybcun2mgoyuzIFKXVJRt+b9+Un87rnfQ09Gz4vTcCKyjkGclktTcLPaqBffOmG3RNp7CkiLLa8jtPhBvcv0X8YbRIDC26New6215voeNKK4jgm/Zh6Nuv1mKegeYBKndVIpvguzA9PE3LpWZ6G3r5yw//360/J5eAFRSyQET2iMjfi8igiERFZEhE/kFE9ubwNr8I/GiG7XlcRL4pIiNxL4YGEflIrhqiRWM4NlH2wD81h9INXvz7pxemjTZjfn+se4TB5r4Nv2+2TA5McPO5GygFc1Nz6DEzjXc703y+kbrT+zflezE7MsvNF24A/P6G33wdsYJChojIQcyagTPAjwNHMDvv08BVETmQi/sopbxZ6CC9GbgN/GC8XX8L/L2I/Egu2qLFNOyOzQsKo10j8b/JwgLpZkyFTA1MEvKFNvy+2RANRXjl8y8RDUWZm5wzxeO2eUAAiIVjjHaPULmrIv3B60DQGwLYvyk3XyesoJA5fw0YwLuUUi8qpfqVUi8D74pv/2sAEXmfiJwXkRkRmRaRZ0XkZOKFROT3RKRPRCIiMioi/5ywb9H0kYi8TUQui4hfRLwi8oaInAFQSv2RUupjSqmLSqlupdTfAv8GfCAXb1iPahtfKJTAaMcwyzOONj4oKKXwT/nwjs9u+L0zwTAMXnzyeaYGJ/HP+LflGsJKjHaOUFRehN1hdWe5wPoUM0BEKoH3AX+tlAom7ov//DfA98RF7YqAvwAexpSv8ALfEhFX/FofAH4N+FngKPB+4EqK+zqAbwIXMAvbHgH+ElhporgUmFnF21xGLLJ58geGrjM5OGG6dyVs36wOb6htgJGOoU2591IMwyAcCDMxMEFXfRfPf/pZum90oce27/pBOlouNFF3pg613dKsNgGreC0zjmKOxVMJzjfH9x9VSn0tcYeIfBiYwwwSF4A6TIXU55RSMaAfc1oqGaWYyqjfUkrN19i3pmqkiLwfeCfwlvRv6Q4NLzcw2DKwaJvD6WDPkZ3MjM7w9F8vtXtQKX/Mdm538eF3fth7fC+T/RPUHtiB0g2UCEo3O8PoOtszJnsH3sk5dh7Zzdf/7GuLzIVy835TL6LHc64wNINIKEokEEbXdGwOOyWVxew/vZ+ua+1xnf+7t0PUYxpd1zvYdXQPIwvTjhvGtjJ0toJCdqxoIAgoETkM/AHmU30N5mjMxp15x69gLib3iMizmLpGTymllqltKaWmReRJ4FkReRFTE+krSqmBpceKyFuALwC/oJRKOvJIxdknznL2ibPLtvdca6dqTxUP/se3ZnO5nNB6qZnS6lKcLidiN4uudF2noLQQd+HmVJMGZvycedtpjj5yYlPuvxRd0/n2X32T8h0V26IoLRe4Cly8/b+8nb0nN3Sa/zc28mbrjTV9lBkdmAEhld7Byfj+LuBbmMHgpzEDw32AhqmCSrxDPx7fPwf8b+C6iBQlu7BS6sPx67wGfD/QLiLvTTxGRN4KfBf4vfi6Qk6IhqOIbM5XZLh1ABFZVJegawZ2++atcUz2jxMJRvJmzv7qty7jn/RZASGBgcY+Zkam8c/6N7spWxYrKGSAUmoaeBb4WRFZpI4W//nnMDtlwQwQf6SUekEp1QKUsGREppQKK6WeVkr9MvAQZrBJOeWjlLqllPpfSqnHgVcws5/m7/+2+L0/oZT6izW+1UVEgxFsm7B4p2s6M8OmHWZi96vHNnfhWxmKwLQ/L9JT+xp76anvxma3foWX0nqphYGmPgxjYwsdtwvWNypzfh6zc39BRN4hIvtE5HHgecxg8POYC7yTwE+KyBEReTvwd5gjBQBE5EMi8lERuSee5vphIIY5GlmEiBwUkT8RkTeLSJ2IPAGcxVzDIH7/78bv8S8isjP+yonofCwc3ZTCIN+kl7A/bP6QEBX0mL4pQSqRgeY+vOPeTdVD8k3N8cbXL23a/fMdLarRc7Objqvtm92ULYkVFDIkvtD7INAEfA7oxpzDbwEeUkr1KHOu44cwO+5GzDTV3wUS1wtmgZ8AzseP+QDwA0qpZDXzQeAY5jpEO6YX7L8A/yu+/0NAIWY200jC62oO3jKxkKlMutFPXIMtA+YTsJiyFvPTI3pMw7GJdRMAWiRGYNbHcNvgptw/Gory/Kef2TIV1puFd2yWyf4Jhjbp32krYy00Z0F8PeAn0xzzEmYhWSLFCfu/AXxjhfM/lPD3MeAH0hz7oVT714oWi+FWHvSYhs29cf64w22DiAh2h31RmqUe0/NiuqT/di9FFSXsPrZ3Q0dSWkzjub//DmF/2FpHyID+270UlxdRVl1GcdXGayRtVTb/N8wib9EiGkopUwNpg4hFYnjHZgGWBQUtpmHfRNmNefSYzszwNL23Ns6JS4tqPP/pZ/FOeK2AkAUtl5rpb+lPMGmySIcVFCxSEotGUUpt6FTF9NAk0fi0lc1hj+v3xNsTjuL0ODesLSsx1NpP0BskGjf/WU/CgTDP/O23mR6ajCvGWmSK0hWtF5roqe/Km6yxfGfzH7ss8pb5kcLSoKCUwtD0dXlq72vowRZXZrU77GgJI4WwP4S7yINZJL7JKOi61o7d6eDEW06t223GekY5/6+vmplgVkBYFZFghNbLLdiddg7df8QaaaXB+pZZpEQLx8BQaNHFQ+/AtI/6p17P+f2UoRiJrydAfPpIuxMUoqEoLo875/ddLcHZABN9Yww05j5FNRwIc+FLr/LSZ58nFopaHdkaCUz76bjSRt+t7emBkEuskUKeEa9grlZKvX+z26LH3c6WzseOtA3gLHChlMppZxWY9RHwBrHFF29tDjvRYHjJUSrn910LQ839FJUXU1xZTMXuqjVdSymFb9pH0ysN9Df1ocf0vHmf24GZkRmaLjSBQN3Zg9ZnmwIrKGSBiOwBPg58L1CLqXnyHczCsVzlvv0iGWoei8gpzLTXU0AZMAz8K/D7Sqk1TXYbuhFPRVVEg4sVOLwj0zjcTiKBMJ7igrXcZhEDjf0k/p7al6wpJLbN7ti8IraltF1qwu60Y3c6KK0py/r8SDBM3+1eOq92MDtmahmKiNVprQNz47PcfL4eXdPZf+YATnd+rFHlE1ZQyJB4odkloAezorgDOAz8IaafwpuUUr1rvY9SKpsJ8yhm7UI9Zv3DvcA/YP67rkmPRdd0DN3U5F8aFObGZijfXUXIG8hpUOi73bOoI7Q7bMuUPxfWM/IoKAhC86sN6FGNA/cdpjKDEUMkFGGoZYDOa+1MD0+bInc2mxUINoDQXJAr37zM7PgsB+45SOWeKutzT8AKCpmT6KcwL5/dLyLvwgwQfw18n4i8D/gdzFoFhVlI9ktxyQvA9FPALGDbiVkF/ZxS6sfi+54kYfooLmPxp/Hr6ZgqqT+hlGpUSnUCiQ7iffEq58fW+maNmGaOFARi4TtBYd7MvmxnBf7JOSr2VK/1VgCE/eGFp+R5bHY72pKRgmEY6JpOvj3fCULbpWb8M36OPHSMXcf2LOpolKEIzPoZbBugr6GXmdEZ9Ki2UHdhLSJvPG2XWuiu7+Log0fZdWQPVXurcbisLtH6BDIgwU/hY8n8FETkb4A/WOKn0AAUAB/D9FM4pZSKJvgp/BdM17Ra4NEU9533U/hH4IOAE7ifFH4KInIk3s6n1vSGMfPi9ZiGiCykiIK5zqBHYiA2/FO5ywLqv92DEX9anifZ9FHIG8RTvDkqqekQEYZbB5ganOD042cprS1nZmSGib4xJgcmCPlCCLJQ8JYPhXh3MyKCFo7RcqGZxlduU1JVws5DuyjbUU5ReRFFFcV4Cj04C1w4nI67ZjRhBYXMyGs/BRG5hBks3JjTR7+d6RsD06BkuHPY/CGu6VOzv5qgN0A0FGGguZ+pcTMA7Dq8C++4l1g4SmN9B0M94wvXWWwVsHJOeKJ20J7je6l/+soyy8toJEo0FI1PY5mEfCHsdhuzE3OZvbkUfg2pt6wCZY5glKFMVVcFw+1DHH/TSRweFwMt/Uh8mUihzPGmRd7hm/Lhm/IB5rqVHtMxDHNtze6w4y504fS4cTodODxOHC4HdpuNtsutP/3fPvsrn9rk5ucMKyhkR776KfwQphrrvcCfAb8J/HGmb+rkW09z8q2LVcGHW/opLCvG6Xay/1Qdj/7w4wDMjc9wq9CNzS7sP1XHIz/8RKa3SUnQG+D2c/WUVC7+OhaVF4NSi56oo6EIxRUl6Hr+FyJN9o1TXFXKm/7jW9h3ev+m+UBYrC/v+env3TYBAaw6hUzJaz8FpdSAUqpZKfVF4LeAj8ennlZNNBRBbGI+pSeMmsP+MDabOaUkOZr+6LzStsg3YR673YamLZ4piwYjuAo3Todprfin5rj+1Os0v3qbycFtZdBlsU2xgkIG5LOfQhJs8futKT0nFjb9mXVNXzQTFAmEEZsNLRLLLG82DYZu0HW9M/l8rU1Q2uJgEQ6EcRfmTwFbJigFrReauPXMdQaa+zdVdtvCIh3W9FHm/DxmSuoLIvIxFqekJvNTGAD2YE7nLPJTwPzc3wD8mFM/Kf0UMEcUTwFDwCFMWe6/je//r0AYc8E6iint/cfAV5NNR2VDLBKXzdaMRR4GsVAExJSQzkVUGO8ZJTgXwJ5h9o2h6djs9rwqYMsEEWGidwzv2AyRwAPUnT1o5chb5CVWUMgQpVSXiDwI/B6mn0Ji8doPzRevicgPAf8P0yuhE/hVIHHxeRZzzv/PMbOJmsnMT6EaGGOxn4IG/HfuLIT3YabG/t+1vl8tLvSmL6kJiARM2WYtqiG2tdUKKKVoeKE+dUBQC/9btmOrBYV5oqEoV75xEd/kHMfefIKisuL0J1lYbCBWUMiCPPRT+CLwxZXas1rmpS10TUNsd+bww34zQ0iLxlhrnzw3PsvU4OSKAw6FsDQwKAUYastOftrERuuFRqZHprj3XfdRvb92s5tkYbHAFv21slhvYmEzKBiaWdU8T9hnlmlo0Ri2NY4Urn37ysqpq0ql3L/V5+VFhInuUV77/Ev01HcSjay/BLeFRSZYIwWLpGiauQyia4tF2cJz80FBQ+yrHypMDU4y3jO64hSQWpg+Wn6MoRvYt8GUfDQY4fWvnufwg8eoO3uImrratBIeylBEQxFCvhBhfwhD17G7nBSVFVFQWphXEiAWWw8rKFgkxYhrDhlLgkJoNgCA0g3EJsvWHJJeyzAWVfIausHrXzlv9vrp5qCUJF3Q3mjf6PXEJjZ6rnfSfa2DPSf2suv4XsprKygoK8JmE7SYRnA2wMzoDLOjU0wPTuGf9hGLaIiYow4V/yyr91Wz93QdNftrqdpXYwUIi6yxgoJFUox4fYCu6Qsdt6EbREMJOkiGQovEVux4wv4Qr37qWxx65CQHHjiGs8BN0yu38I7PYk9b56BQqIVq4MUN3NrTR8kQEYbbhhhqHVwQI7TZZWG0ZrMvFsxzOJd/7jPD08wMT2Mog0P3HWHv6QPsOLwTp2sbDKssNgQrKFgkRdMTRgrxaSItFkNPkJzAMNAisbgb2nKUUlz5wovMjc4weLuHaDBC7fF9tLzWmEFASL3coMf0hVHHdkREFgVaxyoc7mxio/dmNz03uzh0/1H2naljx6Fd1sjBIi3WQvMGICI1IvI3ItIrIhERGRORF0Xk3SLyJyLSseT4vSKiRORbS7a/O779UMK2+0REF5GLuWzz/PRR4pqCFtEwEgTqDINlrmyJ+CZmGe8aRkSY6hlF6QavPPn8Ii2jlVAppoiioQgOK8c/IwSh50Ynr/7zi9R/9yrj3aOWV7HFilhBYWP4GqYg3k9g1h28H7MCugp4CTgiInsTjn8CUyjvbSKS+Gj3ONCvlOpO2PaTwN8AZ0TkZK4aPO/LnKhcGgtFFtljooxlrmyJtL/asNAB6ZqOb2qOmD+U8vhMiYajOD1bR+oiHxCg8402Xn7yOa4//QZj3aOL/y0tLOJY00frjIiUY/obvFsp9WJ8cx+mz8K8TEYMMxB8Lr7/CeCfgQ9jqp9eTdj+UsK1C4AfAd4GFGIGnV/LRbsNPSH7KD59NF+4No8CYsHkhdO6pjHcbHoXh/1hYpEowy191NbVMjk6m1kjUswfRUMRXB4noZjVqWWLMhSdb7TR/noL+07Xse90HbWHdlJYmlR6y+IuxAoK648//vp+EbmglFpkOhz3Y7jC8qDwUUxZiycwnd2KMXWS/i7h9B8E+pRSDSLyOeDLIvLf45Lca0KLmVM380/6ylCE5oLLRPAigcUeykopYuEY452DeEdMRzFlKBCYG51h372HmRieSbsmICIYqYJCMEppbRkh31L/ZotMsdlsDLUMMNjUj91tZ++J/dQc2EFZbTkl1aW4Cz2W38NdihUU1hmllBbXO/oH4KdEpB64iCmB/Ub8sJeBHwUQkQPAbkydpcPAf8R0Xnsr5r/XSwmX/yh3AsmrmLIY389iWY209N7qZqilH5TZqe88upu5sRlz7l9BJBDh4ldeQzSN0FxwocA4Fo5R/8xVmi81EwlGifhD+Gd81B7ciS0WM/WT5kcW8XP0qEYsFEIcK3/1nG6naQOaJDBE/EHcB3YQi0xm8zYtUqDFYnRda6fzWrvpIaAZiA0KSgopKCnA4XHjdDlwuOzYnU5ztBhPhZ0P7onbICeyWFsDgfrvXPvYzz35q/9zs5uSK2SrV4ZuFUTEgzmN9CZMd7Q3Ab+jlPojEXkHplfCQcyRwUeUUo+JyDHgOlCBKbz3H5VSx+LXO4JpuLNfKTUc3/aHwP1Kqe/JsnmLvgSGrvONP/jCwiLysbec4vQ776fp+et0XGxaOO7woydxelzc876HFl/MUHz3T79IcNq/7EZluyrZeXI/97zv4bSNanmtgVvPXk+67+Tb7uHsux/Y1llIFluGbfUltMaHG0RcLvt5pdT/UEq9GdNi8/dFxIU5KohgLiQ/jimPjVKqHfBhqp8+jjmimOejmPLY/SKiiYiG6aXwHhHZt6a2GmqRjIRSZiZQcGZ5Jx8LL5dnCPuDC0VuS/GOTuNwODLKgJmX2kiGHtMJziW/h4WFxeqxgsLm0Yw5HeSJrzO8jjlKeIJ4UIjzKvDvgQeITx3FDXR+HFMh9VzC615Mb+gPr6VhxtIOOy5B5B2fXXycrqNFFnsoA8wMTKTObFEQCYaZ7BtN245okoCzcG9NZ6xzJO01LCwsssMKCuuMiFSJyEsi8qMiclZEDorIfwJ+A3hRKTVvNvwy5vrBDsyRwzyvYpr42LkTLL4PU0r7H5RSjYkv4F+Bj4jIqv9tlaEgwQlNKYWu6UTiYnjz6DEdZPkT/3jX8EIaazKm+scZbRtM246QN5hyn296jinLyczCIudYQWH98QOXMX2ZXwWagD8CvoBpsDPPy5gubVeUUonJ/K/EtzfFpbTBTD19WSk1leR+XwHqgHettsFKqUXru0opIoHwspoEs5Zh+XTqeNfwitefGZjA4bSjx5aPMhJZaXpoZmQah9vKk7CwyDXWb9U6E3dA++34a6XjzpOkh1VKtS7drpT6/hWu053sOtmgDGPRnL9SisC0b5n4nR7TcBUstsbUIjGCU740N1BMdI/gLi7g0CPJ6+2UUiuOFKLBCEJmgnwWFhaZY40ULJZhjhTuBAVPkYfJ3pFleeum+9ri+BOY8REJpq8fGO8YYmZwgpmhyaTeCHpMI7aChAaAFtPwTc6teIyFhUV2WCMFi2Uo3RwpzHf4ntIiei73LfM+0GPasm3ekekV1xMS6b7cQt+1dnafOcju03XsPXto4dxIMIIWji4rllvazumhScp3VmTz9iwsLFbAGilYLMMcKdxZaHZ5HMyOTC87To8tHynMDk9mXDsgIhi6weCtLjovNtJ5oXFhn29yDpvDRsWeqkXn2BL9okORZRlRFhYWa8MKChbLUIZatKYQDccW+SjMY7qvLf4KzawyI2i6b5xYOIpv0gvA1OAEO47s4fC5w+jxaaTagzu57z0PoOIqq/6puZXtPC0sLLLGCgoWyzAM405fKxANhJPKWOsxDVvC9JGhG3iTjCgyZaJ7hN6rbYCZtlpUXsR4xyCuuCBfxe5KJruGIGbWL/infdjTyGVYWFhkR0ZBYb38AOJ//8Ek93tSRL6dYdsOisjnRWQw3rZhEXlaRO5LOKZXRJKqh4rIgXg7HkzYpuKvty451h6/ftJ2bzQiclpEvioi3fE2/X4urmvoxkL+kqe4IP5Evvw4c6SQMJ0TCBENrd6Afqp3FJvdhh7TmRqcxGa3M9Y2QOXeamx2G1o4yuzwFCVVpQv3V0qlTW21sLDInExHCuvpB7BqRMQJPA/UAP853rYfBK4AlWu8/ADm+03ke4B86oEKgV7gY0BPri5q6PpCTmtxZSlzY7NJvZRNr4U72wMz/jV10PP2nv0NXUT8YTAMvGPTlFSXU7WvhvG2QXwTsxRXli6cE/YFGM6gEM7CwiIz0gaFBD+A31JKvaiU6lNKXVVK/blS6l+BC9zxA5hn3g/Ah+kHkLg9UeVzrZzGVBL9OaXUpXjbLimlPpHgXbBangT+U1yyep6fAD6bzUVE5KdFpF1EwiIyISLPxmUq5vd/WESa4/vbReSXE6uRVzo//u/wa0qpL2AqpOYEQzMWgoCntBD/1FzStFEwp5rm8U941yy37J/yMlDfiVKGeU/Tj57q/TVM9YwQ8YXwFBcsHN9zs4vpoSm8Y7MMtfQzN+Flom8sqSaThYVFejKZkF1PP4C1MgEYwAdE5H8rpXL5FN8AtGBWHf+jiNQC3wv8MvB7mVwgPiX115g6RReAcuAdCft/EvgfwH/DVEM9gymxHQM+me789SJx/cBV4CLk9adc0FWGMkcMDju+idllKarZMt0/QdmeasRmM9uhoOdKK4XlxRiahmAa2C+kzCpofvUWTS/dNKe8FIhNOPPOcxy47wjFFSWWkqqFRRakDQrr7AewJpRSQyLyC/Hr/66IXAdeA/5VKdW08tkZ8RngI5iKpj8GnFdK9WbR8e0HAsBTSikfpuParYT9vwv8hlLqq/Gfe0TkT4CfBT6Zwfk5oft6xyIdoaKyIqKBEGKzoUc1tIiGFtUI+5ZbaUaCEa584yIVu6sYau4jHMjA+CZFgNE1nbnxWWqO7CYajGBoOihFcNpHcNqsklaYhXWxYHjResZS6r9zhfqnr7Dz6B7KdlZYhjEW68a1r1/6xZ958tf+crPbkSsySt1QSn1NRJ5msR/Ar4rI7yil/ggzKHwsHhCeIK7fIyKvAP87Pt3xBNChlMrpBLBS6q9F5J/j138EU1H0t0TkI0qpz618dlq+gNn+45jB4Q+yPP95zI68R0SeBZ4D/k0p5RORGmAf8CkR+duEcxzckalIef6q31ES9p2po+bAjoWfZ4encBa4sdlt2J12DMPA7rDjKnQvO9fhcrD37EFKqsvoeKkeV8HqvZPng62rwM0TH34Pekyjv6pk2ejD5XHxzp/6XqoP7srouspY2UvawmItXPv6pSc3uw25JON8vvi00fPx1/8QkU9j+gH8OSv4AYhIKj8AMNccypLcrhzwZtE2H/AU8JSIfAx4FrMDX1NQUEp5ReTfMKe8dgFfz/J8n4jcj+mh/G5Mqes/EpGHgHlt6f+PxaqoGZ0/b6yTC5xuF073nc7cOzaDzWHHZrOZXgpKYbPZkj5tiwieogLsTjuxUCTjauaVMGI6031j5hN+iutFA2HcSYJUKhLXISwscsnPPPlrGfdVW4G1/Aav2g8ggbb49gXi2Ur3xvdljTJXRFuB4nTHZsg/Yga0f1m6npJhezSl1EtKqf8OnAWKgPfHFU+HgMNKqc6lr3Tn5+B9pW6zZiDzgxXDWFFdTxkGWjRG2BfK2eKuf3oOLRYzF7yTIRCayelgycLCIk7akYKIVGHKMX8Gc/F1/sk/mR/ArwFulvsB/CmL/QDm+T/AZ0WkCXMEUoi56FoJ/H0GbTsHfAJzRNAMRIG3Y071fHHJ4bvjxyeSdipLKfVyfKon615IRN6Pua7yGjCNGTBLMBewAX4f+CsRmQW+Azgxs7X2KKX+ON35Yrq2nYpfywPsjL9Hf2JgyRZD1xcmsEwXttTHKmWmkUYDEXLlSuif9FK5vxYtkjzIiAjBFM5uFhYWayPT7KN5P4AjmJ3+EOZ8e6JZ9cuYHfSFDPwAAFBKfTE+X/yrwB9jplVeBx5TSqW35jI79W7MbKADmCOffuDPgT9Zcuwvx1+J/DcgbZGcUmq1DvGzwH+It68Q6AI+GpfJRin1aREJAL+O+f5DmH4Ln8zkfMwF/fqE+x0GfhozED++yjYv1BrY7DZ0TU9WorCISChKLBDKWZZP2BfE6XbG/RqWo0ViGdl5WlhYZE8m2Uc59wNYsv+LLH+qz4h4Z720o0923IE0hyz1K1ixd0u3P+G4Cyyu30h2TMr3n+58pVQv62AarusGIoKrwE0kEDY7YHvq2yhNIzA1t+Z01DsXBJQiElie7QQQC0dwuJy5uZeFhcUirDw9i2UYurkG7ip0E/YH02jOCUrBXI7VShWSNAUWIBaKIjlY0LawsFhOXv9michjIuJP9cqD9n1whfblok5iU5hf4HUXeYj4Q6BUyikkZRjYbMLc2OqF8JJhs4t57yREQxGr7sDCYp3Id4nJa8C5zW7ECjwFvJFi35ZNjNfiUtWuAjdhX9iUm0gRFbSYhqEbhOeSd+ArUbarkrmxmaTrA1okRjS4XK4bQAtHraBgYbFO5HVQiC9YrzqLZr2J10dsu9xILV7o5Sp035nCUfHXkthgxHRikSixLDtqsQlH33qGrouNzAwvH2XEwjH0WPK4GgvHVqxmtrCwWD3W49YWYyNku+erf+0O24LBDSz2bZ5Hi2nEIhpJtbVXoKSmnO5LTZTuqEh+3UgMPZIq+yi6yIHNwsIid9yVQUFEXhGRTybZ/qHEtQoRKRGRP4irmIbE9JF4RUT+y7ySafznef+FqIiMiMgzIvKjkrN0nEXsAr6V9qg1MD9SSHDkRKk7C9CJGLph6hBlufBbXF2Gd3jS1LDTlxepGYaOlmKkMO/3YCQx/rGwsFgbd2VQyIS4ZPjrmIVwf4ZZsPdW4J8whez2Jxz+WczO+hDw/fHzPgV8fYmfxJpRSo3G04TXjXlRO5UwOjAMI2ndgNPlwL+KdNTC8mICk6Ykt5Gk87c7HMQisaSOb2aDFJolj21hkXOsoJCaPwIOAo8opT6rlGpSSnUopT6LWXWcWFwXjHfWg3GPg09gqsP+e0x1VQBE5FdEpEFEAiIyJCKfjgcfRKQsPhr5d4mNEJH3iEgsLt29bPpIRH5PRPrEdJ0bjYsDrongrDlYSlwA1qNa0oIIZ6EH/+RqpF8UytAxdD3pQrPdaUePaBh6Kslug1h4y67lW1jkLVZQSEJ8auiHMfWOlklhKKXC6XSQlFLPAbeBDyRsNoBfwjQH+hFMN7u/ih/vxayu/uCSS30QeE4pNZ6knR/AlBb5WeAopibSlfTvMDW6pt/J+lnylK6UWjbV4y5045+cI1tMH2hFeC6Iu9iz/ABldvyGtnzKCsDQVUoZDAsLi9WT19lHm0g1UMEdjaLV0owpYgeAUuovEvb1ishvAN8UkR9XShnA54EvikhJXCG1AHPE8dMprl8HjGAGjRimxMe1bBvZf6uL2dEZAGaGJvFPzmFz2NFjmjl9E58aioaiqLiJzTyGrpsmPFliRDUwFGFvAFeBC+/k4iQuLaZhxINC0oXoaIzml29RVFW6bJ+FxUZy+Ysv/8hPPfnrX9jsduQKKygkJ1cLxHEvsPgPIu/AlL8+iSkZbgdcwE5gGFMUL4gZCP4Zc31CgG+muP5XMDWp5v0WnsE05MlqzaFq/w7sTvOrUHtoJ/e9/1FEhIHb3ZRUL1Y2V0otmu5RuvlzVrITwkLtQ9gXoqimDP/s4joHm82GoRmIzZY000hsQmFJAVX7arJ4pxYW68LVzW5ALrlbg8IcK/s4TAAzmJ33WjiFKdiHiNQBT2M62P0eMIW5NvFFzMCAUiomIl/BnDL65/if/6aUSuq/rJQaiBsAvRN4F/C/gY+LyCNKqYxlRIsqiimqWK40rke1tKmf817KDlfmXyVngZtYMILYhLAvQPXhXcvOF5ugDAO705n02ja7jeKqUvacqsv4vhYW68FPPfnrHZvdhlxyt64ptAH3J0kZvR9oi0/lfAn4oIjsXXqyiHhEJMlE+KJj3ovpuTxvtfkgZuf/y0qp15VS7Zgqp0v5PPBOETmF6XD3+ZXuE1/feFop9cuYHtingbesdE6mhH1JY9ECYjftOkUk6RRPKtzFHiLxa0eDYVyFniTnm5lPKZOaJLUMhoWFxeq5W0cKfwv8PKaXwT8AYeB7gf+CmTEEpirs48AbcTe3K5jucm8Cfgv4PqA3fmyhiOzE/Dx3xa/1G5jTPvOdegdmEP6luJvbo5iLzotQSl0UkT5MafJJVvC0FtM724EpteEHfghTXiMnTy7pPAsKSgsX1FHNDjyzWTd3kYfwdHxxej4WLJHSMH0ckpRQz+/XDaKZ+EFbWFhkxV05UlBKdWNaXB7F9D2+gplt9J+UUt+JHzOD2XE/Cfwmps/DJeAnMK0++xMu+WHMBd9uzMKyN2HabP5HpZQev14D5vz/r2AuQH8UM3MoGf+C6T73xfnzUzAbb895oBEz0+kHlFI9GX0QaQjOrqzgUVRRgm9yDpasM6TDXeRZNApR8UyjRFRCsEhe8RxNWkxnYWGxNu7WkQJKqavAe9Mc4wV+J/5KdczjWdzz/wH/b8nmLyc57vcw1x2SXUMS/v4N4BuZ3j8bDMOIu6mlpqiimOHGnrj9QeZBwVXoITyXOApRGLqBLeHbKAt7zMVscSweMWhRDUeCr7SFhUVuuCtHChbp0cIxtNjKT+IOt3NhCieZVEXK81xOtITCMxGBJeerBC2lZCMCLRxdB3shCwsLKyhYJCUWjqYtDjOnjOIyGFkEBXNuaHGnr9SS89WdP5NdOxaJYbOMdiwsco71W2WRlNBcIK3uqVIKw1Ap5/1Tn2csOj7iC+EqdC89yFzANoxl1xabUFBahKe0KON7WlhYZIYVFCyS4pvyreiPYHPYF9RUjSwWmWH5+kN4Loin5E4HLzZZUEA1lhxbUlPO8SfOEZ3zM9s3ytCtTis11cIih9xVQWGpNHYGx/eKSKoMoW2Nf3xmxRTTwvKiBSE8ZRjZqaQuEbkL+wK4iwsWfra7HAuKrEq/c21PaSG7TtVx6ysvM1TfzsCVZq48+Qw9lxqZHZjI/P4WFhYpydugkInngYj8flw19IUkx/1sfF9jwuYvYcpbbxgick5EvhRXMA2LSKeIPCki98T3j4jI7yw553fjbf/Aku3/IiKvJfz8URGpj3tCe+MKrP8zF+2eGZ5acX9RRQm+cW98ikdlvugrsmzhODwXpKC0cOFnh9OxYO6TOKo48PBJmr51EaUZCAIIItDyzGXG2vpz7hNtYXE3krdBIQtGgcdE5MCS7R9hcS0BSqlQMrXR9UJE3o9ZWFYM/FdM2Ywfxqxp+JP4YS8DTyw59XHMtifb/nL82h/BTG/9O0wf6zdh1k8UskYMw2BmaHLFYworivFPzQLxjltllpbqKnQTCYQWjSwigRCuojsF4nanA22J61rNkT2M3OpAD0cTzjXvJwhtz19lom1gYUrLwsJidWyHoDCFqSn04fkNInIWOMEdiYn57cumj0Tk+0TkjbiXwZSIfGuJhIVHRD4lInMiMigiv55Jo0SkENN851ml1PcppZ5XSvUopa4ppf47dySyXwbeLCLu+HluzA7+j0kICiJyDFMWY77C+fsxdZE+pZTqVEo1K6W+opT6lUzatxLBGT8R/8rVwnaHfVFaqVIKPZbcPjMRd5GHiG/JGoC6cw2IB4Xo4mtX7q1hvKU/5TSVEdPov9pCz6XbadtgYWGRmu0QFAD+EfjxeYtMzCrfLwMrluSKyPswpSieBx7A7IRfZfHn8suYvgj3A/8L+FMReVMGbXovpgT3nyTbqZSajf/1ZaAAeCT+86OYge6fgSMisiO+/QkgBFyO/zwKPCwiOZ8O67zUlH46aMnIQI/pGaWlLq1mvnM9tVDVbHc60BNc3qoP7WK0uXd51fPC/0y8Q5NEA2EmupZZYFhYWGTIdqlofgZwYgrJvYb5FP4fMJVDV+J3ga8qpT6WsK1hyTHPKaXm1zb+SkR+AVOV9PU01z4a/3NFTwalVKeIDGJ2+q/F/3xFKRUUkeuYU0Zfim+/lCCL/QlMKYwuEenEnKZ6DlMaI6s5lJG2Abwj5nz8ZO8oPVfbSDcTFAtHzIK1+JO7bmiImLULiX4LS7E5HYRm/cunmpQiGghjczpQyiAaiixIZ9Qc3k3TN8+bOuSJ5ylFNBxZNHpof+kGSsFk/2TWFqEWFqvhwmeffddH/+k3lq1rblW2RVBQSuki8k+Y6wiVwJRS6oKIpAsK92FqG63E0iAxDNRm0KxseqT5dYVPxP+ct9R8Jf7zlzCDw4JEhlJqBHiTiJwB3g68GdMX+pdF5C2p5LaTUVxVyuzwFCJC3f1HOf72syseL3Yb4+1DFFYUL+t4laEW0kmT4S7yEPanaFriSCE+FeUqdBOZC4CxWDDvzg1Z9Elr4Sghrw/D66d0Tyb/TBYWa2ZbKTPmc1BI53mwlM9gduAH4n/PFUufuhWZTbu1x/88iSmktxIvAX8nIhWY00gfiW9/FfhLETkJ7CC+yLyoMUo1Yorh/bWIvBVTHO8/kz7YLVBSXcbJJ85lejgAfVfbsjPWieMu9GDE9GXBJBaJ4iryYHM68RQXosc0xCbsvfcww7c6EZEkT/6Cw+VY5vkw0tDNifc9zOHH7sGexg/CwmKtnHzi3IXNbkMuyec1hRU9D5YerJTqxHRAepA7T9rpqMecCloPnsOUvv6tZDtFpDzhx5cBN/CrwIRSqiu+/QJmCu0HMaWx0zk8Ncf/XO6Yk2NmBlfOTlqRJFNTgak5isrNZtud9oWU1MKKYoKTyZ4BzAsly3gyNB3v4CS9rzetvo0WFncp+TxSyMTzYCnfA7jjsteZ8IfAt+Jz8l/AnIh4D/CpbKZfkqGUCojIR4GviMjTwF9g+hxUYtpt3o/pyYBSqk9EeoBfIMF6M36NG/Ht55VSC6uvIvK3mFNZLwGDmD4OH8O083xuLW1Ph67pBOb9ELJkXuJiaagPTHop21tLKBBZKF7zlBSaU0crXS9FNfVIYzelu6swND2te5yFhcUd8nakkInnQZJzglkEBOLX+Y+YwaQec7rmCSALdbcVr/9NzPTSIKbZThumr/I+TBOeRF4GSjDXERJ5Jb59qdnO85hTTV/GnKr6enz7u+OubutG2BckGszKBnqBRBG9RALTPooqSgCw2e3oMY2dJ/Yz1tx759yl11qhNsLQdAKTXnrfsEYLFhbZINkImVlsW7L6Egw39XLhs8+sSqX00MPHafz2paSZQSfe8xC9Nzo58tYzNDx1kdPveYiWpy+ZtcsiIMQrmU3sLgdit+EqcC+7FpjS3kff+QDH3vHAihlRFhZrZFt9ufJ2pGCRv4x3j6wqIDjczpVHGAqUpoMCERtK1xf/ti3LYlUrhjMtEiPiCzLS2JX6IAsLi0VYQWGViMgH45pDyV7bes5ismt4Ved5SgoIef0r1A8oDE0Dpag+sIPp3pGEPUkPT8twQxfeNDpOFhYWd8jnheZ85ynMgrFkbFsBHi0SW1BHzRZ3cQHhFRaoY6EI9rhcd9XBXXS+eP3OTrW8TkGp9EJ8WjiKs9DD3Og0pTsrV9VuC4u7CSsorBKllI80MhrbkZnhSSKh6ELnnQ3u4gJmekZS7vdPeimsLEEphd1uQ2nLtZQW1aqtsB5WVF3GnnuPEJr1MdHaR3B8hupje6nYv5OC8nXP2LWw2LLcdUFBRD4EfFIplVHPICK98eP/fD3btVUYuNmFbZWLtgUlhYS9qe0s/BNeKg/sxOa0E55NFW/vhIVUA4Xqo3spqijm9r+9iqFpiAjOAjfd529Rvn8HRx6/j9rj+3EleDhYWFiY5PWawnbwVFhq1BN/T0pEPpbk2C/H930yYduT8W1KRGIi0i0ify4iG+5FaegGw819q9YUEpsNXdNT7g/OzFFYUUxBWRFT3cvXLZYK4C3TuADK99fiLi6g7dkr5kJ1vK2GbqBHNbyD41z7/LN0vXYz6T0sLO528jooZEHeeiqkYAD4cGK1tohUYcphDyQ5/gXM4rRDmAVqPwts+MhlsneU0MwaZsyUYWoYpdytsNlsuDxuvINJ/omWiegt/A8Ap8dFzZG9dL10fdmxekxbqGkQoP35q3S/douRhs5VvhkLi+3JdgkKeempsALfxZSieDxh249iLlx3Jzk+opQaVUoNKKW+APwLpgosIrJPRL4pItMiEhSRVhH54TW2bxmGYXDzqdeRVaSi3rmGQqVJGVIKYsHQysEj4RqJR9W96TQt33l9mcT2woVhkbz38K0Oel9vYvDGutb6WVhsKbZLUID89FRIRQxTn+kjCds+En8PmRDClAoH+BtMt7UngNPALwGza2jbMpRStL50E+/w6vWOHG4n0UAo7XE2uxCcTv1PtuDytrDB9Igu213N3PAksUA4tRGPpi9oKs0z3tpH3+VGBq+1ZvpWLCy2NdtpoTkfPRVW4jPANRH5OeAYprrrV1kcKJYhIg8DPwK8GN9UB3xNKXUr/nNPtg2JBiP4p+ZTRc3uVilQukFgxkf7aw3MDIyn9VhYieKaMvwTs4CseB13SSGjjckGS3dQSpneCmK2V4/p1J6q4/ZXXwZJXb6gaxo2hxtDMxYtRYy39iN2O+FgmMqDe7J6XxYW3/jYZ05/5J9+c9vUJm2boJCnngopUUq1iMgtTIG/c8C/xo11kh3+vviUlwMz8H0T+G/xfX+JKbv9PsxA8XWl1PVkF0lF+/kG+m90LNpmykoIzgIXnuICdp2sy+aSy6g6sIOeC7dxuFb+ynmKC5jtH0/unZDA/HKCUlBUU85ESx9KSy9ZpQyDiD+07Pr9b7SgDIOx9kG8E6sT+7O4azkNWEFhg9jqngrp+AzmovEhTPvOVLwG/FS8HcOJzmpKqX8UkWcxFWTfBVwSkT9WSv1+po04896HOPPeh1bR/MxRStF76Tae0sIVj9M0DT0SxZZFhtOec0doeepCRvpGhqbjcDtxFriW7ZtsH+DgW89y9K33UHtibUHQ4q7iy5vdgFyS72sKW91TIR1fwpw6GlRKpaqOBggqpTqVUn3JrDaVUoNKqb9XSv1n4PcwA0heEQ1GiKVRVhWbjYg3kJU6X2FFCYHxGQw9daprIvOL0Kkkt3suNDDTO8rswGYnqFlYbA75PlLY0p4K6VBK+URkD5BZj5YEEflLzGymdqAUeB93zHbyhuD0HNFwdEUntLJdlUx1D2Oz2TAy/Eh233OIrldvZlU7oQwDPRrD4Vk+WgBofe4NHB4XrmIPhRWlGV/XwmI7kNcjhe3gqZDB/b1KqdRlvumxAX+FGQieB8aAH89F23LJdN8YtjTSGOV7a0yxvRUWixMRm2Cz29DDkawWwef9n1OioOW7rzPa1EsstDrfCAuLrYrlp2ABWfoprIZrX3iB/jT1AIcfO0vTN87jcDmJRWJpRep3nj5A1B9iumc4wW8hMxweF3aXc8VA5S4u5MT3PML+R06nDWgWdzWWn4KFRbZM942tfIAIKqYnzPWnj1OVB3Yy3ROXqkjjrbAUs2Zh5RFDxB+k67Wb9F9pTunwZmGx3bCCwhq4mz0VsiEWjhBK47VcUluOd3jizoY0fbCz0E00EM708GUYmpEu6xUA/9gMI7e7GLCK2yzuEvJ9oTnfuSs9FbIlMOUjFopgW2GRuWJfLX2vNyEiGT2V7zp9kJHbXbiLC9AisYV1guUSealQKMMsfLM7U7cLYLylj6LKMpwFbnad2TAtRQuLTcEKCmvgbvVUyJbJ7mEkzZy8q8BNZC7IfGctttSrzQ63k7pHT1FUVUpkzo/D7cJZ6GF2YIzhhsytN/WYZt4nTVAA6LnYgLusCE95MRV711S3aGGR19zVQcHyVtgYJruH0qaMGoaBUvM1BAZiE5S+PCoU1ZRz5O330vS1V5bVElQe2s09//4xOl68ZlYtp2FBOC/D4UXbs2/gcDspKC3CU7rhyuUWFhvClllT2EbeCkpEfjTJvivxfUu9F5a954T9bxeRF0VkMq6Q2iUi/yIieZNcbxgG070rLzIXVpbgH5s2O2dlFpbd0TVMOK6qlIOPnqLt6Ut4ByeW7Z/uHqbl2xc58o4HKK5OVgifpH26gRbLbKZP6QZtz11h5FbXir4QFhZbmS0TFLIg370VBjAVXBcQkTOY+ikZO8yLyClMEcAGzLqKM8DPYMp/uHPV2LUSmPQSTrPIXLl/B5Odd0YTShnLJCvsLidH3nYvzU+dx0jwRliKHtVo/uZ59j98iuKa8rTt02PaijLdS4kFwnRfbKD/spVHYLE92Y5BId+9Fb4AvElEEkcoPxFvWzZFbO/BFP37ZaXUbaVUt1LqOaXUzyqllj9GbxJ9V1vTZgZ5SosITsdF6JQybTZFFp139B330f7MZcRIP9ejDEXLty9R9+hpCsrSTPPE75dK9iIZ/rFpJjuH6L/akvE5FhZbhe0YFCC/vRUmgW8RD1oi4sI02MnUS2GeUaBGRJ7I8rwNIxaO0vtGS9r1BKXfqU9IVqVQdXAXgfEZov4QNocdQ0tTkYwpwNf8rYsceeIBnG7niscampa2ZmEpw7c6CE7NMdOfpv7CwmKLsV0XmvPdW+EzwKdE5OOYFpyzSqnXsvQ+/gqmsupLIjKOKQHyMvC5bEcKWjRGNMdyDnannYv/8DRhX2DFoFBQVoR/wms+sS/bq0Bs7Lr3ME1fewUBbA47sXA0ozYo3aDl6Uuc/L43c/ubr6WUwtA1HbvTkdVoAUxLT2eBC7vHhSNN4LHYvnz5Fz5Z+6F/+q1to6C4LYPCFvBWeBZzDuTdmKOYrGW+lVI6ps/zx4B3AI8Cvw78joi8TSmV8aR3/dcvMHgrd17FRZUlFFWWMnizM21ST/WhPYy19plTRqiF4wWw2Wzse/AEw9daV60joIWjdL92k+PvfpiW715O6dNg6AaxuewUWgFan3mDyd5RhtsGV9lCi23AD2Hqj20LtlJQ2DbeCkopIx60fhuzM/+JNKesdK0h4HPA5+IBoh0zOHwo02s89ENP8NAP5W4WSinFC3/+JYqr0idBVeyvZehGG7al3s9iVi1X7K9h6I0mU/zOZkvuv5yGwMQs011D1D16ioGrySuTDU3H6XGlVE5NhRaO4i508/B/fpw9545m3TaLbcG2CQiwtdYUtpu3wmeAx4DnlVLDubhgXB12BMio7mK9CM0G8I9nJlSrDCPptI0yFHvuPUL/pUaI1y/YHHb02OpSQSfaB7DbHVQe2Jm6HbAqacD+y02Evf5FshsWFluVrTRS2FbeCkqpbhGpBtJVWVWLyLkl28aBf4dp4/l1oAvwAD8G3AP8aS7bmi3T/aMYuo4sffpfgrukgNCMj3i60aJ9ShkU15TTf7Hhzr4MJTBS0XuxgZPvfzOhGR8h7/I0WaUZaMRweLJbH1CGovdiI0pXHHnH/atun4VFPrBlRgrb0VtBKTWtlEoXFH4o3pbE169gvv9CzGDZiGnZ+Xbgx5RSn1+P9mbKVPdI2oAAULlvB5Ndyauda4/tZ6yxG+LTRZlqIqWj7buXOfKOB5PqHemaxmpVxP0TM0QDIcbb+tMfbGGRx1h+ChaQQz8FpRQv/OkX8U3Mpj32yNvupfGb5yGJnMWZ738LLd94baEkwe50YGg6hr72+OwuKeTIOx+g6VsXWFrz4HC7sDkdaUXykuHwODn2roc5/Ph9lv/C3YXlp2BhkYpoMEJwOjONQGUYqCSdfMmOSuaGJkjMIRWbLScBASDiCzJ4rY3Db79v2T49pqEy9HteihaO4R0cp+/1xvQHW1jkKVZQyBGWt4KJb3yGWCR9HUFhZQm+0emkY5Q95w4zXN9uriUoMB/Ecjui9Q6OE5rxsfP0wUXblWGYFc6rDEDDDZ3o0RhaBp+BhUU+spUWmvMdy1sBGG8fTCuTDVB9cDcDV5uXrSfY4tM2RkyLry+bPsyGlvtlneH6Dg6/434q9tUyk6C4qsc0MyXWnl16KpiLzhOdAxiG4ti7Hsxlcy0sNgQrKOQIy1vBZLytP62sBYCryENodrnU0557jzBc3wHcSUqyOWxoGVYxZ0vXSzc48X1vQovE8MXTaJWuIzju+DqsQOnuaqoO7cbmsJvTTrrCMAxEKQbeaMJR4MZdXICnvARXcQEOl1X5bJHfWEHBImckdqwrITYbelQzO90la3SlOysZemPpbJuklKjIBW3fucyp738rPRduEYwHKi1qDu6SFbPZXU72nDuKq9jDbPcIXc+9YQathEbaHA7EbsPhcaEMhc1mo6imnIqDu6g4uIuimgpKd1fjKi7IKIhaWGwUWyYo3C2GOCKiMNNsv5r24DxjdmiCiD+MzbHy9FHFvlqmuoeWmdsUVZcRmFgcVERkVVXM2aCUovnbFzn9/W+l+/xNgjN+lD6/tqAQ+3ydBOw5dwxPaRF9528SnPSahXUJdRTzGLqO02FHFAvTaYHJWQKTswxebUEZBu7iQmpPH6TqyF7K9tVSvKMSu3PL/EpabFPWZaH5bjLEEZED8b+v9Pr9LG69C1NFdcvRfbHxTge6ApX7a5loH1j2hLz77OGFqaN5bA47Riw7BdPVoHSDpm+e5+Bb7l0w6NGid7yfPWVFnHjvo8x2D9Hy9VcJTsxgCvalfr+6ri+MOJYiNhvRYJjBqy3c/MJzvPonn+P8n/0LLd+6yFhTNxFfMCd1GRYW2bLZjyULhjhKqd6E7UkNcUhf/Ztr5g1xForBkhjiDGB25PP8DGb7H0rYlrFPglJqdLWN3Uxi4QijrZmtJyjA0Ixlyd1OjwttiVqr2AQjS/XS1aIMRfNTFzjx/jczXN+Od2QKw9CpOLCPyrqdNH7lRYxozAwEGbxPQ9OxOexJK7YTkfj1fKPT+EavoAwDh8dJ1ZF91J46SNm+Wkp2VOEszBvvJIttzGanpG55QxyllK6UGp1/YS426/G/V5CgRSQihSISFZHvJryHnxSRjoSflYj8YPzv86OQD4jI83HLzWYReXfC8U4R+X8iMiwiEREZEJE/yfJ9rgllKG5+7TyxDOS3S3dWMts3xtJFgor9O5jtG1mvJmaMUoqWb1+k5vh+dpysY9c9h3EXemj5xmt3AkI219MMtEh2yWfmmovOeHMvt7/yEuf//Au89Aef4do/fouuF64xcquDueFJooHQuk+tWdx9bPZIAUxzmb8WkU8o07k9W0OcP8EMKg5MnaKlhjgfB/4MU7ri/4nIBaVUpt4HiYY4v5tgiPMBTEmJFVFKtYjIGPA48K/AWzAVXd8qIg6llBbf90qaS/0hpvLpzwIfA/5VROqUUn7gFzClOX4Y6AX2AsczfH9mOw1FMjeDVMfOLyhPtA8wNzGLb2SaudFpENJOeVQd2kX781eXjSh2nKqj45nLi7bZHfbN8UJW0Pnidc79yLsJTs3S+eyVhaf5bNE1DafDFQ+C2Z8vCGKzE/WHGbnZycjNTvMzNgwzs6msiOIdlRRVl+EqKcRdVIijwIXT48LucZvKr24nNpcDu9OB3encZvW3m8/nP/Qnth/759/eNtE5H4LCdjfEmddP+lfMAPBVzAD1ULwdbwd+M801/q9S6lsAIvLbmMJ354ALQB2mXPZ5ZfbI/cClTBsHcOXzz9H7RmbWkiKm5ISz0IO7yMN8D1NUlUzVfDme4iKMqL6olkFsgk1kWcFYNoY6uWbvgycYb+5hvLELh8eFHo6uOgNK13Ri4Vju1wj8IfwTs0x1Di3enuw+IohNcBUX4iry4Cotoqi6HE95sbnPbicWjeEdmcY7NLlpn/sW5ePx17Zg04PCXWCI8wrwS/G/Pw78JaaQ3eMiMgnsIf1IIfF9zMtsz7+PJzHtQ9tF5DngO8B346OujHjkx97LIz/23kwPXxNtL1zDU1q4aKRQfXQvkx0D5oN4YrDdpFTNHacPYnPYGL4Wr5fQYzg8LrSoFl8fyO56hmbg9Dixu1x58ZSuhSJooQjBsWkzUCkFCjyVJVQe3M2Bex+mqNZMmfWUl1g6TunZNgEB1i8oWIY4d/j/2zvv8Diu626/Zwt6JwH23kSqkOq9d1mWe49jO/ni9K5UO4lLbMeJa9xLbNnqXZaoTkmkKIoSe28gCRC9d2zfud8fdxZcLHaBBbAd8z7PEsTMnZmzC2DO3HvKbzPwYxFZhdZ22AwUo1t+dwEnTaGc8Rh5H0opZd5Qbeb3e0RkKXAHWoHtN8B+Ebl1Mo4hFRiGQeOOsZrNlYtqOLzj8CgnIDbblFtNTIfSuVWULZjNqVd2jGxTSuH3+HDkO1GGcba6Ou4bvMIwFBIIYMuwlNPwZTFv/zCt+2pp3VeLUgqb3caslQupWbuUkjlVlC+qIb+s2KqryHGS9Rt6HLhLRESNnjPHFMQRkZ3AVcAH47xGSBDnF9M1Ng5+hXYKL0xWECcsrvAFtAPoEJE3gB8CfUw8S4jnGoNozebHReQ+4B1gJXpZKWMYaO1hqGv0M4E9z4nf5UEFRz+B2x32mOmcycJZmM/Sq8/n8FNbou4PeP3YHXbseQ6CPj8oidsxGP4AtgmqozMJXR+i6DrRSNeJRjMjKo/q1YuZvWYJZQtnUzZvNs6igolPZpFVJMspzFRBnFhsQQeof2qer15EOtEO8DPTsU1E/g6d4bQPPaP4JHqmlnGiwSde3YlSatST5py1i2ndWzv25mrelFLJmjsu58QL26OvyZsEA0HEMHDk5xHw+nVVdqwn57DNSim9ShMIIo7Jt+VON6Eq9LZDp2k9eAplKPKLC5i1ejGzls+naHYFJXMqKSgvxp6fZ80mspikOAXzJnod8J9oQZwC4BgTCOIAcd/MlVIviMgH0Ot5/4DOVnob7ZASjlKqZxqHvwF8lNGzgs1oh7B57PBJMYh+/6vQy2N7gTsT7Rini3fYTUeUOobiWeXUt3aN2iZpcAhLrjyPln0n4kqrVUZoOSkPIxjEiJUhFZr8mO85GGqdkYVOIRwRQeyC3+Oj7cBJ2g6EMqIU+aVFlC6opnxhNSXVlTiLCyisKqOospS8kqIJe0lZpB9LZMcCEt2XOgqHnn2L2jf2jnIKeSWF1KxayKlXd4yKJ9jznBi+AEaKcvBL5lQx97ylnH5t96SPtTsdiE3irkVwFuTpwJbdjs1hi0uhLptRSqEMg7ziIqqWzqN67RLKFlZTsWhO1L5SWUpOebrMinpZ5CR+t5cz744NMM9dt5Smdw+PyTISkZQ5BLEJy669gMNPbZ7S8UEzVuAsMJeTJnjICvoCiMOG3+cHBLvTgc2Ruw5CzHTXgMdLx7F6Oo7Vo4IGc85fzqLLzmXW6oXklxSl20yLMGakUxCRTwE/i7H7jFLq3FTak+scem4bPpdnjFPILy7E3Tu6RlFExl3TTzTLrl1P/Vv7YRrLVYahUB6frmfwB8ZViDMMA6fNgUEQUAT9foL+meEgQojdRseRetoP17HkyvOYt2EV1WuXWnGIDGFGOgUsQZyUMdjeS9PuE2P+4IuqShlq7wbDGDVTsDnsI03okk3x7HJsDhvDbdMJF2kU4Pf4sDsdOOzjZ04F/UFsdjvGKNnPSAdhx+ZwxHQQYhMWXX6uXo4yDBAbjTuP4B/2TPu9pAoRoeGdw3TVNrHmriuZe/6KXFpSylpmpFOwBHFSgxEI8u59LxDw+ce2tVi7lNOv7x67dGSzYQRT45eXX7+BI8+8mdBz6uUk27jLSUYwiNOZF+EUwlEE/QHTOYY5CLt2EDannVW3XUb95j0MtXSBobAXOFl99zU07T6Opz/u/osZgau7n4OPv44RCDJv/UorzTXN5O4cdQKiNdibYHy9iNybTJtyCWUodj+8icHW7qjLAvY8B76h0QlSqVw6WnjpWlr2nEhKgZxhGATMYrdY1cBG0IhziUg7CL/bg3fIhd/lYdn1F3LyxXcYauo0NSmEoDfAsae3sOjSc0YkTbOJgMfH4ae30LK3NmkqexbxkRVOQXJDn2G9iPxORNpExCMiDSLypIgsiTL2gyISFJEHo+yL1G8YEpHjIvJLs8Ns2lGG4uBzb9G8tzbqja9s3iz66tvGOAC705GSgjV7vpOyuVX01k2qDnFShJaTbHYbjryxE/KgP4B9CqmpczespOPASdzd/TplTClCyWPKUNRu3MbSqy7ISi2GgMfHiZe207z7mNX9NY1khVOYBCP6DBHbo+ozKKU6SAEiUg28hm63/R50a/BPA6eAsiiH/D/gv4H3i0hljNPegdZxOB/dDbYG2C0iH0+s9ZMj4POz4zcvcnrL/phjZq9aSNuBU2N7G6WoPmH5teupf3Nf0q8DEPDpwLOzIG9M3qJhGJMKrjqLCiiprqD7+NlfZYXZukgplFL4XF56TzVTPm+W7nHk8RH0+fXLH8DwB1HBoL7pZqDj8PQP07TzKGe2HUy3KTOWXHMKmarPcDVaW+FzSqndSql6pdQWpdQ/KqVG/faLyEJ0V9VvodtVfCrWezU1HOqUUi8ope5Bt7r4qYhUxGlXwgj6A9S/c4RN37iflv2nYg8UQeRsIVcIW4p6HRWUazXXVK67G0GtqeAoyMMWNnMK+gKTkt9cdv0G6l/fM+G49gMnqVm3jIDPR8Drw+/26pfLg2/YjXfQjXfQhXfQhW/Ijd/tJej1Y/gDqGBQZ2Kl0V/0nG5huKuPjiN16TNiBpNrTgG0PsNnRCT03iarz/AqcDH6xryFsfoMB9E9nL4J/LeIXBmHTW3meT4sEz8afg7d8rsbuB89a4iXb6EbEU7UYXZKGIZBMBDA5/bi7hukt6Gd+u2HePfXL/DyV+5jz8Ob8PS7xq1arVoyh67jDVrbOAyb02Fm3iSXZdddQN3WfUm/TiShpno2p32UI4g3tlBYWYp/2IPfFV92Ueue48zfsHrsDmGk1EophREMEvT58Xu8+FwevINuPIOukfhFaKZh+AMYgaDWrjYM03Gc7bCaaOq27GWoow9fFmVT5Qq5mH2UcfoMSql3ROTr6A6mPzKb/20GHlRKnQmNMx3G54B/NDc9YY6/WCkVT7ntEfPrpGIlh57dRu0be1CGKVZvLi2o8D94BQqFzW5H7Dbsdt0YzlGQp/UQHHaKqkonvNactUs49PjriP3senrIhUyhK/WkKF9Yw3BnH8YkldASScDrx+aw48jPI+j1EfQHcBbkEfSPL8Kz+IrzOP3qjpj7I+k93cLaD15P676Tk2tBPvLDwOwGa4xs0KtNamT/pM85SU6++i6dtY20HmuYeHAaGe7s/+qnfvuFf0u3HYki55xCpuozKKW+ICLfQbe3DrXg/oKI3KOUes0cdjN6mek585ghEXkGPVuIxymE/UnHz3n3XM1591w9mUOmTF9DO8cK8nEWjr5T+IbdSe+Ls+iytRx5OnoH1FQSeuJ2FObrp/CgbrBnz3dGHe8sKgABI0pq73j0nGikes0irYqXhXgH3ZRWV7DsmguoWbs03eaMR844BMie5aOp6DO8Dy1ukzH6DEqpbqXU40qpvwfWouUzw3+h/h/6PQ2LSEBEAmiZzU+ISDy9ANaZX0/Ha1OqORltTVyp2E3lEsTc85bTfvh0xmTlKKXwu73YHPYRGdNYMZUFF6+hYet+JvvI3XGkjuo1SzLmPU+Fuq37GGztHrdK3CKxZItTOA5cFGU9PqY+A7ATLWrz2zivEdJnSAlKKR86+6gEQESq0Mtcn0FLbYZe6wEv8OE4Tnsv2kmOScvNBAJeP13Hz4x52vV7fEm9cYlNmLVigY5lZBih9tsjjjHyYxDBkefENzA8+ZMrcPcMkJefvVXChj9I35lW6tMQB5qpZItT+Al6nfwHZr7/GhH5W7Q+w7diHHMnUKOUao3zGl8DPiIi/yki60TkXBH52zif0MdFRO4WkQfMr6tN++9Fa0w8bQ77NDoY/qBS6lD4C3iKsQHnWSIyV0SWicidIvIs2nH8iVIq2uwp7bQdOoV3KEKSQqkxmUiJZskV59GwPXNTHI1AkIBXO8bIYPusFfPpPFI35d5MLbuPMXf9iqyeLbTsO4kylBV0ThFZ4RSUUqeB69CaAa8AO9DLKuPqM0xCsAfzPB9AO5O96MyjGzkbaZsOR9A1Ct8yz70DLbpzL/B1c8wfAk8rpaKtozyOrr8ITyd5CS2ucxit+9wJXKKUeiQB9iYcpRSn39g7JtMm2bMEZ2E+BeXFDGX4urpSupus4Q9i+M72fqpcOp+uYw1T1qv2D3twFuTrVNNsRSla95/MaMeeS1h6ChaQgqz04e5+Xv/P34wuTjMUnsHhpDqF1bddxpm39uOLnKFkMDab4CjIx1lSwOJL11G7cduUnQLA7HMWg81Gf2t3Aq1MPWvvuYYFl5xDYcXEWW4pJqfau2bFTMEi+zn1+p6IYKHC5/Yk1SEUzSon4PFmlUMA3Yrb7/JQvXoxLbuPTcshAHQdb6Rq5cKsXkICaNlXS+M7h9NtRs5jOYUEICKfMnsQRXvN+N/igM9P677R7bMNfxAjyS2yl159Pmfeiswizg4UUFRVxlBr9/TbUSiFCgSmpRmRCfQ3tGOz2xju7Eu3KTlNztUppAlLn2EcWvbX4hlwnY0nKIXP5Un4mlVeSSGrb7sMd1cfPQ3t9De2Jz3VNVkUzSrH1a3zBUKN77RPnWjWEPpUR4/rOFTH7BUL6K6PN+8iM2neewJlKFbdfnm6TclZrJlCAlBKDSqlTsZ4nZn4DLmLYRicenX3KIfgHXInZSlj5Y0Xceq5rQSH3cxeMoeWPWOylbOG+ReupjXC/lDju1B7CRX1NbpBXmh8f0Mb5Ytqsr776EBTJ4gw3NWXblNylhnrFCw9hdTQ39DOYHso80enFcYWl5k6hZWlePuHCHp8tO+vpbC8JHuXSwTyivIJuLxRd4eaZYe1MRqXUCfVgMeHYXZMTUXzwWTRsu8Ezbuz1+FnOlnhFGaCnoKI3BehkxD5+kzYuZwi8vcistuMWwyIyAER+S8RWZSq9xQPR57bNvK06htyEwwkJ46w4MLVtOzQrZ8E3YU1lsBNplO1fAE9p5onHBfpHCZyEO0HT1Gzbhl+l1c3vHN7dVwnywLQA02d2Gw2PH3ZpTCXLWTnX01ssllP4a/R+giRr03AGXRLcEQkD12r8UV0F9Ub0JXd/wAUAX+fgrcUF0MdvfTWtaKCBp5BF8Ekru87i/IJDLuxOx0EfQG6TzRSvWph0q6XTGrWLqHzaH3c4xXRHUSkkxhs6aJsfjWhuEPQ58c37ME75Cbo9enZQ5Y4iJb9tTTtPJpuM3KSXHMKWaunoJTqN/URRl7ogrargPcppbrMc/0tupDvJqXU95RSu8zYxctKqb8y96cdwzDY98gm3H2D+IZcSV3LdhYVEBh2619mEZRS9NW1ULl0Xtbc5ELYnQ59c57i8o6KeMFoJ2H4/OQV5GFz2BGbDbEJyjDwu31aX8Hl0doKgWBGf3b9De2ITbIu3TgbyDWnANmvpxCy527gK8BnlVLhMmafBF5VSu2NdpxKcTK6ETTwe7y4+4foa+ygYccR9j2yieMv7aB593GMoJH0yrhZKxfQc6IRW55zpGWGEQhim4SATaYwd/1K2vefTOg5w51Ex5E6Zq1ejApq1Teb3Y49z4k936k1pW02lGFojQW3l4Dbq1t8+/yj9RRCEe000rLvhDVbSALZ91czMVmrpxBCRM4BHgS+oZR6PGL3avPY8PEPA+81vz2jlDp3PHsiOfbiO5x+68CojBbMTBaUMquQzX1m8zZlmOppAja7HZvDhs3hwFmQx5IrzuXUa7tCtk3GlClRsaCaM0frxt6kDAO7TQhm7gPvGMrmz6Z159Gklcj2N7Qzd8MqWvbVgkSfjejMV0FsgoicnVGYsxctzmOY35uLVjLq6LDzJOmNAO0HTzNr5SJe+NefxSVUlBQE+s60/+cnfvvFL048ODvIOaeQ5XoKiEg58Ax6lhJvn/a/Ncf+IbpJ4KQ4584rOOfOKyZ7WEwGWro4vXlPytoROAvysYngjyiGG2zuonTe7Kxp75BfXoy3fyjpPRNU0MBmt034oK8MhUKNWcoSm00/BOQ5tcCS3QZiS0uzh55TzZx715UsueaC1F/8LDnjECB7lo9mhJ6CueT1ILoJ3+/FWAo6gY6RhJ+3zWwXnva7n2EY7Hv4VYL+1BSNic2GI99BIIqa2kBzB+ULZqfEjkSw4KI1tKQg1bLr2Bmq1yye8vF6eSmA3+3VgepBLd2ZjlhEb30rwUAga4sUM5FscQo5r6dg8p/ooPT7lFIDMQ59GLhVRC5JsolTonX/SfoaOlKybARQsagGV0dP1EC2q6ufourKtK99x0t+SSH+QVfSr9NzuoWqFQsS9rkoBUG/6SSG3HiH3Lomwp+a1hqt+2tpzuJCxUwjW5aPfgL8BXod/xeAB61F8An0jCAadwL5k2if/TXgORE5CTyEngzfBvxMKTWtv1QzaPxx4BH0k76gYwB3Af9hjvko8M/ozKlBEZkbcRq3qZPwXfO4TSLyZWAreoawEv1ZpO2RKeD1cejJ1MpdLrn6fI4+FkNTSClsSZb4TBTli+fQ39Cemosl2UmqoEEg6ANA7DYcTgfisJvLTIn/efScamH+htUY5rKYxfTIik9whugp/CnaWdyH1kmIfH3ftNOLDpp/Dfh94E3gGPBD89y3JsDeSaOUYu9Dr+KZikLYFCmuqcBmE4bbx9dKkCyYKcw9bzltBxKbdTQevSebmbViQdKvo4IGfo8P35BbLzElqZq67cDJlH5+uYylp2ABCdBTaN57gj2/fRGVwu4Ja+68At/AECef3RpzzJIbLqJ593E8GazaZXPaWXnLpZx8/u2UXVPsNlbecQXHX9ielKf3ca8tgj3fiS3Bs4fzP3wjS65Zj6R+dpgd09E4yYqZgkVm4+oe4OCjr6fUIczbsFLnqE9QFDfU0kXp3KoUWTU15q1fRfu+2pReM5SBlI54i1KKgDl78IVmDwmIPbQdOk37odMJsHBmYzmFBDCT9RT8Hi9v//AJvK7UPYnnlxVRUF7CUFvXhBWtQx09lGS4UyibP5vB5s6UX7f/TBsVi+ek/LrhGP4gfpcX35CLgMenZUOn6B86j53B0z+UEAczk8mWQHOmMyP1FAI+P9u+9zjD3QNxZxuVL6ph7rql9JxqpvPkxE3forH06gs48vRmyhfWMDDBzdTbN0RBeYl+Ik7xMkk8FM4qw90dLas6+XQerWfZTZfQ19iR9s9GGXr2EPDoVh/2PAc2h33SdnUcrqOgooS5569IkqW5jzVTSAAzUU/B7/by1rcfob+lK26HkF9WTM2qhRx/5BUq51dhm8J60/wLV9G8+ygBt5eyBdUMtXRNfFAGs+CiNTTvOpaWawd9Aex5joxL2Q36A2b9Q3ijvviObT9ah7t30JotTAPLKVhMmsGOXjb/94P0t3aP6xCqz1nCokvX6hYEAsuuvYBTz20Fw6DzwCmqFlVP6roFFSXkFRfSfaIREPKKCvAPx9cQLRMzkGxOO/Y8B0F3dN2EVDDY3En5gsn9HFLFSKO+IRd+tye+ugell5Fa96c2RpNLWE4hhUykC2EK+YynqbA57JjLReRZEekREa+IHBOR/4jo6ppQjKBB7Wu72Pqth3FNsGRUXFNBUWkhPQeOc86tF3POnVfStHkPhscLIvSdaaN80Zy4n1LFZmPp1edT+9L2UTeGeOYohj+I3WGP6zqpZMHF59CSpllCiPZDp6k5L2WyIlND6VmNbvPtmrAwrv1wHd7+IYwsFhJKJ1ZMIbO4FAjdvdajm/tdBjSa23wAInIPuhX4g+iahW50i+1voRsB3mJWTCcEI2jQcayeI0+/yWB730ijtPFYcOFqap94DeUPcOzRV3EUFeIfco2sEatgUN/QDQPsE9+wl157Aac27cTwBc6uM8fpUFydvRRXV9DfHnfZSkoomVNF89sH02pD0OvHke/UP4d0NZWbBKHYA4DYBLvTgdh1aqvYRP9uKEVXbRM2h50l16xPs8XZh+UUMgil1EjUVERCCjGdprZCaHsRuj34C0qpz4UdfkZEjgO70II9/zMdWwzDwNXdT9OOYzTtPoqrcwBsElcOeH5ZEd6efpTPr/UNDKUdQjQCwQmdQvWaxQw2dzLU1jPiEMRumzAdNcRQu85AyiSnUL12Cd3H6tNtBnB2CSlbGgeGUIYye17pXA6b3aZ1Iuw2WvbVUrViAd4hN/klhek1NMuwnEL2cTswG/jvyB1KqT0i8hpacyFupxDw+HD3DeLqGWSgpYue0y30N7bjGXChlNKzgkkUBM07fwUtb+6ZMHMk6A9gQ41bMl5cXUFxTQXHn3tr1PaiqjJcXfFl7Qx39FKdYUskNecs5ciTb2RE1VP7odMsveGirHMKkRhBY9SSUd2WvXSfbEKJUFJTSfGscpzFBeQXF5JXUoijIE9rSTjs2Jym6FAGZqilGsspZB+rza+x1EWOAH80mRPu/PXzdBw9o1MBnXZCK/XOwvwpGZhfWohvYHhCp+DtH6KgshS/ij7OWZjP4svXceCRTaBGazOU1FTh6uyLyx7DH9DLDJD21EvQAfjOI3UZ4RDg7BKSKJUVS0jx0lffxtzzV9C4+wQ9p1oAUMrA8AcxAkEMwwDDwDCUFg9CcOTpdFi706FlImy2EWchNjGTJs7+X4DOY2f+/GP3/9uP0vtuE4flFHIPYZLlP1f+6QcSakDDm3txFhdM+NQV9PqZd8EKzv3EbVH3G8Egb3/vMZxF+UTGz8sX19D05t64n+wEcBYXpF2NTWzC3A0rOfzwpox6Kh1s7qRi2TzcfUMTD84imnYfY83tl7Ps+guT+XnnjEMAK/so1UxWFyIaJ8yv62LsXwukNR+vbe/xuP4APf1D+oksCspQ7P3Ni/TUtUQ9l7MwH/9k+xkF099zf8Ela2nYuj/ueEiq6DhcR805S8i1Xmj+YQ99De20WK2148ZyCqllUroQMXgFnW30D5E7ROQitCbEg9MxcjoEfX6G4mzZ4O0fwl6QN2a7MhSHHn+Nlr0nYsssTlIj2DvgIq8oadm6cVFQUYIj38lgBlQQRxL0+rE7HbrNRI7RvOsY3oFhvCns4JvNWE4htfwEWI7WhVgvImtE5G/RuhDfiucESqlhdMzgPSLyKxG5UEQWi8jH0e023sJss50O3L0D+Abj++Mz/AFERGs9myilOPq7rZzZdnDcG6eapFMYauumuLoi7vGJRmzCkmsu4NRL72RcBXGI3tMtlM3LHqW6yVC7aRet+0/m3EwoGVhOIYVMRRcixnmeNs9TA7yOXi76MvBL4LZE1ihMlqHWbtQkQqhG0Bh5glOG4sjTb3J68+5xgyJis6ECgXFGRLGrvTutjfGW33gx9a/vxvD6M26WEKLzaD01a3JvCQnAN+ii/dDptLUUySasQHOKUUrtRKeVTjRuF+MU7CqltgN3J9C0hDDU3DmpgJ4KBPENuiisKmPfg6/QtOPohGXKBRUluLsHJnVz9Q24yC8pOptim0KWXreBzkOn9bJahjoE0O20jWAQQZFjEgEAdBytp3T+LHrrKqhcNi/d5mQsllOwSCiuzskViCllMNzRw7EXttNx9ExcxXFFs8oY7phCIZpCt0awp+aGZ3c6WHbjRbTtOUFvre7XlOm076+les0SOk80Tjw4Czn52m7yS4vJLy+mqKos3eZkJNbykUVCGZ5CAdShRzbRcSw+hwBQNKsc11ScAiolgVSxCTXnLmPFLZdQ9+oOemsbkn7NRDHQ3EXpvFk5uYQE2i0ffe4tOo7U4YuzmeJMw5opWCQMIxjE3TcY32CldAGRP4B3YBgpLor7OnnFhfgGdduMvJJClt18KV1H68zuqbHxu7w4nI6EiG5Hw1mYz/yL1uAsyqdtXy3N2w7q1NMMXjKKhrd3EGe+k4BvcnGbbEEFDQ4//SYiwrwNq8grttpghGM5BYuEEfD4CHrj0BQy5RiNQJCA1489f5I3aqUI1ectu+VSTj//Fstuu4LBlvGV2IbaeyiprmAgzvYY8VIyp4o55y8n6PHR+PZBPD2DZ51BljkEgOadx1h87XoadhxJtylJw/AHOPjEGwT9AeZesNJaSgrDWj6ySBh+l4egZxxtAKUI+vz4hj0YAb2M4x9y4yyc3JOaMgwwFAWVpXj7hjC8fs5s2sHSa9ePm+453NZNcU3lpK41HpXL5rH6jisomV1O7bNvUfvcNjxd/Rmr8hYvfpcHe55Df845jAoaHHpqM3Vb9tJ7pjXd5mQMllOwSBi+geHo92SlMPwB7TS8/lE3bt+wh7ziSRSViYzEBeZsWEX7Lv00G3B7EZsNuz32r7S7d4CCytJpr5cXV1ew+q4rEYTDj22icev+szOkLHYG4bTtPUHNOUvSbUbSEYTTb+zh4GOv07L3BIHxHmpmCJZTsEgYviH3qG6qylAEvXpmEPD4okok+ofdOCdRaVxYUaKXZ4D80mLdeM+kfd8J5mxYFftgBRLKQJoCYrOx9Nr1VCyew5HHXqN99zEIZvesIBYDTZ2UzZs9Y2Qt+xs72PV/Gzn4xGY6jtSbLblnJpZTSCGi+XsRqTXV0ppE5Bvmvv8SkeMi4jYV2P47XEVNRL4kIodE5DPm/iER+bWI5InIn4lIo4h0i8h3RCQtP9eA24MyDII+P36XB/+wW1crj/Nk7h9yk1cSv1MomlXOcEcv4rCPKWAbbGyndGHNuNdTSqGCkw+g5pcVs/rOK2jZeYT6TTtR/mBOOoNw+s+0UTonccttmY7YhKYdR3jnx0+y+/+eo2H7IQZbu2ecgpsVaE4tXwf+FPg74E2gGrjQ3DcM/AHQjG5291PAC/xb2PFLgfehi9YWAE8Cc4E24DbgHOAxYJu5L+EYwSBBr5+A14dnwIWrq48BUwDH6bQTcE1u+u0bduMsij+mUDS7nJbaBkrnzY7aY0n5A9jtNoIxnnBdnb0UVZTimYSds1YtpGJhDUcefw3Dk7kVyYmmdV8taz9wHbWv786ojq7JRmw2Oo6dof1oPQJULJnDrFWLKJtXTUFlCYUVpTiLC3Dk52EbZ7kyW7GcQooQkRLgb4G/UUr9ytx8EtgOoJT6atjwehH5OnAvo52CHficUqofOCQiLwHXAwvM1hZHRWQbcCOTcAqnN++heecxjGDQrGo19BN/MIgKGAR9AfxuD0GvT/eSt9u0ypXdjs3pQGxCcXUFhYV5k67P8rs9OIsLsOfF96uYX1aMf9DFnPNX0BVFnL37aD2z1y6h/Uh91OP7m9opXzwPf/3EgUWxCYuvPJ+h1m6OPfOmnoFMQmwo+1EMNHdSMrscz2AM5bwZwGBbD4NtPaDACAQI+s2/E8PAWZCHp2/oux+5/9//Nt12JgrLKaSOdUA+8Fq0nSLyYeBvgJVACdoBROpUNpgOIUQ7cCKi11E7uidS3Cy/4SKW33DRZA6JysH7XySvJP56gxD5JUXc/o0/jdlGOxy/y0Pj67sorq6kdWBozBNsf30rK997Lb1n2qM+3QaGvcxauZBL/+yDsTuwmgT9AQ488DJdh+vIn8L7ygW6jzey9gPXseS6DdgcE2tpz1ByxiGAFVNIJTEfMUXkCuAR4GXgveglpS8CzoihkdEvFWNbWn6uU21NrJTC74pPG8E76CLg9oAyogeMlUIpI3blslIE/YEJ22S4ewd567/up3lnLIG7mYEyDHrrWmjcfijdplikCMsppI4j6BjBzVH2XQ00K6W+qpTaqZSqBbIuH9DbH2c1cwQqYBCIUzDH3dMPCCoQO/jXf6qZikWxJ0v+IRftB07G3N+2v5at3/gtg63dM2otPRate2tRwSABT9qa71qkEGv5KEUopQZF5PvAN0TEiw40zwIuRqupLRCRT6FjDLejNRayBiMQxDcwtXVnwwjid8cX+B1q6aawqgx3d1/MMT0nGlh2x5X0t0S/qffVtzK7aKz+dNAf4NCjm2jZcRQjaFgOIYRStO45jlKw7MbpLzNaZDbWTCG1/AvwTXTw+Cg6GLxQKfUc8D/A94ADwK3Av6fJxikR9PoIeKf4JKkUvoH4tIGH2nsomTeLoZaumFlARiCIzWFHxUglHGzuxFFYMKpid6C5k63f+C2N2w7NuBTEeOg51YLh9zPU0ZNuUyySjDVTSCFKKQP4L/MVue9f0E4jnJ+E7f8S8KWIY/4iynk+ngBTJ03A58eYagM1ETxxCsYPtXRSvnguXftOjD+uuZPiWWW4+8fGOUJFdf1n2ihdWMPRp7fQtP0QAa8/7k6tM5GTr+7Enp9HcXWlNYvKYSynYJEQgl4/QX9gyhkq8QSpjaCBq7ufyhULCU6wvt15+DQLr90QM0Daf6YNT/8QnccbcXf1IzaxbnQTEHB56TxSh7MwjwWXnZtucyyShLV8ZJEQ/C7PlG+qQa+fQBzZR36Xm4DbqzOPJuhfFHB5cBbmR23qZhgGbftPYHfYcXf3W7ODSdBxqI7hDl2waJGbWDMFi4QQcHunXOkbcHtxFOSNO8YIBHH1DBBwR++hFA1XZy8F5UV4B7XDUYYi4PWNdGjFJjOlODmh1L70LnmlReSXFZNfOjPrN3IZa6ZgkRACHu+U1Sb9bi+M0y4g6POz639+S9+ROhzF+QTiVMxq33OcOetXowyF3+3FN+w+6xCAtj0nqF63dGpGz2SU4ugzb9J+4CT+SbY1sch8LKeQIkRko4jcF+fYpSKiROSSJJuVMAxvYMrLRwG3Z9yW1+27jtB/uhnfwBCFRfm4OvvimpUE3B7sTge+IdcoZxBisLmTsvmzc143IBkYvgBHntxM694T+OKsMbHIDiynkAWIyA2mk5idblti4YuzIjkafpcXsccOUDe9uQ8RoX33MSqXL8DVOYE+s1K6G6qCrsOnmXP+iphDe2qbKB+n0M0iNkGvn4MPv0rDtv0MTUkz2yITsZyCRULwD0+9YVrA7Y2ZteQfdjPc2oEChls7KZxVjjvqDUiddQZhW3trG6latShmYLrj4Cmq1y3LWaH6pKMUx57ZypEnXqfjcB1Bf27qOs8kLKeQBESkSETuMzUP2kXkXyP254nIN009hWER2Skit8c411LgDfPbTnPGcJ+57w4R2SoivSLSIyIvi8jaZL63WHgH41vnj4bf5cEWoxneUFOHboGh1EiXSsMXSkdVo2YFsW7rvbUNzFq1KOb1+041UTZ/1pTtn+mICJ2H69n1kyc58sQbdByui7tC3SLzsJxCcvgWuir5Q+heRxcC14Xt/zW65fUngfOB3wDPicj6KOdqNM8DcC4wD/hr8/tidBX0ZcANQL95nvFTeZJAvBXJ0TD8gZhpob0nG1EiKMNAKYWnq4/CWWUTOoJwOg+eYu6Fq2LGPNr21zLn/JXWbGGaKCU0vHWAHT98gu3ffogTz79N694TDLZ04Xd5ZoyKW7Yj1h9CYjF1E7qBP1BKPRi2rQl4BvgqUAssVUo1hB33DNCilPozc3ZQB1yqlNolIjegZwvVSqmuca5dDAwA1yul3orX5qYdR1THodPmUzfoJ/Cz+0d+R8yvKvR/BQrF7DWLOf38Njzd/aPOO5nfrJV3X03PmQ5UIEjA48Xv9jLnvBV07jiIr3cARAutly2eS0FNJa27jk/i7FCyoJqKlYs4s3V/1P1VKxeSX1lKz6nmSZ3XYnyUofW5jUAQW56DvJJCnIX5OAq1SI3YtD6H2ASx2UZeExFXTkOK8o3rX9/9zQ8+8B//nJKLpQCrTiHxrADyMMVzAJRSQyJy0Pz2InTy5pGIJ9d84PXJXEhEVqCdzOVoFTeb+Vo8mfMsvGwdCy9bN5lDRqGUomHTThyT0FqOxFlYwOV//qFR9QpGMMhbB46jCvN1h04Rhtu6mb1+NcLxSf3RD7d0MXvdMqpWLIjaNnu4vYeFV57P+Z+8jaLZFVN+HxYzj4v+4O6ccQhgOYVkMNGdyoZ+iL6UsVoIk12Yfw4t3/nH5tcAukV3SpePjEBQazFPA2UY+F2eUU7BP+TCP+RCmfsRQU2je+mZTTtZ/eGbaNh+EH+UGMjp13ZiL8hj8bXrrZYXFjMWK6aQeE6ib/ZXhDaYyzrnmd/uRTuOuUqpkxGvWGsXocjqSIqOiMwC1gJfV0ptUkodBUpJg6MP+vxR6wAmgxE0dFV0GO6ufgyfHwwDhUJEzKUshUxqceosJ5/ezNJr1pNfVjxmn3/QReehU7TsPDKlc1tY5AKWU0gwSqkh4P+Ab4rIrSJyLvArzBu6UuoE8CBwn4h8WESWi8glInKviHwwxmnPoGcX7xGRajNG0Qt0AX8kIitF5Hrgp+jZQkoJ+vwY00xFVEED39DotFZXezeIYBgGKK2ZjGHg7u6nYFb5lK5jBA1OPPE6Cy9fR8n8sWUfnYdO03+mne6TjVM6v4VFtmM5heRwLzow/LT59RBaVCfE59AZSP8NHAM2orOTzkQ7mTmD+A/ga2gN5h+abbg/Blxgnv9HaJ2GlOcChjqkThdvRPvsoZYuPTsInF0yUug01dKF1VO+TsgxVCysofrcZWP217++i96TzfQ3tE35GhYW2YqVfWQBk0sUGkPv6Wbe+eb9yDitKiZiyU2XkF9ewvJbLxvZtud7D9F95DQBs7+OzWHX7bmdDhbffBmnX3pn2hkmNReupmB2Bc3vjl4yUsDaD9/I7HOWUhplRmFhEUZOBaCsmYLFtJlOh9Twc/jDGt0pw2C4rQsVVGPqBwx/AHteYkInHXtPMFjfyuJrLhh1HQGOP72FnpONuHunpj1tYZGNWE7BYtr4ht3Tflbyuz2j4hIBj4+A24cRGK/RXmJmub21jfSdaGDBpeeMPnvQ4Pjv3qTz0CmMgNW+wWJmYDkFi2njH3JPO4UzcrbhGxzGP+w+q7MsjHqSL55fPW5n1cnSe7KJwKCLyuXzR20Pun00vn2Qxm0HYxxpYZFbWE7BYtpEZg1NhYDLiy3sJu/tHcQIBEccgYiMtEkQu52K5QsoWzxn2tcNp3XnUSqXzR+zNDVwpo2h9h46Dp5K6PUsLDKRnHcKk9ExsJga3v6J9ZUnwu8e7RTcXX2o8KUjkZE2G0U1lXTsPkrx3MQ3sat78W0WX7N+TByjYcseXN39cWlJW1hkMznvFCaDiFwvIrtFxCMip0XkT6KM+ZCIHBERr/n1AxH7rxORZ0Wk2exo+tko51AxXj8KG/MLETklIm4R6RSR38XqgCoiBSKyP13CPL4E3CgDLs8oTYW+U02jul2fLVyDkvnVdOw9rmsVEpw9F/D4cHf2UjyrbPQOBbUb36Lj0ClLlMcip7GcgomILANeAN5GdzX9BvADEflQ2JgrgUfRxWcbzK+Pi8jlYacqQdcN/DWx21bMi3i919z+WNiYXcBn0VXLt6NDuZtExBnlfN9CN9xLC56+6WfnBDxebE7tFLwDQ/TUNsaMUxTNqaL/dBOOgnwSFWwOp2X7IeZdfM6Y2ULA5aVx635ad0+uGZ+FRTaRU04hDh2DD4rIAfPpu0dEtohIaGH6T9BdSv9SKXVUKfULdEvre8NO8TfAG0qpr5ljvgZsNrcDoJR6QSn1r0qpJ4Coj5RKqbbwF/A+4IRSakvYmJ8ppbYqpeqVUnuALwLzgeUR7+l9wI0RdqYMpRS+oalrKYycx1CooIF3cJiGN/fhbu+JOdbmsKMCQTMInXinoNNhuymqGNsKo/9MGw1v7aP9wEmr1bZFTpJTToFxdAxEZC7wCPpGv9bcfn/YsVcCr0Sc72XgkrCn81hjrpqqwWbLio8DvxhnTDG6CroBqA/bvhD4CfApJt9MLyEY/sC0W1wAoBRBX4C3vnYfQX+AoHtieU+lDBx50SZO06d1xxHmXjR2tgDQW9vEkcc20bT9IJ7+qetIWFhkIjnTJdW8uf4hWsfgZXPb5zi7rDIfcAJPKKVC7SQOhZ1iLrAp4rTt6M9oNtBqjmmPMmbuNEz/JLpt9m8id4jIn6FbYRQDx4GblVJec58dvXz1baXUPlODYUo0v3uYvvpWQjoKo26EIQ0Fdfb7cD2FqlWL8PQNnk0dnSxK6VmCYRBwefD2DSHRHsDNbWK3QWhN31AUVJQy1Nkf5YDpYfgDGD4/drsNI4o4jKdnkIMPvAQilC2cQ2FVKc6iAlMPQGsD5Fadq0Usap9965vvf+BL/5RuOxJFzjgFJtYx2I++6R8SkVfM/z+hlOoMO0fkX79E2R5tzHTWEf4IeCbCjhAPAq+i4w73ouMXVyulXMC/oruxfmca1wZgweXnsuDyc6d07HBnLzaHHUnAE7st38mV//B7OPIdNDy/dVTbjKDfjwBF1ZW4QnoISpFXWojT5Yt+wmnSdaSeFXdcwcq7r0nK+S1yg3M/ekvOOATIreWjcZ/LlFJB4DbzdQA9q6gNk8BsY+wTfw2662j3BGMiZw/xGSyyAbiEGEtHSql+pVStUupN4MPAas5Kc96MjiX4RSSAbtkN8I6IPDgVe6aCf8iduGV9Ba7OHt0YL0KeM1SjUDJvNsOtpv8URqWxJhp3Vx82hx1P70DSrmFhkWnkklOYSMcApdmulPoyWuSmBd1pFPQM45aIc94K7FJK+cPG3BplzNtTtPnz6BhB5LJVNMR85Zvffw5Yj86C2gDcZW7/FJCyJxff4PCYG/h08PQN4+4aq4yG6RSK51cz3KoVSY2ggeEPJjXgO9zWQ/PbVjWzxcwhZ5aPzKWikI5BJ/qG/++YOgYicgX6pv8y+sn+QmARWqkMtBbBX4jI94CfAVejU0I/EXaZ7wNvisi/oNtifwD9tD6yvmDGNlaa39qAxeaMoCdCk7kIfQP/bxVxVxORlegZwSagE1gI/DO6LfZG8/3WRRwTinieUkqlLD3V1Z249XzfkIu80kLcXX2j0lEVZ5vihTKPAALDHux5DlQwiDiS86vcdegUi29KeemHhUXayKWZAoyvY9CPvtFvBGqBbwNfVUo9ACM32bvQWUn7gC8Af6WUejJ0cqXU2+hMoc+gl6B+H/iYUurdMBsuQaur7QUKgS+b//9KhK0fQweQfx3lfXiBG4AX0TOgR4FB4EozhTVjcHcPJEy60jcwjLO4EHdnxExBjfwzCv+wG5vDgbMof8y+ROEbdAEKd1df0q5hYZFJWHoKFjCNqMDenz1D+/4TCTGiZEE1q+6+hlNPv46rpeuscYaW6syvKKF6wxqaN+8CoGrdMsRuJxhQ9Dd2JMSGaCy87kLyyopY9d5rk3YNi6wmp/LMcm2mYJFihju7Jx4UJ56eAWxOO/7B0Q32QkHm8uUL6T91ViYz1ESvOMkiON1H6hDr4clihmA5BYspYwSC+Aam3yE1RMDtRQWCBD2jU0xDvYZKFlQz3Hw2c9fv8mAvyCevpDCpwWZ3Vx82p1PrRlhY5DiWU7CYMr4hN35XYiWhA26f1lYIY6Rlts2GMgzyK8tYcP3FFM+bjaOwwByU3Cd535CLtt3HknoNC4tMwHIKFlPG3d2fmBYXIQQCLveYp36ljJGvlecsZcG1G+g5cAK7TShbPNfsmxRMnB1R6K1txJPATCsLi0wl552CpaeQPAYa2hJao5BXUoSrq3dUa2plttOw5zsRu52qc5ZS/7steHsG6NxzjNa39mK3QUHZ2OZ1iWSgoR1ncYHVNtsi58l5pzAZEqSn8C8islNEBkwdhOdE5Lyw/U4R+abZrXVYRFpF5CERWRxxnrj0FETkdhHZLiIuEekTkdcS+ZmMR/ex+oSlowIUVJUx1NSp+waFUAqUonB2BSULajizceuoYwbrWwi6vZQtrEmYHVFRiqDbR9/p5uRex8IizVhOwSSBego3AD9Gd069Cd0mY5OIVJn7i4CLgK+ZX9+HLqJ7SUTCK7Am1FMQkfejO7/eb9p8JfCr6XwO8RL0B+g/k9iSicLKspFq5ZH+e2Y8oWrdCnqPnI66XNX0+k5mrV2a9Kf4gaYOuo7UJ/UaFhbpJmcqmmGkSvjH6D5Bw+gK5PD9HwS+BKxCt5o+CHxUKdVOmJ6COfyoebO/FwgVsP0Npp6C+f3XRORGc/snAJRSt0dc89OcLZx7TinVT0SrDBH5Y+Aw2gEcNM/zs7Ah9SLyRXRTv+XAcbNL6v8C/2hqP4Q4OtHnlAh6Tzfj6Rsc/VQ/TQoqS+no7tOdU4NBxG4fudHPPn8FB//3oajHGf4AQ43tlMwuZ7hn+oI/seg53kDl6kVJO7+FRSaQazOFTNRTKEV/zlEa+owQ0n6MOiaGnsLF6BmGV0T2iEibiLwiIheOc52EYASCHH/i9YQ6BNAtLAxfACMQDHXxRhkGeWXFeLv6MPyxg8kdOw8x96I1Sc1CCnp9KH9Q93uysMhRcmamkMF6Ct9Ht83YHm2niOShW248F9mzaDw9Bc4qsH0V+HugDvhzYIuInKOUahnHplG07j7KYFO0zt0RKMVwZy+tO46ACJLAIHPo/KFX0OfHDqigwbwrL6B5885xDw16/Rg+H3a74PP4xx07HYbaezj8wEsUz69O2jUssotjj7/2j/c88OX/TrcdiSJnnAIZqKcgIt9BN8u7xmzdHbnfATwAVAD3RDnFeHoKocf0r5nSn4jI59FN/z4NfDOaTdGYvXYZpfMmvsmJ3Ya9II9zP35bvKeeFJ6+Qc68sBUR862ZT/15JYW42iaonDYM2t45xPzL1tHw9qHxx06DnmP1LLxmPXMvHhPzt5ihHHv8tZTE8VJFLjmFCfUUROQ2dGvt29Czim+IyPVKqf0kWE9BRL6Lbp53o1LqdJT9DuBh4HzgBqXUmLueGX/oR+s+vINeXvoQetmr1Rx2JGx8QERqgcWR5xoPZ1EBzqKCyRySFAabOxBsIxlNhmFQsqCGoaZ2vaQ0Dgrw9Q+SX16iW1LY7Umx0ds3hD0/j6KaCmxJ6sxqkV3c88CXuyYelT3kUkwhY/QUROT7aJnNm5RSY8pgzRjFo8AFaKcRTxpPpJ7CbnQ31TVh57WhZ0xnxhydBbg7e0e5dhU0qN6wiu59x2OnvkbM0YYa2yipqUiajQC+oWG6DtdNPNDCIgvJmUedDNJT+BF6+eb9QK8Z4AYYMm10AI+jndJ7ARU2pl8p5Y5TT2FARH4KfFlEmtAB6L8AKtFLUlmHp7N31M3fCBrY8/MIenzYHLGe/NXI+p0yDLr2nWDxHVcx9NpuSGANRTg9xxuxO5zUrF+VlPNbWKSTnHEKJveig7JPAy7gB+b3cDYt9C/Ra/iNROgpiMhdwHeBP0U7lTF6CiLyceA/0ToJpxirp/Bn5tfIIrIvo9NhF6JrE0A/7YfzOeA+zuop/L1paztaFyJST+EfAB86o6oI2IOeecQdZM4khsPiBkopCmeV44nUVohEoW/+So20uxC7DYwg2JPz6z3Y0Ma8S9aiDCPhGVgWFunG0lOwgMSpLE+Lt//tJ7jaewAwgkHmX3kBXXuO4usb1OmqUeIKYhOdvhqmzFa5bjl+r5/+lp6k2brsjiuoWLmQmvNXTjzYItex9BQsLBJN0OfHP+wZ+V4FguRXlOLrG9R/cbEeXkIzhdC3hkHvsTpmnbM0qTULHQdOMtgwJr/AwiLrsZyCRUbgH3YTcGunoADsNgy/Gd+fIDYQvlcZCgylYxDBBHZwjWC4pQt7nnNMm28Li2zHcgoWGYG3b/BsXyPDoGr1EnqPns3wifnQr9TYybuCwbpmSiMU2fJKi5i1dmnCAtADjW00bz848UALiyzCcgoWGcFwW/fIzTroD1C2bD4DoY6kQkyvoGDMTV4Fg/QcqWP2eStGjiuoKmPpzZeAy8WKWy9JyNJS2+7j+npWO22LHCLnnYKlp5AdDLd2IyIopVBBQweQzZutTDKOpwAjEMDusIMpvrP4hos4/ehL9B2qZfBkA9XnTL+xnQoEGWhs120/LCxyhJx3CpMhFXoK5pivisgxU0+hV0ReE5GrIsZMqKcgIpUicr+I9Juv+0WkIoEfScpwtemiUMMfwFGYTyBcD3mcmUIsVNBgqKmDkppKZq1dSs+BEyifjlF07z9B5fIF2O3T//VvfecQQZ+fQISutIVFtmI5BZMU6imAbm735+gWF9egm9m9JCJzwsZMqKcAPITWZLgTuMP8f3jn16xAKcVgcwdKKYxAkKo1S+g7HlaULTLpnFmlFD2HTzL7vOVUrVlM777RheWNr2xnyfUbpm+7oah/ZQfteyz9ZovcIKecgogUich9IjIkIu0i8q8R+z8oWvHMLSI9IrIl7EY8oqeglDpqahT8Bl0QF+JvMPUUzDFfAzab2wGtp6CU+rVS6pBS6iC6urkaXTgXGvOAUuo1pdRppdRh4O/QLbY3hI35mVJqq1KqXim1B/giutPrcvO9rEU7gs8rpd5WSm0H/hi4W0RGWl9kAwGPD/+gi4DHC0pRumgugw3TF/AJDHsoXTKX3v3Hx8w0fH2D+AeGKJldPu3ruDp7aXnnEB37a8foS1tYZBs55RTIQj0Fs3X254EBdIvtaGOi6SlcCQwxuu/SNrS40Hj2ZBTKMBhsbMPTMwCmyho2dFO76Z5bKez5efQdORV1f+uW3Sy8+nxEpn+tnuMNHH/ydVp3HMZr6S1YZDE50+Yi2/QURORutJMqMs99q6kAFz5mPD2FuUCnCns0VUopEemYwJ4xtO87gastedW/oPTyj1I6kGwofP1DDDZ3MtjcwbwLV488yTtLivAPuhJy1byyYvqPnznrbCKtMgyaX9/B4ivPo+7NfdNOVR1q6WT/z58hr6SQilWLKZk7C5vTgc1h0+3ABa1DAeRYEeyM5vD9L3zu7ge/8ut025EocsYpkH16Cm+gl4tmA38EPCYiVyqlWsPGjKenEM2Wce2JRemCGlQwuWmVIoDNhs1hx57nxFlUgNhs2JwOGl57F0ehbv46+/yVDJxsnNItM/KYmovX0v7OAcQmiM0etU+Rt6sPm93Guo/cxKwLEr/qFvT58bs8GIGA/oyVSmahtUV62JFuAxJJLjmFrNJTUEoNo9t9nwTeMXUQ/h9aSS00Zjw9hTagRkQkNFsQ3WK0Opo941FUXUFRdcVkDkkow61dIzfskoU1dL5zICHnza8sw9vTj83MMorVfrvl9Z2s/vTdFFSU4MgAXQmL7OLuB79yON02JJJciilkjZ5CDGyc1UqIRqSewnagBB1bCHEleqnpbbIEIxjE1RqmUaLUSH1C3EQpah45F4zMgmIWmSlF98Famt8YX/LTwmImkDMzhSzSUygD/hF4Dh1LqEanpy4EHjPPEY+ewlEReQn4mYj8Efq++DNgo1Lq+BQ/xpTj7R/CO6ADs87SIvz9g1M4ixqzaFYwuwJ3d19oL4KMZAZFcyDd+45TuW4ZQY8Pe0HeFGywsMgNcmmmAHrd/Q30DfsNdCD5TXNfSE9hI1ALfJsIPQXgLnRW0j7gC0TRU0AvCX0GOAD8PtH1FErRegqtYa9QamsAONe0sRbtHGYB1ymlQusmIT2FF9EzoEeBQcbqKXwKHSt5Be3s9qMdUtYw2NA28iRfuWoRveH1CfGiF89GbSpbtoDBU02jBqmgETt2ohSutm5rtmAx47H0FCwgjXoKxx55mabXdwGw9K6rqXti0+jlIxHEJhjjBMLFZjqEsCyjZe+7nvpnt4wsIYmgM4BsgthsUeMLeWUlLLz9Shbfdc2YfRYW45BTqWS5NlOwyCKUUvQeOdsJVaLFE+LJpYoyUxCbbVTBmjJ1F1QgqNtrR8E3MIRSCnd7MtNzLSwyG8spWKQN38Aw7u5+QNcUePsGooySUJXDuIQ/+IvdjhEcq9IW8i4qGMSIEXT2dPXRum3vhNezsMhVLKdgkTZ6jtYTNJvUVaxcRN+xsfEEiWumMHpAyeI5DDWOzcpVhgKbbaQTa7RspN5DJ7VAj4XFDCVnso8sso/mbXtH1vaL5s6iPeoTuoCKI0U1bKpQvnwBnTvHtrNWSmGz2VDo9FQD/VQUXtTm6erDlufEP+zGWVw4uTeUoRj+AK7WLgZPN+Hu7CHo8mDLc5BfUUb+7AoK586msKYKe76VdWUxA5yCiGwEupRSn023LRZn8Q0OM3jmbCKVKCBaMFniCymERxScZSX4BoZijg5NPpRhYCiFzYEOQJtnCbg8dO87ztyrN8T5bjITd2cvTS+9Rc/eY3h7+rVIXaQgkTnLqlq/mpor11O6bAFFc2dHO53FDMFaPgojk/QUwsaKiLwkIkpEPhyxr97cHv76r0R8FsnmzCvvjOgb55WX4O3rT8l1Q0tII98rRdCvW1CEbpCulk4GG1pjnSLj8XT1cfj7D7D7Cz+gZdO7eHsGAImacSWit/ceqOXYTx/nyA8eov3t/bg7o/ZvtJgBWE7BJAP1FEL8PRAtahriK+jeSKHXf8b1htOIf9hN69sHRm5SFSsWRo0nTAVnSSH+odgN9ZRSUW+ORiCI4Q+gDIP+2gacJUUJsSeVBH1+Tj30Arv/7Yd07TmG4fPHbO0RDRHB1dzJsZ89Tt1jr9Bz4ARGYLxfPYtcJKeWj0SkCH1D/jC6hfT3I/Z/EPgSsApwAweBj5rdSUf0FMzhR82b/b1AqIDtbzD1FMzvvyYiN5rbPwFaTyHimp/mbOHcc+aYByLG/B26F9MGdBFaaPslwF8DFxO7n9FgREFbRqMMg4O/eBrvwPDoeMJbe6Z/bqBs+cKz2s7jjIwWvw7NGjzd/QiCp3eAgsqyaduVCvprz3D8F0/hbu8eefqfKiJC185D9B87zfJP3En52mUUVE5fd8IiO8gpp8BoPYVm4D/QFcpPhekp/Av6Jl9CWJ8kYmslfEZEnGb/oyuBH0QZ8xfj2DQlPQURKQUeBv5YKdUxzh/5vWbbjUbgceB/lFIZqQ0Z9Pk5/Ovn6D5yetRNSxQx21tPltIlc2l8afzWTypoIHZbzOpmZRgEPF4O/vhxFt95NRUrFpJXVjytG+1kMIJBfP1DuDp7GW7twtXWjad3AN+QGxUMYnM6ySsppGzpfKrOWUrjxi307D2GCgQTaqN/0MWxnz/J8o/eRvk5yyhbvjBh57bIXHLGKeSgnsJPgZeUUi+Mc+7/Bfaiu7heBvwXsAzdbTVuug6fwt3ZN5lDxkGNPIIrQ6GUgX/ITc/ROvpONmL4g6OiwvkVpXi6+2IGkyd7ixOHA8MfmMjCkaByNEoWz6Vo7izsRQUMnm5iqK4Ze54DZRjYHQ5s+U5sDgf2wgIcJYUYhoFvYBjDFzANjjy3Gj0tMdtnK6XbbgS9Prx9gwy39TDU3IF/yKWL7HRkOKqNC669EG9PH7u/+EMIq8nQlxddCS6jtk6ZUw+9yIJbr6CvtgHJH69n48zk0C+evu3OB/8z8oEya8kZp0AO6SmYS07rgUtivNfQ+/tO2LcHRGQAeFRE/kkp1R3ruEicRQX0J1gtTGw2bHYb9vw8ShfPpWrt0ujXLini9JOvYc9zRt2PUvHd0pTC7nSMtJKNZ7zNbhtJR80rL2HOVetxFOQzWNfM6UdfJujyoAKBkTKIs0/haqQq2uZ0ULJ0PhXrVlAwpwp7YQHuvkGCnuiTtdDSjtjt2PIcOArzKZpTReXqJXEZLg47+eUlNL+4jbY3duj364j1Z6xGfZlqNxMRaNn0DnOuu5j8ObMwxApF5jK55BRySU/hZmAdMBSxHPCoiGxXSsVqzhNqzLcyzOYJKV+2gPJlC+IdnlCMYJDhxnbEHv1Go+INdCooXjSHocb4wivKMBCHHWdJEQtuuoyg10fba+8SGHaPjBG7DbHbo/xiCSP3RaUYqmtmqK4ZpRRF82Yz59qLqVyzhJLF8xLecdXd2cvRHz3KYF0TgoxoRUQnsctdHdv2Me/GS6m8YDWzLzwnoefOZla897qcmSVAbjmFcD2F0zBKT+EUaD0F9Exiu4h8BTiM1lPYb25/f8Q5Y+kp/E/EmGh6Ch8HbpiinsIX0PGRcA6ig96/G+ccG8yvWZNP6enux9sbrb2FJlafojHjUJSvXETnuwcnHmwy+6K1lC6ZR/MLW0c5g1HnjZGtFA0Rwd3WTf3jr6BQVF9yHtWXnUfpyoUUVFXEbVc0DH+AM8++QevrO/EPuVIW34ik9Y2dOIoLsTntVJ23Ki02WCSXnHEKuaSnoJRqRgfKCTsvQGNo1mGmx16BXobqR4sGfRd4VinVMMmPL210HzyJYRgxb3IqnmpmAAX5ZSX4YxatnUXsNpa893oGTzdS//gr4z9PGwbYJ9/2QhC6dh2mc+chCmuqmHfjZZSfs5TiRXOwO2MslUW7fCBI585DnHn6NdztPdPOLEoEjRvfxFlahKOkiLKl6ZlhWiSPnHEKJveilceeBlzoTKFic18oLfQvgQp0ts4oPQURuQt9Y/1TtFMZo6cgIh9H1wJ8GT0DiaanAFpPIZwvo9NhQ3oKf4DWUegGdjJaTyEevOhZzn+gZxhngF8A/z2Jc6Sd7n3HYt/kFHEvg9vyHAS9vgnH2/KcLP/IrbS8uh1PR8/IZaJZoJQaNyAdDyKCp7OXusdeBhRVG85h9sXrKF48l6K5s6O2ljAMA193P+1v76N9217cHT1IjOKzdHH60VdY/bn3UVBZTl55SbrNsUgglp6CBaRJTyHo9bH9n76PbzBGsZmh9I0+DqovOgdvTz9D9S0xx9jynaz4yG00PrcZX//oGUWs220orpBIQn9zBdWVlC6ZT351JXank4DXi6ezl+HGNnx9gxj+QEY5gkic5SUs+/Ct1Fy1HluCP6MsI3N/SFMg12YKFlnEUFO7vjnbYgSZJ6HVXLpsPl17j8X+6xRh+YdujuoQIPZsIRmEbvTerj68XX0TjstU/P1DtG/bizIU866/ON3mWCQIK7fMIm107DqKGufGF1M6MwJx2HWW0jiz3iXvvY7WLbujOoSJiDfYPRPpP1aPt2+AnkO16TbFIkFYTsEiLSjDoOvAiXHiCSruIPOs81bQc+iUPizK/tkXrWW4sQ13c8f4NsU2Ni470onY7RTMrqBwXjWFc2djL0xdkVnDc1vw9Q4ScHlSdk2L5GEtH1mkBU/PAJ5xOnGqoBF3pKNsxULqnno96r78qnJKlsyl4eno+yciEcHmZGBzOqhav4biBTUoZWB4/fh6+3UcwmbDuW45juJCRATfkIvu3UemNEuKi0CQppe2Yfj8zL/58onHW2Q0Oe8ULD2FzKRz91GMcXr1GHEuHSGil3fMpSOJ2Lfozqupf+zlqIdGY0xsQZFR8+n8WeXMuWoDKEX37qN0xSEdmldRyqzLziN/VgU9B04wcLIx4Xa5mjvw9g3Svf84s9avSfj5LVJHBv26p58U6ilEaiCEXj8KG/MLETklIm7zPL8TkbUR5/mCiGwTrcuQNQvfSinadxwcd+mIKEFmm9MxphdQ8YIahpvOFpSHfwhzr95Ax/b9E/ZCmsDYqR+bQJylRSx5341Unb+apue20PDkJobrJ+oGq/H1DdL6ynbqH3kJZ2E+yz5yK0ULahJuY/PLb+PrHYw7Y8wiM8n5mUK8hOkp/Ar4PXRB2o9FpDNUqxCmp/AfwFPAB9F6CleH1SrcgG7fvRP90PkVtJ7COqVUjzlmXsTlL0EXsz0Wtm0X8Ft0PUUVusZhk4gsDauwzjft2Az86zQ/gpThGxjG1Rq7C0d4gLls2QKqLzoHlMLw+bE57Ijdjt/toWXLHirPWUrHjrFVzM7SYgqqK+iYQkvuqJlI4zSnSyoizL32IvLKimnauIXgdNbtlaJ71xG69xxj7vUXM2v9GppfeTthmgmGz0/nzoMYfj8Lbr0yIee0SD05VacQQ0/hKszlo/H0FETkm8AHlVKrws73S+BcpdSV5vePAlVKqVvDxmwCOpVS4ZXP4TaVoAvn3q+Uei7GmF+gi9dizrtF5AJ0O45zlFLHI/Z9GHhcKTXVu1ZKfwma39jFsfs3Rp8pKF2/4CjIY8l7rsXd3E7XOwfGzBycpcXMu+VynJXlHPv16M4fAiz70M00vbCVoKnuNlnCLRO7TXcdjZE6myzyKkpZeMfVtG/ZxfA49RdTPn9lGQvvvo6Odw4w1JA4SY4Vn7yLivNWUDw/8bORDCXzgk7TINeWj8L1FG5Gt7K4DiBMT+E3wFpz+/1hx8bSU7hERJwTjIkqpWkykZ5CCbpP0i9incDs4fQ5oAGoH+daGY9Sipa39sRua2EEKZhdwfIP3UzrS1vpentf1KUk/+AwDU+/Tte2vaz+xO16acmkeNFcPJ29U3YIEMVLpvjhqfL8Vcy99iLqH34xKQ4BwNc7wOkHnqd0yXzmXHlBws7b9Mrb9JnZYBbZR84sH2WbnkIYn0QvA/0mynv6M3TbimK0hOfNSqmp3+li4B9y4ekdTPRpo6MUQ43tUUR1dDvqgupK5l+7gfqHnoc4gs0DtWdwtXWx+hN3UPvYKwQ9PuZevZ66x6bfuPJsx2lzQSlFjmH+LZfj7xvkzBOvJv9iStGy6R0q1i1nyT03cGbjlrjrQ2Lh6ezFNzhM06Z3KV+zNDF2ZjBv//P/nnf7g187NPHI7CBnnALZp6cQ4o+AZyLsCPEg8Co6BnEvZ+MXsUWIp8Dp596k+9DJRJ4yKuXLF+Lt6Scw5I66Pp9fVcaCGy7mzEMvxHUDFhFQurL2zBOvsuojt9J54AR9R09HnV1MGaX/ibuN9xSxOR0s+cBNdO04yNCEkqKJpe/IadwdvSz/yG3UPfFqTD2IeGl6YSsL776eAz95LOMrsxPAZYx+wMxqcskpZJWegjlmAzrIHDVIrJTqR8cjakXkHfQS1IcYvew1bdZ84o5Eni4mRjDIO1/4YdTCKlueg2X3XE/dAxvjfyIXRmYcgWE3Z556jeWfvJPjv3w6gVajhX6S0AMpHHthPkvefxNNz27G19OflkVqX1cvDU+9xvKP3EbDxjfxD0392UMFDfx9Ayy/9Qrm3XhpAq3MSH6VbgMSSS7FFML1FIBRegqA1lNQSm1XSn0Z3Wq6Bd1pFPQM45aIc8bSU4gcE01P4ZPATRPoKXweHSOIXLaKRkhULGv1EHuP1ePpiF6wtvSua2l85nWUzx91f3Rk1BQtOOym8dnNLH3/jQld6kn2opGztIilH7iJhidexdfTn+SrjU9gyEXdIy+y6K5ryK8onda52rbqGorpzjosUkvOOAWl1BAQ0lO4VUTORXvwET0FEfmiiFwqIouBexirp7BQRL4nImtF5P+h9RTCxW6+D9xk1iKcY+oq3Ah8LzTArDX4HFqHoVdE5pqvUf2FzUypTwG/VBEpYCKyUkT+SUQuFpHFInIV8Di6XfbGsHGLzdnGUvP7DeYr43oZK6Wof+7NqMtGcy4/n94DJ/BP94Zoitz0HT3NvBvGVTKdGkmIKeRVlrHoPddR9/CLBKbxZJ5IDK+fuoe1LvO02mIbBr1HTtGyeWfijLNIOjnjFEzuRYvOPG1+PQS8ae4L6SlsBGqBbxOhpwDchc5K2odWPxujp4BeEvoMcAD4faLrKZSi9RRaw173Rtj6MXQA+ddR3ocXXe/wInoG9CgwCFyplArPHfwKsJezSnB7zVcS7ojTw9XezWCULJr8yjIKKksZmGZDNRFGbtr9R+uwOx2ULps/rXNGMpmurfGQV17Cwtuvou7B5zEy7GlaBYLUPfoyC2+7alqOoWvXEez5edNairJILTlVp2AxZZL+S7D/fx+ma9/xMUHHlR+9lTMPvYAxqWUjjdhsIzfq8P+HWP7Ju6j/3RsJadRms9l0HySHPSGBU2dpMYvuvpb6B1+YXsV1khGng2Ufv4PG57fijyFZOhGVF6yifM1SFr/nugRblzHkVCQ912YKFhmIq62LvqN1Y26mcy4/n67t+6fmECCi39FYv9bwuzdY+v6bErLso9D9lVTQmPaMwVFcyOK7r6P+4Rcz2iEAKH+A+sdeZvF7r8OeH7+MaDi9B2pxFBbg609R2rPFtLCcgkVSUUpx7L7nCET0w3EUF1I4u4LB4/VTO7GEZQLbbFE1DwLDbjre3peYlgsKs/meMS3H4CgqYMk9N1D/yIsY3sk7w3RgeP2cefI1lrzvpilXdXe+e5D2bfsSa5hFUrCcgkVS6dxzlP5TjWNmCYtuvozWF7dGPcYWRbd4DKZPiDVLCDFU14zyByhbsShum6MS1vtIKYURCKKCQSaz/KrTTm+k/vGXRzJyVAJeqSAw5KL5ha0sef+NUzq+/3g9tjwn3jRnV1lMjOUULJKGf8hF7YMvjXmKL1k0B097d9Rsm/m3X8nqP3g/tvyJSmjMdFSbRKmOHk3b5p1UX3oujuLCyb2BMMyJwiiMoIHyB7RzMIxxl6ns+U6WvP8m6h97hcCwJ6E39FQ5CG93H53b9rHw1iumtCTXvm0vHTtypsYrZ8l5pyAiG0XkvnTbMdMwgkH2f/8hPH0DY/bNvfIC2rfsGrPdlufEWVxE08YtVF+0Ls4rSVw3w4Zn3tD1CwlGoZ2DEQhi+AP6FQh7mTGDxe+/iTNPvkpgisHaydiTTAcx3NCKu7WL2RetnXhwBEN1LdjsNtzjiCtZpJ+cdwqTIYV6CiUi8gMRaTL1Eo6LyN9GjBlXT0FEbhhHl+Ejif5sJoMyDA7/9An6TzWNWTaquWQdXe8cQKKsyVdtWEPPniO4GtsonF/DRLc2sUnc7SyCbg/tW/ew8LbktXRW6KUlZZx9icPOso/eRuPv3iAwmNq0zGQ5h+7dR8ivLKNk0ZxJH9u6ZRfde8er57RIN5ZTMAnTU3gb3V31G8APRORDYWNCegoPAhvMr4+LSLgG4Q3o9t1XATeh22RsEpGqsDHfAd4DfBrdsfVrwH+JyKfDxuxCF8+tBW5HL59vCuvY+ja6J1L46xvAELq+IS0E/QEO/OAROncfG+MQxGGnZNEcBo/VRT22ZOn8sI6g8dzO4pslhBg+00rQ46N81eJJHDV1bE4Hyz92O03PbcGfLCnMOEjG7KH5xbeYfcm55JUWT+o4V1MHKANXW1cCrbFIJDnlFESkSETuE5EhEWkXkX+N2P9BETlgPn33iMgWEQk97vwJ0KKU+kul1FGl1C/QnUvDi87+BnhDKfU1c8zX0AI3fxMaoJS6XSn1a6XUIaXUQfSNvxpdOBfiKuB+pdQbSql6pdRvgXeAy8PO8zOl1FZz/x7gi+hOr8vN/T6lVFv4C90X6WGzujvlDJxpZeeXf0bX/hNRM7fnXb2B9jeiV7faC/NHt7pWsZO/JfSPmnwGUPuWXcy+aC3OkqJJH6vGsSkSsesZQtPzW/H1ZU4qZiKdQ8OTm1h01zWTzkhqeW0HvSlowGgxNXLKKZA9egpvAe8VkUWmbVehZx4vRTtBPHoKInIDsBr4+Ti2JJygP0DfiTPs/fb97PnGrxhu6Yxa3GUvyCO/rBhPS0fU88y6eB09u4+MfO/t6SO/qjz6RUUIK2CeNA3PvM7SD9yEzTHJBndxqq+J3c7yj95Gy0vb0t7LKBaJyGAy/AGaX3yLRXdcPakfhqejB8MXYLh5TB9JiwwgZ7qkZpmewl+hey01iEioeukvlVIbww+cpJ7C54H9SqmxEdwJCPoDBFxmADT0t61U2Pq4gQoGCXr9BFwefP1DDDW1M1DXwnBzB76BoVE3y2hpmvOvvYjWV2NJSkDR/Gq6wqQzXc2dFC6owdMzNlCNTaLWJcRL0OOjceObLPvQLZx69OX4D1RKZzuNc2lbvpPlH7mN5hffwtvVN2UbU018i3Vj8XT2MlTfzOyL1tK152jc12t+dTs2px1nyeSWnzKRLX/69epbH/p6tNb3WUnOOAWyS0/hL9HLSfcAZ9Czlm+JSL1SKny2EJeeghmv+CDwd9HsmIi6p9+gZcvusL96MXuyCiKC2AQRG2K3YXM6sBfkjbSRLqyporCmKtapAXAU5pNfVkygbzDqLCKvohR/xBKLt6uXyg3nRB0vIhhTWDoKx9fTT8fb+7WwzO/eiGsGoACbSMw1JEdxIUs/eDMNT7+Gf2B4WvZlIrEcR/feYyy65wbyZ5XjboutvR2Op70bX98g7/77T5KuU5EC/gj4erqNSBS55BSyQk9BRArRAeGPhGk2HzC7nd5L2BLSJPQUPgMYaCcyaVZ+9FZWfjSyI3jiUIbBwW/8n9Y6jsKcGy6h7ZVR3cfx9Q2SV1Eyoo88igQ1phtuaMVekMeS991Aw7Nb4j4uXPozROGcWcy76TLOPP4KwWF3bjXDiYOmjW+y/PfeQ/3Tr8fdtqT1zd2s+MBNzL/p8okHZzY54xAgt2IK2aKn4DRfkY9HQcb/eYynp/D/gMdMJ5Jx9J84w0BtQ9R9BXNmYXj9Y/P3lUIk+scxXbnIcAZOnKHv0EmWfugWneIaDxHLY1XrVzP7knM5/dvnCCa5DiFjMQwaf/cGi+6MP74QGHTh6x/SSnkWGUPOOIVs0VNQSg0AW9ApqDeIyDIR+Sy6DffT5jni0lMwx14DrAN+Mf1PMfEow6DuoRfG9AoSh52aqzYw55oLaX35rXFOEHGDMVTCc+8HTzXR/uZuVnzqPXG1iQ7FTOwFWi1NgManNiVWAjQL8fcPMXC8flKFbc2vvoOrtWtS7UIskkvOOAWTbNFT+DiwE73ccwT4Z+DfgB+a++PVUwC9nnlUKbUt3g8plfTsP8FQhI6Cs7SI5R+/g6G6Js488uL4T/4RN4tEaxqE8HT0UPfoS8y74RLm33w5trwYHUEV2BwO5t14KQtvv4qWF9+i22rdMELv/hMUzZtNfmV8qm1Blwd3ezdduw4n2TKLeLH0FCwgSV0RjGCQvV/8Ia7ms2moNqeDpR+9TbeN9o4vLLP4g7fQ8MzrENJGVgoVCCa9x0/BnFnMuXoDiOBq68LXO4jYbeTPqqBgdgXKMOjcvh9Pq1WAFQ1x2Fn+ybs49dgrcS0lidPByt97D3Ou3oDNkZVhzpwKIWXlT8AiO+jecXiUQ0CEJR+8mcZnXp/QIYBuqOcoKiBgtphWQSMlXUE97d2ceeo1EKGgpor8yjKCfj99B2vxdvcBOXYXSDAqEKTl1e0svPUKml5+e8LMLuUP0L3vOADzrs840cAZR64tH1lkCEYgwJmnR5d9LHzPtbRv2TUm/TQWvt4B8kIFbEqL3KT0ZqwUnvZu+o/VMVjbMOIQLCbG3dqFr3eAspXxtRTp2XsMZSh8OZjKm21YTsEiKbRv3YMrbHml+sr1DJ1uwtUYGRKJja9vgLxyvTadqllCvGSSLZlKx1t7mbV+NY7CaAlzY2l+dTudO634TLqxlo8sEk7Q56fpuS0jhWclS+fjKMyn883JFVv7egcpX1c9apaQqJtxzVUbKF5Ug/IHtL4z0Lp5V1ZVIWcDDb97g8Xvv4m6J16dcBnJ3dKJf2iYvuP1VKxZmhoDLcZgOQWLhNO66R3cnb3aKdhs1Fy1gdO/fXbS5/H1D5JXXqLbbJCgdXwRln7oFvoOnaDn7bNtNWz5TubeehV+l5vW1yfdKcQiBkGXh+6dh5lz1Xratx+YcHzjxq0UVFVgrFiYrUHnrMdaPhoHEdksIj+ceKRFiKDXR8vLb4/MEubdcAltr70zpe51yh/A5nSCYSQslrDo7uvo2XGAoYj23YbXT8vGLXga21n20dtiVl9bTJ6B2jNak3vO+O1QQP/M27ftpX3b/hRYZhEN6zffIqE0PrcFj9kZ1FFUgLO0GFfT9LphJmrJqOLcFXi7e3E1tMYcM1h7ho433mXFp+5CnON3UbXiCvHT/OI25t1wKRJHZ9r+Y/UEhlwM1jenwDKLSCynYJEw/MNu2rfsGpklzL3pMlpfnn5NXbSuhJM+h8NO1YVr6H5734RjvZ29tGzcwopP3DmhY7CIE8Og+fmtLLrtqrhmjfXPvI6ruYNgnH2ULBKH5RQmxiYiXxeRLhHpEJFvidmUR0TyzH1nTHnO0yLyV+a+kFzm3SKyT7TE524RuXiiC4pIsSnn+eGI7beKiD8kDCQi/2VKebpFpF5E/ltECpLxIcTDmSc34TXTTfMqy1D+AP7BzEgxnHfz5bS/uj3uZShfT/9ZxzDOUpI1W4gfb3cfruZ2Ks9dMeFY5Q/Q8PxWOnccnHCsRWKxnMLEfArdKfUq4C/QKmuhJnq/Qbe6+Du0cM8fAn0Rx38L+CfgEuA08LyIjCv7pZQaBh4G/iBi1x8AG5VSofWYYXPbWnR7jY+j23OkHG/fIF3b95+NJdx4KW2b3pn2eUMV99O5+doL88krKcTbHl9b5xC+nn5aX9zKso/cOm6U23IM8dO14xBlKxfjLCmccKy7pZOBY/V0hokvWSQfq83FOIjIZiBfKXVl2LZX0RoI3wROAHdGaCCExt2A7r/0e0qpB81tJWjRn3uVUr+c4NqXoCU6lyilmkWkEt3V9SORYjxhx/yJee6Vk3mfh3/6hGrftm8yh4xi0Z1X07Vt74jKWNGCGsrXLKX99XcnOHJi5t16JR3b9+Mfmnr30QW3X0XvrkP4plh8VrxkPhUb1nDmd5uxapmnjy0/j2UfuY3aB5+Pa/zie26gc/dRXHFqNaQaFQx+/+aHvvE36bYjUVg5XxMTmUfXgtZQuBCtYfDGBMdHE/1ZN9FFlVK7zLGfQfdr/yRaT+HF0BhzeelvgJVACboj7KQXwc/9kw9z7p98eOKBMXC1dtL5xo4RnYG5N1zCmUdenOCo+NC6CqUEpugUxOkgr7xkyg4BYPhMC46SQubffDmtr+2Y8nksNMrro+OtPSy85Qpa39w94fiml7ax+rP3UHH+KgpnVSTfwMnzN+k2IJFYy0cTExnpUujPLRWPjL9Et+EGvUx0X0jBTUSuQGtOvwy8F+2kvojWakgZSilqf/U0AY9WCS1aOAdXY3vCNA9CTmGq1Fy1gc4wmc+p0n/4FIbLzayL1kz7XBaYnXMVxQtrJhwrwMkHnqf/aB2+DIlR5TKWU5g6e9Cf340TjIsm+hOvmO0DwAIR+QvgIuDXYfuuBpqVUl9VSu1UStUCS+I1PlH0HznN0MmmkVhC9aXn0fn23oSd39c7QF5F2ZSPL5o/G09Lx8QD46Br+36KF8yheNHENzKLiWnd9C5zrtwQVckuEhUIUvubZ+k9WIt/2DXheIupYzmFKWLehB8DfikiHzLFcq4VkU9HDP1ihOiPD3gozmv0o8V1vg28aV4zxAm0w/iUiCwXkT9FC/ukDCMQ5NQDGzGCWkROHHaMQCChmru+/qnPFEpXLGToZHTFt6nSvHELc6+/BGfZxIFSiwlQisbnNrPozmviSlNV/gAnfv07uvccG8lys0g8llOYHr+PvsH/L3AMuA8ojxjzz+ib+h5gFXC3mV0UL/8H5JlfRzD1nf8Hrfp2AC0L+u+TfQPToW3zzlGFaRXrVtB3qHacIyaPrmqeWuir6qK19O5JcOaKUjQ8/gpLPngL4rD+fKaLv3+IgWN1VF963sSD0b8Px3/1DF07DuFq7UyydTMT67d6HJRSNyil/iJi22eVUneb//cqpf5RKbVAKZWvlFqhlIpsi/G2UuoCc/9FSqmdkzRjHlo17oko9v2LUqpaKVWilPqgUuonSqmUpMcEXB6ant0yqslZ6fKFDMbQYt5rHT0AACnoSURBVJ4Oemlqclly9qICDJ8voXrOIQyvj5aNW1jy/psmbZfFWHoP1pJXVkzxguq4xotSnHzweVo2vUt/7ZkkWzfzsJxChiIiRSKyDvhX4BdKqYxaSD312+fw9PZHbFVT6nGUDGqu2kDXtsTFNiLxdvUxdLKB6isuSNo1ZhLNL21jzlUbcBTFV3spIrS89i6nHnqB7n3HCMQh2mQRH5ZTSBMi8qKIDMV4/Svwj8B+oAf4anqtHc1wYxvde46MBJdBP5kHhj1ptGo0+bPL8SW5DXbvvmMUzqmiaN6spF5nRqAUZ556jcV3Xzepw4bqWjj8vw/R8srbDI3T08oifqzitTQhIguAWNHKHqVUTwrNifuXQAWD7PvSTxisbxnlFMrWLEWUov/wyYQbt/iDt3DmqU3EmwVctmoJeWVF9O5OgRi8zcayT7+X0w+/iOELJP96acJZVsy8my/HZrfp2aDNRssr2/H1DyX0OkWL5lK1YQ1Nr2yfeHAYSimKFs5h8Xuuo2LdMvKnkbE2BXKqotFyChmOiNwHzA7FMSYY+1ngh0qpkkleJu5fguaXt3H6wRfGbJ9746V0v3sAf4JvEgDzbruKjm17456JLP3obTQ+8QoYiY8nRCOvsow5N11O/ZPxO65souLcFVSet5LWZ1/DcOmfgS0/j4Ufu4Pml7fj7uhN6PVmXbIOW17elNpbKKWoWLeCBbdcTvnqpThLx+0okyhy6oduLR9lPn8N/F6cYx8FlifLEG/fII3PbYm6L6+8JCkOAUxZzsr4nvwcxYUEPd6UOQTQtRSu5nYqz59Ud5GsYNal51I0bzZNjzw/4hBAB9sbH9zIwjuvQWyJvY107zqCo7iAsuULJn2siNB/9DSH//chDv/vg3Rs34/HUtObFJZTyHCUUv1Kqb44x7qVUomp1Io8t2Fw7EePJHy5IB78fYMjWs0TUX3VeroSWDwXL93vHKDyvFU4iuPTI84GZl16Ls7CfDpf3Rb1UVgFDdpf2sqCWy9L+LVbX32HynUrKJhdMaXjRYSB2gaO/vRx9n3tF5x5djN9x+tHKu8tYmM5hQxHRO4TkY0iUi0irSLy72H7LjBbcn/Y/P6zIpKUu3bbll0MnjgzKo4wiiQuQ3p7458p5M+qSHqAORZNz77B4ntuJBfSVKsuPIe80iK6t+wYd23E09ZFXlkJjvzEd1c58/TrzL/xsrg6qsZCRPD1DnDmqdfY//VfcvBbv6Hp5bfpO1aHf3jqTRZzGashXpaglOo0YwbPmZ1a96Hbaz+slBpTw5BIPN19NDy5iVjxJ3tBHkF38p7A/HH2PypdtZjBNOatB4fd9B2spfry8+l891Da7Jgusy5ZR35VGZ0vvxXXYnnHa+8w78ZLaHxpcsHhCTEM6h9/mWUfv4Mzz24h4JpedpuIMHiykcGTjSilyJ9VQeV5KylftZiCmioK51ThLC3GZp/ZwkqWU8gilFIvi8iPgQeBLUA+8JfJvKYRCHLkew/g7R8aPUtQI/+QV1mGN4lP54Y/gD1v4ifRWReeQ9OTryTNjnjoP1TLog/fRt+x0/j7M6q0ZELshfksuOMaPC3tcTsEAF93H/mVZQgKleCYq+H1U//Yqyz96G3UP/06wQTVI4gIvp5+2t/cTduWXQDY8xwUzK6kePE8ihbUkF9RhqOkEEdxAY6iQhyF+dicTsRhR+x2xG5DbMKbn/6C3PDQf2X/9NDEcgrZxz8Bd6BbbFyllJr2ctHpx1+hddM7KEMBCmUolGGw8I6r6dp5CHezbicQ+q2P/LPPLy/FM43W1PGjolxd4yguJOj1JqWCebK0bNzC4g/dyqkHnycrElNEmHvDJRTMrqD9lbcI9g1O2ur+g7VUnbuc7sN1CTcv6PZw5slNLPvobbS8uRvlT17qr1KKoTMtDJ1p0d8bBoYvgBEIooIBVFD/baigAYZh/s3wJeA/kmZUirGcQvaxFFiEvkMuB6atZLP8I7ex/CO3jdnetfswra9un7D3UP6cWbhSUBMgDseothrhVF99Id3b9ifdhngIerz07DlCzdUb6NyRglqJaVA4v5p5N15G1+vv0PP61Jd/+g/Vsuhjd9JzvCHmz2g6BL0+6p/axKrPvp/KC1bjKMyogH7OOASwAs1ZhYg40UtHzwL3Aj8RkcXJuJa7vZuTv342roKsvPISfGnuWllQXYG3K5X1fuMzcPQ0RXNnk1dWnG5TYlK8ZD41l51P431P4T7TPL2TKUXQ48WZn7znzOCwhxP/9xQ9+49b7bOTiOUUsouvolXf/hT4Plqu834RSejP0T/s5tD//Bpff3w3erFJanoexag9KF+7nP5Dia+kni7NGzezMM620KnGXpjPnKvX0/z4iwmzr3fXIWZtSK4IkeHxceIXT9Kz5xje3oGkXmumYjmFLEFErgf+Hvh9pVSf0qlAnwXWouMMCSHo83Pom7/C3d4TO/00khTc8wLDLhxF0VMTK89fSf+B48k3YpIYXj/dOw5Sc9X6dJsyhsXvu5GWJ19BEuiw3E3tFC6ck3QnqPwBjv/iSTq372c4rHW7RWKwYgoZjlLqs2HfOiP2taFnDqHv70NrOkwJIxDg8Ld+w2Bdc/wOQV95qpeMG1/vIHkVJQTaRy8RFdRU4WnrzsincYDBE/WUn7uCvIrStC+xhZh7/cX07dhPMAnSlsEhN3mFTnye5PaBEuD0wy8yv7OX6svPp/ycZUm93kzCmilYADrt8/C3f0vf0dOTcwgioQyMpOLrH8QZpaq55qr1dL01sfh7OmnZuIVFd1ydEY6reMk87E47Q8cSnyUE0LfvKJXnr0rKuSMREVpfe5e6R1+iZ/9xjCRmJc0kLKdgQdDr5+A3f0XvoZOTnCGAs6wEf5yxh+ngi1LVbC/MRwUNjAzvpW/4A3S+vZc511yYVjvsBfnMuXoD7S9uTdo13E3tFC1I/hJSOIOnmjj6g4dp37oHd0d3yq6bq1hOwYLaXz1N//H6STsEgIJZ5UktXAvh6x0gv3L0TKHmqg10bd2V9GsngqFTjeSVF5MfZ7uOZLD4fTfQ8uSrCY0jRMVQSIpbfRg+P7W/fob6R1+m78gpjIA1a5gqVkzBAgxjSg4BIK+qHHdjW4INGovhD2BzOvUTqAiIkF9VhrczsW2bk0nLC1tZ+om7OPXwSym/9pzrL6Fv92GCg9OrdcybVUHF+jXkzarQG5RCnA769h5h8Fg9AIMn6qhYuYjeU9NMc50kIkLXzsP07D/Bkg/dQuX5KyleODelNuQCllOwmBb5s8rp23c05detuvAcevek/rrTQfkDdGzdzfwbL6XljclKdU+dstVLsAkMHZl62q69MJ/577sJf+8AfbsP4+vSzjj0KFF961XY8vPp33+cgaOnmf/eG+k92ZSUQraJMHx+Tj/0AoVzqlh0z41UrF1GQXVVyu3IVqzloyxCROpF5N5x9t8nIhtTaZOjID+pzfBGIYzUKpSvWszgsdOpuW4CGa5rJuhyU3learQXiuZXU3n+Sjpf2Tblc5StW8HCD99G+wtv0vHyW/i7ehFGN/DofPVtyteuwFFahPIHdH8glb6WIyKCp6OXE794ksPfvp+2zTtxtXbGbOpocRbLKeQWkxHkSQwpfBAMDLuxFxVQtGgOww0tqbtwgul8aw8li+dQNH92Uq9TtGgONVdvoPmRF6a0xm8vLGDhR24nr7KMxvufJTgwNO6Pu23jG8y7/RpAERx2k5cBrShEBFdLByf+72kOfu2XNDz9Gn1HThFwZ46eeKZhLR/lEEqp/tRfNHWXcrd1U1hTxazLzqfpiZdTd+Ek0PzsZpZ87A7a3tqHuz3xGTOzLz2XgtkVND+0cfKBZRFmX3sxhfOraX/hTQITOIMQwSEXhj+Ao7SYgSOnKD9nGR37a6dkf6IREXwDQzQ88wZKvU7psgXUXLme4sXzKF48F0dJ0ZTjarmG5RQyCBHZDBwB+oDPAwbwW+AflRo7FxeR3wN+DPyeUurZyeg5J47UeQV3WxcV61YQdLlRgWDKrpsUlOLMoy+x5ON30rZ1D+72xPRtyqssY/5tVzJ4+CRtv3tt0hO5/DmzmHvHtXS/tZueN3eOWSaaiO43d1F97cW0vvgWlZecB/tOpCWuMB4iwlB9C0P1LVpXoaKU8nUrKFu9hMKaKgrmziKvvDSudu25iOUUMo9PofsaXQVsAB4CdqMFdUYQkb8CvgzcrZR6M8U2Alq8PehJXY2At7OHqkvey6mfPZ6yayYV0zEs/vCtdO87wWDdNLJ1bDbm3XgpjsJ8Wh5/CeXxTtohFC9bSNXl59P0wO8gaExpZdDf24+zogyUAQJiGKgMFq0REXz9Q3Ru30/n9v0opbDZbeSVl1K0oIaihXMoqK7EWVaMo6gAe1EhjqJC7PlObE4H4nDw9h/8e8F1D38zZ9ajLKeQeRxRSoUkN0+IyB8BNxPmFETkK8AfAzcppaYtSKyUomB25aSPK6ipwt8f39JCIhAEDINA/+T7/WcshkHjYy8z767rKFpQTf+xySvHFc6bzezLzqPjlW24TzfqNNFJniNvVgWzrtpA04PPTfuzHT5eR9mqJQT6BimqqSQomesUxsPd1o27LbS0pzCCBioQQPmDWlPBfAH/Q5LFrlKJWNH4zMFcPjqulPrjsG2/ASqVUveISD1gB0qBS5VStRHH38fUlo+m/Etw6rfP0vZqgmUYYzD7yvVa8nLvEcSWWzkSSinm3HQ5sy5fT8UkM5OGz7RQ+73f4m3tnNJSjS0/j8WfuIuGB56FBLSKEIedee+/ha7t+5l9zUUs+MAt0z5nhpMzzyhgZR9lIv6I7xWjf05vmds+kTKLxsHT1pWyaxUvnsvA4Vpy7G8Q0MsYHW/soPnZ1+nefRgjzpjJYG09x77+c7xtXVNbuxdh4UfvoPnJVxLiEABUIIg47Hha2rEXFVjVxVmGtXyUfewGvgO8KiJKKfXVdBrj6UyNsE3JikUM1jZgeP0ZF7hMJANHTuHp6EEFgpSvW46ztCTmWG93Hye/ez+BgalXKS94/810vb497gyjeBk6UU/pqiUEPV6GTtRTti41dRkW08eaKWQhSqmdwG3A34vIF9NlR9DrS1nh2qyL1tKzK7OlLROFr6uXU794nN59xxlujq4XYAQCnPjOffh6+qZ8neobLmPoZD3upvaEz70GD9VSdu5KPK2dGSmAZBEbyylkKUqpHWjHcG+6HEPQ5SEwnPyki7yqcny9A1ooPelXywwMj4+TP39ct42oHRt8bt24BdepxinPmsrPXw0oBg6cSMpinOHzY8tz0r//OPaCvCRcwSJZWMtHGYRS6oYo2z4b9v+lEft2ABXRxqYCb+8Aht+f9KKf6qs20Pbq26O2hfri5TKiFPUPbmTBPTdieP0jAWhf3yBtL22d8gdQuHAOJasWa+W1RBocga+nH7EJtvx8jEAAm8O63WQD1kzBYsq4WzqSfg1bns4HDw67R++YIVlzIkLLc5vpO3iC3oMnAGh44FkCU1Rxc1aWUX3j5bQ89WrSw/X9+45SseEcgh4vg8frk3w1i0RhuW6LKeNqak/6LGH2levpemvP6I0zYZoQQevzW7DlOXEU5tO39+iU3r+9qIAF77+ZxgeeTb6mAuDr7CV/diVDpxtRPj/l51rB5mzAmilYTJnBuqakX6NwzizcrZ2jts2MOcJYvJ09ND+1aeysKQ7E6WDRR++k6dEXUL7IrOfkYQSCDB49hb0o/c3xLOLDcgoWU8IIBvG0JTcdtXzdCvoPxW6oNkNWkEYoXjiXvj1HJj9LsNlY9PG7aHlmE8YUHMp0GK6tp2jBHMTuIOhJUYt1i2lhOQWLKeHrGUi6NnPFeSvpO3Aixl41o7xC0ZL5DJ1qAJi0JsCij9xO56vb8Pemvonu4NE6Ss9Zhn/YnRYxJovJYzkFiykxcKI+qZWqBXNm4Wkdp1p65vgDACo3nEPf7rA6jXgcgwgLP3I7PTsO4GntTEsduPL7EaeTgQPHcTUkX7bVYvpYTsFiSnRu25vUIHP1VRvo3LYn5v7QLXFGTBZEsDkdGGGxAAXjvnlxOlj8qbvp3rYH1+nGtDYGCQ658LZ2kFdRmkYrLOLFcgppREQ2i8hPReT7ItJrvv5HRGzm/noR+aKI/ExEBkSkSUT+IeIcZSLyExFpFRGPiBwVkY8l025v7wBDp5IXZLYXFaD8gVE3wagoxUyYMpSuWsLQ8box22M5BntRAYs/dTdtz2/G05z4auXJMnColtK1KzD8gZSkMVtMD8sppJ9PoX8OV6LbYX8e+Juw/X8LHAQuAr4J/LeIXAkg+lH9ReB64HPAOuDvgKSJHAS9fk786BH8w65kXYKaay6i481dE45TAIbKed3dsrXLYgbcVdi/oKu/F370DpofexF/T3/aHQKAu7GVoiXzcTe20bPjYLrNsZgAq04h/bQCf6X0ne2YiKxG39i/Y+5/RSn1Q/P/PzDFdW4GtgO3oJ3JuUqpUBRv0mr2dQ89z+DJBpShg7e6T7wCZX41b7xBtwd/3yDO8lLyq8qn855jIg47+dWV+HsH4r+hGQqVwzMGm8OBGqeDqS7bUOTNqmTee66j0WyBnQkOAdD6DgK9uw4x6/pLOfDVn6bbooQycOT0/17z8H//VbrtSBSWU0g/76jRj7rbga+KSJn5/YGI8S1Ajfn/C4HWMIcwJZZ98j3TOTzhnPq/p7RqV45pJkyFvKpyfD0TZw05iouYd/f1NN7/LAQzT6rU09KJo7SIguoqFn7gFhwlRek2KZHkjEMAa/koGxhPXyFjHgYThX/YTc/uw5aIuknFBWvo33ds/EEizP/QrTQ/+mJGOgSAgUMnKD9/Nf6+Abq370u3ORbjYDmF9HO5jL4DXgG0KKUG4jh2DzBPRNYmx7TU0/zMpqTXP2QT+bMr8E6gWVF9w6V0b92N4c5cmWB/7wDOijL69x3DP8W+TRapwXIK6Wc+8D0RWSMiHwb+AfhunMe+BrwLPCkit4vIMhG5VUTenyRbk4p/yEXXtv3WLMFE7HbUBE/+jpIi8qsrcZ1uTJFV08AwcDW24iwrwUiQyptF4rGcQvp5EK27/C7wC+D/iNMpKKUM4E5gG/AAcBT4PpCVDezPPPwCvv54Jkgzg5KVixmaoLvo3Duuof35N7NiHXGo9gwlqxYT9Hjo2z/BkphF2rACzeknoJT6C+AvIndE6ieY226I+L4P+CPzlbV4unrp3WXFEsIpW7OUto2bY+7Pm1VB0O0hOOzKDqdw9BQ1d13P0KlGAsMeqi45L90mWUTBmilYpB2lFKd+/jj+oeF0m5JR2PKc4xbw1dx0OZ2vv5MVDgHC1NgOnMBZUZrz9SXZiuUULNJO9zv7GTheb80SwrAXFYzbIttZXoLh8WKkSCM7URguN2IXM75g9ULKRKzlozQSTX5zpuEfHObMwy9kbCpluihbu5yBw7EF72dfewldb+7MmllCiIFDtZSfuwpvdx897+ynePG8dJtkEYE1U7BIG0YgyNFv/Rpvd1+6Tck4SpYsYDiWiJHNhqO0iED/UGqNSgCuMy0ULZ1P396j2PKc6TbHIgqWU7BIC8owOPmzxxg62WAtG0VDiNkFtWLDGgb2Hs26WQJgvifB29aJvTCfgCtzaytmKpZTyBDMjqk/nHhk9qOCBqd+8QTd71g1CdHIm1WBt6s35v7S1csYjNI1NVvwtnZQMK+awKCLvj2HJz7AIqVYMQWLlBIYdnP8+w/Qf+Rkdj7ppoDyc1cycDC64pwtz4ny+7NaSKL/wHGqrryQgSMnmQmtz7MNa6aQAYjIfej2138uIsp8LRWR60TkXVMnoV1EvisieWHHjavHkEkYPj9tm95h/798j/7DtZZDGIeCmiq8HdFbW1RcuJb+vUey+vML9A/hKCth6HgdznIrNTXTsGYKmcFfA6uBY8C/mtvsaK2E+4HPAiuAXwIG8Pdhx34KuA/dQvsCdFV0K2dbb6cFFQziH3Lhbu6g65399O0/jrerFxGxlozGQ2TcWUDx0vk0v7s/q50CgAoEwCYYXh/DdU2ULF+UbpMsTCynkAEopfpFxAe4lFJtACLyNfTN/c/MdhZHReSfgZ+JyL8ppUIqNxPpMUxI+5ad9O45GjJGP7kpBcoUiTcMvcvQSmf6K6bOgjFyXNDtxT/oIjA4jDKC2JxObHkObA79a5ZXbskxTkTxkvm46lti3/Rz5KF66Nhpys5ZzvDpJvoO1WIrLEi3SVNE6H5n/w+vevh/xnQkyFYsp5C5rAW2q5G7LgBvofsareSszkJMPYY4O60y5/pLmXP9pYmw2SIBHPnSD/WMIYL8miq8Hd1ZP0sAGDpez9z330zrS2+x6CN3MPeOa9Jt0tT569/LGYcAVkwhkxFiPxfmyPOiRSQBc8ktGmXrVjB4JHZBWzahgkFsDjvGsBul1ITtwS1Sh+UUMgcfOo4Q4ghwZUTQ+Bpz3KmwbdPRY7DIMAaP1xEYjN4DKr86dgA6G/H19JM3qxx3Qwvd2/en2xwLE8spZA71wGVm1tFs4MdorYUfi8haEXkP8F/AD8PiCTA9PQaLDKPr7b1Rl45C5MLSUYi+XYepvOQ8et49iL0wP93mWJhYTiFz+BZ6FnAE6AScaK2EC4F9wK+AhzmbnRRiynoMFpmF4fPH1E/Inzsbb3tXag1KMv7efvIqywi63Bj+AMP1zek2yQIr0JwxKKVOoNNKw6kHLp/g0Jh6DBbZxdDpJnwx+kCVrV3OwMHjqTUoBQT6B3GWl9C78yAqEKR46YJ0mzTjsWYKFhYZQsdr22PWKOTPrsTXGbv1RbbSu/MQlZeex+CxOhwlhVYvpAzAcgoWFhlA0Otj8OipGRNPCOHr6iW/ugqUon//cbre3JVuk2Y8llPIYpRSN5hLRxZZzsDBE/i6+qLuK5hXjac1eppqLuBt66Jg3mx6dh7CXlRgzRbSjOUULCzSjFKKlufeiDlLKDt3JYNHTkXdlwv0bN/HrCvWg2HQ+fo7dL+9J90mzWgy3ilM1FJaRO4TkY2ptMnCIpG4m9px1bfE3J9XWRYzAJ0LGB4vtvw8sAmDx+t1JlKDlYmULjLeKSQLEfmgiLwsIp1mV9Ibooz5vIi8ISJ9oc6lUcZUisj9ItJvvu4XkYqw/etF5GERaRQRt4gcF5F/CC9KM2sTVJTXHRO8h3wR+YGIdInIsIg8KyILp/O5WKQWpRRnfvs7DK8v3aaklf69R6m8cC0ATY+8iLupA8PnT7NVM5MZ6xSAYuBtdPO4WBQBrwBfGmfMQ8BF6JqCO8z/3x+2/2J03cGngXOB/wD+HfjnKOe6A5gX9np9gvfwPeBDwCeAa4EyYKOI2Mc7yCJz6Nt3VAvmxFg6KlwwB09ze04GmcMZOl5H6TnLQSkMn5/Gh1+gb98xlGFMfLBFQkl7nYKIbAYOhQdMTX2B2Uqpu6OMvxl4EvgnpdTPwrZ/EfhL9M3+cXR3UXes6yql7jePmz3OmO+ZYy6JYfta9I38GqXU2+a2Pwa2isgapdRxpdSvIg47LSIXoW/mX4/Y1x3qkjoRIlIO/CHwOaXUq+a2TwNngFuAl+M5j0X68Hb2Uv9/T6H8gZhjStetoG/nwRRalT68bV3kz52Ft70HX1cvDY++gNhtlJ2/Cnte3sQnsEgIWTVTEJEPAU8Dnw93CGiBmvXAzeib7W3AN1Ng0pXAEHrGEWIbMAxcNc5xZUC0pPOnRKRDRLaZLSvG42J01fMroQ1KqUbg6ATXtkgzKmjQu+cIR77yI3zjyG6Cjif4e/tTZFl66d62h9lXXzRSq+Ft6aT2e7+l7YWtDJ1qxPBby0mpIO0zhXgRkc8D/wN8WCn1SsTuIPqJeQg4JCL/BPyfiPyLUip6d7HEMBfoDG9drZRSItJh7huDOUv4LFocJ8QQcC/aoQSAe4BHReQzSqkHxrl2EIjsfdAe69qx6Nyyk6GTDWFbVNT/6u9VzF2jCq/G7oy5b1zlrVHnjD1uzDlUzG9GmxLvtSdz/RjXVoEgnrZOPG3d2AvyEIcDR2lx7OuLIHZbzi8dhTA8XkQER1nJqM+67fkttP7uNWyFBRTOq8ZRUoS9sACx284uu418SPo/qRRyan9l248uf+Tbf56yCyaZbHEK7wP+GLhOKbU9yv4DpkMIsR2tO7BCRM4HwmcVdyqltibQtmh3iqhtr0VkDfA88D2l1JMjJ1CqC/h22NBd5rLWPwKxnEIsxmu5HZXq6y+l2tJTyEjaX9ySbhNSSs/2fcy/50bm3X1Duk2Jm6V/8MGccQiQGctHBmOLNZ0R3x9AK4z9oUz+EeBZYEPYK5Elk21ATbhN5v+r0U/shG0/B9gMPKKUihZkjuRdYNUE17YDkTGRmshrW2QvI4p4MwRPczv2/Dz8fYPpNmXGkglOoROdaRPO+ojv64Ab0LGCn0dxDOeLSPg8/ApM3QGl1KBS6mTYK2bweQpsB0oY3cjuSs5mNgEgIuvQDuFxpdTfxnnuDWhHGIvdgB+4New6C9GKbW/HOsgiewh6fXiaZp5/Hzh0gu5tVgFbusgEp/A6cKeI3GNqAnwHGKPirZQ6DdyIzvaJdAwO4Fcicq6I3IrWHfjFePEEEakSkQ3AeeamlSKyQUTmho2Za45ZbW5aZ46pMm06CryE1k2+QkSuRC9VbVRKHTfPcS7wBtopfN0859yI63xGRD5p6iasEZF7gT8HfhA25jIROSYil5nX7ke3yf4fEblFRC5Ep8IeADbFet8W2YO7oXXGBJnD6dt1CHthvpWOmiYywSn8Kuy1DR10fTraQKXUKfSM4Q70jTjkGLYAh9E336fRjuYfJ7juPcBe8xjQWgR7gT8JG/Mn5rYHze+fN7+/J2zMp4D96Cygl83/fzps/0fQSzofQz/5h7/C+SJ6aWsn8HHgD5RS4boIRcAa82uIvwWeAh7l7Gf3XqVUcIL3bpEF9Gzfm24T0oIKGng7e+g/eCLdpsxIZNzsC4uZgvVLkGEow+Dgvd/E29KZblPSgrOyjPkfup2aWyIlRjKSnEoQy4SZgoWFRQSe1k58OaTHPFn8vQOoYNAKOKcByylYWGQgna9tRwVm9ipg77v76Zkh1dyZhOUULCwyDMMfoG/XoXSbkXYGj5zC5rBjzHDnmGosp2BhkWH07TuKdwYvHYUzXNdEz7bd6TZjRpHxTsHSU7CYSSjDoPXJyC4uM5fuLTtRSlnpqSkk451CssgwPYUvxdBTUCJSM857sPQUcoyedw/gaogtuDPTMLw+Bo+epustq5gtVcxYp0Bm6Sl8i9E6CvPQtReblVLjifN+D0tPIWcIDLtoemgjGFaGcDjdW3aCYeCbgYV86SDtDfEsPQUwm/kNhZ13Efom/2liYOkp5BaGz8/xb/wCX6cVS4hG4/2/w174UcovWIO9sCDd5uQ0WTVTmAF6CiH+EOhDO79YWHoKOYBSCldDK0f+7fu4Tp5JtzkZS3DYTd1PHqF72x4rCJ9k0j5TiJcc11MI328D/gD4rVLKO8G1E6Kn0PPuAdyN4/TeG0cnQY0WJ4jcGXmi2OeZlK5B7IvE1jWIdtHxzjPO9cexL973ofwBPG1dDJ9q0LoJDgc26wl4QhoffI7GR1+gePF8CubOxpafjy3fidjTt2La8sTLP7r0ke/kTPvsbHEKOa2nEMGd6IaAv5yiPZPWU6i89DwqLzl3ipeziJsUCr/MWNLQtqfliZf/MuUXTSKZ4BTi1VNQaD2Fd9S4j2NjeBatTRCiefImxmRETyFk0wR6Cm8wsZ7C54G3lVKH47h2SE8hvEFODfDmZN6E2LJqFdHCIqO49JHv5FS+bCbcDSw9hbPj5gPvQXdsnQhLT8HCwiLhZIJTmPF6CmH8ATpI/VgUe5OppyDZ8DIzu9JuR7bbmC12ZoON5iu3UEql9YVeKvoROmDaBXwFuA99YwV9M/1h2PgVQCPwc/QP5D5gIzr3vwOdDfQboGiC634WvSQV+fpS2JgvxRjz2bAxVWgd5QHz9QBQEcc5VIQ9gp4R/TiGvTeYx90Qtq0ALcTTDbiA54BF6f6ZJvF3ZVe6bcgFG7PFzmywMRdflp6CRdYgIruUUlFrRjKFbLARssPObLAxF8mE5SMLCwsLiwzBcgoW2cTP021AHGSDjZAddmaDjTmHtXxkYWFhYTGCNVOwsLCwsBjBcgoWFhYWFiNYTsEiYxCRfxGRnSIyYOpcPCci50WMEVN/osXUp9hs1oKky+Z/NXUvfhi2LSNsFJF5IvIb87P0iMgREbk+k+wUEbuIfFVE6kwb60TkP0XEETYm7XbOJCynYJFJ3AD8GN3l9SYgAGwKFQua/CPw9+g26Zeia1NeFZHS1JoKInIF8EfogsFw0m6jaKGnbej6l/egK93/0rQlY+wE/gn4c+CvgHOAvza//5cMs3PmkO5CCetlvWK90C1EgsB7ze8FaAW+EDamEBgE/jjFtpUDp9DOazNmgWWm2IjW6tg2zv5MsXMj8JuIbb/hbPFqRtg5k17WTMEikylFz2ZD2hPL0G3BwzUk3OgGgKnWkPg58IRS6vWI7Zli4/uBd0XkURHpEJF9IvIXYe1hMsXOt4AbzYaRoT5hNwEvZJidM4ZM6JJqYRGL7wP70I0H4axORHvEuHZgQYpsQkT+CFhJdGW8jLARWA78GfBddC+wDeiWKAA/JHPs/Cba+R8RkSD6nvQ1pdSPzf2ZYueMwXIKFhmJ2RjxGrTUaTBid2RxjUTZliy71qCXZq5VSvnGGZo2G01s6N5BobX5vSKyCr1e/8Owcem282PA7wOfBA6jndf3RaROKfV/YePSbeeMwVo+ssg4ROS7wCeAm5Tujhuizfwa2WG2hrFPksniSrSGxSERCYhIAC0H+2fm/7szwEbQ6/BHIrYdBRab/8+EzxK0muK3lFKPKKUOKq2d/h3OBpozxc4Zg+UULDIKEfk++qnxJqXUsYjddeibRLiGRAFwLanTkHgGOB/9RBt67QIeMf9/IgNsBJ15tCZi22rgjPn/TPgsAYrQyQThBDl7b8oUO2cM1vKRRcYgIj9Cr9O/H+gN05wYUkoNKaWUiHwP+IKIHEPfgL+Ibpf+UCpsVEr1AX0Rdg8DPUqpQ+b3abXR5LvA2yLyBeBR4EJ02ue/woiWeCbY+RzwzyJSh14+uhD4O+C3GWbnzCHd6U/Wy3qFXsTQnWC0xoWgNSpaAQ+wBTgvzXZvZrTmR0bYiK5P2G/acALtFCST7EQHmb+HnsG4gdPomE1BJtk5k15WQzwLCwsLixGsmIKFhYWFxQiWU7CwsLCwGMFyChYWFhYWI1hOwcLCwsJiBMspWFhYWFiMYDkFCwsLC4sRLKdgYZEGROSXpjjPd9Jti4VFOFadgoVFihGRQnTrhjK0YMwCpVQgvVZZWGismYKFRer5ANohvIBu7HZHes2xsDiL5RQsLFLPZ9DCQZ9Ft3b4/cgBIvIJETlm6hYfFJF7TG3izRHjZovIT0SkWUS85jGfT8WbsMhNrIZ4FhYpRETmA7cAP1dKdYrIM8AHRaRSKdVrjrkVeBB4Fq1NPBvdH6gA3cModK4ydDfUQnRvoDrgduAnIpKvlAqJ6lhYxI3lFCwsUsun0TP035rf/watHfEx4Kfmti+jtRA+oEId4UQOArsJcwpokfslwPlKqVpz2yYRqQD+Q0R+YsUqLCaLtXxkYZFafh+oVUqFJEY3AS3mdkTEDlwCPKnCskCUUnvQM4Fw7gDeBepExBF6AS8Ds4B1SX0nFjmJNVOwsEgRInIp+kb9TfNpPsRTwF+IyGqgH3Cis5IiiVQaq0FrRftjXHLWtAy2mJFYTsHCInV8xvz6T+Yrkt8H/gN9k6+Jsn8O0BD2fTfaefx1jOsdn5qZFjMZq07BwiIFiEgeepnoJPDPUYZ8F6gClqKDx2XoWEEopnAxWvZzi1LqBnPbl4C/BNYqpaLNLCwsJo3lFCwsUoCIfBB4EvisUuo3Ufb/CfAT4Cb0DP4V4HfAz9HZR19CZxkdVUrdZB5TDryDjg1+Fz0zKAbOAa5VSr0vue/KIhexAs0WFqnhM8Ag8HiM/Q+jaxY+o5R6FfgUsBZ4Gr3U9PfoKuj+0AFKqX7gKnQR3D+hA8y/At4HvJGUd2GR81gzBQuLLEBEFqKXnr6mlPpquu2xyF0sp2BhkWGYvZG+g05X7QKWA/+IDjSfq5RqTaN5FjmOlX1kYZF5BIG5wA/RaaXDwFbgI5ZDsEg21kzBwsLCwmIEK9BsYWFhYTGC5RQsLCwsLEawnIKFhYWFxQiWU7CwsLCwGMFyChYWFhYWI1hOwcLCwsJihP8PXlN+HiPZVrEAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 360x1440 with 83 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for Figure 1A (controls test age)\n",
    "plt.figure(dpi=380)\n",
    "fig, axes = joypy.joyplot(age_controls_te, column=['age'], overlap=1.0, by=\"site\", ylim='own', fill=True, figsize=(5,20), legend=False, xlabels=True, ylabels=True, \n",
    "                          colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)), alpha=0.6, linewidth=.5, linecolor='w', fade=True, x_range=[0,100])\n",
    "plt.title('Age Distribution, Control Test Set', fontsize=18, color='black', alpha=1)\n",
    "plt.rc(\"font\", size=14)\n",
    "plt.xlabel('Age', fontsize=16, color='black', alpha=1)\n",
    "plt.ylabel('Site', fontsize=14, color='black', alpha=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0, 0.5, 'Site')"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 2280x1520 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAALfCAYAAABo9xUAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d7xkWVmv/7y70smhc5ie7unJgZlhGKIioKiIXK/xmi6CWfzpFa/hXsUASjCCXBERUUFAERCQnCYyuSd1ms7hdPfJoXLYcf3+WPucrlOnqk5VnTp90no+n+rTtffae6+qvWu9a73rXe9XlFIYDAaDYeNhrXQFDAaDwbAyGANgMBgMGxRjAAwGg2GDYgyAwWAwbFCMATAYDIYNijEABoPBsEExBmADIyL3i8j5lb7mStRjJa+7GhGRt4qIEpF9K10Xw5XDGIAmEJFBESmFP5T/udL1mUVEPhzWafZVEpFxEXlQRN4hIvvbfL07wwZjXzvPuxyIyJtF5I0rXY9mCY1T+T11RWRYRP5dRG5t8Zw/KCJvbXNVWyJ8fn6wzedTDb4+3Mbr7guvfWeTx90R3svT4e91SkQOicg/iMjzl1Cfpr5XMQvBGkdEfg34f8B5YEgp9aqVrZEmfKDfALwJyAFRYAvwIuAHAAF+Tyn17orj4uhnwG7yem8E/gV4lVLq/iaPXXBNEbkf2KeU2tfMuRq83nngvFLqlY3UZbUQficvAX4h3NQJvBh9n4vAC5VSJ5o854eBNyilpMq+KPq5sdUVaBRERAEfUUq9sU3nux24vWLze8K/v1mx/YxS6tE2XfeVwH3AzyqlPtzgMa8DPgdMAv8KnAYGgJvQv9c/V0r9VYv1aep7jbZykQ3Mz6Nv9n8BfyMi1yqlzqxwncr5tFJqqnyDiFwNfBH4axEZVkr9x+w+pZRzJSolIhEgoZQqXKlrNsJqqksNPKXUx8re/6OIHAP+CvhfwP/XrgsppTzAa9f5rjRKqUPAofJtIvL2cN/Hqh60cryLy0b8UvkOEYkBm65YTZRS5tXAC7gLUMDPAJsBG3h7jbIR4A+BIaCEfjB/HHhreI59FeV3An8PXAAcYAT4ILCtwbp9ODzvlhr7bwB84HTF9vvRvePybbcCnwKGw884hjZ63x/un/0Mla8Ph/vfGL5/dfgdnAFc4I11rnk/elS1H21c00AG+Cywv6Ls7PlfWeVzzjt3jXrOff/V6hJu/w7gG2E9isDTwM/Xuh6wC/h3IAnkga8BNyzxebsfyFXZflv4Gb4Wvn9ReP9PAgUgCzwM/FCV81X7Lmbvy+x9rXw2+4E/R/dSbXSv9d/r3JfvBH47vO92WK83lJXbV+u+lJX5fuABYCr8/i8An2n2Ow3vTbX7ez3wUWAU/Xs7D/wl0F1Rbg/wz+jfsQ1MAI/Mfp6yz1z5un+RepWAJ5v8LD8OPBTe3wLwOPCjzXyv1V5mBNA4P4/+cf+nUiovIl8C3iAif6SUCirKvg/4FXTD+VfAVuD9wLnKk4Y99EeBOPBP6B/OdWh3zqtE5G6lVHopFVdKnRSRbwGvEJEbVQ3XgYhsBu4N334A/eBvAe5Gux++hP4h7gR+CXgncCwsXzkS+isgBvwjujFfzF3Rjf6+ngB+D/0j/VXgJSLyfKXUWGOfdh6vR7sBpoB3lG2frHWAiPw3tOEZA/4a/YP7CeBDIrJfKfWWKvV+EHgM+H3gGuA3gP8SkduUUn4L9a7H9eHf2ZHeD6FdB59E36/NaDfRZ0Tkp5VS/xaWewd6zu/l6O9llkdqXUhE+sP9V6MbwqPoe/+rwOPhszlUcdg70e6qf0A3mm8CPiwip5VSD6O/+9ejG+BvoTs65dd8BfB54DC6p5xCG9hXo38XJ2t/NYsjIi9AP+OpsI7DwB3oEdW3icgrlFJu6BL7BrAb/ds9iTaGt6O/w4+g7/s70ff9g+HnARhfpBpngFtF5GVKqZrff1md3w68BfgqulMVoO/7p0Tk15RSf8ci32tNltJL2SgvoAOYIezlhtv+O9rCfl9F2VvD7V8FrLLtz0P3wuf1stA93gngqorz3I0ekr+1gfp9mDojgLDM/wvL/Leybfczv8f8A2GZ/7HI9d5I7V747L4TQFeV/fOuWbZNAX9Tsf2Hwu0faPDa1c59nho9siqfP4JuRFPArrLtcXSv2geur1Lv36047++E2793Cc/c/ej5nC3haw/wo8DF8nNT0WsNt3WF3/9z1Z6TGtd7a5Vn873oHvgdFWX3oo16+e9h9r48A8TLtu9GG4J/rziHKj++bPu7w30NjX4X+Q7PV3keDgLHgd4az9obw/e3V7u3Va7xyvLjGqzXj6IbcYX2DnwA+DkqRl9h2VnPwzur7PtceB96y7ZV/V5rvUwUUGP8MDCItvqzfAndcP9cRdnXhX/fq8pGBkqpw2jXwBxhD+t16B5PSUS2zL7QD+9p4Hva9Bky4d++OmVmRxrfJyL1yjXC3yulCk0e82flb5RSn0U3ZD+4xLo0ygsIe7tKqZGyejhoF4GFNvzlBGjjWs7sKOp6lkY3umc3iXaDfAo9b/dGpdTXwrrlZwuLSFc4iusK63Bzq/dRRAT4aXQvd7ji2cyjRzzVns33q7K5FaXUMLr33Oh3MfsM/kjYC28bIvI8dMP+b0Ci4jM9hP5cs59pth6vEpFt7ayHUurTaDfjp9GG/ZfRo/9zIvJfIrK1rPhPoxv1j5TXN6zz54Fe4KWt1sW4gBrj59E/wksicl3Z9m8APyYiW9Tlyddrwr/VXB4ngO8re38julH5+fBVjbMt13o+sw1BplYBpdQDIvKv6N7cT4vIAeCbwH8opZ5r8nrNDtVTqrqb5xjwgyLSXd7YLROz9+5olX1Hwr+VIbUjSqlSxbbp8O/mJdanBPy38P8e2rVworxjETZOb0cbpmoN1QB17nkdtqLr/z3UdplVuj6h+vM6jR41NML70J/l/cCfi8hD6NH0vyularruGuTm8O/bwlc1tgMopYZE5B1od+SoiDwL3AN8Sil1YIn1QCn1EPBQaGivB16Fdq39APAx4HvL6izoUUsttrdaD2MAFkFErkHfHKF2o/Y/gb+ZPaSZ04d/P8b80UU5xSbOV4/ZELm6vnil1BtE5C+B1wLfDvwW8BYRebNS6n1NXK/Z3r+qsb3y+6xVDpb+PDdz72ap5+Nv5Xzzzq2U+mbNk+vG4+voRuL/AQfQPVcf+Fngp2h9rc9s3b+JngRulFrfR0PfhVJqWkReiPazfze6p/we4G0i8lq1tPDN2Tr8NdqoVCNZVpc/EJF/Rk9Kvxwdkvs7IvIXSqn/s4R6zKG03+YkcFJEPoLufHyPiFyldISQELqaqf3dVuuwNIQxAIvzs+ib8Ito33Alb0f33v8mfD870XsjC3tDN1a8P42+ufF6P/SlIiI3oB/gU0qpRXvmSqkj6B7vX4jIADri4M9E5O/CB7ZeI9wqgyKyo8oo4CZgoqz3PxP+rRYqdw064qicZuo6O5FdbaHVLeHfdo3I2sHt6AnMP1FK/XH5DhH5hSrlm/kuJtHPe99yPpvVUHri/P7wNRvj/xTwB+jGuFVOhX/rGtaKupwF/hb4WxHpQLtxf1dE/lopNUEbfwtKqVI40tiPnju5FNb5NcAFpdSxOoe3hJkDqIOIWGh3yGGl1IeUUp+ufKFD4m4Ley0AXwj//kZ4/Oy5nsflYR2gezvAl4EfFpGXVLm+VPgDW/kMV6N9xxY6kqBe2U3ldQ7rmEIbtS70ZDjoyUlof7zy/62ozw+hjebnyjbPGrBXV5T9SXS0SCU5Gq/n02hf+8+KyI6yc8e4PLH7Xw2e60ow2yOc17sWkdvQk5qV5ML9i34foZvp48CLRORHq5VZom+86n0JfduVHEePhJf6vD2D7tj8ilRZHS8i0dnvRkT6w/s+R+jqm22EB8O/Tf8WROQ14eitcvtW4NvQ7r5ZY/XR8O87w/U0lcdU3oNmnnczAliE70FP0vxTnTL/iY6g+HnggFLqqIh8EB0m+U0R+Szan/r/oR/AFzC/1/Am9ATUg6H//Rl0Y70f7Qv91/D8jfCjIjK7Engzl1cCW8CblVKfWuT4nwF+M6zzaXRv+hVow/VJpdSsO+oA2v/7FhEZRE+enVNKPd5gPasxhTaEu9A9v9kw0HHKPr9S6oSIfBP45fBH9CxwJ7rBO40OPS3nMeDnReRP0T/eAPhCtfkEpZQverX3Z4ED4X3MomOwX4KOxDhVeVyjiF6VvFdVWYnbIsfQw//fFZHZyJ8b0JOKR9ARJOU8Bvwa8H7RYcwu8LhSakF4cshb0A3SJ0Xkk+HxDtqf/1p0r/yNLdb9MeDVIvJ/0EZXKaU+gV7sdhXatTWEDin9cfRk57+2eC0ILyAir0dPkB8K3TtH0Z2b69DBHr+HjpZ6FfBBEflP9PeaQ/92fwH9nc26Up9DPyO/KiIF9KhpQik1GwhQjU8DEyLyxfB4D/17fz3an/8nSqmZsM4HROSP0XMWz4rIp9DrhHaG9XktOkptllrfa80vxbxqh2t9Ct1YP2+RcifCG98Zvo8AfxzeABsd6vU/0LHxC0Lc0GF+f4nu3ZbCcx1Gh+Hd0kA9P8z8xR+zi1a+hXZR7a9x3P3MD4O8Ez0XcRrdqGfQYXO/hV7JW37sG8KH16H6QrBXNnLN8m1cXgiWQf+o/gu4rso5doT3JoP+YX4F7Qevdu5taCM9w+XQu3216hJufwV6gj8T3o9ngF9o5LOE2/eF13lrxfYpYLjBZ+9+qiwEq1Jub/hdTKLnXZ5AG8O3ln/WsKwVPoOXuByS/MZw34Ly4fYudOz5YXQvPIs2PP8IvLisXM37XuO+XI9u5DOULVhCN8KfD+s4u/DsAeBHWvj9nq9xf/aiQy/Po5/fabQxexewJyxzTVjmWFjHfPj/PwH6K873WvTosURjC8F+jMvrKpJoQzyOfo6rfk606+tr4XNso8OBvwK8qZHvtdbL5AK6gojIF9ArJftU+xcIGVYxoR/7IPBzSql/Wen6GAxg5gCWBRHprLLtdvRM/r2m8d+QfC/aANSK9jIYrjhmBLAMiMivoP3pX0IPYW9CzwlYwLcppZ5ZweoZDAYDYAzAsiAiLwL+FO1T34T2mz4EvE0p9dQKVs1gMBjmMAbAYDAYNihmDsBgMBg2KGYdwNrGDN8MhpWnXes6rjhmBGAwGAwbFGMADAaDYYNiDIBhURyvWtZfg8Gw1jEGwFAXz1d86ulpLiXtla6KwWBoM8YAGOpyKWUTBHB8rF2yBAaDYbVgDIChLuenbARFwTFuIINhvWEMgKEuk1kPNwAzDWAwrD+MATDURCnFVN4lUOB5Ctc3yw4MhvWEMQCGmuRtH8fT//dR5GyTxNRgWE8YA2CoyUzeA7nc688UjQEwGNYTxgAYajKacemK60ckFhGmct4K18hgMLQTYwAMNZnOeVihdnXEglTBXeEaGQyGdmIMgKEm0/nLPX4/gJIJBTIY1hXGABiq4geKTOmyz9/zFb5p/w2GdYUxAIaq5Gwfpyzs0wsUgREPMhjWFcYAGKoynfOIlj0d2gCsXH0MBkP7MQbAUJXxjENH7PLj4QcQGAtgMKwrjAEwVGU6789FAM0SKDGrgQ2GdYQxAIaqzFQJ+QyUouSamWCDYb1gDIBhAX6gyBQXNvSBgqIxAAbDusEYAMMC8o6PV8XfL6LzAxkMhvWBMQCGBaTyHhXufwCilph8QAbDOsIYAMMCJnIunbGFj0bEYt7iMIPBsLYxBsAwx9BUCYBU3idiCVt6ogTBZZ+/JWKUwQyGdYQxAAYAHC/gm8+l8HxFOnTzFB2focnSXBk/UHiBMQAGw3rBGAADoFM/KKVIFjxSoQFIFjwiEZkL/fQDRaCqTA4YDIY1iTEABgCyRZ941GJkpkTe8YkI5Io+wuXIH8+sBjYY1hXGABgAyJY8OmIWF1MOQQCxqJAp+ViWkCvptNB+oPBNQjiDYd1gDIABgJyt3TzJnIdlQTxikS15ULb61w8Upv03GNYPxgAYAD0J7PmKnOPTEbOIRSBd8HF8mPX6+woUxgIYDOsFYwAMANiewvEVtqeIWEKgdAZQxwuIWJcnfgNf8ExCOINhXWAMgAG4PAJww0le19MCMLansMoMgEIZaUiDYZ1gDIABANsLUEDJCcKsnz4i4QigLPLTR48WDAbD2ie60hUwrA5sT6GUwvEDXF/hha4gx1dEyhMDKYXt+phHx2BY+5gRgAEAJ5wDCAJQgSJT9Ob5/mezg0ZEyJSMC8hgWA8YA2AAwPUDbC9ARAu/JAuXk74ppeYmfiMRIWdSQhsM6wJjAAyAHgEUHQVKp31O5i8rggVoAwFgGU0Ag2HdYAyAQffwAyi4PqmSDwoKzuWJXgHscDGYUnrC2GAwrH2MATCEK3wVjqsoOgGPnskSKXsyLEsouWqurG/af4NhXWBCOQxzBmA2vj8Wrcj4Wdbr98MFYgaDYe1jRgAG3EAneLBrCL57gZpLAeEFeoGYwWBY+xgDYCDwIQjArpHiwfHV3IPiGwNgMKwbjAEw4CmF69fO9Ol4wVw6iCAAZURhDIZ1gTEABrxw9a8A23pjxCvmABxPEQ2fFMXlRWEGg2FtYwyAAccDPwi4eWcnFyaL9MYES1TZ/gCrLB1EECgcEwpqMKx5jAEw4PgBm3tjPHUuw2ja5unzWQYSFn7Y0/cVCOUZQU1COINhPWAMgAHHC3DcgOmsq3v6IlxK2kTLxF8CgjmDoGBOJcxgMKxdjAEwIAJHh/NYZU/DZNajryMy1+gHoTjMLHnHpIMwGNY6xgAY8D0YnrERmT/5myl6uO7lht4Nw0SjlpAuGgNgMKx1jAEwcDFZmuvplzOcctjcpReLi0Ah7PVbFmSMATAY1jzGABg4OVbQLXwFrq+wLCg5PpYIBVu7gAQomjkAg2HNYwzABkcpxYXpUs38PqmCh4XCVwov0IW8wKwFMBjWA8YAbHDSBY98HXfOeMZloDOK7SqsMBRUZwQ1BsBgWOsYA7DBOTdVYp7qewWur7AEskWPWYVIP1D4NfIGGQyGtYMxABuci9Ml1CKNue0HpArunEaw5ytM828wrH2MAdjgjKYcbA+sOvndJtIuPXGLiAhKKXwFxgNkMKx9jAHYwBRsj7zt4/iqWhDQHJmST0csQhBmDQU9CWzyARkMaxtjADYwExkHACdYPKZfEZApujje5XQQJhTUYFjbGAOwgbk4bdMVt3C9xctmSwGO61MMVwYHgaJgm8VgBsNaxhiADcx4xkVE8BoQ+Z3MuvR0xOYa/ahlMVMwBsBgWMsYA7CBmUiHLqAG2vGiExCzFNlwzUA0AtP5BoYOBoNh1WIMwAalYHuUwklct8HJ3CDQ6wFARwEVTEZQg2FNYwzABmUq66HU7Krexo5JFb05pTDPV3hmMZjBsKYxBmCDMpoOJ4CbWNQ1nnbp74wAeoWwWQtgMKxtjAHYoExlXSxLcP2gYQNQcAOi4TGuX3/koJQiXXDNWgGDYRUTXekKGFaGqawLaG3fSIPH+IECBcmcy7b+BI6n3UDRilxCrh/w6UfHGJ6x2bOlgxde28/+7V1t/gQGg2GpmBHABsTzFcmCnsy13QBp8CkIFGRLPoWSnvxVKLJV1gJ8/dlppnIuPZ1RknmPZ85lmA4XnRkMhtWDMQAbkGzJm5vAtb3mHPkzOZfY7JBBIFkRCjqRtjkxmiMWufxoJfMuj59JL6nOBoOh/RgDsAGZzLjEwuxvThNzAABOoAgChecHxCxhODW/Z3/v0Rk64/OdSl4AmYLLyZHcUqtuMBjaiDEAG5DRtE0ipg2A7TYZyqPA8RWpvIevIFfmAsoUXS5NlxaIywPk7YCTo4Ul1dtgMLQXYwA2IDNZnQJChY15nUSgCxAR0gWPou1TcoN5kUAHz2cX9P5ncX1FwfEZTZaWVnmDwdA2jAHYgEzldASQF+gonnqpoCsRYCLj0hETXP9ySmilFM9dys2JxlTDdgMOns8upeoGg6GNGAOwwXC9gLytG+2SG4SLuRq3ALOaALO6wI6vyBR9prMu2VL91BB5O6DgBGZtgMGwSjAGYIORLfl4gW6AM0UfkWaaf/AVIHpNQDrvIgLDaZtjl3J01XD/lON4Ac9dMqMAg2E1sGoMgIg8X0R8EXm4yj5V9nJF5LyI/JmIRMvKvFFEcmXvX1l2TCAiGRE5JCLvFZFrKs7/xoprlL86Gqz/dhF5j4icEpGSiEyIyCMi8usi0lPxWX60yvEfFpEvNvp9tcpExiEehmhmSh5KNecC8gOFBRRsn6LjEyjIFHxOjxex6ulKhhQcn0vTdou1NxgM7WQ1rQT+ReD9wM+IyM1KqWNV9n8RiAEvAD4CJIE/X+S8twIzQA9wB/Bm4LCIfL9S6oGycgXg2sqDlVKLzlqKyD7gYSAD/CFwCG1cbwB+BpgG/m2x81wJxtIO8aieAM7aAUGT3hgvUMQjQrLgMdAdo+AE5G2f6ZxDT8fij5PjKYrhMd2JRtcgGwyG5WBVGAAR6QR+CvgOoAv4eeC3K4qllFJj4f8visg3gLsaOP2EUmoq/P9pEfkccD/wzyJyg1Jq1nGtys7fLH8PBMDdSql82fYjwGekWlzkCpHM6QigdNHTfnzVXBhoEIAI+IEeDSiluDhVIl30GzIAoI87fCHDS64fbOUjGAyGNrFaXEA/CgwppQ4BH0WPAmK1CovILcDLgMebvVDY4L8H2A88v7XqzqvLJuB7gb+raPzLr7lq8mZO5VxsL+DEWIlE1Gp6BOAHai7O3w8UgR9wdqLATEELzDfyUQuOz2TGbaX6BoOhjayKEQDwC+iGH+ABtDvmB4D/LCvzURH5MLrOCeDTwHtbvN5z4d/9wJPh/7vL5xBCDimlXrbIua5Hz6OeKN8oIpeAgfDtx5RSv9JiXWvywMkMD5xMU97m1mt+dw/E+eLhJPGIRWfMQkSvBG42rXMQ6EigVMFjZ3+MC9NFgkB44nwOP4AGpgK4aWcnT1wsEouulj6IwdAaf3v/xCsm/+oFDyxecvWx4gZARK4Dvg34SdC9ZRH5ONoolBuA3wG+CkSA64B3o+cB/mcrlw3/ljd9BeDOinJLma18ObquHwQamkhullfc0McrbuhruPxMziWdLdFb5qo5OpJnU6m5YUAiZnHb7i5iEWH/lg7S2a6G3T+zDHRF2b+tkxddP9DUcQbDauOPXrdnTTb+sAoMALqhjwAXylzlAiAie5RSF8NtY0qp0+H/T4hIL/DvIvLHSqkzTV7zlvDv2bJtquz8zXAabUhuKt+olDoHICKV+Q+yQH+V8wwAy5oxbbwsAmgWvxVVL6VX9kYsYTRpE2lhiqPg+EyYDKEGw4qyouPvMIzzDcDvoXvfs6870JE0P1vn8NnJ26YSzYtIBB0JdAZ4tpljq6GUmga+DvxaebhnHU6go5gq63QHFW6kdjMeRgCV08qaLIVeBNYZtxieKc3LB9QojqcougFFoytsMKwYKz0C+H5gC/CPYUM6h4h8AniTiLw93DQgIjvQRut64I+Ak0BluGgl20JD0wPcDvwmevL3tWURQOElZUeV4ycrylXjV9FhoE+JyFuBg4CHbujvQBuIWd4N/IuIHAW+gTZgvw5sQruLlo2ZMAKoHL8lXUfB9hTdiQjDMzaxqMXWvnjTZ/H9gOMjOZ6/r9qAyGAwLDcrbQB+HrivsvEP+RTwZ8Crw/f/GP5VwBjwIPD7SimvyrHlHA3/5oAh4F7gDUqpsxXluoDRKsdfj3bz1EQpdVZEno8eyfwpsAdw0cbp/cD7ysr+e9gI/xbwLvTcw1PAy5cQhtoQszmAyvFCV04zWKLz+qhAkSy4bOpuvvEHKDgBo0mH5+9r6XCDwbBEZBVFKBqap+Gb53gBf/fNS/PSNSgFD5/OEI80ZwA6Yha9HRFu2NbB/c/N0NMZ5YYdXXTEmvcobu2N8d/u3kbcRAMZ1i6rZp1Ps5hf3QYhU3AXiLj7Ss0zIf2dEe7e243vLe6Xj1gwlXOIRixQMJVtbULX9hSnRqsunzAYDMuMMQCLICJXi0iuzuvqla5jI4ymXRIVE8BBoFBlFmBbX4xD59LIIqvDAqXo64gymtRRsl6gyLcwEQzalXRxymgEGAwrwUrPAawFRli4PqBy/6pnIu0scLP4wXwfklJwYbrIDbu6qbdQN1DQEbeYzrpEIxaerxeGBUphNRkSansBBcfH9YN5OsIGg2H5MQZgEcJJ5lbWB6wqqrloXD9AytyXnhfguAFRSwgCVTO7Z6CYywQ6ty2AVMFjU3fNDB41KbkBp0by3LKnt+ljDQZD65gu1wZhMrcwWMr11VzaBhFwPB/LCqUi3douHUGRLXjEyiaPA6WYybaW38f2FBemjRvIYLjSGAOwAcjbHo63MGDIdi+HgCaiFvmSh4geEzh1FmgNdsUYS9uUCwm4vlYHawXbDciXfKMUZjBcYYwB2ABMZ72qWTptL5gbASSiQiGcyC04PrE6qfr7uyKMpUrzFpEppdcU5EuLLcuojuMrjg+baCCD4UpiDMAG4FKyRFd84a12yuJCEzFrzgDkSj6dVcrPohS4nm7wywmUYjzdWjho0fG5NGPcQAbDlcQYgA3ARMatOqFrO2UGIGrN5eWpZwAEKDk+lgh2hcvG9RR2FVdTIzieomD7LYeTGgyG5llxA7CWtYCr6fiKyOtEpCAi7wjfv1VEjlSUeZGITIXHRys/Q7uplXWz6F5urBMxi0KYFrpg+3REI1XdRr2dESYzDpYluBUryxR6LiBbbM0NZHsBh4YyLR1rMBiaZ8UNAJe1gG8TkZtr7N+JFm95M/AmdB6dxbgV2IWWjXxb+PewiLyiolwhPP+8VyNawJWIyOvRGga/p5R6S40yrwbuQWsZ/GwDuYyWhO365Kvk+/eC+ZO2ljDXoCt0pE9QJVHcYHeM0ZSNrxTVsoj4SjHeYprnfMlveUWxwWBonhVdB7AOtIDnEJHfAP4C+AWl1EdrlPkxtPLZ25RS71rqNRthOucSBAGVtl67WnRTD+jefpmXSKEzhUYqJoPjESFf0uGiQaDnA8rXfrmewvF0uuhmk8wFCgp2wEiyxK7BZdHQMRgMZaz0CGDNagFX1OtP0Zk9f7hO4//LwMeBX7tSjT/A0JRNZ2JhSM9oar44jAoW9uirrQVwvGDONRQoRb5KuKjrBUy2OAooOj5HLiybN8xgMJSx0iuB17IW8CzfjdY1eJ1S6ks1ylwPfADd+H+omQrX4/ClHOcma6tWdiciPHwiyXRee5kUgFJkSj7jaZdo2UKuzT0Rio6PWNoolLyA6axLwb9cpjNucXG6SNENkHCyt+gGZOPWvN6+JULBCUgWWpvQTZd8MrYi3kJ2UYPhSvOrHztz66W/ftHRxUuuPlbMAKwjLeAjaInHPxaRh5VSqSplRoEJ4DdF5AtKqQtNnL8m+7d21k2j3BmzeOiETrk8iwBXbRJuv2q+e6YvIVwcTcyJtA90Rrnjqk52b7sscrapJ8ozZzPs39Y579ggCDOLlhGxoCNG01rBAKIUKJ8bd3Y3fazBsAJU0zNZE6zkCGCtawHPMooetdwLfFNEvlsplawok0ML23wVuF9EXqWUGlrCNQHdw79xR21FzGzRo6cjQk8VF1AlligS0QiRcFTgeAE9iQjdZccOdkVJFdwFusJUOb2IwvUUW3tbE4uJWcK1WzvnjVIMhtXIpb9+0bIKOS0nKzLGXg9awOUopYaBVwLdwD0isrlKmQzwvcAw8EBlSOpyMJKyiTY4Eet6AVL2NBRsf240MIvtKfwGvTpKCUU3YDrX2lxAtujx7HkTEmowLCcr5WQt1wI+Uv4CPgH8nMhcczQgIjtEZFcYwtmMFvAOEblORH4YHQH0fODnqmkBV3kt3m0uQyk1ijYCceBeEdlSpUwWeA1wHm0Erm3mGs1ydqLYkEqXyGxm0MuUnIBomX5AxIKZrNNUZI/jKiYzbku6wzk7YGSmtGC1scFgaB8rZQAW0wLey3wt4FHgEvDvaI3f72tQC3gUeAb4k/Dv7UqpByvKzWoBV76a7qErpcaBV4Vv7xORbVXK5IHXoo3YAyJyfbPXaZRLM41NZUREsN1gnmC8AlQAXrg2oDsR4dJ0qSkDoIBsyedii5k+UwWPZ86lWzrWYDAsjtEEXtvUvHl52+Mf7hmhu2PxgUwiajE6nef0aGHe9mt3dNLZEaerI8qO/jiff3Ki6uKvxYhYsGswwc6BRNPH7hiI8313biVhIoIMq5c1O1FlflXrlPOTpYYnUCMWOO7l1cLdiQiD3TFAKNp6oOX5quV0zX4Al6ZLXJouNe0Oms46PHE61dJ1DQZDfVZ6HcCqJdT6fa5OkVvaFc65HJwcKzTca45YMqcX0BGzuHpLgkzOoVB0UZbFlgFIF9w6443FUQgXZmymcy6bemL0d0VJRC0sizkNgmruJdeH0aTNWMpmRwsjCIPBUBtjAGqzZrWAPV8xPOMQizY6Aric2XP/9k4ePDRBd0eEfdu6sawIXfEIZ8fzC6KCmiVqCbanGEnanJ8qIXJ57CwiRC2hM27RnbDo64wy0BUjGhGSeZenz6V5zR1ba8pUGgyG5jEGoAZrWQt4JGXjeAGxaGOBTFFLsB2frkSEZNbBcRWu7xGPWihL0ZOIMNLghHIjiAiJGsap6AQUnUCnqohabOmJsa0/zkjS5sCZNC++fqBt9TAYNjrGAKxDDl3I0ZVovLc+OwLYv62LJ45Pza0HcL1AZwVVinxp4bqA5SQWsVAKJrMO4xmHLb0xYpawe1OCqzZ3Ln4Cg8GwKGYSeJ3h+gFnJ4rzQjoXwxKdi1+EOVUw0MneikWfmRYXc7UHwRJhJufywPE0X3l2iqls+0YjBsNGxowA1hknRwsETcZqBkoRFSFfdOeldi65PiCcGl26/3/p6Io9cTpNwQn4tpsGuH1Pb91cSAaDoT7GAKwjlFI8fiZDZ7ypRcwESjHYE2MsWZo3ckgXPHYMdnBuskhnomaW7iuKr4TT4wX8QHFqtMQL9/dx7faOpkY8BoNBY7pP64jzk0XSLcgx+oFioDvKeGq+ayVT8EhEJBSUWT3kSwEjSZvprM0Xn53kC89Mtaw/YDBsZIwBWCf4geIbR5N0Ndn7B63EZYnME4kHLf7u+ipcFLa6mMl5jCZtYhaMJG3+7dEx7jk6Q6ZFPWKDYSNyRQzAOhB+VyLyBxXbZ+uwRURuFZGSiPx4RRkRkQdE5Cvh+/tF5H1VrrFkUfiHT6QoOS2u1PUDgkChqMzpLxTtgK6YVVUgfqUZTTlMZhz8QNERi3BytMC/PjTKA8eSJHPuSlfPYFj1XKk5gFnh958RkZuVUpWZPH8R+CIQA16AFnxJAn++yHlvBWaAHnQq6Tejhd+/Xyn1QFm5ArAg82YTwu8l4HdF5B+UUpNVznNURN4C/J2IPFCmMfwbwG3ha9k4MZLnqaEcXfHW7LnnK/yKbKCg4/W9QAEKx/VJxFfflNGFKRsR2NbfgWUJFsJzI3meuZDlmi2d7N3Swb6tnfR1ROouIptNdeH5SovbiNY/TkQtopX6BwbDOmHZf9HrRPj9PuAq4A+B/1WjzHvQwjAfBH5ARG4A3gm8MUwV3XaUUjx5LsvDJ9MtN/6g3UduGAY6i8hsJlDFdMYmElt9jf8sQ5M2SsGOgQ7E0mGjnbEIY2mHizMl7jmapDNu0d8ZJR7TK44DpbA9RSlceOb6CqUUgdJC94gOj41ZwkB3lK29MTb3xtmzKcHmntgqiIoyGJbOlfhVzwm/i8hHgU+KyO8ppaqO0cuE3/+q2QsppXwReQ9aUvL5XNb9XSoB8H+Bz4nIe6spkSmlAhF5A3BIRH4Bbeg+q5T6ZJvqsIADZ7M8fDJFVwOKX/WICGSK3rxImogIBdtHBMZTNrfv72SmGKzaaJsLUzaer7h6ayeqbCwTi1jEwq8nZ/tVxT6jEambOK/gBAxN25ydLPHg8YCOuMXOvhhb++Ns70uwtS9GdyJiQlINa44rYQDWg/A7Sqkvh3MY7wB+okaZ8yLyZi5rGHxfMxVvlomMQ7LgtRT5M4slsK0nQjLn4HqX/fxWDAqOT9EJ8PyAQClmcg7x2NKMzXJyYtRjKuty3Y4u8k6wlNx1dcmW0FFHF/OUvADbDQgUdESFRMwiHrWIRSwiFgiCZYFe0AbIGs4dbKjK33zt0nefffdLv7HS9WiFZTUA60j4fZbfBR4TkZqjE6XUP4vInwDvqyEQ3zZe9/wtvO75C4THmubpM0lOnEsSL/ORz/rDI5awZ0sHm7pjdEQj7N2x+oXalVK8+Lo+XnzdgOmVG5ad//W9e9Zk4w/LPwJYL8Lvsyc5ICL/iZ6c/tM6Rb3wVUkG6K+yfQBYMemrQEGuNF/sN1/ysUI3UEc8wnjaZsfAokFTqwIR4eD5LFMZh5feMLBm6m0wXGmWrXu03oTfy/h94OVobd9mOQHcJQsd6XeF+1YEx5sv9qIUFN0ABAq2R2fcougERCMyJxG52olGLMbTLp87MMGBM6mWxWwMhvXMco4AyoXf52n/isgngDeJyNvDTQMisgNtkK6nOeH3KDoM9HbgN9GTv6+tJvxe5fjJinKLopQ6LSIfRId4NsvfA78G/K2I/CM6vPS1aBfZf2/hfG2hZHvzpB5tz0cphYQjgM5YhJzjE6iAXNFjoCe+UlVtAeHRk2mGJkrcfV0f+7Y21acwGNY1y+kgXZfC7yF/QnUXT12UUmfR4bDXA18HnkBPKP+YUurLLdZlyRQdn3ILkC36czHzgdIhoUopBCGdX3spF+JRi6mcy5eenuL+o9PkS2a1sMEARhR+rdOWm/ephy7xhcdHiUUt/EAxlrLnLZq6Y18fo2mXq7boPPxXbV39E8G18ANFX1eEu/b2ccuenlUb1mpYU6zZh2j1ru4xXDEK9uUef7ZiPQDo3r8fKLJFj809qy8vUDNELCFfCrjvuRkuzpR48bX9DPauJZdWe1FKUbB9So5PECjiMYvujqhZ/bxB2NAGYK0Lv7eLfMnDCt08eUdH/8xD9ORv0fGJxdZHRE00YnFuoshYyuYF+/u4bU/vhhgN+IFiJmNzdjTLxYkCo9MlbC+Ym9y3LNjUk+DaXb3cvLePHZuM+tp6ZkMbANaw8Hu7CAJF0fYREb0auMZo1vMVuo1QeH6wLnqIIkLJVdx/NMmlaZuX3dBPf/f6Gg04rk8y6zA0kWdoPM/odJGS65OIRYhYgljQEbconw4suT5Hzic5diHN868f5AXXbyYeW/v327CQDW0A1rLwe7vwgoCiq6N+ciWfap1g2/WZ/f2rAGx3fRiAWWJRi3OTRUZTNi+5foCbd3evidGA4/pkiy7Zgku24JMruRRsn0LJI1twSeUdiiUfP1Ak4rrBtyyhK7H4z15E50s6cHyaTMHl22/bRnfHhm4u1iXmjm5wPE9Rsn3ShdqRMUUnIDFrAcK1AeutMbBEcDzFPYenGJoq8rLrB+hfZToISilGp4scOZdiaLxApuDg+opIRIhFRPfoKwxXogV9iHIsSzh9KYsK4JV3bqdjieczrC7W16/Y0DS+UuRKHvmyieBKCrZPdyKKo7SjIFfyq69nXgfEohHOTxQZnilx9zX9PG9vL5E6aaSvBEopzo7kuO/ZcZI5h464hYiQiEdIXInrA+dGc0Qjwnc+f0fdtNqGtcX6GccbWsL1FMMz9sKJ3zIKtk9nmG665AVNi86vNUQEz4cHjs/w+QMTXJgqrFhdSrbPf9w/xOcevkjJ9elMRFbEPeUrxYWJPI8fn1q8sGHNYAzABufUaI6C7deNZC45/pwLqOQExNaR/78eiWiE8YzDZw9M8LVnJ5lMt5I/sHWm0yX+8UunmEiWluzKaQcF22dkqsjIChpEQ3vZGL9kQ1WePZ9hIuMumt8nCDv8SqkwFHRjuQAS0QhnJ4p84tExvnFomsnM8huC0ZkiH/n6OS1Ms4pcLuPJIgfPJvGD9T0K3CgYA7BBOXwhy71HZrQ7p8HfslI6bcRGGQGUIyLEIhanx/L820OjfOnpCc5NFJalIZxOl/j3e84Tiy6c1F1pAgUzGYdnTlbL8GJYayzrL3mNi8E3JOAuIl0i8k4ROR0Kw0+JyMMi8pNlZWaF5T9U5Xx/Ee774mJ1agdBoHjg6AzfPDxNdyKC49Z3/8yh9CKi2bUAGzWFiIiQiEW4OG3z2SfG+fhDIzx0IslE2iFogzEolFw+vkob/1mSOYfRZAnbaSqPomEVstxRQGtdDL4RPoAWvfkN4AiwCXhx+Leci8CPi8hvKKXyMJcy+/XAFVltPJ62+dLTE2SLPp3xCJGIUGrwR6zQwvGzWriur4hHV2cDdaXoSkQp2AGHhrI8djLFYHeM3YMJtvTF2NoXp78rRjyqRw6XG/NZ3WFtLES0hnE0Ivh+wCfuuzC3fTUzk7F54vgUL799+0pXxbAEls0ArBMx+Eb4AeC3lVKzPfjzwNNVyh0CdgH/A/iXcNv3o1NCPwhsXo7KuX7Ahckij59OM5q06UpESISyjlFLKLkBVVd/LUDwvAAS2g3geIFR2wqxROjpiOL6ivNTJc5MFCm5OloqIuHa6rKvWIX/zG63BHYNdnB+OM3QeI7OuNYX7oxH6IxricnVZg+yRY+ZrEvR9uhsYGGZYXWynHduPYjBN8IY8BoR+ZRSajFVr38Cfo7LBmD2//tbuXAQKFw/0K4ZHxw/IG/7JPMuUxmH0ZTNZMYlUNAVtxYs3opGhGzOb8gDVHL9OeF0AWzbp2edLQZrFxFL6E40HrXTEbNwbI/nhtJEoxa2p/UZ/EARKIUlQjwqdIR6w4mYRTxiEQtHF1aoPSyibfns/ytptxHJFBwePzbFK+7Y2KOA1T5aq8dy/oLXhRh8A/wS8HFgSkQOA48A/6WUqqYT+m/AX4nI9UAWrSr262h9gaZ5/FSKrz47BZb+wVtALCp0xCLEIrrnGQ8bbe2fnu+jFiyKth4sLebSL9gB8agQBArPC3B8he+vrpWya5Utg3E+99AFIpagyuYRIgKRsHHxfUXe98njowAvUARB6E6CuVtb7T4qFMuRsViAO6/t52vH0kSsjTsa/PRj4685/p5v/+pK16MVlsUArEMx+JoopR4Ukf3AS9Cf+TuBr4vIB5VSv1xRNikin0X3/FPA/UqpC632IF564yAvvXFwSfX/0NfOsmswsWgvprcjQn93gq0DnQx0R9na18Gr79y6pGsbNN94aoTb9vSsyfxKgz1xXr6zh5fdunGfhbf/+PVrsvGH5RsBrAcx+IYF3EO31rfC15+JyB8Afyoi71JKna84/p/RRi6Hlr5cUXQCuMUNUMn12RLRPX7HU3iB0dhtB5OpEgfPpNZsjp1U3mE6YxMEalWtVzA0Rtu7HOtIDH4pAu6z7qieKvvuARy0XvLnllLBpaKUIldsLArIdgKi4TDf8YL2SJFtcIJA8YVHL11OtLcGUQqKts/xC4tNfxlWI8sxAlgvYvANCbiLyP1oHeMngWn0SOSdaCOx4HOE7rDb0XKcVza3QAWuHzQRBgoBzC18MitBl85zQ2mSOWcuKmutksrZnB/Pc8u+gZWuiqFJlsMALCYG/2fMF4MH3b6MocMhf79BMXjQbpQh4F7gDaHoejmzYvCVXM8iOgBKqbMi8h3A29EC7h3AcRYKuH8NHcv/DrRBGgO+AfxJLSOjlMrWu/aVwvV0aoeGUToHfWciqkcBSq3pCIiVxHV97nt2bM03/qBdgkXbZzpdYnP/+lCM2ygYUfi1zZJuXjrv8nsfOYztNnaa63f14CvFpt4EW/rivO6FO+hco77rleaBgxM8fWp6bmHdWqevK8buLV18113VBtzrnjXbCzKB3BuYouNjO40uBNNPeaHksak3gR8ockVv2Q1Avuhy9FwKzwvYvqmTvTvXZrRMOfmSy1Mnp9eVzGKm4DJQ8taNXOhGYUMaACMGryk6Hq4fEIs21ogXnHLPnCKZd9nav3ySJMfOp/jyoxeJRS0sS3Bdnxuv7ucFN21h+6am4gRWFfc9Mz63qG49UbI9jp5Pc8e1SwtNNlw5NqQBwIjBA3o5fy0R+GoUylb/KgXTGUcnt1gGzo5k+PKjF+flwY/FIpwZyZIretx90xb27+5bnosvI8mszfGLmTUb9lmPdMFleLJgDMAaYkMaACMGr8kVGswEGlIo+Wzq0WsBPF+RLy02V98axZLL5x+6WFUERUSYSJV46uQUVkTYt6N3WeqwXHz9ybE1HfZZD9sNKLk+6bxDf3d8patjaID1+SQaGiJrezSznqvkBkQiFkopHE/h+ssTQPD1J0ZYbE3R+EyJg6dmmEq1M7Hr8jI6XeTiRH5dR06VHJ+nT82sdDUMDWIMwAYmV3RpNpBIBToVtOsHy7IaeDpd4vSlTEOrSi9N5Hjy+GTDaxlWEqUUXzswQiK+vn9yqZxDruhtWL2Itcb6fhoNNQkCRabgNd0bVShKts5WabvBonKSzXL/06PEG2wkFcK50SyPH51Y8QanaHtcGM9x4kKa0akCrjf/ezk/lmM6Y6/r3j/oVOElx+fCRH6lq2JogA05B2DQIaCOFzSdv0WAXNGjrzuO70Mq77Klrz2RQJm8w/mxXFMC6H4Apy9l6O2KcdeNW9pSj2YYncrz4LNjDE8W8JUiYll4fsDV27q5df8gt14ziAK+8dTYqhB2vxLkSx7HL2TYu71aJhTDasIYgA1KMufiuMGivvZKbC/A92fVrBRDE4W2GYAnj0+2tDCq6PicGEqzpb+Dq3dcmUanaHt85dGLnB3JkYhbxMsa93jMYipj861nx0hlHXp7YmSL7rpY9dsIuaJHyfFxvWDdLHRbr7Tl7jSh/VsQkbMi8m8i8u0V5fZVlM2JyAkR+VCYO6e87CtF5L9EZDQ85yER+bkq136FiDwVavWeFZFfqVLmR0TkORGxw78/1MTn/nCllq+IvC6s0zvC928VkSMVZV4Uagd/WESilTrDV4KRmSKeFzTtksiX/DkXjeMFTGScttTH9wOOnk23nFFyKlPi4OlpsoX21KceF8ZyfOjzJ7g0WaAjEan5HQbA4bNJHjk8ueHU00qOz7EhkyButdOup3JW+/c2Ebm5xv6dwM3oXEEO8KCI/E6Vsq8Jyz4PneRtG/CUiPxEWZmXAYfRqmO3oRO3fVBEfmq2gGiR+C+jBVqeD7wLndjtR8rKvBT4D7Sgy53h30+JyIub/Pyz53s9Wu/g95RSb6lR5tXojKAfAX62gbxHy8JYysb2mvff50oeibAxy5d8XK89AvFD43lst/XJXBHh/FiOA8em8Ns8LzFLECgePTzOp+8/h1jSkLEaniwwNl3AXcJnW4ukCy4j04WVroZhEZbsAmpB+3cIuE9ERoB3ichnK3L2T5eVPQd8WUT+DfiAiHxVKZVSSr2z4vx/LyKvAn4ErboF8CvAiFLq18P3x8KG/be5LErzZnTiuneE798RnufNhGI2TXwPvwH8BfALSqmP1ijzY2iVtLcppd7VzPnbieP6TGUdSk7zDWXJCYhGBKUUAULR8RlP2ewYXFoSsGdOTC05QkZEOHY+RVciyotv3drWCVfH9fn8Qxe4MJ4n3qArx/cVY8kiliVsHejAcTzi8Y3hdXXcgIIdkC96dHdujM+8FmnHCGBO+xfduP2MiDSiFfjX4fV/sIGyf4UWZ3l1nTJ9QLLs/UvRWTzL+Rpwd1n9apVpSjJSRP4UPcL44TqN/y+jRxi/tpKNP8CB0ymillB0Wht8BEovBAOdA+bYpeySRgGOq6NG2tFgK+DIuRkOtjEWPZ13+PCXTjE8mW8qf8/Q+OXPdHo4MyfvuFEo2h6HzyUXL2hYMdphmhvR/l2AUmpaRCZoTBC9XO93ASLyOuC70JKMs+wAvllRdBz9mbeg00TvCLdVlmkmpeF3ozUQXqeU+lKNMtcDH0A3/h9q4tx1OXQ+zZnRxcPttBqwFo4/P1Hg4lSB63b2MJq0ybWwmjdX8rgwXaQzoR+fUyN5nruYZXNvnFhUtCh5g+eyBALP4+xonmgb/eSTGYfjw1kSHa2vSN3UEyOZKXHvUyNYIg0bKEv0a2gijyX6M6VyHlsHPEZSOWKxjdEjjlgFcrbPaNpd6aosK2/9j5MvPvg3r3x8pevRCkt6EpvQ/q15ChpbiVRN73e2Dt+Gdvv8L6XUExW7K8tXO0+1Ms10Z4+gRyd/LCIPK6VSVcqMAhPAb4rIF9qVaO76XT30dTUuzB6NCK++cyuWCBFLCDyfVnRddgwmuHprF8+7ZmBum1KKkhuEOgGNnyseFb72+DA7N3c2X5E6qACSqSJ33NDFrq3NRQYJkIhbPHZ4goOnZtgx2FzdopZw4mImzJt02Whcmshx7VV96ASsG2M00BWPcM22TgZ6ly9p4CqgUodkzbDUrkij2r8LEJEtwFYa+/Kq6f0SRhJ9GfgjpdTfVxwzxsKe/DbAQyt31StTOSqoxyh6xHMv8E0R+W6lVOW4N4d2X30VuF9EXqWUGmriGlXpjEfYt621rJhB2PJ3tJCXxhLBdgMGuhs3PrVwPZ90pkRfV/t7xX6gOHo2SVfM4vbrNjccYZTJO3zmgfPMZBw29zc/gphMlVCoBe4iXyliESFQAd1NGO61jOcHpHMud67jBHEH/+aVkytdh1Zpecy9RO1fgN9CR8r9VwOX+220EPucSydU6/oKekL1b6oc8ygL5wy+G3gyFHGfLfPdVco80kCd5lBKDQOvBLqBe0Rkc5UyGeB7gWHggTBKacVwvWDOCDSL4wa4bYq0GZkqzM0nLAe24/PQwXHufWqEVLa+Aqfr+jx0cIx/+sJJsgW3pXz9nhdwabJApIaxuTCRq7lvPZIveeSK7oqv1DZUZyndrla0f+PAtWjD8TPA71ZEAAFsDst2AjcBbwK+D3i9Uiodnv+VwJfQoacfL9P99ZVSs9b4A8CvicjfAP+AdlW9kfnRPe9Fh6P+HvBZ4IeAVwHz1ig0glJqNKzXPcC9IvJdSqmpijJZEXlNWPcHwpHAmWav1Q5stzX3D+iFV+36PT93LrX8+XEs4dhQilMXM9yyb4D9V/Wypb+DeNTC9RXJjM3hszMcH8rgBwGxVrN1Kjg7mqvr3skWPOJRC8f1G44mWuvkii4XJ/JcbVYGrzqWYgBa0f610S6Tx4BXKqUerHLsV8O/ReAS8C3gbqXUwbIyb0SHnP4280NOh4B9AEqpcyLyWuA9aCMygp4nmJubUEo9Eq4veDvwNuAM8ONKqZYmdJRS42EY6TfRoa7fVaVMPqzX5wmNQCvXWiq22/oIwA9UW3IABYHi/Ej2ivjDRQRfKQ6dneGJY1NYlnZlKQV+ENCRiGBZgmW1boym0ja5okdkEbGX6YxNPBrZMAYgU3A4PZw1BmAVYjSB1zYt37yzozk+88hwy5KO2wY6+MGX7lrSUv+ZdIl/+uIpOjvWfkNoOz5Hh9INuXcsgVv3DSDR2quI1xt7tnXx/S/evV7lItfsTVyXd8OwONmCR2wJsoRBoEgXlhbed2Yk21Dmz2hEL6TavaWL7Zs66VllC4sCX3HyUrbhOP9A6VFUOld/TmI9kSu4HBvKrHQ1DBWsrl/SKkLWuW5wpugtaTJSoZhK20tKBHd2OFu3DpbAVdu6SWdtjpyaIpNziEQtNvd3sH1TJ73dcfIlj4K9gmkWFJweyeL7AdLE9zmeLNLfs65DI+eRKXiMzRR53v6Bla6KoQxjAGqzrnWDC3bzWgDl+L5iMmNzU4vHO67PyHShpgspGhGu3tbNfQeGSWZtIrOuAzcgX8wxNJpFlOLaPf3s2taD4wVX3hAoOD+eJ1/ymk5iN51x2L2lGz9QGyIqyA8U2YJLtuDSu0FCYNcCxgDUYL3rBmeLS3PfOF5AaQkN7thMEc9TVFsUKwJXb+vmq49coOT4lxv/eWUERDgznOXUxQz7dvawd2cfRS/AvhIKYUqv9J3J2i034LbrU3BcNvUvLY/SWiFTdDl8LsXLbt260lUxhJg5gA1KOre0JKQlx8dvNY4UODOcoSNR/fG7amsXDz07StH2GxqlWJZwYTzPA8+MkE4XGeiKsZxzjSpQnB3VCl9L6b2PJ4skouu/9z9LruiRyjlmTcAqwhiADYhSqqUcQOUEChyv9R/y+Rrx8j2dUaaSJSZmik27VSwRTl3M8MihUQgUvcswWey6Ac9dyJDOu0t23aRyLh3xyLKlr16N5IqekYtcRRgDsAEpOe1Zyeu4QUuC7IWSy0ymegTM1v4ODhwZr+r2aRQ/0OmlT5xL0tcZWVK00yxKwWSyxJHzKVwvYAnLBebh+cGiK5TXE+m8w8lL2ZWuhiHEGIANSLbgLsl9M4sfBEylm2+8Lk0UqkZO93fHOHkxRTsyQ4gI0xmbRw6OUyp59LeYa0gpSGUdjp5LcXGygGUJ7Qzdn0iWiK/P2Piq2K7WCGil42BoPxvnyTPMMZmx2yJRKJZwroXh/NmRTFV93MHeBMfOJluWhayGAp47l+TQySn6OqIkGkzz4HmKsekiR84mOTua04LvbRhJVDKTdejqiLa8Knstki95PN1GvQZD65gooA3IyHSpLW6Rku2TKzY3l6CU4nwVDYOujigXx3IoRVt72LNkCh4PPTvKTfsG2L6li1TeXZDPyPcVqbzDVMrWoZ2ijdxyNPzzrhsoCiWbgd6NEQ2Uzjsks3oyeKOshF6tNNwNlI0t/K5E5A+q1E+JyBYRuTW8/o9XlBEReUBEvhK+v19E3lflGldUFH40WWzLDy9X9PCa1ATOFtyqIahb+xMcPTPd1t5/JWIJx4dSHDg6QU8iQlciglJ6VfTp4SyHziYZGs9Tcn0iEWlqYddSmMmUlpDUY+0RKD0KODtyxR55Qw2a8QNsZOH3EvC7IlI1gFkpdRR4C/B3ZZlJAX4jrPsCw7VSOK7PVNppy7kUUHJ9prONn29oNEe0okdtWUKu4F4Rv7CIULR9vvXMKJdGs7iux8XJPPmiXsy1EouyJlMlejujGyo8MpWzOTNqJoNXmoZcQGKE3+8DrgL+EPhfNcq8By0M80HgB0TkBuCdwBuVUqMNXmfZOTPa3l5XruhxdCjDK57X2OKes2PZBat/t/QnOHxieXv/cyhF0fbJ2z7J7AyRiHDb/k309CQYni6QyV95+cJA6cnmfNGlp6t1Ccu1hOMpckWPZNZmcH2rha1qGh0BbHTh9wD4v8CviMi11QoopQK0zsErReQXgI8An1VKfbKJ6ywrtutz38HJhidCG6Fg+4wnS0w2EA0UBIpL4wv9/x2xCGPTheX1BysdtjqdcciXPAQ9GggCOHhqmkcPjhBHcdNVfdy8t5+dmzvp7ojOjQiiEaGrI8rmvgRXbe3i+qt6ue2aAW7Z289Ne/q4cU8vt+zt54Y9vXS0kGE1X3IpljZWZEw67/L0aSMav5I0Ogm80YXfUUp9OZz/eAfwEzXKnBeRN6P1D0bRQjbLxqPHpnns+JR2H6tQ/D10I8x6E2b3uX7AVNqhvzvWdjfHdMbh2bNJBroTRKPUlITfNZjgiRMz81ICJ2IWmZzLdNZeFgNgCUQjFvmSF2oY1L7GwdNJlJohFhG2DHYy2Jdgc2+cqCW4vk4xkcmWGB53KRQ9irY3973P0tUR4aZ9g/R2Rjk6lK57vXKyBY9rd/fy1KmN1SDennd5+kxqTaeJ/rf7L/73A+/9rkaUDVcdixoAMcLv5fwu8JiI/FWtAkqpfxaRPwHeV0Mgvm289ObNvPTmBeqTq5anjk9x13UD8xZ57dzcyYEj42wdWJ4IGMcNyORdYlGrqdDXTM4hk9NzG7NGtdxACdCVqP7zOXE+RX9PjFc8byvHL2ZQDRqBbQMJNg90bBihGNArv6/f1cu3PW/bSlelZX7zh25Yk40/NOYCKhd+90TEQ7tDvkdE9tQ7UNon/P4VVlb4HQCl1AG00fvzRYp64auSDNrNVckAWvN4XXNuNLtghW80YjGdKrX/YkqRL7ik8w4iS1PsEJGmRyfpnMvBk9PcsLu34cldxwtIb6BVwaDnkGayDra7sdxfq4W6BkCM8Hs1fh94OTqSqVlOAHfJwtbkrnDfusX3A0amCvO2RSPCTLrU9ghIFSiSWYei42OtYJx5vuhx+mKaPVs6Gyo/kSzRmdg4vf9ZZnIOT58wC8NWgsVcQEb4vQKl1GkR+SA6xLNZ/h74NXSo6j+iw0tfG9b3v7dSn7XCdKZEyfHp6rj8yG3qTXDo1NSS8v5U4noB6ZwLwvJOKjfIVMpm22An8QgsFuWayjns2dpFEKgrExG1SsgWXKYyNrbjk2hRotTQGov98hYTft/LfOH3UeAk8M9AAi38Xs1f/tWw7FF0Az2JFn7/RFmZN3JZ+H207HVgtoBS6hy6Af0O4Fl0LP4C4Xf0pO0b0KOWn2EJwu8hf0J1F09dlFJnw7pej45MeiKs248ppb68hPqsek5dzCyIjulIRJiYLtQ4okkUFEo63fBSXT7t5vj5FNfs6Gko3YOv2FBSkbNMpEo8caJaM2NYTowo/Npmzdy8j331NKn85QVjAmzui/PNxy4RWWJeIhXqE7tesKIun3rs2tpFIh4hVaw/DNixqYN4LMrgBhGJKWf3li6+887t9PesubUQq/OhawCTC8iw7Liuz2S6NG8BWF9PnHMjWawl5tnxvIB03kUptWyNfyJmccPVA3TELYIgQBBcX3F6OEO+wVxII5MFXnzbNmbyGaw6uaQnUza37O3ckHlyJlNFnjo5w3fe1VSEtmEJbGgDsN6F31cLozNFfH++/GN/d4xHR7OtN3JK6xrrpG3NR+k0ggjcdu0mogLPnZ4iV7g8gknEo9xy7SYi0QiHziQXJJarxtBIls09cZKF2kbDDxSBUjglj67OjaWd63iK8VSRMyNZrt3Vu9LV2RBsaAPAOhd+Xy2cGEqRiM/v9XpegOMFLU0AB4EinXfx/OVz+XTEI7zg5i0cOj7BTKoEzO+RO67Ps8cn6emK8dJbtvHM6STFRTSSx2aKvHBHD9M5t+4kb7aoM5VuNAMAelHhiYsZrtraVTVluKG9mDmAtc2qv3lKKT70+RPY3mUFsljUwlKKJ45ONBftoqAY9vqRWuuNl05PZ5Tbr9/Eo88M4ziL6xJHLHjpnbs4dCZFYREjsH93LwXbx64jyBaPWly/p49obGP2z2JR4ear+/mO27evdFUaZc366tbu+mvDmiBf9EhVJFgb7IlzfiTbeOOvtBbvdEbn6ZdlbPw74hHuuH4z33ryUkONP2gJyoefGeH2/QPEY/XLnx/JsntrV93FYY4XIOiQ1o2I6ymGxvI8dz610lVZ9xgDYFhWzo1mF6R/7kxEmEw2EP6ptKsolXPmIoiWc2I0GhHuvnkLDz11icAPmrqWUvDYoVFecP0mpM7ALFDguQHBIo170fbJ5jdeOOgs6YLLsYsZxmfaFCZsqIoxAIZl5cTF9IL0zwXbo64mvVI4jk8yZ5PMOfjB8kX4lHP3zVt54uAontdYz78Sz1ccPDHJndcO1u3hnx3JsmuR1cGjM0W6a+Qa2iiMTBV44sQM6Xx79CsMCzEGwLBseH7A8MT8HlxnIsLYZGGhzKLS6SJyBZfpjEO64BIEXLG4/lv3D3L6fJJ80VnSKCOTd5lMFtm7vatmmWzBpbczhl/HChZKHtGI1C2z3hERzo/l+NbhCbLGCCwLxgAYlo2xmSJuRZKvwd4EF8bC8M/QxZMreExnbGYyDiVXN3hXckHXjs2deJ7P6GSuLS6m8yMZtvYnqJfVIJW16+6H2bQWG7vhExHOjuS499lxpjMb1yW2XBgDYFg2jp5NkihPbqb0a2KmRCbnMJWxSWYdSqGRsKzlm9ytRSxqcc2uXo6emGyrGP3Txya547pNNV1BQ6M5rtrSXddVNJ4s0rHEVdLrAcsSLkzk+eoTI5wezqx0ddYV5ulaIiKyXUTeKyJnQtH5YRH5ioi8Ntx/XkR+u6z8/aGY/P+sOM8VFYZfbpRSnL2UwfMUyYzD+dE8R86lOH0pQ67o4vo6S/5KNPrl3HnDZp48NIZqc0St6wVcGs+yd1t1V5BeA6FHQLVI5Vw6EpGGcgitd0SEZM7hK0+M8MDBcbLFKy/duR7Z2LNMS0RE9gEPA1l0yuyDaKP6XehMpVfXOLQEvF1EPqWUWjfjWsf1mck6XJzIk8o5HDg5g0KrclmWsKU/wcRMYdVkuty7s4exiSyFkrss0UUXx3K89I4dXJosEFQxc8m0Q1fMol5TZjsBtu8xYHRzAW0IDp5JcuJihuftH+DWvf30da+53EGrBmMAlsb70YtA7lZKlffej4WqabX4D7SewP8HvHsZ67csOJ5PoeQzk7EZS5aYSpUYT5XIFDx8P2DLQAfTySKWNT9sc/tgJ48fHl0VOW464hG2DXTwyNOXlrU+h05Ocds1mzh4NrXgOhfGczzvuk2cm6ithzw6nWfXlu5lq99axLIExwt44vg0jx2b4rqdvVy1rYu927vp7463XfJ0PWMMQIuIyCZ0I/4HFY0/AEqpeuKuOXRK6T8VkX9uVTrSDxSuu9CFUO7OmKcNjEIpwpciAAjAV4ogUPiBwvECHNen5ASUHI9s0cd2fPIlj2zRJZ13cdwAL1BYohOlzTZe0YgQjUQY7Ilx4Og4IPNy5IiAbQfIKviB3nHDZp44OLzsS6lzRW0Uezoi5CqW/7q+/g5d1ydWY9VvpuCxNyo4rt9W3YT1giXC2bEcp4az2F5Ab0eUzf0JBnvi9HRG6e6I0p2I0tERIRGLEI2AJRaWpUemWu0NypWsZ21xo87J7/qdexIP/7/vWZMjeWMAWuc6dO//WIvHfxB4M1pe8/+2coInT0zz9SdH500kzjbGs5vCYJuyh1vLIQuXk+ZbEAqoQMSyiFhCNGIRi+j35b+DzniEzkXCVwS9crdc6DsaERzb0z+6Vj5sG9m3s4fh0QyOc2XSRx85Pc1Lbt/J48emFvT0p1M2/Z0xnDrRno4b4CvY1L/xcgM1Q0/4N1twyRZcUOD4Aa4X4PkKLwggmItFgNnO0Fz3KBQLV5eNQIOpcl5A6wqDK4oxAK2zpJZDKeWJyFuAj4jI+1o5x4tv3sKLb96ylGosC/c/Pcrt1w7O8/Vv6ktw5kKKzcsk/t4osajFNbt7uf+xC3RcQfnFyWSB/Tu7SVfoAeRtj1uvGUBZVk03UDxmsXdbD9/7kquuRFUNTfJHP3P7mmz8wUQBLYVT6E7Dza2eQCn1KeAw8LZ2VWqlCQLFsaHUgone3s4oI5MrH+R0yzUDHDg4esWHIUOjWXZv6V4Q0TP7vliqnSLacQOKjk/GLIYytBljAFpEKTUDfA2tSdxTuV9EBho81e+i5SpvbV/tVo6x6UJVkRTPV7jeyoYzbtvUycR0gXxxeaJ+FuP0pRQ7BhdG8ySzDq5XP4totuhw6LQRTje0F2MAlsavovuST4rIj4nIjSJyk4i8Ca0/vChKqQfQGsm/toz1vGI8cWxqQe7/WNRiKlVc0egfyxKu2trFsdNTKzYJPTFTZKAnTlCR3mF0qsDAIqGM6ZxLJu+aNQGGtmIMwBIIRenvAr4B/Dm60b8X+AHgl5s41f8F1nwws+36nBtZqPI12BtnaLSJ9M/LwM37BnjyyNiKCygcPzfD3u3zwzr9QKGUoliqv7gpV3I5cSG1jLUzbDTMJPASUUqNAr8evqrt31fx/pVVyhwB1rz80aHTM1V9652JCJMzpbl9iXgE26nv8mgng30JcnmbdMZZ8RDUTN4lHhVEBSi53P9KZh2ii6R9mMnYXBjPc/O+weWupmGDYEYAhrbgB4qnjk8tSP0MYDs+fqDdHrdeM8j+7V1cs61+OuR2IcC1u3o5dHwSWSVP+5Ez0+zf2TsvxHB0qkBfd/0wT89X5Iseo1P55a6iYYOwSn4ShrXOmUvpqpO/nYkIo5N5LEvo7YphFx0OPHOJmCisYPlHATfuHeCZYxMEq0j61HYCXM8nVpYS2w8UKlA4bv3vZDpT4qhRyjK0CWMADEsmCBQPPDM2P/NnyGBvgqFRPS9wza5enjs5ASIcP7vQF95uert0zv3pmdqpFlaK584mF4wCklkHbxHXmO0GZPMu4zPF5a6iYQNgDIBhyZy8mCZTqB7HHrWEdE5PbloobFuXK5Q8OmPWgoiYdnLj3n6ePjqm1/yvMjw/IJ216U5c/gmOTRfo7Vp8te9EssjhMyYk1LB0jAEwLAnPD7j3qZEFoZ+gl9Pniw5BoOjrjjE9nZ83SZwrusRYHgNw7e4+jp6axlvFilonLyTZu71nbhTg+TofU70U0aBzCM1kHU5fMrnxDUvDGADDknjk8Dh2jUQ2/d1xhkZzRCLCzi3dXBzNzHPFDI/n2LGp/ZPBnYkIHXGLkfGFIamrCaVgZCLHpp7Lvf5kpoS3yKIwgIlkgTOXMriLGAuDoR7GABhaZipV4sCxKWKx6o9RX3eMi6H8Y1c8skDXNZ216euONZpwq2FuvmaQJ1Yg3UMrDI3l2Lmpa+47GJsp0t3RSHS2Vsk68Nzk8lbQsK4xBsDQEo7r88l7zhGv0fiDVrsqhaMDz/ehSkOvFPhu7Tw4zbJnew/nLqZwPH9V9/7LKU8RMesGakQM3nZ9zo1mzeIwQ8sYA2BoGt8P+NS953D92o1sRzzC+EwRyxI6ExHyuVLVctm8Q6JNT2EsarGpN87ZCwvFV1YzEzNFBrsTcwZyJmPjLhIOOksy53D4THJVJNozrD1a+uk1qIOrROTlFce9VUSOlL1/Y1hu9jUqIp8UkWvqXPsWEblPRMZFpCQiZ0XknSISLyvzyorzzr5uKivzYyLypIikRCQvIs+KyBvqXPf3w3O8r2L7n4rI8fAcSRG5R0Re1sB3+AoRearsM/zKYsesBjw/4NP3n2ciWaorULK5L8GZi2ksS9jc38H4VL5qozw5U2BLm1JE37xvgAOH1obrp5Lnzk9zdagfPD5daNANpBmdLvDwkUmGJ80CMUNzNG0AQh3cp4HvRevg3g68GvgSWgd3lhI6P85iFICdwC7gp4A7gc+LSK3UCA7wEeB7gBvRoio/D7y9Stlbw3PPvk6V7ZsOj3lJ+Bn+BfinWSNWjoi8BPhFqid4O4GWdnwe8O3AOeCrIrK9Rv0JDdyX0SISzwfeBfytiPxIrWNWA9mCy0e+cpqRqUJNv/8skYiQzmqf/2Bvgqnp6nHryUyJgZ74kucBNvd3MJMuki96a6r3P0sm5xKPWFioptxAoEV+xqYL3PPkCMeGkm2fUzGsX1rJBdSoDu4HgV8SkR9WSn2mzvmUUmos/P+oiLwN+BhacetElcKngdNlm4ZE5JXAyyvLAhNKqakaF723YtN7wxHAy9GNMwAi0g98HG1k/qjKeT5W/l5E/ndY9k50uuhq/AowopSazR90TEReDPw28J81jlkxHNfnwHOTPHFsimhUqqZ7KCdiCam0HSotCZaA7/uXZZbKmFVfCvyASLS1dEgCXLOzh28+MrRq0j20wpEz09x67WZOj+ZIZWwSiSidnY19IBEhU3D5+hMjXBzPc+d1m9k62LEmjaHhytGUAWhSB/ci8LfAu0Tk80qpRmf6ZruKDenfich1YZ0+X2X3kyKSAJ4D3q6Uuq/GOQT4TvSI4i0Vuz8IfFopda+ILDAAFeeJA78EZIBn6xR9KfD1im1fA94gIjGlVP20kMuMUoqS7TM2U+DI2RRnhjMoWLTXP8uW/g4OnpiccxEFfjBPZm/h9SBwvZYNwA1hugc1K3W5Rik5Wn85ERVGpwvcsn+w6eylEUs4cSHN0bMprr2ql6u393D19m76exJGLN2wgGZHAM3q4L4L+IXw9YFFyiIiVwG/A1wCTi5S9hF0KuYE8I/A75ftHgXeBBxAp1l+PXCPiLxSKfVg2Tn6geHwHD7w/ymlvlK2/xfRn/n1i9TldcAngK7w2t+tlBqvc8gO4JsV28bR92NLeI5FOT6U4sjZ2trzau6fsm1K98tVoAiU9uk7jo/thSLweY90zsFXELEgHmu+Ue7piHJ2OIuEovGZbAkvCBBVvQGanCnQEbNIF5q3e92dUWzHY2wiH/b+17b749CpKV5y+w6eOjlDseQzlsy3LAY/NlPkW0qv04hFhcHeOF2JKJ0dUTriESIRISJCJCIIEqbrLleQ1v81ZqM+7//M8e+592+/r7JDtyZo1gA09SwopZIi8i7gj0XkozWKdYtILjx3F3p+4YeVUo6IHAX2huW+pZT6vrLjfhzoBe4A/hL4P2iDg1LqBPPdR4+Gcxe/DTxYtj2LdtX0AN8FvFtEziul7hGRG4F3Ai9XSi2mxXdfeJ4t6LmCT4rIS8NU0bWobKmkxvaaXLu7j019CxWmqjF340S7ZCT84Uek/b/w4fEcY5M5ErEIA71xJsYzbBmoveDL9Xxu2juAH2neI3ndnn6+9uA5tg6urNZwO0lnbV580xY2DXZw901buPvWbct2rSBQ+qUgUEoHIim1xs3oleX9nzn++ErXoVWa/cWV6+B+tsFj/hatdvW/a+wvoBvPABhXSpWHMryWy66gebOISqmL4X+fCyeMPyQif1nH1fQ48BMV5wi4PJ/wrIjcjB5J3IN202wBjpT5USPAd4QRO91KKTs8Tz48z2ngMRE5hR71/GmNuoyhRwHlbAM89OR0Q8SiFtsGr0xa5WZ47lyS7o4oIsJAT4KTJ0tYdXzRpZJPZyJCMZCmRGO2DHRweiiJ4wfryr0xOVNk97YeUpkSWwc65r5Lw+rk3r/9vvRK16FVmhpbtqKDq5QqoSdPfwfYWv206rRS6mxF449Saijcd1opNbzI54hSX1TlThZ3rVhodxDA59CRPXeWvZ5Eu3ruREcjNXKeajyKjpwq57uBJ1fa/79UHNefy/4JEI9ZZHL2oscFgaJUalz03BLo7ohy/OzMumr8ZzlxboZEzKJge4yY8E7DMtFKFNCvosMXnxSRP0SHRgrwKnRY6NVVjvko8FvAzwFnWquqRkRejw4xPYxuhO9Gu34+PdsjF5E3A+eBo+g5gP8J/CDwI2XneQt6VHAW3Vi/Fu3r/3UApVQKSFVcOw/MhApeiEgfWtT9C2jjshUdEnoV8Mmy4/41POfPhJs+gDaifwP8A/BtwBuBn2z1e1ktnL6Y1rq1oSn2vIAgCIhE6s8leL6iVHTp6mrMpbV7WzePPDNSc2J5rVO0fVKZEr5SnDifYve2Bf0tg2HJNG0AlFLnROQutKvkz4HdaLfFQWro4CqlAhH5P5SFVy4BD21orkcbniHg74D3lJWJA38V1q2INgTfr5Qqv34P8PfoxroIHAd+Rin1703W5Va0YduM/h4OAN+hlCpfMzDPKIbf4WvDOr8JGAH+l1Jq1YWANsvTxyfnTRw7jksjkwwz6RKdicYex0Q8Qr7gMp0qtjxBuhY4N5zl7ls7SedtSo5PR3zNq4YaVhliFo2saVbVzUvnbP7xM8foCIVhohEhYcGTh0YW9WHHohY37d+May3eyO3f3cdXHjyL56+qj78sdCYi3HnTVq7fN8hLb9+50tUxVGfNjkPXb/fJcMU5cHRiXnK47s4Y08lizcb/mqv6GQijmFwvQIRFV78O9MQ5dzGF7W6MNMhF2+fSeI4LIxntWjMY2ogxAIa24Lo+z51Nzovi6e6MMZMuVC2/b3c/uWyRq7d1I+FARilFqVR/DnywL86hk1PrcuK3FhfHcmRzLo8fHlu8sMHQBMYAGNrCwdML1bf0IrDqEUCD/QnOnZ/hyLFxrg61gYu2h2vXNgC7tnbx1NGJdTvxW49njk9wYTRLsdS+1NkGgzEAhiXj+QGPHx5fsGrY9wP8Kn76gb4EkxNZQKeD7u6MEQQB08kS3Z3VM4BEI4IKFJdWucrXchEoePbYBPc+ccG4ggxtwxgAw5I5eHISu0r++lo57Xdv7+X8xeRcQ27bPhL4pLIlerqiVbNZXrW9h4efGa27oGy9k8o5PP3cBAeOjJmMn4a2YAyAYUnYrs/DB8eJVyRysywhX3CqruyNRy1KZa6M8ckcWwe7UApUsNBwdHdGmZjOk8vbG7L3X85kssjDz4xy8LiRgjQsHWMADEvim49fQlVxSXR1REmmF0YAiYDrzPdjT0zn2TLQiVIKz/PJV6wc3rG5iycPj6/rmP9GcT3F6GSexw6NcujEpBkJGJZEKyuBDQYALo5lOXE+VVUXuLsjyvn0QhGYTf0dTE7PT22gwgSUKlBMzBTo7bm8GnjrYAdHT03hB6qpPEHrmXzRZWg0hyWjeH7AnTdtM9+NoSWMATC0RKHk8rn7z9cUhe/siJJKL4wA2rqpi2Mnxqq6cjzXYzpVYvf2XkpKEbGErkSUU0Mp08CVoYBMzubiuOC4HoWixwtu3UZnR0MSGgbDHGZMbWga1wv4xNdO13c/KJ0YrpKORJR8bmHSt0zWprsjOquLjm27XLW9h8cOjm7IsM/FCBSksjbTaYenjo7z1YeGuDCaWelqGdYYG1YUvuKcPxnu/2LF9t8TkQMikhGRSRH5gojcVuX4G0TkM6IF5gsi8nSYWrred7gmReFtx+ejXzpBNl99gncW1/OoZh8CP6BatvnpZJHNoWZAJuegfJ9C0WFypvZK4o2O5ysmk0VSOZtLY1m+cN9Z7j9wkZlUdf1lg6GSpl1AobDKw2gxld9DJ4Gz0IIqH+By4rNZUfiXLXLKAnAtOp/GTejsmJ8XkTuVUtXiCGdF4Z9BZ+u8A60IFkVn5iznVmCm7P2C0AkR2Y8WlPlWlWu9Eq2BfCCs358A3xSRW8LU2LMC7w8D/4qWlUyFn2OBZGbZNWdF4f8Znan024H3i8jkak4INzKZ47P3ncP31aITsrbtLei5WyJ4nl9VtjGZLnLNngFGkyWGx3Pcdet2Hnt2FMuMUeviB4qx6QK2G7BloIPDJ6Y4fHKKm/dv4ro9A+za3tOSqpthY7BhReEBRCQG/DtaB/hVaAGY8mt9b0X51wNpdPrmL4Sb3wF8XSn1W2VFz9a6ZsiaEYVXSjGTLnH/UyOcH80Sj1qL+uM74hHS6YUhm309cZKp6j362dGCdivplBD5okM0aqapFkeYSZfI5h029XXQ3xvn+Nkkzx6fpLszxt5dfWwe6GCwr4OB3gQdiQjRqEXEkgXrKkTAsha/x4b1wUYXhX8HcF4p9REReVUDl+tFj3aS4bUt4L8BfyYiXwVegNYh+Cul1H/UOc+qFIVXSuF6AcWSx1S6xNBIlrPDGdI5h3jMItFgT7K7M8r5icyChn6wv4OR4doaxgCBF5DoiXBxNMtAV4ycY8IcG0FE8HzF+EyB8ZkCvV1xOjui+n6enSFigRcoPF8REa28JqE06JyrTkBQRCyLRNyipytOf1+CTX0dbB7oYPe2Hrq74nXrYVhbbFhReBH5HrSu8J0NfhaA9wLPohW9QMs49oTX/kPg/6LdQB8XkbxS6ovVTkKbROGfOTHJ/U8NzyWFVqo8P7Qq61XPbUEFs//X/wSBwvUDbMfH8xUiEBEhFrfoiEfnnDWu13j2zS0DHUxM5/EqjunujDE9U6iZw9oLAiKiQ0Ftx+eFt+/g0JmUmQNogWTWJpm18fxAp45QgAjRCFhizYm9S/hPvW9YhVrB8bjFtXsG2La5E8+HZB2lt/pnXF989ZGLP/HV973uEytdj1bYkKLwIrIF+DDwUxWjlpqIyLvRvvpvL5ubmPVQ/5dS6t3h/58VkbvRymC1DAC0QRT++Tdu5fk3VlPZXFn8QDE1mtK6jWVctb2H3u4YVg3HvgoU2zd3MZrU4jARhJuuHqCzRn4gw8owOVVk80AH33HHTm6+dhNdGzz89M0/dceabPxh44rC3wbsRE/ozu63AETEA24NjQjhtveEx75KKVXu359Cq4I9V3GtY1QI0FfQFlH41Uqx6OJ4PvH4/MfLcatHBs2STheJxqNEwnty+mKKO27cSs4OzChgFRGLWmRyDg89NcypoSTPu2ErN+3ftKFSdK8XNqoo/AEWCr5/Hh0JdCdwruwzvRf4KeA7lVLHK+rnhOe6seJaN6ClKmuxbkXhQS9S8ivSQ4hAqeTWnVycTBbo6YozGz7keQHTqSK+Vz2pnGFliUQsppIl7nl0iPsev8BUsrr2g2H1siFF4UNDc6TivCkgOiv4Hm77O/T8wQ8CSRGZ7bXnyibB/wL4pIh8C7gX/T38RHjM7Hk2jCg8wMR0gURF77+rI0YqXarZkw+CgHzBJRq1UIFCQkNxfjjDC5+3g2TOIxo1MaGrEcuyOHZmhonpAnfevI2b928yI7Y1wkYWhW+EXw3/3lOx/W3AWwGUUp8TkV9Cfx/vRbvJfkYp9aWy8htGFB5gOllY0NPv6owxOpqqfoBSFIoeICil8H2fqHX50Tw9lGTntl42hgjk2kREmEnbPPjkJdJZm7tu2U7CiNiveowo/NpmVd68T37xOSZm5rsD9u7u51uPnsG2FzbjtuNRtD0sEV7wvJ0cOjlFvGN+uOHtN24llXPo6kosON6wulBKcdP+Tdx923YG+zpWujpXgjU73DFjakNbUUot8AV3dUTZta2bjvjCAWcQBJTCxh+0QlhnYmG5Y2en2dzfQRCYccBqR0Q4fnaG+x6/yEWTn2hVYwyAoa2UbA/bmT9pu3tHL5/7wiH27eydpx2glCJXcOfFjKezNgO9C3v5rhuQTJfwHKOJuxYQEUYm8tz7+EWOnZk2ugWrFGMADG0lnbPnLQCLWEImXcQueUwni3TEwsZeKYolb04LYJZUukhfX3U3z/nhNAN9CXzfjALWCtm8y/0HLvH0cxPmvq1CjAEwtJXJqTzxssm/wYEOLl7Ua+2GLsywd3c/oKUkHc9fkDDOdnwS8UjNHuNUsohrm1HAWsL3FQ8/M8xDTw9TLK35KOd1hTEAhrYyPlWYlym0vyfBxEQG19PpJmKxCI7jzfP7LyBQVWUmAS6OZhjsT+j0BoY1gyUWzx6f4huPmvUCqwljAAxtZaoi+scPc9HMCr37foBdcheNE6/lLlBKp5rO50vtqbDhihGxhKHhDF99aIhT55NmXmAVYAyAoW0opZhOzTcAju0SiVi4ro9SMD6RZetgZ93z2K5PtM6K4QujGfp6TFbKtYiIkMrY3PP4BQ4cHl8QMGC4shgDYGgbhaI77wfdkYiSShaxLMHzAzw/YGq6wNbNXXXPk86U6Ouu3cDnCi6JWKSq5KRhbeB5ikcPjvCNR4YYmaipnWRYZowBMLSNmVSRctd8X0+c6ekcnh/g+woB8gVH55SvM/xPpUv099Xv4adzNnZxobawYe0QsSzOXUrzhfvP8sThMYq2mSC+0hgDYGgbY5O5ecv/OxJRhkbSuG6lP19BnQVduYJDzyIrfofHcmwa6DB+5DWOiOC6AY8+M8Ln7jnDc6enm9KeMCwNYwCWgIhsF5H3isgZEbFFZFhEvhLm+Zkt82IR+byIzIRljovIH4tIR8W5zovIb1/5T9E+xifzWmEqUEwni0zOFLBL3oJGOgjqr53XxYO6jbvj+liiJ4QNa59IxGI6WeKrD5/ns988zeGTk+beXgGM4GqLhAIzDwNZdHK6g2iD+l3obJ9Xi8gPAJ8GPo5O/zwNvAydqO67ROTVYUrpdcHFsQxTMwWmUiWCIOCq7T1ELMFx/XkNfipVZKAvQTJf+weuFPieTzRW+xHN5h0c26djgwuSrCfi0QgT0wWGx3M8emiUm/ZtYv9VfezY0mOywS4DxgC0zvvRHdm7K/SRj4nIx0WkC/gn4MtKqZ8t2z8kIieAJ4HfQKuZrUl8PyCVtTl7KU0u73Dw+CQRy0IswbIsgiAgGhWcikiPZLrIYH8nyXy25rmVUnXnCQAujeW48ZpNuMYLtO6IRS0cO+Dg8UmeODxGf0+Cvbv72Lapk51buunvS1TNLWVoDvMNtoCIbEIL0f9BReMPzElh/hBa3/cvqux/WkTuQQvNtGwAfD8gV2xg4qxKA1muEzz7Xmu/at3gQCn8QOF4AbbjYds+uaJLLu+SyTtMpwpkci6uF5CIRdizowcVXkoFikhEcMOFX/m8M68KyXSJq/cMoi5lWLAUOCSVsenuiFH0arfuJdtDBHI5m0TCjALWKxHLIldwOXpqmsOBwnY8YjGLvu4EA30J+nvidHXGSMQjdCSiJOIWiViEWCxCxBIsS7BEENFzDhL+H+ZrF1d9FBvI8/n6//PVvs//3X9fk1nvjAFojevQj8axOmVuCP/WKvMc8ItLqcRTz43z4JP1hNIuU96MlosPCxXPuOgfgqB/KJZANGoRjVj6BxUW7oxH6dykH59ELEKxYNOZiMwt8BroS5DLlYiGq4LLf1xBEBCL6pFCrQVh2ZzNpv5OprK1hccBirZLPCps7jdpojcitu0xEc4V+EqryLmeTxAoPF93b2bnkvSo8vKxquxvNUHuJnI834YWyVpzGAPQGu3I/y0sMZ//i563kxc9b2cbqrJ0/usbJ7lu76a591s2dXLx3BTxWES7hSq+McsSuhKRmj5+3w/YvrWb/sH6awaiUYtr9wzw3S/fv+TPYDC0wm//7N1rsvEHEwXUKqfQjffNdcqcDP/eUmP/zeF51jxKKcYm5/vzOxJRsrlS3Zw9QZ3skL6vsKR2SohZPC+g5PgkU8XmKm0wGIwBaAWl1AzwNbSub0/lfhEZAL6Ojvr5nSr770JHC318eWt6ZcgXXPKF+XMR8ViEQsEhCIKqvtVszqa7o/4AVCmF3cDioHzB4ejpqabqbDAYjAFYCr+KduM8KSI/JiI3ishNIvIm4FAoPP+LwPeLyD+LyPNF5GoR+Qng88BDaA3hNc/weHahLz/QntWFi8A0Ou9/fblAz1fYpcVjwWfSJUomzbDB0DTGALSIUuoccBfwDeDPgUPAvcAPAL8clvks8B3AtnDfKbSg/IeA71kvawDOXUwtiNH2/ADhchbQSpIpHQpaj2S6ROciowSAIFAUSh4T0/nGK20wGMwk8FJQSo0Cvx6+apV5FHhdA+fa176aXTmUUlwcSS8YAfiuTyQSwXGrR/E4jk88ZqGUmjs2kYgSBMHcqGEmVeS6fZtwGsgMkM07PHdqkm2bu5f2gQyGDYQZARiWRK7gkM0vHMi4nk80IosKt8wKv+za3sst127irpu20hHTj6Vtew2dAyCVKeE4vpEdNBiawBgAw5I4dyGJZc1/jGJRi2I4KbxYrrbA12sCdm3v4YlHTvPoI2e4ce/AvNjtRvz7SmljdPzMdGsfxGDYgBgDYFgSJ87OLPD/dySi5PI2wSKtv+v6WKK46botPPvUkM7/4ytUEGCF2UJtx8d1GksKNjlTZGwyZzKEGgwNYgyAoWVsx2e0ipjHrAHwfVV3yVw6U2Kgv4NoRCjkSnNzAUNDM+zepheAjU/m6W9Q/cv1AjI5m6HhdPMfxmDYgBgDYGiZcxdTeP7C3nZHIkqx4OB6ft0l06l0kVtv3M6p46Pztk/P5Nk82IVSilSmRHdXvOFe/ehkjnMXU0Y03mBoAGMADC3zzNFR4mUCMLPEYxYl260ZAjpLNmuzebCT5HRuXhSRCgcOytPHB4Gi2EjSO7TWwKXRDIdPTDT+QQyGDYoxAIaWyGRtRieqx90HgZpTeqpHZ1eM6cks1TrrpZJHTPSOZLqI1UTapHTO4eS5aYYupRo+xmDYiJh1AIaWeOzpSzUFOnw/QAVq0ZDMa6/ZwsmT41XdRNPTeTYPdDKR8xgZz/G8m7eRK/k1s4dWMj5V4BsPn+e2G7awZ1cfHYkYJdulUPBQKPp6Emwe6CQWWziCMRg2CsYAGJomX3A4dmaaSA0D4IWuH6VqpvsHoCMeIZuxq5abnMpx8y07mciltSEJ8wJ1dDQ2IQxaL+DAoVG+deAiKIWIRSQiIOB7ATu29nDLdVu46brNdHU2fl6DYb3QkAtIRD4sIl+ssv1uEVGhPOLsth8WkXtFJCUieRE5LCLvEJFt4f43hsfMvkZF5JMick2DdTlfcfzs68/C/fsqtidF5EEReUUTn7X8+CkR+aKI3BTuf024/aqK486EnzlStq1LRBwR+blmv8fVilKKr95/BrFqt+zeIpO/AIl4BLvk4gcBkSrncl2fRMyaWyh2YThNV6L5/oqI0NkRo7MzTkdHlFgsQiwaoaMjRipr89BTl/jSvWc4eW7ahI8aNhxtnQMQkXcAnwKeRac/uAUte7gPeFNZ0QKwE9iFVsW6E/h8eeO5CH8SHl/+entFmdeE218BZIAvN2pkgG+Wnfd7gE7gs+G+bwEu8MrZwiKyB7gKKAHPLzvPtwEx4L4Gr7vqOXxikgujGawaBiAei1Aquni+qtv7v3rPIBeHpvG9oKYrSSkIfL0GYCZVoqcrju/Xn1huFssSxqfzfP1bZ/jWExfI5esL0BgM64m2GQAReRHw+8DvKKX+t1LqIaXUkFLqXqXUTzM/86VSSo0ppUaVUvehE6TdhlbaaoRseHz5qzIgfTrcfgidnK0L3Zg3gl123qeB9wA3iUhnmOXzAPCqsvKvAp4A7qmyfShMHLfmOX5minsfOVfXb96RiDQUATTY38nMTB7X0yuBqxGULQgDOH1ump4GksO1hsWzxyb43DdOcuz0JK5nUkoY1j/t/DX9NJAH/rbaTqVUqs6xs2oeyyXsWmj1/CLSC/w4cFgpNVvP+9Ajl1leBdwPXAB+iMs6v69CZwFdsyilyGRt7n98iHMXUkQXmTTtSERJTno4ixiA2RwRvh8QiVQ3AJmMTW9XnFx4qnTWplTykIiFaoso23wsS0hlbL76wFn2nJzi+n2DXLNngN6eRMOTzwbDWqIZA/AaEansZZf/cq8HziilmkrMHvrSfwe4xGUVrcV4h4i8tWLbTyilqvnXu4F3AT7wQIPnL/+s3cBF4LVl++8D3iIie5VSQ+iG/ufDcu8WkSjQAdwN/F2dc8/S0kjsxNkpjp6catl3rQCUmsvXEyhQKsDzddx9Nm8zMVXADxSJRLShJre3O04qXaBk107f0NUZo5C39bXRwvR+EFC5bHg6WaC3t4Op8cvhpoeeG+PFd13FxfFc1UVo7WImVeSZo2O4nk9PV5xNA510dUZJxGPEInJZz1jaow9qWLt84gvP/din3v8jn1rperRCMwbgQeCXKrbdxmXfeDO/g+6wERS0a+Zp4IebyI//buCfKraNVrx/UESC8PyjwBuVUocbPH/5Z92EFn/5uoi8WCl1ES0AbQOvEpEH0HMFjyiliiKSRTf8g+jvt9L/v9j32DDX7d3Erm29zR62kLB3a4nuBWv/fmvNmgB//6EUM93xmvME1+zdxORYak4POGJZ9HQtLB94Hrt29NI9MD/Fc77g8B0v3MMLbt9NooWJ4aWjdM4ipS6vYTATyBuWT3zhuQUdz7VCM7+eglLqdPmGUPpwlpPAy0Uk3kBDXkBP/AbAeOhXb4bpyrpU4aeAw0BKKdVsish5n1VEngLS6Ib7D8OG/jH0RLAAT5S5hx4Itw8CJ5VSw/XOHZ5/oMn6ARCJWPT2JFo5dNkolTzssPdfy4QM9ndy4sglJCyhlAp1AeYPhHxfEYkISqkFbqITpyaJxSK85K6riEZNLL9h5fjU+39kzQpStzMK6N/Q7pJfq7azopFTSqnTSqmzLTT+jXJJKXWmhca/GgptrLrKtt2Hdv3M+v9nub9s+5r2/7dCyXYpFJ2avX+YbfAvv/f9oPZ4IwC3ii6wHyiOn5rgwLPDJnzTYGiRthkApdTjwF8Afyki7xaRbxORvSLyShH5KDoctF30isiOild/G8+fKDvvzeiJ7R7gC2Vl7gOuBn6Q+QbgAeDlaLnIdRP+2Sj5vIPteDUbdBEIvPkTxJ5XeyIYAbuGHoBt+5wdmuHZI5XeP4PB0AhtXQeglPo/wE+gG78vA88B70NHx7y/jZf6I7Rfv/xVOdm6FF5ddt7HgRcCP6aUur+szGPo6KUEek4AAKXUcbS7yGIDGoBMtlQ3B1B/XwfJ5PxBn+v5NQ2A7XiooPb5UukSQxdTnLsw01qFDYYNjJjh85pm1d28R584x3985iBWjbDJa6/ZzPDFGdLJwrzt/f0dVaN6rto9gK8g3lNfQP6Ga7fw4ruuoq+3o/XKGwytsWYDwUw2UENbmZkp1A2I6e1JkE4unPZRiqq+/Gy2RHfX4ss3Tp2d4tBzY3jLrAmslE5yZzpOhvXAqkoGJyI/DfxDjd1DSqlbl3j+q9FuqVrcopS6sJRrbHTGJnI1e/8ASO0kcUGgo37KyeVt9nZuJm3Xb9iVgmMnJ4jHo7zwzt1tXbjleQHnzkxw4tgI42MZXNenuyvGrj2b2H3VIHuv2UqnSSZnWIOsKgMAfB7tc69GUwvMajCCDj+tt9+wBMYmMnVzAAU1euhBEFQdOfhhTqF6K4ZncdyAY6cm6UhEuf2WHc1UuypKKc6enuCBe49TyNvzchbl8w6njo9x/OgIO3YOcOvtV3HdDdtNSKphTbGqDIBSKgtkl/H8HrDY+gFDiwRBQDJVOyQ6GrVwa6wQ9vyg5shBKYXn1p4oLieXs3n2yAgRS7jlxm0tjwRc1+cbXz7EuTOTRKJWzYR1kYjF5ESGB+85Rmomz8237aZ/oKtqWYNhtbGqDIBhbZPN2TiOT7RGQ93X20EqVajaKHtuQEdHtPqstoBTckl0NJbKKZtzePjAELbrc/vNzffKi0WH//z3x0mnizU1DyoJlOKZp86TL9jccutudu4ebOqaBsNKYAyAoW2MjGfrTgD393UwNpysus8LXTzVIoFUAK7TnAfQdQMeeWKImWSBW2/czs7tjaXMyOdLfOKjj+HYbkMjjnJEhJPHRvHcAM/z2bN3S1PHGwxXGmMADG1jeDhNvTaztzfBiXSh+k6dFS5MCbFwIrijivj8YogIx09NMj6R4+YbtvK8m3fUTWVdLDp84mO68W/VdSQinDszgRURxLK4as+mls5jMFwJjAEwtAXP85mcytVtOC1LCPyFDfwsiuoRQrmsTVd3azmPRIRUpsTjT10ik7W5/dYdbKrio3ddn0/922M4pdYb/3JOnxgjGomQSETYuq2di9QNhvZhDIChLVwYTpPKFOs3nsHisfNBEGBZ83vpmWyJLdt6KNTOML34eZXiyPFx8gWH22/byZ6dlxvlIAj4wmeeJpctYVntWRojIpw4NkI8EaGjM05vb/2FbAbDSmAMgKEtnDg9SaFQPwlsUCelAxAusFq43bY94rEoeddbUu9cRDh/MYXrBXhuwDVX64nab91/gpHhZM1In6Xw3OFhIhGLF7xof133k8GwElzxlcAbUGD+i7Xel21/ZXj+NTlrODGVo2h7pFKlmmUSiSjFglO3Afe86gLxEIaCeu3RAx4ezfDUwUtcGklz+uQYRw5eXJbGH7RRO3Z0hINPD5nVw4ZVx6pNBbGOBObXNUEQ8LV7T9LVESVfZwTQ39dBKl0/bbrn+bXDLpXCdZbgA6pgJlXi3Llp/uszTzcd7dMsdsnlzKlxjhy8uKzXMRiaZVW6gMoE5n9LKfXusl1DwL1VtAXGwv+PisjbgI+hBeZPNHC5bNnxtZgOy4yJyC+j5Su/h9ppKzYESinufegs08kSmzd1EwSKWjIA/X0dDJ2ZqHs+31dELMH1giojBcEpunR1tyfZ23X7NnHP1w5jlxw8L6C3J1FXw2CpJGfyXDg/TV9/J3uv2bps1zEYmmFVGgDWqcD8esH3A6Zm8tz30FnGJ/PEYha+5+u0zTV6091dcbK5EoslTlSqek6gYskh0qb8PnuvGuDosxcoFRzEEpLpIvmiS09XnM7OKNGItSwi8BcvTNPdk6B/sIuBCplLg2ElWCkDsJEE5peNRw5c4MlnL829r3Qxl/ucL/+32rbZ/5ftK3urwzP1BK5t+ziuTzweobtLJ0DznYBiydVBPjUifYJAEfggUt8PrpTC94IFdiKdLpLoiGIv0Q3U25OgmCty8fwkIoIK62vbHiXbw5/SmT4jloVYIEjd3EaLM//goUsp0jmHi1MFlFqzWYQNZTz29MWf/fjf/49/Wel6tMJKGYCNJDC/bLzshVfzshdevdLVAOCJJ4eYuG5LzZ7zYH8n3V3RRcMsoxGLTYOdbN3SM297R0eMPVcP8upX37KkejqOx0f/+UH27125BVqTwzN8+0uv5Y7nX70sIw3DleXXeemabPxh5QzARhKYLycDXFtl+wC6/suWCG+5SaXrrwFwGwzhdD09uqikVHIRsaquFG6G+75+FLvktS3evxU8P+DIsxfo7Ixx4827VqweBsNqjQJarwLzJ4BbRKRyVdBdaL0De4nnXzGmZ2qkeAA6OqJks4ssEgtRgRaMD6qETPq+j10jm2gjXDg/xelT4yva+M+Sy9kcOzrMyLCRsjSsHCv/S6jCOhOYL+djgAf8q4i8QESuE5GfBd4M/OUyXXPZCYKAVJ000N1dCdJ19i84n1KUigunf3w/IL1IKGktHMfjG185vOwhn80wOpzi2JERMpnWPpPBsFRWz6+hgnUkMD+HUioNvByIoMVvnkUbs/8NfGA5rnklKJY8bLd2z7y7O17XQFTi+wGFKgZAEMbHMi3V8YF7jmHb7dAUah8iwsnjoxw9dAmnjWscDIZGueJzAEqpN9bY/iQVk79KqU+hF4PVOteHgQ8voS77Ftl/vrJOTZ7/jVW2nQR+uNVzrkZSqQKBr2o+TfGYRT5vN/xFuq5PvEraBM/zmZ6pDB5bnLHRFCePj66q3v8sIsKhZ4bo6Ihxx117l3UtgsFQyWpdB2BYQ4yOZYjVSdfs+wEqUEiDjZsKFIFSuJ5PrEzMpVBw6ehsbvmF5wV87UuH2t74RyIWV129iXgsgm17CAqxLEZHUk3PUygFzz49RCwW4bY79rS1ngZDPdatATAC81eOicn6QvCeG6BXEzTeu3XdgEzWZvPg5dTNhYLNps3NLaB66omz5LKlthqAbdv76B/o5OATZ0lO5wiU/mSxuMVtd+6Dvk4mJ5sL6LJLLkePXCIas7jplt1tq6vBUI91awAwAvNXjNHx2o2dCNgtCKy4jkdHIqrTS4Qjh1LJRYDRsTTRaIQtm7vrnjebKfL0k+fa2vjv27+VmckMzzx6Sps0kbn0F56nePbJc+zcPcCuq7cwOppu6nMnp/OcOjFGPBFj/7Xb2lZng6EW69YAGIH5K0Op5JLP2zUb2a6uOJlF1gjUIl9wiMUs+vs6UUA2azM+meWpTzxFV2eMu5+/hztv301HFa1gpRRf+/LhZgcedbnuhu2cPTnKhbN6FXGt044Op/A9xY6rBuuGx1Zj+GKSSCRCLBZhz9Wbl15pg6EO69YAGK4ME5M5nca5Tg6gofHWIncCP2BmpkA+7+gc/l7Art0DWOjFYM8eHsYPAl76on0LYvvPnp5gbDRVU6C+Wa65divnTo1x4ewEIoufc2I8TU9fB10dUQql5uYELpyfIhKxiEYtdu4y4vKG5WP1hUUY1hTnzk9XXbk7S3dXnHSquV5wJbbtEfgBloDyA5xwktX3FeeGkjz1zKV55V3X5/5vPte2xn/XVYNMjKS4cKaxxn+Ws6fG6evrXJikqZFjT49z9NAlxkZTTR9rMDSKMQCGJXFuaKaueycSsSiV2hd/n84U6UhcNjjpdJHpmTyjY+m5bY8/crpt1+zt68ACThy9tFCsuAEOPX2eXbv6mxaDERFOnRjj0DNDjA6nmr6uwdAIxgVkaJlcvkQqXawrddhsCOhipNMltm3vwylTlzw3NEN3V5zt23rJZkscevZCWyZ+o1GL3VcNcu+XD7acf8h1fSZG0ySiFo7fvBE4c2oCzwvw/D3suXpNCsYZVjFmBGBomeMnJhZduOS5PuVpppdKJlOkuys+r0cdBIrzF2Y4PzTDvV872q45X66/cQeP3n+MoAEx+3oMnZtk6/Y+fK/51b4iwoXz0zx9YIhziwjqGAzNYkYAhpYIgoCDR+qvro1FwxXAbUx5rJQ2J74fEC1bJOa4PheGpjl3bpKuzviSr7N33xaeO3iBfK499T95bISdVw2SyTaapXw+o8NJigUb2/a48eadJo20oS00NALYgELuSkQ+VGXfX4T7vlixvVdE3iYiR0SkICIzIvKUiPx+udC7iNwvIu+rct4flcWUUlYZ587PkM3WFoEH6O5OkErm295YKaWwK3z8e/cMcu83jlIqeUvusQ9u6qaQLzF8YbptdU/N5OnqjOPVyZm06DmSBR596BSHnr2A5/ltqZdhY9NWF9A6EnK/CPx4qAA2+9miwOvRyego2z4IPAr8PPAe4KXh64+AG4Gfa/CaawbH9fjm/Sfr+v5BJ4FLzrQ/02Uhb8+LrBkc6GTk4gxOySObs8lkSlXTSTdCPBFly9YeDj5xtu2G6/SJMTZvWpoUpF1yeeyh0zz5+FmyWZNF1LA02uYCWmdC7ofQxul/ALNqP98PlNBqZuUrdN6JNnA3KqWGy7afAL4k62ysbjsen/7Ms9iOR2SRvPqdHTEyy9BITU/n2bylFzds47dv7eGbXzo0N9GczhTxgoC+3o6qSeVqIQLXXb+dB79+mGCJwjPVSKcKXHfjDqan80Tjrf/0lFI88+R5UskCz7tjD7v3rJy6mWFt0845gPUm5P5P6N77rAGY/f/+2QKig8J/AvhYReM/h2o2/q8JHMcjs4gbpmnKahugE7N5XkAub3Pm7BQnTk2gFFiWEPj13RCe5+O6ftsb0plkgT17NzE5U+TqPYMcevoCfhDMu042a5PL2XR1xoknIsSjEayIhYhOK11tpviGm3bw5GOnKRYcrRe8DLfu1PFRduzeRDKz9Pt28sQYY6Mp7njBPnbvGVwVQjcbkd95yxd2/ssHfrJSRnZN0IwB2GhC7v8G/JWIXI9OKfEa4NfR7qdZtqLlHOeNWkTkEeD28O23lFLfV7b7l0TkjRXXarybWsaBpy5y8EhVu9MWBEAES4R4PEJXZ5zdOwcaPr6rM048FlmWNMyxSITtW3vZOtjFs5MZOqukg4BQWyAfkAts7RZS1WOS9l2zhTMnxxi5MLNEEfj6TIxnuOb67Rw5NooVaem2z2N0LMPp01PcedfVBBGLqaRxC60ALwAWtD1rgWYMwIYScldKJUXks+iefwq4Xyl1ocHe7I8DCeCPgcr8vv8BvK1i22uoMXKqx7e99Bq+7aWNTmtceU6eHGPXzn6i0fYbgN6eBDffsoMDj5xh186+JY0yevs6GRzs5NH7jtHZZLrpVhgfTXHDtVtxm1wXUI/JsRRbt/Xy3d9xLddev8PoClxJfnFtNv7QnAHYiELu/wx8BMihJ3UrmUQbh5vKNyqlLgKISJqFBiBd5XtcbD5jTTIxniUSWZ6GyLYdhs5NMTmeJhJtvSfd0Rlj1+4B7vvKwXbmjavL2HCKu196HZeGU20bHYkIU5M57v3Gc0xP5bj51l30Dyxtwtmw/mln12w9CrnfAzjAFuBzlTuVUgG6R/8/RcQoeVQwOZVdtnj1/oEunnj09JIa/2gswrXXbeOhbx4hCNo/6VuPmakskTYukJtFBXqC+P57jnH65NiyzGMY1g9tmwRWSj0uIrNC7lcB/4n261+DDpE8zULXR6v0isiOim3FUHO3bSillIjcDohSyq5R7PfRoaaPicgfAwfQI4ZbgVcC4+2s01pBKcXU5PLY9i1behg6O0mx4JKIR0kkmnfbxOIRbrhxB9/65lGt6HWFg7XOn5ngzhdew9h4+42kiDA6nGJyIktyJs9Nt+6it7ezrdcwrA/a6pxdp0LuWaVUzXzGSqkZ4MXoCKH/DTwGHEGvS/g88JPLUa/VTrHoLosIuwhs2tTNqeOj+H5AvtD8ytqOjhg33LiDB79xhEKbVyo3ShAoXMfDaWOivEo81+fJx87y8AMnGTo3uWzXMaxdxAwR1zSr9uYNDyf51CefIpFob7aRq/du4uRzw4yPZRARensSDG7qbth3P7ipmy1benj4vufwvYDe/k5iMV3HUtGhkLeXvJK4Ubq6E+y7bhvpTK3BZfvo7k5w5wv2cvNtu+el0DC0hTU7425yARmWheHhVF2dgFaIxSJYCBOjmblFX67rk8uV6O3pqHusFRH2X7uNYsEmOZnheXdejee4ZJJ53FBfYGBrD13XbCYSi4BEmJ7OMnopiesuT9qFQt6msyPG5GSOeAturGbI520efegUhYLDzbft1joFhg3PqjIARsh9/TAy0pwebiPs27eZRx88iSpbx2XbHvF4pGYEj2UJV+3ZRFdPnFLeITuT5eShC7glF1DVc/yHq4A3bx/gppt2EO+MMzaWZuRisu2TqqMjKTo7orQxIrQmQaB4+sA5cjmbW27bZdTGDKvLBSQivcD2GrtdpdTQEs8fRadtqMX5UOt3rbB6bl4ZQRDwoQ89hO8FixdukN7eDhIxi6eeOItUrHiNRS16ehJzvVrLErZs7WVwUzeO7ZKcytKRiHLw0ZPa596kXRJg+1Wb2bN/GyXH5/SJMWy7PY+JCNz14v2MjGavWOy+Uoq912zh5v+fvfcOb+y67rXfhcbeOUNyOL33URlV25IsW7ZjO05ipzu56cl37813c3NT7pfq5CZOv+mJ47hEsS032ZYsq4+maHonZ8hh772AJECiA+fs748DjkgOC0ACBECe93kwHJ66wAPstffaa6/foWp2mOLzicAMASUCU8h9bTA1GcDvD8dVh2cpNm8u5q3X6u5p/IG7esFl5fmUbyggGAjT0zHC7Wvt7NpbiRaOUHexmwV7/EuggKG+MYZ6neTmZ7PvyFasDjstzYN4p1YWv1cKfN4QWiiMJXvlZaxjYVpjIBiMEA7r7N0/N6HOZL2QVg7AZG3Q0zuONYG92crKIpobB4lE9HuUxSqriqjeXEIkFKGva4Tb1zpQug4iHDiymalxD71tg9N1LVZmiAg+b5Day63Y7Vb2HN5CXmEurS3DTLqXX4Khs3WYvQc3MbbKZRyGB90oXaFpGgcOVa/qvU3SA9MBmCSctrbRhK1wtViEgoIsrl4YmdX4V1YVsXVrGf09o1x9O6rapRQ2mxWbzcqufZX4Jn30tg4mZYAeDms01HRhtVrYe3gre/ZV0tYyjNvlW/rkOQQCYWw2K6FgOOmTwXMZGZ4EixgO8+CmVb23SeoxHYBJQolENIaHFlw2ETfbt5dz82rn3Uleh8PG0fu2MDIwwcWTd1AYE7YiRiOmaTplGwvIcVipq+lPenRW03Qab3VhtVjYc3gLe/ZW0No6jHsiPkfQ3ztGQX4OwQTOm8TKyKAbm9WC1Srs3Ve16vc3SR2mAzBJKD09EwRDkYTE/3Ny7AQDIcbHpxCxUFKax569G7lxoZWA3yjZLHNaeHuWnd17q7h2ug4QZJUK/Gi6TtPtbiwWYc/BLezZU0F72wgT47Gthh4edHP8sXIGBibvCXOtBgN9EzgcNux2Kzt2mhPD6wXTAZgklJs3uxM2+bttWxlnTtwBhI0VhVRVFXHxZANqEbGW+49v5/blFtT0Yq5FYv+JmBaYi64rmut7sIiw+9Bmdu3eSEvzUExzBJ5JPyoSQRyrGwaapqtjFIfDRm6ug4rK4pTYYLK6rChQa2oF3903r1ZwDPb+ZqzHZwJut5/BAVdCrlW+IZ+erlGCwQiVVUVUVBRw43zLoo1/9dZSxkcmCXgDRJVfUBgF0ma9lPFTV8pQlkxCMq2uFC31vdw428imigLuf3AbObmLZ/l0tI2wsbIo8cbEQUvTAK3NQ0y645/LMMk8VkVCaD1qBa83lFKcOtWYkMlfi0UoLcml6c4gRSW5bNpUTM3FNhAWbPwtFmHb9g10NfXdm+opc16883PaISRrRYWm6zTUdnH7ciu7dpZx6OjmBTNRQ8EIVqsQDqVyKYrQWN9PY/0AoZTaYbIaJN0BzNAK/i2l1P9SSp1XSnUrpU4ppT4J/MOMw5VSakgpNaiUOo1RPfQwhlZwLExFz5/5mqtiNhbdfhv4FQzBmA/EeP3bQCuGVvA001rBZ+YeLCI/Ex3pBEVkWESejfE+GUd9/QB9fa6ErP7dsbOc61c6cGTb2H+giuvnW1BLtNCHjm2lsaZjllh8TERHCckcDQCEwxFuX22nu7GPhx7ewcaKwnmP6+lyUliQlRwjYkTTFA13+rl1s9ssJ73GWY0RwFrVCp5mWit41jclKkT/2ei+o8CHgTvLtjRNiUQ0Ll9u5+23W7AloPefn5/F1KQf15iH+x/YxrVzzehz9H7nkpPrIMthYWrcu6yFXtPcDQ8l0RFMun1cPlVPXraVI8c237PfOTJFSUneO3MYKSIYCNPRNsLtmnU9sF3zJGIS2NQKvlcrGOAPgL9XSv3tjG034rjPktypH6CtbeSe7WqG8K26+090z5x2ZWYPb+a+e69hnKuU0RcPBiKMj3sZH/fiyLIlpPEH2B6d+N1/aBPNdb2E/CFYQqD90JHN3LnWbliqVjYCMRr/GeMNmfUjYbTd6aOwOI+HH9nBzevd+GaUtR4bm8Lt8hIMr35K6EyGhyfRdEVb+wg2e2ompjOB116r/+V/++xP/Xuq7VgOiXAAplbwHK3g6MR2NYaiWNI4eKiK/QdWbxm/JCNtZg5nTzVy5Gg1BflZtNd7yclbPBySm5eFUgotHMGSBPH5ZDI16eP62UaOv2c/jU2DTEXLQvd2Ojl031ZGnMkSy4sdt8vH/k2bOHikmvLyglSbk5a89lr9PYkhmUIiHICpFXwvq5LILSJJ09xNBcNDbhrvDHDw8CZOvlIbUz783oObqLvckrHluCKazpUzd3jgXfvp7hlnfMxLOKwhQCQUwe5IfaZ2S+MA2dl2iotzl6W+ttb5t8/+VGqHaitgNbpM61EreBjoB963gnusKyJhjVdfqmHHrnJuXeuISZQlJ9dBJBiOlnbOXBTCjfNNbNtaSnGJUdG0u2OU4qLFNQ5WC6Wg4XYvt2t7V00sx2R1SHr3Yh1rBX8a+DsRGQZewQg5vU8p9X9nHLNJRO6bc16fUsqZSHszgTMnGwAhHIwwMhSblsC+g5uov9qWsb3/WYhw80ITDz1xkKbmIcbHPOzcW4HHm5qVwXMJR3SaGgbIzrZx5NjWVJtjkiBWJWi6TrWCPwP8d+CXMDSCX8cQip/JrwM1c14/ngx705nuzlGaGwfZuXsDNy+3xdT42x1WlFLGJPEaQSFcP9fIoUPVWG3CxJgXVPpEF7xTAVpbhmlrGUq1KSYJIq0EYUziJuMfntcb5Ln/OM+GjYWMj7rpbB2OyQEcOLKZnqZ+plyeFaV+piNZWTbuf3wfN292c/T+7QyNTKVEuH4hdu3ZyJH7tlJZVZxqU9KF9Hk4cZJZaRMmawpN0znzVgN791eye+9GnDGGfkQgL8/BlGtlef/pSjAYoflWN/v2VaJFNLRQcjSJl0tby7BZLmKNkPoUgxgwtYLXHkop7tzuJeD20Haln4AvwO6j2/D4I7S1jS567pbt5XS3DsKCSsCZz8S4h42+IJNuHyWleUx502eiW8QoF2G3W7n/we1kZZuZQZlKRoSATK3gBUn/h7cAHW0jnHu1hv62AbIcNibdfkRg655K7LnZtLQtPA/+0OO7ufJWHRn89mPm0acOEtJ1hoa9WG2Jk9hMBFarcN/xHdz/4DZsaWbbKpOxvZCMcAAmC5KRD6+na5T6653UnKknNzeLqUnfrPTC/fdtZ3TMy8j4vSWUi0vyKCvLpfVW15oM/8wlK8vGg+/ex7DTRyiSfo/bZrfxwPFtHHtgW8JU4DKQjP0grtsnZpIa+vvG6e50cvt8Eza7lXBEQ9NmN2xNtV3s2rMR+zyL3Lbv3khnY/+6aPzBmA8Y7B2nKN+OrqdPRtA0kXCEmutd3K7tQdPSzz6TxTEdgMmq0d83zsVzLfS3DaFFIjgcNnyewLxted2lVo4e2TSrQJHFIohSRNZZmeLOlkFyc7OwaOk1GTxNOKxx40oHt252Ew6np40m82M6AJNVoaNthJe+c4OKiiI667txZNkI+EMLVm/2+0P4pvyUR1fGAmzbuYGu5gEyNPK1Im5ebGXb9rK0HAUARCI61y93UHOjC/8aWpux1jEdgElSUUpx42oHr798i4KCHMYHx9B1HZvNSjAQXjSS01rXw979lXdHAWXlBYwNudZN+GcmPm+AqQkv9jR2frpS3LjSydVL7Yw7p1JtjkkMmA7AJGmEQhFefuEmly+0YrEIm7eU0lrbRXa2A68nsKR2i1LQ0zLIjq3F5BdmG3n/adwAJpvb1zvZsbMMLZK+YRYRaKjr4+yZZjrbR0xBmTQnI9YBmGQWSil6usc48drtqMyhFYtViARDhANhsrLthENaTB35wd4xHn76ENmFYVrretZl738apXQ6mwYpKcln0p/OTkAYGnDhHJnk2APb2H9oEwUFOUufaLLqmCOAGIgKws8nKnM8Kga/fYbo/PEZ+3NF5HUR6YwKyBA95ofnudY/i8iZpL6RVWB8zMN3vnGVl79zk0hYx2IxPmKVVcV03uklO9uOdyoQ1zVbb3VTlGtbU3V/lktX+whlZXlo4fRZGLYQ0/MCr75US0NdH8EMr9q6FjFHAElCREowqoAWAO9SSg2k2KSkoWk6A30TXL3UxuCgG6tFsNpm9y2KinJpHJrAEj0+no68N5opZLcJYW29hxQU9Tc62X1oCwOj3rSqETQfYjGK2p1+q4G6Wz3sO1jNjl0bKCzMSXvb1wOmA0gCIrIJeANDMvIJpdREik1KKEopAoEwI8OTtDYP0dUxit8fwma1zCsNabNb8U96sVvl7orfeHA4bNRdbuXwA9upudaZoHeRuYw7p1C6jkQ0sGfGV9hqtTAx7uPS2RYunmtm5+4KqqtLqKoupqg4D7t9Xa8kThmZ8enJLHYDzwNNwCeUUhlVMUsphabpRCI6kbBGOKzh9QbxTAVwTXgZc3oYHZnE5wuhRXRsNgsign2RUgCbqosZbOknGIygVHxhfItF0DTdWC8A5ObY8fnNUELdtQ4efuoAHT2ujOpJi0UQhK72UTpbRwhHNPILstlYUUhpWT4FhTnk5WWRn59FVo4du92GzWZ0LMQiGfVeMwGzFEQMiMizwE8Bc4PXFiAHQ9wGoBNDKewG8KRS6p6WSkRU9DpzZ/EcwEWl1FOx2lV7s0tdPNvCXf32qJj59COdfrZKqbvH3P3/3WONY3RdEQnrKBQWEWPRlcX4abNZsNtty17qf/BwNTffrME17on73Ny8LPzeALqmsDusHHlsL1fPt6zryeBpDh7bSkRZSOP54LhRCiKRCOGQsUJcVwql60apEAG73WZ8NsWYbL7702LBMv3/RBkT04WEpoaBH/nHf/+ZbyXqtquJOQKInbPAL8/Zdhh4Yc627wIfxxB2+fIC1/otDIGYmXwK2BKPQfc9sJ37Htgezykpob9jmMvBEA6HLe6qKXa7Fb+KjgQiOv5JPxsrCnG745tIXot0NA/yng8e5eEnD5Cblx7ykeuUjGz8wXQA8eCbKzg/R894mr8CrgPPiohVKfXsPMcMzXMtN3E6gEyhoaaLUEjDEqe04fRisZm01PXw0FMHuXoxNuWwtYxS0FBrFMJ96sP3p9gak0zETANNAkqpvwJ+E/iCiPxiqu1JJeFQhFuXW+Ju/AHsDhvBwOzUT6UrhvvGqawsSpSJGY1zyE3AH6a9ac0mmZkkEdMBJAml1N8BvwZ8VkR+JdX2pIo7td0EfcG4zxMRdE1jvuXC3S2DbNtVgVrHq4JncutKGz3tw2aevUncmA4giSil/hlDGP5fReS/pdqe1WZk2EVv2+CyJmwdDht+X4iFJg1abnexb/+mFVq4NggGwowOTnD57UazJLNJXJhZQJlN2j68cFjj1Gu36LzdxfiwK+7zc3IcTE54Fz3mvsf30dI0gN9MC0UEHn7qIBWbyzh2fMe6nx9ZZTL2j21OApskHKUUp1+/hcNhZXzIFffXw2a1EI6h5n/9tTY+/JPvYqBvAhXRjLARivbmISZdGbX8YsUoBb0dI7gnvNhsVg4e23K3DIeJyUKYDsAk4TTX99PeNMTevUacPt7MbLvDFq38uTCOLDvHnzzAjZO3cY2478a/bVl2dh3eSu6BKhpu9+Lzrp/6QQPdTqq3lXP5fDPhsMbBo1tMwXaTRTFDQJlN2j28ceckz3/5IoVFOVjCYdrre+I6XxCysm1MLdKDt9osPPK+I9w8eZtIMERufg7BYHhW/Ntut3Lg4T1oYuXO7R60yPqIjRcW57J1TyWjo1PsObCZQ8e2UrGpONVmrXUyNgRkOoDMJq0ent8f4quff5tIOMKufVXcfrueQJwVPLOy7AT8QSKhhZe3Hn/yAM3XWvFP+QFjNWheYQ7eqcDsP4hS5Bfnse/4bsbHfbS3DK2L+vTHHt7FyMgUOsZI6fB929i1r5KSsnxzbiA5ZOwf1XQAmU3aPLxQKMI3nz0Xrdwp7NlXycVXbiBx5v/n5GYxuUjJiE3bN5CdZaWnoZeZ3zurVcjOy8brmWeFsFKUbypl64EthHXFYP8E46NTs+YZrDYLdocNh8OG3WHDarPimfTh88SfwppqbHYr9z+2h56ecUQkWvZD2LW3gqrqUjZUFlFYmENWjn3BeQKllFF+AQVES4OYzmMhMvYPYzqAzCYtHl44rPHt5y7gGvNgsViwWi1UVxVy4+07cTUaVqtRz2WhRlcswqNPH+baGzeZ7ztnt1uxOWwLa9IqhS3LTsWWDRRvKMQ2Iz6uhTXCwTDhUJhwMIKu6eQX55JbmEcorNFU30comDli9Ju2lZNXmMOUZ85COqUIhzRsdit2uxV7llFszWKx3G30dV0ZdaVmfLokWhMqLy+bgqIcCotyyS/MoWxDAUXFudgd63o60XQAJikh5Q8vFAzz7ecu4Z7w3O1NbqwsYrzfyVD3aFzXyslxMOX2ofT539aeI1txDY0zMTTBQt+5rGw7YhECsSyKmvvZn89ZKUVOfjb7H9qNyx2grXlo6eumCQ+8ay8DAxMka7mPrhtVYwsKcti8vZyNVUVUVZdSUpa/7MKBGYrpAExSQkof3qTbxwtfvYzfF5xV6mHvwU1ceu0GKg7xFhEhK2uRyV+BR957mBsnaljq+5aVYweEYDCB6wOUonL7Rqp2VXHjcnvqPW8M2LNs3Pfwbnp6x1clfKOUIhLR2bSllO07N1K1pZTyjYXYFikVvkYwHYBJSkjJw1NK0d48yOnX69B1/Z7GZfeeCi69dgOJIw89O9uOzxtEC88/+btjfzWBSQ+jvU5i+b5l5zhQQsLLIxQU53Hg4T1cudgWjZGnN1VbSikqK8C1ytVTlTLKi1dtKWH7rgq2bC+ntLxgrY4MMtYBrMmnkWji1ASefrlF5LKIfP88531cRE6JiEtEvCJSJyKfFpGNq/OOlo/fH+KV71zjxMu1KKXuafxzch24xybjLv8gIgs2/gAbNhXH3PgDRvaRUmTnOOKyYymmXF4aLjfz8GO7MuJbP9g7bsT6bav7VRcR7A4rzuFJrl1o4ZvPnuelb16l9loHztFJdH19pOWmO6YDSDwfAqqAR4CrwLdF5PD0ThH5NIZiWC3wUeAgRtG47cB/XWVbYyYUDHPxTCNf/uxp+rrGFuzJbawsoq9jOK6Qg91+b9XPmRSV5TM5Ohm3zUF/GD2ikZubFfe5i+GZ9NN8o50HH9k5b7G6dKPuegfVm0tS5rCmncHokIsr55r5+hfP8eLXr3DzSjtD/RNEFnH8JsllXU/dJ4kxpdQQMCQivwf8v8B7gXoReRj4XeA3lFJ/O+OcbuDUAvoCKUPXdZwjk9Re7aCrYxQ9omGxWhYt7Zyd42AqTuUvm92Kb8q/4P6dB6ppuNTMckbaoWAEpRR5+Vl4E5jSOTnuYbB9iP0HN9HUOJiw6yYFBbVX2jj2yG66Op0pTecUERwOK85hN6NDLiJhjcLiPLbu3EBFZTEbqoooKs5dD/MGaYHpAJKEiNiBX4r+Oh2I/iTgBf5pvnOUUq7kW7Yw4XAEz2SA4UEXPR2j9PWO4fcG7+r+WpaI34pAyB9E6Srm/H+r1UIktHCc3mK1YBVBC4VZbqg1HNLQNUV+QTZeTzBhi8GGekYpKsunqqqQwcH4RyirScAXouV2DzsOVNPfN5EWOf3GyMCG3xekub6Pxtu9RCI6+YXZVFaVsKGikIKiHIpL8sgryCE7x75W5xBShjkJHANxagL7AT263RLddlwpNS4irwLVSqljibArFIqosRGj4Zml98s7ur+6boi865pOOKKjhQ29Vb8/RDAYxjsVYGoqwJTLRyAQRovoRj6+Nf4Goqy8gIjXR3dTf8wNTG5eFpMu74LT2dv2VhGc8uLsG2Olc20Wi5BbkI3PG0zoBO6DTx3iTn0/ngyoO1S1pZQNm0rp73el2pSYULoiHNaxWsHmsJOfl0VeQTa5eVnk5jqwZ9mNOQ67FavNis1uwWa1GiNVq2CxGCNWiwhYjE+QiBjL2+bTD17GR+z//tGLO/7mcz/fteI3mwLMEUDsxKoJ/JPAHWAv8HfALyulxqP7EtrtarjVQ31NtxGGljk3EOMfi2AIZkcF3i0WCzabsVjLmKgVCgpyKCjIWbE91VtLOf/StZgnXqfXDQiy4GzUxupSak72JkQEXlcK76SfvIJo7aAE1Qe6da6Rhz5wHzeudqZ9ZtDEqIesbAcHDlXjD2TOwra56LrC4wmCJwhKoekKXdONzo6u0HUdpUBN/wSivSPjf9PfmcQ8rgqgKyFXWmVMBxA7sWoC9ymlWoFWEfEAz4vIQaWUE2gB3iMiDqXUiruL9z20k/se2rnSyyQMz6SPG2/aycuLbdJVKcXYsBu7ff54r81uhYiGRamEOIBpvFN+cvOz0e2gRRIzAXnncjPHH9tPW2t8E+CpIBwI4xp1c/ThXew+uDnt7U13fvpX3nsl1TYsFzOglkSUUm8DDcAfRjd9FcgDfnW+49NtEjheBrudcR0fCkaILNIAb95VQW9z/0rNugcBfJ4AKLWg84mXgDdI550eqjcXJ+R6yWZidIorpxtorOkiHM7ckYDJyjAdQPL5v8Avi8gWpdQV4K+AvxaRvxWRd4nINhF5SkS+jJEOmrF0Nw8sOVE8jVKKKZd3Ua2A0g2FjA9NJLT3P40AQV+QSFjDkZWYgfDY4ASBSR9FRSsPp60GAV+IC2/Vc/1cExPO9J7ENkkOpgNIPi9jxAf/AEAp9b+BHwceAF7FGCH8M9AD/GtqTFw5uqYzEEftn2AgvGjv32a3EgmGk55nHw6GCfpDRg2hBPiZ9roeiouycTgyI41RgPprHZx44TqNtV1xl+82yWzMLKDMJm0e3sSom+c/8yY2+9K9aaUUziEX+iK1grbsrsTv8uDsHU3KCGAuYhFyC3IIhyIrnsgVER5+5hjt7aMZJdKu6zqlGwvZd2QrW3ZWUFSaZ84PxEbG/pFMB5DZpM3Dqz3fxI2zDTE1GJ5JP55J36Lhn/vfvZ+ak7Wr+g4VkJufjYKYV6fmFxs56gAetxfvpLGgze6w8cDTR2hrGSLTqh4YbYKievtGNm/fQOnGIko3FJCdm7XoIsB1TMb+UcwsIJOE0NUcW+6/pul4p/yL6wQLoHTQE5v9sxTTk8OOLDtZ2XZCwfC8EaiCkjx2HtqCxSJ4nJN4ovrF1VvLyC8pwOcN0Hq7h9qzd7jviUO0tQynfXroTCSaHjzQ7aS/axQtomOxCkWleWyoKqGkrJCcPAdFpfkUluSRYzqGjMUcAWQ2afHwQoEwz/39y0uG65VSTDinCAUji3aZyiqLycuxGapfKQpBiEXIzc8houl3U0Ud2XYOPbwH/5SPtutt6NMrmGfaqBQFpQXse2Qvnc2DTLl9HHviIB1tI0TWkC6xUe1TIyvXQfnGQiqqSyndUEjF5lIKinLXW+goY9+s6QAym7R4eL1tg7z21QtG3v4i+H1B3OOexXv/wJFHdtN4udmYBE4hCsjKcWB32CjbVErV1nLqz9YT9gaWdkxKsffhvQTDGr0dwzzw1BH6+ibw+9buJKuu64jFwq79m9i8YyObd2wgNz871WatBqYDMEkJafHwTr94lY6GvkV7fZqm4xxyxWTxA+/ex823biXOwBVy6NG9aMEQnbUdKE2Pa1Sy/cg2lMVKZ8sARx8/gD9sFNhb6+i6TkFRDvuPbmfL7o2UbSxay6OCjH1jZhqoyYrQdZ3+zpFFv9xKKSZGJ2PK6MzJz8Y36UuLMstiER56/1GcPSO032iLFrmzxNWQddV1k+WwUrGphFvnGwhOeti+c0MSrU4PLBYL3qkg18838crXL3HtbCPOIVfCCvGZJAbTAZisCPeYB9/UwmpTSilc4x4iES2mbtKWXRX0tgykLPY/jcVq4eFnjtF2vZXxPmOFs1FcTzeEcCwSsyNoudbK5h0bycm209PUT9vNNvbsqyQrQQvQ0hkRIRyMcOtyG9/72kVj0dnYVKrNMoliOgCTFdHZ2Id1AbUpY7Wvj6A/tGTcf5r8why80ayaVGG1GY1/08VGPOP3NlZKGYXH4nEEdW/Xc/SxvRD9m1w7UUvFxgJKSnOT8RbSjmnFt9pLrXzvK+epudiCZxENCJPVwXQAJstGKUX7ArH/6cbf5w3E3Phbbauz+ncxxCIcf99RGs7dwede3BHF4wgiYY2uum52HdxsnKsrbp1rIOL1s217WULfQzojIoSCEa6fa+KFZ9+m7lq7ufo4hZgOwGTZ+DwB3PMM55VSuMY8cTX+AFXbyhnsHE5d+Efg+NNHaLnSjH/KF/NpsToCZ/8YRSV5OOzvfO16mgdoq+1gz75Ko2b9OkFECPrDXDpZz7e+eIaGm52LyoKaJAfTASxBjILwT0X/Xz7PcV0i8pszflci8sPzHPfPInIm4W8giXQ13VupMxKO4BxyEwzEHvaZZkNVCaN98VUUTST3P3GQrttd84Z9YmGWI5D5HUHjxUYOHt81a5Tjcfm4fa6B3Xsr1t2CKovFQsAb5Pwbt3n+i2eou9aOZ9IMDa0WpgMwWTYtt3ruirromo573INzeBJN0+Nu/AFkhmDHanPokb0MdwzhGhpf+uAlmDVZLDJLHjMYCBP0BCgonF0xNOALUnO2nl27N6ZJcu/qYrFaCHiCXDp5h+88+zZX325koMeZML0Gk/lZ+2kIJkkh4A0yPuwiEtHwTvkJBoyyCcvtv5ZWFDE2MG70jFc5FLL94Gb8bi+j3SMJva5SKpr2aKixTStQtdV0cOSpw9w81zTrvYb8YRqutrDn/l10doyu5bz5BbFYhFAgzK3Lrdy40EzlphK27qmkYlMJ5ZXFMavNmcSG6QBMYkLXdAKBMN5JH+NOD72t/YwMTtxt4IzqMcunevsGmi43r3rjv6G6lPyCHJouNSZxNY+6WwvIYhF0Xcc74aGkNI+JidlzDR6Xj8GOITaUFeIcj30eYq0hIthtVsZGJnEOu9EiOo5sGxXVpWzcVEJhSR6FJXkUFOSQlePAZreuS4e5UkwHEBsfiso7zmQl4bMvR4XmZ+IALsZzkbbGflpu97yzuGamIDyAUlGxeGPn3cOi1R5nHRfdpGk64XCEcDBCOBQhFAzj8wSMsI7VgkUsHHtkF7fON88odbzymIXVbiW0yqUf8opy2b6/mtoTNau2lNNwBIr22k7ue99Rbl1uQ4tos7QRBjqHObyxCPQIPr+p1jVNKBTGM9lPe2M/ulJoYQ1N01G6wma34sh2kJVtIyvbgc1mxWqzGKLwNgtWiwWrbZ55GRGj+zJj87RwfKxcOFH3E5/+/C9/LTHvcnUxHUBsxCoIHyu/Bbw+Z9ungC3xXGT3gWp2H6hepgnLx+P20dvYNyu2vRKycxygaavai7M7bNz/xEGuv3LN+O6vcu9R13Q84x6yHVaCGGWo7Q7b3XpKzv4xHnz3AQ48vIfs3Ng0lk1Sw4d/7LGMbPzBdACxspQg/HRxlyJgbhpLMeCes21onuu5idMBpIqmms6EXq9iSxnttzpXrfEXEe5/8hC33qpFRbSUpZ123Ork0HsOUXO+iVAwjIjcLT5nz7LRdrsLEbjvycMpsc9k7WNmASWGVkAHHpy5UUR2YjiF5lQYlQx0XaflVlfCev8AOXlZTDpXrzzAsXfvp/lyE6FYqnomkUhYQwtFyMq2A0ZoLuALMuXy4h6bYqR3jImRSTrudKfMRpO1jekAEoBSagr4PIbY+w+IyA4ReQJ4DrgCnEupgQlkuHcsoXnaVquFoC+IWiXZrF1HtzHcOczUqDvl9YYA2mra2Xt02z3btYiOzxPg5tt36G8bpvFGOz7PwjWXTEyWgxkCShy/Bvxv4C+AbcAwcAL4XbWGSiDePNeA1Zq4fkN5VQl9bUMYuUTJpayyGIfdSmf7YFo0/mCk09odNiwo9Hn+Arqm098xTF/HMA3XO9h333a27qmisDQ/BdaarDVMPYDMZlUfnnfKz9f/6bWExur33b+dS69cRyVZLSsrx8HRx/dx/dXraVe8vbSqhIKyQjpbhxY85vj7j9Le0I9YLeQV5nDw+C627a2iqLRgFS01WYB0+0jFjBkCMomZmrMNCb+mHtHQYxRgXzYCx95zgFtv1SJp2OEZH5ygrKpk0SJ47XXdlFcaoiq+qQDXTtVz4puXaLjejncy/dYLaGGNoC+IppkredMZMwRkEhNBf4i2+sVVv+KluKyAkZ7k1/458tg+WqYlJtMk9DMX94hr3oVh00wMu9lxcAujQy6sNhsiwuSEl0tv3KL9Th8HHtjB1r1VOLLsq2z5bAIeP9e+e5nBtkE0LUJZdTnbju2kcmclRRuLU2qbyb2YIaDMZtUe3qU3arlzvf1u7Z9EsOfIVm6euk0oieWAt+7bhEXX6anrStvGH4xS2IefMFJCF7KzsDSfTbsqGR2+V1JS13X2HNnGrkObqd5RkdAsrViZGBznxOdeJ+wPzeooKKUo2VTK/ncdZPPBrTiy11w5h/T9YC2BGQIyWRK/N0BTbVdCG3+I1n1JYuNfWJpPcVkBPfXdad34A2gRDaVp2BcQ1wGYHPeQk+tAi9y7OthisdB+p5eT37nCzXONTIzMXXqSXLwuLyf+/TUigfA9o0QRwTU4waXnz1P7xk2cPYmtuWSyfEwHYLIk51+5ia4ldpI2ryCHieHkacTa7Db2P7iT+jN1Sbl+Mui83cXOqGDMQrTUdrFpy8ICMlpEp/ZCEydfuEpTbSfBVRBb0SIap774BuHA4qU8RIS2K82c/9rbdNxoI2zW/085pgMwWZShHifdrUMJX6VbubWc7qbEzinM5L73HKDuTB2s0vqCRDA14aWgJH/RyWCv24cjy26sYF4AEWFy3MP5V25y7uUb9LQOoifx73DrzRrcw+6Yn6XP7ePi8+e4/r0rDHcOmULxKcR0ACYLEglHOPnty0kRKbHZrfiSpAm7/8GddNd1EZzyp33oZy7OPicbKosWPab5ZgdV2+7RHroHi8VCT9sQbz1/iStv1TE6OJEoM+/imfDQcrkRS5xrQywWC501HZz9ymmaLzYwNX7vvIZJ8jEdgMm8KF1x8jtX8PuCCb92bkE2rhE3Sk98z69iazlaMMxY72jGNf4Avc39bNm7adFRgN8TwGq1oGINy4nQcL2d1792nlsXmpgcn1vYdnkopbjywkW0FaTxhv0hbrx8jWsvXqa7rgstbFY/XU1MB2AyL9fP3KGndSjhE79ghH+6GnoTHv7JLcihesdG2m+0ZWTjD4bj1YJhHFmLZ2i33OxgUwyjgGlEhHAwwvW3G3j96xeov9qGd4UlPVzDLobaBlf8HEWEobZBLj5/luZLTbidqzuBvZ4xHYDJLJRS1Jxv5PalloSWfJiJ3W7Dl+DFSxarhSOP7eP2qduL9p4zgfbaTnYtMRkc8AUNHxdnbF9E8Lh9XHnrNq98+W3qLrcyuUwN5BsvX03o31pFFDWvXaflYiND7YMJu67JwpgOYBnMJxQvIh8VEZ+IfFoMflFELonIlIhMishNEfltESmMHv9HIlKfmncwP5qmcf6Vm9w405C0PPL8olzG7yqJJY5j79rPnfN30MORjO39T+Ob8pNXmLtk49p8s53qHRuWdQ8RwTPp5+qpOl784mmuvFXHQPfoLGGaxZgcdTPSmfjkABGh9XIz3XWdDLb2J/TaJvdirgROACLy0xjVQH9bKfUPIvIV4BPAn2EUiRsBDgG/Gv3/sykydV6UUjgHXZx+8SrusSmsNmvS7lW1rZybJ28ntOHYeXgrw53D+ManMr7xn2a4c5jK6hKGBlwLHhPyh9EjOqIUapnvW0SIhDXuXGvj1sVmKreWsWP/Zqq2lVOyoXDBz8KtEzdRukpaFlf71VaycrJw5GRRtjn2UJdJfJgOYIWIyK8BfwX8olLqyyLyo8AngU8opb4z49Au4JU5QjIpJRLWGOxxUnOukZH+MUQkqY0/GA1OIhd/lVYWk51jp+vGwJpp/AH62we5//33MdQ/sej7ar7ZwcGH99DXvfKSGja7Feegi9GBCbSITlllIZt3VVJWUURZRQkFxbnY7DYC3gD9SUzhnabx3B0cOQ4Kygpw5JiqaMnAdAArQET+BPgN4ONKqVeimz8JtMxp/O+ilHKtknkopdA1nUhEJxKOEPSHmHJ5GRtyMdgzinPQRdAfwma3JWWydy4bNpXQ1zKAUonpOTqyHew6vJXrr17L3LX4C6Eg5A2QnW0nEFw4MyYcDBMJRxASVxdERLDZrbjHvLjH2tF1HS2ik5uXxY6Dm4m4JvFO+rBYDc1dEUEsclda0/gJssKnonRF65VmlIJDTx5JwDszmYvpAJbPM8BHgI/OaPwB9gBNq2FA7cVmrr51G11TRmOvKyOLRNcMwXelsIgFsQpWqwWL1WLIDTqMxy4iq6o3u7G6lAs32hLjbATuf+IANSdqEV2tqd7/NB23Otl1304abiwuwdlS08mhR/cy0DuWpF65FbIMB5OVbafuQmN0IZpCRT9n095HTf877Y2mHcE8ZslCv83474RzkrzyImouNhPQ0/MZ93eMfPJTX/ivz6XajuVgOoDlU48h9/gpEbkwo2e/ap/S+x7fx32P71ut262Ywc5h6kvysS5S7yZWdt+3g86adlQkgs2xNj/G4VCEvIIcSisKl3SaDoeNp77/ONv2VyfVpoHWfprzs+Ne+LUSnB1D3Pf0Ufa/61C6PuuMbPzBzAJaCYPAkxhO4C0RKYlubwEOpMyqNKbm7TtYrCv3j1U7KhjvH2O837lqQvKpYrB9kOKSvCWP627qY3xoIimL62bSeO7Oqjb+YKiiDXcM0Xwp8XoU6x3TAawApVQ/8BSQB5wUkTLgq8AeEfn4fOek0yTwauKb9DGSgBBFQWk+2bkOOms7yOAqvDEz3D1CeVXpkmmzuqYzPuyi7dbi4aKV4Pf4GelcWLUsmQy3D6GFNQKe5JQPWa+YDmCFKKUGMZyAAzgVfX0deE5E/kBEHhKRbSLyIRF5BfjBGadni8h9c157V/s9rAa15xpRamUFyexZdrbu3cStt2pXTUQ+5Sjwub3YYliX0dc6iMftI5KkcgpdtR3o4dT93YfaB2m+vCrTa+sG0wEkAKXUMPDe6K+ngP+Jkf//UeA0UAf8OfA28O0Zp+4Caua8vroqRq8ioWCYjttdK+7973tgJzdeu4Ee0dZ86GcmnXVdbNq+ccnjlFL0NA/QdL094TZMZ+SkQmhmGmf3KALmKCCBpOWMSrqjlPrZebaNAsdmbPr36Guha/wR8EcJNi0tqb/YRCgYXlHseN+Du2g430jA419XjT9AKBDGZreiRzQsS6zTmBhx4fdWMDnuobA0P2E2TDrdTDknU/63H+kaBhGOvu++lNqxVjBHACZJJRQM03i1bUWN//aDm+lv6Wd8IFlpjulPX+sAJeUFMR3bVttJ552ehJbbaLvemrBrTbPjgV3seXgv+x7dR35ZbM5qtHMEdEUktLj4jElsmA7AJKncOtdA0L/8ktKV2zbgc/vob+xbi6n+MePsdVJeVRLT3EfQH2K0b4zO+p6E3FvXdLoTEMKbya6H9jDU2E3tS5e48cIFKrZswJG9tKC9UopJp5vmy80Js2U9YzoAk6Th9wZW1Psv3lBITm4WrVdaSNw618zF2TdGbl5sC/f62gaZcE4mRHTHNTyBz5UYDQGAss3lTI1M4OwcBowFiXVv3mDb4W0xpbEONPcTCYaSnvK6HjAdgElSUEpx4aWr8wqYx0JuQQ6V2zZQ+1btirOH1go9Tb1s2r4x5tBO8/V22uu6V9xQdtxsS1jvX0So2FlJ17WWWduVrhjpGKQwhlBQJBQh5A/R19ibEJvWM6YDMEkK/R3D9LYuTyzE7rCx88g2rr9yHaXr6zbufw8KJoZdZC8hFjNNKBCio66HlpqOZd9S13S667oT9gyq9myi60YL+jxqZgMNPVTsqIgpzNXf2MdY/8oL4K13TAdgknBCgTBnv31pWY2GWIR9x3dz/dVrREJhs/GfQ3d9D9U7K2MeBUyMuBjoHKavbWBZ93ONuPC7vcs69x4EiiqKGO1YuGMwNTaJ3b50RVqf24vSdbwJDE2tR0wHYJJQdF3nxNfOElxmyef9x3dTd+Y2gan1l+4ZC7quMz44Tm6eI+Zzuhv76GkaYLR/LO77ddV2JOw5bNxeQV9d16IhqZ7aDqr3Vcfk4FzDLlqvmJPBK8F0ACYJQynFlddrGO4eXdaCoZ2Ht9JV24l7xG02/ovQ3dBD9Y7KuFZDN9805gPGhiZiPkfpip76xGX/lFWXMdyyuI5AJBjGarcaym5LMNw+iFgEfb2sCk8CpgMwSQhKKW6cvE3jteVl/VTtqMA94mKoY2AdVPhZIQp6Gnsp21gU8ykiQuPVVhoutzDcG1vs3DMxhXeZesFzySnMZcrpnjf2P5eJgXHyCnOWPE6P6IT8IXoTlO66HjEdwDJZRBdYLfF6dqljUvWelouu6Zz/7jXqLjRhWUbPv3hjEXabhY6b7ayHAm+JYLRnlKKyAuL5uIgI7XXd3Dh5m+6mviWzg/oaeknU86jev5mu6y0xjSYGm/qo2FUVUxhosHWAsf7RRJi4LjEdQIKI6gJ/G6O8Q1X09UvR3VUzXr8253cfRu2gmdsyBo/Ly0ufO0Frbceywj45+dlUbC6j7nRdEqxb29y50MD2GOPlMxnpdXLuxavcOt/I1MTCk6jddZ0JCf+IRbBYhGCMNXy0cASr1RJTGMgzNoXFYsFv1gdaFmYtoAQwVxd4xnYXgFJqbg1d94xjFOCe55i0xu8NUHO6nrZbnWiavqywj81uY+fhrVx+8TJKmeme8RIOhBnuHGFDZTHOYffSJ8wgEo5Qc6aO9ttd7D++iy17N1FQkn/3GQS9ASYGxxNiZ+XuTfTe6kDFIdzmc3ux2S0xLf+bHJ2k9WoLR58+tvTBJrMwHcAKWUAXeM2hdIXfG2Cwa4TWmx0M9zrRNd3Qgl1OuqcI+4/v4vqr19HCEbPxXyaD7YMceHQfublZ+HzxldwQEaYmPFx9s5abp+rYdmALVTs2Ul5dintwDC2kJUT8pbiimPbzdXE946GWfir2VjMcg9j9UNsARZXFCdOaXk+YDmBlLKQLvCqEgiFG++bvpS0ZFlAKParnqnSFrusoTScS1oiENUKBEH5vAI/by6TTg3t8kkhIA0hIo3Dg4T3UnanDP+VDRBJauGy9cedSIw888wA9bYMEfMtLv42ENZpvttN0o43Nuypx9QzhcXsN4XdrVPhdxOjBT/+Mzg8s1ubml+Yz0e9E1+Ir4e2dmCKvKI9QYABZQg4zHIoQ8gZpvNREUUXJoscmgy99+lsP/c4Xf/Xaqt84AZgOYGUspAu8KrTc7KStdpkKUNHvooiAGDFaEcFitWC1WrDarVgsFmw2G6WVxZRWFifM7g3VpfTc6cHn9pKVs3qi9GuZO+fvcP/77iOkaWgrFG2p3lXBuVttWKOlp5WuUKi7Tvqus1ZLV2jadXwvTadr3hGPjwMtohH0+FHWpReG9TT2kt0/RliWPjYJFKbiponAdAArYxD4GIYIzFsi8oxSKvZE6xVy+LF9HH4sc0Thp+m41cl4n5PCksTVqzeB1ust7Ht4L7sf2UfZptJlX2es10mWw441d2WNqcVmwZFtQ4UjS4raz8fEwDgbt5bj9y1d+jk45WPP8d0ceuroXce1Wvzgf+Xkqt4wgZhZQCtkAV1gkwUYGxjj0ouXU23GmkQQmq+0cPm7l+m41UkouLxwUHd9Z0LCfJv2VNNT085yo3vOrmHKtmyI7WAFPpeXnvru5d1snWI6gAQwVxdYRMpTa1F64p/yc+LZkzEtBjJZHiLC+OAE5755njNfeZvmqy24RlxomhbT+Uop+hp6EzKZWlheyESfc9nXCgdC2LPs6DHaPtDSz5Qzvmyo9Y4ZAkoQSqlhEXkv8BZwWkTel2qb0olIOMLrX3iTkD9kZmqsAharheHuEYa6htF1RdGGQjZu2UBxZQm5BdkUlBaQV5xHdm72rPUb/kkfnrGVr/4t37KBgabeFVdz1SMaWiiMJWfpsE7AE0DXdYLeAFl52cu+53pCzOyLjCYjHp6u67z1pVMMtg0uKxZskliUrtA0DXu2g7LqMqp3VVFaVcKGrRvoa+jh0rfOr/g5HXziMNe/fQ61wtFexZ5NKAVeT2wprlV7qqjau5n97zq4ovvGScb2aMwRgElSUUpx5eVrDLYOJiSuPJPcolwKSwvwTfqYTECvdb0gFsFmsaE0HWfPKM6eUXRN5/ATh+ir71pxSm7Z5nJG2weM1M8Vto3O7hH2vusQnhjDUsOdw2zYUbmie64nzO6YSVJputxE2/WVicLPxZHj4NB7DrKhPB9/3xAFdsWRR3aTW7B0ATGT+bFYLegRjf7mPrwuL0F/MOZ5g1kIVO6uorumbcWNP4AWimCzW2MeSegRnYAngHvEteJ7rwfMEYBJ0uht6uPGGzUJvWZ2fjZ7HtzFne+cJeLzgwgTndB3o5lDH36Mns4RPJOBhN5zPWCxWQgHDJ1dXRT+KT82hw1HjgO7wx5zHH/b0R10XGk0VoknaK4nEoqgtAjEmN453DpATkEORRuLE3L/tYw5AjBJCqO9o5z95vmECndb7Vb2Ht9N3bfO3G38p1EK7rxyiR17KrFZMzYkmzLKq8sYbB3g7rSSGBP3vkk/QV8QLbL0aKBwQyGiFM6u4YRO9Du7RyiuKI75ePeoUXbaFI1fGtMBmCSciWEXJ549hR5DoxEP+x7ZS+PLl9ADwXnrDyjgzutX2Xd0q1laIk5KKkoYnbfhVgS8AfyeAKFgCLVA3kFuUR6b9m2m4eTNhDe8472jlFaXx/VMJ51uhjoGE2rHWsR0ACYJxTXi4vXPv0EktPTqzXio3FGBs7mH4MTkosVnIsEwI829VFYUJPT+ax2l1MIOWyASDuOf8hPyh+5R4KrYVUX1/mpqvnsBPZL4qq5aRMNqtcSlgDbQ3M/EQGKqma5lTAdgkjDG+sd47d/fIBxIrJi7xWqhvLqUodrWmBLuhlt6Kd9UasSNTZYkvyQf1+DYgr37aZRS+D1+At4A9hwHO+7fyYH3HCI46aH2pctoofgKvsVDOBgGPfYRZdgfIhwMGeeZLIg5CWySEPpa+jn79XNokcQ3AjuObqf9dA3oeswF5buvNrJ97xa6u8xe4FJs3LaRlvP1Sz637Pwcth/dQXZeFr4JD22X7hBw+1C6ulstNFmMdA5RWlWKy7mwgM1chjuHKCgtZOeDu5NmV6ZjOgCTFaF0xe2366k7U5eUuLvVbsVus+AdHo9dTQSYHHGx9cF9EBkGmz3hdq0lHFk2/FO+BfdbrBb2P34QUTqd11sITPqmC0EjFlZlZfdEn5Oq993HxOhUzPcb63Gyef/WJFuW2ZgOwGTZBP1BznztLEMdQ0lb4bv98Da6zteBir33P0339Sa27tlCT8+qFWjNOLLzsvGMTS0oppJTkMuhJw/TfPoWvgljsd2M3CuUDsqoKJ5URzA9ylCajsSYDqp0hdflwT3qpmhDUdJsy2TMOYA4WEQI3icin46Kuv/wQueJyPYYROP/aNXe0DLRdZ22m21852+/y3DncNIaf4vVgsNhxTc6EXfjDzA16qagJB8VNuPAC1G5s4Lehu55G+/s/BwOPXGIWy9fvtv4z4tSKF2PTtImL/sq6A1gkfiuP9DUz2BzX5IsynzMEcAKiArBfx74baXUP4jI7y5xSi+zRd//K/DzwEMztsUe5FxldE2nv22A66/dwD06iTWqFJUsqvdW03u1cVm9/2n66zrYVF3M4Ig3wdatDbLzsvGO39u4W6wWDj91hFsvX0EPxTaZrpRCaequyFCiPxujnUOUVpcxPhR7xU+vy0M4GEZfpm71Wsd0AMtkISH4xVBKacBd8XcRmQK0dBaEV7rC4/bSfrOdtpvteN1eLBZDNSzZFJbm0903uuzGH2C8Z4QjR3YxMDiJxKAstZ5wZDvwu73o81TsPPTEYZrP3EJfRjqvMuS/UDNlJBNQFsI1OM7mwzsYG3TF5VwmhibovdPNtqM7VmzDWsN0AMtgrQrBa5pGyBfCN+VnbGCM0Z5RBjuG8LqNST8RWbVqnsUVxYy39xupfyvsSbr6RijKtTMZNHUIZrJpdxVdNW33NKYbt1fgcbrxzTMyiAtlyEgqMEYE0z9n3S6OZ6sApaOHI1gdsU/sD7b0U1pt6jTNh+kA4ielQvAz6arrou1me/R7oTAm5VRUgUmhKwV6dGge3Ta9PxwMEQlGCIdChAJhQr4wuq7fFQG3OayIpG7IXLm9gobvnkUhKw4r99V1cuADxxm/2b1iZ7KWcOQ6mBydHU6xWC1sObiVmhcvJrbG8bQjUAutNpAFfcHMzX63F3QNjyu28tDTz3tqbJJXP/va/BrUK3yjt07V/ez/+o9fe3ZlV0kNpgOIn5QKwc9k+5HtbD+yPVW3TyrjPcN0n3AglsQIe1gtwlM/9BA7HlnVOvFpTdetDorKCmfFxrcf20HPjVYsFklpB2AhBlsG2HxgK4OdI3Gd5x5yUb13E8eeeSDhNr3vp59+NuEXXSXS7wmnP4PAkxhO4C0RKZmxbyq6fS7FgKlVFwft5+oS2lsfrOvE7zIngmfSfLFhVuNvtVlx5DpwDY6lrWqbz+UhpzA3rrIQAOP9xnsK+Zenk7xWMR3AMlhECL4ZeHDmsSJiBY5F95nEQCQUZnCB1MTlEpjyoXQd14AzYdfMZLxuD2N9Y7O2bTu6g9bz9WlfRTMSjqDiKAsxjbPHSes182s4E9MBLJMFhOD/Fvh5EfnvIrJXRO4D/h0ojf40iYHhlj6CHn/CrzvS2kd/bXvCr5uJNJ1rmNXQW+02rDYLnlF32vb+pxluG6C0sjT+89oHUZoeU2nr9YLpAFaAUmoYeG/019PASeDnoq/rwOtAJfCedE71TDc6LtQlJWd7vGsYq8NGOLi+wwCRcITO2vZZDf2WQ1tpu9RAJlTRnuh1UlpdFnfpEaUUE4MTtN9oSZJlmYfpAOJAKfWzSqmPztk2qpQ6ppQ6opQaUUp9TSl1XClVqJSqVEp9RCl1e4Hr/Y1SavuqGJ8hhP1BxrqGk3Z918AYXZcbk3b9TKCnrovA1DsjLBEhK9eBx5n+vX+IZrXpCj0Sf7XX/sZeI+NthWL1awXTAawT9IhGJAN6vsMtfYT9Mab4LYOhO13omrZuBWN0TafuZC2WGYviqvZsoremPe1j/zMZbOmjrCr+MJCu6Th7R2m7bo4CwHQA64buK3doOXEt1WYsSffVpqQuNtPCEfxuH8PNvUm7RzrT19DDlHP2Aq+iimJGu4Yyovc/zVjPCGWb41MJm2awuZ+Q39QKANMBrAuUUrSduonFZkvrUUA4GMLZOZD0+/TdamOibzTp90k3tIjGzVevz5pfKa0uY7ilL6N6/wAoI1sMLf4JXaUU3bc6ab/emgTDMgvTAawDwr4AAbeXSCDIeFf6zkWPdQ4R8iYv/DNNcNKHHtGYGllfZaKbLzbgmZicta1iZyX99V0Z1fufpre+i8pdlcs61z3swuf2Mt4/tvTBaxjTAawDfONThP1BtIjOaFNPqs1ZkJ7rzatWsXGgroO+W+snJTTg8VN/6jYWyzux/9ziPCZHXGjL6EWnA1MjbgrKilDLnNBtvdLMcMfguk4LNR3AOsA75kasFgJuDyFfINXmzIsW0RhpWb267ZODhlSk35W21bcThq7rnP3KqXti3psPbKHzahOS2Ko/q4qze5i84pxlnauFNVqvNtNxY/2GgkwHsA7wOo3yub6xSSz29CyJPDk0jt+9uo1x781WetZBTnjjuTuMdo3MCvPYsuxo4QjhDC+NMNDYQ9XuTcvO6vKMeeiu66a7riuxhmUIpgNYB/icRtzXNzGJLcuRYmvmZ6CuA1mlUtPTTA1PoEU0pobX7lzAYNsAt9+quedvu+XgVjquNGZ8OqzSFZ6xSbJyll/XcqRjiPbrrfQ1rr/MMNMBrAO844YDCPuCWGxW9DSLeSql6L/dkZKJyPYL9Qw1dWd8Qzgf4wNjnPvKaZQ2+72JCI5cBx7nZEZO/s6l60YbWw5sXdEzHGod4NaJm3Td6iASowLaWsB0AAliPr3gdME39k4hUj2iLa7vmgL8k16mRl0puXfI42eid3TNTQiP9ozw1udenzfXvXJ3Fb21HZmX+rkAuqbjHZ8iOzd2kZj5cA+5uPCNs9S8fp2h9vUxObwuHICIVIvIv4tIn4iERKRfRD4nIpsTeJtfA34qRnueEpHvishgVFD+toj8fAJtuYsW0QjPmPjVwxG8Y+lVmdrZNoCKpG5pfu/NVrxON1NOV8psSBRKKVqvNHPyC28QCUbm7eGXVJXg7BxcE73/aTqutbDt8PYVj+QEofVyM2997nVO/ccJGi/cYah9kIA3sCZHiWteEEZEdgAXgU7gZ4BWYBfwaeCaiDymlOpa6X2UUvG0qo8DdRiawoPAB4F/F5GAUuqrK7VlJpFACC08Y0grwuSAk4r92xJ5mxUxUN+JWFLbGDW8fhWrw4b9fgfZBbkptWW5BDx+Ln7zHIOtAws27sVVJYx2DKFr9+oAZzJKVww091JaWczE8Mo7OBaLhdHOYUaif6us/Cwqd1axYXsFBWUFlG4qI6cwN+P/hmveAQD/AujA+5VSvui2HhF5P4Yz+BfgIyLyIeD3gMMYIoTXgP+plLpbOUxE/hD4BYwKnxPAm0qp/xLd9yxQPl0sTkSewGjgDwMa0AT8glKqXin1Z3Ns/IyIvBf4BJBYBxAMEQmEkWh+vdL1tJr01MIRRlr7U20GSlfc/u5FApNetjy4j+KqzNCQVUrhc3u5c6aOzpp2IqH5e/3TbNpTzY3vnMv4hms+hlsGuO8jDzM+NJEwNTMRwWqzEglE6Gvopa+hF13TsWfbqdyziYodlbz1udc/9KvP/q/XE3LDVWZNOwARKQU+BPz+jMYfAKWUT0T+FfiTqKpXHvD3wG0gB/h94HsiclApFRKRTwC/CfwERu99I/DoAve1Ad8FvgB8ErADD2A4goUoBBKeCB/yBlCGsi4AQY8faxqlgk4OjRP0+FZNbH5RlKL5ZA1dV5vYdnwfRVVl2LIdoCsi4Qh6REMsFrILcimqLiOnMG/VTNN1HT2io4UjBP0hpsYmGekapr+xl8lRN0pXiMiiDXvhhiLG+0bRIlpG5/4vRsuFO2x/YDfdDclbU2KxWtDCGv0NvfTd6QEjsmA6gDRkD4bk80L1fxui+/copb49c4eI/BwwCTwMnAe2YYRr3lRKhYEejJr/81GIIQP5PaXU9Oxi00JGishHgfcB71r6Lb3DjVeu0XC2/t4dM2KVBx/dY5T+jTYM7sFxQhGdL/32Fxc9bzHmP2yejUtcrqiimPxsK94JT1qJtXsmPIz1jN77RkXubsstLWT3E0fpbR5gbDCxI6p7ZNOjv1osFiw2C1abFXuWHXuWMemZnRebbvK2o9u5/u1z6eFsk4R/0kckGKawLI9QcHUmcScGObsqN0oCa90BTLNQUzTd6igR2QX8CfAIsAFjgtwCbI0e8zzGRG+niLyB4fFfUkrdU7xGKTUeDQm9ISInMYRinldK3ZNoLCLvwgj7/A+l1NV43tSDH3mIBz/y0KLH9N5ooqco752eoaax+cBWPvyJp+K5VVJQSnHqb5+noKww1aYsi46zt9j17iM88oOPUrl/69InpJj+O91k52ZjyU8fZ5sMhlv6Ofrhh9j1yH7s2auy7uUzq3GTZLB2uwIGrRiN/6EF9h+I7m8HvofR8P8KhhO4H4hgSD4Sbbz3RfdPAv8XuCEi88YBlFI/F73OWeBjQIuIfHDmMSLybuA14A+VUkn5EIU8gVlhgcCkF1vWytLlEkXQ62dyaDzVZiwbEaHjQj19te0M1Hek2pxF0TWd2levYEnxZPtqoJSi/UoTHab+75KsaQeglBoH3gD+m4jMSu2I/v7fMRpgwXAGf6aUeis68VvAnBGSUiqglHpFKfXrwEMYjmXBsI1S6pZS6i+VUk8BZzBihdP3fyJ67z9WSv39Ct/qgsyt/RMJhLBYreh66hWRxjqHiIQzf9FN99VGxrqGGGlP/WT2QvTWdTA57Eq1GauGxzmJZ3yKkbbklxfPZNa0A4jyqxgN+Vsi8rSIbBGRp4ATGA3/r2Jk9DiBXxKR3SLyJPBvGCMAAETkZ0XkF0XkSDS19OeAMMYoYxYiskNE/kJEHheRbdEMn6MYcw5E7/9a9B7PiUhl9LUh0W8+7L23+Juu6YSSILoeLwN1nWsmHt1yuhZX7yiBKd/SB68yWkTj1stX18zfOlY6Ljcx3u+cnQZtMos1/4mITsIeB+4AXwY6MGLujcBDSqlOpZQO/BhGI12PkRr6B8DM+L4LIwX0XPSYTwAfV0p1znNbH7AXY96gBfhP4DngL6P7fxbIxcgqGpzxSrhkV3CeBknXNAKT3kTfKi50TWe4ZQ3VXlHQ+vYtuq+3pN2CoeZz9cZE+zpD13S6a9pov2qGghZiXUwCR+P3v7TEMacwcvZnkj9j/4vAi4uc/7Mz/j8MfHyJY392of2JJOC9t6evdIVvbJLizRtXw4R58Yy5Cbi9ayofPeD24uofpetKIzsePZhqcwAI+gI0nb61ajoL6YZrYBzv+BRjvaOUbUn4ADvjWZ+finVEcIGevifFalg+p5vDH3iQ/NL8pQ/OIPpqWgn7gwQmUx8KUkpx9ZtnCfmTr7KWzrRdbMDZNZR2RRDTAdMBrGGMWP+9cwBKKbxjk/OcsTr4xie59Ldf487X3mTbsZ1Y11JmioKOSw10XVtw2ceqMdoxyEBT75oaZS0HXdPpvN5Cx/W1r/0QL6YDWMNo4fC8vZ6wL4ieIhlApRQ1//kKesioUtn2xmW2378r5kVomYDX6Sbo9TOUQvnNSCjMxa+dgTVS8XOluAcnmHK6GesZSbUpaYXpANYwWiiCFrk3AyLk9aes+JrP6WK8te/uyrzgpA+LgH2NfRI7L97BPTiWknRbpRSXv/E2AVdqJ/rTjbYLDTi7h4mE7i2RvV5ZY187k5looQjaPB/2oMePxZqaekA9528TDsyWIey9XE/14e0psSdZaKEIY51DdFy8s+r37q5po7++K+UVVtMNXdNpPltH543WtMvUShWmA1jDhAPBeYtghDw+rLbVdwC6pjNY04LS9VmlyAIuD9mFeRBeWz2zwTud6BGN4DyZWMnCNTzB9RcuLFmHab3id/vov9NNd+3aEgBaLqYDWMOE/cF5i6wFPQGsjtUvB+Efc+MZnZg3Lj3R3kdJVcmq25RUFHReaqDn+urkofunfJz+t5eJBNaWI000wy39DLf0MZQGZchTjekA1jCRQHjeMIAWMvQBVjstbrSpCz0cmbdzOtLYxYY9m9fUZDCAZ9RFYNLHeG9yJx/9Hh9v/sOLBOfUfjKZn64bbfTWdTLaNZRqU1LKulgIthrMFYRJByLB0IL7dE0j6PGTU7x6efijdzrRNTVvJXqlRcNCkQjY06NYXaJov1BPVmEeJdUbkhKXdw2Nc/qzrxL0+M3GPw46LjcR8ofQwxoVe6pTbU5KWBcjgDTUBD4oIqdFZFhEAiLSISJ/JiIJrV0bDoQWbBCUps9bJiJZaOEIE50DqEWyYiba+yhda2EgohPC7QN030hsKEiLaNw5VcuJf/qu2fgvk75bHdx46RLdte2E12HobM07gGjhtusYZR5+BtiN0VAfwtAE3p6I+yil3EopV4yHhzDqA30Ao8T0/8SoM/SnibBlmrDv3kVg0yhNxzexeovB/BOT+F2eRbMvRpt7KN9dvebCQGDoHoe8/oQUiwt6A7RebOCVv36e269eRQ9rZuO/AqaGXVx67hQ3XrzAQGMP4eD6cQTrIQSUjprAbUDbDBu7oxVC35PINx7yLVICQASvc+Xi2bHi6h5CC0cWFSJU00Ll4TA4VkXIY1Vpffs2FquV3e85Omu7rumEAyFC/iAhX5BwIIwWiaBFNCLBMOFgmLA/iMc5yXifE8/4FFo4YiiErbMKn8lCROi+2UbntRbKd1Sw9dguyraUU1RZulqiMilhTTuATNEEFpHdUTtfWtEbnsPiJZ8VvrHVcwAT7f2oGFalegad5Bfn4fGtvV6Y3+1ltH0ALaJjzclictiFa2icyeFxwoHw3RCEiIBg6PYK8/buzYY/OVisFsZ7RhnrHkHXdXKL86nYs4myLRspKCukYGMROQV5aaWrvRLWtAMgzTWBReQihmPIAj4H/G6sbwygv7Eb99D8Rd3yywpxD44RXmAi2D/pxTM2RcPp2nhuuSxKN5czVNduOIAlIhXDDV1sefwI45czsISvuvsPShkrcpWuo3SFrumG6PzpWo5+/2M0X2wk6F97Tm6tEfKN4xowVOuMqvFgc9jJLyukoLyQ3OI86t+8+f/98n/+1l+k0s7lstYdwDTpqgn8YxjKY8eAvwb+N/Dnsb6poo0lTI3M34u32W0EvX6jFzkPoakA9iz7qvQk7Vl2vCMTSzb+YMxbOHKyEF2HTOnlSvSf6d66yKIx+Y6Ld3jwB95F0aZyrPb18hVcu9S/efO5VNuwXNb6p2+mJvCL8+yfqQl8HujH0Pztx1ADa2CGJrCI7APeB7wfQxP4UyLyiFLqnqIrSqmfE5G/xwjtfAz4tIj8oFLqjRnHTDuEBhGxAp8Xkb9WSsUkYZRfVsj+J48uuL8OFtT/jQRDlGytWPT8RDE5MIoWWjz+P5OwL0Buto2wZe1+PJtP3eTwhx9l20P7zHBOhvPL//lbGatstKY/eemsCTwPluj9EhJc1CMa2iLrAIJTvlWLY050DS2a/jmX0cYuNuxe23nZoSk/zSdv0FvTFtPciIlJMli7Xax3+FXgIoYm8O9jjAp2AZ9mfk3gXqAaIyQzSxMY4+91BfBghG8W1ATGGEm8hDGa2IkhN/mZ6P6fBgIYnfQQhmTlnwPfmi+ktBy0SMSIOy9AyOtftXIQw/Ud85akWIipASebHjoA7UNxnZdpeJ2TNL5xDQE237d73ap2maSONe8AlFLtInIc+EMMTeCNwCjwKvBjSqk+ABH5MeAfMfR+24DfAGZODLswYvR/g5HV00BsmsDlwDCzNYEjwO/wziR1N0Y66t8l4j2DsfhosVIPWiiCiKB0ldSqkXpEw9nSE3P45y6avmbTQWfidbqp/c5ZtHCETUd3kpWbnWqTTNYRYpZFzWgWfHjeMTdvfOoLi5Z93veBh9j11P048nKSYhyAe3CME7/zGWNSNw4qDu8kFNaYGFsnNe0F9r73fjbft5uSzaZ2bYaRscNUc8y5Ron4Q0uWBNY1PenataPNvcgyOhnOlh7Kd266+3tWfg4b925h05GdlG6rWHvhEgXNJ29S8+2z9N9uRwvFlAdgYrIi1ti3yGSacGD+UtAz0SMawSQ6AJ/Lg981BctQxdJCESx2G3nFeRz80ENsObAZfWQEb1M7jqCPfY/sZf+TR8guSN7oZbURESa6h7nylbdoPXebiX5nqk0yWeOs+TmA9cpiheCmUcDU6AQb9m1Jig2tb9ei+xeuR7QUWQU5bD2ynfZvvIkKvuPQ/AMjjN9uxZqdxbanjxMWCx3X29ZMDSEV0ah/+RJjnYNse3g/mw7vMFNFTZKC6QDWKGFfYMnIpNIV/rHkFIQLB0JM9I5iC4eWlclT/dABJrsGGb56BxUK33sNEbRgiM7XLpJftYGj73+Q1ivN+JMc0lotRIShhm7GOgcJeQNUHdxGTtHqle42WR+Y3Yo1SsgXXHIEEPL4jVBREmg5U0tWXg6e4fG4z91wcAc2u43+czUxhY88g6O0fONNdhzeysbtFcsxN20J+0PcfP5t2i/UM9Y9nGpzTNYYpgNYoyxWCnqaoNePJCG0EA6G6LhQT15pAb6R+BxAdkkB5burGThfgxB7VEfXdNpePEOOVWfng7vjNzqNEaDpxA3a3r7FYENXqs0xWUOYDmCNEvQsHQoJefxYbIn/CNS/fJnglB8RI54dD7s/8DAdr5x/p0iTrse+TkGEwcv1TDV2cvjpY2umYiMYIaG+2jbuvH6Vvto29GVMrJuYzMV0AGuUkDeGEcCUD4stsdNAHqeb7qtNRqOt63FNzG557DCDV+pR4XdSIJWuxz0B6u4eoOuVcxx66gg5hblLn5BBuPuc1Hz7LL03WoisI+ESk+RgOoA1SixyjyGvP6HVKHVN4+IXXyMSCiMWy6yGfCkc+TnklRUx2dGfEFtCHj/NXz/BzqPbKdtclpBrpgshb4AbXz9F56U7+F2eVJtjksGYDmCNEpxcTAzGQOlGvfrFagbFilKKm996G/fgGCJCbmk+Pqcr5gyg7U/cT89bV+YXjNf1ZZUEUrpO63dOUVSQxbbD2+K/QBqjFNz67gWaT9Uw3mNODpssD9MBLIGIbBCRfxWRLhEJRoXcT4rIMyLyFyLSOuf4zSKiROR7c7Y/E92+c8a2+0VEE5ELibRZKUU4xvx7XdMJuFfWi1RK0XTiOt1Xm7FEW+r88mI8Q2MxnZ9TVogWCBBZYOJa1/TlT1aL0He2htDgKAfefXBNaeeKCO3n66h94RwDdR1ocYy4TEzAdACx8G0MVbBfwCjw9lGMEtJlwClgt4hsnnH8ezHUwp6I1vif5imgRynVMWPbLwH/ChwWkQOJMliPaOhabJOvekQj4F5+vR1d06l94RwNb1ybFe/P31CEZyi2DKDt77mPvrdvLnrMShvusaZOBs/VcPT9x7Bnr63lLxPdI1z60ps0nbjBRO8IZn0vk1hZW9+EBCMixRhC7c8opU5GN3djCMZPawqEMRr9L0f3vxf4EvBzGHKP12ZsPzXj2jnATwJPALkYDuY3E2F3JBRetBLobBSTg05Kd1TFdQ+lFK5+J9e/+hauwfG7Pf9prDYrWgxrDPI2lhAYcy85X6B0ZaSFxmXlbHxOF63fOc2BH3iKzpo2pibWUKE5TafxxHXaL91hzxNHqdi3heLq8kWLAZqYmA5gcTzR18dE5LxSalaMIiosf5V7HcAvYmgAvBe4JiL5GAIy/zbj9B8GupVSt0Xky8A3ReR3onrDK0ILho2JWFl6gKdHdKYW0BW+57rhCH63l6GmXrqvNuLqdxpZOvP1zrXYMoC2PHqIzlfOL22npmGxWVErnK+IBEI0feNNdn7fu3CNTzLUMbKi66UTIkLYG+DOq1e48+oVKvZtpergNgoqSiioKCErL2dNpcaarBzTASyCUioSFYL5HPDLIlIDXMDQ970SPew08FMAIrId2IQhQLML+CHgr4B3Y/ytT824/C/yjtN4G0ND4GPM1iBYlJ4bLXTfaDa6xUrd7R1X7N5E0BOIKWwyNTyOz+1l9O+joQMFCgW6QilFyBck6PET9AZQEQ2L3YYty26keQrIQlU5VdQBLGKDoyAXLRCKOVsokfH7jtcuUPnQQXbct4PO210Ju246MK0DPdLWx0hbH3pYQwtHUErhyM0mKz8be242VqsFi9WCxWbFYrPe86zu/ja9Xe69R+YWQk4c7efq/uRnvvQ7f5BqO5aDqQcQAyKSjREKegxD4/cx4PeUUn8mIk9jiL7vwOjx/7xS6j0ishe4AZRgqI/9kFJqb/R6u4EmYKtSaiC67dPAA0qp74vDtHkf3mhrH+f+4fmYSiYXbd5I2a5NHP34k3Hcdmm6ztZQ97UTizbaO977AP1v3yAUYyqj2KyIRbAmcO1C+dHdbHr0CFXHEzYFY7L+yFg3aI4AYiAa+jkRff0fEfk88Eci8jcYvf0gxiTvUxjavyilWkRkCkPu8SmMkcI0v4ih/dszo4EUABHZMkMsflmEPP6YV8/6XVNYHYn/GExF00EXwmKzYrXbYm78AZSmI5bEhjCct9uiIx9F1UMHE3ptE5N0x8wCWh4NGM4zO+ocLmH0/t9L1AFEeRv4AeBBouEfEbFhiMP/DnDfjNcx4DbG5PGKCEzGPrkZ8vix2mwJWQswk8m+xWPrlcf2MHSlPr6LToeoEiyiPlbXzuDVOwxea0jodU1M0h3TASyCiJSJyCkR+SkROSoiO0TkR4DfBk4qpaZrKZ/GiPdXYIwIpnkb+O8Yvf0z0W0fwdAJ/pxSqn7mC/g68PMSy+ztIgSnfHHFy7VwBN+YeyW3nIWu6fici18vv6IUzxJOYj6MhWvx1ReKhdFbrYw3dTF0sznh1zYxSVdMB7A4HuAy8GsYjfkd4M+ArwI/NuO400ABcFUpNXMJ7pno9jtKqenlmr8AnFZKzbdK6nlgG/D+lRjtj3Nhlx6JMJagEgxgVCJdrBppXkUpnv6RZQm4KE0HkRWlgy5E37laJnsGGW/uTsLVTUzSD3MOYBGUUkHgd6OvxY47xzwTQUqpprnblVIfW+Q6HfNdJ16CcS7s8oy6USpx81gBl4dIILTgJHTlsd10fu/c8m+gFErTkCTkuHe+epGsgjwcRXnkV5Yn/PomJumE6QDWIL7x+FS+xtr6KYtzIdhieIbHFpyEttisiFLowdCyr69H01FjQawWindtpmhbpVH5dHrUIUJgYpKJ1l78c8JfLd85zYFsB1mF+dhzs5dtp4lJumM6gDWGrumEYhCDmUkkGCIw5WNycIzCqpVXzpwacC44B1FxZBfDK51sjWbt6IuUirbn57L53ccQgYnGTnrfuIgWCM0KO2VvKKHs0C5yHj2Mb3ySoeuN6OEIejhC20tnQUH140eSIppjYpIOmA5gjREJBImE4i8K1n6mhrGOAQoqS6g8uJPKQzuwZdmXZYN7kcnd/KoyBs8uXvcnFnRNwyLAnMbZ4rCx+V3HsFot9L52fsECcwCB0Qn6z1wHILeyjB3vO05wykf/5XqCE1MMXK4Dgc3vOrZie01M0hHTAawxQr4gkUAw7howIoK7dwR37wgTnUME3B52v/eBuO+vlMIz6Jx3ny0ni8iUb1mTv/cQTQVVShmjDYHK4wfIryyj7+RVAqOxlbeYxjc0Rvu3T5K3aQN7Pvpuhm+1MNHSQ35VGSP5OWw8tnflNpuYpBnm2HaNYQiErGxC1+t0E/T4GGrsivvciD9EeAE1soojuxi+2bQi22ZiVD3VKdm7lb0/+BS+3iHavv5G3I3/TLwDo7R89TXySgvZ/r6H6DtXi3dojKn+tVMzyMRkGnMEsMbwjk7ErqG7CF2X7mDPyabywPa4zgtMegj7gvPakFtWSH+MGgGxkFdRxtanHsDV3E3Lc68mZmQRZeBcDTkbStj7g0/S8cZl7Hk5ZBXm4yhYWxKTJusb0wGsMTyjroQUTQt7A4R8AZytfZTv2bz0CVG8w+PzDkAc+TlG2YcENNKOwjy2PX2c4MQkbd94w6g8mgT8oxO0PX+CXR9/H10nriBWK5XHDyRURtPEJJWYn+Q1hqs3caGK3muNZOXnxOUA3H0j8zqgisMrD/9Ys+xsfeo4FpuF3tcvoPmX1htYKVogROvX32DXJ56m73wNYrFQ9dABMzPIZE1gOoA1hK7reIZjU+GKheCkj0gghMfpIr+8OKZz3N1D827PLs4n4Fx+bL7qoYMUbquk/9RVggksWxELStdp+9ZJdv7gUwxeuY1YLVQ+uH9NyUuarE8yohsjIj8rIjHXN4jq9yZEXSuTCE76CHqWFoOPh56rjYw0xlYaQemKyYF7M4CyCvMIjruXJeeVs6GYAz/+DGHXFO3Pn1j1xv8uStHx4hmKt1bSd+4GIzUtpvSiScaTcAcgImdE5J/n2X63EReRP4oKpL81z3H/LbpvZqnIb2AobK0aInKfiHxDRIZEJCAibSLyrIgcie4fFJHfm3POH0Rt/8Sc7c+JyNkZv/+iiNSIiEdE3CJyW0T+dKU2T3QNxSEFGRv+iSnC/mBMFUbD/gBh770OqOLILoZvxB/+qXhwP9WPHKbtmydwt3Slvui6UrR/5xTle7fR+dYVRm61oPTkzD+YmKwGqRwBDAHviapozeTnMUTV76KU8iulVi0PT0Q+ClwB8oGfBg4APw4MAn8RPew0RvnnmTyFYft8209Hr/3zwD9iyEPehyEu8ycYusAroudaQ1Ji0z1XGumvbV3yOP/YJGHfvXH5rIJcghPxlafY/oFHEE2j63tvQxKqfy4XpRnhoMoju2j6xlsM32wmElh+WQsTk1SSSgcwBrzCjPr3InIU2A98a+aB84WAROQjInJFRPwiMiYi34sqd02TLSKfFZFJEekTkd+Kxaio0Pt/AG8opT6ilDqhlOpUSl1XSv0O8MnooaeBx0UkK3peFkZj/ufMcABRZbBNvCMH+THgO0qpzyql2pRSDUqp55VS/ysW+xYiMOnF2dq3kkssiNfpYmpwnNG2xa/v6hm6J/0zp7QQ/2h88xI7v+9xpjr6GKtpSn2vfx70UJiul8+x+dHD3P78i/Sdq8GbwPRWE5PVItVzAF8AfmZG/ftfAL4JTC12koh8CPguhkLXgxgN7tvMfj+/DtQBDwB/CfyViDwWg00fxKjX/xfz7VRKuaL/PQ3kAI9Ef38Uw6l9CdgtIhXR7e8F/BhlpcEY+TwsIgkJaem6jnd8koufeZFwEnuiXRfr6L5Qx3BjN2F/YF5RFlf38D0ToxWHdzJ8I/Ya+1uefICpjj4mW3uWPjiFBF1TjF5vYPNjR2j65ls0PX+S0fp2tFA41aaZmMRMqrOAXgfswPuiMfJPAj/I0vXw/wD4llLq92dsuz3nmDeVUtNzEf8kIv8DeB+Getdi7In+bFzsIKVUm4j0YTTwZ6M/zyilfCJyAyPs843o9ovR0tIAf4yh/tUuIm0YoaY3ga8ppeJqPZpevUz9d89hy3GQU1xAXllRPKfHzXjXECPNPQQmvWihCGK13A057X7v/XScvoE+pwG02G2EJmObvy8/tBM9FMbV1Jlw25OBu6OP3MpSirdXMXDlDoPXG9j8nvuxlxTRfukO4VVIUzVJPaEp35//xJd+/3dSbcdySKkDUEppIvKfGHH/UmBMKXVeRJZyAPcDzy5xzFyHMABsjMGseKIO0/MAfxz9+aXo9jPR37+B4Qj+cfoEpdQg8JiIHAaeBB4HPgv8uoi8Synli/Xm+z/8KPs//Ggc5iaPSCDE4OX6WcXX8jYUE3ROxPQHteflUH5gO+3Pn0jLsM9CDF68ze4ffj9+p4uQN8Dw1TvY83I4+tF3U7J7M0XbEldm2yRtycjGH5ITApoE5uuKFgPz5fB9EUM3939G/58o5vamFbG935bozwMxHHsKeFRESjBCQWei298GnhKRAxgykafnnhiVgfwXpdQngWcwJoR/NIZ7piW+MTchz2zftfHwToZjlFjc+eHH6X75bEY1/tN0fu9tdjzz8N3fw14/TV9/k/pnX6b/ch3+8RSlrpqYLEEyHEAz8IDcu0rmgei+WSil2oBrwHHe6UEvRQ1GOCcZvAk4gf9vvp0iUjzj19NAFvAbwKhSqj26/TxG2uonMWQlry1xz+kC+fnLMzn1jLf33xP/t2U5iMyTFjqX8sO7cDd3r8rK3mSgBcP0nb7Otifvv1vqQkTw9I9S94WXaH/lAqP17ea6AZO0IxkO4DMYjd8/icgxEdknIr8O/ATwNwuc833Axmh4JBY+DfyIiPypiBwUkUMi8uvRDJ4VoZTyAr8IfEhEXhGRZ0Rku4g8ICJ/Ajw349huoBP4H7zT+5++xs3o9nNKqbsF+kXkM9H1Au8SkW0i8iiG4/NhOJ+MZKy1d5YDyK8qw9M7/6rgmYjVSvnBHThvZbYYu3dglJBrkpJd1bO2iwj952pp+uZbDN1oNCeJTdKKhDuAqK7tExiTqW8CVzFy6H9EKfXqAuf4lFIx1wmIXueHMBxHDUbI5b1AQlblKKW+i5HS6QO+gjFyeR7YAvz2nMOnBeHPzNl+Jrr91JztJzDCRd/ECDe9EN3+jFKqhQxE6TquroFZ2zYe3MFIzdJvZ8sT9zFw5npGhn7mMnjxNmX7t2HPybpnn29ojMavvsnwzWbCcSq2mZgkCzGHpRlNWjw8/8QUp/7wc6gZC7b2fOhRWr95YtHzLA47uz/yOJ3fmesjFznHbkPpOipJFUBXijXLwa5PPE3Li2dhnlpBtrwc9v/o+6h8YD/WLEcKLDRJAhnbf0l1GqjJGmC8vQ89ErkbAircspHJzv4lz9v87mMMnquJ6R4VDx+mcHslmi+IxWrBmu3A2dDJWF3bimxPNFowxNDlOqofPUz/lTv37I94/bS+cAalK6ofM/WGTVLLuvv0icgnozV45nvd+401WZKhW22z4v8b9m9n9PbiDbPFYSe7KH9p9S4Rdn/ifWhTHrq+8QZ93ztDz4un6Pz669itwt4feT8WW3zyl8lmsqMfq81C3sbiefcHXR4GLtXRd+HW6hpmYjKHdecAgJcwUi7ne304JRZlMLqmMd4+o0SEgMVqQQ8uviq5+vEjDJ5fuve/6weeYvRSLZMN7feMs8drmhh48yL7f+KD2POy5z0/VfScuMLmx49isc7/FZto6cE3NM7I7aVrLJmYJIt15wCUUlPRGjzzvWKre2xyF8/QOAHXOyt9i7dvwrVUGQcRcsuL8Y8sXiOo8tEjTLb34F9EjzfkmqLz+TfZ8/GnsWbZ47I9qShF12sX2P708QVV0LpPXiU4MUUwhkqrJibJYN05AJPE0ne1YVYDV753C8769kXOgPKDOxi/07HozJmjMI+8yjJct5fOJNL8QbpfOMm+H30mrcJBwfFJpnqHKN+/bd79Sld0vnmZoeuLVh0xMUkapgMwWTa6pjNY03I3/i9WCyiFCkcWPa/swA4mGhZ3Els/+Bj9r5+POb0iPOWj9+W32fPx9yZUHH6ljN5opGjHJhwLhKj8oy78zgkGTSdgkgJMB2CybNy9w/idrru/l+3dirNu8YY9d2MJ/pHxRRv2gm1VBAZH0eNcGRwcn2TsRgPbP5Ae9ZGm6Xr5LNvf/xALZe32nLlJ2OM3dQVMVh3TAZgsm5bXLs4qb1CyowpXW++i51Q9dIjhy3Pr9M055rGjjFyoXZZNk229RKa8bDy2Z+mDVwktGGbw4m02P3p43v0qojF0o5G+87Wra5jJuifjHICpD5we+MbcjDe/U/7BYrcZtXwWU+8SweqwLZohVLCtCm/vEKxAanHk0i0Kt1ZSUL1h2ddINFNdA4gI+RUl8+6faO5G6TqewXs1lU1MkkVSHcBa0AeO1jP67gxt4B4R+baI3DOzJyIfFxFNRJ6bZ9/26HuZfnlEpFlEPh9VQssYlFLUfe1NIjMa8o2Hdi5Z+qHs4A5cjR2LHlPx0CFGL9Wu2Mae773N5icfxFGQs+JrJYrek1epfuwIFuv8AbDuk9cYa8gMLQSTtUG6jADSUh9YRDYAJzEqen4EQ67yp4F2oHCeU34R+CvgB6MloufjQ0AVcARDtWwjcENEfjyx1iePgetNjDZ1z1r8VbipHE/f4sXfyvZtY7ypa8H9jsI8NL8fElHmQSm6vnWC3T/4XmNyOh1Qiq5XzrPj/Q/PO1EdnJgiMDGJ887iTtLEJFGkyTcjPfWBgXcBJcDPKaVuKKW6lFJvK6V+WylVN8eGzRgF6f4GQ/7xk/deznivSqmhqM7wq0qpj2EUmvu3OaWm05Kxtj7qv/kWzJCEzCrKIzDunrVtLtZsB3owiCySoVP1rmOMnLuZMFu1YIjel8+y9xNPp01mUNA1xWTnAOUHtqGUumdauPv0dXxOF2oFITATk1hJFwcA6akPPBS9zg/Po28wl5/DkKEcA76MMRqIlb/BENFZSgktZUSCYZpfOc/Vz3ybsHd2Ncuq+/cxeKV+gTMNKo8fYORaw4L7xWLBUZBL2B3z9E5MBMfdjF1vYPuHHk/odVfCaE0TRds3YbFYiARCREJhtHAELRJBC4Rw3mmn/bWLjHcM4HW6FtRgNjFZKelUDC7t9IGVUpdF5M+A/wT+RUSuYZR5fm7mquGoc/g53ikV/a3o8Q8qpW4sYT+8IwgT19zGaHM37p7heE6ZHzX7P0pXKKXQAiF8Y27G2vvwOd3R/XP8oIDVYSO0RMOdV1HK8LmbC6Z/lh3dw8St5FTDnmzvxVaQy9b3PkjP6VgeR/LpevU8uz/2JHe+8RZKn/1X6b9YR+HWKs5++llAgVVw5OWSU1xAdnE+WUV5ZBXkYbXbDF1mkbtF5cQyfa0Z18zYWpWZwa0vvfbJT3z5U/fM+2UCaeMA0lQfGKXU74nI3wJPA49ijEx+T0Q+ppQ6GT3sfRihou9Fz/GIyIsYo4BYWpzpr2hc3byizRUEXQnsMYsgYoi0WO027DlZWLMc7FmkAbE67PSdr8WW5bhHEWyanPIigmPuRduh4j1b6H7+zaS1VeO1zZQ/eJDq99xH/7naJN0ldjR/EOftVrY8dpih2nsL5w1da+D+n/ogJXu2LHgNXdOJBEJooTC6pqE03SiVrUibkNc6IWOLSCbbASxHH/g2sJ300Ac2DjbCOs8Dz4vI72CI0PwBxgQxGA19MeCd0QgKMCUivxGD0PvB6M+4Zv8cedlsfuRQPKckHF3TGL7ZtGDRM4DKB/fTd+Lygvttudno/sXnBxKB80YD5Q8eZPsHH6PrjUUHf8vClptNwdZKcsqLsRfkYbFZ0SMaEX+Q4MQkfqeLgNOFFs2emmjsZOcPPkV2YQ5Bz+ywmnfQiR4Kk1WQS1ZRxiqFrgs2P3KoNtU2LJdkO4Bm4MMiImq28syC+sDRMMvjwMdjvMe0PvDnVmpsLCilQiLSDmwCEJFSjFDVz2DIQM7kJPDDLK11/JsYDvGeVNh0x9Xeh29kYuGeuyytDVzx0CGc1+oW3J9InDcaKNy9hb0/+gztL55ZsURj3qYNbLh/H/acLMJTXrw9Q0w2thPx+NDDGha7FWt2FlllRRRWlVFxdDeWqBCMQlACB3/6w3S8dgmf003Y805foeP1S2QV5bNpgQVkJiYrJdkO4DPAr2LE3T8HBDBKLv8E8AMLnPN9QFYcEpGfBr4nIm3AVzF63h8APhtDz3tRROSjGHKWX8eQbxTg+zHew6eih/00xkT1c0opbc7538EYHcx0AGUiUgnkYGQ5/VeM9/zTSqn5RkVpTdtLi9frKd61GVdz16LXyK0oZeTM1VULVU+29RIYnWDvj7yPoeuNTDTHVwQ2r3ojG+/fhy3bgW9ghOFTV9AWkHnUNQ09ECLsmsIzs2z2NFYrE9UbKNhaRUl1Obb8XBDDOSCCxSJ4B51klxalV7VTkzVBUh2AUqpDRJ4A/hRDHzgbaGIJfWAMLd5Y7/GqiPwQRoP8WxiN8UUM57NSGjDWAPwNhh5wBEME/jeBf4ge8wvAC3Mb/yjPA/+PiOwFpldNvR796Qf6gHPAcaVUxqmD+Jwu3HO0gOdStn87Hd9aeGCTXVZE0LnICCJJhNwe2r/yCuUPHWbjT3wQZ30743c65k+/FKFoRzWlh3dhc9jw9o8w+NaluGsVzYum4e0Zwtc7bBTSm+cQW14OORtLyC4vIX/bJvK2VJBbXUFORSkWa/pUPzXJPExN4MwmpQ/v9hdeYuBy3YKTv1aHna1PPUDnCwtr/m794GM4L9YSmUxs+mdciFC0fwfFB3aiBFTUByiUkWEDeLoGmLjTigquLGS0qBkWmTfdU0SMv3H076yUwprtoPr9j1JydA+Fu7aY+sKpJWPzrNImC8gkswhNeRmta1uw8QfYcGwPozcWzv0HcBTkEZ703P0G2fJyKD6wE3tBLhFfgKDThXdgxKgzlCyUwt3YgTtapmJmE7yq32zdcDhzO2VKKSNDa9omEfRgmN5XztH7+gV2/ugHKNq3ncJdC2cMmZjMx7p2ACLySeCzC+zuVkqlNsUmjWn5zhnCXv+iDiC/qpyht68vuD+rpJDQRDQ9VITNH3wcW5Yd161GAu0erLnZ5GwopfR9D2HNzkYBWiiCp3cIV1Nn0pxCqrpz06sshHmGdrqOslju/XtrOh1fe52SY3vZ9PTDlN23zxSaN4mZde0AMPSBryywL3lj/Qwn4PYwXNO8aOOfVVxAYMy1aD76xuMHGLtqZP9s/6Gncd2sx9/Zf7cBjoy7CfYN464xxFIUIA47uVsq2frMI1hyshm6cAtvXwIWw6UJSiljMdecUJDhHKa33ft3n7jVQnB0HKVplN1/IK2U0UzSl3XtAJRSUyxRasLkXhq/+saSvf+KB/YzeHbh3j9AVlEBIdcUFY8exdPSNavxnw8BCIXxtffia+8Fq4WNTz9K2ZHd9Lx6/m6MPONZKBSkK7DIgm/TN+Ck8/k3UZpO+UOHzAlikyUxx4omceHuHsRZ375o4w/GIrXF6vo4ivKJuKew5WSRv7WSybrm+EMvms7IiYt4mtrZ/aPPxHt22rJwPx8jFLTIqMo/OEbvq+cYuXRr0eNMTMB0ACZxoEc06v7je+hLaP4W7diEu31xZbCNDxzAeeMOm977EMMnLqzog+jr6GP86m22f/Q9a6YEglJGb/+e7cbORRt3T+cAE3VtDF/MuMxik1XGdAAmMdP64tt4+keXPK784A6cNfcs9J5FdlkRYY8Pe242kfGVr3/zdQ0QGh5jw/37VnyttCEaCpqL0fhPv+Zn5OItQuNuXM2mwIzJwpgOwCQmxlt76DlzY8nQj8VhQ49oqMjCowR7fi4Rj5eKR47ivLBwhdC4bbx6m+L9O7DnZiXoiqllsVCQUbF15lH30vWdkwRGXYQXKcNhsr4xHYDJkvjH3Nz67AvoMdTN2XhsL6PXF8/93/DAfsZvNpK7aQOBgcSKuw2+dIptH31izYeCgHcqfy7gBFREo/fls4xeXZ06SyaZR0Y6AFMYfvUIuD1c+ZuvEIxRqCW/qhxP7+LSkLkbS1FKERoZS/gHMOL1Exx2UrSjKsFXTiELhIJg2gksHA7y9Y8QGB5n9FrGViw2SSJJdwDrQRheRJ6dI/g+9/UzM65lF5HfEJEbUWH4SRG5LSJ/ISJptZTTM+Dk8p/9BwGna8nQD0B2aSGB0fFFe9/WnCz0QICNxw8yfnWuTENiGH37OpXveXDtjAKiPxd6AkpX0RIS87/fvtcvovkDZijI5B7SaQSQycLwv4Yh9D739RbQjaF3jIg4MIri/T6GbORTGKWxfwvIBX5jFd7SkuiaTuebl7nyV18iMD4ZU+MPUPHgfoYuLx5uKD+yh/FbLcY8wJQ3Eebei1K4ahrYuIYmhBcLBU3vV9r8owGlaQycvsbwxdrkGmmScaSTA8hYYXillDsq9H73hVEl9HHgB5RSzui1fh14AnhaKfX3SqnrSqk2pdQbSqn/Ed2fMrRwhOGbTVz8P5+n+VsnifgCMTf+YrUYdf89ixdyLdhaQWhiEm3Km9QPn7uulZLDu9fMKABYNBQE0bwgXZ83LDTV1osKR3C39Sx4vsn6I50cAGS+MPy0PR8F/g/ws3PKPP8kcEIpVTPfeWqx5O4Eo3SdsD+Ad3iMgat3uPW5Fzn7e/9KzWe+jXfQicSZm7PhyG6cNxsXPUZsVlREo/y+fUzULD5RnAhctU1svG9P0u+zWiwVCrp7nDKer35XIlIHpeh5+W083YNoi2Romawv0q0URMYKw08jIvuB54A/V0o9P2f33ui5M4//GobIDMRZgG7gSj0Dl+qN4b9ufMmnBd2JblPRbeiGfmzY5yfsDaCHI1hsViw2G5YsO5ZoeMGel73EXeeneNdmWi/fWrRxKj+0C3dDG2VH9zF+9mrSex/uuha2/fTHGKltXTNlIhaqFbTY8SijtHXI5cHbN8zF3/knAoEIjrwcrA47YrVgsRufBbFYkLvynsbfbLbKKbM90N1N8+xbJwxeufN/P/qV/5MW4dt4SSsHkOHC8IhIEfAixujjD2K5NsbI5A+i1/yJGM8BYNMjh9n0SHrIBQ5fu4PFakVsC3+kivdto/ubb1J+dO+qtRPu282UH92Ns659le6YfJSujIZ6GU5t6Mx19vzMx9j46FGs2aaGQEL4f9Nj7m45rEYIaDnC8D8A/E/STBheKfW8Uuo3gANAFzMa+WjY6jlAB35qgXBOC8acxszrDiml2jDmQDISpet0vXph8QZJBJQir3oD/r7BVXMArlvNlB3bt7bmAmDJmkALoSIaY7eaGXz7WhKMMsk0VsMBNAMPzBM/X1AYHrgGHGdpMfVppoXhVwWlVAgjCyh/xuY/xZgw/gGl1OQCp34NeEZEjifZxFVlqmcIzxIlmYt3b2GypZvigzuZbFjd3vhkQxtlB3es6j2TTSw1gRZi7HoD1iwHQZdZCHe9sxoO4DMYOfv/FM2n3yciv44R7vibBc75PmCjUmowxnt8GvgREflTETkoIodE5NdFJHelxovIR0XkK9Gfe6P2/yaGMPwL0WN+FPj/MEYtUyJSOec1PQL6O+A88FbUvuMiskNEnsEY9cynK5z2tH3rJCqyuOnF+7bhutOGo6iA8Co3PBM3Gih74MCaGwVMz/Us530NnLrK6BVzhfB6J+kOQCnVgZH6uAcjB/4q8OMsIQyvlJqI4x6vAj+E4ThqMGLw78UIx6yUmcLwNRj2/xSGMPyfRY/5rxjTX88Cg/O8/iFqZxBjQvvTwH8BzgJNwD9Hr51xNY19w2O423qXrhFktaAiGqL0lMwTelq7Kdm7NQV3Ti5KvTPpHw+ezgEAvP2rspzGJE0xReEzm5Q/vFv/+HVGa5oWl4bcUkFuaSH+gREKN5UxcTkFZYpF2PrJj9LylVfXTEbQTOYKx8dCVnkxWz7yBNXvfySJlq0LMvYDlW7rAEwyCO/QGBONHUv2/ssO72bidjNFe7Yy1dK1OsbNRSm8Xf0U7dyUmvsnmeWMBIJOFxGvH3frPdnMJuuEde8AROST0Zo8873MCloLoJSi+csvEwmEljzWmmVH8wfJKisilIDa/8tl7GItFY8dW3NzAdMYTkCP6/31vnoOb9+IqR62TkmrdQApwhSGXwau1h5crUvH/vO3VuLp6geMcXJKx8q6jr9vmMKtFUz2rs3Yt1EBQgeLJRoNWvwvrvkC+AZGGa9ro+zo2lk1bRIb634EoJSaitbjme9ljo3nQY9oNH/plSUzfwDKj+xmvLYJW242ms+f8mCp8/xNKt/zwJodBcCMmkCLlImeycBblwm7J43V5CbrinXvAEzip/N7Z/HEmD1isdvQAyEKdm7GkwaFyJSm4e3sX5MZ1ncy6QAAFzVJREFUQXO5WyZ6CWenIhoT9e04bzatkmUm6YLpAEziwjvopO/U1ZjKEBTurGYq2ugX7KzG29mXbPNiYuxiDRsfPZpqM1YFpRT6dEG4xTSEL91GCwTRYxjVmawdTAdgEjNaKMytf/waYU9swiKlB3cycbsFAFuWAxVcesJ4tRi7WMOmd9+XajNWDaUvrBdgHKAYevsGzhtm3sN6wnQAJjGhdJ3b//INfENjsRUhE8FitbyjI6xUyuP/M/G09ZBbVU5W4YoXi2cM7+gFzB8Wcjd1ovmDRALB1TfOJCWYDsBkSZSu0/AfLzFW1x5zBcrSAztwRWv+5FSUERx2LnHG6jPw0mm2ff+Ta3pCeD7uhoX0e1NGe189z1iNORewXjAdgMmi6JrGnc+9wNDFxWv9z6V43zZc9YYDKNy9BU9b+iVU6YEg49fq2fy+h1NtSkqY5QiiYSH/oJOw20NwYqF6hiZrCdMBxMBSwvYi0rWEKPyZGec8IiIvici4iARFpElEPjVHvjItCE35uPmXzzJ0pS6uohO2nCw0X8DIRwdyK8vxD6bfCADA09yJaBqlB3em2pSUoZS6qx6GUvR8721cjR2pNstkFTAdQGJ4iHeE4D8U3fbwjG0fBxCRjwHnMGr/vx9DIeyPgV8G3oyKxqccPRKh9+RVrvzhvxqLveKM3m986BCjl2bU+xFB0jjMMnrmKsV7tlC0Z0uqTUkp0yOCkGsKb98IztvN5tqANY65EjgBKKVGp/8vIpuj/x2NisNPb8/F0Dx+VSn1czNO7xaRZuA68GvAX6+CyfegdJ3AxCSD52sZvHgL/8jEOwXG4iS7rIjAiKFvY7HbIBJOqwng+Rh48SRV3/8UjsJ8Rm8srm281lFK0ffaebY67Aycv8WGY3vJrSont6IMW272sj4TJumJ6QBWjw8C5cBfzd2hlLopIicxRONjdgB3Mzpmb31nXi/6H2NBUFQgPKKhhyNEfAGCkx58g04me4Zwt/UQHJ9ED7+TB76c+jD5Wyrw9rwj45C/rQpvtBREujP4vTOUPHyUHR9/mu6Xz6KH1q94uhYM4R924u8f4c61BlAKR1EeBVurjOquleXY83Kw5+dgy83Glp2FxWZFbFZDrtJiAcu9FUpjKU+Rabz1M39o+8Bzn87ID4vpAFaPvdGfC3UvG4BfiueCnS+fo+OF07wToJ/niybGL8aXUu6KfltsNqxZDiwO4yNgdTjIrSyP5/bzsvm9x+n4yit3LSnctYWJizdXfN3VYuLqbext3ez64fcz2dHPyJX6dZclNM3IuRp2/tRH6DtfazToQNDtIej2MFbfDrpCC4XQQxF0TYuuNdCMjsP0KmRUVLls7tXX1N/0LyEzdYFNB5A+CHF+K3Z+7El2fuzJJJmzPKa6BkDXEasVAEdRPuFJT0ZNNoXH3fQ+9zJ5e7ax5yc/xGT3kOEI1mE8fOxmI9uefohNT6/PTKkYycjGH8xJ4FiJV9h+PlqiPw8usP8A0BqfWelH94sn0cMzRsNptgAsHryt3fR85XuE+ofY/aPPUH58oUe3dnE3dqIFQ3h6h5Y+2CTjMB1AbMQlbL8Ab2Jk//zW3B0i8gCGqP1zKzEy1QRdU7gbu+5OEtryctC8vox1ANP4Onrp+cpL6C43u3/yQxTsqE61SatK9wunmOrsNzOC1iCmA4iN5Qjbz0Ip5cWI8X9ERL4oIveLyFYR+XEMTYLzRLWDM5XuF04R9r5TJ6hgRzXett4UWpRYPE0d9HzpuxRuLmfbR9+DWDLdtcWG5g8yfquZ4Qs1qTbFJMGYDiAGliNsv8B1XoheZyNwCiPk88fA54EPKKXSp1panIS9fpw37sxKEczfsQlPV3pUAE0ko6evMnaxhj0/+X3YC9ZHLSHn1TtogRDeodGlDzbJGMxJ4BhRSl3DSOVc6rjrLJLnppS6BHw0gaalBd0vnCTk8sxyAFaHHT0YWpO9jNDIGD1fe4XtP/5het+4RMDpSrVJSafjm2+yJzebnPJSLDZrqs0xSQBr8btpssqEJj2MXLp17wIhPXMngGNBD4bo+cpLbHn/w+RWlKbanKSjB0IMnLjMyMxV3iYZjekATFZM25e/R8jtnbUtq6yYkHNiTTsAAKXpdD/3MpueepDssvkSxdYWU+19eLoHGLvdsvTBJmmP6QBMVoSnd4jxWy339P4Ldm3G0556CchVQSl6v/4qWz70GPb8tT8n0P/GJfyDTrwDscmCmqQvpgMwWTa6ptH82W8R8d0rIJJXvRF/3/rJHVeaTu/XX2PHDz2FxWFPtTlJp/1rr+Hp7Cc06Um1KSYrwHQAJsum56UzTHUPzFscTCyy7lbO6sEQ/d85wc6PP51qU5KPptPy7Eu4GjqI+E0FsUzFdAAmy2Kqa4D+Ny7OWypa7DZUKP0rgCaDsNuD8/x1tn7f42u+hpAeCNHy7HcZv91iykhmKKYDMImbsNdPwz9+lYg3MO/+gh3VeNdL/H8efF0DBIedbHzoQKpNSTqaN0DLF15gvLZ51iJAk8zAdAAmcaEFw9z6iy/gHxlf8JjC3VuYak0/CcjVZOJqHTnlJRRsrUi1KUlH8wdp+uy3cF6tx++cSLU5JnFgOoAlEJGXReTZGI/dHpWAPJ5ks1KCFgxx688/j6dz/rj/NLacLDT//KOD9cTgK29T+fgxHIV5qTYl6aiIRvMXXqD/jYu429bv6C/TMB1AEhGRp6IOYeWF9lNMYNzNzU99hsm23sUVoUTW/AKwmFGK3m++zvYffMpQRlvjiAj9r1+k9YsvMnqtnvCUL9UmmSyB6QBMFkXpOoNvX6fmU/+Kt294STnA3OoN+PuHTAcQRQ+F6X/hLXZ+4n2pNmXV8PYOc+cfvkrbc68wXtdKxBwNpi2mA5iBiOSKyLMi4hGRYRH53Tn7HSLylyLSJyJeEbkmIvPWBxKR7cDp6K+j0ZHAs9F9HxKRcyIyISLjIvKGiKTVjKGuaYzdbuHmH32Gli++eE+dn4Uo2rudqabOVbAwcwhPTBqZQR9+V6pNWTVEhJELtdz+y/+g6d+eZ+Tybfwj42ZJ6TRj7Y9L4+NvgGeATwD9wKcwqnd+J7r/P4BdGNq9fcCHge+JyENKqbkFUnqj1/k2cAgYB6bTJPKAvwduAznA70evczBVFUGVUkS8fnwDo4xerWestpHAyETcyn1ZJYWExl1mz2IOvq4BsspLqHj4EMNX76TanFVDRBi72YTzRiPWnCxKj+6l9PBucirKyK4oxV6Qh3UdLJxLV2Q5wt9rERHJxxBs+Xml1HMztvUBLwJ/glG+ebtSqmfGeS8CA0qp/xbt9XcCDymlrovIUxijgA1KKeci987DUB17Uil1PlabJxralaf7HQF2o7FWc36PirvfFYjX0XwBwr4AEZ+f8KQX/9AYoUnPXU3KWHr6C7wRtn/sSfq++ZoZAlqAimcexzs8zkTz+s6SQinjs2azkl1SiL24AEdhHvaCfKxZdiwOuzFvIrOF5e9+Nmd9wCSlOvPtX375R5766l98K3UWLB9zBPAOuwAHcGl6g1LKIyJ10V8fwPiYNcxpILMwavvHjIjswnAojwAbMEJxFmBrPNcp2LEZpd07pDa+MABirMgVCxabBbFasdhtSZuQFJuV0bPXzcZ/EYZPXGTLj38f1R9+NzmVG1JtTlqjNB09EkGPaKiIITqP0meIzUc7N6nneqoNWC6mA3iHpdotC0YH+SEgPGdfvCtgvocRYvqV6M8I0IDhgGLGlpNF6ZE9cd46ubjrMl7WOOn0fv01dvzcD5G9oYTcTWt/ncBa56mv/kVXqm1YLmao9h3aMBr2R6c3REMzh6O/1mA4iUqlVNucV/8C15yO599VzxCRMgwB+D9TSr2llGoEClgDzjjiDxAYGE61GRlB57MvMtXcRWB4LNWmmKxjTAcQRSnlAb4A/KWIPCMih4AvEm28lVItGKLtz4rID4vIThE5LiK/KSIfX+Cy3Rijho+IyIbonMIE4AR+SUR2i8iTwL9hjAIyGk9HH2G3WR0yJpSi4/Pfxt3QRmDEdAImqcF0ALP5TYxJ2xeiP+uBszP2/xxGJtBfAU3AyxhZQvPO6EVHBp8CPg0MA/+slNKBHwOORq//L8AfABlfTct5/kaqTcgsdJ2Oz30L1+0W/GZtfZMUYGYBZTZp8/D0SITa3/grgovUCDJZABG2ffL7KTqyh7ytVam2xiR+MjbvwRwBmCQEX+8QQbMQ2PJQiu6vvMTouetMtZiL6ExWj4yfeDRJD4ZPXQE9bQYkGcngy28THBmnIhim6PCe5a/HMDGJEXMEYLJi9HAYV21Tqs1YE4xfraPjc99i4vodwl6zmJpJcjEdgMmKcd9pJ2SGfxJGcHSc5r/7T4beuICnsy/V5pisYcxJ4Mwm5Q9PKUXDpz/L5J22VJuyJsmqKGfLJ56h4MBOsstLUm2OyfxkbKzOdACZTcofnn9olNu/83fogZTUsFs35G6tovKD7yJ/11ZyNm1cF/oCGYTpAExSQsofXvPff4nxK7dTbcb6wSIU7N5G4ZE95FRtwF6Yjy0vB2tuNlaHA3HYsWZnYbFZl76WSaLIWAdgdiNMlo1/aBR3XUuqzVhf6Iqpli6mWrru2SV2G9acbBylRWRXbqBgz1ayK8vJ3VxBVlkxYjWdgslszBFAZpOyh6d0nTt/8m9MNXWkygSTGLFkZ1H++H0UH9tP3vZNZG0oNVNME0vG/jFNB5DZpOzhDb5xnq4vfdfM/c8wHGXFVH7wXRTs3U7e9mqsWXEVoDWZH9MBrFdE5AxQr5T61RTcPiUPz9PeS+NffoHIlFn4LZMpe+w+yh45St6urWSVFZmjguWTsX840wGskPXmAKbaemj5u/8kNO5e7VubJAl7UT4b3/sIBQd2krdtE/bCfNMZxEfG/rFMB7ACoiLvPzNn8w4MZa+/Bo4BbuCrwP+e1vuNOo0mjAqg/yV63uejx8Sjmr1qD08PRxh4+TSDr54j4jFXqK5VbEX5lD54iMJDu8neUEp2RRm2/FzEYq4ZXQTTAaxHRKQIeA2jMf/d6GYr0AJ8GfgHDKnJzwPPKaV+I3reGeBB4FmMctBHgc8Bf6yU+ts4TEjaw1NKofmDBJ3jjF2sxXn5FkFTvGTdYc3NJmdzBTmbK8mp2kBWWQm2vGxsebnY8nOxZjuwOOyIw45YLOt15JCxb9p0ACtkbghIRD6NUe9/73RvXkR+FvgsUKKU8kXP2QTsU9EHICK/D/w/SqnNsd575NwNNXahBqX0u4LwanpSNioErxQQ3X9XHH762LvHRLcphR4KE3JNoQeCiM1qiHNnZ63472SyhtB1Q6dX00DXUZqO0jTEZsOa5Yh+ZhxYsxzGyMFiuatNLRYxtomsjVGFgKu26TOPfe1v/luqTVkO5jqAxHMAuDQnlHMeQ+93NzC9auqymu19LwF/IiKFSqnJWG608T0PsvE9DybCZhMTk+WTkY0/mMXgkoGwcGjGHG6ZmJikDaYDWDkhZoi+Aw3AYyIy82/77uhx7TO2PSKzA6aPAgOx9v5NTExMVorpAFZOF/CwiGwXkXLgXzHi+/8qIgdE5CPAX2DoAc9Mn9kE/L2I7BORHwZ+C/i7OO8tmfYSkV/5/9u73xg7qjqM499HqrZCQaGpBUxUEkuBNiERohAbcCORxCi0CSGotLxBDVB5QdKCvGAJYkIiLY2NNY0SV2PEKH9UQgI0uKg1EqtiqvwphlWCVKgECjGFsJsfL37nZqeX3RK6996Z3nk+ycnunTl397mb7JyZOWfOqTtDW3I788DKYcudwHMkaSkwRg75XMCBw0BPB14mh4FeGxGvl/eMkyOHJoEvk7eGbgfWR8TUQD/AgEnaGRFn1J3jnTocczuzvR13As9RROwGzura/C/gE2/z1skycqiOB8jMzHwLyMysrdwA2KBtqzvAITocczuzHZT7AMzMWspXAGZmLeUGwMyspdwAWM9Juk7SnyS9ImmvpF9LWt5VR5JGJT0nab+kcUmn1ZW5StI3JIWkLZVtjcwr6XhJY+Xv/JqkxySdU9nfqNySjpB0k6SJkndC0jclzavUaVTmYeYGwPrhXPKBuLOBEfJ5h+2Sjq3UWQ9cA6wDzgReAB6UtHCwUQ8k6ZPA5UzP2dTRuLyS3g/sIB9G+hw5D9W6kq2jabk3AFcCXweWAVeX19dV6jQt8/CKMhuki0u/CnAUMAV8vrwWsAe4vlJnAfAq8NUacx5DTtcxAoyTT283Oe+3gB0H2d+43MC9wFjXtjHg3qZmHubiKwAbhIXk1eZL5fVHgSXAA50KEbEf+C151VCXbcAvIuKhru1NzXsh8Iikn0l6QdKjkq6qzDHVxNy/Bz4taRmApFPJBve+sr+JmYeWnwS2QdgMPEpOeQ35Dw7wfFe954ETB5TpAJIuJ6frvnSG3Y3LW5xETkW8iZxv6nTgO2XfFpqZ+xbyhOAxSVPkMejmiPhu2d/EzEPLDYD1laSN5Gyon4q3znPU/RCKZtjWd5JOJm+nrIyybOcsGpG34l3Azojo3D//q6SPkffUt1TqNSn3xeQyqF8E/kE2WpslTUTEDyr1mpR5aPkWkPWNpE3AJcBIRDxd2fXf8nVJ11sW89Yzv0E4C1gE/F3SpKRJ4BzgivJ9Zy3MpuTt2ENOP171ODkZITTv7ww5SeK3I+KOiNgVET8GNjLdCdzEzEPLDYD1haTN5FneSEQ80bV7gvxHP69Sfz6wEvjDwEJOuwdYQZ6NdspO4I7y/W6albdjB3By17alwL/L9037OwO8jxwQUDXF9LGoiZmHV9290C7DV8iF7l8hO/eWVMpRlTobSp3VwHLyYPscsLDu/CXfOGUUUFPzkkMk3wCuJ/svLgL2AVc2NTfwQ+BZctjqR4BVwF7g1qZmHuZSewCX4SuUJeZnKKOVOgJGydsYrwEPA8vrzl7J190ANDJvOZD+rWTaTY6vV1Nzkx3At5FXKfuBp8n+l/lNzTzMxZPBmZm1lPsAzMxayg2AmVlLuQEwM2spNwBmZi3lBsDMrKXcAJiZtZQbALMek/T9sqDMxrqzmB2MnwMw6yFJC8ipDI4mFzI5MSIm601lNjNfAZj11iry4H8fOYHZ+fXGMZudGwCz3lpLLnxzGTnVwZruCpIukfREWRN3l6QvlHVvx7vqLZK0VdJ/JL1e3vOVQXwIawevB2DWI5JOAD4DbIuIvZLuAVZL+kBEvFTqnAf8BPgVue7tInJunPnkXD6dn3U0OdvnAnJenAngs8BWSe+NiM7CL2aHzA2AWe9cSl5V/6i8HiPXQ7gY+F7ZdiM5h/+q6Mx8Ju0C/kylASAXS/8wsCIinirbtpeF4G+QtNV9CzZXvgVk1jtrgKciorP05XZyGuM1AJKOAM4A7ozK6IuI+At5hl91PvAIMCFpXqcA9wPHAaf29ZNYK/gKwKwHJJ1JHpRvKWfpHXcBV0laSs7V/25ydFC37tWuFpNz/L8xy688bk6BzXADYNYra8vXDaV0WwPcQB7QF8+w/4PAM5XXL5INxdWz/L4nDy2m2TQ/B2A2R5LeQ97q+Sdw7QxVNgHHkitg7SCHia6o9AF8nFyC8uGIOLdsGwXWAadExExXDGZz5gbAbI4krQbuBC6LiLEZ9n8N2EoukTkPeAD4JbCNHAU0So72eTwiRsp7jgH+SPbTbSLP+I8ElgErI+KC/n4qawN3ApvN3VrgVeDns+z/KflMwNqIeBD4EnAKcDd5u+ga8unhfZ03RMQ+4GzygbINZOfv7cAFwG/68imsdXwFYFYzSR8ibx/dHBE31Z3H2sMNgNkAlbmCNpJDRP8HnASsJzuBT4uIPTXGs5bxKCCzwZoClgBbyKGc/wd+B1zkg78Nmq8AzMxayp3AZmYt5QbAzKyl3ACYmbWUGwAzs5ZyA2Bm1lJuAMzMWupNWWYv61Fx2gcAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 360x720 with 30 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for Figure 1A (patients test age)\n",
    "plt.figure(dpi=380)\n",
    "fig, axes = joypy.joyplot(age_patients, column=['age'], overlap=1.0, by=\"site\", ylim='own', fill=True, figsize=(5,10), legend=False, xlabels=True, ylabels=True, \n",
    "                          colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)), alpha=0.6, linewidth=.5, linecolor='w', fade=True, x_range=[0,100])\n",
    "plt.title('Age Distribution, Patients Test Set', fontsize=18, color='black', alpha=1)\n",
    "plt.rc(\"font\", size=14)\n",
    "plt.xlabel('Age', fontsize=16, color='black', alpha=1)\n",
    "plt.ylabel('Site', fontsize=14, color='black', alpha=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0, 0.5, 'Site')"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 2280x1520 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAIJCAYAAAC1N8bRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABr9UlEQVR4nO3deZwjZ3Xo/d/pdVZ7vI8XDMYYMGDAYBYDie2AnQAJiQ03QBKCCTdcCCYhCS+EcG/AFwhwQwAHwhqCiU3AwWYJYPCGd4+XGXs2z9az9ExP75ta+1JV5/3jKY3VarVa6pZaaul8P6NPT5ceVT2llo4enXoWUVWMMcasfB2NroAxxpjasIBujDEtwgK6Mca0CAvoxhjTIiygG2NMi7CAbowxLcICeosQkXtEpL/Rx2xEPRp53HYgIh0i8gkROSginohYX+cm1bYBXUROEJG0iKiI/Emj65MnIteHdcrf0iIyKiL3icinReSZNT7ei8M36zNqud96EJEPisjVja5HpcLnVSu8Xd/o+pbxTuDjwN3Au4F31PuAVTxvWsvXrohcLSIfrPIxq0TkAyLymIhMiEhSRA6LyK9E5CNLqMul4WtoQ8WPadeBRSJyDfAvQD9wWFUva2yNnPCN/U7gfUAc6AJOBl4OvAkQ4KOq+oWix/Xg/p6ZKo93NfAd4DJVvafKx845pojcAzxDVZ9Rzb4qPF4/0K+ql1ZSl0YTkRcCLyza/MXw518XbT+gqpvqX6vqich/Am8ATtBlChglGlm/AbwH+CZwf9F9P1bVRI2Oew9VvH5FpAu4F3gVcCtwJ+59e05Y5xep6nGLrMsncB+k56hqfyWP6VrMgVrEu3Etjp8CXxKRc1X1QIPrVOhmVZ0o3CAiZwM/B/5ZRAZV9ab8faqaXY5KiUgn0KuqyeU6ZiWaqS55qrod2F64TUQ+Fd53Y7nHFj7P9athxTYCkVoHcxFZDeRU1Su+r/j5CQPne4BNCz13y+z3ccH8S6pa/CGNiJy1rLVR1ba7AS8BFPhT4CQgA3xqnrKdwP8BDgNp3Bv0rcAnwn08o6j86cDXgCNAFhjCtSpOrbBu14f7PXme+58N+MD+ou334FqvhdueD/wQGAzPcQT3IfbG8P78ORTfrg/vvzr8/XXhc3AAyAFXlznmPbhvPc/EfVjOAFHgx8Azi8rm939pifOcte956nns+S9Vl3D7bwJ3hPVIAY8D757veMAZwPeBaSAB3AY8u4avvf4Sz9lCz/MVwE3AwfAcIsDtwCVLOQ9gVfga2Askw/3uAP4pvP/Scq+PsMx5wA3AMO713g/8E7B2ntf1KcC/A6NAQNH7p8zzln+Ori7aLrhvs1vCc4jhXuOXldjHnwKPhueZCJ/P7wGnFPxtSp3vnNdnwT7/Lizzu1W8BhaMEQXPV/HtE+X23a4t9Hfj/qC3qGpCRH4BvFNE/kFVg6KyXwHei3uRfB73gvwqcKh4p2ELehPQA3wb98Z8Fu4Fd5mIXKSqM0upuKruE5H7gUtE5DmqurdUORE5Cfh1+OvXcR9IJwMXAa8AfgH8CPfieg/wj8DusHzxN5XPA93At3DBueQxC6zFPV+PAh/Fven/AniliFyoqiOVne0s78ClKyaATxdsH5/vASLye7gPkhHgn3Fv9rcB/yYiz1TVj5Wo933Aw8Df4742/xXwUxF5gar6i6h3NeZ7nq8GTgT+AzgKnAn8T+AuEblMVYtTEJWex78Cfxbu94u4xst5wG+F9+/GPe8fw7128i3QAwAi8lLcaywCfAPXcHgR8JfAq0XkElXNFdXtDtzf45NhPeNVPD+l3AC8HbgZlzrsBf4YuENErlLV/w7r+ifAd3Hpmn/AfTCeDbweOBX3Ovog8Jmic80/D/PJv1f+RETuUtVUucpWESO+ARwHXBnWJf9tffucnRaqVctjpdxwrZIpZrcyfh/36ff6orLPD7f/Cugo2H4BrpU8q4WOa5GOAWcV7eciwGOBT9eiT+aSLfSwzL+EZX6vYNs9zG7Rviks84cLHO9q5m8l5+/bC6wpcf+sYxZsU9xX0MLtV4bbv17hsUvtux+4Z57zKD7/TtyHWAQ4o2B7D/Bg+Pc7r0S9P1y03/8v3P7bNXr99Zc4r4We57Ultp2Ge5PfOs/zv+B5hO+DWyuo85y/Rbh9G7AHWD/P3/rqEq/rGxf5vF1dYp/547ynqGwXsBnX6MpfJ/wR7kOyazHnWqZ8D+7bgYavtZ/jvmW9DuguUb7iGME8WYByt3bs5XIVcALu0zrvF7gn+c+Kyv5u+PM6LWi5q+oO3FfYY0Tk+LD8fwNpETk5f8O9iffjvjrXQjT8We5iS/6bwOtFZFEXZQp8TavP5X628BdV/TEuYP3BEutSqZfiWmD/rqpDBfXI4lICHbgP8kIB7sOyUP5bznl1qmehks+zFlzwE5F14bcvH3gE922rWKXnMQM8X0ReUG1FReQC3AXf/wR6i17vD+C+AZd6vX++2mOV8Se4b10/KTr+BuBnwDN46nxngDXAG0VEalWB8PV0CfC/cQ2INwD/F/dN5KiI/HG+7HLEiHYM6O/Gfb06KiLPEpFn4f7wdwBvCp/cvHPCn6VSDMXbnoN7PvP7L749B9eqqoV8gI7OV0BV78V9lb4amBCRB0XkWhF53iKOt6/K8hEtnVbZDZwmImsXUYdq5f92T5a4b2f4s7gL6JCqpou2TYY/T6pVxcoo+TyLyLki8gMRmcYFsAnca+oNuMZJsUrP44Ph43eIyAER+TcR+X0RqSQunB/+vJa5r/UxXDql1Ou92tfSQnVYj8vHF9fhE2GZfB3+ERdwfwKMi8gtIvI/RWT9UiuhqnFV/bSqvgj3YXI5Lp11AvAfIvLqsGjdY0Rb5dBF5BzgMtyFlPleWH8CfCn/kGp2H/68kdmt/0Jl82tVyHeFK5vLVtV3isg/4d74rwH+FviYiHxQVb9SxfGqbZ3rPNuLn8/5ysHSX5uLaYWVy5HXrFVXxpznWUTW4fLha3Gvyx24oB7grk/8VvFjqPA8VPWnYR/uN+Bama/DBZv7ReR1Wr7nUH4//4xLSZYyXbxhEd/0yhFcIPyjMmV2hsftCxszrw1vl+CuVVwrIr+pNerhpqpRXNfFO0VkG+5i57twab66x4i2Cui4J1aAP8flu4p9CveC/lL4e/7C53NwV8QLPafo9/24ANWjqnfWoK4licizcf1b+1R1wdaOqu7Evaj/XzhA4RHgsyLyr+oSdeWC6mKdICIbS7TSnwuMFaQQpsKfJ5bYxzm4nh6Fqqlr/g36/BL35b+lFP9Nm9FrcT1W/kxVv1N4R74L5FKo6hQuwNwYpiI+C3wYl476YZmH9oU//Xq+3hfQh+v19bCqLnhxVd0YhVvDGyLyBly69W+A9+eL1bB+D4c/zwx/Vhsjqq5L26Rcwq+RVwM7VPXfVPXm4huum9cLRORl4cN+Fv78q8KvoWH+8LcL96+qk7gXylUi8soSxxcROWWJ53A27k3Wget5UK7sicVfnVU1gvuQWoO7OAxP9TIoFVSX4u+K6nMl7kPwJwWb8x9Irysq+3ZcECsWp/J6Po7rFvYuEdlYsO9unrpA+NMK99VI+db2rG8IInIFpfPnFRGRTikagRh+wD8R/rrQ8/wErqHwXikxellEukSk1q+pYv+Bey98ptSdInJawf9PLlHk8fBnYT3juAZJRd/IxI20Pn2eu/8g/LkLFhUjqn5vtlML/QrgabiuQvO5BZd7ezfwmKo+KSLfxHXru1NEfozrtvh+3Av6pcz+FH0f7oLQfSLyH2GZDlyu9vdxL8BPVFjft4hIfqToSTw1UrQD+KCqlms9getz+9dhnffjWruX4D6I/kuf6l71GO7r+8dE5ATcxaxDqvpIhfUsZQL3oj0D12sg321xlILzV9W9InIn8L/CN9BW4MW43gv7cV34Cj0MvFtEPonLxwfAz7TEKEFV9cWNBv4x8Fj4d4zhxhC8EvhHVe0rflylxI1afbqq1jsV8wBht8swPXIU9xy9A5d+uWCR+10PDIvIf+Nep2O4b0Xvw6VKflbmsaiqisg7cBdbt4vIv+OuV6zBdcO7CpcSun6R9VuQqt4sIt8BrhGRl+B6mEwAZwEXh/XIf9jcLiIzuPTVAC7XfTXu/XtDwW4fxl24/IqIPIT7QP21qo7NU43XAf8oIrfj0iojwPG4PvxvwvXPLxzVXU2MyLfwPyci38ONg9kZfuue90lpixuuZavABQuU24tLx6wOf+/EDb89ghucsx34Q9zVeqVowBCuD+s/4VqfaZ4arHEd8LwK6nk9swcSZHBvtvtxKaFnzvO4e5jdbe/FuDzdflyQjuK6mf0tbgRi4WPfiWtFZCk9sOjSSo5ZuI2nBhZFcYH0p8CzSuxjY/i3ieJaJL/EXewqte9TcR+6U7hgfqxLV6ny4fZLcBe8o+Hf4wngf1ZyLuH2Z1BiQAcucAwu4nXYX+K8FnqeX4jLU+cvit6DS7tdT9iwrvY8cN3tPoMbKzAZvs76cYN+zqtkn+F9T8eNc+gPXz+TuG58nwGeVvy6XsL7N/8cXV3ivnfg3h/5v3E/rpviWwvK/DlP9YHP4gLtrRQNQMJdq/g2rvGR75pc8u9S8Lx+DDfuYiB8HhO4D7d/BjaWeEzFMQKX/jqIa5DNeR0W39p2LpelEpGf4S5IHaf1H3Bimoi4OVq2USKvbUwjtU0OfbHEzTdRvO2FuBFmv7Zg3pZ+GxfQ5+upYExDWAt9ASLyXlw++he4LlLPxeXUO4BXq+oTZR5ujDHLxgL6AkTk5bh5J16Mu9ocw13UuFZVtzSwasYYM4sFdGOMaRGWQzfGmBbRTv3QG8G+/hjT+pZjWoiKWAvdGGNahAV0Y4xpERbQjTGmRVhAN8aYFmEB3RhjWoT1cjE14wfKbU9GiGcCXnTWGp6zcc6sCcaYOrKAbmpCVfnp1imeHE7R29WBFwSceUIP63o7G101Y9qGpVxMTewbTbFt0AVzgFg64MG+eZc8NcbUgQV0s2RZL+DHW6dZ2/PUyymW9plK+djUEsYsHwvoZsl+vWcGL5gduAOFdC5gcLrcOsPGmFqygG6WJJLI8fChOD2dc19KAmwfrOUi78aYcuyiqFk0VeXH26ZZ1V26XRBLB6zuCZa5Vsa0L2uhm0U7OJGhfzJLxzwLpKdyATk/wA8sj27McrCAbhbF95WfbJ2adSG0lKyvjEUtj27McrCAbhZl06EYiezC6ZRuEfaOZZahRsYYC+imaqmcz917o6zqWvjlk/WViVhuGWpljLGAbqp21+4onfPkzYslsj4533LoxiwHC+imKomMz5YjCbo6Kwvo6ZziBUpgF0aNqTsL6KYq9/VF6a4wmOd5vjKd8utUI2NMngV0U7GcH/DEQIKujuqXUByMWE8XY+rNArqp2N6R9KLy4V2dwuFJ6+liTL1ZQDcVe6Q/xuru6qfDzXhKqoIujsaYpbGAbiqSyvocnV5c98NUNpgzeZcxpvYsoJuK7B9PL/qx6VxAoGpT6RpTZxbQTUV2DqVYPc8kXAtRIOdDPGNpF2PqyQK6WVAQKP0TS7uoGQQB43EbMWpMPVlANwuaSuZI5pbWuu7u6mBgyrouGlNPFtDNgvaPZSqat6UcDZTJuFejGhljSrGAbhbUP5mpenRosbSn5ALLoRtTTxbQTVmqykAN1gVN5wI8m6TLmLqygG7KSmYDYpmlz8OS8ZRAsa6LxtSRBXRT1nA06/od1oCv1nXRmHqygG7KOjKVZc0Cy8xVKgiUSeu6aEzdWEA3ZY1E518EulpdHcLQjHVdNKZeLKCbsoYjtWtRi8Bo1FroxtSLBXQzr3QuIFbDnHcmZ5N0GVNPFtDNvKaSHn4NuxqmPcWza6LG1I0FdDOv4ZksvV21yZ+Da/H71kI3pm4soJt5jUZz9CxxyH+hQMEPXGA3xtSeBXQzr3rMveIHSsQWjDamLiygm3mNxWof0AUYjVrXRWPqwQK6Kcn1cKl9S7qrUxiKWEA3ph4soJuSoimvLpNp5XwlYcP/jakLC+impLFYjp4lTplbSjoX4NkEXcbUhQV0U9J43Ktpl8W8dC7A4rkx9WEB3ZQUSXpIjeZwKeQFLu0SWH90Y2rOAropaSJRv+Xi/EDrcsHVmHZnAd3MEQTKRB2nuVW19UWNqQcL6GaOZC4gnatfSqSzQxi0aXSNqTkL6GaOmZRf1xx3EMCEtdCNqTkL6GaO8ViO3hrO4VIs42lNZ3E0xjgW0M0cUwmP7jr0Qc9L5wJ867toTM1ZQDdzTNWpy2Je1lc8X1EL6sbUlAV0M8dy5LdzAaTqeOHVmHZkAd3MoqpMJ+q/7qcXKJGkXRg1ppYsoJtZktmAtFf/lnOX2KyLxtSaBXQzSzRd3y6LT1FGYvX/JmBMO7GAbmYZj9d22bn5ZH0lY0vRGVNTFtDNLGNRry7T5hZL5wI8m6DLmJqygG5mma5zl8W8TE4JrIFuTE1ZQDezTNZxUq5CSph28SyqG1MrFtDNMarKVHL5prX1AyWyjMczptVZQDfHpHIBmWXospgnwLDNumhMzVhAN8dE6zzLYrHODuuLbkwtWUA3x4zF67Mw9HyyvpLKWg7dmFqxgG6OGZnJ0VOHhaHnk84F5KzrojE1YwHdHDOdWJ4ui3npXIDFc2NqxwK6OWZsmbos5gUKOeu6aEzNdDW6AqY5BGEXwlqtVNTdKZy2vpueLjk2s2I0PTdw+4EynfTZeJy1LYxZKgvoBoBE1g3F763Bvs46oYdMJsf924YZn8nQKcI5p63h3DPWEw+EXPBUWkcEhiIZNh7XXYMjG9PeLKAbwA35r8UCQued2stjeybZcyRKZ4fQIR0ocHA0xcGRJK94zgl09HQTSCfgcn7DMzbrojG1YN9zDQBDkSyrlphuedYpvdy7bYy9A1G6OjvmXmAV4eG902g6S5Bzi1tkfCVlsy4aUxMW0A0AYzGPriX0QT9zQw9P7J9mYDRBZ8f8LysRYfP+CKvx8DyPVDbAt64uxtSEBXQDwHhs8SM21/V2EE9k2HUoQmfnwi8pRXj8wAyrA590zgK6MbViAd2gqowvYWHo04/r4q4tIxUF87xUThmcTJFNpsn5buk7Y8zSWEA3pHIBqdziWslnndDDAzsnFjVA6MhEmjWdQiyVZWoZFqY2ptVZQDdMxT10ERG5qwMCz6d/OE5Hx+Ly77uPxvCSWQambJIuY5bKArphYDrDqu7qXwpPO6GHe7aNLjqYg5vh0fd9dh+NLnofxhjHArphaCZXdQ+Xnk4hlsgxHc0uef6XPUfjJOJZtBYd4Y1pYxbQDUOLWGTizBO6uX/HWFUXQucTSwfkvIC+odiS92VMO7OA3uY8382lUo2uDognckRrdCEzUOgbSrB7wAK6MUthAb3NRZI5sn51qY4zNvTwyO6JJeXOiyWyPjMJj8NjiZrt05h2YwG9zR2azLKqikUtBFAvYCySqfnc6UcmUmw9OFPTfRrTTiygt7nDkxl6qsiDn3ZcN1v6puisYescoEOEoeks6axPxPqkG7MoFtDb3MB0pqrya7qFQyPxmrfOA1WyXkAknuORPZM13bcx7cICehtLZHwiqcoviK7t6aB/OIZQ+2XqvEAJFCZiWWIpD8+3qQCMqZYF9DZ2ZCpTVWg+7bhuth6M1PRiaJ4XQP7SbDIT8MT+6Zofw5hWZwG9je0cTrG6whGiHQKJZJZkevGTeJWlEARuSbqJaJqjk+n6HMeYFmYBvU2pKofGK++pcupx3Ww9ECk71/mS64SSzgWksgGZnM9EtLr8vjHtzpaga1PjsRyxjM/63s6Kyq/pFgbGknVJt+QJEE/7rO3tJJryeWzfFK+/6PS6Ha8dqCp9g3Ee2TfF8FSGTlHOOmUN556+lueffRyrey0EtBL7a7apxw4nWFNhuqW3SxgaT6Io1OGCaJ4C6XAa34lohpPW9xAEWtcPkVYWS+a48e4jDE2lWdXjPrhzwP7hBHuOxth9JMZFzz6B8592XGMramrGAnob8gNl51Cq4r7kG4/r5o7HxuuaboF8TxcX0FUhlfXYOxizgLMIo5E03/zlIUQ4FswLdXV2cGQiRSSRZSaR4xXPObHmXVHN8rMcehs6MJ6uboWgIGBqCUvUVcoLmLVQxkwixx6b36Vq45EMX7/1ICIsGKRdamuaTbunlql2pp4soLcZVeXO3TOs6a6sNbaut4ODQ/GajwwtScFXCMKoHkl4eL6SyVU3eVg7S6Y9vvGrQ3R2SMUt7mjKY+fhGesq2gIsoLeZA+MZRmNexW/2U9Z38eSR6LJ9HVdVUrmnvj2ksj5bD0aW5dgrnR8o19/Vj6pW/fcaj2bZOxhncDJZp9qZ5WA59DaS8wN+9MQUa3sq/xzPZnyS6RxdnZX1hlkqAWJhTxeAqViW4Snrk16J+3ZOMDqdpWcRq08BHBpNsLq3k1OPX0V3l7X1ViL7q7UJVeWWx6fIVjGk/sQ1new5Eq37xdBChT1dwE1PkMkFxOs1oKlFTEQz3LN9fNHBHNz1i4HxJPfvnKhhzcxysoDeJu7eF2XvaLqqmRVPWNtF32BsWXs/eIHiFy1Fl8oGbOmz/O58gkD5/r0DdFcxDfJ8ZpIeozMZhiYs9bISWUBvA4/2x7mvL1bxMP+8RDJL1lveC5Ke77osUhDTJ6OZZells1JtPzTDxEzt5qcfGE+yeX/E1nhdgSygt7i9Iylu3RmpeBBR3olru9g3EFvWdEteEECuYBWldC4gnfOJJm2e9GJZL+DWzSP0dNfuGkfOV6bjObYeiNRsn2Z5WEBvYVOJHD/YPFF1MAc4YXUnfUPLm27JU5REdvY3g2wu4LE+6ytd7L6d42S92k81PDSV4vB40qYxXmEsoLco31dueHiCVYvsrZBMZcnVIVBUKpqeHdAnollm4nZhtFAq4/Hgrqm69EgJ1D3nD++xD9GVxAJ6i9p0KEY07S+qhX3Cmk72NijdAuGF0WB2/jadC8jkAluersCvt43XcWYdGJvJMB7JNPSD3VTHAnoLSmV97toTpXeRLbcT1nSxv0HpFnAXRoMSMSTj+WzeZy1GcK3zx/qm6eys42RpClPxLJt225KAK4UF9BZ0154ZupfwRk+lsnXJy1bDCyDnzW6lT0SzRJOWdgG4Z8c4HcvwgTs6k2EilrVc+gphAb3FJDI+W44k6Vrk3CsbVneybzDesHTLU5RYUR49kwvIeJZ2SWfdhFr1bJ3nqbpJ0h7da9+MVoJGv2tNjd3fF1tS6/zEtV3sX+bBRKWoQiwztw98JuezZX97B5dH9kyxnO3l0UiGkUjm2KRppnlZQG8hGS/gscPxRbfOAdIZj3Q1U+vWSc6fe2EUwrRLon1nX8z5AQ/unqS7ihG/S+UHSjzlsf1QZNmOaRbHAnoL2dIfX1Kvh+NXd7J/MEbXMnyVX0ig4fzoRUE9kwtI5zxibTrI6Mn+KOns8n+gjc1k6B+z6QCanQX0FuEHyoMHY/QsoU/ySWu76BtcvqlyF6Kqc/qjg+vC+Hgbzt2tqtyzY5zeEisQ1VsmF5DM+BweSyz7sU3lLKC3iL0jKZLZpeU4s1mfZIkA2iiqMJOaW5/JaJbpNrwwemQsyWQD57QZn8mw/dBMw45vFmYBvQWoKr/eN1P15FuFjlvVycGhGF3LmJtdSHaePHomF5DOtt+UundtG6N3CX/jpYqnfZIZm1OnmTXPu9cs2pGpLOOxpbWsT1rbyd4m6N1SSNWNGs3k5l6kTWW9tpo8aiaRpX802fC/TzSZs4FGTcwCegu4bVek4jVC5+P7AYlU87V4gwAmSszhMhXLMRnNNKBGjfHAk5NNsYrQeDRLPOXZQKMm1fhXiFmSgekMg5Hsklpua3s6ODySWJaRh9XK+krGC2bNjw7uwmgqF5Aq0Ve91eQ8t65qx3Is1L0AVUhmfLbZOq9NyQL6Cqaq/HTb9KKmxy10yvpudg/MNEXAKKbq+qQXjxoFF1ja4SLdriOxkmmnRhmLZhgYt3Vem9GiI4GI/FxErq9hXUyVth5NMBn3lpxX1SAglmi+dEte1lOmSszhMh3LMjbT2oFFVbl/10RDuirOJ50NSOU8Rqdb+7lfiZalhS4il4jIFhFJi8hBEXlviTJvFpFdIpIJf15ZosxfiMihcD9bROQ3iu6/SkRuE5FxEVERubTEPt4jIneLSCQs84wSZfrD+wpvn13Sk1Bj8bTHz7cvrWcLwOruDgbHEw2/2FZOoC7FEivK8adzAYmM35CBNstlfCbDyFTzXSuIxHNstgVHmk7dA7qInAPcCjwEXAh8BviyiLy5oMzFwE3A94AXhz9/KCKvKCjzVuA64B/D/TwE/FJEzi443Npw+9+UqdIa4HbgEwtU/f8CpxfcPrVA+WWT9QK+/eA4tejBdur6LnYdjjZluqVQOhcwEffmjBxNZnx29rdu2uWBJydZ1dN8mdGpeI5UNmj4rJxmtopeKSKyRkSuF5G4iIyKyN8X3X+ViGwXkZSITInIvSJyWnj3e4EhVf2Aqu5W1W8B3wU+VLCLDwJ3q+qnwzKfBu4Jt+f9DXC9qn4rLPMBYBh4X76Aqt6gqtcCv5zvXFT1S6r6GeCBBU47pqojBbf4AuWXRTzt8fX7RolngpoEYcGlLpqfEE0HHJ3OzuqbPhVzE0e1okzOZ+eR5hm5WyyW8tjShiN2m1mlH/2fBy4H3gy8FtdC/k0AEdkI/AAXpM8Pt99Q8NiLcS3iQrcBF4lI9wJlXhUeowd4aYkyt+fL1MGHRGRSRLaKyMfCOjREECiT8Sy37pjmC3eNkMwES5pRMa+3SxiZXFnzc0wmPPaPpZmMe/i+kskpyYxPJtd6aZcd/TMlB1Y1i/FohtHp1vwwXam6FiogIuuAdwN/pqq3hdveBRwNi5wBdAM3q+rhcNvOgl1sBO4s2u1oeOyTca3sjeG24jIbw/+fDHTOU+Z1C53DIvwL8AQwCbwc+CxwDvA/q9nJV+8dYXTmqVF1iuu1ke+Dl/+v4hZGJn9/+B72VImnlXQuoLMT1vd20lnD1Mi5p/Ty0K5psgGllwhqUhnPZyLu4QVKV4eQ8GDT4QOsX7+KwtnJJPylSRu4ZT3rlF5++fAgqSa/PuDTyab/Osjq1d0LF25R/3rv2BvHP//SXzS6HlBBQAfOBXqATfkNqhoXkR3hr9twAXuniNwe/v9mVR0v2EdxM0NKbC9VpnhbJWWWTFW/UPDrdhGJAjeJyEdUteJhcn9xycaFCzVQJuczdnSKrlN7G12VJVnV3cFzzlrP77789EZXpWZGplPs2dfN6t7Vja5KWcf1wIs3ruH1L2vu13o9feL3ntYUwRwqS7mUbd+oqg9cEd6241rzfSLyorDICE+1tPNOBTxcC7hcmXyLfALwFyhTT4+EP5+1DMdaNvuG4k39lb5S6XAmwFa6QHffzglWNVFXxflEkh7JrG8jR5tEJQF9P5ADXpnfICJrgRfkf1dnU3hB8mXAEPDW8O5NzE2LXA5sVtVcQZnLS5R5KNx/FthSrkydvTj8ObwMx1o2j++fbqr+zUuRSHvsPNwavV0yOZ89R+NNezG02Ewi11bz6jSzBVMuYXrl28DnRGQcF6z/AZfTRkReiQvYt+FayxcCTwN2hbv4OnCNiHwJ+AbwauBq4O0Fh7kOuE9EPgr8GLgSuAx4TUGZLwA3iMijwIO43jNnhPsnrMuJwNnAhnDTs0QkAoyo6khYZiOupf/ssMzzRGQDcERVp8IulK8E7gZmcB9QXwT+W1WPLPR8rRTZnE//aKopFrOohalYlqHJNC85t9E1Wbpth9zF0FpeL6mn8WiGYbs42hQqyaGD62K4Fhdsk8CXw9/BBb1XAx/ABdIB4JOqeiOAqh4SkTfgguL7cB8If6mqt+R3rqoPicjbcH29rwUOAG9V1UcKytwkIicB/xvXL3wn8IaCC7EAbwK+U/D7t8Kf1/JUv/P3Ah8vKJPPf70LuB7I4L5dfBzoBQ6H+/l/Cz5LK8jBkQSeH9DV2Rot9HzaJZPz6e1eueekqjy0e2pJC5UsN89XYqkc4zNpTjl+VaOr09ZEdeXnUJtY0z65N959hMMttqTYGSeu4oKnH8dFzz6x0VVZtJHpFF/52UFW966sD6X1q7s4/6z1XP6S0xYu3Hqa5qvUymkGmJrJeT6HRlpvKbF82mUlu3fHRFOODF1ILOURs2l1G27lvXLMkh0cTrZUj5C8lT6lbibns3dw5VwMLTYVy7LrSLTR1WhrFtDb0KN9Uw1dyqyeUhmPJ1boXN1bDzb3yNCFjEczHJ1INboaba0139VmXtmcS7es1FbgQibjWcYiKy/toqo8tGtiRV0MLRYoRBI5IvGVMDdQa1q5r54Wl87UZ37yA8MJcv7KbQUuJJ11C0jHVthCxkNTKSZjK6vOpYxG0iv2G1IrsIDepB7bPlyXr9+P7p1aESMQlyKR9tjct7JmAbx3+8q8GFosmQmIxHMrOnW0kq38V1CLyuZ8stnattIzOZ/+FuuqWMp4NEt0BbXQUxmfvuGVezG02PhMhj0DdnG0ESygNynfD2qedtl3NNYWLSc/UBIZf8UskfZY33TzDlhYhIlYhoFxuzjaCBbQm5TvK+kad797dF/rzN2ykEgixxMrYH4RP1Ae2T1Jd2frvBVVhclYxi6ONkDrvIpaTM4PyNZw0YZUxmurVtN0PEcy489Zsq7ZHBqJE0037wLdizUynWHrodaYLG0lsYDepFzKpXYBfXv/TBMNUF4eiYzH7iYf6PLrbeMtOSYgnQuYjmZt5Ogya71XUotwKZfatdwe2ztN9wru47wYk9EsB5p4ioOpmBuI0yoXQ4uNzWR40i6OLqv2eoevEEHgFqTL5GoT0CPxLKMz7Te9aSLjk876xJs0pXHP9nG6W7B1njcZzzLYRmm+ZtC6r6YVLAgUAbI1aqE/um+q7VrneZFEjs37phpdjTnSWZ8dh2N0tGjrHNz6uFOx7IrpbdQK2vNd3uQCVTpESGeXnn8MAuWJAzMrZrGEWpuIZZlO5Gi2aaIf3TvVdHWqh9FIhh39dnF0uVhAb0KBKgg16eUyOJkilmrOlMNyUIV40mPf0Vijq3KM7wc8uHuyLb41pXMB0/Ec6ezKnAFzpWn9V9QKpIGiquRqkEN/YFdrDClfivFohr2DzXNxdOfhGVI1+Pa1UkzEsmzpa760Vytq73d6k1JVfD9Ych/qTM5n32DrzqxYqVQ2IJX1iCQaPx1AECh3bW3NrorzmY5nGY9mm35MQCton1fVCuIHbp3GpXYc33FoZc+vXUsT0SyP7plsdDXoG44z3QQfLMtJFaIJj93WhbHuLKA3IVXFX+KKQvnFhtupJVhOJJEjlvbI1HD0bbVUldu3jLb8bJeljM6kOTDcPGmvVmXv9iYUqJJb4gi7sZkMY23Y97ycyWiWzXsbl8s9OJpo279J1lPiaY+hSeuXXk8W0JuQBornBSwl9X3fjvG2vxhabCKWZaxBw9FVlV88MtKWrfO8sUjGFr+oM3vHN6EgUDw/WPSUqpmcz66B1plfu1ZUYTqW4/H9kWU/9v7hOBOx9myd5yUyPvFUc1ycblUW0JtQEOBa6Iu8KPr4/ojry27mGJlJMzSVXtYeF0Gg/PyRYXq727d1njc2k+GRJrg43aosoDchPwjCXi7VCwLlgSdX9mLD9aQKE9E0W5axlb79UITpePsO7ioUTXrEUh6JJp1fZ6Wzd30TCgIlCBaXQz84EifaxiNDKzE2k2VwMrksufScF/DLLaP02vWMY8ZmMjy821rp9WCvsiYUBErg66K6od/xxFhbX3irhCoMT6V5eE/9e7zctXWUTK59RoVWYjqeI5Kw6QDqwQJ6E/IDxQsCOqqM6KMRlx82C5uK5xiNpOv61X86nmXTnvad6bKckUiGTdZKrzl7pTWhIAgIfKpuod+2ZdQGElXh8GiKB3fVJ6gEgfL9ewYsmM8jksgxFcuSqvG6ue3OXm1NKAjA1+py6JF4lv1D1lWxGqmcz8h0igPD8Zrv+9G9U4xGMvb3KGM4kubB3RONrkZLsYDehAJ1Oddqeh7+astIS69+Uy8DEyl2Ho7WdEqAqWiGXz0+So/9PcqaSXhE4jliSeuXXiv2imtCga8IQqBa0SIIM4kcuwZae/Wb+hH6BmM88ORETRacyHkB37nzMF2d9reoxMBEik3LcHG6XVhAb0J+4Hq4qLoAsZBfbhmhu9P+lIuV8ZR9g3G2HljayjpBoNx03wCxtGeplgolMz6TUVumrlYsCjShIN9jUZXcAqmAqViGXUeidLTpEnO1MhXPsa0/wv6hxeXTVZVbHxth/1DCPlyrNDCRZHPfdFssyVdv9sprQkG+hQ5kF+jD/NOHh21UaI0MTqZ5aNck/aPVTfOqqvxqyyiP9U3bdYxFyPnK+EyWXUdsvvSlsldfEwqCMIceKDlv/hb60Ykkh0ZsRaJaOjKR5I4nRtk7UNkapDkv4Pv3DvDw3km7CLoEQ9MpDgwnKkoxmvnZK7AJBapImEOfr4UeBMotDwxZEKkxEWFsJst/PzzE3dvG5x14pKocHInzxR/3sW8oTk+Xjc5dClU4NJLgIevGuCRdja6AmSs/E6AqpNOlu3Rt3j/NVCxLj80RUhfZQLl/1wSPH5jmBU8/jjNPXs0J67rJecrhsQTbD0UZn8nQ29NpOfMaiWd8hqbSDE0mOeOkNY2uzopkAb0J5QO6iBIv0Uc3lfH41ZZRC+Z11tkhpHMBj/VN89DuKbJ+QIcIvd0ddHYIvTZnTs31jyY5bvUMp25YRZd9UFbNnrEmFASKiCAixJPZWfepKjc/ONigmrUnEaGnu4N1q7pY09tJp/UoqptAoW8obn3TF8kCehPyw+5bHSIkiqbC3X0kxv6hhAUV07ISGZ9DI3EOjtR+SoZWZwG9CWnB4hap9FMt9ETa45aHBu1CqGl5R8ZTbD84Q9wWwqiKRYYmlF8+zvMDNy86Lg1zw12HG1ktY5aNiLD7aIwHn5xwI6dNRSygN6H8RdGcFxwL7rdtGWV4OmMjQk3bCBR29Ed5sEbz7LQDC+hNKP/izXkBKOzon7GBK6YtZbyAbYcibO6bbnRVVgSLEE0o/xXT8wLiGY9bHhikx1aMN20qmvLZ3DfNjkORRlel6VlAb0L5lEsy7TEwnrL5QUzbm4rn2LR7ip39kUZXpalZpGhCgSqZXED/SJzuLsuZGwMwHstyz44Jth6INLoqTcsCehOKJXIcHkuQ9QJ6bLScMcfMJD1+vX2cTbsnj32TNU+xaNFEVJUn9k/RF64Nms0FdHd32BV+Ywqksj53bR3jjq1j806e1q5sLpcmkcn5/Nf9R5mO58gnWXKeT3dXB0EuoNNm8zPmGOkQHtk7xehUmlc9/0Sedfr6RlepKSy6hS4iPxeR62tYl7akquw6PMPnb+nj0EiS3u4O8gNFVUFU7KulMSV0dggDkyn+675Bbn98hJlEduEHtbhlSbmIyCUiskVE0iJyUETeW6LMm0Vkl4hkwp9XlijzFyJyKNzPFhH5jYL7ukXkcyKyXUQSIjIsIv8pImcXlDlRRL4sIntEJCUiAyLyNRE5qaDMM0Tk22E9U+HPz4jI6lo+J6rK4GSKr/3iID+4fxAEOjuFDhEC/6k50BWd9bsxZjYFHtk3zb/f3s/9O8eJlZihtF3UPeUiIucAtwL/DvwJ8BrgqyIyrqq3hGUuBm4CPg78CLgK+KGIvFpVHwnLvBW4DvgL4IHw5y9F5HmqegRYA7wE+DSwFTge+GfgVyLyQlX1gDOAM4EPA7vC/38V+D5wRVjl5wKdwPuAPuB84JvAScB7lvp8+H7A/uEEd20bY3gqTW93B70F3RJFmDXUWVXxLaAbU1aHCMlswN07Jti0Z4oXn3s8zz/7eM44cVVbregllVxwE5E1uMD3FiCBC6yvAiZU9WoRuQr4BHAekAJ2AH+oqqMi8jngKlU9r2B//wY8X1UvDn+/CThRVS8vKHMnMK6qbw9/fwTYrqp/XlCmD7hZVT86T72fBzwJvFBVd8xT5g3Az4ENqlpyUUMR+Qvgk6p6Uqn7y1Bwc7IMTaXY0hdh90CMdNafdy7t009YxaG+EY4Ou6q8/ILTODLjse74tVUe2pj2papkcwFnn7qG55y5jnNPX8epG3rrNcd603xiVNpC/zxwOfBmYBDXkv5N4EcishH4AfBR4BZgHfDKgsdeDNxetL/bgHeKSLeq5sIyXy5R5hoAEekBXhrWo9DtuA+W+RwX/iw3bvg4IAMkFyhT9djjX28d4+BIguHpNNlcQG9PByLlF0YQeWpyLnCvFG+BhaKNMbPl32ejkQzD02lue3yU49d0c87GtZy2oZeNJ67ilON6Wb+6i84W6hq8YEAXkXXAu4E/U9Xbwm3vAo6GRc4AunEt5fx0gDsLdrERuLNot6PhsU8GhsMyoyXKbAz/fzIuDVKqzOvmqXcPLuXyM1U9Ok+ZDcAngW+FKZlSZc4GPgT8Y6n7y7nvyQm6uzro6BBW9VbWS0VE0MKUC4Lvz79QtDGmvA4RVvd2kfWVvYNx9hyNkckFqMKqng5OXNvNhvU9HL+mm7Wru1jV3cGa3i5W93ayuqeD3q5OujqFzg6ho1PoFKGjAzrE7fsVf3NPx+brfqspWl2VtNDPBXqATfkNqhoXkXwKYxsuYO8UkdvD/9+squMF+yjO60iJ7aXKFG+rpAwi0gXcCGwA3jT3lEBE1gI/w33j+PA8ZU7DfVO4A/hiqTLlrFvVSSpb7d9Z8Qpy5q6F7ltPF2NqqKfLtcpVYTKeYzL+1IXUQN3EeL6v5AI3hbXi0jiBEv4fUNdpARdjfrLsJ1FCJQG9bH5IVX0RuQKXZrkC15r/jIhcoqrbgBGeamnnnQp4wGT4+3xl8i3yCcBfoIyrrAvm3wcuAC5V1cmix+S/ddwa/vq7qpouUWYj8Gvct4136CJG93zozc+p9iEAfCcyw4Ze94LbeOIqNp7Qyx9csbh9GWPq7ieNrkBeJcmj/UCOgrx42Lp9Qf53dTap6rXAy4Ah4K3h3ZuYmxa5HNgc5s/zZS4vUeahcP9ZYEu5MmG9unG9ZV4IXKaqI8UnIyLrgV/hUjhvUNU561yJyOnAPcBu4O3zpWPqpbA1LkDOerkYYyqwYAs9TK98G/iciIzjgvU/4AIiIvJKXMC+DddavhB4Gq5bIMDXgWtE5EvAN4BXA1cDby84zHXAfSLyUeDHwJXAZbgujnlfAG4QkUeBB4H34vL3Xw/r0QX8EPeB8nuAhq1sgBlVTYXB/HbcRc4/ANaGH04AU6qaFZEzcMF8CPggcHJBt6dxVa17QjsoiN++r9jIf2NMJSrt5fIhYC0u2CZxPVLygXAGF6Q/gMtZD+C6+N0IoKqHwq6BX8T17R4C/jLfBz0s85CIvA34FHAtcAB4a74PeljmpnAA0P8GTselQt5QcCH2LOD3w/9vKar/u4DrcT1l8t809hWVuQwXyK/Adb88DzhSVOYcoL/kM1RDfkFEz3l+W/WjNcYsXkX90M2iLerJ/dcbtjATywBw9hnHsaq3k7e8/vyaVswYUzNN0+JqnQ6YLaQwh+55AdI8rxdjTBOzgN6ECof65/ygiT7/jTHNzAJ6EyqcyyXw1eK5MaYiFtCbUGHKxQ8CNx+AMcYswAJ6Eyqcy8WzFroxpkIW0JuQFvRDD5okhz44MMnQ0alGV8MYU4YF9Cajqvn5IQCXT290P/TR4Qjfv/4BDvSNEJ0pNymlMaaRLKA3meJxAZ4fNDyF/uC9e0Dg6JEptj52qLGVMcbMywJ6kwkCZg319/3GttCzWY+Bw5OICCND0yjYzI/GNCkL6E0mKDVyV+e23JfL6HCEdMrNoRYESi7rMTgwZwJLY0wTsIDeZALVOcE7QBvWKj58cJzOrqe+IcRiafr2DDekLsaY8iygNxktNVNuwKxFL5bT0YHJWSmf8bFow74tGGPKs4DeZFSDEmkXxfOXP4j6fsD46Ox1s2PRFB2dHXg5WxbPmGZjAb3JBOHSVoUUN0nXckvE06RT2Tnbc1mf4aGq18w2xtSZBfQmo4HOaaGrNiblMjUZL3mR1vM8DuybsxiUMabBKl3gwiyTUgFUVWfNwLhcxkejdHbO/cyfnkrQ1dm57PUxxpRnLfQmEwRh2qWAqjYk5TI5ESvZB35qMk5XjwV0Y5qNBfQmo67T+extDUq5TBRdEM3LZjxQSubXjTGNYwG9yQRB6UWhs9nl7VUS+AHT04l578/lfEaGI8tXIWPMgiygNxkX0GdHdAEyyxzQU6msa4nPIwgC+g+ML2ONjDELsYuiTcb3leL5ckWEzDL3+47H0+RyHt09pV8iM5Fkw2eBNMbMZi30JuOmy529TQQy2flby/UQjSRL9nDJm55K0DNPsDfGNIYF9Cbjl5ouV4RsbnkvikamE0jH/C3wZCKDdAh+A3rfGGNKs4DeZFxALwqkqmQzy5tymZleOKXiZX2mJmPLVCNjzEIsoDcZP5jbQvcDJRcsfwt9Ib4GDBy2qXSNaRaWBG0yvq9I0UXRIFj+gUVTkwsH9EQszVSHtQmMaRb2bmwypS6K+ss8F3ou55NKZRYsF5lOIhbQjWka9m5sMr6vxb0W3bZlnIM8ncqSq6Dfe3QmSVe3vYSMaRb2bmwynh/MSbn4QbCc8ZxkMovnLRzQg0DxcwGp5MKteWNM/VlAbzJeiW6LpVrt9RQPF7GoRM7zGRmeqXONjDGVsIDeZIIS3RaDQOcselFPM5EkHWX6oBfKZnMMHpmoc42MMZWwgN5kvBIXQD0/cLMwLpN4LFXxsP7IdHLZ55kxxpRmAb3JlFrIolRXxnqKxtIVl41MJejuspeRMc3A3olNxi/R2PWXeVBRrIJBRXnZrIcfNGZFJWPMbBbQm4xfIqK7GRiXh6oSiaSqeoyX9ZmasCkAjGk0C+hNxvPmBm/fD5atl4vnBWXnQS/5GN/nSL/NjW5Mo9nQ/yZTaqk5P1i+HHomlSWX88rOtFgsGk3R3WUvJWMazVroTaZUQA/Cni/FKxnVQzKVJVfBoKJCkakEnXZh1JiGs3dhk5lv3hZVJbcME3QlYmk6q5yfJR5LIyLHPniMMY1hAb3JzDerogLZZViGLpnI0NFZfXrHy3lMTcbrUCNjTKUsoDeZ7DxLzQWBkl2GATyxsLVdrZznc/jgaB1qZIyplF3JajLzLTUXqC5LCz0Rr3xQUaHItK0xakyjWQu9ycwXtDVQ0lV2J1yM2Ex1fdDzJsZjdHV11rg2xphqWEBvMvOlVUSERDJX9+PPLDKgZzMeQRDMmzIyxtSfBfQmk53noqgIxJPZuh47CHTRLXSAXNZncMDWGDWmUSygNxFVJZhnTpQOEeJ1bqHnch5eqclkKpRMZTl0YKyGNTLGVMMCehPxfWW+rtyBKulUfdMZmUyOXG7xxxgbjizrrJDGmNksoDcRzw/mHQ3qeQG5JbSeK5FOZvGXMHgpFkvT0SEVLV9njKk9C+hNxPeDeUdb5ryg7ktcxOOZipeem08m4zF4ZKpGNTLGVMMCehPJ+cG8Q/9zXkC9V4pOxNMVLz03n+hMkkMHbICRMY1gAb2JeN78LfRs1mfO6tE1Fl/kKNFCo8ORqmZqNMbUjgX0JpLOzJ97TmU8OpYhoC9VOp0j8ANSyUwNamSMqcaiA7qI/FxErq9hXdpeKp2lc56JsdIZb977amUpfdALJZNZ9u4aqsm+jDGVW5YWuohcIiJbRCQtIgdF5L0lyrxZRHaJSCb8eWXR/e8Xke0iEg1vm0TkjWWO+U0RURH5UNH294jI3SISCe9/xjyP/+3wGMmw7F2LPP2KJVPevFPXBoGiWt850aPR2gT04cFpIlWsS2qMqY26B3QROQe4FXgIuBD4DPBlEXlzQZmLgZuA7wEvDn/+UEReUbCro8BHgJcAFwG/Bn4iIi8sccy3AC8DSjUT1wC3A58oU+c/AH4A3BDW+WLg3ys43SWJJbJl0+R+oCRS9RlcpKokapByAZiJJBHrvmjMsqsooIvIGhG5XkTiIjIqIn9fdP9VYes5JSJTInKviJwW3v1eYEhVP6Cqu1X1W8B3gcKW8weBu1X102GZTwP3hNsBUNWfquovVXW/qu5T1Y8BMVywLazL04HrgD8C5kQ/Vf2Sqn4GeGCec+0E/gX4sKp+VVX3hnX6XiXP1VLMRDNlL0r6fsBMrD656VzWJ1fD2RzTySwH9o3UbH/GmIVV2kL/PHA58GbgtbhW628CiMhGXGv2u8D54fYbCh57Ma5FXOg24CIR6V6gzKtKVUZEOkXkbcA6XMs/v70L+D7wKVXdXeG5FXsp8DQgIyKPi8iIiNwuIhcucn8VG5kov0BEoEr/QKQux85mclUvPVfO6OgMQ0etP7oxy2nBCaxFZB3wbuDPVPW2cNu7cCkQgDOAbuBmVT0cbttZsIuNwJ1Fux0Nj30yMByWKe68PBpuL6zLBcAmYBUQB65U1R0FRa4FJlX1awudVxnPDH9+Evhb4BDwfuBeEXmuqlZ8tW9iOlmyX3m+DX7sHlXSaY/Dg1E6y3T56x+Y4fh1vYxOJBChpgON0vEUmXSO7hrNaT48GOGss09maCxG5xIHKxnTzP7i/9x25i1fvWqw0fWAyha4OBfowQVSAFQ1LiL5QLoNF7B3isjt4f9vVtXxgn0Ux545MW2eMsXb9uJy7Btw3xa+KyKXqupOEbkEuDq8fyny0efTqnozuAupwOuAdwCfq3RHP/jZropz3iLwjDOPW7AP9/7D02zdNVrzUaPnP209kVgW6ahdjj4SSfLt/3iEnvVra7ZPY5rQRcCKCehlI4yq+iJyBfBK4Apca/4zInKJqm4DRihqaQOnAh6Qn2t1vjKzWu2qmgX2h79uFpGXAX8dHvMy4HRguCAP3Ql8TkQ+qKpnVXCu4L4xAOwqOK4nIn3A2RXuA4Br/vSiaoo31M5tR9h3ytqaDgpKxlO86oLTeO1vX1CzfRrThH7a6ArkVfJdeD/u4uIr8xtEZC3wgvzv6mxS1Wt5qnfJW8O7N+Fat4UuBzaraq6gzOUlyjxEeR1Ab/j/rwIvxLXQ87ch4Iu4vH+ltgAZ4Dn5DSLSgfumcni+B610sWiq5iM8x0aidHV2WG8XY5bJgi30ML3ybVxLdxwXJP8B1/pFRF6JC9i34VrUF+IuKuZbuF8HrhGRLwHfAF6NS428veAw1wH3ichHgR8DV+Ja3K/JFxCRzwK/AAaA9bheLJcCbwzrOQbMmoxbRHLAiKruLdi2Efdt4NnhpueJyAbgiKpOqWpURL4OXCsiR4F+4BrgBODGhZ6vlSq+yLVEy1FVMhmPvj3DnP+CSr8gGWMWq9IrYB8C1uKCbRL4cvg7wAwuSH8Al9seAD6pqjcCqOohEXkDrqX8PtwHwl+q6i35navqQ2GvlU/hLmweAN6qqo8U1GEjLqBuDI+5HXh9/kJtFd4LfLzg91+EP98FXB/+//8DsrieO2uAx4HLqrkgutLEo7UP6AAT4zOIYAHdmGUg9Rx5aOo+423NfPcbdzMxEav5fjs6hAsvOofXXHa+LSJtWlXTzEZn/ckMqlqXlAu4KQtyOZ99u4cXLmyMWRIL6AbP8/Fyi1+paCGTEzGOHp6o2/6NMY4FdEMm7S1pLdGFDA9O09PbZb1djKkzC+iGdHppa4kuxKVdPA722UpGxtSTBXTjZlms8Sth7bpeTjxpHd097kLo1FSC/gNjCzzKGLMUtZm4w6xosVi6ZvOtPOPcU9l46nqiQxNkEime/owT6F23mr2HJjnttOMJAl3yuqXGmNIsoBs3SrQGy9tdeNE5TB0c4tG7NkMQHFsDtaNDeOFrX0y373H08CRnn3Pyko9ljJnLUi6mJoOKzn/BWYzs6mdgyz5QnbWgdRAoW+94gsTIBP07+5d8LGNMaRbQDdFockmP33DCWrq8HKO7+suW2/Xgbrr8HEP7W3bArTENZQHdLHlx6Oe94Ex23fXEguNiVeGJO7YyOThJJlmflZeMaWcW0NtcECjxJSxrd+rG4xnrG0Qz2cqO5wc8+cBu9jy8Z9HHNMaUZgG9zWWzSxtUdM4zT+Hg5n2UXd26gO8rk4OTeFmP0UPWL92YWrKA3uYy6cWvJbpqdTfp6RhkK1/lSFVRlF0P7WL4gM3vYkwtWUBvc4lEmqDEuqeVeOazNnJwS1/FrfM8DSA2GSeXyTG4rylW7jKmJVhAb3PxWLrswtTlrF/XQ2IsUvXjgiBAVenb3MfYYRs9akytWEBvc5HpxKKWnlu9uofU5IwbQFSlIFAUiE8nCPyAyaHJBR9jjFmYjRRtc7GZxY0SPfPskzj65MGq0y3HKPi+z1DfEIEfcNIZJy1uP8aYY6yF3uaikcX1QT/xhDVEBhc/x7nvBwR+wMihEXpW9ZBNV9bt0RgzPwvobW56Or64B+ZyECx+fnN3IVYggJnxGfY+vHfBxxhjyrOA3saCQEnGq28Zn3jSOiYHxpe8Yqqq4vsBR3YfIVvhwCRjzPwsoLexbCZHzqt+UNHGM05g5MDw4vPnoSBQPN8nFU2BQmQ0sqT9GdPuLKC3sVQqSzZTfUBfu6ab1FRsycf3/QBBQGF6dJp9j+1b8j6NaWcW0NvYoqfNzXmL6q5YSj7tcnT3Ubp7u1FdYh7HmDZmAb2Nzcwk6eyq7iWwanU36Zm4mzqxBnw/wPcDcpkcfs5nYmDxPWeMaXfWD72NRaYSVfdBP23jBsb6h5acP887Nu1AmHbxch6nnH1KTfZtTLuxFnobm56qvsviSSevq3krOlDF83wG9w3Ss6rH0i7GLJIF9DY2PVl9QO8Q0FzlsytWwvcCgkDJpXMEfsDU8FRN929Mu7CA3qaCQIku5qJozgO/NhdE81QVVSUIlNh0jP1b9td0/8a0CwvobSqTyZGrYh5zgJ7eLrLxpa0/Oh/fD/ByPoN7Bunqtks7xiyGBfQ2lUykyVTZB/2kk9czNThZswuihfIXR5PhgtWJmUTNj2FMq7OA3qYiU0k6Oqv785908nomB+s31W0u55PzfFLxlKVdjFkEC+htanIiRkeV86CvXtVFJlqflAtwLI8+vH+EdHyRg56MaWMW0NvU9GS8+nnQfd/d6sjL+YwNjNPV0423hMWrjWlHdvWpTY2PRat+TK27K84nm/HIpDLs3LSPF/3G+YgIyWSGgf5JDh8cw/N8Tj/rRM5++kmcdMpxy1InY1YCC+htKAgCIlPVpU7WrV9FogYTclVq/Ogk07sGefzJEXJZj0Q8jecHdIZ5/107j/Lc553Jc553Juc99/Rlq5cxzcxSLm0olcySrbLL4vEb1jAzOlOXHi6lDO4b5Kxnnsr0VJx4PI3CsWAOICLs3T3Ekf4JBo7Y/C/GgAX0thSdSZKtMj+94YS1zIxH6lOhEjKpLKt6u91ApjK2P9HPQP8kOcu3G2MBvR2Nj0bp6uqs6jGrV3eTiixv3/BsMkNvLlO2TBAo/QfG2PLowWWqlTHNywJ6Gxobmam+h4vnL2kN0cU42jfEmU87ccFyw0PTZDMesejiFrw2plVYQG9Dw0PT1T/I95e8hmi1JocmOfnU4yqae/1g3yjbH++vf6WMaWIW0NuM7/tMT1WXOhERWKYui7MoiAaQXniQ0eREDM8LFjUlsDGtwgJ6m4nOpEmnqwvO649bRXQytmw9XApNDk5x0truisoe6Bth146jda6RMc3LAnqbGRuJVP2Y4zesZWas+sfVwmDfEE87p7IVjKanEng5n8i0Texl2pMF9DYzcHhyVn/uSmzYsJro2EydalReJpWlt6er4ikH+vYOs3untdJNe7KA3mYG+qsfhNPb00Um3rgeJNlUhu5ctqKyM5Ek2YzHzDJ3sTSmGVhAbyPpdI7IYgKd70NQ21WKqjG4b4innXF8xeX37Rli947BOtbImOZkAb2NjA5FyFa5qAWAeI0dhTkxNMnJG4+vqPsiQHQmRSqdZXJi+eaeMaYZWEBvI317h+jsqu5P3tEh+I0eVq8ggUK2srQLwL7dg+zbNVTHShnTfCygt4kgUA7sG6l6hOhxx68hOrF8k3LNZ2p4ipPWVD5dQTyWYSaSpP/gWB1rZUxzsYDeJqan4kRnqr+wefyGNcwsYu70Wju6b4gzn35yVY/Z/eRRRoYieN7yTllgTKNYQG8TO544jFS55BzAhg1riC3jLIvzySQzrOrpquribBAou7cfZfvjh+tYM2OahwX0NuB5Pk9uP1r9hFxAd1cH2WT5GQ+XSy6dpXuB2ReLTU3HGTw6yYG+kTrVypjmseiALiI/F5Hra1gXUyf7dg+RTCxy0WXfa2iXxUJDfUOctbHy7ot5+3YP039gjLHRSO0rZUwTWZYWuohcIiJbRCQtIgdF5L0lyrxZRHaJSCb8eWXR/e8Xke0iEg1vm0TkjWWO+U0RURH5UIn7Xi4id4hIXERiIvKQiJxccP9LwvsjIjIZ7mvdUp+HRvA8n3vv3EVHlaND86SJ8s/jg5OcvLGy2ReLPbH5EDu3DjA+2pgRr8Ysh7oHdBE5B7gVeAi4EPgM8GUReXNBmYuBm4DvAS8Of/5QRF5RsKujwEeAlwAXAb8GfiIiLyxxzLcALwPm9FsL93k7cA/wSuClwOeBXHj/GcCdwEHgFcDvAM8Hrl/UE9Bg99zxJLHY4kZ5dnV14GUaMMvifBQ6FMhUnwISER5/7CAPP7CPI4fGa183Y5qAaAWtHRFZA3wVeAuQAK4DXgVMqOrVInIV8AngPCAF7AD+UFVHReRzwFWqel7B/v4NeL6qXhz+fhNwoqpeXlDmTmBcVd9epl5TwEdV9RsF256O+/B4HfBL4Cuq+vmC+x8C7lbVj82zz/cA/wicpqp+uO0CYDtwnqruX/AJe8oyzyA+29Yt/dz1y+2wyB6HJ560jg1k6d/cV9uKLcG5Lz6HqViGyaCyGRhLWbO2l5df/Cye/bwzWL9+dQ1rZ9pUY/v0Fqi0hf554HLgzcBrcS3t3wQQkY3AD4DvAueH228oeOzFuBZxoduAi0Ske4EyrypVGRHpFJG3AetwwTu/vQv4PvApVd1d4nGnhscaFpEHRGRURO4XkdcWFOsFcvlgHso3cV9Tqj7NJpXMcutPtnDXL7ct6aW24YS1bmHoJnJk91HOfuZpS9pHMpHh7jt28sMbHuKRB/sYPjpla5KaltC1UIEwd/xu4M9U9bZw27twKRCAM4Bu4GZVzfcP21mwi424FEah0fDYJwPDYZnREmU2FtXlAmATsAqIA1eq6o6CItcCk6r6tXlO55kF5f4/4AngfwC3ichLVXUbLpXzBRH5O+ALwFrgs+HjTp9nvyU99lAfiVr2ENHZ/1dANSAIIJV0A2kGj06RiKbp6OxY8lig3t4uIqPTVPItbrlk01m6uzpJTMfQzgVfvmUlYmkGDk/g+0pPbxenbjyO445fw7p1q+ju6aSjo4POjg6kA0DcZ2Phc9o07TLTSD/9r8f+8IvffNd/NboeUEFAB84FenCBFABVjYtIPpBuwwXsnSJye/j/m1W1MFFZHBGkxPZSZYq37cXl2Dfgvi18V0QuVdWdInIJcHV4/3zy30i+oar/Hv7/CRG5FHgv8D5VfVJE3okL5p8CfOBfcB8wVV0hPO2ME8jWPAftnjoRlxfu6BS6ujrp7e2qelrchXSgDD+wFa+7uXq3pqNxXveaZ/Hc1zyvbsfwAyWX9cjlfIIgIAjcJ+hTn23N8yFnGm5LoyuQV0lAL9sOUVVfRK7AXWC8Atea/4yIXBK2eEcoamkDpwIeMBn+Pl+ZWa12Vc0C+Rz2ZhF5GfDX4TEvw7Wghwv6W3cCnxORD6rqWbhvAwC7io61Gzi74Dj/CfyniJyGu2agwN8Ah8o9F8XOfkZ1IxubzfToNF7WW3QPmXoZ3DfIi197CieevL7RVTGGL37zXQcaXYe8St6p+3E9QF6Z3yAia4EX5H9XZ5OqXstTvUveGt69CXeBstDlwGZVzRWUubxEmYcorwOX8wZ30faFuBZ6/jYEfBGX9wfoD7c9p2g/zwbmDCdU1VFVjYfnkgbuWKA+LSUxnWjKtEIuncP3fKKTjZ+SwJhmsmALPUyvfBvX0h3HBcR/wLV+EZFX4gL2bbgW9YXA03iqFfx14BoR+RLwDeDVuNRIYe+V64D7ROSjwI+BK3Et7mMXIUXks8AvgAFgPfBHwKXAG8N6jgGzZmISkRwwoqp7wzIqIv8EXCsi23E59D/EfVhdU/C4a3AfJnHcB8s/AX+nqpGFnq9WEp+OL2p06XKIjETY99g+LvqdixpdFWOaRqVXlT6Euzj4YyAJfDn8HWAGF6Q/gMttDwCfVNUbAVT1kIi8AddSfh/uA+EvVfWW/M5V9aGw18qncBcsDwBvVdVHCuqwEbgx/DmD60b4+vyF2kqp6pdEpAf4Z+Ak4MlwP9sKir08rMc6YA/wv1T1hjk7a3EzEzNNG9AH9gxw8tNWdkrLmFqrqB+6WbQV/eTe9q3bOLLrSKOrMa8Lr7iQcy44h5POOqnRVTHtrWlaPUvr92ValqoyPTLd6GqUNbx/GBGxgG5MqLm6L5imkUvnSC92Qq9lMnpolK6eLvwmmm/GmEaygG5KSifSZFLNMW3ufFSV5EySQ9ur6k1qTMuylIspKT4db3QVKnJoxyFWrV3V6GoY0xSshW5Kik5GF+zhcsLpJ3DiGScuU41KS0wnUFFik7GG1sOYZmAB3ZQ0M16+y2JndyfPvehZPP95Z7Cmq7GdeQb3DtK3pXlmhDSmUSygm5IW6uHy9Oc/ncH7nuDQ7Q/z3Bc+fZlqVdrIwRE6uzrxbMZE0+YsoJs5KumyeOLpJxA9OEhqMsqa49bQ4TcwmKr7ANrz8J7G1cGYJmAB3czhZTyyyWzZMuJ5dASuu2CQzbE6aOzKRoe2HcLP+WiwosdyGbMkFtDNHKlEikyZedy7e7vRZOrY8LjJfQOc/vRTlqdy8/CyHonpBId2WBdG074soJs54tPxsotanHTmScz0Dx/7ffrgICedvbRVhGqhb0sf8cmV0d3SmHqwgG7miIxGkI75e7gUB3Q/k6OrtxsJGjtiM5vKkkqkGNo/Z21wY9qCBXQzR2Q0UrbLYu+aXrLRxKxtgtKVK593Xw77N+9n/Mj4wgWNaUEW0M0cU8NTZe/v0AAJglnbvFSG1R2NvyCZjCbxsh7jAxbUTfuxgG5m0UCJjpdfCUiCgI6imYHjwxNsOOX4elatYvu37Gdw72Cjq2HMsrOAbmbJZXJlJ+WSDkG8uX3OY8OTHL/xhHpWrWLRiShBEDT99L/G1JoFdDNLMpokl5q/T/m6DetITc7M2Z4Ym2bdycdDkyyY0re5jyNPNu/iHMbUgwV0M0t0Ilp2/ZV1J6wjOT635at+QEdHBx1FufVGiY5H8X2fmfG5Hz7GtCoL6GaWqZGpsgF97Ya1pKZKz2woKB1eY0eMFtq/ZT+HdxxudDWMWTYW0M0skZHyXRbXHr+WdImUCwAKXU0U0GfGZlwrfcJa6aY9WEA3s0wNle+y2NndSZAt3d88PRNn/freelRr0fo299G/vb/R1TBmWVhAN8f4nk88Un7ovKgi81z4TI5HWHvC+npUbdFmxmYI/ICZMWulm9ZnAd0ck4qlyKYWmGUxCOYP6BMR1p50XD2qtiT7HttH/47+RlfDmLqzgG6OiU3G8L3y87F0aDDvNdPk5AzrTmyuFjq4Hi9e1mPi6ESjq2JMXVlAN8dMDE6UnZRLOgRKDCrK8zM5Onu6oUm6Lhba9eAuhvcPL1zQmBXMAro5ZnJwsmwPlzXr15CZWTjH3tngWRdLSSfSxKZiHNllg41M67KAbo6ZHJwse/+a49eQnl4goENjl6MrY8/De4hORBdMKxmzUllANwB4OY9EJFG2zOp1q8nMlB5UVKizTFqmkfycz5GdR9j32L5GV8WYurCAbgA3h0smMf+kXACr1q0iEy0f9LPxJGtWd9eyajU12DdIJpmxKQFMS7KAboCwv7aWv5i5et1qsjPlA3pqOsaa49fUsmo1t+PuHRzde9QWlDYtxwK6AWDs8FjZC6LgRon684wSzUtNRVlz/LpaVq3m0ok0h3cepm9LX6OrYkxNWUA3AIwdWTiglxslmpeejrHmhOYO6ACDeweJjkcZOzLW6KoYUzMW0A1BEDA1WH4OF6gwoM/EWX382qaZF72crXdtZeLIRNkFPYxZSSygG9LxNOlEesFyUmaUaJ76AdLRsWDgbwYaKFvv2sr+Lfstn25aggV0Q2QsgpdduKthR4VBWlTpaMLBRaUkIgmOPHmEXQ/tanRVjFkyC+iGkYMjZYf850mFQ/oFbdrBRaUc3XOURCRhE3iZFc8CumF4//CCF0R7VvWQS6Qq3mfnCgroANvv3k58Ou6W4DNmhbKA3uZ832dqeOELoqvXr15wUFFe4AV0y8rKSefz6YefPGxTA5gVywJ6m4tPxUnFFm55VzJKNC8dibFmfXMPLiolFU1x5Mkj7H14b6OrYsyiWEBvc8MHKptSdvW6ylvoqekYqzesXUq1Gmaob4hULMVI/0ijq2JM1Sygt7nBvYML5s8hTLksMOw/Lz0dZc2G5h9cNJ/t92xn4siEpV7MimMBvY0FfsDIwcpaoqvW9pKNlZ86N8/N57JyA7qX9Tjy5BF2P7S70VUxpioW0NtYbCpGMpqsqGxHRwfqVdZtMZdI07N21YoYLTqfwX2D5LI5IqORRlfFmIp1NboCpnEOP3kYVa0o5YIGCNUFaFFFK9l3k9p5z066e7o5/tTjK3uOjGkwa6G3sUPbDlUcqCqZx6W4/EoZLTqfdCLNxMAE/dv7G10VYypiAb1NpRNppoYW7n+eJ4EuOI9LsQ5/ZQd0gL4tfSRjSXKZXKOrYsyCLKC3qSNPHiGXrjxIyQKLX8wpz8obLVqSws77dnLgiQONrokxC7KA3qZ2b9pd0fwtANIhSJWtbT/n0d0ir67oeJSZ8Rkmh8ovom1Mo7XIW85UIx6JM3m08uC0as0qsvHKesPkudGiq6utWtPaee9ORvtHCSqcoMyYRrCA3oa2/3o7Xq7ydMiqdasqHlSUl56Oseb4lTlatJTAD9i/eT99j9mydaZ5WUBvM7lMjgOPH6iqG97qdatJx6oM6JFw5aIWMnpolPh0nMlBS72Y5mQBvc08cfsTpOKVT4MLsGr9IlrokVjLBXSAJ+54gtH+UbLp8otlG9MIiw7oIvJzEbm+hnUxdRaPxNn10K6qB8msXreabIUTc+Vl4yl617VODj1PA+Xx2x6nf3s/gW/5dNNclqWFLiKXiMgWEUmLyEEReW+JMm8WkV0ikgl/Xll0//tFZLuIRMPbJhF5Y4n9PFtEfiQiERFJisjjInJ+wf33iIgW3X5QcH+HiPy3iBwJ6zssIjeKyJm1fl6WU+AH3P7t28mmqm9Z9q7pJVflRVFHV/Tw//mkYike/9XjHNx20C6SmqZS94AuIucAtwIPARcCnwG+LCJvLihzMXAT8D3gxeHPH4rIKwp2dRT4CPAS4CLg18BPROSFRcd6EDgE/BbwAuB/A8WzSn0HOL3g9r+K7v818IfAc4A3A88EfryY828GQRBw9/fuZvzI+KKGsAssKjCLsuJHi84nNh3jkZ8+woHHD1j6xTQN0QreqCKyBvgq8BYgAVwHvAqYUNWrReQq4BPAeUAK2AH8oaqOisjngKtU9byC/f0b8HxVvTj8/SbgRFW9vKDMncC4qr69TL2mgI+q6jfC3/8TUFX94zKPuQfYqarXLHjiTz3mTcBPgdWqmq70cVDl5Cd1kE1nufM7d3J0z9GK+50Xe+kVF3LwP2+teJHovOdedQkP//pJ/O6eRR13pXjRa1/EOS86h5PPOtnmfGlPTfNHr7SF/nngclxr9bW4lvZvAojIRuAHwHeB88PtNxQ89mLg9qL93QZcJCLdC5R5VanKiEiniLwNWIdr+SMiHcDvAbtE5FciMi4ij4nIW0vs4m0iMiEiT4rI50Vk/XwnLiInAn8MPFJlMG+YIAiITcZ47NbHuOnTN3F07+KDOVQ/j8uxx8GKWix6sbbdtY1ffPUXbP7FZo7sOkIylkSDhn+Wmza04GyLIrIOeDfwZ6p6W7jtXbgUCMAZQDdws6oeDrftLNjFRuDOot2Ohsc+GRgOy4yWKLOxqC4XAJuAVbg0ypWquiO8+1RcgP974P8Af4dLu3xPRBKq+vOw3H8Ch4Eh4Pm4FNCLcB9Yhcf6HHANsAZ4GPjdkk9QGQ//98OkY+4z4Ng3IS34/zzbi3/m2/mltgfhkHwv45GMJUlEEiRnknR2d9Ld0410CB0dS8usiQaLaoIEnk+PgNcGrVYv47Ht19sI7gjwsh49a3pYf+J6etb00NPbQ/eqbkTc30JEXEteWPLfxjTeE3c88ZkPfueDH210PaCy6XPPBXpwgRQAVY2LSD6QbsMF7J0icnv4/5tVdbxgH8XNFSmxvVSZ4m17cTn2DbhvC98VkUtVdSdPfdv4qap+Ifz/VhG5CHg/8POw7t8s2N8OETkIPCIiL1HVxwvu+yfg28DTgY8DN4rI67WSHFXolW96ZaVFm9rEviMcXMTj0pE4F/zm87jgbZcvXNiYFeqSP7qkKYI5VJZyKdu8UlUfuCK8bce15vtE5EVhkRGKWtq41rQHTC5QZlarXVWzqrpfVTer6keBrcBfh3dPhPvcVbSf3cDZZU5hM+Dj8v+Fx5pQ1X2qegfwNuC3gdeU2U/LylXZbz0vNR2zFqgxy6iSd9t+IAcca26KyFpcDxLAXYVU1U2qei3wMlw6I5+73gS8rmiflwObVTVXUKa4GXc5YX58gfr3hnXIAo/heqYUejYuxTKfC4BOXOqn3HHIH6vdpKscVHTscZEYnT3dCxc0xtTEgimXML3ybeBzIjKOC9b/gAuCiMgrcQH7NlyL+kLgaTzVUv46cI2IfAn4BvBq4GqgsPfKdcB9IvJRXPfAK4HLKGgRi8hngV8AA8B64I+AS4HCvuj/D/gvEbkf1/XwMlzr+g/CfZyLu8B5K65F/zzgn4EncN0d810oXwI8AERwKadPAv3htraTiVa2lmix9HSMzt7W7uFiTDOpdAm6DwFrccE2CXw5/B1gBhekP4DLbQ8An1TVGwFU9ZCIvAH4IvA+3AfCX6rqLfmdq+pDYa+VTwHXAgeAt6rqIwV12AjcGP6cwaV3Xp+/UBvu5yci8h7chdHrgD7gT1X1F2GRLK6Xzl/hLqAO4D4krg1TR+C6Xb4F+L9hmSHgV2F9VkQvl1pbbAs9G0/R2WOrHBqzXCrqh24WrSWe3Ef+5b8YfHT3oh77wnf8Dude8XLrn21aWdO8uO2KlVlQcmpxKRcA9QO8RUw3YIypngV0U5aqko0tPqAHfkB6ZvGPN8ZUzgK6KSvwfPzs4kd7Bp5HejpawxoZY+ZjAd2U5Wdy+NnFr3gf5HxiI1M1rJExZj7WBcGU5WWyeEuYTTAdidFhPV2MWRbWQjdl5RJpdAkLOaQjcQK/NafQNabZWEA3ZeWSixv2n5eOxOjssha6McvBAropKx1dzEpFBY+PxOjsteH/xiwHC+imrGoXh57z+FiSzm5roRuzHCygm7IyVS4OPYeypBy8MaZyFtBNWaka9CEPfJ9cKlOD2hhjyrGAbspKTcwseR+B55OejtWgNsaYciygm7KSUzVooed8kjX4YDDGlGcB3cwr8Hz8JQwqKtxPdGh84YLGmCWx7gdmXl4mu6Rh/3npmfixxayNMfVjLXQzLy+drcnFzHQkhrTEzPDGNDcL6GZe2XiqJl0O09MxW7nImGVgAd3MKxtf2ijRvHQkTocNLjKm7iygm3mlatDDBSATS9jwf2OWgQV0M6+a9R0PR4tmE225xrYxy8YCuplXrVroAH7OIzkRqdn+jDFzWUA380pM1m4wkHoBMwNjNdufMWYuC+hmXsnxSM325WWyRI9aQDemniygm5ICzydXw5x3YnQKtZWLjKkrC+impFwqg59Z+rD/vPjoFF2remq2P2PMXBbQTUm5RIpcsnZT3ibGpules7pm+zPGzGUB3ZS05IUtiviZHCLgZZY+N4wxpjQL6KakRB2mu/WzHvGRyZrv1xjjWEA3JdVj/vLA85jYe7jm+zXGODbBhikpOT5d833GR6foTa2r+X6NMY610E1J8ZGpmu9z5vAI3at7a75fY4xjAd3MoaqkajhKNC86OEHP+tVoYJOjG1MPFtDNHF4qU5OFLeZQxcvkiNlydMbUhQV0M0cmniKbSNVn3zNxhrbsrcu+jWl3FtDNHOmpKNQpLTK0eY+tXmRMnVhAN3NEB+uXEkmOR+js6Z4zcCk2NMFjX/sRAw/vrOvxjWll1lQyc9R78M/Q5j1IZwfnXPoSAEa29bH56z8hG0ty9OEneemf/z6rjl9HzzqbKsCYalhAN3PUe97ysR0HWLfxRCb2HGZ0+34O3LkZL+lmdlQ/4NDdW8jEEpz3+ovrWg9jWo0FdDOLBgGJ0dr3QS928I7HOHjHYyXvm9x7hKe96gLio1OsO+3EutfFmFZhOXQzSzaRJlenHi7VOPLAdusNY0yVLKCbWVKT0ZpOm7tYU30D9KzpJRNLNroqxqwYFtDNLJHDw42uwjGDj+7i6KO7Gl0NY1YMC+hmlkh/8wT00e0H6OrpIvBs6TpjKmEB3cwydWCw0VWYZWRrH0Obdze6GsasCBbQzTG5VKYuk3ItxeCjuwk8Hw2CRlfFmKZnAd0ckxyPkJmp7dJzS6bK+J4jDGza2eiaGNP0LKCbY8b39De6CiUduX8rQH1mgDSmhVhAN8eMbu1rdBVKUj9g388fZOhx65duTDkW0A0AXiZX9yH/SxEdGGNs236Gn9jX6KoY07Rs6L8BXP/z9HSs0dUoa+ChHXSvXUVHVyenXXBuo6tjTNOxgG4A6L/78UZXoSIH73iMIOfjZ3Oc8dLnNro6xjQVC+gGL5Nj/MlDja5GxfrveRw/5xF4Pme94vmNro4xTWPRAV1Efg5MqOrVtauOaYSjm3aSmoo2uhpVGXhwO76XAxHOevnzGl0dY5rCslwUFZFLRGSLiKRF5KCIvLdEmTeLyC4RyYQ/ryy6//0isl1EouFtk4i8sajMOhH5sogcFZGUiOwVkb8uuP/E8P494f0DIvI1ETmpRH1+OzxGUkQiInJXLZ+TZuHnPPb94qFGV2NRhh7ZzcAD2+1CqTGhuqdcROQc4Fbg34E/AV4DfFVExlX1lrDMxcBNwMeBHwFXAT8UkVer6iPhro4CHwH6cB9E7wR+IiIvVdXtYZkvAK8D3gEcAn4T+JaITKjqDcAZwJnAh4Fd4f+/CnwfuKKgzn8AfAf4GHB1eLyX1PSJaRK7br6b+PBEo6uxaMOP7yXwA6Szg9MuOBcRaXSVjGkYUV14MWARWYMLfG8BEsB1wKsIUy4ichXwCeA8IAXsAP5QVUdF5HPAVap6XsH+/g14vqpeHP5+E3Ciql5eUOZOYFxV316mXlPAR1X1G+HvO4FbVPXjBWXuBXao6jXz7OMNwM+BDaoaFZFO3IfBJ1X1Wws+OeXVZ6XlGjl8/za2/ccv8VpgwM6GZ5zO8/7HZZx8/jPo6uludHVMe2maVkSlKZfPA5cDbwZeC1yIa/0iIhuBHwDfBc4Pt99Q8NiLgduL9ncbcJGIdC9Q5lWlKiMinSLyNmAdUJgveAD4PRF5WljuVcCLgV+VObfjgAyQn3j7pcDTgIyIPC4iIyJyu4hcWGYfK4YGAYnxaR796o/Yev0vWiKYg5slctMXfsDe/76fiT2HySXTVNJYMaaVLJhyEZF1wLuBP1PV28Jt78KlQMClMbqBm1X1cLitcOKNjcCdRbsdDY99MjAclhktUWZjUV0uADYBq4A4cKWq7igo8pfA14EjIuKF2z6gqj+f59w2AJ8EvqWq+fLPDH9+EvhbXGv9/cC9IvJcVR0qta9SHvjcDfhZD1R5Krao+1cYbAr+r6phu16fuqva+wv2qfmyCtlEilwiTdfqHrrXrKJn/RpYX+nZrAxHHthO/92Pk01mWHXcWrpX99LZ00VHV2fpB1iKxizR5N4jX73qxo//RaPrAZXl0M8FenCBFABVjYtIPpBuwwXsnSJye/j/m1V1vGAfxU0lKbG9VJnibXtxLe4NuG8L3xWRS1U1/wHyAeDVwJuAw7hvC58XkX5VndVKF5G1wM+AQVxOPS//reXTqnpzWPY9PJWb/xwVes1H3lFpUWPMytUUwRwqS7mUbcKoqo+7oHgFsB3Xmu8TkReFRUYoamkDpwIeMLlAmVmtdlXNqup+Vd2sqh8FtgJ/DSAiq4HPAB9W1Z+p6nZV/QouHfShWSfkvnX8Mvz1d1U1XXB3foWHY0vlhK33PuDsMk+FMcY0VCUBfT+QA16Z3xC2bl+Q/12dTap6LfAyYAh4a3j3JlzrttDlwGZVzRWUubxEmYX603UAveH/u8Nb8fI2PgXnKSLrcTn1TuANqhovKr8Fl1N/TsFjOnDfVA5jjDFNasGUS5he+TbwOREZxwXrf8AFRETklbiAfRuuRX0h7qJivoX7deAaEfkS8A1cSuRqoLD3ynXAfSLyUeDHwJXAZbgujoTH+SzwC2AAl/n9I+BS4I1hPaNhj5bPikgcF3wvAf6UMKUSBvPbcRdC/wBYG344AUyF3wCiIvJ14FoROQr0A9cAJwA3LvR8GWNMw6jqgjdgLfAfuAuRY8D/wXX1ux7Xs+WXuGCewbXoP1z0+EuAx8P7DwHvLXGMtwB7gCywG9fVsfD+63FBOhPW4U7gt4vKbMT1Hx/EdZ/cg0u35LtnXorLy5e6XVqwn27g/+FSQVHgHuAllTxXRTdjTOurNi7U7VZRP3TT3kTkPar6zUbXY6nsPJpLq5xHM7H50E0l3tPoCtSInUdzaZXzaBoW0I0xpkVYQDfGmBZhAd1UolXynHYezaVVzqNp2EVRY4xpEdZCN8aYFmEB3RhjWoQFdIOIfFREHgtXghoXkZ+JyAuKyoiIfEJEhsLVnu4RkaZe0FNE/l5EVES+UrBtRZyHiJwuIt8N/x7pcBWvSwrub/rzCKe5/qSIHArP4ZCIfEpEugrKNP15rCQW0A24EbRfxc0//1u4idPuFJETC8p8GDed8Adw8/WMAXeE0yk0nXBKij/HTRhXqOnPI5zW+UHcxHhvxI3G/gCurnlNfx64Fcbej5vW+rnAX4W/f7SgzEo4j5Wj0UNV7dZ8N9zCIT7we+HvgpuF8mMFZVYDMeB/Nbq+Jep/PHAA9+F0D/CVlXQewD8CD5a5f6Wcx8+B7xZt+y7w85V0HivpZi10U8p63Le36fD3c3Dz5BxbVUpVU8B9zLOqVIN9Ezcn/6+Ltq+U8/gD4BERuUlExkRkq4hcI3JsNY6Vch4PAJeJyHMBROR5uA/ZW8P7V8p5rBh1XyTarEjX4eaazy9qkp+rvtSqUmcuU50qIiJ/DjwLtxhJsZVyHs/ELZrwReCzuEVdvhze9xVWznl8Dtc42CUiPi7efFpVvxrev1LOY8WwgG5mEZEv4KYtfo26xUsKVbKqVMOIyHNw6YrfUNVsmaJNfR64b0f5RVwAnhCR83D5568UlGv283grbvrqPwKexH0wXScih1T12wXlmv08VgxLuZhjROSLuHnqf0tVDxbcNRL+XHBVqQa7GLdO7U4R8cJ1ZS8B/iL8f36FrGY/j2EKVswK7eapFbNWyt/jn4DPq+oPVHWHqt4AfIGnLoqulPNYMSygGwBE5DpcS+q3VHVP0d2HcG++ywvKrwJ+g4VXlVpOPwEuwLUE87fNuGUIXwzsY2Wcx4MUrJgVejZPrZi1Uv4eayi/gthKOY+Vo9FXZe3W+Bvwr7iFPH4L11rK39YVlPlIWOYq3PKDP8CtXrW+0fVf4NzuIezlslLOA9d9Lwd8DHc94H8AM8D7V9h5XA8cxXW9fAZuJbJx4J9X0nmspFvDK2C3xt+YfxWnTxSUEeATuHRAGrgXeEGj617BuRUH9BVxHmEQ3BbWcR+uL7espPPAXRD9Eu6bRQo4iLvGsWolncdKutnkXMYY0yIsh26MMS3CAroxxrQIC+jGGNMiLKAbY0yLsIBujDEtwgK6Mca0CAvoxpQhIv8WLpLxhUbXxZiFWD90Y+YhIqtxQ9OPwy28cKaqeo2tlTHzsxa6MfO7EhfMb8VNGPU7ja2OMeVZQDdmfu/ELfJxNW7o+p8WFxCRt4vInnDNzB0i8qZwXcx7isqdLCJfE5FBEcmEj3nPcpyEaR82H7oxJYjIGcDrgG+q6riI/AS4SkROUNXpsMzlwPeA/8ati3kybu6SVbj5V/L7Og43g+Jq3Lwlh4DfBr4mIr2qml+8wpglsYBuTGnvwH2D/Y/w9+/i5op/K/D1cNu1uHnLr9T8TFMiO4AtFAR03OLITwcuUNW+cNud4WLQHxeRr1lu3tSCpVyMKe1PgT5VzS/DdyduWtc/BRCRTuAi4BYt6Fmgqo/jWuCFfgd4BDgkIl35G3AbcBLwvLqeiWkb1kI3poiIvAwXZD8XtqLzfgRcIyLPxs1P3o3r/VKseLWdU3HzmufmOeRJS6qwMSEL6MbM9c7w50fCW7E/BT6OC9Cnlrj/NOBIwe+TuMD/V/Mcb+/iqmnMbNYP3ZgCItKDS63sB/6uRJEvAifiVuB5ENet8YKCHPpLccve3auql4bbPgF8ADhfVUu16I2pCQvoxhQQkauAW4CrVfW7Je5/L/A13HJ9XcDtwE+Bb+J6uXwC15tlt6r+VviY44GHcdesvohrka8Fngv8hqr+fn3PyrQLuyhqzGzvBGLAD+e5//u4PunvVNU7gD8Gzgd+jEvP/C1udOlM/gGqOgO8CjdA6SO4i6H/Dvw+cHddzsK0JWuhG1NDInIWLl3zaVX9ZKPrY9qLBXRjFimc6+ULuC6NE8AzgQ/jLoo+X1WHG1g904asl4sxi+cDG4Gv4LoeJoD7gf9hwdw0grXQjTGmRdhFUWOMaREW0I0xpkVYQDfGmBZhAd0YY1qEBXRjjGkRFtCNMaZF/P9ts9UX2N7eIwAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 360x504 with 7 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for Figure 1A (transfer test age)\n",
    "plt.figure(dpi=380)\n",
    "fig, axes = joypy.joyplot(age_transfer, column=['age'], overlap=1.0, by=\"site\", ylim='own', fill=True, figsize=(5,7), legend=False, xlabels=True, ylabels=True, \n",
    "                          colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)), alpha=0.6, linewidth=.5, linecolor='w', fade=True, x_range=[0,100])\n",
    "plt.title('Age Distribution, Transfer Test Set', fontsize=18, color='black', alpha=1)\n",
    "plt.rc(\"font\", size=14)\n",
    "plt.xlabel('Age', fontsize=16, color='black', alpha=1)\n",
    "plt.ylabel('Site', fontsize=14, color='black', alpha=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEqCAYAAABEPxQuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABB0ElEQVR4nO3dfVzN5//A8VedOUllamiTIbbaaEskk9RXSuXebBhLwsIvd2GG+TKbiUK+GNZX8TXNho25HTMx2caUudnY3FTut68o3en28/ujb2eOc0pNN0e9n49Hj4dzXe/zOdf1Ocd5n+tzfT7Xx0hRFAUhhBDCQBlXdwOEEEKI0kiiEkIIYdAkUQkhhDBokqiEEEIYNElUQgghDJokKiGEEAZNEpUos+XLl2Nvb1/q39mzZ8u1TU9PT/z9/Ut8XJLc3FwiIyPp06cPbdu2pV27drz66qtERkaSk5NT7r5VlbL2rzx++OEH7O3t6dixI7m5uRW67fLQ9/lwcHDAzc2NcePGkZCQoPOc6dOnY29vX+7XKiws5OrVqw+NO3r0KPb29nz55Zd6H1eUK1euaD22t7dn+vTpFfoatdkT1d0A8fgZM2YMLVu21FvXpEmTSn/9/Px8Ro4cyc8//0y/fv0YNGgQBQUFHD9+nCVLlnDgwAHWr1+PWq2u9LYYgp07d1KvXj1SU1M5cOAAvr6+1dqe+z8fOTk5XL9+nW3btjF06FDCwsLo3bu3JnbQoEF06tSpXNvPyMhg+PDheHh4MH78+FJjW7VqRVhYGO3atSt/R8po9uzZJCYm8sknn2jKwsLCaNasWaW9Zm0jiUqUm6urKx07dqy219+zZw/Hjh1j+fLldO/eXVM+bNgw1qxZQ3h4OFu2bGHIkCHV1saqkpuby759++jbty87d+5k69at1Z6o9H0+RowYweDBg3n33Xdp37695geNk5MTTk5O5dp+amoqp0+fxsPD46GxDRs2pG/fvuXafnnFxcVhY2OjVVbZr1nbyKE/8dg5ceIEAJ07d9apGzp0KHXq1OHnn3+u4lZVj0OHDnH37l06duyIm5sbhw8f5r///W91N0tH/fr1ef/998nJyeE///lPdTdHPGYkUYlKUdJcTEXM0ZiZmQHw+eef69SZmpqSkJBAWFiYVvnXX3/Nm2++Sfv27XFwcMDT05OwsDCtOR1/f39Gjx7N/v376dOnDy+99BI9e/bk0KFDZGRkMHv2bFxcXOjUqROzZ8/m3r17Wv1699132bx5M926daNt27YMHjyYH3/88aH9OXHiBIGBgZrRxYgRIzh16lSZ9sWOHTswMjKiQ4cOeHt7U1BQwFdffaU39tChQ7z++uu0bduWbt26sWHDBt599108PT214i5cuEBwcDDOzs44OjoyePBgDh8+XKb2lMbZ2ZkmTZpobevBOSpFUVixYgU+Pj689NJLuLq68vbbb3Pjxg2gaI6pW7duAKxYsQJ7e3uuXr3Kl19+ib29PXv37sXT0xNHR0eWL19e4pxURkYGM2bMoF27dri4uDBt2jStBF/S8x4st7e359q1axw7dkyn/ME5qv379zN48GBefvllnJ2dGTNmDOfOndOKsbe3JzIykrVr1+Ll5YWDgwO9e/dmz549f2uf1xSSqES5paenc/v2bZ2/vLy8Knn9Pn36UKdOHRYuXEivXr1YunQpR48e1SSdB+emNm/ezMSJE7GwsGDq1KlMmzYNGxsboqKiiIyM1Ir95ZdfmDlzJt27d2fq1KncuXOHSZMmERQUxLVr1wgJCcHV1ZXPP/+cNWvWaD33+++/5/3338fHx4eJEydy+/ZtRo0axbFjx0rsy5EjR/D39yc9PZ2JEycyduxYrl+/ztChQzl+/Hip+yEjI4ODBw/Stm1bGjZsiIeHB2q1mq1bt+rExsbGMnbsWPLy8ggJCcHHx4eFCxeyf/9+rbjffvuNQYMGceHCBUaPHk1ISAj5+fkEBQWxe/fuUttTFs8//zwXL14s8aSP1atX89FHH9GlSxdmz57N66+/zv79+xkxYgQFBQW0atWKGTNmAODt7U1YWBhWVlaa58+YMYPevXszfvz4Uue+IiIiOHPmDBMmTGDAgAHs3r2bYcOGaf34KIuwsDAsLS1p2bIlYWFhdOjQQW9cTEwMwcHB5OXlMXnyZIYPH86pU6d44403dH6UbNy4kXXr1jFw4ECmTZtGVlYWISEh/P777+VqW00ic1Si3IKDg/WWr1+/vkrmrp5//nlWrFjBzJkzOX/+POfPn2fVqlXUq1cPT09Pxo0bh62trSY+OjoaJycnVq5ciZGREQBDhgyhW7du7N27l3Hjxmli//vf/7J69Wq6du0KwBNPPMH7779PQUEBUVFRAAwePJjjx48TFxen9dzr16/z0Ucf4eXlBRTNU/j4+LB48WK9o7/CwkLmzJnDSy+9xIYNG1CpVAC8+eab9OvXj3nz5rFt27YS98PevXvJycnRzNOZm5vj6urKwYMHOXXqFC+//LImdv78+Tz77LN89tln1K1bF4B27doRHBysGaECzJs3DysrK7Zu3Uq9evU07QkICODDDz/Ey8vrkU5SqV+/PgBpaWk0atRIp37Hjh24u7sza9YsTdkzzzzDxo0buXbtGs2aNcPLy4vQ0FDs7e115oK6d+9OSEiI5vHRo0f1tsPKyorPP/9c00c7OzumT5/O5s2byzXi79u3L//6179KnQu7c+cO4eHhvPzyy8TExGj2X79+/ejVqxcffPABmzdv1sSnpqayb98+zf5xdHRk4MCB7Nq1Czs7uzK3rSaREZUot3feeYe1a9fq/L3wwgtV1oZ//OMfxMbGEhERQd++fWnUqBFZWVns3LmTvn37ao1itm/fTmRkpCZJAaSkpFC/fn2ysrK0tmtiYkKXLl00j4sTXvHhJgAjIyNsbGx05oJatmypSVJQ9GXYt29fTp48SUpKik4ffv31V65cuYKXlxdpaWmakem9e/fo2rUrZ8+e5ebNmyXugx07dgBFI4tixf++f1R17tw5Ll++zODBgzVJCsDLy4tWrVppHt+5c4djx47h4eHBvXv3NO25e/cu3t7e3Lp1i9OnT5fYnrLIz88H0Hov7vf0009z9OhR/vOf/3Dr1i2g6IfBV199Vaaz6Nzc3MrUjiFDhmiSFBSN0p988kkOHjxYpueXxw8//EB2djaBgYFaSb5p06b06dOHU6dO8eeff2rK27dvr5XEX3zxRQCDnHusKjKiEuXWpk2baj3rr5iJiQk9evSgR48eQNFhu+joaHbu3MmcOXM0x/Xr1KnDTz/9xM6dO7l06RKXL1/WJI4Hz9Zq0KABTzzx13+L4lHOU089pRWnUql48A45zz33nE4bmzdvjqIoXLt2TWcbly9fBooOHz04p1bsxo0bPP300zrlf/75J8eOHaNFixYYGRlpril64YUXMDIyYteuXcyYMQO1Wk1ycrKmLQ+ytbXVXPtWfC3QJ598onWq9YPteRSpqamoVCrNyOpB06ZNY+zYscyfP5/Q0FDatGmDp6cnAwcO1DsCe9CD+7gkD15eoVKpsLGx4dq1a2V6fnkUvzf6Luko/qFw/fp1GjduDKB1KBP+OpRdWFhY4W17XEiiElWqoKDgkZ6flZXFxx9/TJs2bbROTYeiBLp48WLu3r3Ld999x507d7C0tGTx4sVERkbSunVr2rZtS9++fXFycuKDDz7Q+eK9P0ndr6QRwP3q1KmjU1bc3+KEd7/iL56JEyfStm1bvdss6Xq13bt3U1BQQFJSktZor1haWhr79++nR48emlGMvkN2JiYmOm0dOnSo1sjwfvqScVkpisK5c+do1apViYcPX3jhBfbu3cvhw4eJjY3l8OHDLFu2jHXr1vHZZ59pjQD1MTYu20Eife9nYWGh3vfpwZiKVPxj5/7PTln7UJtIohKVwtjYWGfCPD8/nzt37jzShZAmJiZERUXh5OSkk6iKPffccxw+fJi6dety7do1IiMj6du3r86opfjQUkUpHiHdLzk5GZVKRdOmTXXqikdz9erVw9XVVavu1KlTpKWlaR2qu1/x2X4LFizA3Nxcq+7cuXMsX76crVu30qNHD5599lkAkpKSdA6NJSUl6bRHpVLptOfChQtcvXoVU1NTve0pix9//JE7d+4waNAgvfUFBQWcO3cOc3NzunXrpknAu3fvJiQkhM2bN1fYag8Pjpzy8vK4du0azs7OwF8/LB78DP+dw2/F+/XSpUs6h8cvXboEoHfULP4iqVtUioYNG5KYmKh1FtWBAwceeXkjlUpFjx49OHbsmN7TsFNTU9m7dy+urq6YmpqSlpYG6I4EDh06RFJSkma0URFOnz6tdf3WrVu32L59O6+88gpPPvmkTryDgwONGjXik08+ITMzU1OekZHBpEmTmDFjht5f+ElJSZw5cwYXFxf69euHl5eX1t/o0aNp1KgRR44c4Y8//sDBwYFnnnmGLVu2aH3x/vzzz/z666+ax40bN8bBwYGtW7fyxx9/aMrz8vKYOXMmEyZM+Nv7KyMjgwULFlCvXj2GDh2qN6agoIBhw4Yxf/58rXJHR0fgr5FG8T55lNHNl19+qTW637x5M+np6ZqRZMOGDQF0lgTTd+ajsbFxqW1xdXXFxMSEtWvXau3/mzdvsmPHDl5++eUyH7KsrWREJSpF8dlMo0aNok+fPiQnJ7Np0yadOaG/Y/r06Zw6dYpp06axfft2unTpgrm5OZcvX+bLL78kLy+P2bNnA0UJqkmTJqxevZqcnByefvppTp06xdatWzExMdFKEI9KrVbz1ltvERAQQN26dfn0008pLCxk2rRpeuPr1KnDP//5TyZNmsSrr77Ka6+9homJCZs3b+b69essWrRI76HI4pMoXnvttRK3O2DAAFavXs1XX31FUFAQ06dPZ9KkSQwePJi+ffty+/ZtvctMzZo1i4CAAAYMGMAbb7xBgwYN2LVrFydPnmTKlClYWlo+dD98//33mpNAcnNzuXr1Ktu3b+fPP/9k0aJFmrkYffvP39+fVatWERwcTJcuXbh37x6ff/45pqamDBgwACiaRzQ2NubAgQM0adKkxJF1aa5evUpAQAC9evXiwoULfPrppzg5OdGvXz8AWrRoQZs2bdi0aRP16tWjRYsWfPPNNzpr+kHRnNK5c+f49NNPcXFx0flRZGlpyeTJkwkNDeWNN96gd+/eZGZmsnHjRgoLC7XOcBT6SaISlWLIkCGkpqayZcsWPvjgA1544QVWrFhBdHS0zpl25WVlZcWXX37JunXr+Pbbb/noo4/Izs6mcePGdO/enTFjxmi+DNVqNZGRkSxYsID169ejKArNmjVj5syZ5Ofn8+GHH3LmzBkcHBweuc9t27alZ8+erFy5kvT0dJydnZkyZUqpZ0P6+PgQHR3NqlWrWLlyJcbGxjz//POsWrVKc4r8g3bu3ImFhUWpX9ADBw4kMjKSrVu3EhQUhK+vLxEREaxatYrw8HCsra2ZMWMG27Zt4/bt25rnOTk5sXHjRpYvX87atWvJz8/H1taWBQsW0L9//zLth9WrV2v+bWpqirW1NW3btmXEiBG89NJLpT53woQJNGjQgC+++IKFCxeiUqlo164d4eHhmvkpU1NTQkJCiIqKYt68eX/rUPKcOXPYt28fCxYsoG7dugwePJjJkydr/TBYtmwZCxYs4LPPPuOJJ57A09OTmTNn4ufnp7Wt8ePHM2fOHObPn09wcLDeebzhw4fTuHFjoqOjWbJkCaampri4uDBu3Li/tShvbWOkPHjqkhCi3Dw9PbGxsSnxbLnqVFBQQFpams7ZZAC9e/emfv36xMTEVEPLhCgbmaMSooYrKCjA3d1dczi02O+//8758+e1LgwWwhDJoT8haji1Wo2vry9btmzByMgIBwcH/vzzTzZu3IilpSWBgYHV3UQhSiWJSohaYN68edja2rJ9+3a2bt2KhYUFnTp1YtKkSSWe3CCEoZA5KiGEEAZNRlQVqLCwkMzMTOrUqVOmlQyEEEIUrdCRl5eHmZmZ3pU5JFFVoMzMzFq9FL8QQjwKOzs7LCwsdMolUVWg4vW67OzsSr0VQkVdt/O4kX7XPrW179Lv8snNzeX333/Xu14mSKKqUMWH+9RqtdZin/o8rL6mkn7XPrW179Lv8itpysRgrqM6e/Ysbdq00bn/TlxcHAMGDMDR0RFPT0+io6N1nnv69Gn8/f1xcnLCzc2NJUuW6NxtNikpiTFjxuDs7EzHjh2ZM2cOGRkZWjG3bt1iypQpdOzYkfbt2zN58uRafQ8YIYQwBAYxorp06RKjR4/WWfAyISGBMWPG4Ofnx8SJE4mPjycsLAxFURg5ciRQtDr18OHDcXJyYunSpVy8eJGIiAgyMjI0FzimpaUREBBAo0aNWLhwISkpKYSHh3Pz5k0+/vhjoGhl75EjR5KVlcV7771Hfn4+ixcvZtSoUXzxxRcl3v5BCCFE5arWb9/8/Hw+//xzFi9erPfY5LJly2jdujXh4eEAuLu7k5+fz+rVq/H399es42ZhYcHKlStRq9V4eHhQt25d5s2bx+jRo7G2tiYmJoa7d++ybds2zaKa1tbWBAUFcfLkSRwdHdm1axfnzp1j9+7dmjXFXnzxRXr16sW+ffs0N+cTQghRtar10F98fDyLFi1ixIgRTJ06VasuJyeH48eP6yy86ePjw927d0lISADgyJEjdO3aVevkBV9fXwoKCoiLi9PEdOjQQWvlZzc3N8zMzDh06JAm5rnnntO6MVvx4+IYIYQQVa9aE1WrVq3Yv38/48aN07nvzpUrV8jLy8PW1larvPh22omJiWRnZ3Pjxg2dGCsrK8zNzUlMTASKDi0+GFN8M7vSYgCaNWumiRFCCFH1qjVRNWzYsMQbhqWnpwPo3L3UzMwMKLoRW0kxxXHFJ0ukp6dXSIwQQoiqZ7BnCBSv7FTi6YrGxqXGKIqidYVzRcWUxZkzZx4aEx8fX65t1hTS79qntvZd+l1xDDZRFV+d/OBopvixhYWFZgSkb8STlZWl2Ya5ubnemMzMTM0dZ0uL0TfSKo2Dg0Op1xLEx8fTvn37cm3zUWRk5ZKTV1BivUkdFeb1Sr5AuaJUdb8NRW3tN9Tevku/yycnJ6fUH/gGm6iaNWuGSqXi8uXLWuXFj21tbTEzM8Pa2prk5GStmJSUFDIyMjRzTra2tjoxBQUFXL16FR8fH02MvuWPLl++jKOjY4X1qzrk5BWwOCahxPopQ9tRvlQshBBVx2Au+H2QiYkJzs7O7Nu3j/sXeN+7dy8WFhaaZTo6d+5MbGwsubm5WjEqlQoXFxdNzNGjR0lNTdXExMXFkZWVhaurK1B0FuD58+e5dOmSJubChQtcunRJEyOEEKLqGWyiAhg7diwJCQmEhIRw6NAhli5dSlRUFKNHj8bU1BSAUaNG8d///pegoCBiY2NZu3YtoaGhDBw4kCZNmgAwZMgQ1Go1w4cP55tvvmHz5s28/fbbuLu7065dOwB69OhB8+bNGTVqFLt27WLnzp289dZbPP/88/j5+VXbPhBCiNrOoBNVp06dWL58ORcvXiQ4OJgdO3Ywbdo03nrrLU1Mq1atiI6OJisriwkTJrB27VoCAwN59913NTFWVlasX7+eBg0aMHXqVCIiIvD19SUiIkITo1arWbt2La1bt2bWrFl88MEHODk5ERUVJatSCCFENTKYb+BXX32VV199Vafc29sbb2/vUp/r7OzMpk2bSo2xs7Nj3bp1pcY888wzrFix4qFtFUIIUXUMekQlhBBCSKISQghh0CRRCSGEMGiSqIQQQhg0SVRCCCEMmiQqIYQQBk0SlRBCCIMmiUoIIYRBk0QlhBDCoEmiEkIIYdAkUQkhhDBokqiEEEIYNElUQgghDJokKiGEEAZNEpUQQgiDJolKCCGEQZNEJYQQwqBJohJCCGHQJFEJIYQwaJKohBBCGDRJVEIIIQyaJCohhBAGTRKVEEIIgyaJSgghhEGTRCWEEMKgSaISQghh0CRRCSGEMGiSqIQQQhg0SVRCCCEM2mORqDZu3Iifnx9t27ald+/ebN++Xas+Li6OAQMG4OjoiKenJ9HR0TrbOH36NP7+/jg5OeHm5saSJUvIy8vTiklKSmLMmDE4OzvTsWNH5syZQ0ZGRqX2TQghROmeqO4GPMznn3/Oe++9x4gRI+jSpQuHDh3i7bffpk6dOvj5+ZGQkMCYMWPw8/Nj4sSJxMfHExYWhqIojBw5EoDk5GSGDx+Ok5MTS5cu5eLFi0RERJCRkcHs2bMBSEtLIyAggEaNGrFw4UJSUlIIDw/n5s2bfPzxx9W5C4QQolYz+ES1detWOnbsyDvvvAOAq6srZ86c4dNPP8XPz49ly5bRunVrwsPDAXB3dyc/P5/Vq1fj7++PWq0mMjISCwsLVq5ciVqtxsPDg7p16zJv3jxGjx6NtbU1MTEx3L17l23btmFpaQmAtbU1QUFBnDx5EkdHx2rbB0IIUZsZ/KG/nJwczMzMtMoaNGhAamoqOTk5HD9+nO7du2vV+/j4cPfuXRISEgA4cuQIXbt2Ra1Wa2J8fX0pKCggLi5OE9OhQwdNkgJwc3PDzMyMQ4cOVVb3hBBCPITBJ6phw4Zx+PBh9uzZQ0ZGBl9//TUHDx6kb9++XLlyhby8PGxtbbWe07x5cwASExPJzs7mxo0bOjFWVlaYm5uTmJgIwKVLl3RiVCoVTZs21cQIIYSoegZ/6K9nz578+OOPTJo0SVPWv39/Ro0axYkTJwAwNzfXek7xCCwjI4P09HS9McVxxSdLpKenPzRGCCFE1TP4RDV27FhOnDjBjBkzaN26NSdPnmTlypWYm5vTo0cPAIyMjPQ+19jYGEVRSoxRFAVj478GlWWJKYszZ848NCY+Pr5c23wU1jYtNQlbn+zse8Rf+LVK2lKV/TYktbXfUHv7Lv2uOAadqBISEoiLiyM0NJRXX30VABcXF+rXr8/s2bN57bXXAHRGPMWPLSwsNKMkfaOirKwsLCwsgKIRl76YzMxMbGxsytVuBwcHTExMSqyPj4+nffv25drmo0hJy9b0Ux9T07pV0p6q7rehqK39htrbd+l3+eTk5JT6A9+g56iuX78OQLt27bTKnZ2dATh79iwqlYrLly9r1Rc/trW1xczMDGtra5KTk7ViUlJSyMjI0MxL2dra6sQUFBRw9epVnbkrIYQQVcegE1Vxgvjpp5+0yn/++WcAWrZsibOzM/v27dMc4gPYu3cvFhYWODg4ANC5c2diY2PJzc3VilGpVLi4uGhijh49SmpqqiYmLi6OrKwsXF1dK6N7QgghysCgD/21adMGLy8v5s+fT2ZmJi+++CJnzpzho48+wt3dHUdHR8aOHUtgYCAhISH079+fEydOEBUVxZQpUzA1NQVg1KhR7Nq1i6CgIAICAkhKSmLJkiUMHDiQJk2aADBkyBA2bNjA8OHDCQ4OJjU1lfDwcNzd3XVGdEIIIaqOQScqgIiICFasWMG6detISUnBxsaGESNGEBQUBECnTp1Yvnw5y5YtIzg4GGtra6ZNm8aIESM022jVqhXR0dGEhYUxYcIELC0tCQwMZPz48ZoYKysr1q9fz/z585k6dSpmZmb4+voybdq0Ku+zEEKIvxh8olKr1UyePJnJkyeXGOPt7Y23t3ep23F2dmbTpk2lxtjZ2bFu3bq/00whhBCVxKDnqIQQQghJVEIIIQyaJCohhBAGTRKVEEIIgyaJSgghhEGTRCWEEMKgSaISQghh0CRRCSGEMGiSqIQQQhg0SVRCCCEMmiQqIYQQBk0SlRBCCIMmiUoIIYRBk0QlhBDCoEmiEkIIYdAkUQkhhDBokqiEEEIYNElUQgghDJokKiGEEAZNEpUQQgiDJolKCCGEQZNEJYQQwqBJohJCCGHQJFEJIYQwaJKohBBCGDRJVEIIIQyaJCohhBAGTRKVEEIIgyaJSgghhEErV6IaNmwYP/zwQ4n1Bw4coGfPno/cqAf99NNPvPHGGzg6OuLm5sYHH3xAZmampj4uLo4BAwbg6OiIp6cn0dHROts4ffo0/v7+ODk54ebmxpIlS8jLy9OKSUpKYsyYMTg7O9OxY0fmzJlDRkZGhfdHCCFE2T1RWmV2djZ37tzRPD527Bje3t40b95cJ7awsJDvvvuOq1evVmgDf/75ZwIDA/H09GTVqlUkJyezZMkSbt++TUREBAkJCYwZMwY/Pz8mTpxIfHw8YWFhKIrCyJEjAUhOTmb48OE4OTmxdOlSLl68SEREBBkZGcyePRuAtLQ0AgICaNSoEQsXLiQlJYXw8HBu3rzJxx9/XKF9EkIIUXYPTVT9+vUjPT0dACMjI+bPn8/8+fP1xiuKQufOnSu0gYsWLaJt27b861//wsjICFdXVwoLC1m7di3Z2dksW7aM1q1bEx4eDoC7uzv5+fmsXr0af39/1Go1kZGRWFhYsHLlStRqNR4eHtStW5d58+YxevRorK2tiYmJ4e7du2zbtg1LS0sArK2tCQoK4uTJkzg6OlZov4QQQpRNqYnKysqK8PBwTp8+jaIofPTRR3h7e2Nvb68Ta2xsjJWVVYUe+rt9+zbHjx9n8eLFGBkZacqHDh3K0KFDycnJ4fjx40yaNEnreT4+PqxZs4aEhAReeeUVjhw5QteuXVGr1ZoYX19f5s6dqzlseOTIETp06KBJUgBubm6YmZlx6NAhSVRCCFFNSk1UAB4eHnh4eABw/fp1Bg8eXGVf2r///juKovDkk08yadIkDh48iEqlolevXsyYMYOrV6+Sl5eHra2t1vOKD00mJibi6OjIjRs3dGKsrKwwNzcnMTERgEuXLtGnTx+tGJVKRdOmTTUxQgghqt5DE9X9QkNDK6sdet2+fRuA6dOn4+3tzapVq/jtt99YunQpOTk5DBo0CABzc3Ot55mZmQGQkZGhOWz5YExxXPHJEunp6Q+NKaszZ848NCY+Pr5c23wU1jYtNftBn+zse8Rf+LVK2lKV/TYktbXfUHv7Lv2uOOVKVADfffcdO3bs4NatWxQUFOjUGxkZ8Z///KdCGld8Vl67du2YM2cOAJ06dUJRFBYuXMjAgQM1r6mPsbExiqKUGKMoCsbGf534WJaYsnBwcMDExKTE+vj4eNq3b1+ubT6KlLRsLCwsSqw3Na1bJe2p6n4bitrab6i9fZd+l09OTk6pP/DLlahiYmKYN28eAE899ZTWnE9lKB4Zubu7a5W7ubmxYMECTp8+DaAz4il+bGFhoRkl6RsVZWVlab7Azc3N9cZkZmZiY2PziD0RQgjxd5UrUa1fv54XXniBf//73zRs2LCy2qTRokULAHJzc7XKi0daTZs2RaVScfnyZa364se2traYmZlhbW1NcnKyVkxKSgoZGRmauStbW1udmIKCAq5evYqPj0+F9UkIIUT5lOuY1o0bNxg0aFCVJCmAVq1aYWNjw+7du7XKY2NjeeKJJ3BycsLZ2Zl9+/ZpDvEB7N27FwsLCxwcHADo3LkzsbGxWglv7969qFQqXFxcNDFHjx4lNTVVExMXF0dWVhaurq6V2EshhBClKVeiatasGbdu3aqstugwMjJi6tSpHD9+nKlTp/L9998TGRnJqlWr8Pf3x8rKirFjx5KQkEBISAiHDh1i6dKlREVFMXr0aExNTQEYNWoU//3vfwkKCiI2Npa1a9cSGhrKwIEDadKkCQBDhgxBrVYzfPhwvvnmGzZv3szbb7+Nu7s77dq1q7I+CyGE0FauRBUUFMQnn3zC+fPnK6s9Onr06MGKFSu4ePEio0eP5tNPPyU4OJhp06YBRSdXLF++nIsXLxIcHMyOHTuYNm0ab731lmYbrVq1Ijo6mqysLCZMmMDatWsJDAzk3Xff1cRYWVmxfv16GjRowNSpU4mIiMDX15eIiIgq66sQQghd5Zqjio+Px8zMjL59+2Jra4uVlZXOmXIVedZfMS8vL7y8vEqs9/b2xtvbu9RtODs7s2nTplJj7OzsWLdu3d9pohBCiEpSrkR1+PBhAJ5++mmys7O5du1apTRKCCGEKFauRHXgwIHKaocQQgihl9yPSgghhEEr14hq2LBhZYpbv37932qMEEII8aByJSp995oqLCzkzp075OTkYGNjw/PPP19hjRNCCCEqZI6qoKCAb7/9llmzZmluViiEEEJUhAqZo1KpVHTv3p3XX3+dRYsWVcQmhRBCCKCCT6Zo0aIF586dq8hNCiGEqOUqLFHl5uayfft2nnrqqYrapBBCCFExZ/3l5uaSmJjI3bt3GT9+fIU0TAghhIAKOOsPiuaoWrZsSa9evRgyZEiFNEwIIYQAWZlCCCGEgSv3reih6HT0M2fOcO3aNdRqNc888wxt2rSp6LYJIYQQ5U9UsbGxzJ07lz/++ENzs0IjIyMaN27MnDlz8PT0rPBGCiGEqL3KlaiOHz/O+PHjeeqppwgJCaFVq1YoisKlS5f49NNPmTBhAuvXr5cbDQohhKgw5UpUy5cvx8bGhi1btmBhYaFVN2TIEAYMGMCqVav497//XaGNFELUTBlZueTkFeitM6mjwryeuopbJAxRuRLVqVOnCA4O1klSAObm5rz22muSpIQQZZaTV8DimAS9dVOGtsO8itsjDFOFrkxhZGREXl5eRW5SCCFELVeuROXo6MiWLVvIysrSqcvIyGDz5s289NJLFdY4IYQQolyH/saNG8ewYcPo1asXb775Ji1atADQnEzxxx9/MHfu3MpopxBCiFqqXInK2dmZ5cuX8/777xMWFoaRkZHmFPVGjRoRERHBK6+8UikNFUKIspKTNGqWcl9H1a1bN/7xj3/wyy+/aJZUsra2xtHRkSee+FvXDwshRIWSkzRqljLNUW3YsIHevXuTn58PFK3t9/LLL9OjRw++/fZbxo8fz4YNGyq1oUIIIWqnUhOVoihMmzaNefPm8eeff3L9+nWdmKZNm2JsbMzChQuZPHlypTVUCCFE7VRqotq8eTPbt29nyJAhfPfddzRr1kwnJiQkhG+//Za+ffuyZ88etm3bVlltFUIIUQs9NFF16NCB2bNnY2JiUmKciYkJ8+fP54UXXuCzzz6r8EYKIYSovUpNVBcuXKBbt25l25CxMT4+Pvz2228V0jAhhBACHpKoVCoVanXZT+O0tLTE2LhCF7sQQghRy5WaVZo3b86ZM2fKvLHTp0/TpEmTR25UacaNG4e3t7dWWVxcHAMGDMDR0RFPT0+io6P1ts3f3x8nJyfc3NxYsmSJznJPSUlJjBkzBmdnZzp27MicOXPIyMio1P4IIYQoXamJqmfPnuzYsYPz588/dEPnz59nx44duLu7V1jjHvTVV1/xzTffaJUlJCQwZswYWrZsyfLly+nduzdhYWFERUVpYpKTkxk+fDgmJiYsXbqUESNGsHbtWkJDQzUxaWlpBAQEcOvWLRYuXMiUKVPYvXs3U6ZMqbT+CCGEeLhSr9AdNGgQn3/+Of7+/sycOZOePXuiUqm0YgoLC9m9ezcLFizAzMyMgICASmnoH3/8wYcffsjTTz+tVb5s2TJat25NeHg4AO7u7uTn57N69Wr8/f1Rq9VERkZiYWHBypUrUavVeHh4ULduXebNm8fo0aOxtrYmJiaGu3fvsm3bNiwtLYGiC5mDgoI4efIkjo6OldIvIYQQpSt1RGVmZsaqVato0KAB77zzDi4uLgwbNowpU6YQEhLCsGHD6NChA2+//TZqtZqoqCgaN25cKQ2dNWsWnTt3plOnTpqynJwcjh8/Tvfu3bVifXx8uHv3LgkJRVemHzlyhK5du2rNt/n6+lJQUEBcXJwmpkOHDpokBeDm5oaZmRmHDh2qlD4JIYR4uIeuedSyZUu2b99OTEwMu3btIiEhQbNCRZ06dWjbti3du3dn0KBB5Trxojw2b97ML7/8ws6dOwkLC9OUX7lyhby8PGxtbbXimzdvDkBiYiKOjo7cuHFDJ8bKygpzc3MSExOBooV1+/TpoxWjUqlo2rSpJkYIIUTVK9PifGq1msDAQAIDAwG4ffs2KpWKJ598slIbB3Dt2jVCQ0MJDQ3FyspKqy49PR0oumnj/czMzICiW4+UFFMcV3yyRHp6+kNjhBBCVL2/tYrsgwmjsiiKwsyZM/Hw8MDHx0dvPRTdsFEfY2PjUmMURdE6nb4sMWVRljMl4+Pjy7XNR2Ft01KTsPXJzr5H/IVfq6QtVdlvQ1Jb+w2l9720z+ajfC4ra7vlUVvf88rot0Evdx4TE8Nvv/3Gjh07NIcbixNPfn4+FhYWADojnuLHFhYWmlGSvlFRVlaWZhvm5uZ6YzIzM7GxsSlXux0cHEpdySM+Pp727duXa5uPIiUtW9NPfUxN61ZJe6q634aitvYbHt730j6bj/K5rKztllVtfc//br9zcnJK/YFv0Ilq79693LlzBzc3N526Nm3a8N5776FSqbh8+bJWXfFjW1tbzMzMsLa2Jjk5WSsmJSWFjIwMzdyVra2tTkxBQQFXr17VO5oTQghRNQx6GYm5c+eyZcsWrb+uXbvy9NNPs2XLFnx9fXF2dmbfvn2akRYUJTgLCwscHBwA6Ny5M7GxseTm5mrFqFQqXFxcNDFHjx4lNTVVExMXF0dWVhaurq5V02EhhBA6DHpE1bJlS52yBg0aoFareemllwAYO3YsgYGBhISE0L9/f06cOEFUVBRTpkzB1NQUgFGjRrFr1y6CgoIICAggKSmJJUuWMHDgQM1KGkOGDGHDhg0MHz6c4OBgUlNTCQ8Px93dnXbt2lVdp4UQQmgx6BFVWXTq1Inly5dz8eJFgoOD2bFjB9OmTeOtt97SxLRq1Yro6GiysrKYMGECa9euJTAwkHfffVcTY2Vlxfr162nQoAFTp04lIiICX19fIiIiqqNbQggh/segR1T6LFiwQKfM29tbZ/2/Bzk7O7Np06ZSY+zs7Fi3bt2jNE+IGikjK5ecvAK9dSZ1VJjXq5xrKIWAxzBRCSGqXk5eAYtjEvTWTRnaDt0rECtXaYkToLBQKbFOPH4kUQkhDJKxkREpadl66woLFSI2nijxuZMGO1VWs0Q1kEQlhDBIefmFLP1MfzKSRFS7PPYnUwghhKjZJFEJIYQwaJKohBBCGDRJVEIIIQyaJCohhBAGTRKVEEIIgyaJSgghhEGTRCWEEMKgyQW/QohKVdpyR7LUkSgLSVRCiEpV2jqBssKEKAs59CeEEMKgSaISQghh0CRRCSGEMGiSqIQQQhg0SVRCCCEMmpz1J4R4JKXd4NDapqWcgi4emSQqIcQjKe0Gh+np6fzzLfcqbpGoaeTQnxBCCIMmiUoIIYRBk0QlhBDCoEmiEkIIYdAkUQkhhDBokqiEEEIYNElUQgghDJpcRyWEAOS+UcJwSaISQgBy3yhhuAz+0F9hYSEbN26kd+/eODk54eXlRWhoKBkZGZqYuLg4BgwYgKOjI56enkRHR+ts5/Tp0/j7++Pk5ISbmxtLliwhLy9PKyYpKYkxY8bg7OxMx44dmTNnjtbrCCGEqHoGP6Jas2YNS5cuZeTIkXTq1InExESWLVvGhQsXiIqKIiEhgTFjxuDn58fEiROJj48nLCwMRVEYOXIkAMnJyQwfPhwnJyeWLl3KxYsXiYiIICMjg9mzZwOQlpZGQEAAjRo1YuHChaSkpBAeHs7Nmzf5+OOPq3MXCCEqUGlrE5rUUWFeT13FLRIPY9CJSlEU1qxZw6BBg5gyZQoArq6uWFpaEhISwtmzZ1m2bBmtW7cmPDwcAHd3d/Lz81m9ejX+/v6o1WoiIyOxsLBg5cqVqNVqPDw8qFu3LvPmzWP06NFYW1sTExPD3bt32bZtG5aWlgBYW1sTFBTEyZMncXR0rLb9IERZlTbPBPCEypj8gkK9dbVlHqq0tQmnDG2HeRW3RzycQSeqzMxM+vTpg5+fn1Z5y5YtATh//jzHjx9n0qRJWvU+Pj6sWbOGhIQEXnnlFY4cOULXrl1Rq//6peTr68vcuXM1hw2PHDlChw4dNEkKwM3NDTMzMw4dOiSJSjwWSptngqK5ppK+pGUeShgqg56jMjc3Z9asWbRv316rfP/+/QC0bt2avLw8bG1tteqbN28OQGJiItnZ2dy4cUMnxsrKCnNzcxITEwG4dOmSToxKpaJp06aaGCGEEFXPoEdU+pw8eZLIyEi8vLxIT08HihLa/czMzADIyMgoMaY4rvhkifT09IfGGDI5tVgIUVM9VokqPj6eMWPG0LRpU+bNm6cZ6RgZGemNNzY2RlGUEmMURcHY+K9BZVliyuLMmTMPjYmPjy/XNh/G2qYlC/9zVG/du6PcNAlbn+zse8Rf+LVC21OSiu7346Kq+m1t07LU97pQKSyxvjLqHrfXrMj/C/JZrziPTaLavXs306dPp0WLFqxZswZLS0tu3boFoDPiKX5sYWGhGSXpGxVlZWVhYWEBFI249MVkZmZiY2NTrrY6ODhgYmJSYn18fLzO4cxHlZKWrenLg4yNjEusAzA1rVvh7dGnMvr9OKjKfpf2OYDSPwuVUZeenl7lr/koz62o/wvyWS+fnJycUn/gG/QcVbG1a9cyefJk2rZtS0xMDI0bNwagWbNmqFQqLl++rBVf/NjW1hYzMzOsra1JTk7WiklJSSEjI0MzL2Vra6sTU1BQwNWrV3XmroQQQlQdg09UmzdvZsGCBfj5+bFmzRqtX0ImJiY4Ozuzb98+zSE+gL1792JhYYGDgwMAnTt3JjY2ltzcXK0YlUqFi4uLJubo0aOkpqZqYuLi4sjKysLV1bWSeymEEKIkBn3oLyUlhQ8//BAbGxuGDh3Kr79qHztu1qwZY8eOJTAwkJCQEPr378+JEyeIiopiypQpmJqaAjBq1Ch27dpFUFAQAQEBJCUlsWTJEgYOHEiTJk0AGDJkCBs2bGD48OEEBweTmppKeHg47u7utGvXrsr7XtOVdvKHXHQphLifQSeqw4cPk52dzbVr1xg6dKhOfVhYGH379mX58uUsW7aM4OBgrK2tmTZtGiNGjNDEtWrViujoaMLCwpgwYQKWlpYEBgYyfvx4TYyVlRXr169n/vz5TJ06FTMzM3x9fZk2bVqV9LW2Ke16H7noUghxP4NOVP369aNfv34PjfP29sbb27vUGGdnZzZt2lRqjJ2dHevWrStHC4UQQlQ2g5+jEkIIUbtJohJCCGHQJFEJIYQwaAY9RyWEEFVJbgFimCRRCSHE/8gtQAyTHPoTQghh0CRRCSGEMGhy6E9UCn0rT1jbtNQc/5dbjwghykoSlagU+laeSE9P16zVKHeTFUKUlRz6E0IIYdAkUQkhhDBocuhPCCHKoLRrrECus6pMkqhEqeR2HEIUKe0aK5DrrCqTJCpRquq4HYesDiCEuJ8kKmFwZHUAIcT95GQKIYQQBk0SlRBCCIMmh/5EqXNCsoKEEKK6SaISpc4JlbaChKEluNLOUAQ5EUOIx5UkKvG3/d0EV1lKO0MR5EQMIR5XkqjEY8XQRnFCiMoniUo8VgxtFFcdSjvEKcla1ESSqIR4zJR2iLO2JGtRu8jp6UIIIQyajKhErSFLMwnxeJJEJWqN0ua33n6zvSQxIQyUJCohkCQmhCGTRCXEQ1TWIrlyCxUhykYSlRDVpDpuoSLE40gS1QN27tzJqlWruHLlCjY2NowePZp+/fpVd7OEgSrtBI0nVMbkFxRibdNSb0xp1zzJhc2Pn/vfswffcxkhPxpJVPfZs2cPU6dOZdiwYXTp0oX9+/fzzjvvULduXXx9fau7eXKhpwF62AXISz87QXp6OhYWFnrr/+52heG5/z178D2XEfKjkUR1nyVLluDn58fMmTMB6NKlC2lpafzrX/+qskT1sGQUsVG+vIR43MilEY9GEtX/XLlyhcuXLzN58mStch8fH/bs2cOVK1d49tlnK70dsuqAEDWPnFX6aCRR/c+lS5cAsLW11Spv3rw5AImJiQ9NVIpSdPgtNzf3oa+Xk5OjtzwvL5d6aiO9dfmVUFdZ29VXp9Q11pRV1WtW9nbLUnd/v6uzPdXxmkpd41rRzwfrH3zPS3tudvY9onf8qrcuqL8DGVn6kxiAyRMq6pnWKbG+OpT03Vaa4u/M4u/QBxkpJdXUMjt37mTKlCl8++23NG3aVFOenJxM9+7diYiIoEePHqVuIz09nd9//72ymyqEEDWSnZ2d3vlcGVH9T3G+NjIy0ltubPzwZRHNzMyws7OjTp06OtsRQgihn6Io5OXlYWZmprdeEtX/FGfxjIwMrfLMzEyt+tIYGxuXKU4IIYS2unXrllgnq6f/T/Hc1OXLl7XKk5OTteqFEEJULUlU/9O8eXOaNm3K119/rVW+b98+WrRoQZMmTaqpZUIIUbvJob/7BAcHM2PGDJ588kn+8Y9/cODAAfbs2UNERER1N00IIWotOevvAZ999hnR0dHcuHGDZ599lqCgIFlCSQghqpEkKiGEEAZN5qiEEEIYNElUQgghDJokqiq0c+dOevbsycsvv4yfnx/btm2r7iZVuMLCQjZu3Ejv3r1xcnLCy8uL0NBQrevT4uLiGDBgAI6Ojnh6ehIdHV2NLa4c48aNw9vbW6uspvb7p59+4o033sDR0RE3Nzc++OADzfWHUHP7vXHjRvz8/Gjbti29e/dm+/btWvU1rd9nz56lTZs23Lx5U6u8LP08ffo0/v7+ODk54ebmxpIlS8jLyyv7iyuiSuzevVuxt7dXPvzwQ+W7775TZs+erdjZ2Sl79uyp7qZVqI8//lh58cUXlUWLFilHjhxRNmzYoLi4uCgjRoxQFEVR4uPjlTZt2ihTp05VDh06pCxZskSxt7dX1qxZU80trzjbtm1T7OzsFC8vL01ZTe33iRMnlDZt2ijjx49Xjhw5onz66aeKs7OzMmnSJEVRam6/P/vsM8XOzk5ZsGCBcuTIEWX+/PmKnZ2dsnv3bkVRal6/L168qHTp0kWxs7NTbty4oSkvSz+TkpKUdu3aKSNHjlQOHjyoREVFKQ4ODsrcuXPL/PqSqKqIl5eX5j9vsYkTJyq+vr7V1KKKV1hYqHTo0EF57733tMp37dql2NnZKb/++qsSEBCgvP7661r1YWFhirOzs5KTk1OVza0UN2/eVDp06KC4u7trJaqa2u+hQ4cqQ4cOVQoLCzVlGzZsULp166ZkZWXV2H4PGjRI8ff31yobMmSI8uabbyqKUnPe77y8PGXDhg2Kk5OT4uLiopOoytLPmTNnKh4eHlr9jomJUV588UXl5s2bZWqHHPqrAsW3EOnevbtWuY+PD5cuXeLKlSvV1LKKlZmZSZ8+fejVq5dWecuWLQE4f/48x48f17sf7t69S0KC/tubPE5mzZpF586d6dSpk6YsJyenRvb79u3bHD9+nDfeeENrbcuhQ4eyf/9+jI2Na2S/oeg9fXBdugYNGpCamlqj3u/4+HgWLVrEiBEjmDp1qlZdWft55MgRunbtilr91+1KfH19KSgoIC4urkztkERVBcpyC5GawNzcnFmzZtG+fXut8v379wPQunVr8vLyaux+2Lx5M7/88gv//Oc/tcqvXLlSI/v9+++/oygKTz75JJMmTaJt27a0b9+eOXPmcO/evRrbb4Bhw4Zx+PBh9uzZQ0ZGBl9//TUHDx6kb9++NarfrVq1Yv/+/YwbNw6VSqVVV5Z+Zmdnc+PGDZ0YKysrzM3Ny7wvZGWKKpCeng4UfZHfr/gX2YML4dYkJ0+eJDIyEi8vrxq9H65du0ZoaCihoaFYWVlp1dXUft++fRuA6dOn4+3tzapVq/jtt99YunQpOTk5DBo0CKh5/Qbo2bMnP/74I5MmTdKU9e/fn1GjRnHiRNENEmtCvxs2bFhiXVk+1yXFFMeVdV9IoqoCSgXcQuRxFB8fz5gxY2jatCnz5s3T/Hoq6RYoj+t+UBSFmTNn4uHhgY+Pj956qHn9Lj5rq127dsyZMweATp06oSgKCxcuZODAgUDN6zfA2LFjOXHiBDNmzKB169acPHmSlStXYm5urrlvXU3s9/3K8rkuLUZRlDLvC0lUVaAibiHyuNm9ezfTp0+nRYsWrFmzBktLS27dugXo7ofix4/rfoiJieG3335jx44d5OfnA3/9J87Pzy/x/X/c+138y9nd3V2r3M3NjQULFnD69Gmg5vU7ISGBuLg4QkNDefXVVwFwcXGhfv36zJ49m9deew2oef1+UFk+18UjKX0jp6ysrDLvC0lUVeD+W4jY29trymvqLUTWrl3LwoULcXFx4aOPPtJ8GJs1a4ZKpdK5lUrx48d1P+zdu5c7d+7g5uamU9emTRvee++9GtnvFi1aAH/dRrxY8UiradOmNbLf169fB4pGkvdzdnYGiq43qon9flBZ/j+bmZlhbW2t+a4rlpKSQkZGRpn3Rc0Ygxq42nQLkc2bN7NgwQL8/PxYs2aN1i8mExMTnJ2d2bdvn2bEAUVf9BYWFjg4OFRHkx/Z3Llz2bJli9Zf165defrpp9myZQu+vr41st+tWrXCxsaG3bt3a5XHxsbyxBNP4OTkVCP7Xfzl+tNPP2mV//zzz0DRWa41sd8PKuv/586dOxMbG6v1g2bv3r2oVCpcXFzK9mJ/59x6UX5ffPGFYmdnp8ydO1c5dOiQMmfOHMXOzk7ZtWtXdTetwty6dUtxdHRUunbtqvz000/KiRMntP5SUlKU77//XrG3t1cmTpyoHDx4UImIiFDs7e2VyMjI6m5+hXrnnXe0rqOqqf3etWuXYm9vr0yZMkU5cuSI8vHHHytt2rRRQkNDFUWpuf3+v//7P6Vt27bK2rVrlR9//FFZs2aN4uTkpIwaNUpRlJrZ7+LvsPuvoypLPy9cuKC89NJLSkBAgHLgwAElOjpacXBwUObMmVPm15ZEVYU2btyoeHt7Kw4ODoqfn5+ydevW6m5Shdq6datiZ2dX4t+2bdsURVGUffv2Kb169VLatGmjeHp6KlFRUdXc8or3YKJSlJrb72+++Ubp16+f4uDgoHh4eCgrV65UCgoKNPU1sd85OTnK4sWLFQ8PD8XBwUHx8fFRli9frnVRa03rt75EpShl6+dPP/2kvP7664qDg4PSpUsXZfHixUpubm6ZX1tu8yGEEMKgyRyVEEIIgyaJSgghhEGTRCWEEMKgSaISQghh0CRRCSGEMGiSqIQQQhg0SVRCCCEMmiQqIYQQBk0SlRBCCIMmiUoIIYRBk9t8CPEYUhSFzz77jC+++IKLFy+Sn5+PjY0Nr776Km+99ZbmRnWHDh1ixYoVnD9/nqeeeorAwEDOnj3LDz/8wIEDBzTbu3DhAhERERw9epS8vDxefPFFgoOD6dKlS3V1UQgNWetPiMdQREQEq1evpn///rRr147MzEy2bdvGuXPnWLBgAf379yc2Npbg4GDs7Ozo378/f/zxB5988gn16tXDzMxMk6h+++03hgwZQsOGDXnttdeoU6cOO3fu5JdffmHx4sWaO9YKUV0kUQnxmMnLy+OVV17Bw8ODJUuWaMozMjLo1KkTnTt3ZvXq1Xh7e2NsbMxXX31F3bp1Adi/fz/BwcHY2NhoEpW/vz83b97kq6++ol69ekDRnYkDAgJISkoiNjYWtVpd9R0V4n9kjkqIx0ydOnX4/vvvef/997XK79y5g7m5OVlZWZw7d47Lly8zePBgTZIC8PLyolWrVlrPOXbsGB4eHty7d4/bt29z+/Zt7t69i7e3N7du3dLcUl6I6iJzVEI8hurUqcPBgwf59ttvSUxMJDk5mbS0NKBo/qr41t/NmzfXea6trS1nz54F4MqVKwB88sknfPLJJ3pf68aNG5XRBSHKTBKVEI8ZRVF4++232blzJ+3bt8fJyYlBgwbRoUMHAgICgKJDd4DeQ3YmJiaafxcUFAAwdOhQvLy89L7ec889V9FdEKJcJFEJ8Zg5fvw4O3fu5P/+7/+YOHGipjw/P5/U1FSeffZZnn32WQCSkpJwc3PTen5SUpLm3zY2NgCoVCpcXV214i5cuMDVq1cxNTWtpJ4IUTYyRyXEYyY1NRXQHels2rSJ7Oxs8vPzcXBw4JlnnmHLli3k5uZqYn7++Wd+/fVXzePGjRvj4ODA1q1b+eOPPzTleXl5zJw5kwkTJmhGZ0JUFxlRCfGYcXJywtzcnNDQUK5fv079+vU5evQou3fvxsTEhMzMTIyNjZk+fTqTJk1i8ODB9O3bl9u3b7N+/Xqdw4GzZs0iICCAAQMG8MYbb9CgQQN27drFyZMnmTJlCpaWltXUUyGKyOnpQjyG4uPjWbRoEefOnUOtVmNra8uwYcM4deoU69ev57vvvqNhw4bs2bOHVatWcenSJaytrRk9ejTbtm3j9u3bfP3115rt/fLLLyxfvpzjx4+Tn5+v2V7//v2rsZdCFJFEJUQNVFBQQFpaGlZWVjp1vXv3pn79+sTExFRDy4QoP5mjEqIGKigowN3dndmzZ2uV//7775w/f56XX365mlomRPnJHJUQNZBarcbX15ctW7ZgZGSEg4MDf/75Jxs3bsTS0pLAwMDqbqIQZSaH/oSooe7du0dUVBTbt2/nxo0bWFhY0KlTJyZNmkTTpk2ru3lClJkkKiGEEAZN5qiEEEIYNElUQgghDJokKiGEEAZNEpUQQgiDJolKCCGEQZNEJYQQwqD9PwAMXPfazs73AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for Figure 1B\n",
    "sns.set(style=\"whitegrid\", font_scale=1.5)\n",
    "sns.histplot(data=age, x=\"age\").set_title('Full Sample Age Distribution');"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "figure: Figure 2.\n",
    ":::\n",
    "![](elife-72904.xml.media/fig2.jpg)\n",
    "\n",
    "## Normative modeling in clinical cohorts.\n",
    "\n",
    "Reference brain charts were transferred to several clinical samples (described in (**A**)). Patterns of extreme deviations were summarized for each clinical group and compared to matched control groups (from the same sites). (**B**) Shows extreme positive deviations (thicker/larger than expected) and (**C**) shows the extreme negative deviation (thinner/smaller than expected) patterns. (**D**) Shows the significant (FDR corrected p&lt;0.05) results of classical case-control methods (mass-univariate t-tests) on the true cortical thickness data (top row) and on the deviations scores (bottom row). There is unique information added by each approach which becomes evident when noticing the maps in (**B–D**) are not identical. ADHD, attention-deficit hyperactive disorder; ASD, autism spectrum disorder; BD, bipolar disorder; EP, early psychosis; FDR, false discovery rate; MDD, major depressive disorder; SZ, schizophrenia.\n",
    ":::\n",
    "{#fig2}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load in numpy arrays for extreme positive deviations. \n",
    "# There is one numpy array for each clinical group shown in Figure 2C\n",
    "# There is one numpy array for each hemisphere\n",
    "parcellation_adhd_pos_r = np.load('docs/parcellation_adhd_pos_r.npy')\n",
    "parcellation_adhd_pos_l = np.load('docs/parcellation_adhd_pos_l.npy')\n",
    "parcellation_adhd_hc_pos_r = np.load('docs/parcellation_adhd_hc_pos_r.npy')\n",
    "parcellation_adhd_hc_pos_l = np.load('docs/parcellation_adhd_hc_pos_l.npy')\n",
    "parcellation_asd_pos_r = np.load('docs/parcellation_asd_pos_r.npy')\n",
    "parcellation_asd_pos_l = np.load('docs/parcellation_asd_pos_l.npy')\n",
    "parcellation_asd_hc_pos_r = np.load('docs/parcellation_asd_hc_pos_r.npy')\n",
    "parcellation_asd_hc_pos_l = np.load('docs/parcellation_asd_hc_pos_l.npy')\n",
    "parcellation_bd_pos_r = np.load('docs/parcellation_bd_pos_r.npy')\n",
    "parcellation_bd_pos_l = np.load('docs/parcellation_bd_pos_l.npy')\n",
    "parcellation_bd_hc_pos_r = np.load('docs/parcellation_bd_hc_pos_r.npy')\n",
    "parcellation_bd_hc_pos_l = np.load('docs/parcellation_bd_hc_pos_l.npy')\n",
    "parcellation_ep_pos_r = np.load('docs/parcellation_ep_pos_r.npy')\n",
    "parcellation_ep_pos_l = np.load('docs/parcellation_ep_pos_l.npy')\n",
    "parcellation_ep_hc_pos_r = np.load('docs/parcellation_ep_hc_pos_r.npy')\n",
    "parcellation_ep_hc_pos_l = np.load('docs/parcellation_ep_hc_pos_l.npy')\n",
    "parcellation_mdd_pos_r = np.load('docs/parcellation_mdd_pos_r.npy')\n",
    "parcellation_mdd_pos_l = np.load('docs/parcellation_mdd_pos_l.npy')\n",
    "parcellation_mdd_hc_pos_r = np.load('docs/parcellation_mdd_hc_pos_r.npy')\n",
    "parcellation_mdd_hc_pos_l = np.load('docs/parcellation_mdd_hc_pos_l.npy')\n",
    "parcellation_sz_pos_r = np.load('docs/parcellation_sz_pos_r.npy')\n",
    "parcellation_sz_pos_l = np.load('docs/parcellation_sz_pos_l.npy')\n",
    "parcellation_sz_hc_pos_r = np.load('docs/parcellation_sz_hc_pos_r.npy')\n",
    "parcellation_sz_hc_pos_l = np.load('docs/parcellation_sz_hc_pos_l.npy')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "# import nilearn plotting tools\n",
    "from nilearn import plotting"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ADHD Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_adhd_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as ADHD) Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_adhd_hc_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ADHD Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_adhd_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as ADHD) Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_adhd_hc_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ASD Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_asd_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as ASD) Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_asd_hc_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ASD Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_asd_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as ASD) Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_asd_hc_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# EP Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_ep_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as EP) Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_ep_hc_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as EP) Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_ep_hc_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# EP Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_ep_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# SZ Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_sz_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from SZ sites) Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_sz_hc_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# SZ Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_sz_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from SZ sites) Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_sz_hc_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# BD Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_bd_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as BD) Positive  Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_bd_hc_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# BD Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_bd_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as BD) Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_bd_hc_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# MDD Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_mdd_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as MDD) Positive Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_mdd_hc_pos_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# MDD Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_mdd_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as MDD) Positive Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_mdd_hc_pos_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load in numpy arrays for extreme negative deviations. \n",
    "# There is one numpy array for each clinical group shown in Figure 2D\n",
    "# There is one numpy array for each hemisphere\n",
    "parcellation_adhd_neg_r = np.load('docs/parcellation_adhd_neg_r.npy')\n",
    "parcellation_adhd_neg_l = np.load('docs/parcellation_adhd_neg_l.npy')\n",
    "parcellation_adhd_hc_neg_r = np.load('docs/parcellation_adhd_hc_neg_r.npy')\n",
    "parcellation_adhd_hc_neg_l = np.load('docs/parcellation_adhd_hc_neg_l.npy')\n",
    "parcellation_asd_neg_r = np.load('docs/parcellation_asd_neg_r.npy')\n",
    "parcellation_asd_neg_l = np.load('docs/parcellation_asd_neg_l.npy')\n",
    "parcellation_asd_hc_neg_r = np.load('docs/parcellation_asd_hc_neg_r.npy')\n",
    "parcellation_asd_hc_neg_l = np.load('docs/parcellation_asd_hc_neg_l.npy')\n",
    "parcellation_bd_neg_r = np.load('docs/parcellation_bd_neg_r.npy')\n",
    "parcellation_bd_neg_l = np.load('docs/parcellation_bd_neg_l.npy')\n",
    "parcellation_bd_hc_neg_r = np.load('docs/parcellation_bd_hc_neg_r.npy')\n",
    "parcellation_bd_hc_neg_l = np.load('docs/parcellation_bd_hc_neg_l.npy')\n",
    "parcellation_ep_neg_r = np.load('docs/parcellation_ep_neg_r.npy')\n",
    "parcellation_ep_neg_l = np.load('docs/parcellation_ep_neg_l.npy')\n",
    "parcellation_ep_hc_neg_r = np.load('docs/parcellation_ep_hc_neg_r.npy')\n",
    "parcellation_ep_hc_neg_l = np.load('docs/parcellation_ep_hc_neg_l.npy')\n",
    "parcellation_mdd_neg_r = np.load('docs/parcellation_mdd_neg_r.npy')\n",
    "parcellation_mdd_neg_l = np.load('docs/parcellation_mdd_neg_l.npy')\n",
    "parcellation_mdd_hc_neg_r = np.load('docs/parcellation_mdd_hc_neg_r.npy')\n",
    "parcellation_mdd_hc_neg_l = np.load('docs/parcellation_mdd_hc_neg_l.npy')\n",
    "parcellation_sz_neg_r = np.load('docs/parcellation_sz_neg_r.npy')\n",
    "parcellation_sz_neg_l = np.load('docs/parcellation_sz_neg_l.npy')\n",
    "parcellation_sz_hc_neg_r = np.load('docs/parcellation_sz_hc_neg_r.npy')\n",
    "parcellation_sz_hc_neg_l = np.load('docs/parcellation_sz_hc_neg_l.npy')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ADHD Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_adhd_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as ADHD) Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_adhd_hc_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ADHD Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_adhd_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as ADHD) Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_adhd_hc_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ASD Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_asd_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as ASD) Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_asd_hc_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ASD Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_asd_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as ASD) Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_asd_hc_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# EP Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_ep_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as EP) Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_ep_hc_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# EP Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_ep_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as EP) Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_ep_hc_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# SZ Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_sz_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from SZ sites) Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_sz_hc_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# SZ Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_sz_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from SZ sites) Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_sz_hc_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# BD Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_bd_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as BD) Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_bd_hc_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# BD Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_bd_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as BD) Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_bd_hc_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# MDD Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_mdd_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as MDD) Negative Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_mdd_hc_neg_r, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# MDD Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_mdd_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# HC (from same sites as MDD) Negative Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_mdd_hc_neg_l, threshold=None, symmetric_cmap=False, vmax=15, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Results\n",
    "\n",
    "We split the available data into training and test sets, stratifying by site ([Table 1](#table1), [Supplementary files 1 and 2](#supp1)). After careful quality checking procedures, we fit normative models using a set of covariates (age, sex, and fixed effects for site) to predict cortical thickness and subcortical volume for each parcel in a high-resolution atlas ([@bib7]). We employed a warped Bayesian linear regression model to accurately model non-linear and non-Gaussian effects ([@bib14]), whilst accounting for scanner effects ([@bib2]; [@bib23]). These models are summarized in [Figure 1](#fig1) and [Figure 3](#fig3), [Figure 3—figure supplements 1](#fig3s1)–[3](#fig3s3), and with an online interactive visualization tool for exploring the evaluation metrics across different test sets (overview of this tool shown in [Video 1](#video1)). The raw data used in these visualizations are available on [GitHub](https://github.com/predictive-clinical-neuroscience/braincharts/tree/master/metrics) ([@bib36])."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "figure: Figure 3.\n",
    ":::\n",
    "![](elife-72904.xml.media/fig3.jpg)\n",
    "\n",
    "## Evaluation metrics across all test sets.\n",
    "\n",
    "The distribution of evaluation metrics in four different test sets (full, mQC, patients, and transfer, see Materials and methods) separated into left and right hemispheres and subcortical regions, with the skew and excess kurtosis being measures that depict the accuracy of the estimated shape of the model, ideally both would be around zero. Note that kurtosis is highly sensitive to outlying samples. Overall, these models show that the models fit well in term of central tendency and variance (explained variance and MSLL) and model the shape of the distribution well in most regions (skew and kurtosis). Code and sample data for transferring these models to new sites not included in training is shared.\n",
    ":::\n",
    "{#fig3}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load in the file containing all test set evaluation metrics\n",
    "df_eval = pd.read_csv('docs/all_test_sets_eval.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Exclude a few extreme outliers for plotting purposes\n",
    "df_eval = df_eval.query('Kurtosis < 15')\n",
    "df_eval = df_eval.query('MSLL > -20')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 98,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Separate each test set into its own dataframe\n",
    "df_transfer = df_eval.query('test_label == \"transfer\"')\n",
    "df_12k_mqc2_test = df_eval.query('test_label == \"mQC\"')\n",
    "df_29k_test = df_eval.query('test_label == \"full test\"')\n",
    "df_pt = df_eval.query('test_label == \"patients\"')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 151,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0.5, 0, '')"
      ]
     },
     "execution_count": 151,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAQICAYAAAAgBoH0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hUZfbA8e/0kkxJ7yT0Ir0IsggIrKxIxIJdsKyudf3J7uKisAui2AUVyy72Lq5SxAKoWAEBEYFA6CU9mUzapE29vz9iBgIJyYTJzCR5P8/jIzO3nZkkM/ee+77nyCRJkhAEQRAEQRAEQRAEQQgyebADEARBEARBEARBEARBAJGkEARBEARBEARBEAQhRIgkhSAIgiAIgiAIgiAIIUEkKQRBEARBEARBEARBCAkiSSEIgiAIgiAIgiAIQkgQSQpBEARBEARBEARBEEKCSFL4yYwZM+jdu/cZ/5s2bVpAYrjqqqsCuq0/LF261Ps+2e32Rte55ZZb6N27N3369KGoqKjRda644gp69+7NyJEjcblcZx3XnDlz6N27N3/4wx/Oel+C0FGd+vn366+/Nli+evXqBsvnzJnjXZaTk8PcuXOZMGEC/fv3Z+jQoUyfPp233nrrtL9hXz6ngv2ZJgjCCSUlJSxatIgLL7yQgQMHMnjwYC655BJeeOEFampqvOuJv1tBaF/OdJ78448/0q9fP3r37s2AAQP45Zdf/H78gwcP+n2fp5owYQK9e/dm1qxZbX4s4QRlsAMQhJaaPHkyGzduRJIkvvnmG6699toGywsLC9mzZw8AEydORKkUv96CEAzbtm1j6NCh3sdNnZgcPHiQa665hsrKSu9zTqeT3bt3s3v3bjZv3szLL7+MTCZr85gFQWgbRUVFXHnllRQUFDR4fv/+/ezfv58NGzbw/vvvo9VqgxShIAj+dvDgQe677z7cbjdyuZynnnqK4cOH+23/xcXFPP3002zbto1vvvnGb/sVQoe4ivOzfv368fLLLze6TKVSBTialnvuuedwOByo1epgh9KkP/7xjzz00EO43W6+/vrr05IU3377LZIkAXUJDX944IEHuO+++5DLxaAjQWiprVu3cvvtt3sfb9u2rdH1nnzySSorK4mKiuLBBx+kf//+lJWV8fzzz7Nx40a+/fZbNmzYwMSJEwMVuiAIfvbSSy9RUFCATqfjgQceYMSIEdTW1vLaa6/x2WefsWfPHj766CNmzpwZ7FAFQfCDkpIS7rjjDu8NiDlz5vCnP/3Jr8d49NFH+fzzz0lKSvLrfhuzfPly3G63SKQGmEhS+JlKpSI+Pj7YYfgsMjIy2CE0KzIykhEjRvDzzz+zZcsWbDYbBoPBu3zDhg0AGI1GRo8e7ZdjmkwmTCaTX/YlCB1dQkIC+fn5/Prrr7hcLpRKJVarlaNHjwKQmJhIXl6ed/36ERYXXnghU6dO9T7/1FNPMWbMGDweD9u2bRNJCkFox7Zv3w7AiBEjuPrqq73PP/744/z444+Ul5ezbds2kaQQhA7A4XBw9913k5OTA9RN1b7xxhv9fpz6m5KBEBMTE7BjCSeI28NB8N5773nnZi9atMj7/H333Ufv3r3p27ev9+S9fn7m3Llz+f7777nssssYMGAAU6dO5Ysvvmj2WJIk8eabb5Kens6QIUMYPHgwF110ES+99BJOp9O7XmPzQE8+9vbt27nmmmsYOHAgEyZM4NVXXz3tWL/88gszZsxg8ODBDB8+nDvuuIP9+/eftt7OnTuZMWMGgwYNYvz48bz++ustfu/qR0g4nU6+++477/PV1dX8/PPPQN1Uj/pRK6tWreKKK65g+PDhDBw4kEmTJvHEE09QVVV12ut88MEHefTRRxk8eDCjRo0iMzOzybl2Ldlv/bY33XQThw4d4pZbbmHw4MGMGTOGp5566rT59vn5+TzwwAP84Q9/YMCAAVx44YU8++yzVFdXN1jvwIED3HHHHQwdOpQhQ4Ywc+bMJu9UC0IgDRo0CKVSSXV1NXv37gVOjKKIjY0lOTm5wfr1I7fWrFnDxx9/7J2bHhUVxebNm9m8eTN//etfA/gKBEHwt/rv402bNvH6669TUVHhff6bb75h8+bNPPbYY41u63a7+fOf/0zv3r3p169fg+/95r4Ln3nmGXr37s2kSZO8z1VVVXHOOefQu3dvFixY4H1+3bp13ppXhYWFfnz1gtC5zJ0711uX6uKLL+b+++9vsLypujONPV9fC+LZZ5/l73//OwMGDGDMmDFMmTLFew2Um5tL7969Wbp0qXe7goIC5s+fz/jx4+nfvz8TJkzgiSee8H721Dt+/Dj33nsvo0ePpn///px//vncddddZGZmNlivsZoULd1WaD0xksLPnE7nafMu60VERKDRaLjuuutYu3YtW7du5b333uOKK66gsLCQL7/8EoCZM2eeNm9rx44drFixAo/HA9TN9Zo1axYOh4NLL720yXhefPHFBn+4AEeOHOG5557Dbre3qAjM3r17+fTTT3E4HEDdB8JTTz1FYmIiU6ZMAeqK49x5550NEh/ffvstW7Zs4YMPPqBPnz4A7NmzhxkzZniLY+bn5/PEE0+0OEt54YUX8vDDD+PxePjqq69IT08HYOPGjd591icyVq1axT//+c8G22dnZ/P6669jsVh4+umnGyxbv349NpsNAI1GQ8+ePRuNwdf95ufnc/3111NWVgZATU0Nr776Kmazmdtuuw2o+0C98sorsVgs3u2OHz/Oyy+/zO7du3n11VeRyWTs27ePa6+9tkHiYsuWLWzfvp3//Oc/nH/++c2/iYLQRnQ6HX369CEjI4OtW7cycOBAb8J12LBhWK3WButPnjyZ5cuXU1lZydy5c3n44YcZMWIE48ePZ8qUKe1ihJcgCGc2efJk9uzZg8vl4oknnmDx4sUMGTKEcePGMWXKFBITE5vc9vHHH+enn34CYN68eYwfPx6gRd+F48ePZ9myZWRnZ5OdnU1KSgo7duzw3iCoH+EBdecQUDdlNy4uzt9vgSB0Ci+++CKffvopAHq9nkWLFvmlptS7777rPT+PjIzEZDJx+PDhRtc9cuQI1113HaWlpd7ncnNzef311/nuu+94//33iYiIoLKykptvvpnc3FzvekVFRXzzzTds3bqVFStW0KVLl0aPcTbbCi0nRlL42d69exk3blyj//34448AyGQyHn30UfR6PW63mwULFvDQQw8BkJaW1mji4PDhw5x//vmsWrWKl19+maioKKBuTnd98uBULpeLFStWADBlyhTWrl3LypUr6d+/P4A3npa8psmTJ/P5558zb9487/P1WUyPx8OCBQtwOp0MHDiQjz76iBUrVjB06FCqq6sbjBZ59tlnsdvtKBQK5s6dy+eff85f//rXBhfnZxIdHc2wYcO88dcnJuqnehgMBu+oh+XLlwNw7rnnsmbNGj777DPvCU5jr91mszFjxgy++OILnn766SYLb/q632PHjnHOOeewevVqlixZ4t3vySNhnnnmGSwWC2q1mkceeYS1a9dyxx13APDTTz/xww8/APDII49QXV1Namoqb731FmvWrGHSpEm4XC4eeuihgA5/E4TG1BfMrL+jWf//kwtp1vvHP/7BOeec431cW1vLjz/+yMMPP8z48eP5z3/+E4CIBUFoSzfffDNjx471PnY6nWzdupWnnnqKSZMm8cgjjzTajevjjz/m7bffBuDWW2/luuuu8y5ryXfhkCFDMJvNQN0oDmhYH+fgwYPemwf1SYoJEyb49bULQmdRWlra4KZodXU1H330kV/2bbPZ+Pvf/87nn3/Ov/71L5577jnv32p8fDzff/89N998M1A3kqO0tBS9Xs8jjzzCF198wezZs1EoFBw5coRHHnkEqPssyM3NRalUsmzZMr7++muWLVuG2WzG7Xbz7bffNhnP2WwrtJxIUgRJSkoKf/vb34C6URK5ubnI5XIee+yxRguzaLVannrqKfr27cuECRO4++67AbBarWRkZDR6DKVSyYYNG/j66695+OGH6dq1K5GRkd4iM6cOe2pKWFgYixYtokePHsyYMYMePXoAdYVxADIzM71zz2688Ubi4uKIioryfmBs27YNi8WCy+XyTsm46KKLmDlzJj169OCee+5p9AKmKfXFd6qrq9m0aRMej8c7BPSCCy7wDiH/4IMP+OGHH3juuefo1asXUVFR3uHmjb12tVrN3/72N7p3737GEQm+7hfgscceo0+fPkyZMsWbRKl//zwej7cy8dSpU7nyyivp2rUr9913H/fddx8vvvgi/fv3p7S01HuCdeWVV5KWlobRaPQWKMzOzmbXrl0tfh8FoS3U/y1v376dsrIyDhw4AOBNLp7MaDTy4YcfsnDhQoYMGdKgQK3dbmfJkiV88skngQlcEIQ2oVar+e9//8vixYsZPXp0gyLibrebd955h5deeqnBNtnZ2d7pGCNHjuQf//iHd1lLvwvlcrn3u7w+CbF161ag7i6vJEn8+uuvHD9+3HsOc8EFF7TBOyAIHZ/b7UaSJFJSUoiOjgZg6dKlFBcXn/W+4+Pjue222+jRowcjRowgMjLSe62kUCiIj48nPDycw4cPe6ea3HHHHVx55ZV0796dW2+9lenTpwOwdu1aKisrvdu7XC42btyI1WrlD3/4A+vWrePXX389Yx2Ns9lWaDkx3cPPBg0a1OLM4Q033MDnn3/Ojh07ALjqqquavFjv0qVLgwKOAwYM8P47Pz+/yWM4nU5++eUXvv32W3bs2EFRUZF3Wf3UkeYkJyej0Wi8j+vjqL/zcfz4ce+yv//976dtL0kSBw4coGfPnt5RHyffPQXo37+/94OlORdeeCGPPPIIkiTx1VdfYTQavRf8J3f1kCSJnTt3sn79enbs2OE9CYHGX3tCQgJ6vb7Z4/u63/Dw8AbDR099/0pKSry1LHr16uVdTyaTceedd3ofn5yAePrpp0+bVgJ1Ld0GDRrU7GsQhLZS/xlms9l477338Hg86PV675SvU6nVaq6++mquvvpqysrK2LRpE5999pk3cff2229zxRVXBCx+QRD8Ty6Xc/HFF3PxxRdTWVnJ1q1bWbt2LWvWrMHj8fDuu+82qD9T/50Odd9rlZWV3kLZ2dnZ3mXNfRdecMEFrFmzhi1btlBdXc3u3btRKpVcffXVvPHGG/zyyy/ec6i4uDj69evXVm+BIHR4UVFRvPbaa2zcuJGHHnoIm83GU089xRNPPNHstmcaCdytW7cWTRs5ePCg998jR45ssGzkyJEsX74cl8vFkSNHGDlyJBdeeCHr16/nrbfe4q233kKv13Puuedy+eWXn7FL4NlsK7ScGEkRRJWVlQ3mM/3888/U1tY2um5TUzqAJv9w3W43N998M3PmzGHr1q1MnDiRp556imuuucanOE8d2aFQKBo8bmpaxMnKysoaxHnqxfyp+zyT2NhYhgwZAuAdKQJ1Iz5OHgExe/Zs/vrXv/LNN99w7rnnsmjRojMW4QsPD2/R8X3db3Pv38kfzCfX9DhVS96j+qGrghAscXFx3pFF9UO1Bw8efNrv765du5gzZw4333yzd7SF2WxmypQpvPTSS94RU8eOHQtc8IIg+FVWVhZz587l1ltv9Y5mCA8PZ8KECTz55JPeEZfl5eUNEhNw4gZJWVlZg2LdvnwXnn/++SiVSsrKynjvvfdwOp307dvXO0Vz+/bt3qkg48eP98v8eUHojFQqFa+88gqpqalcddVVpKWlAbB69eoG9V/qnXodcKbrnJaen5/peuTk48lkMuRyOUuXLuXNN9/kqquuIjk5merqar777jvuvfdennnmmSb3dTbbCi0nkhRB9Pjjj1NUVOT9Ujx27BjPPfdco+vm5uY2qDi9Z88e779PrZhfb8uWLd4hkc899xwLFizgkksu8Skh0BInH/+tt95i//797N+/n02bNvHFF1+wZ88eLr74YiIjI70jFeor/9fbuXOnT8esv4ApLS3lgw8+AOqGadaP+Dh+/Dhr1qwB4F//+hePPfYY06dPR6fTNbnPliRbWrPf5pzpffnzn//Mfffdx9dff93gfX700Ue97/P27dtZvXo1u3fv5i9/+Uur4xAEf6kfTVF/odDYCDFJkli5ciWbNm1i5cqVTe7r5DbDgiC0Lzqdjk8++YQff/zRW8+pMTKZrMGFiNls5o033vDWoXjrrbe8I0F9+S40Go3emxr1iY4RI0YwZMgQ1Go1e/bs8U5DFVM9BKH1TCaTd5S0UqnkvvvuA+q+6xcuXIjb7QZOdPs5uRsecMauOo2dn9dfO518o68+MQInpnbVq78eUqlUdO3aFYvFwk8//URhYSEPP/ww33zzDd9//733ZueZRsWfzbZCy4npHn52pu4eUHeXUSaTsXnzZj7++GMAb4vKH3/8kbfeeouLLrqIgQMHnrbff/zjH8yZMwer1cqLL74I1I0qaGp44slVr7/88kvi4uL49ddfvRcEjRWqao0+ffqQlpbGsWPHePzxx5k3bx5arZbFixezceNGzGYz33zzDeHh4YwdO5a1a9fy5Zdf0r9/f8aOHcvnn3/e4qke9SZPnsxjjz2GJEnetoUnD686+bVv2LCBwYMHc/jw4QbtTl0uV4sSEydri/0qFAomTpzImjVr+Oqrr3jvvfcYPXo0n332mbeq+cUXX4zJZOK8885j8+bNvPjii8TExBAbG8urr77KmjVrUKlUrF27tsmklSAEytChQ70VvqHxehQDBw6kW7duHDlyhLfeeguj0cjEiRPxeDysW7eOdevWAY0XsrPZbN5isqc655xzvIWFfV1XEAT/iomJ4Q9/+AM//fQT69at49FHH+Wyyy5DpVKxceNG3nnnHQD+8Ic/NJhWmpqaSpcuXfjLX/7CRx99RFVVFS+88AILFy70+btw/PjxbNu2zZs0Pffcc9FoNAwaNIht27bhdDrRarWcd955AX9/BKGjuuiii3j99dfZtWsX+/bt44MPPuCGG27wdvM7duwYmzZtYsSIEbz66qtnvHZqTH39ubKyMvbt24dOp6NHjx7069ePvXv38vLLLxMZGcmQIUP4/vvvvfWtpk6dSnh4OO+++y5LliwB6pIOF154IeXl5ZSXlwM0qJ1zqk8++aTV2wotJ5IUflbf3aMp27ZtQ6lUertkJCQk8Ne//hWr1crUqVOx2+088MADrFy50vsHCHV3FX777Tcuv/xy73MymYwHHnigyQvioUOHYjabKSsr44MPPvCOOKhXXl6Ox+NpUKyuNeRyOffffz/33HMPmZmZXH/99Q2W33333d47JLNmzWLjxo3YbDaeeOIJ7zy1Pn36sG/fvhYfMz4+nkGDBvHbb78BdUWwTq4e3qNHD7p06UJWVhZfffUVX3311Wn7KCkpITY21qfX2lb7/fvf/87mzZspLi5m4cKFDZaNGTPGe6H2t7/9jRkzZpCbm+ttX1rv+uuvFwkKISScPHJCoVA0WidFJpPx2GOPcfPNN1NdXc2zzz7Ls88+22Cd5ORk792Ykx05cuS03/96L774IpMmTWrVuoIg+N+///1vrrvuOoqLi73zt09mNpsbdA47WWRkJDfddBMvvvgin3zyCbfccgtpaWk+fReOHz+ep556Cqg7X6lPmp577rneu6vnnXdeo0XLBUFovdmzZzNjxgygbkT3RRddxB//+EdWrVqFx+Ph5ptv9k696Nu3L5mZmS3ed30R/+rqaqZNm8a1117LggULeOyxx5gxYwYVFRXMnTv3tG0eeOABAK677jo+//xzDhw40Ghtm6bOG852W6HlxHSPIFi8eLG32OK8efMICwvz3jEAOHTokHekRL3U1FReffVV+vTpg0qlomfPnjz33HNMmTKlyeNERkaybNkyhg0bhl6vJzo6mgsuuIBly5YBde3+Th0O1VoTJ07k9ddf57zzziM8PBy9Xs+AAQNYsmQJM2fO9K6XlpbG+++/z+jRo9FoNCQmJnL//fd7u5X4on7KB8DYsWMbnGCoVCr++9//cv7552MwGDCbzYwaNYo333zTm/xpaQvWk7XVfhMSEvjf//7HpZdeSlRUFBqNhq5du3L33XezdOlS7xSdgQMH8sEHHzBhwgTMZjNarZZevXrx73//mzlz5vh8XEFoCz179sRoNAJ1CciwsLBG1xs8eDArV65k+vTpJCUloVKp0Ov19OzZk7/85S+sXLmSyMjIQIYuCIKfpaamsmrVKmbMmEFaWhpqtRqtVktaWhrXX389n376KV27dm1y+1tuuQWz2YzL5WLx4sWAb9+FPXr0ICUlBYDevXt7P5tOLqwnpnoIgv+de+653hu3FRUVPP3000yaNIl//etfJCUlodFoGDx4MK+99hojRozwad9XXnklF1xwAeHh4ZjNZm9HkT59+vDpp59y9dVXk5CQgEqlIikpiVtuuYUPP/zQW7zeaDTy9ttvc+utt5KWloZGo0Gv1zN48GCefPLJM3boOJtthZaTSWcqpyoE3YwZM9i6datPXUMEQRAEQRAEQRAEoT0SIykEQRAEQRAEQRAEQQgJIkkhCIIgCIIgCIIgCEJIEEkKQRAEQRAEQRAEQRBCgqhJIQiCIAiCIAiCIAhCSOiQLUg9Hg9VVVWoVCpkMlmwwxGEDkmSJJxOJ2FhYWfdxjYQxOeCILS9tvpcWLNmDS+//DIul4sbb7zxtFbXR44cYf78+ZSXlxMTE8PixYu9VdzPRHwuCELbE+cLgiCcqrnPhQ45ksJms3HgwIFghyEInUKvXr0wGAzBDqNZ4nNBEALHn58LhYWFXHvttaxYsQK1Ws0111zD4sWL6dGjB1B3ovOnP/2JuXPnMnbsWJ5++mkkSWL27NnN7lt8LghC4IjzBUEQTtXU50KHHEmhUqmAuhetVqsDfvyMjAz69+8f8OP6ItRjDPX4IPRjbOv4HA4HBw4c8P69hbrWfC6E+s/4bHXk1ydeW3C0xefCpk2bGDVqFGazGYDJkyezdu1a7rnnHgD27NmDXq9n7NixANxxxx1UVFS0aN9NfS6E8ntcT8ToP+0hzvYcY3s/Xwi1917E07xQiynU4oHgx9Tc50KHTFLUD81Sq9VoNJqgxBCs4/oi1GMM9fgg9GMMRHztZShkaz8XQv1nfLY68usTry14/Pm5UFRURExMjPdxbGwsu3bt8j7OysoiOjqaBx98kMzMTLp168a//vUvn+Js7K5pRkbGWUbe9kSM/tMe4mzvMbbn84VQ+8wV8TQv1GIKtXggNGJq6nOhQyYpBEEQBEHoGDweT4OTGEmSGjx2uVxs3bqVd999lwEDBvDss8/y+OOP8/jjj7f4GP37929wsrZ9+3aGDRvmnxfQRkSM/tMe4mzPMdrt9naRYBEEIXSEfvUaQRAEQRA6rfj4eCwWi/exxWIhNjbW+zgmJobU1FQGDBgAwNSpUxuMtBAEQRAEoX0RIykEQRAEQQhZo0ePZunSpZSUlKDT6Vi/fj0PP/ywd/mQIUMoKSlh37599OnThw0bNnDOOecEMWJBEAQhVHk8HnJycqiqqgrYMZVKJZmZmQE7XksEMqawsDCSk5N96u4jkhSCIAiCIISsuLg4Zs2axcyZM3E6nUyfPp2BAwdy2223ce+99zJgwABefPFF5s2bR01NDfHx8Tz55JPBDlsQBEEIQcXFxchkMnr37h2wlrhVVVWEhYUF5FgtFaiYPB4Pubm5FBcXNxgF2RyRpBAEQRAEIaSlp6eTnp7e4LlXXnnF++9Bgwbx8ccfBzosQRAEoZ0pKysjLS0tYAmKzk4ulxMXF8fx48d9SlKIn44gCIIgCIIgCILQ4bnd7nbTDrejUKlUuFwun7YRSQqhSW6PhN3pDnYYgiAIIcMjPhcF4TRutwePRwp2GIIg+ElH/3tuL+1wO4rWvN9iuofQqO+2Z/PK6gxq7C4G94rhr1cNJsKgDXZYgiAIQVNcVsNDr/5MdqGN9DHduOWSc8SJjtCpHcwu5dXVGew/XopapeC8AQnceHE/Io3ifEEQ2iO328OSD35l4648xgxK4q9XDUatUgQ7rJCRk5PDH//4R3r16gXU1VvQarXMmTPHpxbBzz33HKmpqVx66aUtPhZAdXU18fHxPProo6SkpLTqNezevZtXXnmFxx57rFXbB4oYSSGcZuueAl77dA8zp/Rl3s0j0WtVzHnhJyqrHcEOTRAEISg8HonH39pG92QTD950Lj/vyee7X3OCHZYgBM3WvQX8+7+b6ZsWyfxbRzHr2qG43R5mLfmeY/kVwQ5PEIRWePPzveRbq5l9w3AKS6r58Kv9wQ4p5Gi1WlavXs3q1atZs2YNN998Mw888IBP+/i///u/MyYoGjvW6tWrWb9+Pb169WLJkiWtjB4GDBjA888/3+rtAyWoSYrKykqmTp1KTk7TJ3rfffcdEyZMCGBUnVt1rZMX/vcbV03qRWJ0OCqlnMkjU+maaOKZ939Fkjr28C9BEITGbNyVR3WtkwuGpaDTKLnk/O68+2Umbrcn2KEJQsBlFVSw5INfmXFRX4b1iUOpkBOuUzF5VBqTRnRh/rLNFJfVBDtMQRB8UFxWw/otx5k+oScGvZppY7vz5aZjFJZUBzu0kFZWVkZMTAxbtmzhkksu4ZprriE9PR2Hw8EjjzzClVdeyRVXXMFFF13E9u3bAZgzZw6vvfYaUJc0WLp0Kddccw0TJkzg/fffb/JYdrudoqIiTCYTAA6Hg0cffZTLLruMSy65hDlz5lBZWQnArl27uPzyy0lPT+fuu+/msssuY8uWLWzZsoWpU6cCYLPZ+Mc//sHUqVNJT0/nySef9NaO8CWuthC06R47d+5k3rx5HDt2rMl1iouLeeKJJwIXlMCaH4+QlmgkLcEIgMOSRdXB7Yz0eHg/L4nvd+QyfmhykKMUBEEIrI83HOSCYSnIf5/ekZZgRK9VsXVvIecNSAhydIIQOB6PxLMf7mDC8BRS4gynLR/cK4ZSWy1PvfsL00fpghChIAitseLbgwzrE0e4rq6opDFMzcCe0az/+TgzpvQNcnSho7a2lmnTpgFQUVGBxWLhxRdfBODgwYN8/fXXJCUlsWPHDoqKili+fDk1NTW89957vPLKK6dNC3E4HERERPDhhx+SkZHBtddeyxVXXNHgWB6PB6vVislk4sILL+Qvf/kLAMuWLUOhULBixQpkMhmLFy/m6aefZt68efz1r39l4cKFjBs3jp9//pmbbrrptNfyyCOPYDabWbNmDU6nkzvvvJPXX3+dv/zlL03GpdFo2vDdPSFoIyk++ugj5s+ff8ZWJPPmzeOee+4JYFSdm9PlYc2PRxg7uC4JUbnvZ0q++wC5UoVKp+d8+S5e/d9WamrFtA9BEDqPQ9lllFfa6dUlosHzg3vF8O327CBFJQjB8e32bBxON+f2i29ynXFDkqmxu9h2oDKAkQmC0Fput4fvfs1h5DkN/66H94njq63HxajBk5w8BePbb79l2bJl3HfffeTk5JCQkEBSUhIAQ4YM4b777uPDDz9kyZIlrF27lqqqqkb3OXHiRADOOeccHA4H1dXVDY61Zs0annjiCUpLS7ngggsICwsD6mYcbNiwgUsvvZRp06bx9ddfc/jwYQ4cOADAuHHjABg1ahQ9e/Y87bg//PADN9xwAzKZDLVazTXXXMMPP/zQbFyBELQkxaJFixg+fHiTy99++2369evHoEGDAhhV57Z1bwExETriIvXU5h6gMuMHjCMuQpt6DtqUPvQZM454ZQXL31oZ7FAFQRACZsMvWQzuGYNc3rBIZv9uUezYXyS6fQidhtsj8cH6/fzx3FTvqKLGyOUy0sd047vdNiqqxI0NQQh1Ow8WE2nUnlb0Nj4qDL1Wxb7jpUGKLPSNHj2aLl26oNPp0Ov13ue/++47br/9dqAuWXDttdc2uY/60Qn1xbgbm15//vnnc/PNN/N///d/3ikdHo+HBx980Js0+d///sdzzz2HQqE4bR8KxekFUD0eT4MC4B6Pp0Gr0JbE1VZCsrvHgQMHWL9+PW+++SYFBQWt3k9GRoYfo/JN/ZyjUHZqjJ98V0ycWcn+zAzCd36KI+EcKovLgDLvOv1TdXy5T0a/zz9GEd81oPGFolCPMdTjE4RQ5/FI/LQzjxsv7nfaMr1WRWJ0GBmHixnWJy4I0QlCYG3alYdOo6RrorHZdeOjwugSo+bjDQe5Jf2cAEQnCEJr/fBbLud0j2p0Wa8uZrbtLeCcbo0v7+yOHj1Kbm4uNputwfMbN27kggsu4LrrrsNqtfLuu+/idp/dTY1bbrmF1atX8/zzz/Pggw8yZswY3nvvPc477zyUSiX/+te/0Ov1LFiwALVazQ8//MDYsWPZtWsXBw4cQCaTNUg0jBkzhnfffZcHH3wQp9PJRx99xOjRo88qRn8JySTF2rVrsVgsXHHFFTidToqKirjuuut8LtjRv3//gM2bOdn27dt9akMTDKfGWF3rJOeT9Vz7p0HY936HKzaF6D4DT9suBdhnzWXXrwe4ZU46clXbvL/t8T0MNW0dn91uD2oiUBAC4VBOGWqVgtgIfaPLe6SY+SWzUCQphE7h841HGdU/ocWtd/un6Vi75ThXXNADU3jgz8cEQWieJEns2F/ETY0k4wF6dYngi03HuGmqSDZCw5oUUDf6YOHChURFNUziXHPNNfz973/3FtE8//zzWb9+PR5P66fOqFQq/vWvf3Hrrbcyffp07rrrLp544gkuu+wy3G43ffv2Zc6cOSiVSpYuXcr8+fNZvHgxaWlpREdHo9Vqqak5UdR43rx5PPLII6Snp+N0Ojn//PO54447Wh2fP4VkkuLee+/l3nvvBep6xM6cOTPgFUU7m+37ikhNMKDCSdnBrRjPndrkuucPiOW9712kb/6MuLFXBDBKQRCEwNqyp4DeqRFNLu+WaOKLzccCF5AgBEmupZKsggquntSrxduEaxX06xrJFxuPcu3kPm0YnSAIrZVTVDd1IMqkbXR5SqwBa3kNpRW1RBgbX6ezSE5OJjMzs8nln332mfff3bt3Z9WqVQBUVVURFhbGvHnzAHj88ce96+3f37DNa/3jyMhIduzYcdoxzjvvPPbs2eN9PH/+/EZj+fTTT3nppZeIjo4mPz+fadOmkZaWhtFo5LPPPqOqqoqIiAieeeaZRrdvKq5ACWoL0lPddttt7N69O9hhdErb9hbQKyWC6kO/oIpKQaE7vWJ3vTiTirgILd9+/xvu2sYLwAiCIHQE2zML6ZXSdJIiMSacQms1lTXOAEYlCIG34ZdsBvWMQanw7dTxvP4JfLHpGE6XKLwnCKFox/4ieiSbmxwhJZfLSI03svdYSYAjE85GUlISN910E5deeil33HEHjzzyCEZj81P1QkXQkxQbNmwgObmum8Qrr7zCgAEDGixPTk5mw4YNwQit0/B4JLbvK6Jniomq/VvQdOnd7DajepnYUNufsq1fBCBCQRCEwKuocpBrqaRLfNNJW6VCTkpcOPvEyZvQgUmSxA87chjQPdrnbeOjwog2a/l5d34bRCYIwtn67aCl2TozKXHh7D1iDVBEgj/ccMMNfPbZZ6xatYrVq1dz4YUXBjsknwQ9SSEEX1ahDbVKQVh1HnKlBpUxptltusVqcCt1/LJxKx6nPQBRCoIgBNbuQ8V0TTQ1e+c4KSacA1mi8rnQcR3Lr8Dp8pAcG96q7Yf2jmPdlmP+DUroNNasWcOUKVO48MILee+9905b/tVXX5Gens7FF1/MnDlzcDjqOsqsXLmSMWPGMG3aNKZNm8aSJUsCHXrIkySJfcdKSI0/c5KiS7yRPUdFkkIIHJGkENh1yEK3RBPVh3agSejeom1kMhkjehj53n4OlRk/tnGEgiAIgffbQQtpCc0PjUyKNbBftGcTOrDNu/PpmxbZ4oKZpzqnWySHsssoKq32c2RCR1dYWMiSJUt4//33WbVqFcuXL+fQoUPe5dXV1SxcuJA33niDzz//HLvdzsqVK4G6Ln9z5szxtmecNWtWsF5GyMq3VqGQyzGFq8+4XkpsONkFNhyi5bYQICJJIbDzoIXUOD323AOo49NavN3ALjoO15o5vPGbgPbNFQRBCIRdhyx0SzI1u15ybDiHcsrE56DQYW3dW0DvLk3XZjmZu7qCqoO/ULl3IwqbBUmSUCkVnNM9mh925LRxpEJHs2nTJkaNGoXZbEav1zN58mTWrl3rXa7X69mwYQPR0dHU1NRgtVq98+53797NypUrSU9P5x//+Afl5eXBehkha9+xElITDM0mIFVKBTEROo7lVwQoMqGzC8nuHkLgSJJE5tESRsXVoDDFIFfrWrytWilnUFo43xfG0DfvINqkllf8FgRBCGVlNjtlNjsJUWHNrmsKUyNJEiUVtUSZWv4ZKgjtQZnNTp6litRmRhVJkhvbru+o3rcFVXQyMpUGbcExSsoOYx5zFQO6RbFhezbTJ4hzBaHlioqKiIk5MQ05NjaWXbt2NVhHpVLx/fffc//99xMbG8uYMWMAiImJ4ZZbbmHo0KEsXryYhQsXNtnJoDEnt1nfvn37Wb4S//JXPD9sK0Ulg/0Hmu/coFe5+HbzLmyW06d9hdr7A03HpFQqqaoKfOH/YByzOYGMyeFw+PR7IpIUnVxecRUqpRx1USaKmBSftx/eNYzXj3Zl+ravSBZJCsEPXnjhBb788ksAxo0bx/33399geWZmJnPnzqWqqorhw4fz0EMPoVSKjzLBv/YctZIab0Qub354u0wmIyE6jKN5FSJJIXQ4Ow4U0SP5zLVZJI+L0h8+wl1dgWnUNORaPQAl2nj09kJKvnqd1AtvxVpeS56lksSY1tW2EDofj8fT4C6/JEmN3vUfN24cW7ZsYfHixSxYsIBnnnmGF1980bv81ltv5Y9//KNPx+7fvz8ajYbt27czbNiw1r8IP/NnPO/88B0ThqXQNbH5UYNWex4Op4dhwwa3WTz+cqaYMjMzCQtr/gaEP9W3IA0lgY5JrVYzaNAg72O73d4gEXgqcWbfyWUeLSElLhx73iHMo6b5vH1kuJKkKA0/7Crgmim1yNWdu3+ycHY2bdrETz/9xMqVK5HJZNx666189dVXDU4sZs+ezSOPPMLgwYN58MEH+eijj7juuuuCGLXQEWUcLj6tq4e7ugKPoxqlMQaZXNFgWVxkGEdyyxneNy6QYQpCm/vtgOWMFzCSJFG2eTVuexWGIZMa/m3IZeh7Dqdq70Zs2z6jX9fBbNqdJ0ZTCC0WHx/PL7/84n1ssViIjY31Pi4rKyMjI8M7eiI9PZ1Zs2Zhs9n45JNPuOmmm4C631OFouHndmfncnvILrSRGN2yC9Wk6HC+2pbVxlEF3s0Pr6e4rMbv+40263jjX2fuqLFlyxZeeOEF3nnnnRbt8/nnn2fFihXceOONHDhwgHvuuYekpCQmTJjA22+/7e2Y6Q/ffPMNGRkZ/N///Z/f9ukLkaTo5PYdLyFe40ARZvLe+fDViO4Gvvu1H1P3/Yxx4Hj/Bih0KjExMcyZMwe1uq6AU/fu3cnLy/Muz83Npba2lsGDBwNw+eWX8/zzz4skheB3e45YufDcVADc9mrKN6/GUXgUmVqHJLmJGH05mvhu3vXjI/UczhXznYWORZIkdh60MOOivk2uU3VgG87iHAwjLjoteQd1I430fUZS/vOndO/Wl827C0SSQmix0aNHs3TpUkpKStDpdKxfv56HH37Yu1ySJGbPns0nn3xCYmIia9euZejQoej1el599VWGDBnCoEGDePfdd30eSdHRZRfaiDBo0ahbdjkYHx1GTqENt0dC0YJRhu1FcVkNj975B7/v98GXN/p9n6tXr+aNN96ga9euTJgwgbvvvtvvx6g3ceJEJk6c2Gb7b45IUnRy+4+XMsacjyoysdX76B6nYa1My87N2zhfJCmEs9CzZ0/vv48dO8aXX37JBx984H3u1LmpMTExFBYWBjRGoeOrsbvIs1SRGBOO216Fdd1rKCPiMZ9/JTKFEqc1j9IflxMx7ho0sV0BiIvSszkjP8iRC4J/FZZU43R5iDE3Po3JZbNSufNrjMOnIFeomtyPXKEirOdwPEc3kFM8glJbLREGMfJSaF5cXByzZs1i5syZOJ1Opk+fzsCBA7ntttu49957GTBgAA8//DC33347MpmMHj168NBDD6FQKHj22WdZsGABtbW1pKWl8eSTTwb75YSUwzllJMa0fLi/RqXAEKamwFpFkpiy1aaWLVvGl19+idvtZsyYMcyePZv58+dTWFjI3XffzaWXXkpRURF/+ctfvG15X3zxRTIzM6mpqeHJJ59k0KBBHD9+nAULFlBWVoZWq+Vf//oX/fr1Y86cOSiVSg4ePEhFRQV/+9vfWL16Nfv27WPSpEnMmTOHFStWsHXrVh5//PGgvAciSdGJ2Z1u8iyVmNiP6pxRrd6PTCZjeHcD6w/qOK+yDGW42X9BCp3SwYMHuf3227n//vtJS0vzPt/Sualncqb5b40JxWJQ/tSRX19rX9uRglrMYXKOHD6Abt83oArHoYunJO9EEkIR0xf3hg+oGpiOpFTjckvkF1eyddsvAbnD1JF/bkLoyDhcTLckU6Ofs5IkUfbzp2hTB6AIa34+uyqmC8pju+kaKePXfUVMHNGlLUIWOqD09HTS09MbPPfKK694/z1p0iQmTZp02nbDhw/3tiMVTnc4p5y4CN9GUcdF6skqqBBJijb0ww8/kJGRwccff4xMJmP27Nl8+umnLFy4kJ9++olly5aRnJzMhx9+yLJly4iIqOu81KNHDx577DHeffddXnvtNZ5//nn++c9/8u9//5t+/fpx6NAh7r77btatWwdAcXExy5cvZ+XKlTzwwAOsW7cOjUbD2LFj23SERkuJJEUndjSvnFizBoWjCqUh6qz2NbirgeczE8n5dRNpY6f4KUKhM9q+fTv33nsvDz74IBdffHGDZfHx8VgsFu/j4uLiBnNTW6K+EFZLYwm1YlD+1JFf39m8tgPr99E7TUOSO5capRzDkHHI5KcWDUyhimrCq7Iwjaj7PY387VfiU3rRJf7MXRDOVij/3JorhCW0LxlHSkiJNTS6rDZnH+7qcsL7n9+ifclkMnRpA0jMPMq2zBiRpBCEIDuaV8GIfr7VUYox6zheYOO8AW0UlMDmzZvZtWsXl19+OQC1tbUkJjY/4r0+UdejRw/WrVtHVVUVGRkZPPDAA951qqurKS0tBeqmUgEkJibSs2dPoqLqrgXNZnNItOsVSYpO7FB2GbFaByp9IjJZ01W7W0KrktMvVsYXm45x11g/BSh0Ovn5+dx9990sWbKE884777TlSUlJDSptr169mrFjxS+c4F97j5bQN1FH5e7vMY6Y0kiCoo6u+2DKN60i/JwxKPSmujtMhbY2T1IIQqBkHrVy+fgepz0vSW5sv36FvsewRutQNEUVnUKKbBfL9xV0uHntgtCeSJLE8YIK0s/v1vzKJ4mN0HM0r6KNohIA3G43N954IzfffDMAFRUVLSr6Wr9O/cg3j8eDWq1m9erV3nUKCgowm81AXeveeqHYJe/srkyFdu1AVilRbgvKyAS/7G9kvxh+KI6musTql/0Jnc9rr72G3W7n8ccfZ9q0aUybNo0PPviA2267jd27dwPw9NNP89hjj/GnP/2J6upqZs6cGeSohY7E45E4kFWKuWArmuTeKPRND2OXq3WoE3tQuXcTAFEmLdmFtkCFKghtqqLKQUlFLXFRp89ZrzmWgUyhRBWV5NM+ZXI50SmphMntHMou9VeogiD4qNRmRwIM+qZryTQm9vfpHkLbGTVqFKtXr6aqqgqXy9VgisbJFAoFbre7yf0YDAbS0tK8SYqNGzdy/fXXt1nc/hZ6aRMhYA7nljOq+jjqyHF+2V+MSUO83sXXX//MJVdd3PwGgnCKefPmMW/evNOev/baa73/7tOnDx9//HEgwxI6kVxLJVqlDFXxQbSjL2t2fW1ybyq2fY5h8ERizHqyCysDEKUgtL39x0tIiTOcNtpBkiQqd/+AvvsQn2sCAWgSupOUmcFv+wvonRrpr3AFQfDBsfwKEqL0Pv8Nx5h1FJZUd6iRUNFmXZt04ohuouDwqX755ReGDBnifZyens6FF17IVVddhdvt5vzzz+eyy04/Hxk/fjx/+ctfePXVV5vc91NPPcWCBQt49dVXUalULFmypFWf28EgkhSdlMstkW+pJCbKgVzrv+I3w1PVfPabjfQrfS9oKAiCEGyZx0pIUJah7XIOcqW62fUVeiMKYwy12ZlEm7uxfb/oNtMW1qxZw8svv4zL5eLGG2887W7QCy+8wCeffILRWDfV5qqrrmpXd4xC0YGs0kaL49nzDyFJHpRRresKJteGkWL0sH3nUa6+sN/ZhikIQitkFVQQ62PRTAC1SoFBr6KopJqE6JZ3Bgllb/zrwqAde+TIkWRmZja67K677jrtuQ0bNnj/PXfuXObOnXva8yNHjmTkyJEAdO/enXfeeee0/Tz++ONUVVWdtv7J+0pOTvbWxQgGkaTopIrKnUTqJHRRvhXMaU7PHgl8s/8ov+7JZlh/URRLEIT2JWNfNtHOPDTJp9dEaYomvis1R34jZsw55BdXtarrjNC0wsJClixZwooVK1Cr1VxzzTWMHDmSHj1O1ErIyMhg8eLFDe5GCWdn//FS+nU9vah2VebPaFP6nNXveLeUKNbucOBwulGrWl7TQhAE/ziWX0FMhA63vQZ3ZSmqyPgW16eLNuvJtVR2mCSFEJpETYpOqqDUSbSiEqXZv0kKhVLNkMhKPlm326/7FQRBCIS9BwtITYxs0SiKeqrYLjgs2ahxoFLKKamobcMIO59NmzYxatQozGYzer2eyZMns3bt2gbrZGRk8N///pf09HQWLlyI3W4PUrQdgyRJHMopIzm24UgKV2UpTms2mviuZ7V/Q2IXouQV7DssRh4JQjBkF9qIVNVi+fR5Sr5/H+s3byO5XS3aNsqkJdcipjYKbUuMpOikCkocRDgLUUUM9fu+B6aGs/m3Wo7nV5CaIKrcC4LQPpRbrZTWykjp2d2n7eQKFarIROy5+4k268grriLK1LK5qELzioqKiImJ8T6OjY1l165d3sdVVVX07duX2bNnk5qaypw5c3jppZeYNWtWi4/RWNvU7du3n13gAdBWMZZWunC73eTnHqXgpBET6pxdyMNiyMkraPG+srOzG30+TlPLhq9/wlnl299bW+nMP29/ag8xdnaSJJFTVInK9SO6HkPRxHejcvf3VOz4CtPwi5rdXhSJFgJBJCk6qYLiaoaqHci1/h+qpY9NZoDqNz759gB/u2643/cvCILQFnZ89z0JOidKre/zdFUxKdQc30OkcSR5lioGdI9ugwg7J4/H02BqwanTacLCwnjllVe8j2+55RYefPBBn5IU/fv3R6PReB/XtzkOZW0Z48ZdeaQlOujTu4/3OUnyUJixBsOA8SiNp08DaUx2djYpKSmNLisrqWGv1RMS73Nn/3n7S1Mx2u32RhOBQnCU2ezIPG70cieahO7IZDLC+o6ifPNqwnqPQGk48/dXjFnH1j1iFJTQtsR0j05IkiSKKtwkRPl+It4Scm0YA00VbNmdL4Y9C4LQLkgeNxkZh0mKbV0hYXV0Eo7CY0QY1OSJYbB+FR8fj8Vi8T62WCzExsZ6H+fl5TXo+CNJUkj2fG9PDueUEXfKOYLDkoVcoWpxgqI5aWnxHC1X4XK1bIi5IAj+kVVoI0pZhSa5rzfhK1fr0CT3pjLjp2a3rxsxKL7nhLYV1CRFZWUlU6dOJScn57RlX3/9NdOmTeOSSy7hrrvuory8PAgRdkzW8lrkuDFG++dEozHGuDj6Rtr59IfDbXYMQRAEf6k+uJ0jzlhSE0yt2l6u1qEIN2OmkpwiMQzWn0aPHs3mzZspKSmhpqaG9evXM3bsWO9yrVbLU089RXZ2NpIk8d577/HHP/4xiBG3f4dzykiMapiwqzm6G3Vcmt+OYTAZMSgc7N/deGV7QRDaRlZOMUZ3KerYhqOctCl9qDm+B7e9+ozbm8I0VNY4sTvdbRmm0MkF7VbDzp07mTdvHseOHTttWWVlJQsWLOCTTz4hLi6O5557jqVLlzJv3rzAB9oBHcuvIFpuQ2VufAimP6iikhhYuIv//aznqkm90GtVbXYsQRCEs1Wy7QuyHIO5LKrlBTNPpYpMIKwmj3xrbPMrCy0WFxfHrFmzmDlzJk6nk+nTpzNw4EBuu+027r33XgYMGMDChQu58847cTqdDB06lJtvvjnYYbdrR/IqmDj8RIcuSXJTm7UHYwvmq/si0SCxZ9dBzhkywK/7FQShaccOHyMyXHVagWi5Woc6JpmaI78R3nd0k9vL5TIijVoKrFWkxrf/2nPHl96Ou6LY7/tVGKNJ/et/m10vJyeHP/3pT3TvXlefx+PxUFVVxaWXXsoFF1zAhx9+yKJFi5rcfs6cOZx77rmntQvdtWsX69atY/bs2axYsYKtW7fy+OOPn92LOsVtt93GI488QlycfxsxQBCTFB999BHz58/n/vvvP22Z0+lk/vz53hfcu3dv1qxZE+gQO6wjR/OIlFci17fdB4vSGI3BUUy3eD3rtxzn0nE9mt9IEAQhCJxlhRzLLsEcpkKnbv0AQ1VkImEHd1FUYhBtSP0sPT2d9PT0Bs+dXIdi8uTJTJ48OdBhdUhlNjsOhxuz4USNDoclC7lGj8LP5w3J0Toyj5f4dZ+CIJxZTn45fWMar0mnSexB9eEdZ0xSQF3xzPzijpGkcFcUk3DDQ37fb/6781u8bmxsLKtXr/Y+LiwsZPLkyVx88cVnTFCcyaFDh7Bara3atqVO/h72t6BN91i0aBHDhzdeVDEiIsI7VLO2tpZly5YxadKkQIbXoR06UoBZR5ueQMvkCpSRCQyLrWX194dxuz1tdixBEISzUbHja7IMA0iJbv0oCgClKRpFZRFKhYwym2iBKbRPR/LKSYgJa3COUJuViSrG/6MvU5OjOWzT4bHX+H3fgiCcTpIkCmwSsXGNF8dURsTjqa3CWXbmwphmg4YCa1VbhChQV3tJkiQyMjKYMWMGAAcOHODyyy9n2rRpPPzwww2mNX733XdMnz6dCy64gOXLl1NRUcHzzz/Phg0bePnllwE4fvw4M2bMYOLEiQ1mJyxbtozLLruMSy65hCeffLKu+0tODtOmTWPWrFmkp6fzz3/+kw8//JCrr76aP/3pTxw+XDedf8KECY2WbfCHkK4sZbPZuPvuu+nTpw+XXXaZz9sHs5JwKLdgOpJfwegoRZNtwfxFKdOiyf8NpXwg767eSP9U3wp1hvJ7WC/UYwz1+AQh2CSPm8qdGzgku4zk2LNLUsjkSpTmGKIqIN9aRYRR66coBSFwjudXEBdx4vtakiRqszIJHzje78eKMWuoQUPB/t0kDjzX7/sXBKGh2pIiyt0aIqMar78kk8lRx6VRc2w3qsFND+GPNGrJFUWi/aaoqIhp06Zht9spLS1lwIABvPDCC6jVJ85L5syZw//93/8xbtw43nzzTdzuEzVBHA4H//vf/zh48CAzZ87k6quv5t5772Xr1q3ceeedrFixgvz8fFatWoVer2fSpElcddVVlJWVkZGRwccff4xMJmP27Nl8+umnDBs2jP379/PYY4/Rp08fJk+eTGxsLMuXL+eFF15g+fLlPPjgg236noRskqKoqIg///nPjBo1qtVvwqktxQIllNtEudweSj44jsmka7ItmL+4oyOo2PY5E87tytY9Rdx4ecvfk1B+D+uFeoxtHZ9oKSZ0BNWHdyDTGTmQDaP7nl2SAkBpisVYWUOBtYp+XduuOLEgtJWjeeXERZ5IUrgqipE8bhThEX4/lkwmIzHMzd7dB0SSQhAC4HhmJma1C6Wi6cH06rg0qvZuxDBoYpOjrqOMWnYcsDS6TPBd/XQPj8fD448/zuHDh/nDH/7Atm3bACgrKyM3N5dx48YBcMUVV/D22297t584se5n1bNnT0pLSxs9xvDhwzGbzQB06dKFsrIyNm/ezK5du7z1LGpra0lMTGTYsGFER0fTr18/oK7L1nnnnQdAYmJim42eOFlItiB1u93ccccdXHTRRcydO1fM6/Wj3Hwr4bJa5DpDmx9LoQtHplTTw+ig1FbLfjHvVBCEEGPb8RW2+KHIZWDWK856fypzHGGuMvKLxTBYoX06mldBXOSJ+er2vAOoo5Pb7FwsIUrLAXF+IAgBkXU0i0jdmf+WlcZoJI/7jFM+6gtnCv4ll8u5//77KSws5LXXXvM+r1AokCSpye0UirrzlzN9Tp/cmlsmkyFJEm63mxtvvJHVq1ezevVq/ve//3HHHXcANBjFcfIxAiWkkhS33XYbu3fvZsOGDezdu5d169Yxbdo0pk2bxty5c4MdXodwOPMQ0RonyAPzo1dFJOAqPMrIc+JZLdqRCoIQQtxV5dQc38NhupAarfbLRZjCGE24o5g8MQxWaIfcHok8SyVxkTrvc7U5B1BFJbbZMZPjjByp0OCuFRc8gtDWcgvKiDScedSgTCZDHdOF2qw9Ta5jNmgpqajF7Wn6wlloHaVSyf33389LL71EcXFd1xGDwUBKSgrff/89QIsaSigUClwu1xnXGTVqFKtXr6aqqgqXy8Xdd9/NunXrzv5F+EHQp3ts2LDB++/6CqEDBgxg3759wQqpQztyNJ/o8MDlppSR8djzDzPs/FE88/52Sm21RBjEPG1BEILPtvt7tCl92JPvJOUsWo+eTK5SY9bJ2V3Y+HBLQQhl+cWVGMLUaNR1p4celwOnNYewZir9n42kSC1r3NHUZO0lvNeINjuO0H6tWbOGl19+GZfLxY033sj111/fYPlXX33F888/j8fj8bYkVqvV5OXlMXv2bKxWK127duXpp58mLKzxrhadgSR5yCtzE9mz+Rpx6pguVB/YhnHQxEaXq5RywnVqrGWi6G1bGDt2LEOGDOG5557zdrt88sknefDBB3n22Wfp3bs3Wu2Zr6cGDhzICy+8wNNPP023bt0aXWfChAns27ePq666Crfbzfnnn89ll11Gbm6u31+Tr4KepBAC61hhJWmxgfuAVkXGU7V3I5Eq6N8tmq+2ZHHVpF4BO74gCEJjJEnCtvMbwgdNZM/ntcwc47/6EZERYRTliBM3of3JKrARH3XiAsZpyUYZHolc5Z8kXmMMOgVKhYzsfZn0FUkK4RSFhYUsWbKEFStWoFarueaaaxg5ciQ9etS1tq+urmbhwoWsXLmS6OhoZs2axcqVK7n66qt56KGHuO6667j44ot58cUXeemll5g9e3aQX1HwuEoLKJaM9GhBUWelOQaPvRpnRTEqY+OdQCJNWgpLqv0dZsApjNE+tQv1Zb8tkZyc3OCmfb3XX3+9weMvv/ySpUuXEhsby/r166mqqht99vjjjzdYb//+/QB07dqVr776yvt8fd0JgHfeece7/V133cVdd911xpjeeeedBvup31djcfuLSFJ0IpIkkWtTMGqACWdtRUCOKVdpUeiNOIvzGN43lv99c5DpE3oil4s6I4IgBI+j8Cie2iqsmkRkFBAR5r+5luZIM7bDEg6nG7UqsHM4BeFsZBXaiDadNNWj4DDKyPg2P26CWcHBw3n0bfMjCe3Npk2bGDVqlLfg3+TJk1m7di333HMPAHq9ng0bNqBSqaipqcFqtWI0GnE6nWzbto0XX3wRqLuwuuGGGzp1ksJeeJxij5HI8OYv/2Qy+e9TPvai6j+20XXMBg2FJVVEtPOvudS//jfYIbRIYmIit9xyC0qlEqPRyKJFi4IdUpsSSYpOpLo4nzK3jpgoI3m5gUlSQF3P5dqCIyQNGIdapWDXIQuDe8UG7PiCIAinsu38Fl3XgfyabadrrMavRQHVpmiM8lKKSqtJjm37IsWC4C/H8itIjDox2tKRfwRd14Ftftz4SD1HsyQ8jlrkajElVDihqKiImJgY7+PY2Fh27drVYB2VSsX333/P/fffT2xsLGPGjKG0tJTw8HBvscCYmBgKC5suBNmYkzuYhVpL99bEo9i/BZsrlQprPpUtqFWrkOlQHthOnrrxVqRuezU7Mg4zYZAp5N4faPo9UiqV3lEEgXS2x5w8eTKTJ0/26z4D+T44HA6ffk9EkqITObInkwiNE0WARzGoIuKx5x1CNnA8Q3vHsu7n4yJJIQhC0EhuF5V7fiTqwlv47dtqusb4dyi7IsyMQZZDYWGpSFII7Up2gY3BPesuCD0uO65yC0pTTDNbnb2ESC07shOw5x1ElzagzY8ntB8ej6dBElmSpEaTyuPGjWPLli0sXryYBQsWcP/995+2nq/J6P79+6PRaEKu5Xxr4/l1z49EaCG1S0qL1pc8iZT9mEn3pFiUYae3IK7yFFFYWjfdI5TeHzjze5SZmRnw2iRVVVUhVw8l0DGp1WoGDRrkfWy32xskAk8VUt09hLZ19EguMfrAT7NQmuNwluQiuV0M7BHN9n1FVNc6Ax6HIAgCQPXhHSgNkaCPIDOvhm4xGr/uXyaXY9JCXlbb9xEXBH9xuz0UWKuIMddN93BYslEao5Ep2v5+VoJZRY7DSPXxzDY/ltC+xMfHY7FYvI8tFguxsSdudJWVlfHTTz95H6enp7N//34iIyOx2Wy43e5Gt+uM8ovKWzTVo55MrkAd24Xa43sbXR5hrJvuIQhtQSQpOpHj+RVEmwM/jFKuUqMIM+O05hKmU9EtycSmXXkBj0MQBAHAtutbtGkDOJBfS1S4kjCt/yfUGnVKcvMsza8oCCGioKQaQ5jaW0fFXnAMhTkwF3UGrRyZXE7+kYMBOZ7QfowePZrNmzdTUlJCTU0N69evZ+zYEzUSJEli9uzZ5OXVnVeuXbuWoUOHolKpGD58OF988QUAq1atarBdZyO5XRRWuDEbfEvKq2NSqTm2u9FlEQYtllJRJFpoGyJJ0Ul4nHZyKhXERQdn6LHSHEdtwVEABnSP4tvt4g6jIAiB566touboTnSp/dl+tIpusf4dRVEvwqil0FLZJvsWhLaQU2gjNuLkzh7HUQUoSSGTyUgwqzmaU4YkeQJyTKF9iIuLY9asWcycOZNLL72UqVOnMnDgQG677TZ2795NREQEDz/8MLfffjuXXHIJR48e9RbHnD9/Ph999BFTpkzhl19+4b777gvuiwkiZ1kRVlkU5jCVT9spI+NxV5biaqSIhSFMja3agcst+StMQfASNSk6CUfhUQo8EVwQhJEUACpzHPbCuiRFn9RIVv9wmPJKO6bwtrlAEARBaEzVvs1o4rsj1+jYdqSIqUPMbXKcyAgDu3KsbbJvQWgLOUWVRJnqzhEkyY2zJI+wfn8I2PFjzRryCmNwWnJQx3YJ2HGF0Jeenk56enqD51555RXvvydNmsSkSZNO2y4pKalB68TOzGnNpRgzA8N8u/Srm/KRRs3R3RgGjGuwTCGXYQrXUFHt9meoggCIJEWnUZ51EJtbQ6Qf2+z5QhkRS+WeH5GkupZ8vbpE8HNGAZNHpQYlHkEQOqfKXd+h7TqQvFIHNQ6JxAjf7iq1VESkiRKHDY/LgVzp38KcgtAWsgptRP9ej8JZUoBcZ0CuCtyNhDiTkiNF8dTm7BNJCkHwM2dJHsUufavabavju1K9fyvh/ceeVnw0wqClrMrlrzCD4s41D2KtLvX7fqP0Ebyc/miz661du5Zly5bhcrmQJIlp06Zx6623Nrn+jBkzuOeeexg5cqQ/w2XGjBnepN60adNYvXq1z/uYMGECb7/9NsnJyWcdj0hSdBJHDx4nSp+IPMCdPerJVVrkOgNOaz7q6GT6pkXx085ckaQQBCFgXBVWHEXHMY+5gp+32+id6N/WoyczhqmokdRU5WdhSOnRJscQBH/KLrQxfmjdiaXDko0qAF09ThZvUvGDPZza7EyMQy8M6LEFoaOzW3IocSRhbkWSQmmOxeN24CzJQx2V1GCZyaCmrKp9F8O3Vpcy/4JZft/vQ98uaXadwsJCnnjiCVasWEFERARVVVXMmDGDrl27MnHiRL/HdCZbt271/rs1CQp/EzUpOonjeaXEmIJ7N09lisVhOQ5Ary5m9h0rEV0+BEEImMq9G9Gk9EGmULHxYCX9knRtdiy5TIZR5SL/2LE2O4Yg+IskSeRZKk909ijORmGMDmgMUQYlFQ4FZdmHAnpcQegMiguL0alkqJW+X/rJZDI0CT2oPrT9tGWmMA1lle17JEUwlZaW4nQ6qa2tBSAsLIzHH3+cHj16MGHCBHJy6mr4bdmyhRkzZni3++ijj7j00ku59NJL2bJlC1DX6ebuu+/moosuYtq0aWzevBmAb7/9lmnTppGens5dd91FcXExABdffDH33XcfkydPZsGCBQBceeWVAPTu3fuM+3z33Xe58sormTp1KpdddhlHjhzx+3sjkhSdgLu6gtxqjffkI1iU5lgchccA0KqVpCUY2bFfVL8XBCEwKjN+QJfanxyrg4pqDylRbZu4NWkhP0d0MhJCX0WVAwkI09VNf3IW56A0BTZJIZfJiDWpyCmX4a62BfTYgtDRFViridC3fsq3NrE7tccy8LjsDZ6PMGgobefTPYKpT58+TJw4kUmTJjF9+nSeeuopPB4PqalnHmmu1+tZtWoVjz/+OLNnz8bhcPDcc8/RpUsXvvzyS5588kmeffZZrFYr//73v3nxxRdZs2YNQ4cOZeHChd79jB07lnXr1nmTFP/73/8aHKexfVZWVvL111/zzjvv8NlnnzF+/Hjee+89v783IknRCdjzDpEviyMu2CMpImJxFGUhSXVVgHukmNm6tyCoMQmC0Dk4S/JxVRSjjkvj+0wb/VO0yNtoqkc9k15FYZH/57kKgr/lFFUSE6FDJpPhtlfjqa1CoTcHPI5Yo4pCTRr23AMBP7YgdFQelwNLjYwIQ+trMMm14Sgj4qg52rAdqTlcQ1mlKJx5Nh566CE2bNjAtddeS15eHldddRXr168/4zbTp08H6pIcUVFRHDlyhG3btjFt2jSgbiTE8uXL2bVrFwMHDvTWiLj66qv5+eefvfsZNGjQGY/T2D7Dw8N55pln+Pzzz3nmmWf49ttvqa6ubvXrb4pIUnQCtbkHyHeGE2MMbgkSuTYcFCpctrqK9727RLA9sxCPR7QuEgShbVXu3Yi2Sz/ckpzv9tkY1EXf/EZnyWjQUlRa2+bHEYSzlWepJNpUXzQzD6UxGpk88KeIMUYlucRSm7s/4McWhI7KVVZEiTwak+7srgO0yX2oytzsvdkIYDZoKBfdPVrtu+++44svviAuLo4rrriCJUuWMG/ePD7++GMA73vtcjUcraJQnBgV4/F4UCqVKJXKBnW2Dh8+jMfTsKWzJEkN9qXRnLk4cmP7zM3N5eqrr8ZmszF27Fguu+yyBr8T/iKSFJ1A6fFD1LoVmM9imJe/qMwxOIrq6lJEmXSoVQqOF1QEOSpBEDq6yj0/oe3Sj1+OVhGhVxBjbJuuHiczG7RYnVrcVeVtfixBOBs5lkqijHXtR53FuSgMkUGJI86oItceTm3OvqAcXxA6ImdJPlZZBGYf24+eShmZgCS5sRcc9j5nCtdQVevGLW44topWq+WZZ57x1p6QJInMzEz69u1LREQEhw7V1ej55ptvGmy3Zs0aAHbv3k1VVRWpqakMHz6czz//HKhLJtx2220MGjSInTt3eve/fPnyJruCKBSK05Ihje0zIyOD1NRUbrrpJgYMGMDXX3+N2+3/RJXo7tHBSZLE8RwrsUZlm1Wx94XSVJekCOsxDIDuySZ27C+ia6IpyJEJgtBROay5uKvLUcd0Yc33eQzvFhaQ45rDlGTKzDgsWejCBgTkmILQGjmFNronmwFwWnNQRiQEJY5Yk5Jcm5zavMNIHjcyefBvrghCe+cqL8Lq1tPnLG9WymQytF36UZnxI9qEuq5VSoUcjUpOma2WKFNwa9+1VpQ+okWdOFqz3+aMGjWKe+65hzvuuAOns66ZwPnnn8/dd9/N0KFDefjhh3nhhRcYM2ZMg+2qq6u59NJLkcvlPPPMM6hUKu69917mzZvHJZdcglKp5MknnyQ6OpqFCxdyzz334HQ6SUxMZNGiRY3GMnHiRKZNm8aKFSu8zzW2z759+/Lhhx8yZcoUJElixIgRHDx48CzeqcaJJEUH5yovIs9tJjYicL3Oz0RpjqNyzw/ex92TzGzfV8TlF/QMYlSCIHRkVZmb0ab0ZX+BHWuli76J2oAc16RTUOrR4yjOQZcmkhRC6MorrmJk/7rEhKMkH23qOUGJI0yjQKWUYVNF4yzORR3bJShxCEJH4iwtwOqIaFX70VNp4rtRc/g3HNZcbzvScK0cS2lNu01SvJz+aFCPf9lll3HZZZed9vy4ceMYN27cac+/8847je7HaDTy/PPPn/b8hAkTmDBhwmnPf/7554SFnbhps3TpUu+/9+/ff8Z9vvHGG43GsGHDhkafbw0x3aODs+cdokCRSFR4aOSjFGFmPDVVuGsrAeiaaORAVilOl6eZLQVBEFqnKnMTmuQ+fLi5hNE9w5HLAzOqzKhXUO5QUVuUFZDjCUJruD0ShSXVRBm1uGsrkRx25Dpj0OKJNaoo0qVRK4pnCoJf1FiLsDnkmHRnn6SQyRXoUs+hcvd33ufCtAqKSv1fOFHo3ESSooOrzT1ArtNEnKnt51+3hEwuR2mOw2HJBkCvVRFt1nEwW1TAFwTB/5xlRbgqrGTWxmKpcDE4te0LZtZTKWRoVTJK8kUXIyF0WUqrCdOpUKsUOEsLUJqigjo9NMagpEAWJ+pSCIKfFBVXYNTK/Jag1yT1wmHJwVFa992m19SNpBAEfwpqkqKyspKpU6d6i3mcLDMzk8svv5zJkyczd+7c0wp5CC1Tm3uQvBoNsUHu7HEypTEaR/GJO4tpCUYyDluDGJEgCB1V1f6fUST15fXvrUzqb0QRoFEU9cx6BQWWsoAeUxB8kVdcRYy5bpi2qyQfRXhwimbWizYqyXUYRBtSQfADSZKwlNUSEe6/m5UyhbKuNsXObwEI08opbGcjKdqiG4XQtNa830FLUuzcuZNrr72WY8eONbp89uzZ/Pvf/2bdunVIksRHH30U2AA7AMnjxpJfiEwuI0wTOoNmVKYYHCcNf06NN7L7UHEQIxIEoaOqytzMp6W9iTYq6ZUQmFoUJzOFqSh1anBX2wJ+7I5kzZo1TJkyhQsvvJD33nuvyfW+++67RufeCk3Lt1QS+XtnD4c1N+hJilijipxKBa5yC57aqqDGIgjtnae2EqsnDFOYf0dUa1J647Acx1lWWJekKGk/SQqFQuEtUikEhtPpRKn07YZ50K5cP/roI+bPn09sbOxpy3Jzc6mtrWXw4MEAXH755axduzbAEbZ/zuJcChQJxJvUIdHZo57CFIOrtADJUzc6JjXByP6sUtG+SBAEv3JXlfNbjpPNuUouGhScDkIGnYIKVQxOa25Qjt8RFBYWsmTJEt5//31WrVrF8uXLvW3ZTlZcXMwTTzwRhAjbt9ziKm+Swlmaj9LQfEX6thRjUJJf5kIRmURt/uk/Z0EQWs5VbqFMEeWXehQnkytUaFP6Ysv4gTCNguKy9jPdw2w2U1hYiMcj6uEFgsfjobCwEJPJt/OwoM0BaKr9CUBRURExMTHexzExMRQWFgYirA7Fnn+IQlUSMdrQmeoBIFepkeuMOEsLUUclEa5TYQxTk1VQIVqRClRWVnLNNdfwn//8h+Tk5AbLXnjhBT755BOMxrqibldddRXXX399MMIU2oFD27fxbsUorvxDBGGa4LQyNOoUlFSYcVhz0Kb0CUoM7d2mTZsYNWoUZrMZgMmTJ7N27VruueeeBuvNmzePe+65h2eeeSYIUbZfuUU2+nWNwuNy4Km2oQgL7vewRiUnTCOnPKwL4TkH0HcdFNR4BKE9c5VbsEomEs+y/WhjNMm9Kd+4AkPPbljL2s+0/OjoaHJycrwdLALB4XCgVqsDdryWCGRMYWFhREdH+7SNz1ev2dnZfPfdd8yYMQOAJUuW8NFHH6FUKrn99tu54YYbfN3laTweT4M7/5IktWokQEZGxlnH0lrbt28P2rHr6TI2cagyBYPSRnZ2xWnLs7OzgxBVHbVCR+6e7Tji67p8GLUe1v3wGyN6hnvXCYX3sDmhHmOox3eqnTt3Mm/evCangWVkZLB48WKGDBkS2MCEdqeyxs3SL0s5P02iS3TwWjCb9AoOesJxFp9ee0lomVNvXMTGxrJr164G67z99tv069ePQYNad0Hb2PlCe/j89EeMR3NLSDY7OVK6D61KT05unh8iO6E15xoGlZx95VpUtq0c1XfzazxN6Sw/77bWHmLsTFzlFqwuPf3aIEkhV2lQJ/Yg3HoAhyuNGrsLnSa0bow2Ri6X06VLYNsbb9++vdXfT20lFGM6mU+/Sfv27WPGjBlIksSMGTNYv349//3vf73LFy1ahNlsZurUqWcVVHx8PBaLxfu4uLi40Wkhzenfvz8aTeBPTrdv386wYcMCftxT5ez4AKs0gHO7RpMY0TBTlp2dTUpKSpAig1pFLW5bKZG9egNQ4SrAWlHrfd9C5T08k1CPsa3js9vtfk8E1k8Du//++xtdnpGRwX//+19yc3MZMWIE//znP4PyNy6EtupaJ+9ssNBDkcPwvsH9GzXpFJQ41DgsB4MaR3vW3I2LAwcOsH79et58800KClrXSeXU84VQ/3wH/8TodnuwLc9j2MC+OI5upzYynhg/nhu09lwjuawcuykcbd5Geg8d2uZTVjvLz7utNRVjW5wvCC3jLCukxBGBOaxtRhNqU/pQs/lTIgy9KS6rISXO0CbHETofn2pSLF26FJvNhlKppKKighUrViCTyTj//PMZOHAgkiTx7rvvnnVQSUlJaDQabzZ29erVjB079qz325lILie1xXkUVtbN7ww1KlMsjuITd1dS4gwcyBJtSDu7RYsWMXz48EaXVVVV0bdvX2bPns3KlSupqKjgpZdeCnCEQqhzuT0semMrEWo750XbkKt1QY3HpFdQYleImhRn4dQbFxaLpcGNi7Vr12KxWLjiiiv4y1/+QlFREdddd10wQm13LGU1GPQqVEo5zpIClOHmYIcEQLRBRXY5yJRKXKX5wQ5HENqt2pIibE45Rm3bJCkUOgNunRGjwoGlHdWlEEKfT1evu3fvRiaT8dRTTxEWFsaWLVsAeOSRRygsLOSqq67iwIHWt4y67bbbuPfeexkwYABPP/008+bNo7KyknPOOYeZM2e2er+dkb3oOMXaLpjDlKiUodPZo55cbwCnA3eNDYXOQGyEnjKbncpqB+H60JqzJYSGsLAwXnnlFe/jW265hQcffJBZs2b5tB9f7+Z09KGrHe31fba1lNIyJ5ONWdQQRkUQp7UBSBLUOORUlZexfdtWkPvnRLGj/dzOZPTo0SxdupSSkhJ0Oh3r16/n4Ycf9i6/9957uffeewHIyclh5syZvP/++8EKt13JK64i+vf2o87SAnSp/YIcUZ1Yo5LfjlejSk2hNucAqsjEYIckBNGaNWt4+eWXcblc3HjjjafVovr6669ZunQpkiSRnJzMY489hslkYuXKlTzzzDNERUUBMH78eJ/PGdo7i7USo1aGvA3bb7uNiejyirGUiiSF4D8+JSlKSkoA6Nq1KxkZGdTU1JCSkkJcXBx2ux3A50qpGzZs8P775AuQPn368PHHH/u0L+EEe94hCtQpxBn923LIX2QyOQpzDI7ibHQp/ZDLZSTFhnMgq4yhfXyf2iN0fHl5eWzatInp06cDdUO+fW1nBL5NA2sPw2vPRkd7fT/syOG41codlw7G+ukGIoZOQmkIbjtFAPO+Qqp08Qzsmog6Orn5DZoRyj+3thjWHRcXx6xZs5g5cyZOp5Pp06czcODABjc2hNYpsFYRYdAiSRKusiIU5/wh2CEBEGNUkl/mRDEkkdqcfRgGjg92SEKQ1Hf3WbFiBWq1mmuuuYaRI0fSo0cPoK7Y9oIFC/jkk0+Ii4vjueeeY+nSpcybN4+MjAzmzJlz1tPQ27OiCjtmfduOqHaHR6Nz5VKQbwFS2/RYQufh0y32+tYhR44c4YsvvgDgvPPOA2D9+vUAJCQk+DM+oZXseQfJdUcRYwy9qR71lIZoHJYTdzmTosM5mC2mfAiN02q1PPXUU2RnZyNJEu+99x5//OMfgx2WECJKKmr5z4pdXDWxF0pHGTKPG0V4cFsp1jPpFZRr4nBa/VuQsDNJT0/ns88+Y926ddx2221A3Y2NUxMUycnJDW5+CGeWa6kk0qjBU1OBTKEI+vSoemqlnHCtnHJtMrU5+4IdjhBEJ3f30ev13u4+9ZxOJ/PnzycuLg6A3r17k59fN0Vo9+7drFy5kvT0dP7xj39QXl4elNcQLB6nHWutCmN4G9+wlMuJMIeTd1wUiBb8x6cr2GHDhrF+/Xruuusu3G43MpmMKVOmsGrVKp5++mlkMhmTJk1qq1gFH9jzDpJVk8aghNAcSQGgMsVQc9LJR2JMGPtFXQrhFCffLV24cCF33nknTqeToUOHcvPNNwc7PCFEvLJqN8P6xJEUE07lvt24w6PavNheSxm0CsoVkThLRJJCCC15lip6pZhxlhagCA/+qKOTxRiUFEpGkksL8dhrkGtCI4EiBFZz3X0iIiK8Nyxqa2tZtmyZtwNhTEwMt9xyC0OHDmXx4sUsXLjQpxbFJ48KC7Updi2JR15VglUyIXNUkZ1d2abxyFVKCgpLQ+p9CqVYIPTigdCMqZ5PSYp//OMfZGRkkJdXd6J14YUXMmrUKDZu3AhAz549ufXWW/0fpeATj6MWV3kR2RUw2RS6SQqFKRrX7nwkyY1MpiApJpz1W7KCHZYQApqaBjZ58mQmT54cjJCEELbveAkZR6zcd3Vda1p7zgHc+qggR3WCQaegzGNoMHJMEEJBgbWK8/on4Cq0oAgzBTucBqLCleSWuekamYg9/xC6NDGtpzNqrrtPPZvNxt13302fPn247LLLAHjxxRe9y2+99VafR1/WTw8NtSl2LY2n5thuPldGkhIfQUpKWJvFk52dTdee3dmae5xBPdNQGoP//dtef2aBFOyYmpse6tN0jy5duvDpp5/yn//8hzfeeIPnnnsOqBtaNWvWLN577z3vlBAheByFx6gydMEjgUEXekUz68lVGuTacJylhQBEGrXU2l2U2exBjkwQhPbknS8yuWBoMmqVAo/LgaM4G3dY6NwVNuoUlDj1OEtElwIhdHg8EkUl1USatDhK81GESGePetEGJVnFDlTRSdRkiykfnVVz3X0Ab0ef3r17s2jRIqAuafHmm29615EkCYWibTpchCpXuYUSdxgmfdu/blOYinKPnqoD29r8WELn4PMVbHh4OOPHj+e8887zZjKjo6O5/fbbMRhEb9xQYM8/RIGqC/EmVcgMd26K0hiDs7huDptMJiMxJowjuZ1rzqAgCK13MLuU7EIbQ3rXnbQ6LFl1xTIVoVOPx6RTYHWocJYWBDsUQfAqqahFq1GiUSnqimaGSA2XetFGJTklDtTRKdiz9gY7HCFIRo8ezebNmykpKaGmpob169czduxY73K3280dd9zBRRddxNy5c73nvXq9nldffZWdO3cC8O6773a6OlauCislTk2bF86EujoyKoWMwswdbX4soXM442/t3//+91bt1Jf5XoL/1eYeIMeTRJwpdE7Sm6I0RuGwZBPW61wA4qPCOJxbRjdzcOMSBKF9WPX9YUb2j0epqMu523MPoowIrXaFRp2CkhqQVNVibr0QMvKtVUSZtEiSG7fNGnLTPWIMKvJKnSijk6nd8imS5EEmC93RoULbaK67T0FBAXv37sXtdrNu3TqgbprGokWLePbZZ1mwYAG1tbWkpaXx5JNPBvnVBJaj3EKZIzEgIykAzGFKCrJz6Ol2IlOE7nRzoX0441Xs559/7tOd+Pp5YiJJEVz2/MMcd/QiJS70PyCUphgq9270Pk6IDuNgdhndzJ1rSJ4gCL4rr7SzbW8hf79uqPc5e/4h9L3OhRCaNmbSKyipdKFMjcZZmo8mvluwQxIECq1VRBi1uCtLkan1yJXqYIfUgE4tR62UUe7WodDocVpyUMd2CXZYQhCkp6eTnp7e4Ln6elUDBgxg377GpwMNHz6clStXtnl8ocpaXIZOlYhSEZhR1aYwFRXEU5tzAF3qOQE5ptBxnTFJkZgYWnejhOZ57NW4bSVk1coY0Tv0kxSKcDOe6grcjhoUah0JUWH8tDMPBoTWsFNBEELPd7/m0CctAr227rPOXWPDXVVRV7TLFjqdNLQqGR4JHPoYnCUiSSGEhvziKiIMGpxlRSgM5mCH06gYo4qcEgepMV2ozdknkhSC4ANLWQ1mfeBGHxm0cmyyRGqO7RZJCuGsnTFJIXqNtz/2giO4TCmUlbiJDg/96R4yuQKlMRqnNRdFQg9izDqsZTU4XKE17FQQhNDz7S/ZjB2S5H1sLziCKjIBmTy0RmLJZDJMegXlyigiRfFMIUTkFleRGB2Gq+woCn1ofudGhSvILXXQMzqJmqw9GIdeGOyQBKHdKLa5MAWgHkU9g05BqSOK2uO/BOyYQsfV6vRaVVUVGRkZ7Nmzh+rqan/GJJwFe/5hCjR1RTPl8tAumllPYYzCWZxb92+FnNhIPUVlriBHJQhCKMsvrqKotJpuSWbvc/b8w6gi44MX1BmYdArK5RE4raEzwkPo3PKLq4gyanGWFaIIMwc7nEZFGZRkWx2oY1OpFR0+BKHFPI4aSpxajPrATeMy6RSUuvXYC44guZwBO67QMfmcpCgvL2f27NmMHDmSK6+8kunTpzNy5EgefPBBbDZbW8Qo+KCuaGZsuyiaWU9pisFhyfI+jovUU1jmCGJEgiCEuk278ujXNQrF78lYSZK8IylCkVGnoEwy4CwVIymE0FBYUk2EUYur3IIiPDRHUsQY6qZ7KIzRSI4aXBXWYIckCO2Cy1ZCqTwiYEUzoa7+UnGVB6UxBnvBkYAdV+iYfEpS2Gw2rrvuOj777DNcLheSJCFJEk6nk5UrV3LddddRWVnZVrEKLeDIP8Lx2jDiTKFfj6KeyhSN05qHJEkAxEboKSgVGVhBEJq2cVcefdMivY/dlSXgdiMP0WHrBq2cUrcWZ2lhsEMRBCprnLhcHsK08rrOHiH6dxNtUJJX6kQmk/0+miIz2CEJQrvgrrBSIhkCmqQw6uqKRKujk6nNESOfhLPjU5LipZde4vDhw8jlcq666ioWL17M008/zVVXXYVCoeDQoUP85z//aatYhWa4aypxV5dzrFRGgrn9JClkmjBAwl1dBtS1IS0sE0kKQRAaV15pJ7vIRrekExdW3noUPnSkCiSjTkFxjRzJUY3HURPscIROrsBaRbRZi6eqAplaF3KdPeoZtHKcbglbjRtVdAo1xzOCHZIgtAsum5USlx6TLrBJivIaN4qoZGqz9gbsuELH5FOSYv369chkMv7+97+zcOFCpkyZwtSpU1m4cCF/+9vfkCSJL7/8sq1iFZrhKDiCZE6mqMJFrLEdJSlkMpSmWJzFOQDER+kpKnN6R1YIgiCcbMf+Inokm1EqTnyF2fOPoAzRehQARr0Ca6UbhSEKZ0lBsMMROrkCaxWRRi3O8qKQrUcBdecHMUYluaUO1HGp4sJHEFrIVWGlzKkO6EgKhVxGmEZOZVgi9rxDATuu0DH5lKQoKioCYPz48actGzduHAAWi+XsoxJaxV5whEJNCjFGZcB6IvuLwhCJ4/fimeE6Fcig1GYPclSCIISiX/YV0v2kURSSJOEoPIYqInSTFCadAmulC6UhEmeZSFIIwVVgrcZs0OIut6AIC82pHvWiw1XkljhRRcTjsllxV1cEOyRBCHm2kmJckgydOnAtSKHuu67MrUdyu0QNGeGs+PSbGx0dDcCOHTtOW/bbb781WEcIvNrcg2R7YtvVVI96KlMMjuJsoO7OSUSYkqwCcSIiCEJDkiSx80AxPZLN3udcFcWgUKDQGYIXWDPq5uq6kevNuERdCiHI8iyVRBg0OMuKQrYeRb3IcAU5JQ5kcgXqGDGaQhBawmK1YdYS8CmQ9aMGVdHJ2PMOBvTYQsfiU5Ji7NixSJLEokWLeOWVV9i1axe7du3ilVde4dFHH0UmkzF27Ni2ilVohqPgCMdqwttV0cx6CmMUrtICJMkNgDlcwfEC0S1GEISGsgttyOUyIo1a73P2gqMhPYoCQKOSo5RDrSYSZ4loQyoEV35xFVGm3zt7hPpIit/bkAKoY7tQc2x3kCMShNBnKbNj0gd2FAWAQVs3alAVEU9tvpjyIbSeT30q77rrLtatW0dZWRmLFy9usEySJEwmE3feeadfAxRaxls00yljckr7S1LIVRrkmjBc5cWozHGY9AqO5omRFIIgNJRxxEq3JFODu0OOgsMozXFBjKplTHoF5YoI1MWiNZsQXAUl1XUjKSqKQ7b9aL0Yg4qvS+vOB9RxaVRs+yLIEQlC6CuudGEMQn06o06BpcKJqnuCKHQrnBWfUmxxcXG8//77DBkyxNt+tP6/fv368dZbbxEXF/onih2Ro/AomBMpKHe1y5EUAEpjFE5rXV0Kk5juIQhCI3YeLCY1/sS0DkmScBQdD/mRFAAmvZJSKVy0IRWCyuX2UGarxah0IpMrkKu0zW8URBFhCipqPDhcHlSRCXV1KarKgx2WIIQsyeXEaldh1Ae+a49Rp8Bic6GKTMBReEwUwRdazaeRFB6Ph27duvHBBx9w5MgRDh48iEKhoGvXrnTv3t3ng69Zs4aXX34Zl8vFjTfeyPXXX99g+Z49e/j3v/+N0+kkISGBp556CqPR6PNxOgN7/mEK1KntsmhmPaUxCkdxDvruQzGHK8jZU4EkSSHbUlAQhMCSJIm9R6yc1/9EQsJVUQxyJQpdeBAjaxmDTk6pS0OXqnIktxOZon0mlIX2rai0GlO4BslWjCI8ItjhNEsulxEZriCv1ElajAZ1bBo1WXsI7zs62KEJQkhyVZZSKjOTHObTZZ5fmPR10z3k+rrrNbfNitIo6hUKvvNpJMXFF1/MPffcw549e+jWrRuTJ09m0qRJrUpQFBYWsmTJEt5//31WrVrF8uXLOXSo4dylRYsWce+99/Lpp5/StWtXXnvtNZ+P01nY8w6RLbXPopn1FMZonJa64plalRylQkZJRW2QoxIEIVQUldbgkaQG9SgchUdRRbSPEXx1c3U9KMJNuMpFJywhOAqs1UQZtTjLLSj07ePGT4xBSU7J73Up4lKpOfJbcAMShBDmtlkplQwBbT9az6RTYLW5kMlkqCITsBceC3gMQsfgU5IiJyeHb775BoXi7H/pN23axKhRozCbzej1eiZPnszatWsbrOPxeKiqqgKgpqYGrTa0hyQGk73wCMeq22fRzHpKQyQumxWP2wlAXKReFM8UBMEr81gJqfHGBqOr7IXHUJpjgxhVy9XP1VWGR4opH0LQFFqrMBt+L5rZTpIUkeFKcn9PUmjiu1NzVBTPFISmuGwllLp0mHSBT1KEa+XUOOqmZynNsdgLjgY8BqFj8ClJce655wJw8ODZt5QpKioiJibG+zg2NpbCwoYnbXPmzGHevHmMGTOGTZs2cc0115z1cTsij70at62Uo2UyEtvxSAqZQoVCb8ZVWgBAtFlHTqFIUgiCUCfzqJXk2BPTOk7Uo2gfIymMurphsIpwM87fP+cEIdDyiquIMGp+7+xhDnY4LRJtUJL1e4cPpTkWj6MGZ5lI9AlCYxzlxVS4VBiDkKSQyWTeltsqczyOAlEoWmgdnyYrXXDBBezatYt//vOffPjhh3Tv3p2wsDBUqoYXxn/729+a3ZfH42lwN+zU2gO1tbXMnTuXN998k4EDB/LGG2/wz3/+k2XLlrU43oyM4FWV3b59e8COpSzJQqmOoKDYgdNWSHZVy7bLzs5u28BaQa3QkJv5G8T1wuOwsT2jgqSwsmCH1aRA/pxbI9TjEwRf7DteysThKd7H7spS8HiQ69rH3WCTrq5/vCJMJCmE4MkvrqJbkgnX4WLkvUYEO5wWiTGo2HKo7uRGJpOhSehOzZGdqIZeGOTIBCH0WC0l6JSmoNWoM+kVFNtcREXEUbnnx6DEILR/PiUpHnnkEW8i4ddff+XXX39tdL2WJCni4+P55ZdfvI8tFguxsSeG7B44cACNRsPAgQMBuPrqq3nuued8CZf+/fuj0Wh82sYftm/fzrBhwwJ2vPKt+WSY+xBXpSYtNab5DahLUKSkpDS/YoDVyqrx1FZRBPTvncam3fkBfS99Eeifs6/aOj673R7URKDQuThdbnIKbSTFnBhJ4Sg6hjIirt0U1zXq5JRVu5CFR+IU/eOFIMm3VjGsZwSS045cq/fbfqsc1RTYipCAhPBYwjT+23eUQUlRhQu3R0Ihl6GO70b14R0YRZKiU2iu0P7XX3/N0qVLkSSJ5ORkHnvsMUwmE3l5ecyePRur1UrXrl15+umnCQsLC9KrCJwiayUmbfBaC9ePGlQmReGuLMHjqEWuFlP2Bd/4NN0DOK31aGP/tcTo0aPZvHkzJSUl1NTUsH79esaOHetdnpqaSkFBAUeO1A0T+uabbxgwYICv4XYKtXmHyPHEEN+Op3rUO7kNaWyEjtwiMd1DEAQ4mldBTIQeterE8FV74TFU7aQeBYBKKUejlFOjPDGtTRACSZIkikqqMVCJIsyETObzaeBpPB4P23J3sjpzPYdKszhSmsWn+9azJXsHEv5pP6hSyDDo5BSW19Ws0iR0o/Z4BpLH7Zf9C6GruUL7lZWVLFiwgGXLlvHpp5/Su3dvli5dCsBDDz3Eddddx9q1a+nfvz8vvfRSsF5GQBWX1walHkU9g06BxVbX4lhpisVhCb2R20Lo82kkxb59+/x24Li4OGbNmsXMmTNxOp1Mnz6dgQMHctttt3HvvfcyYMAAHnvsMe677z4kSSIqKopHH33Ub8fvSBwFRzjm6kF8Oy6aWU8RHlHX/9ztwqBX43R7qKhyYAwLfK9nQRBCx8HssgajKAAcRccJ7z+2iS1Ck0mvoFQKx1BRLFosCwFXUeVALpehqinBFXb2d1o9Hg/fHd1MjdvOmNQRqBV139UOt5M9RfspdBSRlJSEQn72F0wxBhW5JU4SI9QodAYU4WbsuQfQpvQ9630LoevkQvuAt9D+PffcA4DT6WT+/PnExdXVJurduzdr1qzB6XSybds2XnzxRQAuv/xybrjhBmbPnh2U1xFIxZVuDEG8JjDpFFgqXEBdDRlH0XG0ST2DFo/QPvmUpHjhhReQyWTcdNNNpw2XysrK4s033yQmJoY777yzRftLT08nPT29wXOvvPKK99/jxo1j3LhxvoTY6XicdlzlRRx1ypmS1v6TFDK5AoUhEkVVCTKZjLgIPTlFNvp1jQp2aIIgBNHBrFISok8MH3fXVOKprUYRbg5eUK1g0ikotcsxyhV4qitQ+OFCsTNobrj3V199xfPPP4/H42HAgAEsXLgQtVokt09VYK0i2qTDWV7ol1ou2/N2UeOqZUjCOchlJxIRaoWKQfH92Hr8N37O+pU/pJ197YuocAU5JQ5GdK87/1Qn9KDq0HaRpOjgGiu0v2vXLu/jiIgI/vjHPwJ19eyWLVvGjBkzKC0tJTw8HKWy7lInJibmtAL9HZEkSVhr5JiSAj/dvZ5Jr+B48e+Fbk0xOIqOBy0Wof1qVZLiyiuvPC1JUVNTw/vvv4/ZbG5xkkI4e46iLDyGeIqOuYg1tv8kBdS1IlVUlwB1HT6yCytFkkIQOrmDOWVM/UNX72OH5fjv9SjOfrh6IBl0coptLroZonCWFYokRQvUD/desWIFarWaa665hpEjR9KjRw8AqqurWbhwIStXriQ6OppZs2axcuVKrr766iBHHnryrdVEGLW4yy0oI+PPal95FQUcLc1mVMqwBgmKenKZnDRdAoercjhWmk1axNnVwYo2qMj+vcMHgDaxBxU7vibqghvOar9CaGuu0H49m83G3XffTZ8+fbjssssoLCw8bT1fR66dXHcr1AqRNxWPzFGF1RNOfE052dnlAYvn5GL8NdWQXyLnwP4DKCqdqCz7OB6E96+9/MyCKRRjqnfGJMWhQ4e488478Xg8DZ6/+uqrkctPnBhKkkR5ed0fgtst5gcGkqPgCPnqVGKNyqBV8fU3hTEKeX7dh11dkkLUpRCEzszhdFNQXEVc5InkuKPoOCpTywoFhxKDtq7quSI8AldpIST1CnZIIa+54d56vZ4NGzagUqmoqanBarViNLaPji+Bll9cSYRBg6ugGE1y71bvx+VxsylrO31je6JWNH2DRC6T0z+uNz/n7CAhPA6NqvWjW6INSnZlV3sfq6KTcVcU46qwojSKGxkdVXOF9qFutMWf//xnRo0axYMPPghAZGQkNpsNt9uNQqFodLvm1BfgD7VC6WeKx15wlHKyGJ0SR1JkYEaTnVqMP9bp4Yv9hfTs1R1PdRzF67bTO8DvX3v6mQVLsGNqrgD/GZMUPXr0YNiwYaxatQo4kYHMz89vcpsRI9pHO6uOwl5wmFxiO0TRzHpKQxSKQ78BEGPWseeINbgBCYIQVFkFNqLNOlTKE8lxR+ExdN2HBjGq1jHqFOSVOVEkmnCI4pkt0txwbwCVSsX333/P/fffT2xsLGPGjPHpGI2dKIXyHaZ6vsaYsb+EMI0MZ2UJ+SUVUNbCnuWnOF6dh1JSIlW6KKo88xB6e3kNBrmeHw/9TO/wrmdc94z7cUGuVc6+fQeQ/35PRmOIJ/ObFTi6nP1nQUf8eQeDv2McPXo0S5cupaSkBJ1Ox/r163n44Ye9y91uN3fccQcXXXQRd911l/d5lUrF8OHD+eKLL0hPT2fVqlUNCvR3VG5bCWVuLSZ98ApnalRy5HKosnsI0xuRXE7cVeVi5KDgk2ane8yePRun04kkSXzxxRfIZDImTJiAVnuilYxMJkOtVtOjRw+uvPLKNg1YaMief4RjNWM7VJJCEWZC5qjB46ghxqwj11IZ7JAEQQiiw7nlJESfGEXhcdnr7p6a2t/dU5Newe7sGpRhEbhKmk74Cye0dLj3uHHj2LJlC4sXL2bBggU888wzLT7GqS3Lg32HqSVaE+OHG39gaEo4itJwUlLTWnVch9vBT3t+ZUTSIMLVZ27nWFRUSGxsHGZ3BD8d38bI2GEYNK1vAanfV0hUYhIxv09vrdHYsecdIuEsf1Yd9ecdaE3FeDYty5srtF9QUMDevXtxu92sW7cOqPt7XrRoEfPnz2fOnDm8/PLLJCQksHjx4rN6fe1BVWkxdo+CME1wp0Ka9UosFS7CYzWoIuJwFGejE0kKwQfNJimioqK8X/QWiwWARx55hMjIyLaNTGiW5HHjtOZyzKXgTx2gaGY9mVyBR2fEWVpAZHQqJRV2nC43KmXwssKCIATPoZwy4iJPFM10WnJQGqOQyX0qqxQSTL/3j1eER1CbeyDY4bQLzQ33LisrIyMjwzt6Ij09nVmzZgU8zvagoKQao8RZ3dHcbzlClD6i2QTFydQKNcmmBHYX7mN0l9ZfaMcYleSUOLxJCk1iT8q3fIbHUYNcrWv1foXQdqZC+wMGDGiy+2BSUhLvvPNOm8cXSoqKSjGqVUHvHGXS101t7BqrQWmMxmHJRpfaP6gxCe2LT2m2d955h3feeUckKEKE05qLRxdBYbmbuA7QfvRkHk04TmseCoWcKJOWvOLWDUkVBKH9O5pbTkLUiQsiuyULRTusRwF1/eMratwQZsZVVhTscNqF0aNHs3nzZkpKSqipqWH9+vUNhm1LksTs2bPJy8sDYO3atQwd2v6mArU1u9NNZbUTvbMUhb51NTs8HjeZloOkmX0vgplmTuZYaTY1zppWHRvq6lLklDi9j+VqLerYLlQf+a3V+xSEjsRircAUvMYeXkadHIut7m9VaYoWHT4En/l8G2rt2rV88cUXlJSU4HK5Gl3nww8/POvAhObZC45SqE0j2tBximbW82iNOIpzgLrimTmFlaTGi0JogtDZSJJEVqGtwXQPR9FxNHGtn9seTAq5jDCNHBthuKsrkFxOZMqOlWT2t+aGew8YMICHH36Y22+/HZlMRo8ePXjooYeCHXbIKbBWEWnU4C4/3uokxbGyXPRqHUZNuM/bqhVq4g0x7LMcZkhi6+6oRoUrySp2NHhOk9STqszNhPc5r1X7FISOxFJWi1EX/K5XRp0CS0XddaLSFEvV/i1Bjkhob3xKUrz22ms8/fTT3seSJJ22TrCHF3Um9oIj5BLXoepR1JM0BpzF+wGIMmnJsYgOH4LQGRWV1qBRKdBr6z7nJMmNsziHsN7nBjmy1jPpFZRUSZjDTTjLLaijEoMdUsg703BvgEmTJjFp0qRAh9WuFBRXEWXS4Sq3oEtrXZIgs/gQKcbW/752MSXxS94uBsX3RS73fQpnjFHJvryGdaq0yX2xfP6SSPgJAlBsc2MIgesCk15JVrEdqEtSOItzgxyR0N74lKR47733vImJHj16YDKZGrQiFQLLUXCELPsw4kztb152czyaMDw1lXgcNUSbdGQXiCSFIHRGx/LKiY86qR5FmQW5Jqxdzz836urm6kaHR+IqLRBJCiEg8q3VmA0a3HnFrapJUVZbjs1eSUx86wvWhqvDCFPpySrPIy3C9ykjMQYVuaWOBsVTFXoDKnMc1Ud3EtZzeKtjE4SOoLhWTqwh+PM9zHoF2211IynkunCQPKLDh+ATn65urVYrMpmMefPmcf3117dVTEILSJKEo+g4x+yjuKBL8DOmfieToTRE4SwtICYiip2HLMGOSBCEIDiaX0HsSUUzHUVZKM3tsx5FPaNWQXGlC0W4GaeoSyEESH5xJWa9DMkjIWtFku9g8TESDXHIZWd3cyrZGM/+4sOtSlLoNXJUChnWSjfRhhOnsNqUPlTt3SiSFEKn5nHaKXHp6BGubX7lNmbSKbD+nqSQyWQozbGiw4fgE5++afr27QvAqFGj2iQYoeXcthLcKMjrgEUz6ymMkTitecSYdeRZqhqdXiQIQsd2NK+8QWcPR9ExlMb2naQw6BRYKpwowky4ygqCHY7QSeRZqjDL7SjCzT5PzfV4PBwuzSLJEHfWccSFR2OtLqPKXt2q7WONKnKsDetSaLv0o/rgL3hcjia2EoSOz22zUiqFY9YHvxteuFZOjcOD3ekB8Hb4EISW8ilJcf/996NSqVi2bBkOh/giCCZ74VGsYV0x6RRoVB1zyo3CEIXDmoteq0Iul1Fmswc7JEEQAux4vq1hksKSjTIi9gxbhD6Tvq6gmCI8AmeJSFIIgVFgrcIg2VDofb+TWVBZhFapJsyHtqNNkcsUxBtiOFzaumr/0UYl2SUNz0EVeiPKiHhqDu846/gEob1yVlgpd+swhUCSQiaTYQ5TUvz7aAqRpBB85dN0j5UrV9KjRw8+/fRTvvnmG5KTk9FqTx9SJLp7tD17wVHyZAkdsmhmPaUhktqsPQDERejIsVQSYQz+EDahbVVWVnLNNdfwn//8h+Tk5AbLMjMzmTt3LlVVVQwfPpyHHnoIpbLj1WQR6jhdbopKq4kx1yUp3NU2cNpb3ZkgVJh0CqyVvycpykTFc6HtuT0SxeW1hDvLUIQZfN7+cEkW8eH+G8GUEB5LZvEhBsT18XlUR3T4iYJ8J9N26Ydt9/eE9R7przAFoV0psVhRyT2olaFx89KsV2CxuUiKVKM0xVB98JdghyS0Iz79Fv/vf/8jMzMTSZKorKxk3759/Pbbbw3+27lzZ1vFKpzEUXiEHFcEscaOe4GmCDPhqbbhcdYSZdaRU1TZ/EZCu7Zz506uvfZajh071ujy2bNn8+9//5t169YhSRIfffRRYAMUAirXUkWkUYvq9xMuR3E2ClMMsrOcEx9sJr2CkkoXyvAIXOVFYiqb0OaKy2oI16uQ2Swo9GaftnV73GSX5xEf7r8RTGatCZfHTWlNmc/bxhqVZFlPH82rSz2HmqM78bRyGokgtHdFRWWY1J5gh+FVN2rQCYDSFIPDKjp8CC3n0xXuiBEj2ioOwUeOwmNkVZ3D0PiOO5JCJlegMETiLM0nyqglp1B0+OjoPvroI+bPn8/9999/2rLc3Fxqa2sZPHgwAJdffjnPP/881113XYCjFALleH7FKVM9slCa2nc9CoAwTd1cXae8rgK7p6YShd73u9uC0FL5xZVEmbS4Kqzoug7wbVtbIQZ1GFql/zoGyGQy4sOjOVqaTaQ+wqdtY40q8kqdeCQJ+UmjMOQaPZq4blTt+xnDoAl+i1UQ2oui4gqMmtDpfGXUKSiq+L3Dh96I5HTgrraJ7zuhRXxKUrzzzjttFYfgA4+jBpetlKwKiYs6aNHMekpDJM6SAmLMvdh9xBrscIQ2tmjRoiaXFRUVERNz4gI1JiaGwsLCQIQlBMnxggqizSdOuBxFWehSzwliRP4hk8kw6ZVYK92oDVG4ygrFSZvQpvKt1USEq/Hk25DrfPtdO1qaQ0x469uONiU+PIZdBfsYmjjApykfWrUcnVqOpcJ1WuFwbdcB2HZuEEkKoVMqLqvBqAsPdhheZr2C/LK6kRQNOnx06RfkyIT2oNVzBQ4fPsyhQ4eQyWT06tWLtLQ0P4YlnImjKIvK8C7IbHXVc0ONpcrKgeIjlNltaOQqUsyJdI9MQyn3vZCPwhCJoziH6HMGkWcR0z06M4/H0+BEVpIkn+cyA2RkZPi0/vbt230+RnsSyq9v575iEiJU7D9QAx4P4SX5lEf2hOqWFd/Kzg7dIl1auZydmcc4R1Ky/9fNOPPLfdo+lH9uQujJs1Ri1riR6w3IfPgu9ng85FTkcV7KML/HZFAb8CBRWlPm82iKOJOKbKvj9CRFUi8qtn6Gs6wIlbl9F9gVBF9ZKt0YI0Pn5qU5TMGurBrvY6UpBmdxjkhSCC3ic5IiOzubf/7zn+zY0bCC8ogRI3jsscdISkryW3BC4xyFxyhQJZNgUrXqIq2tuDxutmT/Sm5FAV3MSXQ1JePwODlSksWugn2MTRtJXHi0T/tUGqKwZ+8jyqilpMKO0+VGpQx+1WIh8OLj47FYLN7HxcXFxMb6fhLav39/NJqWDVvevn07w4b5/+Q8VIT66/vPuq+46JwexEXqcRTnUBZuJrqFCfHs7GxSUlLaNsCzEFNUisYUjlmbjCYyDLMPP4dQ/rnZ7XafE4FC28u1VNJFU+NzZ4+iKis6lQ6t0v9Fq2UyGXHh0Rwry/U5SRFlUHC82M7wbg27jcgUSrSp/bHt+pbIsVf7M1xBCHnF1XJ6pPpvWtbZMuuVWGxO72OlMUp0+BBazKfb8EVFRVx33XXs2LEDSZIa/Ld161auv/56iouL2ypW4Xf2wqPkeqKJCaGimW6Pm2+PbKTCXsnoLsNJM6cQqY8gPjyWIQn96R3djQ1HNnK8LMen/SrCzbiry5FJLiKNGvKKq9roFQihLikpCY1G472DvHr1asaOHRvkqIS24nC6sZbXEmWquzhyFGd3iHoU9YxaBcU2F4pwM86S/GCHI3Rw+cVVGDwVyMN864xzvCyHGH1kG0UFsWHRZJX7Xkwv1qjiePHpxTMB9N0GY9u5AUkKnQKCgtDWJI+bEqcGsyF0uuAZtHKq7R4crrq/RaUpBoelda2Hhc7HpyTFCy+8gMViQavV8re//Y3ly5fzwQcfMGvWLPR6PYWFhbzwwgttFavwO0fBUbJrw4gNkXoUkiTxc/avuDxuBsX3RSk/PXkSGxbNsMQBbMraTl5FQYv3LZMrUIRH4iotICZCLzp8dEK33XYbu3fvBuDpp5/mscce409/+hPV1dXMnDkzyNEJbSXXUlfoT6n4vbNH0XEUHShJUV/1XBkeibNU1FYR2o7HI1FUWo3BXuRTZw9JksguzyMmzLcRkL4wa4zUuuxU2H37bo8zqshqIkmhjExArlRTc2y3P0IUhHbBXVlGmRSGKUwd7FC8ZDIZEWFKLL8Xz1SaYnEW+3azUui8fLoV/9133yGTyZg7dy7Tp0/3Pj9kyBCioqKYN28eGzZsYMGCBS3a35o1a3j55ZdxuVzceOONXH/99Q2WHzlyhPnz51NeXk5MTAyLFy/GZPJtqGJHI0keHMU5ZNcqGNY7NJIUR0qzKai0MDJ5CHJZ01MxjBoDg+P78f2xLVzceyJGTcuK+ygNkTiseUQZ48kVSYpOYcOGDd5/v/LKK95/9+nTh48//jgYIQkBll1oIzbipM4exTkYk/sEMSL/MukVHC6yowiPwFkmkhRC2ym11aJVK1FUFaFISmvxduW1FXgkDwZ1WPMrt5JMJiNWH0VWWR7943q1eLtogxKLzYXD5UGtbHi/TSaToes+mIpf16PvOsjfIQtCSKoutVDjUWEIsVp1Zr2CogonSZFqFGFGPI5a3LVVKLRt97kidAw+/SaXlZUBMHTo0NOWDRkypME6zSksLGTJkiW8//77/D979x3fVn0v/v91tPeyJG/HdpwdZ0NC2DOMhE3hAl0UWmh7+f643wu3F+ilpb3f9tIyCqW00G/LtwVaKBAgFEJYYSVkL2c68V6SbHnKsub5/WFiEuIhJ9aw83k+Hnk8IunonLdk6eic9/l83u/XXnuNF198kYMHDw48Lssyd9xxB7fddhtvvPEGM2bM4Omnnx5NuBNStMNLVG2grSeO05z+6R7BSJCNDdspz5426AiKr7LrbZTai1hbtZ54PJbQNpRmB5G2Rpw2PXUtXScasiAI40BdSzdZtv5hq7HeboiEURhGN1Q9k1kNX0z3MFqJ9XQgJ7g/FITRavIFyLLqiHX7URoTv9BT39WM0+hIeu0rp9FB/SinfKiUElkmJQ3+yKCP60vmEKzaQSwwuoK0gjBeeVp8WNTRjKpVB2A1ftmGVJIUqGxuIq2iLoUwslElKXJycgD46KOPjnns448/BiA3Nzehda1bt44lS5Zgs9kwGAwsW7aM1atXDzy+e/duDAbDwJzz22+//ZiRFiejsKcWn64Yp1mFUpH+HdGWxgryLW4s2sRPHoqs+aiUSra37E1oeaXFQcTfjMuup0F0+BCEk0JNSxduW/9IinBbPUqbK+MOvk6ERa/EH4giK5QoDWainb6RnyQIx6GptQeHQULS6FCoEh8KXt/ZjDOJ9SgOyzLY8Qc7CEUGn74xFLdVTV1raNDHFBo9usIZdO/8cCxCFISM5/V0YNVkXh0Wq15JS8eRxTNdonimkJBRXYq/4IIL+NOf/sTDDz9MbW0tp556KgAbN27k5ZdfRpIkLrjggoTW5fV6cbm+nF/sdrvZuXPnwO26ujqcTif33nsve/fupbS0lB//+MejCTetFcaT1R5OV7mOQ70mjMrQCbfXO9Hn90QD1HY2MstUitc7uuHKOQoHe70H0IfUmFSGQZcZiC8eR9/VRoevjvqWLjZv3pwxJyuZ3gYw0+MThKE0eHo4dUZ/YjzcWo/KnLx58emgUSnQqhR09cb6R4t1eFDbc9IdljABNXp7sKgiKI2Jd9AIR8P4g+3MzZmRxMj6KSUlDr2Nxu4WSh1FCT/PbVFR7QtxzhCPG8oW0LlhFdYllyNJmTUEXhidkaaHH3bPPfewZMkSrr76agBWrlzJww8/TFZWFgDnnHMOd911V8riTiVPWxcWXfpHWH+Vw6SiyvtlMlFlySLsrUtjRMJ4MapP8x133MGaNWtoaGjgxRdf5MUXXxx4TJZl8vLy+N73vpfQuuLx+FEnmrIsH3U7Go2yceNGnnvuOcrLy3nsscf45S9/yS9/+cuE4x1Nq8GxlMz2cC2H1tChm8oku5XCQvNxr2cs2vO9d/BjyrKKybElNnrmq2I6qOpt5NLic49JOnw1vs4WOzNyrfxT3Uvp1Nk4LOmvXpzJbQAh+fGJVoNCskRjcTz+XpxfTPcIe+vRT6B6FIfZvpjy4TLaiLZ7oCTdEQkTUaOvh3wpMKqpHs09Xhx6G8ph6kyNJafBQX1n06iSFNlWNVure4d8XO0sAIWCvpoK9CVzxiJMIQ0OTw9/9dVX0Wg03HDDDSxevJiysrKjlnnggQdYv349S5YsGbi/oqKCH/3oRyxfvjwdoaeUryOEWZ857UcPsxuUeDqPGElhcxOs2p6+gIRxY1SpZbPZzEsvvcTy5ctRqVQD7UeVSiUXXnghf/vb37BYEhv2n5OTg8/35fBWn8+H2+0euO1yuZg0aRLl5eUALF++/KiRFiersLeO+oCW7DR39mgN+PEHOym0Hv+Vv3xLLuFomOr2kUd0qL6Y8pHtMNDg7T7ubQqCkPmaWwPYTBrUKiWyHCPa3ozSOrFGUsAXHT66oyiMViIdiXc9EoTRaGoNYI62oRxFTZeGzmYcelvygvoKl9FBU1cL8bic8HNyrP1tSGV58OdIktQ/mmLz22MVppAGI00Ph/6RFueffz6XXHLJUffv2rWLlStXsmLFCv793/+dzs6JW6PE2x3HZsqczh6HHe7ucfh7qraJDh9CYkY9/s3hcPDrX/+a9evX8/LLL/Paa6/x+eef88QTT5CdnZ3wepYuXcr69evx+/0Eg0HWrFkzUH8C+gtx+v1+9u3bB/RX+581a9Zow51Q4uEgsUAHjV0ybkt6kxQ7PXuZZCsYtpvHSBSSgunOyWxu2kF0hKJxStMXHT6seuo9oi6FIExkDd5u3I7+aWCRDh8KrQmFOvOuEJ0oq74/SaEy9SdhBWGsxeMyXn8v5j4PSqMtoefIskxjVwuuFNSjOEyn0qFVaWkL+hN+jkmnRKWE1u7okMvoi+fQV1tBtDvx9QqZZbDp4R7P0VOMb731Vq677rpjnutyufj+97/PG2+8QW5uLg8++GDS402Xtj4FVlPm/U7qNAqUConuYH+9DIXBSjwcIhYUFxyF4Y043UOWZf70pz+xatUqXnvttYH7TSYTs2fP5m9/+xv/9V//xXe/+92E61EAZGdnc9ddd/GNb3yDSCTCtddey5w5c7jtttu48847KS8v58knn+T+++8nGAySk5PDQw89dFwvcqII++oJmvKJtMtY9OmbX9nV14Onx8eZxUtGXngEdr0Ni8bMHu8B5gwz91VpcRI+sAln4Smiw4cgTHB1nm6cVj0AkdZ6VFbXCM8YnywGJb6uCMoiO9HKTekOR5iAWjuD6HUqFD0elKbEpnt09vX/xhrUg9eLSpb+Lh/NuIxZCT8n16ah2hfCNcSFG4VGh27SbLq2vYvjrOvHKlQhhUaaHj6cJ598cuD/t956KxdeeOGotn3klNZMq/F1VDxyHH9ESyjYTX19IC3xDFfnzqRWsGnXIQpt/bf1WjMVn75HdBTTu45HRv/NMkQmxnTYsEkKWZb5/ve/z9q1a4H+L+vs2bOPWubtt99m586d/Ou//is33XQT999/f8IbX7FiBStWrDjqvmeeeWbg/3PnzuXll19OeH0TXdhTg0ddQLZVndbCkXt9leRbclGN0VzVKc5iNjbsYLpzMpohKo+rTHai3W04LVq2VbaOyXYFQchMdc3duOz9SYqwrx6VJXVXdFPJqldS6QmhMtmJiO4eQhI0+XpwmtVIEQ0KdWK1nBq7PGQZkt969KtcBgeVbdUsyJs98sJfcFtVVHtDnDrZNOQyhimLaF/7AvbTr0FSZl5hQWF4OTk5bN68eeD2V6eHD6W7u5tXXnmFb33rWwAD09NH43Btu0yrQfbVeEKdbXTFG5helo9Kmfrzg5Hq3GW3tKOxmpk6rb+WXmfHfrLtOqxJfE8z/W+WCdId00i17Ya9HP+Pf/yDDz/8EFmWcTgcdHUdfQX78P06nQ5Zlnn++edZs2bN2EQuHCPkqcGDE5clfT+ykViEKn8tRda8MVunUW3EZcyiwntgyGUkpQqlwYpd2UODV0z3EISJrM7TjeuL9qMRX8OEHUlh+2IkhaQ1gBwXw1+FMdfoC2DXxlGabIk/p7uFLEPinUDGilVnpjvcSzASTPg5uVY1h7yDtyE9TG3PRmmyEzggRiuNRyNNDx+KwWDgj3/8Izt27ADgueeeG/VIivGitbkFvTKalgRFImwGJc1HtiG1ugh7a9MYkTAeDJukePXVVwGYM2cOq1evZunSpUc9LkkSjz32GKtWraKkpGQgUSEkR9hTQ0PYjNOcvnoU1e112PQ2dKqx7a4x2TGJ/b6D9EWGPthQmrMw9nkJ9EXo7YsMuZwgCONXPC7T3BrAbdcTj/QR6+1EaUr9CVMqWA0q2nqiSJKEypxFpH10rZwFYSQN3m6symDCnT2i8RjeQCtZKSyaeZhCUuI02GnsSvx7kGtTU+0Lj7icoWwhXZvfOpHwhDQ5cnr4lVdeyfLlywemh+/atWvI5ymVSh577DF+8pOfcMkll7B7927uvvvuFEaeOs3NrVjVQ9dmSTeHSUVzx5ffU5Utm7CnJn0BCePCsJfkKysrkSSJf/u3f8NsHrrdZWFhIf/xH//B7bffzp49e8Y8SKF/1ErYV0dD7AzOKEjfSIp9vqpRtQhLlF6lI9vkYrd3PwvzB28VprI4iLY14baX0ODtYWrRxDxxEYSTWWtHEJ1WiU6rItRci8qShaRITRvEVNNrJOJxCIRiKE12ou0tkFc28hMFIUEN3h5KYu0oDYklKXw9rZg1RtTK9FwMyTLYaehspiyrOKHlrQYl0ZiMvyeKwzT0sZGuaAZdW98h3NqAxlkwRtEKqTLS9PDDfvnLXx51e9GiRaxcuTKpsWUCj68Tqzbxzjip5jAqqaj/coSU2uYm3Fo/qvoiwsln2JEUsVh/x4X8/PwRV1RaWgr0zy8Rxl6sqxWUapo6o7jTNN2jrbedvmhf0tqSlTiKONBaRSgy+FURpTmLSFsjLrueuhYxLFoQJqIGbw9ue/9Uj3BrA0rLxGs9epgkSdiNSnxdUZQmG5F20YZUGFtNvh4sYW/Co5Gauj049Om7AOA0OGju9iTcilSSJPIdaqpGmPIhKVXoJ8+na8s7YxGmIGQUb1sAsy59BfVH4jCpaOn8cgS0QmdEUmmJdolaTMLQhv1EFxT0Z5s3bRp5Ht/hoja5ubljEJbwVWFvHQFzESqFhEGbnquKlW3V5JlzUEjJ2RHqVTpcJid7fIPXplCZHQPFM+s8IkkhCBNRvbcbp+2Lopmt9aisEzdJAWAzqmjtjvYXzxRtSIUxFInG8HeFMPY2JVyTorHLgzMN9SgO06m0o25FmmNVU+npG3E5Q9lCeio+Ij7MtFJBGI+8nWFsxswtCmvUKojGZHr6YgP3qe05hD2iLoUwtGHPNs8//3xkWeahhx4atkXJ5s2beeihh5AkifPOO2/MgxQg5K3Bo8wh25qeIZixeIzq9nryLNlJ3U6JvYh9rYeIybFjHjtcPNOhCVHbLNqQCsJEVNvchdOmR5ZlIq2NqCbwSAoAi16BtyuC0uQg0i6SFENZtWoVl156KRdddNGgta/ee+89rrjiCi6//HK+//3v09nZmYYoM0tTawCHWY1KrUah1o64fF8kRFe4B6tu6Om9qeA09k/5SFSuTc3BlpETDyqTDbWzkMCez04kPEHION4A2Mwjf8fTRZIknOajR1OobC5Coi6FMIxh02633norK1euxOv1cvPNNzNr1ixmz56N3W4nHo/T3t5ORUUFe/fuRZZlnE4n3/3ud1MV+0kl3FJNc7wQpzk9mdLGrhZMaiMGtT6p2zGq9TgMdhqCHoopPuZxpSULe7ydBm/6iocKgpA89Z5uTp+TR7y3E+Q4Ct3QrQWHE5NjeHp8RGIRjBojNp0lI+e+WvQqvJ1RlGUOou3edIeTkTweD48++iivvvoqGo2GG264gcWLF1NW1l+/o6enh5/85Ce88sorZGdn85vf/IYnnnhiVC3RJ6IGbw9ZehmlLrEWvi09Xhx6G4oxai9+vJx6B4fa65ifYCvSfLuGN7d1JjS/3VC2kM7Nb2OeKy6oCROHP6TCbjGkO4xhOUwqmtsjlGX3F95X23IIt1SlOSohkw17xms2m/nTn/7EHXfcQX19PRUVFezevfuoZWS5f95gTk4OTz31FHa7KGaYDGFvLY2x6Tht6UlSHPTXkGNJTRvAUlshmxp3EI3HUH2lYJ7K7MAYaKSjO5e+cBSdJnOHtwmCMHqNvh5cdgPh1kpUNveoEwuBcC/bmnZT3V6HJWBCrVQTCAeRgDk5M5iSVZJRyQq7UUmVN4TS4CDW1008EkroqvfJZN26dSxZsgSbzQbAsmXLWL16NT/84Q8BiEQiPPDAA2Rn94/0mzZtGqtWrUpXuBmjwdONVdmXcGeP/noUiS2bTDa9ha6WHvoifejUI3cSM+uVaFQSzR0R8uyaYZfV5pXRtfktQi3VaHNKxipkQUibWDhMe0yP3WpMdyjDshuVNLUf0eHDkUNPxcdpjEjIdCOe4ZWVlfH666/z97//nbfeeot9+/YRjfa3uZEkiSlTpnDJJZfw9a9/fdgOIMLxk6MRop0+GmUFU4tSP4IgHA3T3O1liiM1P+hmrQmDQkeVv4apzslHPaa0OAnt34jLXkqDp4eyQltKYhIEIfk6e0JEYzJmg5qu1gaU5qxRPb+mvZ719VvIt+Qyy1xGXnbewGPtfZ3s8VVS3dHAucVL0KiGP5lJFZtBibcriqRQoDLZiXZ40LjGvoPSeOb1enG5vkySu91udu7cOXDbbrdz4YUXAtDX18fTTz/N17/+9VFto6Ki4pj7hpvmmimGi3HH3jaygh46DTL++voR11Xf3kSxPh9veGxb4Xq9o1+fUaFnV+0ecrSJXRxxaCU+2VbL/PyRC25qrIVUvfMcvbMvPer+8f73zhTjIcaJpLWlBZ0iikaT2V2wnGYVDf4jpnuYs4gFOoj3BVDoMjvBIqRHQpehDQYDt9xyC7fccguxWIzOzk5isRhWqxWNJjMO9CaycGsDkjmLproorjRM96jtaCJLb09pS7JsbRY7Pfspc5SiUHx51VNldhDracfl0lHb0iWSFIIwgTR4e8h2GJAkiXBrHfrCmQk/d5dnH3u9lSzMm4NFaz7mxMius3Jq/jwOtFbxVuWHXFx2DroMGLFgM6ho7e4/cFOas4j4W0SS4ivi8fhRo1+GGtbf3d3ND37wA6ZPn85VV101qm3Mnj0brfbLz8OWLVtYuHDh8QedAiPF+JeP1jJD6sRdNBeVZfiEX3eoh3i7TFFO4ZiONPJ6Pbjdo69lFeqK0RsOUlhYmNDyZaEeOuMwddrISY1YYQ6+fz7FtPJ/R6Hpn8I6Ef7emWCoGEOh0KCJQOHENTV4sKojIy+YZlkmFRsPBQZuSwoFKkcuIW8N+qJZaYxMyFSjbtOgVCpxOBy4XC6RoEiRsLeWbkMBOo0CnSb1LYaq2mvIMae2eJ1RqUejUFHX2XDU/ZJCidJkx6GJUCOKZwrChFLn6cZl1yPLMaLtLShHOLE6rMKzn/2+Kk4tmI9FO/SIPoWkYJpzMg69jXcPfUI0fmyB3lTTayTiMgRCsf4OHx2iDelX5eTk4PN92arO5/PhdruPWsbr9XLjjTcybdo0/vu//zvVIWYcWZZp8vVgDXlQmkaewtHc7SXLYM+YqVAug4OmUbQiLXBo2N8UTGhZpcGCxlVEYO/6EwlREDJCi8ePVZPY9ySdskwqPJ1R4vKXsartOYSaRV0KYXCZ21RXGBDyVONRuHFbUj+Koi/SR2tvBy5j6ivsF9sL2dmyb6DuyWEqSxYOqYuaJpGkEISJpK6lC6dVT6TDh0JrSqg2Q3V7HXu8B1iUX45ONfLykiQxxVGCVqXh09pNx+xfUk2SJBzG/oM3pclGpK0prfFkoqVLl7J+/Xr8fj/BYJA1a9Zw1llnDTwei8W4/fbbueSSS7jvvvsy5kQ7nVo7+tAowWDSIylGPnZo6vLg0NuSH1iCdCodWqUm4VakuTY1nq4ovaHEEo+GyfPp2vLOiYQoCBmhpbUbqy51+7x4PE5zl5cKz342Nexge1MF3lAb4Wh42Odp1QoMGgVt3dGB+9T2HEJNlckOWRinRJJiHAh7amiJO3Ca0jDVo7MRl9GBMg3Vvl2GLCLxCM3dR1e8V1qc2MIt1LaIJIUgTCR1Ld247fr+1qPWkROjbb3tfF6/lfm5s9GpRi6wd5gkScxyT8Xf205lW/qv4tiNyv42pJYsIn6RpPiq7Oxs7rrrLr7xjW9w5ZVXsnz5cubMmcNtt93Grl27+OCDD9izZw/vvPMOV1xxBVdccQX33XdfusNOq3pvN04jKE0jd/aIyzLNPV6chswqfO402qlPsBWpUiH1j6Zo7ktoeW3+FCKdXsKtDSMvLAgZzNMewmpM/vlBNB6jwrOPf+z+Jxsat9Ha6ycaj9Id7qU+2MI/dr/FZ7WbCISHHtHkNKtoPKIuhTorT4ykEIYkWiOMA2FfHQ3a03BaU//nqvLXkWfOSfl2of9EYpKtgF2efeRZvpzTqrI6MVTvIhjKp6c3jMkgph0JwkTQ4O3hosWTCO+uH3EOfTgaZm31eqY7yzBrR9+mVCkpmZMzg00N28k1Zx/XOsaKRd9fPFOV7SDSPrZFCyeKFStWsGLFiqPue+aZZwAoLy9n37596QgrY9V7urErg6hMthGX7Qh2olaoRpXoSwWnPouD/moWJNiKtMChZm9TH/OLRy7CJymU6Evm0LXtXZwXfvtEQxWEtPH2yBS6kltfyd/bztrqz9GrdSzILcesPfo7Zo0ZsGU5qOmo541973BqwTwmO4qPWY/ToqLBH2ZecX+7VJXVRay7TRTPFAYlRlJkuGhPB8SiNHTKuC2p7ewRjATxBztxGdN3dSXP7Kajr4u2QPvAfUqDBTkcJMeuo1rUpRCECaG3L0JPMIzNrCXS2oDSMvxIivX1W7HrreSaR1+U7zCTxkixvZB1dZvTOu3DZlTS0hFBabQRC3QgRzO/CJqQ2Wqbu7DF2lGaRx5J0dTtxWGwJT+oUbLpzXSHe+mNJFZroihLw+6GxJYFMJTOo6fiY+RYdOSFBSFDtfapcNj0SVt/bUcD7xz8iGJ7IfNzZx+ToDhMo1QzNauURXlz2da0m00NO475XXWaVNS1fTktRFIovxhNcShp8Qvjl0hSZLiwrxaFLYfmjgjOFHf2qOloxG10oEjDVI/DFJKSIls+uzxfXiWTJAUqqxOnPibqUgjCBFHv6SbbYYRYmFhPO6phTq6q2+to7fUz7Sstio/HJFsBgXCQmo6RWzQmi92gwtMZQVIoURltRDrEaArhxNS2dGENN6NKYLpHU3cLDn1mTfWA/t9/p9FBQ4JTPgqzNNS2humLxBNaXmV1oTTa6D207UTCFIS0iUSjdMU02O1DF4w+EYf8dayv38rCvHLyErwgYNaaWFwwn8buFtbXbz0qUeGyqKhvO7p2hdqRR5+oSyEMQiQpMlzYW0uXPh+DRoFOndo/V3V7PW5jYj3Kk6nQkkNzt4euUM/AfUqLE4fUxaHGzjRGJgjCWKn/orNHxN+E0uxAUgyeHA1Ggnxev53Z2dPGpFaOQlIww1XGpoYdROLpuaJ6uCYF9O/bIv7ETsoEYTCyLNPg6cah6kPSDn+FNR6P4Qu0kZVBRTOP5DI4qOtMrE6LRqUg365mX1NidSkADKVz6d7xwfGGJwhp5Wn0YFKEUanHfqR1Q1czGxu2fdHW2zKq56qVahblleMNtLKteffA/S6zmsb28FGJC7Uzn74GMV1POJZIUmS4UEs1LbhS3tkjGOmjPc1TPQ5TKdTkW3Op8OwfuE9tdWEPt1DdJJIUgjAR1LZ093f28DWiGmaqx/r6reRbsrGO8qBpOHa9DavOym5Peg6UbEYVbT1R4nEZldkukhTCCfF39aEgjtlqGbHTia/Xj1FjQK1M7XTSRDkNDjw9voTbBRdladhV35vw+nWTZhGs2YU0TLE/QchUTQ0t2DRjPz2wI9jJJzUbmJc7C7Pm+GpFqBRqFuTO5qC/hip/HQAGrQK1UsLf8+X3WeMsJNRYmfZOW0LmEUmKDBfx1tISt5KV4qkedV909UjnVI8jFdsKqGmvJ/jF3FSV1YktUEODt5tYLLGhnYIgZK6a5i6y7XrCvqGLZtZ1NOLv7aDMMWnMtz81q5i93oMEI4lfhR0raqWEUaPEH4iiNDmItImOA8Lxq23uxqWPJlSPojHDWo9+lUapxqI109yd2BSoUreWHbWJJxwUGj26/CloWvYcb4iCkDZNLX6s2rE9uY/EInxQtY6pWaXYddYTWpdGqWFeziw2NGylo6//omK2VU1dW2hgGaXRiqRQEm1vOaFtCRNPWpMUq1at4tJLL+Wiiy7i+eefH3K5tWvXct5556Uwsswgx6JE/E00BLQpr0dR5a8nOwOmehymUWrINbvZ7e2ft6bQ6NHptFj0Shp8PSM8WxCETFfv6cbtMBBua0BlPXbfE46F+bx+KzNdU5OSPNWr9eRastmeppMVh0lJS0cUlSWLSJtoQyocv9qWLuxS97B1XQ7L1HoUR3IZHdR1NCa0bIFDg687Qkcg8albuuJyNA07jzc8QUibZl83Ft3wo6VGa2P9diw6E/mW3DFZn0VroiyrhLXVnxOLx3BZVNS2fqUuhauQvvq9Y7I9YeJIW5LC4/Hw6KOP8sILL/Daa6/x4osvcvDgwWOWa21t5X/+53/SEGH6RdqaUBptNLRHU9rZoy/Shz/YgTMDpnocqdhWQGVrFeFo/85NZXWTo49RJepSCMK41tsXobs3jEUVglgEhf7YImBbmyrIMjiS2oWg1F5Etb+OnlAgadsYis2owtsVQWnOEtM9hBNS3dSJLdKaUBvfjr4u7PqxmzqVDG6jk7rOZuLxka8YKxQSpW4t2+sSn/KhzZ2MIthBxC+Sg8L40twewm4cu4uY9Z1NNPZ4mO4sG7N1AhSYc9EqNWxv3o3boqbaFzrqcY2rkGDd7iGeLZys0pakWLduHUuWLMFms2EwGFi2bBmrV68+Zrn777+fH/7wh2mIMP3C3i87e7hSOJKirrMJp9E+JkXpxpJercdlzGKvrz+ZpbI6sdPBwfqO9AYmCMIJ6e/sYSDa1oTS4jpmHn1rwE91ez1TskqSGodGqaHAmsuONIymsBmUNHdEUBotxEMB4mKOvHCcqhvbyZK6UehMwy7X0tOKXWfNuN/6rzKo9WhVanyB1oSWL3Vr2VKVeJJCUiiJZE2ie9fHxxuikGSJjry+5557ePXVVwduNzU1cdNNN3HxxRdzxx13EAikPgGdTN4eyLIaxmRd4ViY9XVbmOWaikoxtucckiQx0zWFA23V6LRBan1Hj6TQZBfTVyemXAlHS+0cgiN4vV5cri+H9LrdbnbuPHq43V/+8hdmzpzJ3Llzj2sbFRUVJxTjidiyZcsJr0O/bz3+Xh1aZRxvS2JDHUejvn7wlnv7OiuxqSx4veltgzfY9i1xIxWe/VgjBtRhGVtvHdv2OtlSGB5kDck3Fn/nZMr0+AQB+otmuu0Gwr4qVJajp3rE43HW1W1mmrMUTQqK+5XYCvmkdiNzc2ZiGqIffDI4jCrq/eH+FssWF5G2ZrS5pSnbvjAxxGJxmnwB3AX6EYtm9k/1sKUmsBOUbXRS09FAtnnkaahTc3S8V+ElEpVRqxIbCh91FNOz6yPsZ10/4vsmpNbhkdevvvoqGo2GG264gcWLF1NWVnbUMg888ADr169nyZIlA/f/9Kc/5cYbb+Syyy7jySef5He/+x133313Ol7GmJNlmdaQhizH2PxObWvag8NgJ8uQnFHUWpWWKVkl7Pdvx9c9k3A0jkbVf61cZXUR7wsQ7WobcQSYcPJIW5IiHo8f9UMgy/JRtw8cOMCaNWt49tlnaWk5vmIqs2fPRqvVnnCso7VlyxYWLlx4wutp2reKZvsc8rr0FBaOPLd0NOrr6yksLDzm/lAkTLd/MwsK54x5JnU0vF4PbvfgPZnbW7rp0YaYVTgNRf0u3u2KMn/+AhSK1B5YjNXfOVmSHV8oFEprIlCYOGqaOnHZ9IS9degLZx712H7fISRJQa4psR7tJ0qtVFNgzWWnZy9LixalZJvQX5NiU9UXbUjNWUT8jSJJIYxaU2sAkzqOwWobcdnGrhbKs6cnP6gxkG1ysbVpF6cUzEMxQhLBpFOSbVFT0dDL/OLETuDihv5jrFBTJbr8qSccrzB2jhx5DQyMvD5ylPWqVas4//zzB5YBiEQibNq0iSeffBKAq6++mptvvnnCJCk6unpREMdoHn7EVCLag51UtddyetEpYxDZ0PLNOTR1tWDSx6hvCzM5WweAJCnQZJcSrNmFec45SY1BGD/SNt0jJycHn883cNvn8+F2uwdur169Gp/PxzXXXMN3v/tdvF4vN954YzpCTZuwt5bmiBmnOXVDMeu7msjS29OaoBhJib2ICu8BYnIck8OJQQ2NonimIIxb1U1dZDv0RNtbUB5xFSUQDrLds5uZrrKUXt0sthVS095AIIVTLuxGFZ7OCLLc34Y03Dr2o+eEia+6qROXKjBsG1+AQKiXcCyMWXPiJzipYNIYUSpU+AJtCS0/JUfH5wdHMbRfktAVz6Jn10fHGaGQLIONvPZ4jh5pe+utt3LdddcddV97ezsmkwmVqv941uVyHfO88ayhtgmbqg9JcWLnCLIss7FhO6X2oqSPVpQkiemuycQVbexvPvr7qcmeRLBqe1K3L4wvaTsTXbp0KU888QR+vx+9Xs+aNWv42c9+NvD4nXfeyZ133glAQ0MD3/jGN3jhhRfSFW7KRXvaIRalrktKadHM6vY63KbhD27SzaI1YdWa2e87xGSbm2x/L5X17RRmH1tsTxCEzFfv6ebCWQbiOhMK9Zej3zY0bKXQkofxOPu0Hy+NUk2eJYcKz34WF85LyTb1GgUqpURnMIbG4iTSKtqQCqNX1diJLdaGyjL8NNmmbg9ZBse4mtqQY3JS3V5HdgLHKDMLdPzxw1ZuO1dGpUzsNeqL59C25k9kXfhtJGXmXqg52Yw08noogy032s/7kaNFM2367JYtO7Eow0NO3U5UW7iT9t5OchRZJzTNezTPteiifLi3mjL9l0lHqU+B4cAW6jdvhjHaL2Xe3yyz4oHMjOmwtO2Fs7Ozueuuu/jGN75BJBLh2muvZc6cOdx2223ceeedlJeXpyu0jBD21KBy5FLfHGZ2gT4124yG8QbamOEa26q+yTDZUcTW5t2UFS7GGatib0075y0qSndYgiCMUkd3iEg0jq6nmcgRrUfrO5vw93awtCg9U6qKbQWsq9vM3JwZ6NSpmTaYZVLR0hGh1Oqkt3JzSrYpTCwHa7wUaIIodMMn9hq6mskaJ/UoDssxZ7OxYTun5s9DoRh+ILDNoMJpVrGzrpcFJYklOVVmB0qTnWD1TgxlC8YiZGEM5OTksHnzl/vDr468HorD4aC7u5tYLIZSqUz4eUc6PG0806b3btmyhZiswW5SDTp1O1FxWWbLvj3McE9JKPk3lOGmaA+mXBnigz0B3EU52I7oLuSrW8/sgiy0OSdeJDsT/2aZFA+kP6aRpo2nbboHwIoVK3jzzTd55513uO222wB45plnjklQFBQU8MEHH6QjxLQJe2qQzG48ndGUdfao72zCobehUqRu5MbxsmjN2LVmKvv8ZMtt7KvyjfwkQRAyTm1zF7lOI5HWepRfDFGPxCKsr9/CDNcUFGnqPKBTack2udjrq0zZNh2m/g4fKouTaHsLshxP2baFiaG6uZsc+/AXNuJxmeZuL1mGsa11lWxGtR6DWkdTd2JXbGfm61m7t3tU29BPmkV3hZjykUmWLl3K+vXr8fv9BINB1qxZw1lnnTXi89RqNYsWLeKtt94C4LXXXkvoeeNFY1sQh/HEfh/rOvpH7LmNqS1WmWvTEA4bee/guqPu1+aW0Xswc6/sC6mV1iSFMLS+5oP4tXlYDUrUqtT8mara68g2jVw5O1OUOorZ5T1AjtNAU2uAUCSW7pAEQRil6uYu3A4DkdZ6VLb+/c+Wpl049LakVRlPVLG9gH2th4jEIinZnt2ooqk9gkKtRaE1EO1MrOWiIAD4u/qIRGNkOazDLtcW9KNVadGpUl9Y/ETlmt1UttUktGx5oZ4dtb10BxM/NtAVz6a3cgvxcN9xRiiMtSNHXl955ZUsX758YOT1rl27hn3uAw88wEsvvcSll17K5s2b+f/+v/8vNUGnQEtXnCyr7rifH4/LbG2qoMxRnPJpXyqlhMOkYGdjG96eL6d8aPOnENi/MaWxCJlLTLrLUGFPDS35c3BbRl52TLY3jqZ6HGbWGnEabPj7ori0YSrr2pk9ObPraQgjW7VqFU899RTRaJRvfvOb3HTTTUc9/tvf/pZXXnkFi6X/y/G1r33tmGWE8aOqsQOXWUm8oRel0Yanx0dNRwOnF6aus8ZQjGoDDr2VA63VzMpOfsX/LJOKGl8I6G/JFmltQG0b3fBk4eR1qKGDbFU3Kvvwn5nGrhacaU4AHq9ck5uPazfSFwmNOA1Lr1EwJVfHR/u6WT7fltD6lToTGlchvZWbMc06YwwiFsbCihUrWLFixVH3PfPMM8cs98tf/vKo2/n5+fz1r39NamzpIMsy3qAal91w3Ouo7qhHpVCRpU/PviDHqkAnTeWDqk+5Yc4VAGjck4h88g+i3e2ozONzHyWMHTGSIgPFw0Fi3W009GpxmlKTR6rrbMKht4+LqR5HmuwoZne4HZfsY091YlW/hcx1uB/6Cy+8wGuvvcaLL77IwYMHj1qmoqKCRx55hNdff53XX39dJCjGuarGTpxSFyqbm5gs82ntJmY4p6BOcpXxRBXbC9nt2088nvypF1kmFc0d/aM2VBYn4TZRPFNI3IFqL1lyByrz8NM4Grqa0z5K6XiplWpcRgeH/LUJLb+w2MDqHZ3EZTnhbegmzaZ719rjC1AQUqAnGOtvP2o9viuZ8bjMjubdlDqK0lY812WV6A04aOhqobmrfwqXpFShK5hGYP+GtMQkZBaRpMhAYW8tKls2tW0R3NbUHKhXtdeRk+FdPQZjUOux2XJxKtvZuU+07BvvjuyHbjAYBvqhH6miooI//OEPrFixggcffJBQKJSmaIUTFYnGaW4NYOtrQmVxsrlxBxat6YQKeI01q9aCQa2nur0u6dtymJR4u6LE4zJKSxZhT2InYoIAsP9gE9kWadiWhKFImM6+bhz64aeEZLJCSy77Ww8hJ5B4KMzSoFFJbK3uTXj9usLp9NXvJdbbdSJhCkLS+Nu6cKh6Uag0x/X8us5GFApF2kZRAORYJepbYaZrGh9UfTZwv65wOoE9n6YtLiFziCRFBgo1V6F25FLXFibbmvyRFH2REL5AG64UF84ZK6WOYpT6LvbXdxGLJ361RMg8I/VDDwQCzJgxg7vvvpuVK1fS1dXF7373u3SEKoyBBm83DqsOua2WTo2auo5Gpjszb8pZsa2QnZ59o7oaezw0KgVGrYLW7ihqm5tw64m1lhNOLlWeIHlZww//bu7x4NDb0laQdizYdP0JluYECmhKksTiMhOvbGxPKKkBoFBr0eZNJbB33cgLC0IatPu7sGuPb3SfLMvsaNlDqT19oygAzHqIy+DSFdPS46OxswUAbV4ZYW8t0W5/2mITMoOoSZGBQs2HiJqy6QjEcBiT/yeq62zAaXSgUozPj4NGqcbodKLz91Ld2EFZ4fgcxiqM3A/daDQeNQ/1lltu4d577+Wuu+5KeBvDtTsaTCb3kB4L6Xx926sCGFRRwv5mPpF6yDfm0942dgcmJ9Lz/asikQg7qnbh1CR3/2JSK9i4q5qp9hAmbz1bhugZP9E/l8LotHUGiURiuLKHH4V0eGrneCZJEkW2fCq8B8iz5Iy4/Mx8HZ/s62ZHbZB5xYnN4dcXz6Z751osCy8+0XAFYcy1toew648vwdDc7SEWj+EypPfCpCRJ5Nklan0Ss7Kn8WH1Om6edzWSUo22cDo9uz/FtuTytMYopNf4PCud4EIth/BOWobbIqNQJD/LedBfR7555B/6TJaVO5X8Q3W8tXELdxZekO5whOM0Uj/0pqYm1q1bx7XXXgv0JzFUqtHtxg73PU9EuntIJ1u6X9/m2p2UumMEmtXk2POYnHXivdEPG23f9pHE9NDU42V+4ZwxW+dg8v2dYNQxdZYNz753mDu1GJXl6BPPdP/dhjNS33MhOfYd8pCt6EBtnzXkMnFZprHLw+KCeakLLEnyzG4O+mvw93bgMNiGXVYhSZw13cxfP2tlTlFhQsdV2rwyOj9/g0h7C2r7+D4+EiYeX3ecGc7jO4Xb0bKXYntBWkdRHJZjkzjYHOe60hJ2e/bT2NlCvjUHfclcure9i3XxioyIU0gPMd0jw8SjYaLtLTSFTbgtya9HEQgH6Qh24jKO7ysrCqWaHHOErTtrCUZE67DxaqR+6Dqdjl/96lfU19cjyzLPP/88F154YRojFk5EZUMH0a79dGpUlDmK0x3OsLJNLnrDQTw9vqRux2FS0dAWBkBtyybsTX4tDGH827P7ENmmONIwIyL9ve1olCoMan0KI0sOhaRkkq2AHS17Elp+Zr4OpSTx/u7E6kxICiW6SbPorvj4RMIUhKTwBVW47aP/HrcF/HSHesgxuUZeOAVyHQoOeeIoJSWzsqextrp/ipXGXUQ81Eu4+VCaIxTSSSQpMkzYU4vK6qamLYrLkvyBLtXtdWSbXON6fuphBblmugM2nt/2erpDEY7TSP3QHQ4HDz74IHfccQcXX3wxsizz7W9/O91hC8chFpepburA3HOILPdkFFJm/xwpJAXFtgJ2texN6nZcFhUN/v4khcrqIuwTSQphZPtq2sl36IZdpr6zCadh+M4f40mhNQ9PoBV/b/uIy0qSxLI5Vv62zo+/J5rQ+vXF5fTs+ijhWhaCkArhSIyuqIasrNF39tjl2U+RLT9jjvltBojGwNcVZ0pWyUBtCklSYJg8n66t76Q7RCGNMvuo8CQUaj6E2pFDjS9ETgo6exz015CbIRnVE6VzubErAqyv2MdeX2W6wxGO04oVK3jzzTd55513uO2224D+fujl5eUALFu2bODxX/ziF2g0x1fdWkivjQcPEpWCFMVCKG3ukZ+QAfIt2bQGO/D3diRtGy6zisb2SP9UJpubkKc6adsSJoZYLE5tp0RRwfBzzOs7m9M+D30sqSQlpbYiNjXuSCiRkGNTs6DEwO/e8yZUBFftLIBYjFCTOJ4QMkdDSztWRS9qo3lUz+sOBWjq9lCQQB2XVJEkicIsiQNN8sBoig+/GE2hnzyfwL7PifUF0hylkC4iSZFhQk2VKG051PuT39mjPdhBOBrGrrcldTspo1JTYOxjUk8xT3z+LL3hYLojEgRhEK0BP7/78A1yrQrQGkCdWI2QdDs8xHxnEkdTGLUKZBk6gzFUtmzCXtGGVBjewYN1mBV9mB1DF80MRIL0hAPY9KM7scl0BdYcesK91HUm1oL8rOlmOgIxVm5KbPSFrqSc7p0fnmiYgjBmaqsasKv6hm01PJg93kryrTmoFMm/ADoa+VkK9jXGAJiSVYLni9EUSr0Zbd4Uune8n+YIhXQRSYoME2qqpFOXh1alwKBN7nCsyrYacszuCVWUpiBHQ12zmhJ7Ib/f9JwYpikIGaYj2MlPP3wUm1xMkS6GbB5fw88LLbk093jp7EtsbvtoSZJEtrW/LoXa5iLa3oIcS2x4unBy2rVtL3nGGJJi6EO6xs4mnEZHxgzzHisKSclM1xQ21G8jFA2PuLxSIXHNqXbe2dnFugM9Iy5vKJ1LYM9nxBNYtyCkQk2dF6s2NqrnhKNhDvlrmGTNT1JUx68gS6LGKxOJ9o+mmJ09jQ++GE1hmHYqnRv/iRwf3esVJgaRpMgg8XAf0U4f9SELObbkZjplZKra68jPoGFfY8Fd4KArouIU/UzqOhv55wGRgRWETNEe7OQnHz7KTPdUwp1GsqMe4pbxlaRQKVQUWfOSOprCaVZR748gqTQojXYibYldJZ7IVq1axaWXXspFF13E888/P+Ry99xzD6+++moKI0u/ikM+ClzDF9Gr7WjENYHqURzJrrfhMjpZV7cloQsTFr2S65c4+ONaH5sODT+UXGm0obbn0ntg01iFKwgnpKalB5t2dBfgDrRV4zQ60KmGr1uTDjq1hNMiUdkcB6AsqwRvTysNnc1onAUodSYC+z5Pc5RCOogkRQYJtVShsudQ0xbBbU7uVI/WcAcGlR6jOrGe4eOFQqmi2NzHwU2HuG7WZby29x02N+5Md1iCcNLz9Pj48fu/YrqzjNPyT8HnD5MdrEG2jL858kXWfBo6m+kKjXwl9ni4zGpqfCEAVPack74uhcfj4dFHH+WFF17gtdde48UXX+TgwYPHLHP77bfzzjsnV6G1WLiPyg4NJZOGri0ViUXwBtpwGidmkgJgqrOEjr5OdnsPJLR8jk3Nv5zm4Pfve3lvV+ewy+pL59K17d2xCFMQTlh9ewybMfHTt3g8zh5fJZNsmTeK4rBJLolddf1JCqWkpDxnOu8d+hQA44zT6PjsFTEy+iQkkhQZJNRUicaRxyFPKOkjKRqDXvIs2UndRrpMyjewsyaOTW3gulnL+d3Gv1Dh2Z/usAThpLXPd4j73vsVi/LncmbxqTR6+nCYQKXTjZt6FEdSK9UUWvPZ0ZxY+8PRcltV1LUebkPqJtRycicp1q1bx5IlS7DZbBgMBpYtW8bq1auPWmbVqlWcf/75XHLJJWmKMj1qdmxDlpRkWYe+4NDY1YJNb0WdYXPRx5JSUjIvdxa7vQeo8ifWESfPruGbZzpZubmDlRUSoUh80OV0hTMIt1QR6fSOZciCMGqhSIz2sBKrOfEREXWdjeiVWqza0XcDSZVil4I9DXFi8f5ERJljEu3BTqr8dWgLphKPhAge2prmKIVUE0mKDNJXvw+1M59qX5g8e/IOJgLhIJ3RrozpkzzW8nP1NMdsBCp2UGDN5ZqZl/DIuqfZ1Lgj3aEJwklFlmXe2v8BD336FMunnc8p+XMBqGnoxa3pJT4OR1EcNsmWT0NnE119Yz+awm1R0+APE5dlVI4cwi1VY76N8cTr9eJyffl75Xa78Xg8Ry1z6623ct1116U6tLTbtmU3k2wMW1uqtqMR9wSd6nEkvUrHgtxyNjZuZ5/vUELPyTKr+M45TrpC8L+fr2dnXe8xy0gqNfricrq3vTfWIQvCqNQ1tmNXBPoLTidAluUv2o4WJDmyE2PWS9iMEgea+hOFCknJ3NyZvHfoE0DCNOsM2j9+SYymOMkkd06BMCqhpkrCkxYTi3dj0SevuFVl2yHsagsqxcT886uUEkWOOBUbq1k8ZwHF9kJuKL+CP2x6nip/LdfMugzVKKsiC4IwOq29fn6/8Tn8wXa+veBrOI7oIlRd38ukmAfZOnQ3gkynVqopsuWzvaWCs4qXjOm69RoFeo0Cb2cUlyOPDs+ryLI8oYocj0Y8Hj/qtSfjvaioqDjmvi1btozpNsZcPMbOul5sbgv19fWDL4JMfWcTM02T8YY8gy6TbF5varc7WVfAjqY91HjrmGYqSej3/swSqOsI8fjbTeSY4cIpcXKPuPCsUGah37SaamMZpPH4IeM/k4yPGMerQwdrcWrCoDAmtLw30EZfNIRrHEz1mpwtsaUqzoyC/u9Xia2QPd4D7PUdZEbRLHoqPiFYtR3D5PlpjlRIlYl5ljoORbtakaMR6gI68mx9STsYjcfjHGitZpI2LynrzxSTC3Rs3lvI0kPbiU1ZQL4lh1sX3sCq/e+xoWE7N8+9inm5s1BIYjCRIIylUDTMPw+8z6p973FqwTwun34hyiMO6uOyTG1jkNO09ciW0jRGeuIm2Qr4pHYj7cFO7HrrmK4716ampjVETpkJhVpDtMOD2j6xCh0nKicnh82bNw/c9vl8uN3uMd3G7Nmz0Wq/nHq0ZcsWFi5cOKbbGGs7/vk3DkZz+fbMAuzGwQ/nGjqbsPaYyctOz2++1+vB7U791NLceC6VbdVs6NrJbPd0pjlLUCuHHqFaX1/P6eWFLJ4ps7kqwF+29TA5W8uKBTZmF+iRJIm21j3kmGOYpp+awlfypfHwmRwqxlAoNGgiUBidqhovWYnlJwDY7dlPkTV/XBzrlmYreHFdlN6QjEErIUkSC/LKWXPoY6ZllWIqPxv/h8+jL5130ibsTzYiSZEh+hr2o3EXJb0eRV1nEzqVFr1y/M0DH42CLAUfxc34132ItaQcVGrMWhP/Un4F+1oP8pftr/DHLX/nlPy5lDmKcRrtqBVqovEYPeEA7cFOWnv9tPb66errpjfahyzLGNR63CYnUxzFSFHRFlAQDusK9fD+oU9568AHFFhzuWXh9UeNnjjM2xpCp4xhsJqIjfMRTSqFihJ7IVuadnHB5DPGdN0ui4pqX4glZSbUjnxCzYdO2iTF0qVLeeKJJ/D7/ej1etasWcPPfvazdIeVdv6qStTq2UMmKACq2utxm8bvtKrjpVKomOGaQoEll6r2Wna27GGSNZ9iRyE5JtdRidOjnqeUWDLFxMJSIzvrennmAx8ycMFsC4sLF9K18S1M009L7YsRhC8cagkw15HYOUJXXw+eHh9nlkxOclRjQ6+RKMyS2FYd4/Tp/fu0PHM2Fo2JDY3bOK1oAYHdn9K7fyPG6YvTHK2QCmlNUqxatYqnnnqKaDTKN7/5TW666aajHn/vvfd44oknkGWZgoICfvGLX2C1ju3VqkzRV78XdVY+Bw6EmJmfvBZBe3wHKLLlwbHTLicUhUJiSp6Kz3umctnOj4guuADon7c7wzWF6c4yWnq8HGyrZW3NerpDPUTiUVSSEp1ah0ljwKwxYtNZKbDkolVpkJDoi4bwBzv4tG4T+72H+DS4nWtnXcp0V1maX7EgDK2lx8eB1irqO5vwBzsIRvoACHT1sGPrQRx6Gy6jA7fRSbbJhVljHPFKhSzL+AJtVHgPsLFhG3t9B5numsy/zLmC7GHq3Ryq7SVP2z2up3ocqciax6e1m/D0+IZ93aOVY1Wzv7n/76Sy5xBqqsQ08/QxW/94kp2dzV133cU3vvENIpEI1157LXPmzOG2227jzjvvpLy8PN0hplws2M1Bb5zSnKHnpsfiMRo6m1latCiFkWUWs9bE3JxZ9EVDtPR42dK4k+5wL7kmF4XWfAqtuegGKd6rVkosLDGyoNhAvT/M9togrzYZKVUUsOKzHSxZUo5SmflXp4WJQ5Zl6joVXDzNRE9s5OV3+w6Qb81FJY2fiwHT8xWsPxBn6bQvp/QtzC/nncq1zMmZiWnuebR9+FcMUxchjfOLHMLI0pakONxS7NVXX0Wj0XDDDTewePFiysr6T/Z6enr4yU9+wiuvvEJ2dja/+c1veOKJJ7j//vvTFXJS9dXvxTTnPKo+DXHB7ORU4G0L+OkJBXDnOGntbU3KNjLJtHwF/9xcwGU7X0EqnYts+/IEQpIkcs3Z5JqPfxjqHsUe+iwxHl33R8qyirlt4b9gG+Mh34JwvLr6unn30Cd8VPM5vZEgRdZ8nAYHdr2NHFP/lZi63nri8Tg17fXsbNlLR18Xbb3txOU4WQY7dr0Vs8aEXq1DpVASjccIhHvxBzto7vaiVCiYZMtnsqOYC8vOQqcaeYTWwZoeCiINxO0TI7GnkJSUZZWwsWEHl007H8UYDUPNtalZvbMLAI0zn8D+DWOy3vFqxYoVrFix4qj7nnnmmWOW++Uvf5mqkNKqe9dH7JZLWJg9dJKiqcuDWWNK6Hs50elUWopthRTbCgnHwvgCbVS117CxcRsuYxZOrOTH81Eojk48SJJEUZaWoiwtF8+xsG17F3995wBPv9fCpUuLufT0EswGTZpe1cljpIuae/fu5b777iMQCLBo0SJ++tOfolKpWLlyJQ8//DBZWf2jic455xzuuuuudLyEE9bSFkBNBGtWLj3e4Y/h+yIhqvx1nD7OEpR5dolYXOZgi8yU3P7fUqvWwmRHMWsqP+KqmRcT2LuOru3vY11wUZqjFZItbUmKI1uKAQMtxX74wx8CEIlEeOCBB8jO7j+JnDZtGqtWrUpXuEkVD/USaWvCr3KjVnqSVjSzv8JvPopxlFU9EXajhM2kYIf9dBasfYnQ5bePacErlaRkQd5M5mTP4OPaDfz7O//Nvy75FnNzZo7ZNgRhtHojQV7Z/TbvV33KDGcZl009n3xLzqAjI1TtMlOLph1zf180RGdfN92hHnojQcKx/k4TGqUah97GTPcUsvR2TNpRTI4FYjGZqroAS6wB0I3uuZks1+SmrrOR6vZ6JjuKxmSdVoOSWFzG3xPFlpVP2FODHI+Jq0dC/yimzR9QFzqT69xDJyAOtdeSbZ4YI5bGkkapId+SS74ll6gcw9vTSnVrLVV7GpibM4vJjkkoFMfuLzUqBafMKWLquteInv4dNlT6Wbn2IBcvLeHa86Zg0k/cFq/pNNJFTYC7776bn//858ybN497772Xl156iRtvvJGKigp+9KMfsXz58jS+grFRWVmPW9WDQqsfcdl9rQfJMbnGXYJSkiRmFypZuzvKlNwvk39zsmfwxr53qWmvJ3/+BXR8/HfMs85M6L0Qxq+0JSkGaym2c+fOgdt2u50LL7wQgL6+Pp5++mm+/vWvj2ob6SzSM5rqxipfFXqDg/U7G3DopCGrdJ+IYKyPhq5mZpvKBiptp7ri9miNRXz5ZjXvNmYxw9FHz5oXaSkZ26JTB/bvB6AAJxrTTB799BlOs89jkW32mG7neIkq2yeXLU27+MOm5yi1F/G9U27GojUd13p0Ki06k5Zs09ie4NQ1BbGqw+iyHMTHdM3pJUkS07JK2dK4gyJr7rAF+kazzjy7mipviEWlRpRGG2FvHdqckjGIWBjP+mor2NtjIdsMWvXgUw4isQiNXR7OnHRKiqMbX1SSkjxzNqogqM1a9vkq2es7wOlFi8gapCOCQqNHkzsZvWcb15x7Me3dfazd2sD3fvEeN18ynWWLiwdNcAjHb6SLmo2NjfT19TFv3jwArr76ah5//HFuvPFGdu3aRU1NDX/4wx+YNm0aP/7xj8fttPH9lQ24DCO34IzGY+z1HeKU/DkpiGrsTcmV2FIlU98WpzCrf/+mVqo5tWAer+9bw/cXfxNNdgnt614h69yb0xytkExpS1Ik2lKsu7ubH/zgB0yfPp2rrrpqVNv4arXuVBltBea2D/cSmzSNLr+NyXlQWHh8JxbD+axmE8W2QnKycoH0VdxO1FjF53TK7FsXpalsGWX7Xsc2Yz7xSTPGIML+BMXUaV9ehZ4KzA7O4oWdr2Nx2bih/PK0ViBOdiVwUa07c0RjUf6y/RU2NGzjiukXUWwvTHdIg9p3qJtCvMiOiVcA0q63Yddb2dGyl0VjdHCYa1NT2dLHolIjGmcBocb9Ikkh0LFhFbuVM8kf5lyrrqMRu96KRimmIiTKrrexKH8uzT0e1hz6hJmuKZTnzDhmCpd+0kw6P1+FafaZ2M1Grjq7jOa2AKs+qeKDTfX875sWkjOaFgzCsEa6qPnVx10uFx6PZ+D/t9xyCwsWLOCRRx7hwQcf5OGHH05d8GNof30Xs+0jJ8ArW6uw6yyYNOPzM6hUSMwtVrBme5TvnP/l/qvQmkddRwPvVH7EpXPPo/WtP2CZd8FJW1D6ZJC2JEUiLcW8Xi/f+c53WLJkCffee2+qQ0yZYPVOTLPOZG9FHxeVj309iu5QD7WdjZw5KT1ts9JJoZCYVaRgbaWCSfPPQ/PRy4RWfBfZnpwEjU1v5Zvzr+X5nSuJxWPcNPcq0SpJSKruUA8Pffp7AG5bdCN6dfIK756oPfs6OEvdimwsTncoSTE1q5R19ZuZ7Jg0Ji1J8+0adtb1VzlWuwoJ1u7GsvDiE16vMH6FffX0NlSyo3U2l00fusPUQX8NuWNYyPVkIUkSeeYcHHo7u1r24gu0cXbJkqNGRyl0JjTZxfTs/hTrgmUA5GYZufXy2azb1cRdj33E7VfN4ewFBel6GRPKSBc1h3v8ySefHLj/1ltvHRihnagjL8Skc2RqPC5T0w6nZoUHRlsPNupaRma7fzfF+vyUj5Yey+1lqWF7q5XPd7WRb4sM3J+Hi02eXRj6NEx2TeHQS48QWHT9kOvJtNHEmRYPZGZMh6UtSTFSS7FYLMbtt9/OJZdcwve///10hZl08VCQSGsDUWsens5GcpPQfnRb826KrPljMgR5PJqRp+Bvn0XxzneRPeMUNKufJXTlD0A/9iNWAIwaAzfPvZq/bn8FrUrDdbPH/1xIITO1Bvw8uPYxJjsmcX7pGRmdEGttD9MbiOCabEbO4DhPhFalZbK9mHX1W7hkyrknXEQz36Fm5eZQfz0QVyE9FR+PUaTCeNXx2SvUu8/AEVJh0g6epAiEemnr7aA8e3qKo5s4dCotC/PL2es7xD8PfMCysrPQq7+c/64vKe8fTTF9KUqDGei/KHLG3HxK8608+8897Kvxc+sVs0UXkBM00kXNnJwcfD7fwO3W1lbcbjfd3d288sorfOtb3wL6kxdK5ehq+hwekZ3skakjqW3uxCAdoHjaNBQaPfX19RQWHjtisrK1BrPORElucUrjS8bo7MVynM9rs7hzlvqoKVSmgIUPq9cxd+F1yGv/TqEpinHasS1J0/03+6pMiwfSH9NII7LTtuc8sqXYlVdeyfLlywdaiu3atYsPPviAPXv28M4773DFFVdwxRVXcN9996Ur3KTpq9uD2llApTdGvl2NcoznMrYHO2nsaqHYnj+m6x1P1CqJWYUK3t8VI54/lXhOCdp3/h9EIyM/+TgZ1HpumnsVH1avY03lR0nbjnDyaun2cv/7v2JuzkwumHxmRicoAHbu6WCyqgWceekOJakKrLnEYlH2+w6d8LqMWiUmnZIGfxilOQs5GiHS6R2DKIXxKNzaQO+hbWztK2Ja7tAjpir9NeSYXSdNkexkUUhKZrqm4NI7eOvAhwTCX/ZuV+hMaPKm0LX9vWOel+c0ccfVc6hs6OC/nl5PIJi8Y42TwdKlS1m/fj1+v59gMMiaNWs466yzBh7Pz88fSCQAvP7665x11lkYDAb++Mc/smPHDgCee+65UY+kyBR7dleRo+lFoRm6UGQ8HmenZw+ltrEp3pxuZTkSMrCh8uh+qy5jFvNyZ/G3ilXo5l9E6+pniPcF0hOkkFRpG0kBw7cUKy8vZ9++fekIK6V6q7ahzS5hd0OQwqyxnTsqyzIbG7ZRap+ESnFyjqI4bHahghfXRWntknFOXYi0Yy3qtS8ROf9fQEpOrs6kMXLjnCt5dts/cBj657oKwlho6fbywAePcPqkRSzMy/ziWLIss31nG6cbu5ANxekOJ6kUkoJZ7qlsbNxOvjXnuIuXHlaYpWFfUx9FWVo02cX01e4GktOmWshs/g+fQzP9NDZ+1set5zrpbus4Zpm4LFPZVs3cHDGKYixIksTkrGKUSiWrK9dy8dRzMX4xokJfUk7n+tcItzWhyTo6+arXqrj54hm8ta6au5/4mJ/ethSXXXQiOB5HXtSMRCJce+21Axc177zzTsrLy/n1r3/N/fffT09PD7NmzeIb3/gGSqWSxx57jJ/85Cf09fVRXFzMQw89lO6Xc1x27WskzzL8hYjq9jo0CjV2vS01QSWZJEmcPk3JW9uizCxUYjV8+fqnZpXSHerhxZYtXJ1TSuu7f8K94l/TGK2QDGIMWpr1Vm1HmzuZ3Q1Bip1jW+SzvrOJnnAvhVZRVEar7h9NsWZHFCSJaPmZKDpbUW059irIWLLrbXxt9gp+t/EvVPlrk7ot4eTQGvDz0w8fGzcJCoBGTx+hYAh3vi3doaSEUWOkxF7EJzUbiMdPrI9JgUPNnoYgABr3JILVO0d4hjARBet2E2o6SKW2HLdFhc0w+DWm5m4PaoUKi1YkssZSsa2QXHM2ayo/oi8SAkCh1qKfPJ/ODW8gy7FjnqNUSCw/vYTZpU7ufuJj6lq6Uh32hLFixQrefPNN3nnnHW677Tag/6JmeXk5ANOnT+fll19m9erVPPzww2g0/Rf9Fi1axMqVK3n77bd56qmnMJvNaXsNJ2JPUx+T3MOPotjesofJjkkZP6pyNLLMEjPyFfxjXQRZPrqzyYLccowaA68ruumt2kFg/4Y0RSkki0hSpFGkw0M82EPE5Ka+LUyBY+xGO0RiET5v2MoMZ5kY8vmF8iIFB5rjNLfHQakisuB8VPs3o6jaldTt5ltyuHTqefzyk9/h7+1I6raEia2jr4uffvgop+TPHTcJCoANG1qYrmqc8FM9jjTJWgDI7GjZc0LrKXZq2dPYhyzLaHNKCNbsAnnkNnTCxCHHY7SufgbzvAv4cF8vswuGPlnZ6ztIvjU3hdGdPErtRWQZbLxX9QnReH9SQptXBnKcwL6Ngz5HkiTOnJfPeYsK+c/ffca+Wn8qQxYmgNaOXnojMrl5Q7cEP+ivQaPU4DDYUxhZaswvUdDZC5/sPToRKEkSSwoWYDJYed+qxfPm74h2+oZYizAeiSRFGvVWbkGbN4W9TSEKHBrUqrH7c2xu2oVDb5uQO6zjpVH1tzV6a+sXxca0BiILLkDz6Uokf0tStz3DNYVFeXP4xce/pS8aSuq2hImpNxLkv9c+znRXGYsL56c7nIT1BmPsqgwwPU8ByrTOMEwpSZKY5Z7O/rYqmrqOv+q53difZG7uiKA0ZwESikDrGEUpjAedG/+JpNLSmzWNPY1BZg2RpOgO9eDraSXX7B70ceHETXGUolVq+Kj6c+JxGUlSYJyxlJ5dHxIZ5gRp/lQ3V509mZ/+8XO27hN1ZYTE7dxVRb6qE6XRNujj0XiM7S27mZI1MdtTKxUS581W8kFFjGrP0SMTJUnilPx5OAtmskUnUfn8j4mGg2mKVBhrIkmRRoEDG9HmlbG9tpdi19jVo2jsaqG+o5FpWZPHbJ0TxawCBS0dMgdb+nd0stVJdMZiNGv+CuG+pG57adEiHAYbT3z+Z+LyiQ0BF04ukViEhz55CrfJydnFS9Idzqh8uq6RUqUHXeHEKOY1GjqVltnu6Xxcu/GoonujIUkSJS4tFfVBJElCmzcZta9qjCMVMlWkvYWOz17GeuqlfLi3m1n5erTqwQ/d9noPkm/NQSVGTyZNf/JxKr2RIJub+gsyKo1W9JMX0v7JS8Sj4SGfO22Sg5sums6vn9/Mx9saUhWyMM5t3llDoZUhp3Hs9VVi0Zix6SbuFC+LQeKcmUr+8lEEX9exx89TnZPJn38xnmiQD//4Q7Y37Tpmeogw/ogkRZrE+wKEGivR5pWxraaXsuyhK3WPRm8kyKe1m5jlnnbSthwdjlIhccpkJW9sihKP9+/A4vlTkB05aNb+I6nDqCVJ4tKp5+ENtPH3nW8kbTvCxBKX4zzx+bMAXDzlnHE137S7J8r6bZ3MK4iCemxr7owXToOdSbZ83j/02cAQ8dEqcWvYWtOf5NDmlqH2Vo5liEKGkuMxvK//BuOsM8HgYM3OLhaWGAddNhwNc9BfQ5H15O3klSoKScm8nJnUdTRyoLW/i482fwpKvYnODauGPTmalGvh28tn8czrFaz88GCqQhbGKVmW2VEfoixv8O99X6SPCs8+pjiLUxtYGhQ6FSycrOTpdyP4e479jtkNNtxLryUnpqD6jd/wdO2LvFzxT2ra68WFwXFKJCnSJHBwC5rsYlp6JEIRmWzriQ+DjsVjfFi1jgJzDllimseQSrMlJAk2HfryhCE6YwlShw/lnvVJ3bZKoeK6WZfxce0G1lYnd1vCxPCXbS/T0uPlqhkXo0hSJ5pkefPNg8zQNGMuPvlGURyp2FqAQaPj4y+GiI9WqVvLnsYg0ZiMNrcUVVczsWBPEiIVMknHuleRY1GM0xfz+cEeHCYlObbBLz7saz2Ey+hApxqbCx7C8NRKNfPzZrOlqYKWbh+SJGGYcRqRtkZ6KoZvO56TZeS7V5Tz1vpqfv/qTmIxcQIlDK62uQMpFiE7b/AC+FubK8g1ZWNUD57EmGhm5CuYXaTgd6vD/fXlvkJSqVEtWUF5TM3N/hh1HQ089OnvuWXlv/OTDx7hT1teZHXlWjY37qDKX0tbbzuRmGgRnKlOngnCGaan4hN0RTP5pCrAlFztCV8dlWWZz+o2o5SUlDomjVGUE5MkSZw2Vck726PMmaREr5FAqSQ6/1zU61cRzylBzkpe4TGjxsAN5Zfzl+2v4DY6memekrRtCePb63vXsKVpF9+cfx2qcVbPYfMWD3UNPVw9xwgn+aguSZKY6ZrClqYKNjRuY0nB/FHt841aJW6Lmj2NQeYUGYhacug9uAVz+dlJjFpIp2DdHjo3/hPnxbchI/HqpnbOnDZ4Z4JIPMpubyWn5I+fYroTgVFtoDx7Omtr1nPp1POwaE2Y555H55bVSFoDpqmnDvlcm1nLbVeU8+J7+/nJHz/nP76+CJNhbNvQC+Pf55/vpljfjVJ/7PTttoCfus4mTi9clIbI0md2oRKdWuL3ayJctkDJKWXKo39P1Roip16CY92brKiuJ3zeDfTIUZq7vfgCbezy7KMr1EN3qIeecIBAOIhaqcKkMWLSGLBozVh0Zuw6K1kGGy5jFm5jFjkmN1qV+I6m0vg66p0gYsFu+ur3YFm4jM83tbKk7MQyoLIss7FhO/5gB6fkzx1Xw8HTxWWRKHJKrN4e5apT+0+gZKOV6PTFaN5/gdDV/wpJ3Bm5jFlcNWMZD3/2ND89/98osIhq7MLR1lav560DH/Ct+dehV6fh6mg8jtTbBaEgSBKy3gQ6IySwf9m63cfbH7awoqgNlVPUxoEvhojnzmRL4y62Nu1iQV75qPbVU3K0bDgU6E9S2Aro2f2pSFJMUNGedrwrH8G65HKURisbDwWQ5f7PwGD2eitx6K2YNCfH1dRM4jQ4KLUX8f6hT7ls6nlodEYs8y+ka+sakGVM0xYP+Vy9VsXXL5nJ6vU1/K9H1vKf3zqVsgJb6oIXMt66Cg8Ls49N8svIrKvbyhRH8Uk5tbssR4HdKPHRniibDsW5aK6Kshzpy99UtYam4gWUdNWjXfkk0gU3YsoqGbS4qCzLhKIheqN99IaD9EaCBCJBekIBPD0+ukJbaQ924g92YNdbKbUXMd1Vxmz3NAqteeKcK4lEkiINenZ/hjZvKv6QkpaOCCWu45+rHZdlNjZso6Xbx8K8cpSiYFbCFk1W8vLnUU4ti5Pv6B9GHy+YgqKtEfW6VUTOuiap2y91TOL80qX899on+O8L7sFhsCV1e8L4sblxJ3/d/gpfn3cNFl0K+7oHe1Ae2omypgKFrwFUGmStHuJxIn0hqiIuGrVFBA0ulPYsTE4bVosak7H/p6TVH2bz5mZ8LQGW57dgnSxGCR1JrVCzIK+czY39BfdGk6iYnqfnuc/a+M7ZTqL2Qvoq3iAW7EapT+HnQ0g6ORbB88qv0JfORZc/lXhc5m/r2jhzunnQz0o4Gma39wCn5M9NQ7QCQJE1n0C4l7U1n3NB6RkoDRYsC5fRtXUN8b4ezHPOG/J7rlRIXHZ6CTsPmvjx79dx7XlTuPKcMpQKceJzsmvt6KW5S6ZsYfYxj9UHm0GCPPPg00BOBllmiStPVVHZLPPqhgjRGEzLU1DoVOA0SwT61GRNOR2jrxLtm08TLT+D6JyzjukyJkkSOrUOnVqHQ28bcnvxeJzWoJ+mLg8Vnv2s2vcecTnOqQXzOKt4MWWOYpGwGGMiSZEG3dvfxTjrDFbv72F6nu64f4yi8Rif1GygJxRgYX45asXJl009EXpNfxHNf6yLcuelahRf/B2iM5ei/uw1FFW7iJeWJzWGubmz6An38rO1v+HB8/83Zq0pqdsTMl+FZx+/2/gXbii/HJcxKyXblDq8qLatRVm7h3h2EfG8MqLlZ4JaSzAs8/7OKBub4jiMMs5YEG17L7GmSuriSnoUZoJy/6gjM71MUvk4a5YVZfbUlMQ+3miUahblz2VL004i8SinFsxHkcCBjdOswqhVsLepD7VSjTZvCoE9n2FZeHEKohZSQZZlWlc/A5IC0xejZD7a141aKTF1iFEUOzz7cBudYhRFmk1zTmZbcwUbGrezpGA+Sr0Z66JL6d7xAdGuNmynXYlimNGZc8pcFLjNvLr2IJ/tbOJfvzaPkjxrCl+BkGnWfrKTUl07GuvRNZ06+7qo6W1kSdGik/6kWCFJTMuTmJor4e+BRn+ciroYPX3QGbAT3hohGivGrJtE1iedFK5fTfHcUiYvmoZGO7qLugqFArfRidvoZF7urP79da+fPd5KHl33R3QqLZdOPY+zihejOQlHtySDSFKkWF/TQWK9XWiyS/nwvUaWzTm+lkGdfd18WL0Oo1rPwvxyFGIExXGZlidxsAU+2Rvj7FlffB3UGqLzzkXz6WuEXAXI5uQWIV1atIhgtI+fr32cB869C4NGn9TtCZlrn+8gj6z7I9fMvJR8S/KvkKhDAdRrX0JZt49Y8SzC53wNNF9OLdnXGOMf66IUOiWuXqzCrJcADfDFwXMo2D8lJNzVPw1EZ0I2z4BxVuAz1TRKNYvy5rC9eQ8fVa/nzOLFqBQj78Nn5ev5aG83FxSBoXQeXVvXiCTFBNK54Q2CtbvJuugWJElBIBTj+c/8fG2xfdCTkd5YHwf9VZxWdHLNSc9ECknBnJwZbGrYwW7vAWZnT0Oh1WNZuIzA3vW0rn4a+1k3oLY4h1yHw6LjlhWz2LTXw31PfcZp5bncuGw6WVZxTHAyen9zI0tz1Ud99+PxGB9XbyBX68aoFp+LwyRJIssMWeYvf0e93jbc7myiMZneEHT2Omj1avhgYyd/X7eHmYUqTj+7mILc43sfJUnCZczi7JIszipeTHV7HR9Vr+fFXW9wxfSLuGjK2SJZcYLEkWSKdW5chaFsIZXeCJGYTFHW6OoexOMye70HeevA++SZs5ntni4SFCdAkiTOnKHkg4rYUb2XZZuL2OQ5aN57HmLRpMdwfukZuE1ZPLj2MQLh3qRuT8hMe32VPPTp77lyxjKK7QXJ3VgsimrbB0zd/DrEZcJnf41Y2fyBBIUsy7y/K8pL66KcM0vJmTMOJyi+QqtHtmcjZxcjuychW7JEgiJBaqWahfmzicSjvL3/w4S+93OK9Gw41EMoCpqc0v76Ro0HUhCtkGw9ez6j8/M3cJxzI4ov2vX+9ZM2puVqyXcce5wgyzL7e6oodhShU52c7X0zTf90rtns8R6gyl8HgKRUYZx1BtqcybStfobequ3DrkMhSSyemcP/un4+faEY33/oA558eTtNPtHN52RSVd9GV2+EKVOOPhbY1LgTlVKFU2NLT2DjkEopYTFIFDqVzJ9p5dKzsrhhVgd6fy3/7/n9/OlPu2hu7j6hbUiSRKljEjfMuYIb5lzBpqYd3PnPH/NR9eei/ekJEEeTKRTt9BE8uA3DlIW8tb2DhSWGUQ3V8gXa+OeB96lsq+bU/HkUWfNP+qFeY8FqkFhQquBvn0aJHdEeMFY8G1mlRr3+zaTHIEkSy8rOwW108pMPHqGzryvp2xQyx46WPfzq099z1YxlTE5ydx5FcxXalx9D0XCAhimLiU0/BdRfngTF4zKvboiytSrGlaeoyHOIn4lkUUhKyt3TcRrtrNr/Pk1dLcMub9IpKXVr2dYoISkUGKaeSsfnb6QoWiFZeqt20Pr209jP+ReUxv5RSttretlW08t5swYfbXmwrZa+WJhJ1vxUhiqMQKfSMT+3nA0N22jobAa+mPNeOB3z/Avp3vkh/k9eIhYKDrseg07NxacV87+un08oHOffH/+Y//e+j093NBKOxIZ9rjD+rXxzA7MtXaiMX075OeSvpa6zidnuaWmMbAKQFOhycilfPJkb5gVxRz0889dDrPrLOkLNTSe8+hyTi6/NXsGVMy7mjf3v8p/v/pLKtuoxCPzkI44+U6j905fRly2gtU/Fjtog8yYZEnpeW2877x/6jA+r1pFvyeaU/LkYxfzTMTWrQIFCgjXbjxg1IUlE55yFon4/yv2bkx6DJElcVHYWxfYC7nvvVzR3e5O+TSH9Pq3dyOPr/8R1s5Ynt31wKIj6o5fRvP83YlMWEF14EVHN0fugWFzm759FaWiTWb5QhVEnkqDJJkkSJfYiyt3T+KR2ExsbthOND30Scmqpkc9qJeJxGcPk+fTV7CLcduIHVkJ6BOv24F35CPazvoba3j/Fy98T5bfvelmx0IZOfexhWleoh81N25mkz0MhRi5lHLPWyPzc2XxSu/GoxKPKkoX11OUgx/G9+Vv6mipHXpdBw4WnFvHvNy0iP0vNKx8c5Bs/fYfH/r6NHQd8R11YESaGzp4+Pq8Ksmjal1ODPD0+NjZsZ17OrJOym0dSSBIKh4tZi4q5bokCf1DJI881U/3X51Hu3QDh0AmtvtCax7fnf425OTP5n09+x9uej+kOiRFRoyF+3VIk3NZIYN96TDOX8urGdhaUGAY9+DgsLss0drXwTuVHvHfoU4waPadPOoU8c44YPZEEkiRxziwlmw7F2dtwxAmCWkt0wQWoN7yFojn5mVBJkjinZCmnFszlx+//il2efUnfppAesizzj4o3+ev2V7l57tUU2ZJ3RVRRsxvdPx5BCgUJn3kN8ZziY5aJxWVe+CRKW4/MsnlKNCqxn0mlLIOd0woX0h7s5I29a/B0+wZdrjBLg1YFnx3oQaHRYZh2Ku1rX0hxtMJYCNbuxvPy/2A7/Wo07v4EZTga51dvtrCwxDBo569oPMbaqvWU2iehV4ppHpnKprMwL2cmH9VsGBhRAV9M/5i2GNOMpXSsf432dSuJh4cfVQGgVimYnNtfs+IH185Fo1Lw+5U7+eZPVvPUKzvYV+NHlkXCYiJ48dXPmKrzY8vrPybw97bzQdV6yrOnY9aKC5TJoDMZOOuULM6Ya+KFtrm88kkA6flfo/7sdaTO1uNeryRJzM2ZyR2nfJ1QPMxdb/+UD6vWiSkgCRJJihQ4XLHbOPMMmgMqNhwKsHTK4F0c+iIhKjwHWLlnNRvqt5FlsHPmpFMothWK9qJJptdInF+u5MV1UTydR9SnMNuJzD0HzXvPIfk9KYllYd4crpxxMb9Z/395efc/icfFDm0iCYR7eejT37OhYRu3LLget2noYmonpLcbzbvPoV7/JpF55xCdffpRUzsOi8Zknvs4QlevzEVzlKiVIkGRDhqlmrk5M5nsKOajms/5uGYDga+cwEiSxPy8OH9b7yccjWOccRp99Xvpq9+bpqiF4xGo3Izn5YewLb0Gbe5koP97+MhbHow6BWdOO/YYIS7LfFqzEZ1aS5GY5pHx7HrbwIiKQ201Rz2mzsrDuvhy5HAQ76rfEhzF99dm0nLmvHy+f81cvnP5bMKRGL9+fgu3/p/3eOGdfXj9oq7VeNXa3sN7u9o5a6YdSVLQFvCz5tAnzHBNxmlwpDu8Ca/AqeSa07S06/P4n8BVVLcp0L7+O9TvPo/kH3465nB0ah0LrDO5vvxyVu1/jx+//2tq2hvGMPKJSSQpUqB7+/vEutrQTzuVpz/wccY0E3rNl299PB6nobOJD6vW8cqet2nubmGmq4zTChdSYMkVhTFTKMemYPEUJf/3vQgdgS+vSsiuAqLTF6N9649IHYNf4RxrJfZCvrPwX9jUuJMHPnhYTP+YIPZ4D3D3Oz9HpVDw9XnXYErGlRE5jnLvBnQvP4asUhM54ypkR+6gi4ajMs9+GKE3BBfOVaISCYq0yzY5WfpFx4bX977D5sad9EW+HHqaawGXRcVrmztQqDSYFy7Du+pJ4pETG54qJJ8sy3Rufhvfm09iP+df0OaWAhCJyjz6dgs9oRiXL7AdM2JSlmU2NmyjO9TDbPdUMaJynLDpLJySP5ctzbvY0riT+BHTMxRqDcYZp2GadQZdm9/Gv/YFYoGOUa3fadNz3qIi7vzaPK49t4ya5i7ufGQt9z31GZ/taCISFRc4xpMn/vw+c8x+HIVFNHQ19yconFPIMbnTHdpJQ6uWOGeWikVlKv5cVcZK63VEtEa0bz6D+v2/IXX5j3vdeeZsvr3ga0zLKuXBtY/xzOYX6BJTQIYkWpAmWchTg/+Dv+K44Ju8taObnlCcU0uNxGUZX6CN6vY6qtsbMKh15JmzOWvSqWK+WZpNzVUQDMn8fk2Y2y/SYDP2HwzG88uIynG0bz5NaNm3UhKLRWvi5rlXsbFhO/e++z9cPOUcrpyxDO0w/daFzNQd6uGFna+xqXEnl009j6nO0qRsR/I1oPnsdYhFiZx6cX/HjSH0hhX8fk0EoxbOL1eiVIgTn0yhUqiYmlVKkTWPKn8dr+55mzJHMTPdUwC4uNzKM2t9LCg2UFY0k1D9PlpXP4Nr+Q/ECWyGikdCtK5+mr66vWRd+C1U5v7vZmdvlF//swWVUuK6Ux3HfA/j8Tjr67fg6/WzME+0HB9vTBojSwoWsKNlL77AR5xZvBjjEa3G1fYcrEtWEKzehe/N32GYsRTTzKUoRvE7L0kSBW4zBW4zFy8pZndVG/94/wBPvbqDC0+dxMWnFZPtSKwOmpAe7364nZqWALeeM4kdLXvY13qIebmzsOusIz9ZGHMlbgU5NonP9sX4deM0rj11OlMCFWhXPkFsygIiC84H3ei/UwpJwcL8OcxwT+Hjms/5/956gBXTLuSSqecmtVNTIBjB1xEkEIwAYNKrCUUyO4kpkhRJFGlvoeXvP8ey6BL2dJpYudnD5QsVbGrcTm1HA0qFkhyTi1ML5ol+xxlmbrESSYLfvh3m2+epyf+iw0G8YCpRlRrt2/8XW8kpMC35VZYVkoIlhQuY4Srj/UOf8cM37+fKGcu4YPKZIlkxDvRF+lh98CNW7XuXGa4p3HHKzejUujHfjtTdjmrzGpQNlUSnLiReMBWGOVmt88V5cbODaQUSC0sV4sQ2Q+lUOma6p1LqKKK2o5E39r2LRWlirlnJJXNs/OqfLfz31wpwnHoZbWv+RMdnL2M/47p0hy18RV/DPrxvPIHankPWsu8MtBndVhPgqfd8zCnSc84M8zHfw95IkI+qNyATZ1HeHFQKcdg2HmmUGhbmlVPtr+ONfWtYkDebKY5SFF8kpCSFCsPk+Wjzyuit3IK3chPmOedimDwfSTG6pJRapWDeVBfzprrwtveyaY+H//Xwh0wtsnPJ0hJOmZmNSikGUmeSvfvr+eNbB7l8aoj3mrciSbCkYIFoL5xmeo3EBXNUVHvjPPdZjLKcci5dNB1n41Z0L/2a6NxziM46DVSjv7hsUOu5eMq5nJI/j7XV6/nngQ9YPu18Lpp8FgbNiZ8Tett72bLXw9b9XvbXttPbF8Vu0aLXqpBlCIaitHUGsa15h2nFDuZPdbNohpssa+acj6b1127VqlU89dRTRKNRvvnNb3LTTTcd9fjevXu57777CAQCLFq0iJ/+9KeoVOPjB7qv8QCef/wPqumL+adfzWufN5CdvZ+KtihuQxbz88oxiw4dGW3OJCVGncTT70a4YI6S06cpUSgk4jklRAwWcje+gyLUTmTpCjCYkx6PVWfh6lmX0Nzt4dPaTbyy523OKV7CeZNPp8Ay+FD+8Wii7Be8Pa28d+hT3q/6lEm2Ar4+7xpcxqFHNRwvqcOHaufHKKsriE2aQfisawetO3FYJCrz/q4on1fGKc/rZd5kMc91PNCpdExzTmayYxKVTVVsa95NINKL0z6Fe1+Kcf+VeeSfexP+9/9CvC+A47yvj/rkJpON1/1CpNNL+9q/0Vu1A8vCZegnzQKgwR/mhc/aqPKFuHyBjRL30Scj8bjMQX81W5oqKLLkUuIoEp08xjmFpGByVjEuk5N9voPs9R1kQW45BdZcFF8kp5R6M+Y55xDp8NJ7cCvdu9ZimnEahskLjmubbruBy04v4cJTi6g41Mbf1uzjyX9s58z5+Zy7sJAphcdOLcpEx/v9b2pq4u6776atrY2SkhJ+/etfYzRm1rH39p2H+OVft7Iwq5at0Q7KsoopMOeOi7/LyaLEraDAIbG9Js4j7yhZULqYc+fMJqtuE9qKT4nOO5fYtEXHlazIMti5ZtaleHp8rKvbwmt73+GMolO4YPIZTLIVjOpz0NTaw2c7mvhkeyO+9iBTi+yU5ls5fU4eDovumHXt278PZ/Ykapq7+HRHI39aVUG+y8QZc/M4Y24+7jSPvkrbL7jH4+HRRx/l1VdfRaPRcMMNN7B48WLKysoGlrn77rv5+c9/zrx587j33nt56aWXuPHGG9MV8ojicpzm1hp6dr5CzftVrLO7+HRbkM5OmUVTu5mSPQ2dauyvoArJMzlbgdMk8fHeGJsOxlk2T8mMfAUKSxYNU05jUtCH7h+PEJ1+KtFZS8GU/GF5ueZsrpu9HH+wg61Nu/jpB49i1po4JX8u83JnUuYoHrdThsbzfkH+oiPPtubdfF6/labuFsqzZ/DN+deRZbCP7cbCfSjr9qLcvxlFWzOxoumEz74ONEPvXyJRmS1Vcd7fFcVplrj6VBWBrsjYxiUknUqhIktjZYZ7Kr2RIJ5AK6FYI//x9zDTi1s4Z8pcJldtI1BTgfuS76LLn5rukE/YeNsvyHKcvrq9dG1dQ/DQVgxTTsG1/PvEFFo2VwV4d1cXlZ4+lpQZuX2O+6hCteFYmJr2eio8B1ArVCzMm41Fm/wkuJA6li9+r72BNrY272JT43amZpVSbC8c6N6gtrlRL7iQSKePUP1eunesRWfNJWgAbU7JqKaCAGjUShZMd7NgupvWjiDbK3388i+bkOMyi2fnsmhGNrNKs9Br05/Y+6oT+f7/9Kc/5cYbb+Syyy7jySef5He/+x133313Gl/Nl7yd7fzphXfYdkjBDPt+tIVZnGGfgloxPo/fJjq1SuKUMiUzCxXsrI3z8Ad6ynLO5tS8HqYf2opu63tEp51CbNoiZOvoi6Fnm1xcNfNiuvq62dpcwS8+fhK9WseSwgUszCun1F6E8isXHuJxmUONHWza7WHdribau0PMLHFw3qJCinOtI07hlSQJp02P06Zn0YxsorE4VY2d7K7y89L7lWQ7DCydk8upM3MozrWkPHGWtr3RunXrWLJkCTabDYBly5axevVqfvjDHwLQ2NhIX18f8+bNA+Dqq6/m8ccfT/vJSDQeo7OvC3+wg9ZeP56eVrxttUSbDuH2NFHWHaFGWcg/1RdTfchGsVvBJUuV6DViLuB4ZTVKLF+opNors3pbjNc2RikvUuBQ63HMOAVD0QxU1bvQvfIYcUcO8UkziGUXIztyhr2ifaIcehsXTD6T80pPp6Gzmcq2ap7Z/ALeQBsFllzMMQPeA13kmrNxGx04DPaMHzo4HvYLcTlOd6gHX8BPS4+X+s5mqtvrOOSvRa1UU2ovYlH+HCY7Vhzzg3Jc5DhSoAvJ34LC14Ci6RCK1kbiWbnEcycTnXM2KI/dlcuyTEcv1Pri7GuIs7cxjtva32o3x9Z/RTbQdeLhCeljUOspsRVSYgNPV4TP9uXy5wbIdkYplQ5yzl9/TNhgoKNoKuqi6VizJ+M0ZmHTWTBpjePmynym7xfikRCRtkZCLVX01e6mt2oHktZAKHce/oXfo6ZdZs/b7exrDpJjVTO7UM8lcy2oVQpCkTCe3k58ve00dbfgC7SRpbczzTkZh358XOUWRk+SJLJNTtzGLDpCXTR3eajw7kOn0pFrduMyOLDprFhMNkyzzyIeDuLZu42enR/S8ek/UDvy0GQXo3bkora5UBrtCY+cctr0XHBKEecvKsTj72VfbTvPrd5LvaebfJdp4OprYbaZ3CwjdosurfWKjvf7f91117Fp0yaefPLJgftvvvnmlCcpZFkmEO6lpcdHdVsje3ZVUru/mwZ/NnmaTs6bESM3b56oNTNOGLUSp01VsqBEwcGWOG9Xmnih50xKs2KUVTYzacc/yLbG0RVPJp5bQjwrD/SDd3QcjEVn5pyS0zi7eAkNXc3sbz3Ebz9/Fn+wkyJDKTYKIGil1StR2xjEqFMztcjORYsnMSnHMjCF7HiolAqmFtmZWmRnxRklVDd3sa/Gz+r1tYQjMWaWOJhZkkVJnoXCbPOgozPGUtqSFF6vF5fLNXDb7Xazc+fOIR93uVx4PIm1fzzcKzocDo+47EsVq/ioZkOiYQNQ3t3Hpf4ATsAYV/NBz7m0x888ahmFFGeqvRODHOZA5ahWnxLRWJxmX/PIC6ZJpsZXYoSusI49DWbispOPq2KAHji1/183ZNe383XTyxgUg3/+Dk6eSUte4ZjHZlYZKXdOJ2yP4Au00Rzw8squt45rXTadhTtO+ToF1qGnkRz+fo1lb/ZM2S88u/UlNjV9sd2avw+7rEJS4DI4mOueOTCFqyPQyZbAzmGfdySXp5FpByoSWjZgMBHIm0xcoYAOD3R4aO0z8Gb9DMLxwXfpWkWUqbZu9KoInkbwNPbfn6nfs7FwMr62yUZoV+vxdJSwhRK2APQCrcBWuFr/MmZtA5VKBc/k2YiO8mDGrrPwvVO+TuFJsl8IhY7uluL/8Hl69nw6cHtN72w+D391pMrkL/4BLQAdABiVvZRYOlARobYeauuPjUUlGclS2pCC0ODvo4HhW96Nh8/4eIgRMiFOM3bMRONxPG1RmvECX+3opQLsKJR29B0yujYPMPLnXFKp0U2ajUo3+DQHnQpmTbIytcCM199LxcEWNuxKvD2iSa/mzuvnUZpvA4793sCJ7ReO9/vf3t6OyWQamPZ1ovuFwV4XwMo9q3mv6tNj7tfG41zr7aKlq5C3gkdO13Ei4WCavQ2dTkVrh4rWjtF1b0v/5/VomRYPpC6mSXrI0ahoDRr5ODoJmMTRX9/DMUjw7oEjnhlHkkDmi99h+YtljpH9xT+o++IfBEETRGMLEFVF2OOvZc8QTUeUkoKZ7ilYBxmR1+bvo71vkB+jIzgtapyzXHQGQjR4e3i1OrEOh2a9mh9eP4/JX+wXBjPSfiFtSYp4PH5U9kWW5aNuj/T4cCKR/iHMBw4cGGFJmEkJM4tLEg17wJEXIL855FKij/nJKZcoMxnqIrX7i39JowBsX/w7AR31bXTUt424XCQSQacbm2lMmbJfWKSZyaLimYmGfeJyy+jKPTvhxb/6bhcB3583lgEJE9MVA/ul245zDZ31bXSeJPuFioqvJA5dc+HsuQM3l3zxTxDGhwQq+ZcagNGP/O1tb6CivT+xccz35gjHs1843u//YPuBE9kvDPW6plDAlOIbBl9RKViAwSfdiXMEIZUG+f5Psg1+/6DUMNPGaE4ugkfsF4Yz1H4hbUmKnJwcNm/ePHDb5/PhdruPetzn+zJb09raetTjwzEajUydOhW1Wi2GSgpCksiyTCQSGdMiVGK/IAjjm9gvCILwVSeyXzje77/D4aC7u5tYLIZSqTzmecMR+wVBSL6R9gtpS1IsXbqUJ554Ar/fj16vZ82aNfzsZz8beDw/Px+tVsuWLVtYuHAhr7/+OmeddVZC61YoFJjNotCUICTbWF0pPUzsFwRh/BP7BUEQvup49wvH+/1Xq9UsWrSIt956ixUrVvDaa6+J/YIgZJjh9guSPJYTR0dp1apV/OEPfyASiXDttddy2223cdttt3HnnXdSXl7Ovn37uP/+++np6WHWrFn84he/QKNJXiFCQRDST+wXBEH4KrFfEIST1/F+/xsbG/nRj35EW1sbubm5PPLII1itye/CJgjCiUtrkkIQBEEQBEEQBEEQBOGw8dF/TBAEQRAEQRAEQRCECU8kKQRBEARBEARBEARByAgiSSEIgiAIgiAIgiAIQkYQSQpBEARBEARBEARBEDKCSFKcgFWrVnHppZdy0UUX8fzzzx/z+N69e7n66qtZtmwZ9913H9FoNONifO+997jiiiu4/PLL+f73v09nZ2dGxXfY2rVrOe+881IY2ZdGirGqqoqvf/3rXH755XznO9/JuPdw9+7dXHPNNVx++eV873vfo6urK6XxjSdNTU3cdNNNXHzxxdxxxx0EAoFjlgmHw/z85z/nyiuv5LLLLuPTTz9NQ6THJ5HXd1hPTw8XXHABGzZsSGGExy+R1+b1evnOd77DFVdcwVVXXcX69evTEGnixsNvzETz2GOP8cQTTwz6WDgc5u677+aSSy7hqquu4tChQymNLZHPeGNjI/Pnz+eKK67giiuu4Dvf+U5KYhsPn9WRYvztb3/LueeeO/DeDXdMkkw9PT0sX76choaGYx7LhPfxsOHizJT3cqwNt39IhUSPmVNpuM9BOvz2t7/lsssu47LLLuOhhx5KdzgA/OY3v+HSSy/lsssu489//nO6wxnwP//zP/zoRz9KdxhDk4Xj0tLSIp977rlye3u7HAgE5BUrVsiVlZVHLXPZZZfJ27Ztk2VZlv/zP/9Tfv755zMqxu7ubvn000+XW1paZFmW5ccee0z+2c9+ljHxHebz+eSLL75YPvfcc1MWW6IxxuNx+aKLLpI/+ugjWZZl+Ve/+pX80EMPZUx8sizL//Iv/yKvXbtWlmVZ/sUvfiE/8sgjKYtvvPnud78rv/nmm7Isy/Jvf/vbQf+WTz75pPxv//Zvcjwelw8cOCCfccYZcjweT3WoxyWR13fYPffcI59yyiny559/nqrwTkgir+1//+//LT/33HOyLMvyoUOH5KVLl8rRaDSlcSZqPPzGTCRdXV3yf/7nf8pz5syRH3/88UGX+eMf/yj/+Mc/lmVZljdu3Chfd911qQwxoc/46tWrB2JMlfHwWU0kxu9973vy1q1bUxrXV23fvl1evny5PGvWLLm+vv6Yx9P9Ph42UpyZ8F6OpUT2D8mW6DFzKo30OUi1zz77TL7++uvlUCgkh8Nh+Rvf+Ia8Zs2atMa0YcMG+YYbbpAjkYgcDAblc889Vz506FBaY5JlWV63bp28ePFi+T/+4z/SHcqQxEiK47Ru3TqWLFmCzWbDYDCwbNkyVq9ePfB4Y2MjfX19zJs3D4Crr776qMczIcZIJMIDDzxAdnY2ANOmTaO5uTlj4jvs/vvv54c//GHK4jrSSDHu3r0bg8HAWWedBcDtt9/OTTfdlDHxAcTj8YErbsFgEJ1Ol7L4xpNIJMKmTZtYtmwZMPR39u233+a2225DkiSmTJnCn//8Z+Rx0Mk50dcH8NZbb2E0Gpk2bVoqQzxuib62Cy+8kOXLlwMwadIkQqEQvb29KY01UePhN2Yief/99ykuLubb3/72kMusXbuWyy+/HIBTTjkFv99PU1NTSuJL9DO+a9cuDhw4wBVXXME3vvEN9u/fn/TYxsNnNZHfyoqKCv7whz+wYsUKHnzwQUKhUEpjBHjppZd44IEHcLvdxzyWCe/jYcPFCZnxXo6lRPYPyZboMXMqjfQ5SDWXy8WPfvQjNBoNarWayZMnp2wfPZRTTz2Vv/zlL6hUKtra2ojFYhgMhrTG1NHRwaOPPsrtt9+e1jhGIpIUx8nr9eJyuQZuu91uPB7PkI+7XK6jHs+EGO12OxdeeCEAfX19PP3001xwwQUZEx/AX/7yF2bOnMncuXNTFteRRoqxrq4Op9PJvffey1VXXcUDDzyQ0p1PIu/hj370I+6//37OOOMM1q1bxw033JCy+MaT9vZ2TCYTKpUKGPo7W1tby6ZNm7jxxhu5/vrraW1tRaHI/F1poq+vqamJ//f//h/33HNPndRlCgABAABJREFUqkM8bom+tmXLlmG1WgH4v//3/zJjxgzMZnNKY03UePiNmUiuvPJKvvvd76JUKodcZrD3vKWlJRXhJfwZ12q1XH755axcuZLvfOc7/OAHPyAcDic1tvHwWR0pxkAgwIwZM7j77rtZuXIlXV1d/O53v0tpjAD//d//zaJFiwZ9LBPex8OGizNT3suxlMj+IdkSOd5LteE+B+kwZcqUgSReTU0Nb7/9NmeffXZ6gwLUajWPP/44l112GaeddtrAxeF0+a//+i/uuusuLBZLWuMYiSrdAYxX8XgcSZIGbsuyfNTtkR7PhBgP6+7u5gc/+AHTp0/nqquuypj4Dhw4wJo1a3j22WdTdiD4VSPFGI1G2bhxI8899xzl5eU89thj/PKXv+SXv/xlRsTX19fHfffdx7PPPsucOXP485//zH/8x3/w9NNPpyS+TPX222/zi1/84qj7Jk2adMz3Y7DvSywWo6Wlheeff579+/dz66238vbbb2fUye7xvr54PM59993Hj3/844wdcXMif7vDnn32WV588UWee+65pMQ4FsbDb8x4NNjnp7S0lGeffXbE5371PZZlOSkJyhP5jP/rv/7rwP/PPvtsHn74Yaqqqpg+ffqYx3nYePisjhSD0WjkmWeeGbh9yy23cO+993LXXXelNM7hZML7mIjx8F4O5UT2D8k2Xv7+maCyspLvfe973HPPPRQXF6c7HADuvPNObrvtNm6//XZeeuklrr/++rTE8Y9//IPc3FxOO+00Xn311bTEkCiRpDhOOTk5bN68eeC2z+c7arhTTk4OPp9v4HZra2vKh0ONFCN8WUhuyZIl3HvvvRkV3+rVq/H5fFxzzTVEIhG8Xi833ngjL7zwQsbE6HK5mDRpEuXl5QAsX76cO++8M2PiO3DgAFqtljlz5gBw/fXX85vf/CZl8WWqSy65hEsuueSo+yKRCIsXLyYWi6FUKgf9vgA4nU4uu+wyJEli+vTp5OTkUF1dPfAeZ4LjfX1VVVVUVVVx3333Af0jhe6//35+9rOfsWTJkpTFP5wT+dsBPPTQQ3z00Uc8//zz5OTkpCLk4zIefmPGo8E+P4nKzs7G6/VSVFQEJO89P5HP+F//+leWL1+O3W4H+k9kDo++SJbx8FkdKcampibWrVvHtddeC6TmfRutTHgfEzEe3suhnMj+IdkSOaYXYMuWLdx5553ce++9XHbZZekOh0OHDhEOh5kxYwZ6vZ6LLrooJdPwhvLWW2/h8/m44oor6OzspLe3l//zf/5Pys8BE5H5Y5Qz1NKlS1m/fj1+v59gMMiaNWsG6hIA5Ofno9Vq2bJlCwCvv/76UY9nQoyxWIzbb7+dSy65hPvuuy/lGdmR4rvzzjt55513eP3113n66adxu90pTVAkEuP8+fPx+/3s27cPgA8++IBZs2ZlTHyTJk2ipaWFqqoqoH9e5eGEinA0tVrNokWLeOuttwB47bXXBv3OnnvuuQPL1NfX09zcTElJSUpjPR6JvL6ysjI++ugjXn/9dV5//XVmz57Nz3/+84xJUAwl0b/ds88+y4YNG/jb3/6W0QkKGB+/MSebs88+m9dffx2AzZs3o9VqycvLS8m2E/2Mb9q0iZdffhmAjRs3Eo/HKS0tTWps4+GzOlKMOp2OX/3qV9TX1yPLMs8///zAdNhMkQnvYyLGw3s5Ho30GRagubmZH/zgB/z617/OiAQFQENDA/fffz/hcJhwOMz777/PwoUL0xbPn//8Z958801ef/117rzzTs4777yMTFAAorvHiXjjjTfkyy67TL7ooovkp59+WpZlWb711lvlnTt3yrIsy3v37pWvueYaedmyZfK//du/yaFQKKNiXLNmjTxt2jT58ssvH/h37733Zkx8R6qvr09Ldw9ZHjnG7du3y9dcc4186aWXyrfccovc2tqaUfGtXbtWXrFihbx8+XL5m9/8plxXV5fS+MaThoYG+eabb5YvueQS+ZZbbpE7OjpkWZblF154QX7sscdkWe7vinP33XfLl156qXzppZfKH3zwQTpDHpVEXt+Rbr755nHT3WOk1xaPx+VFixbJ55xzzlH7vMPdjTLRePiNmWgef/zxo6r3H/nd6Ovrk++55x750ksvla+88kq5oqIipbEl8v1taWmRv/Wtb8mXXXaZfPXVV8t79+5NSWzj4bM6UoyrV68eePxHP/pRWr9P55577kC3hEx7H480VJyZ9F6Opa/uH1JtsM9wJjjyc5BOP/vZz+R58+Yd9Rv/wgsvpDss+fHHH5cvueQSefny5Wn9/HzVK6+8ktHdPSRZHgdl6QVBEARBEARBEARBmPDEdA9BEARBEARBEARBEDKCSFIIgiAIgiAIgiAIgpARRJJCEARBEARBEARBEISMIJIUgiAIgiAIgiAIgiBkBJGkEARBEARBEARBEAQhI4gkhSAIgiAIgiAIgiAIGUEkKQRBEARBEARBEARByAgiSSEIgiAIgiAIgiAIQkYQSQpBEARBEARBEARBEDKCSFIIgiAIgiAIgiAIgpARRJJCEARBEARBEARBEISMIJIUgiAIgiAIgiAIgiBkBJGkEARBEARBEARBEAQhI4gkhSAIgiAIgiAIgiAIGUEkKQRBEARBEARBEARByAgiSSEIgiAIgiAIgiAIQkYQSQpBEARBEARBEARBEDKCSFIIgiAIgiAIgiAIgpARRJJCEARBEARBEARBEISMIJIUgiAIgiAIgiAIgiBkBJGkEARBEARBEARBEAQhI4gkhSAIgiAIgiAIgiAIGUEkKQRBEARBEARBEARByAiqdAeQDPF4nEAggFqtRpKkdIcjCBOSLMtEIhGMRiMKRebnO8V+QRCST+wXBEH4KrFfEAThq0baL0zIJEUgEODAgQPpDkMQTgpTp07FbDanO4wRif2CIKSO2C8IgvBVYr8gCMJXDbVfmJBJCrVaDfS/aI1Gk+ZooKKigtmzZ6c7jBGNlzhh/MQ6XuKE0ccaDoc5cODAwPct02XafmEw4+nzcth4i3m8xQvjK+aTZb+QqX8TEVfiMjEmmJhxnSz7hXTK1M/NiZiIrwnE6zpspP3ChExSHB6apdFo0Gq1aY6mX6bEMZLxEieMn1jHS5xwfLGOl6GQmbhfGEwmxzaU8RbzeIsXxl/MJ8N+IVP/JiKuxGViTDBx4zre/cKqVat46qmniEajfPOb3+Smm2466vF3332Xxx9/nHg8Tnl5OQ8++CAajYaVK1fy8MMPk5WVBcA555zDXXfdlXCcmX688FXjKdZETcTXBOJ1HWmo/cKETFIIgiAIgiAIgjC+eTweHn30UV599VU0Gg033HADixcvpqysDIDe3l4efPBBVq5cidPp5K677mLlypVcf/31VFRU8KMf/Yjly5en+VUIgjBamV+9RhAEQRAEQRCEk866detYsmQJNpsNg8HAsmXLWL169cDjBoOBDz74AKfTSTAYpK2tDYvFAsCuXbtYuXIlK1as4N///d/p7OxM18sQBGGUxEgKQRAEQRAy2kjDvauqqnjggQfo7OzE5XLxyCOPYLVa0xStIAhjxev14nK5Bm673W527tx51DJqtZqPPvqIe+65B7fbzRlnnAGAy+XilltuYcGCBTzyyCM8+OCDPPzwwwlvu6KiYmxeRIps2bIl3SGMuYn4mkC8rkSIJIUgCIIgCBlrpOHesixzxx13cN9993HWWWfx61//mqeffpq77747zZELgnCi4vH4UXPWZVkedA772WefzYYNG3jkkUf4yU9+wsMPP8yTTz458Pitt97KhRdeOKptz549e9zUDtiyZQsLFy5MdxhjaiK+JhCv67BQKDRsIlBM9xAEQRAEIWONNNx79+7dGAwGzjrrLABuv/32Y0ZaCIIwPuXk5ODz+QZu+3w+3G73wO2Ojg4+/fTTgdsrVqxg//79dHd38+yzzw7cL8sySqUyJTELgnDiRJJC+P/Z+/M4ueo60f9/nTqn9r2qq3rPThZIAoQgER3cgAAmgsjMVRzRcWQU9PIb7h0cfsI1qJcZx6vgfSg4wizeGWEGRoUQlxAxgEDCkgDZ907vS1V17dW11/n+UaSTTnfSW23d/Xk+HjxI1ak65937Oe/zeb/fgiAIglCzxlruPTAwMPy4s7OTuro6vvGNb/DJT36STZs2YTKZqhGqIAglduWVV7Jz506CwSDJZJJt27YNJyShmHy455576O3tBWDr1q2sWbMGk8nEP/3TP7Fnzx4Afv7zn096JYUgCNUjyj0EQRAEQahZ4y33zuVyvPnmm/z85z9n1apV/PCHP+S73/0u3/3udyd8jKnUntdqTbGIa+JqMSYQcZ2pvr6eu+++m9tuu41sNsstt9zC6tWruf3227nrrrtYtWoV3/nOd/jyl7+MJEksWbKEb33rW8iyzA9/+EMeeOABUqkUCxYs4Hvf+17F4xcEYWpEkkIomXxB5bevtfHKu71YzVpu/vAFXLTIXe2whBoVj8f59Kc/zT/+4z/S0tIy/PyhQ4e49957hx8Hg0Hsdju//vWvpzzzXBAmYyA4xL9s2c9QKsdn1y9n+QJXtUOa0xoaGti1a9fw47OXe3s8HubPn8+qVasA2LBhA3fdddekjjHZ2vNarSmuVlyqqrLtjQ5e3NVNg9vEZ69bgcdprHpc51OLMcHsjGu82vPxbNy4kY0bN4547vHHHx/+99VXX83VV1896n1r167lmWeemfJx5wpVLRB+7VfkIn7cH7sNjcFc7ZAEQZR7CKWRzxf4+5+9yQtvdXHFRQ20eKz83c/eZNsbHdUOTahBe/bs4TOf+Qzt7e2jtq1YsYLNmzezefNm/vM//xO73c4DDzwAMDzz/NR2kaAQSi2ezPL/f/RVTAYtS5odfOufX+doZ6jaYc1p4y33vvTSSwkGgxw+fBiA7du3c9FFF1Ur3Dnp3393mF+9dJy1K7zk8gXufeQVgtFUtcMSBGECEkfeILb3RbKhfoIvPVntcAQBEEkKoUT+7XeHCEZT/MXHL2TpPCdrV9TzpU+s5P/95iD7jgeqHZ5QY55++mk2bdo04m7oWH76059y+eWXs3btWkDMPBfK799+e5BFTXY+elkra5Z72fCBRfzgid1kc4VqhzZnnbnc+6abbmLDhg3Dy7337duHwWDgkUce4f777+fjH/84b7zxxojVWEJ57Tnq5/dvdvCFGy5k2XwX69ct4MKFbh75r3dR1QKp7iNoEsFqhykIwjmEX/sV1os/iu3y64ntf5n8ULTaIQmCKPcQpu94V5gX3uzka7dcjCyfznvVOYx88kOLefg/3uaRr38Uo158uwlFDz744LivicViPP3002zZsmX4uenOPBeE8xmMJHn57W7++tNrhp9btdjNO0d9bHujnY9/YFEVo5vbxlvuffHFF/OLX/yi0mHNeYWCyuPP7eeG9y/AYtINP//Rta386Ol3+MOj32epehLrUJSwPoXjio3n2ZsgCJWWiw6SC/Wjb1qCpJHRNywmcfRNbJeMLp8RhEoSV43CtKiqyj9t3sfHLm8dcYJyyrL5LvYcD/DL7cf48+tXVCFCYaZ67rnnuPrqq4f7TwDTnnkOU2uQV0m12jDtfGZazOeK98W9EebVKfR0tY14frGnwBO/O4hHF0TWSGO+t9xm2udYmBvePNhPoaCO6j+lyBout/XzO18zV/7FdRzfv5fwjmfQ1y/AuGBVlaIVBOFsQ8d3o29eiqQpjmc1tC4ncWinSFIIVSeSFMK07G8bxBdK8ulrl5/zNde8bx6P/nIvGz64CId14o3JhLnthRde4Mtf/vLw41gsxi9/+Uu+8IUvAFOfeT7ZBnmVVKsN085npsV8rnhVVeXHv9nGp69ZRpPHMmLbMuBQ7z6yuibed3FThSI9bSZ9jqfbIE+YWba80sa6lQ0jpq0AZAZ7WJg4wGv5P6EjkEXVmbBffj2B5/+Zlr96CEkS1caCUAuS7fvQ1S8YfqxvWETkzV+jFvLDiQtBqAbxV0KYlv/6w1E+eHHTee8uOq0GVi1288zLxysYmTCTqarKgQMHuPTSS4efEzPPhXI60hlCkTU01o3saq6qBfLpIS5f4eV3O09WKTpBqD19gQQneyOsXFQ3altsz3Ysi1ZxyQIT2w8W69v1LcsBlaEjb1U4UkEQziXdewytu3n4scZgRjbZyQyIxvdCdYkkhTBlvYE4x7vCXLL0/M0PAf7k4maef72DoVS2ApEJM9GpJnhQHDuq1WpHrHg4c+b59ddfz4EDB7jnnnuqFa4wy7y2p5cLF7lG3BFOntzLwDMP4XvmYere/X8caw/gDyWrGKUg1I4/vtPNysV1aJWRp5K5eIhsoAt90xJWtZrYcTROvgCSJGFedgWR3b+rUsSCIJwpPxQln4yh2EcmGnWeeaS6DlYpKkEoEuUewpT9bkc7ly7zjjpBGYvTZmBJi53fv9nJjVctrkB0wkywffv24X+f2QTP7Xbz2muvjXq9mHkulMubB/q56UOnfzfF9r1E4thuLCuvQmv3kIsOsvi1DrZu3sbnvnBj9QIVhBrxx3d6WL9u/qjnh47vRte4GElWcFvAbpI5GcyyAjC0riC663dkIz609vFvcAiCUD7p/ja07uZR5VdaVyOp3uPYqxSXIIBYSSFMUS5f4MVdXVy2bOInGVdc1MivX21DVdUyRiYIgjA5/YMJ4snscC+KZPs+Esd2YV97HVq7BwDF5uaS1Yt45VCEVPeRaoYrCFXX648TjqeZ32Ab8byqqsUa94aFw88tbTBw0FdcoSQpWgzzLiRxaGdF4xUEYbSMvwutrfg3Lp0tcLg3SUFV0boayfS3jfNuQSgvsZJCmJJ3jvhw2gx4nKbh51Q1T6rzIMmT+8iG+lFzGTRGC3rPfIxLLmN+QyOSJLH3eICLL/BUMXpBEITT3jnqZ0mLA40kkU+Eibz5a6yXXoNGbxrxugVNduLvJDjwzM9Y89X/LZqKCXPWrkMDLJvvRHNWP6pseAC1kEexnl4+vrTRwBPHo6iqiiRJ6FuK0wMc68SKJEGopoy/E9nuJpMr8L+f7aMvnGFBnZ5vbPSQC/soZNNotLXZaFyY/aq6kiIej7Nhwwa6u7tHbXvhhRe48cYb+cQnPsGdd95JJBKpQoTCuby4u4tVS06fhGSCvfh//Sjxfa8g2z1YL/4o9vdtxLT0fRQKeYIv/pzQK0+xZrGDrTvbqxe4IAjCWd4+PMCiJjuqqhJ+fQv61hUoNveo12kkiWXNZt6Ne4nvf6UKkQpCbXjjQD8XtDpHPZ/qPIjOM29EbxePtXg/rCuYAUDfsJBMoJtcPFyRWAVBGFvW14li97LjWJxsvsBd6+sZiGbZ1ZFBsdeRDYy+PhOESqlakmLPnj185jOfob29fdS2eDzOAw88wGOPPcZzzz3HsmXL+NGPflT5IIUxpTI5dh3ysWpxMUmR7D5M8IX/h6F1Bda112FoWoJstqMxmNDaPZgWXYzjyk+CJNPc9iy7DvUTG8pU+aMQBEGAQkHlQNsgi1rspHuPkov6MS5Yec7XL28ysCe/iPBrv0RVCxWMVBBqQyqT40hniCUtoyvW091H0NW1jHhOkiSabCr7OotNZyVZQd+wiOTJPRWJVxCE0VRVJTPYg9buYeueCO9bZEHWSHx4hZXNu0Modg+ZQFe1wxTmsKolKZ5++mk2bdqE1zu6p0E2m2XTpk3U19cDsGzZMvr6+iodonAObx/20VpvwWLUkuo7TmTns1gu/Rj6xsWjZqWfIskK5qVrcV2winlSPy++sq/CUQuCIIzWNRBDr1OwmxWiu5/HdMHa85ZxLPDo6Y9LxPI6kiferVygglAjDp0M0lRnxqAbWTGcT8XJxYIojtHndQ02eLdjaPixrmEhyRPvlD1WQRDGVkjGAAikdfijOS5oKJZ1XNBgoCeYJaKtJ+MXSQqheqrWk+LBBx885zan08k111wDQCqV4rHHHuNzn/vcpI+xf//+KcdXart37652CBMykTife3UQl1HDsb27MR3cSqZxJfFICiIT+WWmZVGdht+9uI8WawJVby5rrLVgpsQJMytWQSiF/W2DLGi0kTy5D0lW0J51F/hsskZicb2Bo5a1OHdvxbRkTYUiFYTasPd4gAWNtlHPZ/rb0Loax0zyNVlVXj+QIpdXUWQJfdMSBrf9y3CfCkEQKisb6kexudnbnWShRz/cX0bWSCxvMvB23MNHCoerHKUwl9V048xYLMZXv/pVli9fzic/+clJv3/lypXo9dVv+LJ7924uu+yyaocxronEmc3l+d6vtvL/+7OLSb36c7QLV1N3nqXRY2lubuHV33TDoddY88W/HTX6qFSx1oKZEidMPtZ0Ol1TiUBBmIp9JwLMqzcT27sF87IrJnTBtLhez55BFxf7f0M+EUE2i0Ftwtyx55ifP7mkedTzqb42tM76Md9j0ILTrHDSn+aCBgOKxYmkUcgGe9G5R+9LEITyyoUGkC0u9nYOMa9ON2Lbkno9+zr1fHBI9KQQqqdmR5D6fD5uvfVWli1bdt5VF0Jl7T0eoN5lQtO7H7JpDPMunPQ+NBqJVfOt7Og3E921tQxRCoIgjE9VVQ6dDNKYH0Cj1aM4Gyb0vgvq9RzoTaM0LSd24NUyRykItSOVydHRH2VevXXUtkx/G4rr3D9DrW4th3tTw4919fNJdR4sS5yCIJxfJtSHxmznYE+KBZ6RN3Tn1+k5HiiQjoRQ87kqRSjMdTWZpMjn83zlK1/h+uuv57777hNLAWvIzn19LGuxEnv3D5iWXYGkmdq30Kp5ZnalFzD48lPkYqESRykIgjA+fzhJNpdHOfEKhgWrJvy3xmyQcVsUui0XkjgokhTC3HGsM0xTnQWddmRJRy4RQs2mkc2jJ36c0uLScbAnOfxYV9dKskOsxhOEasgG+4hrXWTzKi7zyJ9nk16Dy6zQo51HNuyrUoTCXFdTSYrbb7+dffv2sX37dg4ePMjzzz/PjTfeyI033sh9991X7fDmPFVVefNAP62ZE2jdTWOO6JuoBruCosj0etYR3P5vJYxSEARhYg6dDNLq0CChop3kkvOFXj37Y06ygW5ysWCZIhSE2nKwfZAWr2XU8xlfJ4qz4byJvnluPUf6UqiqCoDOO59U56GyxSoIwrnlwj56snYaHdoxf27n1ek4obaSC4nBBUJ1VL0nxfbt24f//fjjjwOwatUqDh8WzVpqzYmeCIosYex6A+PlH5/WviRJYmWLkbcyS2g58QTpgXb09QtKE6ggCMIEHDw5iDvVhWHZhZNesbfYq+fFgzE2zL+AoWO7sK25tkxRCkLtONgWZPn80aslMr4OtHbPed9rN8koGomBSI4GhxbZ5kbNJMnFQijWc6/AEASh9HLRAN1aAx7b2NOsmp06jg86yQZFkkKojppaSSHUtjcP9LPQPITW3YpsGt3Ze7JWthp542QK/fIPEHr5P0oQoSAIwsQdPNZPfaEf3RQSpC0uHQORLGn3BSSOvFH64AShxqiqypHOEPMaxuhHMdCO7Bw9evRszS4tx/qLfSkkSULrmUe652jJYxUE4dzUQp58PEx7WKLeph3zNU1OLR0JE5nB3gpHJwhFIkkhTNibB/poThzEMH/yzTLH4jApeG0KR7UXkuo5SnqgvST7FQRBGE8qk6NncIh5C1rGHJk4HlkjscCj51i+mVTXIQq5TBmiFITa0TeYQKtosJlHNtnLZ5LkhyIoFte4+2h06IaTFABaVxOpHrFyVji/LVu2cMMNN3DttdfyxBNPjNr++9//no0bN/Lxj3+ce++9l0ym+Pu4t7eXz372s1x33XXccccdJBKJSodek/KJCBq9kY7B4qqmsTjNMhlVQ8AXqHB0glAkkhTChIRiKXp8MVptoFjHPxGZqJUtRl4+OoR52RWEdz5Tsv0KgiCcz5EjndRpYphbL5jyPhbU6djXl0PrbBC19cKsd6wzTOsY/Siygz0oNs+Ekn3NTi1Hz0hS6DwtpLqPlDROYXYZGBjg4Ycf5sknn+TZZ5/lqaee4vjx48Pbh4aG+Pa3v82//uu/8pvf/IZ0Os0zzxTPJ7/1rW9x6623snXrVlauXMmjjz5arQ+jpuSiATC78EezuC1jV/5LkkSTXeaEL1vh6AShSCQphAl5+7CP+foIpmmc0I/lwmYj+7qSFOZdSvL426IBnSAIFfHu67tosktotPrxX3wOC7169nUl0TUsItn2TgmjE4Tac7QzRGPdGE0z/V3IE2yk3eTU0jWYJZcvNs/UuhrJDHSgqoWSxirMHjt27GDdunU4HA5MJhPr169n69bT4+tNJhPbt2+nrq6OZDLJ4OAgNpuNbDbLW2+9xfr16wG4+eabR7xvLstF/ITkOmwmGUU+dz+mBqeejqgsfj6FqhBJCmFCXn+nnRa1H51nXkn3a9BpWFKv5/X2HIYFq4juFn9ABEEor0I2zaGTQeY1n7/R33g8VoVUtkDUsoBk+74SRScItelIZ2jMyR5Zf+e4TTNP0SkaXBaZ7mBxOb5Gb0JjMJMVde/COfh8Pjye099fXq+XgYGBEa/RarW8/PLLfPjDHyYUCvHBD36QUCiExWJBUYorBTwez6j3zVW56CABnOdcRXFKvdNAd95NPh6uTGCCcIaqT/cQal8+X2DviSC3LbZOqXZ7PCtbTbx0MMZH1q8l9OLPcf7JnyHJ4ltTEITyiO3/I+25Oq5pckxrP5IksdCj58iQiQuD/eSTcWTj6Is4QZjpCgWV9r4of/axpSOeV1WV7GAvpiWXTXhfDXYtbb40CzzFVUxadxPpvuPo6lpKGrMwOxQKhRHTl1RVHXMa04c+9CHeeOMNHnroIR544AG+/vWvj3rdZKc47d+/f2pBV8nu3bsn9Drj8YO0he1oC0m6urrO+To1CT05B/vf+CN5Z2upwpyUiX5MM434uMYnrgSFcR3uGMRKAnfrgrLsf0m9nl+/E8avetFbXAwd24V5+bqyHEsQhDlOVTnx6h+QlXXYTdNPura6dRzoSXOJp5VU1yHMSy8vQZCCUFt6A3EsRi1G/cjTxnw8BBoNGoN5wvtqcGg5MZDmoxcVH2udDaR7j2Nd9eESRizMFg0NDezatWv4sd/vx+s9PUkmHA6zf/9+PvjBDwKwceNG7r77blwuF7FYjHw+jyzLo943EStXrkSvn3pJYCXt3r2byy6bWLKwv307CZ2HeXYHra3nTqw3F1S2HOihye3Ee+nEE5GlMpmPaSYRH1dROp0+byJQlHsI43r9jUPMM0SRS9gw80yyRmJVq5EXD8YwLrqY6LsvlOU4giAISqiLtoSJeR5jSfa3oE7HwZ4kWk8rqc4DJdmnINSatp4ITXWjExHZYLFp5mQ0OrSc8J054aORdF/btGMUZqcrr7ySnTt3EgwGSSaTbNu2jauuump4u6qq3HPPPfT2FkuGtm7dypo1a9Bqtaxdu5bf/va3ADz77LMj3jeX5WNB+pNaXOOUe2g0Eh5jjvYuMeFDqDyRpBDG9dYhHxc0mia9TG4yLpln4uVDMbQtK0h1HyYn6t9mvXg8zoYNG+ju7h617cc//jEf+chHuPHGG7nxxhuHR46JcWLCdOk73qJdt5Rml64k+6uzKqSzKlHzPJIdIkkhzE4nuiPUu0cnKTL+bpQJNs08pcGupTuYJV84o3mmXzTPFMZWX1/P3XffzW233cZNN93Ehg0bWL16Nbfffjv79u3D6XTyne98hy9/+ct84hOf4OTJk9xzzz0AbNq0iaeffpobbriBXbt28dd//dfV/WBqRC4WxJeQxk1SANSZoaM/VoGoBGEkUe4hnFcglGBwCBYsbC7rcbx2LVajhn29eRY1Lyd+8FUc79tQ1mMK1bNnzx7uv/9+2tvbx9y+f/9+HnroIS699NIRz58aJ/bxj3+cRx55hEcffXT4ZEQQxpOLBVEG2zmW+QA3XFCaJIUkScyr03EybWJJoJtCNj2tiSHC2LZs2cJPfvITcrkcn//85/nsZz87YvuPf/xjfvnLX2Kz2QD4sz/7s1GvEabueHeYSy4YvWIiE+jGOO/CSe1Lr9VgNcj0hbO0uHTF5pk6A7nQAFpXY6lCFmaRjRs3snHjxhHPPf7448P/vvrqq7n66qtHva+5uZl///d/L3t8M4mqqmTiESJJFbtx/JLHOqtCZ1CMIRUqT6ykEM7rjR3vMN8QQ2uxl/1YF88zsW1fFOOClcT3vVz24wnV8/TTT7Np06Zz1ofu37+fn/70p2zcuJFvf/vbpNNpMU5MmLboO78nZl9EIJ6nwaEt2X5bXDoO9uVQnPWk+06UbL9C0cDAAA8//DBPPvkkzz77LE899RTHjx8f8ZpTic3NmzezefNmkaAosfa+KI1nlXuoaoFceADZNvlS0AaHQkcgPfxY62wiPXBy2nEKgnB+hWScqGTFrD//+NFTvA4D3bHS/b0UhIkSSQrhvN7Y281ib2nuOI5nZYuRw70p4pZWcmEf2VB/RY4rVN6DDz7I2rVrx9yWSCRYsWIF99xzD8888wzRaJRHH31UjBMTpkUt5Im983uO65bS4tIha0pXvtbq1nG4N4muroVU9+GS7Vco2rFjB+vWrcPhcGAymVi/fv2oBOVYiU2hNEKxFPl8AZt55LlALjqIpDOg0RomvU+PVUu7PzP8WHF4SfeLvhSCUG75eIiI4sFhnljjaK/bTH/aiKqqZY5MEEYS5R7COWWzWQ4NKnxo1eTqTadKr9VwUYuBPxxMsH7ehcQP7sD5gZsrcmyhdpjN5hHLOL/4xS/yjW98g1tvvXXa48Sg9keKzcSxVDMhZu3AUQySlraEFbty/rFrk5UvQH9YQ/eQjHn/m7Tp55ds36fMhM9xufh8Pjye06UGXq+XvXv3Dj8+M7E5f/587r33Xh599FHuvvvuaoQ767T3FldRnP37NjvYg2Krm9I+6+0Kh3pON89UnPWke45OK05BEMaXS4QIaZwTnm7lsBjIIhMODOL0TO3nXRCmQiQphHPa89YenEoau9NRsWNettDMf+4M8vHrl5M4+IpIUsxBvb297Nixg1tuuQUo1k8qilKScWJQ2yPFZuJYqpkSc99//Bbdyg9w8hWJj11cR6untN8DLZ0B0t7V1B36D5aX+PMxUz7HMP5IsakoFAojLpBVVR3x+FyJzckkKaYSc60mjkod145DMbRShiNHj4x4Xt9xAKmgITzBhN+ZicFCGtoGNBw9UkxMSKkkpu5jFf+czpWvYanUalzCxOXjYUKqFdsE+lFA8WZQnTZF+8k+kaQQKkokKYRzemP3cRa6yjfRYyz1di0Ok8zehItFER+5aGDKd2qEmclgMPB//s//4YorrqClpYUnnniCa665ZsQ4sY0bN4pxYsKE5aKDpHuOor/0enzxblpKNNnjTE0OLW0RLU3ZdLFBZ5lGNs9FDQ0N7Nq1a/jx2QnKcyU2J2OyyctaTRyVI66XDu9m+SI9y5Y2jHjef/KPGFsvROtuGncfXV1dtLa2Dj9WVZXnDvXTNH8hFoOMqhYYOPw8l1y4DNloKWn85zKXvoalMJ24ypG8FKYmnwjjz5lwTXAlBYBLn6OzJ8Cl479UEEpG9KQQxqSqKm9351k631nxY69dZOY370bRNy8jceTNih9fqI5T48RcLhff/va3ueOOO7juuutQVZW/+Iu/AMQ4MWFqYntfxDDvIo4MFPCYQTuBZmGT1ezScbQvjdbdLJpnltiVV17Jzp07CQaDJJNJtm3bNiJBeSqx2dXVhaqqw4lNoTTa+6I0uMdomhmaWtNMKN6dbbBr6Qxk3nusQetsIOPrmHa8giCcWy4WZDBjmHC5B4DTCJ0DYgypUFliJYUwpu5jx0gUdLQ2Vf5u4IomAy/sj9JnXkrDkTewX35DxWMQKmP79u3D/z5zufb69euHp3icSYwTEyZLVVVie1/E/r4N7Dk0RIOtPM2/mp06tu6JILc2kO47gXnp5WU5zlxUX1/P3XffzW233UY2m+WWW25h9erV3H777dx1112sWrVqOLGZzWZZs2bNcGJTmJ58QaXXH8frMo18Ph5C0k6taeYpHptC52CGC1uMQLF5ZsbXgXH+RdOKWRCEc8vHgoQyjgmNHz2lzqLhUDAz/gsFoYREkkIY086de1lky6LRVH6xjUYjsXaRiW3dOv5b7BiFVAKNwTz+GwVBEM6S7j0O+Rzauhb2dnax2lueJIXNqEGSIGZsxNJ3rCzHmMs2btzIxo0bRzw3kcSmMD0DgwmsZh167cgLmmywd9olTXVWhXb/6Sksit1Dxtc+rX0KgnB+uXiYcFoz4Z4UAB67nhe7yxiUIIxBlHsIY3rreJwlTdVLDKxZYOadzjQJ5wUMte8d/w2CIAhjiO//I4YFKwkl8gzG83jKVO4uSRJNTh2dOTeZgfbyHEQQKqyjP0b9WasoADLBXmTL9MpB621aOgbPHENaT2ZAlHsIQjklojEkqThRb6KcdiPxrEwynStjZIIwkkhSCKPEAn7aklaWLvSM/+IyMeo0rJ5n5KXkMoaO7Rr/DYIgCGdRC3kSh17DOH8V73YMsbhej6aMvYAb7FraIgqFTIp8IlK+AwlChXT0R/E4jKOezw72odimN57cY1PoDWVQ1eLqJq3DSybQPfxYEITSG4xnJ1XqAaAYLTjlIXp88TJFJQijiSSFMMqbr+2iyZjGoNdWNY4rlph5pc9C8Ng+cdIiCMKkpbqPIOlNKPY63mpLsKS+vKNnGx1a2nwZtK5G0mLZujALnOyN4nWOXEmhqiq5UP+0yz3MehlZkggl8gBo9CYkrZ5cxD+t/QqCMDa1kCeUlrFNomkmFH82HVKMbl+0TJEJwmgiSSGM8saB/rKfzE+Ew6SwpN7Aq4lFZP0Tm8MuCIJwSuLQDgyty0lnCxzoTrKkfupN/iaiwaGlI5BGsdeLkg9hVugaiI5qmllIRkFVkfSjy0Amy2vX0nVGyYfWWU/G3znt/QqCMFo+ESWicWI1TK4loaSRcSgZOrsDZYpMEEarapIiHo+zYcMGurtHd2M5dOgQN998M+vXr+e+++4jlxN1UJWQTSXZGzSzfFH1Sj3O9P4LLLyYuIDI8XeqHYogCDOIqqokjryBoXUF73QM0eLSYdKX90+e1aBBBaJ6L+mBk2U9liCUWz5fYGBwaFS5RybYj2yrQ5KmXztVZ5XpOmNqgGKrEzclBKFM8kMRohobFsPk/xa6jAU6esOlD0oQzqFqSYo9e/bwmc98hvb29jG333PPPXzzm9/k+eefR1VVnn766coGOEfte2MXZm0Bt310DWo1NDi01Fk0vPSWaKYlCMLEFVcySCh2L68eibO8qbyrKKDYPLPRoaVXdYsGgMKMNxAcwmrWoRtjsodscZTkGB6rls7Amc0zvaJUShDKJJ8IEypYJzXZ4xS3SaJ3MFmGqARhbFVLUjz99NNs2rQJr9c7altPTw+pVIpLLrkEgJtvvpmtW7dWOMK5acfb7Sxxl7Gz3BS8f5mdrT1O8lkxo1kQhIkZOr4bQ/NSkpkCezuHuLC5MolXj02hK2kiF+pDzYsVgMLM1TkQG9WPAiAX7Jt2P4pTPDZlRLlHcQypKPcQhHLIJyKEC0ashikkKSwyA5Ec+YLoESdURtWSFA8++CBr164dc5vP58PjOV1u4PF4GBgYqFRoc5ZayLO7T8PyhaU5+SiVxY0W0Mi8vmNPtUMRBGGGGDq2C33TEl49GmdxvR6jrjJ/7hrsWk4GcmiMNrKh/oocUxDKoWsgNvZkj1A/inV6kz1O8VgVesOnJ3wodk8xwVfIl2T/giCclk9EiOT0WI2T/3toMBowKQX8oaEyRCYIo02uc0qFFAqFEbWOqqpOqfZx//79pQxrWnbv3l3tEMYV7OklpWpRMzG6umLVDmeEi+xRnn7xBAbL6V+sM+FzCjMnTphZsQrCuRRSCTL+ThxX/RnbXhzgT5ZbKnbsepuWHUfjaBfUk/F3oatrqdixBaGUOvqi1J2VpChkkhRSCTRGa0mOYdLLaCSJ8FAep1lBo9WjMVrJhQfQuppKcgxBEIryiTDRrAXLFFZSSHoLLl2Gbl+cBre5DNEJwkg1maRoaGjA7z89gioQCIxZFjKelStXotdXf0rF7t27ueyyy6odxrh+/OI7LHWZmDdvYbVDGaVOL7FrZx530wUsaLTNmM/pTIkTJh9rOp2uqUSgIJyS7NiPzjufo748Q5kCi72V+zvgtioMxvPkLXXFKQUr3l+xYwtCKXX54qxYMHJlZTbcj2x1IWlKtzLJa1PoDmZwmounpIrdS8bfJZIUglBi2XiERM6GZQpNpGWDEYcmSI8/ztoV9WWIThBGqskRpM3Nzej1+uG7ups3b+aqq66qclSzm6qq7A9oWT7PXu1QxqR3erlQ28VzLx+rdiiCINS4obY96LwL2Lw7zPsWmUsyhWCiZI2E2yITkOvJ+ETzTGFmUlWVXn981EqKbLAfxVLaklC3VaEnmB1+rNjcZMSED0EouVA4gVELGs3k/yZq9GbsapTO/tpaaS3MXjWVpLj99tvZt28fAN///vf5+7//e6677jqGhoa47bbbqhzd7NbX1kYwZ2Jha121QxmTRqtjtSvBq3t6SSSz479BEIQ5K9W+D59hHkf6Ulwyv/KTirw2Lb05O9nA6PHagjATBKMptIoGk0E74vlssK9kkz1OqbModI5onukVCT5BKINQLIVVP7WkvWQwYS8E6faJJIVQGVUv99i+ffvwvx9//PHhfy9fvpxf/OIX1QhpTnrl1T3MNyVQ5JrKW41gd7lYlM2xfVcnTaMbjguCIJBPRMjFQ2w+ouWKxXq0SuV/p7mtCr1JhQvDPtRCHkkz+fpfQaim7oH4OSd7GJdeXtJj1VkVdp083YxPcXgYOr6rpMcQBAFCidyU+lEAaGQtLiVNj0hSCBVSu1ekQkXtPBZnnqu2vx20Di8rdL38bkf7cCdwQRCEM6W6DhGwLWdfd5LLF1WnuZfHqtAVzKMxFRsACsJM0+2LjSr1UAt5crFBlBKvpPBYtfSGRo4hzYX6xYQPYdiWLVu44YYbuPbaa3niiSdGbX/hhRe48cYb+cQnPsGdd95JJBIB4JlnnuGDH/wgN954IzfeeCMPP/xwpUOvKeEkWIxTvz9tNWlJpnNiRbNQEbV9VSpUxGBvL90pEw2e2u7Wqzi8NCSOkczk6DljaaggCMIpyc6D/Dq4hPcvsaDXVudPnMempTuUQbF7yAR6qhKDIExH50AMt90w4rlsxI/GYEWSted419RYjRrSWZV4qpiU0Cg6NAYrubCvpMcRZqaBgQEefvhhnnzySZ599lmeeuopjh8/Prw9Ho/zwAMP8Nhjj/Hcc8+xbNkyfvSjHwHFKX/33nsvmzdvZvPmzdx9993V+jCqrpDLEM3rMU8jSSEbTHisMj3+eAkjE4SxiSSFwB9feotF1jSKXLnmclOh0RmRDWZWtxp5t03MaRYEYbRjxzo5FjNy+aLq1YS5zDLhRJ6CqY7soEhSCDNPty+O56yVFLlQP4qttE0zASRJwmNT6A2d0TzT4SEjeroIwI4dO1i3bh0OhwOTycT69evZunXr8PZsNsumTZuory9OnFi2bBl9fX0A7Nu3j2eeeYaNGzfyN3/zN8MrLOaiwlCUiGTFaphGkkJvxGUoiL4UQkWIJIXAjsNhls6QJg9ah4fllij7O4fI5sRSUEEQTivkMmzp9vD+C8xV6UVxikYj4bLIBOQ6caElzEg9Y0726C1508xT3BaFnjNLPmx1ZANiwocAPp8Pj8cz/Njr9TIwcLqMzul0cs011wCQSqV47LHHuPrqqwHweDzceeedPPfcczQ2NvLtb3+7ssHXkHwiShQLFsPU/zZKehMOJUPXgFhJIZRf1RtnCtUV8Q3QNmTmxsX1+H391Q5nXLLdgynWicO8gHeO+HnfRQ3VDkkQhBrRduAwbTkvGxZZqx0KdVYFX8GBd/BQtUMRhElJZXJEExmc1rPKPYJ9GJqXleWYbotCd3BkkiLt6yzLsYSZpVAojBgjrarqmGOlY7EYX/3qV1m+fDmf/OQnAXjkkUeGt3/pS18aTmZM1P79+6cYdXXs3r37nNsUfxuRrI5EJEBXYWr7VxJp9Gk/e49Y2N2QnGKUk3O+j2kmEx/X+ESSYo575cU3mG/OYNCXtsa0XLQOL8n2/cz3LuXF3V0iSSEIwrBnXjnJxe4hdFVcRXGKy6zQl9KwLNhX7VAEYVL6AgncdgMazcgLw1xoAHn5urIcs86qcKw/PfxYsXtIntxTlmMJM0tDQwO7dp2e9uL3+/F6vSNe4/P5+Mu//EvWrVvHN77xDaCYtPjlL3/JF77wBaD4PSzLk5tssXLlSvR6/fQ+gArZvXs3l1122Tm3x/YnSNDPotZG3NapXf5ljJDK9HAwKZ/3WKUy3sc0U4mPqyidTp83EVj9MzmhqnYcHGRZs3H8F9YIjcmGmkmx0Kmy+7CPdFaUfMxU8XicDRs20N09ejm86NQtTFZsKMObnQXWzKuNhKvbotAbl1BzGfKpRLXDEYQJ6/GP7kdRGIqARkajL09paJ31rHIPu4dssA9VneItX2HWuPLKK9m5cyfBYJBkMsm2bdu46qqrhrfn83m+8pWvcP3113PfffcNr7IwmUz80z/9E3v2FJNdP//5zye9kmI2KQxFieW00yr30OjN2HIBfMEkubz42RTKS6ykmMOivl6OJmxct7i+2qFMmCRpUBxezJkgzZ563jniY93KxmqHJUzSnj17uP/++2lvbx+17VSn7l/+8pfU19fzf//v/+VHP/oR999//3Cn7g0bNlQ+aKGmbd/VxQJdELurpdqhAOC2KrzbOYTiqCMb7ENuWlLtkARhQrp9cVy2kaUemVA/srX0TTNPcZoVgvEcubyKIktodAYkrYFcNIDW7h1/B8KsVV9fz913381tt91GNpvllltuYfXq1dx+++3cdddd9Pf3c/DgQfL5PM8//zxQXAHx4IMP8sMf/pAHHniAVCrFggUL+N73vlflj6Z6EpEoBdWETpl6k3yN3oiUiuGw6ugfTNDirX5ppTB7iSTFHLbjxddpNmcwGWrjzuNEKTY3mniA5QtW8NqeXpGkmIGefvppNm3axNe//vVR28bq1L1lyxag2Km7vb2dn/70pyxbtoz/9b/+F3a7vaKxC7Vp286TrNF0IZsvqnYoQHElRX84i6bFTS7YByJJIcwQ3QOxMZpm9pWtaSaAIks4zQr9kSwtLh1QLO/MBnpEkkJg48aNbNy4ccRzjz/+OACrVq3i8OHDY75v7dq1PPPMM2WPbyYIReJYdIYx+3lMlKQ1oOazeBwGun1xkaQQykqUe8xRqqqy42CAZc3maocyaYrdgxwPsGKBi92HB8gX1GqHJEzSgw8+yNq1a8fcJjp1C5PV3hclGk8x3ykhaSZXc1wuRp0GWSMxpHeTCfZWOxxBmLAef5w6+1njR4N9KGVcSQHFko/esyZ8ZMSED0EoiXAkiUU39QQFFMcFawxmXGYNXQNiDKlQXmIlxRwV7z3JoYSLjyyqq3Yok6bY3MiJIA6LDptZx+H2IBctclc7LKHEytGpG2q/W/dM7Phc7Zhf2BNhnilGWtLR1TX+Rc1EXlMKFq2GoyFYFN3HSfP0VlJU+3MszA2qqtIbSOA+eyVFaAD9vBVlPbbTItMTzMLi4mPZ5iYjJnwIQkmEEhnM+unfm5YNFlz6PJ39IkkhlJdIUsxRb760A69Zh9U4s0o9ADQ6I6qiJRcJcEGrk7cO9oskxSxTrk7dUNvdumdix+daiPmx37/ARxxJ7M4WDK2t531tV1cXreO8plQaBkIU7AuwxjtYMY3PUS18jidqvG7dQm2LJjKggtlw+vSwkE1RSMWRjbayHtttUegaHNk8M9E99jJ+QRAmJzKUx2yY/kpDjd6IS5vmoFggKJSZKPeYg9RCntcPB1nWbKl2KFNWMNjIBntZNs/JW4cGqh2OUEKiU7cwGb3+OImhLJ5UV1kb+02F06wwkNGTC4vfUdO1ZcsWbrjhBq699lqeeOKJc77upZde4qMf/WgFI5tdev0JPE7jiLr1XGgA2epC0pT3lHHMCR+DvaiqKOkUhOmKpMBUghuTks6IS07Q44uLn02hrMRKijkocfxd9qcb+eICZ7VDmbKCwUY20E3L2osJhJMEo6lR3ciFmUV06hamYtehAZbOd5DvHSxrY7+pcFlkeoJ51HyOfCqBbJh5PYBqwcDAAA8//DC/+tWv0Ol0fPrTn+aKK65gyZKRJTSBQIB/+Id/qFKUs0OPP477rH4UmWAfiqX85wt1Fi39kSyqqiJJUvHnRZLIJ8IVOb4gzFaqWiCSkbGVIEkhG0xo0hF02gYGI6lRTXYFoVREkmIOeve1nZj1TTjNM/fLrxqsZAa7kTUSi5sdvHvUz0fXVmYJt1A627dvH/636NQtTMUbB/pZ0ahFGjSjUXTVDmcEl1lh98khFIebXKgfuXFxtUOakXbs2MG6detwOBwArF+/nq1bt/K1r31txOvuv/9+vva1r/GDH/ygClHODj3+OE7byHK4ck/2OMWk16CRJCJDeRzvnZ8odi/ZQLdIUgjCNBRSCWKYaTJM/7xf0pvJD/ZQ71pE5xiTgAShVES5xxyTT8Z5qy3B0hk41eNMeb2NXNiPWsizqNnG24fFcmpBmGuyuTxHOkPMM8Rr8iLGaVbwRXPIVhfZUH+1w5mxfD4fHo9n+LHX62VgYOTv/H/7t3/jwgsv5OKLL650eLNKty82erJHqA/ZWpm+Tx6rQk8oO/xYsbnJBLorcmxBmK3yQzHimErSOFNjMJNPRKlzGOkWEz6EMpq5t9KFKUkcfJV9+QXc1DJz+1EAIMtojBayET9LWhz883MHhpeICoIwNxxuD9HgMiHH/WCxVzucUYw6CVVVSeqcmERfiikrFAojfref/bv+6NGjbNu2jZ/97Gf0908tGTSVZp+1OnFlOnGd6ApQZ0xx5Giw+ERBxRL2EwkPQWx6U3EmMlVHL0m8c7gbbaJY665NqXDwbY5L3mkd+1xm49ewnGo1LuH8CskYsYKhNNM99CbyyRh1C4y090VLEJ0gjE0kKeaY42+8RorLaHTMvKkeZ1OsbrKDPbgW14NUXKba4rVWOyxBECpk34kA8xtt5ML7UZwN1Q5nFEmScFkUghontmBftcOZsRoaGti1a9fwY7/fj9d7+qJ169at+P1+PvWpT5HNZvH5fNx66608+eSTEz7GZKf+1OrElenEpaoqkf/6NWtWL8OgK54eZsMDBE1WWhcsmFZcE52q05qMk5Fh6bLiypm0VcPQ8d1cWIbP9Wz8GpbTdOISU3+qKz8UJZ7XYinBdA9JZ6SQSeK163h1b6gE0QnC2ES5xxyS8XeyZ1DP0kbTrFhxIFudZAd7kSSJxc129h0PVDskQRAqaO/xAAsbbWQjPmRz7a2kAHCaZQYLdlHuMQ1XXnklO3fuJBgMkkwm2bZtG1ddddXw9rvuuovnn3+ezZs389hjj+H1eieVoBCKgtEUBp0ynKAAyIb6Kzo1p86q0BM8o9zDXkd2sKdixxeE2SgTj5IpyBi00z/3lzQaNAYTbkOBbl9MTPgQykYkKeaQ6Lt/YL+6hCUNs2MKhmI7ffKyoNHGHpGkEIQ5I5cvcLw7TKvHRD4Rqdkkhd0oM5gzkg37qh3KjFVfX8/dd9/Nbbfdxk033cSGDRtYvXo1t99+O/v27at2eLNGjz8+qgleNtiHbHZULIY6q0Jf+HSSQmOyU8ikyKcSFYtBEGabUDiGWZsv2Q1KWW/GWEiAJBGKpUuyT0E4myj3mCPUQp7A3h10JDbwKe/El7TWMtniIhfxo6p5FjTa2L6rS/SlEIQ54mRvBJfNgDYTQTbakDTTX8ZaDg6TwsAQ5ONh1HwOSRZ/dqdi48aNbNy4ccRzpyYCnamlpWXE1CBh4nr9CdxnjfLOBnvRNy05xztKz2mSCSdyZHIFdIoGSZKGJ3zILcsqFocgzCahcByztnQ3KCWDmUIySoPLRGd/FJdtdtz8FGqLWEkxRyRPvMsxFtDq1qNTZseXXaPVoTGYyUUCuGwGCqpK/+BQtcMSBKECDreHaPVayUUCNbuKAorlHr5oHtlkIRcbrHY4gnBOxfGjpy82VFUlF/ahWCpX7qHRSLgtI1dTKPY6MeFDEKYhHE1i1pXuBp5GbyKfiOJxGukUEz6EMpkdV6vCuKJ7/sBhzRIWzpJVFKfIVhfZYB+SJLGw0cbBk+IiQBDmgsPtQVq8FrIRHxqTrdrhnJPDrOCL5Yorv0TJh1DDenxx3PbTSYpCMgaqiqQ3VTQOt1Wh98wxpFY32cD0JosIwlwWSWQw60p3ySfrTeQTYTxOE+29YsKHUB5VTVJs2bKFG264gWuvvZYnnnhi1PYDBw7wqU99ik984hN8+ctfJhoVPwhTkU8lGGrbw4GQiSX1sytJoVicZIO9ALTUWznQJpIUgjAXHO0M0eK1kIv4a3olhcMkE4rnkEwOsmIMqVDD+gYT1NlP96TIhvqQre6Kl1C6LArdwczwY8XuIePrrGgMgjCbRIZyGPWlK4mUDGZyiTD1LhMd/eLaTCiPqiUpBgYGePjhh3nyySd59tlneeqppzh+/PiI1zz44IPcddddPPfccyxcuJB//ud/rlK0M1vi8E4izgvJqRIe6+yqh1asbrLvjfab32Dj4MlglSMSBKHc4kMZQvE0XqeJfI0nKRRZwqTXEFNcZENiJYVQmwoFFV9waMRKimywH9niqHgsbotCz9lJCjHhQxCmLJJUMZVg/OgpGoOZQiJCvdNE10BcTPgQyqJqSYodO3awbt06HA4HJpOJ9evXs3Xr1hGvKRQKJBLFjs7JZBKDQTRmmYr4vpc5plvGIq9+1jWVlK0usqEBVFWlwW0mEEkSH8qM/0ZBEGasE90Rmj0WJAly8SByDZd7ADjNCiGNg1yor9qhCMKYApEkRoOCTnv6QiYb7EWp4PjRU+qsCj1nlHvIFgeFRIRCVkwREISpiGZkLCZdyfYnG8zkkzHMRi1aRcNgJFWyfQvCKVW7re7z+fB4PMOPvV4ve/fuHfGae++9ly9+8Yv83d/9HUajkaeffnpSx9i/f39JYi2F3bt3V+W4UiqOvfc4bxbW0GCL09V1/gY3XV0zp+7zVKxGFY7vf4eC3ozbouE3f3iLJU21k9Cq1td+KmZSrMLcdaInTKPbTCEZQ5K1aLS1XcZmN8oE82bmJfzVDkUQxtQXGFnqAZAN96NvWVrxWOosCv3h7PC0LkkjI9vqyAZ60Dcuqng8gjCTqWqBWE5hsbF0SQpJZ6CQTVPIZYZLPs4eXywI01W1JEWhUBhxV//s0ZGpVIr77ruPn/3sZ6xevZp//dd/5W//9m957LHHJnyMlStXotdX/+R19+7dXHbZZVU5duSt3xJrvYjOfQob3ufBcp7lXl1dXbS2tlYwuqk7M9booBeXw4CxdRntwXbyOguXXba8yhEWVfNrP1mTjTWdTtdUIlCYO452hWmsM5OLBpBNtVvqcYrNJBPMGshFAtUORRDG1BtIjGyamctQGIpV5efLoNOgUySC8Tzu90pUiyUf3SJJIQiTVEgliKlGLIbSXfJJkgaNwUJ+KIrXaaKjL8Zly+tLtn9BgAmUe6iqyj//8z9z0003jbn9P/7jP/izP/szXnjhhUkduKGhAb//9F0lv9+P1+sdfnz06FH0ej2rV68G4L/9t//Gm2++OaljCBA/8Cr91hXYjJrzJihmMtniJBsqNqRrrbeKCR+CMMu19URoqjOTiw0im6zVDmdcdqOMLymTT8ZQ89nx3yAIFdbjGzl+NBceQLY4kTTVOW/wWBV6Qmf0pbC5yfhnzkpPQagV+aEYCdWASV/aCn/ZaCafCON1GjnZGynpvgUBxklSqKrKnXfeyfe//32OHDky5l3T3/3ud+zdu5f//t//O//7f//vCR/4yiuvZOfOnQSDQZLJJNu2beOqq64a3j5//nz6+/tpa2sD4A9/+AOrVq2a8P4FyMVCZPydHE3VscBT/RUl5aJYneQG35vw4bVyvDsimvgIwiyVSucYDCfxOIzkIgE0xhmQpDDJ+GM5ZJONXFQkUYXa0+OP4z5zskewD8XirFo8rrPHkNo9ZP1iwocgTFZ+KEKioMNc4iSFRm8hn4hQ7zLT3icmfAild97v2P/6r//ixRdfRFVVXC7XqBGgp543GAyoqsoTTzzBtm3bJnTg+vp67r77bm677TZuuukmNmzYwOrVq7n99tvZt28fdrudv//7v+ev//qv2bhxI7/85S/5u7/7u6l/pHPQ0NE3MTQvZX9Pmvnu0tWi1RrF4iIT6gfAZtahUzT0DSaqHJUgCOXQ3h+l3m1CljXkogE0Nd40E4pjSAOxHLLFQS4sJnwItafvrHKPbLAPuYpJCrdFoWvEhI86MoHuqsUjVNeWLVu44YYbuPbaa3niiSdGbX/hhRe48cYb+cQnPsGdd95JJFK8s9/b28tnP/tZrrvuOu64447hZvxzydB71246pcRJCoOJfDxMvdtEbyBOviBuDgqldd7v2F/96lcArF69mq1bt3LllVeO2C5JEj/84Q/ZsmULCxcuHE5UTNTGjRv59a9/zfPPP8/tt98OwOOPPz68YuJDH/oQzz33HFu2bOFnP/vZjOmXUCvih3ciNy3jWH9qVq+k0BitqOkh8pkkUCz5ONoZrm5QgiCUxcneKPUuMwC5WO1P9oDiSopgPI/GZCcbEc0zhdpSKKj4QkO4zyj3yIb6kKsw2eOUOqtC9+AZSQqrm3x0UJRLzUEDAwM8/PDDPPnkkzz77LM89dRTHD9+fHh7PB7ngQce4LHHHuO5555j2bJl/OhHPwLgW9/6Frfeeitbt25l5cqVPProo9X6MKomFIphVgol36/GYCaXCKHXytjMOvoC8ZIfQ5jbzpukOHbsGJIk8T/+x//Aaj33ktrW1lb+9m//FoCDBw+WNkJhSgrpJOmeo/Rp5+E0Kxh1VZs2W3aSRoNsdZELF/tSNNaZOdIRrHJUgiCUw8neCF6nEVXNk0+EZ0RPCp1SbAQ4pHWQE0kKocYEIklMZ4wfVdU8uYgf2VLdJEVf+HRCQpKVYv+poBjjO9fs2LGDdevW4XA4MJlMrF+/nq1btw5vz2azbNq0ifr6YuPGZcuW0dfXRzab5a233mL9+vUA3HzzzSPeN1eEIwlM2tInKWSDhXw8DEC9y0xH3/mnBwrCZJ231Ws+nwegubl53B0tWlTsuJxOiznWtSB5cg86zzwOD+SYN4tLPU5RLE6ywX703gW0eCy8uqe32iEJglAGJ3siXLm6iXwiikZnRJK11Q5pQhwmmZDkwCbKPYQa0+dP4DljfGAuFkTSGdFoq3fuYDfKDGUKDKXzmPTF5Ili95AJdKPzzKtaXELl+Xw+PB7P8GOv18vevXuHHzudTq655hqgOBnwscce43Of+xyhUAiLxYKiFC91PB4PAwMDkzr2TJtgNtYY+faOHnTY6eoqbeNZKZPEEAlw5OgR5EKSHbsPY8iVPok41sc0G4iPa3znTVK0tLRw4sQJ3nrrrXFLLXbt2gVAY2NjyYITpi5x7C30TUs4cCTF4vrZW+pximxxDN9hafJYaO+Lks8XkOXZu4JkpovH43z605/mH//xH2lpaRmx7dChQ9x3330kEgnWrl3Lt771LRRFobe3l3vuuYfBwUEWLlzI97//fcxmc5U+AqHSVFWlcyDGJ10m8pGuGVHqcYrdJBNWrTRHDlc7FEEYoXcwgct2RpIi1I9SxVUUUCwn9rzXPHNJw3tJilMTPlZUNTShwgqFApIkDT9WVXXE41NisRhf/epXWb58OZ/85CcZGBgY9bqx3nc+K1euRK+fGefQ5xoj3757LzazruQl82ohT/Dk6yy9YAlpTYgTPeFJjbGfiHN9TDOd+LiK0un0eROB572C+9jHPoaqqnzve987b2Zk165dfO9730OSJD760Y9OODihPFRVJXniXbSNSzjan5oTKylki4vce80zjXoFu0VHl0/Ux9WqPXv28JnPfIb29vYxt99zzz1885vf5Pnnn0dVVZ5++mlA1JfOdcFoClkjYTXpyMWDyCZLtUOaMKtRJpQzkIsGqh2KIIxQHD96+kIsE+xHtjiqF9B76qwK3WeOIbV7yPg6qhiRUA0NDQ34/afL5Px+P16vd8RrfD4ft956K8uWLePBBx8EwOVyEYvFhleFj/W+uSCayGLSlX6UsKSRi80zExEa3CY6xIQPocTOm6T40pe+hNfrJRwO8+d//ufccsstPPDAA/zf//t/efjhh/nmN7/JzTffzOc+9znC4TBut5u/+qu/qlTswjlk/Z2gkRnIWTFoJazG6sw5ryTZ6iQXDaCq75UoeSwc7wpXNyjhnJ5++mk2bdo05glDT08PqVSKSy65BDhdRyrqS4WO/hgN7veaZkYH0Rhqvx/FKTaDzGBaIRcLoaqlrw8WhKnq8cdHNM3MBXtRqtg08xSX5azmmXYPWTHhY8658sor2blzJ8FgkGQyybZt27jqqquGt+fzeb7yla9w/fXXc9999w2vltBqtaxdu5bf/va3ADz77LMj3jdXRJIFTIbzLpyfMtloJR8P47YbCcfSJNO5shxHmJvO+11rtVr5l3/5F+644w66urrYv38/Bw4cGPEaVS2OnGloaOAnP/kJTmf1RlYJRUMn96BvXMzevjQtrtm/igJAo+iQ9EZysSBam4cGt5ljXSGufp+oXa1Fp+50jOXs+tNTdaSlqC8VZrbO/hh179XO52ODKK6mKkc0cXaTTEcgh0ZvJB+PoFjF30qhNvQFErx/1elS3WzIh3HxpVWMqKjOqnB84HSfM8VWRzY8gJrPIcnluegSak99fT133303t912G9lslltuuYXVq1dz++23c9ddd9Hf38/BgwfJ5/M8//zzQLFM48EHH2TTpk3ce++9/OQnP6GxsZGHHnqoyh9N5UXS0Ggsz8+LxmAhFw+hb1hEvdtEZ3+UZfOrn+AUZodxv2uXLFnC5s2b+c///E9++9vfcvjwYXK5YqZMkiQuuOACrr/+ej73uc+ddwKIUDnJE++ib13OkcNJmudIkgJAea/kQ2vz0Oyx8Md3xR2Xmehc9adj1aFOtr4Uar8R1kxsplSpmHfvC2LQSRw5egTzYD8Z2UEhM/lmYKVuIDYRqTh0+zVknQb2v/kKecf4DanPNBO/L4Tad/b40Xw6gZpLozFUv5TKY1V4+dDpiQGSokU2O8iG+tHVtZznncJss3HjRjZu3DjiuccffxyAVatWcfjw2L1+mpub+fd///eyx1fLohmZC4zluRbQGMzkYiEAvE4T7X0iSSGUzoRSayaTiS9+8Yt88YtfJJ/PE4lEyOfz2O12dLq5cxE8E6j5LKnuI9jWXseRF/3ceNncuVsnWxxkgv0Y56+iqa44DilfUJE1k7+QFarn7PrTQCCA1+sdUV8qy/KU60truRHWTGymVMmYn3jlZS5f3cKCRhv9bw/RuHDJpCcQdHV1lbyB2ETYh/L8sT2A2V1PY6Mby4UT/5zNpO+L8RphCbXl7PGjuWA/itU9pQRwqbksCsF4jkyugE4pVidr7V4ygS6RpBCECVBVlXhei9lcnnMejdFKPjYIQL3LxMle0ZdCKJ1Jjz4YGBigp6eHvr6+UUutVVXlBz/4AT09PSULUJicdO8JFJubIVVPaCiP1z53lkQqZzTPNOgVbGYdvX7RPHOmaW5uRq/XD9853rx5M1dddZWoL53jVFWl2xen3mWikEoUm3ZVcUTiZFmMGhLpPKrBJppnCjWjL5Cgzn56skc21I9sqY2bG7JGwmVR6A9nTz9nd5PxVX4llCDMRIX0EHHVgKVcPSlMVvKxIAANbjNtPZGyHEeYmyb0XRsIBPjpT3/Kb37zG0Kh0Ihtdruda665hjvuuIO33nqLxx9/nF/84he8+uqryPLsb9hYa5Id+9F553O8P02LU4emBu6GVIpsdZI9vmv4cZPHzInuMK31ogxpJjhVX7pq1Sq+//3vc//99xOPx7nooou47bbbAER96RwWjKZQZAmTQUvG34fGZK92SJOikSRsRpmo7EAf9lU7HEEAoDeQwGU/3TQzE+xDrqF+KR6bQncwy7y64p1grd1Lxi8mfAjCROQTERIFPSZ9ea7HZJOVfKJ4XdjgKvakONeIWEGYrHGTFO+++y533nknoVBouEnmmcLhML/4xS/YunUrGo0GSZL4zGc+IxIUVZJs34tx4cUc7U7S6NRWO5yK0hgtqJkU+XQSWW8sNs/sDvPhyyq/tFuYmO3btw//+1R9KcDy5cv5xS9+Mer1or507ursj+F1mQDIxYLIxurXzE+W3SgTwoYjcqzaoQgCAL3+OC7rGZM9Qv3o6mun4bTbrNA1mAaKP++K3UPi8OvVDUoQZohYJIIsqWjl8iQNJK0BtVAgn05iMRmRZQ2DkdRwg2tBmI7zJimCwSBf/vKXiUSKy3fe97738b73vQ+v10uhUKC3t5c//vGPHD58mFis2NxoxYoV3HnnneWPXBhFzedI9x7H/r6NHHkrxIXNhvHfNItIkgbF4iQX6Uf2LqSpzswbB/qrHZYgCCXQ5Yvhee/EJxcP1URjv8myGWXCBTN5Ue4h1IhuX5ylrQ6geA6RjwVRzLWzkqLOptB55hhSWx25sE9M+BCECYgEo5iV8o0FlSQJ2WQjHw8i65tpcJtp74uKJIVQEuf9Df8v//IvRCIRjEYjP/7xj/nABz4w6jX/43/8D+688062b9+OJElccsklwyMChcpKD7SjWF1IOgNtvjTXrLRVO6SKky1OssEB9N6FNL73y1IsPROEme/M8aMzdSWFxaghlNWTiw5WOxRBAKB/MMH7VxbHj2YjfjQma1ku/ofyKbYd/yO+RACLzsxljatodYw/Qthr0/L6scTwY0nRIlscZIN96DxilaQgnE8oHMWkFMp6DI3JTi4aQOdufq95ZoS1K+rLekxhbjhv48yXXnoJSZL42te+NmaCAuDw4cP88Y9/BIqNzXbs2FH6KIUJSXUdRFvXykAkhyJLWI1zr+Tm1MkLgMWkQ6to8IWSVY5KEITp6uyP4XUWyz3ysSCyceb1mrEZZQaTEoVsikI2Xe1whDmuUFAZCA7hfq8nRS7cj2It/fjAcCrC7sgBbHoLH5q/jiWuBezs2s2xwMlx3+u2KPhjOXL50+XGynsTPgRBOL9wZAhTme8byybLcOK93mUSzTOFkjlvkuLUlI4Pf/jD53zNv/zLv5DL5bjpppsARk38ECon1XkQnaeVE74UzXOsH8Up8hkTPgCaPRbaesLVC0gQhJLo8ceHyz3y8RCyaQYmKQwygXge2ewQqykmacuWLdxwww1ce+21PPHEE6O2//73v2fjxo18/OMf59577yWTyYyxF+FMg5HUiPGj2WAfssVR0mPkCnm2t+2gUedhgaMVraylzuTisubV7OrdSyARPO/7FVnCYZLpO2PCh2Jzk/F1ljROQZiNwrEkpjIPwZJNdnKRYjPoBreJ9j4xhlQojUmPID3bN77xDe69917+8i//EkA0zKwSVVVJ9xxF62nleH+aBvscTVJYneSiAVQ1DxSzuie6RVZXEGay+FCGdDaPzayjkM9SyCSRdKZqhzVpdpPMYCyHbLaTi/qrHc6MMTAwwMMPP8yTTz7Js88+y1NPPcXx48eHtw8NDfHtb3+bf/3Xf+U3v/kN6XSaZ555pooRzwy9gfjI8aPBfmRLaVdS7O8/hEkx4taNnMZj1ppYVreYVzvfolA4/3J0j02h68y+FA4vGV97SeMUhNkoEs9g0k/7Uu+8NCbbcNLd6zQxEBwim8uX9ZjC3HDe79yWlhYAXnzxxXO+xuFw8IUvfGG45OPUe4TKykX9qIUCstnB8YEUTXN0JYVG0SHpjeSixbszjW4zJ8TSM0GY0br9ceqdJiRJIh8PIxutSJrynniVg80oE0rkio3GxEqKCduxYwfr1q3D4XBgMplYv349W7duHd5uMpnYvn07dXV1JJNJBgcHsdnmXk+myTpz/KiqquTCAyglTFKksikO+Y+zzLN4zO2NFi+yJHMseP6yjzrLqQkfRYrDS8Yvyj0EYTyRoRxGXXlvHssmO/l4EFUtoMga6uxGugbiZT2mMDec9yzvwx/+MKqq8sgjj/Dqq6+e83WvvPIKP/7xj5Ek6bylIUL5pLuPovPMQwU6AhkaHWVe31XDFIuLXLhY8tFYZ+Zkr0hSCMJM1j0Qw+0oXkzl40E0M7AfBYBZryGZKVDQ28hGxISPifL5fHg8nuHHXq93VGmpVqvl5Zdf5sMf/jChUIgPfvCDlQ5zxunxxXHZij9XhWRxibakL11X/v2+ozRYvRiVsSeNSZLEEvcC9vYfplA4951Xj11LR+CMlRRWN/noIIWcKOkRhPOJpMBiLO9NS41Wh6TVk4+HAah3m2jvE+fdwvSdt53KX/zFX/Bf//VfRCIRbr/9dtauXcu6devwer2oqsrAwABvvPEGu3fvRlXV4VUVQuWleo6idTfRH85i0mnKvryrlskWB5lgP8b5q3DaDCSSWWJDGazlLswTBKEsunynl6XnYiHkGTh+FIoXZTajTERjRyvKPSasUCiMmNB0rolNH/rQh3jjjTd46KGHeOCBB/jBD34w4WPs379/0nHt3r170u+phInGdfB4gGa3liNHE8ihXvRaM93d3SWJIa/mORI8zlLzQny+YkLp1P/PJqsSu9v20KD3jLm9kIS2fg1Hjxwdfs6kt7D3ld+TtzVMK86Z/jWstFqNSxhbNC2x1Fj+iYuy2Uk24kOxuvA6TZzsFX0phOk773euy+XiJz/5CXfccQfhcJhdu3axa9euUa9TVRW73c4jjzyC01k787XnknTPEcwXfpA2X5pGx9ws9ThFsbjI+ItNtTSSRJPHQltPhIsvGPsESBCE2tbZH2NpqwMoNs3UGM3VDWgabCaZCFYckfEnGwhFDQ0NI849/H4/Xq93+HE4HGb//v3Dqyc2btzI3XffPaljrFy5Er1eP+HX7969m8suu2xSx6iEycT12O9fYNWKxTS6zcT29ZOta8DbWpqxnkcDbbhSTlobiiXAPt8AXu85xhImZDpCPVy+ZM2Ym5sKKr8+1M+CxYvQKcUbMOHAPhrqzFhXTf1rMBu+hpU0nbjS6fSUEoHC9MRyChbT2CuZSkk228lHfNCynAaXiXePiSS8MH3j3m6/9NJLee6557j11lux2+2oqjriP5vNxmc+8xmee+65mvylOheo+RwZXydaVyNtvjT1c7Rp5imyzUU2fPqOTXFus8jqCsJM1eOL4zlj/OhMLfeA4oSPcN5EPirKPSbqyiuvZOfOnQSDQZLJJNu2beOqq64a3q6qKvfccw+9vb0AbN26lTVrxr7gFYryBRVfMIn7vXKP4mSP0vWjOBpoo3mCqxw8JjfJXJLBRGjM7bJGwmWR6QmenvAh2zxkfB0liVUQZiNVLRDPa7GYJ558napTK5gBGtxmOvtjZT+mMPtNaA2Q1+vlm9/8Jt/85jfp7u4mGAyiqiput1s0yqwBGX8nssWJRmfgxMAgaxbMvK73paQxWFCzafLpIWS9qdg8sztc7bAEQZiCXL6AP5zE/V6Dv1wihL5laZWjmjqrUUMop5CLBc9ZtiCMVF9fz913381tt91GNpvllltuYfXq1dx+++3cddddrFq1iu985zt8+ctfLvY5WLKEb33rW9UOu6YFwknMxjPGj4b70TdfUJJ9R1Ix4tkh6kwTS3pIkkSztYGjwZO83zz2atx6u5bOwQwLvcULLq3DS6rjQEniFYTZKJeIM6TqMZe5JwUUVzCnuw4DYLfoSGfzROJp7JbyJ0iE2WtShUqFQoHf/va3bN++nVAoRC6XG/UaSZJ44YUXJrS/LVu28JOf/IRcLsfnP/95PvvZz47Y3tbWxqZNm4hEIng8Hh566CHsdvs59jZ3pftOoHU3oaoqHYEMN1wytz9HkiShWN3kQv3IDYtocJvYdWjsWlhBEGpbXyCB06pHkTWoqko+Hp7RKymsBplAQgWgkB5CNszc0pVK2rhxIxs3bhzx3OOPPz7876uvvpqrr7660mHNWL3+OB5Hsc9LIZehMBRFNpfm3KEt2EGD2YNGmnhvrCZbPa93v80VzRej0YyeRlBnVWj3p/nQiuLPvuKsJ7N766jXCYJQFA2H0El5ZE35E+GyxUE+EaaQz6KRtTTWmWnvi4oya2FaJtVd8fvf/z4PP/wwe/bsoaOjg56enjH/m4jx5p6rqsodd9zB7bffznPPPceKFSt47LHHJvfRzRHp3uNonQ34Yzm0soTFUN5xQzOBbHGSDfUBUO8y0zeYEHObBWEG6vHH8Tjfu5jKJAEJjXbm3p2xGWUG43lks0OUfAhV0xtI4LK914w27EM2O5DGSA5MxclQFw1W7/gvPINRa8SiNdMTHfuGQr1t5IQP2WynkE6ST4pRh4IwlvBgGLMy+mZyOUgaGdlkJxf2AeB1GunoE2XWwvRMaiXF5s2bUVUVq9XKmjVrMJlMU16qeubcc2B47vnXvvY1AA4cOIDJZBquO/3KV75CNCq+4ceS7juO9ZKrafdnaHCUv4vvTCBbnGQGi0kKrVKc29zZH2Nxi6O6gQmCMCndvjju9yZ75OMhZNPMXUUBxSRFMJ5DbrSTiw6i886vdkjCHNTjj+OyFZN92VB/yfpRhJMRcoUcdv3kf069Fg8nw520OppGbau3K/zm3dNJCknSFFdT+DswzrtoWjELwmwUCkUxyoWKHU+2uskGe9G5m/E6TbSJXnDCNE3qinZoaAhJkvjJT37C2rVrp3Xgseae7927d/hxZ2cndXV1fOMb3+DQoUMsWrSI//W//te0jjkbqfks2cEetM562k/E8Npqq2lmQVVJ5VLIkoxeqdwIUNnmJN17elxZY12xeaZIUgjCzNLZH6XuvX4UxckeMztJYTXKBBN5ZJONnFhJIVRJjy/GhQvdwKmmmaUp9egI9+Ix103pBlaDpY5XO3eRL+SRz1rVYTPKZHMFokN5bKbiNq3DS2ZAJCkEYSyhcAKzVq3Y8RSbi4y/G/MFl9PoNvPCrs6KHVuYnSaVpPjQhz7E888/P2Yviskab+55LpfjzTff5Oc//zmrVq3ihz/8Id/97nf57ne/O+Fj1NK4o3LNlpaj/Zh1Fo6daGdvm4Zme4GursiU99fV1VWSuPJqnpOJHnrTxaVfBbWAXqNjnrGRJqMXienXyJ031kIBY3SQI4cPgkZGyg+x852jOOXKj0WaSXPFZ1KswtzQ7Yuz5L3kYj4eQjPDezhYDBoS6TwFvVUkKYSq6Q0k+JNLio3Ps8E+jAtWlmS/nZEeFjrnTem9ekWPTWehL+ajxd44YpskSTQ4tLQH0qyeV2wOrtg9ZAbEKF9BGEsklqQCPTOHyfY60offAIpT9boH4hQKKpoK9MQQZqdJJSnuv/9+Dh8+zN/8zd/w+c9/noULF2IwjJ6/e2pW+fmMN/fc4/Ewf/58Vq1aBcCGDRu46667JhPupOeel0s5Z15H332BROMCWpYtZfC1dq5d48ZtmVrJR1dXF60lmJEeSUV54cSr2A1W1tVfhllrRFVVQskIJ4LtBJNRPrLw/Ri1xikfYyKxhvucLPQ40Lmb0BjDvL6/r+Jjcmt13vlYJhurmHsulJuqqiMa/OViQWSjpcpRTY9GkrAaZGKyHTkiZskLlZfPFwiEU7hsBlS1QC7iQ7aOPVVjMpLZJNF0HJfRNuV9eCwuOsI9o5IUUJzw0RHIDCcptM4GYntfmvKxhJljvEb7p3z9619n3bp13HzzzQA888wz/OAHP8DtLq4a+vCHP8zdd99dsbirKRRLY9ZNqvXgtCgWF/l4mEI2jUGvx2xU6A8maKqb2X+zheqZ1NVsNBoll8sRCAR46KGHxnyNJEkcPHhw3H1deeWV/OhHPyIYDGI0Gtm2bRvf+c53hrdfeumlBINBDh8+zPLly9m+fTsXXSSW9J0t3XcCxeElkc4TTxVwmavbNDOaivP8sZdZ5JpPi+30SYYkSbhMDpzGi2kLdfCbI9tZf8GHserLd1dUsbrIhvrQuZtodJvo6I+KkX+CMINEExlUleERarlYEH3TkipHNX02o0wEG9bo0fFfLAglNhAawm7RoVU05GJBJEWHRjv6htNkdUcGqDM50UhTPw/xmOt4q2cPBVVFc9bfaq9NS5svNfxYcdSTDXSjFvIla/op1J5TjfZ/9atfodPp+PSnP80VV1zBkiVLRrxm06ZN7Ny5k3Xr1g0/v3//fu699142bNhQjdCrKpzIYjJU7katpJGLq5v8nRiaLqDBbaajLyaSFMKUTSrF9s1vfnN4eoeqquf8byLOnHt+0003sWHDhuG55/v27cNgMPDII49w//338/GPf5w33niDe++9d/If4SyX6WtD62ykI5ChwaGt6gV4Jp/hhROvsNDZOiJBcSZJkljsWkCrvZnnj71EMpsa83WlIFscZAd7AbCYiidk/lCybMcTBKG0un1xPC7j8O+1fDyMPMN7UgDYjBoiBSO56GC1QxHmoF5/grr3VidlQ/3I1tI0zeyO9uI2TW9FhllrRNHIBIdCo7Y12BXaz5jwodEZ0BgtZENixPhsdmajfZPJNNxo/0xbtmzhYx/7GNdff/2I5/ft28czzzzDxo0b+Zu/+RsikamXQ880kaSKxVDZZvqKw0N6oAMAj8NIe9/c+XwLpTep7959+/YBxXnkn/rUpzAajWg0U19KNN7c84svvphf/OIXU97/bKcW8mQCXThcDXQcyuC1VXeyxxtd72I32Gi1N4/72vmOZrL5DH9oe5XrL/jIqCZZpaDY6kiePN2MtanOQltvBK/LVPJjCYJQej3+OHXvTfZQ1Tz5oSga48zuSQFgNciEsgr5eFCs7hIqrjjZo7hyIhvqR7FMv9SjUCjQF/NNuR/FmTwmF93RXurMI5MnHpsWXyRHJldApxTPPbXORjIDJ9G5R08EEWaH8RrtA3zpS18CRvfV8ng8fPGLX2TNmjU89NBDfPvb3+YHP/hB+YOuAZG0hNlUuYb1AFpHA8mOA0CxL8VJMeFDmIZJXdU2NDTQ2dnJ3XffzeLFi8sVkzBB2dAAGoMZjc7ISV91J3v0RPvpj/t4f+vEexosdi3g3f4DvNmzh/e3ril5TLLFRS7iQ1XzSJJMvcvEie4w61aOvcpDqKzz1ZgeOnRoxMqpYDCI3W7n17/+9ZyuMZ1rugZiw0mK/FAUjd6ApJn5Y5YtBpnBBKBRKCRjyKap1/ALwmR1+2K435uYkw32onWPf2NhPIPJEAZFj0GZ/vLyOpOLtlAnlzSObOapyBJ1VoXuYJZF3uJxFIeX9MBJLBd+YNrHFWrTeI32z+eRRx4Z/veXvvQlrrnmmkkde6b13TozSRPLakgmonR1Zc7zjhIr5DGG+jlycB/JpIaj7fFpN2SfrQ3dxcc1vkmd7f3VX/0V9913H3/4wx9EkqIGZAZOonUWL7g7Amk+cmF1TnTzhTyvd73Ncs8SlElcQEiSxMr6Zezs2k2LtWHM2ejTodHq0OhM5CKDaB1eGtxmTvSES3oMYWrGqzFdsWIFmzdvBiCZTPKnf/qnPPDAA8DcrjGdazoHYly4oHg3tVjqMTsu5m1Gma5gBsXiIBcNiCSFUFHdA3HWrqgHiispSjHZoyc6MO1Sj1OcRhvR/hipbBqDdmTSo8Ghpc2XHk5SaJ0NpDrH74MmzFzjNdo/l1gsxi9/+Uu+8IUvAMXkhixPbtVurTTgn4izm58n/uMkCxfWYzZNv9/MZESDx5lnkVm8bDlb336D1RdfglaZ2mrpmdR8fjLEx1U0XgP+SdVqRCIRFi9ezMMPP8zGjRv52te+xv/8n/9z1H9CZaQHTqI4vBQKKj2hbNXKPQ77T2DUGvCY3JN+r1ajZZV3Oa917SaVTZc8NtlWRzZY7EvRVGcWS89qxERqTE/56U9/yuWXX87atWuBuV1jOtf0+OLDtfO5WBDNLOhHAcWeFIPxHBqTXfSlECquN1DsSZFPJ1EzyZL8XPXG+kuWpNBIMi6jg97Y6F4T9XaFEwNnNM90NpDxtZfkuEJtuvLKK9m5cyfBYJBkMsm2bdu46qqrxn2fyWTin/7pn9izZw8AP//5zye9kmKmSg0NkVFljIbKlnsA6NyNpLoPo8ga3HYD3b54xWMQZodJXdV+73vfQ5IkVFXl2LFjHD9+fMT2U0uw5kq9V7Vl+towzFtBfySLxaBBr63cqKFTsvksewcOs7Zp9ZT34TQ6aLR4eL37bT688P0ljA4Uq7PYPHPRJbjsBmJDGeLJLJZKDo8WRplIjSkU74Q8/fTTbNmyZfi56daY1vryzZm4BLAcMefyKoHwEIGBTkJ+CV3XCTTZHKGurmnvu6sE+5iOeBp8YQ0xZ4HQgXdIx8b/3T0Tvy+E2pPK5IgNZXBY9GT97SgWF5I0vXOHbD5LMBlmdcOFJYoSXEYnPdF+FrlG9rhodGh56WBs+LFstqPmsuTiYRSLo2THF2rHmY32s9kst9xyy3Cj/bvuuotVq1aN+T5ZlvnhD3/IAw88QCqVYsGCBXzve9+rcPTVEQ4EMWsy0+obOFVazzyib/4GVc1T7zLT0R9jYZO94nEIM9+kkhRNTaIxUS3J+DuxrP4wnf0Z6qvUj+Jw4AQuk2Pao0SXuBewo3M33ZG+MeejT5Vic5PsKC4F1UhScTVFT4RVS+pKdgxh8iZaY/rcc89x9dVXD/efgOnXmNby8s2ZuASwXDF39kdx24NcuHw5AMGBPciuFgxNrdPab1dXF62t09vHdOULKr/a34ejoQWt2Yh7nM/fTPq+GG/5plBdfe+totBopJJN9hhIBLDrbSjTGD16tjqzk909e0f9bWiwa+kJZcnlVRRZQpIktK4mMgMnUSyXluz4Qm0Zr9H+Kd/97ndHPF67di3PPPNMWWOrRYODYUxyvirHlo1WNAYLmf52PE4j7b0RWNNSlViEmW1SSYrt27eXKw5hkvJDMQrpJLLFQUcghKcKpR65Qp4DvmNc1jh2FnsyZElmhWcJr3e9zU3W61BKNO1DtrrJhfuHm2c2uM209YokRbVNtMb0hRde4Mtf/vLw41LUmAozQ7cvjsd5ehJPPhZE553+5IBaIGskTDoNccWBNSLGJwqV0+2LU3eqaeZgL3IJJnv0RX24DKW9U2pSjCBBJBXFYTy9b52iwWmW6RrMsPBU80xnPen+NkyLRZJCEABCwShmbXWSFAC6+gUMndxDfcOHONQRrFocwsxW+XVAQklk/B1onQ1Ikob2QKYqkz3agu3Y9JZpr6I4pc7kwqq3srevdE2wNFo9Gr2ZXCQAQIPLxPGucMn2L0zNRGpMVVXlwIEDXHrp6RPPuVxjOtd0DcRw2043/MrHQ8izpCcFgN0kE8VKLhqodijCHNLti40YP1qKlRR9sQFcJse093MmSZJwG130xXyjtjU5dJzwne5hpXU2kO47Pup1gjBXBcNxzFWsatY3LCTddRiPXUtnf2z8NwjCGESSYobK+DpQHMU7z52DGertlV1Joaoq+31HmW+f/uiyMy2rW8SRwAmiqdI12lFsbrKDPQA01okJH7XgzBrTm266iQ0bNgzXmO7btw8ojh3VarUjSjPOrDG9/vrrOXDgAPfcc0+1PgyhjDr7Y3icxaaZhWwKNZ9F0hmrHFXp2Iwy4YJRNM4UKqr7vWa0aiFHPjaIMs2VFOlchlgmgd1Q+gSiy2inZ4zmmQ0OLcf6TzfP1LoayfSfLPnxBWGmCkeTmKqYpNAYzMgOL6bwcaLxNEOpbPWCEWasmT9wfo5K9xcne6QyBcKJPC5zZb+UfbEBUMFldJR0vwZFzwLnPN7sfpurl4zfvXkiZKuLTKAb0+I11LvM9A8Okcnm0WlFmUA1jVdj6na7ee2110a9b67WmM41Xb4YFy4s9iLJxcNoTLYx+5bMVBaDhlBGTz4eRlUL025eKAgT0e2Ls2KBi2zYj8ZkRZKnd+4wEA/gMNjQlLAfxSluk5OD/uMUCoURDQCbnVqe33t6qpNsdZMfipFPxmbVaitBmKpgLI1JX92/KYamC0gefROv6/10DcRYNn/6q7aEuUWcFc1QmYF2tM56uoMZvDYFjaayJ++H/SdotTeW5aJhvqOJcCpGT7S/JPtTbB6ygW4AtIoGr9NIR78YRSoItapQUOn1J/C+t5IiHwsiG21Vjqq0rAaZwaECGp2BfFyM0RXKT1VV+gIJPA4juVAfiqUUpR4+nMbydO7XyTqMip5gMjzi+Xq7loFojlS2AICk0aB1N5HubytLHIIw04QTOSyG6t6H1ta1kB+KUWeCDlHyIUyBSFLMQGohT3awB8XupXMwU/GmmYlMkv64n0ZrfVn2r5FkltYt4o2udygUCtPen2Jzk4sGKOQyADTWWTjRLS4KBKFWBSJJDHoZg774uy0fC6IxWqocVWnZjDKBWA7Z4hB9KYSKCMfSxaatBi3ZYB9yKZIU8QGcJV5ReSaX0TGqL4UiSzTYtbSd3ZeiV/SlEASASFLFYqxivQfF5KGhZTm2ZA8dfeLGoDB5IkkxA+XCA2iMFjQ6Ax2BNHXWyv4iOj7YToPFg6IpX3LEY3Kj1+o55J/+SYckK8hmJ7lQcWVGg8vEMdE8UxBqVtdAjPozJnvkYoPIszBJMRjLIZvsIkkhVES3L47XVfy5ygz2okyzaWY6myGeGcKuL9/PptPooHeMvhTNTi1H+87sS9FEuudY2eIQhJkkmpGxmKs/al3fvBRHopO2LvE3Tpg8kaSYgdK+DrSO4iqGjkCx3KNSCqrKscE2mu0NZT2OJEkscy9i78BBUtn0+G8Yh2KvIxPoAqDJYxHNMwWhhnUNxHE7TjfJzMUG0cyyWnObUSaYyCObxIQPoTK6fTHcdgOqWiAXHkC2TS9JMZAI4DTay9KP4hSX0U5gKEihMHKcYpNLx5EzkxTuJtJ9J8oWhyDMJLGcgtVS/SSFRqujoclDZ2+42qEIM5BIUsxAmYEOZLsHgK7BDPUVHD/qiwfQSBpsuvJfMFh0Zhos9bzTf2Da+5JtHjK+TqA44aNrIEYuP/1SEkEQSq+zP4pnRJJido0fBbAaZcKJHBht5CL+aocjzAFdAzHq7Eby8RCSVo9Gaxj/TefRF/Ph0Je3V4xW1mLWGgkkQyOeb3EVJ3yoqgoUG2Sr2RS5WGis3QjCnJHJ5kmrMiZzbUzD8ixaQjqbJxIWJR/C5IgkxQyUGWhH6/ASGcqRK6hYjZX7Mh4fbKfJVl+xLvtLXPNpD3UROqtx1mRpHR4y/i5UVUWvlXFaDXQNiEY+glCLOvqjeN8r91ALOQqp+KzrSaGVJfRaDUOynVzEN/4bBGGaugaK40ezwV4Uq3va++uLD+AqU9PMMzmMDvqiIxN5dqOMRpIYiOSA4upLbV0r6V5R8iHMbaFgBJOUQVZ01Q4FAMVko06f5fCOV6odijDDiCTFDJTxd6I46ukazNBg11YsYZAr5OmI9NBo8VbkeFC8i7LYNZ/Xu94ZvmMyFRqjFdQC+aEwAE0eM8dFXwpBqDmqqo6onc/Fw2gMZiTN7BsZbDfJRCQruehgtUMR5oBufxyPw0gm2IdscU5rX+lchngmgd1Q/hVOLqOd/vjIvhSSJDHPreNwb3L4Oa2rkVTv0bLHIwi1bNAfwKJkqx3GCF6nieN7903rPF6Ye0SSYoYpZNPkY0EUm5vOwQx11sr1o+gM9+A02tArla1za7E1ksym6Aj3THkfkiSh2L1kfcW+FI1uM8e7wyWKUBCEUglGU8gaabgzeT42iGwq/d3aXCGPLxGgJ9pPNBWvysmT3SgTyptEkkIou1QmRySexmkzkB3sRbFNbyWFLx7AaShvP4pTnAY7/qEg+bP6UjS7dBzqPaMvRV0L6a7DZY9HEGrZYCCCWcmP/8L3pLJp9g8c4ZX2N3m7dz+RVOnLMjx1NrpTZlKd0y/fFuYOkaSYYbKBbhS7B0kj0xHI4KlgP4oTwXYaKriK4hSNpGF53RLe7HmXbCE35f0oDg9pXzsAzR4LRztF7aog1JrO/tjwKgqAXCxY0skemXyGHZ27eGrfc+zo3M27fQf43bEX2XzoedpD3SU7zkRYDBpCGS2FVAI1V1t3vmrNli1buOGGG7j22mt54oknRm1/4YUXuPHGG/nEJz7BnXfeSSQixkyfqcdXLPXQSJAL9k17skd/3IfDUN5+FKdoZS0WnZnAUHDE8/PrdBzsPr2SQlfXTLq/DbUw8Qs0QZhtgqEY5gleGnSFe3nm0Fb6434MWj3xTILfHn2Rd3v3lzRxX2/X0q9pIPrO70u2T2H2E0mKGaZY6lFsmtlZwckeqWwKXyKI11JXkeOdzWVy4DDY2Nd3aMr7UBz1ZAbaAWiqM9MpmmcKQs3pHIgN96MAyEcHS9aPojvSx+vhvWQLOf5k/vtY17KGy5pWc9X8K1jiXsju3r38sf11chW6yLEaZQLxHLLJRi4mVlOcy8DAAA8//DBPPvkkzz77LE899RTHj58eTx2Px3nggQd47LHHeO6551i2bBk/+tGPqhhx7enyxfE6jRSGIiBp0BjM09pfX8yPy+goTXAT4DDY6Y+NnILjtSnEUgWC8eLNC43ehGx2kPF1VCwuQag1g+EhTBNoR9ER7ua1rl1c2riSld5ltNqaWOpexPtbL6M90sPr3dMrsz6T16bQl9STOLqbQipRkn0Ks59IUsww6YF2FFsdqqrSE8rgrdBKivZwDx6zC6UCSzvPZal7EUcCJ6a8FE2xusgPRcmnh9DrFJxWA539onmmINSSk70RvM7TXcmz0UBJyj2OBdp5tfMtFplaWOZejE4+fRYnSRJ1JhfrWteQzKb5w/FXKpKosBtlArEcstkuxpCex44dO1i3bh0OhwOTycT69evZunXr8PZsNsumTZuory+O5l62bBl9fX3VCrcmdQ3EcNuNZAZ7kadZ6pHJZYhmYhXpR3GKy2inLza6L8UCj46DPWespvC0kOoWfSmEuSsUS2PRn//yLpSMsKNzF2saV45aEWVQ9KxtWkVfdIDD/uPn2MPkmPUakCTSdRcQP/x6SfYpzH4iSTHDZHwdKI56/LEceq0Go64yX8K2UAcNFk9FjnUuBkXPQtc8dna+PaX3Sxp5xGqKZq+FY6J5piDUlI6+KPWu03d5c9FBZNP0lpW3BTt5u28flzdfjFk+91g2WZJZVb8cNBr+ePJ1CmXuU2E7M0khxpCek8/nw+M5/ffH6/UyMHD6gtXpdHLNNdcAkEqleOyxx7j66qsrHmct63hvrG9msBfFOr2mmQMV7EdxitNgJ5AMUjgreTivTse+rjOaZ7pbRN27MKcF4zmsxnP/bBYKeV5uf52l7kXY9GMnGhWNlksaL+Ld/oPTnq4HxYRivU0hYL+Q+P4/Tnt/wtxQua6LQklk/Z1YL7maLn/lSj0SmSHCySiXNFxYkeOdzzx7M30xH/0pP620Tvr9Wmc9mYGTGOddSFOdmSMdQdavm1+GSAVBmKxCQaXLF6f+vZ4Uaj5HITm98aMDcT9vdL/D2qaLMWtNJDj/6imNpGGVdym7evaxt/8glzReNOVjj8dukgnGc2hMNrIiSXFOhUJhxBQrVVXHnGoVi8X46le/yvLly/nkJz85qWPs379/0nHt3r170u+phLHiOt4RwGtKEek5St5az2BX15T3fzTejhYZn29g/BefYbKvP5seHQfbj2DXnr6wMuZhZ5uGI4fDSBJIqQKmtr1079oFE5h8NpO+hrWgVuMSToskVSxN5673OOA/hk7W0mRtOO9+TFojS90LeaX9LTYsuxqNZnqTBOtsCv2Sl5a+E+QTEWRz+ccXCzNbVZMUW7Zs4Sc/+Qm5XI7Pf/7zfPaznx3zdS+99BLf/va32b59e4UjrC35oRiFbBrZbKfzUBhPhSZ7nAx1UW/xVPSuybloJA0Xei9gV/deVmUvxKA1TOr9irOBoSNvANDisbL19fYyRCkIwlT4QkOY9ApGffF326mmmVMdPzqUTfLyyddZWb8Mq37iNfgaSWZ1wwpe736bRquX+jKtIrMaZCJDeSSjjVxYJCnOpaGhgV27dg0/9vv9eL0jmzj7fD7+8i//knXr1vGNb3xj0sdYuXIlev3EJ1ft3r2byy67bNLHKbex4srmCkSf/g2XrV5O8MRz2C++alo9KXYfOsiyusU4DRO/yPD5BvB666d8TICgJk7eINHaePoGRYuqsv2ED3tDMw0OLaqq4jvxMquXzEPrOH+j75n0NawF04krnU5PKREoTF4ko8FqGft3WSqbYn//Yd7XumbMRO/ZmqwN9EZ9HAu2saxu8bTi8li1dAbzfKDpAhJH3sC25tpp7U+Y/apW7jFeI6xTAoEA//AP/1CFCGtPxt+J1lGPJEl0BNIVm+xRTFJUp2HmWOx6Gy6tnde73pn0exWri3wiSj4Zp7HOTK8/TjorOoELQi042RulwX1mqUcA2eKY0r4Kqsor7W/QZG3AY5p8Db5B0XOh5wJeaX+zbP0pFFnCpNcQUxzkIr6yHGM2uPLKK9m5cyfBYJBkMsm2bdu46qqrhrfn83m+8pWvcP3113PfffdN6OR7LukLxHFa9Wgy0Wk3zUxnM8QzQ9j1pZu4M1Hn6kuxqF7Pns6h4cc673xSnQcrHp8gVJuqqsRzCjbL2GWNe/oP0WCtx6w9d9njmSRJYplnEe/0HSCbn94EKq9NoXMwjaFlKYkjoi+FML6qJSnGa4R1yv3338/Xvva1KkRYe4r9KIp3BjoGM9RXoNwjlo4TzyQq2sV7Ihr1HgJDwUmPDJQ0MlpXI5mBNrSKhnq3iRPd4fIEKQjCpLSf1TQzHwugMU6tOd8h3zHSuQyLXPOmHI/XXIfVYOWdvvLVuNuNMuGChVxUrKQ4l/r6eu6++25uu+02brrpJjZs2MDq1au5/fbb2bdvH9u3b+fgwYM8//zz3Hjjjdx4443cd9991Q67ZnQNxPG6TGQHe1Hs07vhMJDw4zJWth/FKaf6UuTPShou9Oh4++TQ8GOdZx7J9n2VDk8Qqi6aSKOV8uhMplHbktkkJ4IdLHJOrlTaprfiMjo44Ds2rdg8Ni09wSzaxiWkuo5QyCTHf5Mwp1Wt3GOsRlh79+4d8Zp/+7d/48ILL+Tiiy+udHg1KeNrR7F7yOVVfJEcdRVYSXFqFYVGqq0eqxpJ4qL6Zbze/Tb1FjfGCWaFAbSuBlI9xzAuWE2L18rRzjAXLpxet3NBEKbvRE+EBY2nm2Rmwv4pTfaIpGLs7T/I+1rXTPt31/K6Rezo2MVS9wLshuk18ByLzSQTzBlxRYPn7LUgwMaNG9m4ceOI5x5//HEAVq1axeHDh6sR1ozQ0R+lzm4kM3gY2eKa1r56YwOTKvMoJa2sxaIzExgKjijBWlJv4LfvRsjkCugUDfqGhQRfelL8PAlzTiAQxqJJI8mjrw8O+o7RaPWiVyZe1nbKYtd83ux6hwu9S0ZMxpoMo67Y7D+YUtDVtZBs34956eVT2pcwN1QtSTFeI6yjR4+ybds2fvazn9Hf3z+lY9RS/Vspmg1ZTx4k03ARve8cw6zV0N87uVUEE9F1VjOto6E2Gg2eaTe8KodsNIVTtvLCkVe5xL58wu+TMjKGriP4jhxBk0+x450wrZZw2eKcSY2mZlKswuxzsjfK+1c1Dj/OR/3o3E2T2kdBVXmtcxeLXPMmvKT1fPRycarQG93vcu2Sq8Z/wyTZDDLBJEhaPflEBGWK5S2CcC7tfVFavVay7d0YmpdNa1+9sQEu8i4tUWST5zTY6Y/5RyQpjDoNjQ4tB7tTXLLAhGyrQ83nyIUH0DrP3xxQmBkm2sPu61//OuvWrePmm28GoLe3l3vuuYfBwUEWLlzI97//fczmqZc71Tr/wCBmJTfq+Ww+y9FAG1e0rpnSfs1aE26zi8P+E6xuWDHl+Lx2hc7BDMsbFzN0bJdIUgjnVbUkxXiNsLZu3Yrf7+dTn/oU2WwWn8/HrbfeypNPPjnhY0y2EVa5lKIJkqqqtP/hIZpXX0Z/R57muiitrdO7I3K2rq4uWltPLwOLpuJkQzkWNsyvuZUUp5pw1al1vNmzh6guyUX1Ez9xCvXvZ6HXjsvbyr//7lDZmlTVagOssUw2VtEISyiloVSWcDyF215MLKiqSi4anHQH8OODJ8nkM7Tam0sW2zx7E6917qI3OkCTbXrN/85mM8n4o1lki4NcxC+SFELJdfbHWLOsjuzbfZgvvHLK+0lkkqSyaay6yvejOMVptNMT7efixpHTxhbX63mzLcElC0xIkoS+YRHJk3tFkmIWONXD7le/+hU6nY5Pf/rTXHHFFSxZsmTEazZt2sTOnTtZt27d8PPf+ta3uPXWW/n4xz/OI488wqOPPso999xTjQ+jIgYDYSza0aOz20KdOIwOTNNI3C90zOPtvn1c5F2KPMVm1nWWYl+Kiy9YQuiPT4nVTsJ5Ve3Kc7xGWHfddRfPP/88mzdv5rHHHsPr9U4qQTHb5CJ+JK0ejd5ERyCDx1qZUo8Gi6fmEhRn0kgyq+tXsHfgEIFEcMLv07mbSfccpc5hJJnOEYymyhilMJYtW7Zwww03cO211/LEE0+M2v7jH/+Yj3zkI8M15qde09vby2c/+1muu+467rjjDhKJRKVDF8rgZG+URrcZ+b0xZ4VkHEmS0OgmflKVyqbY3buPCz1LS/p7SyPJLHEtYHfPPlR19AngdNiNMv5oDtksmmcKpZfN5fGFhnBqhpB0RjSTnIh1pv64D7fRUdVzApfRzmAyNKqZ7fJGI2+1JSi89/Opa1jI0InJN9cWas9Eetht2bKFj33sY1x//fXDz2WzWd566y3Wr18PwM033zxm77vZJBBKYD7r8kBVVQ75jjHPPrlViWez6s1Y9GbaglMfX+y1aekIZFDsHtRchly49lZpC7Wjan9pxmuEJYyU8XWgdRbv4HX4M3gq0DTzZLiThjKN3islk9bIhZ4LePHkTlLZ9ITeo6trIdV1GEmSmNdg40jHxBMcwvRNZLrP/v37eeihh9i8eTObN28eXt556s7I1q1bWblyJY8++mg1PgShxNp6IiMne0R8yGbHpPaxu2cfjVYvtjJMHmiweMmqWboifSXdr90k44/lkE02chHRPFMorR5/ApfNAOFetNNsmtkT7cdlcpYosqlRNFqsOjP++OCI591WBYNW4lh/8RxA37iYVMd+1DJN5hEqZ6wedgMDIy9uv/SlL/Gnf/qnI54LhUJYLBYUpXi+7PF4Rr1vtgmEk1gMI1cm+IcGyRXyJWmAP9/ezAH/kSkn6712LZ2BzHurnRaTbNsz7ZiE2atq5R5w/kZYZ2ppaWH79u2VCqsmZXwdKPbiL+nOwTQfWFbe5ZaRVJRULo2jSg2yJqve4iGSjvLSyZ1cu+QqNJrz598UVz25fS+RT8Vp9lo4eDLI+1dNL8ssTNyZd0aA4TsjZ07y2b9/Pz/96U/p6enh8ssv52//9m/RaDS89dZbPPLII0Dxzsif//mfz+rlm3PF8e7wiCRFNuKfVKmHPzFId6yfD8wrT3mVJEkscS3g7b59tNobS7ZE1W6UGYzlkM12suKuklBi7X1R6l0mMv7DKLapJylUVaU35uN9zdVvZO40OuiL+2i0eUc8v7zJwI6jMZY1GpCNVmSLg3TPUQytU6+hF6pvvB525zLW6yb7e3umlbT2BuIsMKVH9Jc7GDuOQ7bi95dmpV46k2HfyYM4tZNvJJ0rwEBEw8FDRzGoeiLvvMwxzv97abb2ShMf1/iqmqQQJi4z0I7iamQonSeWKuA0l3f818lQNw1mz4yqFVviWsg7/Qd4o+dd1rVcet7YJY2C9r2Sj/n1i3h1T28FIxXGm+6TSCRYsWIF99xzD/Pnz+fee+/l0Ucf5bOf/eycuzMyVxzvCrPhgwuHHxdXUkwsSVFQVV7vfIcL3AtQNOUrhfOY3JwIdtAd6aPVUZqkpkmvIZtXyRqc0FO+UafC3NTRF8XjNJLp68K07H1T3k84FUGWNNOqaS8Vl9FJe7iTNawc8fzKFiM/fy3I5/+kDo1GQt+4hMTRN0WSYoYbr4fdubhcLmKxGPl8HlmWJ/y+M9VKb7uJ2L17N0N5LY1ex3B/uWw+yx/37+ZP5l8+5akcZ0vpcgSyYVa3XjSl97uP+TB7Gmhu9TL4/D+xbM2ac56vz6S+bpMhPq6i8XrbiSTFDJHxdWBcdDEnBjPU2xU0ZU4enAx1styzZPwX1hCNpGF1/XLe7H6XA75jrBynkabO00qy4yAtf3Ix7X1Rsrk8WqXys9/novHujJjN5hGrqr74xS/yjW98g1tvvXXW3xmZidn16cacyRXoDcSIBns4Ei5+PU297eRc88h3jV//2pv0kc6mUZISvuT4SavpTCtya+y82fkuxEq3jNyi03CgO8Z8f9c5P5cz8ftCqL623gjLmq3kj4VQrFNvtt0d7aeuyqUepziNNt7tj5LJZ0ZceNVZtVj0Gg70JFnVakLfsozom7/B/bHPVzFaYbquvPJKfvSjHxEMBjEajWzbto3vfOc7475Pq9Wydu1afvvb37Jx40aeffbZEb3vZqNwWoPNcjpR3x7qwWV0lCxBAdBk8/Jy+5sksskpTdDy2ot9KeYvdyApOrKBbnSe1vHfKMw5IkkxAxRymWLXd7uHzu4EXlt5m2aGkxGy+SwO/eSXclWbVqNlTdMq3up+F5PWwCLXvHO/tq6FxOHX0ZLF4zRyvCvCioWlnZgijG28OyO9vb3s2LGDW265BSgmMRRFmfV3RmZidr0UMR9uD9JYF+XC5cVRwqqq0v/OL6lbtHTcxpmZXIbXDr3DmqaLsE3gd9apyUBT5VG9+Lt2Idu1NNlKMznA0zWIvn4JSvfzrBnjrtJM+r4QU39qS0dflA+0qihWN9IUO/IDdEf6aC7R9/t0yZKM02BnIBYYtaJpZYuR7QdirGo1oXU3kU/FyQz2TnqUsVA7zuxhl81mueWWW4Z72N11112sWrXqnO/dtGkT9957Lz/5yU9obGzkoYceqmDklZXLqyTzMlarafi5Y8E2mq2N53nX5CkaLY0WD8cCJ7nkrCk7E+GxKnT407Dcis47j1TXIZGkEMZUu2MbhGHZQDeyrQ5JVjjpT+Oxlje31BbqwmuZWaUeZzIqBi5tXMUb3e/QFTl3GYdGq0dxNpDqPsK8BisHTgYqGOXcNt50H4PBwP/5P/+Hrq4uVFXliSee4JprrhlxZwSYE3dG5oKjXSEa60732Skko0gazYQme7zTdxCPyT2hBEUpSJLEAkcLe/sPl2yfNpPMYFJCkhUKQ9GS7VeY2+LJLPFkFlOiB3kaTTMz+QyDyVBJGu+VitNopyfWP+r51fOMvH0yQSKdR5I0GFpXkDi0owoRCqW0ceNGfv3rX/P8889z++23A8UedmcnKL773e9y8803Dz9ubm7m3//93/ntb3/LP//zP2O3z4w+a1MRG8ph1qSRDcUkRTydIJKM4jGXfgVUi72Ro4NtFAqTb6DptWs56c8AoKtrJdkhktrC2ESSYgbIDLSjdRbvFncEMtTby7eSQlVVToY6abTW/lSP87HqzaxpWsmrHW/RHT13N36ddz7Jk/uY32Bj34nBc75OKK3xpvu4XC6+/e1vc8cdd3Ddddehqip/8Rd/ARTvjDz99NPccMMN7Nq1i7/+67+u7gcjTNuR9hAtntNJimyoH9ky/qqmUDJCW6idC9wLyhjdaI1WL9F0jMFEqCT7sxllfNEsstUlmmcKJdPeG6HRbSbr70DrmNyKszP1Rn24jA4UTe0svnWbnPRGR/+smPQyi+sNvHwoBoChdQXxg69VOjxBqLhoLIVVk0KjFEs72kKd1Fs8aKTSlzHb9FZ0spbe+OhE4Xga7Aqdg+8lKbzzSXWVLuEvzC618xdHOKf0QDuK3UNBVekOljdJERwKU1BVbDpr2Y5RKXa9jUsaL+KV9jf5wLy1zHM0j3qNzjOPoSNv0Hqpluf+GKRQUNFoZuYKkplmvOk+69evH55vfqZTd0aE2eNIZ4hLlp5OjGaD/cgWx3nfo6oqr3e9wyLn/JLW206ERpKZ52hmn+8wH174/mnvz2GS6Qlmke3O4tz45vP30xGEiWjvi+J1Gsn29WCeRtPM7kgfbmNt9KM4xaazks6nSaSHMOtNI7atXWTid+9GuO5iOzrvfPKJCJlAN7q6lipFKwjlF4sksCqneyW1hTpZ5l5UtuM12xo44m+jxTa5chKbUSabLxAeymG3uVGzKXLRQRSbu0yRCjOVWEkxA2QGTqI4G/BHcxi0Goy68n3ZipnXuhlb6nE2p8HOmqaV7OjazbHAyVHbNVod2roWtIGjmIxaOvrFUmtBqKRIPE0kkcbrPH2hkQ32jbuSoiPcTTKbpNVenVrzFlsDvdEBEumhae/LYVKKKynMdrLh0oyJE4QT3RHqjHk0euOESqfGUiiodEV78Zpr6wJCkiRcJteYJR/z3DpkWeLd9iEkjQbjgpXE9r5YhSgFoXKisRQWfbH8IpSMkMllcBjKV97SaPHSH/eTzCYn9T5Jkmi0a+nwZ5AkCZ1nHqmeo2WKUpjJRJKixqmqSsbXidbZQLs/TYOjvE0zT4Y6abRMvalcLbLrbVzevJp3+g/wdu9+CurIGjp9wyKGjr/DwkY7+0XJhyBU1JGOEPPqbSNWMGVDfSjWc9+5zeazvNn9Lis8S9BI1fkzpmi0NNsaOOCb/smV0ywTiOWQzQ6ywXOXpwnCZLT1RqhTg2idU/+b7h8aRC/rMNbA6NGz1RkdY5ZzSpLEuiVmfvlWCFVVMS68mPi+l1ELpZvIIwi1JhLPYtUX/x6eDHVRby1vbzlFo9Bg8XBssH3S7y1O+EgDoHU3k+o6WOLohNlAJClqXD4WBElCNlpp96fx2MpXoRPOxpA1Cla9uWzHqBaz1swVLZfQFenlpZM7yOazw9u07iby8SAtDthz3F+9IAVhDjp4cpAW7xlNMzNJCsk4svncd4De7j2Ay+TAWeVGfvMdzZwItpPJZ6a1H7NeQyqrkjO6yIUmX+MrCGfL5Qt0D8RwDHUg26eepOgM9+A1T73pZjnVmVz0xfwUCoVR2y5qMRJK5DnQnULrrEdjtDJ0/O0qRCkIlRFJFrAZNaiqSluokwZL+XvLNdnqOTZ4ElWdXANNr01Lm++9JEVdC6nuI+UIT5jhRJKixhWbZhbHfrX5MzSUsR9FX9o/4xtmno9e1nN582pUFbYcfoFQMgyApJHRNSyiPtnGgRODU+pWLAjC1Ow/MciCxtOTObKhfmSr65zjEgOJIG2hDpa6F1cqxHMyKAZcJhfHAu3T2o8kSTjNMkHVJhpnCiXR7YvjsOoh0DHceHuyVFWlPdxNvaU2kxR6RY9ZZ8SfGL0CUiNJ/MkyCz9/bRBVVTEtuYzIm7+uQpSCUBmRtITdrCM4FEatUG85x3tTtXzxyU3Ha3RoaX9vwoe2rpmsvws1lx3nXcJcI5IUNS7V34by3lLNDn+6bE0zC4U8/vQgjdbZVepxNo0kc5F3Kf8fe/cd31Z9L/7/dbSHJctDsrztxImzd0gIe4YsNrcttNAyWjou93K/PygFestoC6VQKBRaoL2lLaEFCkkIhSSENIEMMpzpxI7j2PHeU9Ye5/eHiYNjx3YcW5Ltz/PxyOMR6ay3ZOnoc97n83l/suLSWHdsM/l1RYRCMtrUCagr96LTKkVdCkEIE68/SGlNG+lJpxpT/qZqVKbe61GEQiG2lu8mN3E8GuXwDn0bqExLKgUNx845uRlnVNHo1xF0tovGmnDOSqpasceqQKlEqR/cxUqzq3P2mhhN9PauTNTHU97e+1Tj09P1eHwhdhxzos+ahq+hHG/difAGKAhh0upTYzHrKW2tCFttOUmSOgtoNpWc1XZWs4oGRwCvP4RCpUEVa8Vb17NunDC2iSRFlPPVlqC22HG4gzh9IeKNQz+VEEBley06hQ69Sjcs+482KSY756XNobS5jI+PbcKhkFDqzWSaZQ4Wn11GWBCEwSkqayE5wYhWfeq85msoR2nuvUfXwboCNEo1yTGDn05xqFl0ZtRKNeVtVee2H4OS+vYgyhiL6E0hnLPiilYSlE40X/bEHIySMF7sDJY1Jp6K1t6TFJIkcfUMM3/5vBFPUIExdwGt294Lc4SCMPzc3gD+kAKjUc+JloqwDPU4KcWUREVbDb7AwIc9KhUSNvOpqUjVCSl4q48NV4jCCCWSFFHOV1eKOt7OiUYvKRb1sDUWiptOEK8evirA0cio1jMvdSY2YwLrjm2mXKfC5i1h71FRXV8QwuHAsYZuQz0AfI1VqGN7di9vcjZT0FDMFOuEqLtoyrSkcLjh3ApoxhqU1LX5UZniCbSIJIVwbooqWkn016C0DC5JEZJlSlsqoioh2BuzxoQv5KfN4+h1eWailmyrlr9+3ohh4nzcJw7hqy8Lc5SCMLzqm52YFW7apc7isCZNTD9bDB2NUkOiIY7S1oqz2i4pVk1p/VeLZxYOR3jCCCaSFFEs5HESdLahNCVQWj98Qz08fi81HfVY1MM/fi3aSJJEemwqF2TMp1GvJ8F1jIPFdTQ6WyMdmiCMegeONZCdcio5GnS1Q9CHwtA9ceEPBdhyYie5iePRRWFvL5vRitPrpNHZPOh9xBmV1LT6UcbE4W8RM3wIgxcMyZyoaSfOUYwmfnBJigZnIypJGdVDPaDzN9xmSKCirffeFABXTTezt9TFvsoAMVMvonHD/511oT9BiGa1tc2YFW5KHTXYItD7KdVs52jD8bPaxh6r5vhXkhTemuLhCE0YwUSSIop560pRxycjKRQcH8YkRWlLOVZjAsoITeUXDTRKNZNsE9EnJ2NSurjv3Rf43RdvUNx0QjRmBGEYuDx+Smvau/Wk8DWUobLYezSwvijfi0lrJCVKa+YoJAXpltRzmo403qjq7EkRE4ev6cwXXILQn6p6ByatAr1eg0I3uCRDcdMJ7MM8heFQscUkcqLlzHdxdWoF18+38Mon9bQnzSTQ3ojzyLYwRigIw6u2ppEYVZCylsqwDvU4KV5vwRPw0uRsGfA2yXFqjtd1JilU5kSCznaCrt57RAlj09i9Kh0BvDUlqOOSASip95JsGZ4kRVFTadQ2/sNNYR9PttTILO2FaJRqntv+Gv/98WO8d/gjahxiGIggDJX8402kJ5nQfLUeRV0ZqtjuDayjjcepdzYy2TYx3CGelTSTnar2Wpw+96C2jzMqaewIIMUk4G8WSQph8IorW7HrvKjjUwa1fSAUpKy1ihTT4OtZhFO8PpZ2bwdOn+uM62QkaLko18TTa+tRzlpO4/o/Ip1hiIggjDS1Da3oVZ0Fl8M51OMkhaQg1WSnqHngxS+TYtXUtPrxBUJICgXqRNGbQuhOJCmimLf6GKp4Oy5viBZnEKtJNeTHaHa14A14SdDHDfm+RyStnrTYICVFbVyQOZ8fnncH1+RcSmlLBT/99Nf8z8dP8E7+Wspbq0QPC0E4B7sLaslJ614Hx1tX2jWbEUCdo4G91fnMSp6KShqeosFDRa1Uk2xKoqBhcMW/1CoFRq2SdqUFf7MY7iEM3tGyFuKD9ajjkwe1fVlLBRa9GZ1KO8SRDQ+FpMQWk8CJlso+15s/3sg4m4Zffy4hjTuPmH3viZl0hFGhtsmFSuWJyFCPk1Jj7ZQ2l+MPBQa0vlopYTWrKG/8snhmfDIeUTxT+AqRpIhi3toS1PHJnGjwYo9Vo1AM/YnnaFMpqaae3avHsqRMK40OcDp9SJJEhiWVJRMv47/Ov4srx19IVXstv9jyEv/10WO8m/8h9b3M0S4IwpnJssyeI3VMTD+VHA16Ogg627umH21xt7GpdAfTkyZjVBsiFepZybSkcqyxBH9wcBc+CTFK6v0Ggs5WcfEkDFpBaSNWfzXqQc7sUdhYQqppcAmOSLHH2ChpKe93vSummkkwKXmuMJsO9NSvfgE5FAxDhIIwfOrbAwQVzogM9ThJp9IRp4/lRPPAC2gmW06rS1F1bgWohdFFJCmiVMjjJOhoRhVrpaTei90y9L0o/KEAJ5rLSY0dGV06w0VhjiNV207xnu5FgBSSgkxLGlfnXMJ/LvwOyyZeTnlbNT9e/0t+vvlFDtYWiN4VgjAAJ2rakYGk+FPJB19tKap4O5JCSZunnU+KPyM3cRyJhpHTy8ug1hOvt1DcdGJQ28cZVdS1B1HFxOFvqR3a4IQxwR+QqazvIDnRiKQ8+3ZDi7uVDp8Tq3HkfO+gc0x8h89Ju6ejz/UkSeKaGbGkxmn4be0iqpuc1P3zGUJ+b5giFYShV+8CSeONyFCPr0o12ylsHHgBzWSLmqIaDwCahBS8NcdFO1roIpIUUaqzF0UKkkJJUa2HZItmyI9R2lyORR8bldXyI0qSSLWqKDxy5hoUkiSRFpvMNRMu5b/Ov4tMSxqv7lnJIxuf4ehZnKAFYSz64lANkzLju/Xg8lQeRROfTJOzhXXHtjA+PnNE1srJiEvjcH0RodDZN7TijCqqW/yozIn4RfFMYRBqWnwkanwYEwfXE+JI/THSzHYUUT686nQKSUGyyUZx84l+15UkiSummZlkk3m2fC5HWnRUv/ETMcxKGJEcLh+hkIzeYIh4r+hEQzxuv5umAc50lRqn4VhtZ4JQYYgFWSboEL2ThU4iSRGlvNXFqBM6GxnH67ykxg1t0UxZliloOEZ67OAKa412GZmxFDosyA1V/a6rVqqYkzKNe+d/k6m2iTy79VVe2fmXPot4CcJYtvVANVOy47sey3IQb00xdWolG45vYVJiDqnmkdXd/KQ4XSxqpZrytv7PHadLiFFS1eJDaYrH13T2249ma9euZenSpVx99dWsXLnyjOs9+OCDvP/++2GMLLpUNXqwhhrQWNPPeluP38OJ1irSYkfmdy/FZKe4qXTACcJJNpnr58fxx/IcNgXnUfl/D9G2Zx2yHBrmSAVh6FQ3dGCRXBh0ke/9pJAUpMUmUzjA6UhtZhUtzgBObxBJktAkpom6FEIXkaSIUp6qo6jjU3C4g7R7giQMcdHMBlcTvmBAFMw8gxi9ihitTOX2vQPeRiEpmJU8le+fdztOv5v/t+5JKt11wxilIIw8FXUO2jq8ZH5l6lFHTTEuQuxqLGJuynSSYhIjGOG5y7Kkcaiu8Ky7rSbEfNmTwpSAr7H/8fVjRV1dHc8//zxvvfUWq1ev5u2336a4uLjHOvfeey/r16+PUJTRobyyjRRjYFBTjxY0FGOPsaJVjoyCmacza2PQqDRUOQbeIyLbquWuSxPZ0WThr+pbqN+zkeq//VT0qhBGjH1FhZiVLrRRUrspzZzMibYqPAMYQqVQSKR8dSrSODtekaQQviSSFFHKW12MOjGN4joPaXEaFEPchetwXREZsSkR7xoWzdLtWo6UB8DZdlbbaVUalk68nKtzLub9mg1sLP58mCIUhJFnc14l03MSUUgS3oCP7eV57Nm9mlZjDOenz8WsNfe/kyhnNSbgDXipdTSc1XZxRhXNHQGIScTfKHpSnLR9+3YWLlyIxWLBYDCwePFi1q1b122dtWvXcsUVV7BkyZIIRRl5sixT0RzslgAcKH/QT2HjcbLi0oYhsvBJNydzpOHspjGMNai446JEQgotzzVeTmvMOKr+/GPadn8kxscLUe9wyXEMqugptKxRakgyJnBsgNORpsRpKKzurEuhTkzFWyWSFEKniCYp+uu+uXHjRq677jquvfZafvCDH9DWdnYXiyNVoL0JOeBHGRNHUY2HlCEe6tHhdVLjqCfVLApm9iUrScXBQDbKQ9sHtX1u4niuSFzI+wUf8/eDa0RjRxjzQiGZjXvKiLV6WF2wnud3vE5x43EmegIkpk9DpRj6AsGRoJAUZMalcbCu4Ky2Uykl4owqmqQ4/E3V4pzxpfr6eqzWU1XrbTYbdXXde6ndfffd3HLLLeEOLarUNjggFCQx/eyHehQ0FBOvjxsxM+mcSbLJRrOrhRb32bUXVUqJ5bNjmZFh4Jd7bTTMvJ32vPXUvfs0IY9zmKIVhHMTCoWorXdg0Uc6ku7SLSkUNBwjFOp/6FR6vIaCajcAmoRUvLUlYsiVAEDEWoQnu2++//77aDQavv71r7NgwQJycnIA6Ojo4LHHHuO9994jKSmJ3/72t7z00ks8+uijkQo5bDzVRagT05AkiaM1XqalD+3Z53B9Eamx9lFzQTBcEk3glTQ0HS7EMvdyUJ99F1iTysi3Z/8Hbx1cjSfg5duzbxG9V4So5/F7ONpUwvGmMsrbqqjraKTV04bT78YX9HddPKsUKhRIxFS/h16lQ6/WYVDp0Kl1qJVqlJKCoBzC4/fQ5nVQWRmg1ZfFkbZjpJiTWJF7FTHN9Ui6amR9ZKuSD7VUUxIlzeU0OZtJMMb3v8GXEk0qqjsUZKk1BB1NqMwje+jLUAiFQt3Om7IsD/l5ND8//6y3ycvLG9IYztWhAyewazqoaVJD08Av0oNykEPNhUwwZFJfP3xDFIdz31+VoI7li5K9TDPn9LtuRUX36RKTNbAwHX69Mcj1ky9iTlsejj/cT8e8rxPSxw5XyD1E22frpGiNa6wqaCzG5zESlxRdNdBitWb0Sh3lbVVkxfWdNE1PULM6z0soJKPQGlDoYvA3Vg2qro4wukTsKvWr3TeBru6bP/rRjwDw+/387Gc/Iymps7p7bm4ua9eujVS4YeWpKESTmEpIljle7+GaGUPX/dnj93K8uYxFGfOGbJ+jlSRJZCcp2e+exBVH9xCcdsGg9mPUGPjWzBt588AqVh5YxTdn3TjEkQrCuXP6XOyoyGNr2W6ON5eRbLKRYk7CakwgN3E8Jq0Rvaoz+SBJEsidFzcFRwtIz87AG/DhCfjwBr34gwECoQAhWUYhSahj1BjVejYeDTB5ip4pOZO7jqssPUzQNvoaIwpJSaYllQO1BVw+fuDnjvgYFZXNPiZYbPgaKkSSArDb7ezZs6frcUNDAzabbUiPMW3aNLTagSei8/LymDt37pDGcK42bDxCkkki/Sx7UuyvyccWk0BG0vB9D+vr67DZwjNbT1wonq1luzBbY4nVnbn9VFFR0et7lZ4OWak+/vFFM3EXrGC+dBjN3r+TfNvjaBKGv9h4NH624Nzi8nq9g0oEnrR27Vp+//vfEwgEuOOOO7jtttu6LS8oKOCRRx7B6XQyb948Hn/8cVQqFatWreK5554jISEBgEsvvZT7779/0HFEm89O7MLpM2Ix+WiPdDCnybCkcajuKJmWtD6TygatEpNeSXmTjyyrtrM3RfUxkaQQIpek6K375sGDB7sex8XFcdVVVwHg8Xh47bXX+Na3vnVWxziXE+JQO5vss6lwD77kaVTlHUOrUNDcUM3AJvPp33FnOWZlDO3Nrb2e0MJ1p2MohCNWi1rFngY7V+z9F0WqeJDOfoRU0dGjACwwTuPT41/Q3tjGgrgZQx3qkAjnXZL+Gh0bN27kpZdeQpZl0tLSeOqpp4iNjR31jY5wq+1oYHXBenaU5zE+PpNpSblcN3kxGmU/w8wkUKBAp9QSp7f0e5yWNj+VVSVcMOfURbfU1oTkaEIeH53fh3OVHpvCZyd20uJuI26Ad2ETTSoqmnyorFZ8DRUYxs8e5iij36JFi3jppZdobm5Gr9ezYcMGnnzyyUiHFVVCXjeFjUounXh205W7/W4K6otZkD5nmCILP7VCTZYlgz1Vh7jiLBKEX5Ucp+FbFyawclszofOnsnCqjpo3/5eU23+OOk4MlQ2n/npeAzzwwAP8/Oc/Z9asWTz88MO888473HrrreTn5/PQQw+xfPnyCL6C4eEP+vmiJB+JeeiMBto9vkiH1I3NmMCxphLqOhqxm6x9rpuZoOFIlZssqxZ1fDKeqiJMMy8PU6RCtIpYkmKg3TcdDgc//OEPmTRpEjfccMNZHeNs74wMl7PJPof8Xso2NpM2ewHHj7jJtrtIT7cMSRzegI+th/NYkD4Hg7rnEJJw3uk4V+GKNdEqs7cyQLMqiUnaIKHsyf1v9BVFR48yMTe363GmJ4s/73uH2bkzOD89uu6UnO1dknO5M3Iuw71Gc6MjnFo97fzj0AfsrNjH3JTp/GDB7cRozn5GgIH6fHcTE7ONaNSnEn2qor2EkrNBoRy240aSUlKSZUljf80RLht3/oC2sZlV7C11osqx4q0rGeYIR4akpCTuv/9+br/9dvx+PzfffDMzZszgnnvu4b777mP69OmRDjHiTuzaglfSEhtzdsNg9lbnk2K299omGMkyLSlsL8+joq160FOtJ5rUfPOCBP66tQnNxTnMnhKgZuXjpH7naZTG8A39GOv663ldVVWFx+Nh1qxZANx44428+OKL3HrrrRw6dIgTJ07w6quvkpuby09/+lNiY0fH325fzWFMsh2dogMMFoiyJIUkSWTGpXGg9gh20yV9rpueoCG/ws3SWRbUiak49m0MU5RCNItYkmIg3Tfr6+u56667WLhwIQ8//HC4Q4wIb3Uxqjg7kkrDkapm0oawaGZ+XSG2GOuoa4wMJ4UkkZ2kYK9qBosPbMGXPe2c9mfWmfjatBW8vuctkoyJjIvPHKJIR5ZzGe41mhsd4RCSQ3xS/Dlv53/AjKTJ/HDBHejVumE9ptMVYG9+Gzdcc+oOpKKxGqm1nuDMvhsvI116bAqfl+0acG+KRJOK2rYAUqwNf+mBMEQ4MqxYsYIVK1Z0e+7111/vsd7TTz8drpCihizL5O08QGZ8LpI08IJzTa4WytuquTBj/jBGFxkKSclk6wR2lOdhnRSPbpDnuASTitsWxfN/Wxq57+qpjEtvp/adp0j51pNIqqEtai70rr+e16cvt1qtXYV1rVYrd955J3PmzOE3v/kNTzzxBM8999yAjx1NPbJPt7r6EwxtiUgKF/XNnXWioq03tAYlza4WDpcUYFafue6Uxg+HKxQUFhahkAPENFaRt+sLUKpHbR0U8br6F7EkRX/dN4PBIPfeey9LlizhBz/4QaTCDDt32WE01gxkWaag2sNtixKGZL8uv5uixhLOz4iuu/cjwfgkie1HzSw2O1DUlRFKOrfEgt1kY+nEy3lm6x/41dU/6XPM7Gh1LsO9RnOjA4b3h6s94OTD2n/jDnm5OHYusUETFSVl57zfk0OazmRXfghbHLQ21tAKSMEAGUVbaU5Ix9PYeM7HP1vhbshZ1XFsP76bGbG5/a8M6NUK8so6GNdYRd7uXaBQjtoGjXDuvFVFHG4zkT0xFmgZ0DYhWeaLir3kJGSh7m9o1wiVYIjDbrLx79IdXJVzMaoB9tjy+L3UdtTT7G7DE/CgklScn2vht+trefT6RcQ71tKw7jVsy384zK9AgP57Xve1/OWXX+56/u677+5qVwxUtPTIPp3D20HViTfJlSaBvgqbLSlqe0N7NQFqvA1MTe+7J/KnJfXoE+1kJmppLNvO1ORYDte7orI+y7mK1roz52qoe2RHLEnRX/fN2tpajhw5QjAYZP369UDnyeIXv/hFpEIOC09ZPvpxs6hvDxAMycTHDE036H1V+aTG2tGphveO6WiUFCvh9UOldRZpBz7Dd/XZ1UbpzWTrBGoc9Ty//Y/876X/jUIR0dmAw+5chnuN1kYHDO8P176afFbu/AfzUmZyQeY8FIOor9Kb04c0na6t3U/xxyXceI0do0EFwSDq3eshwY45K5dwp+gi0ZBLkBPZWrYbfbyRxAHM9JFW3Ywi1o7aFMf0zCQOVTSOmAbNuRbIE85eyxdrKfKP54IkHR0DLGBV3FSKPxQgzZQ8vMFF2IT4bA7WF/Lp8c+5NHsRWlXvNTv8oQDlLZUcazpBk7uFeL0FkyYGjUpNUA7hkMsxW2QeX+Xn8RsuI2b3u7Tv24h59pVhfkVjT389r+12Ow0NDV2PGxsbsdlsOBwO3nvvPb797W8Dne0MpXJ0DC3cVr6HnIQs6gsDTIryWYPTYu1sLaugwdmE1XjmG6/ZVg2Hyt1kJmrRJKbiqSoCdVoYIxWiTUSvjFasWMGHH37I+vXrueeee4DO7pvTp0/nqquuorCwkDVr1nT9G+0JCjngx1tTjMaWzpGqzi/qUEyz1uxqoby9mmxLxhBEOfZIksR4u4I9rkwUNSVIbUNz5/fS7PPxBHy8nT82Zq35qtMbFWca7nXrrbeSm5vb9d13OBy88cYbXeuMpkbHcJFlmfcOf8TLO//KTVOWclHWeUOWoBiIj7fUMzknpjNB4fOg3rUOQiGCmVPCFkOkKSUl4+Iz2FN1sGv61r5YTSpKG7yo4pLx1paGIUJhpPK31FJSfAKNVk2ccWD3ndx+D3nVh5hinTDqp8SWJInptly0Kh1rCtZTUHcMh7eDQCiIJ+jlREsln53YyTuHPuRoUyl2k5VLs89ndvI0chKyyIhNJduSzsykySydNoE0awePramkZuJ5NG/6G776c++JJvRt0aJF7Nixg+bmZtxuNxs2bODiiy/uWp6amopWq+3qbbZmzRouvvhiDAYDf/zjHzlwoHPY3JtvvnnWNzWi1acl25hum0RNu0R8bHS3gRSSkuwB/P5lW7XsK+ucSlWdkIqn/Ei4QhSi1Ni6fRvlPFVHUVmSUGj0HChzkZl4dlW6exOSZXaM8i6d4TDBrmBvGfjSJ6E6tHVI9qmQFNwwZTGflmzjYG3BkOxzpOiv0fHV4V6PPPJIV0N6NDc6hoM/6OfFL/6PbeV7uHvu18mwpIb1+CcqXRSfcDJjogFl6RE0m99F1uoJTpg9qJlyRrJUk50Ov4uq9tp+17Vb1JTWe1HH2fDWHg9DdMJI1bp9FUXGeeQkDbyX5M7KfaSakzBrTcMYWfRQSAomJY5nZvIUKhw1fFT0b/5+cDW72/I50nAMrVLDBRnzmJM8DXuMDaXU+0WfSqHm8smJ2GMNvPyFj5r0HOree5aQ3xvmVzS2fLXn9fXXX8/y5cu7el4fOnQIgGeffZannnqKa665BpfLxe23345SqeSFF17gscceY8mSJRw+fJgHHnggwq/m3JW2VNDucWDTpiKHZAymKO9KQefvn8vvpqq95ozrZFu1FNV48AVCqK0ZnT0pBpDUF0aviA33EHpylx5Ek5SJLMvkV3r49sXnXo/iWFMJgTHQpXO4xcVIGHUSBdqpzCx+D/+8q0B37jMhxGiMXD/5al764s/8+ppHsYyR+hTnMtzrZKPD4/GQlZXFM888E+FXE52cPhe/+vwVlJKS22fdjFoZ3tN9wB/g/bVlnB9XT8zmjcjmeIK585CNlrDGES0UkoKJCdnsqtpPiimpzyFedouajw+0o1qQguvoTkiYFb5AhRHD31qHs3AHBwNfZ8GEgQ1hq2itpsHZzKIxWJ8qVmtmRtKp39jBDP2SJInLp+pYm2fjbxVOvmtuRLfhT1iXjZ3aaZHQX+HcSZMm8c9//rPHdvPmzWPVqlXDHl84fXp8KzPsk6lr8JGoaIeY/ocQRppCUjAhIZtdlQe+/P3rmQjUaRQkW9QcqfIwMyMWkFC4W8MeqxA9RJIiiriO7ydm2oVUNvtRKRhw180zcXpd7K0+xLzUWaO+S2c4TEyW2HVCxXR7Fqr87QTmDc0d/Oy4DGbap/DSjj/zyKX/Gdau+JHUV6Nj+vTpFBYW9rrdaGx0DLVWTztPbv4tKSYbi3MuDe/339WOKn87/97jxOizMz7dQ2D8RaAVswpZDQmUt1VxtPE4k20TzrherF5JMCTToUsiUH8CQgOfsUEYO1o2/51Q9gIqdwX4WmL/SQpvwMeOijym2SadsbeA0D+VUuLqGWpW7crmH7o27jy6E8P4ORgnLYx0aMIo5/F72Fq+m+/Ou40Du1pIULnhDHVWoo3VkEBlew1HGo4xLWlSr+uMT9Kyp8TJrEwDGlsGqpaKMEcpRJOxcTU0AgRd7fibq9BYM9h3wsn4pHMr7BeSZT4r20mmJR2T5tzv+AswPklBcZ1MS/J0VEe+AP/QzUl9SdZC2rwO1haKuaGFc9PobOanG3/N+PjM8CYoAj5Uu9ahe/d5amqcfOaZzKLzbMgp40WC4kuSJJGbmMP+2sN4/J4+10uJU3OiVUJpMKNwhn8GFCG6eaqLcZUeoEAznXE2LSpl/9/zXZX7sBoTiDdYhj/AUc6ok7hyhoqSylms1sVR+6+XCbQ3RTosYZTbWr6HTEsasToTlRUO4g3BSIc0YCd//w7VFtLhdfa6zkS7jrxSJ7Iso0lMQ9VcHuYohWgikhRRwl16AE1SNpJSxd4TLsbZzi1Jcai2gEAwSJZFVMYdKlq1xDibxK6aGEJxSSiP7h6yfSsUCm6YvJg1hRsoaRaFuITBqe9o5H83PcdM+1QuyVoYtgSF1FSN9r3fomioxLnoRv5WM5WFuSpidKIH1+lMGiMpJju7qg70uV6yRc2xWg/qxDRUrVVhik4YCeRQkMaP/oBp5uV8UeIhN7n/ehQVrdXUdjQwISE7DBGODXaLgnnjleTXXcwejZaq959FDo2ci0ZhZJFlmY+KNjE3ZToAFY1BbJaRdRlnVOvJsKSxrXxPr0U0rebOHuRljT40SVmoWkSSYiwbWZ/uUcx5dBe6lBxc3iDH67xkWwefpKhqr+VIYzHT7ZPGzNCBcJmSpmTH0SC+7BmoDn4GwcCQ7duij2VxziU8v/2Pfd5lFYTe1HY08L+bnuO8tFmcnzEnbMc1N5ah/dcfCY6bSWD25awr0BCjgwl2kaA4k/HxmdQ66qlurzvjOmnxGo7WeFAnpIour0I3bbs/AkBOm0FhtYeJ/SQpPH7vl8M8clEpxCjfoTQlTUmyRc2/Oy6ntrmS5u3vRzokYZQ60nAMX9DPuLgMnK4ALp9ErCX6i2aeLjsuHXfAw9HGkh7LJEliUoqeHcc6UMXakHxuAo4BzqssjDriCjYKyMEA7pL9aFNz2V/mJtOqQase3J+m1dPGZyd2MitpMjrVufXGEHpKNHcW0DzsSEA2mFEW7x/S/U9LyiXFnMQf8/4xpPsVRrdaRz2PbfoNi9LnMj91ZtiOqzy6h7RjO/DPv4ZQag7FtSH2lYa4cJJS1MHpg0qhYpI1h+3le/CHek90psZpKKn3okpIR9VSGeYIhWjla6ykdeu7xC5cwe4SJ1lWLbo+2guyLLOjIo+kGCtxekv4Ah1DFuUqkING3g4tpHH7KjyVvddTEoRz8UHhJ8xPnYkkSVTWuElStoLJEumwzppCUjA9KZd9NYdocbf1WD45Rcf2Yx0gSQRNSXjKDkcgSiEaiCRFFHCX5aM0J6A0mNh5vIMJZzGV2Fc5fW42Fm8lNyFbNEaG0dR0BVuOBAmOn4lq3yYY4u6d1+RcSkHDMbaW7RrS/QqjU62jnsf+/TyL0ucyN3VG2I6rLNqLevd6qsfNQ45NxOWV+cdWPxdNVqLXiARFf2zGRCw6E3uqDva63KBVYNYrqQzEIvndBBwtYY5QiDahgI+6958jZsblqEwJbClwMC2t73ovJS3lNLtbmZCQFZ4gxyClorM+RV1bKiulXCrf/RVBlyPSYQmjSEVbNcVNpcy0TwGgrLQZq9IJmsFdL0SaUW0kN3E8m0q24Qt0r++WEqcmEISSei9Bkw1Xad9DI4XRSyQpokDHkW3o0ifjC4TYX+ZiUsrZn3Tcfjfrj20m1ZxMillMNzqcsq0SbS6ZE8Ek0OhRFg/tCVSj0nDjlCX83963qXHUD+m+hdGltqMhIgkKRXkh6i/+hX/+Nfi1nYV5398ZIMOqICNR/KwMVG5iDhWtVVS29T53fEaihqM13s67SeX5YY5OiCayLNP48asojbEYJsyluSNAab2vz6EeHV4nuyr3Mz1pEgoxm8ew0mskrpmlpqBpBp/4E6l+/1lkWczKIwyNVUfWMT91VtdU4sdLHSSbR3b9kxSTnXh9HP8+8QWhr8xgJUkS0zP0bC5wEDTbcZce6LV+hTD6idZkhMlBP66ju9BlTGF/mYtki4YY3dk1JpxeFx8VbSYpJpHsuPRhilQ4SaGQmJ6h4NP8IIEJs1Ht3TjkvSnsJhsXZy7guW2v4Qv6h3Tfwujw1SEe4UxQSE3VaDa/g3/ulcimOAD2lwapaAxxXo74STkbaqWaabZJbC3fg9Pv7rE8I0HDgXI3QZMVV4m4mzSWte3+F56KQmIXrECSJD493M7UNB3qM8zqEQp1zvCVFZeOWWsKc7RjU5xRYvEsNRubFpJX7aB5898jHZIwCtQ46tlXe5j5aZ1DOf2BENWtEraEkTH1aF9yE8cRCAXYXp7XLRExI13PtqIOvGozyCH8TaJ49FgkWpQR5irehyrWiiomji0FDqamnl0vimZXC/8q+pRUs53x8VnDE6TQQ26KgopGmUrJjqwzojy6Z8iPMS91JmZtDH8S9SmE09Q46nns3+FPUOByoFn/FwJTzkeOSwKgw6tgze4Al01VnvGCSTizeIOFdLOdLaU7ut1NAsi2aimsduM1peAu2S/uJo1RzqM7ad32HnGXfB2FWksoJPPp4XZmZ515evGDdQUEQyGyYsUMX+Fktyi4bJqavzaez74vdtFxZFukQxJGuHfy13Je6qyuOnMV1W4SlB1o4uIiHNm5U0gKZtqn0OxuYUfFXkJf/sbFGVWkWNTk1ynQJufgOr4vwpEKkSCSFBHmOLAJfdY0OjxBDlW4mZLa9/jSrzrRUsH64i1MTBwnphoNM5VSYmaWgnX7AgQnzkOdtxFOG1d3riRJYnnulRyuP8qnx7cO6b6FkauyvYafbXqOCzLmhzdBEQyg+eRNQik5hFLGAxCSZT4pMDMlTYE1VvycDNa4uExAYlfV/m7Px+iUxBlUVHhMIEn4G8QsH2ONuyyfhn+9Qvwl30AV03lRsrvESYy2c1aJ3tR1NFDYWMz0pEmigG0EZFlVnD9J4pWWC9m26j08VUWRDkkYoU60VHCwtoAFabO7nis62kSqsgXZYI5gZENHJSmZkzKNRmczW8t2EvqyZ/KcLCPbyyQ0yRNwHd0Z4SiFSBCtyggKOJpxl+ejy5zG5iPt5Cbr0Gn6/5MEQkF2VOxlV9UB5qbMwB5jC0O0wukmpyqobpEp8SUQiktCdeCzIT+GVqXhlqnLWXlwNUW9TNckjC0nWip4fNPzXJZ9PnO+nCs9XNTb13ZW255wanrTHUeDuHwKZmWJn5JzIUkS05NyqWqvpaD+WLdl45O0FDYq0KVMxFkkiumOJZ6KQur++WssF9yMOiGl6/k1ea0syOm9F4Uv5GdL6RdMtU0UM3xF0OQUA7NyOnitbRGr/m8lvkYxQ49wdmRZ5s/73uWizPPQqk4N7Sg41k5GXBBGUQJSpVAzN3U6Tp+bdcVbcPvdTEjW4vZDsZyCt7aUoFsUox1rRMsygtr3fYI+YyqotWw41M7srP7nO25wNvFB4QbaPR2cnzZHjDWNIJVSYt44JR/sDuCbOB9V/jakjtYhP06iMZ4VuVfy661/oMHZNOT7F0aGwoZintz8W67OuZgZX1b4Dhdl4W4UlccIzLy0q2FU1xZiw4EgczKcKBSjp7EUKWqFmtnJ0zhQV8iJllM9JiYm6yiok9Cm5+Is3BHBCIVw8lQUUPvu01gW3YDWnt31/OFKNy3OAJN6KZgZCskcdhzDbrJhNSSEM1yhF7PTbUzMruBD11R+/eJq2ut7L5ArCL3ZWbmPFncbc1NO9ZhsbffT7pKxWvu/XhhplJKSWfapxGpMrC3cSLWjlml2mff2ONAmj8NVtDvSIQphJpIUERIK+GjPW4chdwH7y1woFBIZfRTB8QV97KzYx8bjW8m2pDPTPhm1sveunkL4TEiWCIQgr8ZAMHNK593mYTAxcRwL0+fyiy0v0eFzDssxhOi1q3I/z2z9A9dNXswU28SwHluqr0C9ax2BOVeAuvMcFQjKvPVZgHnjFZi0ooL9UDGo9cxJnsqOir1UtlUDkBqnxh2AelUygfYm/M3VEY5SGG6u0gPUvvM0lvOvR5uS0/W8LMv8Y0czF+aaek0M7qs5REAOkiPqU0UFSZKYn5GNPf0IrZo4fvjsFj7fUSBqywj9cvpc/N/et7lmwiUoFKcu1fILWshU1iMlJEUwuuEjSRLjE7KYastle9kevJpj1LX5KNZNo+Pw55EOTwgzkaSIEMf+Tajjk1HFWnl/dwsLxht7HTsakmWKm06w+sh6HD4nF2TMJ9k0Ok9OI5EkSVyQq+SjvQHaUmcgNVWjKDsyLMdamD6bTEsaT332Mp6Ad1iOIUQXWZb58OinvLbnLb4x4zrGx2eGNwBnO5pP/kZg+oVdM3kAfLwvgFbTOeRJGFpmrYk5KdP4vGw35a1VSJJEdpzM1iIX+sypOA4N/bAyIXp0FO6gftVvsFx0S7cEBUBeqYtWZ4AZ6T1rVx1vLud4SxlZ+lQUkvheRguNUsOslFxCCQVcnuXhz6v38l+//oQteyvx+Uf2FJLC8Pnz3neYkJBN5mn15vYdaGSC2QmqkT+zR18SDHEsypiHJMlojEd5/ZCSjspiAo6WSIcmhJH4JYuAkN9L67b3iJl2MYcr3TR3BJmW1rPRUd1ex4eFG8mvP8oM+xSm2XLRiN4TUcdqlshJVvD+HvBPvRDN56vAMzy9Ha4afxExGgO/+uwVvENcqFOILv6gnz/sfpMNxVv4zpz/ICXcycmAD+36vxBKzyWUdCo5UlgVZF9piIsnK0VRvmESqzUzN2Ua2yvyONp4nPGJMpsLHGizZuLY/ynyEE95LESHtt0f0fjx68Rf9k20SVndlvkCId74rJErp5l79KKo62hgV+U+Ztuno5LObgpzYfjF6WLJic+kWF3B7bNCTHHlsXrjYW5/bB3P/G03G3eVU1HnIBgSPSwE2F6ex5GGIq4cd2G35xuavbS2B0hOiYlQZOGlUqhI1dm4YlI2ktLHP9yT2Lzut9Q46iMdmhAmqkgHMBa17VyLOiEZVUIqf/l7JZdM7t51s97ZyN6qfDp8TnISMkky2sTFQJSbN07B6l0BdrVYOT9lHJrN/8S3+PYhP87JGT/WFG7gl5/9jocu+gF69dlNWytEvwZnE89tew2dSsu3Z/9Ht6JZYREKofn0H8j6GILjZ3U93dwh8/a2AFdMV6LXiHPScDJrzcxPncW+6kPEKU0YtZM51B5Llj4GV9FujJMWRjpEYYjIoSBNG/+Cq2gXCVd/p2sWj69694sWbGY1Ofbu5/tmVyubSrYzPWkSJq0RNx3hCls4C+mxqXT4XGzz1nLJzImML9wACxZTjp4teyt4c10BDqcPW7wBrdLPtuJ9xJt1mGM0mA0aYgwaTAY1ZqOW2BgNBp24YTUaVbbV8Me8t/jGjOvRnPa7v31nHZPUVUgJWZEJLkKMGj1LZ+p4/4spzD72bx5VPk1KbDKXZJ3PeWmzMGvHRtJmLBJJijDzt9TStvMDEhbfzYaDbQBMTdUhyzL1HY3srz1Mm8dBdnwGM+yTUIi7IiOCSilxxXQVa/MCpFw+l+xjH6E6sBn0Kf1ue7YUkoLrJl3Nx0Wb+d9Nz/GTi39IvN4y5McRImNb+W7+lPc256fP5fz0OeFPUMoy6m2rwdVOYP7irkKZXr/MG//2MyNLQXKc6IQXDka1ngVps9lTcQC1oYz3dsn876Lzadn2HobcBSJ5PQoEPU7qV/2GoNtBwtV3otD2LIh3uNLNvwvauecya7fnW9xtfHL8cyZbc0g0xIcrZGGQchPHc7C2gB0dlVw462o6Dm0iN20S8y+7BkmpwusP0tTm5vDREvRaFQ2tbirqHLi9AdzeAC5PAKfHj8PlQ5IkEmJ1JMUZSLebGJcSy4R0C2m23uuVCNGv1dPOLz/7HVeOv6hHz0m3J8i+Iw7+I9UPqrGXoIrRSVw6Tc3KgxfyvRiJRruR7eV7+Ov+f5JlSWNeygxmJU8lPTZF/C6OIiJJEUZyKEj9By9hnHIBTSET73xRyW0XxFPWWkV+fSEev5fMuHSmJ4nkxEgUFyNx4SQlb2wJ8sNLLyfp4Fpis+ZBbu6QH0shKVg68TK2lu3mJxue5v9d8F0mJo4b8uMI4dPibmNVzSe0VHfwjenXkmK2hz8IWUa940MUtWX4z1sCis7zUDAks/JzPxYjTE8XCYpwUivVjDek4zD7+Oygg381wiVeF66iXRhzF0Q6POEceGtLqfvnM2iTxxO78FokRc/f/YZ2Py+sq2PFHAsxulPLG53NbCzZSm7CODEN+QihkBTMsE9iX+0RtjYWctG8pbgLv6Bx3WtYLrwFbayVlMQYHM1acicmn3E/sizj9QVp7fDS3O6hocXN5r2VvPlxAW5fkGnjEzhvip3zptixmMQ0tCNBu8fB4/9+nulJk5jZy+xdm7fVMU5ZiyEtnbE6KCgjUcH8dD+vbVRz+63J3DQ1B3/QT0lLOUebSvj42GZ8QT+TrTlMtU0kN3EcGZY0VL2cV4WRQSQpwqh505vIwQCq8Qt45p9VjEtx8XllHhqlikxLOjZjgih4NcKNS1Lg8sr84XM131+4mLSDHxJMzyCUOXnIjyVJEhdlnYctJoGnP3+FZRMv5/rJi1GKE/KI4g/6+fjYZlYXrCNDk8I9c29FrYzAqTkURL11NYq6cvznXdM1k0co1DnEw+WFq2eKOhSRMj4+HU+Oiw/zfEgT1Jy/7jWys2ei0IjhXiONLIdo2/UvWrf+E/Pca9BnT+91vVZXgJ+vrmFhjpGcpFN/5xMtFeyoyGOqLRebMTFcYQtDQCEpmW2fwoHaAj4t38mlUy5Ari2laf3rGKdeSMzkC/rdhyRJ6LQq7FoV9gQjnJqhlrYOL8cr29iyt5I/rslnXGosl81N58KZKRj1Y+8O/EhQ39HIz7e8SG7iOC7KPK/H8qZWH7v2t3BLsgPZEObi2VFmYo4FXVsBf/6HhrmzErjovHhyE8eTmzge6OyNUtZaycG6Aj4q2kSLp42M2FRy4rMYF59BliWdNLMdVRjbWP62erwVRwm0NwASqlgrktsftuOPZCJJESatX6yho2A7zXOu4rF3D+Pyu0mPaScjbhKxWnOkwxOG0LQMJTLwu21Grhu3gLlb/on/vGsITpo/LMfLTRyPPcbK2qMb+aJyH/fM/YboVTEC+IN+tpzYyXuHPyLRGM8ds26hubIhMgkKjwvNpr+Dz4N/wZKuyuH+oMzftwZodcpcPVOJUnQjjqgpqXrKGzQcdc7DzjpK/vr/kXn9/4jv+wjia6ig4V+vIPt9JCy+C5Wp92Eata1+frGmmimpehbmdI65DoSC7Kk6QHlrFXNTpmMWbYcRSSEpmWmfQlFjCR8WbeTSrIVYEpbhLNyJ+/gBlMkzgMH1wIyN0TJnko05k2z4A0GOlrWweW8Ff/ogn7mTbFy9IJOZE6xiSEiU2Ft9iFd2/ZULM+YzP21Wj+XBkMw7q08wR12CflxOzx2MNZJE5uRU/qPgC3Y1Xcpzr7eSGK8hKVGLQackJMt4vRZcHhN4cjD4gtSEAlRJfj5TlxDQ7sWvqyPZriYrIYUsSxpp5mTSzHZsxsRu072ei1DAR0f+Z7TvWUegrQFNUhZKYyyyDN5ju4ipPUHBoX9SkzWR4vg4mr0O2r0duP0evEEfgVAA6Ox9pVGq0at0xGiNWHSxWA3x2GISscckkmK2E6s1DfjmUSgkU1bbzvHKVqoanLQ7fciyjMmoISXRyPg0C9kpsVHT1otokmLt2rX8/ve/JxAIcMcdd3Dbbbd1W15QUMAjjzyC0+lk3rx5PP7446hUIyuv4vd78eWvoaqxlA8scRz+xIVereWmuVa06qGvVyBEh+kZSoxaiXeOZNA6KYVL965DUVeG//zlMAx3PmN1Zm6bcQMH6wr49dY/kJOQxc1Tl4V/ysqzMNjvf3V1NQ888ABNTU1kZ2fz7LPPYjQaI/Qqzl6Ds4lNJdvZePxzbDGJXDvpKjIsqQA00xD2eBRVxai3vEvIlklwxiXw5Y90c4fMm5/50alh8UwlKmV0/GiNZZIkcckUJat2mZg86yZmVqzi8zW/4v/Ss7hq/EWcnz4Xg6bnTFGjwUhvLwQcLbRsfQfnke3ETL8Ew4R5SL00iGVZZltRB/+3pZFLJ5mYO86ILMtUttewq3I/MdoYzk+fi1rM9DWiKSQFk6w51Djq2HD8cyYkZDNjxiXITdX4Cr+gseU4ppmXobFlDbr3mlqlZNr4RKaNT8Tl8bP/WAOvrT6EyxPgivnpXDY3nfQk0xC/suEx2toLze5WVh5YRX7dUW6csqTHVKPQeS5Y/VEFtDYydVLMsLQdRyLZGIs+OZnLHDtYsHwZ9a1B2hwBfP4QEqDXK7HEqtFqFKhUnd8dvz+E0x2ktS2F+sZxlB3z4bTJVKfUo7Tk0+xvoMPrxGpMwB5jJdlkIynGSqIhnni9hTh9LCZtTL9DR7weJ417PsKz618EYsw0J6VTnZ5Os6eNFncVbV4HOpUWTUoSE1GSWXyAi3w+6ibOwp0zB63WgFqpRikpkYCQHMIfCuAN+HD53Tj9LprcLZS0lNPiaaPB2YQkSaSZk8m2pDMuPoPsuHRSzcldsfoDQfYW1rPtYDV7CurQa1Wk2mJIMOsx6FRIEjicPnbUtPPup8focPmYnWvjwlmpzJuchFYdud7ZEfsFr6ur4/nnn+f9999Ho9Hw9a9/nQULFpCTcypT+MADD/Dzn/+cWbNm8fDDD/POO+9w6623RirkAQmFQlS213Ck4RgVx75gUsEBkBWsi7+Ag8dTyLErmZ+jQCG6TI9645IU4Gtnb3Ucu4PXslRVxLS3nyM453KCufOGvPiRJEnMtE9hinUCedWH+NXnr5Cgj+PycRewIG0WZl30NEbO5fv/+OOPc+utt7Js2TJefvllXnnlFR544IEIvpq+ybJMlaOWfdWH2Vm5l6r2OqYl5XLrzOsj2lVbaq5DnfcJivpyAlMvIGRLBzp7T2wvDLIpP8isLAXTMxRiiEcUMWglrpml4oN9AVyTrueSpg+Z0uJlQ+kX/GX/P8lNHM/81JnMsE8myZg4Kv52I7W9IMsyvprjtO1dj6vwC/TjZmFd/gMUup4XSbIsU1jt4R87mmlxBvj6wniSLSrKWivJrzuKJ+BlYuI4rIaECLwSYbgkm5KI11soairh/YJ1TLFOwJg5F5M6SOu2VSg0WgwT56PLnIayl6KqA2XQqVk0PYVF01OoaXSyr6ien7y8FYtJy4WzUlkw1U5Wsjkqzxejqb1Q2VbDuuLNbC3bzezkqdw7/5s9ZvEA8PpCvP9hGfVlDSzNaEayTYpAtNErlJKDVHIAfd56UuZdRUrS2c3w4fWFqKh2c6LCQNVBC+MzZnHhJCO2lADt/jZa3K0cqiuk3duBw9tBu7cDl9+NWqFCp9J+mUjoTDIH5RCSz8O0xmYWtXTQotVQnJiAz2TBqAxilCQyYlOZasvtSnRUVJSTnp4BgNRST2rxPqTifAIzLu68PhhgQkqWZZw+F3XORmo7Gthatpt3D/+LVpcDi38coeYUGqq1JMZpmTHOxr03ziDO1Pe+2zq8FJY1896mY7z49j7mT07i4jlpzJ5oRa0Kb8IiYkmK7du3s3DhQiwWCwCLFy9m3bp1/OhHPwKgqqoKj8fDrFmzALjxxht58cUXI97oOCkkh2j1tFPX0UB1ex3lbdWUtJTT2FjGVK/MvHY3ZoeCQ+bL2VYbh8qp5rJpSlJEVfwxJUYbYtkcJaX1Mh+emMj7/hzm7qhg6o7XSJ2YhjRuMqGkrK7x/0NBrVSzMH0O56XO4lhzKTsq8vjbgfdINtmYZpvExMRsMi1p2AwJQ9a17WwN9vt/yy23sHv3bl5++eWu57/5zW9GTZIiEArS6GyiylFHWWslxU0nKGoqRSkpGB+fydyUGfzHtMyI1Q2ROlpRVBahPLYPRUs9wexp+C6+GVmhpKY5xIGyILuLQ1jNEtfOU2ExRl+DVYAEk8SKeSo+PQQHNNeyuOYQ36g/hnfWRRTEGNhddYB38z8EICchi3FxmWRYUkiO6bw7FPYpbc/RSGovBN0OvFXHcJ84iPPoLuSgH/342SSu+BHK05IT/oBMaYOX/WUuth/rwB+QmZOtYd4ELyfaD/BZZTUxaiPpluTOrsiiZtWopFVpmZ40GYfXSVlbBbXtDdjNVtInzsDmD+IuO0z73g2o41PQpuagtWahirejGOT3ODnRSHJiNtcszOJETTtHSptYv+MEgaDMtPEJTB2XQE66hYwkU1RMdTqS2wsdXifHW8o4Un+MPVUHafO2M9M+hXvnfxNTL1NnerxB9h9o5N/bG0ihnmU5AZQpQ198fcSTJILjZqAoP4pmyz8J5s4jmDoeBjhcVqtRkJNlJCfLiNcX4kSFix15bdSt95KZZiA3ezwz0vXYrbquXqSyLOMN+vAF/QSCAWS/B21dBcayQnRVNQStaYTOv4Kk2ESS+jn+V8lxNgLzFyO1NqAsPYR676cEs6YSHDedUPK4Pm9oSpJEjNaIQWPAJNtRt7hwVjupP+GkwwixCT6yZjTiCLWwpbWN3Yf0WI0JWA0JJBriiNPHEqczY9KZUCs637vYGC0LpiazYGoyDpeP/ONNrFxXyLNv5jEjJ5E5k2xMzU4gLck07MNCIpakqK+vx2o9NZ2WzWbj4MGDZ1xutVqpq6sb0L5lubP2rc/n63fd/LqjlLVVEZKDBEMhAqEggZAffzD45YfRh8fvweX34PQ5cfhcyMhoQiHOb/MQ7w9iDClxtY9H6zdjDp3HAdnITrnzx8MUCjIurp20BA/4oHZgLyEiXK4AobrmSIcxICMlVpcrQEhuwQCcnwWtbjVlbenkOcfBQeAgmBVHMOPGqPajUYFaLZFtcZGYa8VjTT2n45tVMSxKnct5yTOpcTRQ3lzJnvL9OP3urnV0Ki0mbQyKAHz2+T50Ki1GjY6rx11MnMFyxn2f/H6d/L6djcF+/1taWoiJienqxj1c54XD9UWUt1YRkIOEQkECoRABufO84Av68Qa9uP0eXL7O7ncOrxP5KzW3tSotVn0c1pgEloy7FLM2pusOVX174xmP6wg4qWkd/ElCCgaIKTuKyu1E8vtQ+r0o3U7UbgcKv4/WoJ5dgVyc2uk4VUYcx5W05YfwBTu3jzcEmJ/hxawL4OmA2o7+jzlSvosnjbR44cwxn58J5S1a3m6eDczGsNFLurKRa2JLcFx4Gc1qFbUdDRypOcq2kl10+F3dtteptMRojBjUOvQqHTq1Fo1Sg1qpRq1QoVKoUCoUKCUlSkmBSqFiUcZcjJoz39E9l/PCmURLe8Fdlo+3+jhy0Ieurpaqyi8IejsIdbQR6GhGDnTuQ1Kq8FmyyNNdil9twl8n46lqwuVvosnlo80NnsCp5pdR4yRG24w+pp26VmhsV2FQ6RivHY9GqQYn1DtbB/R6ovXzHY1xRWNMidjQKWIIeoKUtFdTGOwssKeMsWPxgKnoKIYjh7vWlxVKVDojaPQo1FoUSjUoVUgKJQqdEW3yOOgjuaVVw+yJ8cyeGE+bw0tFvYNNu07w9oZT5wqlQsJi0qKWgnx6+AuMOjVajRKNSolaJaFRK7l4dhpm45mTJqO5vbCzYh+FjcW4Ax6cPjftXgetnnYCoc4fVpVCRYrJxgzrJJJNNhSSgg63k1ZHB4fzXTgq22j3SDR4dIACg+RhrqkOc6KWBlUM1LcMKOZo/Dyfq35fky4JRbwZbVEJiqPHCCpVhHRGgmotIZUSFCpkSQIU0EeONw6ISwRfnER9h4dDBzrYuvMr52hVALPai1Hhwyi70AVcaKQgCoWMrLcTjJ8AKJFKAKmJ/i7d3S4FJ5qaTntWAdJMpLipKKvbURfnI8v5hAC/xoBPqcOn0OBDhSekxqGIwelR0OEMde3BoJeIj1eycI4OrVYC9EAskAEmGVfAi8vnor6xgzJ/I+6Am6Ac6haFSqFEo1SjUWrQKNSolCosKSrMSUqa22pZtaWev6879Qr1BjAaJHQ6Cb2k4HDNITRqBRq1kotmpZ7TeSFiSYpQKNStW5ksy90e97e8L35/50m9qKhoQOtnctr0XRKd78xZvDsLB76qIAyY3jF0+7IqzMyIHd95vhqAqpJKqqjsdz2/349Od3ZjJQf7/e/tPDBc54V0rD2fVH75DzrP/QM68Jf/BiDOPAHO9W9u7SzQKgOBL/95v1ykQJyrRps5PZ7JAuZiBsx+yNImwWBnIQx9+e8rSotKBrTpYM4LZwwjitoLmDqryGOZTG0/q/acSFAQwm3gPyhWLeQkqulsJPTXUAh++a9TeenAvj+jsb1gRM1c9WRQ03+74LTE/6XjjTC+l7bGV6dsEYQR5VRi71zPCxFLUtjtdvbs2dP1uKGhAZvN1m15Q8OpInKNjY3dlvfFaDQyceJE1Gp1VI6vE4TRQJZl/H7/oIpQDfb7Hx8fj8PhIBgMolQqe2zXF3FeEIThdy7nhTMR7QVBGNlEe0EQhNP1d16IWJJi0aJFvPTSSzQ3N6PX69mwYQNPPvlk1/LU1FS0Wi15eXnMnTuXNWvWcPHFFw9o3wqFApMpeooECsJoNdg7pYP9/qvVaubNm8dHH33EihUrWL16tTgvCEKUGaoeFCeJ9oIgjHyivSAIwun6Oi9I8lAOHD1La9eu5dVXX8Xv93PzzTdzzz33cM8993Dfffcxffp0CgsLefTRR+no6GDq1Kk89dRTaDQjq+CXIAi9G+z3v6qqioceeoimpiaSk5P5zW9+Q2zsAMewCIIwIon2giCMXaK9IAhjT0STFIIgCIIgCIIgCIIgCCeJ+awEQRAEQRAEQRAEQYgKIkkhCIIgCIIgCIIgCEJUEEkKQRAEQRAEQRAEQRCigkhSCIIgCIIgCIIgCIIQFUSSQhAEQRAEQRAEQRCEqCCSFENo7dq1LF26lKuvvpqVK1f2WF5QUMCNN97I4sWLeeSRRwgEAhGIsv84N27cyHXXXce1117LD37wA9ra2iIQZaf+Yj1p8+bNXH755WGMrLv+4iwpKeFb3/oW1157LXfddVfE3tP+4jx8+DA33XQT1157Ld/73vdob2+PQJRjR3V1NbfddhvXXHMN3//+93E6nT3W8fl8/PznP+f6669n2bJlbN26NQKRdhpIvCd1dHRw5ZVXsnPnzjBG2NNAYq6vr+euu+7iuuuu44YbbmDHjh0RiHTk/IaMZS+88AIvvfRSr8t8Ph8PPPAAS5Ys4YYbbuD48ePDHs9APt9VVVXMnj2b6667juuuu4677rprWGKJ1s9vf3H97ne/47LLLut6f/pqawy1jo4Oli9fTmVlZY9lkXq/+oopku+V0LuBtpNHmt/97ncsW7aMZcuW8cwzz0Q6nCH1q1/9ioceeijSYQyZTZs2ceONN7JkyRJ+/vOfD92OZWFI1NbWypdddpnc0tIiO51OecWKFfKxY8e6rbNs2TJ53759sizL8k9+8hN55cqVURenw+GQL7jgArm2tlaWZVl+4YUX5CeffDLscQ4k1pMaGhrka665Rr7ssssiEGX/cYZCIfnqq6+Wt2zZIsuyLP/617+Wn3nmmaiLU5Zl+Rvf+Ia8efNmWZZl+amnnpJ/85vfhD3OseS73/2u/OGHH8qyLMu/+93vev1cvPzyy/L//M//yKFQSC4qKpIvvPBCORQKhTtUWZYHFu9JDz74oDx//nz5iy++CFd4vRpIzP/v//0/+c0335RlWZaPHz8uL1q0SA4EAmGNc6T8hoxV7e3t8k9+8hN5xowZ8osvvtjrOn/84x/ln/70p7Isy/KuXbvkW265ZdjjGsjne926dV1xDZdo/fwOJK7vfe978t69e4c9ltPt379fXr58uTx16lS5oqKix/JIvF/9xRSp90ro3UDbySPNtm3b5K997Wuy1+uVfT6ffPvtt8sbNmyIdFhDYvv27fKCBQvkH//4x5EOZUiUl5fLF154oVxTUyP7fL5u1xHnSvSkGCLbt29n4cKFWCwWDAYDixcvZt26dV3Lq6qq8Hg8zJo1C4Abb7yx2/JoidPv9/Ozn/2MpKQkAHJzc6mpqQl7nAOJ9aRHH32UH/3oRxGIsFN/cR4+fBiDwcDFF18MwL333sttt90WdXEChEKhrjtxbrcbnU4X9jjHCr/fz+7du1m8eDFw5nPCxx9/zD333IMkSUyYMIE///nPyLIc7nAHHC/ARx99hNFoJDc3N5wh9jDQmK+66iqWL18OQGZmJl6vF5fLFdZYR8pvyFj16aefkpWVxXe+850zrrN582auvfZaAObPn09zczPV1dXDFtNAP9+HDh2iqKiI6667jttvv52jR48OeSzR+vkdyO9efn4+r776KitWrOCJJ57A6/UOe1wA77zzDj/72c+w2Ww9lkXq/eorJojceyX0bqDt5JHGarXy0EMPodFoUKvVjB8/fljPpeHS2trK888/z7333hvpUIbMJ598wtKlS7Hb7ajVap5//nlmzpw5JPsWSYohUl9fj9Vq7Xpss9moq6s743Kr1dptebj0F2dcXBxXXXUVAB6Ph9dee40rr7wy7HFC/7EC/PWvf2XKlClD9oUYjP7iLC8vJzExkYcffpgbbriBn/3sZxgMhqiLE+Chhx7i0Ucf5cILL2T79u18/etfD3eYY0ZLSwsxMTGoVCrgzOeEsrIydu/eza233srXvvY1GhsbUSjCf+oeaLzV1dX85S9/4cEHHwx3iD0MNObFixcTGxsLwJ/+9CcmT56MyWQKa6wj5TdkrLr++uv57ne/i1KpPOM6vf2Namtrhy2mgX6+tVot1157LatWreKuu+7ihz/8IT6fb0hjidbPb39xOZ1OJk+ezAMPPMCqVatob2/nlVdeGfa4AH7xi18wb968XpdF6v3qK6ZIvldC7wbSrhuJJkyY0JWgO3HiBB9//DGXXHJJZIMaAv/7v//L/fffj9lsjnQoQ6asrIxgMMi9997Lddddx1tvvdXVnjpXqiHZi0AoFEKSpK7Hsix3e9zf8nAZaBwOh4Mf/vCHTJo0iRtuuCGcIXbpL9aioiI2bNjAG2+8MawNwf70F2cgEGDXrl28+eabTJ8+nRdeeIGnn36ap59+Oqri9Hg8PPLII7zxxhvMmDGDP//5z/z4xz/mtddeC2uco9HHH3/MU0891e25zMzMHt+93r6LwWCQ2tpaVq5cydGjR7n77rv5+OOPh/UierDxhkIhHnnkEX7605+GvRfOubzHJ73xxhu8/fbbvPnmm8MSY19Gym/IaNfb52jcuHG88cYb/W57+t9EluUhSyiey+f7P//zP7v+f8kll/Dcc89RUlLCpEmThiQ2iN7Pb3/HNRqNvP76612P77zzTh5++GHuv//+YY+tL9H4fY/W92osi8bPyVA6duwY3/ve93jwwQfJysqKdDjn5N133yU5OZnzzz+f999/P9LhDJlgMMiePXv429/+hsFg4Pvf/z6rVq3ixhtvPOd9iyTFELHb7ezZs6frcUNDQ7fucna7nYaGhq7HjY2NZ+xON5z6ixNOFZFbuHAhDz/8cLhD7NJfrOvWraOhoYGbbroJv99PfX09t956K2+99VZUxWm1WsnMzGT69OkALF++nPvuuy+sMQ4kzqKiIrRaLTNmzADga1/7Gr/97W/DHudotGTJEpYsWdLtOb/fz4IFCwgGgyiVyl6/iwCJiYksW7YMSZKYNGkSdrud0tLSrr9TNMVbUlJCSUkJjzzyCNDZi+jRRx/lySefZOHChcMW77nEfNIzzzzDli1bWLlyJXa7fVhj7c1I+Q0Z7Xr7HA1UUlIS9fX1ZGRkAEP7NzqXz/ff/vY3li9fTlxcHNB5IXOy98VQidbPb39xVVdXs337dm6++WZgeN6bwYjG73u0vldj2UDa9CNVXl4e9913Hw8//DDLli2LdDjn7KOPPqKhoYHrrruOtrY2XC4Xv/zlLyN6nTUUEhMTOf/884mPjwfgyiuv5ODBg0OSpBDDPYbIokWL2LFjB83NzbjdbjZs2NBVgwAgNTUVrVZLXl4eAGvWrOm2PFriPNllZ8mSJTzyyCMRzcj2F+t9993H+vXrWbNmDa+99ho2my3sCYqBxDl79myam5spLCwEOqvgTp06NerizMzMpLa2lpKSEqBzDPbJxIow9NRqNfPmzeOjjz4CYPXq1b2eEy677LKudSoqKqipqSE7OzusscLA4s3JyWHLli2sWbOGNWvWMG3aNH7+858Pe4LiTAb6Hr/xxhvs3LmTv//97xFJUMDI+Q0RzuySSy5hzZo1AOzZswetVktKSsqwHW+gn+/du3fzz3/+E4Bdu3YRCoUYN27ckMYSrZ/f/uLS6XT8+te/pqKiAlmWWblyZdeQ10iKxu97tL5XY1l/n++Rqqamhh/+8Ic8++yzoyJBAfDnP/+ZDz/8kDVr1nDfffdx+eWXj/gEBXS2Ubdu3Up7ezvBYJDPP/986K5xhqT8piDLsix/8MEH8rJly+Srr75afu2112RZluW7775bPnjwoCzLslxQUCDfdNNN8uLFi+X/+Z//kb1eb9TFuWHDBjk3N1e+9tpru/49/PDDEYmzv1i/qqKiImKze8hy/3Hu379fvummm+SlS5fKd955p9zY2BiVcW7evFlesWKFvHz5cvmOO+6Qy8vLIxLnWFFZWSl/85vflJcsWSLfeeedcmtrqyzLsvzWW2/JL7zwgizLnTPuPPDAA/LSpUvlpUuXyps2bYrqeL/qm9/8ZsRn9+gv5lAoJM+bN0++9NJLu533Ts5wFE4j5TdkLHvxxRe7ze7x1c++x+ORH3zwQXnp0qXy9ddfL+fn5w97PAP5TtbW1srf/va35WXLlsk33nijXFBQMCyxROvnt7+41q1b17X8oYceCvv36rLLLuuaSSMa3q++Yor0eyX01Nvne6R78skn5VmzZnX7TX7rrbciHdaQee+990bN7B6yLMvvvvtu12fw8ccfl4PB4JDsV5LlCJSJFwRBEARBEARBEARBOI0Y7iEIgiAIgiAIgiAIQlQQSQpBEARBEARBEARBEKKCSFIIgiAIgiAIgiAIghAVRJJCEARBEARBEARBEISoIJIUgiAIgiAIgiAIgiBEBZGkEARBEARBEARBEAQhKogkhSAIgiAIgiAIgiAIUUEkKQRBEARBEARBEARBiAoiSSEIgiAIgiAIgiAIQlQQSQpBEARBEARBEARBEKKCSFIIgiAIgiAIgiAIghAVRJJCEARBEARBEARBEISoIJIUgiAIgiAIgiAIgiBEBZGkEARBEARBEARBEAQhKogkhSAIgiAIgiAIgiAIUUEkKQRBEARBEARBEARBiAoiSSEIgiAIgiAIgiAIQlQQSQpBEARBEARBEARBEKKCSFIIgiAIgiAIgiAIghAVRJJCEARBEARBEARBEISoIJIUgiAIgiAIgiBE1Nq1a1m6dClXX301K1eu7LF848aNXHfddVx77bX84Ac/oK2tDYDq6mpuu+02rrnmGr7//e/jdDoBaG9v57vf/S5Llizhtttuo6GhIayvRxCEwRNJCkEQBEEQBEEQIqauro7nn3+et956i9WrV/P2229TXFzctbyjo4PHHnuM1157jQ8++IDc3FxeeuklAB5//HFuvfVW1q1bx7Rp03jllVcAeOGFF5g3bx4ff/wxt9xyC7/4xS8i8toEQTh7kizLcqSDGGqhUAin04larUaSpEiHIwijkizL+P1+jEYjCkX05zvFeUEQhp84LwiCcLqBnBdWrVrF7t27+eUvfwnAyy+/jCzL/OhHPwKgpaWFPXv2cNVVVwGwbt061q5dywsvvMCCBQvYtWsXKpWKmpoavvnNb/Lpp59y+eWXs3LlSpKTkwkEApx33nns3LkTtVrdZ7zivCAIw6+/84IqAjENO6fTSVFRUaTDEIQxYeLEiZhMpkiH0S9xXhCE8BHnBUEQTtfXeaG+vh6r1dr12GazcfDgwa7HcXFxXQkKj8fDa6+9xre+9S1aWlqIiYlBpeq8pLFardTV1fXYp0qlIiYmhubmZpKSkvqMU5wXBCF8znReGJVJipMZ0okTJ6LRaM56+/z8fKZNmzbUYQ0LEevwGUnxRiJWn89HUVFRv3ckosW5nhcGayR9jk43kmOHkR3/SI19rJ8XRtLfTcQ6PESsPQ3kvBAKhbr1WpBluddeDA6Hgx/+8IdMmjSJG264gbq6uh7rnan3gyzLA+rhNVLOX4IwGpzp+zYqkxQnT04ajQatVjuofQx2u0gQsQ6fkRRvpGIdKV0hh+K8MFgj6XN0upEcO4zs+Edy7GP5vDCS/m4i1uEhYu1dX+cFu93Onj17uh43NDRgs9m6rVNfX89dd93FwoULefjhhwGIj4/H4XAQDAZRKpXdtrPZbDQ2NmK32wkEAjidTiwWy4DjnDZt2oj6W56Ul5fH3LlzIx3GkBltrwdG32sazOvxer3k5+ef8bwQ/QNGBUEQBEEQBEEYtRYtWsSOHTtobm7G7XazYcMGLr744q7lwWCQe++9lyVLlvDII490Xdio1WrmzZvHRx99BMDq1au7trvkkktYvXo1AB999BHz5s0TvSQEYYQYlT0pBEEQBEEQBEEYGZKSkrj//vu5/fbb8fv93HzzzcyYMYN77rmH++67j9raWo4cOUIwGGT9+vVAZ0+HX/ziF/zsZz/joYce4ve//z3Jycn85je/AeC//uu/eOihh1i2bBkmk4lnn302ki9REISzIJIUgiAIgiBEhbVr1/L73/+eQCDAHXfcwW233dbreps3b+aJJ55g06ZNAFRXV/PAAw/Q1NREdnY2zz77LEajMZyhC4JwjlasWMGKFSu6Pff6668DMH36dAoLC3vdLjU1lb/97W89nrdYLPzhD38Y+kAFQRh2YriHIAiCIAgRV1dXx/PPP89bb73F6tWrefvttykuLu6xXmNjI7/61a+6Pff4449z6623sm7dOqZNm8Yrr7wSrrAFQRAEQRhiIkkhCIIgCELEbd++nYULF2KxWDAYDCxevJh169b1WO/RRx/lRz/6Uddjv9/P7t27Wbx4MQA33nhjr9sJgiAIgjAyiCSFIAiCIAgRV19fj9Vq7Xpss9moq6vrts5f//pXpkyZwsyZM7uea2lpISYmBpWqcwSr1WrtsZ0gCIIgCCOHqEkhCIIgCELEhUKhblORybLc7XFRUREbNmzgjTfeoLa29ozrwdlPgZqfnz/IqHvKy8sbsn0NNxHr8BCxCoIgnBuRpBBGjdLqNnYdrkWlVHDRrFRs8YZIhyQIwggmyzL7iho4VNzItPEJzMm1nfXFrzBwdrudPXv2dD1uaGjAZrN1PV63bh0NDQ3cdNNN+P1+6uvrufXWW/nLX/6Cw+EgGAyiVCp7bDcQ06ZNQ6vVnvNrGMxc8ZEyUmOVZRl3yX68tSXETF6EOj45wtF1N1Lf1+Hk9XqHNBEoDJ7XH+TDz0u4YGYK9gRRXFiIXmK4hzDihUIyf/ogn5++up2y2nYKy5r5r+c38++8ikiHJgjCCPbXjwp46Z39NLd7ePndA7y5rvfK8sLQWLRoETt27KC5uRm3282GDRu4+OKLu5bfd999rF+/njVr1vDaa69hs9l46623UKvVzJs3j48++giA1atXd9tOGF3adn5Aw79+j7fmOFVv/ARvbWmkQxKEEWPV5mLeXFfIC//YF+lQBKFPIkkhjHj/tzaf/UUN/Octs1hyfjbXXjSeu1ZM409r8tl1uLb/HQiCIJxm64Eqtuyt5HvXT+fK+Rncc/10Nu4qJ69Q1DoYLklJSdx///3cfvvtXH/99SxfvpwZM2Zwzz33cOjQoT63/dnPfsY777zD0qVL2bNnD//93/8dnqCFsPLVl9O67X0Srryd2PlLMc26kvoPfoscDEQ6NEEYEbbsreTOFVMpr22nvtkV6XAE4YzEcA9hRNt2oJptB2u494bpGHTqrueT4g3cungSL/xjLy8/cDlxZl0EoxQEYSRxewP84f2DfOOqXIz6zvNKjF7NtReN4/fvHeTVh65AqRQ5/uGwYsUKVqxY0e25119/vcd6aWlpbNq0qetxamoqf/vb34Y9PiGymjevxDjlApRGCwD6cTNxlx6g48g2TNMviWxwghDlmtrctLR7yEgyMTEjjj2FdSxdlB3psAShV6KVJYxYDpeP379/gJsuy+mWoDgpPcnE3ElJvL6m7ztwgiAIX7Xms+OMS4klw27u9vzEjDiMejWf76+KUGSCMHb52+rxlB9BO35e13OSJGGcsojW7auQZTmC0QlC9Dte1UaqzYRCIZFpN3OkpCnSIQnCGYkkhTBi/WPDUSZlxpN52oXEV106J40DxxopqWoLY2SCIIxUXn+QtZ+XcMmctF6XXzAjhQ8+LwlzVIIgVO/cxIsdS/nmaxU8taYaty8EgDY5h5DXha9WfC8FoS+lVW3YEzqLyqfaYiiqaI1sQILQB5GkEEak+mYXn+6p4PJ56X2up1EruWhWKivXFYQpMkEQRrLP9laSao3BFtf77EATM+Kob3FRVtse5sgEYeySZZnnt3hIiIvhJ9cmI0kSL67vrA8jSRL67Ok4Dm2OaIyCEO1Ka9pJ+vK3zRZnoKnVjdsr6rkI0UkkKYQR6d1NRcyfnITJoOl33fmTkzhS2kxtkzMMkQmCMJJ9vOME86cknXG5UiExa4KVf+dV9ro8IAr4CcKQO3y0HmdAxVVzbKiVEktmxlLe5GPfic7fdV3mNJwFO8SQD0HoQ02jk4TYzhptSoWELd5ARZ0jwlEJQu9EkkIYcVocHj7bV8X50wc2N7pGrWTuJBtrRRdtQRD6UF7bTn2LiwnpcX2uN3VcAtsOVHW7IAqEgjy77VVu++d9vLjj/wiGgsMdriCMCbIs83mBkwuS3SgUnc1WlVLi4lwT/9zV0vnYnAgKJb76skiGKghRra7ZRfxXCsnb4vSU14okhRCdRJJCGHE+2lbK9PGJA+pFcdL8KXb+nVeBPxAaxsgEQRjJ/p1XycwJVpQKqc/1Uq0x+PzBbo27NQXraXa18uBF36faUccHhZ8Md7iCMCYUnGjG5w8yISO+2/NTUnU0tAcob/QiSRK61Am4ju2JUJSCEN063H4CgVDXjFUAibF6ysXQRSFKRTRJsXbtWpYuXcrVV1/NypUreyw/fPgwN910E9deey3f+973aG8XX6Sxzh8I8fGOEyycNrBeFCfFm3XY4g3sPlI7TJEJgjCSybLMZ/sqmTE+sd91JUnqnL6toHNMvCfg5V9Fm1gy4TJ0Ki3Lcq/gg8JPcPncwx22IIx6/95dRq6yCnW8vdvzCoXE9HQ9/z7SmSzU2MfjLtkfgQgFIfo1tLiIj9UhSaeS8AkWPVUNHRGMShDOLGJJirq6Op5//nneeustVq9ezdtvv01xcXG3dX7xi19w33338cEHH5Cdnc2f/vSnCEUrRIsdh6qxWgwkxfde1K4vsyZY+WRX+TBEJQyl/pKXJSUlfOtb3+Laa6/lrrvuoq1NzNwinLviylYAkhONA1p/Qnocu79MUuys2Eeq2U68wQJAvN5Cdlw6n5ftGo5QBWHMCIVkth2oYryxA4W6Z+/JaWl6vijuQJZlNLYMvLUlhPzeCEQqCNGtsdVNrLH7dyjBrKNG1GsTolTEkhTbt29n4cKFWCwWDAYDixcvZt26dd3WCYVCOJ2dXx63241Op+ttV8IY8tH2E8ybbBvUtlOyE8g/3ojT7R/iqISh0l/yUpZlvv/973PPPffwwQcfMHnyZF577bUIRiyMFtsOVDMlO6HbXaa+jE+NpbiyFbc3wPaKPKZYJ3RbPsM+mc9O7ByOUAVhzCiubEWvDGAy9d7+s5pVgMSJBh8KtRZVnB1vVVF4gxSEEaCxzYPZqO32XEKsjrpmlyg4K0SliCUp6uvrsVqtXY9tNht1dXXd1nnooYd49NFHufDCC9m+fTtf//rXwx2mEEWqGzsor21nSnbCoLbXa1WMS41llxjyEbX6S14ePnwYg8HAxRdfDMC9997LbbfdFqlwhVFClmW2HaxmSnZ8/yt/SaNWkmqNIb+knoKGY0xIyO62fFxcBpXtNbR6xDBFQRisXYdrydS0EtRbel0uSRIT7NquWT401gzcZYfDGKEgjAxNrW5iDOpuz2k1KrRqJa0O0ftIiD6qSB04FAp1u2Mly3K3xx6Ph0ceeYQ33niDGTNm8Oc//5kf//jHZ3XXND8/f9Dx5eXlDXrbcBsrsW480EZ6gorjx48Neh/xeh8fbj6CmfoBrT9W3tto0Vvy8uDBg12Py8vLSUxM5OGHH6agoIBx48bx05/+9KyOcS7nhcEayX+bkRw7DCz+hjY/DqeHjpYqjrYOrCcFgEnjZ/WW3cTY9FSU9JxVwKqOY82Oj5hmntDL1v0b6e+9IJyr/ccamBSoJKQ/83co26plX5mLG88DTWIa7rLwn+OFobF27Vp+//vfEwgEuOOOO854E+LBBx9k4cKF3HjjjTQ1NXHnnXd2LXM4HLS0tLBv3z527drFf/7nf2K3d9YzmTJlCk899VRYXku0aWh1Ywi04q50o0/L7Xo+3tzZmyLOLHqrC9ElYkkKu93Onj2nqjA3NDRgs53qxl9UVIRWq2XGjBkAfO1rX+O3v/3tWR1j2rRpaLXa/lc8TV5eHnPnzj3r7SJhrMQaDMm8+OEGbrtmEskJAxsz3pv0DD/Prsxj2oxZaNXKPtcdK+/tYHm93iG/4O8veRkIBNi1axdvvvkm06dP54UXXuDpp5/m6aefHvAxBnteGKyR9Dk63UiOHQYe/z83FTE9R2JS7vgB7VeWg8jBICqji9XbDjNzxngm5uT2WK+tyoPD6xzUezhS3/vhOC8IY5PHF+BEVSuXx3vwqs48m1eWVcN7u1vw+kOorWm07liNLIeQJDGB3Uhycrjn+++/j0aj4etf/zoLFiwgJyen2zo/+9nP2LFjBwsXLgQgISGBNWvWAJ1tiDvuuIP7778f6Lwpceedd/K9730v/C8oyjS1dGCo/ZzW0iZUy7+P2tx5Q8hi0lHb7GJS1sB7EgpCOETsDL5o0SJ27NhBc3MzbrebDRs2dHXhBsjMzKS2tpaSkhIAPv30U6ZPnx6pcIUIyy9uRK9VnVOCAsCgU5NqjeHgsYYhikwYSna7nYaGU3+b05OXVquVzMzMrnPB8uXLu/W0EITB+OJQLbkZ/TfQgl4XLTtWU/uPX1L37tMYj3xAS0sIuyGp1/WzLGkcaRh8zy9BGMuOlrWQZJIwWPr+bmpUCuyxao7XeVHqYlDojPgbK8MUpTBUBlKrbu3atVxxxRUsWbKk132899576PV6VqxYAcChQ4fYunUrK1as4N5776WmpmbYX0e0am5qJTYhAW36JNwnTiWSLTEa6ppF8Uwh+kSsJ0VSUhL3338/t99+O36/n5tvvpkZM2Zwzz33cN999zF9+nSeeuop/vu//xtZlklISOCXv/xlpMIVwkAO+vFUFBJoa0DS6NDax6GO6+yit3F3OTMn9j814EBMzIzji/wa5k+x97+yEFaLFi3ipZdeorm5Gb1ez4YNG3jyySe7ls+ePZvm5mYKCwuZNGkSmzZtYurUqRGMWBjp2p0+yuvauXXxpD7XC7raafrkDVQWK5aLbkZSqnCXHSZRakPZkgopPbdJNMTj8rtp9bRj0ZmH6RUIwuhUcKKZZI0LZUz/CcS0eDUF1W6mpOnRJKbirS5GY80IQ5TCUOlvuCfA3XffDfQ+FC4YDPKHP/yBV155pes5k8nEkiVLuPrqq/n73//O/fffzz/+8Y8BxzSSe4Wd/h61OryELEraQmpUxQeo0XX+aHlcbg4fbSEvLrqnIh2Nwx9H22sa6tcTsSQFwIoVK7qynSe9/vrrXf+/5JJLuOSSS8IdlhBmsizTvnc9LZ+9jdJoQWVOQPb78DVWoDSY0cy4mp2HZf7763OG5Hi5GXH87eOCHkMJhMgbSPLy5Zdf5tFHH8XtdmO323nmmWciHbYwgu0trGNcqgW16swdC0NBP82b30JtTccwflbX81LaRPRFB2n64hBMSYfTupdLkkSq2c7x5jLmpoiegIJwNo6UNJEWqkMVmw0dfc/KlZ6g4UiVh5sAlcWOt+Y4ppmXhydQYUj0N9yzP59//jlZWVnk5p4aevfEE090/f8b3/gGzz33HA6HA5PJNKB9hnt46FA5fbhgKCTjequczAk5qA1GWqsPMXH8eCSlClnbzMFjjVE9vHCkDn/sy2h7TYN5Pf0ND41okkIQ5FCQ+g9exFdbSvxlt3X1nACQ5RC+ujI27ywiSbZA6S5CufNRqM7tB8Nq0RMMyVTWd5CeNLAfKiF8+ktezpw5k3/+85/hDksYpXYermVCuqXPdRz7PkFSa9CPm9nt+WZ3G0oLlDSbuexoHsFJ83tsa4+xUtx0QiQpBOEsyLJMUUULszUVKGPmQkddn+unxmn4cF8bsiyjTkihI/+zMEUqDJX+atX1Z+PGjSxdurTrcSgU4tVXX+W73/0uSuWpGmRf/f9Y0d7WjloKoDGakRQKlIZY/C21aBLTsMRoaWxzRzpEQehBVBUSIkaWZRr+9QqBljoSrvpOtwQFgCQp0Nqz2SNPZcbEJLw1xdSvep72A58SdLUN+riSJDEh3cLeowOb4UMQhNEpGJLZV9RAbkbcGdfxNVbgLj2EcdLCHnf1WtztWGMlKoIJKPdshFCwx/ZJMVZKW8qHPHZBGM3qml2oJDDpVCjUZy6aeZJJr0StlKhrC6COs+NvqEDu5fsoRK/+atX1Z//+/cybN6/rsUKh4JNPPmH9+vUArF69mpkzZ2IwGIY89mjXUFGBURlEUnRe9ilNcQTaOtvAsTFaGlvdyLIcyRAFoQeRpBAipn3fJ3gqCrFcdAuSSt37Oq4gRTUepo5LwDT9EsxzFxNoqad+7e9o3PAnHPmf4ak6iq+lloCjCX97I76WWnyNlfgaK/G3NyKHAj32m5NmIa+g7zszgiCMbkfLmrHEaImN6b13liyHaNv1L/Q5c1Fo9D2Wt7rbiDdqQVLQrLGiLN7fYx17jJWy1qqhDn3UWrt2LUuXLuXqq69m5cqVPZZ/8sknrFixgmXLlvHQQw/h8/kAWLVqFRdeeCHXXXcd1113Hc8//3y4QxeG0PHKNpJNoDQNfMaB1Hg1xXUeFBodSmMs/ibxvRtJvjrc8/rrr2f58uVdwz0PHTrU7/YVFRVdU42e9Ktf/Yq//vWvLFu2jPfee4+f//znwxV+VGupq8WgPpWEUBrN+Fs628A6TWfPEqenZ1tZECJJDPcQIsLfWkfLv98k/qrvoFCfefjGjuIOJth1aL4cL640WjBOXohh4jz8TdX4W2rxVB4l5HUhB/1ISKBUISk6T7ohvxfZ60SdmI5x0kJ0aZOQJIlxKbGs3nKcQDCESilydYIwFu0+UkdOWuwZl3vK8pGDAbTJ2b0ub/W0MT4+E1usxAnzNObmbyM4sfuYzDh9LO3eDtx+D3q1mIe+L/1NQehyuXjiiSdYtWoViYmJ3H///axatYqvfe1r5Ofn89BDD7F8+fIIvwphKByraCFR5UQZc+ZeTqdLMqspqfdyYa4JlcWOr65MFM8cYfob7nlSb9OOHzhwoMdzEyZMOKtCmaNVa1MrBs2pnoBKYxy+2lKgs3exxaSlqc1NjL73G4aCEAkiSSFEROP6P2GcdD7qWGuf620pcHDe+J7TjkpKFRpbBhpb/w2QUMCHv7GS9r0bcBXtwnLhLRj1BuLNOoorWsXc0IIwRu06Uss1C7N6XSbLQdr3f4ox9zwkqfdEpsPbgVFjINEsUe6zMM/lQGquRY4/dTdPISmwGROoaq8lJ6H3YwmdvjoFIdA1BeGPfvQjAAwGA5s2bUKtVuN2u2lqasJs7pw15dChQ5w4cYJXX32V3NxcfvrTnxIbe+YElBDdjle2kRlqQmXqfXrf3tgtavaXuQBQWax460qJmXbRcIUoCCNGa2sbeu2pGaaUBhOBjuaux2ajlqZWD5l2MQuVED1EkkIIO3fpQXx1J4idv7TP9era/NS2+hlnO7dCmQqVBq19HBpbJq7ivTSue53Eq+8iO8XMgWMNIkkhCGNQU5ubplb3GYvnuksPodDoUcUl97rc4/cSQkatUJNokimskglm5aAq3I1/Ufc7gYnGeCrba0SSoh8DmYJQrVazZcsWHnzwQWw2GxdeeCEAVquVO++8kzlz5vCb3/yGJ554gueee27Axx7KqQZH0rRy0RprcUUT0zXl1LebkT0VQGd3/r6EfFBSp+BoYREqVxB15QFOWCLz+qL1fe3NSIpVGJx2hxuDLrHrsUJvIuhqRw4FkRRKYo0aUTxTiDoiSSGElSzLNP97JaYZlyIp+/74fVboYEqaDqViaKYJlRRKjBPn4zq+j+ZNfyNr8k3sL2rga1fl9r+xIAijyu4jdUzIiOv1/CLLITryP8OQM/eMU+A5fJ29KCRJwmqGTfkywfPHo877BM5fDl/ZLl5voaq9dthey2gx0CkIL7nkEnbu3MlvfvMbHnvsMZ577jlefvnlruV33303V1111Vkde6imGhxJ08pFa6xtHV6CoRpiFW7ix01AkiQqKipIT0/vd1v10VoSUrOwpNlo2rCf3Ai8vmh9X3sTrlj7m2pQGF5tzgCG2FMFaCWFEoXOSNDZisqUQIxBTVOrSFII0UUMxhfCyl16kKDbgS5zWp/rybLMZwUOpqcPfRVm/bhZSBodCTW7OFbZij8QGvJjCIIQ3XYermVieu/j3T1VRQCo4nvvRQHQ7nWiV3cW09RrJDQqaMQCCiVSY/eCfQkGC5UiSdEvu91OQ0ND1+PTpyBsbW1l69atXY9XrFjB0aNHcTgcvPHGG13Py7I8JqcZHC1O1LRjj1WhNsWdMUl4JkmxaiqavCiNsch+L0G3Y5iiFISRQZZl2n0SRkP3JKxSH0OgowUAs1FDg0hSCFFGJCmEsGrd/j7GyYu6pkE6k+I6L0EZUuOGvoiPJEkYJ5+PXH2YRKOS45WtQ34MQRCil9cf5HBJExMzLL0udx7Zhi5jSp8XSB1eJ3rVqUaf1SxR1SwTSspAWdr9jmGCIZ4ah5hNqD/9TUEoyzIPPPAA1dXVAKxbt445c+ZgMBj44x//2FU478033zzrnhRC9CirbSdB60cZYznrbRNNKsqbfEiShCouCV9D30NEBGG0C7nacck6DLru7WmFNoZgRxvwZU0KMdxDiDIiSSGEjdJRj7+xAn1W370oAP59xMH0dP1Z30UZKIVai2HifJIClRwsbuh/A0EQRo0DxxpIsRp7NNoAfM01BNob0SRl9bkPh9fRbbaO+BiJquYQIVsmyvLCbuvG6WJpcDYTkkWvrb70NwVhXFwcTz75JN/73ve49tprKS0t5YEHHkCpVPLCCy/w2GOPsWTJEg4fPswDD0k0N+QAAQAASURBVDwQ6ZcjDNKJ6nYsUjtKo+Wst7WZ1Zxo8AKgjk3E31A+xNEJwsgScDTjQo9e0/2ST6EzEHSe6knR1OaJRHiCcEaiJoUQNtoTu9HnzO23FoU/ILPjWAd3X5rY53rnSpOURcrR7ew/UMx/XCnqUgjCWPHFoRpyM3of6uEs/AJdWm7XNMZn4vA5sehPzR6RYJI4XhtCnmVF6mgFlwMMnUU5tSoNOpWGVnc78QbLUL2MUam/KQivvPJKrrzyyh7bzZs3j1WrVg17fMLwK691MD3QhNKYedbb2swq9p2c4cNsxVsvkhTC2BbsaMaFFr2m+00/xWnDPVoc3kiEJwhnJHpSCGER9DjR1BViyOm/QNOeUidJsWosxuHNoUmSxLiJ2RyrdRMMBof1WIIgRIdgSGbX4Vom9zKrT9DrwlNxBG3qxH734/S5uvWkSDRJ1LTIoFAQSkxFWXWs2/rxhjhqO+rP/QUIwigmyzIV9Q4s3ppB9aRINKmoa/MTkmVUFhu++rKhD1IQRpBARyvuoAq9uvsln1JnJOjsHO5h1Ktxuv2iRpsQVUSSQgiLjvzPCJiTUepj+l13Y347MzP0YYgKLPZkDIoAx3btCMvxBEGIrMITzRgNahJie55j3CX70CSmodD0ff4JhWTcAU+3mhRGLYRkaHfJhBJSUFQUddvGojNT72wamhchCKNUq8OLQgK97EHSnn07QKtWYNAoaGwPoDIn4m+uHoYoBWHk8He04Q4q0Z0+3ENrJORq7/y/JHX2pmgXQz6E6CGSFEJYtO/dgD9xXL/rNTr8HK/zMjk1PEkKSZJIi9ew74u9YTmeIAiRte1AVa+9KGRZxlm0e0C9KNwBD2qlGoV0akiIJEkkmCRqWmXkhGQUNaXdtonVmqjvaDz3FyAIo1hlfQeJMUpUMZZB16SymlVUNvtQGMxfzvDRMcRRCsLI4WxtRaWQe0y3rdAZCLodyLIMdA75aHaIJIUQPUSSQhh23tpSQm4HQbO933U/yW9neroetXJ4Cmb2JiPFwtEmhagCLgijXCgks/VANdPH96x346vrTCqoLEn97sfld6FTaXs8H2+UqGkJIRtjkYIBJEdL1zKL3kytUyQpBKEvFfUO4jSDm9njpIQYFZUt/s4ZPmJt+Juq+t9IEEap9rZ2DL1MlCcp1SiUakJeJwAmg+hJIUSXiCYp1q5dy9KlS7n66qtZuXJlt2UFBQVcd911Xf8uuugili9fHqFIhXPhOLAJffYM6OeuSCAo82m+g7nZhjBF1ik9UceJkB3HgU/DelxBEMKr4EQzeq0KW1zPc4zz2B50KRMHdPfW6XOhV/aSpDBJVDXJIEmEEpJR1J7qTWHRxdIgelIIQp8qah1YFE4UevOg9xEfo6Kq2QeAKjYRX2PlUIUnCCNOh8PVY2aPkxS6GILOziEfMQY1zWKGDyGKRCxJUVdXx/PPP89bb73F6tWrefvttykuLu5aPnnyZNasWcOaNWv4xz/+QWxsLI899likwhUGSQ4G6Dj8OfpxM/tdd+fxDhJilFjNvaR8h5HVpMIZUlO9/wvkYCCsxxYEIXw+3V3O9JyevSiCXhfeqmNokrMHtB+nz422l54UCTES1S2dXWdDFhuK6pKuZbE6E43ulh7bCIJwSkW9g9hAC0pjbP8rn0HiV5MUpnj8jaKXpDB2OVzeMyYpJJ2eoNsBQIxeQ5PoSSFEkYglKbZv387ChQuxWCwYDAYWL17MunXrel331VdfZf78+cybNy/MUQrnyl16EGVMPCpTQp/rybLM2r2tnDfeGKbITpEkifQELeWKdNylB8N+fEEQhp/XH2T7wWpmTbD2WOYuOYDGmobiK7N19MXpc6FV90xSWIzQ0iETCMrI8Uko6k5Nf2jWxtDmaScUEtXTBeFMqhucmH31KI2D70mRYFJR0+oHQGlOxCeGewhjmNMdQKfpfUptpdZAyN3Zk8Js1NDY6g5naILQp+Gd47EP9fX1WK2nGos2m42DB3teIDocDt555x3Wrl171sfIz88fdHx5eXmD3jbcojlWw/5VyHorzUc7K90XHS3qdb2yFmhqV6APuKmIwE2PGIVEgT+JcZ+vwdUmdz0fze/t6UZSrIIQbtsOVJNmMxEb0z25IMsyruI9GHLmDHhfTr+LWF3PiyiVUsJsgIZ2meTYBCRnK/g8oNGhUqgwqPW0etqJN1jO8dUIwujjDwRpcXgwGZtR6PqfCexMTDoFvoBMhyeI1pxAx6HPhjBKQRg5ZFnG6QuhM/V+uSdp9ARdnT0pTAY1x6tawxidIPQtYkmKUCjUbeyvLMu9jgX+4IMPuPLKK0lI6PtOfG+mTZuGVtvzbld/8vLymDt37llvFwnRHGvI56Fs0/NYr/1PlDojRUeLmJjbe+X8d1ZXc+EkDZkZ4e9JAeBVe9hzXIuuaQu5M6ejUGmi+r09XSRi9Xq955QIFIRw+nBrCQum9ize62+uJuT3oorrv7DvSS6/G3tMzx4ZAPExEjUtMslxSuTYRBQNlYRScwCI1ZlpdDWLJIUg9KK60Ul8jBqVMQZJ0fud34GQJIlEk4raNj/jE+IJtDcgh4LntE9BGIlkrwu3pEerPkNNCo2+qyZFZ+FMbzjDE4Q+RWy4h91up6GhoetxQ0MDNputx3obN25k6dKl4QxNGCKuY3vQWNNR6vpOPJTUeznR4GNWZngLZn5VaryGsuYAytgkPKWHIhaHIAhDr6i8hcY2N7mZPacedRXnoU3OQZIG/nPo9nvQ9FKTAiAupnOGD4BQrBVFXVnXMrMmhiZRl0IQelXd0EGcLoRSP/h6FCfFx6iobfUjqdQoDWYCrfVDEKEgjCxBtwOPZDhzkkJnJORuA8Bk1NAipiAVokjEkhSLFi1ix44dNDc343a72bBhAxdffHG3dWRZ5vDhw8yePTtCUQrnwpH/GbqMqf2u9+a2Ji6cGIMqjNOOnk6vUWDSKWmyTKGjcEfE4hAEYei9+2kRi6an9JgnPhTw4SnLR5cyfsD7kmUZd8CDTqXpdXm88VTxTNli7VaXwqQ10uRqPfsXIAhjQHWDk1ilF4Vh8PUoTrIYlVS3dNalUJkT8TdXn/M+heHX16x/X/Xggw/y/vvvdz1etWoVF154YdeMgM8//zwA7e3tfPe732XJkiXcdttt3W6OjgVBVzsuyYBO03v7WtLqCLk7ADDq1Lg8AQJBUTdJiA4RS1IkJSVx//33c/vtt3P99dezfPlyZsyYwT333MOhQ513spubm1Gr1YMasiFEVtDjxFN+GF36pD7XO1ThoqbFx5wwTzvam5Q4NRXKdFzH9iCHgpEORxCEIXC8spUjpc3Mn5zUY5m3ohClKfGsxr/7An4UkhKl1HvX8fgYibrWL2f4iE1E0XTq4sikjaHJ1XyWr0AQxoaqhg7MsuOcimaeFG9UUd3y5QwfMfH4m2vOeZ/C8Opv1r+T69x7772sX7++2/P5+fk89NBDXbMC3n///QC88MILzJs3j48//phbbrmFX/ziF2F7PdEg5HLgRovuDD0plBoDwS+TFAqFhFGvptUhhnwI0SFiSQqAFStW8OGHH7J+/XruueceAF5//XWmT58OQEJCAtu2bYtkiMIgle9bR71ez1tHPqK4qazXdQJBmT/+u5Erp5l73OGMhJQ4DcUtShQ6I96a45EOZ8zq707K7373Oy677LKuOyZ93W0RxjZZlnl9TT6XzElDo+6ZVHAW56FNHngvCgBXwH3GXhQAJj24feD2yaA3QTAAri/H/GpjaHSJ4R6C0Juqhg7MwWaUhqEY7qE8NcOHKU7M8DECDGTWv7Vr13LFFVewZMmSbs8fOnSIVatWsWLFCv6//+//o62tcwjD5s2bWbFiBQDLly/ns88+w+/3h+cFRYGg24Fb1pwxSSFpdIR8bmS588acWQz5EKJIRJMUwuhU2HCc4zvfx5loJ8VsZ3XBOg7VFvZYb01eCyadgtzkgU37N9xS49QU13rQpuTgOrYn0uGMSQO5k5Kfn89vfvObrjsmt912W4SiFaLdvhInbR1ezpvSsyhm0NVGoLkGjS3jrPbp9rvRKs+cpJAk6VRvCkkiZLGiaOi8QDJrY2h2t57V8QRhrKhtcmLy1A5ZT4r69gAASpPoSTES9DbrX11dXbd17r77bm655ZYe21qtVn7wgx/wwQcfkJyczBNPPNFjnyqVipiYGJqbx05vtpCnA1dIjU59huEeCiUKjY6Q2wWI4plCdInY7B7C6NThc/L7z37Pj7xBAjkLQKUmTmfmo6JNXJ24qGu9Ew1ePtzXxj2XWXud1SUSkmLV1LUHwJaD6/C/YU5upEMac756JwXoupPyox/9qGud/Px8Xn31Vaqqqpg/fz4//vGPxZAwoYeymnY+2dfGPdfP7LWnluv4fjRJ2UjKs/sZdAe8aPvoSQEQHwO1rTJZNpBNCSgaqwhlTsakiaHlyyJlgiCc4vUHcTh9mMx+FOpzv3Fh1CrwB2Vc3iAaU4JIUowAA531rzcvv/xy1//vvvturrrqql7Xk2UZhWLg92dH8gxmeXl56I4X4fSn0tpUj8Ld+3o6SUXp0XyCxniCPhf784+i9ERfz6O8vLxIhzDkRttrGurXI5IUwpD6x6EPuCioA1sGqNQAxOkt5CaOZ39bIbOZhdMb5Nl/1XLNjFhiDdEzJZhKKZFkVlFFAnGt9UheZ6RDGnN6u5Ny8ODBrsdOp5PJkyfzwAMPkJmZyUMPPcQrr7zSNf5UEKCz2/jPXtvB/Akx2BN6zi4kyzKu43sxTrngrPft9ntQ99GTAsBilKhpDQFK5NgEFA0VQGfhzFZP+1k1vgVhLKhtchJnVKKOOfehHtDZoykhRkVtW4DsRAtBZyty0I+kVA/J/oWhZ7fb2bPnVC/WM836dzqHw8F7773Ht7/9baDz/K5UdrYtbTYbjY2N2O12AoEATqez6ybIQEybNm1E3gQ5OS19Q30ePtRkpidjMfR+ydfeeJREWwK61ImUtZZhshiZO7fvenLhdvL1jCaj7TUN5vV4vd4+E4EiSSEMmUZnM1vLdvOTNplQ+sRuy6baJvJu/YfUd7Tw8joX45O0TEvXRyjSM0uOU1NS72eRfRyqphPAxf1tIgyh/u6kGI1GXn/99a7Hd955Jw8//PBZJSkicWdkJGfLR1rshZVuPtjZwuxxBrLtWo4WHe2xjtLRgM7vo7bNA+0VZ7X/+o56QsjU19edcR3Jr+ZEs5aKihrUXi/JdZUUHe2MQyFLbN29HYOy/7vFI+29Hwpr167l97//PYFAgDvuuKPHcK5PPvmEF198kVAoxPTp03niiSfQaDRUV1fzwAMP0NTURHZ2Ns8++yxGY9/TXwvRo6bRSZw2hGII6lGcFGdUUtfmZ5xNi9Jowd9ajyYhdcj2LwytRYsW8dJLL9Hc3Ixer2fDhg08+eST/W5nMBj44x//yOzZs5k5cyZvvvlmV0+KSy65hNWrV3Pvvffy0UcfMW/ePNTqsZOoCrkduAM2dKoz9x5RaPSEPJ3FM00GDU3toiaFEB1EkkIYMh8e3ciC+HGoirfjm3NFt2VqpZokdRJPfVBFnC6eK6ed+5jT4ZBs0VBU6+HScVmoq0TxzHDr705KdXU127dv5+abbwY6kxgq1dmdxsJ9Z2QkZ8tHUuwt7R5eW32IwhNOvrlkKlnJZo4WHSV3Ys9hWy07CpAyJmPNSD/r45SUVmHRGrGZes4WcpLRLHOgOkB6egbIMurjO5mYlQFaPXHtu8icmEWGpe+LpZH03n9Vf3dG+nKyJs3777+PRqPh61//OgsWLCAnJwcAl8vFE088wapVq0hMTOT+++9n1apVfO1rX+Pxxx/n1ltvZdmyZbz88su88sorPPDAA0P50oRhVNvkxKT0oDQMfKad/lgMSmq/LJ6pMsUTaK4VSYoo9tVZ//x+PzfffHPXrH/33XdfV1H90ymVSl544QUee+wxPB4PWVlZPPPMMwD813/9Fw899BDLli3DZDLx7LPPhvMlRZzf5cAXBM0ZalIASBpt1wwfJr2aY02iF7EQHUSSQhgSHr+HLSe+4D5jDqGkTDhtnHeHW2Zv0TS8OLhjURaKKO3qnBKnZsexDrQXjEd9cLPolh1m/d1J0el0/PrXv2bBggWkpaWxcuXKM449FcaOHYeqeemd/cyZlMSPbpnV60weJ4UCPrzlR4hdeO2gjuXye0gwxPW5jkELgSB0eGRidBKyOQFFcw2h5HGddSk8bWQgLpZO119NGoPBwKZNm1Cr1bjdbpqamjCbzfj9fnbv3t01Lv3GG2/km9/8pkhSjCBVDU7MIceQ9qSwGFXUtn05w0dMHP7W2iHbtzA8VqxY0TUbx0lf7T150tNPP93t8bx581i1alWP9SwWC3/4wx+GNsgRxOV0o1VJfba5lRo9IbcDAJNRQ4uYglSIEmJ2D2FIfFG5j/TYFEwnCgkmj+u2rLgmxAv/8pFgCDEutY5a55m7SUdaoklFmyuIR9PZUBLFtsLrq3dSrr/+epYvX951J+XQoUPEx8fzxBNP8P3vf59rrrkGWZb5zne+E+mwhQha+3kJv3/vIN+8ZjKLF2T2maAA8FYWojQnotANbiiAJ+Dpc3YP+HKGD9OXM3wAsikeqanzXBKjMYjimWcwkOr+arWaLVu2cOmll9Ly/7P35/Ft1Xei//86ks7RvnmR9+whIStLgDSl0IWl0KQBpr3tlFva28KUdpgyuVP4MoUZGNqZ0rktdIahdOjc3+0GLUwhQFoIgaasCYRsZN+deJdky5a1b+f8/lDsxNixLUebnc/z8cjjEUtHOm8lsnTO+7w/73dvL5dffjm9vb3YbLbBqqrq6uphjxPKW4c/jD0dQG/JX5XlwHIPAL3NJb7PhXNOJJo842SPAZLRQmZgTLZFoU8s9xDKhKikEPJi47F3WGZvQArtRKvKXiGMpzRe2p5mT4vKFQv0GDMxYkoVx3vbaHLWlzjikekkiTq3TLM/icNeS/z4bpTK8ox1qhrrSsq1117LtddeW+ywhDL07p5OnvnTIW5bvQi3fXwTASJHtmP8UCI1F/F0AsUw9ppmtxW8QY3ZtaDa3ei6O8gAFtlCX7x/wvufysbb3f/KK6/kvffe4+GHH+aBBx7g7rvvHrZdrhVw+exVM5l6iZRLrC2dvSzCR2dPP/SNXG7e2ppb/5h4HDp6dBw6eAh9MI7c28KJIr3ecvl3HY/JFKuQm2gihUke/Xq0TjGROdmTwmaW6QsnRRWxUBZEkkI4a4FoHy3BDv4yaUKtmwU6HYc7VZ7ZlKLOJfG55QaMsoTPBzW2Kja3bkdV1ZzGQBVTrVPmqDfBEruHaPNOHBeLE2JBKDe9oTiPPrOTm6+dP+4ERSbaT7qnA9uCFWNvPAJVVUlmUsi6sZMULqtEZ+/JCR/2SvSd2V4rNqOVQLRvQvuf6sbqSdPX18eePXu4/PLLgWxCc82aNVRUVBAKhchkMuj1+nFPBThdvnrVTKZeIuUSayajEv5dO64KieoZM0bcprW1laam3HrI1KsaL+ztZPbcuaj9LvreOci8Irzecvl3HY9ixXo2vWqEidE0jWhCxaSMXl0oGc2o8WxiUJH1GAwSkXgam/ncaTAqlKfyPEsUJpV327Yzr3Im8pEPSNTM5vktKX77doqPztNz5cJsgmKAyWDCbDDij/aUMOLR1blkDnfFydg9xFv2o2laqUMSBOFDfvPyfpbMqaKpxj7ux0Sbd6HUTJvwGMJEJoGil9FJY391uq2nL/dwIwX9oKnZ5R5xsdxjJCtWrGDz5s0EAgFisRgbNmzgiitOTVjSNI277rqLjo4OANavX89FF12ELMssW7aMl156CYDnn39+yOOE8tYdjGMzSRht+W2orddJ2Ex6ekJpDDY36f5uNDWT130IQrnSkjESOjPGMSspzKixU9VLDotCr1jyIZQBkaQQztqmlm1cqHcSShr46RY3nb0af7HcQFPVyG+vCoub9v7yXS9c71Y45kugGW1IeplUT3upQxIE4TRdPRE27erk4xc1jvsxmqYRO7odpXb2hPcbSyXG7EcxwG2V8AVPJjhlBRQTUqgXm2KlT/SkGNFYPWncbjff+973+MY3vsFnP/tZmpubB5tj3n///TzzzDNcf/31bN26lb/9278t7YsRxq3r5PhRvXn8Ccfxclv1+PpTSAYZndFKJtyb930IQjlS4xHiOitGwxg9KQwKWiaNmsn2b7FbFHpDIkkhlJ5Y7iGclf5EmJZgOw6vjke6P8msRomLZ+lGXctWaXZzrLeFi+oXFTHS8au06QknVKJJ8NRMJ96yD6Vq/CdDgiAU1gtvHuXi82uwmMZfEZEKdKCmkxhcuS0DOF08HcdoGF+SwmKEjJadbGQzS6j2CqRAF7bqWoKJ0IRjmOrG6klz1VVXcdVVVw17XENDA7/+9a8LHp+Qf12BCHZ9Al0BkhQuiwFffxrIjiFN9XZhcFTlfT+CUG4y8QgJvWVINfNIJElCZzSjxsPorO7shI9+MeFDKD1RSSGclR0de5imzOTxnXUsaNKzbLZ+zGY7brODYKKfZDpZpChzI0kS9S6Zjn5QqqcRO7671CEJgnBSPJnmz1tbuWxhbU6Pix37AGPtLKRxLNU443Okk8jjXCoiSRKVNgnvyWoKzeZCF+jCplgJxkWSQhAGdHRHsGth9Nb8jR8d4DDr8PWfNoa0t3yrOAUhn9R4mIRkQh6jkgJAZ7SgxrLNM60mWVRSCGVBJCmEs/Leid20bKnnfHsvi2aNr3mdTtLjNDrwRboLHN3E1Tpl2vslFM904q0HSh2OIAgnbdnbRaPHjss2/iaHmpohdnzXWU31AIin4ig59LNwnZzwAaDZ3Eg9nZgMRlJqqmyTtIJQbJ3dEezpXvSWAlRSWA109Z1MUlidIkkhnDPUeIQYRoyGsU/1JKOJzMnmmTaLTCAokhRC6ZU0SbFu3Tquv/56rrnmGp588slh9x87dowvf/nLfPazn+XrX/86waBYx1tO0pk0772jo04XZMms3LqiV5icdIb9BYrs7NW5ZdqCEnp7BVomRTpYvrEKwrlk49ZWlszJrVw70XEEvdmO3nJ2V2pj6fi4JnsMcFkluvpUINs8U9fnR5KkbF8KseRDEADo6g5jSwcKtNxDP7jcQ29zk+7tzPs+BKEcqfEIMU0Zc7kHgF4xD1ZS2M0KPaJxplAGSpak8Hq9PPLIIzz11FM8//zzPP300xw5cmTwfk3T+OY3v8ltt93Giy++yPnnn88TTzxRqnCFEfxyw3Z0MQtXGPZBRU1Oj3WbnXSFyvfEv86l0NGfLdlWPNNENYUglIFYIs3eYz2cP6Mip8dFj+1AqT27KgqAeCqBYhh/ksJtlejqO7XcQwoFQM1gUywE4/1nHY8gTAXeQBSXRYekG31U4kS4rXq6Q0N7UgjCuUBNRIlryrgqKZBNp5IUVllM9xDKQsmSFJs2bWL58uW4XC4sFgvXXnst69evH7x/7969WCyWwTFit99+OzfffHOpwhU+pM0X4qU3O/lY1QkkTwPkeHDhPNmXIl2m48AqbXpiKQjHM8hVjcRa9pY6JEE45+085GNarR2Tcfw9n9VkjETHUZTaGWe9/3g6hqIbX+NM+NCED70BzWRF6g9gFX0pBAGAcCxFJqNis1oK8vx2k55wPEMqrWUrKfp8BdmPIJQbNR4lphowjauSwkQmlv1OslkUekOicaZQeiVLUvh8Pqqrqwd/9ng8eL2n1gq2tLRQVVXFd7/7XW688Ubuv/9+LJbCfIkJuVFVjX9/eifOmgBzwp2otdNyfg69pMemWOmJluc4MEmSqLTAMV8CpXoa8TZRSSEIpbZlr5e5Te6cHhNr2YdcUYdOHl/PnFGfK53MqZLCYoRMBiLx0/pS9PmwymZRSSEIZMcJV5g1DNb8L/UA0OkkHBY9PeE0OpMVLZ1ETcQKsi9BKCeZeIi4ahhnTwoz6skkhd2i0CeSFEIZKNkIUlVVh0yB0DRtyM/pdJotW7bwm9/8hsWLF/OTn/yEhx56iIceemjc+9izZ8+E49u2bduEH1tsxY5157EI/kA/TY59JBQbvcEwEB7XY32+U4koRTVwpOMoSXN5HjBUWiS27G3HNCONraeTbe9tAkNuvTeKaTK9ZwUhV5qmsfOQj5s/fX5Oj4sd25mXpR4AiXQCRT/+SgpJkqiwZaspZpokNJsTXcCLxWkWY0gFAfD2RHHoE+gL0I9igNtiwNefotYlo7e7SfV5MdbMKNj+BKEcqPEIsYwLZTzTPRTzYONMi8lALJEmlVaRx7NURBAKpGRJitraWrZu3Tr4s9/vx+M5Nb++urqa6dOns3jxYgBWrlzJt7/97Zz2sWjRIozG3E8qt23bxsUXX5zz40qh2LFG4yl+8uKfuPxSN9U7kyhzl+BxVI7rsT6fF4/nVO+KdAj64kGampoKFe5ZOdLdRp9q57zza+lpa+L8aiuWWUtLHdaISvGeTSQSZ5UIFIRcdPVESaVVPG7zuB8jJaKke73YFl+RlxgSmSSKPrevzYEJHzNrTval6PVirZ5Hb0w0ghaErp4IdsLoLbn1mcmF06LHf7J5psFWQbrPJ5IUwpSnxiPEMzpM8tiJBp1iRo1nLzbqJAmbRaYvlKA6h+9bQci3nFJkb775Jr29+SnPX7FiBZs3byYQCBCLxdiwYcNg/wmACy+8kEAgwIED2TL7jRs3snDhwrzsW5i45/58hJkNDvR9u5H0Mpp94gcWTpOd7jJd7gFQZdVo9mdL3uSqBrHkQxBKaNeRbmY1OodU3I1F7jmOUjMdSXf2+fi0mkHVVAxSrkkKic6BCR82F7o+H1bFQp9Y7iEIdPZEsKWD6KyOgu3DYdbj6z9tDGmfGEMqTH0DSYrxTPeQFBPqyUoKAIfVSG9INM8USiunJMXf/d3f8bGPfYzXX3/9rHdcU1PDmjVruOWWW7jhhhtYuXIlS5Ys4bbbbmP37t2YTCYee+wx7rvvPj7zmc/w3nvvcc8995z1foWJ6w3F+cM7zXzq4kacLQdJ1EyHHE4YPsxiMJPKpImnyvOD0GGCYDRDJJFBqWokISZ8CELJ7D3WzbSa3ErC5Z5jeV/qkUuSBE5O+Og92ZPC6kLq78FqMIvGmYIAdPpD2NV+dEZrwfbhtOjxBgeSFC7SYsKHcA5QE1HiaTCOY7mHZFDQ1AxqOgmA3SImfAill9MlIU3TyGQyTJ8+PS87X7VqFatWrRpy289//vPBvy9dupTf//73edmXcPae3XiYJXOqkAOHUTNpzGdZLilJEq6T1RSNzrr8BJlHOgnqXDLH/UnmVzURfPdFNE1FksQaPUEotn3NAb5w1Xnj3j7V14WUTmBwecbeeBzi6QTyBCoy3DYJf//JCR+yAgYFRzpDv+hJIQh0dYe5wKpD0hXue9Vl0bOvPdv7Sm9zE2/dX7B9CUK5SMXjZFQw6MeRpJAkdEYLajyCzqZgM4sJH0Lp5fSt8M1vfhNN03j00UdpbW0tVExCGeoNxXl1SwsfW1pH/45X6XC50edhprndaCvbCR8AtS6ZZl8CvdmGpJhJ9XSUOiRBOOf0hRKEIkk8FeOf8BRt3kXGXpu3pGIincBoGH/TzAFWIyTTEE1kExWq3Y09GqY/Mb5mw4IwVWUyKj2hJC772U/eGY3Loqc7lO1Jobe5xBhS4ZwQjScxGqRxV/9lkxTZ7yWr2UBAVFIIJZbTZaG3334bu93Oyy+/zMsvv4zBYMBqtWIwnHoaSZJ466238h6oUFovvHGUJXOqMHTsIq4DzVU99oPGwWG0lnVfilqnzBFv9oNaqWok0X4IpaqxxFEJwrnlUEsvTbV2dOM82NI0jVjzLtKeBXmLIZ5OIuvHP350wOkTPmZ4JLA6MYf7iaZiZNRMXpK9gjAZdQfj2BQNxVK4pR6Q7UkRimVIZzT0Njfp/u5hE+WE8rBu3Toef/xx0uk0X/nKV7j55ptH3O7uu+9m+fLl3HTTTUC2efgPfvADUqkULpeLf/mXf6GhoYEtW7bwN3/zN9TW1gKwYMECfvCDHxTt9ZSMphFNZMbVNHOATjGRiWWTFDaLIpIUQsnldIlp8+bNhMNhNE1D0zRSqRR9fX10d3cP+SNMLZFYivXvnmDF+W7Cu/7MUbsNt8WVl+e2Gx0EYn15ea5CqHPJHPNl1+jJlfXE2w6WOCJBOPccbu2lrnL8JzKp7lYknR7VaMtbDIkJLvcAcFmyEz4AVKsTfZ8Ps2wilIyM8UhBmLq6eiK4DEn0lsI1zQTQ6STsZj094TQ62YhkkMlExHSdcuP1ennkkUd46qmneP7553n66ac5cuTIsG1uv/12XnnllSG333XXXXz/+9/nhRdeYNWqVXz/+98HYM+ePXzta1/jhRde4IUXXjg3EhQAapo4CsYckxQDlRR2i0JPUCQphNLK6YjrhhtuEJnnc9Ar7x5nbpML/aE/I3lm0JpoZ5YpPwcVFoOJZCZJPJXAJOc+LrbQquwGesJp4kkVuaqR/m3rSx2SIJxzDpzoZdGs8Y06Bog170KpmQl5/LqKpRMoutwrKQCcVomuPhXQo1md6Fr2Y6u10B8P4crTZ6kgTDbZ8aMR9Naqgu/LdXIMaY1TRm+rIB30YbC5Cr5fYfw2bdrE8uXLcblcAFx77bWsX7+eO+64Y3CbdevW8alPfWpwG4BkMsmdd97J/PnzAZg3bx6/+c1vANi9ezfd3d384Q9/oKGhgfvvv5+6uvLrgZZvUjpBUm/DOI5+FIOPkU9VUjgsspjuIZRcTkmKhx56qFBxCGUqnVF58c1j3HihmcT+Y2SWfAxLawB5ggfrHyZJEg7FTiDWR71ck5fnzCe9TqLWaeB4d4J5NbWke72oyTg6pbBraAVByNI0jaNtfVx72fgaNmtahtiJvTiWXQs9+RvzGU8nkA0T+9xzWyWOdJ02hjTYjbVpvmieKZzTOroj2NR+9Jb8TOAZjdOipzuUAswn+1J4oWH8jXiFwvP5fFRXn1pK7PF42LVr15Btbr31ViC7vGOAoiisXr0aAFVV+Y//+A+uuuoqAOx2O9dddx3XXHMNv/3tb1mzZg2/+93vxh3Tnj17Jvx6SkmXShBRZdRMYtw9BA2ROITb6DQdJBTL4OsJD/l3LrVyiiVfptpryvfrmfDw+F27dnHw4EGCwSC33norHR0d1NfX5zM2oQxs3t2Jw2rAsv+P2M5fwaFYEJc5v1f+bEYLvbEg9Y7yS1IA1Lhkmv1J5tebMbhrSXQexTx9YanDEoRzwsC6WId1fE0rE13N6EwW9BZnnpMUcSrMzgk91m3N9qQAwGSFZBynTiEokhTCOay9K4hLiiAp5oLvy2HS4+sfGEPqJCWaZ5YdVVWHVGvn2jckmUxyzz33kE6n+cY3vgHAgw8+OHj/X/7lX/LjH/+YUCiE3T6+cdaLFi3CaCy/Kt+x7Ny4jozRgVNvoanJPa7HJJQM6Z52Ks6bRyqt8uJ773LRRReVRQX9tm3buPjii0sdRl5Ntdc0kdeTSCRGTQTm3Pb8nXfe4ZprruELX/gC//iP/8jDDz9MOp3m05/+ND/84Q9zfTqhzL3wxlEW646heKYjV9bjjfhxmSZ2oH4mNqOVnliZN8/sOtk8s7KeRMfhEkckCOeOY+1B6qtt4z5Qih3fg+KZkfc4Eukksi736R4AdjPEkhBPaiBJaDY31akMwbhIUnzYunXruP7667nmmmt48sknh93/2muvsXr1aj772c/yrW99i2Aw21tg7dq1XH755axevZrVq1fzyCOPFDt0IUdd/n7cVn1RToKcFj2+/pMTPqwuUr1dBd+nkJva2lr8fv/gz36/H49nfCOkI5EIt956K+l0mscffxxZllFVlccff5xMJjNkW71+6jcrllIJEpIRozz+3y2dYiYTz/ZJkg06FFlPKJoqVIiCMKackhRbt27lG9/4Bi0tLYPNMzVN4+jRoySTSX7xi1/kVEYllLejbX10+XqZobVimXMRmqbhiwRw53kNtcNoK/vmmc3+7LxoubKBeLtonikIxXKsPUjNOEePamqaROs+jLUz8h5HIp1E0U8sSSFJEm4bg9UUms1JZSJFf1yMIT3dWI3zwuEwDzzwAE888QQvvvgi8+bN49FHHwWyZdn33HPPYIO8NWvWlOplCOOgaRq+YIIK+8R+p3LlPNmTAsBgc5MWSYqys2LFCjZv3kwgECAWi7FhwwauuOKKcT32rrvuYvr06fzkJz9BUbLvKZ1Ox6uvvjrYZPP5559n6dKlWCzjH2U9WUnpBAmMyDn0pNAZzYM9KSDbPLNXTPgQSiinJMWjjz5KOp3m6quv5r//+78Hb29sbGTlypVomsZvf/vbvAcplMYLG3ayQGrGseRKJJ2ecDIKaJgM+e3HYFOshBJhVDUz9sYl4HHIeINpkmkVubKBRMeRsR8kTNhYV1IHvP7663zyk58sYmRCKRxp6xv3ZI9E5zH0Fic6U/6megyIZxLI+gmvkMRllQYnfGgWB654nGAif8tRpoLTG+dZLJbBxnkDUqkU999/PzU12aWB8+bNo7OzE8g2yFu7di2rVq3iO9/5zmCFhVCeQtEUmqZhseb/d3UkLqsBf+hkJYXNRTroH+MRQrHV1NSwZs0abrnlFm644QZWrlzJkiVLuO2229i9e/cZH7dv3z7+9Kc/sX37dm688UZWr17NbbfdBsAPf/hDfvWrX/GZz3yGZ599dnDqx1QnpRPEMaIYcmicaTSjxSNoWvZ7ymFVRPNMoaRyOuLavXs3kiRx5513DlnPZbVaue222/jDH/5AS0tL3oMUiq+/p4fN+7q57dJpg+PB/JEe3EZH3ksz9ZIes2wmmAjjnuCa70Iy6CWqHQZaupPMrqlAS8ZJh3sx2Ma3zk8Yv4Erqc899xyKovDFL36Ryy67jDlz5gzZrru7WywvO0cc7+zn0gW149o2dmI3imd8DTZzoWnayUqKs0hSWCS8p034cHh76BPLPYYYq3Ge2+3m6quvBiAej/PEE0/w5S9/GYDq6mq+9rWvcdFFF/Hwww/z4IMP8uMf/3jc+85ng7zJ1AytVLG2dSdx6GIE4ykC42zsN94GgCNJq9Ab1nHgwCF0WgZbfw/btr4PUs6rnsdFvAcmZtWqVaxatWrIbT//+c+HbXd6I/8FCxZw8ODIFa5z5849Jyu8pXSChGbGaMhhBKleBp0OLRVHUszYLDKB/kQBoxSE0eV0xDVwctrb2zus6YzPl21CNBkbzAhDaWqGdb96ihnOaioaZg/e7ot048hz08wBdsVKbyxYlkkKyC75OOZPMKfWhFzVSKLjCIbzLil1WFPOeEaQAdx3333ccccdOZ2ECJNPIpWhJxin2jV2Y73sUo+DOJevGnPbXKUyKQw6PTpp4muZ3VaJZv/JCR9WJ+ZISEz3+JDxNs4LhUL89V//NfPnz+fGG28E4LHHHhu8/9Zbbx1MZoxXvhrkTaZmaKWMNbS9Dbf+AJ5pMzE4xh5B2traSlNT01nt07qvi+qGGVTaDfgO2Fkydzqyc3w9D3Ih3gPDjdUgT8gvKZ0gqtlx59CTAkBntJCJhdEpZmxmsdxDKK2ckhSXXHIJr7/+Ovfddx//43/8j8Hb165dy6OPPookSZPmg1k4s8Dbz/GGv5JPLRs6S9oX7mFu5YyC7NMmW+iN9QHTCvL8Z6vGIXPUm4DFIFfUkeg4jFUkKfJuPCPIfvWrX7FgwQKWLl06oX2U4kCpnK5U5aqUsXcEktjNOo4cHbtZrb6vA6Nspt3fC5xqxHs2V18HxDJxdOjw+bwTfg41oaOzx05raxe6TIrp4SD+vu5R/30n8/tmImpra9m6devgzyM1zvP5fHz9619n+fLlfPe73wWySYtnn32Wr371q0A2uXEuNMebzDr8IexqEJ2leGNAXRYD/lCKSrsBvc1Nus9fkCSFIJSalIoTVw05LfeAbJJCjYXAWY3NLNMTjBUoQkEYW05Jir/7u79jy5YttLS08KMf/WjwCsd3v/tdNE3DbDbzN3/zNwUJVCiOePshdm/aRMLwSWZ5Tl29TKsZ+pMhHKbxjW3Klc1owxcp3zWidW6Z1/Zk14/LlQ3Ejp95faQwcWNdST106BAbNmzgF7/4BV1dE2t8VuyRYpPpqtqHlTr24NYWptdpzDtv7BOZ3k170TXOxXTa1dZ8XH2F7FI3c8yExzPxMclVqsafD6epqW1CkSWkI5sxZuJn/Pct9b/9RJ3NFdMVK1bw6KOPEggEMJvNbNiwge9973uD92cyGW6//Xauu+46vvWtbw3ebrFY+K//+i8uvPBCli5dym9+85ucKymE4mrrCOBSUugMxWmcCdnmmd2hUxM+0n1eEOPEhSlISieIZww5LfcAkBQz6snmmXaLQptfVPsJpZPTu3fu3Lk89dRTXHzxxUOme2iaxkc+8hF+9atfMX/+/ELFKhSYmkrge+HfeN98ORfOsA45OeyJBrApVvRnUe48GpvRSm+8fJvI1ThlOnpTpNIacmU9yc6jg82FhPwZawTZ+vXr8fv9/MVf/AV/9Vd/hc/n40tf+lIpQhWK4HhHP9Xu8Sz1yJBoO4BSk/9+FADxdGLCkz0G6HQSLgv4+gcmfLixx6Kky7RhcCmM1Thv48aN7Nu3j1deeWVw1Oi9996LXq/nJz/5CQ888ADXXXcde/fu5a677ir1yxFG0eHrx22deI+XiXCYT0340FudpPp8Rd2/IBRLNkmhy2kEKQxM+MgmJuxW0ZNCKK1RvyGeeuopNE1j5cqVOJ3ZXgHz58/nN7/5DX19fbS0tGAwGGhsbMThKEyvAqF4et96hoythq37FW5fOHREkz8SwGUs3P+xxWAimUmSzEx8zF8hyXqJSpue1kCSWR47kmwkFehEqawvdWhTylhXUr/97W/z7W9/G4C2tjZuueUWnnrqqVKFKxTYia5+FsysHHO7RNcxdAWa6gEnx4/qzj5B6z454aOxErA6qE/GCSfCuMq0F08pjNY4b/HixRw4cGDExy1btoy1a9cWPD4hP7x9SSqnF/e73mnW4+tPAaC3uUmJMaTCFDWYpMixkkKnmMhEsxcMxQhSodRGfff+9Kc/5fvf/z69vdn1vfPnz2fBggV4vV5cLhdLlixhwYIFE05QjDVq8D/+4z/4xCc+MXjFZLRxhMLZSXa3EdrxGvtcl9NUKWM3Dz0g94W7C7bUA7JNWW2KlWAZd7uvdck0+7JZZbmygUSnGEWabxMdQSZMTW2+8LiaZsZb9qJUF66fTTydwKCXz/p5XLaBCR/ZMaS1aehPhMd4lCBMLeFYimRaxeEozvjRAU6LHl//h5Z7CMIUJKUSxDNSzpUUkmIZrKRwWBX6QqKSQiidUSspBuaMb9myBVnOHqBpmobX6yWTOXOJan392FeXxzNqcM+ePTz88MNceOGF43oxwsT1vPr/sC74KH/em2LpNMuw+7ujAWa4z35t92hsJyd8VFvHvnJaCrVOmSPeOJ9a5Mg2z2w/jH3RFaUOa8oZ7wiyxsZGNm7cWKywhCJLpDL0hhJUOEdPUmhahnjrARzLritYLPF0AlmXhySFRaK159SEj+qOtJjwIZxzOrvDVMgJDDZXUffrspy23ONk40xBmIqkTIJ4mpwbZ+qNZlIn+1AYZT0aGtF4Covp7L//BCFXoyYp6uvraWlp4f777wdOjSD9whe+cMbHSJLEvn37xtzxeEYN7tmzh//8z/+kvb2dSy65hP/v//v/xIjTAoid2EvS30Js/qdpf6uLz1/mHnJ/JBklo2UwG0wFjcOqWAjE+gq6j7NR55J5fX/2w1uubCCy9+0SRyQIU1e7L0yV04xeN/pBVtLfgk6xoLcUbjlaIp1AyUODP7dNYuvRkz0prE5ciaSopBDOOR3+CA5C6K0Tb0Q7EU6LnkAknZ3+YnGQiYXQ0ikkgzgBE6YWKZ0knib3xpmmU5UUkiThtBrpDSVEkkIoiVHfvd/85jeRJGmwOeaADzfN/PCf8Rhp1KDXe6r0LhKJcP7553PXXXexdu1a+vv7+elPf5rr6xPGIfD6U9gWX8mbB6Msahp+UuCPBHCZnCPOq88nm2KhN1a+zTNrXTLtvSnSGQ25oo6kvwUtky51WIIwJbV6Q+Nqmhk/sR/ZU9jRxfF0EiUPlRROM4RikEpraBYHlmSC/lgwDxEKwuTR3hnAQQTJaC3qfo2yDoNOIhRTkXQ69DYnqaCophCmnkzqZMVQbjkKdIplcLoHZJd8BIKiL4VQGqNWUtxwww0sXbqU3bt3E4vFuP/++5Ekif/9v//3WTfKHGvUoNVqHVLi/bWvfY3vfve7rFmzZtz7mOgYNJhc8+nPJlZDoAVLdwe+mgt5bXcvH5+l0to6NFFwLHwCPRI+39mv3xztOZJamkC0j9bW1rPeT758OBarrOOd7Yepc4BFtvDBmxvIOIp7NehMJtN7VhDG0uYLUekcvXpL0zRirfuwL/1EQWOJZxIoeehJodNJOK3g79eor9CTUozEA6J5n3BuOdHWTYVFKviFj5G4rXr8oRQOix6DzU26zysaYAtTiqapg1UUuf6OSQYZNA01lUAnG7FbFQKieaZQImPOf5o5cyYzZ84E4A9/+AMAn//853G73aM9bEy1tbVs3bp18OcPjxrs6Ohg06ZNfO5znwOyB6MGQ27jqhYtWjSh5SGTaT792cba+bv1yEuuoN8yHbPJz9J5VcM+1HYdOsx0ZwNVloqzitXn8+LxnPmEXtM0Dkaaqa71YJJLv6yntbWVpqahfTimeXvJWGycN89BX2A/NU4DjotK/14pxXs2kUicVSJQEEbT4g3RUD16Y71UoAMJCb317L6PxpJI5adxJpya8FFfAQmzlUyfSFII55Y2f4SP2oo7fnSA06LHH0ozu2ageaYYQypMLVoyTlxnwpRj00zILvHQGS1kYv3o5GpsZlkkKYSSyakQ6Ne//jW//vWvhyUootEosVgspx2vWLGCzZs3EwgEiMVibNiwgSuuONWE0GQy8X/+z/+htbUVTdN48sknufrqq3PahzC6VKCDRPshLLOW8vr+EIsbzcMSFKqq0hvrw1XAyR4DTk34KN8lHzVOmaPekxM+KmqJdxwucUSCMDW1j2OyR7w1u9Sj0FdkE5kkxjwlKZxWia6TEz4yZhu6YHdenlcQJgNN0/D2Z6gao0qqUJzm05pnWp2kxIQPYYpREzHikhmjnONaj5N0JitqNNuXwmaW6Q7mdn4nCPmS8zt4586d/Ou//iuQPYH9u7/7O5YtW8Yll1zCD3/4w3E/z1ijBisqKnjwwQf55je/yac//Wk0TeN//a//lWu4wiiC217BPPsCkpqB945GWNw0/ISgNxbEbDBjyMN67PGwKVb6EuWbpKh3yxz1ZbPKcmUDCZGkEIS8U1WNzp4IVWMlKVr2F3T0KICqaSQzKQy6/Fz5dVslunpPNs+02DGG+vLyvIIwGfSGEujJYHUWrtHtaBwWPd5gCgC91U2qV1QyCVOLmohmkxQ5TvYYoDOayUSzx+EOq0KP6EkhlEhOR11btmzh61//Onq9frCh5R//+Ecgm7D4xS9+QWNjIzfffPO4nm+sUYPXXnst1157bS4hCuOkppOEd71O5bVf591jERorZOxm/bDtumMBnKbiHUxYFTO9ZdxIrs4l0xY42TzTXUu61zu4dk8QhPzoCcYxKQZMypm/otKhAGoiisFZVdBYUulsgkInTeyq1Ie5rRLbj2WTFJLNjc3bnJfnFYTJoM0XokIfQW+rK8n+XRY9BzuzJ116u5v04a1jPEIQJhc1GSMumXIePzpAUk4lKexWhZ6jPfkMTxDGLaejrp/97GekUimqq6uJRCK8+OKLSJLETTfdxMc//nE0TePZZ58tVKxCHkUPvY/srsVgr+D1/SEWNY58xdIb7sZpGn1deD7ZFGtZT/hQDDrcFj1tgSSS3oDBVUOyS5xkCEI+dfjHt9RDqW5EylPy4Iz7ySTyttQDwGmBYBRSGQ2DvQJHXFylEs4dLR19uAihNxd+CelIXBYD/tDJ5R42F+l+Md1DmFrUeIQ4RpRcR3ucpDdZyESyFwsdFoVe0ZNCKJGc3sEHDx5EkiQeeughFEVhx44dANx1113ceeedABw7diz/UQp5F/pgI6aZi+mLpjncFWd+/cjrQ7sjAVzG4lVS2BQLwTJe7gFQ55Y55hvoS1En+lIIQp51dIepdI6epIi17kOuahp1m3xIZBLIeUxS6HUSTgv4gxqyzY0lnSGdEgeBwrnh+Iku3CYNSTe8crMYXBY93f1pNE1DZ7SipVOo8UhJYhGEQlCTMeIYMU6gcSaAZLSSiZ5MUlgV+kIJNE3LZ4iCMC45JSmCweybtqamhh07dpBMJpk9ezZutxuTKXuSq9MV9qqWcPYykSDxtoOYms7nnYNh5tWZUAzD/98S6STRdByrYilabEa9kYyaIZ5KFG2fuapxyhzuGuhLUU+i/VCJIxKEqaXNF6bCceYlVJlEhHSvF7mi8CXjiVQyL+NHT+e2ZSd86PQyIVlPv+9EXp9fEMpVS1c/VbbSJCgATIoOnQThuIokSejtlaTEhA9hClETUeLIKPoJ9qQwWVEj2YuFRsUAEkTj6XyGKAjjklNGoaIiO4Jy69atPPvss0iSxEc/+lEAfve73wHQ0NCQ5xCFfIsceBdTw1x0spE3Dpx5qUd3NIDTaM/bWuzxyE74KO9qimzzzJOVFKJ5piDkXZs/PGrTzET7YeSKeiR94ccYxtPJvFZSADgtpyZ8RGSFsE8sGRPODR29SaqdSkljcNtOLfkw2NykxYSPsrFu3Tquv/56rrnmGp588skzbnf33Xfz3HPPDf7c0dHBzTffzKc//Wm++c1vEolkq2P6+/v5q7/6K6677jpuvvlm/P6pv7xHTcSIa8qEe1LoT44gHeC0KmIMqVASOZ19fvSjH0XTNP7+7/+edevWAbBy5UqefvppfvnLXyJJ0rBGmEL5Ce99C1PTAjp6kwTCaWZ6Rr5i6Y8EcBZh9OiHWRUbfWU8hrTWKdMeSJFKaxgcVWSiITInxzUJgnD2OvyjL/eIt+xHrm4sSizZ5R75TYZUnDbhI240Eutuy+vzC0I5CkeTxFMabndpJnsMcFn0+PpPTviwuUQlRZnwer088sgjPPXUUzz//PM8/fTTHDlyZNg2t99+O6+88sqQ2//pn/6JL33pS6xfv55Fixbx05/+FICf/OQnLFu2jJdffpnPf/7z/PM//3PRXk+paIkYcc2AMsERpJJiRk0m0DLZRF52wocYQyoUX07v4O985zssXLgQTdPQNI2vfOUrLF68mBkzZgCwfPlybrnllkLEKeRJJhIk4T2OsX4Obx4IsbDRjE4aOdvqi3TjLGI/igFWxUxfmTfPrLIbaA0kkXQ65KoGEp1Hxn6gIAhjymRUuvviVDhG7pOjZdIkuo6hVBUnSRFLJ5DzPILZbZPwBbNJiqTRTDrQkdfnF4RydKIrRKU+gmx3lTQOh1mPr/9k80yrk1RvZ0njEbI2bdrE8uXLcblcWCwWrr32WtavXz9km3Xr1vGpT32K6667bvC2VCrF+++/PzgN8Kabbhp83Ouvvz548XTlypW8+eabpFKpIr2i0sgkIsRUecIjSCWdDp3JOmQMqaikEEohp8tDlZWV/P73v+fIkSOYTCaamrJNy+bPn8+PfvQjPv3pT2MwFL78Vpi4yOGtGOvngN7AWwfC3LDMNeJ2mqbREwlwXuWs4gZItnlme7C8Z5fXuWSOeuPM8hgHm2daZl9Y6rAEYdLz9cZwWBXkEfrkACS8zRhsLnTK6I018yWRSmDM84jh0yd8pMxW6Jv6JciCcLw9gFsKoTPPLWkcLoseb99AJYWb+PE9JY1HyPL5fFRXVw/+7PF42LVr15Btbr31VgC2bds2eFtvby82m23w/KO6uhqv1zvsOQ0GAzabjUAgQE1NTUFfSymp8SgJzYnxDN+h46E3ZZtnGuwV2MwKPUGRpBCKL+eMgiRJzJ079AvG6XSycuXKvAUlFE7k4LsY6+dyuCsBUvZkeyT9iTB6nR6TIb8H5+NhV6z0Jcp7+UStU+ZwV4KrF5/sS9F2sNQhCcKU0Nkdoco5chUFQLz1AHKRqiggO4LUbszvGGa9TsJhge5+jYzFgaGjPa/PP5mtW7eOxx9/nHQ6zVe+8hVuvvnmIfe/9tprPProo2iaRmNjIz/4wQ9wOp10dHRw11130dPTw8yZM/nRj36E1Wot0asQRnLsWCeVJrVkkz0GuCwG9ndky9f1Njcp0ZOiLKhqtpnpAE3Thvx8JiNtd6bHaZqWU4P/PXsmXwLL6m0nnqmgv6+b1gk+h6JKhI4eIBVMEovE2H+4j22u0h6Xn56Ymiqm2mvK9+vJOUmxfv16XnrpJQKBAOn0yN1eB5poCuVFTSWIn9iH48KreXNTtmHmmT7IuyM9OM3OIkeYZdQbSaspEukkRkNpG2ydSb1bZv2u7LQbpbKB/vdfGvcXqiAIZ9bRHabiDEkKTdOItx/EvvQTRYsnno6jFKBBp9sm0dWnYbLa0aUSqMk4OuXMyZlzwcCa9Oeeew5FUfjiF7/IZZddxpw5cwAIh8M88MADPPvss9TU1PBv//ZvPProo9x3332Da9I/85nP8Nhjj/HTn/6Uu+66q8SvSDjdsY4gFzpKPwHObdXjDZ7WODPUg6ZmSp48OdfV1taydevWwZ/9fj8ej2fMx1VUVBAKhchkMuj1+iGP83g8dHd3U1tbSzqdJhKJ4HK5xh3TokWLMBqLf7HubHQe+ANxVU9DnYemqonFHkn4MdhMOM6bR1LfzbH2IBdffHGeIx2/bdu2lXT/hTDVXtNEXk8ikRg1EZjTt8X//b//lzVr1vDqq6+ybds2du7cOezPBx98kFOAQvHET+xFrqhDNZjZfDh8xqkeAL5oAGeerx6OV3bCh7Wsm2fWOGV8/WkSKRWdxQGSRDooSrYF4Wy1+8O47SOfrKeD2Sueequ7aPEk0kkUQ357UgC4Tk74MMomYkYTqd7yXuJWDGOtSU+lUtx///2Dpdrz5s2js7Nz1DXpQnnQNI223gy1FaVPxLmsenrC6eyFBYOMzmglEwqUOqxz3ooVK9i8eTOBQIBYLMaGDRu44oorxnycLMssW7aMl156CYDnn39+8HFXXnklzz//PAAvvfQSy5YtQ5bz/3leTtRklKSqO/vlHuE+QDTOFEonp8tDTz75JJqWbfY1Z84cnE5nTmVTQmlFj2zDWDeL3a1R3FYDFbYz//f7wt2cV1X8fhQDbIqVYLyfGltVyWIYjUEv4XEYaPYnmF9vRqlqJNFxGNk1dtZfEIQz6/CHWTCzcsT74m2HUCobi1qxlEgnkXX5r+hy2yTae1SWzjESMhhIBTow1szI+34mk7HWpLvdbq6++moA4vE4TzzxBF/+8pdHXZMulAdvIIoipbHlcBW7UBSDDqNBoi+awW01YLBXkOrtwuCsHvvBQsHU1NSwZs0abrnlFlKpFJ/73OdYsmQJt912G9/+9rdZvHjxGR97//33c8899/D4449TV1fHww8/DMCdd97JPffcw2c+8xnsdjs/+tGPivVySkZNxEhkdBjliX9P6k02Uj3Zhs4Oi0KgP5Gv8ARh3HJKUvT09CBJEvfdd9+wdaJC+Yse3Y5rxU28uSXMgsYzX81IqWlCyXDJKikArIqF3jKe8AHZJR9HvNkkhVxRR7z9ELYFHy11WIIwqXV2R7l8acOI98VbD2CetqBosaiqSkpNI+vyv9yjwiqx/ZiG2WAkaJBIBcSEgfGuSQ+FQvz1X/818+fP58Ybb8Tr9Y57TfqZ5HPt+WRaZ1ysWPe1RKmU+vD1W9FiE1sp39o60RX2w1llHdt2H2OaG4wZHb0fbCHZk8zb84v3wMSsWrVqcBrHgJ///OfDtnvooYeG/NzQ0MCvf/3rYdu5XC5+9rOf5TfIMqcmTyYpzqKSQme2kYlklzTbrQrBcIKMqqHXiSXNQvHkdOR1/vnn88EHH7B8+fJCxSMUSKrPi5qIkbF52H78BN+66sxX/HsivdgVGzqpdOszbYqFjv7yLn+ucykc7sp2PJYrG4kc2FziiARhcsuoGv6+GJUj9KTIJCKkgz4MFZ8sWjyJTBJFbyhI5YbDAv1R0GMkIEGquy3v+5hsxrMm3efz8fWvf53ly5fz3e9+Fxh9Tfp45Wvt+WRaZ1zMWHe1bKdaH6Zh5pIJ/T61trYOTpTLh5quXhSXnfPm2QklOtHbjFTm6d9CvAeGG2vtuZA/mXiMpMpZVVLozNkRpJqWwaDXYzEZCIYTZxwNLgiFkFOa7e6770aWZZ544gmSyfxlnIXCizXvwlg3m+3HYzRWKNhMZ05A+CLdOE32IkY3XLYnRXlP+Gg4WUkBIFfWk/SdQMuM3ExWEISxdffFsFlkZMPwz6dE+2HkivqiNreLpxMo+sI079XrJJxWCEZlunUZkidLa89lY61Jz2Qy3H777Vx33XXce++9gye7o61JF8rDoeN+am25V7gUitOixxvMjiE12N2kekQlkzD5aZpGMpVCkjirqgdJZ0CnmFBjYQCcNqPoSyEUXU6VFGvXrmXOnDm8+OKL/OlPf6KxsRGTaXhWTUz3KD/RoztQambw5t4QCxrO3DATsv0oqqwVRYpsZCa9kVSZT/ioshsIxTKEYhnsZhN6q4ukvwVjbel6eQjCZNbZHT7j+NF42wHkypGXgRRKIp1EKUA/igEVVgl/UCKmmEgFyrtyrBjGWpPe1dXFvn37yGQyvPLKK0C2AuKf//mfz7gmXSg9TdNo9sb56MzymZLgsurp6ssmKfT2CtKHy2fJgyBMlJaKk9CZMeYhl68320mHA+gtzpPNM+PMzV8xkyCMKackxX//938jSRKaphEOhzlw4MCwbXLJko81D33A66+/zoMPPsjGjRtzCVc4SdNU4if2wuyPsK+9l2sWO0bZVsMfDTCnckbxAhzBqQkfQWps5dnMSpIkGtwKR7xxLpxhRa5qJNF+SCQpztJYnwuvvvoq//7v/46qqixevJgHH3wQRSnPRJaQm87uCO4Rykk1NUOy8xjO5Z8tajyFGj86wGXLTvjAbEZLB8nEI+hN1oLtbzIYbU364sWLRzzugDOvSRdKr7Mngp40LveZjz2KrcJq4GBHdrmmwV5Bqs8rxogLk56aiJHQ25DzkKTQWexkQr3gmYndkk1SCEIx5XT0dckll+Rtx2PNQx/Q3d3ND3/4w7zt91yU9LWgM5p5v0PP7BojRvnMq3xCiQh6SYfJUPp1Z6cmfJRnkgKgzi1zuCuRTVJU1BFvO4jj4k+XOqxJa6zPhWg0yoMPPsjatWupqqpizZo1rF27li984QsljlzIh47uCBUjjB9N+lvQme3oinwCH08nkQswfnSA2ypxwq/SaDej2lykAp3o6+eM/UBBmEQOneil1tCP3l5T6lAGua16fP3Z5ZmSkq0uVWNh9JbSLnUVhLOhJqIk9VaUfCQpTFZS/dnRvHaLQnefWO4hFFdOSYp8XqU4fR46MDgP/Y477hiy3X333ccdd9zBj3/847zt+1wTP7EHpWYGbx0IsbhpjKUekW6c5vK42mFVLARiwVKHMaoGt8y+9mx2Waluom/T86UNaJIb63PBYrGwceNGZFkmFovR09ODw1Ee71fh7LX7w8xpdA27Pd5+CLmqvujxxNNxZF1hkxRbjmjMkRVSZivpQCeIJIUwxew/1k211oPBOr/UoQyym/WE4xmSaRXFoMPgqCTV2ymSFMKkpiaiJPTm/FRSmB1kQj0AOKwiSSEUX97rWLds2cKll1465nZjzUMH+NWvfsWCBQtYunTphGI5m07C5TSSaSxjxWrd+Ra9xnqOeWNcUhdhtClex0LH0Us6fL7CzJjP5Xkz6RTdyT5ayd/YsVyNNfJMSsLhTh0HDxxCQsXW3832d99Gk0dPBhXCZHrPnsl4PhdkWeaNN97g7rvvxuPxcPnllxc7TKFAOrsjXLagdtjtibaDWOZdVvR4YukEcgGXezgsEI6DHjNxJUWyp71g+xKEUtl92MtHrEmkAv4u5UonSVTYDPiCaRorFfS2ClK9XZgazit1aIIwYWoiRgJTXpIUeoudZMdhIJukONTSe/ZPKgg5yOkbI51O89hjj/HWW2/R399PJpMZvC+TyRAMBkkkEuzbt2/M5xprHvqhQ4fYsGEDv/jFL+jqmlhDsYmOFJtK46M0TeXE6/9Gq+tqFjRqzJzuGvX5tu7by4LquTiN+b867fN58XjGX+7pSMdpbfXmdexYLsY78sx8xIu9pp56t0JP+zTmV1uxzL6wCBGeUor3bCFGio31uTDgyiuv5L333uPhhx/mgQceyKnSqhRj0CZzAqlYsWuaRldPhB5/K6HeU0vSdIkIlmg/Xf1xCOWesBwr0Tia3v5eLDoTvmRhkrYAdqODQI+ElyTmI3totp36957M7xtBAAjHUviCCepnln4J6Ye5rQa6gqmTSYrscitBmMzURJS4ZELWaWf9XHqrg3QogKZpJ6d7iJ4UQnHllKT4+c9/zuOPPz7YPHMk4206NNY89PXr1+P3+/mLv/gLUqkUPp+PL33pSzz11FO5hHzOS/nb0Clm3mlOsWKubdRtE+kkkVQUuzL6dsVi1BtRNZV4Ko5JLr8DnAGNFQqHuxLUuxXkinribQeLnqSYKsb6XOjr62PPnj2D1ROrVq1izZo1Oe1josnLiZpMSc8PK2bsPcEYZqOPxQvOH3J75NAW4tXTqJo2LefnHG+i8Uz2HDpClbOKKkvhph1V+9Og95CxJ7D19jP/5L/3ZH3fFCJ5KUxe+5p7qLekUOzuUocyjNuqp2twDGkFKVHJJExyaiJKQjLmZ7mHbEKSJNREBKfVRKA/LprLCkV15g6KI1i3bh2SJLFw4UKuueYaJEnii1/8IjfffDNmsxlJkvjP//zPcT3XWPPQv/3tb/PKK6/wwgsv8MQTT+DxeESCYgJiLfvodczB159mZvXoJ2b+SA9OowOdlNPbomAkScKuWOmN9Zc6lFHVuWQOdp7sS1HVSLxt5O7zwtjG+lzQNI277rqLjo4OIJvMvOiii0oVrpBHXT1RKp3Dl0nFWw8gVxV39OiARDqJoi/s5Bi3RaI/YqJHp5Hq7TzjBQBBmIx2HvTRoO/B4KgsdSjDuCx6OnsHkhSVopJCmPTURJQ4CqP0x8+Jzuok09+DUdGDBNF4Oj9PLAjjkNPbuLMz+wH+/e9/n+9+97tomsayZcv4h3/4B/7hH/4BTdN4+umnx/Vcp89Dv+GGG1i5cuXgPPTdu3fn/kqEEcVP7GF7fBoLGkzodKNnP71hP26Ts0iRjY/NaKEvXt7NM5sqlcEkhVzdSKLzKJqmljiqyWmszwW32833vvc9vvGNb/DZz36W5uZm7rrrrlKHLeRBZ3eYig+NH1XTSZL+FuTK0iQp4pkEir5wjTMB3DaJ3n6FoJpE0unJRMr7804QcrHjkJ+6dCt6e+GqkSaqwmagsy+bpNA7Kkj3TmxpsSCUCy0RI6bKeamkANBbnKT6u5EkCZfNSHdQNM8Uiien5R4DJT4Wi4Xa2lo8Hg87duxg5cqVg2WpH3zwwbifb7R56KdrbGxk48aNuYQqnBRrPcDm4Dw+feHYjRy9kW6mOUtzMnAmVtla9hM+ap0y3mCKeFLFZLKhU8ykuttRqkvTS2OyG+tz4aqrruKqq64qdlhCgXV0R3A7hlZ7Jb3HMdgr0cnFW54zQNW0k5UUhW32V2GTCIT1RFJRDI4qUoEODDZXQfcpCMXg743RG4xR48yU5Hd4LBU2w+ByD53RiqapZKIhMeFDmLQyiQgxNT/LPSDbPDMd9APgtCn0BONMrxUT1YTiyKmSoqEhewL7b//2b0SjUS644AJefvll3n//fX75y18CEI1G8x+lMCHpoJ+OhIVYWqKpYvSS5YyaIRDrw2Uqrw8fu2KlN95X6jBGZdBL1LlkjngTQHYUabztYImjEoTJpd0fpvJDlRSJ9kMlW+qRTCeRdQZ0Up6O9s7AZoJUWqI/mkZvryQV6Cjo/gShWLYe8DKrEhRn+S31gOxyj75ImlQ6u87e4Kgi1SuWfAiTlxqPEFMNKPlKUlidpPt8ADisRjGGVCiqnJIUf/EXf4Gmabz00kv09vbyiU98gkAgwC233MJvf/tbJEliwYIFhYpVyFG89QDbWcDCRtOYjW66owFsihWDrnxGhAHYjVaC8VDZr9Oud8sc6sx+eMuVDcTb9pc4IkGYXLq6h/ak0DSNeNvBEi71iBe8HwVkKxQrbBCNW5CsTtG8T5gyNu/uYIYxhKEMl3oA6HUSLqsBb//pzTNFklCYvNRElFjGgKLPzzGz3uoidbKSwm6R6RFJCqGIckpSfPWrX+WOO+6grq6OhoYGVq1axbJly9A0DU3TcDgc3H333YWKVchRtGUfW/s9LGy0jLmtN9xddlUUALJexqAzEE6Wd4VOY4XC/o6TzTOrm0iISgpBGDdN0+jsiQzpSZHu70ZTM+htpZkKkEglMRYhSQHgtkpkkhWkzTaS3SJJIUx+4ViK/c0BmjInMNjLs5ICoMKmp2ugL4WtgqRIUgiTWDZJocvbcg+d2YYWj6CmkzisRny95X0sLkwtOV02DwQC3HHHHXzzm9/MPthg4Fe/+hXvvfcekUiEiy++GLe7/MZMnasOHulA0tdS6xz7v7kr7KfGWlWEqHJnN1rpiwWxG62lDuWMmioU/rgjiKppGFwe0qFeMrEQerNY2yoIYwlFsycJFtOpz6pE+yGUqsaSjTuLpeMohuJUlrltEn0BF3GTGUWcJAlTwLu7O5nd4ETf14ne8bFSh3NGFVYDHSeTFAZHFcnulhJHJAgTpyaixNNS3pIUkk6P3uoiHfTjtJk50Vne0/aEqSWnSorVq1dz4403smPHjlNPoNPxkY98hKuuukokKMqImozxrs/KwibrmAf5qqrij/TgNpfXZI8BNqX8m2fazXpMikRHIIWk06NUNZJoO1TqsARhUujqiVDlGrosLd52oGRLPQBi6QRygSd7DKiwScTiNsKygXS/H03NFGW/glAof3q/hQX1MjqjDZ1cnIqkiaiwGmgPJAEwOCrFcg9hUtMSUWJpKW89KQD0NhfpPi9OMd1DKLKckhR9fX0cOHBAJCMmgVjbYXYkZ7KoaeylHoFYHyaDsSjrrycim6ToLXUYY2qqUDhw2ijSmOhLIQjj0tEdGdKPQk3GslMuKutKFlM8FUfRFeczscImEY6aCaWT6C0O0n3eouxXEAqhqydCc2c/s5Q+DM7yrNAcUGk30NGbTVLoHZWk+7xihLgwaamJGLEUeaukgGySItXbhdOane4hCMWSU5LimmuuAeD1118vRCxCHn3wwWEsMlTZx74S2BXuLtsqCgC70UYg1lfqMMbUWKGwvz2bZVaqmoi37CtxRIIwOXT6w7jsp0YUJjqPYXDVoitSJcNIsss9irN/syKh02l09cezJefiaq4wib3y7gkuOK8ara+tbJtmDqiyGeg8udxDJxuRFAvp/u4SR3XuWrduHddffz3XXHMNTz755LD79+/fz0033cS1117LvffeSzqdpqenh9WrVw/++eQnP8mFF14IwJYtW7jssssG7/v7v//7Yr+kosokYsRSWp4rKdykAl2YjQbSGZVoPJW/JxeEUeS04HbatGnYbDZ+9KMf8Zvf/IZZs2ZhtVqR5aEHcj/+8Y/zGqSQu7cOBDm/ZnyJh65QF5WW8j2QsMpmYuk4KTWNXGbTR043rUrh91uyFR9yVSPJt55By6SQSniiJQiTQZs/TLXrVCVFvP0gSmV9CSOCWCpBpWXsSrR8cVgytAVSGAbGkBpKt9RFECYqkcqw4b0TfH3VQpLvtGE579JShzQqu1lHIqURSWSwGvXIzmpS3e3ITk+pQzvneL1eHnnkEZ577jkUReGLX/wil112GXPmzBnc5q677uL73/8+F1xwAd/97nd55pln+NKXvsQLL7wAZJcvf+UrX2HNmjUA7Nmzh6997Wt84xvfKMlrKiZNzZBMq+h1EvqcLkGPzmCvINLXBYDbbqQnGMdiEse1QuHl9DZ+/PHHCYfD2U7snZ1s2rSJV199lZdeeomXXnqJP/7xj7z00kuFilUYp1Q6w/YeO4tnusbcVlU1vJEAFZaxty0VnaTDpmSbZ5azaruBSFylN5JGp5gwOKpIdB4rdViCUPY6uiNUnVzuoWkqifbDyFWNJY0plo5hLGKC0WnR8PZq6O0VpPytRduvIOTTn7e20lBto9KuJxPqLftKCkmSqHYYaA+cnPDhqBRjgEtk06ZNLF++HJfLhcVi4dprr2X9+vWD97e3txOPx7ngggsAuOmmm4bcD/Dss89iNptZtWoVALt37+btt99m1apV3H777XR2dhbt9RSbmoiSMNgxyvltNq0zWkDSo0aDuGxGusUYUqFIRr0s/fd///dIksTf//3fY7fbqa8v7ZUtYXy27zyMyxCjomLskaK9sV5MBgWj3jjmtqVkV7JLPqqt5TvKTJIkplcp7G+Ps+I8W3bJR+t+TI3zSh2aIJQ1b0+ECmd2/Ggq0IkkK+gtpR2JHE8lUAzF69NTYZNoCcgYnFVEDrwLpWvHUVLr1q3j8ccfJ51O85WvfIWbb755xO3uvvtuli9fzk033QTA2rVr+fGPf0xlZfY74uMf//jg1VShODIZlf/eeJjVH5tFqqcDvb0CSZfHuvMCqbQZaO9Ncl6dCYOjkqRIEpaEz+ejurp68GePx8OuXbvOeH91dTVe76n+PZlMhp/97Gf89Kc/HbzNbrdz3XXXcc011/Db3/6WNWvW8Lvf/W7cMe3Zs2eiL6fodNE+opoRA9nGy62t+XsfK7KZ43u2omVcbP3gAGq4+L8j27ZtK/o+C22qvaZ8v55RkxRr165FkiTuvPNO7HY7GzduzOvOhcJ4fUsz85zja27TGfZTYXYVNqA8sClWuiMB5lXNLnUoo2qsUNjXHmPFeTZkTxOxE3txfeSGUoclCGUrHEuRTKvYzNmqhXjbwZJO9RgQzySKWklR5dCzpzVbgXWuThgYT7m31+vl/vvvZ/PmzSxfvnzw9j179nDPPfewcuXKUoQuAG/saMdqMjCjzkF43wcYHOXdNHNApc1AW8/AhI9qIgffK3FE5yZVVYdMeNI0bcjPY93/1ltvMWPGDObNO3Vh6MEHHxz8+1/+5V/y4x//mFAohN0+vvHwixYtwmgs74t4AxJdzby31YktowBxmpqa8vbc0aQfvREa66qxOq1cfPH8vD33eGzbto2LL764qPsstKn2mibyehKJxKiJwDyuWhLKQTKVYduJOOfXje/guj3knRRJCofRSiBa3ss9INuXYt9A88zq6STaD4pO4YIwio6T/SgGDjYTbQdQqvN3cDURqUwKTdPQS8XrgeOxG4gnTGRkK1o6iZQ690pqxyr3hmylxac+9Smuu+66Ibfv3r2btWvXsmrVKr7zne8QDJb/98VUksmo/HbDAT5xcROSJJH0tZT9ZI8BVXYDLQNJCmeVWO5RIrW1tfj9/sGf/X4/Ho/njPd3d3cPuf+1117j+uuvH/xZVVUef/xxMpmhI531+vKv7pkINRElrrNgkvN/amewV5LqbsdpM+ILRPP+/IIwkvLtQihMyLYDXqoNEVxVYx8cqGqG7kgP51fNGXPbUrOb7AST/aiqik5Xvrm1OpeMP5QmHM9gs9iRFDMpfxuKZ1qpQxOEstThDw+OH81E+0mHejE4q8d4VGHFUgmMBuOQq3SFZpJlZDnC8e4oFU4PukigaPsuF2OVewPceuutwPCy0urqar72ta9x0UUX8fDDD/Pggw/m1MQ7n2Xdk6mEN1+x7jgaQVJTpCNdHDzoxeY9QZ+xGi2PJef5LF8/XSYGx306Dh08BJqGLZlg++a30JSJN849F98DZ2vFihU8+uijBAIBzGYzGzZs4Hvf+97g/Q0NDRiNxsErti+88AJXXHHF4P07d+7ktttuG/xZp9Px6quvMn36dK6//nqef/55li5diqWIDZGLSU1ESUimvPekADA4qojs34xjrsKxdpEAFopjXEmKO++8E0UZ39pcSZL45S9/eVZBCRP3562tzJba0TtmjbmtPxrAKptRJsH0CYOkx2ww0RfvL+smn3qdxLQKhQMdcZbNsqJ4phNv3SeSFIJwBu3+MG5Htpw23n4Iuaqx5OvYY+kYJn3x+lEMMBsTHPaF+aijEn24p+j7L7WxyrlH89hjjw3+/dZbb+Xqq6/Oad/5KuueTCW8+Yo1lVZ57KXXuPHj85lR5yAdCtC9y0DDrLl5S/S1trbmtXz9dA2qxov7u5g2axYmWUd3Sx3nN1RinrZgQs93Lr4HxjJWWTdATU0Na9as4ZZbbiGVSvG5z32OJUuWcNttt/Htb3+bxYsX86Mf/Yj77ruPcDjMwoULueWWWwYf39raSm1t7ZDn/OEPf8g//MM/8Nhjj1FRUcG//uu/FuT1lQM1HiGGCaMh/xfydCYrSDrsurhonCkUzbiSFDt37hxzG0mScjqggLEbZL366qv8+7//O6qqsnjxYh588MFxJ0vORbFEmh0HfXylIo5uHImHjn5vWZ/wf5jDaKMn2lf2MTdVKuxti2WTFNVNxI7vwXHxp0sdliCUpTZ/mFq3FYB42wGUqtL3o4ilEhhLkKSwmlIc88W5orYSfbC76PsvtdraWrZu3Tr484fLvc8kFArx7LPP8tWvfhXIJjemakl3OXptywncDhMz6rLNbpP+FgwuT1Erkc6GTidRbTfQHkgyu8aE7Kwi5W+dcJJCmLhVq1YNTuYY8POf/3zw7/Pnz+f3v//9iI/94IMPht02d+7cnBplTmZqIkIcI0ZDYX7vDM5qjHE/PcF4zud7gjAR40pSLFiwAFnO79X2sRpkRaNRHnzwQdauXUtVVRVr1qxh7dq1fOELX8hrHFPJlr1dNDlU7BWucW3fEfYx3Vn6E4LxshttdMcCzGVGqUMZ1fRqhY17QwAonumEd70uPtAF4Qw6/BEWzqxETSdJeo9jmVv6K5CxVKyokz0G2K0ZWnvSGOZVoWs/XvT9l9pY5d5nYrFY+K//+i8uvPBCli5dym9+85ucKymEiUmlVZ5+7RCf/+R5g7cl/ZOnH8WAaoeB1p5skkLvqCLpbyl1SIKQEzUeJabKKAXoSQHZfi1SbyuSVEUklsJmEReNhcIaV5Li8ccfp6amJq87Pr1BFjDYIOuOO+4AsgcdGzduRJZlYrEYPT09OBylHUlX7l7f3sYccy/6cXTUTmaS9Mb6uKB28lwpcBrtHOk5XuowxtTgVvAGU4TjGaw2N6CR7u1ErhAjfAXhdJqm0dkdocppJtl1DIOjCp1sKnVYxNLxkiyDc1lVdnVk1//qI+feco/xlHuPRK/X85Of/IQHHniAeDzOjBkzpnRZdzl5fVsrlU4T02pPTUtI+lqwzLu0hFHlrspu4ER3tnmm7PQQPbx1jEcIQnnJxMNENSOmAvSkgGwlRezoTtyORvx9MZGkEAquZI0zx9MgS5Zl3njjDe6++248Hg+XX355scOcNMKxFHuP9fAV1zEMjo+Oub031I3b5EQvTZ6SWLvJTl8iREbNoC/j2et6nURTpcL+9jiXzLai1MwgdmKfSFIIwof0hRPoJLCaZfra9pfF6FGAcDKGpQTJEofZQFqFsM6JLh5CS6eQDOXfMyifxir3HvDQQw8N+XnZsmWsXbu2oLEJQ6mqxn9vPMz1K2acui0ZIxPuxWCvKF1gE1DjlPmgJTu1wODykOxuK3FEgpAbNRYmmrFRU6hKCkcV6f5unA4Zf1+MmfXOguxHEAaULEkx3gZZV155Je+99x4PP/wwDzzwQNG6dZdLt+Px2LZtGzuORqhxgD7eR2dvGPoioz7mYLgZBRmfz1ukKLPOdn9GSebA8UM4ZFueIhrdRLuJOw0Sb+2O4UxryKqJvu1vcFh15zm6oSbTe1YQILvUo9ptQdNU4m2HcFx0TalDArLLPSrMxT8AMxkUbOYEJ3ozVJnspAKdoumuULa27vdi0EvMOu1kJdndhsFZXfLmt7mqcci0nhxDqjPbQc2QDvdhsLlKG5ggjJOaiBDN6LOVFJmxt8+VpDegt1dg0yfx94rmmULhjZqkuOGGG5AkqSDjesZqkNXX18eePXsGqydWrVrFmjVrctrHRLt1T8bOzM9teYdlM6woPg9V08Y+qN2ydzeLa+bjMNrH3DZffD4vHs/ZLRvyE0Rnl2mqLkyX79OdTTdxnTXJyx8EOW/eNNJ1lQT+9CvmX3RRwfpSlOI9O55u3YIwmnZ/mEqniVSgM3sAZC2PKzOxVBylBI0zTXoFRYlyojtBhdlBsrtVJCmEsvX8m0dZvqhuyPdawnsCg6u0I4Qnwm7Wkc5AXzSNy2LA4K4l6T8hkhTCpKHGI8QyekyyriBJCsgu+bD0h/D3RguzA0E4zag1QQ899BA/+MEPsNvzfyK7YsUKNm/eTCAQIBaLsWHDhiHzjjVN46677qKjowOA9evXc9FFF+U9jqmgL5TgcGsf0/Xd6B2VY27fnwiTUtPYleJUI+STw2THHyn/rvd1bplAJE1fNI3eXoGmZftSCIJwSqs3RKXDRKxlP3IREo/jFUvFMJWgcaZRNmIwhDnmS6AaHaLkXChb7f4wxzuCLJ49tAdW0teM7MxvD7NikCSJOpfMcV+2msLgrCbpE80zhclDjUeJpqVskqJAZJcHS8KPVyQphCIo3Dt5DKc3yLrhhhtYuXLlYIOs3bt343a7+d73vsc3vvENPvvZz9Lc3Mxdd91VqnDL2ju7Opg/ww29rRjG0TSzo99LlcU9KadNuEwO/JFAqcMYk06SmFFtZE9rDEmSMNbOJHZcVB0IwunafGGqXGYSrftRqsujYiCtZkhrGWRd8XtBGA1GMPRx3J9ENTvESZJQttZvPs5F8zwY9KcOI7VMmnRvF3rn5KukAPA4DRzzx4HsyViyq7nEEQnC+KmJKLEUGAvUOBOy/VoskU78AZGkEAqvZD0pYOwGWVdddRVXXXVVscOadP68rZVLzq8htbUdy+wLxty+LdhOpWVyNbUaYJMtxNNJ4qk4pjKYAjCa6VUKu1piXD7PjuKZTqx5V9msuReEctDmC7F8thU1ESmbkYXRVAyjwViSJK5B0mMyJmnpShFXnKT8u8Z+kCAUWTqj8uetrXxt1cIht6d6OtBbXejkydn1v8Yp0zxQSeGuJdYsfv+EyUNNRIimwCTrCBdoHzrFjMOiwx8o1B4E4ZSSVVII+RGMpGnzhphVKQESktE66vZpNYM30kPVJE1SSJKE2+zANwnG8832mPigJYqmaSi1M4md2IOmaaUOq+ytW7eO66+/nmuuuYYnn3xy2P2vvfYaq1ev5rOf/Szf+ta3CAaDJYhSOFuptEp3Xxxr31GU6mlIUnl8HcWSMcz60iVALbJChU1HZ9pJus+HlkmXLBZBGMmOgz5cDiPV7qH9yhK+4xhck2+px4A6l8wxfwLIVlKkAh3i90+YFDRNIx2Pk0hrBRtBOsBd4SYYSZPJqAXdjyCUx1GhMGF7TkRZOKsKrbcj21F7jKt/3rAfu2JD1k/esXZOox1vuPz7UlTast3NO3pTGGxuJINCyj+xaSHnCq/XyyOPPMJTTz3F888/z9NPP82RI0cG7w+HwzzwwAM88cQTvPjii8ybN49HH320hBELE9XZHabCYSTZtq+s+lFEUjGUEl4JNslGXFaVznC2kWiqt6tksQjCSP68rZUls4cv6Uh2NWOYpEs9AKrsBoLRDOF4BsmgoLe5SfW0lzosQRiTlowT15kxyVLBqwCNFTVY9GkC/YmC7kcQRJJiktt1PMai2ZUk/a0YHGNXR7QGO6i0FHYUZqG5TU66wv5ShzEmSZKY5TEOzl7P9qUQ5aOj2bRpE8uXL8flcmGxWLj22mtZv3794P2pVIr777+fmprs1bp58+bR2Skakk5Grb4wVQ6FTH83ckVdqcMZFE3FMJZgsscAk96I1ZykLZhd/5sUiU2hjMSTabbu97F49tAm3ZqWIdndiuyevJUUOkmi3i3TPFBN4a4l4RV9KYTypyYixGUH5gI2zRwgu2uwE8YnlnwIBVbSnhTC2Wn3hwnFMsyqd9Kzpw3ztAWjbq9pGm3BTpbWjr5duXOaHQS7+kllUmVfETKz2sj25ijXX+BCqZlJ9NgHOC9dWeqwypbP56O6+tSVOI/Hw65dpxI7brebq6++GoB4PM4TTzzBl7/85Zz2UYqxqdu2bSv6PvOlULG/tzuIIeIjaamgrb2jIPuA7CjhXHSFvUB2ZHIppBIp1HQ33v46gi4dvR+8Szw6Odf4C1PPtgM+Gj02bJah78lUoAud2YZOMZcosvyodcoc6UqwuMmCwVVDovMo9sUfL3VYgjCqTCxMTGfHrBQ+SaEzWnAY0nSeaGXhCBVVgpAvIkkxib2xrY3pHiOSpJLu60K/6GOjbh9M9KNqKjZl9L4V5U4v6XEqDvyRHuodtaUOZ1SzPEb+sKOPZFpFqZ1JcMsf0DJpJL341RuJqqpDShU1TRuxdDEUCvHXf/3XzJ8/nxtvvDGnfSxatAij0XjWsY7Xtm3buPjii4u2v3wqZOyv7n2fet0h3NPno9QUZrlHa2srTU25PffBoyeotlTgsZXm4CvVrxI0xtnTCpUz5qMGWqidRO+fRCJRkkSgUBxv72xnwczhVZtJ73HkSdyPYkCDW+FQ18kJHxV1RA6+V+KIBGFsaiJCXG8p6PjR09mtMh0tbcBFRdmfcG4Syz0mKU3TeH1HGzNrFFJ9fnRGGzp59BOv1mAnVdaKSTl69MPcZiedIV+pwxiTWdFR45Q50BFHb7JisLtJdBwZ+4HnqNraWvz+U0t5/H4/Ho9nyDY+n48vfelLzJs3j3/+538udohCnrR09OGMtSFXNZQ6lCHCyQimMT5LC8lkMBHPRLAbwUulGEMqlI1UWmX7QR/nz6gcdl+i6xiGSbzUY0BDhcxR78nlHhV1JL0n0DTRIFAob2osQlwyY1KKc3zvcljo7Cz/BvbC5CaSFJPUsfYgyVSGKoeBVHfruMb3tfS147GWx5i/s1VhdtIxCZIUALNOLvkAUGpmET22s7QBlbEVK1awefNmAoEAsViMDRs2cMUVVwzen8lkuP3227nuuuu49957p0TC7VyUyah0BaJ4PO6yqyqKJWOYDCVMUsgmoskolRaNlqiFTH8Pako0KBNKb8/RbqpdZhzWoUs9NC1D0t+K7C7vysbxcFn0pFWN7lAandGCzmQhFRB9j4TypsbDRDFjNBTntK6i0oW/P4mmZoqyP+HcJJIUk9Tr29tYMqcKSZJONs0cfmXjdPFUnL54iAqzs0gRFpbL7KA/ESKRSpY6lDHNqTWy7XgEAGPdLGJHd5Q4ovJVU1PDmjVruOWWW7jhhhtYuXIlS5Ys4bbbbmP37t1s3LiRffv28corr7B69WpWr17NvffeW+qwhRx19kSw6ZJYa6eVOpQhUpkUaU1F0ZWuB4TZoBBLx6mwaBz1pzA4q0h1iwkDQum9t7eLedOHN95OBbzojOZJ348Csg2vmyoVDnUOLPmoJ9F5tMRRCcLoMvEwMYxFq6RwOy30anYSnceKsj/h3FRel7CEcVFVjTd3tPPl686nr7uVVHcb1vM/MupjWoNdVFnc6CR9kaIsLJ2kzy75CHuZ4S6f8YUjqXPJxJIqXX0pajzT6H3zGTLxCHrT5O4NUiirVq1i1apVQ277+c9/DsDixYs5cOBAKcIS8qj5eBcVBFGqFpY6lCHCySgW2VTSCh2dpEfWyzgMaY544xime0j6T2Csm1WymARB0zS27O3ii9fMG3Zf0tuM7Dq7KgpN0whEe2kJduCL9BBORkipaXRImAwmZFVP2Ben1u7BZXIU9He0wa2wvyPGivNsyBV1JNoPY190xdgPFIQSyUTDhFWlKNM9IFtx1JsxEz2+G1PD3KLsUzj3iEqKSWhvcw8mRU9NhQUyKTKRIHrb6GNFTwRbqbaOXm0x2VSYXbQFu0odxpgkSWJOjYntxyNIehnFM12MIhXOaYf37Kfabii7pR7hZASzbCp1GJgNJqzGGG2BFNiqSXiPlzok4RzX7g+TSqvUVliG3ZfoPIqhYmJJCk3TaO3r4A8HXuNPzZsIJcPU2T1cULeA5Y0XcWnjBZxXNQuTzkhnyMerR9/i93tf4v22D+iN9Z3lqxrZtEqF/e0nKykqG0i0HyrIfoTh1q1bx/XXX88111zDk08+Oez+/fv3c9NNN3Httddy7733kk6nAVi7di2XX375YIXlI488AkB/fz9/9Vd/xXXXXcfNN988pOfVVKLGQ0RUpSjTPQCMsg6DTqL7sGiSLBSOSFJMQq9va2XxnGxvCX0kgMFRiaQ7c4VEKpPCG+6m2jK8I/dkVm2toi3UiapppQ5lTHNqjLx/9OSSj9qZxI5sL3FEglA6R1t6qK0pv6Vn4USkpP0oBphlEykpToVNT5euhqRIUggltu2Aj/OmuYdVMJzqR5F708xIMsqrR99iS/tOprka+di0SzmvcjYeaxVW2YrJYMRkMOEyOahUnCzwnMfHpl3KBbULiaXjvHrkLdYdeI0jPcdJ53FtfL1bxhtMEU1kss0z/S1omXTenl8Ymdfr5ZFHHuGpp57i+eef5+mnn+bIkaGNxu+66y7+8R//kVdeeQVN03jmmWeA7Gjxe+65hxdeeIEXXniBNWvWAPCTn/yEZcuW8fLLL/P5z39+yjbbVqMhImlD0ZIUAG6bTGe7Fy2dKto+hXOLSFJMMqm0yqZdnSwZSFKE/egdozfDbO/vwmV2IuvlYoRYNFbZjEFnIBDtLXUoY5pdY+SIN0E0kcFYP4fo0R1okyC5Igj5lurz0RY1Ul9ffvPV+xNhzHLp19WbDEZimQT1LoWWpJOk78Q583kx1pXUAXfffTfPPffc4M8dHR3cfPPNfPrTn+ab3/wmkUikGOGeM7bu9zKncXhiMdXTic5sy7kfRUd/F+sOvoZVNvORpouosVWNawmHJEnYjVbOq5zF5dMvZbqrgYM9x/j93j/yQed+kumz71Ol10k0VCgc6IyjU0zobW6SvhNn/bzC6DZt2sTy5ctxuVxYLBauvfZa1q9fP3h/e3s78XicCy64AICbbrpp8P7du3ezdu1aVq1axXe+8x2CwSAAr7/++uDy0ZUrV/Lmm2+SSk29k+pMPEwkoy/acg8Al9VA0FRPvE0swRUKQyQpJpltB7x4Kiy47dmSZH3Ij8E5+sH+8d42PJaptdRjgMdaSUuw/JvKKQYd06sVdp6IZZNKkkTK31rqsASh6Pw73iCkmqm0l6455ZmEEiEshtInKcyyiVgmQZ1L5kgPoGlkwn2lDqvgxnMl1ev1cvvtt/PKK68Muf2f/umf+NKXvsT69etZtGgRP/3pT4sZ+pSWTGU4cDzA7EbXsPsSXceQc1zqcdB/lDdPbGFpzfnMrpgx4V5ZOkmHx1rFxXWLubh+Cf5IN8/ufYmdnXtIZs4uWTGtUmFvawwApbqRuFjyUXA+n4/q6lPHsx6PB6/Xe8b7q6urB++vrq7mW9/6Fi+++CJ1dXU8+OCDwx5jMBiw2WwEAoFivJyiUmNhoildUSspHGY9fcZ6os0fFG2fwrmlvBYEC2PauLV1sIpC0zT0kR7kUcaPptUM7SEvl09fVqwQi6rGVsVe7yEuql9c6lDGNLfGxJajYVacZ8NYN4fI0e0onvKabiAIhaRpGge378RjvxSdrvzGx/YnIkx3lb4Rr9lgJpbppKFC5qUPosh1tSS9zRjso/cemuxOv5IKDF5JveOOOwa3WbduHZ/61KcGtwFIpVK8//77PPbYY0D2Cuv//J//k7vuuquY4U9Z+5sD1FZaMRuHHzImOo9irB1/U9ddXfs52H2USxouwJrHqiW7YmVRzXwiqRjNgeM8t289F9YuZG7lrAl91syoVvjzvhCQ7UsRb92Pc9l1eYtXGE5V1SHVNJqmDfl5tPsHfvcBbr31Vq6++uoR96FpGjrd+E/k9+yZHD0XHMEegrEMvd1dpLJvW1pbC3shTEtItCQVevZs4rjj/ILuC2Dbtm0F30exTbXXlO/XI5IUk0gklmLnIT9/96WLAMiEA4CEzmQ742M6+704jDaM+tKvsy4Eh2InrabpjQVxl/l41Xl1Jn72Jz/pjIaxfg6xw1txf+SGUoclCEWT6DhMa9xKXeXw5nulpqoakVQUSxmMUbTIJmJqnBqnjL8/Tfq8GhLeZixzLip1aAU10pXUXbuGNhm+9dZbgaEHQ729vdhsNgyG7CHN6VdYhbO345CPWQ2OYbdrmTSpnjas568Y1/Ps8R7gUPcxLmm4oGC9X6yymUU159OfCHHQf4yD3cf46PRlVFpyS/A1Vih0BVOE4xmMVU1E9m8uSLzCKbW1tWzdunXwZ7/fj8fjGXL/6Y0vu7u78Xg8hEIhnn32Wb761a8CJy/g6bPVOR6Ph+7ubmpra0mn00QikSEJzrEsWrQIo7H8j5+bN6ZIZHTMnlGLYtDR2tpKU1NhE+5RfZz97VHkWB8XLDgPvdlesH1t27aNiy++uGDPXwpT7TVN5PUkEolRE4ElTVKsW7eOxx9/nHQ6zVe+8hVuvvnmIfe/9tprPProo2iaRmNjIz/4wQ9wOsv7RLSQNu3qYHajE4sp21si6W8lY3aN+pjmvhY81tF7VkxmkiRRa6/mWOAEFzcsKXU4o7Kb9VTZDexrj7GofiZ97zyLGo+gE6NIhXNEaOdrtCszqXGWX3+cSCqCUa+gL4MxzSaDkVQmjYZKnUumlXrmdB4tdVgFN9aV1DMZabtcR1Tm84rpZLo6Np5Y39npZelMCwcPHRxyu77fi1G20t41dkKoPeajOdbKedYZ9Af66J9ArD5fbomn6UotPckg6w+9TpOplhnWBiTG/76oserY8N5RFtVoWCP9bN/0BprxzBeFTjfV3gPFsGLFCh599FECgQBms5kNGzbwve99b/D+hoYGjEbj4MnQCy+8wBVXXIHFYuG//uu/uPDCC1m6dCm/+c1vBisprrzySp5//nluv/12XnrpJZYtW4Ysl9/3z9nQ1AyJZJqMBrK+eBWKLqsefyiD0jSd2Ik92OZ/pGj7Fs4NJUtSDKw9fe6551AUhS9+8YtcdtllzJkzB4BwOMwDDzzAs88+S01NDf/2b//Go48+yn333VeqkEvuT1tbWTr31FWmpL8F1Tz86saAtJqhNdjF5dOm5lKPAbW2GnZ27eHCusVlWUJ+uvPqjGw+HGbJNA+KZzrR5l3Yzhcf7MLUp6YSRPZvpjXxBRa4yu8gsT8RLosqCsiutVf0CuFkmHqXTHPCybRgc6nDKrixrqSeSUVFBaFQiEwmg16vH/fjTpevK6aT6erYeGINRZP0/b6Tjy5bgEE/tEw+uKOVTO10PGNcsW0LdnK8r51Lmy7EKk+sisrn8+Lx5D5BxEMNM9PT2e09wN7YUT4x8yOYxjlm+PxEGG9K46b5HgJdM6mtULDNH/v/dqq9B/JhrCumADU1NaxZs4ZbbrmFVCrF5z73OZYsWcJtt93Gt7/9bRYvXsyPfvQj7rvvPsLhMAsXLuSWW25Br9fzk5/8hAceeIB4PM6MGTP413/9VwDuvPNO7rnnHj7zmc9gt9v50Y9+VPDXWmxqLExMdmIz6nNOzp4Nl0VPdziNUpOdWCeSFEK+lSxJMdba01Qqxf33309NTfZLad68eaxbt65U4ZacvzfG8Y4gX7jqvMHbkv5WVOeZexp09Hdll3qUwUi9QnIYbSg6ha6wl3rHxGa1F8v59WZ++VY3t30iu+QjemiLSFII54TI/k1oFdPoOqCWZSVFMNY/4ROoQjDpFELxCA0Vbo74VC6P9k35yquxrqSeiSzLLFu2jJdeeolVq1bx/PPPc8UVVxQh4qlvz9FuZtQ5hiUoAJJdRzDPGL0fVG+sj7dObOHCukUl+/0yGYxcXL+Yo4ETvHjwNa6efTnuMapQAWZ7jPx2cwBN01CqGom37BMnYgW2atWqwWkcA37+858P/n3+/Pn8/ve/H/a4ZcuWsXbt2mG3u1wufvazn+U/0DKSiYWI6R1YjMWdhWCUdch6iXjFLNT3fjfuyjdBGK+STfcYq4uv2+0eLNeKx+M88cQTXHXVVUWPs1z8eVsri2ZXDR4oqKkEmVAA1XjmNWDHAi3U2spvzF8h1DtqONBd/uXQFTYDNpOeg51xjA3zsqNI8zjfXRDKVf/W9fgrL6LGacBQxJLU8eqN92MpoySFolPoT4RprJA53JXA4K4j4Z3a1RSnX0m94YYbWLly5eCV1N27d4/62Pvvv59nnnmG66+/nq1bt/K3f/u3xQl6itt5yM+M+uEVm2oyRjrox+A6c8VKPBXnT0ffYX7VbFymM1d9FoNO0jG3ciZzK2aw/vAbeEP+MR9TZTcgAa09SRTPNOIt+wofqCDkSI2FiOrtWIo42WNAhU1Pj+oATSXVU/6T9oTJpWSVFONdexoKhfjrv/5r5s+fz4033pjTPs5mjWm5rNGD7L/NS297ufQ86+CaUH2wC6PRBjrdiB18M1qGtmAnC+yz8SXKp4FYrmtKx0vRdHSEvRw+fhSTPn+jDQvRHbnOIvHSljZWLdCwSAY+2PgHMu7Gs37ecnrPCsLpEt7jpPv9nHBXU+dKlDqcEfUl+pnhPPvfw3wx6WSCiX4WePTodBK95mnYu45hnr6o1KEV1FhXUgc89NBDQ35uaGjg17/+dUFjOxd9cLib1VcMn96R8DZjcNUi6UY+jFRVlT83b8Zjq6LOnvsyjUKps9cg6xU2Nm/iyhmXjVp9KUkSc2tNbGuOcsNFDaQCnaiJKDpj+SQzBSETDRHVWTEruSX/02qG5kArrf0dRJJRFL2Mx1rJnMoZ2MfZe8VlMeDrT1NbN4fo0R0oVeXzHSpMfiVLUoxn7anP5+PrX/86y5cv57vf/W7O+5joGtNyW094qKUXSR/g8ksWDiZy+j9oJ+1pJAEjdvA9FmihIu6ivqa+yNGe2UTXlI5Xnz5KryHEpY0X5OX5CtUd2eJK86u3e1gzdzqR2GIqpCCVF68+q+csxXt2PGtMBQEg+P4fMc+5mEOtSerd+Usi5oumafTF+rF7xndgVgxGvUIwHkKSJKZVKjRrtdS0Hy51WMI5pLc/Tm9/nPqq4b8XiY6jyO4zn+C/374LDY05FTMKGOHEVFncXFC7gDeOv8cnZ66gxn7mitO5tUY2H4lw4yVu5KpG4q0HpvyUHWFyyUT7iWDBrIy/6XN7fxfvtLyPTbFSa6umzu4hlUkRiPXxh4OvMd3VxLKGxShjXPRzWvR0BVNcUj+H6OGtuC5bNer2gpCLki33WLFiBZs3byYQCBCLxdiwYcOQNaSZTIbbb7+d6667jnvvvfecXuf02vstXHBe9ZB/g6T3OLLrzCf8RwPHqbXl1jhsspvhauBIz3HiqfK8Ujug0m7AZtKxvyOOsWk+kYPvlTokQSiYTCxE5MBmLHMu5mBnnKaK8ktSRJMxDDo9ir58emWYdEaCiTAADW6ZwxE7ic4jJY5KOJfsPtrNjHrHiA2pE51HkCvqRnzcsUALLcE2Fnvmo5NKdpg5KrfZxeKa89nYvIneWN8Zt5tRbaSjN0lfJI1S1UTsxOjLjgSh2NRYPxHNhEke33nSHu9B3j7xPgur53FR3WLq7bW4TU481irmV83h8mmXEkvFeXH/q/TGgqM+l9uip6svhVI7i0THYdRELB8vSRCAEiYpxlp7unHjRvbt28crr7zC6tWrWb16Nffee2+pwi2ZVDrDWzvaufC8U5l+Tc2QCrRjcI2c/Y+n4vgiATzWymKFWRZMBhO19mp2e/eXOpQxnV9v4u2DIeSKerRkjGR3W6lDEoSC6N++AVPj+fSmjaTSGhW20o/4/LCeWB92Y3k1pJQlA2k1RTKdZFqlwqFuyESCZGKhUocmnCM+OJxtmvlh6XAALZVAb3cPu683FuS9tu0srV2IXEZJv5FUWdzMr5rNq0ffJpIa+eRKr5OYU2Pi/WMRlJoZxI6L6kGhvKQjQfozRqzjaJy5x3uQA/6jXNZ4AZWW4b+/ALJeZqHnPGZVTGf94ddH7d/ithnoCqbQyUaU6mnEmndN+HUIwoeVbLkHjL72dPHixRw4cKAUYZWV9/Z2UVtpxW0/NTIrFehEZ3agO8MYrebeVjzWCgxnWCs6lc1yT2dTy1bmVc/BMc41daWwsNHM/++Nbr7+8WqMjfOJHNwi1vIJU46WTtH//h9xf/xm3uuIM61KKcuquO5oALtSfp8XNsVKMBGixlVBbyRD3DOdROdRLLMuKHVowjlg99Fu/uITc4bdnug8ilxRj/ShKolkJsnGY+8wr2p2WX//nq7OXkM0FWfj0Xe47rxPYNANT6LOrzex6XCYqxY0keppn/JTdoTJJRMN0p9pZPoYSYoTfW3s8x3i0sYLMBnGHsNbb6/BqFfY2PwOn5z50RGXRVVY9fj60wAY6+cQObQF6/zLJvZCBOFDyrMOTxi04d0TQ6ooAJK+E8jOMy/lONxzvKwaVRWTyWBkhruJ91q3o2laqcM5I7fVQKXNwK6WKKbG+UT2byp1SIKQd6Hdr2Nw1SC7a9jbFqOxDJd6QDZJ4RhlUlKp2BQLvbEgOkliWpXCcd0M4qIvhVAEPcEY/eEEtZXDT8YTbYcwVAztd6VpGm8ffx+32Um9vbxHgX/YLPc0FL3Mey3bR7x/bo2RY94EoaSUvVospnwIZUSN9BNO6bEaz1yl2B8Ps6llK0vrFowrQTGg0uJmSc0CNjZvoifSO+x+h1lPNKEST6kYG84jemSbmFgn5I1IUpSxnmCMgy29LJw1dNlGtqv2yEmK3liQWDpOxThmgE9VM1wNhBIRjgZOlDqUUS1oMPP6/hBKzXTSQR/p/u5ShyQIeaOpGfre/j22hZcDsKc1xszq3BsZF5qqaXRHArhM5ZeksCrWwTXBTRUKhxJVJNoPljgq4Vyw+2gPMxuc6D5U+aSpaRLe4yhVQ5MUu70H6E+GmV81u5hh5oUkSSz0nEdXxM/h7uPD7pcNOubUmnj3SBjFM51Y8wfFD1IQziAT7SeU0p1xuYeqqrxx/F1mu2fgNOY+CrjS4mZB9Vz+dOxtIonokPskSaLCqscbTGGwV6AzWUmIRLqQJyJJUcZe29LCotlVKPKp7KimqaR8LWfsqn24p5k6u6dsm1UVg07Ss6hmPu+37yQY7y91OGe0qNHEByeixFISxsZ5RA68W+qQBCFvwrvfQGdxoHim0x1KE06o1DjLbwlaf6Ifg96A0VB+CRS7YiVwMkkxvcrIgT4jifbDZV0lJkwNHxzyM6N2+AlN0t+K3upEp5gHb+vo72Kf/zAX1C5AJ5Vfz5nxMOgMLKldwNaOnfTFhzcLXNBg4q0DYYx1s4ke3Vn8AAXhDDLRIKGEhEUZ+bh/j+8gOkmiyTnxaX81tmqaXA28euwtUmp6yH0VNgOdfSkATI3ziBwUx7JCfpy7Z7JlTlU1Nrx3gmXzh1ZMpHq9SIoZnWn4nG5VVTkaaKFhlLnf5wqH0cbcylm8dvTtsp32YTHqmekx8u6RMKam8wnvfbvUIQlCXmjpFIE3fod9yScA2NUSZZbHWJb9KLzhbirMzlKHMSKbYqUvHkTTNOrdMv6wSkQykwp0ljo0YYrbdaSbWQ3Dfy/i7YeQK09N9QglIrx5YgtLPPNzKiMvR3bFypzKmbze/C6ZD5Wsz6010RZIEjBUosb6Sff3lChKQThF0zTSkTCRpIZlhEqK/kSYvd6DLKiee9bfvzOcjdhkM28ff39IotxtzU74ADA1nU/kwHsikS7khUhSlKndR7sx6HU0VA9tPpX0HUd2j9xvoiXYgU22YJWHJzDORY2OOqqtlbx69C2SmWSpwxnRokYzf94Xwlg7i1RPuzjwEaaE4LaXMTirUDzTANh6LMJsT/lVKkB2XrzbVJ5JCqNeAU0jlo6j10lMr1JoVuaLJR9CQfl7Y0TjKTwVw48lEm0HkauaAEipaf507G1muhqpOMOkgMmm0V6HUa+wvWPoqFG9TmJBg4k3D0RQamcTPbajRBEKwilaMkYEI2ZFh36EUcFbWncw3d2EWTaP8OjcSJLEAs95BOP97PUdGrzdbTXQHsgeYxvctWhqmqSvvJdbC5ODSFKUqZc3Hefi82uGZT4THUcxnCFJcbD7GA1OUUVxurkVM7EqZjYcfpNEqvwSFefVmWgPJPGGNIyN8wmLBprCJJeJ9tP39rPYL7wagHRGY297jDm15ZekUFWVrpCfSktFqUMZkSRJOEx2ArE+AGZUGTmQrCUuGvcJBbT7qJ9ZI/SjSEd6UeMRDPZKVE3jrePvYVMsTHNOnclU2f4U8zja2zJs9OLSaRZe3xdCrp1F9MjITTYFoZgykSBhpRK7afjpXHt/F33xfma4GvK2P52kZ2ndAnZ7D+ANZ38/quwG2nuzlRSSJGUrg/e9k7d9CucukaQoQ8Fwgu0HfVwwd+hUD03LZCd7VNQNe0x/IkwgFqDGVlWsMCcFSZI4v2ouDpONPx7+E6FEuNQhDaHXSSxuMvPnff2Ypy8kvPetUockCGel50+/wjxjMbIz+/m1uzWKxyGP2nm8VLxhPxbFjKkM+1EMsBmtBCJ9AMzyGNkXtBBr2V/aoIQpbechPzPqhvejiLcdQq5qQtLp2Nm5l3Aikpcy8nKj6GUWVM/lrRNbSGVSg7fXu2X0eomjTCN+fLeYYiCUXCYSJKx3YTMN/X7V0Hi//QPmVs7Ke58Ys8HE4pr5vNH8LrFUnMrTelIAmKYtJLLvHbHkQzhrIklRhl7dcoKFsyoxG4c2mUv1dKA324Y0rBpwsPso9Y5a9JO0aVUhSZLEeZWzabDX8sdDf8YXKa8pGhdMt/DnfSH0nhmke72kertKHVJJrVu3juuvv55rrrmGJ5988ozb3X333Tz33HNFjEwYS6xlL9Ej27Et+fjgbZsOhZlfX55r1Zv72vBYK8fesITsio3uaAAAj8NALC3hCybJRIY39xOEs6VpGruOdDN7pH4UrfuRqxo43H2cI4HjXFC3cNI2yhyLx1qFy+xg62nLPiRJ4sLpZl47mEJvc5FoPzTKMwhC4aUjvYQl+7DJHp3xbvToCvb9VmWpoM5ewxvN72JRJDKqRiiWTdrJlfVomTTJruaC7Fs4d4gkRZlRVY2XNx3nkvOHL+mIdxzFMEIVRVrNcKTnOI2OiXfuPRdMdzWy0DOXPx19m2OBllKHM8jjlHGY9exsSWCavvCcbqDp9Xp55JFHeOqpp3j++ed5+umnOXLkyLBtbr/9dl555ZUSRSmMRE3G8L/4KM5LrkenZJMSybTK1uYoC+rPfj1svqXVDCd6W6mzjTzOuVw4TQ66Y9n59JIkMafGyGHjAmKtYsmHkH+dPRHSaZUq19DfWTUZI9XdRo8is7XjAy6qW4SiV0oUZXHMq5xNa187nf2+wduWNFnY1RolVjGPyOGtJYxOECAT6iWEdchkj7Sa4Vi0hTlVMwta5TS7YjopNc0H3n14HDLtvdkl1ZIknawMfrNg+xbODSJJUWa2H/ShyHoaPbZh9yU6DqNUDE9EHAucwGVyYM1DY5yprtpSybL6C9ja/gG7uvaXTTnaBdMtvLI7iHn6IsK73yibuIpt06ZNLF++HJfLhcVi4dprr2X9+vVDtlm3bh2f+tSnuO6660oUpTCS7pefQK5qwtQ0f/C2LUcj1LlkHJbyu9raHGjFaXbkpaFYIVkMJtKZNLFUHMgu+dgbryN+fE+JIxOmog8OdzO70TVCP6zDqI5K3mh9nwtqF2BTrCWKsHhkvcz86jm80/L+4NhFk6JjYaOZt8LTiYokhVBi6XAvfRnzkOUeh/3HMOtMBW8IrZN0LKmdz+GeZszGJG2B05Z8zFhMeM9bYkmUcFZEkqLMvPjWUS5bWDvsAEFNxkj3dY3YNHOP7yBNzvw1xpnq7EYrlzZeyOGeZrZ27C6LhMCiRhOHOxP0GmtRUwmSXcdKHVJJ+Hw+qqtP9WLxeDx4vd4h29x66618/vOfL3ZowiiC2zcQbz2A45KhiaNXd/ezdFr5TRtSVZVd3v1MmwSfm5Ik4TQ76I5kl3zM9hg5GDTRf0wkKYT823nIx8z64f0o+o7tYF+6nwXV83CbXcUPrEQ81iqcJjvb208t+7h0lpWNxyAe6ifV5xvl0YJQWJlQgL6MEbs5ezqXUtN84DtAnbF6jEfmh1FvZEnNfHoSrRz2hgZvl10edCYbMZFMF86CYexNhGLp6A5zuKWPG66YPey+RFczBlctkn7of1lPsg+AynPooCEfTAYjlzRcwLaOXQAsq19c0uZfskHH0mlmXtsd4rMzFxPa9WeMdcPfB1OdqqpD/h80Tcv7/8uePcX/0ty2bVvR95kvY8Vu6GnGuvN5ovOvovfo8cHbO/uhpVvHpXURWlsLHOQoWkfYeUusE0nVUMMpfGHvCI8qDz5fNjZDWsfRzmYIZa9KuUwS+7r19G16A804vOpOECZCVTV2He7mY0uHJu96Qj6SncdwnLfknGzOPa9qDptatzKzogmPtYpqh0ydS2aH8VI8h7fivOT6UoconKMy4V56k00sPFlJcdB/FLfRjllfvGbQbrOLaRUJdrR4SWVqkE+ep5hnLiH0wZ+wzFpatFiEqUUkKcrIujePsez8GmTD8NLoeNtBlBH6URyPtjOjsmnKddcuBkUvc3H9Et5v34nJoLC4Zv7YDyqgi2da+eVb3dz4+SWENv4/Kq/6CpJeLmlMxVZbW8vWradKaP1+Px5PfnsGLFq0CKOxeF/g27Zt4+KLLy7a/vJprNjjbQfoemMdro9/EWPNjCH3rftjFx85T8eM6fYCR3lmra2tNDU1DbmtOxKg5WgHlzZeiFUuvyqPAT6fF48nWzmni8q0BDsGX8vCaIgDXedzpUPCvqi83luJRKIkiUDh7B1rD2I1yzhtpz4fA7E+Nm7+LRda7dS6m0Z59NSl6GXmV83m7ePv89nzr8Gg0/ORuTb+sLWOj+x/VyQp8mjdunU8/vjjpNNpvvKVr3DzzTcPuX///v3ce++9RCIRli1bxj/90z9hMBjYtm0bP/jBD0ilUrhcLv7lX/6FhoYGtmzZwt/8zd9QW1sLwIIFC/jBD35QipdWEOlwgGBCh8OsJ6Wm2eM7yMV1S4gFizvJbn5NNXuOx3np0EY+O//qbF+KmYvxvfDvZGJh9GaRTBdyJ5Z7lIlILMWft7Vy2cLaYfdpmkai4xBy9dBZ5N6Qn5iaoNZWnLKuqWggUbHfd5jjvSW83AtU2g3UuWXe7ZAxOKuJHp68V98nasWKFWzevJlAIEAsFmPDhg1cccUVpQ5LGEH06A66nv4Bzo/cMCxB0exLsL8jxiWzymfduqpqHA2c4NWjb7HQM6+sExQf5jTZCcR6UU+u751XZ+KDcCXRIztKHFn+jTXdZ//+/dx0001ce+213HvvvaTT2V4Ba9eu5fLLL2f16tWsXr2aRx55pNihT3o7DvmGTPXojgb4xY5nWJySUDwzShdYGai1ebAqZnZ27gVgepURm0VhU3OaTCw0xqOF8RhP4+y77rqLf/zHf+SVV15B0zSeeeaZwdu///3v88ILL7Bq1Sq+//3vA9nKya997Wu88MILvPDCC1MqQQGQ7g8QjGvYTLpsFYXJid1Y/O9dm0lCQuaw38v77R8AoDNaMNbPIbxHNNAUJkYkKcrEK+8eZ+4095ArGANSgU4kvYzeMrQJzo7OvdQqVegk8d94NkwGIxfULWRz6zYC0b6SxnLJLCt/2NGHaeZS+ne8WtJYSqGmpoY1a9Zwyy23cMMNN7By5UqWLFnCbbfdxu7du8d+AqHgNE2ld9Nz+F78d9xXfAFT/dwh96uaxhN/9nPlfDuKofifTZFUjJ2de3ntyJts69vDy4f+zB8P/omn97zAHu9BLqpfhMc6uUrWZZ2MVbbQE+sDoNohI8syBw4eR9PU0gaXR2dzkrJnzx7uueeewZORNWvWlOIlTGpb93uZ0+QCoDPk4/9tf4YLKudiDwXRRqjkPNecXz2Xwz3Ng/1hrjzfwcuxC+g/IBpo5sNYjbPb29uJx+NccMEFANx0002sX7+eZDLJnXfeyfz52WrYefPm0dnZCcDu3bt5++23WbVqFbfffvvg7VOBmkoQSoKs1yHpVPb4DjLLPb0ksUiSRLVdYrbjUl5v3kxzIHvRzzL7Ivq3v1IWvd+EyaekZ7djXTEZcPfdd/Pcc88VMbLiSmdUXnjzGB9dMvII0XjrPuSqoVUUnf1eQskIFUphu/eeKxxGO/Oq5vDn5k0kM8mSxTHbYySV0Tiqn0Wi/RDpoL9ksZTKqlWr+MMf/sArr7zCbbfdBsDPf/5zFi9ePGS7hx56iJtuuqkUIZ6zEl3NdPzyXiL73qHq2ltRPNOGbfPC1j5UVePCGcWvVDje28qL+16hNxak2lpNtbGSJmcDM13T+EjTMi5rvBCncXhTwMnAbXLSGTrVpG9eg4Wd8aYpNYt+oicpkD0ZWbt2LatWreI73/kOwWCwFC9h0ool0hxtDzKr3klzbwu/2vkslzQsZU4ig+asAsO5tfRwJIpeYX7VbN488R5pNcOMaiMuq54/vHGw1KFNCWM1zv7w/dXV1Xi9XhRFYfXq1UC2r9V//Md/cNVVVwFgt9v58pe/zLp167jyyiunVPIyEwrQL3twWfUnqygcJamiGFBhl+gLGfnY9Ev5771/pDvai1I7Ey2VJN66v2RxCZNXyXpSDFwxee6551AUhS9+8YtcdtllzJkzZ8g2999/P5s3b2b58uWlCrXg3tzRRqXTREP1yGu24i37sZx3yeDPqqaxtWM3syumI8WKFeXUV2+voS8WZFPLdj4+szTvN0mSuHS2lRd2hLlzxhL6d7xKxce/VJJYBAGylRPxlv0Et/yBeOt+bIs/jmXuRUgjVHBtPx7hjzv7+NqV1UXvk9PS1867bTu4uGEpjpPNJKVohiqLu6hxFIrb7KIz5GNJ7fkALGww89/N0wgf3jZlmuyOdJKya9euM94/cJIy8Pevfe1rXHTRRTz88MM8+OCD/PjHPy5e8JPcB4f9TK+1s6/7IK8ceYMrZlxKrd2Dbu8LqCMkI89VtTYPvkgPOzp2c0njBVy1tJLfvJlhZU8Qd6W4aHQ2xmqcPdb9yWSSe+65h3Q6zTe+8Q0AHnzwwcH7//Iv/5If//jHhEIh7Pbx9Uoq5/46hp4T+DJWDFqCXV37mW1uGmy2DAz5ezHIqsLBVgNznAmmG+v4xfvPcI1nBXZnE9ENvyFy4V+c1fNP5gbkZzLVXlO+X0/JkhSnXzEBBq+Y3HHHHYPbrFu3jk996lOD20xFqqrxzGuHuXb5yCVa6VAPaiKCwXnqwOx4bysZLUOdzYM/JsZf5dO86tm827qdY4EWZErTjHRJk4U394fxLr0A587f4v7Y58+5BppC6WiZFKmeThLeY1h2v0nL24+jU0yYZ11I9epvozMoIz5u+/EI/7HBx/+4rAKnZXjz30IKJyK80/I+F9UvHkxQTDUVZid7fAfIqBn0Oj01TgM6g8y+D3bysSnStuVsTlIee+yxwdtvvfVWrr766pz2nc+Tkcl04DkQ60vvBgirfl45dISljvNI9ybwdu2nIdSLt2IaFPmEZyTFPuk6k2rJxYGeZoxJGbfsYI6lj4f/7wZu+NSswW0m43ug1MZqnF1bW4vff6q6tLu7e/D+SCTCN7/5TVwuF48//jiyLKOqKv/5n//JX/3VX6HXn/pOOv3vYyl2o+1chHb1s8dUg2xIU2F2Mb3uVDLx9MbLxaJYNV7ZmaapyUkT05A7d/NeeDdfvvSzBNf9lDlzpg05l8nFZG5AfiZT7TVN5PWM1Wi7ZEmKsa6YQPZAAyb+AXo2Bx3F+tDe1xojkYiTjnRx8NDwL2ClYw96cyVt7e0AZLQM7/XuZIa5Ab8/m6Aoly/u8ZgMsTbIHja3bOMy15IRxxcWw7xKiafeT/E1s5ndL/+OVN2CMR9TLgcaQnlTUwlSPR2k+rpIB/2k+3tI93eTCQVI9/eQiQYx2NwY3LVoOoWKT9w86oGFqmqs3drLyx8E+R+XVdBUOXISo5Debd3ONGfjpF3KMR6yXsaqWPBHAtTas5UqC6fZ2Nxi4yP93Rgck6vPxkgmepISCoV49tln+epXvwpkkxe5nIhA/k5GJtOB50CskWSUf352PZVze/ns/Gswydl/B8OezVAzHY9neEPvYivFSddo5KiR/f4jrJ5/DZ8kwf/bKZExN3DpgtpJ+R4otPFM/VmxYgWPPvoogUAAs9nMhg0b+N73vjd4f0PD/5+9+w6Po7wWP/6dne1dXbIk94Z7AxtDMN2AbRwIJAQCJBAupFxyub+YS4BceuByCZDQLi0hAZNAArZxAGN6s8HYgHvBXVaXVtIWbd/5/SEkW7ZktZV2JZ/P8/DgnZ3dObOrnZ09877nFGIymVpiXrZsWUth7UWLFjFkyBDuuOMOdLqmUX46nY63336bIUOGcN5557F06VImT56M1dp/iiYfTbS+ipqEjYZIFTMzU1OL4lAuKwQj4A9q2C0KU/MnsKpkLf/ctpL5wydT//lyss++KtVhin4kZUmKjq6YJEN3Tzr66qCtaRp/fu99zp09krHDstpcp2rH21hHTseQ0XSS8HnJV+TYsxj2baXtdPviPpr+FGusVmOrfzfzx5+ZkvaueQUJHnmrisiEU8mqXEvh/MuPun4qToqk1WD/EA/6CO76msY96wkf2EasoQbVmYXekYlqdaGz2DFmFaIrGotqc6HaXCi6ph941dt3HDVBsbMyxNPvVaMoClfPycHZxyMoAMq8FdSFvIzLHdXxyv1cpsVNma+CfEfTezJpsJU/7RxKw9bPyZo5L8XR9Vx3f6RYrVaeeeYZpk6dyuTJk3nhhRe6PJLiWFXSUMbdb/4FnW4088bPavmBRyyG7sA3xCaelNoA01SONYsaax2r9q9lTvF0Tje9zR/+buUP/3laqkPrtw4tnB2NRrnoootaCmdff/31TJw4kQceeIBbb70Vv9/P+PHjueKKK9iyZQvvvvsuI0eO5IILLgCaLnw+/fTT/M///A+//e1veeyxx8jMzOT+++9P8V4mT6y+in0BJxlOHY40GEGoKAr5GQp7qxNMGKyiKAonFk/jwz2f8SF+Zm74mozvXIxqSV1bctG/pCxJ0dEVk2PBZ5vKicU1xg7NbPP+aEM1iWAAvavpdakK1LCnvoTZxTP6Msxj0vDMYj5pqGBPXQnDM/t+Pq5Rr+OEkTaW7zdzacRDqHQH5sLRfR6H6J+0eIzAji/wfbWSUOkOTHnDMeYPxTVrIXp3bksSorvqAzFe+LSWr/c1cupxTqYMsaQkmadpGl+Wb2Jk5hB0St8nSPpajjWTHbV7mDaoqYhspl1Plk3HZ59vYd4ASFJ090eKqqo8/PDD3H777YRCIYYOHTqgfoz0lk3eHXz43ovkhr9D9hDnwQQFoJZsR3NmgmlgXHXuDWOyh/H5ga/ZXl/C0DwbMxSNu579jEtOTv0Pxv5qwYIFLFiwoNWyp59+uuXfY8eO5Z///Ger+8eNG8f27W0XLx01ahR///vfkx9oGojUVVDR6Oak4d2bQtEbcl0Ke6qakhQAOkXllKGzeHf3p1TY7TjX/IusOT9McZSiv0hZkqKjKyYDXTyh8fwbWznj+OJ2T+4bd3+FMX8Yik5HJB7h471rOC57FEapT9DrdIpKsSWfNaVfM8iR1zL8tS+dMNzGo29Xcd7UEzGtXkr+RTf2eQyif0lEw3i/fJuGz5ah2lxYRkzFOXNBu3Ukuvz8CY0VGxr4x+d1TBli4edn5mIypK5JVIWvmlAsQp49fU7SepPL7CQQaSQQDWIzWACYMtzNB5udzB0gUz668yMFYMaMGSxZsqTX4xsIQtEQz6z7O197NvOjqRey+O9eZk49JBmRSKDu3kB8+OTUBdkP6BSVSfnHsebA12RnjGCyZxM+9xxe/LCGadPimAwDP3EqUsdXvZ9gbDr5zvSpmVHgVvhiV+u22KpO5bThs/k8/D4Zny3DOWMeBtvAnZopkidlZ5eHXjH57ne/y/z581uumGzcuDFVYfWZD78sQVV1jBncduV5TYsT3L0BU8EINE3j033ryDC7yLP3/5PQ/sKmWsi35bC2dEPHK/cCk0HHiSPtLCkrJLRvM1FPWUriEOlP0xL4NrxPyeO/oHH7Z7i/cxFZZ/0Y6/DJSUtQVDVE+e0/S/lgq48fn5LFmRNcKU1QAGys2sYQdyG6NjqNDEQ6RUe2LZPShoPHgvHFVvbFc9i75pMURib6i92efSxa+Tt8ET9nZ89GjbrwN8bJPaSWjFq6EwxmNMfA6IzTm2wGK+NyRvNB/R5i9ZWcNy0TVadw6xOf4g2krp25GNgaAnWEgnFUnQ6TITVF3tuS61Ko9WkEQlqr5QadnpnHnUa5zcp7S+4mnoinKELRn6T0zG7BggX861//4q233uKaa64Bmq6YTJw4sdV69913HxdeeGEqQuwVkWicv76xlbkzh7Q7iiJcvhud0YTekcnGym00hLyMyRkYbeb6k5FZQynzVVDhq+545V5w/Agbu6qjlOXNpu6TV1ISg0hv4cq9lP35N9R/9hruk75HxpxLMGYVJnUbX+4JcNNLBxiaY+KKk7PIdqR+NFdDyEttYx2Fjv5R5yZZcqyZ7Ksvbblt1OuYWKDyxup9aJp2lEeKY1k8EeeVzW9w94ePcPLg4zl/7NkYdHo2bG1gWJEFne7bc5F4HHXHOuJFA7/GS7Lk2bMZ5MynzKQnuOtLTjrOTl6mlf948AN27K9LdXhiAHpz3T8pVXPIsKdXgl7VKRRmKmwvSxxxn0GnJ2fq2Qw+sJfH3nuESDyagghFf5Jef93HiCUf7KQg28aQgvaHOzXuWINp0Ch2e/azrXonUwrGoR4Dc67TjV6nZ0z2SD7dv5ZYCjK/BlVhznEOXj5QTGD7F0TrKvo8BpGetHgUzwcvUv7CbZgHjyPr7J9gzClO7jY0WP5lHY+/U833Z2Yye5Q9JbUn2rK1eidFzoJjohbFoXJsmVQFaonED16lPf64HD71DqJhX9vzssWxrcJXxW/ffYAvStfz0+mXMCFvTMt967d6GTb44FQPde8WNLMNzdl2MW/RtuGZQ2hwuvFsXw2axtxZQzlr5hBuf3o1z7+5lWjsyB9tQnRHhb+aPXu+pM5QgCsNS8YMztaxcV/b58uqzY1uyDjG7t7OPR8+QmM02MfRif5EkhR9rLYhyNIPd3HOrKHtrhMP1BOp3EeVxcLnB75iasFEzHpz3wUpWsmzZ2M1mNlYsTUl25882EIoBhvcc6j76KWUxCDSS6TmAKV/+i+C+zaRfd61WEdNR0nylAdN03hzu8LKDV6umpOVktai7YnGo+z27KfYVZDqUPqcXmcgw+LmQMPBhGW2w0CRU+PNN1enMDKRbhJagjd3vM9v3v4fRmYO4UeTL8RlPnhxxNOgEQjGyc/5dk57MIC68ysSg49LUcT9l6IoDCueSFRR+KZ0FQktwYThWfziosls3lXD9b9/X0ZViKT461f/ZJolh0otE6clPS4aHGporsLOCo1gpO2RfYmR0xjh81MUjvLf7/4eT7C+bwMU/YYkKfrYk0s2csL4fDKd7Scd/Ns/J5iRy6elXzFt0AQcJlsfRijaclzOKLbV7KQ+2NDn21YUhbmTXPxjXy61OzYQqdrf5zGI9KBpGt6v3qbsLzdjHjqJjDk/RLUmvwBVQtN4+v0adtYoXHlKNi5rymost2l33X4yLe5jNnmbb89md92+VstOGp/NG7vNhH31qQlKpJUqfw13vP8Q7+7+hB9Pu5iZxdOOGAW1s0Rj5BBb03JNw7DhYxJ5Q9As0p2iO3SKimnQaArqq1i2dSUJLYHTZuLSuWM5adIg7njmM55/cyvxuIyqEN2zoWIru+r2MTShpzziIMOefkkKs0GhKEvhq93tjD42GImNmcGp+w4wKnMoN7/9P+w/ZAqjEM0kSdGHvthSwTf765gztf354vFwEO+ONaxN+JgxaDIuk1TATQdmvYmRmUP5dP9aEom+n/ddnGVkZL6ZN9QzqXnnz32+fZF6iXCQqqUPUb96KZln/QTb6Bm9MvVC0zSeeb+Gb8pDnD0mgcWYXl8TmqY1TfU4BkdRNMu1ZVHpryEUDbcsG5znwG2BN5a9m8LIRKoltAQrdnzAf628l0JHAVdOvZhs65FtzuNxjZ37YdSwposg6t7NKEEfiUKpfdUTSk4ReeEYgYZKXtq4nEg8iqIoTB6Vw8+/N5mvd1Tzm8c/pc4XSnWoop+JxWM8u+7vnD1iDmpdFRWNZjLTMEkBMK5Ix0db48TbOV9OFI5GQWNOIMapw07k9vcf4suyTX0cpUh36XX2OYD5g1Ee/cd6Fs4ZgUHf9hzqSCzCmk+ep8aoZ9LQGTKCIs0UOQeRSCTYWv1NSrZ/xngnX3rsbCsLEfhmbUpiEKkRqdrHgWcXoUXCZM/9KQZX77Tc1DSNv3xUy/byED+cnYkxDcs9VAVqicVjZFmO3c4Dep2BbFsWe+pLWi0/dbybV9ZHCTU2pigykUoVvipuf+9B3tn9CT+eejEnDZnRbuebrTt9WC3gdhrQ1Zaj7viS2MipcIzVeEk6VU+jM5tT4iZiWow/f/kSDWEvAE6bkSvOO45B2TZueOhD9pV7Uxys6E+WbH0Lp9nBmMwhBOvqCcZ0OC2pjqptBRkKVqPCZzvaGU2hKMTGn4Rh3TtMsuXz/QnzeXzNX3ht20opAC1aSJKijzzxynpGD3YzotDd5v2V/mqeXfM8g6rKcY+YgVmfPn2PRRNFURiXN5oNFVtoCPn6fPsWo45zJ7t4vmEWpW/8mcQhV1HFwOVd/z5lz/83tuNOxDVrAYq+9zpr/H21h6/3NfLDEzNT3l60PVurv6HIVZA2BTxTpdCRxzc1e1otG1KUTZ4lyssvv52iqEQqJBIJXtv2Nr95+38Y7CrkyqkXkW07cvTEoT5dV0dxHigNtejXvkN85FQwy4WRZAg4c1EP7OTkgskMcuTz1Bcvsr1mJwA6ReGM4wdzxvGDufmJT9m215PiaEV/UNJQxpvfvMe5o05D11DLAbWQHKeStt+DiqIwe4zKyvVxyuvant6kOTKID52A4cN/UOws4KppP+Dd3av442d/IhyT9r1CkhR94t0v9rNtr6fNYpmaprHmwNc899U/OCmkoGYNQmdz9X2QolNsBivDM4fw0d7PSST6fl7p2EEWBudaedk/A88HL/b59kXfSUTDVC1/lPqPXyLzzCuwDp/cq9tbtq6OT3f4uXR2ZtpN8WgWiAYp9VZS6MhPdSgpl2lxE4qFqA20/pFzxpRsXt8UobpKfvwcC/bVH+A379zHp/vXctX0H3Di4Ontjp5oVlYZoqo2zBCrF8PnbxAfOg7Nld1HEQ98cb0RLTMPdc8mJuSP4ZShM3l9x/v8c/Mb+CMBAKaMyuGCOSO589nP2LKnNsURi3QWS8R55LM/c9qw2bjMDnQ1B9inKyTbkZ4JimYZdoWTxqg89XaULQfaHlERHz4JJRhA3bwal9nJT6ZejC8S4OZ3/ocKX1UfRyzSTXqeiQ4ge8oaeOa1TVxy1hiMhtbDKP1hPy+sf5UvStdzXuEMsqrKiBeOTlGkorMGuwrR6XR8Xb45JdufO8nJnmgOKz/bR3BfamIQvau5e0fcW0vWOddgcOf16vbe2tDAm+sbuGx2FjZz+g733l61k0GOXAxq740m6S90io4iVwFbqne2Wp6bl83kTD+PPPeeDJsdwCKxCC+uX8rt7z/EhNwxXD75QjIt7k499oPPapiQH6Nw71riwyaiZQ3q3WCPQfFBI1H3bIZImFx7NgvGnAnAo5//hQ/2rCYUCzNmSAYXnT6Ku//0uXT+EO3624almPQmphZMAEBXuZ/d4SxyXOmdpAAYka/j9AkqS9fEeGxFhM0lcRKHfi/pdMQmz8Hw5TsongoMqoHvjp3LxLyx3PzO/azavy51wYuUkyRFL6r3hbnrT58zb/Yw8rNaD6PcUrWDJ754AbvJxjkj55Cx4ysSg4aDKU0nmIkWiqIwMXcM33j2Uuqt6PgBSWbU67hoZiavNU7hs5f+SrxR5rUOFJqmNU3v+MstWIZPwXXShegMvTv1673NXl5ZU8ePTsrCaU3fBEU0HmV77W4Gu4tSHUraKHIOYn9DGcHDes2fOmMY+2sivPfRhhRFJnrThoqt/OeKu/jGs4drZ1zGtEETOz3su6o6yM6d9UyqX0Vt/ki0jN5NgB6zzLam0RQ7vwJAr+qZXjiR80adRom3nIdXP8vKnR+Rna3jgjkjueOZz9hT1vfdw0R6W1u6no/3reH8MWcd/IyX72Gv30qBO/2TFACDMnVcPEvPyDwdb34V56HlUXZXHhyJrNlcxMYcj/HdFyEWQVEUji+czA8nns/zX7/C45//lUgimsI9EKkiSYpe0hiKcvvTq5k4IpvJow4WuQvGQryy+Q3e2vkhc4bOYkrBeAylO1GCfhIFw1MYsegKo2pkUt5YPtq7Bm/I3+fbz3EaWDgji6c9M9nw4qOQaKc4keg34kEfVa/+nvpP/kHmGVf0WveOQ72/xcuLqzxcdlIWGbb0ajN6uO01u8m0uLEZJJHbzKgaGOTIZVNV62K+RpuN+WM0nn79G8qrJYk5UHga63lo1TM89vlfOGP4SVw0fh4OU+fbhSr+ela8vI7JtnJ0k2YR7cJjRdfFi0aj7t+B4q9vWeYw2zl5yPHMG30aDWEfT65dzOq6dzjuOJXfPrmKsuq+P58Q6Wl/fSmPr3me7407D6vx2++9Rh8VDTpMBh02c/9IUgDodAojC3R893iVSUN0vPBRlBVfRVtGVSSKRqPZ3Bg+WdrymEHOfK6ZcSnesI9n97/ClqodKYpepIokKXpBMBzjjmc+I8tl5owZxS3Ld3r28sSavxJLxJk/5kxy7Fko3jrUrZ8THzEZOphHKtJLhsXNyMzBvLPr41atAPvKqHwzp07I4MFvRhL6SoZ292eNO9dx4KkbAMg+5xoMfXB1860NDfxtlYfLT84i25HeCYpoPMqmqu0MzxiS6lDSzrCMYnbW7D5iNMWQMaM43lXDnY+9QygcS1F0Ihki8ShLtqzg/624C71O5WcnXM7o7K5d1FB3bWDv316iNOJk3LTBYDD3UrSihdFMonA4+o2fwGHfz3aTnRmFk7ho3HkMcxdTr99NyPkNv3x4BS+sWcH++lL5Tj+GVQdq+d1Hj3L2yFNatdtWS79hszqaouz++XtBURSG5+m4cKaeraUaf/8k1tSmVFGITTgJXcU+1C2ftaxv0htZMPYspjjH8NCqZ3hizfP4wpLIO1ak95lpP9TgD3PHM5/hdpg4/5QRKIpCMBZi5c4P2Vm7j1nF0xjk/PYHSDiI4YsVxIcch2Z1pjZw0S3FrkKCsRBv7/qYuaNOwaga+3T704bZicXiPLElgXPZ80xYeHnaVnsWR4r566l9+0+ESrbimnU+pvzeH02laRovf+bhg60+Lj85i0x7+n8NbKzcTpbFLW2Z22DWmylw5vNl+WZOGjyjZbmiKJx84nFUv7udux9bye2/Oge92j9PbI9VCS3B6pJ1LF6/hBxbFldN+wGZVnfXniQcxPDJUqIVZfwteA6zxxnQ6+XvoK8k8oeh37Iade8W4sPGH3G/qqoMyShiSEYRJw2Os3pTOUtfC/DBpKfQmUJMzBvL5PxxTMobi9tyZFF1TdOIesqJ1paSCDeiM5jRZ+RhzClG0aXv9D3RvpqAhzvef4gTCqcwMW9sq/vUPZvZEJzIpOL+fZ5nMSqcN1Xl7Q1x/vZJjEtP1qPTG4hNOwPDZ6+jZeS2Gl1eaM7jxPEz+WDPKv7jjdv53vjzOHvEKejV9D9/Ed0n724S7S33cvefPmfs0EzOPmEwAJuqtrPimw8ochawYOyZBwu+RUIYP3uDRNYgtGyZY92fjcoczraanbz1zUecNeI7mHu5hsDhThjlIuCt455PLVzr+zOnXnalnJykOS0epWHtCuo/+SeW4VPInvczdPreT3CFogmeeKeKktoIPz4lG3saF8ls5g352V69kxMHT091KGlrRMZgPi1ZS3WglhxbVsty1WRlwUmDefnjUn73xNv85rqzMMgP1LSnaRrryjbw942vkdA0zht9BsMyijt+4GF0+7Zi/HgJsbwh/F09j4JMhcE58v73KUVHfMQU1M2rSLhz0DJy211VVVVOnlxEhsXH5i0ncNFCN/WU8d7uT3l23d/JsrqZnD+OyfnjGJHQE9rwAYFtn6PodOjdueiMZrRolJi3hnjIj3XENJxTzsA8tPM1S0Rq7as/wL0fPcYJhVOYWTy19Z3hILX7K/FEplOY0f/fT72qcNYklbfWx/nnZzEuOlGPzu4mOuVUjO8sJjz/2lafF7PexDmjTmNqwUTe2/0J/9r+Dt8dO5dTh52IsQvnT8FwjO37PDSGYhTnOSjKtcvnI01JkiIJEgmN1z/dw4tvbePc2UOZOjqXSn81b37zAd6wj+8MOYFc+8H2XkrAh2HNChKuLBKFo1IYuUgGRVEYmz2Sbzx7eH3He5wxYjZuc9+2kR2ZqzK0MJOnP4fN//s0V1/7fSzuzD6NQXRMS8Txb/6Yug//jmrPIPPMKzG42z9pTab9NWEeerOSHKeeK76TjUFN/y/lRCLBx/s+Z3jmYMx6GZ7eHoNqYGz2CD7a+zkLxp7ZakSXyZXFRSfGeHV1Cbc8+Aa3/uJsnLa+HfElOicWj7GqZB1Lt75FQkvwnSEnMCZ7RNdPoBt9GFYvR1e5n+jkU3i3LJcDdXHOn5H+ScmBSDPbiA+fhOGLt4jOXoBmdx91/fGjHehVhb+/WsflF4zi+AmTSSQSlHkr8O78gsBHy9kdDFKRmY3puKkMLhpPtj0H3SF/J/FGH6H9W6h+80kUVY/7pO9hH3eSXMBIU5qm8fG+z3nuq38wd+SpTMgbc8Q66va1fMRURg9S0enS//u7M/SqwtmTVN78Os6yNTG+e4IesguJjT0B4xvPEpl/zRHtkfPs2fxw0ncpaSjjk/1f8NKm5ZwydCZzhp7IEHchiqIQrtiNb+OHhA9sJxFuRLVnEC+czOtVxby3vopB2TYsJj2l1X7cDhNXzhvH9LFSRDjdpDRJsXz5cp544glisRhXXnkll112Wav7t27dyi233EIgEGDGjBnccccd6PXplVfZsqeWp5duJBbX+LfvTgRjkFc2v8FOzz4m5Y/lO0NOQKf79sqFpqGW7UHd/CnxQSPQ8oelNniRNIqiMDprOFaDhTd3vM+0QRMZlTW81UlDbxuWb+Oas4z8a3WCX9z7Jj85NY+T5p5+8O+vnxgIx4XDJcKNeNe/j3fNcnRmO87j52Hqo89/OJpg6do6VmzwcuYEJ5MHW/rFVQNN01hT+jUoCoNdMtqsI/n2XDyN9Xy05zNOH35yq8+9JSuPi+cYWPnpbn55z3L+80ezmDKuMIXRtq+7n/+ysjIWLVpEbW0tw4YN44EHHsBm6x/Tgyr91by3exXv7f6UbFsmpwydycjMoV3/nMZjqJtXY/j6feKFo4icfAEfbFNYtSPOgun6fpGYHKi0jDzisQiG1f8iOv1stMyjJ6fHjLBjtar85ZUSTpuVySm5VYz46j2IhoiPPIFwbhFKYy17fVWs3vgakXiUYRnFjMwcytCMYtwWJ7axM7GOOYFw+U4aVi+j7sO/k/Gd72MffzJKmg6TT/bn3+v18utf/5qSkhIyMzN5+OGHycnJaWfrqVEdqOVPX75MSUMZP5p8IXn2NuKLRmj8ag1rvedy4bj+dU7XEYNeYe5klTe/irPk8xjfnamHwlEQj2Fa/hThc3/c5uOKXYP4wcTz8QTr+bp8M/d+9CiFoQjneRpxBRsxDZ2IY9xsVJONNd808OcVGkPVL/jJaAsF009DtdhJaBrb9np49B/rOW5oBj/73mQcVknip4uUHaUqKyt56KGHePXVVzEajVxyySXMnDmTkSNHtqyzaNEi7r77bqZMmcLNN9/Myy+/zKWXXpqqkFvE4gnWbq1k2Ye7KK3xc9r0IlzZjazc/xYlDWWMzRnJBePmHpzaASieKvTbv0AJ+omPno5mz0jhHojeUuQswGV2srlqOztq9jBj0ETyHbl99qPQYTVwyenD2Lqrimc/rOGlT17kgpOL+c4ZszEaDR0/QYr15+PC4bRYlODejVjXL2Pf+w9jKhiBa9b5GHMG98n2Q9EE72/2smRtPUWZRv7ttJy0bjF6qMS3w93LvJUcXzi5XyRV0sHYnBF8XbGF9/es5pShJ7T6DjI6MjnvDDubvtrE/X/+hHFFVn78/ZMpKkif76KefP7vuOMOLr30UubNm8djjz3G448/zqJFi1K4N+3TNI1yfxVrD6xndcmXVAaqmZA7lksnf5dcW3bHT3C4WBR1xzr0X3+AZncTnTmPgNHNklUxSj1NCQp7P+oEMFBpOcXE9camWmRDxzUVTNe3/71cnKXjgrFePvi0js26BBdMnsyg0YWgKBhoqolV7GpKNvojAcp8VWyq2sHbuz5Gr9MzxF3IEHcRxa5BZJ9xJbHqvTR88TqeD17ENfN8nJNP66M975ze+Pw//PDDzJgxg6eeeoqlS5dyzz338PDDD6duJw9R4a/m9e3v8vG+NZxQOIVrpv+w3RoL+s/f5K+BWYwtUgfkZ9lkUDj32xoVf/0gyiUnGTAPPo6YwYTp9WfIKp4Mo0e12WAg0+LmjMzRzN29D6XsAAfyC/kiN4ea4H4aN++jqmIyPr+b8SMaKLCrNHpKKV/2EIHBY4gMOQ7VZuKc0118vcnLdfe9zWULhnHC+HysBgsWvTmtzz80TSOuJYglYk3FeRUFvaKi6tS0jruzUpakWLVqFbNmzcLtdgMwd+5cVqxYwS9/+UsASktLCYVCTJkyBYALL7yQP/7xjyn7MVLnDbF5Ty3rtlaxZksFboeR4mId1uI63q9Zi63BwoisoZxQOBlV1YOmofgb0FXtRz2wE8JB4oOGoY2cIl08BjiH0cbMwqmU+6v4tGQdep3KqMxhFLsH4eyDlm+KojBuZB5jhmezaesBXvm4hKfeW8rUfI2Zk4uZPG08mZnpWai1vx0XDpWIholU7SNcuoPGPesJ7d+KwZ2LZs4mZ/4vUC29/96Howm2loZYvdPPml0BBmcbueiEDAoz+8+VgfpgA5+VfEU0HmVG4eRWP7TF0ekUlSn549hSvZPXtr3NzKKpFDrzW05WdAYjk06YxojaKlZtKOP//f4dhmVqnD69iFknTsbpTO3Ig+5+/i+++GK++OILHnvssZblP/rRj9ImSRGORShpKGN33X62Ve9ka/VOYokYI7OGMat4GsMyilG7Ogw/EUdXuQ911wbU3RtIZOQRmzQHryWXNTvjfLI1wvA8HecfLyMo0omWkUdswsmoJdtQ33mRRP5QtOxBaBY7KApEQiheD7racpSGagzuXBZMHcwWXxZPr09QeCDKiaNVxgzSoT/kfbUbbYzOGsborGFomoY37KMyUMP2ml18sm8NjdEgufYcCoqLKIoPJrLlIzwf/Q1r5jAC9jiWYRPRGVPb3rk3Pv8ffPABixcvBmD+/PnceeedRKNRDIa+/17RNI0yXyXrK7awuuRLDjSUMaVgPD87/nLs7RWF1hIo697n1fUGPGom84cP3N8PzYmK1TsS/H55hPOP1zO+eBiaPYOste9gemUPsfGzSQwajmaxo4SD6KpKUHd+ha5yH/Gh44md+gPy9QayYhprdsZ5Z2ecwqwYJ4wIkACC8QT7MtyoVhN5lfuw79/G3sxsStwuQi4wagaeWhLgTys/x1j0DQlLAzaDFYfJhtvsxG12kmFxk2V1k2FxkWFu+r/L7EhKQiOhJQhEGqkPeakPeakLNlAfasDT2PT/hrAPb9hPINJIMBoiHI8AoCpNSYmmpEUcTdMw6Y1Y9GZsRisOkx2XyYHb4iTLkkGGxUWmxUWmxU2GxY0lTbs9pSxJUVVV1WrIVW5uLhs2bGj3/pycHCorKzv13M1tmyKRSIfrNoZiBMNRItEEjeEogcYIG/d52VH7NdX1jVTVhaj2hIlG49icGgZbkMyR1cTwEVEcZMedjMudiBVQgiHwrEcJeFF8daAoaI4MtMFj0ByZvTL032AwoPaT4fz9KVboebzFrgKKnAXUhRqobqxl15596HQKGWY3LrMDm8GGxWDCpBowqkZsJmu3t6XqVTjsz0tVVSZPGMLkCVBXW8c3+z28vWYviz+uwKjTyLPFyXUZyXaZcTttOJ0W7E4ntowsTAYVl8OEepR5j82fr2S2SUuX44KWiKPFY2jxOMSjaLEIWixCIhIiHm5EC/qIN3qJ++qIemuINVQR99ejd2ahz8jDkD8a96Qz0Jls1OzeTdxoIx7v2esUi2mEYwki8QTBiEZjOIE3GMfjj1HhjXKgNkJlQ4w8p56hOSauPSMHh6VnIyfa+rtKtsZoCF/IR33IR7mvEm/YR7FrEIMc+T0+Zva3Y86huhu7io7J+cdRE6xjU9V2NlZtZ5AzjyyLC5vRhk1vxZady1mn53KK38u23dV8uHYvf/+0GrchTJETCjJNZGfYcLvtOB02zFYLZosZq82MwWJDOUqivSfHhe5+/uvq6rDb7S3TvnrruBBPxIkmYi3/jyViRGIRwvEIoViYxmiIHd5v2LuhgrpgA7WNddQ01uGPBMi0uMmxZZFry+aScQvItLibfpQCJJrqr7QSi0I8ihKNNv1wDQdQAj4Uby1xTxWRWg8hkxuvYxD1gy+mOmSg5GuNWl+c4myFhSeYcHfwldKfPh8DKlaLDUZPR4uE0dVXoVQfQImEAQ1NNaCZrJA3BG3UVNCpqMDEDDiuCPZVa6zekeDNL+MUZCoUZChkO3Q4rWA1gVmvYDYpOExuHCY3IzObRiFE4tGmHzkhL99EA6xz24gYCyhsrKP+3efICEdotNoIu7LAnY1qz0Jvc2G0OjGZHRhMVgwmGwadHoNORadTURUdOkWHoigoKEf9gdaZ40JvfP4PfYxer8dut+PxeMjLO3r9ga4cF2LxGOF4hGg8RjgRIRQNE4wG8YUD1Ie81AQ9VPiqKfVWYNQbKHYOYkbuRL435hxUXVPMidghn/9ohEhtLXUllZTtqmSdvwCLy8z8sUaMnfzV1p8+L4dSdTBnnEp5vcan2+J8tCXO2EIX1uzTGeVMYN+7D9OmLzBEg2AwErdnEMwopnHobHxRldpS2FudYGd5ghynwoLjTWTaTEAbSaAiUII+xlSVMLa8Es2RhZadRbTYyje1brYdyMNpVxlSbMRtVdCboyTUEOFIkH3BA2yNfEMgGiQQaSQQbUTTNKxGCza9BYvRgllv/vb83oCq09N8Oh1PaMQSMWrqavjwo3UEYyEaI0Eao0EaoyEMqh670YbVYMZmsGIxWLAazQyy5THSNRSLwYxZb8KkGjGoenRtJLi1RIJoounvMhwN0xgLffv8QcrqKthZtQd/NEAgEsQX9qNTFJwmBw6THYfJhtNk/zYGK1aDuWWbRtXQtF29Eb2iYtDp0el0qDqVmBanMdjYckzojI6OCylLUiQSiVY7oWlaq9sd3X800WgUgB07dnQ5Lh0weYgTiDM6ywS01alhRJeft7fkZqXX3Lqj6U+xQvLizSOHsYzseMUeKBx29Dn7mYOymDkoi5kdPE8o7CVU4QWgrJPbjkajmM3JycKm63GhNQVwgskJpiJob3R2I9AYgYwidtZ1fKLTZSYdTpMOp9vAUHrnClhHf1fJYDNZsdmt5JOX9M9JfzvmHKqnseeSw7ii0Uddx2xyMyXLzZSjrOOPRfB7I+Bt6NL2u3Nc6O7nv63jQN8fF8CEwkTnaIjCUH0+OGn671Aa0ACRhsZOPqsesDf9Z8sD20goaN4e5Hz7X3dKcPenz8eAjbWga8fYQTlw4rijrxMDYoflvFDAacnH2c5XReDb/x865k5LQNgPYX8EiAD1XYq1LUc7LvTF51/TtE7V6UrGccGCioUMCpQMJjpHtD4WRCBeGSZOuJ1HO8kocpJRNIojG9d2rD99XtqSmwWTW/3UakoqJYrGEWxjfQOQCWS6YFQRnDW1jZXalANFR7Z+H5QPc9p74XU0HZa728hP/fa/rtZMj337X+jgghixoz7EhIIJM07MgLvp9LW9n7aHi377HwAJogSJEmw5VhxOr6hs3bK1E0/cxqbaOS6kLEmRn5/P2rVrW25XV1eTm5vb6v7q6uqW2zU1Na3uPxqbzcbo0aMxGAwDYk6OEOlI0zSi0WhSi9PJcUGI/q0nx4Xufv4zMzPx+XzE43FUVT3icUcjxwUhel9njgu98fnPzc2lpqaG/Px8YrEYgUCgZTrJ0chxQYje19FxIWVJitmzZ/PII4/g8XiwWCysXLmSu+66q+X+wsJCTCYT69atY/r06SxbtoxTTjmlU8+t0+lwOBy9FboQ4lvJGkHRTI4LQvR/3T0udPfzbzAYmDFjBm+88QYLFixg6dKlclwQIs10dFzojc//nDlzWLp0Kddddx1vvPEGM2bM6FQ9CjkuCNE3jnZcULRkTijvouXLl/Pkk08SjUa56KKLuOaaa7jmmmu4/vrrmThxItu2bePWW2/F7/czfvx47r33XozG/lMATgjRdXJcEOLY1d3Pf2lpKTfddBO1tbUUFBTw4IMP4nK5Ur07QoguSPbnv76+nptuuomSkhIcDgcPPPAARUXS0lqI/iClSQohhBBCCCGEEEKIZv2v9KsQQgghhBBCCCEGJElSCCGEEEIIIYQQIi1IkkIIIYQQQgghhBBpQZIUQgghhBBCCCGESAuSpBBCCCGEEEIIIURaOGaTFGVlZVx22WWcc845/OxnPyMQCByxTlVVFVdffTULFy7kggsuYPXq1QBEo1GmTZvGwoULW/6Lx+NJj3H58uWcd955nH322SxevPiI+7du3cqFF17I3LlzueWWW4jFYp3et76O9Z133mHhwoWcf/75/PznP6ehoQGAJUuWcPLJJ7e8jg899FDKY3300Uc57bTTWmJqXicVr2tH8W7durXV3+F3vvMd5s+fD6TmtRUHPfzwwzzyyCNt3ldaWsrUqVNb3purr766j6M7uqPFHolEWLRoEeeeey4XXHABu3bt6uPo2taZz2c6vu7dPc6ng+4eSwe6devWcdFFF7Fw4UKuvPJKSktLUx1Sh472mU+1jv7O0onf72f+/PkcOHAg1aEc1aOPPsq8efOYN28e999/f6rDEUnUnz4vnXH55Zczb968lu+R9evXpzqkbjn82LBq1SoWLFjA2Wef3S/Pzw/fn9/85jecffbZLe/T22+/3fONaMeof/u3f9P+9a9/aZqmaY8++qh2//33H7HO//t//0974YUXNE3TtF27dmmzZ8/WYrGYtnHjRu2qq67q1fgqKiq00047Taurq9MCgYC2YMEC7Ztvvmm1zrx587SvvvpK0zRN+81vfqMtXrxY07TO7Vtfxurz+bSTTjpJq6io0DRN0x5++GHtrrvu0jRN0+68805t+fLlvRpfV2LVNE279tprtS+//PKIx/b169rZeJs1NjZq8+bN07744gtN0/r+tRVNvF6v9pvf/EabNGmS9sc//rHNdVasWKH99re/7ePIOtaZ2J955pmW2NesWaNdfPHFfRliuzrz+Uy3170nx/lU68mxdKA77bTTtK1bt2qapmn/+Mc/tOuuuy7FEbWvM5/5VOrKd2Cqff3119r8+fO18ePHayUlJakOp12ffvqp9oMf/EALh8NaJBLRrrjiCm3lypWpDkskQX/6vHRGIpHQTj75ZC0ajaY6lB45/NgQDAa1OXPmaPv379ei0ah21VVXaR988EGqw+y0to518+fP1yorK5O6nWNyJEU0GuWLL75g7ty5AFx44YWsWLHiiPXOOuuslqvSQ4YMIRwO09jYyMaNG/F4PFx44YV8//vfZ82aNUmPcdWqVcyaNQu3243VamXu3LmtYiwtLSUUCjFlypRW+9DZfevLWKPRKLfddht5eXkAjBkzhvLycgA2btzIkiVLWLBgAb/+9a9bRlikKlaATZs28eSTT7JgwQLuvPNOwuFwSl7Xzsbb7Mknn+T4449nxowZQN+/tqLJu+++y9ChQ/nJT37S7jobN25kx44dLFy4kCuuuILt27f3YYTt60zsH3zwAeeffz4Axx9/PB6Ph7Kysr4KsU2d/Xym2+ve3eN8OujusXSgi0Qi/OpXv2Ls2LFA6++7dNSZz3wqdeU7MNVefvllbrvtNnJzc1MdylHl5ORw0003YTQaMRgMjBgxIuXHcJEc/enz0hm7d+8G4KqrruL888/nhRdeSHFE3XP4sWHDhg0MGTKE4uJi9Ho9CxYs6Ffv0+H7EwwGKSsr4+abb2bBggX88Y9/JJFI9Hg7x2SSoq6uDrvdjl6vB5oO2JWVlUesN3fuXFwuFwDPPvssxx13HA6HA0VROOOMM3jppZe4/fbbueGGG/B4PEmNsaqqipycnJbbubm5rWI8/P7mfejsvvVlrBkZGZx11lkAhEIhnnrqKc4888yW+H7+85/z2muvUVBQwJ133pnSWAOBAMcddxyLFi1iyZIleL1eHn/88ZS8rp2Jt5nP5+Pll1/ml7/8Zcuyvn5tRZPvfve7/Nu//Ruqqra7jslk4vzzz2fJkiVcffXV/OIXvyASifRhlG3rTOxtHXsqKir6Irx2dfbzmW6ve3eP8+mgu8fSgc5oNLJw4UIAEokEjz76aMv3XTrqzGc+lTr7HZgO7rnnnpaLBOls1KhRLYnPvXv38uabbzJnzpzUBiWSoj99XjrD6/Vy4okn8thjj/Hcc8/x97//nU8//TTVYXXZ4ceG/v4+Hb4/NTU1zJo1i9/97ne8/PLLrF27ln/+85893o6+x8+Q5t58803uvffeVsuGDBmCoiitlh1++1DPPfccL730UksG75JLLmm5b9y4cUyaNIkvv/wyqSciiUSiVUyaprW63d79h68HR9+3voi1mc/n4xe/+AVjx47lggsuAOCxxx5ruf+nP/1pSzIjVbHabDaefvrplttXXXUVN998M5deemmfv66dibfZa6+9xplnnklWVlbLsr5+bY81bR1bhg8fznPPPdfhY//93/+95d9z5szh97//Pbt37265+trbehL74X+Dmqah0/Vdvrsnx/RUv+6H6+5xPh1091h6ww039Gmcvelon6NIJMJNN91ELBbj2muvTVGEB/XkM59K6fwZ6O+++eYbrr32Wm688UaGDh2a6nBEEgy0z8vUqVOZOnVqy+2LLrqIDz/8kJNOOimFUfXcQHufiouLW/3muPzyy1m6dCnf//73e/S8Az5Jce6553Luuee2WhaNRpk5cybxeBxVVamurm53eN7999/Phx9+yOLFi8nPzwdg6dKlTJs2jcGDBwNNf1wGgyGpcefn57N27dqW24fHmJ+fT3V1dcvtmpoacnNzyczMxOfzdWrf+ipWOFiEdNasWdx8881AU9LilVde4cc//jHQ9Dr29tWcjmItKytj1apVXHTRRS0x6fX6lLyunYm32TvvvNPqRDgVr+2xpq1jS2c9//zzzJ8/n4yMDODg31lf6UnseXl5VFVVtRz/mo89faUnx/RUv+6H6+5xPh1091g6kLT3OQoEAvzsZz/D7XbzxBNPJP38oDt68plPpc5+B4quWbduHddffz0333wz8+bNS3U4IkkG2udl7dq1RKNRTjzxRGDgfI8c/t3e39+n7du3s3fv3pYpt8l6n47J6R4Gg4EZM2bwxhtvAE1Jh1NOOeWI9Z577jk+//xz/va3v7UkKKDpzfjTn/4ENM2X2rp1K9OnT09qjLNnz2b16tV4PB6CwSArV65sFWNhYSEmk4l169YBsGzZMk455ZRO71tfxhqPx7nuuus499xzueWWW1qyhVarlWeeeaalUu8LL7zQ61f7O4rVbDbzv//7v5SUlKBpGosXL+ass85KyevamXih6WCwefPmVtnmVLy2ovO++OKLlqFwa9asIZFIMHz48BRH1Tlz5sxh2bJlQNMJhMlkYtCgQSmNqbOfz3R73bt7nE8H3T2WHgsWLVrEkCFDePjhhzEajakOp1/rzHeg6Jry8nJ+8Ytf8MADD0iCYoAZaJ8Xn8/H/fffTzgcxu/3s2TJkgHxPTJ58mT27NnDvn37iMfj/Otf/+rX75Omafzud7+joaGBaDTKSy+9lJT3SdE0TUtCfP1OaWkpN910E7W1tRQUFPDggw/icrn429/+RlVVFddffz0nnHACdrsdp9PZ8rinnnoKm83GzTffzO7du1EUhVtuuYVZs2YlPcbly5fz5JNPEo1Gueiii7jmmmu45ppruP7665k4cSLbtm3j1ltvxe/3M378eO69916MRmO7+9abjhZrRUUF//7v/86YMWNa1p8wYQL33HMPa9eu5Z577iEUCjF06FDuv/9+HA5HymKdOHEib731Fo888khLq9k77rgjZa9rZ+Ktra3l/PPPP2KeXipeW3FQczu/5ikGzceWX/3qV1RWVnLTTTdRXV2NyWTinnvuSdmUg7YcLfZwOMx///d/s2nTJoxGI3fffTfjx49PZbhAx8f0dH3du3ucTwfdPZYOZFu2bOGCCy5g5MiRLVeScnNzW019SUeHf+bTSVt/Z+ns9NNP569//StFRUWpDqVNd999N6+88krLaDhomsb8wx/+MIVRiWTpb5+Xjjz88MO89dZbJBIJLr30Uq688spUh9Rthx4bVq9ezb333ks4HGbOnDn85je/6XdTPg7dn8WLF7N48WJisRhnn302v/71r3v8/MdskkIIIYQQQgghhBDp5Zic7iGEEEIIIYQQQoj0I0kKIYQQQgghhBBCpAVJUgghhBBCCCGEECItSJJCCCGEEEIIIYQQaUGSFEIIIYQQQgghhEgLkqQQQgghhBBCCCFEWpAkhRBCCCGEEEIIIdKCJCmEEEIIIYQQQgiRFiRJIYQQQgghhBBCiLQgSQohhBBCCCGEEEKkBUlSCCGEEEIIIYQQIi1IkkIIIYQQQgghhBBpQZIUQgghhBBCCCGESAuSpBBCCCGEEEIIIURakCSFEEIIIYQQQggh0oIkKYQQQgghhBBCCJEWJEkhhBBCCCGEEEKItCBJCiGEEEIIIYQQQqQFSVIIIYQQQgghhBAiLUiSQgghhBBCCCGEEGlBkhRCCCGEEEIIIYRIC5KkEEIIIYQQQgghRFqQJIUQIq0sX76c8847j7PPPpvFixcfcf/u3bu5/PLLOf/887n66qtpaGhIQZRCCCGEEEKI3qBomqalOohkSyQSBAIBDAYDiqKkOhwhBiRN04hGo9hsNnS65OQ7Kysr+eEPf8irr76K0Wjkkksu4cEHH2TkyJEt2zznnHO45ZZbOOWUU3jggQfQNI1FixZ1+NxyXBCi9/XGcaE3yXFBiN4nxwUhxOE6Oi7oUxBTrwsEAuzYsSPVYQhxTBg9ejQOhyMpz7Vq1SpmzZqF2+0GYO7cuaxYsYJf/vKXAGzevBmr1copp5wCwHXXXYfX6+3Uc8txQYi+k8zjQm+S44IQfUeOC0KIw7V3XEhpksLv93PJJZfwf//3fxQVFbW675133uGRRx5B0zSKioq49957cblcnXpeg8EANO200WgEYNOmTUyYMCG5O5BEEl/PpXuMAy2+SCTCjh07Wj5vyVBVVUVOTk7L7dzcXDZs2NBye//+/WRnZ3PzzTezdetWhg8fzm9/+9tOPXdbx4VkSOf3NV1jS9e4IH1jS9e4oHVsvXFc6E29dVxIhv7ynqcbia17ejM2OS70nnT+m+qKgbIfMHD2pbf3o6PjQsqSFOvXr+fWW29l7969R9zn9/u5/fbbeeWVV8jLy+MPf/gDjzzyCLfeemunnrt5aJbRaMRkMrUsP/Tf6Uji67l0j3EgxpfMoZCJRKLV82ma1up2LBZjzZo1vPDCC0ycOJGHH36Y++67j/vuu6/TcfbG1ZFNmzYl/TmTJV1jS9e4IH1jS9e44MjY+ssQ6fbOF9JFOsbUTGLrnmM5Njku9I7+EGNnDJT9gIGzL32xH+0dF1KWpHj55Ze57bbbuPHGG4+4LxqNctttt5GXlwfAmDFjWL58eV+HKIToY/n5+axdu7bldnV1Nbm5uS23c3JyGDJkCBMnTgRg/vz5XH/99V3axoQJE5J60F23bh3Tp09P2vMlU7rGlq5xQfrGlq5xQevYwuFwWidThBBCCJH+Ula95p577mHGjBlt3peRkcFZZ50FQCgU4qmnnuLMM8/sy/CEECkwe/ZsVq9ejcfjIRgMsnLlypb6EwBTp07F4/Gwbds2AN577z3Gjx+fqnCFEEIIIYQQSZbWhTN9Ph+/+MUvGDt2LBdccEGXH3/41Zx169YlK7ReIfH1XLrHKPEdXV5eHjfccANXXHEF0WiUiy66iEmTJnHNNddw/fXXM3HiRB577DFuvfVWgsEg+fn53H///SmNWQghhBBCiGNVNBrlwIEDhEKhNu83m80UFRV1qS5N2iYpqqqquPrqq5k1axY333xzt57j0GHd6TxUFiS+ZEj3GAdafL01rHvBggUsWLCg1bKnn3665d+TJ0/mn//8Z9K3K4QQQgghhOiaAwcO4HA4GDp06BE1JjRNo7a2lgMHDjBs2LBOP2daNiuOx+Ncd911nHvuudxyyy39ptCOEEIIIYQQQghxrAiFQmRlZbX5m11RFLKystodZdGetBpJ0Tyku6Kigi1bthCPx3nrrbeAplER99xzT4ojFEIIIYQQQgghRLOjDSrozoCDlCcp3nvvvZZ/Nw/pnjhxYkthPHHsSUTDRCp2ozqzMLhyO36AEEKkmYSWYLdnP0MzitHr1FSHI8QxK97oJVK5F3PxcSj6zs+HFmIgiYcCaOFG9K6cVIciRKekPEkhxKEitaVU/O0uFIOJuL8e23Enkn321XJiIYToV17csJTl297m9OEnce3xP0p1OEIck6J1FZT95RYUkwXVZKPgirvQ6Y2pDkuIPhUP+il9dhHxoI/8i27EMmxSqkMSokNpWZNCHJsSsQgVL/0O65hZZJ9zDTnn/zvR2lIqXr4XLR5NdXhCCNEpgUgjb+/6mJ/PvJJV+9dRH2xIdUhCHJOq//UY1rGzyD73WhSDifpPpOiyOPb41r+LITMf16zzqX3nL6kOR4hOkSSFSBsNa15H78jENnoGADqjGffJF6HFo1T/63E0TUtxhEII0bGvyjczxFVItjWTMdnD+ezAV6kOSYhjTujANqJ1ldjGzERRFBzTzsa7bgWJcDDVoQnRp3xfvYN11PGYi48jHqgnUnMg1SGJAehov9O68xtOkhQiLWjxKA2fL8c+6bRWyxWdinv2BYTLd9Hw2bIURSeEEJ33VfkmhmcOAWBYxmA2VGxNcURCHHsavngT25gTUHRNp7p6uxtj3jD8mz5McWRC9J2Yz0M8UM834Szue60cb85EAts+S3VYYoAxm83U1ta2mYxobkFqNpu79JySpBBpIbB9DXpXNgb3kYUyFb2RjFO+T/1nywju2ZCC6IQQovN21OxmsKsQgKEZxWyt2SkjwYToQ4lomMad6zAPmdBquWXoRHybPkpRVEL0vdC+zehzh/GHt6oJxzReqRhKcPfXqQ5LDDBFRUX4fD62bdvG1q1bW/23bds2fD4fRUVFXXpOKZwp0oJ/00dYhrZfyEe1uXHPvpDKpQ9R+JP/aTOZIYQQqeYPB6gP+8ixZQLgNNlRFR3VjR5ybVkpjk6IY0Nw93oMWYNQLfZWy02DRlK/eikxfz16uzs1wQnRh4IlW9mpG47NrGPhdDcPvRmmNnqAgngMRZWfgSI5DAYDw4YNS+pzykgKkXKJcJDgvk2Yi8ccdT1T/jDs406i4qXfyZxSIURa2tdQSoE9B51y8Ou10JHPbs++FEbVfyxfvpzzzjuPs88+m8WLFx9x/9tvv82CBQuYN28eN910E5FIBIAlS5Zw8skns3DhQhYuXMhDDz3U16GLNNK460tMBSOOWK6oekwFwwnu+brvgxIiBSKVe9joy2BMvhmjXsfQHBM7dSOIVO5NdWhCHJUkKUTKBfdtwphVhM5o6XBd65iZGDLyqHz1AbREvA+iE0KIzitpKCPb2nrERLYti/0NZSmKqP+orKzkoYce4sUXX2Tp0qW89NJL7Ny5s+X+xsZG7rzzTv785z/z+uuvEw6HWbJkCQCbNm3ipptuYtmyZSxbtowbbrghVbsh0kDjrq8wFYxs8z5T/nAad37ZxxEJ0fc0LUGkaj87GwwUZzW13h2abWR7vJhwxe4URyfE0UmSQqRc464vMeYP79S6iqLgPP48EqEANW8+KfO8hRBpZV/9AbJtGa2W5dgyKZEkRYdWrVrFrFmzcLvdWK1W5s6dy4oVK1rut1qtvPfee2RnZxMMBqmtrcXpdAKwceNGlixZwoIFC/j1r39NQ4O0fT1W6YINaNEw+namhRrzhxPcu0nOH8SAF6uvIm60cqAuxqAMAwCFmUb2heySpBBpTyYjiZQL7lmP+8QLOr2+olNxf+diPO/8hbpP/knmdy7uxeiEEKLzSr0VzCic3GpZjjWTz0rkym1HqqqqyMnJabmdm5vLhg2tiyUbDAY+/PBDbrzxRnJzczn55JMByMnJ4aqrrmLatGk8+OCD3Hnnnfz+97/v9LY3bdqUnJ1IsnXr1qU6hHala2zGuhLClky+2fFN2ytoGrZYlK8/fofEt7Vj+lK6vm6Q3rGJrovWlFJrGkyGTcWob7ounefUU9loIFC+l5wOHi9EKkmSQqRUzF9PPOBFn5HXpcfpDCYyTv0htW89izEzH/v47/RShEII0XkV/mqyrK1HUmRaM6gO1JLQEq1qVYjWEokEiqK03NY0rdXtZnPmzOHzzz/nwQcf5Pbbb+f3v/89jz32WMv9P/3pTznrrLO6tO0JEyZgMpm6H3wvWLduHdOnT091GG1K19g0TePp9z9nf3QWCyxFTBpsbXO9upqR5LlUHJP7dh/S9XWD3o0tHA6nbSJwIIt4yqhUcshxHPy5Z9DryLSr7K/wMaSdY6wQ6UDOlkRKhQ9sw5g7BKUbJ+6qxUHGnEuoWfGMDFsTQqRcKBYmEGnEZXK0Wm5UDVgNFjzB+tQE1k/k5+dTXV3dcru6uprc3IND9uvr6/nkk09abi9YsIDt27fj8/l47rnnWpZrmoaqqn0Ss0gvSz/YxepqN0U5Vh5eUcmO8lCb6xmzCwkd2NbH0Ynu6qigbrMbb7yRV1999YjlW7ZsYcKECW08YmCL1pZSEXeRZW99TTrXZaRSyyTu86QoMiE6JkkKkVLB/VswZhd2+/GGjHycM86h8pUHIBYhntDYsqeWfeXeJEYphBAdq/LXkGFxtXllKtPqpsJX3cajRLPZs2ezevVqPB4PwWCQlStXcsopp7Tcr2kaixYtoqysqb7HihUrmDZtGlarlWeeeYb169cD8MILL3R5JIXo/zzeEC+9s51zzF8zfUwWcye6eOb96jZrTxiyiwiVtjMdRKSVjgrqNq9z3XXX8dZbbx3x+GAwyF133UU0Gu2rkNNGtLaU0pCFbIeh1fJMm0q1mkek9kCKIhOiY5KkECkVLt2BIauoR89hGToRQ2YBiS0fceMjH/Hw37/i1v9bxbPLpDCWEKLvVAVqyTC72rwvw+ymwi9JiqPJy8vjhhtu4IorruC73/0u8+fPZ9KkSVxzzTVs3LiRjIwM7rrrLq699lrOP/989uzZw6JFi1BVlYcffpjbb7+dc889l82bN7No0aJU747oY69/uofxhWacVhVFp2d8kZlwTGP9/iNblhsy8ojVlZOIhlMQqeiKjgrqQtNIizPOOINzzz33iMffd999XHnllX0VblqJ1lVQ1aiSaW89sizLoaci7iZaU5qiyITomNSkECmjJeJEqvfjPvl7PX4u65Sz+ctzmykaqXHFeZMJR+I8tXQjowa7OWVqz5IgQgjRGVWBGlxmZ5v3ucx2qgO1fRxR/7NgwQIWLFjQatnTTz/d8u8zzzyTM88884jHzZgxo6UdqTj2xOMJ3vpsL98fFyURafoMKorC1CFW3t3kZcqQ1rUpFNWA3p1HpGIP5uKxqQhZdFJnCur+9Kc/BY4s/Pnuu+8SCoU455xzej/QNKPFY8T8DdQENDJsrX/uZdv1fBaxEKmRkRQifUmSQqSMp2QvfwvMpuKVGmaNsrNwmhudrnsFfJasD6GZLJwQWYNOmYDFpOe7p4zgT8s3c+LEQRj0MmhICNG7qvy1uMyONu9zmZ1UykgKIXrF5j21OKxG3KH9NJjsLcsnFFv441uVBCMJLMbW5wGGjHzCFbslSZHmOltQ93DV1dU88cQTrerVdFV/KfbZVlcWXWM9OtVBIpGguqKUQ1+yaByqgzpq92xjfxp1dBlI3WUGyr6kcj8kSSFSIhpLcOfiLThUB6eMdfDRNh+7K8PccF4eui5WGi6ri7Big5f5Y4zEK+sIV+zGlD+cIQVOslxmPv66lNNnFPfSngghRJOqQA1DM9o+1rjNTjZVbu/jiIQ4Nny6vozjhmYSLa8g4Rrcstxi1FGcZWT9/kZmjbS3eow+I49w+a6+DlV0UX5+PmvXrm25fXhB3fZ88MEH1NfXc9lll7UsW7hwIYsXL8Zutx/lkQelY9efw7XXlSW4bzNffl1EdtTI4MFHNhs1bCojHo2nTbeZdO5801UDZV96ez866vojl5dFSiz/eBdKLMzZw2MMzTFx6ewsKhuivLKmrsvP9ZePa5k9yo7NpGAZNhHfxg9b7psxNo8Vq/cmMXIhhGhbbWPdEZ09mrnMTmoapZK6EL3hiy2VjB3sIu6rJWFq/QN0ZJ6ZNTsDRzzGkDlIOoP1Ax0V1G3PxRdfzDvvvMOyZctYtmwZAMuWLet0gqK/izVUU6fLxG1tu9NRpt1AZUMULRHv48iE6BxJUog+F47G+ed733CyswSDIwsAvapwwfEZvLm+gd1VnS9ktflAkH01YU4YYQPAlD+cWH0V0foKAMYOzWR/hZfahiMLZwkhRDLVButxmto+AXYYbfjCAeJyQihEUpXXBAhH42SqAXQWB+ha/ygblW9i44HgEYW0De5cYnXlaPFYX4YruqijgrqibdH6Kupw4LS0naRwW/XU6bOJNcg0RJGeZLqH6HMff3WAwlw7Ll8JqmNay3KnReXMCU6eeKeK+y4pQu2gPoWmafz14xpOPc6BXm1aV9GpmApHE9i+BvfM89GrOsYOzWT1xnLmnzy8V/dLCHHsisVjBCKN2E22Nu9XdSp2o5W6UAPZ1sw+jk6Igevrb6oZWeQm0VCNas844n63VUWnQFldlMJMY8tyRW9EtbmJesow5gw+4nEifXRUULfZfffd1+5zbN9+bE23i3mrqY9nYW9nJIXLquKJZBOtq8SQkd/H0QnRMRlJIfrc22v2M2WoA1DQmVpX3J5UbEHVKby5vqHD51n9TYBITGNCkaXVcnPhKIJ7N5GIRQAYMziDzzdVJC1+IYQ4nCfUgMNkQ6e0/7XqMjuobez6lDYhRPs27qxmaIGTSH0FqtV9xP2KojA0x8SmA0eOqNS784hU7e+DKIXoW3FvLZ6oCael7e8kl0WlTnMQq6/s48iE6BxJUog+VecNsbfcy3BHCNVx5BUPRVE4d7KLV9bUUeNrfwhmJJbg+U9qOHOC84gqzzqzDb0rh9D+LQCMKHKzbZ+HSFSGWQshekfdUaZ6NHOY7JKkECLJtu7xMDjfQcxTgd7ubnOd4kwjW0vbSFK4cghX7e3dAIVIgZjPQ11YbXe6h9Oq4olZiTZU9XFkQnSOJClEn1qzpZLRxW7wVaNaXW2uk+3Qc/wIG0++W3XEHNJm//y8jgK3kaE5bVddNhUMp3H31wBYTHrys2xs3StF64QQvaMu2IDD2EGSwmjDE6zvm4CEOAbUNgQJRuLkuC1EG6pR20tSZBnYUXFkvSu9O5dI5d7eDVKIFIj7PdQFlXaTFC6LSl3UQKxORlKI9CRJCtGnPt9czqjBGUTrKlFt7nbXO3m0nRpfrM1pHzvKQ7yz2cvZE53tPt6QU0y05gDxkB+AIfkONu+u7XH8ovctX76c8847j7PPPpvFixcfcf+jjz7KaaedxsKFC1vaiQmRap5gPfbDpq8dzm60UdtY3zcBCXEM2L6vjiH5DrR4FC0cQGdpO1GYZdfTGE5QH2g9QtPgyiFaU9oXoQrRZxKxCLFwiIZQAoe5nZEUFpW6sEpMRlKINCWFM0WficcTbN5dy5nHDya0qxLLsMntrqvqFC48PoO/fFxDpk3PrFFNJx5ldREeeL2C+VPdONrJDgPoVAOG7GJCJVuxjTqeIQVO1m2r4tK5Sd8tkUSVlZU89NBDvPrqqxiNRi655BJmzpzJyJEjW9bZtGkTDz74IFOnTk1hpEK05gnWYzO2XTSzmcNkp8IvJ4RCJMuO/XUUZNuINdSgWt0ourbPCxRFoSjLwDcVYY4fcfDUV3VkEvfXkYiG0RnaHpkpRH8T93kImbMx6XUtheUPZzEqxBPgr5MpiCI9yUgK0Wd2lTbgspuwWwzEvB5UW9vTPZpl2vVccmIWf/qwhgdeL+eZ96u59eVS5hznYEyBucPtGXOKW+pSDMl3svNAPfFE29NHRHpYtWoVs2bNwu12Y7VamTt3LitWrGi1zqZNm3jyySdZsGABd955J+Fw51vWCtFbPI31ODqRpPAEOy4KLITonB376yjMsRNrqEK1H/2cIs9lYFdVqNUyRaeid2XLaAoxoMT9dfgNWe0WzYSmxJ3Lqqc2oKHFon0YnRCdk9Ikhd/vZ/78+Rw4cOCI+7Zu3cqFF17I3LlzueWWW4jFpI91f7dpVy1DC5wkQgEUQDF0nGgocBu49owccp0GNOAnc7KZMuToQ6qbGbILiVSXkIiGsJj0uGxG9ld4e7YToldVVVWRk5PTcjs3N5fKyoPzJQOBAMcddxyLFi1iyZIleL1eHn/88VSEKkQrdaEG7B0kKZwmO3VSk0KIpNA0jV2lDRTm2Ik21KCztD8FFGCQ28CuyiOT2qozh0hNSW+FKUSfi/nr8asu7O1M9WjmtKj4jFnEfDIdWqSflE33WL9+Pbfeeit79+5t8/5FixZx9913M2XKFG6++WZefvllLr300r4NUiTVpl01jChyEfM2Fbc6vCtHe8wGHdOHHf3kvy06vRG9O49w+S4sg8dTnOdg+746hg06+tUWkTqJRKLV34Wmaa1u22y2Vr3Rr7rqKm6++WZuuOGGTm9j06ZNyQn2EOvWrUv6cyZLusaWrnFB92KrqKukVsslUdP+yJ5oIoqnsaHb+z7QXjMheqKqLohBr8NhNeJpqEKfmX/U9QvcRt74uuGI7xW9M0uSFGJAifvr8Cp2bKajX4t2WHT4IpnEvLUYMo7++RGir6UsSfHyyy9z2223ceONNx5xX2lpKaFQiClTpgBw4YUX8sc//lGSFP2Ypmls2+fh9BnFxMr2oNqOfsUjWYzZhYRKtmEZPJ5B2XZ27K/jnBOH9sm2Rdfl5+ezdu3altvV1dXk5ua23C4rK2PVqlVcdNFFQNPflV7ftcPYhAkTMJmSN/d43bp1TJ8+PWnPl0zpGlu6xgXdj+2x/X9j/OhxRx1NoWkar1V/wPhJ4zF3YiRZMuLqC4fGFg6HeyURKMTh9pQ1MCi7qV5VzFuDqWjMUdd3WnQkNKhvjJNhO/i9oXdlE6nY06uxCtGXYv56vAlLh0kKm0nFG3US89b0UWRCdF7KkhT33HNPu/cdPuQ7Jyen1ZDvzjr8RCndr/QM5Pg8/hiJRJyKsr2Y9u2EhIanJPlXLkoOe04lomIu2U7V9u3EglE27Gpk3bpE0rfbWQP5PU6G2bNn88gjj+DxeLBYLKxcuZK77rqr5X6z2cz//u//MnPmTIqKili8eDFnnXVWCiMWAmKJOI3RIFaD5ajrKYqCw2inLuSloItJCiFEa7tLG8jLtKJpceL+elSr46jrK4pCgdvA3upw6ySFMwf/pk96O1wh+kzc78Ebz8FmO/p0D4dZR53PSswr0z1E+knL7h4dDfnurEOvmKbzVSgY+PF9+OUBhhfGGDN6DLUln2HMH4oxtziJETYlKIqLj3zO+srNDMtxMGx4Hu+uX8OkyVMx6Pu+HMtAe49744ppXl4eN9xwA1dccQXRaJSLLrqISZMmcc0113D99dczceJE7rzzTn72s58RjUaZNm0aP/nJT5IagxBd5Q35sBut6JSOjysOk426YAMFjtwO1xVCtG/ngXpGFLqI++tRTFYU1dDhY3KcevbVRJg69OCIJ70zi5i3Gi0e7dRzCJHu4v46GmKFFHY43UOlImaWNqQiLaVlkiI/P5/q6uqW2zU1Na2GfIv+Z/v+OgblNJ0UxHweLMMm9dm2DVmDCJftxDFhEJkuMweqfFKXIo0tWLCABQsWtFp2aB2KuXPnMneu9JIV6aM+5O2waGYzu9FGfUg6fAjRU/srfJw0aRAxb0mH3cKa5TkN7K5qXTdGUfWoNjfRukqM2UW9EaoQfSrur8cbVRndUZLCrFIfNRBrqD7qekKkQlq2IC0sLMRkMrUMPV+2bBmnnHJKiqMSPfFNST2FOXa0RIx4oxed5ejDMpPJkNmUpADIz7Kxp0w6fAghkqch7MVm7FzXIavBQn1IjkFC9EQoEsPjDZHlNBPzeVA7eU6R5zKwvzZyxHK9K5tobVmywxQiJeKBBnwRHTZTx9M9GsI6Yj5PH0UmROelVZLimmuuYePGjQA88MAD3HvvvZxzzjk0NjZyxRVXpDg60V2JhMa+ci+Dsm3EfHXozDYU3dEPnMmkd+cR9ZSSiEXIzbCyu1SuYgohkqch5MPWQT2KZjajlQZJUrRr+fLlnHfeeZx99tksXrz4iPvffvttFixYwLx587jpppuIRJp+cJaVlXHZZZdxzjnn8LOf/YxAINDXoYs+dKDST26GBVXVEWuo7rAeRbNsh55qb4xYXGu1XG/PJFpb2huhCtGnNE0jHvTiC2kdFs60m1V8YYj56vooOiE6L+VJivfee4+ioqbhdU8//TQTJ04EYOzYsfzzn/9kxYoV/P73v8doNKYyTNEDFbUBLCY9VrOh6YqHtW+nWugMxqYTkOoSCrKs7C6t79PtCyEGtoaQr8Oimc1sRiueoCRK21JZWclDDz3Eiy++yNKlS3nppZfYuXNny/2NjY3ceeed/PnPf+b1118nHA6zZMkSAO644w4uvfRSVqxYwYQJE3j88cdTtRuiD+yr8JKb0TR6KdZQ0+nzCr2q4LaplNW3Hk3R1Ib0QNLjFKKvJcKNaKoBfziBtYMkhV5VMOgV/KEYWizaRxEK0TkpT1KIgW9XaUNLPYq4r7bTwzKTSc3IJ1Sxh7xMGyWV/j7fvhBi4KoPebF2crqH3WiV6R7tWLVqFbNmzcLtdmO1Wpk7dy4rVqxoud9qtfLee++RnZ1NMBiktrYWp9NJNBrliy++aKlVc+GFF7Z6nBh49pZ7yXE3JQZjPg+6To6kAMh16ik5bMqH6swmKkkKMQDEAw2EjBmYDTpUXcdNBxxmlYAxm5hfpnyI9CJJCtHr9pQ1HLzi4a3t9LDMZDJm5BOp2I3LbiQUieFrPHJOqhBCdEdDyNvp6R52o02me7Tj8Pbjubm5R7QfNxgMfPjhh5x66qnU1dVx8sknU1dXh91uR69vqgXe3bblov/YX+kjJ8NKIhYhEQ6gM3eucC1Atl3P/pojR1JE6yqSHaYQfS7R2ECj3o3d3LmfeA6zis+QKW1IRdpJy+4eYmDZVdrA2CGZAMS8NZgGjezzGPTuHGLrK9HiUfKzbOyv8DF+eFafxyGEGHjqQ14Guws7tW5TTQpfL0fUP3W2/ficOXP4/PPPefDBB7n99tu58cYbj1ivq23Lk91OOVmaC4ino1TGtquklsHuCLs27cRiMHOgtHXRy5KSknYfq0QUtu5T2JF1yI8yTcMejfDl6o/ROjkqqrvkPRW9KR7w4tc5O5zq0cxu1uFTXMSleKZIM5KkEL1ub5mX06Y11R2J+TxYUzDdQ1EN6B1ZRKtLyM2wsq/CK0kKIURS+ML+zhfONFjwRQLt/gA/luXn57N27dqW29XV1a3aj9fX17Np0yZOPvlkoKld8Q033EBmZiY+n494PI6qqkc8rjMmTJiAyWRKzo4kybp165g+fXqqw2hTKmMLR+M0vlzG9EnHESndRsCVTU5xccv9JSUlFB9y+3BGZ5Rta+sZPWZwq+U1e/MYV5yLuWhMr8V+rL6n4XC4R4nA5cuX88QTTxCLxbjyyiu57LLL2lzvxhtvZNasWVx44YVA0z7de++9RKNR3G43v/vd7ygs7FxCub+KNzbQqFixGjuXpLCadPgiNpnuIdKOTPcQvSoQjBIIRslwmtESMRIhPzqLPSWxqO5cwpV7yHab2V8hVzKFEMnhDfs73YLUoBpQFR3BWKiXo+p/Zs+ezerVq/F4PASDQVauXNmq/bimaSxatIiysqar5itWrGDatGkYDAZmzJjBG2+8AcDSpUulbfkAVlbtJ8tlRlV1xH2eLrc0z7LrqfW30eHDmSUdPtJQRwV1m9e57rrreOutt1otX7RoEXfffTfLli1jwYIF3H333X0ZekrEAw346XySwmbS4U1YZLqHSDuSpBC9al+Fl7wsKzpFIR6o7/P2o4cyZOQRqdpHjtvK/gqZEy6E6DlN0/BFAlgNnR8ibjfa8MqUjyPk5eVxww03cMUVV/Dd736X+fPnM2nSpJb25BkZGdx1111ce+21nH/++ezZs4dFixYBcNttt/Hyyy9z3nnnsXbtWv7jP/4jtTsjes2BKv/BopneGtQuXvjQqwpuq0p5fetuBqo9g4inrJ1HiVTpqKAuNI20OOOMMzj33HNblkUiEX71q18xduxYAMaMGUN5eXmfxp4K8UA9Ac2E2dDJ6R4mFW/cLNM9RNqR6R6iV+2r8JGX2Vw004NqcaYsFr0rF//GD8hxGympkg4fQoieC8ZCqIoOg9r5r9OmDh8+8h1dm5JwLFiwYAELFixotezpp59u+feZZ57JmWeeecTjCgsLef7553s9PpF6B6p8ZLmaO3vUYi4a2+XnyHboKa2LUJx1sL293plFpHp/0uIUydFWQd0NGza0WuenP/0p0LqmhtFoZOHChUBTvZtHH320zWPHQBMPNOCLZ2C1dnIkhVlHQ1RPzCcjKUR6kSSF6FV7yxpatQlLRfvRZjqDEdXqwhqppTEUpTEUxWo2pCweIUT/15WpHs1sRisNYRnNJUR37K/0kZ/R1M0j5qvrUvvRZpl2PaWewzp8OLIIbPs8KTGK5OlsQd32RCIRbrrpJmKxGNdee22Xtp2uBXUPd2hyxl5VSpWvELdST0lJXYeP9TdCjR8aaytSXjg11dtPpoGyL6ncD0lSiF61r8LH8cflAXw7dzQ19Sia6V05xKpLyM2wc6DKz+jBGSmNRwjRv3WlaGYzi8GMNySjuYTojtIqPxOGZR9sP2rqejeObIeeA4clKVRnFrH6SjQtgaLIbOh00VFB3aMJBAL87Gc/w+1288QTT2AwdO3CVDoW1D3c4QVPS9Y9T0xvp6jATXG+ucPHZ4TivLuzGn00yLRp01JW0Dmdi8p21UDZl97ej44K6spRWPSqA5WHTveoRe3GFY9k0rtyiVTtI9ttobRafiQIIXrGG/Zj7eJICqvBgjcsNSmE6CpN0yivCZDtNhP316NaHN2qc9WUpGhdk0JnMKEYZW5+uumooO7RLFq0iCFDhvDwww9jNBo7fsAAkGj0448q2DrZgtRq0tEYSRBHhxZu7OXohOg8SVKIXuMNRAhH4zhtTV8McX/Xq3Anm96dS6S6hEyniQOV8iNBCNEzvrAfi77jq1WHshos1IdkuocQXVXvC6OqOqxmAzG/p1tTPQCy7Xoq6qNo2uEdPrKJegZ+ccX+pKOCuu3ZsmUL7777Ll9++SUXXHABCxcu5JprrunDyPuepmnEQz58YbB0sruHTlGwmnQETdnE/B1PDxGir8h0D9FrSip95GVZURQFTUsQDzR0+4QiWXTmpnmsmeYE+yVJIYToIW/Yh9XQ9SRFua+qlyISYuAqqwm01LmK96DOldmow6BXqAvEybQfPBXWOzKJesqxDJ2YlHhFcnRUULfZfffd1/LvcePGsX379l6PLZ1o0RCKoiMQTnS6BSmAw6ziN2QQ99dBdlEvRihE58lICtFrSip95LqbhkEngj4UgwmdmtpClYqioHfn4o7XU1YdSGksQoj+ryHkx9LFJEVT4UxJkgrRVaXVfrJcTZ+3mLe2R8W4cxx6yuoOq0thzyBSW9qjGIVIlXijj7jJQTyhYdR3vraEzaQjoHPKSAqRViRJIXrN/krfwZMJnyfl9Sia6Z3Z2IOlVNQGSCS0jh8ghBDtaBpJ0bXCmTapSSFEt5RW+8l0Np9X1PZoCmmmXU9Zfeu6FHpnFlFJUoh+KtHoJah3YTPpulQA02bS4cfWNJJCiDQhSQrRa/aVe8nN+LZopi/19Sia6V3ZKJ4SzCY9tQ2hVIcjhOjHvGE/VkMXC2carfjCUrhXiK46UOkjy9U83aMO1ers9nNl2o5sQ6o6soh6ynoUoxCpEg/6COodXZrqAWA16vBhJSZFY0UakSSF6DWl1X5yMppOJmK+OnTm1LYfbaZ3ZhHz1pDjNlNaLVczhRDd5wv7u1GTwow/0khCS/RSVEIMTOW1AbJdZjQtTjzo7VFb8yy7ntLDOnzoHRnEvLVoiXhPQxWiz8UbvTQqtk4XzWxmNenwJqSzjUgvkqQQvSIUjuENRMhwNJ28x3s4LDOZFNWAanPhNiUor5G6FEKI7mtKUnRtuodep8eoGmiMBnspKiEGHk3TqPQ0kukyE/c3oDNZu9V+tFmWQ095Q+skhaIaUC1OYg3VPQ1XiD6XCPpoVKxdTlLYzSoNMaNM9xBpRZIUoleUVvvJcVvQ6ZrmxMV9HlRreoykgKa6FE4CHKiWIddCiO7zRwJdTlJAU/FMr0z5EKLTPN4QJoOK2agn5u95nasMm0qdP0Ysfngb0ixpQyr6pXijj4Bm6nKSwmbS4Y2oxPz1vROYEN0gSQrRKw5U+cl2HzxxjwfqUC3dnzuabKozC0esltIq+ZEghOieeCJOMBbGbDB1+bE2gxVvSI4/QnRWeZLajzZTdQoZNj2Vh42mUB2ZUpdC9EvxoJeAZsZs6E6SQiHe2NBLkQnRdZKkEL3iQJWPLHfTVI9EJIgWj6MYuzZvuzfpndk4gmWU18p0DyFE9wQijZj1JnRK179KpcOHEF1TXhMgw3mwY1gy6lxlOfSU1R1Wl8KeQaRGOnyI/ife6CUQN3ZjJIWKN6ShRSMkouFeik6IrpEkhegV+yp85LiaO3vUoVpdXWqH1NtUmwtnpIbquiBxaUMqhOgGb8SPrYudPZpZDBaZ7iFEF5QdkqSI+2rR9aCzR7MMq0pZ/WEdPpzS4UP0T4lGH/64Houxa+fbNpMOfyiOzuIgHpDRFCI9SJJC9IrSqoOdPeL+uh5V4O4Nik7F7MzAZlSorZfidUKIrvOHA1iNXa9HAWAxmKUNqRBdUFrtJ6tlJEUdahLOKzLtbYykcEhNCtE/xYM+/FEVSxene+hVBaOqEDJlEA/U905wQnSRJClE0sUTGhW1gZaaFHG/J+2SFACqM5MMU1w6fAghusUb9mPVd28am9VgpiEk0z2E6KzymgCZTjOaphEP1KFLQp2rLLuesrrDRlLY3cQD9WixaDuPEiI9JYJ+AlGly9M9oKnDR6PeLR0+RNqQJIVIuuq6RmwWAyZDU2uwmLc2KVc8kk11ZOHET5nUpUgry5cv57zzzuPss89m8eLF7a73wQcfcPrpp/dhZEK05o8EMBu6m6Sw0BD2JjkiIQam5vajWS4ziVAARaeiMxh7/LyZdj0VDbFWyxSdit6eQbSuosfPL0RfSoSakhTWbiQpbGYdPp1DkhQibUiSQiTdgSo/ORkH52nHfJ606uzRTO/MxB6rkw4faaSyspKHHnqIF198kaVLl/LSSy+xc+fOI9arqanhf/7nf1IQoRAHecN+LN3o7AFNSQqpSSFE5/gam0Y1WEz6ptGZVldSntdp0dEYThCMJFotV6UNqehnErEIWiJOIKx1aySFzaTDj1XakIq0kdIkRUdXTDdv3sz3vvc9zj//fK699lq8Xrnq1B8cqPKT5Tp4dTHm96DrYT/z3qBaXTjj9ZRVSZGgdLFq1SpmzZqF2+3GarUyd+5cVqxYccR6t956K7/85S9TEKEQB/nCfizdnO5hM1olSSFEJzVNITWjKMq3Fz6SMzpTURSyHXrK6w/v8CFtSEX/kggGUEw2AuE45m4kKaxGHX7NKiMpRNpIWZKiM1dM77nnHq6//npee+01hg0bxrPPPpuiaEVXlFT6WupRaIkYiVAAndmW4qiOpOhUMhxGyqok+ZUuqqqqyMnJabmdm5tLZWVlq3X++te/Mm7cOCZPntzX4QnRStNIiu4VzrRK4cw2dXTx4p133mHhwoWcf/75/PznP6ehoSnJvGTJEk4++WQWLlzIwoULeeihh/o6dNGLmutRAMT8dUlpP9os065ScViSQnVkEqmVNqSi/0gEfcSMdhRFwaB2vZue1ajDlzATkySFSBP6VG340CumQMsV00OvjiYSCQKBpnoBwWAQlys5w/tE7yqp9HHixAIAYv56dGY7ik5NcVRty3ZZqNoZQdO0tGqReqxKJBKt3ofD35cdO3awcuVKnnvuOSoqujdfeNOmTT2O83Dr1q1L+nMmS7rGlq5xQedjK6kqZZAphx2+7V3eRjQRwxvydel1GAiv2dE0X7x49dVXMRqNXHLJJcycOZORI0cC4Pf7uf3223nllVfIy8vjD3/4A4888gi33normzZt4qabbmL+/Pk9jkOkn4raAG5709SqmLcW1Za8KaQZtiOLZ+qdWQS2fZO0bQjR2+IhH0HVgdXUvevPNpNKg88gIylE2khZkqKtK6YbNmxotc5NN93EVVddxe9+9zssFgsvv/xyX4cpuqG02k9Oc2cPXy1qEnqZ9xaLy41RF8fjDZHl6t4VUZE8+fn5rF27tuV2dXU1ubm5LbdXrFhBdXU13/ve94hGo1RVVXHppZfy4osvdnobEyZMwGTqXh2Btqxbt47p06cn7fmSKV1jS9e4oGuxveJ5h5FDRjDEXdTl7WiaxtLWCOdcAACqWElEQVSqd5kweSImfccFAPvLaxYOh7udCOzo4kU0GuW2224jLy8PgDFjxrB8+XIANm7cyN69e3nyyScZM2YMv/3tb+XCxgBSdshIirivFmN2YdKeO9Omp/TwJIUji6hHCmeK/iMR9BNU7d0qmglNhTMrPCrxuEyBFukhZUmKjq6YhkIhbrnlFp577jkmTZrEn//8Z/7rv/6Lp556qtPbOPxEKZ2vQsHAiC8YSRAMRSkv3UOFomCs3I4ag4aSkj6IEEq6uB1dMIZLCfDBqq8Ympu8H67tGQjvcW+aPXs2jzzyCB6PB4vFwsqVK7nrrrta7r/++uu5/vrrAThw4ABXXHFFlxIUQiSTP9KIpZvdPRRFwWaw4ov4MekzkxxZ/9TRxYuMjAzOOussoOkc4amnnuLyyy8HICcnh6uuuopp06bx4IMPcuedd/L73/++b3dA9JrymgDDCpoueMT99aiW5NW5ynKobCxpbLVMZ3WgRYIkwo3oTNZ2HilE+ogHfQQVKxZj90YF20w6vGGFuNYgo4tFWuhykqKkpIQPPvig5cTgoYce4uWXX0av13Pttdfyox/9qFPP09EV0x07dmAymZg0aRIAP/jBD/jDH/7QpVgPvWKazlehYODEt22fh/xsH2PHjAWgoWEnmjEfS3Fxb4dISUkJxV3cTiKej2vHepwZBUyfPqyXImsyUN7jZj25YtqevLw8brjhBq644gqi0SgXXXQRkyZN4pprruH6669n4sSJSd2eED0RiASw6rs/AstmtOIN+cm2SpICOr540czn8/GLX/yCsWPHcsEFFwDw2GOPtdz/05/+tCWZ0Vm9MQ0sGVKdOD6avoytpLKe+kEa232l2CMhSqs8oHjaX78LFyxCUSir07F92w4O/XOzmuxs+PQ94q6CnoR+BHlPu2758uU88cQTxGIxrrzySi677LI217vxxhuZNWsWF154IQBlZWUsWrSI2tpahg0bxgMPPIDNln410pIhEfTTiAWzofvTPbyhBIpVTyIUSFpxWiG6q0tJim3btnH55ZejaRqXX345K1eu5Mknn2y5/5577sHtdndqTmhHV0yHDBlCRUUFu3fvZvjw4bz77rvyA6UfKK3yk+0+pLOHtwZj7tDUBdQBnWrAZUxQUlIJs3o3SSE6Z8GCBSxYsKDVsqeffvqI9YqKinjvvff6KiwhWtE0jUA02O2RFNDUhtQXkeKZzTq6eAFNoy2uvvpqZs2axc033ww0JS1eeeUVfvzjHwNN742qdq0OUrKngSVDOie2+zK2SDRO6KUypk48jlhDJXV2J8WD278g0dULFpqmodtSQcGQYTgtB/9u6qo3UJDnwj4+eft5rL6nPbmo0VGtmuZ1brvtNlavXs2sWbNalt9xxx1ceumlzJs3j8cee4zHH3+cRYsW9Xh/0lE86CWIqdtJCrtJhzcYR81yEA/US5JCpFyX/pIfeeQRfD4fer0er9fLq6++iqIofOc732HSpElomsYLL7zQqec69Irpd7/7XebPn99yxXTjxo24XC7uvfde/uM//oMFCxbwyiuv8Lvf/a5bOyn6Tkmlr1Vth3RtP3qoDJue0vL2r8gIIcThGqNBDKoBtQdFga0GM96QJCmazZ49m9WrV+PxeAgGg6xcuZJTTjml5f54PM51113Hueeeyy233NIyysJqtfLMM8+wfv16AF544YUuj6QQ6auqrpEMhwmdTiHu86Baklvn6mhtSCM10uEj1TrTmnz58uWcccYZnHvuuS3LotEoX3zxBXPnzgXgwgsvbLOl+UCRaPQRSJgwG7o3TcNkUIjFNeLGpiSFEKnWpZEUGzduRFEU/vd//xebzcbnn38OwN13301lZSXf//732bFjR6efr6MrpnPmzGHOnDldCVGk2P5KHyOL3ABoWpx4wIua5kmKTIeJTZWhVIchhOhHfJEAtm62H21mkZEUrXQ03auiooItW7YQj8d56623gKYREPfccw8PP/wwt99+O6FQiKFDh3L//feneG9EslTUNpLp+rZoZpLbjzbLtOkpr4swpuDgyCjVmUW05kDStyW6pjOF9n/6058Craer1NXVYbfb0eubfurk5OQc0dJ8IIkHfQQS+Zi72d1DURTsZpWAwU08IMUzRep1KUnh8TRdbR42bBibNm0iGAxSXFxMXl4e4XAYaJpTKo5dpVV+TpzQNH8z7m9AZ7Sg6FJWn7VTsrPs1OxOdRRCiP7EHw5g7WmSQi8jKQ53tIsXEydOZNu2bW0+bsaMGSxZsqTX4xN9r7I2QIbj2/ajvtpeufDR1OHjsJEUziyCO9OzRsOxpLO1ag7X1npdLQaZrrVqDrdu3Trs1RVU+QZjtDRQUlLfrecxKDrK/MDWDYSD3Z/K2F3pWhOlOwbKvqRyP7r069HlcuHxeNi9ezeffvopACeeeCIAK1euBKCgILkFhkT/EYsnqKoLtkz3iPlqUW3p3wLO7nYT1xrwN0awWztuBSiEEL6Iv0f1KACsRgsNYW+SIhJiYCqrCeC2NycpPJgKRiR9G5kOPftrwq2W6Z1ZROsqpNNBinWmVk1bMjMz8fl8xONxVFXt9OMOlY61ag7XXEukZN3zaCYHg/JcFBd1L4GeecCD4sinIMNIVh/XTknnei1dNVD2pbf3o6NaNV0aEzR9+nQ0TePnP/85f/3rX1EUhfPOO4+lS5fywAMPoCgKZ555Zo+DFv1TeU0At8OEQd/0ZxXz1ia1TVhvUa0O3LpGSstqUx2KEKKf8IUDWPQ9TFIYLHjDMpJCiKMprwmQ4fx2uoevrlfOK7LsesoOq0mhM1pQ9EbiPqlZlUod1appj8FgYMaMGbzxxhsALF26tFOP668SwQCNUV23a1IAWI06/FiJ++uSGJkQ3dOlJMWvf/1rBg0aRCwWQ9M0zjrrLGbNmtUyV2zUqFEt88LEsedAlY/cjIPZ27ivFl0/SFIoio4MY5wDezvfskwIcWzzRwI9H0khSQohOlTpaSTLaUZLxIk3etH1QteBLLtKVUOMhKa1Wq53ZhP1lCV9e6LzOiq0fzS33XYbL7/8Mueddx5r167lP/7jP/om6BRIhAP4I2Axdq8mBYDVpMOXMEuSQqSFLk33GDx4MK+99hpr167FZDK1tPkZM2YMN9xwA5dddhl2u7SsOVaVVPrJdh/S2cNbgzGvf7T1dFkUysqqUx2GEKKf8IX9mPU9GwZsM1jwSZJCiHZpmkZlXSOZTjPxQAM6sw2lBx112mPU67CadNT6YuQ4DS3L9c4sorWlWIZOTPo2Red1tjX5fffd1+p2YWEhzz//fK/Glg60eBQtHqUxovU4SeGNGKRwpkgLXUpSPProoyiKwo9//GNsNlvL8uzsbM4991wefPBBcnJy+NnPfpb0QEX621fhJfvQ9qM+D5Zhk1IYUedl2A2UVvlSHYYQx7RgOEYsnsBuMaT9HHBvOAk1KQwWfOFAkiISYuDxBiLodQpmk56Qx9Or3cKy7U1tSA9NUqgOaUMq0l88GEBntBJoSGAxdD9JYTfpKPerxGOSpBCp160kxcUXX9wqSQEQDAZ58cUXcbvdkqQ4RpVU+hg3NAsALRH7dlhm+k/3AMh0Wdm5S65oCtHXwtE4yz7cxdtr9uFpCKGqOjRNY8KIbM46voipeTHi9eUkggFQmuaJqzY3encOemc2itL9E7Ke8Ib9FDrze/QcFoOZQLSRhJZAl6L9ECKdVXoaW4pxx32eXq1zlWlXKauLMmnwwWV6ZzbBvUefUiBEqiVCfjSjjUhMw9SDmhQ2kw5vWCEe8aJpiZR9vwoBHSQpdu7cyc9+9rMj2or+4Ac/QKc7+IeraRoNDU1Zt3g83gthinSXSGiUVQdaalLEfHWoZnuvDMvsDdlZDqo3hzteUQiRNCWVPu569nOy3WYuPHUkg3Ls6BQFb20NG9d8yV9e3MGzqFxUXM6UnAgAWjRMIuQn5qtDizRiyCrEmD8cc+EYLEPGY8jsmw5T/kjPC2eqOhWTaqQxEsRusnX8ACGOMRW1ATKc33b28Nb2Sj2KZhk2PQc8kVbL9K5sop7yXtumEMmQCPoJ6+2YDboejUK0m1Uaggl0ZjOJoB/V6kxilEJ0zVGTFCNHjmT69OksXboUONhfuLy8/QP28ccfn7zoRL9RUx/EbFIxm5r+pGLeGnT9oP1oM5fbTiDRQGNDPVaXO9XhCDHg7a/wcvMTn3LG8YOZMTYPaEp4+7etpnHD+xw3aBRTzhzNHq+Rf2xy8zlGrjkth0z7wa+tRDRMrL6KqKeMwLZVeD5YjM5owT7+ZBxTzsDgzuu1+H3hANYeTvcAsBmteCN+SVII0YaK2sZD2o/WYsgq7LVtZTv0rN/f2GqZanOTCDSQiIbRGdK7FaU4dsWDPhpVe4/qUcC3IymCcXQZDuL+eklSiJTqcLrHokWLiEajaJrGG2+8gaIonH766ZjNB0/OFEXBaDQycuRILr744l4NWKSn/ZU+8jKsLbfj3tp+dXBTdTpc+iile/YyasqUVIcjxIDWGE5w+9OfcfbMIUwd3dS3XtPi1K9+jWhNCc7j57UcP0ZZYViOiU92+Pj1iyX8+JRsvjPGjqIo6AwmjDnFGHOKv30OjainjNDeTZQ+uwjLsMlknnYZhoyeTctoS1N3j+71oj+UzWDBG/IzyNF7CRUh+quyGv8h7Uc9mIuP67VtZdn1lNe1bkOq6FRURyZRTzmmvKG9tm0heiIR8hPU2bAae1bLyWrSEQgn0Mx24oF6YHBHDxGi13SYpMjKyuL3v/89ANXVTd0P7r77bjIzM3s3MtGvlFT6yD6k/Wi0obpX5472Brc5Qen+cklSCNGLNE1j2WcexgzJPCRBodHw+XJi9ZU4ZpyDTjW0eoxeVTj1OCej88384zMPX+wKcO0ZOdjNraeTKYqCMasQY1Yh9kmnEtj2GaV/uhH3Sd/DNXNBUufXBiKNSRlJ0dSGVIr2CtGWitpGBuc50TSNeKC+V6d7uG0qvlCCcDSB6ZDig3pXDtHaUklSiLQVD/oJYcHcw5EUOkXBatQR1LuIBeqTE5wQ3dSlv+bnn3+e559/XhIU4gj7yr3kuA+OpIg1VKHa3akLqBvcFoWyCk+qwxBiQFu1oZyq+ihnzxzSsiyw/TMilfuwTz7tiATFoQZlGLn6tBx0CvznCyV8tbf9zhg6gwnHxDlknXMN/g0fUPHyfSQiwaTsQzQeJZaIY1SNPX4ui8EsbUiFaEelp5FMp4lE0IeiN6LT9/wz1x6dopBpVymvbz2aQu/IJFJd0mvbFaKnEkE/AUyYe9DZo5nDouLXOYn763semBA90KXuHgArVqzgjTfewOPxEIvF2lzn73//e48DE/3L/kofp00/OOS6abpH/6lJAZDhMFFWW5vqMIQYsCLROE8v28gJY+zo1aaTqYinHP+GD3Aef16nfoAYVIWzJ7kYlW/m/96tZsqQAFd+Jwurqe0ivXp7BplnXon3izcoe/42Ci79b9QeXo31RZrqUSSjTarFYMYrSQohjhCLJ6j3hXDbTcRqK1AtvT+FNNuhp6wuytCcg/UnVGc2kRpJUoj0FQ/6CGpWzD3o7NHMZtLhw0Y8UJeEyITovi4lKZ599lkeeOCBltuaph2xTrr3thfJp2kaJZW+ls4eiXDT1U3F2POh0H0py21hfVmqoxBi4Fr+8W4Ksm3kZzR9T2hanIZVr2IZNb3LNWyG5Zq49vQc3tns5YYXSrj61GyOH25r8ztIUfU4Zy7A9+VblP/tTgb96E50PTg++cMBbEZrxyt2gkz3EKJt1XVBnDYjqqoj5PWg64M6V1n2Izt8GFw5NO74ote3LUR3JYI+GjV3UkZS2Ew6fJqVmK8iCZEJ0X1dSlIsXry4JTExcuRIXC5Xq1ak4thUXR/EaFCxmpuGace81ag2V79LWGVlOKiJmElEQj36ASOEOFIoHOPVD3byk/njqf/2qmRg+xegUzEVjOzWc5oMOuZNcbO3OsxfP67lnU1erpqTQ777yCkjiqLgmDaXhs9eo3LpQ+Rf/F/drlHhiwSwJKEeBTQlKWob5YqVEIer9ATIcjW3Nff0aj2KZll2PSWHJSlUVzax+gq0RLzftFUXx5Z40EcgbsBsSU6SwpswfVs4U4jU6VKSora2FkVRuPXWW7nssst6KybRz+yv8JGfdUg9ivqmJEV/k2k30JCwEaouxVo4ItXhCDGgvPX5PobkO8jLtFJfA4lIEP/GD3BMPavHCc2hOSb+7fQcPtvp5zcvHeD08Q6+d3zGEVNAFEXBdcI8PO89T93H/yDzlB90a3u+sB+LvuedPaApSbE7vD8pzyXEQFJR24jb0TTtIu6tQe/O7fVtZjv0fLG7da0bnd6Izmwn1lDdK52ChOipRCiAP6aSlYSRFFaTijdqJB6u73lgQvRAl/6ajzuuqfXTrFmzeiUY0T/trzisaGZ9Fbp+Vo8CmjoI2PRxKksOpDoUIQaUeEJj2Ue7OHlyYcsy/5ZVGLKK0DuSU4hZ1SmcNNrBtafnUOqJcv1f97NifT2xeOtpiYqqx33S9/CuW0Fw/5ZubcsXTt5ICpvRKjUphGhDRW0At/3bJIXPg64POoZlO/RUNsRIJFofN/SuHCmeKdJWIuinMaZi6WELUgC7WUd9RCXe2JCEyITovi4lKW688UYMBgNPPfUUkUik4weIY8KeMm9LPQqAaH0VentGCiPqPrc5wYEDVakOQ4gB5YstFVhNeorzmn5kKLEIjTs+xzJsYtK35bCoLJjm5ocnZvHRNj//+cJ+1u4OtKqhpFqduE6YT/Vrf+xWxw9fxI9Zb+p4xU6wGiz4JUkhxBHKagJkOs1omkbMX9flujXdYdTrsJt1VPtaF4bXO7OJ1pb2+vaF6I5EOIA/oiSlJoXdpKMhBImQHy0RT0J0QnRPl6Z7LFmyhJEjR/Laa6/x7rvvUlRUhNl85NUk6e5xbNlb7uW4oUNbbscaqlHHHJ+6gHogw6qjvErmhwuRTK9/uocTxh0cJm2o2oEhq7hXf3Tkuw1cOjuTnZVhnvuohn99peenp+ZQlNXUQcRcNIZQyVY87y8me+5Pu/Tc3pA/eSMpDBZ8kfZbqQpxrKr0NDJlVA6JcABFp0NnSE5isCM5jqbimXmug7Vt9M5swlX7+mT7QnSJppEIB2lMgMWYhCSFWaU+mEBnsRJv9Pbbi46i/+tSkuIf//gHiqKgaRp+v59t27YdsU5/K5YoeiYeT1BW7Sc3s2m6RzwcQIvHUEy2FEfWPW6HiXJPONVhCDFgVNU18s3+Oi6Y01TnRUvEMFZsxzxjbq9vW1EURuWbGZFr4ovdAX77z1JOH+/g+zMzMRl0OKeeRfXrT+CYdBqmgs7XofFG/GRakjOlzaAa0DSNcCyCqRMtWAe65cuX88QTTxCLxbjyyiuPqH/1zjvv8Mgjj6BpGkVFRdx77724XC7KyspYtGgRtbW1DBs2jAceeACbrX9+D4kmVZ5GMhwm4t6KPp1C2tzhY/qwg38/encOwb0b+ywGITpLiYVRDEYC3gSWZIykMOtoaIyjZjmI++slSSFSpktJiuOP759Xx0XvKa8N4LQbMRmaCtTF6irROzL7bbIqy21l+wEdmqb1230QIp28s2Y/k0blYNA3HSOCezeRMNmTVouiM3Q6hZkj7YwvsrByo5f/t7iEX56dy9hBNhyTTqdmxdMM+vG9nf7M+8J+ipzJKaCnKMq3dSl85OizkvKc/VVlZSUPPfQQr776KkajkUsuuYSZM2cycmRT9xe/38/tt9/OK6+8Ql5eHn/4wx945JFHuPXWW7njjju49NJLmTdvHo899hiPP/44ixYtSvEeie4KBKNEYwlsFgPBilrUPqhH0SzLoWd/TespzXpXDlFPmZwbiLSjRIPojFYC4QTmJNSksBp1BCMJEkaHdPgQKdWlJMXzzz/fW3GIfmpPmZf8rINXG6L1lag2d+oC6qFsl4VP499mjx2SPRaiJzRN4721JVx46sEWo4Hta4i5C4/yqN5jN6tceHwG28qCPPB6BWdOcHLR8ZNp3LmWwJZPsI//Tqeexxf2YzUkp7sHgM3QVDwzx3ZsJylWrVrFrFmzcLvdAMydO5cVK1bwy1/+EoBoNMptt91GXl4eAGPGjGH58uVEo1G++OILHnvsMQAuvPBCfvSjH0mSoh+r9DSS5TKjKAoxb22fFM1slus0sOlA61o1OqMFxWAm5q3G4Or9LiNCdJYSDRE32NA0DYPa8ySFoig4zCp+vYtMSVKIFOr2uCBN09i/fz8bNmxIZjyin9lT1kBuxsHOHlFPBaq9/3X2aJZhU6mN24hIgSwhemz7/rqmYfm5dgAidRXEA/XE7dkpjWvsIAvXnJbD+n1B7l5WAePOxPPeC2ixaKce748EkpqksBoteMO+pD1ff1VVVUVOTk7L7dzcXCorK1tuZ2RkcNZZZwEQCoV46qmnOPPMM6mrq8Nut6PXN113ycnJafU40f9U1AbIcDbVfYl5a1CtfZekyHHoKa+LktBad/gwuHOJVkv3L5FelGiIkN6OxahL2igfh0WHT3EQD0iHD5E6XRpJAU0nEQ8//DBvvfUWjY2NKIrCli1bmDdvHv/5n//JGWec0RtxijS1u7SBMYMPjjiI1VVgGTEldQH1kMmgw6hqVJeWMmTohFSHI0S/9uG6A0wamd1y4hTcuQ7ToBH402C4tN2sculJmby32ctt76n8oqAI55dvgVrQ4WN9yU5SGCw0hCRJkUgkWp1ktze03ufz8Ytf/IKxY8dywQUXUFlZecR6XT1Z37RpU/eC7mXr1q1LdQjt6s3Y1m31oUUjbN+xHWtNOVHFRiLW+RagJSU9axdq0OlY8/U3ZB68BoMxoVL39WrCDVr7D+yEY/U97YmOatVs3bqVW265hUAgwIwZM7jjjjvQ6/UcOHCA//qv/8Lv9+N0OrnvvvsoLEzNSL7eokSDNOrsSSma2cxuVvFiI+bzJO05heiqLiUpysrKuOSSS6iurm7Vzq2kpIRdu3bxq1/9iqeffpoTTzwx6YGK9LS33Mup04oA0LR40xWPPpxr3hsyzQlKS6sZkupAjlEdnYy8/fbb/PGPfySRSDBx4kTuvPNOjEYpOJhuEgmNTzeUceW8cQBo8RjBPRtwnjAPaupTG9y3dIrCmRNcZNkb+f3mSVxb/x72Uy8+6mPiiTjhWCRpLUgBrAYzXmlDSn5+PmvXrm25XV1dTW5u66H1VVVVXH311cyaNYubb74ZgMzMTHw+H/F4HFVV23xcRyZMmIDJ1DfdIzpr3bp1TJ8+PdVhtKm3Y/tsz3qGD1YYPaqAii//QfawUZ3u7lFSUkJxcXGPtl9QUovBncHoQ4pnNuq8xANecnuw38fqexoOh7udCOyoVg3AokWLuPvuu5kyZQo333wzL7/8Mpdeeil/+MMfmDdvHpdeeinPP/88Dz30EA888ECydistKNEQQcWS1CSFzaTDm7AQ98vIIZE6XfqLfvDBB6mqqmLYsGHccsstLcsNBgNjx44lFovxf//3f0kPUqQnX2OEQDB6cEhmQy06kxVdP69Qn2FVKa3ypjqMY1LzyciLL77I0qVLeemll9i5c2fL/Y2Njdx55538+c9/5vXXXyccDrNkyZIURizas3WvB4tJ3zIdLFS6HdWe0acF8Dpr6lAr86Zl8kTtSVRsPnoFf38kgEVvTmrxPBlJ0WT27NmsXr0aj8dDMBhk5cqVnHLKKS33x+NxrrvuOs4991xuueWWlvfAYDAwY8YM3njjDQCWLl3a6nGi/6moCZDpMpMI9W370WbZDj0ltYcVz3TnEqne36dxiNa1aqxWa0utmmalpaWEQiGmTJkCNNWkab4/kUjg9zclgIPBIGZzclpHpxNdNEgj5qQnKRpiZimcKVKqSyMpPvnkExRF4e6776awsJB77rkHaLr68d///d9ceumlbN26tdPP19EV0927d3PbbbfR0NBATk4ODz74IC5X/613MNDsKWugINuG7tsTxVhdBaqz/xd+y3CYqDjs5ET0jY4K51mtVt577z0MBgPBYJDa2lqcTmcKIxbt+WR9KeOGHRxVFdz9NcaC4SmM6OjGFJhhsoW/fuVm1J5KRg/La3M9XziAzWht877ushqs1IckMZqXl8cNN9zAFVdcQTQa5aKLLmLSpElcc801XH/99VRUVLBlyxbi8ThvvfUW0DQC4p577uG2227jpptu4oknnqCgoIAHH3wwxXsjeqLCE+BUZxFxX3Wfth9tlus0sLe6dTtyvSv32w4fCRTl/7N33+FxlWfC/79nzvReNKMu27Jsy71jMMZA6GDHQOBdFjYk7yYkhM2yv+y7ZJNAKuyGZElgA4QsZDfZUBIIzZhiG2NMc5d7k6t6G2mk0fR6fn8IGwvLVrGkGUnP57p8XdacM+fcI82cOec+z3Pfg3dBKJxbT7VqTq+H9/nlp9ek+ad/+iduu+02nn32WRKJBC+++GK/9p2t08BOZ0hEaOlUkYqHqa0NDco2ExGJumickKZpWKcAZet0o4EYLa8lk6+jX0mKSKSr2rHZbD5j2cnh1slksk/b6m34lqIofOtb3+L+++9n6dKlPPLIIzz99NOiWncWOV7fvbNHvK1+VPRTdtoNHKtVixORDOjtZAS67pp+8MEHfPe738Xj8bBkyZLhDlPohaIobNrbyB3XlAOQikWINZ3AXrYgw5Gd25Txbi45cZifPrOZ//jnKyjIOfO7rnOQO3sAmLQGavyiWC/A8uXLWb58ebfHnnnmGQBmzpzJoUOHenxeYWGh6EA2SqTSCq0dURwWHYnqNmTj8Ceic61qtp/ofsGn0upR6QwkO1rQOAanBbHQu95q1Zxr+b/+67/ys5/9jCuvvJI1a9bw7W9/mzfeeKPPI+GycRrY5x3cuwrZPA6X3kJx8eAk9EJyhEN1ITTp2LBNT8rmqVD9NVpey1C/jt6mgfUrSTFp0iT279/Pr3/9a+66665Tj9fX1/PII48gSRJTpkzp07Z6u2O6f/9+jEbjqSGbd999N52d4k5TNjla207+55IUhuKpGYxocLgsOjanrSQ7W0WrsWHW18J5l156KVu2bOHXv/41P/nJT/jVr37V530MxZ2RbM6YZyK2Bl+cRCJBR2st/jYJTcsx1AYH9U2fdVw438J2Q6W4yEHs2GH+9Tcy37jWg1End1teGTxBKprgcGXloO2zLd5OU2dzr38r8T4TxgKfP4rJoEajlgkPc/vRk3KsGlr8SZIpBfVpbR3V9jzi3lqRpBhGvdWqycvLw+v1nvq5tbUVj8eDz+fj+PHjXHnllUDXdcaPf/xj2tvbcTpHdu2000nxCCFFg049eFMQLXqZjiikiaIkE0hqzaBtWxD6ql9Jirvvvptvf/vbfPDBB3zwwQenLh5OHgAAvvrVr/ZpW73dMa2pqSEnJ4cf/OAHHDx4kNLSUn74wx/2J9wzLkay/SRqpMW3/1gzF04xU3m4AxQwtzXgt0+AcOYuPgbjwieWhLaUif2bPiTlnjAIUX1mpP2Nh1tvJyMdHR3s27fv1OiJ5cuX853vfKdf+xjsOyPZnDHPVGwH3znI7MkayqeMB6C1eiPaCdPQ5XYVsxuMwnZDpba2lrl5DUSTCu/sivPgNxcjy5+NqPIdDeNRtTC5jwn5vnBHOtix++A5/1Yj5X12PgXyBAG6pnq4bF2jlVJ+L+oMJAQ0soTDJNPQHqck57PvC7Uth3hLNabJC4c9prFq8eLFPP744/h8PgwGA2vXruXBBx88tbywsBCdTnfqOLRy5UqWLl2Kw+FAp9Oxfft2FixYQEVFBSaTaVQlKABUiShBSY1eP3gjfy16mY5wCtllJhX2o7Zmtm24MDb1K0lx5ZVX8uCDD/Lwww8TCnUfBmez2bj33nu55ppr+rSt3u6YJpNJtm7dynPPPcfMmTN57LHHePjhh3n44Yf7HO/pFyPZfIIHIy++WCJF50tvc8HcqahlFQm/lza9keLxmZtzPpgXPuo9tTjNRkoG8W8y0v7GvRmKi5HeTkYUReG+++7jlVdeoaCggNWrVzNv3rxBjUE4f1v2N3HVBSUApCJBEm0NmKdfnOGo+s4wbgYL929kDdfyp3cO8n+XTT+1LBAPYlAPbvE1k8ZIID44c4kFYaRrbgtht3SduyUDbegKJ2ckjlybhqrWzycpPMSbqzISz1jVW62amTNn8sgjj/DAAw8QDAaZPn06d955J5Ik8cQTT/Dggw8SjUYxmUw8/vjjmX45g66rBalM/mAWztSrCERSoLeQDLSLJIWQEf1KUgDceuutXHfddWzatInq6mrUajVFRUVcdNFFmEym3jfwqd7umLrdbsaNG8fMmTMBWLZsGffee29/wxWGSFWDH4/TiPrTO4yJtjrUVncvzxo5nPo0dfWtlGQ6kDGmLycjDz74IN/85jeRJImysjJ++tOfZjps4TStHRG87WFK8rrmkUdrD6B1FyHJI2e4qMaRh1pvYPnkJP+zpZaZE3NYMLWrkKY/GsCgGdwkhUbWoCgQTcYGtbWpIIxEja0hHBYdipImFexAZcxMRyCPVc2JlhhLyz/bv8buIXxoc0biGcvOVasGoLy8nJdffvmM582aNYu//vWvQx5fJkmJKEGValC7e8gqCZNORVDtIEd0+BAypN9JCugqnHnVVVed1457u2M6d+5cfD4fhw4dory8nPXr1zN9+vRzbFEYTkfrujp7nBT31qK2jp4hdA6TinqvaAmYCb2djFx55ZXdppgJ2WXbwWYmj3Mgq7pGxkWq9qHNG9xpU8NBP24G0cqP+dLld/DYX3bw+L9cjsOixx/txG0a3C5GkiRh1hnpjAbQm0WSQhjbGlpD5OeYSEcCSGptxtqa59o07KoOd3tMbXOT9HvFPH0ha0jJGCFArxncQu9Wg0ynykYq2D6o2xWEvjpnkuL//b//B8CPf/xjrFbrqZ9705cidn25Y/rkk0/ywAMPEIlEyMvL45e//GWf9i8MvSO1Hd2KZia8tRgmZXfl/v5wWnQ0+RKZDkMQRpyt+5uYXNzV5ScVC5HwNWCeMfI6sGhyCgkfraBA1crcyR4ef3EXP/zaIjpjQcY7Br+ehlljxB8L4DGLYbXC2NbYFmJ6qYuk34tsylzb+TybhurWeLfpyJKsRrY4ibfVo8sdn7HYBAEgnYiBohBKKIM6kgLAYpDxK2aSIkkhZMg5kxRvvfUWkiTx3e9+F6vVeurnszl5IO9rpf3e7pjOnj27x+FbQuYdqW1n2cVdd0fTyRjJgG9UjaToakMqizakgtAPiWSK/cfbuPbCcQBEaw+hcRWOqKkeJ0mSCn3JNIL7P+YLl9/JU6/u4YMddQSGoAUpgElrxB8VHawEocUXxmnVk6zLTPvRkywGGVkFrYEkbutnxzC1PZd4S5VIUggZl46GUDQ6QsE0Bu3gdfcAsOhV+BUjqaBvULcrCH11ziRFQUFB10pqdbefhbEtlkjR1Boi79ORFAlvHWqLC0nV89tJURR84Q68YR9aWUORNQ9thoZv9lWOtasNaSrQjto6uEO7BWG02nesjVynEaO+64Q+Wr0frXvkVnbR5U8kcmwX6c4Wbrp0Is+s3IdhdhTTECQpjBoD/qiYYiaMbeFoglgihdmgodPfmpH2o6fLt2s44Y11S1Jo7J8Wz5yZubgEASAdCZKSdUTiaQyDPN3DpJPpSOpJBqoHdbuC0FfnTFKsX7/+nD8LY1NVg59c12dFM2PeGmRbz0Uzo4koH9dsxxdux2V0Ek/F2VK3k4uK5zPeUTScYfeLy6ymNWUm7msUSQpB6KPth5opK7YDkE5EiXtrME5ZlNmgzoOkktEXlxPa/zFFS25hZpmLLYcLMS42Dvq+jBoD/phIUghjW1NbGJfNgCRJJDu9aD3jMxpPrk3DseYYF0w0n3pMbc8lUrUng1EJQpdUNEBUZUSrllCpBnckhdUg09qmETUphIzpV9rtiSee4Mknnzyj/ShATU0NP/vZz3jqqacGLTghOx2u6aAg57Mv7HjzCTSO3DPWiyQivH34fbSymiXjFjLdM5m5+TOYVzCDLXU7OdpWNYxR949Oo0InK7Q0NGY6FEEYMSoOtjD50yRFrOEIansuKk12j5rqja5oCrH6w6TCfpbOySfld9HYOPj1aoxaIx0RMd1DGNsa20K4rF3dc5KdbRmtSQFQYNdytDnW7TGNI5d4i7i7LGReOhIkJJkwDnI9CgCrQUV7TCYlunsIGdLvJMUTTzzRY5IiEonwwgsv8L//+7+DFpyQnSqrfRR82tlDSSdJtNWjtnu6rZNMp1h37BM8phwmuyaikuRTy2w6KwsKZrKtfjetoeyd63ayDakgCL1raQ/jD8YocHclMCPVB9C6B7/A5HBTaXRoC8oIHtxEUopjyvPy2tom0mllUPdj1hppj/oHdZuCMNI0tYawW3QoqSSpSACVwdz7k4ZQgUPD8ZYYivLZ511ltEIqKQoKChmXigQISYZBL5oJXSMpfGFIhTq7vf8FYbicc7rH0aNH+da3vkU6ne72+N/8zd+gUn32gVAUBb+/6+QqlUoNQZhCNjlc28Etl08CINHWgGy0odJ0b5tXUb8XrUrNROe4Hrdh0pqY6i7jg6rN3Dj1GmSV3ON6meQ0qmhoEcOvBaEvdla2UFZsRyVJKKkksYaj2BffmOmwBoW+eCqdW1eRGj8Va06UdB3s2O9nwUz7oO3DpBGFMwWh3hvsKpoZaEM2WJAyfG5gMchoZIlmf5I8e1ddCkmSUDvziTdXoTY7MhqfMLalI0HCin7IkhTt4RQYNKQjQWRjZuvDCGPPOd/VZWVlzJ8/n/r6eurr60919mhsbDz1WH19PQ0NDadGVyxcuHDooxYyJhRJ4PNH8Ti75mRHG4+jtnef6tEc9FLVUcs0z+RzdoPJM3swagzsa64c0pgHymHR0tAez3QYgjAibD/YTFmhHYBY8wnUZjsq3eDXbsgE2WBG4yokfmwXBq2eRXPtrP6ghXgi3fuT+8isNYrCmcKY19gW6kpSZMFUj5MKHRqONke7PaaxecSUDyHjUpEAoSFKUug0KlQSxPROUZdCyIhzjqQAuO+++0gkEiiKwttvv40kSXzhC19Ar9efWkeSJLRaLWVlZdx6661DGrCQWUdq2yn0mJE/LdATbzqGrmDSqeXpdJpNNRVMySlF04e2g1NyJrKldgdTciai/9xojEzLcRjZX9vrR0QQxrxUKs3eo61cNq9reke05gCaEdzVoyf6kumEd67FMLkcj0tHrkvHx9t9fOGinEHZvklrpFMUzhTGuK7CmXqStZnv7HFSgUPLoYYoS6Z8Fo/akUes4WgGoxIESIc7CSs69IPcfvQkm1HGr3aSDLWjZXR9pwvZr9crMJfLxa9+9SsAvF4vAA899BBOp3NoIxOyUmVNO4WfzjlPJ+MkfA2Ypi/5bHnrcTSymlxTz90+Ps+oMZBrcbO35RALC2cPScwD5bLpaUmZSUUCyFlysiQI2ehIXQc2iw6rSYuipInWHcI675pMhzWo1FYXCZ2Bws6uKRnzZ9lYta6ZC+c6MOrPf0i6UWMgkoyRTKdQZ+H0N0EYaolkmo5AFLtZh9/vzZqRFMUuLe/t7z4VS+PMI3Roc4YiEoQuqUiAUDoP/SC3Hz3JZpDxS3ZSATGSQhh+/XpXP/vsszz77LPnTFBs3br1vIMSstehqs+SFPGWatSWHFTqrur9iVSC3c0HmOQqPec0j88rdZRwpPUE8WR2Ta1wmTV0pE1E25oyHYogZLUdh1pOTfVItNUjqbVZc4ExmHwOFyXNDaAo2CwaxhUa+XBL26BsW5IkzFojnWLKhzBGtbSHsVt0yLKKlN+LbMyOY0i+XUNjR4LoadO71DY3qUAr6Xj0HM8UhKGVigQJpTVDMt0DPq1LoZjFdA8hI/o1lj2VSvHEE0/w0Ucf0dnZ2a1IZiqVwu/3E4vFOHDgwKAHKmSeoigcrmnnC/O7hnTHGo6gduafWn6g5ShOgx2rrn+jDvRqPW6Tk8q248zMLR/UmM+HWpYwq5M01DQwqWhS708QhDFqx6EWFs8qACBSexDNKOjq0ROfRo1LJaNqqiKdP4E50628vqaJSy5wYjKc/9Qws9ZER9SP02g//2AFYYRpbA3htBpQFKWrJoU5O5IUalmiwK7hcGOUWSVddXYklYzankvcW4O+cHKGIxTGqnQkSDilxjNESQqLQcYXNpIMDE4yXhD6o1/v6qeffpqnnnqK/fv3U1NT0614ZlNTE5FIRLSpGcVa2iMA2MxdIyei9UfQ5HRdmMRTcQ54DzPRObA5a+PshRz0Hhn0tn7ny6lPU9cg2pAKwtmEIgmqmjoZn9+VnIzVHEI7yupRnBRNxgh5ilAf2QWKgsWkZkKxkY+2Dk4rZbPWSIfo8CGMUV1JCh3paBBJJaHS6Ht/0jApcmk5UB/p9pjGkUes8XiGIhKEriRFKCkP2UgKm1GmLa4jGRic7zhB6I9+vatXrVqFJElMnz6dq6++GkmSuO2227jjjjswGAxIksR//dd/DVWsQoZVVvsYl2dBkiSSAR9KPILa4gLgkPcYLqMDk8Y0oG1bdVa0spb6QONghnzenEYVdc1i+LUgnM2eo62My7OiUcskOr2k4xHUVlemwxoSkVQMxZELyRiq1noAZk21snlnO5Ho+bffNmmNdIjpHsIY1dAaxGHRk+xsRTZlV2vPcTla9td1T1KoHbnEGkXxTCFz0rEgkaSMYagKZxpkfDE1KZGkEDKgX0mKxsauC8iHHnqIH/zgByiKwoIFC/jhD3/ID3/4QxRF4cUXXxySQIXMO1jlO1WPIlp/GI2rEElSkUynOOA9ygT7+d09Lbbmc8ibXV/4TouW+vZEpsMQhKy1o7KZiUVdw7KjNQfRekqQpKG5q5NpkUQMrVpHKr8U+fAOAKxmNSUFBjbtOP+TOJPGSEfUf97bGclWrVrF9ddfz9VXX83zzz9/1vW++93v8uqrr576+bXXXmPJkiWsWLGCFStW8Oijjw5HuMIgavAGuzp7+L3IJmumw+mmxKXlhDferS6FxllAvEmMpBAyI52IoaQVwkkJw1AVzjTKtEUkkqImhZAB/XpXnyyGaDQaycvLw+PxsHPnTgDmz58PwO7duwc5RCFbHKryUZTbNaQ7WncITU4RAEfbqrDpzFh0AxtFcVKuxUNLyEc4Eel95WGS4zDSFBKV9gXhbHYc8lJWZAcgWntg1E71SKcV4qk4WlmDklOIFA6i8nUV1Z051cIn29tJnHYBMxAmrRFfpGMQoh2ZmpubefTRR3nhhRd4/fXXefHFFzl69OgZ69x9992sWbOm2+P79u3je9/7HitXrmTlypV85zvfGc7QhUHQ0BrCZTOQ9HtRGbIrSaFVqyh0aDhU/1mhTI09l4SvASUpbmQIwy8dCaLSG4kkwKgbusKZnVGFRLBTTOcXhl2/3tWFhYUA/Od//ifhcJg5c+bwzjvvsG3bNv73f/8XgHA4PPhRChmXSCnUNAcocptJJ2MkWmvROAtIpxX2tVQy3l503vtQSzK55hyO+2oGIeLB4XaYaEkYSSdimQ5FELJOU1uIaDxJntNIKuwn1elD7cjNdFhDIpaKoZXVqCQVSCpShRORKysAcNq05Di17Nh/fqMgLDoT7ZGxO5Ji48aNXHjhhdjtdoxGI9dccw2rV6/uts6qVau44ooruO6667o9vnfvXl577TWWL1/Ov/zLv+D3j93f40iUSqVp7YjitOpJdLQgm+2ZDukM43J07K757BxXUmtQW3OIe7PnnGW06m2E1cGDB7n55pu55ppruP/++0kmkwC0tLTwjW98gxtvvJHbbruNurq64Q59yKQiAdCaiCUZspEUskrq6vCBlXQ0NCT7EISz6de7+ktf+hKKovD222/T3t7O5Zdfjs/n48477+TPf/4zkiQxbdq0oYpVyKAmXxyPw4hWIxNrOIbalotKo6WuswG1SsauH5wq3AXmXI76qgZlW4PBZlITRUtnc0OmQxGErLOzsoWyIjuSJBGp6erqIalG58ijSCKKTtad+llxFyIFO1D5mgGYWW7hgy1tpM/jbpNZO7aTFC0tLbjd7lM/ezwempubu63z9a9/nVtvvfWM57rdbu655x7eeOMN8vPz+dnPfjbk8QqDx9sRwWLUoFGrPq1JkR2dPU5Xlqujoqr7jTi1I59Y47EMRTQ29GWE1X333cePfvQj1qxZg6IovPTSS0DXtLDLL7+c119/nRUrVvDII49k4iUMiXQkQFRtQSuDSjU0NSkAHCaZDo1b1KUQhl2/eqZ99atfJRgM8uqrr1JYWMjy5ct55ZVX2L59OwA2m43vfve7QxKokFl1bXGKT071qD2I1t01cuLkKIqTU4HOl8NgI56M0x7x4zBk/iRFkiSc2jg1VQ3YiyZkOhxByCrbD51ej2I/uvyyDEc0dCLJKDq19rMHJPnT0RTbSV90A3luHbIsUXksyNSy/rVhPqmrBenY7e6RTqe7fZcoitLn75Ynn3zy1P+//vWvc9VVV/Vr3/v27evX+sOloqIi0yGc1WDGdqwxikGTpvLgPszRMA3eDpA6Bry92traQYvtJEWBzpCKzTsP4+zqRIomoaJjz2aOKH0vFjxW/qaD5fQRVsCpEVbf/va3AaivrycajTJnzhwAbr75Zn7zm99w7bXXcujQIf7whz8AXTdaL7rooky8hCGRigSIyBb0mqHdj82gpj3pIBn0ofWMzumcQnbqc5IilUrR3t7ON7/5Tb71rW91PVmt5k9/+hNbtmwhFAoxf/58HI7sqsgsDI7qlhgzp3hQlBSx+sNYL1hGa8hHMBbCk5czaPuRJIlci5sT7TU4DDMHbbvnw6VPU9vQxqxMByIIWSSVSrPvWBtXLCghFQ2S8DVhnrE002ENma6RFNpujynuIqT6Y6h8zaSduUyfZOHDrb7zSlL4o4F+XZyPJnl5eaduegB4vV48Hk+vzwsEArzyyit89atfBbqSG7LcvxE9M2bMQKfT9b7iMKqoqDhV7yvbDHZsTZ+coDhfzQS3jg6rk5yS4gFvq7a2luLigT//XMpbO2jFwIVT7ADEnQY6d6xlah9/F2Ppb3q6WCw24ERgTyOs9uzZc9blbreb5uZmamtrKSgo4OGHH2b79u243W5++MMfDvxFZJl0OEBYZULfr9vN/Wc1qGjzW8VICmHY9frWrqio4LHHHmPHjh2k02lkWWbRokXcd999lJeXo1KpRlVmUuhZXVucG3ItxL21qPQmZIOZ/Sc2U2Iv7JqjPYjyzW72NB1ibv6MrDhRdxhV1Ig2pILQTWVNOw6LDotRS+jIbjQ5RUjyEJ8tZVAkGUWr/twtK0kmVViGXLmN9EXLKC0xsm13B83eGLnu/l/w6tRaVJJEJBHFqDUMUuQjx+LFi3n88cfx+XwYDAbWrl3Lgw8+2OvzjEYjv//975k7dy6zZ8/mueee6/dICiGz6lqCOK16kp0tyMbMj6I8myn5ejYfCbJsrh0AjTOPZHsj6WQclVp77icLA9LbCKuzLU8mkxw4cIB//Md/5Pvf/z5//etf+d73vsezzz7b531n6wgrAP2xQzQFkujUQzNy6KR0TKIupKamch/R5NB+NrNxJM9AjZbXksnXcc4zyu3bt/P3f//3JBKJU1Vdk8kkn3zyCbt27eIvf/kLkyZNGpZAhcxp80dIphScVj2dFQfR5BQRikeo72zikvEXDPr+LFoLCuALd+DKgl7pOTYd1Y1jdwi2IPSk4lALZcVdn89I1T60ueMzG9AQC8cjaOUzL0IUdxFSwzFUrQ2QU8CUiWY+qfBx87X5A9qPVWemPeofk0mK3NxcvvOd73DnnXeSSCS45ZZbmDVrFnfddRf33nsvM2f2PLpOlmUee+wxfvKTnxCNRhk/fjy//OUvhzl64XzUtwSYXuoi0d6CyphdnT1OV+rRsbKiA18widOsRpI1qG0e4s1V6AsnZzq8Uam3EVZ5eXl4vd5TP7e2tuLxeHC73ZhMJi6//HIAli1bxkMPPdSvfWfjCKuTWtt2cSSgRhdShmzkEIBijPF+WwqPJY57CEcBZfMoo/4aLa9lqF9HbyOsznkL/De/+Q3xeByAyy67jG984xtcdtllQFcXj8cff3zwIhWy1qGqdjy2rjuI0bpDaN0lHPIeId/iQaMa/MlwkiSRa86hqmPoMsP94XYYaAiP3jvEgjAQFQebKSuydU31aKtHm1OY6ZCGVDgROWO6B/Bpp49JyIe2gaIwtczM7oOdRGOpAe3HPMY7fCxfvpw333yTNWvWcNdddwHwzDPPnJGgePjhh7n55ptP/bxgwQJee+013nnnHZ566iksloFNuREyo/Fk+9GOFtRZ2NnjJLUsMbVQz0eVn42u1LgKiDUcyWBUo9vixYvZtGkTPp+PSCTC2rVrWbr0s6mFhYWF6HS6U3d8V65cydKlSykpKSEvL48PPvgAgPfff5/p06dn5DUMhVQ4QEjRox3i01OnSY03oibZ2Ta0OxKEzzlnkqKyshJJkrj33nv53e9+xz//8z/zu9/9jnvuuQdFUbrNCRNGr4NVPnKsapJ+L0oqgWKycbjtBCX2obsoyTPncKKjLiv6MrtdVnwJA8mE6IUuCAD+YIz61iDj8qxEqg+gdRcjyUNcvSvDwokIenXPd9SUnAKkeBRVcy1Gg0xRvp6KfQNLNFjGeIcPYexJptK0+iO4bJ+2HzXZMx3SOc0sNvD+/sCp8xONM59oXWWGoxq9Th9hdeONN7Js2bJTI6z27t0LwCOPPMLPf/5zrr32WsLhMHfeeScAjz/+OL///e9ZtmwZf/rTn/j3f//3TL6UQZUOdxJKadENcZLCpFORSEsE2zuGdkeC8DnnfGuHQl09ca+++upuj1977bX89re/pb29fegiE7LGwSof413qrlEUOcUcb6/Grrdi0hiHbJ8WrYV0OkVHtDPjXT60Wg1mOU59TQPjJo7LaCyCkA12HvYysdCOWlYRqdqNvnBKpkMacuFEFO1ZkhRIKlJFk1FXbiWeW0z5RDObdrSzeJ6j33V1TFoT7dGO8w9YEEaIFl8Ym1mHSkmixEKoDOZMh3ROJS4tybTCoYYoUwsNaFxFhA5tyXRYo9ry5ctZvnx5t8eeeeaZU/8vLy/n5ZdfPuN5paWl/apBMZKkIgECSRm9emCj9vpKkiScJpkmfwIxwV8YTuccSZFMJgEwmUzdHrdau+YLnpwKIoxeiWSaqkY/OVY10dqDqHOK2N98mBLb0A7tliQJj9lNdZZM+XBq49RUN2Q6DEHICtsONFFWZCMZaifl96JxFWQ6pCGlKArRZBT9OQrjKY5cAOSGY+R7dKRSCtX1kX7vy6I10RoWNwCEsaPeG8RtN5D0e5GNdiRV/zqzDDdJkpg/wcibOzsAUNvcpEIdpCKiwLYwfNKRIIGEjF499COOXRYNzRE1Sio55PsShJP61JZBpeq+WjZ0XBCGx4kGPzl2A1olTtLfSqusAgmcBvuQ7zvX5KKqo37I99MXTgPU1Iv2S8Nh1apVXH/99Vx99dU8//zzZyxft24dK1as4Itf/CL33HMPfr8YGj+c0mmFnZUtTC5xEDm+B61nQtZfVJyvWDKOSpKRpXO8TkkiVTwF+dA2pHSaKaUmNu3o/zHDojPjC3cMPFhBGGHqvZ929vB7kc3Z29njdHPGGTlYH6XeF0dSqdDkFBGrF3UphOGTigQIxKUhn+4BYDepaZVcpIIigS4Mnz69te+++2602s/uIJ0+guK22247Y/2//OUvfdr5qlWreOqpp0gmk3zlK1/hjjvu6HG9DRs28LOf/Yz169f3abvC4KmsbqfIbUHdcRiNq4BtrYcZby8alkSVTW8lkogQiAWx6DI7/NNlUlHdEs5oDGNBc3Mzjz76KK+++iparZbbbruNRYsWUVZWBkAwGOQnP/kJr7zyCrm5ufznf/4njz/+OA888ECGIx87jtS2YzJosJt1tBzfhWnKokyHNOTCiQiGs031OI1izUHRGZFrDjFpQjkvvdlIOJrCqO97EseiM+GLdJxHtIIwstQ2B3HZDCTajyCbRkaSQqtWceEkEy9sbOO+ZflonAVE6w9jLJuX6dCEMUBJJVGSMQJJ0A9DOSinWaYJJ8nONtQ299DvUBDo40iKAwcOsGvXrlP/Dhw4AHQNgT398V27drF79+4+7fjkxcgLL7zA66+/zosvvsjRo0fPWK+1tZVf/OIX/XhJwmA6UNVGca4ZdXsdCauD9mgneebhOUCpJBUek5uajsxPs3Db9dR3DO28PwE2btzIhRdeiN1ux2g0cs0117B69epTyxOJBD/+8Y/Jze0aWj9lyhQaGxszFe6YtPVAM1NKHCTa6iCVQm339P6kES6cCKPX9K0NXbq4HPnIDvSqNMX5Bnbu6+jXviw6M+0iSSGMIfUtQXLsBpIdTchZ0Ha8ry6YaOZoU4y9tWG0OUVE6w5lOiRhjEhFAqh0JoLRFPphGEnhMqtpSZpJBkSHD2H4nPOtvXDhwiHb8ekXI8Cpi5Fvf/vb3dZ74IEH+Pa3v82vfvWrIYtFOLvD1e3Mn+wiuaOJQw4DJbZCVOca8jzI3CYn1f56pudmtv+4x2mieV8YRVHEdKch1NLSgtv9WRLM4/F06yLkcDi46qqrAIhGozz99NN8+ctfHvY4x7Kt+5u46oISwkfeR1cwcUx8HkKJCDq5b0kKxWRFsbqQj+9hcul0tu7uYPF8Z59/T1atGX8sQFpJo5L6dB9BEEa0+tYgOXY9Mb8XQ+mcTIfTZxpZ4trZNp5a5+XhmwuINa5EUdJI4nMrDLF0OAA6I6FYGt0wnJLnWNS0xPQk/K1DvzNB+NQ5kxRDWRG3t4sRgD/96U9MmzaN2bNnD1kcwtn5gzEC4QS2uJcWrYGqkJdLci4Y1hhcRgd7mw8RTcT6fCdzKJisVtR00toRwe0Yuq4mY106ne52MXe2pFAgEOAf/uEfKC8v56abburXPvbt23fecX7eyf7s2WgwY+sMp2hqDRBtryFUtZfo+AtRagdW3LZ2gM8bDp+PrTHUTDKdoKWluU/Plw0u3Mf2Ik2xEQhq2bS1khx735M5amQ+3roRk9rQ7fGx8j4Txo5wNEE4msCiTRONRbK+s8fnTc7Xc7wlxm/eD/J1rYlEax1ad0mmwxJGuVSkk5jGhk4toRqGnJhRqwJJwudtZeSMdRJGumEYJNSz3i5GDh8+zNq1a/njH/9IU1PTgPbx+YuRbD+Jyrb4DtdHcJolmvZvxadR41BbaG8b/uKRJpWRvVX7ydP3Ps1kKC98nHKY99/fyMRxAz9EZ9vf+PMyHV9eXh7bt28/9bPX68Xj6T6doKWlha997WtceOGF/OAHP+j3PmbMmIFON3gJr4qKCubPnz9o2xtMgx3b2xtPMLU0SYmmg0hOITmlZQPaTm1tLcXFxYMW12DqKbYTVQ24NE481tw+b0dKdFISbmHqpOk0d0gsXpTf5+c6AxUUTSqh1PnZxc5IeZ/FYrEhSQQKo1NXZw8jaX8rssUxIkchXDXTyl+3tPPfkcX8U9Uh3CJJIQyxVDhASGXBpJeBoe+4IUkSOUaoawkyccj3JghdMpak6O1iZPXq1Xi9Xr70pS+RSCRoaWnh9ttv54UXXujzPk6/GMnmEzzIzvgONB9k8ngD+sbNHJdjzCyYh16tH/Y4Ep1p/NEAC3u5qBnqCx/XQR+SyjDgv1M2/o1P19/4huJiZPHixTz++OP4fD4MBgNr167lwQcfPLU8lUpx9913c91113HPPfcM6r6F3m3c08jU8Q5CB9dgnDh2CsQF42Gchv4lJ1OFZah3f8jkBdN4/aMAy67IRaPu2wWYVWfGF2mnFHGxI4xuJ+tRJDqaUJvsmQ5nQGSVxK2LHLz+UScPvOHnu/kdTCyyZzosYRRLh/2EJBMm3fAl9XLMMnXtogWpMHwylrJevHgxmzZtwufzEYlEWLt2LUuXLj21/N5772XNmjWsXLmSp59+Go/H068EhXD+DlX7KLCpSET8YHBkJEEB4Da5aAy2kExntnClywjVDR0ZjWG0y83N5Tvf+Q533nknN954I8uWLWPWrFncdddd7N27l/Xr13PgwAHWrFnDihUrWLFiBffff3+mwx4TwtEEldU+xms7UFJJ1M6+jwwY6ULxMAZNP49/Gj3pvPHYa3fhsms5eDTY56dadGbaRBtSYQyobQnisulJtDcjj9AkBXQlKr44z8oMTS0//K+NPP7STnyd0UyHJYxSqXAnIYzDm6Sw6agLjLyRTsLIlbGRFKdfjCQSCW655ZZTFyP33nsvM2fOzFRoApBOKxyt62BpfgeNskSezpWxWLSyFqvWTHPQS6E1L2NxuC0atrSKk46htnz5cpYvX97tsWeeeQaAmTNncuiQqKCeCVsPNDOhwEbiyCb0xVPHRMFM6DoWRpNRDGpt7yt//rl5E1Dv3kBZyTS27elgVrm1T88za020hod/ap0gDLeapk7G5VlJHGvCMG5apsM5L2qznXK5jgXXL+fjg37u+eV6VlxSyi1XTEKjHr6C48Lolwp2EFCMGLTDlzTwOAxsOmImnYyjGsD3oSD0V8aSFHDui5HTFRUVsX79+uEKSwAaWoMYdGqCtVuJmW3oVJk9IOWYnFR31Gc0SeFx6mmskkSHD2FM+nhXPZPdMokTjZimXZTpcIZNJBlBI2sG1tVIrSFdUMqkzj1sqi8nEExiMff+tWvVmUWSQhgT6lqCzC/PJdnRgjz94kyHc14kSYXakYvsr+fai2awaHoeb208wUe7G/j+VxZSnGvJdIjCKJEM+QmmHRg0w5ekyLVpaUrbSfpb0boKhm2/wtglxu0IPTpc00FBjhGNrxl7/sCK4w0mj8lFnb8BRVEyFoPFZkVWUmIIpzDmRGNJ9hxtpci/E33JNCRVRvPbwyoYC53RZaM/0rnj0fobGe+R2HnA36fn2PQWWsPtA96nIIwEqVSaZl8YpzaGJKtRaQf+OcsWapubeHMVAA6rnjuuKWfBVA/fe/Jj9h9vy2xwwqiRDvsJJLWY9MN3GWfWqwCJtsaBNTMQhP4SSQqhR5XVPpR0Iym1jMmcuakeJxk1RlSSCl8G52mrDFZcqk6qGjszFoMgZMLWA00UuzTIvip0xVMyHc6wCsRDGM6n/bFKJlUwkSmpY+zY27ckhVVnoU0kKYRRrskXxmrSQsCLbHFmOpxBobbnEmupOvWzJEksnJrHly4v49/+sIUGXzxzwQmjRircSWdS7moNOkwkScKtT3CspnXY9imMbSJJIfToYFUbUqgS2dH3lntDSZIk3CYXNf76jMWg0mhxqmNUVYkssjC2vF9Ry4TUCQwTZqKSNZkOZ1gFYsHzLhqseEooitcQDMVp8vY+Esums9AR9ZNW0ue1X0HIZrXNATwOIwlfI7LZnulwBoXa6iIV7CAVC3d7fFKxgy9eMpE/f9BKRyCWoeiE0SIV7qQzphrWwpkAbqPCiQZxo04YHiJJIZwhkUxR0xxgGkFke+ZqQHyex+SiOoNJCoAco8LxWpFFFsaOQDjOvqNeJij16AonZzqcYeePBTCe7zB0lUy6cCKTdS3s2Nf7aAq1rMag1uOPBs5vv4KQxWqaArjtBpK+RtSjZCSFpJJR23OJt1SfsWx6qYsJuXp+/eeKjE5dFUY2RUmTjoXojIFJN7wFWT0WmeNeMRpIGB4iSSGcYV9VE2jC5MTCKNbMT/U4yaa3EklECMZCGYvBY1FR1Zy5/QvCcPuwoooS2YuzfB6SauxVqA9Egxg1xvPejuIuZjLV7NzbTroPFyh2vRVvSMxhF0avqsZO3A4DifamUZOkANDYPcSbTvS4bPYEA972CO9tqx3mqITRIh0JodLo6YykPq0TMXwKnHqqO8feeYCQGSJJIZzhlW2b8JhSYLKCOnuGdqskFW6Ti1p/Q8ZicNt1NPrTpNLiLogwNqxZv4fpzgSanMJMhzLsFEWhMx7EqBmEgn4qGXtxPoZ0mBM14V5Xt+otosOHMKrVNHXitqpJR0OoDH1rzzsSqB15xJqO97hMpZJYsXQif3xzP8FIYpgjE0aDVKgDdGZCsfSw1qQA8LhMdCQ0hKPivSsMPZGkELppCno5WO1joiFF2pI9oyhOchtzqO7I3JQPo8WKSU7S3CZGUwijX+WWjXiDaabNnZ7pUDIimowhIaEdpDociqeYMrmBHRWNva5r1VnwhsZekmLVqlVcf/31XH311Tz//PNnXe+73/0ur7766qmfGxoauOOOO7j22mv51re+RSgkjtHZLJVWaGwN4aADtcWJpBo9p6Nqq4tUyE8qGuxxeaHbzORxDl5ad3iYIxNGg1Sog7DWgUGrQqWShnXfaqMZt6qTozVj77tJGH6j51tBGBTP7X4VdSSH/ERTVk31OMllctAWaSeWzMycOJXRiksOcEJ0+BBGuXhrHave2sTsEj1q3fkVjhyp/NEAFq1p8DaokplYpGf/8QiJ5LmLYtr0FlpCY6v+TXNzM48++igvvPACr7/+Oi+++CJHjx49Y527776bNWvWdHv8pz/9KbfffjurV69mxowZ/Pa3vx3O0IV+am4LYTZqkTpbRk1nj5MklYzGmUe8uecpHwBfmF/Mms1VoqV5H/WWvDx48CA333wz11xzDffffz/JZLLb8gMHDjBjxozhCndIpUJ+QrIVyzBP9YCu97ZHG+HQkczWhxPGBpGkEE455D3GoaYq4lE1rmgDijX7ThzUkozTYKeuMzMdNmSjFYfSQVW9aA8ojF7JgI/q5/+N7fFS5k9xZzqcjOmIdmLSnn89itMZCwtxS50c2nPu0RR2vZWW4NhKUmzcuJELL7wQu92O0WjkmmuuYfXq1d3WWbVqFVdccQXXXXfdqccSiQTbtm3jmmuuAeDmm28+43lCdqlu6iTPZSTeVj/qkhQAGnsusYZjZ11uM+uYO8XDy++J0RS96Uvy8r777uNHP/oRa9asQVEUXnrppVPLIpEIDz74IInE6JiikAp1EMQy7EUzT8o3JTl4QtRLEoaeOtMBCNkhraT5w44XmWG5kANmBdlkJZmlRfLcJhc1HXVMdJYM+74llYxbn+JolXfY9y0IwyHp99Lw3I/ZZbyQYrcRh2nsfk20R/3n39nj89QaJuak2LW9npnzzl7nw6634h1jNSlaWlpwuz9Link8Hvbs2dNtna9//esAVFRUnHqsvb0ds9mMWt31XnW73TQ3N/dr3/v27Rto2EPq9NeZbc4ntvW7WgjGI7TXH6bRWUAqFMCsNmDRmFFx/kPYa2szW5hSlVChqz9Es7OSz7+cysOVABRYUryxpZGpuVGMGbrg/LxsfL+dnrwETiUvv/3tbwNQX19PNBplzpw5QFeS8je/+Q233347AA8//DBf+cpX2LFjRybCH3TJUAcBDMPefvSkAqvExoYwiqIgScM73UQYW8bu2afQzYdVW0gqKbQxN25NFeksnOpxksfkorL1GMl0CnUGEikeq8z2ZtEaUBh9ovWHaf7rLzCUX8S6bW6unDGIUx1GIF+4nQn24kHf7viJLjZtTBFp92Nw2Hpcx6630Rr2jakTwXQ63e219vW197Ref39nM2bMQKfT9es5Q62iooL58+dnOoweDSS2SCLKumMfs+74R9Q3l+CySegCcSImLXElQlOslVAgTJE1n6meMjymnAHFVltbS3Hx4H9u+0NRFDoa9lKa70Jj/ex1VB6uZMrkKad+rmo7Sl3Ayt8uLs9EmN0M5fstFosNOBHYW/Ly88tPT1K+9957RKNRrr322gFGnn1SgXY6lZyMJSkcFj3pdJqW9gi5zsEdaSgIpxNJCoFwIsLzu1/j1hnLWP9elPxkC0oWD7/UylqsOguNnc0U2wuGff8uq46OhhThaAKjPnu6nwjCQClKGv/WN+n45BVsFyxnT7wYpDbGu7WZDi1j0opCR7QTi8486NvWGXUUmdo48NE+5n/x4p7XUWvRqDT4YwHs+tHT+eBc8vLy2L59+6mfvV4vHo+n1+c5nU4CgQCpVApZlvv8PGF4pJU07x37hBf3vUGJrZBryy7jxR0RFucpSBEbk91lp9aNp+I0Bpr54MQWLFoTC4tm4zI6Mhj9wEiShDankFjD0W5Jis+7aGY+f3r7ILdcMRmNWszA7klvycuzLfd6vTz11FP88Y9/HPC+s3GElamxhnq/jYQmQG1tV3204Rw5JEfieNQB3l5fwawJg5ukyMaRPAM1Wl5LJl+HSFII/HXfm0x0jqPQmkdd42Fm04RimZjpsM7JbXJS1VGXkSSFxmzDrUtQ3Rhg6oTsTeYIQl8kfA20rHoSJR7BdfXXkM0OXvlLHUsmm8fMHfyeBGJBNLIazSB19vi8iUUGdhzrYH4yDuqek0EOg42WYOuYSVIsXryYxx9/HJ/Ph8FgYO3atTz44IO9Pk+j0bBgwQLefvttli9fzuuvv87SpUuHIWKhN23hdn6z+Q+E4iH+duYK8iweEok0/s7DOJJ+FFP397ZW1jLOXkyxrZD6zibWHv2QUsc45hfOzMjIyfOhdhUSq6/EXH7hWdfJc5lwOwxs2tvA0rlFwxjdyNFb8jIvLw+v97MpuK2trXg8HjZs2EBHRwd33HHHqWUrVqzg+eefx2zuW/I5G0dY1e38M0mdgyK3leJi47CPHErY9BS1nCCQMjN//txB2242jxzrr9HyWob6dfQ2wkqkbce4us5GNlRt5vLSxQTDSSKRFHaLFrL8ZCDP7KbO30A6fe4K+UNBNtlwqQKcaPQP+74FYbAoqQS+j/5K/R++hy53PM4rv4ra4mTrsRDRhEJ5wdjs6HFSa9iHTTd0yYHiAgP1SQfB3bvOuo7DYBtTHT5yc3P5zne+w5133smNN97IsmXLmDVrFnfddRd79+4953N//OMf89JLL3H99dezfft2/r//7/8bnqCFszrQcph/Xftz8sxuvjL3VvIsXReWTa0x7FYN6o4W0iZ7j89VSSqKbQVcXLIQf6yTNw6upS08sgpWa5z5xL21pHvpRrZgai6rPjo+TFGNPIsXL2bTpk34fD4ikQhr167tloQsLCxEp9OduuO7cuVKli5dyq233sq6detYuXIlK1euPLWsrwmKbJUKddARV2HOQHcPANlgpSDVwN6jY+e7ScgMMZJiDFMUhd9v/zNLx12AWWuisjZIriGGYsv+0QF6tR6D1kBTsIUCa96w7ls22XGkDnCktmNY9ysIgyXWcJSWVY+j0ptwXfsN1GY7AMmUwvOftHHFdOuYHkUB4A21YdVbhmz7allivCvNnopaFs9bANKZJ5w2nYWmwNgq0rt8+XKWL1/e7bFnnnnmjPUefvjhbj8XFhby7LPPDmlsQt99WLWFP+78KzdOvYaJznHdljW1xHDaNaj8XlLusxePBdDKGmblTqUh0Mzaox8wr2Amk12lI+L4pNLoUFtcxJtPoC+cctb1po138tYnJ6hp6qQkb2yMmuqP05OXiUSCW2655VTy8t5772XmzJk88sgjPPDAAwSDQaZPn86dd96Z6bCHhKKkSYU78SfBrM/MzUSVRkeOJkIgHKe1I0KOfZCLSwvCp0SSYgzbVFtBe8TPl6ZdD0BtUwS30p6VrUd7kmt2c6KjbtiTFCqNDo82SkWNaMEkjCxKOkX7J6/Sue0trPOuRj9+ZreT/Td3dmAzykzMza7hrZnQFPRSnlPW+4rnYWKxnu37ilhSe5h0yZmF8xwGG03BsZWkEEa+tw+v5/WDa/jynJt7LH7Z0BLFYZagPYxi6Ntd7QJLLja9mV2NB2gN+biweB5ylo/4BNDkFBKtqzxnkkKWVcyb4mHN5mruunHmMEY3cvSWvCwvL+fll18+5zYqKyuHJLbhlA4HUGl0+DvTWDI0kgJAbbJRatKw67CXKy8Y/k57wtggpnuMUZFElD/u/CvXTroMlarrbVBbF8Kd9qKYR0aRqlxTDjUd9RmZ8pFr01DnDZNKDf++BWEgUtEQTS/+G+HKLeRc9w0ME2Z1S1A0tMd5o6KDq2faRsRdyqEUTcQIxsNYdUPb3aTAqcKvmGg7bb716RwGu0hSCCPKm5XrWHXoXb4y55azdueob4ri1oTAZO9xBNHZmDQmFhXNJRALsfroB0QT0UGKeuho3MVE6ypRFOWc680v9/B+RS2JpDinEM4uGWwnpbcTT6YxaDN3Cacy2ig2J9h+qH+tngWhP0SSYox6cd8qJjiKKbF3DbVUFIX6xggeC1lfj+Iko8aAQaOnKdgy7Ps2WKzYdAq1LcFh37cg9Feys42GP34flcaA84ovIxu7DylOphR+s6aFS8otOM1igF1TsAWnwY5KGtpjoUqSmJivZkejEcl35sme02CnWSQphBFizZEPeLPyPb4850vYDT231k0rCk3eKDlJL2lzz+uci1qlZnbeNKxaM29Wvkd7JLtrQ8lGG5KkIuFrPOd6LpsBj8PItgNNwxSZMBKlgu0ENE4sBjmjNxNko5lxOj+7D3tJpc+dgBOEgRJJijGopqOeD6u2cEXpklOPdQaSpFMpTI6RVVAo1+zmRPvwtV46STbZ8GgjHK/vGPZ9C0J/JP1eGv73fvTjpmFdeB3S55KQiqLw3xu86NQSC0tFz3OAGn8DLsPwjCgry5fZHp+IvO+TM5ZZdWbCiSjRZGxYYhGEgfq4ehsv73+Lv5t9E7ZzdKPxtSfQ62SMgSaUT2vh9JckSUxyTaDUOY7VRzZQ628YYNRDT5KkrtEUtQd6XXfOZDfvbq0ZhqiEkSoV6qBTZcNqyOzNRJXRhjHSjM2s5VCVL6OxCKOXSFKMMYqi8Mz2F7h0/CJM2s8uSGqbIuSqAzACimaeLs/s/nTKR2pY9yub7bjo4EhNx7DuVxD6Q4qFaHjuxxgmzcc8bUmP67y8tZ0D9VG+ON8+5qd5ACgo1PsbyTW7hmV/ORZAraH2UD3EIt2WSZKEy2gfc8UzhZFlT9NB/rDjRW6fdSMOg/2c69Y3R3E5NEgd5z+1tMCSy5z86XxSs519zb1PqcgUraeEaHXvSYrppS72H2/DHxRJSaFnqWA7nZgzWo8Cus6Bk52tTC5xsHnfuUcJCcJAiSTFGPNh1RaCiTDzCroXZ6qtC+KmbcTUozjJoNZj0ppoCAzvvDjZ5MCVbOJw7chqiSaMHelEDHPFS+iLyjFPvejM5UpXJ48PDgb424uc6DXi6wCgLd6BSWtCrx6eFqySJFGWL7NNmo760LYzljsMdhqDYt6vkJ2qO+p4bNN/86Xp1+Mx91yD4nR1jRFyjGlQa0B7/p8xh97GhUVzOdJ2go+rt5Ic5hsWfaG2uUnHIyT850426rVqysc5+GhX/TBFJow0CX8rfsWUsc4eJ8kGC6lwJ1NLrGzc05i1CUJhZBNnpWNIKB7m2d2vct2ky1F9rlhVbbUftyk9YupRnC7X7OZ4+/AOkVRptOTqE1Q3dor5eELWURSF1rd/h6LWYZ59+RnL/eEkv1jVxK7qMHcucWHJ8NDRbFIfaSHf6hnWfZblqdgVyIX9m+FzhYAdehuNgeGvuyMIvfFFOvj5h09yTdmljLMX9ek5tY0R3HInimXwRm3q1XoWFs0hnIjyTuX7RFPZNRJBklRoc8cTqd7X67qzJ7lZt01M+RB6lupspSOlx5zhkRSSSkY2WXFro6TTaY7VZ3dtGGFkEkmKMeTPe1cy2TWBws+17EwrCvVtadwubYYiOz/5Fje1/iZSyvDeQTHZrFh0UNccGNb9CkJvOne+S7T+MNHxi7pN4UimFFbv7uCfn6vFpFXx5SUuTBm+I5NNOmNBOpKd5Ftyh3W/VqOEzaTiUKIAVd3hbstcRgf1naKYnpBdEukkD3/4JHPypjMj9+ztNU+XVhQaW2J4Eo0DKpp5LmpJZlbuVNxmJ1s79lGXZXUqtLnjiJ7YC73c05hYZMfbHqHeK4pyC2dKBnz4YlosWfC9LRsdpP1eZkzMYUNFXabDEUYhkaQYI06017KxpoLLSxefsazVF0dPHL1zeOZgDzatrMVhsOKND+/UC9lkJ8+Q4IiY8iFkkXhrHe3vP49jyS0gd3XqiMTTvLWzg2//bzUfVQa5fbGLK2ZYkVWiBsXp9jYdxK11oB7irh49mZinYmuqHPXnCmi6jHYaOsV0DyF7pJU0q5rfx663smTcwj4/r80XR6dVYfI3wCCOpDhJkiTG24spNRaysaaCLbW7smb6h9rmIZ2KI4fPfb4gqyRmluWwfvvwFwQXsl8q6KMtqsJmzIIkhclOvKOROZPdfLCjjlRKtM8VBpdIUowBaSXNM9tf4PIJF2HUGM5YXlvdgUfuQBnkOxvDKc/soTE6vEOiZYuTHKmDyhqRpBCyg5JK0vL6Y5hnXY7a5qY9An/4wMu3/qeaihNhblrg4PbFLvLsmkyHmnX80QA1HfW4tZkpHjwxV0Vlu4lYSzOSv/XU4zlGJ43BFjHnV8gaL+5dRUciwA1TruhXsd2axghuuwyJGIrBMmTxmWQDFxbPpyPawapD79Iaynz3AUmS0OZOQN12otd150xys6GiVnzmhW6UdIpUJIgvrGS0u0c6ncYf7cQvg6/xKCdClai0Cf5nwwYqGvbS0NlEOi0SFsL5U2c6AGHofVi1hVgyxtz8GT0urz3WituYAmnk5qxyzTkcaDlMKB7BpD0zETMU1BYH7kQl26snDMv+BKE3HZtXIslqgrmz+MPaZrYeVTG/NMU3vpCDzSgO9+dSUb+HcY5i1InMnPzptRKFLomdhgUs2r+JxOLlAJi0RiQkwqlIL1sQhKH3Sc02NpzYxGWOBahV/Tum1NRH8GjDKLIThriTkFbWMCt3Go3BFt499hGljnHMK5iORs5cglafX0pk6zsoSgrpHKO1CnJMSJJEZXU75eNHVsc1Yeikgh2gM9HpSw1rkiKdTuMNtVHX2UhjsIX2SCc6tRYnGqZ1+qhqr8Pk0vLh9jDVSgWtYR/hRITynDIuLJ7HhcVze7xBKgi9yehV6apVq7j++uu5+uqref75589Yvm7dOlasWMEXv/hF7rnnHvx+UZilv0LxMM/tfpVrJ1121jseNU0xPI6RfQEjSzJ2tZXjvuph26fKYCFH8VHXEiSWyI4hpaNBb8eFk7773e/y6quvDmNk2S3ha6B10yrWyJfzr3+pR5LgSzPTXDnDJhIUvWgOeGkN+xhnL8xoHGV5KrYECpGP7IBE/NTjbpOTtnhH5gITBOBoWxX/XfEX/s/M5ehlXb+fX9MQITfdMqhFM89FkiQKLLlcXLKAQDzIqwdWc6S1inSGil3LJjtpjZ5o/dFzridJErPKclhfIaZ8CJ9JdnoJ6nIx6VTDMlWzI+pnS+0uXtz3JhtrKwgnokywl3D5hItYOm4RM0rmogUu8EzhyjnlxDqNXFV0Hf944f/l24u+SqmzhA+rNvOtVT/g9xV/pjWc+RFNwsiSsSRFc3Mzjz76KC+88AKvv/46L774IkePfnbgDgaD/OQnP+Hpp5/mjTfeYMqUKTz++OOZCnfE6iqWWUrB54plnpSIp/BGtOTkWoc5ssHn0to43HZi2IZISpIKvc2JxyJzrK5jWPY52vV2XDi5zt13382aNWsyFGX2URSFfa/+kV8HlnHQC9+83M1lU63oRG6iV4qisLV+N2WuCcgZqEVxupIciZaACq95PPLRXacedxkdtCU6MhaXIPgiHfzy46e4YfIV5Jnd/X5+PJ6m1RcnN1yNYuu9Velg0spaZnimMCd/Goe8R1h5aA1V7bWkMzCdImXLJ3zkzFbDnzd7kpuPd9WTFPP8hU8l/a341c4hr0fRGvLx7tEPeefwBmKpGBcUzeai4vlMck3AZXR8NoJKklBMNlT+NtRqFeUTzXywpQ3oGgE4M7ecW2cs41sLv0woHuZfVj/E87tfI5rMru47QvbKWJJi48aNXHjhhdjtdoxGI9dccw2rV68+tTyRSPDjH/+Y3NyuKutTpkyhsbExU+GOSFXtdWctlnlSw/EWXHIQ2Tx080OHi0k2AAotodZe1x0sstlBviHOoSpRl2Iw9HZcgK6RFldccQXXXXddhqLMPpvWfcAvKicxu8zF/1nkwJoFRbVGilp/A8l0knzz8LYd7YmskpiYp2IL01Hv+xg+vYjKMTrxxsQxRsiMWDLOLz78LfPyZ1LuLhvQNmqbIrhsMupEZEjrUZyLTWdlQeFsylzj2dV0gNc/HVkxnMU1k5Y8Ei01pMLnHhnstOrJsRnYWSnaDwtdkp2ttEt27EM0MjIUD/P+8Y2sP/4Jdr2VS8cvYrKrFJPGeNbnKEYbUocXgBlTLOyt7KSjM9FtHYvOzJUTL+GbC/+Oqo5a/vmdn7Kv+dCQvAZhdMnYfbaWlhbc7s+y8R6Phz179pz62eFwcNVVVwEQjUZ5+umn+fKXvzzscY5UiqLw+4oXuGz8heecC1ZT2YDbmBzy+aHDpdCaR2XrcXIHcKdnINRWF7ntbew/3srNlw/s5E34TG/HBYCvf/3rAFRUVAxoH/v29d6rvr8GGstg2HciwNubW7hiXAS3pp26uu4Xs7W12TlkOFvi2tq+B4/Whdf72cVAS0vmumnk6GS21Ji50hmhfuuHhOx5xKJhvHFfRt9nvcnm2ISBSytpntjyByx6c786eXxedV2YXH0URZOT0fMNSZJwG13kGJy0Rdo57DtOReMeJrtKmZJTikl79guyQSHLaPNKCVZuxTb3qnOuOmtSDu9tq2XhtJ5HwgpjS6KjGV/KPOj1KBRF4XDbcXbU76XYVsjF4xb2eVShYrah6mghBeh1MlPLzKz5sIW/WXbm1EmrzsyNU6/laFsV/7npf1g6fhF/O+tG1CpxU0XoWcaSFOl0uluNBEVReqyZEAgE+Id/+AfKy8u56aab+rWPz1+MZPtJ1GDGt6/zCG2d7Zi0Wg5XVp51vWM1QRzmdJ9OyjN54t5X2pjM0WAVx6tPoOlnUa+BkOIpnKFjvN/mYfv27b1WOh9L78GB6Otx4XzMmDEDna7/86nPpqKigvnz5w/a9vrjo131rKmo5UvFTZTOu+iM5bW1tRQXF2cgsnPLlrgaOpuQOlVMKig99T5raWnG48nNWExuRWFfU5Iq9yIm+2uIL7qUvFghWzbvydj7rDenfwZisdiQJAKFzHhp75s0Brx8efbN53UsPl4TpkzxkrZlR6tzSZLIMTrJMToJxUPU+BtYeXAtHnMO5TmlFFjyUQ3RvH99cTmdFauxzLwUlVp71vVmTszhVy/sIBRJYDKIjkxjXbLDS2vCjc0xeBf18WScj6q3EYgFWVg0B7PW1K/nK2Y7UvWBrlF/ksSsqVZefruR6vow4wp7TviVucZz14LbWXloLT99/9f8y8XfxKYf+VPOhcGXsSRFXl4e27dvP/Wz1+vF4+k+3LalpYWvfe1rXHjhhfzgBz/o9z5OvxjJ5IVEXwxmfOF4hN+9/SK3zlpG4VlqUQAoiTgvRcLMnaXHajn3F2CmT9z7oqWlmYLcAtrwE9EnKM0d+q4biqLQXlOBVi1TML6cghzzWdcdbe/BobgY6ctxQeiys7KFp17exXJ9BeOmX57pcEakAy1HKLEXDHoi7HxIksSkAhWb/YWUxz5BCnZgMdlIk6Yj2oldnMwJw+TDqs28X7WRr827DbU88NPFVFqhtjHCUuNxFNsFgxjh4DBpTUx1T2JSTimNgRa2N+wlnqpgsquUyTmlg96ZQDbZkG1uwsd2YZ5y9t+HUa+hrMjGJ3sauHrRuEGNQRh5kp1evFENhYM0ndMf7WTdsY9xGuxcUDQb1UBqMn3aTU8KB1FMFrQaFYvm2nnprQb+6aulaLU9VxUwaY387cwVbKjaxPfWPsz3lt5zPi9FGKUyVpNi8eLFbNq0CZ/PRyQSYe3atSxduvTU8lQqxd133811113H/fffn1UnkdnuL3vfoMw5/pwJCgD/kWMoKhUW8+iqrldkzedQ69FhKYolSRJqu5siu8SB46Jy8fnq7bggdKlp6uQ/ntvODQVeCkoKkDM0x3skC8XCtITaKLBkX/J1Up6Kgw0QzC1H3r8JSZKwa6zUdNRnOjRhjDjQcoQ/7nyZ22Z+8bynQDQ2RzHrwKCTQDfE0ynOg1qSKbbmc2HRPObkTccX7uD1A2vYcGIzraHB/X43lEwnuP8jlF7qYcyZ5GbtluHrWiZkJ0VRSPq9tEYk7IOQpPCG2njnyAZK7IVMdU8aWIICuopnWpyo2j8baT2xxITLpuWV1Y3nLGQvSRKXT1jMZRMu4qfvP8qJcN3AYhBGrYwlKXJzc/nOd77DnXfeyY033siyZcuYNWsWd911F3v37mX9+vUcOHCANWvWsGLFClasWMH999+fqXBHjKr2Oj6u2cYXSi/udd3aQw3kmRKjLgFk19tQSSoaA8MzPUVtzSFf08neY8NXsHO06u24IEAwkuBn/72Fq2Y58Pj3YZgwM9MhjUhHfFXkWzwZ7+jRE4NWotglsZ2pqCu3QTKOXW2hegwkKXprQXzw4EFuvvlmrrnmGu6//36SySQAr732GkuWLDl1vvDoo48Od+ijRl1nI7/65GlumnoNHtP5d+I4Wh2iwBAmbRueWlGDwaqzMM0zmUvGX4BerWX98U945/D7NAW8g7J9jSMX2WAifHzXOdebXOKgwRukwRsclP0KI1M6EiAtqfEFUzhM53djsbGzhXXHPmK6ZzLF1oLzj83sQGrt/t108UIHTd4ob61v6bXj3ozcKdwy/QZWNb3Ph1WbzzseYfTI6C305cuXs3z58m6PPfPMMwDMnDmTQ4dE9df+SCtpnt7+PJdPuAijtpfhiUqaE/VRPLmjbyi9JEkU2wrY33K419Ekg0Fj95DXeow1xxxDvq+x4FzHhdM9/PDDwxVS1lAUhV8/X8HEQhsTfJ+gHjcDlWbw6muMFYqicMxXxYzcKZkO5aymFKjYdEzLJQW5yEd2YVNbONFek+mwhtTJFsSvvvoqWq2W2267jUWLFlFW9llR4vvuu4+HHnqIOXPm8IMf/ICXXnqJ22+/nX379vG9732PZcuWZfAVjHztET///sHjfKF0MaXOwZlicLQqxKRUA4p95J1vaFQaxtuLKbEV0Bho4aPqrVh1JhYUzsZlPL/vfEPpHAJ73scwYRYquecpt7KsYvYkN2u31vDVG6ad1/5GslWrVvHUU0+RTCb5yle+wh133NFt+cGDB7n//vsJhUIsWLCAn/70p6jVaioqKvj5z39OIpHAbrfz7//+7xQWnlnUMdsl2pvpNORj1suo5YHfWGwOeNlQtYnZudNxGu2DE5zNherIjm4PqdUqrl7qZu2HXl5YmeBL1+Wj1539hsA4exGXuy7gud2v4Y8GWV5+5eDEJoxoGRtJIQy+9cc+IZaKMzd/Rq/rSt46jiXc5LlH5wVOgcWDL9JBe+Tcbb4Gg2zLwRaqJhxN0tIeHvL9CWPX6x8co9kX5gtlkPA3oysuz3RII1JbuB1FUbBqs3eaTKFTIppQqLLPQr33IxxqCyc6sqMjylDprQVxfX090WiUOXPmAHDzzTefWr53715ee+01li9fzr/8y7/g9w/9sX+0Cccj/NsHjzMzdypz8qcPyjaTyTQ1DREKkvUo1pGbyFdJMoXWfC4umY/TYGft0Q/ZWLOdWDI+4G1q7LmozU5CBzedc7355bm8t7WGVCo94H2NZCeTly+88AKvv/46L774IkePHu22zn333cePfvQj1qxZg6IovPTSS6cef+ihh1i5ciXLly/noYceysRLOG/JjmZ8sgfXeUzPbg35WH9iI7Nypw5eggK6Wgonk0ihQLfH9TqZ6y/3kEorPPLMMbbuaieZOvuoCpvGwlfn3so7R97nz3tW9joCQxj9RJJilPBHO/nz3pVcP/kLfZq+Eas8QHvKiMsyuqZ6nKT6dG7pgebDQ78vtRa12cGEHDV7jogpH8LQOF7v56V1h7n1ikmEdq7FWDoHSbTuGpAT7TXkmt1ZPdVNkiTKC1V80tR1YVcc7KQl2EY8lejlmSNXTy2Im5ubz7rc7XafWu52u7nnnnt44403yM/P52c/+9nwBT4KxFMJfvHxb8k153DJuMErbllVH8GpT6JzOiELp1b1l0qSKbYVsqRkIbFknNcPrjmvWjHGSfMJHfiYVPjsSbVcpxG7Rce2g9nfYW0oDDR5GY/H+ad/+ifKy7uS+VOmTKGxsTETL+G8JTqaacWG3TSwz1BnNMi6458w3TP5vEcAnUGSUBxuVC1njvRTq1VcvMDJFYtz2Lang4efOsL6Ta2Eoz3XYrHprXx17q1sqdvJf+/4C2llbCbmhC6jq2LiGPbHnX9lZm45eeY+zPlUFKoPN5FnLUIeohZb2aDYVsjH1VuZE58+5L3P1XYPhZEgOw+3cOUFJUO6L2HsiSdS/PLZ7Vy3eDxG/wkC8TjavKHvXjMaKYrCiY465ub1PuIs06YUqHhxY5LORbPIqzuAu9RNTUc9Za7xmQ5tSPTWgvhcy5988slTj3/961/nqquu6te+s7Vt6nC0hU4paV5rfJekkmKWfRJHDvctuX+u9uYnbd2XJl9ppkOlJzKMbcyHo2W6Cyt6nYZPqrdzsOEIU8zj+1Tjpra2+4gojbWQ+vf+TGTy5XCWU7IiR5o/v7MbTaxhMEI/q0y3Ie9JT8nLPXv2nHX5yeSlVqtlxYoVQNex44knnuDKK0fmNIJEaz0tiVwclv4nKWKJOO8e+5CJjpJBqTHTk7TNjaqpitSEnkdgeXJ0XHuZh7b2OPsqA3y4pY0lC51cusiFRt39frlJa+TLc77Ei3vf4InNf+SeRV9BLW7IjEkiSTEK7G46wIGWI9x9wZf7tL6qpYajsRxyPaO777ZW1lBgzWN/82EuKJ4zpPvSOPIo6KzmlcOGM06sBeF8/e9bB3DZ9Mwuc+Jd9QLGsvlIkhgINxBt4XZUSJiHOHE5GAxaifFuic3BYq4Ib6KcYo63V4/aJEVvLYjz8vLwej8rXNja2orH4yEQCPDKK6/w1a9+FehKXshy/05qT29Zni2Go211Op3mN5v/gGzQ8LczbkLu48XA4cpKJk/pvabLmx8eZQkNWMYtwHKWuguDbbhbphenizjUepQdgYN8oXQxdoPtrOvW1tZSXFzc7TGlsIDOrW/hVHVinrSwx+eVlqb4j+cqyB835Zytzs/HUL7fzqdl+fkkLwHi8Tjf+973SCaTfPOb3+zXvrMleWmpPczxjjzGazuore04Y/nnE18nKSjs6DiIUaVHF5OHLHknpSGvvZmGE8dJ9/I5n1gAeQ6FfQdb2bqzlcsXSrjsXX+v0xOfC/XT2diykwfeepgb865EoxpZl6zZmPAbiEy+jpH1FxfOEE1E+a9tz3H95C+g7eMJgHxkJ4eT47jAOfovpMfbi9hYs52ZeeUYNPoh24/akYtp3wdo1NOoauxkQsHZT1IEoT/2H2/jgx11fPvWOYSP7USl0aNxjbzCX9miuqMOjzlnxCQSpxfLrNuTZN6EEuY2NrHddYKryy7NdFhDYvHixTz++OP4fD4MBgNr167lwQcfPLW8sLAQnU536mJq5cqVLF26FKPRyO9//3vmzp3L7Nmzee655/o9kmIsSitpfrftORqDLfztzBV9TlD0Vbs/QTAQx5OvRRmmBEUmqFVqZnjKqe9s5J0j73NxyQWU2PveNUFSyZhmLiWwfTVaVyFa55nP1ahl5pd7ePOj43zjplmDGX7WG2jyEiAUCvGtb30Lu93OU089hUbTv/dhtiQvqzb8J+0pA9dOyDmjLkVPia+TNtfuQKvTMDtvOqqhvrERaKJYTpAqKe3T6lOmdBXVXbu5nS9dm4+WxjMSn1PSU3ij8l1W+T/g+5f8A2adaSgiH3TDkWAeDkP9OnpLXopbcSPcs7tfo9hW0Pc7a8kE0aMHaYvrcFtHxkn6+dCrdeRbPOxtHtpOMSq1FrXFRalLomKMzhsVBl80nuTRP+9g+SWlGDQKwd3vYyibN2IusLNRjb9hyIa8DgW3VcKsl6hIT8Lpa6Glofch9iNVX1oQP/LII/z85z/n2muvJRwOc+eddyLLMo899hg/+clPuO6669i/fz/33Xdfhl9NduvqBvYCVR213DZjORp58O9ZHTwaYJyuHVxD32UrGxRa85lXMJNNtRXsa67sV+E/tcmOsfxCfBteOGt9ikXT81lfUUc4Onrr0vRk8eLFbNq0CZ/PRyQSYe3atSxduvTU8tOTl8Cp5CV0Fc4cN24cjz32GFqtNiPxn69UOEAsBZ0RBYex74nEI61V1PkbmZlbPvQJCiDtykdV07/vp7LxJq691MNra5s4UnNm/QlZJXNj+TW4jU7uf++XtITaBitcYQQQIylGsH3NlWyt28k3F/5dn58jV+3noDyRPKdqVNejON0ERwkba7Yz3TMFU2+tWc+D2llASaiVLfv13HLF5CHbjzB2/OmtAxTkmJg2wUVg7wbUdg8aWx/qzgg96owGiaXi2HTZ29WjJzNKVFQcs3DF1KnMrDtMOB7pvc30CNVbC+Ly8nJefvnlM563YMECXnvttSGPbzRIK2n+a9vzHG+v4W9nrkCrHpqLtz0H2pmq1KE4Zg/J9rORTWdlUdEcdjTsIxgPcUHhXFR9PNfS5Y4nHQ3S+u4fyLnq/yIbu4/ItFt0TCq2s3pTFTdfPmkows9KpycvE4kEt9xyy6nk5b333svMmTN55JFHeOCBBwgGg0yfPp0777yTAwcO8N5771FWVsZNN90EdNWz6KmleTZLtNXTpi/BaZb7/F5qC7WzvWEXCwvnoFENzygmxZGLdGI/UqADxWLv8/NynFquu8zDm+saKS7uZFa5tdtySZK4qmwpW2p38sC6X3LfkruZ5BI1ucYCkaQYocLxCE9u+V9umHJFv6YxyPs3cYiFFDrGRoICukZTFNny2NW4j4vH9TzfczBocwrJbf6Et3xWOkNxrKaRmbUXssPBEz4+2FnPvf9nDqlIkNDBjVgX3pDpsEa0Gn89HqNrxI1EGeeW2HhIxTHzTKZX7eVY9U5mTlqc6bCEESiVTvHbrX+i1t/I7UOYoAiGkzQ2R7m6WANDMEojm+nVehYWzmZX4wE+qNrMpeMvQNXHqTSGcTNAAe/q3+P6wt+hsXevrbFkVgHPrznE8ktK0ajHTjHBgSQvp02bRmUfirtmu7i3hiY5n1xb35INsWSc909sZKq7DLN2GKdHSCrSuSXIx/aQnLO09/VP47BpmD8NXlvTiMkgM3HcmXEvKp6L3WDl5x8+wVfm3MqlEy4crMiFLCWme4xQz1S8wARHSb+yiVJbA1Knj8oOE4XOsfWnn2AvocbfQHvk7G2+zpdscSInYkzINbD9YNOQ7UcY/WKJFI/+ZQfLLp6AUa8hsPs9tPllyEZr708WzqrGX0+OyZnpMPpNJUmUuaOsP6TCm5NLePOqTIckjEDJVJJHN/6exkALt88augQFwP7KTko0PlSevtdmGE00sob5hTOIJqOsO/4JyXTPLRd7Yhg/A8OE2bSt/R9Cx3Z2mzZS4DaT5zKxdnP1UIQtZKF4SzUNSQc5lt6TfWlF4aOqLeQYneSZh6947Kn9545D1XQCKRzo93OtJonLL8rh+ZX1tLTFelxnSs5Evjz7S7y47w1+v/3PJEZxS25BJClGpA0nNnGk7QRXl13Sr+epd39AU+4ckmlwDk1x6KylkTWUOkrYWrezX/NE+0OSVGjdJUzQd/Lx7qFtEyaMbs+vPoTbbmDGxBwSHc1Eaw5gmDAz02GNaNFEjPaIn5zB7hE/TEocMRraFeocs7HWHyPRIWrfCH0XTcb4+YdPEogH+ZuZy9EMcSHLHbu8lGlbUKyuId1PNlNJMrPzpgLw7tGP+nVBpS+YiGXe1QT3fYhv/bMkA75Tyy6fX8SL6w4TjScHPWYh+8RbqqmNGMm19v6Z3dd8iFAiwuScDE2H0OhI541HPrh1QE8vzNOzcJaNP/y1llCk5/e3x5zD1+bdRl1nIz9Y90saOsVNwdFKJClGmFp/A3/a9TI3T7u+XycZkr8Vue4I+5VSil3SiBvuPBiKbfmE4hGqO+qHbB9aTwkl4QPsO9Y25opbCYPjULWP97bVsOziCSiKgn/rWxgmzEY1hN1pxoK6zkZyDA5U0sgcIi2rYNY4FTuq3Bww6Wjb8EKmQxJGiM5YkJ+s/zUaWc0t025APcSt/Hz+OC1tCYoLTTAGzzVOp5JkZnimoJHVvHvsI1JK30dUqC1ObBfcgGy20frO7/Bvf5tULESRx0KRx8wbHx4fwsiFbKAoCrGWWqr9KvLt5z7nbw54OeA9wuy8qRn9nkvnl6LyNaFq6bktam8ml5opKTDwp1fqSKZ6vqmo1+i5ZfoNzPBM5v51/8Gble+RTp9ZeFMY2USSYgQJJyL8x8e/48rSJeSa+1edXl3xLqlx09jXIFHiHpt/dpUkM9Vdxta6ncST8SHZh9qRhybazji3ni37RXZX6J9YIsWjL+zg+sUTMBu1RGsPkop0oisShVjPV1VHPW7zyL6rO7VQRb0PDhhKCR3dQay5KtMhCVmuOejl/nW/pNCax7IpV6JSDf33f8VOL5PUDUi5PbdFHGtUkorp7snoZR07/AeJp/p+/iGpZAzjZ2G7cAWpkB/vyv+kc/d7XDkvj9c2HMXXGR3CyIVMS3Z6aVdMyLKExXD2xEM4EeGDqs3M8ExBr87wDQ1ZTWriLNS7NiBFggPaxMLZNlQqiVfeaTjr6GdJklhQOJu/n/c3fFS1he+ve5hjPjENajQZm1erI1A6neaxjb+nxFbI7Pzp/Xqu5K1Drj9KoGA6DT6FQufYvbPhMNjJMTrZVr97SLYvqVRocycwyeDjvW0DyyILY9ef3jqA22FgVlkO6WQc//a3MU2+AKmPRdeEniXSSZqDLbiNIztJoZYl5k5QUdU0hZaCcbS9+4chm74mjHxH26p4YN1/MD9/Bl8ovXhYRlCm0wrbd7UzxZ0AjW7I9zdSSJLEVPckdCoNa49+2O8bJSqdEVP5hVgvWEairYHU+//FLE+Sp1/bM0QRC9kg3nicel3pOUdRKChsOLGJQkseOcbsqLmkWHNI55ei2fwOxCL9fr4kSVx6oZP6pijrPm4957pOo50vz/kSM3On8vMPn+DxzX+gNeQ753OEkUEkKUYARVH4w86X6IyFuLqsfxVzSafRfvw6yckL2d+opsgloZHHbpICYFLOBOo7m6jzD03dCF3+RIr8OzlS206bv/8HZ2Fs2n3Yy4c761m+pBSAwJ730djcaJz5GY5s5Kv3N2I32IZ8Hv5wmFKgIhLVszpsJtnRQvhoRaZDErLQ5tod/PuHj3Pd5MtZWDRn2PZ76LAfYyqIa5w4bn2eJEkU6/MwaYwDSlQAyAYL5ulLsMy9knnpvew/cIKPPh6amy5C5kUbj1KVyqXQcfYit0eCXaMHSp3jhiusPknnTSDt8KD95A2kYEe/n69Rq7jqEjfb9nSwdVf7OdeVJIm5+dO554I7kSSJf1nzEM9sfwFvqG2A0QvZQCQpRoDXD65hV+N+bp1+PXI/76iq934MikK6aBK7qlJMGKNTPU6nUWmY4Snn45oKQonBTyKorS50Wg1T89Ss21Yz6NsXRp/OUJxf/3kHN102EaNeQ9zXSOToDoyThq5l7lhyor0Wj2lkj6I4SVZJXDRZzf7jxahmXkbbmt+TTvRcCV0YexRF4ZX9b/M/O17k9lk3MSVn4rDu/6OPaphu60ARnYjOqjynDJPWyJqjHxIb4NRTtcWJc8FV3DBZ4bcrD3Fiw0oxqmoUitUe4kjIQrGr5yTFMV8VLXEfMz3l2VdrTpJIF00mlTcezSdvINdUQj/fo0aDzDWXulnzkZd9lZ29rq9T67h8wmLuueBOIoko9635Nx7b+HuOi2kgI5K4Ys1yqw9vYPXRDdw++yb0/SycJ7XWo969gcSsSwhGocarMM6dZQexDHEa7RRb89hwYhPpfrQG6ytd0RSmpo/wzsYqUmlx4iCcnaIoPPbnHUyb4GRSsQMlnaJj46sYJs1HpTNkOrwRL56K0xBoJs/kznQog2a8W0avgVeq1ajtubR//HKmQxKyQDQZ49GNv+eTmu38/by/Id/iGdb919UHae1IMWHi6EgIDhVJkijPKcOiM7PmyAaiA0wySpJEWflE5k+08ui7fhpefkQkLEcRJZWks7Ga+oCKAseZowBbQz621u2i1FCU1aMEFU8JqamLkI/vRfPJG6h8/etMZbdquPoSN6+uaeLQsb7VuDBpjVwxcQn/eOH/xaQ18ouPnuL7ax/mw6otxEXb0hFDJCmy2NuH1/PawdV8efaXsOr62TM0EkS79lmS0xeD0cquqhQlbgmNWiQpTip1jEOFxCc1FYN+B0KXNwFnuBqTFrbsaxzUbQujy2sbjtLsC3P1oq6hmoHd7yNptOjyyzIc2ehQ3d6A0+DI6pO4/pIkiTmlcT7YLxGbfCWBHWtFEc0x7mSBzGgyyp1zbsHS33OGQfDe2mPMtrWiso3MNr/DSZIkprhKsRtsrD6ygfB5jOq8dIYLvdPDf1e6qf/Tj0iFA4MYqZApsaYTVMmlFDo0aNXdL9dC8TDrj3/CNPcUDHL2135RjFaS0y8i7cxHXbEOzea3Ufn6Xlw+x6nlyiU5vPRmPZV9TFQA6NU6Fpcs4NuLvsqCwlmsPrKBb73xfZ7d9QpNQe9AXoowjESSIgspisKLe1ex6tA67pzzJRwGW/82kIihW/1H0gUTSeeXoigKW46kmVIg/tynkySJmbnltEXa2d6wZ1ATFZJKjb6knNn6el5ef0QMwxR6tPdoK6+8f5S/uXIyallFrOUE4aPbMU9dnH1DN0eow23HKbDkZjqMQVea48Rqree/PglhnnMVLa8/RnqIuhYJ2a2iYS8/ePcXzPBM5ovlV6ORh7bFaE9qqzuoa01TPkWMougrSZKY5JyA2+TincPvE4gNrBOCJEnctMBBi5zLn9tmUPfHH5AMiMKBI12kag+HmcC4nO5JiHgqzrvHPqLYXtjvTn8ZJalQPMUkZ19K2upEvWM9mo/fQNVc06dpILk5Oq68xM1f3qxn/+H+JeJUKhXl7jLumH0TX5l7K23hdr7/7sM8tOE/2dGwl7Qi2pdmI3HVmmXiqQSPb/4Dm2t38NV5t2Lvd4Iijnb1H1GMFlKT5gFQ7VWIJRQKHOKi5/PUKjXz8mdS529kW91u0oOYTNAVlTMufIAOf4g9R85dnVgYe5raQvzi2W3c8oVJOKx6UtEg7R+9jGnaxah0xkyHNyq0R/wE4yHcptF3Z1craxiXH6alM8KHwfHIJhu+9/6U6bCEYZRMp/jTrlf4r23PceuMZVxQNDcjyU1FUXjrrePMd7UjW0Qtiv6QJImJznEU2wp45/D7tIXPXSDwbDRqFX97kZO6dA5/7LyY6j/+iGSnKBo4kkWO7WRPp51JeZ8lKZLpFO8d24hVZ2a8rSiD0Z0HlYziGdeVrHAXoj6wGe2Hr2D0N/earMjN0XHNpR5eWd1Ixb6OAe3eZXRwVdlS/unCrzHBUcKzu1/lH9/6EW9XrieaEC19s4lIUmSR5qCXB9b9ko5oJ1+Zewtmral/G4iG0b79e9DoSM64GD49WfnwYIppxSpxZ/YstLKGBQWzaA562XBiY796mJ+LSq3FVDqLBfpq/vjWfjGaQjilMxTnx09vYuncIsqK7CjpJL4P/oIurxRtzgg98RgizcFWttXt5sOqrexrruxXsdsDzYcpsuahkkZnC9dCi4eCvBr+uqUd34SrCVVuIXjgk0yHJQyDpkALD6z7JYdbj3PX/NspthVkLJY9W6oIh5NMmp6XsRhGuhJbIZNzJrL26IfU+Qc2RVSnUXH7YhcxvZNft13G3v/5NzGiYoRKRYLU1LUSScun2o+m02k2nNiE6tOaJiP+nF5SobgKSM5YQqqgDFfTYbQfv95rzQq3U8v1l3tYvcHL+5taB3xurZHVzMmfztfm3cayyVewrWE331p1Py/sfh1/tPcincLQG/4xgcIZFEVhf+AIT777Zy4uWcCiAdwNkTp9aFf/gbSrgFT5BacSFN7ONMea0vztxeJPfS4aWcP8wpkcaj3GGwffZXHJfAqsAz/hSqdTdEQD+I0GitN72djm4o+7D7EhWoFKUmHSGnEZ7ORZ3Iy3F1NgyUWlEjnDsSAcTfCTZzYxqdjORTPyURSFjs0rkSQJw8Q5mQ4va0QTMT6p2Y4v0kGBxYNBo6cl2MqepoPMyJ3CDE85KtXZj5OBWJBqfz1Lxl0wjFEPr1xzDpXeo1w6bSq/WtvBg9feSus7T6Nx5KHLH96uDsLwUBSFd499xJ/3rOSS8RdwQeGcjF6sBANRVn3k56qJcVSas7dJFHqXZ3ajU2v5uGYbMzxTmO6Z3O+/rVqWuGmBnc1HNfzi0BK+9NunuPGeb6GxOIcoamEohI9sY6d6NtMLDUiSRDqdYsOJzSRSCWbnTUUljaLzRUlCceTiTUCulEBd8S5pdxHJaReCtueGAQ6bhuVXelj7USstbTFuviYfjWZgvxNJkiixF1JiL8QX6WBz7Q7+6e2fsGTcQm4sv4Yck/jsZIq4cs2w1pCPZyr+zIm2am6fc+OAqnGrGo+jXfcCyYmzSI+f0W3Z2l0pZpSoRMHMPlBJMtPck/GG2/ikpgKL1sR0z2QKrbmoztH6Na0oBGIBWsPttITaaA220RELYNToMWuNON1uLovt452js1k0W4NaqxBLxWkMtnDAe4TGQAuRZITynDIWFM5iQcGs/k/zEUaEcDTBj5/ehMOq5+pF41AUhc4da0m0NWKZfzXSaDrxOA+d0SBrj36A2+Ti4pL5n42EsOYzwVnCvqZKGgMtXDb+InRnuTDaXr+HElsh2lFUMPPzZEmmwJZHSq5mWlEpj3yU4HsXLKPpxX+j4M6H0Dgzd3ddGHwtwVae2vYs/k9HW7oz3FZXURRe+fM+JplDeMaJ99pgcOhtLCqay+7GA3hDPi4eNx+t3L/kjyRJXDTJzHi3jpWb0mz/xWvc+83rKSzOH6KohcHm3/MBWzpnc/M0A4lUgvUnNqGk058mKEbnyEAAxV1E0pmLqu4w2g9eJjnzEtJ543pc12RUs+wKDx9v9fHEn6q4/YuF5Lp7LyKqKAqN3hiHjwepa4oSCCZRyxJul5ZJE8xcPfFylo5bxOa6HfzLmodYVDSHm6ddR6559HQIGylEkiJDYsk4qyrf5a3K9SwsnM3V7sX9T1AoCuq9H6He9QGJ2ZeiuLsPE6/xpjnalOb/LBZ/5v5wG124Suw0BlrY1bifD6u3kGN0YNNbMaj1gEQ8nSCSCOOPBumMBdDIGmx6KzadmTLXeKx6C/JpXyQqDlNW3Urlrkn87RfPHM4fjIU40VHLptodPLvrVSY4irlswkVcWDS3361nhezUEYjx42c24XEYWLakFIDOnWuJ1h3EOv8aVKP4Yro//NFO1hz5gAnOEoqtZ174GNR65hfO5EjbCd48vI4vlC7GYbB3W+e4r4a2cDsXlcwfpqgzZ5ytkI01Fdw0dQrv7kvz2E4r906/jIbnfkzB3/1UJCpGgUQqwRuH3uXNyve4qHg+N0+9LitG3m14cx/tgRTLLvacGr0pnD+DWs/CotlUeo+x6tA6lo5fNKCEVL5dw13XlPDhliN85zef8MVLJnLrdbPQaUbvRe5okPC3sKsqjEGvxWpM8M7hTzBqTUzLmzK6RlCcjawhPW46ijMf9b5PSDdVkZyxGNRnniNp1Couu8hF5bEQv3uhivkz7Fy6yIXFfOZ1T2t7nF0H/OzY5yeZUijJN5Dj1FJSYCCVVujwJ3jvYy+vrW5k6SIXl827mMUlC9hSt5N/Xftz5uXP4Obp11FkFcm+4SKuXodZPJVg/bFPePXgOxRZ8/na/NtwGGwcrqzs34aiIbQfvIzU6SO++ItgtHRbnEwpvLw5yQWTZLRiFEW/qSSZQms+hdZ84qk4HdFOwokI/lhXRWFZJWPSGHEbXZi1pl7bG6YLy1jYtoU3jzvYstPIorndh4+ZdSZm5pYzM7ecRCrJkbbjrD/+CX/Y+RIXFs3j6rKlTHT2nE0Wst/xej8P/c8WZpXl8IUFxZBO0bF5JQlfY1eCQiSiAPBHA6w58gFlznEUnONEQCWpmJIzEUvAzOojG5jmnsJU90TUKg3HfFVsb9jD/IJZ3RKFo5VerSff4mFP8yGWzZnDGzs7+PUeD/84fSkNf3qA3Fu/j75wUqbDFAZAURQ21+7g2d2v4jI4Tp0vZIPaQ+1sPqxlxTwNslYkWAebLMlM80ymOehl3bGPmegcx9z86f1upSyrJC6/aDJTK/fx/padrNvRxNdWzGLJnIKRX9NglOrYvIq1iflMGp/ircPrKbEXMt5WNOb+XorFSXLmEuTqA2g/fJXEvC+g2M8czSBJEuVlZkoKDew60Mkjzxwj36OjMFePRqPCH0hQ0xAhEk0zodjIJQuduF3aM36fJQUGZk210tYeZ8c+P5t2tHPTNXlcPmExFxXNY1v9Hn703iNMzSljxdRrmJxTOly/ijFLJCmGSTAWYt3xj3n78HpyzW5unX7DgGseqGoOof3wVVL5E0hetAx6mIrw9o4keg1MyhtbB7WhoJW1eEzn2eZJUhHIHce1VPL6ehmbRU15Wc9V0DWymmmeyUzzTCYQC7Kr8QD/8fHvsOhMXDVxKUvGLcSoMZxfPMKwSKcV3vz4OH9eW8myJROYVeYmGfDR/tFLSBotlvlXixEUn+pKUGygtJcExekKLLnY9VaO+KrY23IQRQGbzsyCgtlYdP0sPDyCTXSO45Oa7UxyjWfFPDvr9nXys61O7l1wA8pfHsJx2e1Y51095k5yR6q0kmZHw17+WPs66hY115ZdSmkWJal3fnyEjZU6bpiewOQQ87WHUq7ZjcNgo7L1GK8dWM38wllMcJSg6udnOW/KDG4yHebIoQqeewte/eAoX1s+nRkTR1ALyzEg2dnGx1uP0Jaajya6nVm5U3AZR193qj6TNaRKZyO1NaDZ8g6pCTNIlc2BHkaSGQ0yi+c7WDjLRmNLjI7OBNF4ErNRzdILXLgcmu7fgfEoUrgTKZEAJBStFkVnxGU3cNUlbmoaIrz8diMTx5lYfmUul4y/gEXFc9lVv4ffb/gt+bKBSwpmUe6ejNbiQO3IQ6UWdXkGk0hSDCFFUahsPca6Yx+zrWE3U1yl/M2M5eQNoO4EAKFONJvfRNVUTWLWUpScnofxbqpMsrcmzY0L1eKkNIsoKhnz9Flcu+8QL70ON15bwKwZ5x7CadGZuWT8BSwZt5Bjvmo21Vbw/O7XWFA4i8snXMQ09+SsGPYrnOloXQe/e3UPsXiKb9w4E5dVS/DgJoJ7N6AfPwN9yXTx+fyUL9zOumMfU+oc1++hlEaNgdm5U0krKdKKglo19r7WtLKWKTmlfFC1hWVTruCqmTby7GEe/iTNddNuY8mWtwgf3kLOtd9A4xAdGLJVNBHlo+ptvHX4PQAmm0r4wuxLs+Y4kUorrHtjHxVHEiwtacORPyHTIY0JWlnLzNyptEc62Nd8iL3Nh5iVO5Xx9qJ+ff/riyYzRW+kcP97VJsu4ZHnKijKtfB315VTPk4kmzItlUqx/a+/5s+BOUwc18IFJfP7PXJmtFJcBSTNDuQTe5AbT5CYdQmKo+drKY1GRUmhgZLCz93MS6VQeetRNZ1A1VoPyTjozShqNSgKUjIBsQikU6A3MdFgosSjZ3O9m0ef9HKT5zBzpKMsjYW4RGcgplYTqKpidzqJQ9Kgj8fQukswTlqAShnDiaVBlNGzuVWrVvHUU0+RTCb5yle+wh133NFt+cGDB7n//vsJhUIsWLCAn/70p6jV2X0Cmk6nOeI7wda6XWysrUCWZGbnTeUfLvgKJq1xYBuNhlDv+Rj1wc2kSspJLP0SyGf+HhRFYcP+FB8fTHHDfDV6bXac2AinUWvImTWNZYeP8+Y7SaqPtHDNDZPRas89LF2SJMpc4ylzjScUD7O3+RD/XfEXgvEwFxbP48LieZTnTEQ+R4HPkWIkHxcURaGyup2X1x/hUJWPyxcUM3+yi1jNflo+2IBKa8C64Fpkkz3ToWaNqvZaNtVWMNU9iTzzABO4dE3ROkezj1Ev35xLR6ST9cc3ccXEi5lZbKTYpWX17k42BK/mi7pWZvz+X7HNuBj7RSvQ2HMzHXKPBvr5b2ho4L777qOtrY0JEybwyCOPYDJl/2iaRCrBvpZKPq7exvaGPYy3F3NF6RImOIo5cvhw1iQo6qp9vPbGCeRElBvnGwjEB3g+IwyYw2DngsK5tEZ87G8+zPb63UxyTWCiczxWvblP29DmFGFbeB2l+z9mvEvHCdtSfv7HbeS5jMwqlpgzJ40sZ9+Nj9F8XIgmonxcs40T77/EjqNzGJ+v4uKJIgF4Bp2B1JQLkFrr0GxbQ9qVT6psLortHDf7FAWVrwlV/TFUjcfBYCbtyCU1ZSGK3tRzLZ1UEikWhngMOZXgYluC0lCYt+qm8olpGssv0FLgklEBNqAzFmCnr4qatlo88SDTj2zE0eql9ui72OZfi3naxajO0qVEOLeMndk3Nzfz6KOP8uqrr6LVarnttttYtGgRZWVlp9a57777eOihh5gzZw4/+MEPeOmll7j99tszFXKPEqkENf4GDrceZ19LJQdaDmPVWShzTeCWadeTa3YP7CRDSaNqrkE+XIF8Yh/pvPHEL77xjNoTJzW2p3ljW5JgFL64UI1Znx0nNkIPVDKO8knc5PKy6VAnv3o8xuWzNMxdMgmdofehYiat8VRiojXk44D3ML+v+DO+SAfT3JOZmTuFKTkTGWcrRN1DMiubjcTjQlpRONHgZ+v+JjbsqCMaT7Fomod7rnSSbtiB97W9yGYbpkkLUTvzs+aiI9MCsRAVDXvwhnzMK5iJTdfz9CehbyRJotxdxv6WSt6pXM/SCYuwG63cdpGTE94YGw6r+av/Syw60M6MXT9ncrEd28ylGCbOQ222Zzp84Pw+/z/96U+5/fbbueGGG3jyySf57W9/y3333ZfBV9OzZCpJtb+eytZj7Gk6yEHvUTzmHMpzJnLPwjsxZ9E0pVRa4Vill42f1FHXLrHA3cnkaXlIag2BlkimwxuTJEnCbXThNroIxILUdzbx9pH16NU6iqz5FFg85Jic5+wIIhutWOdfS6y+kgnHX6GseCLV5lms3+1nzc61XDqviItnFzC52HHONs/DZTQeFzpjQfY2H2Rr3W52N+5jqdfAthMLsOVYuKS89w4VY5YkobiLSTrzUTVXodn6Dmj1pDwlYHWiaHSQTiFFgki+FlRt9aDWknblk5xxMej6kFyV1ShGK5y2al4O3FSscLA+zTPvJSnJSXFxuZqyPAmrzsK8/JnMzZuBL9JBVWcjH+okbCEv0zb8Ec/qp/EXTiA1aS6G4mlYDFZ0au2pUZ/pdIp4KkksFSOSiBKMhwnGQwRiQTpjQQKxIIF4iFA8TDgRIZqMEUvFSaaSpJR0168FCVmlQqPSoFdrMWgMmLRGrDozNr0Vp8GGQ2/DYbDjNNhxGe2YtaasPx/N2BXMxo0bufDCC7Hb7QBcc801rF69mm9/+9sA1NfXE41GmTNnDgA333wzv/nNb/p0MaIoCgDxeLzb47FYrF8xKopCMp0kFI8QjIfojAVoj3TSFvHREmqjMdBCW7gdh8FGntnNOEshS4oWYtZ+dpKhpBQUlHPvKJ1CH49C/QmkDi+q1npULTWg1pHOLSZxyf8B3afDlj7dVDSh0BZQqG9TqGxI4wsqlBepmZKn6mmq1nnTaDTIWT6tINtj/Hx8ptxcrvQotDa0cag6zsbDRxlnDjM+T40n34o9147RbkGSzz46wqmzs6ToApYUXUA4HqbG38DRlhN8dHwLHZFO3CYXeWY3eWY3LqMDu96KTW/BrDVh1BjOGHnRn8/Iyc/Xyc/bYMjEcaEvFEUhEksRCMdpD0Rp64jQ0BqiptHP8foOjLpWSmwKX8gLkJNoIlX1AbEmM2pnPtaF1yGfJbk41GS1DFnyHZROK4QSYXzhdo5GqgkeP0iBNZdydxlyFlUsz9bjSF/iklExO286DcFmPjixGY8lh2JbAfkOB3dc7KQ9lORQo4U3W3LpPJagqK6FXOWP5BrSeDw2cvI82HNyMDlcyCY7Kr35nMef0508dpzPcWGgn/9bb72Vbdu28eSTT556/O/+7u/6dDFyPseFnraVSCcJxcOE4mE6YwE6Ip20RTpoDnlpCnhpDfuwG6zkmz2U2cfzhXGLMZxWYyidTJ/6vyzJ3X4eSumUQigUp8Pbibexk7rGMFXtGixEKLVFWTrdjtrwWV2MbP2cwNiJzW6wYjdYmapMIhAP4ov4OeA9SqA+iF6tw6a3YNGaMWmNGDUGDBodWlmLVtYgyzL6kqlo88uINx9nXPMGCsxJYjmTOdECT/+1nmBMYWKRjYlFdgrdJjwOE06rHoNO7vfFzVg7LiiKQjydIBjrunbwRfx4g63UB5qp7WygMxJgosqN1WdkUtNMNsZczJoiUVao63ejnGx+v/dHv16HSgtFk1EKJyGF/MjBdqTmGkglu+pVaHQoVgdKYSloDUjA+Y4zllUwe5zMtGKoak6zfl+at3dCaa6KkhwVHpuE3eRkZq6LnLST3Gl5dEY7qQ60ofXWY634EPXmdzlhNtKo1+PVqvHrtETValSyjFalRavWoJO16NRadLIWg0ZPoSkPvU136jGNrEWrUiOrVKgkFRISadKk0wpJJUkilSSejBNNxYgko4TjUXyBdmp9jYQTJxMgIVLpFBad+dR1gVVnwaazYNGZsWiNGLVG2mJ+mv1e9GodWlkz6N1lejsuZCxJ0dLSgtv9WZVWj8fDnj17zrrc7XbT3Nzcp20nEgkADh8+3O3xffv2nU/IANjQY6OAUl0BfD7ZmQTaIE6o39v12EuJpgFrDlinwueLxn7+PEUGl73r36yJ/d5d/+NzZX9/4GyP8WzxeXI8TJvVw4I4JFqifd6+Gigln1JDPny+rmYC8EPSH6WNKG14e9zGQD4jiUQCvX5whrJl4rgwEDYZbLkwNdcAc07/ZXuAYfhA9lHhhDPb3WaKDFgNFqxWC+PzSjIdzlll63GkP3Hl5riZO37GGY+79DIXu3Rc3O3Rzzp/hIBQAmgJAIF+xff5Y8dAjgsD/fy3t7djNptPTfvK1HGhJ1b0WMljgi7vzHOGBNCaPus5Q6Ehl3hj/88nBkoH5BqN5E40MqOXw1i2fk5gbMaWx8Cmysk6HQbzVAwTp556rBBY0m2tMCTCdLR46Wg5nyjH7nFBh0QRbop0bha5Tzs2FwE9nf/1Qza/3/tjwK8jZ+DTRAeq0A0Xn/kVC0A0DY5cF3EF9Do3et1EyOm6xxwDHJ/+67Pkp/8+92CaHi8NkVGhR48VPV0TUgDNp/96E/v0HykiBHDpbNQdrelPtANytuNCxpIU6XS6WyZWUZRuP/e2/FxMJhOTJ09Go9Fk/VAWQRipFEUhkUgM6vxOcVwQhJHtfI4LA/3893QcEMcFQcge4rggCMLn9XZcyFiSIi8vj+3bt5/62ev14vF4ui33ej+729va2tpt+bmoVCoslswMrxaEsWSwRlCcJI4LgjDyDfS4MNDPv9PpJBAIkEqlkGX5jOedizguCMLwEMcFQRA+71zHhYxNYlq8eDGbNm3C5/MRiURYu3YtS5cuPbW8sLAQnU5HRUUFACtXruy2XBCE0UccFwRh7Bro51+j0bBgwQLefvttAF5//XVxXBCEUUIcFwRhbJKUwax610+rVq3iv/7rv0gkEtxyyy3cdddd3HXXXdx7773MnDmTQ4cO8cADDxAMBpk+fTo///nP0Wp7734gCMLIJY4LgjB2DfTzX19fz/e+9z3a2trIz8/n17/+NTabLdMvRxCEQSCOC4Iw9mQ0SSEIgiAIgiAIgiAIgnDSyO9ZIwiCIAiCIAiCIAjCqCCSFIIgCIIgCIIgCIIgZAWRpBAEQRAEQRAEQRAEISuIJIUgCIIgCIIgCIIgCFlhVCUpGhoauOOOO7j22mv51re+RSgUOmOdlpYWvva1r7FixQpuuukmNm3aBEAikWDevHmsWLHi1L9UKjUoca1atYrrr7+eq6++mueff/6M5QcPHuTmm2/mmmuu4f777yeZTPb59QxHfOvWrWPFihV88Ytf5J577sHv9wPw2muvsWTJklO/r0cffTQj8T3xxBNcfvnlp+I4uU42/P4OHjzY7T11ySWXsGzZMmD4fn8AwWCQZcuWUVdXd8ayTL//RpqKigpuueUWVqxYwVe+8hXq6+vPWCcej3Pfffdx3XXXcdNNN3Hs2LFhi++xxx7j8ccf73FZfX09c+fOPfWe+9rXvjZscfUWWyZ+Z315jw/372yg3xdDbaDHYWHg+nKsybRzfaaHW2/v0Uw71/dwpj3xxBPccMMN3HDDDfzyl7/MdDhCH2T7+70/vvzlL3PDDTec+v7YvXt3pkPql89/tjdu3Mjy5cu5+uqrh/Tcfih8/rV8//vf5+qrrz71t3n33XeHLxhlFPnGN76hvPnmm4qiKMoTTzyh/PKXvzxjnf/3//6f8txzzymKoijHjh1TFi9erCSTSWXv3r3K3//93w96TE1NTcrll1+u/P/t3XlIFH0YB/Cvr1d00IVmhRlFN9hlpBWZlNq6rpqdREWZpGUHRYVuRGFk0EEiHXSykFpaYVlUCEH9kZJHRRZSQZelVmLllrpu7vP+sTi5q+m4ujOz8nwgcHZm8TvP/I7tt7vj9+/f6ffv36TRaOjNmzcWx6jVanr69CkRESUlJVFGRobo87F3Pr1eT7Nnz6aqqioiIkpNTaUDBw4QEVFycjLdunWr2zN1Jh8RUVxcHD158qTVc5VQv5bq6upIrVZTUVEREUlTPyKiZ8+eUXh4OE2aNInKy8tb7Zez/TmioKAgKisrIyKiq1evUnx8fKtjzp8/T3v37iUiosLCQlq6dKndc9XW1lJSUhL5+vpSWlpam8fcu3dPyCUlMdnkqJmYNi5lzboyX8id61/jMLOdmLFGLmL6tJQ6MxfLoaN5WE6PHj2i5cuXk8FgoMbGRlqzZg3l5eXJHYu1Q+ntvTNMJhPNmTOHjEaj3FFsYt236+vrKTAwkD5+/EhGo5FiYmLowYMHcscUpa1xKjw8nL58+SJLnh7zSQqj0YiioiKEhoYCAKKjo3Hv3r1WxwUHBwvvZPv4+MBgMKCurg6lpaWoqalBdHQ0li1bhsLCwm7JlZ+fD39/fwwYMAC9e/dGaGioRa7Pnz+joaEBU6ZMscgt9nzsnc9oNGLfvn0YMmQIAGDcuHGorKwEAJSWliInJwcajQY7d+4UPmEhZT4AePHiBc6cOQONRoPk5GQYDAbF1K+lM2fOYMaMGfDz8wMgTf0AIDs7G/v27YOnp2erfXK3P0fT2NiIbdu2Yfz48QAs+0NLDx48QEREBABgxowZqKmpQUVFhV2z3b9/HyNHjsS6dev+eUxpaSlev36NyMhIrFmzBq9evbJrps5kk7pmYtu4lDWzdb6wN1vHYWY7sWONXMT0aSl1Zi6WQ3vzsNw8PDyQmJgINzc3uLq6YvTo0Xafr1jXKL29d8bbt28BADExMYiIiEB6errMiTrHum8/f/4cPj4+8Pb2houLCzQajcNcG+tzqa+vR0VFBbRaLTQaDdLS0mAymSTL02MWKb5//46+ffvCxcUFgHnQ/fLlS6vjQkND0b9/fwDAhQsXMGHCBPTr1w9OTk6YP38+srKysH//fmzfvh01NTVdzvX161d4eHgI256enha5rPc35xZ7PvbON3DgQAQHBwMAGhoacPbsWSxYsEDItGnTJuTm5mLo0KFITk6WPN/v378xYcIE7Nq1Czk5OaitrcWpU6cUU79mer0e2dnZ2Lx5s/CYFPUDgIMHDwoLI9bkbn+Oxs3NDZGRkQAAk8mEEydOCP2hpbbqWlVVZddsUVFR2LBhA5ydnf95jLu7OyIiIpCTk4P169cjISEBjY2Nds0lNpvUNRPbxqWsma3zhb3ZOg4z24kda+Qipk9LSexcLJf25mG5jRkzRlj4fP/+Pe7evYvAwEB5Q7F2Kb29d0ZtbS0CAgJw8uRJ6HQ6XLlyBY8ePZI7lmjWfduRr431uVRXV8Pf3x8pKSnIzs5GcXExrl27JlkeF8l+Uze6e/cuDh06ZPGYj48PnJycLB6z3m5Jp9MhKytLWLFbsWKFsG/ixInw9fXFkydPuvyiwGQyWeQgIovtf+23Pq6j87FXvmZ6vR4JCQkYP348Fi1aBAA4efKksD82NlZYzJAyX58+fXDu3DlhOyYmBlqtFitXrlRU/XJzc7FgwQIMHjxYeEyK+nVE7vanZG2NM6NGjYJOp0NjYyMSExPx588fxMXFtXqudf2ICP/91z1rwu3l6siWLVuEnwMDA3Hs2DG8fftWeLdWzmxS10zsnGHvmrVk63xhb7aOw9u3b7d7tp6gK2ONnNmURK6+0ZO8efMGcXFx2L17N0aOHCl3HNaOntTep06diqlTpwrbS5YswcOHDzF79mwZU9muJ10bb29vi/+rrF69Gjdu3MCyZcsk+f0OuUihUqmgUqksHjMajZg5cyaamprg7OyMb9++/fNjdYcPH8bDhw+RkZEBLy8vAMCNGzcwbdo0jBgxAoC5Ubm6unY5q5eXF4qLi4Vt61xeXl749u2bsF1dXQ1PT08MGjQIer1e1PnYMx/w92aj/v7+0Gq1AMyLFtevX8fatWsBmOtlj3dUOspXUVGB/Px8LFmyRMjh4uKiqPoB5puPtnyBKVX9OiJ3+1OytsYZwPyu8caNGzFgwACcPn26zXFiyJAh+Pr1qzCeNNfVnrnEuHTpEsLDwzFw4EAAf/tLd+lKNqlrJnbOsHfNWrJ1vrA3W8dhJk5Xxhq5simN2LmYta2kpARbt26FVquFWq2WOw7rQE9q78XFxTAajQgICADg+POH9TztyNfm1atXeP/+vfC1WKmvTY/5uoerqyv8/Pxw584dAOZFh7lz57Y6TqfT4fHjx7h8+bKwQAGYL8TFixcBmL8fVVZWhunTp3c516xZs1BQUICamhrU19cjLy/PItfw4cPh7u6OkpISAMDNmzcxd+5c0edj73xNTU2Ij4+HSqXCnj17hNXA3r174/z588IdeNPT0+3ySYCO8vXq1QtHjhxBeXk5iAgZGRkIDg5WTP0Ac6d++fKlxUqxVPXriNztzxHt2rULPj4+SE1NhZubW5vHBAYG4ubNmwDME7C7uzuGDRsmZcw2FRUVCR/VKywshMlkwqhRo2ROZSZ1zcS2cSlrZut8YW+2jsOsa8SMNcxMzFzM2lZZWYmEhAQcPXqUFygcRE9q73q9HocPH4bBYMCvX7+Qk5Pj0PPH5MmT8e7dO3z48AFNTU24ffu2w14bIkJKSgp+/vwJo9GIrKwsaa+NBDfnlMynT59o1apVpFKpKCYmhn78+EFERJmZmZSamkomk4n8/Pxo3rx5FBERIfyrqqoivV5PW7ZsIbVaTeHh4VRQUNBtuXJzc0mtVlNISAidPXuWiIhiY2Pp+fPnRERUVlZGixcvptDQUNqxYwcZDIZ2z6e7tZcvLy+Pxo0bZ1EvrVZLRERFRUUUFRVFCxcupPj4eKqtrZU8H5H57vvN+xMTExVVPyKi6upqmjVrVqvnSVW/ZkFBQcLdepXU/hzJy5cvaezYsRQWFib0h9jYWCL6O84QETU0NNDu3bspLCyMoqKi6MWLF5JlTEtLs7jbfstcVVVVtHbtWlKr1RQdHS385QAlZJOjZh3NGUTS18zW+cLebB2HmW3aG2uUxLpPy6mtNqo0LedhpThw4ABNmTLF4nVeZmam3LFYBxyhvYt1/PhxWrhwIYWEhJBOp5M7jk1a9u38/HzSaDQUEhJCBw8eJJPJJHO6zml5Lunp6aRSqSg4OJiOHDkiaQ4nIiLplkQYY4wxxhhjjDHG2tZjvu7BGGOMMcYYY4wxx8aLFIwxxhhjjDHGGFMEXqRgjDHGGGOMMcaYIvAiBWOMMcYYY4wxxhSBFykYY4wxxhhjjDGmCLxIwRhjjDHGGGOMMUXgRQrGGGOMMcYYY4wpAi9SMMYYY4wxxhhjTBH+B+mQrnSiIHJ1AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1296x1296 with 16 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for Figure 3 plot\n",
    "fig, axs = plt.subplots(4, 4,figsize=(18,18))\n",
    "sns.set(style=\"whitegrid\", font_scale=1.0)\n",
    "sns.kdeplot(x=df_29k_test['EV'], hue=df_29k_test['BrainRegion'], fill=True, ax=axs[0,0],legend=False);\n",
    "axs[0,0].set_title('Explained Variance', fontsize=18, fontweight='bold')\n",
    "axs[0,0].set_ylabel('Controls', fontsize=18, fontweight='bold')\n",
    "axs[0,0].set_xlabel('')\n",
    "sns.kdeplot(x=df_29k_test['MSLL'], hue=df_29k_test['BrainRegion'], fill=True, ax=axs[0,1],legend=False);\n",
    "axs[0,1].set_title('MSLL', fontsize=18, fontweight='bold')\n",
    "axs[0,1].set_ylabel('')\n",
    "axs[0,1].set_xlabel('')\n",
    "sns.kdeplot(x=df_29k_test['Skew'], hue=df_29k_test['BrainRegion'], fill=True, ax=axs[0,2],legend=False);\n",
    "axs[0,2].set_title('Skew', fontsize=18, fontweight='bold')\n",
    "axs[0,2].set_ylabel('')\n",
    "axs[0,2].set_xlabel('')\n",
    "sns.kdeplot(x=df_29k_test['Kurtosis'], hue=df_29k_test['BrainRegion'], fill=True, ax=axs[0,3]);\n",
    "plt.legend(\"upper left\", bbox_to_anchor=(1, 1))\n",
    "axs[0,3].set_title('Kurtosis', fontsize=18, fontweight='bold')\n",
    "axs[0,3].set_ylabel('')\n",
    "axs[0,3].set_xlabel('')\n",
    "sns.kdeplot(x=df_12k_mqc2_test['EV'], hue=df_12k_mqc2_test['BrainRegion'], fill=True, ax=axs[1,0],legend=False);\n",
    "axs[1,0].set_ylabel('mQC', fontsize=18, fontweight='bold')\n",
    "axs[1,0].set_xlabel('')\n",
    "sns.kdeplot(x=df_12k_mqc2_test['MSLL'], hue=df_12k_mqc2_test['BrainRegion'], fill=True, ax=axs[1,1],legend=False);\n",
    "axs[1,1].set_ylabel('')\n",
    "axs[1,1].set_xlabel('')\n",
    "sns.kdeplot(x=df_12k_mqc2_test['Skew'], hue=df_12k_mqc2_test['BrainRegion'], fill=True, ax=axs[1,2],legend=False);\n",
    "axs[1,2].set_ylabel('')\n",
    "axs[1,2].set_xlabel('')\n",
    "sns.kdeplot(x=df_12k_mqc2_test['Kurtosis'], hue=df_12k_mqc2_test['BrainRegion'], fill=True, ax=axs[1,3],legend=False);\n",
    "axs[1,3].set_ylabel('')\n",
    "axs[1,3].set_xlabel('')\n",
    "sns.kdeplot(x=df_transfer['EV'], hue=df_transfer['BrainRegion'], fill=True, ax=axs[2,0],legend=False);\n",
    "axs[2,0].set_ylabel('Transfer', fontsize=18, fontweight='bold')\n",
    "axs[2,0].set_xlabel('')\n",
    "sns.kdeplot(x=df_transfer['MSLL'], hue=df_transfer['BrainRegion'], fill=True, ax=axs[2,1],legend=False);\n",
    "axs[2,1].set_ylabel('')\n",
    "axs[2,1].set_xlabel('')\n",
    "sns.kdeplot(x=df_transfer['Skew'], hue=df_transfer['BrainRegion'], fill=True, ax=axs[2,2],legend=False);\n",
    "axs[2,2].set_ylabel('')\n",
    "axs[2,2].set_xlabel('')\n",
    "sns.kdeplot(x=df_transfer['Kurtosis'], hue=df_transfer['BrainRegion'], fill=True, ax=axs[2,3],legend=False);\n",
    "axs[2,3].set_ylabel('')\n",
    "axs[2,3].set_xlabel('')\n",
    "sns.kdeplot(x=df_pt['EV'], hue=df_pt['BrainRegion'], fill=True, ax=axs[3,0],legend=False);\n",
    "axs[3,0].set_ylabel('Patients', fontsize=18, fontweight='bold')\n",
    "axs[3,0].set_xlabel('')\n",
    "sns.kdeplot(x=df_pt['MSLL'], hue=df_pt['BrainRegion'], fill=True, ax=axs[3,1],legend=False);\n",
    "axs[3,1].set_ylabel('')\n",
    "axs[3,1].set_xlabel('')\n",
    "sns.kdeplot(x=df_pt['Skew'], hue=df_pt['BrainRegion'], fill=True, ax=axs[3,2],legend=False);\n",
    "axs[3,2].set_ylabel('')\n",
    "axs[3,2].set_xlabel('')\n",
    "sns.kdeplot(x=df_pt['Kurtosis'], hue=df_pt['BrainRegion'], fill=True, ax=axs[3,3],legend=False);\n",
    "axs[3,3].set_ylabel('')\n",
    "axs[3,3].set_xlabel('')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "figure: Figure 3—figure supplement 1.\n",
    ":::\n",
    "![](elife-72904.xml.media/fig3-figsupp1.jpg)\n",
    "\n",
    "## Comparison of the explained variance in cortical thickness across the different test sets.\n",
    "\n",
    "The patterns appear to be robust and consistent across the different test sets.\n",
    ":::\n",
    "{#fig3s1}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 111,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the explained variance numpy arrays for Figure 3 Supplement 1\n",
    "# There is one npy array for each test set and each hemisphere\n",
    "parcellation_29ktest_l = np.load('docs/parcellation_controls_ev_l.npy')\n",
    "parcellation_29ktest_r = np.load('docs/parcellation_controls_ev_r.npy')\n",
    "parcellation_12k_mqc2_test_l = np.load('docs/parcellation_mqc_ev_l.npy')\n",
    "parcellation_12k_mqc2_test_r = np.load('docs/parcellation_mqc_ev_r.npy')\n",
    "parcellation_pt_l = np.load('docs/parcellation_pt_ev_l.npy')\n",
    "parcellation_pt_r = np.load('docs/parcellation_pt_ev_r.npy')\n",
    "parcellation_transfer_l = np.load('docs/parcellation_transfer_ev_l.npy')\n",
    "parcellation_transfer_r = np.load('docs/parcellation_transfer_ev_r.npy')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Controls Test Set Explained Variance, Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_29ktest_r, threshold=None, symmetric_cmap=False, vmax=0.7, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Controls Test Set Explained Variance, Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_29ktest_l, threshold=None, symmetric_cmap=False, vmax=0.7, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# mQC Test Set Explained Variance, Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_12k_mqc2_test_r, threshold=None, symmetric_cmap=False, vmax=0.7, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# mQC Test Set Explained Variance, Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_12k_mqc2_test_l, threshold=None, symmetric_cmap=False, vmax=0.7, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Patients Test Set Explained Variance, Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_pt_r, threshold=None, symmetric_cmap=False, vmax=0.7, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Patients Test Set Explained Variance, Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_pt_l, threshold=None, symmetric_cmap=False, vmax=0.7, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Transfer Test Set Explained Variance, Right Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_right, parcellation_transfer_r, threshold=None, vmax=0.7, symmetric_cmap=False, cmap='plasma', bg_map=fsaverage.sulc_right)\n",
    "view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Transfer Test Set Explained Variance, Left Hemisphere\n",
    "view = plotting.view_surf(fsaverage.infl_left, parcellation_transfer_l, threshold=None, vmax=0.7, symmetric_cmap=False, cmap='plasma', bg_map=fsaverage.sulc_left)\n",
    "view"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "figure: Figure 3—figure supplement 2.\n",
    ":::\n",
    "![](elife-72904.xml.media/fig3-figsupp2.jpg)\n",
    "\n",
    "## Showing the explained variance for each brain region across 10 randomized resampling of the full control test set.\n",
    ":::\n",
    "{#fig3s2}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 125,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the file containing controls test set 10-fold resampling evaluation of explained variance\n",
    "cv = pd.read_csv('docs/cross_validation_10fold_evaluation.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 126,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu0AAAztCAYAAADMgSE6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde1zOd//A8dd16ESlRA5hzsfYgZytKZaylNMcfiJjwzRscs+mYcNmyNlt4zbGbGyqJect5mYopyFizmREKp27rq7r+v3h7ppWXUkRej8fD4/HdX2/n8P7+4m8r8/1+X6+CoPBYEAIIYQQQgjx1FKWdQBCCCGEEEII0yRpF0IIIYQQ4iknSbsQQgghhBBPOUnahRBCCCGEeMpJ0i6EEEIIIcRTTl3WAQjxuOj1etLT0zEzM0OhUJR1OEIIIYQQhTIYDGi1WipWrIhSmX9eXZJ28dxKT0/nzz//LOswhBBCCCEeWuPGjbGxscl3XJJ28dwyMzMD7v/lNzc3L+NoICYmBmdn57IO47kj4/p4yLiWPhnTx0PG9fGQcS19RY2pRqPhzz//NOYv/yRJu3hu5S6JMTc3x8LCooyjue9pieN5I+P6eMi4lj4Z08dDxvXxkHEtfQ8zpoUt6ZUbUYUQQgghhHjKyUy7EEI8xdJibpNxIQnzahWp5FKTG0latDo99apb5Sn317E/ObbvFllaFY1datLKtV4ZRSyEEOJxkKS9EFFRUSxduhSAgIAA2rVr99B1ExMTCQ4OJjo6GrVajaWlJQEBAbi7u5usl5KSwqeffmq8edLR0ZFPPvmEunXrmqz30UcfER0dzfvvv88bb7zx0HEWxM/Pj3Xr1pWojdKwaNEinJ2dixwzIZ5nyb9f5+6uS8b3x3+/yZy75pihxbm+LdP8G2KugquLlxFxyZaUCpkomjbnfFIGF/b9SnNDJJYVq1K98ZtY2tQqwysRQojHR6vVEhcXR1ZWVlmHYpJarSY2NhYAS0tLatWqVej69QLrP67AyiuNRsOwYcPw8PBgx44dqFQqLl26xIgRI3BycqJp06aF1g0ODqZx48YEBwcDsGXLFt5//33CwsJM9hkWFsbJkydL5WbL6OjoErdRGsaPH1/WIQhR5lKO3czzvlZKBu9abKWD2VGybptzZIsvl1KOc+fsdRLsG2LezgtVtboAnMYWjTaJVkmRXD/xbxp2molCISsihRDPn7i4OGxsbKhbt+5TvcVzeno6FStWxGAwcPfuXeLi4qhX7+G/FZWk/SFs2rSJ2bNnk5KSwpQpU3Bzcyu07M6dO7GwsCAgIMB4rH79+kyfPh2dTmeyn4SEBBwcHNDr9SiVSry8vKhQoYLJOqNHj8ZgMNC/f39mzJjBv/71L+zt7bG0tGTVqlV8/vnnHDx4EIVCQa9evXjnnXeIiori66+/xtLSkosXL9KkSRPmzZvHnDlzAOjfvz8//fQTe/bsYeHChej1emrXrs1nn31GlSpVcHNzo2fPnvz++++o1WreffddvvnmG65evcqHH36Il5cXf/75JzNmzCAjI4PExETeeecdBg0axJIlS/jjjz+4efMmQ4YMoU2bNkyePBmdTkebNm3473//yy+//MLkyZNp27Ytbdu2JSAggEaNGhEbG4uDgwOLFi3Czs7u4X+AQjyjlJZ5f0Xr0dPJ7DgKhZ6KZHHasI3U3/8ixboZqM1QOr6Qp3ycqjmtiESblYgm4w4WFas9yfCFEOKJyMrKeuoT9gcpFAocHBy4c+dOserJtMtDsLGxISwsjKCgIJYtW2ay7IkTJ3Bxccl33NXVlRYtWpisO2bMGEJCQujYsSMTJkwgJCSETp06mazz1VdfARAeHk7lypW5fPkyc+fOZfXq1fzwww/cvHmTzZs389NPP7Fr1y5+++03AI4fP87UqVPZvn07f/31F/v37ycoKAiAn376ibt37zJ16lSWLVtGREQEr7zyCp999pmx3ypVqhAaGkqDBg1YsWIF33zzDXPnzmXFihXGNt59911CQkJYu3at8QMB3P82Ytu2bQwePJjJkyczfvx4wsPDqV27doEfbM6ePcvw4cPZsmULtra2REREmBwTIZ4XlbvWRaH++z+hu6oLKBQ5xvc3DUCOHgV60OlAk5mnfgXDPQBUZhUxs6z8RGIWQoiy8Kwk7LkeJV5J2h9Ct27dAGjYsCFJSUnFqjtv3jx8fHzw8PBg5syZJss6OzsTGRnJ4sWLqVu3Lt988w2DBw8mJyfHZL0HOTg4UKvW/bWrUVFR9O7dG5VKhZWVFd7e3hw8eBCARo0aUb16dZRKJQ0aNODevXt52jl58iStWrUytjVgwAAOHTpkPP/qq68CULNmTVxcXFCr1dSsWZOUlBQAJk+eTHZ2Nl9//TULFy4kIyPDWLdVq1YAJCcnc+PGDVxdXQHo27dvodfUvHlzY9z/jFWI51WFhpWpM6Edjv2aUXtsG5xey7suvYZCgd5MiWV6HOhz0J7aj0GnBcCCbFpqIlFb2OPU4i2UqodfNymEEOLpI0n7Q1CpVMDDfSpydnbm+PHjxveBgYGEh4czatQo0tLSCq1nMBiYNm0aOp2Otm3bMmHCBDZv3kxSUhJnzpx56FgtLS2Nr/V6fb4+cmeyH9wnVKFQYDAY8pQtqO6DHx4evHFCrc6/ymrChAn88ssvNGjQgAkTJhQYo0qlytdvQYqKVYjnmdrGApuWjpg7VqTOqz2wfNUPpW1VVNXq0995NFa9O6GwzMLu7lFqZJzFxy4D/xZVeb9tfTq+OolGnWdhXcX0t3xCCFEeTZs2DTc3NxYsWFDg+aioqEI3+Bg1ahShoaGPM7x8ZE17KfPy8mL16tUsX76ckSNHYmZmRmpqKlFRUcbkvyAKhYKLFy+yatUqRo8ejVKpJC4ujpycHOrUqfNIsbRv356ff/6Zrl27otFoiIiIYPTo0SbrqFQqcnJyePHFF5k2bRpxcXHUqlWLjRs3FmsHnd9//53t27dTrVo11q9fD5Bv6YuNjQ21a9dm7969uLq6yrIXIYqgUCiw6jwQq84DjccCGr8KPUCv16FU/vN3jCVCCCEKtnHjRn777TeqV69e1qE8FEnaS5m5uTlr165l4cKF+Pr6AveTVQ8PD0aOHGmy7vz58/niiy9wd3fHysoKGxsbgoODH/mmywEDBnDlyhV8fHzQarV4e3vTvXt3oqKiCq3j7u6Oj48PoaGhfPbZZwQEBKDVaqlZsyazZs166L7fe+89Bg8ejIWFBU2bNsXJyYm4uLh85ebMmcPHH3/MwoULadKkSZ5vCoQQDy9/wi6EEKIwgwcPxmAw8Pbbb/PJJ5+wZMkSkpOTUSgUvPXWW8YcLld8fDyTJ0/m9u3b1KxZk7t37z75oA1ClKElS5YY4uPjDQaDwbBz505DQEBAqbWdlZVlOHLkiCErK6vU2iyJI0eOlHUIzyUZ18dDxrX0yZg+HjKuj8ezNK5nzpx5pHqNGzc23L171+Du7m7YuXOnwWAwGG7dumXo0qWL4dixY4ZDhw4ZevbsaTAYDIZ3333XsGDBAoPBYDBcuXLF8NJLLxlCQkKK1V9aWprJuIvKW2Sm/RGsWbOmwL3THR0dWblypcm6EydO5MKFC/mOu7m5Fbo3+ZEjR5gxY0aB51asWEG1as/uNm41a9bkrbfeQq1WY2trW6zZfCGEEEKIkrh48SLZ2dm8/vrrAFSrVo3XX3+dffv25VkWfODAAT788EMAXnjhhWItGS4tkrQ/An9/f/z9/R+pbu6Dk4qjTZs2hIeHP1J/T7s+ffrQp0+fsg5DCCGEEOWQQqHIt9GI4R+bb+SWMzywEUZBm3A8brJ7jBBCCCGEKJfq16+PWq1m165dwP216zt37qRjx455ynXp0oWNGzcC8Ndff5m8P/BxkaRdCCGEEEKUW//+979Zu3Yt3t7eDB8+nLFjx9K+ffs8ZaZNm8bFixfx9PRkypQpNG3a9InHKctjhBBCCCFEuXPu3DkAKleuzHfffZfvfLt27diyZYuxzNdff/1E4/snmWkXQgghhBDiKSdJuxBCCCGEEE85WR4jhHiuZORkcDzpCCgUvGLfGguFJQaDwfhE4luXk0iOT6NW06pY28nDvIQQQjwbJGkvhqioKJYuXQpAQEBAsfboTExMJDg4mOjoaNRqNZaWlgQEBODu7m6yXkpKCp9++il//vkncH8v+E8++YS6des+8nU8jPj4eIKCgkzuO//DDz8AMGjQID766CMCAgJwcnIqtLyfn5/JcXuYPtPS0hg6dCgajYYlS5ZQr169h7wiUR6k56TzZewM7mruggF+2x1O9mkrtFqo2/glWto144/IywCozJS8MaYtTo0cyjhqIYQQomiStD8BGo2GYcOG4eHhwY4dO1CpVFy6dIkRI0bg5ORk8g7k4OBgGjdubNzffcuWLbz//vsFPtypNFWrVq3IB0UNGjTI+DoqKoqxY8c+9j5jY2MxNzcnNDS0RH2J548+NYEDf3zF3Qp3qaiH7ikO2Dnosex0hz8uWhH751GS0qKxzEpGpW4KNObojvOStAshhHgmSNL+iDZt2sTs2bNJSUlhypQpuLm5FVp2586dWFhYEBAQYDxWv359pk+fjk6nM9lPQkICDg4O6PV6lEolXl5eVKhQocj4vvrqKzZv3oxKpaJTp05MmjQJlUrFmjVr+OGHH1CpVHTt2pVJkyZx48YNPvroIxITE7G0tGTmzJlYW1szdOhQdu/ezeTJk7GwsODUqVOkp6czZswYfH19WbJkCQAWFhbcvn2bd955h/Xr13Po0CFWr15NVlYWGo2Gzz//nFdeeaXImOPi4vL0aW1tzenTp4mPj2fs2LG89tprfPzxxyQkJDB69Gi++uqrItsU5YNBpyV13b/QVEqDJvbUyH6TQxUaA1BHe5JXGkRwOd4CjeIWZrpL6HRnMKMXWk3HIloWQgghng5yI+ojsrGxISwsjKCgIJYtW2ay7IkTJ3Bxccl33NXVlRYtWpisO2bMGEJCQujYsSMTJkwgJCSETp06mayzd+9edu/eTUhICGFhYVy9epUNGzZw8uRJvv/+ezZt2sTmzZs5ffo0MTExfPrpp3h4eLBlyxbee+89li9fnq/N69evs3HjRr799lvmzJnDnTt3jOfeeecdHB0dWbFiBZUqVWLDhg3GDw0jR45kxYoVJuMtzK1bt/j+++9Zvnw5c+bMwcHBgZkzZ+Ls7CwJu8gj59pp9MnxtLqZiX12C9JUjY3nrpm14rZZQypa6rHMyTQe1+WcokXnF8oiXCGEEKLYZKb9EXXr1g2Ahg0bkpSUVKy68+bNY9++fWRlZdGlSxeCgoIKLevs7ExkZCTHjh3jwIEDfPPNN2zYsIGNGzcW+gjdQ4cO0bNnT6ysrADo27cvP//8M1lZWXTt2hUbGxsA1qxZA8Dhw4eZP38+cP+DhKurK3FxcXna7NOnD2ZmZlSvXp1XXnmFo0ePFti3Uqlk2bJl7N69m8uXLxMdHY1S+WifDTt16oRCoaBx48YkJyc/UhuifFBWtAPAWqPH5bolJ/+RiyfmVKZuuj03s0+R/b9jtZrUoWm7Wk80TiGEEGVPrzfw24lkfv79DnfuaalayQzfTlV57UU7lEpFqfQRERHB8uXLycnJYdiwYfzf//1fiduUmfZHlLsThUJR9A/X2dmZ48ePG98HBgYSHh7OqFGjSEtLK7SewWBg2rRp6HQ62rZty4QJE9i8eTNJSUmcOXOm0Hp6vT7fsZycHNRqdZ544+PjSUlJyZP8GwwGLly4kK9+7vXmtl/YB4b09HT69etHXFwcLi4u+Pn5FRpnUSwsLICHG2NRvqkc62L+kgcATeKPwwP/BpR6HY1iatHYrirZ+vv/3irY2uM2eGSZxCqEEKLs6PUGZq6/wpKf4zh/I5PktBzO38hkSVgcM9dfQa83lLiP+Ph4FixYwPfff8/PP//Mxo0bC8ytikuS9ifAy8uLzMxMli9fjlarBSA1NZWoqCiTs9AKhYKLFy+yatUqYyIeFxdHTk4OderUKbRe+/bt2bp1K1lZWeTk5BASEkL79u1p06YNe/fuJT09nZycHCZOnEhMTAxt2rRh69atABw4cIBPPvkkX5vbt2/HYDBw48YNTp48SevWrfOcV6lU6HQ6rly5gkKhYPTo0bRr145ffvmlyHX7QpSGil7jsBmxhAbeb9Mz/RrVrl+gxvXLuP43GqdGVXAe/wbDPvuW3uO/ZOSXG3GoWbesQxZCCPGE/XYimeMX0sjS5J3gzNLqOX4+jb0nk0vcx4EDB2jfvj12dnZUqFDBuBFJScnymCfA3NyctWvXsnDhQnx9fQHQ6XR4eHgwcqTp2b758+fzxRdf4O7ujpWVFTY2NgQHB2NnZ1dona5duxIbG0vfvn3Jycmhc+fODBkyBLVazZAhQxg4cCB6vZ7u3bvTsWNH6tWrR1BQEN9//z1WVlbMnDkzX5tZWVn07dsXjUbDZ599hr29fZ7zr732Gu+88w4rV66kWbNmeHp6olAo6Ny5c6FLaYQobepq9QF4pT60uHWL7Bs3qODpifp/S8Kq1KpPlVr1yzJEIYQQZejn3+/kS9hzZWn1hO2/Q9eX7As8/7Bu375N1apVje8dHR05efJkidoEUBgMhpJ/DyCea5MnT6Zt27b06dOnrEMpluzsbGJiYnB2djYutSlLR48ezfcNhSg5GdfHQ8a19MmYPh4yro/HszSusbGxNGvW7KHKDpp1muS0nELP21mr+WGK6U1CirJ8+XKys7OZMGECAD/++CMxMTF8+OGHVKxYsdC4i8pbZKa9lKxZs6bAvdMdHR2L3Ht84sSJBa51cnNzY/z48QXWOXLkCDNmzCjw3IoVK6hWrdpDRP3kXbt2jffee6/AczNnzqRly5ZPOCIhhBBClBdVK5mZTNqrVjIrcR/Vq1fnyJEjxvd37tzB0dGxxO1K0l5K/P398ff3f6S6uQ9OKo42bdoQHh7+SP0V1+zZs0utrTp16jyxuIUQQgghHuTbqSpLwuLI0uZfImNppqR356oF1Cqejh07smTJEhITE7GysmLXrl2FTrQWhyTtQgghhBCiXHjtRTv2xyRz/HxansTd0kzJy42scW1lV+I+qlWrxvvvv8/QoUPRarX069ePVq1akZ6eXqJ2JWkXQgghhBDlglKpIOj/6rL3ZDJh+//ep71356q4tiq9fdq9vb3x9vYulbZySdIuhBBCCCHKDaVSQdeX7Eu8S8yTJvu0CyGEEEII8ZSTpF0IIYQQQoinnCTtQgghhBBCPOVkTbsQ4rmiz0pDc+IXDBn3MG/xGirHumUdkhBCCFFikrQ/gqioKJYuXQpAQEAA7dq1e+i6iYmJBAcHEx0djVqtxtLSkoCAANzd3U3WS0lJ4dNPP+XPP/8E7j+06ZNPPqFu3bqPfB1l7fr16yxfvpzPP//8oeuEhoYSHR1dqnvHi+eHQa8jbd2H6O5cASD995/R1e4JFjbYdelCttltbpzaBqkqbOhANde2mNlblW3QQgghxEOQpP0J0mg0DBs2DA8PD3bs2IFKpeLSpUuMGDECJycnmjZtWmjd4OBgGjdubHwQ05YtW3j//fcLfArrs+Kvv/7i+vXrZR2GeI7kXD1pTNjPV36ZU3avYp6ZQZOD+7gYswu718zvF7SGFO1faNYZqBfgiqKUtvgSQgghANLS0hg4cCBfffUVtWrVKpU2JWkvoU2bNjF79mxSUlKYMmUKbm5uhZbduXMnFhYWBAQEGI/Vr1+f6dOno9PpTPaTkJCAg4MDer0epVKJl5cXFSpUMFknKiqKf//736jVauLi4mjVqhWzZs3C3NycBQsWcPDgQe7du4ejoyMLFiygSpUqtG/fHmdnZ+7cucOmTZv49NNPOX/+PAkJCTRp0oT58+djaWnJmjVr+OGHH1CpVHTt2pVJkyaRkJDA1KlTuXXrFgqFgokTJxqfChYfH8/Vq1e5ceMG/fv3Z8yYMcycOZO4uDg+/fRTevTowdy5c9Hr9TRq1IgPPviAjz/+mNTUVG7fvk3v3r0ZP3588X44otxRqC0AuOzQkp2tRhmPX6vTAOfrK7BD+3dhMw05xJF9Mw1LJ5snHaoQQogyYjDo0ZzeS3b0z+hTElDaVsGirS/mLVxRKEp+u+eJEycICgriypUrJQ/2AXIjagnZ2NgQFhZGUFAQy5YtM1n2xIkTuLi45Dvu6upKixYtTNYdM2YMISEhdOzYkQkTJhASEkKnTp2KjO/48eNMmTKFHTt2kJ2dzfr167l69SqXLl1iw4YN7Ny5kxo1arB582YAkpKSePvttwkPD+ePP/7AzMyMjRs38ssvv5CamsrevXs5efIk33//PZs2bWLz5s2cPn2amJgYZs2aRd++fQkNDWX58uVMnTqVtLQ0AM6dO8eqVav46aefWLFiBSkpKQQFBeHs7My0adMAuHLlCt9++y1ffvklW7Zs4Y033uDHH38kIiKCb7/9lsTExCKvV5RvqlrNUNd7mfOObfIc11ew445Fo/wVsiugtrV4QtEJIYQoawaDnvSQWWRsX4ru1gUMGcnobl0gY/tS0kM+x2DQF91IEX788UemTZuGo6NjKUT8N5lpL6Fu3boB0LBhQ5KSkopVd968eezbt4+srCy6dOlCUFBQoWWdnZ2JjIzk2LFjHDhwgG+++YYNGzawceNG1OrCf4wuLi7Ur18fAB8fH3788UeGDx/Ohx9+yE8//cTly5f5448/qFOnjrHOiy++aKxrZ2fH+vXruXTpEleuXCEjI4PDhw/TtWtXbGzuz06uWbMGgAMHDnDp0iUWL14MQE5OjnH5S7t27TA3N8fBwQE7OztSU1PzxVqvXj1jmyNGjODQoUOsWrWK8+fPo9VqyczMfNihFeWUQqHAesCnVD55Dv7x1+XG1VQSLFRUsdVhMMCNG5Wwr1wNtY152QQrhBDiidOc3ov28h+gzcp7QpuF9vJxtGf+i3mL10rUx6xZs0pUvzAy015CKpUKuJ8sFMXZ2Znjx48b3wcGBhIeHs6oUaOMM9IFMRgMTJs2DZ1OR9u2bZkwYQKbN28mKSmJM2fOPFR8ue2oVCpiYmIYMWIEer0eDw8PunXrhsFgMJaztLQEIDIyksDAQCwtLenTpw8uLi4YDAbUanWe642PjyclJQW9Xs+3335LeHg44eHh/PjjjzRu3BgAC4u/ZzMVCkWe/v7ZL8Ds2bNZt24dNWvWZMyYMdjb2xdYR4h/UihVdGzRhKpW//swazCgjtmB+ZVD7IyyYmu0LVt+r8qVc21p8WYb040JIYR4rmRH/5w/Yc+lzSIr6um9V1CS9ifIy8uLzMxMli9fjlZ7f21tamoqUVFRKJWF/ygUCgUXL15k1apV6PX3v7aJi4sjJycnzwx5QY4ePUp8fDx6vZ6ff/6ZV199lcOHD9O2bVsGDRpE3bp1+e233wpcU3/w4EE8PT3p27cvtra2REVFodPpaNOmDXv37iU9PZ2cnBwmTpxITEwM7du35/vvvwfgwoULeHt7m5wdV6lU5OTkFHju999/Z8SIEXh6enL58mXjNQjxMCqaqRj1YnXecnZk7Cs16VizKnYONWhmr6Bl7S507zSMIR/1pIKNLI0RQojyRJ+SYPp8qunzZUmWxzxB5ubmrF27loULF+Lr6wuATqfDw8ODkSNHmqw7f/58vvjiC9zd3bGyssLGxobg4GDs7OxM1nN0dORf//oX8fHxdOrUif79+5OQkEBAQADe3t7A/W8A4uLi8tXt378/gYGBbN26FTMzM1555RXi4uLo378/Q4YMYeDAgej1erp3707Hjh1p0KABU6dONbY7Z84crK2tC42tQYMGpKamMmnSJPr165fn3KhRo/jXv/6FpaUl1atXLzRGIQqjUChw+l9S7trTF9eevmUbkBBCiDKntK2CLiO58PM2VZ5cMMWkMMiag+dW7n7y69atK+tQykR2djYxMTE4OzvnWZ5TVo4ePUrr1q3LOoznjozr4yHjWvpkTB8PGdfH41ka19jYWJo1a/ZQZbNj9pCxfWnBS2TMLKno9V6J17TncnNzY+3atcYtH9PT06lYsaLx/D/jLipvkZn2UrZmzZoC9053dHRk5cqVJutOnDiRCxcu5Dvu5uZW6HaHR44cYcaMGQWeK2r2XgghhBCiPDFv4Yr27P78N6OaWWJW72XMmr9aan3t3r271NoCSdpLnb+/P/7+/o9UN/fBScXRpk0bwsPDCz2fu1RFCCGEEKK8UyiUVOw7Be2Z/5IVFYY+NQGlTRUs2/XGrPmrpbJP++MiSbsQQgghhCg3FAol5i1eK7VlME/K0/txQgghhBBCCAFI0i6EEEIIIcRTT5J2IYQQQgghnnKStAshhBBCCPGUkxtRhRDiKaBPv4fu5p+oqjdEaW1vPJ6RksS5I7+hNLeiRTs31GbmZRilEEKIsiJJuxBClDHNn4dI//lLyNGQWMGcn7u04JriLnW11cjZ+CfJZjUxqMypuONXxn84FWsb27IOWQghnll6g54jidHsuf0rSZpE7M0r09WxG20qt0VZSls+Ll26lO3btwPg6urKv/71rxK3KctjSklUVBR+fn74+fkRFRVVrLqJiYlMmTKF7t274+npSe/evYmMjCyyXkpKChMnTsTb2xtvb29GjBjBlStXHvEKCvYo11McP/74I1u2bClWnccdkxBPWububyBHA8DPzW24RDzo7Ek8lUiSeW0Mqvuz6+l6c9YvX8HZqDiyMrRkZ8Sj06aXZehCCPFM0Rv0rLy4nB+ureNaxlVSc1K5lnGVH66t4z8Xl6M36Evcx4EDB9i/fz9hYWH8/PPPnD59ml9++aXE7cpMexnTaDQMGzYMDw8PduzYgUql4tKlS4wYMQInJyeaNm1aaN3g4GAaN25sfCjTli1beP/99wt8IuvT6tixY7Rt27aswxCiTOnTk4yvb1W0ptntkSTZVYUWoKtxE82hLaDLAeDmnVT2/RRNyo1orG2TUSjNcGzoi0Md97IKXwghnhlHEqM5m3oGjV6T57hGryE29QxHkw7jUrldifqoWrUqkydPxtz8/oRLgwYN+Ouvv0rUJshM+2OxadMmevfujbu7e5GPsN25cycWFhYEBASgUqkAqF+/PtOnT0en05msm5CQQHZ2Nnr9/U+FXl5evPfeeybr3Lp1iyFDhtCnTx/69evHH3/8AYCbmxtxcXHA398a5Prxxx/x9fXF19fXOMOdnJzM2LFj8fT0xMfHh4MHDwLw3//+l379+uHr60tAQABJSUnG9hcuXEi/fv3o2bMnMTExHDhwgN27d7N48WL27dvH5MmTGT16NJ6enuzevZvt27fz5ptv0qtXL3r06MGxY8dMXpsQzyqLln8n3O0udb+fsP+PqnINVLX//vBuqavOC43OY22bDIBBryX+fAja7OQnFa4QQjyz9tz+NV/Cnkuj17A7vuQz4o0aNeKll14C4MqVK2zfvh1XV9cStytJ+2NgY2NDWFgYQUFBLFu2zGTZEydO4OLiku+4q6srLVq0MFl3zJgxhISE0LFjRyZMmEBISAidOnUyWWfTpk289tprhIaGMm7cOI4ePVrk9VSoUIGff/6Z2bNnM2nSJDQaDYsWLaJOnTps376dOXPmsHDhQhITEwkODmbVqlX8/PPPdO7cmXnz5hnbsbOzY9OmTQwcOJCvv/6ajh074ubmxrhx4+jSpYuxzPbt23nttdfYsGEDX331FZs3b2bkyJGsWLGiyFiFeBZZdXubY9X7E61tgXl2zXznLc0tMdflYJ1dDRttLays0/IWMOjRZiY8oWiFEOLZlaRJLOJ8ksnzxXH+/Hneeust/vWvf1G3bt0StyfLYx6Dbt26AdCwYUPjTPPDmjdvHvv27SMrK4suXboQFBRUaFlnZ2ciIyM5duwYBw4c4JtvvmHDhg1s3LgRtbrgH22HDh147733iI2NxdXVlSFDhhQZU79+/QBo2rQpDg4OXLp0icOHDxsT8iZNmrBx40b27NnDzZs3GTp0KAB6vZ5KlSoZ28lNzBs1asSuXbsK7KtVq1YAKJVKli1bxu7du7l8+TLR0dEolfIZUzyfFEoVrw0bxpZDCZgfvY46R0+O+v7fd4XegI+1GkX8HQ5XeJkMlZK7t6rjUO2Osb7aohJWtnXLKHohhHh22JtXJjUn1cR5+0LPFcfRo0cZN24cH3/8MT179iyVNiULegxyl7koFIoiyzo7O3P8+HHj+8DAQMLDwxk1ahRpaWmF1jMYDEybNg2dTkfbtm2ZMGECmzdvJikpiTNnzhRar3Xr1mzdupXOnTuzbds2Ro8enadNgJycnAKvB+4n4mq1GrVanef6Ll68iE6n45VXXiE8PJzw8HA2bdrE4sWLjWUsLCwA0+NiaWkJQHp6Ov369SMuLg4XF5c8y3WEeB6pVAp8OlXl9RHOeN9Mp+6NVF5IyuLNatY49+vFC4ETeb2HHW1eq4Fjg65YV/PG0rYuNo4v88LL41EoZQ5GCCGK0tWxG+bKgrfONVea41ate4n7uHnzJmPHjmXevHmllrCDJO1lzsvLi8zMTJYvX45WqwUgNTWVqKgokzPLCoWCixcvsmrVKuOa9ri4OHJycqhTp06h9ebMmcPmzZvp3bs3U6dONSb49vb2XLhwASDfzjUREREAnDp1ivT0dF544QXatGnD1q1bgfsJ+9tvv02rVq34448/uHz5MgD//ve/mTNnjsnrV6lUBa7dv3LlCgqFgtGjR9OuXTt++eWXItf4C/E8UFU0x/nN5vj1a85Qr0Y0blgZAGtnZ2r28qRt31fo6NucOi17Ur/tZGq3GoWFdf4lNUIIIfJrU7ktTW2a50vczZXmNLNpTmv7/EuWi2vVqlVkZ2cze/ZsfHx88PHx4YcffihxuzI1U8bMzc1Zu3YtCxcuxNfXFwCdToeHhwcjR440WXf+/Pl88cUXuLu7Y2VlhY2NDcHBwdjZ2RVax8/Pj4kTJxIaGopKpeLLL78EYNy4ccyYMYOlS5fSuXPnPHUyMjLw9fVFqVQSHByMmZkZ48aNIygoiF69eqFWq5kzZw6Ojo58/vnnTJgwAb1eT7Vq1Zg7d67Ja+jYsSPz58/HxsYmz/GmTZvSrFkzPD09USgUdO7c+aHW3wshhBBCFEapUPJ2gzEcTTrM7vhfSNIkYW9uj1u17rS2dymVfdqDgoIKXN6cnl6yLXoVhtw1EUI8Z7Kzs4mJicHZ2dm4NKcsHT16lNatW5d1GM8dGdfHQ8a19MmYPh4yro/HszSusbGxNGvWrKzDKFJ6ejoVK1Y0vv9n3EXlLTLT/gSsWbOmwL3THR0dWblypcm6EydONC5beZCbmxvjx48vsM6RI0eYMWNGgedWrFhBtWrVHiJqIYQQQgjxtJCk/Qnw9/fH39//kermPjipONq0aUN4ePgj9SeEEEIIIZ4+ciOqEEIIIYQQTzlJ2oUQQgghhHjKSdIuhBBCCCHEU06SdiGEEEIIIUrRokWL8PLyomfPnqxevbpU2pQbUYUQ4gnT6w1cvpVFlUpmVKqo5saNG9y5c4cGDRrke2aBEEKI0mXQ60k5dIjEXbvQJiZiVrkylV9/Hdv27VGYeLDlw4qOjubQoUNs3ryZnJwcvLy8cHV1LfHufc9l0h4VFcXSpUsBCAgIoF27dg9dNzExkeDgYKKjo1Gr1VhaWhIQEIC7u7vJeikpKXz66af8+eefwP3tHD/55BPq1q1baJ3U1FQmT57MsmXLHjq+x23x4sWEhoYybNgwhg8fXqK2PvroIwICAnByciql6GDJkiUAvPfee6XWphBPUnyShinfXOJGQjZqlYLX611EnfI7L9fP4PxNA9ZV29Go9VAUpfCADyGEEHkZ9Hrili4l/fRpDNnZAOhSUrj57bekHDlCrYCAEifubdu2Ze3atajVauLj49HpdFSoUKHEsT+XSfuj0mg0DBs2DA8PD3bs2IFKpeLSpUuMGDECJycnmjZtWmjd4OBgGjdubNyiccuWLbz//vsF7s+e6969e8TGxpb6dZREeHg4q1evpl69eiVuKyoqirFjx5ZCVEI8+7TJWdzeeY64C0k4p5uh0mTQIeMwceoUfDumoVAqSFDWJjPlClX/Ooi9U6eyDlkIIZ47KYcO5UnYcxmys0k/fZqUqCgqdehQ4n7MzMxYvHgx33zzDT169KBatWpkZGSUqM3nfipn06ZN9O7dG3d3d3bv3m2y7M6dO7GwsCAgIACVSgVA/fr1mT59OjqdzmTdhIQEsrOz0ev1AHh5eRU5Gzxz5kxu377N2LFjiYuLo0ePHgwaNIjhw4eTlpbGuHHjGDBgAF27duXjjz/GYDAQFRXFW2+9xbvvvouHhwfjxo1Do9GQlpbGO++8Q58+fejTpw+RkZGcPXsWb29vY3+7d+9mzJgxhcYzdepU4uPjGTt2LLGxsbRv356RI0fi4+ODVqvlq6++wsvLC29vb2bPno1OpyMuLg5fX18mTZrEG2+8wbBhw0hOTmbFihXcvn2bd955h6SkJP744w/69+9Pr169GDZsGFevXgXAz8+PWbNm0bt3b7y8vNi/f79xPEeNGoW3tze9e/fmv//9r8mxFOJpZjAYuPzVfrLOJFNFo8DbLAdv0rCkAlUq5aBVWvGr1Uj+a+XHbqsRbPnLAnlYtRBClL7EXbvyJey5DNnZJO7cWWp9jRs3joMHD3Lz5k1+/PHHErf33CftNjY2hIWFERQUVOQylBMnTuDi4pLvuKurKy1atDBZd8yYMYSEhNCxY0cmTJhASEgInTqZnikLCgrC0dHRGNfly5eZO3cuq1ev5rfffqNZs2Zs3LiRnTt3cvjwYU6fPg3A8ePHmTp1Ktu3b+evv/5i//79/PLLLzg5OREaGsqsWbM4cuQITZs2RaFQGJfsbN26lV69ehUaz2effYajoyMrVqygWbNmJCUl8fbbbxMeHs6BAwfYvXs3ISEhhIWFcfXqVTZs2ADA2bNnGT58OFu2bMHW1paIiAjeeecdY1sVK1bkgw8+4JNPPmHz5s0MHDiQDz74wNhvWloaYWFhBAcHM3nyZDQaDTNmzKB9+/ZERESwePFiPv74YxISEkyOpxBPq5Qr8agyzfIcq2auI1HdCO4quaR+hRSlo/HclZxqXE0p+D8VIYQQj06bmFii8w/j4sWLxpUUVlZWvP7665w7d67E7T73SXu3bt0AaNiwIUlJScWqO2/ePHx8fPDw8GDmzJkmyzo7OxMZGcnixYupW7cu33zzDYMHDyYnJ+eh+3NwcKBWrVoAvPHGG3Tq1Ik1a9Ywc+ZMkpOTjV+rNGrUiOrVq6NUKmnQoAH37t3j5Zdf5tdff+Xdd9/l1KlTxmUpvXr1YuvWrWRlZXH48GHc3NyKNQYvvvgiAIcOHaJnz55YWVmhVqvp27cvBw8eNMbdvHlzY2z37t3L08aVK1ewtbWlVatWAHh6enLt2jVSU1MBePPNNwFo1qwZVatW5dy5cxw6dIh+/foBULt2bV588UVOnDhRrNiFeFpoDOno9No8xzJy7v8+qhtvQ2KCdb46aVr9E4lNCCHKE7PKlUt0/mHExcURFBSERqNBo9EQGRlJ69atS9zuc5+05y5zUSgURZZ1dnbm+PHjxveBgYGEh4czatQo0tLSCq1nMBiYNm0aOp2Otm3bMmHCBDZv3kxSUhJnzpx56FgtLS2Nr9etW8ecOXOoXLkyQ4YMoUGDBsavyy0sLIzlFAoFBoOBunXrsn37dry9vTly5Aj9+vVDr9fj7e3Nzp072bNnD507d85Ttzgx5S77eVDuB5KC4nlQQXUNBoNxyVHuzyi3rFqtztfGg+WFeNZUqVefy4rD6Az3E/c0bQJ/ZiShMOipmhPPizdu8eBvqApqJQ3tLAtuTAghxCOr/PrrKArJhRQWFlT28ChxH66urrz22mv4+vrSt29fXn75ZXr27Fnidp/7pL04vLy8yMzMZPny5Wi19/9zTU1NJSoqCqWJO4kVCgUXL15k1apVxgQ1Li6OnJwc6tSpU2g9tVpd6Ez877//zoABA+jVqxfZ2dmcPXu2wOQ313fffceSJUvw9PRk2rRpJCYmkpaWRrVq1ahRowYrVqwwuTSmKO3btzfO2Ofk5BASEkL79u1N1lGpVOh0OurXr09ycjInT54EYNu2bdSsWRM7Ozvje4BTp06RkpJC48aNad++PZs2bQLg+vXrHDt2jJdeeumR4xeiLCkUCjq9/zbXnaL5PW0tv2oPk1yzKnadL9BseiBtx4/Br3lVnKtUoHW1ivg7O2Kpll/PQghR2mzbt6diixb5EneFhQUVW7TAthg7Dpry3nvvsW3bNiIiIkptxzvZPeYB5ubmrF27loULF+Lr6wuATqfDw8ODkSNHmqw7f/58vvjiC9zd3bGyssLGxobg4GBjYloQBwcHatasiZ+fH1988UWec8OGDWP69OmsWLECa2trXn75ZeLi4gr9EODr68sHH3yAt7c3KpWKSZMmYWtrC4CPjw8LFiygbdu2Dz8Y/9C1a1diY2Pp27cvOTk5dO7cmSFDhnDr1q1C67z22mu88847/Oc//2HBggXMmDGDzMxMKlWqxIIFC4zlrl+/Tu/evQFYsGABKpWKKVOmMHXqVEJDQ4H7N+06OjoW2I8QzwJr+yq4j/oYg15Hzq2LKCpVRV3R3nj+hUqWvFBJZteFEOJxUiiV1AoIICUqisSdO//ep93DA9t27Upln/bHRWGQLQpEGfLz8yv2XvoPKzs7m5iYGJydnYu9LOhxOHr0aKmsaRN5ybg+HjKupU/G9PGQcX08nqVxjY2NpVmzZmUdRpHS09OpWLGi8f0/4y4qbyl3M+1r1qwpcO90R0dHVq5cabLuxIkTuXDhQr7jbm5ujB8/vsA6R44cYcaMGQWeW7FiRYmfjlVc165dK/RrmpkzZ9KyZcsnGo8QQgghhChauUva/f398ff3f6S6uQ9OKo42bdoQHh7+SP09DnXq1Hmq4lm3bl1ZhyCEEEII8dR7ehfuCCGEEEIIIQBJ2oUQQgghhHjqSdIuhBBCCCHEU67crWkXQgghhBDll0Fv4PzRvzix5zJpyZlY21nxYtd6NGpdE4Wy6IdxPqwvv/ySpKQkZs+eXSrtyUy7EEIIIYQoFwx6A9v/c5TfNpzizvV7ZKZquHP9Hr9tOMWOVUcx6EtnJ/SDBw8WuFthSUjSLoQQQgghyoXzR/8i7lwCORpdnuM5Gh3XzyZw/thfJe4jOTmZBQsWMHr06BK39SBZHiOEEM8wvd5AzJV0lApoUbciZ1JiCIvbRGpOCm0rd6B3rX4oFQXPz+h1GhQKFQql6glHLYQQZePEnsv5EvZcORodJ3ZfpnEbpxL1MXXqVN5//31u3rxZonb+SWbaS1FUVBR+fn74+fkRFRVVrLqJiYlMmTKF7t274+npSe/evYmMjCyyXkpKChMnTsTb2xtvb29GjBjBlStXHin+KVOmcOrUqUeqWxg3Nzfi4uIKPT979mzat2+PRqN5qPb8/PxKKzQhnnnZWj0ffHWBD1deZNKKiwR+c4qVF5eTdCOdKhEvcX1hCis//Zjff15NWlKCsZ5eryUuZhVn94zn3H8nkRj33zK8CiGEeHLSkjNLdL4oP/30EzVq1KBDhw4laqcgMtP+FNBoNAwbNgwPDw927NiBSqXi0qVLjBgxAicnJ5o2bVpo3eDgYBo3bmx88NOWLVt4//33H2kd1axZsx75Gh5FTk4O27dv5+WXX2bnzp14e3sXWSc6OvoJRCbEs+G3E0mcu55hfH857QpOWj2v7O5EdloWKRnrSEvK5tC13zl5KJIqQ+cRl6GjivIezZLOUQED+pwMbp39AevKzTCvULUMr0YIIR4/azsrMlMLnyi0trMqUfvbtm3jzp07+Pj4cO/ePTIyMvj888/5+OOPS9QuSNL+2GzatInZs2eTkpLClClTcHNzK7Tszp07sbCwICAgwHisfv36TJ8+HZ2u4K9wciUkJODg4IBer0epVOLl5UWFChVM1jEYDMybN49ff/0VlUrFgAEDGDZsGH5+fsYYvv76aywtLbl48SJNmjRh3rx5mJubs3btWr777jtsbGyoX78+derU4b333qNJkyacO3cOgNDQUKKjo4u8W/q3336jTp06+Pr6snbtWmPSHhUVVWD/c+bMAaB///789NNPJtsWojy4l5ZjfG1BCk1ux6AOr0K66gqd7JtxSfkKF9MOApDU0peEe1oA0rAhzcIH16zcJxIbyEqLk6RdCPHce7FrPX7bcKrAJTJqcxUvutUrUfurV682vs7Nh0ojYQdZHvPY2NjYEBYWRlBQEMuWLTNZ9sSJE7i4uOQ77urqSosWLUzWHTNmDCEhIXTs2JEJEyYQEhJCp06dTNbZsWMHx44dIyIigp9++onQ0FDu3LmTp8zx48eZOnUq27dv56+//mL//v2cPXuW9evXExoayvfff8/Vq1dN9lOU0NBQevTogaurK7GxsVy4cMFk/0FBQQCSsAvxP11a2WFhdv/XeD0OoDCkoUPPdcMdDunP0dzudcwUlgDonJzz1E1Q1UHH/bXsCqUZFewaPNnghRCiDDRqXZNaTaqgNs97L4/aXEXtplVo9ErNMoqsaJK0PybdunUDoGHDhiQlJRWr7rx58/Dx8cHDw4OZM2eaLOvs7ExkZCSLFy+mbt26fPPNNwwePJicnJxC6xw+fBhPT0/Mzc2pWLEi4eHhVK2ad4atUaNGVK9eHaVSSYMGDbh37x4HDx6ka9euWFtbY2FhQc+ePYt1XQ+6e/cuv//+O56enlhaWtK1a1c2bNhgsn8hRF41KlsQPLohr79ijZUi77+RW4YkVAozLFTWAFikxec5b6/KwtKyEpY2daj94mjU5rZPLG4hhCgrCqUCz5GteW1QS6rWroSVjTlVa1fitUEt6TGidanu096nT59S26MdZHnMY6NS/W8GS1H0D9/Z2TlPwhoYGEhgYKDxa5XCGAwGpk+fzscff0zbtm1p27YtY8eOxcPDgzNnztCqVasC66nV6jxxxcXFUbly5TxlLCwsjK8VCgUGgwGlUolerzcZj0KhKPADw5QpU4iJiQFg5syZHDlyBIPBQL9+/QDIyspCq9USGBhYaP9CiPwa1LTi/f4NWHjDkdu3bxuPOyrs0GXfpYFGidq8Nk07vczmaxnEZ2ipbKmmT6MXqGH9eRlGLoQQZUOhVNC4jVOJd4l50mSm/Sng5eVFZmYmy5cvR6u9v+Y0NTWVqKgolMrCf0QKhYKLFy+yatUqYzIdFxdHTk4OderUKbSei4sLu3btQqvVkpmZyciRI4mPjy+0fK4OHTqwd+9e0tLS0Gg07Nq1y5j829vbc/78eQwGA7t3785Xd9asWYSHhxMeHk7Lli0JDQ1l9uzZ7N69m927d7N//34qVarEtm3bTMagUqlMfosgRHk1YMAAata8/7Wuk7kD7bLM0N3+BSeFLa36D6e6vS3vvFidSS5OvPtSdWpYm5dxxEIIIYpDZtqfArk3eC5cuBBfX18AdDodHh4ejBw50mTd+fPn88UXX+Du7o6VlRU2NjYEBwdjZ2dXaJ3u3bsTExNDnz590Ov1DB06lHr1ir7xonHjxgwdOpQBAwZQoUIF7O3tjTPiEydOZPTo0VSpUoXWrVubXBJ06tQpkpKS6N69u/GYUqlk2LBhbNiwgYkTJxZa193dHR8fH0JDQ/PMxgtR3tWoUSPPzew5KSlknDuHZe3amFevbjxuqZa5GiGEeBYpDLLuQDyky5cvs3fvXvz9/YH7N8H279/f5M44ZSk7O5uYmBicnZ2figT/6NGjtG7duqzDeO7IuD4eMq6lT8b08ZBxfTyepXGNjY2lWbNmZR1GkdLT06lYsaLx/T/jLipvkZn2J2TNmjUF7p3u6OjIypUrTdadOHFinp1Vcrm5uTF+/PgC6xw5coQZM2YUeG7FihVUq1btIaLOy8nJiVOnTvHGG2+gUCjo3LkzXbt2LXY7QgghhBCieCRpf0L8/f2NM9TFlfvgpOJo06YN4eHhj9RfYczNzR8pFiGEEEIIUTKStAshhBBCCFGK/Pz8SExMRK2+n2p/9tlnNGzYsERtStIuhBBCCCHKDYNez9moXzm660dSk25jY+9I69ffpGm7bihM7Nr30O0bDFy5coU9e/YYk3a4v6a9JCRpF0IIIYQQ5YJBryd8WRDXzhxGm50FQEZKEr+sncufR36j19iZJU7cL126BMBbb71FcnIyb775JkOGDClx7LL3lxBCCCGEKBfORv2aJ2HPpc3O4uqZw5yNjixxHykpKXTo0IFly5axZs0aNmzYwO+//17idiVpF0IIIYQQ5cLRXT/mS9hzabOzOLprY4n7ePnll5kzZw42NjZUrlyZfv36sXfv3hK3K8tjhBCiAGnaTHafvMD1hBQclRm80aEdVta2ZR2WEEKIEkhNum36fKLp8w/jyJEjaLVaOnToANxf4/7g2vZHVW5n2qOiovDz88PPz4+oqKhi1U1MTGTKlCl0794dT09PevfuTWRk0V+npKSkMHHiRLy9vfH29mbEiBFcuXLlkeKfMmUKp06deqS6hXFzcyMuLi7f8SVLltCkSROOHz+e5/isWbNo0qQJAJGRkSxatChf3dxxLkxOTg6dO3cudE/5fzp58iRz5859qLJCPKrwG6EsizzACY0dibZ1OGvdlHW/bed81CJSbh8vugEhhBBPJRt7R9PnK5s+/zBSU1OZM2cO2dnZpKWlERYWlucp8I+q3Cbtj0qj0TBs2DBq1KjBjh072L59O8HBwcycOZOzZ8+arBscHEzjxo2JiIggIiKC3r178/777z9SHLNmzaJly5aPVPdRVK9enZ07dxrfGwwGDh8+bHzv7u5e6IOeTNm7dy8tW7Zk+/btZGZmFln+woUL3L17t9j9CPGw/kw9R/K+G2htGuU5fs++JdrUWOJOfi2JuxBCPKNav/4mZhaWBZ4zs7Ck9esDStxH165dcXV1xdfXl759+9K3b19efvnlErcrSTuwadMmevfujbu7O7t37zZZdufOnVhYWBAQEIBKpQKgfv36TJ8+HZ1OZ7JuQkIC2dnZ6PV6ALy8vHjvvfdM1jEYDMydOxcPDw+8vLz49ttvAYzfEERFRfHWW2/x7rvv4uHhwbhx49BoNACsXbuW119/nb59+zJp0iSWLFkCYJwdBwgNDWXy5MkmY4D7SfmD3yYcOXKEl156qcB29u/fT8+ePenTpw8//vijyXZDQ0Pp3r07rVq1YuvWrcbjkydPZubMmQwaNAg3NzdCQkJISUlh8eLF7N69m+XLlxcZsxDFZTAYuHxkPa0vNME8R5/nnIXh76267t0s3rdzQgghng5N23WjTnOXfIm7mYUlLzR3oWlb91LpZ8KECWzfvp2dO3cybNiwUmlTknbAxsaGsLAwgoKCWLZsmcmyJ06cwMXFJd9xV1dXWrRoYbLumDFjCAkJoWPHjkyYMIGQkBA6depkss6OHTs4duwYERER/PTTT4SGhnLnzp08ZY4fP87UqVPZvn07f/31F/v37+fs2bOsX7+e0NBQvv/+e65evWqyn6LY29tTu3ZtTp48CcC2bdvw8vLKV06j0TB58mQWL15MaGgolpYFf5qF+8uMDhw4gLu7O56enmzcmPfmj1u3bvH999+zfPly5syZg62tLePGjcPNzY0xY8aU6HqEKEjOpaPUPXkCgJfP3YX/fcBWGbS01P79gV5tUalM4hNCCFEyCqUSn7Ez6T7sX1Sr24QKtvZUq9uE7sP+VSrbPT5OciMq0K1bNwAaNmxIUlJSserOmzePffv2kZWVRZcuXQgKCiq0rLOzM5GRkRw7dowDBw7wzTffsGHDBjZu3FjoDQqHDx/G09MTc3NzzM3NCQ8Pz1emUaNGVK9eHYAGDRpw7949rl69SteuXbG2tgagZ8+epKSkFOva/snT05OdO3fSokULjh8/zieffJKvzLlz53B0dKRBgwYA9O7du8C17gCbN2+mffv2VKpUCXd3dz755BPOnDlD8+bNAejUqRMKhYLGjRuTnJxcotiFeBi6xL9wTM/hUoVo6t/ogn1CKnsqXqeOXQzVnO4BYGZVhSp1Pco4UiGEEI9KoVTSrH13mrUv+TrzJ+np/TjxBOUuc1EoFEWWdXZ2znNDZmBgIOHh4YwaNYq0tLRC6xkMBqZNm4ZOp6Nt27ZMmDCBzZs3k5SUxJkzZwqtp1ar88QVFxdHRkZGnjIWFhbG1wqFAoPBgFKpNC7DKSweuH8j6D9NmTIFHx8ffHx88tzs2q1bNyIjI4mOjqZNmzYoC/g0mtt/rtyxjY+PN7b59ttvA/eXxhw/fhw3Nzd69eqFUqlkw4YN+a7rYX4uQpQGswZtQKWmftZBtOwgOTmFmpcdSD7ehL+udqTOK+/TsMOnmFlWLutQhRBClDOStBeTl5cXmZmZLF++HK1WC9y/SzgqKqrAJDaXQqHg4sWLrFq1yphMx8XFkZOTQ506dQqt5+Liwq5du9BqtWRmZjJy5Eji4+OLjLNDhw7s3buXtLQ0NBoNu3btMia/9vb2nD9/HoPBUOAa/lmzZhEeHk54eHiem13t7e1xcnJi0aJFBS6Ngfvr5RMSEow35eauU69WrZqxzZUrVxITE8OtW7f47bff2L17N7t37+brr78mIiLC5IcflUpV4AcNIUqDqnJNrN/8FHW9V3BqZODVEVUZPN+TUQvfotuIoVhXboJCqSrrMIUQQpRDsjymmMzNzVm7di0LFy7E19cXAJ1Oh4eHByNHjjRZd/78+XzxxRe4u7tjZWWFjY0NwcHB2NnZFVqne/fuxMTE0KdPH/R6PUOHDqVevXpFxtm4cWOGDh3KgAEDqFChAvb29saZ64kTJzJ69GiqVKlC69ati7UkqEePHixbtqzQu6DNzMyYP38+kyZNQq1WG5e6/FNoaCh9+vTJs+a9Xbt21KtXj4iIiEL7b9WqFUuXLmXevHkEBgY+dNxCPCyzei9hVu+lsg5DCCGEyENheHAtg3huXL58mb179+Lv7w/cvwm2f//+uLm5lW1gT1B2djYxMTE4OzvnWUJUVo4ePUrr1q3LOoznjozr4yHjWvpkTB8PGdfH41ka19jYWJo1a1bWYRQpPT2dihUrGt//M+6i8haZaS/AmjVrCAsLy3fc0dGRlStXmqw7ceJELly4kO+4m5tbofuYHzlypNCHC61YsYJq1ao9RNR5OTk5cerUKd544w0UCgWdO3ema9euxW5HCCGEEEKUPUnaC+Dv72+coS6u4ODgYtdp06ZNgbvClIS5ufkjxSKEEEII8Twz6A2kxdwm+UAcupRsVLYW2HWshbWzIwpl6Wx+sXv3bpYuXUpmZiadOnUyubvgw5KkXQghhBBClAsGvYFbG0+TeTEJg/b+xiC6dC13Nv9J2uk7VB/QosSJ+/Xr15k2bRo//fQTDg4ODBs2jL1799KmTZsStStJuxBCCCGEKBfSYm7nSdhzGbR6Mi8mkRZzG5tWxV+W/KBffvkFLy8v4zN0FixYUCr31smWj0IIIYQQolxIPhCXL2HPZdDqST4YV+I+rl69ik6nY/To0fj4+PD9999TqVLJn6QtSbsQQgghhCgXdCnZps/fM33+ofrQ6Th48CCff/45Gzdu5OTJkwVucFJckrQLIYQQQohyQWVrepmKqlLJl7FUqVKFDh06ULlyZSwtLenWrRsnT54scbuStAshhHji5BEhQoiyYNexFgqzgtNfhZkSuw61StxH165d2b9/PykpKeh0Ovbt20eLFi1K3O5zn7RHRUXh5+eHn58fUVFRxaqbmJjIlClT6N69O56envTu3ZvIyMgi66WkpDBx4kS8vb3x9vZmxIgRXLly5ZHinzJlCqdOnXqkuoVxc3MjLi7/mq0lS5bQpEkTjh8/nuf4rFmzaNKkCQCRkZEsWrQoX93ccS6sPy8vL3x8fOjVqxd9+vTh0KFDjxR7YX0IIZ4NBoOBsItr+eCPAD488T57b+8xnsvKSOX30P8Q8e+pxB7cVYZRCiGeV9bOjlg1sM+XuCvMlFg1sMfa2bHEfbz44ouMHDmSwYMH4+XlRc2aNenbt2+J25XdYwqh0WgYNmwYHh4e7NixA5VKxaVLlxgxYgROTk40bdq00LrBwcE0btzYuE/6li1beP/99x9pPdOsWbMe+RoeRfXq1dm5cycvv/wycP8/2MOHDxvPu7u74+7uXux2V6xYQa1a9z+97t69m8DAQPbv31/sdqKjo4tdRwjxdNDdu82BX6bxa70czDQGGp7O5IpmK1eq69FVaIb68EzSb1+gUkV7th/dS+KtBDr1HlzWYQshniMKpYLqA1rc36f9YBy6e9moKllg16F092nv168f/fr1K5W2cpWrpH3Tpk3Mnj2blJQUpkyZgpubW6Fld+7ciYWFBQEBAcZj9evXZ/r06eh0OpP9JCQk4ODggF6vR6lU4uXlRYUKFUzWMRgMzJs3j19//RWVSsWAAQMYNmwYfn5+xhi+/vprLC0tuXjxIk2aNGHevHmYm5uzdu1avvvuO2xsbKhfvz516tThvffeo0mTJpw7dw6A0NBQoqOjmT17tsk43N3diYyMZPLkycD9p7W+9NJLxMbG5mtn//79fPHFF1hYWFCvXj2T7T6oXbt23Llzh6SkJHQ6HVOmTOGvv/5CrVbz/vvv8+qrr3Lw4EHmzp0LQKVKlQgODubf//43AP379+enn3566P6EEE+HzD2ruapMBqzx3qznerM+XGvxIgC6O9dpUqMCr7avj0IBhoxaHN3zX+5cq0fP0S6YWZSr/66EEI+RQqnAplW1Em/t+KQ998tjHmRjY0NYWBhBQUEsW7bMZNkTJ07g4uKS77irq2uR65LGjBlDSEgIHTt2ZMKECYSEhNCpUyeTdXbs2MGxY8eIiIjgp59+IjQ0lDt37uQpc/z4caZOncr27dv566+/2L9/P2fPnmX9+vWEhoby/fffc/XqVZP9FMXe3p7atWsbb5jYtm0bXl5e+cppNBomT57M4sWLCQ0NxdLS8qH72LJlC3Xr1sXe3p4ZM2bQvn17IiIiWLx4MR9//DEJCQn8+9//Zvr06YSGhtKxY0fOnDljfJqYJOxCPJv0Cdepm6TB4Y4Bpbo+1xu9aDynqloT6waNUfxvkktRIZ1WrWry14VEzhy4XkYRCyHE06NcJe3dunUDoGHDhiQlJRWr7rx58/Dx8cHDw4OZM2eaLOvs7ExkZCSLFy+mbt26fPPNNwwePJicnJxC6xw+fBhPT0/Mzc2pWLEi4eHhVK1aNU+ZRo0aUb16dZRKJQ0aNODevXscPHiQrl27Ym1tjYWFBT179izWdRXE09OTnTt3otPpOH78eIFP8Dp37hyOjo40aNAAgN69e5ts85133sHHxwcvLy927drFwoULATh06JDx66PatWvz4osvcuLECdzd3QkICOCzzz6jefPmdO7cucTXJYQoW2YNXWgRn0Wbv9JIt7bPdz5DmXcfYzOr+zerptzNeCLxCSHE06xcJe0qlQoAhaLo9UrOzs55bsgMDAwkPDycUaNGkZaWVmg9g8HAtGnT0Ol0tG3blgkTJrB582aSkpI4c+ZMofXUanWeuOLi4sjIyPsf1YNP01IoFBgMBpRKJXp9wQ8JyI0HKPADw5QpU/Dx8cHHxyfPza7dunUjMjKS6Oho2rRpg1KZ/69Jbv+5csc2Pj7e2Obbb79tPL9ixQrCw8PZtm0bq1atolmzZnniezBenU6Hv78/69ato06dOsydO5fly5cXeo1CiGeDZZfBWHToh6vWjvraOFRajfGcQa+ncsa5POXv3awFCmjwUo0nHaoQQjx1ylXSXhxeXl5kZmayfPlytFotAKmpqURFRRWYxOZSKBRcvHiRVatWGZPpuLg4cnJyqFOnTqH1XFxc2LVrF1qtlszMTEaOHEl8fHyRcXbo0IG9e/eSlpaGRqNh165dxuTf3t6e8+fPYzAY2L17d766s2bNIjw8nPDwcFq2bGk8bm9vj5OTE4sWLSpwaQxAkyZNSEhI4OzZswBs3boVgGrVqhnbXLlyZZHxt2/fnk2bNgFw/fp1jh07xksvvUT//v1JT0/H398ff39/4wcelUpl8hsLIcTTS6Eyo0LX4VQa9RXNg77gTfscGujTqZSTjTJmP9GH07mVUBlSa5B9rRNJ5s54jmxNzYaVyzp0IYQoc3JnTyFyb/BcuHAhvr6+wP0nXHl4eDBy5EiTdefPn88XX3yBu7s7VlZW2NjYEBwcjJ2dXaF1unfvTkxMDH369EGv1zN06NCHurmzcePGDB06lAEDBlChQgXs7e2NM/ITJ05k9OjRVKlShdatWxdrSVCPHj1YtmyZcReZfzIzM2P+/PlMmjQJtVpN8+bNH7rtB02ZMoWpU6cSGhoKwMyZM3F0dOSDDz5g8uTJqNVqKlSoYFyS5O7ujo+PD6GhoXm+eRBCPHsatmxCw9w3XRpiMAzO841jwb99hBCifFIY5AkXz7TLly+zd+9e/P39gfs3wfbv39/kzjjlRXZ2NjExMTg7Oz8VCf7Ro0dp3bp1WYfx3JFxfTxkXEufjOnjIeP6eDxL4xobG2tcdvs0+Omnn/juu++M7+Pi4vDx8WHixIlUrFjRePyfcReVt5TrmfY1a9YUuHe6o6NjkUs7Jk6cyIULF/Idd3NzY/z48QXWOXLkCDNmzCjw3IoVK6hWrfhbDzk5OXHq1CneeOMNFAoFnTt3pmvXrsVuRwghhBCiPNDr9Zw8edL41FJbW1s6d+5Mq1atTC6Bflj9+/enf//+AJw/f56xY8fm2UL8UZXrpD13vfSjyH1wUnG0adOG8PDwR+qvMObm5o8UixBCCCFEeaPX61m/fj0XL15Eo7l/M3xaWhphYWHExMQwePDgUkncc02fPp3333+fypUrk56eXqK25EZUIYQQQghRLpw8eTJPwp5Lq9Vy/vx543NqSsOBAwfIysrC09OzVNqTpF0IIYQQQpQL+/fvz5ew59Jqtfz++++l1teGDRsYPnx4qbUnSbsQQgghhCgXUlJSTJ6/d+9eqfSj0Wg4fPhwqW4MIkm7EEIIIYQoF2xtbU2er1SpksnzD+vcuXPUrVuXChUqlEp7IEm7EEIIIYQoJzp37oyZmVmB58zMzOjUqVOp9HP9+nWqV69eKm3lkqRdCCGEEEKUC61ataJhw4b5EnczMzMaNWpEq1atSqUfLy8vFixYUCpt5SrXWz4KIYTIS6/VobmVjkKb97l7el0Of+wJ4+71o1R1qknzLv6YW5n+mlkIIZ42SqWS//u//+PkyZP8/vvv3Lt3j0qVKtGpU6dS26f9cSk3SXtUVBRLly4FICAggHbt2j103cTERIKDg4mOjkatVmNpaUlAQADu7u7FjuPUqVNs2LCBWbNmFbtuYUJDQ4mOjmb27Nn5zjVp0oSmTZuiUCjQ6XRUrFiRTz/9lCZNmhSrj9TUVCZPnsyyZcuKLOvn51fsMS4ONzc31q5dS61atR5L+0KUJ/FJGn49lkiOGRisdNxLSKHatXheuaHj4tbFWNY0o2q/fvz+yw/oMg/i9EIlIJlz/51M485TsahYul//CiHE46ZUKnnppZd46aWXyjqUYik3Sfuj0mg0DBs2DA8PD3bs2IFKpeLSpUuMGDECJycnmjZtWqz2WrZsScuWLR9TtAV78IFO69atY+rUqWzcuLFYbdy7d4/Y2NjSDk0I8YTpDXp+u72bP+J/x1Znza+7OpCebs0r3SqhzlGCnTUpdtZczdpDr/h6aKJCyL5xgyu6k7Rzr2lsR6XSc/fqr9RsPqQMr0YIIcqPp/c7gMdo06ZN9O7dG3d3d3bv3m2y7M6dO7GwsCAgIACVSgVA/fr1mT59OjqdzmTd2NhY+vfvj7e3N0OGDOHWrVtERUXh5+cH3J+RnjNnDgMGDKB79+7s3bsXgFu3bjFkyBC8vb2ZOHEir776KgBLlixhyZIlxvbd3NyIi4sr1rW3a9eOP//8E4DLly/j5+eHt7c3AwYMMD5QICIiAh8fH/r06cO4cePIzs5m5syZ3L59m7Fjx+ZrU6PRMGnSJDw9PRk5ciRJSUnGc1999RVeXl54e3sze/ZsdDodcXFx9OjRg0GDBjF8+HDOnj3Lm2++SZ8+fRg0aBBXrlwB4LvvvqN///688cYb9O7dm0uXLhXrWoUQ+UXG7yIkbiMXtXEc15+lUdtvqFpFj9os738HGdWrc1GZzFnLtty6mU1FG+t8bel1WU8qbCGEKPfKZdJuY2NDWFgYQUFBRS73OHHiBC4uLvmOu7q60qJFC5N1AwMDeffdd4mIiMDLy4tvv/02XxmtVsvGjRv56KOPWLRoEQCzZs3C09OTiIgIevToQXx8fDGurnAGg4GtW7fy8ssvAzBp0iT8/PyIiIjgo48+Yvz48Wg0GhYuXMg333xDaGgoTk5OXLp0iaCgIBwdHQscr3Xr1gGwfft2goKCuHbtGgB79+5l9+7dhISEEBYWxtWrV9mwYQNw/wPD3LlzWb16Nd9++y3Dhw8nNDSUN998kz/++IO0tDR+/fVX1q1bx5YtW3jttddYv359qYyDEOXZ8Vv78rxPtFXQTHU4XzlDWjKJOg03zV7gDytX6jgPJCUpb5Ju79T5scYqhBDib+VyeUy3bt0AaNiwYZ5Z4Ycxb9489u3bR1ZWFl26dCEoKKjAcomJidy5c4euXbsCMHjwYOD+2voHdenSBYBGjRqRnJwMwO+//84XX3wBQPfu3YvcU7QoPj4+wP0Z8QYNGvDZZ5+Rnp7OtWvXeP311wF46aWXqFSpEpcuXaJr164MGjSIbt264eHhQbNmzUzO6EdHRzNgwAAA6tata/xQcOjQIXr27ImVlRUAffv25eeff8bV1RUHBwfjmnRXV1c+++wz9u3bh5ubG127dkWlUhEcHMzWrVu5cuUK+/bto1mzZiUaByEEVNZbcvWB92Y6PVWSbhP9Zyo1GlZEoVSiuxOH4XIsqenOKAAUCjJSX6BNj1ncPLcFq4oWVHnhVSrY1S+jqxBCiPKnXCbtuctcFApFkWWdnZ2Ns8Nwf/Y8MDDQePNnYczMzPK0n52dze3bt/OVs7CwyBeLSqXCYDDkK6tQKNDr9cb3Wq02z/lTp04ZP0Q4Ozsbb3Z9cE17rrS0tHzHDAYDOp2OoKAgzp49y969e5k0aRIBAQG0bt3aWO6HH34wjsnAgQNRKBR54lWr7/+1ejDWXDk5OQBYWloaj/Xo0YOXX36ZPXv2sGbNGn777TfGjh2Ln58fQ4YM4dVXX6VKlSqypl6IUuDd4P+4emoWiVZK1DoDPf5Mx7qTF/Xsa1CnqpYTp06gTUvhZmpzFIa//51aWVtg6+CEbcdRZRi9EEKUX+UyaS8OLy8vVq9ezfLlyxk5ciRmZmakpqYSFRVlTP4LYmNjQ7Vq1di/fz+dO3cmPDyc6Oho+vfvX2SfHTp0ICIigsGDB7N3717jI3ft7e2NM/UnT57kzp07eeq1bNmywAS9INbW1tSqVYtdu3bx+uuv88cff5CQkECjRo14/fXXWbduHaNGjUKr1RIbG0u7du2MCfegQYMYNGiQsS2NRkNERARdu3bl5s2bHDt2DID27duzfPlyBgwYgFqtJiQkhPbt2+eLZcKECbzxxhsMHDiQBg0a8MUXX3Dq1CleeOEF/P39ycrKYvHixaX+kAIhyqNqleoztel0rvyxkUpZeiq/5o261t/fYtV36g7AxluR3L18fzmMrYMVrV6rWxbhCiFEqTMY9KTcOszda5Fos5Mws7DHoY47ttVdUChKZ+V4eHg4K1asAODVV1/lww8/LHGbkrQXwdzcnLVr17Jw4UJ8fX0B0Ol0eHh4MHLkSJN1586dy/Tp05k7dy729vbMmTOHy5cvF9nnlClT+PDDD/nxxx9p2rSpcXmMl5cXO3fuxMvLixYtWtC8efMSXVtufEuWLMHMzIwlS5Zgbm7OuHHjeOutt7CwsMDBwYHZs2dja2tLzZo18fPzM65hzzV48GDOnz+Pp6cnTk5ONG7cGICuXbsSGxtL3759ycnJoXPnzsYbch80evRopkyZwrJlyzAzM2P69Ok0aNCAH374AS8vLwwGAy4uLpw/f75E1yuEuM+sSm0adQs0Waahqx2v9W1AdroGp8ZVUKnL5S1QQojnjMGg5/rJr0m/G4tBrwFAp0nlr9j1pNw+Rq1Wo0qcuGdmZjJr1ix27NiBra0tgwYN4sCBA7z44oslaldhKGgdhihTa9eupWPHjjRs2JDTp0/zySefEBoaWtZhPXOys7OJiYnB2dnZuAypLB09ejTPMiNROmRcHw8Z19InY/p4yLg+Hs/SuMbGxj70fW/3bkbxV+x6Y8L+IIXSnJrNh1CpetsSxZOWlsZrr71GeHg4Dg4ODBo0iKCgIJo2bUrFihULjbuovEVm2oE1a9YQFhaW77ijoyMrV640WXfixIlcuHAh33E3NzfGjx//SPG88MILfPDBByiVSiwsLJgxY8YjtSOEEEIIIf5291pkgQk7gEGv4e7VX0uctFtbWzN+/Hg8PT2xsrLCxcWFV155hYyMjBK1K0k74O/vj7+//yPVDQ4OLt1guL+biqura6m3K4QQQghRnmmzTe8aWNT5h3H27FlCQkLYs2cPNjY2BAYGsmrVqjz3Az4KWaQohBBCCCHKBTML+xKdfxj79++nQ4cOODg4YG5uTp8+fUzuOPiwJGkXQgghhBDlgkMddxRK8wLPKZTmOLzQrcR9NG3alAMHDpCRkYHBYGD37t20bNmyxO3K8hghhBBCCFEu2FZ34d7tY3l2j4H7Cbu1QzNsq7UpcR+dO3fmzJkz9OnTBzMzM1q2bMk777xj3Dr7UUnSLoQQQgghygWFQkntVqNIiT/C3au//r1P+wvdsK3WptT2aX/nnXd455138hyTpF0IIYQQQoiHpFAoqVS9bYl3iXnSJGkXQgjxTNBoc9i5/yJxqRVp27QSrRvblHVIQgjxxDy3N6JGRUXh5+eHn58fUVFRxaqbmJjIlClT6N69O56envTu3ZvIyMhHiuPUqVNMmTLlkeoWJjQ0lMmTJxd4rkmTJvj4+ODr64u3tzcDBw7k3Llzxe4jNTWVsWPHljRUk/bs2cPq1auLVWfy5MnyoCkhyhGDwcDvN1JYfOBPvty8h5h9odQ+tJWcdVEc3CRPSRZClB8y0/4PGo2GYcOG4eHhwY4dO1CpVFy6dIkRI0bg5ORE06ZNi9Vey5YtS+WO4eIIDw83vl63bh1Tp05l48aNxWrj3r17xMbGlnZoecTExDzW9oUQz74j8WnsvnYPFFZQsynayrU5G7UGG4WaWqfMuHb9AFV9X8WqXr2yDlUIIR6r53am/UGbNm2id+/euLu7s3v3bpNld+7ciYWFBQEBAahUKgDq16/P9OnT0el0JuvGxsbSv39/vL29GTJkCLdu3TLO+AP4+fkxZ84cBgwYQPfu3dm7dy8At27dYsiQIXh7ezNx4kReffVVAJYsWcKSJUuM7bu5uREXF1esa2/Xrh1//vknAJcvX8bPzw9vb28GDBjAyZMnAYiIiMDHx4c+ffowbtw4srOzmTlzJrdv3y5wtr13797GhFun0/Hqq69y9+5dTp48yaBBg+jduzdvvfUW169fL/S6L1y4wIYNG9iwYQMhISEsWbKEESNG4OXlxffff090dLSxLXd3d3799ddiXbcQ4vlwPjErz3uFZUXatrWmauvDaFv8Rua1FK7Ono02qeQPRBFCiKdZuUjabWxsCAsLIygoiGXLlpkse+LECVxcXPIdd3V1pUWLFibrBgYG8u677xIREYGXlxfffvttvjJarZaNGzfy0UcfsWjRIgBmzZqFp6cnERER9OjRg/j4+GJcXeEMBgNbt27l5ZdfBmDSpEn4+fkRERHBRx99xPjx49FoNCxcuJBvvvmG0NBQnJycuHTpEkFBQTg6OhY4Xj4+PmzduhWAQ4cO0bRpU2xsbAgKCiI4OJiwsDCGDx/OJ598Uuh1N2zYkIEDBzJw4ED69u0L3P+WY9u2bQwePJjvvvuOmTNnEhYWxsyZM41jJYQoX6pUyPuFsMKgw9pwP0HXV76JocpfGLKzSTtxoizCE0KIJ6ZcLI/p1u3+RvkNGzYkqZizMfPmzWPfvn1kZWXRpUsXgoKCCiyXmJjInTt36Nq1KwCDBw8GyLeevkuXLgA0atSI5ORkAH7//Xe++OILALp3746trW2xYvwnHx8f4H4S3KBBAz777DPS09O5du0ar7/+OgAvvfQSlSpV4tKlS3Tt2pVBgwbRrVs3PDw8aNasmckZ/Z49ezJgwAD+9a9/sWXLFnr16sWVK1e4fv06Y8aMMZZLS0szed3/1KpVK+PruXPnsmfPHnbs2MGJEydIT09/5PEQQjy7OjvZciNNQ1yqBoVOw4s5kVga/v59oFfeRgGYOTiUXZBCCPEPK1asICQkBHNzc7y8vPLkR4+qXCTtuctcFApFkWWdnZ3ZsGGD8X1gYCCBgYGEhoaafAStmZlZnvazs7O5fft2vnIWFhb5YlGpVBgMhnxlFQoFer3e+F6r1eY5f+rUKeOHCGdnZ2bNmgXkXdOe68EEOpfBYECn0xEUFMTZs2fZu3cvkyZNIiAggNatWxvL/fDDD8YxGThwIIMGDaJevXpERUVx8OBBpk6dytWrV6lVq5axb51OR0JCgsnr/idLS0vj68GDB9OuXTvatWtHhw4dCAwMLLSeEOL5VcFMxXDnaiRmZbP76Ebqao4bvyM2aA0oruuwbd+eikV8EyqEELkMBgMxCRlE3UwlRaPD1lxFuxo2OFep8FC5YlEOHDhAREQEISEhWFlZMXbsWHbt2kWnTp1K1G65WB5THF5eXmRmZrJ8+XJjkpyamkpUVBRKZeHDZWNjQ7Vq1di/fz9wP3F+2CUdHTp0ICIiAoC9e/eSkpICgL29PRcuXADg5MmT3LlzJ0+9li1bEh4eTnh4uDFhL4y1tTW1atVi165dAPzxxx8kJCTQqFEjXn/9dezt7Rk1ahQ+Pj7ExsaiVquNDwEYNGiQsZ9BgwYB92fzv/zyS9q1a4eVlRX169fn3r17HDlyBICQkJAiE22VSlXggwaSk5O5cuUK48eP59VXXyUyMrLI+wmEEM+3ypYW9Os0lAZtA7Gt7kKlGu2p1WAEDabOxmn0aBQmfj8LIUQug8HAj+cS2HopiZvpWtK1em6ma9l6KYmfziUUOIlaXGfOnKFz585YW1ujUqno0qVLqdybVy5m2ovD3NyctWvXsnDhQnx9fYH7s8YeHh6MHDnSZN25c+cyffp05s6di729PXPmzOHy5ctF9jllyhQ+/PBDfvzxR5o2bWpcHuPl5cXOnTvx8vKiRYsWNG/evETXlhvfkiVLMDMzY8mSJZibmzNu3DjeeustLCwscHBwYPbs2dja2lKzZk38/PxYt25dvra6d+/OtGnTjIm5ubk5ixYtYtasWWRnZ2Ntbc2XX35pMh4XFxc+/PBDqlSpkue4nZ0d/fr1o2fPnqjVatq3b09WVhYZGRklun4hxLOvgl0DKtg1KOswhBDPqJiEDC7fy0arz5uca/UGLt3LJiYhg5ZVK5aojxYtWvD5558zatQorKys2L17d6l8GFAYSqMVUSJr166lY8eONGzYkNOnT/PJJ5/IXuSlIDs7m5iYGJydnY3Lc8rS0aNH8yw7EqVDxvXxkHEtfTKmj4eM6+PxLI1rbGwszZo1e6iy/zl5i5vp2kLP16hoxshW1Usc0+rVqwkNDcXOzo4OHTpw4sQJ5s+fT8WKf38g+GfcReUt5XKmfc2aNYSFheU77ujoyMqVK03WnThxonHJyoPc3NwYP378I8Xzwgsv8MEHH6BUKrGwsGDGjBmP1I4QQgghhChcisb0ctuizj+MtLQ0Xn/9dYYPHw7Af/7zH2rXrl3idstl0u7v74+/v/8j1Q0ODi7dYLi/naSrq2uptyuEEEIIIf5ma64iXas3eb6k4uLi+PDDDwkJCSEzM5NNmzYVee/hwyiXSbsQQgghhCh/2tWwYeulpHxr2gHMlAra1bApcR9Nmzbl9ddfp1evXuh0Ovz9/WndunWJt6+WpF0IIYQQQpQLzlUqcOZu/ptRzZQK6leywLlKhVLpZ+zYsQU+Vb4kJGkXQgghhBDlgkKh4M0mVR7rPu2PiyTtQgghhBCi3FAoFLSsWrHEWzs+afI0CiGEEEIIIZ5ykrQLIYQQRTAYDGSnx6PLycpzXG/Q82fqOa6mF/0gPSHE4/OsPXboUeKV5TFCCCGECZrMu1z/Yxmp6Ykcs3yD2+pGVKtoSSd9PIf+XMcfNZPItlTgXKkVoxqMRamQ+TAhniRLS0vu3r2Lg4PDU70mPZfBYODu3btYWloWq54k7c+wqKgoli5dCkBAQADt2rV76LqJiYkEBwcTHR2NWq3G0tKSgIAA3N3dH1e4QgjxzNFePcnNP38gW5HESfM3uKFqAgaIS9Pwc7KWrltv0NLSnJC+amI4SWzKGVpUci7rsIUoV2rVqkVcXBx37twp61BM0mg0mJubA/c/aNSqVatY9SVpL4c0Gg3Dhg3Dw8ODHTt2oFKpuHTpEiNGjMDJyYmmTZuWdYhCCFHmNLH7SA+bjaa5I1hbkKCqk+d8tp0jh21VtE7J5qXjCva4q0nNSWHXkUR2HrmLTQU1g92q0bhW6WwhJ4QomJmZGfXq1SvrMIp09OhRXnzxxUeuL9/hPSc2bdpE7969cXd3Z/fu3SbL7ty5EwsLCwICAlCp7j/5q379+kyfPh2dzvTje2NjY+nfvz/e3t4MGTKEW7duERUVhZ+fn7HM5MmTCQ0NJS4uDl9fXyZNmsQbb7zBsGHDSE5OBuC///0v/fr1w9fXl4CAAJKSkgBwc3MjLi4OIE+7q1evplevXvj6+jJ16tRHGiMhhCiO7GPbAEiLtwWgsv5GnvNWGRrqqZpyXZGCmRYqqiqScbMuC0Kuc+ZqBlGxKXy86iJpmSV/LLoQQkjS/pywsbEhLCyMoKAgli1bZrLsiRMncHFxyXfc1dWVFi1amKwbGBjIu+++S0REBF5eXnz77bcmy589e5bhw4ezZcsWbG1tiYiIMC7NWbVqFT///DOdO3dm3rx5hbah0+n4+uuvCQkJITQ0FK1WS3x8vMl+hRCipBRmlhgMcPR0Fy6dacoLCXuxzbgMBgP6lETUx/6LmdICBQpUnV5hYtPJHDuTk6eN9Cw9Jy6lldEVCCGeJ7I85jnRrVs3ABo2bGictX5Y8+bNY9++fWRlZdGlSxeCgoIKLJeYmMidO3fo2rUrAIMHDwbuz4gXxsHBgebNmwPQqFEj7t27x4kTJ7h58yZDhw4FQK/XU6lSpULbUKlUvPzyy/Tr1w93d3eGDx9OtWrVinWNQghRXJYd3yT7ykl0BjOunm/IjVu3gR3G83dR8lfWNbqPmUyNtp0BcKqSf0LBycH8SYUshHiOyUz7cyJ3mcvD3DXt7OzM8ePHje8DAwMJDw9n1KhRpKUVPiNkZmaWp/3s7GyuX7+OQqHIs3WRVqs1vrawsDC+zi2n0+l45ZVXCA8PJzw8nE2bNrF48WJjudy2cnL+nrH697//zfTp0zEYDIwcOZLo6Ogir1MIIUpCXasZ9u+upKmzOQoUmOts8pyvYmtDvy8WGRN2gF4dq9Cy3v0HtqiUMKirI3WrWz3RuIUQzydJ2sshLy8vMjMzWb58uTHBTk1NJSoqCqWy8L8SNjY2VKtWjf379wMQHh7OokWLsLe35/r162RnZ5OcnMzRo0dN9v/iiy/yxx9/cPny/X2N//3vfzNnzhwA7O3tuXDhAgCRkZHA/Rl+Ly8vGjduzPjx4+nUqRPnzp0r2SAIIcRDUFpX5tW3e+A+9EXaO7tSzaEGSqWSevXqMXTUO1Swtc9TvqKlijnvNGRVYFO++6gFQ1+vUUaRCyGeN7I8phwyNzdn7dq1LFy4EF9fX+D+unEPDw9Gjhxpsu7cuXOZPn06c+fOxd7enjlz5uDo6Iirqys9e/bEycmJ1q1bm2yjatWqfP7550yYMAG9Xk+1atWYO3cuAOPGjWPGjBksXbqUzp3vz15VrlyZAQMG0K9fP6ysrKhXrx59+/Yt+UAIIcRDUCgVNHGpRROXWvSg40PVqelgUXQhIYQoBoXhWXuElBAPKTs7m5iYGJydnfMs0ykrR48eLfIDjSg+GdfHQ8a19MmYPh4yro+HjGvpK2pMi8pbZKb9ObVmzRrCwsLyHXd0dGTlypUm606cONG4ROVBbm5ujB8/vtRiFEIIIYQQD0eS9ueUv78//v7+j1Q3ODi4dIMRQgghhBAlIjeiCiGEEEII8ZSTpF0IIYQQQoinnCTtQgghhBBCPOUkaRdCCCGEEOIpJ0m7EEIIIYQQTzlJ2oUQQpSqC39l8OPe2xw+l4KpR4Hczb7L9YxrGAwG9Nk6DLq/yxr0OjKSL6DNSnwSIQshxFPvud3yMSoqiqVLlwIQEBBAu3btHrpuYmIiwcHBREdHo1arsbS0JCAgAHd3d5P1Tp8+zdixY3FycmL9+vUlin/Pnj1cuXKF4cOHF1omMjKSmJgYk3unFxXT5s2b+c9//oNOp0OpVNKjRw9GjRqFWv3k/2r4+fkV+2clhHi67D2ZxJcbrpGbq/fuVIV33nDKV27T9Y38djsSdY6Kvgc8qZFciRxA0aoqdV6348qRBRh0qYCCqg16UbWe5xO9DiGEeNo8t0n7o9JoNAwbNgwPDw927NiBSqXi0qVLjBgxAicnJ5o2bVpo3T179tCrVy8++OCDEscRExNTZBl3d/ciP0iYiik0NJTVq1ezbNky6tSpQ1paGpMnT2bq1Kl8/vnnjxy7EKL8+mnvHR6cXI84dJf/c6uC+s/f0N2+jFn91sTXrM6e278C0D7mJWomVwLADLj9x3niUrZQo7bqfy0YuHMpAvuaHVFbVHqyFyOEEE+RcpG0b9q0idmzZ5OSksKUKVNwc3MrtOzOnTuxsLAgICDAeKx+/fpMnz4dnU5XaL29e/fyww8/AGBubk5cXBzJyclcvXqVSZMmUblyZWbNmkV2djb29vZ89tlnvPDCC/j5+dGyZUuOHj1KYmIiQUFBODk5sWHDBgBq1qxJ3759C+wzNDSU6OhoZs+ejZubG7169WL//v1kZmby5Zdfcvfu3TwxPXhNAEuXLuWLL76gTp06AFhbWzNr1iy6dOnC2LFjiYqK4rfffuPu3bvcuXOHrl27MnnyZBQKBStWrGD79u3odDo6d+7MpEmTuHHjBiNHjsTe3h5LS0u++uorPv30U44ePYqZmRnvvvsuXl5euLm5sXbtWmrVqmX8RmTdunXGuHJycpg+fTrnz58nISGBJk2aMH/+fBISEvK0v3r1alM/diFEGfjnchiDwUDOziVoYvcAkH0kgniP3sbz1RMcuWtrztXq1lzPvErCtWO4V7QAch5oRE+OJkWSdiFEuVYuknYbGxvCwsLYs2cPS5cuNZm0nzhxAhcXl3zHXV1dTfbh6urKwIEDgfvLcSZPnoydnR1fffUVGo2GHj16sHDhQlq1asX27dv54IMPCAkJAUCr1bJx40Z2797NokWLCA0NNbZVWMJeEDs7OzZt2sS6dev4+uuvWbJkSZ6YHpSYmMiNGzdo1apVnuOVKlWiYcOGnD59GoCjR48SHh6Ora0tQ4cO5ZdffsHS0pKYmBg2bdqEQqFg0qRJbN68mdatW3P58mX+85//UKtWLf7zn/+QkZHB9u3buXv3Lv7+/nTr1q3I6zh+/DhmZmZs3LgRvV7PsGHD2Lt3Ly1atMjTvhDi6dO3iyNzf7xmfN+rtRX6s3vzlKl9/CjWLtak5aTxZ20tt19wwqBUAHZYONXgyoX11Kj8d9KutqiChbX8mxdClG/lImnPTRQbNmxIUlJSserOmzePffv2kZWVRZcuXQgKCnrourkJ8ZUrV7C1tTW+9/T0ZOrUqaSmpgLQpUsXABo1akRycnKx4nvQg+3s2rXroeoU9O2BVqtFoVAA95fgVKlSBQAvLy8OHTqEhYUFJ0+epE+fPgBkZWVRs2ZNWrdujYODgzGhPnz4MG+++SZKpZKqVauydevWh4rJxcUFOzs71q9fz6VLl7hy5QoZGRkAedoXQjx93F62p4aDOcfOp1K3uhUdGppz74IacjTGMpZqS8Y3DmTXre3calILg0ZhPKe0c+Ry1gsYzlyjnkMKKr2CTv0nGn8nCSFEeVUuknaV6v7ayIf5pe/s7GxcmgIQGBhIYGCgcSlKcVhaWgKg1+vznTMYDMaE2cLC4qHjM6Wodnx8fIyvw8PDqVOnDsePHzcm+3B/Bv769es0b96cqKgo49jlXodKpUKn0zFs2DDjTbIpKSmoVCqSkpKM1wygVqvzxHL16lVq1KhhvH64vxTmnyIjI1m8eDFDhw6lT58+JCUlGcs/2L4Q4unUrE5FmtWpaHxv2aE/Wfv+dyO8Uo1lp0HYWjnhX28km3WJnLiTnqe+QZfDpZvmVFbXw+P/RmFmaf8kwxdCiKeSbPn4D15eXmRmZrJ8+XK0Wi0AqampREVFoVQ+2nDVr1+f5ORkTp48CcC2bduoWbMmdnZ2hdZRqVQFJrQlER4ebvwDMGHCBD7//HOuX78OQHp6OkFBQXh5eeHkdH+3h3379pGamkp2djZbt27l1VdfpX379oSHh5Oenk5OTg5jx45l586d+fpzcXFh27ZtGAwG7t69y5AhQ9BoNNjb23PhwgXgfoL+TwcPHsTT05O+fftia2tLVFSUyfsJhBBPN6sug7Hxn08Fr3HYjv4a80Ztjefa17TBUvX3h/sKt6/S2KBheJ8+9Hn3YypWciiLkIUQ4qlTLmbai8Pc3Jy1a9eycOFCfH19gftLSDw8PBg5cuQjt7lgwQJmzJhBZmYmlSpVYsGCBSbruLi48OGHH1KlShX8/Pweqd+i9OzZE5VKxfjx49FoNOh0Onr27Mno0aONZSpXrszbb79NUlISvXr1Ms7Knz17ljfffBOdTkeXLl3o3bs3N27cyNP+4MGDmTlzJr169QLgk08+wdramnHjxjFjxgyWLl1K586d88XVv39/AgMD2bp1K2ZmZrzyyivExcU9ljEQQjwZ6ppNUNdsku+4YwUzxr5cg/NJWVibq6jfvhYKn/y/F4QQorxTGEw9+UKUaw/uTvMsys7OJiYmBmdnZ+PSobJ09OhRWrduXdZhPHdkXB8PGdfSJ2P6eMi4Ph4yrqWvqDEtKm8plzPta9asISwsLN9xR0dHVq5cabLuxIkTjUs7HuTm5mbyIUePatu2bXz99dcFnstd5iKEEEIIIZ5v5TJp9/f3x9/f/5HqBgcHl24wRfDy8sLLy+uJ9pmrT58+xh1ihBBCCCFE2ZEbUYUQQgghhHjKSdIuhBBCCCHEU06SdiGEEEIIIZ5ykrQLIYQQQgjxlJOkXQghhBBCiKecJO1CCPEc0iVcQ5uSwN1MLXp5HIcQQjzzyuWWj0II8ayLT9JQwUKJTYW8v8Z/jdtCZNxmVDk1sTb0R6vOxMZMifP1/2KddRj7yvbUdhlEhcoNyyhyIYQQj0Jm2gsQFRWFn58ffn5+REVFFatuYmIiU6ZMoXv37nh6etK7d28iIyOLrHf69Glee+01/u///u9Rwzbas2cPq1evNlkmMjKSRYsWlSimzZs306tXL3r27Im3tzfLli0jJyenwLKTJ08mNDTUZByLFy/myJEjJmMqrB0hyov0LB2TV17Ef04sgz8/w/pfbxnPnUuJJTxuC9UPuFAhfTBatS0AqVo9Z6o0wLZqBjrVDS4fCSY7/VZhXQghhHgKSdJeijQaDcOGDaNGjRrs2LGD7du3ExwczMyZMzl79qzJunv27KFXr16sX7++xHHExMSQlpZmsoy7u3uRT3A1FVNoaCgrV65k6dKlbN26lR9++IHY2FimTp1arFgfjOPw4cPodLpi1ReivAn/PYETl+7/+87RGfguMp5rt7MAuJhwnv/7tRc97zVGb2OZp16aysH4WqE0kBJ/9MkFLYQQosRkeUwRNm3axOzZs0lJSWHKlCm4ubkVWnbnzp1YWFgQEBBgPFa/fn2mT59uMhndu3cvP/zwAwDm5ubExcWRnJzM1atXmTRpEpUrV2bWrFlkZ2djb2/PZ599xgsvvICfnx8tW7bk6NGjJCYmEhQUhJOTExs2bACgZs2a9O3bt8A+Q0NDiY6OZvbs2bi5udGrVy/2799PZmYmX375JXfv3s0T04PXBLB06VK++OIL6tSpA4C1tTWzZs2iS5cujB07lqioKMLCwkhOTqZr164A/Pbbb3z33XdotVrGjBmDl5eXMY727dsTExNDUFAQS5cu5d69eyxYsICsrCxSUlL46KOP6NatW1E/LiGeezcSsgs8VsfRkvqx1TDT3k/ga97J4IZjRWOZGrrzeeqoLSo93kCFEEKUKknai2BjY0NYWBh79uxh6dKlJpP2EydO4OLiku+4q6uryT5cXV0ZOHAgAAEBAUyePBk7Ozu++uorNBoNPXr0YOHChbRq1Yrt27fzwQcfEBISAoBWq2Xjxo3s3r2bRYsWERoaamyrsIS9IHZ2dmzatIl169bx9ddfs2TJkjwxPSgxMZEbN27QqlWrPMcrVapEw4YNOX36NADx8fFs27YNtVrN5MmTyczM5Mcff+Tu3bv07ds3z1j5+voSEhJCQEAATZo0Ydy4ccycOZMGDRpw8OBBPv/8c0nahQDaN7dl9x9JxvcVLZW0qm8NgF2qNencT9rbn7rDH4113LA1IzPhNDXM90Hl+3UyM62oVL3tE49dCCHEo5PlMUXITRQbNmxIUlJSEaXzmjdvHj4+Pnh4eDBz5sxi1c1NiK9cuYKtra3xvaenJ9euXSM1NRWALl26ANCoUSOSk5OL1ceDHqWdgr490Gq1KBQKAJo3b45a/ffnwt69e6NWq6lWrRovvfQSJ06cKLTtuXPncv78eZYtW8bq1atJT08vxtUI8fzq0tKO93rXokntCrRtYsOstxpQ0VIFQMVmVYzlLLR6Xjl9h4G17RjRsSlXL6j5/bCK2/ea88ob81GqzMvqEoQQQjwCmWkvgkp1/z/D3ETUFGdnZ+PSFIDAwEACAwONS0CKw9Ly/npUvV6f75zBYDAmzBYWFg8dnylFtePj42N8HR4eTp06dTh+/Lgx2Yf7M/DXr1+nefPmREVFGa8hV+5Ywv3rMjMzKzSewYMH065dO9q1a0eHDh0IDAx8pOsS4nnk1dYBr7YO+Y7bvFgNfXYOqSfiUVY0w6lrXSxr2ACOjPp4zpMPVAghRKmRmfZS5OXlRWZmJsuXL0er1QKQmppKVFQUSuWjDXX9+vVJTk7m5MmTAGzbto2aNWtiZ2dXaB2VSlXoLi6PKjw83PgHYMKECXz++edcv34dgPT0dIKCgvDy8sLJyanANrZu3YrBYODGjRvExMTQsmXLfHHrdDqSk5O5cuUK48eP59VXXyUyMlJuUBXiIVVq60Stt1+h5uCW/0vYhRBCPA9kpr0UmZubs3btWhYuXIivry9wfwmJh4cHI0eOfOQ2FyxYwIwZM8jMzKRSpUosWLDAZB0XFxc+/PBDqlSpgp+f3yP1W5SePXuiUqkYP348Go0GnU5Hz549GT16dKF1KlSoQJ8+fcjJyeGzzz6jcuXKec536dKFadOm8eWXX9KvXz969uyJWq2mffv2ZGVlkZGR8ViuRQghhBDiaacwGORReeL5lJ2dTUxMDM7OzsblP2Xp6NGjtG7duqzDeO7IuD4eMq6lT8b08ZBxfTxkXEtfUWNaVN4iM+3FtGbNGsLCwvIdd3R0ZOXKlSbrTpw4kQsXLuQ77ubmVuSe6Y9i27ZtfP311wWey13mIoQQQgghnn6StBeTv78//v7+j1Q3ODi4dIMpgpeXF15eXk+0TyGEEEIIUfrkRlQhhBBCCCGecpK0CyGEEEII8ZSTpF0IIYQQQoinnCTtQgghhBBCPOUkaRdCCPHcMbWbsV6nITXhFFlpN55gREIIUTLleveYqKgoli5dCkBAQADt2rV76LqJiYkEBwcTHR2NWq3G0tKSgIAA3N3dTdY7ffo0Y8eOxcnJifXr15co/j179nDlyhWGDx9eaJnIyEhiYmJMbilZWEz79u1j3rx5AFy7do0qVapQoUIFatWqxbJly/K0MWXKFAYOHJjvKaePg5+fX7F/XkKI8sGQnUH6loVo/zzI/qbVOVzXlgqWdrxR04fq5s3YfiGe+NRUqudcopVmBY61u1C9yZtlHbYQQhSpXCftj0qj0TBs2DA8PDzYsWMHKpWKS5cuMWLECJycnGjatGmhdffs2UOvXr344IMPShxHTExMkWXc3d2L/CBRWExdunShS5cuQNGJ8qxZsx4yaiGEeHwy//sd2nO/82elRqSmN8Tuxl0u1rjGygvLaaiYQnK2ARTWXDZ7BSU6Xrr+C5Vrd8W8QtWyDl0IIUySpP1/Nm3axOzZs0lJSWHKlCm4ubkVWnbnzp1YWFgQEBBgPFa/fn2mT5+OTqcrtN7evXv54YcfADA3NycuLo7k5GSuXr3KpEmTqFy5MrNmzSI7Oxt7e3s+++wzXnjhBfz8/GjZsiVHjx4lMTGRoKAgnJyc2LBhAwA1a9akb9++BfYZGhpKdHQ0s2fPxs3NjV69erF//34yMzP58ssvuXv3bp6YHrwmU5YsWcIff/zBzZs3GTJkCNu3bycgIIDWrVszffp0zp8/T0JCAk2aNGH+/PkkJCQQEBBAo0aNiI2NxcHBgUWLFmFnZ8e2bdtYvHgxFSpUoFmzZuh0OmO8a9eupVatWsZvRdatW/dQ8QkhyqecG2fJymlDldtuVLl9/9g5VSJ3zM5x7bW8S2Zuq+oBBnTaNECSdiHE003WtP+PjY0NYWFhBAUF5Vv68U8nTpzAxcUl33FXV1datGhRaD1XV1cGDhzIwIEDjcmxnZ0d27dvp3PnznzwwQd88sknbN68mYEDB+aZ+dZqtWzcuJGPPvqIRYsW0bBhQ2NbhSXsBbGzs2PTpk0MHDiQr7/+usCYHpZGo2Hbtm0MHjzYeOz48eOYmZmxceNGfvnlF1JTU9m7dy8AZ8+eZfjw4WzZsgVbW1siIiJITEzk888/59tvv2XTpk3cu3evWDEIIURqZg6LQq/zzoKznMisQ5auTZ7zDXLsSbvZEnVGWp7jlfTxJKeruJtq9iTDFUKIRyJJ+/9069YNgIYNG5KUlFSsuvPmzcPHxwcPDw9mzpxZrLqtWrUC4MqVK9ja2hrfe3p6cu3aNVJTUwGMy1QaNWpEcnJysfp4UGm1A3/H/iAXFxcGDx7M+vXrmTVrFleuXCEjIwMABwcHmjdvbuz/3r17HDlyhJdffplq1aqhVCrx9fUtUUxCiPJnYUgcOw4ncv12NsHXOqFR5k3CDQZAb8Dst68hPRGAipk3ML+4n1+O2XD06NEyiFoIIYpHlsf8j0qlAkChUBRZ1tnZ2bg0BSAwMJDAwEDjUpTisLS0BECv1+c7ZzAYjMttLCwsHjo+U4pqx8fHx/g6PDzcZFu5sT8oMjKSxYsXM3ToUPr06UNSUpJxF4fcvnP7NxgMKJXKAq89V27dnJwck7EIIcqv6LMpxtfZmPOTtjKDVJnGY5ezNIAOxY2j/8/enYdFXe0PHH8Pw6og4IIKuAQuqGia4VIqCSpJKmC5YE1gmi2S3htwxSCjq5Yb1/16s7rXi7fcCMSdyiUtbVBcyT1cwNzZ14Fhfn/wc5LYDQT183qensc537N8ztHgM2fOfL8YRv1Klk1v8oo03AHAACMj2WkXQjR8stP+ADw9PcnLy2PVqlUUFhYCkJWVhVqtxsDgwZbUwcGB9PR0Tp48CcCOHTuwtbXFysqqwjZKpbLWk9nY2Fj9fw/i0KFDDB8+nJdffpkmTZqgVqsrPef/zDPPcOrUKW7duoVOp2PHjh36NxTW1tZcvHgRKHkzIIQQ5WlrY1Lq9W8tLLF/6xkyWzdGnZnLpfxCGpNPc50FRpp0DHNu6es2btyYfv36PeyQhRCixmSn/QEYGxsTGRnJkiVL9Mc5tFotHh4eTJ48+YH7XLx4MbNnzyYvLw9LS0sWL15caRsXFxdmzJhB8+bNUalUDzRubRszZgxBQUFs374dIyMjnnnmGVJSUiqs37RpU8LCwnjjjTcwNjbG3t6eJk2aADBt2jRmz57NihUrGDBgwMOaghDiETPNpw1zv7rM7YxCWlga8Z6PPSa2jen19rM43M4hN6uAFq0bkXe9Nwnqndy4fA6TVq1p49yXbs7dMTMzq+8pCCFElRS6yp5AIUQdS0tLY+3atQQEBGBgYMCcOXP0d8z5swoKCkhMTMTZ2bnU0Zz6kpCQQO/eves7jMeOrGvdeNTWVVus405GIc0tjVAa/LljhHXlUVvTR4Wsa92Qda19Va1pVXmL7LRXYM2aNcTExJQpt7Gx4fPPP6+0bWBgoP5Yx/3c3NwqfcjRg9qxYwefffZZudce9JjLw2JlZUVmZiYjRoxAqVTSrVs3xo6VB50IIWpGaaCgpbVxfYchhBB1RpL2Cvj7++Pv7/9AbSMiImo3mCp4enri6en5UMesLQqFgrCwsPoOQwghhBCiQZMvogohhBBCCNHASdIuhBBCCCFEAydJuxBCCCGEEA2cJO1CCCGEEEI0cJK0CyGEEEII0cBJ0i6EEEIIIUQDJ7d8FEIIIerB+ayzHEs7SjOT5gxoPghTpWl9hySEaMAkaRdCCCH+pD3H0vjmwC0Axrja8MLT1pXWP552lM+TVoFOh32Kjt9Mf0I17CMUBvIBuBCifJK01wG1Ws2KFSsACAgIoG/fvtVum5qaSkREBPHx8RgaGmJqakpAQADu7u6Vtvvll1+YOnUqdnZ2fPXVV38q/r1793L58mUmTpz4p/q5efMmYWFh5T5BtnPnzpw7d65MuZubG5GRkcTHxxMfH8+8efP+VAxCCFHXziXnsmjTVXS6ktcLNlzFvrkJHewalalbdOsShWd/Yn/jsyiLdPjEaGl2o4hERTzLooaisXuGzGJTrKys6PuiF3dNrDFVGtDX1gIrE/mVLcSTTH4CNCAajQY/Pz88PDzYtWsXSqWSpKQkJk2ahJ2dHU5OThW23bt3L6NGjeL999//03EkJib+6T4AWrZsWW7CLoQQj5OjF7L0CTuATldS9sek3fRuEmlx/yKvsD8DTHvSvvElWt34hROKu1xXZJPbqB15hUaAlrRiQ/ZmGIEiF4Azd3OZ2qs1RkrZiRfiSSVJex2Liopi3rx5ZGZmEhoaipubW4V14+LiMDExISAgQF/m4OBAeHg4Wq22wnY//PAD69atA8DY2JiUlBTS09O5cuUKwcHBNG3alLlz51JQUIC1tTV///vfadeuHSqViu7du5OQkEBqaiphYWHY2dmxfv16AGxtbXn55ZfLHTM6Opp9+/aRnp7OrVu3GD9+PNeuXePnn3/GysqKL774gtu3b/P666+zZ88eUlJSCA4OJjc3l6efflrfT3p6OsHBwdy4cQNHR0cKCgrKjHXy5Ek+/fRT8vPzsba25uOPP6ZNmzaVL7wQQjwk7VuVPYvevpVZmbImlxPIKngFHaZY5oJlbguKGudxN/cKAEVGFvq6Nl0dyVD8nqBnFRbza3o+Ts3K7t4LIZ4M8pa9jllYWBATE0NYWBgrV66stO6JEydwcXEpU+7q6kq3bt0qbOfq6sr48eMZP368PuG3srJi586dDBgwgPfff58PP/yQLVu2MH78+FK78YWFhWzYsIGZM2eydOlSOnTooO+rooT9nlOnTvHPf/6TL7/8kk8//ZRBgwaxdetWAA4cOFCq7uzZsxk9ejSxsbE888wz+vJly5bRtWtXtm7dyquvvsqdO3dKtdNoNISFhREREUFMTAwTJ07kww8/rDQuIYR4mPp1acLI/s0wVCowVCrweq45Lp0tytQrLmyOjtIJvqJxOxorSuoaFmbqy5ubZZdp30i22YR4osmPgDo2ZMgQADp06EBaWlqN2i5atIgDBw6Qn5/PwIEDCQsLq3bbHj16AHD58mWaNGmifz18+HBmzZpFVlYWAAMHDgSgY8eOpKen1yi+Z555BnNzc8zNzQHo378/AHZ2dmRmZpaqGx8fT0REBACjRo3Sz+X+chcXlzI76JcvXyY5OZl33nlHX5adXfaXmRBC1BeFQsG7o+zxG9YahQIamSjLrZfdrhOmt3SAQl9m9fwz9Luex84jP2CWnUKxsgkFpk2xyznGDZMu5Bg0BcBee4E2TewexnSEEA2UJO11TKks+eGtUCiqqAnOzs76oykAQUFBBAUFER0dTXx8fI3GNTUt2c0pLi4uc02n0+mP25iYmFQ7vj8yMjIq9drQsPJ/Trr/P/SpUCgw+P87JCgUCn05/L5e9xQXF2Nvb09sbCwAWq22zG68EEI0BI1Ny0/W78lvbUfrAWakHbwFxQpM21vSzKMLNqbdMTgykgObjtMoF9q0aUH3XkqanfuC2wb2GOvy6dp5CAqFfDguxJNMkvYGxNPTk//85z+sWrWKyZMnY2RkRFZWFmq1ukwyW10ODg6kp6dz8uRJevTowY4dO7C1tcXKyqrCNkqlstyz5X/Gc889x5YtW3j11Vf59ttv9f3379+f2NhYnJycOHnyJFevXi0Tf0ZGBkeOHOHZZ5/lm2++YevWraxdu7ZW4xNCiIeh6dCuWA7sRHF+EUZWvx+V6fSsHY69WlNUoMWkUcmGiEULR9qm/4ppk3YYmzWvr5CFEA2EJO0NiLGxMZGRkSxZsgRvb2+gZGfZw8ODyZMnP3CfixcvZvbs2eTl5WFpacnixYsrbePi4sKMGTNo3rw5KpXqgcb9o1mzZhEcHMyGDRtwdnamcePGAEybNo2QkBBeeuklHBwcyhyPMTY2ZunSpfov0pqbmzN//vxaiUkIIeqD0tQQpWnZX79KpQHKRr/vphuZWGHUsvfDDE0I0YApdPefTRDiMVJQUEBiYiLOzs76Y0D1KSEhgd695RdwbZN1rRuyrrVP1rRuyLrWDVnX2lfVmlaVt8hO+0O2Zs0aYmJiypTb2NhUeU/zwMBALl68WKbczc2N6dOn11qM9+zYsYPPPvus3Gv3zpgLIYQQQoi6J0n7Q+bv74+/v/8Dtb13l5WHxdPTE09Pz4c6phBCCCGEKEu+ii6EEEIIIUQDJ0m7EEIIIYQQDZwk7UIIIYQQQjRwkrQLIYQQQgjRwEnSLoQQQgghRAMnd49pYNRqNStWrAAgICCAvn37VrttamoqERERxMfHY2hoiKmpKQEBAbi7u1fa7pdffmHq1KnY2dnx1Vdf/an49+7dy+XLl5k4ceKf6kcIIR5l+ZpijAwVKA0UvxcWF7Hnl/+gLjyPpbIlHpcHYpZmhGFHa9QtGpOUkU9TQwOeVkC7VjnkpR1BaWSOtf0gDI0t6m8yQogGQZL2x4RGo8HPzw8PDw927dqFUqkkKSmJSZMmYWdnh5OTU4Vt9+7dy6hRo3j//ff/dByJiYl/ug8hhHhU5WuK+UfUVX5KzMC8kZLJw20Z2rspuoJcMi58xjedlQD0O/A03MkmD4g3VXLvCRyZGi2/ZWbz0o1lGBiUPPsw40Y8jv0+RGEgv7KFeJLJT4AGLCoqinnz5pGZmUloaChubm4V1o2Li8PExISAgAB9mYODA+Hh4Wi12grb/fDDD6xbtw4AY2NjUlJSSE9P58qVKwQHB9O0aVPmzp1LQUEB1tbW/P3vf6ddu3aoVCq6d+9OQkICqamphIWFYWdnx/r16wGwtbXl5ZdfLnfMs2fPMmvWLIqKijAxMeHTTz+lffv2dO7cmXPnzgEQHR1NfHw88+bNw83NjRdffJGDBw8C8Mknn9C1a9eaLaYQQjwEMT/e5sCpDAAyc7QsjU7mmY4WND6/h4sWBUAjzApMaHuntb7N9WZmpfrQNDFHk9MIU3JKXufeJCf1HObNuz20eQghGh5J2hswCwsLYmJi2Lt3LytWrKg0aT9x4gQuLi5lyl1dXSsdw9XVlfHjxwMlx3FCQkKwsrLiX//6FxqNhhdffJElS5bQo0cPdu7cyfvvv88333wDQGFhIRs2bGDPnj0sXbqU6OhofV8VJewA//3vf5k4cSLDhw8nJiaG48eP0759+0rjbNSoEZs3b2bPnj3MmDGDrVu3VlpfCCHqw4VruaVea4vh8o08uhZk0yK7CADTrAIKi/MxMjAtqZR5Fxq10rcxLMzChNL9GBia1m3gQogGT76I2oANGTIEgA4dOpCWllajtosWLcLLywsPDw/mzJlTo7Y9evQA4PLlyzRp0kT/evjw4Vy9epWsrCwABg4cCEDHjh1JT0+vdv+urq7Mnj2bDz74AAsLC0aOHFllm7FjxwLg5ubGzZs3SU1NrcmUhBDioejpWPrsuZmxAZ3bNMa4qyt9r2noeCcf66RsTqXvQKsrSeILEg9QnH4LgOLcLLQnvkeTb6Tvw7x5dxpZOT68SQghGiTZaW/AlMqSs48KhaKKmuDs7Kw/mgIQFBREUFCQ/phJTZialuzoFBcXl7mm0+n0x21MTEyqHd/9XnzxRXr16sXevXtZs2YN+/bt07+x0Ol0KBQKioqKSrUxNPz9n2pxcbF+bYQQoiEZ0a8ZqVmFfH80jaYWhrwxvDXmZkowa80dlylM0SRz1fo223N2cSPvHOaGzSlo1BjNgTtgZAKFBRgpjTFxeQ+79hkojc1pbN25vqclhGgAZKf9MeHp6UleXh6rVq2isLAQgKysLNRqNQYGD/bX7ODgQHp6OidPngRgx44d2NraYmVlVWEbpVJZJuH+o7/85S+cOnWK8ePHM336dE6fPg2AtbU1Fy5cQKfTsWfPnlJttm/fDsB3332Ho6MjlpaWDzQnIYSoSwYGCvw9WvO/mV1ZFtCp1M57obkNjYZOwWl8KE/3HoKmOIdUzRVaFN2lebNmUFhAo0aNGD9hHF37dcSy1bOYN3Wq8caIEOLxJDvtjwljY2MiIyNZsmQJ3t7eAGi1Wjw8PJg8efID97l48WJmz55NXl4elpaWLF68uNI2Li4uzJgxg+bNm6NSqcqt8/bbbxMaGsrKlSsxMjIiPDwcgMDAQN5++22aN29O7969Sx0JOnr0KFFRUZiZmTFv3rwHmo8QQjQUQ6Z+xLO33iQn8y6tHbpiYKAkLS0NCwuLUp8sCiHEPQqdTqer7yCEqIybmxuRkZHY29vXqF1BQQGJiYk4Ozvrj/LUp4SEBHr37l3fYTx2ZF3rhqxr7ZM1rRuyrnVD1rX2VbWmVeUt8nb+EbJmzRpiYmLKlNvY2PD5559X2jYwMJCLFy+WKXdzc2P69Om1FuM9O3bs4LPPPiv3WmxsbK2PJ4QQQgjxOJOk/RHi7++Pv7//A7WNiIio3WCq4OnpiaenZ6309cfz7UIIIYQQTxr5IqoQQgghhBANnCTtQgghhBBCNHCStAshhBBCCNHASdIuhBBCCCFEAydJuxBCCCGEEA2cJO1CPAF0xVo0eXfQ6YrJLsompyinvkMSQgghRA089rd8VKvVrFixAoCAgAD69u1b7bapqalEREQQHx+PoaEhpqamBAQE4O7uXmm75cuXA/Dee+89eOD3SUlJ4fXXX3/gWx9+9dVXbNy4EZ1Oh0KhYOLEifqnptY1lUrF2rVrK63z5ptvMmfOHFq2bPlQYnrS5KSe41rilxRpMikwNGGzWR6phgoGtBjE2DYT5BHpQgghxCPgsU/aH5RGo8HPzw8PDw927dqFUqkkKSmJSZMmYWdnh5OTU32HWC0nTpxg06ZNbNiwAVNTU+7evcvLL7+Mk5PTQ5lDfHx8lXWqejCUqJn8qxnknL+LcfNGNHa24bfTaynSZAJgUlTAwDwFMRbF7L+9j26WPXC27F7PEQshhBCiKk9U0h4VFcW8efPIzMwkNDQUNze3CuvGxcVhYmJCQECAvszBwYHw8HC0Wm21x1SpVHTv3p2EhARSU1MJCwvD1dWVrVu38sUXX6BUKrG3t2fhwoXlPrL2j27cuEFQUBAZGRl06tSJw4cPs3///grr3759G51OR15eHqampjRr1oxly5ZhbW1d6TgHDx5k3rx56HQ6bG1tiYiIwMzMjAULFhAfH49Wq2X06NH4+/ujVqv57LPPMDU15ddff6Vz584sWrSIBQsWADBmzBg2bdpU4Vhubm5ERkYSHx/PgQMHyMjIIDk5meeff57w8HD9nHNzczEwMCAsLIyePXtWuVZPouzEW9yMOgO6ktcFO+Khz51SdZoWKDHU5VNkbsT1vN8kaRdCCCEeAU9U0m5hYUFMTAx79+5lxYoVlSbtJ06cwMXFpUy5q6trjcctLCxkw4YN7Nmzh6VLl+Lq6sqSJUvYuHEjzZo1Y/78+SQlJdGlS5cq+5o7dy7Dhw/n1Vdf5bvvvmPbtm2V1h80aBDR0dEMHDiQnj170rdvX7y8vCo9iqLRaAgKCuLLL7+kS5cuREREEBMTg6FhyT+XmJgYNBoNkyZNwtnZGYBjx46xc+dObGxsGDt2LD/++CNhYWGsXbu20oT9j44dO8a2bdtQKpW8+OKL+Pr68t133/HCCy8wefJk9u/fT0JCgiTtFUj/+Zo+YQcwzm/CrVvNsbK5Q5aiKYnGg0nVNqPpxTMYn/w3zd9UQqv6i1cIIYQQ1fNEJe1DhgwBoEOHDqSlpdWo7aJFizhw4AD5+fkMHDiQsLCwarcdOHAgAB07diQ9PR2AwYMH4+vry5AhQ/Dw8KhWwg7w008/8emnnwIwdOhQmjRpUml9Y2Nj/vnPf3LlyhV+/PFHDhw4wJdffsmaNWsqTHzPnTtHy5Yt9TEFBgYCMG3aNM6cOcPPP/8MQG5uLufOnaNDhw507NiRVq1Ksj9HR0cyMjKqNZ8/6tWrF+bm5gC0adOGjIwM+vfvz3vvvceZM2dwdXXltddee6C+nwQK5R/Pp+u4kNCTlt2Pkeg4jjxDazAEg24tKC5I59jX/6bXp0PqJVYhhBBCVN8TdfcYpVIJUK0v3jk7O3Ps2DH966CgIGJjY3nrrbfIzs6u0bj3jr3cP25YWBjLli3D0tKS4OBgYmNjq9WXUqlEp9NVXfH/bd68mUOHDtGuXTteffVV/vWvf+Hn51fpeEZGRqVizcrK4saNG2i1Wn2ssbGxbNiwgVdeeaXUHO/NsyYx3q+8fnr37s327dsZMGAAO3bs4O23336gvp8E1gPaortvq7046ywtspJIuNK5JGG/T3GbHqTdSkFbVPSwwxRCCCFEDT1RSXtNeHp6kpeXx6pVqygsLARKkle1Wo2BwZ9btqKiIoYNG4a1tTVvvfUWXl5enDlzplpt+/fvz9atWwH44YcfyMzMrLS+VqslIiKC1NRUoOToy4ULF+jatWuFbZ566inu3r3LxYsXAfjiiy9Yt24d/fr1Y+PGjRQWFpKTk8OECRM4fvx4peMrlUqK/mRSuGDBArZs2YKPjw+zZs3i9OnTf6q/x1mjjk1pqepMVsZxCm/GoU1T08X4KC8ofkZXVFiqrjL1Ku27uaA0fKI+cBNCCCEeSfLbugLGxsZERkayZMkS/e0RtVotHh4eTJ48+U/1bWhoyLRp03jjjTcwMTGhWbNmzJs3r1ptQ0NDmTFjBhs3bsTJyanK4zEvv/wyaWlp+Pr66t9svPTSS/od8vKYmJiwcOFC/va3v1FYWEjbtm1ZsGABxsbGXLlyBR8fH4qKihg9ejR9+/ZFrVZX2Je7uzteXl5ER0dX64u25VGpVAQGBhIdHY1SqWT+/PkP1M+TwqJDa54Kn8JP2+LJ0JnyfDcDnsk6Sw7XOVxsS7GBIYYZv9FNcZMhk6t/zEsIIYQQ9Uehe9BzDKJeREZG8txzz9GhQwd++eUXPvzwQ6Kjo+s7rAapoKCAxMREnJ2dH/gNQ21KSEigd+/e9RpDobaYnMJirEwfn/frDWFdH0eyrrVP1rRuyLrWDVnX2lfVmlaVtzw+v7kfwJo1a4iJiSlTbmNjU+W9wwMDA/XHR+7n5ubG9OnTaxzL1atXK3wY05w5c+jeveS2fO3ateP999/HwMAAExMTZs+ezY4dO/jss8/KbVvZ2XWVSlXu8Zrx48fj6+tb4zlU5mGOJSpmpDTASimn4oQQQohHzROdtPv7++Pv7/9AbSMiImo1lrZt21bry6iurq5lbjvZrVs3PD09azxmVU8qrU0PcywhhBBCiMeNbLkJIYQQQgjRwEnSLoQQQgghRAMnSbsQQgghhBANnCTtQgghhBBCNHCStAshhBBCCNHASdIuhBBCCCFEA/dE3/JRiIasoLCYXYfvknK7gL5OTci8cIoTJ07SxMKSUa+8SAvbpvUdohBCCCEeEknahWigPl13hfhzqVh3U3Pl2zQMr+cAcDsnmRVLjvK0rQF9hk/AvnPP+g1UCCGEEHVOjsfUIrVajUqlQqVSoVara9Q2NTWV0NBQhg4dyvDhw/Hx8WH37t1VtgsNDeXUqVMPGnIZISEhREdH11p/f/Qga3O/jRs3sm3btlqMqGG6k1GI+kwmnTol8HpGE+xuGIOBEkOnvpgMGA093Th/8SJREYFk3P6tvsMVQgghRB2TnfYGQKPR4Ofnh4eHB7t27UKpVJKUlMSkSZOws7PDycmpwrZz5859iJHWv6NHj9KnT5/6DqPOmRgpMDTQofrNHqv8xiSTilG35zFs3w0AA+uWGFtOoTh6LkknD9HL/eV6jlgIIYQQdUl22utIVFQUPj4+uLu7s2fPnkrrxsXFYWJiQkBAAEqlEgAHBwfCw8PRarWVtr23c61Wq3njjTd499138fDwYNq0aWg0GrKzs5kyZQqjR49m9OjR+t37+3e8U1JScHNzK9P34sWLGTt2LB4eHqhUKu7cuQNAv379mDx5Ml5eXhQWFpYbV0XjVrQ2d+7c4a233mLkyJH4+Piwf/9+AJYvX86kSZPw9PRk7dq17Nmzh2XLlnHgwIFK1+VRZ9HIkNeescQqvzEAPZWOKFs7lKqTY92VTr3bYNXCrj5CFEIIIcRDJDvtdcTCwoKYmBj27t3LihUryk2K7zlx4gQuLi5lyl1dXWs05rFjx9i5cyc2NjaMHTuWH3/8kYyMDOzs7Fi9ejVnzpxhy5YtuLu7V9nXlStXSEpKYv369RgYGPC3v/2NLVu28MYbb5CWlsabb75J3759K2z/3XffVThueWsze/Zs+vXrx8SJE0lOTsbX15fNmzcDJZ9E7NixA4BffvmFPn36MHDgwBqtzaNozEtt+PV0MgZFOqwV5jTLhVST36+b6TJp62hJe+fH/5MHIYQQ4kknO+11ZMiQIQB06NCBtLS0GrVdtGgRXl5eeHh4MGfOnGq369ixI61atcLAwABHR0cyMjLo1asX33//Pe+++y6nTp1i6tSp1eqrXbt2zJgxg02bNjFv3jyOHz9Obm6u/vrTTz9dafvKxi1vbX7++WdeeeUVANq0acPTTz/NiRMnAOjRo0e11+BxYmBqSCuvziiMS/437X3yV0y12QAY6fLppdlJI4uWKAzkf2MhhBDicSe/7evIvWMuCoWiyrrOzs4cO3ZM/zooKIjY2FjeeustsrOzqz2micnv27AKhQKdTkf79u3ZuXMnI0eO5MiRI7zyyisUFxcDoNPpACgqKirTV2JiIpMmTaK4uBgPDw+GDBmirw9gampaaSyVjVve2tzf973X944GVTXW48yiR0va/+052rz3DF2eLWDcybkMyVmNZ+5SbIsv07KTnGUXQgghngSStDcAnp6e5OXlsWrVKv0Z8aysLNRqNQZ/chf1f//7H8uXL2f48OF89NFHpKamkp2djbW1NRcvXgTg+++/L9Pu8OHD9OnTB19fX9q3b8++ffuqPF9fnXEr0q9fP6KiogBITk7m6NGj9OzZs0w9pVJZozgeBwZGSoybW2A5xBv7N/5Fz3aetO/yOp0GLcCieff6Dk8IIYQQD4GcaW8AjI2NiYyMZMmSJXh7ewOg1Wrx8PBg8uTJf6pvb29v3n//fUaOHIlSqSQ4OJgmTZowefJkQkJC+Oabb8o94+7p6UlAQAAjR44ESj4NSElJ+dPjViQ0NJRZs2bpbzc5Z84cbGxsytR77rnn+Mc//oGFhQUvvvhiteN5XBiYmmPWsT9m9R2IEEIIIR4qhe6P5xKEeEwUFBSQmJiIs7NzqaND9SUhIYHevXvXdxiPHVnXuiHrWvtkTeuGrGvdkHWtfVWtaVV5i+y0PyRr1qwhJiamTLmNjQ2ff/55pW0DAwP1R1nu5+bmxvTp02stxpq6evUq7733XrnX5syZQ/fucnRDCCGEEKI2SNL+kPj7++Pv7/9AbSMiImo3mFrStm1bYmNj6zsMIYQQQojHnnwRVQghhBBCiAZOknYhhBBCCCEaOEnahRBCCCGEaOAkaRdCCCGEEKKBk6RdCCH+hKzCLC6kXuDWtXSKi+UOukIIIeqGJO33UavVqFQqVCoVarW6Rm1TU1MJDQ1l6NChDB8+HB8fH3bv3l1HkZa2dOnSKsfy8vIC4OTJkyxcuLDSuvfW4c/avXs3S5curXb/KSkpuLm5ARASEqJ/0JIQDYVOk09O4g8cOHaCzedvE52UwLxt/2Dn7ONsnBvNmo92cPe3rPoOUwghxGNIbvlYCzQaDX5+fnh4eLBr1y6USiVJSUlMmjQJOzs7nJyc6nT86tyr/d6tGS9evMjdu3frNJ573N3dy33aqhCPouK8LLLW/JUt9t5cbu4A+fmADZa/9caEf9KhV1MsTJtyNvo3+k30R9nYqL5DFkII8RiRpL0CUVFRzJs3j8zMTEJDQ/U7wOWJi4vDxMSEgIAAfZmDgwPh4eFotdpKx7l06RKzZs0iPT2dRo0aERoaSo8ePbh27RozZ84kNTUVU1NT5syZg5OTE2vWrGHdunUolUoGDx5McHAwISEh9OnThz59+vDOO+/g4ODAxYsXsbW1ZeHChVhZWdG5c2cOHz7MsmXLyM3NZdWqVahUKj744ANu3rzJrVu36N+/P3Pnzq3W+oSEhGBmZsbp06fJzMzk/fffJzY2lrNnzzJkyBD9Tnl8fDzz5s3jxx9/5NNPP8XExISnnnpK38/p06cJDQ0FqPDNzebNm/nvf/9LcXEx3bp146OPPmoQTzgVT4Zdh+8S8+NtBmr3M1iXzeXmT5e6Xti+BX3b22FsogQ00CqBy2ub0/71ESgbSeIuhBCidsjxmApYWFgQExNDWFgYK1eurLTuiRMncHFxKVPu6upKt27dKm0bHByMSqVi69atzJw5k+nTp6PRaPj444/x8PBg27ZtvPfee6xatYqTJ0/y9ddfExUVxZYtW/jll19ITEws1d/58+eZMGEC27dvx9HRkRUrVuivNWnShGnTpuHm5sY777zDvn376NKlCxs2bCAuLo7Dhw/zyy+/VHuNbt26xYYNG5gyZQozZ87k448/ZvPmzWzcuJGsrN+PCGg0GkJCQli2bBnR0dGYmprqr82YMYOgoCBiYmKwt7cvM8aFCxfYuHEj69evJzY2lmbNmvHll19WO0Yh/oyTSdksjU7h6q0CsrPyMCzWoNRqStUxIuf/E/b/p4DCxr+SnXjrIUcrhBDicSZJewWGDBkCQIcOHUhLS6tR20WLFuHl5YWHhwdz5sypsF5OTg5Xr15l2LBhAPTs2RNLS0uSkpI4fPiw/hy6q6srS5cu5fDhwwwePBgLCwsMDQ1Zs2YNzs7Opfps3749ffv2BcDb25uff/65wvFHjBjB888/z5o1a5gzZw7p6enk5uZWe56DBg0CwNbWlo4dO9KsWTPMzc2xsrIiIyNDX+/cuXPY2Njg6OgIgI+PD1DyPYBbt27x/PPPAzB69OgyY6jVaq5cucLYsWPx8vJi9+7dJCUlVTtGIf6Moxd+f/P5Y2FPCosU9Lm8XV9mqCvG9Nf4sg3zzUCheBghCiGEeELI8ZgKKJUlO2eKavzidXZ2Zv369frXQUFBBAUF6Y+HVESnK3unCZ1Oh1arxdDQsFTZr7/+iqGhYal4bt68iZmZWan2f2x3bx7lWbt2LXFxcYwdO5bnnnuO8+fPlxtTRYyMfv/o//5x/0ihUJTq9/61La/8flqtluHDhxMWFgaUvNGp6siRELXFofXv/3/d1VnxQU4Afze/hJM2gYz2/Wlx8ze+TLnLRStjOtiW7MDfzVTSLKcT5s429RW2EEKIx5DstNcCT09P8vLyWLVqFYWFhQBkZWWhVqsxMKh4ic3NzbG3t+fbb78F4Pjx49y5c4eOHTvy7LPPsn17yY7ewYMH+fDDD3n22Wf54YcfyMnJoaioiMDAwDLHYy5dusSZM2cA+Oabb/S74fcolUqKiooA+Omnnxg3bhyjRo2ioKCAs2fPUlxcXDuLcp/OnTtz584dzp49C6Cfl7W1Nba2tuzbtw+Abdu2lWnbt29fvvvuO+7evYtOpyM8PJz//ve/tR6jEOUZ4GzJiH7NMFQqMDZU4ObqRHvvN7Af4E03+5a0eLo7DsYm/HzWnNhDluw83IQTFx3p/PZglGayJyKEEKL2yG+VWmBsbExkZCRLlizB29sbKNkh9vDwYPLkyZW2XbhwIeHh4SxfvhwjIyOWL1+OsbExs2bNIiwsjK+//hozMzPmzJlDhw4deO211xg/fjzFxcUMHTqU5557ji1btuj7s7S0ZNmyZVy9epXOnTuXOZ7To0cPVqxYwaJFi/Dz8yM8PJzVq1djbm5Or169SElJoW3btrW6PkZGRvzjH/8gODgYQ0NDunbtWmr+M2fOZMmSJfTs2bNMWycnJwICAvDz86O4uJguXbowZcqUWo1PiIoYGCiY6mXPGy+2RqFQYGpc+k24wtCQ0aGhWGzcyK83bmD71FMMGz4cpan8aBVCCFG7FLqanIcQDVpKSgqvv/46e/bsqe9QGoSCggISExNxdnZuEHebSUhIoHfv3vUdxmNH1rVuyLrWPlnTuiHrWjdkXWtfVWtaVd4i20HVtGbNGmJiYsqU29jY8Pnnn1faNjAwkIsXL5Ypd3Nzq9Y91uvL/PnzOXjwYJlyZ2fnat8aUgghhBBC/HmStFeTv78//v7+D9Q2IiKidoOpgL29fa3uss+YMaPW+hJCCCGEEA9OvogqhBBCCCFEAydJuxBCCCGEEA2cJO1CCCGEEEI0cJK0CyGEEEII0cBJ0i6EEEIIIUQDJ0m7EEIIIYQQDZzc8lEI8UTTanVk5RXRuEiDNq8I09aW9R2SEEIIUYYk7bVErVazYsUKAAICAujbt2+126amphIREUF8fDyGhoaYmpoSEBCAu7t7XYWrt3TpUpydnSsdy8vLi9jYWE6ePElcXBzBwcEV1r23DmvXrq2LcIX404puXCTr3GFo3IK9J5tx7vRteirycLTLQtckFWW+FU/5+aJsbFTfoQohhBB6krTXM41Gg5+fHx4eHuzatQulUklSUhKTJk3Czs4OJyenOh2/Ok9kjY2NBeDixYvcvXu3TuMRoi7lX4hn8y8pXLR5DvKKMdXcoVHxbxQ5nafIIRUALXDl21wcfN6u32CFEEKI+8iZ9joQFRWFj48P7u7uVT6hNC4uDhMTEwICAlAqlQA4ODgQHh6OVquttO2lS5dQqVSMHDmScePGcfLkSQCuXbvG66+/zogRI3jllVc4e/YsAGvWrMHDwwNPT08WLlwIQEhICNHR0aSkpDBy5EimT5/OSy+9xJtvvkl6ejoAnTt3JjMzk2XLlrFnzx5WrVpFdnY206ZNY9y4cQwePJgPPvgAnU5XrfXZunUrXl5ejB49mmnTplFQUIBarUalUunrVCcuIWrqyLmLXGjpgk5hgM7QkLynW3HL5i72bdJK1cszTSR6cTBJJw7WU6RCCCFEaZK01wELCwtiYmIICwtj5cqVldY9ceIELi4uZcpdXV3p1q1bpW2Dg4NRqVRs3bqVmTNnMn36dDQaDR9//DEeHh5s27aN9957j1WrVnHy5Em+/vproqKi2LJlC7/88guJiYml+jt//jwTJkxg+/btODo66o/7ADRp0oRp06bh5ubGO++8w759++jSpQsbNmwgLi6Ow4cP88svv1RrfZYsWcK///1voqOjsbOzIykpqdL6lcUlRE3cMW5epsygSTOK//B+s0hbxKVTP7N52Ux++7V6/66FEEKIuiRJex0YMmQIAB06dCAtLa2K2qUtWrQILy8vPDw8mDNnToX1cnJyuHr1KsOGDQOgZ8+eWFpakpSUxOHDh/Hy8gJKkv+lS5dy+PBhBg8ejIWFBYaGhqxZswZnZ+dSfbZv315/Ft/b25uff/65wvFHjBjB888/z5o1a5gzZw7p6enk5uZWa46DBw/G19eXBQsW4OHhQZcuXSqtX5O4hKhMx7ZtShdotWjvXCPxslmp4guJ1wHQ6Yq5kLDvIUUnhBBCVEyS9jpw75iLQqGosq6zszPHjh3Tvw4KCiI2Npa33nqL7OzsCtuVdxRFp9Oh1WoxNDQsVXbx4kUMDQ1LxXPz5k0yMzNLtf9ju3vzKM/atWtZsGABTZs25bXXXsPR0bHax2PCwsJYtmwZlpaWBAcHExsbi0KhKNW+sLDwgeISojLdnLow1MaAZuTR2lBDG8tzGJjmcy7FlF0JTfgtsy0H45K4cj5V38ayuW09RiyEEEKUkKS9nnl6epKXl8eqVav0iWpWVhZqtRoDg4r/eszNzbG3t+fbb78F4Pjx49y5c4eOHTvy7LPPsn37dgAOHjzIhx9+yLPPPssPP/xATk4ORUVFBAYGljkec+nSJc6cOQPAN998w6BBg0pdVyqVFBUVAfDTTz8xbtw4Ro0aRUFBAWfPnqW4uLjK+RYVFTFs2DCsra1566238PLy4syZM1hbW5OcnExBQQHp6ekkJCRUOy4haqKfox3v9u/EZBdH/Lt7MOdvs/nrX//K5HfCcPeZib3TC/q6bbs8Q7fnh9dfsEIIIcT/k7vH1DNjY2MiIyNZsmQJ3t7eAGi1Wjw8PJg8eXKlbRcuXEh4eDjLly/HyMiI5cuXY2xszKxZswgLC+Prr7/GzMyMOXPm0KFDB1577TXGjx9PcXExQ4cO5bnnnmPLli36/iwtLVm2bBlXr16lc+fOZY7n9OjRgxUrVrBo0SL8/PwIDw9n9erVmJub06tXL1JSUmjbtm2lMRsaGjJt2jTeeOMNTExMaNasGfPmzaNZs2a4urry0ksvYWdnR+/evasdlxB/VosWLfR/fnHSB/Qf5U9RoYZmtu3rLyghhBDiPgpddc80iMdaSkoKr7/+epV3u3nY/kxcBQUFJCYm4uzsjImJSR1EVzMJCQml3oyI2iHrWjdkXWufrGndkHWtG7Kuta+qNa0qb5Gd9odgzZo1xMTElCm3sbHh888/r7RtYGAgFy9eLFPu5uZWrXus15f58+dz8GDZ2+U5Ozszd+7ceohICCGEEOLRJUn7Q+Dv74+/v/8DtY2IiKjdYCpgb29fq7vsM2bMqJV+ajsuIYQQQohHkXwRVQghhBBCiAZOknYhhBBCCCEaOEnahRBCCCGEaOAkaRdCCCGEEKKBk6RdCCGEEEKIBk7uHiOEEA3AmczT/JaXQsfGnTHJMaVp06YYGRnVd1hCCCEaiMd2p12tVqNSqVCpVKjV6hq1TU1NJTQ0lKFDhzJ8+HB8fHzYvXt3HUVaIjk5mQ8++KBOx6hISEgI0dHRldaZOXMm165dK/fasmXLeOGFF/jPf/5To3HXrVvHunXrANi4cSMDBw5k/vz5NepDiMdBdMomPjuznOsbz7Pmk3+zdOlSPv3475w7cQJN3l1STn3Br4f+zs0L0RQXF9Z3uEIIIeqB7LT/gUajwc/PDw8PD3bt2oVSqSQpKYlJkyZhZ2eHk5NTnYz722+/kZycXCd91wa1Ws3UqVPLvRYbG8t//vMfnnrqqRr16evrq//ztm3b+PTTTxkwYMCfilOIR8lv2QUk3Mzk8N1iBiQO5OqNq+RTkpTnF2uJ2biRsSMbkZ9d8rOhIOc3QEfLji/XY9RCCCHqw2O7036/qKgofHx8cHd3r/JBPXFxcZiYmBAQEIBSqQTAwcGB8PBwtFptpW0vXbqESqVi5MiRjBs3jpMnTwJw7do1Xn/9dUaMGMErr7zC2bNny7SdM2cOiYmJfPzxxwCsXr0aHx8fRo0axYIFC9DpdKSkpODl5cVf//pXRo4cyYwZM1i/fj3jxo3jxRdf5NdffwVKnpa6YMECvL298fb25vTp09Veq8WLFzN27Fg8PDxQqVTcuXOH1atXc+vWLaZMmUJaWlqp+rNmzeLmzZtMnTqVM2fO0LlzZ/216OhoQkJCgJInpI4aNQpvb29WrFgBwPLly1m+fDkrVqzg1KlTfPzxx/zwww8cP36cMWPGMGrUKPz8/Lhy5QoAKpWKgIAAPDw8OHPmTLXnJERDk55dxCffXOGLEzc5fiufRtrnuOTQjwyDglL1ioyK9An7PVm3Tz7MUIUQQjQQT0TSbmFhQUxMDGFhYaxcubLSuidOnMDFxaVMuaurK926dau0bXBwMCqViq1btzJz5kymT5+ORqPh448/xsPDg23btvHee++xatWqMm3DwsJwdnbmo48+Yv/+/SQmJhIVFcXmzZu5efMmW7ZsAeDcuXO8+eabxMbGcvToUa5du8aGDRsYMWIEGzZs0PfXqFEjNm/ezLRp06r9dNIrV66QlJTE+vXriYuLo3Xr1mzZsoUpU6ZgY2PD6tWrsba2LtXm73//u/5aly5dyu332rVr7N+/ny1btrBu3TouXrxIQcHvyUlAQADOzs7MmTOH/v378/777/Phhx+yZcsWxo8fz/vvv6+v27lzZ+Li4iocS4hHwbKYZFLyNSgMFPqyfFMjbFo6l6qnzU5Hk19UqsykcauHEqMQQoiG5YlI2ocMGQJAhw4dyuwUV2XRokV4eXnh4eHBnDlzKqyXk5PD1atXGTZsGAA9e/bE0tKSpKQkDh8+jJeXF1CS/C9durTSMQ8dOsTJkycZPXo0Pj4+JCYmcvHiRQCaN29O165dMTAwoFWrVvTv3x8AW1tbMjMz9X2MHTsWKNl1v3nzJqmpqVXOtV27dsyYMYNNmzYxb948jh8/Tm5ubpXtqtKyZUtMTEwYP348kZGRBAUFYWJiUm7dy5cv06RJE3r06AHA8OHDuXr1KllZWQD6ciEeZccuZlNUqCtT7qhpSTeDdjTFHKv8bBqlnSMx/jc0BSWJu3GjVnI0RgghnlBPxJn2e8dcFApFFTXB2dmZ9evX618HBQURFBREdHQ08fHxFbbT6cr+AtbpdGi1WgwNDUuV/frrrxw+fFg/zvjx43FwcNDX0Wq1+Pn5MXHiRAAyMzNRKpWkpaVhbGxc7tz+6P4xi4uLK6x3v8TERAIDA/H398fDwwMDA4My8zp16hRhYWFAyVrNnTu33HkrFAqKior0sWzatIn4+Hj279/P+PHjWbt2bbkxFBcXl9vfvaNJpqamVc5DiIbO0daM85dz6dBWQ4GZJQBt7ybylO4AJo6v0CzvMr8c2QnAzZQsbv92Hs83g3HsM6JaP8eEEEI8fp6Infaa8PT0JC8vj1WrVlFYWPKFsKysLNRqNQYGFS+Xubk59vb2fPvttwAcP36cO3fu0LFjR5599lm2b98OwMGDB/nwww/x9fUlNjaW2NhYfH19USqV+iS3X79+xMbGkpOTQ1FREVOnTiUuLq5G87g33nfffYejoyOWlpZVtjl8+DB9+vTB19eX9u3bs2/fPn2yrFQq0Wq1dO/eXR93eQm7tbU1Fy5cQKfT6b8/cPr0aV577TVcXFyYMWMGjo6OXLp0qdwYHBwcSE9P138fYMeOHdja2mJlZVWj+QvRkL3nbY+dlQkn9qTRKzEG72P/wPvGdhxfm8Tgic/w4rujcXv1r5hZWGFs2giX4a/Rue9ISdiFEOIJ9kTstNeEsbExkZGRLFmyBG9vb6Bk59vDw4PJkydX2nbhwoWEh4ezfPlyjIyMWL58OcbGxsyaNYuwsDC+/vprzMzMyj1m4+joSFZWFsHBwSxcuJCzZ88yduxYtFotAwcOxMfHp8JbLpbn6NGjREVFYWZmxrx586rVxtPTk4CAAEaOHAmU7KSnpKQA8MILLzBlyhS++OIL2rRpU2EfgYGBvP322zRv3pzevXuTlpZG165d6dmzJyNGjMDMzIxnnnmGQYMG8csvv5Rpb2xszOLFi5k9ezZ5eXlYWlqyePHias9biEdBu5amrPpLZ7LyHDE3HQDoUChKbwr0ch9NL/fR9ROgEEKIBkehK+9ch3ikubm5ERkZib29fX2HUq8KCgpITEzE2dm5wjP0D1NCQgK9e/eu7zAeO7KudUPWtfbJmtYNWde6Ieta+6pa06rylidyp33NmjXExMSUKbexseHzzz+vtG1gYKD+S6H3c3NzY/r06bUWY22bP38+Bw8eLFNe0bl0IYQQQgjRcDyRSbu/vz/+/v4P1DYiIqJ2g6kD5d2Lvrq3fRRCCCGEEA2PfBFVCCGEEEKIBk6SdiGEEEIIIRo4SdqFEEIIIYRo4CRpF0IIIYQQooGTpF0IIYQQQogGTpJ2IYQQQtSZ4rwsNOcPoU27Xt+hCPFIa9BJu1qtRqVSoVKpUKvVNWqbmppKaGgoQ4cOZfjw4fj4+LB79+46irREcnIyH3zwQZ2O8TCEhIQQHR1dpjw6OpqQkJAy5bt372bp0qUPI7QKYxBCCNHwFF5NJGOFP79+FUlixB4uzt1DylenSL6WhUZbrK93K13D7P9dxm/+af4RdZWcfG09Ri1Ew/RY3qddo9Hg5+eHh4cHu3btQqlUkpSUxKRJk7Czs8PJyalOxv3tt99ITk6uk74bMnd3d9zd3es7DCGEEA1M/g9rOZPWmbyiwbQ3M+Z2IxP221lQcDUdw4vXcTy7hS4jB/Kf2KacuZoLwHcJaRQXQ9DYtvUcvRANyyOTtEdFRTFv3jwyMzMJDQ3Fzc2twrpxcXGYmJgQEBCgL3NwcCA8PByttvJ375cuXWLWrFmkp6fTqFEjQkND6dGjB9euXWPmzJmkpqZiamrKnDlzyiT/c+bMISUlhY8//piPPvqI1atXs3PnTrRaLQMGDCA4OJhr164xdepUHBwcuHjxIl27dqVXr17ExMSQkZHBypUrcXR0xM3NjRdffFH/FNNPPvmErl27Vhh3SEgIZmZmnD59mszMTN5//31iY2M5e/YsQ4YMISQkBK1Wy4IFC4iPj0er1TJ69Gj8/f3R6XTMmzePffv2YWNjg1arpU+fPtX5awFKdr/j4+OZN28ebm5ujBo1ih9//JG8vDzmz5+Ps7Mz58+f18fw7LPPsn//fr777jtCQkLo06cPo0ePBqBz586cO3eOmzdv8sEHH5CVlcWtW7fw8fFp0E+cFUIIUVZxbgaJmd3o0SSNOzozjnR3pMBECUCRsRnJ7YdhtHYp5/MmAY317Y5eyKqniIVouBr08Zj7WVhYEBMTQ1hYGCtXrqy07okTJ3BxcSlT7urqSrdu3SptGxwcjEqlYuvWrcycOZPp06ej0Wj4+OOP8fDwYNu2bbz33nusWrWqTNuwsDCcnZ356KOP2L9/P4mJiURFRbF582Zu3rzJli1bADh37hxvvvkmsbGxHD16lGvXrrFhwwZGjBjBhg0b9P01atSIzZs3M23atGo90fTWrVts2LCBKVOmMHPmTD7++GM2b97Mxo0bycrKYuPGjQDExMQQFRXF7t27OXLkCHFxcZw+fZpt27axdOlSrl69WuVYlbGysiIqKorx48fz2WefASVvKqZPn05sbCxt2rSp8s3Ttm3bGDFiBBs3bmTr1q3897//JTU19U/FJYQQ4uEy7jGE2ySwVXecOMVPZDcqvVeYa2FJq2s6WrW7U6q8fSvThxmmEI+ERyZpHzJkCAAdOnQgLS2tRm0XLVqEl5cXHh4ezJkzp8J6OTk5XL16lWHDhgHQs2dPLC0tSUpK4vDhw3h5eQElyX9VZ7gPHTrEyZMnGT16ND4+PiQmJnLx4kUAmjdvTteuXTEwMKBVq1b0798fAFtbWzIzM/V9jB07FgA3Nzdu3rxZZdI6aNAgfT8dO3akWbNmmJubY2VlRUZGBocOHWLPnj14eXkxZswYbty4wblz54iPj2fYsGEYGRnRtGlTfT8PauDAgQB07NiR9PR00tPTuXbtGq6urgC8/PLLVfYxadIkWrduzZdffsncuXMpLCwkLy/vT8UlhBDi4crv9AI5Fq3QKaC5ZRF2RedKXbfNOs+dFjomDeqJjZURUJKwvzvKvj7CFaJBe2SOxyiVJR+nKRSKKus6Ozuzfv16/eugoCCCgoL0xzgqotPpyi3TarUYGhqWKvv11185fPiwfpzx48fj4OCgr6PVavHz82PixIkAZGZmolQqSUtLw9jYuNy5/dH9YxYXF1dY7x4jI6Ny294fU3BwsP5NSWpqKo0bN2bBggWl5n6v7bp160rNz8TEpNLx77lX797flVKpLHdt79W5d62wsFBfPm/ePJKTkxkxYgRDhgzh4MGDFfYhhBCiYcrXFIKiZH/wbqYhz+fHYaLL4Y6yLdbFv9Hmyj4MJ/jSz7EtfYN1ZOZqsTJ/ZFITIR6qR2anvSY8PT3Jy8tj1apV+kQwKysLtVqNgUHFUzY3N8fe3p5vv/0WgOPHj3Pnzh06duzIs88+y/bt2wE4ePAgH374Ib6+vsTGxhIbG4uvry9KpZKioiIA+vXrR2xsLDk5ORQVFTF16lTi4uJqNI9743333Xc4OjpiaWlZ47W4X79+/di4cSOFhYXk5OQwYcIEjh8/Tv/+/dm5cycajYaMjAwOHDgAUGZ+D8rCwoI2bdrwww8/ALB161b9NSsrK/0nEN9//72+/KeffmLSpEkMHz6cS5cucfPmTYqLixFCCPHoaNmyJU2trQDI0xigPmNCl0I1gwu+ZmDTbPpPWkw/x5KNJAMDhSTsQlTisfy/w9jYmMjISJYsWYK3tzdQssvs4eHB5MmTK227cOFCwsPDWb58OUZGRixfvhxjY2NmzZpFWFgYX3/9NWZmZuUes3F0dCQrK4vg4GAWLlzI2bNnGTt2LFqtloEDB+Lj48O1a9eqPY+jR48SFRWFmZkZ8+bNq9EalGf8+PFcuXIFHx8fioqKGD16NH379gXg1KlTjBgxgubNm+Po6FhhH1u3bi315uOtt97CxsamyrEXLFjABx98wJIlS+jcuTOmpiXnFX19ffnLX/7CyJEj6devHy1atND3+7e//Q1TU1NatWqFs7MzKSkpf2b6QgghHjIDAwMmTX6TPXv2kJqairOzM879+gE6FIrHct9QiDqj0MmZgwbJzc2NyMhI7O0fj3N9K1asYOzYsdjY2PDtt9+ydetWli9fXqdjFhQUkJiYiLOzc7WP9tSlhIQEevfuXd9hPHZkXeuGrGvtkzWtG7KudUPWtfZVtaZV5S2P7E77mjVriImJKVNuY2PD559/XmnbwMBA/ZGM+7m5uTXo2wrOnz9ffwvI+zk7OzN37tx6iKj6bG1teeONNzA0NKRJkyYNPl4hhBBCiIbkkU3a/f398ff3f6C2ERERtRtMHdizZ0+Zsurc9rGhGj16tP5e7EIIIYQQombkQJkQQgghhBANnCTtQgghhBBCNHCStAshhBBCCNHASdIuhBBCCCFEAydJuxBCCCGEEA2cJO1CCCGEEEI0cI/sLR+FEFXLysjmu93fknTlKq1t7Rg53IMmTZrUd1hCCCGEqKEGudOuVqtRqVSoVCrUanWN2qamphIaGsrQoUMZPnw4Pj4+7N69u44iLZGcnMwHH3xQp2M8DCEhIURHR5cpV6vV9OrVCy8vL7y9vXnxxReZNm0a2dnZtTJu586dyy1/8803uXnzZq2M8aS5cy2T9bN3s2TOao6nF5P77Ch+te/DP74/xfFfs8hJPceVY8u4nLCYrFvH6ztcIYQQQlThsdpp12g0+Pn54eHhwa5du1AqlSQlJTFp0iTs7OxwcnKqk3F/++03kpOT66TvhsLZ2Zm1a9fqX0+bNo3PPvuMwMDAOhuzqifbivLpCgv4fvlOUnPMKbBVYtKlr/6asnVbYnbHMNbhZxQUA5Cbdp6nXP6GmeVT9RWyEEIIIarQ4JP2qKgo5s2bR2ZmJqGhobi5uVVYNy4uDhMTEwICAvRlDg4OhIeHo9VqKx3n0qVLzJo1i/T0dBo1akRoaCg9evTg2rVrzJw5k9TUVExNTZkzZ06Z5H/OnDmkpKTw8ccf89FHH7F69Wp27tyJVqtlwIABBAcHc+3aNaZOnYqDgwMXL16ka9eu9OrVi5iYGDIyMli5ciWOjo64ubnx4osvcvDgQQA++eQTunbtWmHcISEhmJmZcfr0aTIzM3n//feJjY3l7NmzDBkyhJCQELRaLQsWLCA+Ph6tVsvo0aPx9/dHp9Mxb9489u3bh42NDVqtlj59+lTnr4U+ffrw448/AvC///2P2NhY8vLyMDIyIiIiAgcHB9zc3OjRowdnzpzh66+/JjIykkOHDpGRkYGNjQ2LFy+mefPmAMyaNYvjx48DsHz5ctq1a4ebmxuRkZHEx8ezb98+7t69y+3btxk8eDAhISEoFIpqxfqkyT/xHak55gAYWbQuc71DK3t9wl5CR/qVnzHrIUm7EEII0VA1yOMx97OwsCAmJoawsDBWrlxZad0TJ07g4uJSptzV1ZVu3bpV2jY4OBiVSsXWrVuZOXMm06dPR6PR8PHHH+Ph4cG2bdt47733WLVqVZm2YWFhODs789FHH7F//34SExOJiopi8+bN3Lx5ky1btgBw7tw53nzzTWJjYzl69CjXrl1jw4YNjBgxgg0bNuj7a9SoEZs3b2batGnMmDGjyjW6desWGzZsYMqUKcycOZOPP/6YzZs3s3HjRrKysti4cSMAMTExREVFsXv3bo4cOUJcXBynT59m27ZtLF26lKtXr1Y5FkBubi579uyhZ8+eZGdn8/3337N27Vq2bdvGCy+8wFdffaWvO2jQIOLi4sjOziYpKYn169cTFxdH69at9esC8Nxzz7Flyxaef/551q9fX2bMhIQEli5dyrZt2zhx4gTfffddtWJ9EukybmBjfA2AJteM0RWXfsNqn1ZYpk3e0XMPJTYhhBBCPJgGv9M+ZMgQADp06EBaWlqN2i5atIgDBw6Qn5/PwIEDCQsLK7deTk4OV69eZdiwYQD07NkTS0tLkpKSOHz4MP/4xz+AkuTf1dW10jEPHTrEyZMnGT16NAD5+fnY2trSu3dvmjdvrt81b9WqFf379wfA1taWlJQUfR9jx44FwM3NjZCQEFJTU2natGmFYw4aNEjfT8eOHWnWrBkAVlZWZGRkcOjQIc6cOcPPP/8MlCTd586d49dff2XYsGEYGRnRtGlTfT/lSUxMxMvLC4CioiL69evHxIkTMTExISIigu3bt3P58mUOHDhAly5d9O2efvppANq1a8eMGTPYtGkTly5d4vjx47Rt21Zf7/6/5yNHjpQZ393dXb8r7+npyc8//6z/+xKlGXd6jn4HP+ZIxiDu5rakufowyV270EhpRsfkTNpcMaFI6UBxyyRQAFe1FJ3OrO+whRBCCFGJBp+0K5VKgGodhXB2di61SxsUFERQUBDR0dHEx8dX2E6n05VbptVqMTQ0LFX266+/cvjwYf0448ePx8HBQV9Hq9Xi5+fHxIkTAcjMzESpVJKWloaxsXG5c/uj+8csLi6usN49RkZG5ba9P6bg4GB9kpuamkrjxo1ZsGBBqbnfa7tu3boy8/vjmfZ7rl+/jkql4rXXXmPQoEE0b96cM2fO6K+bmJgAJUl/YGAg/v7+eHh4YGBgUO7YCoWi3L+P+9egOmvyJDNs0xWbcX/BPWE7CqNUTPu9QnHT9iTNO4CRwgRQYHShL4VnLClO/xlFjg4L1+71HbYQQgghKtHgj8fUhKenJ3l5eaxatYrCwpIjAFlZWajVagwMKp6qubk59vb2fPvttwAcP36cO3fu0LFjR5599lm2b98OwMGDB/nwww/x9fUlNjaW2NhYfH19USqVFBUVAdCvXz9iY2PJycmhqKiIqVOnEhcXV6N53Bvvu+++w9HREUtLyxqvxf369evHxo0bKSwsJCcnhwkTJnD8+HH69+/Pzp070Wg0ZGRkcODAAYAy86vMqVOnaNeuHf7+/nTv3p3vv/++3O8PHD58mD59+uDr60v79u3Zt29fld8zuN+BAwfIysqioKCA7du3V/qpgADjTv2x8J2D+SsfYmjfBeNGZrQa3Y0iZcma55rnYWSdh5FpU6wGDcJm/Ph6jlgIIYQQlWnwO+01YWxsTGRkJEuWLMHb2xso2WX28PBg8uTJlbZduHAh4eHhLF++HCMjI5YvX46xsTGzZs0iLCyMr7/+GjMzM+bMmVOmraOjI1lZWQQHB7Nw4ULOnj3L2LFj0Wq1DBw4EB8fH65du1bteRw9epSoqCjMzMyYN29ejdagPOPHj+fKlSv4+PhQVFTE6NGj6du35I4ip06dYsSIETRv3hxHR8ca9/3888+zbt06PD090el0uLi4cOHChTL1PD09CQgIYOTIkUDJpyL3HwmqStOmTXnzzTdJS0tj1KhRDBw4sMaxPumsetrRpGsrtNkaDK1NUSherO+QhBBCCFFNCl15ZxFEvbl3xxR7e/v6DqXBuHe8qaZvYAoKCkhMTMTZ2Vl/TKc+JSQk0Lt37/oO47Ej61o3ZF1rn6xp3ZB1rRuyrrWvqjWtKm955Hba16xZQ0xMTJlyGxubKu/rHRgYyMWLF8uUu7m5MX369FqLsbbNnz9ffwvI+zk7OzN37tx6iEgIIYQQQjxMj1zS7u/vj7+//wO1jYiIqN1g6sCePXvKlFXnto+Ps9GjR+vvxiOEEEII8SR6rL6IKoQQQgghxONIknYhhBBCCCEaOEnahRBCCCGEaOAkaRdCCCGEEKKBk6RdCCGEEEKIBu6Ru3uMEEKIhmnfrT0cSVVjaWTFS7ajsDWzq++QhBDisSE77UIIIf60g3d+5Lj6JxwPtkB3LJuVZ5eQp8kjISGBXXFxXEy6SEHODeR5fkII8WAkaX/MqNVqVCoVKpUKtVpdo7apqamEhoYydOhQhg8fjo+PD7t376612Nzc3EhJSSlTvnTpUv04KpXqgfsRQtSf9J9SGHlkED2udMT9VB/6H+7Gf79eQ8yeHzlqbMu6myZ8fuwKJ36OQJN3p77DFUKIR44cjxEAaDQa/Pz88PDwYNeuXSiVSpKSkpg0aRJ2dnY4OTnV2dj3P402Pj6+zsYRQtQNnU6H7fEWpcpsU1pysOgApm4T0JpaApCmtOVw0TO0+HUrds4T6yNUIYR4ZMlO+2MsKioKHx8f3N3dy33S6v3i4uIwMTEhICAApVIJgIODA+Hh4Wi12krbXrp0CZVKxciRIxk3bhwnT54EICQkhLfffpvhw4frx1+xYgXe3t6MGzeOs2fP6utFR0czZ84cAMaMGQPA//73P8aMGcOIESPw8fEhKSnpwRdDCFFndh9JRatRlC7UAYbGKBpblipON2hFXua1hxecEEI8JiRpf4xZWFgQExNDWFgYK1eurLTuiRMncHFxKVPu6upKt27dKm0bHByMSqVi69atzJw5k+nTp6PRaACwsrJi586duLm5AdCuXTs2b97Mu+++S0hISKl+wsLCANi0aRPZ2dl8//33rF27lm3btvHCCy/w1VdfVXvuQoiH58zVHM7nFVJ833n1dE0BXbW3KE6/VaqujfYSCiP5gqoQQtSUJO2PsSFDhgDQoUMH0tLSatR20aJFeHl54eHhod8BL09OTg5Xr15l2LBhAPTs2RNLS0v9rniPHj1K1b+3i+7q6spvv/1GZmZmuf2am5sTERHB9u3biYiIYO/eveTm5tZoDkKIh8OpvTmHFI3Yn57Lyex8DmZk09R4L572Bjy1JxLljTMYFWbSKucYlic20vZp3/oOWQghHjmStD/G7h1zUSgUVdQEZ2dnjh07pn8dFBREbGwsb731FtnZ2RW2K+9OEDqdTn+kxtTUtNyY7tUzNCz/axXXr19n3LhxZGVlMWjQIHx8fOSuE0I0UO69rOnu5sh5CwVNTH9moPU6nmqdRRPv6XiNeZVnvltD8zXTsdi5judGfICRsWnVnQohhChFvogqAPD09OQ///kPq1atYvLkyRgZGZGVlYVarS6VaP+Rubk59vb2fPvttwwbNozjx49z584dOnbsWG79rVu38vrrr/Pdd9/h6OhIo0aNSl1XKpUUFRVx6tQp2rVrh7+/P/n5+SxbtoxWrVrV6pyFELXDwEDBmy/Zwku26HQvostORWFujUJhgGVreLHP1+iKi1EYyD6REEI8KEnaBQDGxsZERkayZMkSvL29AdBqtXh4eDB58uRK2y5cuJDw8HCWL1+OkZERy5cvx9jYuNy6ly9fxsvLi8aNGzNv3rwy193d3fHy8mLjxo2sW7cOT09PdDodLi4uXLhw4U/PUwhRtxQKBQqLZmXLJWEXQog/RaGTMwfiMVVQUEBiYiLOzs6YmJjUdzgkJCTQu3fv+g7jsSPrWjdkXWufrGndkHWtG7Kuta+qNa0qb5Gd9ifImjVriImJKVNuY2PD559/XmnbwMBALl68WKbczc2t1H3WhRBCCCFE7ZOk/Qni7++Pv7//A7WNiIio3WCEEEIIIUS1ySFDIYQQQgghGjhJ2oUQQgghhGjgJGkXQgghhBCigZOkXQghhBBCiAZOknYhhBCiFhUXFpJ5+DAZhw5RnJ8PQMr5k9y9chptUWE9RyeEeFQ9UUm7Wq1GpVKhUqlQq9U1apuamkpoaChDhw5l+PDh+Pj4sHv37jqK9HehoaGcOnWq0joqlarKft58801u3rxZaZ2ZM2fi7u7Otm3byr2+Z88eOnfuTGJiYpXjPYiQkBCio6PrpG8hhHgYijUaLs9Zxc1NF7gek8Sef29i7eY17Ni0hB8PHuTvH87ku7idyCNShBA1Jbd8rAaNRoOfnx8eHh7s2rULpVJJUlISkyZNws7ODicnpzobe+7cuVXWiY+Pr7JOVfdhB4iJieHkyZMVPs00OjqaF198kQ0bNuDs7Fxlf0II8STIT9iG5tRuDBpbk2fQm2JddwzMDNjbrxk3rSwBMLQZgHPyOo6fyGPvDwf4uUDNG0MnY2dmX8/RCyEeFU/UTvv9oqKi8PHxwd3dnT179lRaNy4uDhMTEwICAlAqlQA4ODgQHh6OVquttK1KpWLu3Ln4+Pjg6enJjz/+CMD58+dRqVS8/PLLDB48mHXr1gGwfPlyJk2ahKenJ19//XWpTwVWr16Nj48Po0aNYsGCBeh0OubMmQPAmDFjKo3Dzc2NlJQUoqOj+etf/8obb7zB0KFDCQ8PB+Dtt99Gp9MxZswY7t69W6Z9amoqP//8M8HBwezcuZPs7Gz9tQEDBjB79my8vb15+eWXSU5OBko+2Rg5ciTe3t6Eh4frPxG4f04pKSm4ubmVGW/x4sWMHTsWDw8PVCoVd+7cAaBfv35MnjwZLy8vCgvlY2YhRO3RFtd897sgcQ95cavQ/naewgtqck+cR6Ew4I6liT5hByhSmFDQuieNTUt+Z2QmZ7Em6Ytai10I8fh7YpN2CwsLYmJiCAsLY+XKlZXWPXHiBC4uLmXKXV1d6datW5VjZWdnExMTQ0REBCEhIWg0GjZt2sS7777LN998Q2RkJAsWLNDX12g07NixgwkTJujL9u/fT2JiIlFRUWzevJmbN2+yZcsWwsLCANi0aVN1p86xY8dYtmwZW7ZsYe/evZw7d45//etfAMTGxtKsWbMybbZs2cLzzz+Pvb09zs7ObNmyRX/t9u3b9O/fn82bN+Pi4sJXX31FYWEhf/vb31i4cCGbN2/G0LD6H+pcuXKFpKQk1q9fT1xcHK1bt9aPl5aWxptvvklsbCxGRkbV7lMIISqSrylm/voreH14ktfnnebgLxnVblt4/udSr42UJccQdYqydXUoUP7/b11tkyJ+y79Gvjb/geMWQjxZntikfciQIQB06NCBtLS0GrVdtGgRXl5eeHh46He6KzN27FgAunTpQosWLTh37hwhISEUFBTw2WefsWTJEnJzc/X1e/ToUaaPQ4cOcfLkSUaPHo2Pjw+JiYlcvHixRnHf06tXL8zNzTEzM6NNmzZkZFT9CyomJoYRI0YA4Onpyfr160tdHzhwIAAdO3YkIyOD8+fP06xZM/3RoVdeeaXa8bVr144ZM2awadMm5s2bx/Hjx0utz9NPP13tvoQQoiqbfrjFvhPpaIvhdkYhCzZcISuvqFptlU1LH28xNTyNaRsTmqcX0Czr95+tBrpCmtw9TmauksJWBRR0zMPOzB5TpWmtzkUI8fh6Ys+03zvmolCUsx3yB87OzqWS1KCgIIKCgoiOjq7WefJ7YwEUFxdjaGjIX/7yF5o0acLgwYPx9PQs9eVPU9OyP8S1Wi1+fn5MnDgRgMzMzFL91oSJiYn+zwqFoswXotatW6ef7/jx4+nRowfnz59n7ty5fPrpp2i1Wm7dusXx48fp2bNnqT7v9adUKikuLq4whntjFhWV/cWYmJhIYGAg/v7+eHh4YGBgUCrG8tZHCCEe1Lnk3FKvCwp1XL6RT/enzKtsa9LXh8Krp9CmnAalIWYDX6Xpc/0oTM3jVY2WddvVGFvn0/j6ba6f70brtnlcHHAAh0YOvNrOr66mJIR4DD2xO+014enpSV5eHqtWrdKfo87KykKtVmNgUPUS7tixA4BTp06RmZlJp06d+Omnn5g2bRpDhgxh//79AJWej+/Xrx+xsbHk5ORQVFTE1KlTiYuLA0reFJSX/D4oX19fYmNjiY2NxdfXl+joaMaOHcu+ffvYs2cPP/zwA15eXmV22+/n4OBAZmYm586dA2Dr1q36a9bW1vpPCb7//vsybQ8fPkyfPn3w9fWlffv27Nu3r8rvDgghxINyfqpxqddmJgY4tDarVlsDMwuavL6QJu98geW0/2H2XMknq0ZNzbBsZc6Azh3Q7Fdw92wLDE1NeXXCSJY+s4pApxBambWu9bkIIR5fT+xOe00YGxsTGRnJkiVL8Pb2BkoSbA8PDyZPnlxl++TkZHx8fICSL1gqlUree+89JkyYgImJCU5OTtjZ2ZGSklJhH25ubpw9e5axY8ei1WoZOHCgvk93d3e8vLyIjo4utYteGzQaDdu2bSMyMrJUub+/P+PGjWPmzJnltjM2NmbBggXMmDEDAwMDnnrqKf0O+eTJkwkJCeGbb77B3d29TFtPT08CAgIYOXIkUPJJR2VrI4QQf8bLA1twN7OQfcfTaW5lxJSXbGlsWrNPMpXW5SfgzgPa4fB0KzLv5JJ8+1eatraojZCFEE8ghU5uFlunVCoVAQEB9O3bt75DeaiKi4tZtGgRAQEBNGrUiP/85z/cvHmTkJCQhxZDQUEBiYmJODs71/qbmQeRkJBA79696zuMx46sa92Qda19sqZ1Q9a1bsi61r6q1rSqvEV22v/fmjVriImJKVNuY2NT5T3OAwMDy/1SaHm3MqxLKpWKzMzMMuXjx4/H19f3ocZiYGCAlZUVr7zyCkZGRtjZ2VXrnvNCCCGEEKIsSdr/n7+/P/7+/g/UNiIionaDeUBr166t7xBKmTJlClOmTKnvMIQQQgghHnnyRVQhhBBCCCEaOEnahRBCCCGEaOAkaRdCCCGEEKKBk6RdCCGEEEKIBk6SdiGEEEIIIRo4SdqFEEIIIYRo4OSWj0IIIRqEfE0xKzan8MPJdGysjHhnpB3Pdm5SYX1tXiHJ3x/lSmI8txWXUTTpzqVrGoyNjBji+QJd+zz1EKMXQoi69cjvtKvValQqFSqVCrVaXaO2qamphIaGMnToUIYPH46Pjw+7d++uo0h/FxoayqlTpyqto1KpquznzTff5ObNm5XWmTlzJu7u7mzbtq3Mta+++govLy9GjRqFl5cXmzdvrnJMIYSoKxv33WT3sTSKtDp+u6vhk3VXyC3QlqpTeOkYmZ9PJTXida78Yy/aI/nY5/egVWYfjl49Q6ruMjc0F1gfvZbUm2UfNieEEI+qJ3anXaPR4Ofnh4eHB7t27UKpVJKUlMSkSZOws7PDycmpzsauzpNB4+Pjq6xT1ZNaAWJiYjh58iTGxsalyk+cOMGmTZvYsGEDpqam3L17l5dffhknJ6c6nbsQQlTk9NXcUq/zCoq5ciOfLu0aA6DLzyE7ag4U5lOg7Ymu6PfHfCcbZNDW0RJbGzDNvc6pS4Uc+fkYw7xcH+ochBCirjxWSXtUVBTz5s0jMzOT0NBQ3NzcKqwbFxeHiYkJAQEB+jIHBwfCw8PRarUVtoOSXXAnJyeOHDlCQUEBH3zwAQMGDOD8+fPMnj2b3NxcUlNTmTJlCr6+vixfvpzjx49z/fp1XnvtNXbu3ElAQAB9+/Zl9erV7Ny5E61Wy4ABAwgODtYn9WPGjGHTpk0VxuHm5kZkZCTx8fEcOHCAjIwMkpOTef755wkPD+ftt99Gp9MxZswY/v3vf9OsWTN929u3b6PT6cjLy8PU1JRmzZqxbNkyrK2tAejcuTPnzp0DIDo6mvj4eObNm4ebmxsvvvgiBw8eBOCTTz6ha9euqFQqLC0tuXDhAkuWLCEhIYHY2Fjy8vIwMjIiIiICBwcH3NzceOmll/jpp58wNDTk3Xff5d///jdXrlxhxowZeHp6VnsdJ0yYUMW/CCHEo6Rru8ac+DVb/7qRiQHtW5nqXxfduAiF+WXa6YC7/Z1Ja9qGW4CV9jqDLL8CS5MydYUQ4lH1yB+PuZ+FhQUxMTGEhYWxcuXKSuueOHECFxeXMuWurq5069atyrGys7OJiYkhIiKCkJAQNBoNmzZt4t133+Wbb74hMjKSBQsW6OtrNBp27NhRKtHcv38/iYmJREVFsXnzZm7evMmWLVsICwsDqDRh/6Njx46xbNkytmzZwt69ezl37hz/+te/AIiNjS2VsAMMGjQIOzs7Bg4cyGuvvcby5cuxsrKiZcuWVY7VqFEjNm/ezLRp05gxY4a+vHPnzsTFxdGmTRu+//571q5dy7Zt23jhhRf46quv9PWaN29OdHQ0jo6OrF69mn//+98sXLiQ1atX6+ddk3UUQjwexr1gw9De1pgYKWjTwoTQV9tjZqLUX1fatAelEQBGirPoirIAuNHMjLSmbfT10pWtSTHtSYf2SoQQ4nHxWO20DxkyBIAOHTqQlpZWo7aLFi3iwIED5OfnM3DgQH3iXJGxY8cC0KVLF1q0aMG5c+cICQnhwIEDfPbZZ5w/f57c3N8/6u3Ro0eZPg4dOsTJkycZPXo0APn5+dja2tYo7nt69eqFubk5AG3atCEjI6PS+sbGxvzzn//kypUr/Pjjjxw4cIAvv/ySNWvW0LNnz0rb3pu7m5sbISEhpKamAr/P0dzcnIiICLZv387ly5c5cOAAXbp00bcfNGgQALa2ttjY2GBoaIitrS2ZmSXnT2u6jkKIx4OJkQHvv9KW919pW+51g0aWNB4VRO73qym+m0nh9a0YNHYg07I90LpU3XwDc0wtHuznqRBCNESPVdKuVJbsqigUiirrOjs7s379ev3roKAggoKC9EdBqjsWQHFxMYaGhvzlL3+hSZMmDB48GE9Pz1Jf/jQ1NS3Th1arxc/Pj4kTJwKQmZlZqt+aMDH5/WNghUKBTqcrdX3dunX6+Y4fPx4zMzNatmxJ//79adeuHa+++iqLFy8mNjZWn7TrdDoUCgVFRUWl+jI0/P2fTXFxsT7me3O8fv06KpWK1157jUGDBtG8eXPOnDmjb2NkZFRuX/fUdB2FEE8O4y4DMO4ygMKMdFIDgyjOOoPt+SucfKYXhSZmACh0xTjbWGNqblfP0QohRO15rI7H1ISnpyd5eXmsWrWKwsJCALKyslCr1RgYVL0sO3bsAODUqVNkZmbSqVMnfvrpJ6ZNm8aQIUPYv38/QKXn4/v160dsbCw5OTkUFRUxdepU4uLigJI3BX9Mlv8MX19fYmNjiY2NxdfXF61WS0REhH6XXKPRcOHCBbp27QqAtbU1Fy5cQKfTsWfPnlJ9bd++HYDvvvsOR0dHLC0tS10/deoU7dq1w9/fn+7du/P9999X+T2B+9V0HYUQTx4jSytavPwyGBhgkp/LkL0b6W6uoIuVkgmdLXF2GlLfIQohRK16rHbaa8LY2JjIyEiWLFmCt7c3UJIYenh4MHny5CrbJycn4+PjA8DixYtRKpW89957TJgwARMTE5ycnLCzsyMlJaXCPtzc3Dh79ixjx45Fq9UycOBAfZ/u7u54eXkRHR1dahe9trz88sukpaXh6+urf5Py0ksv8corrwAQGBjI22+/TfPmzendu3ep40ZHjx4lKioKMzMz5s2bV6bv559/nnXr1uHp6YlOp8PFxYULFy5UO7aarqMQ4snUbPhwmvTrR+GdO5g99RTPlvPJnRBCPC4Uuj+eoxBVUqlU+ru/PGnu3bHG3t6+vkOpUkFBAYmJiTg7O9fJG5+aSkhIoHfv3vUdxmNH1rVuyLrWPlnTuiHrWjdkXWtfVWtaVd7yWG9LrFmzhpiYmDLlNjY2Vd7jPDAwkIsXL5Ypr+w2knVBpVLpv6B5v/Hjx+Pr6/tQYxFCCCGEEPXjsU7a/f398ff3f6C2ERERtRvMA1q7dm19h1DKH8+3CyGEEEKIuvfEfhFVCCGEEEKIR4Uk7UIIIYQQQjRwkrQLIYQQQgjRwEnSLoQQQgghRAMnSbsQQgghhBANnCTtQgghhBBCNHCStNcRtVqNSqVCpVKhVqtr1DY1NZXQ0FCGDh3K8OHD8fHxYffu3XUU6e9CQ0M5depUpXVUKlWV/bi5uckTTIUQj6z85Exyzt9FV1Rc36EIIYTeY32f9keRRqPBz88PDw8Pdu3ahVKpJCkpiUmTJmFnZ4eTk1OdjT137twq68THx9fZ+EIIUZcKL8ZTeDURw9adMOj0HDdzC2lqaoiZkRKATLWam9/fIL/AjEYKEwytTbGb1BNDi/p/orIQQkjS/hBERUUxb948MjMzCQ0NrfSpqnFxcZiYmBAQEKAvc3BwIDw8HK1WW+k4KpUKJycnjhw5QkFBAR988AEDBgzg/PnzzJ49m9zcXFJTU5kyZQq+vr4sX76c48ePc/36dV577TV27txJQEAAffv2ZfXq1ezcuROtVsuAAQMIDg7WJ/Vjxoxh06ZN/O9//yM2Npa8vDyMjIyIiIjAwcGhyvW4ceMGQUFB5ObmYmBgQFhYGD179sTNzY3IyEjs7e1Rq9WsWLGCtWvXVjgvIYQAyM7T8r/vb3A+JZceDub4urXExKj0B8n5hzaRt3cNANca27E1rRU5ChMMFQo8Ha0pVK/jRtxljlooyUfDM3YGODUzJuXnM7QZPB6loWk9zEwIIX4nx2MeAgsLC2JiYggLC2PlypWV1j1x4gQuLi5lyl1dXenWrVuVY2VnZxMTE0NERAQhISFoNBo2bdrEu+++yzfffENkZCQLFizQ19doNOzYsYMJEyboy/bv309iYiJRUVFs3ryZmzdvsmXLFsLCwgDYtGkT2dnZfP/996xdu5Zt27bxwgsv8NVXX1VrPaKionjhhReIjo5m2rRpJCQkPNC8hBACIGLTVWIP3uHM1Vw27LvFv7ZeK1Mn//AW/Z8POo4mR1Gye16k07Ej6Q6pB9WozSGfQrq3z6dr57sYNL9OruJnriV++dDmIoQQFZGd9odgyJAhAHTo0IG0tLQatV20aBEHDhwgPz+fgQMH6hPniowdOxaALl260KJFC86dO0dISAgHDhzgs88+4/z58+Tm5urr9+jRo0wfhw4d4uTJk4wePRqA/Px8bG1tS9UxNzcnIiKC7du3c/nyZQ4cOECXLl2qNaf+/fvz3nvvcebMGVxdXXnttdeqbFPevLp3716t8YQQj6/ComLUZzNLlf2UmMH00W1KlSmURuj+/8+Zps1KXSsqNiC1cSO0OSVn2J9qVVDqevadU2gLc1AaNa7d4IUQogZkp/0hUCpLzksqFIoq6zo7O3Ps2DH966CgIGJjY3nrrbfIzs6u9lgAxcXFGBoa8pe//IXvvvsOR0dH/vKXv5Sqb2pa9iNfrVaLn58fsbGxxMbGsmnTJt5+++1Sda5fv864cePIyspi0KBB+Pj4oNPpyvRVnt69e7N9+3YGDBjAjh07SvV9r4+ioqIq5yWEEIZKBS0sjUqVtW5mXKae6YDxQMnP4I63S3+618gkkzO9cjD9/xOIeZrSvxoVBsYolGX7FEKIh0mS9gbG09OTvLw8Vq1aRWFhIQBZWVmo1WoMDKr+69qxYwcAp06dIjMzk06dOvHTTz8xbdo0hgwZwv79+wEqPR/fr18/YmNjycnJoaioiKlTpxIXFweUJM9FRUWcOnWKdu3a4e/vT/fu3fn++++rPHN/z4IFC9iyZQs+Pj7MmjWL06dPA2Btbc3FixcBytwtp7x5CSGEQqEgwNuexqYlPx+tzA15e4RdmXomTw/DYtIyzIa9jdugwbi3taR9ExNcWpnzmpMdJu3bkOZ+FyPDYk6cN0BTWLKBoNNBq85jMDAwKtOnEEI8TLJd2cAYGxsTGRnJkiVL8Pb2BkoSbA8PDyZPnlxl++TkZHx8fABYvHgxSqWS9957jwkTJmBiYoKTkxN2dnaV3pLRzc2Ns2fPMnbsWLRaLQMHDtT36e7ujpeXFxs3bmTdunV4enqi0+lwcXHhwoUL1ZqjSqUiMDCQ6OholEol8+fPB2DatGnMnj2bFStWlPmiaXnzEkIIAJfOTfjfzK5cu6OhjY0Jxoblb3AYtnTAsGXJl+WfA56za6K/NrPLLH5rfw3zweYoMvK5cHQ3ikYKHJ8ehknj5g9jGkIIUSmFrrpnGkSDp1Kp9Hd/eZw86LwKCgpITEzE2dkZE5P6v2VbQkICvXv3ru8wHjuyrnVD1rX2yZrWDVnXuiHrWvuqWtOq8hbZaa8Ha9asISYmpky5jY0Nn3/+eaVtAwMD9UdI7lfZbSTrw5EjR5g9e3a511avXk3Lli0fckRCCCGEEI8uSdrrgb+/P/7+/g/UNiIionaDqSPPPvsssbGxtdLX2rVra6UfIYQQQohHlXwRVQghhBBCiAZOknYhhBBCCCEaOEnahRBCCCGEaOAkaRdCCCGEEKKBk6RdCCGEEEKIBk6SdiGEEEIIIRo4ueXjQ6ZWq1mxYgVAjR8YlJqaSkREBPHx8RgaGmJqakpAQADu7u51FW4pKpWqVm+/mJWVRUhICCtXrqx2m3vrJ7eBFLWl6NYlMn6K4qyiJYXmbeju4MCNZlmcvnmKjOM5aFOL6ebclb4uPcm+cwIDpTEWLXpioJTH2gshhHh4JGl/RGg0Gvz8/PDw8GDXrl0olUqSkpKYNGkSdnZ2ODk51XkM8fHxtdpfRkYGZ86cqdU+hagJXUEuaetmsa7bdDIalzzwK/6Khl5Re0nQ/oZBlgKAWzeSaJIbhaFBPgCmFm15yuVvKAzkR6gQQoiHQ47H1KOoqCh8fHxwd3dnz549ldaNi4vDxMSEgIAAlEolAA4ODoSHh6PVaittq1KpmDt3Lj4+Pnh6evLjjz8CcOfOHd566y1GjhyJj48P+/fvB+DQoUOMHj2a0aNHM3HiRFJTU5kzZw4AY8aMAWDr1q14enry0ksvERISQmFhITk5OcyYMYPRo0fj5eXFtm3bAIiOjuavf/0rb7zxBkOHDiU8PByAOXPmcOvWLaZOnUpKSgovvvgivr6+TJw4kezsbKZNm8a4ceMYPHgwH3zwATqd7sEWWogKFF45ya/mHfQJO0CBqTHpLfvrE3aADrYF+oQdID/rKll3Tj3UWIUQQjzZZJuoHllYWBATE8PevXtZsWIFbm5uFdY9ceIELi4uZcpdXV2rNVZ2djYxMTGcOXOGN998kz179jB79mz69evHxIkTSU5OxtfXl82bN/PPf/6T8PBwevToweeff87p06cJCwtj7dq1bNq0iZs3b/Lpp58SHR1Nq1atCA4O5ocffuD48eN069aN+fPnk52dzfjx43n66acBOHbsGNu2bUOpVOqT87CwMF5//XVWrlxJSkoKly5d4osvvsDe3p5t27bRpUsXli1bhkaj4aWXXuKXX355sIUWogJK69bll6PEUGdAkaK45LVB2TeMuuKiOo1NCCGEuJ8k7fVoyJAhAHTo0IG0tLQatV20aBEHDhwgPz+fgQMHEhYWVmn9sWPHAtClSxdatGjBuXPn+Pnnn/U76G3atOHpp5/mxIkTuLu7ExAQwJAhQ3B3d+f5558v1dexY8d45plnaNWqFQALFy4E4J///Cf5+fl88803AOTm5nLhwgUAevXqhbm5uX6sjIwMGjduXKrfZs2aYW9vD8CIESM4efIka9asISkpifT0dHJzc2u0RkJURdmiHdmFzWiSfZtM8xYAmBRo6Xgth1xtY04rM0BhQFKKAid7BYaGJcm7kVlzLFr0qM/QhRBCPGEkaa9H9465KBSKKmqCs7Mz69ev178OCgoiKCiI6Ojoap01vzcWQHFxMYaGhmWOm+h0OrRaLf7+/gwePJi9e/eycOFCTp48yTvvvKOvZ2hoWCrm1NRUfb8LFy6kW7duQMnxG0tLS7Zu3YqJiYm+vkKhKPeoi6mpqf7Pa9euJS4ujrFjx/Lcc89x/vx5OR4j6sSPjV7iwoFrDLS9gr1xI9pfz8XIsIic/GNY59xGa2iKkVZDM4cFGBvewEBpjGXr/hgoTaruXAghhKglcqb9EeHp6UleXh6rVq2isLAQKLn7ilqtxsCg6r/GHTt2AHDq1CkyMzPp1KkT/fr1IyoqCoDk5GSOHj1Kz549GTNmDDk5Ofj7++Pv78/p06eBksS/qKiI7t27c/z4cW7fvg3AJ598wu7du+nXrx/r1q0D4NatW4waNYrr169XGJOhoSFFReUfMfjpp58YN24co0aNoqCggLNnz1JcXFzN1RKi+jz7NCOtyILYKxasuaBgc+OmdAp2ZVzYElyGvYLLwGG8/tFn2HXqTQuHl2jWbiiGxub1HbYQQognjOy0PyKMjY2JjIxkyZIleHt7A6DVavHw8GDy5MlVtk9OTsbHxweAxYsXo1QqCQ0NZdasWURHRwMlXwy1sbHh/fffJyQkBENDQxo1aqQ/QuPu7o6XlxfR0dGEhoYyadIkiouL6dmzJ6NHjyYvL4/w8HBGjBiBVqslODiYtm3bcuTIkXJjatasGba2tqhUKj799NNS1/z8/AgPD2f16tWYm5vTq1cvUlJSaNu27YMuoRDl6uPUhAVvOrL/ZDotrIzx7NsMhYECKxtbXhg3tb7DE0IIIQBQ6OTMwWNPpVLV+J7wj4OCggISExNxdnYudTynviQkJNC7d+/6DuOxI+taN2Rda5+sad2Qda0bsq61r6o1rSpvkZ32BmTNmjXExMSUKbexseHzzz+vtG1gYCAXL14sU17ZHWmEEEIIIcSjQZL2BuTeGfIHERERUbvBCCGEEEKIBkO+iCqEEEIIIUQDJ0m7EEIIIYQQDZwk7UIIIYQQQjRwkrQLIYQQQgjRwEnSLoQQQgghRAMnSbsQQgghhBANnNzyUQghKnC34C6nk8+SHW+IIs8Qpz72tO/esr7DEkII8QSSnfYGQK1Wo1KpUKlUqNXqGrVNTU0lNDSUoUOHMnz4cHx8fNi9e3cdRVr7Zs6cybVr12rUpnPnznUUjRAldDod8Sd3E//vHZj/Nx+j45lcOn6DHauPcOWXW/UdnhBCiCeQ7LQ/wjQaDX5+fnh4eLBr1y6USiVJSUlMmjQJOzs7nJyc6jvEKqnVaqZOnVrfYQiBrrCAvL1ruHnyB769cAuXppPpZNwWDMCkiQFZTU3JKbzMzYv/IPtGHtate9Oq83gMlMb1HboQQogngCTtDUxUVBTz5s0jMzOT0NBQ3NzcKqwbFxeHiYkJAQEB+jIHBwfCw8PRarWVjqNSqXBycuLIkSMUFBTwwQcfMGDAAEJCQkhPT+fKlSsEBwfTvHlzPv30U/Lz87G2tubjjz+mTZs2nDlzhlmzZpGfn4+lpSWLFi2iVatWrF69mp07d6LVahkwYADBwcFcu3aNgIAAOnbsyJkzZ2jWrBlLly5l48aN3Lp1iylTpvDVV1/x8ssv06NHD86cOcPXX39NZGQkhw4dIiMjAxsbGxYvXkzz5s1rba2FuF/e/rUUHNnCj5fzKdKZYmncGoDLrRujdm6BVmmAcbEN7QsuYV6cTvpvBzE0scLGcVQ9Ry6EEOJJIMdjGhgLCwtiYmIICwtj5cqVldY9ceIELi4uZcpdXV3p1q1blWNlZ2cTExNDREQEISEhaDQaAKysrNi5cycDBgwgLCyMiIgIYmJimDhxIh9++CEAQUFBvPvuu2zduhVPT0/++9//sn//fhITE4mKimLz5s3cvHmTLVu2AHD27FkmTpzItm3baNKkCVu3bmXKlCnY2NiwevVqrK2tARg0aBBxcXFkZ2eTlJTE+vXriYuLo3Xr1vq+hKgLhUlHAUgvKkKjzaFAm0OxAhK6NEerLPlRqTFoxCnj399I56Ser5dYhRBCPHlkp72BGTJkCAAdOnQgLS2tRm0XLVrEgQMHyM/PZ+DAgYSFhVVaf+zYsQB06dKFFi1acO7cOQB69OgBwOXLl0lOTuadd97Rt8nOziY1NZXbt28zePBgACZMmADA/PnzOXnyJKNHjwYgPz8fW1tbevfuTbNmzejatSsAHTt2JCMjo9yYnn76aQDatWvHjBkz2LRpE5cuXeL48eO0bdu2RushRE0Y2jyF5vYVWilNuarN5XjaZpxbvEyBsbJUvVyFpf7PeVrLP3YjhBBC1AlJ2hsYpbIkQVAoFFXWdXZ2Zv369frXQUFBBAUFER0dTXx8fLXHAiguLsbQsOSfg6mpqb7M3t6e2NhYALRaLXfu3MHIyKhUfAUFBdy6dQutVoufnx8TJ04EIDMzE6VSSVpaGiYmJvr6CoUCnU5Xbkz36iUmJhIYGIi/vz8eHh4YGBhU2EaI2mA2eCLatN94Lu8iit8MuZN7kdPJK7ErmMc1Ewt9PZv8MxQXw9Xbxjh3rPj4mhBCCFGb5HjMI8zT05O8vDxWrVpFYWEhAFlZWajVagwMqv6r3bFjBwCnTp0iMzOTTp06lbru4OBARkYGR44cAeCbb74hKCgICwsLWrZsyY8//ghAbGwsS5cupV+/fsTGxpKTk0NRURFTp04lLi6u0hiUSmW55+8PHz5Mnz598PX1pX379uzbt6/Kc/pC/BkGTZrTxH8xrUPWMnpVNH6zvmTM0q+ZMMCJfq0taNPYEINLJziz5wRf77Mm22gAbds51nfYQgghnhCy0/4IMzY2JjIykiVLluDt7Q2U7IZ7eHgwefLkKtsnJyfj4+MDwOLFi0vtvN/rf+nSpcydO5eCggLMzc2ZP38+AAsXLiQ8PJyFCxdibW3NggULsLGx4ezZs4wdOxatVsvAgQPx8fGp9JaOL7zwAlOmTOGLL74oVe7p6UlAQAAjR44ESj5VSElJqfbaCPGgDBpbAWD21FMAKIGh7a0AK7TdhnP5chcaNWpE69at6ytEIYQQTyCFTs4cPJFUKhUBAQH07du3vkOpMwUFBSQmJuLs7FzqeE59SUhIoHfv3vUdxmNH1rVuyLrWPlnTuiHrWjdkXWtfVWtaVd4iO+0N3Jo1a4iJiSlTbmNjw+eff15p28DAQC5evFimvLLbSAohhBBCiIZHkvYGzt/fH39//wdqGxERUbvBCCGEEEKIeiFfRBVCCCGEEKKBk6RdCCGEEEKIBk6SdiGEEEIIIRo4SdqFEEIIIYRo4CRpF0IIIYQQooGTpF0IIUSDpivIpTg3s1RZbqGWW7ka/vioEU3eHe5e3U3mrWPoiuUpykKIx4fc8rEeqdVqVqxYAVDjBx2lpqYSERFBfHw8hoaGmJqaEhAQgLu7e12FK4QQD13e/v+RfygKtEUYdRlI41HvE38rn91X0tHqoIlOx8utzSm6dI70X7/DuN11MChJ5C1a9KTN02/X8wyEEKJ2SNL+CNJoNPj5+eHh4cGuXbtQKpUkJSUxadIk7OzscHJyqu8QhRDiTyv67Tz5P67Tvy48s5+0tr34vrALxf+/wZ6pULA//jdcfikAJ40+YQfIun2cgpzrmDRu/bBDF0KIWifHYxqIqKgofHx8cHd3Z8+ePZXWjYuLw8TEhICAAJRKJQAODg6Eh4ej1Vb+cbBKpWLu3Ln4+Pjg6enJjz/+CEBISAhvv/02w4cPZ8+ePZw8eRJfX198fHx44403SE5OBuDMmTOMGTOGkSNH8tprr3Hjxg3UajUqlUo/RkhICNHR0aSkpODt7U1wcDAjRozAz8+P9PR0APbv388rr7yCt7c3AQEBpKWlASVPa01JSQEo1e9//vMfRo0ahbe3N7Nmzarh6gohHkXaO1fKlKWn3tEn7PqyRgZsLNrPDTLK1NfpiusqPCGEeKgkaW8gLCwsiImJISwsjJUrV1Za98SJE7i4uJQpd3V1pVu3blWOlZ2dTUxMDBEREYSEhKDRaACwsrJi586dDBgwgLCwMCIiIoiJiWHixIl8+OGHAAQFBfHuu++ydetWPD09+e9//1vpWGfPnmXixIls27aNJk2asHXrVv3Rni+//JLNmzczYMAAFi1aVGEfWq2Wzz77jG+++Ybo6GgKCwu5efNmlfMUQjzaLht2olCnLFVm174DTQxL/+rKvX6eHPI5l2JK8X05euOmXTA1t3sYoQohRJ2T4zENxJAhQwDo0KGDfte5uhYtWsSBAwfIz89n4MCBhIWFVVp/7NixAHTp0oUWLVpw7tw5AHr06AHA5cuXSU5O5p133tG3yc7OJjU1ldu3bzN48GAAJkyYAJTsiFekWbNmdO3aFYCOHTuSkZHBiRMnuH79Oq+//joAxcXFWFpaVtiHUqmkV69evPLKK7i7uzNx4kRatmxZ6RyFEI++L38sRJGnwsdkD6Zo+EHXn3faP4uqSMvXey6RVVSM0+0cTl8+BcDNdCN2HG5CmxaFDHQZhO3TI+p5BkIIUXskaW8g7h1zUSgUVdZ1dnZm/fr1+tdBQUEEBQURHR1NfHx8tceCkoTZ0LDkn4Gpqam+zN7entjYWKBkp/vOnTsYGRmViq+goIBbt26hUChK3cGhsLBQ/2cTExP9n+/V02q1PPPMM/zrX//S95OTk6Ovd6+voqIifdk///lPjh8/zv79+5k8eTKLFi2iT58+Vc5VCPHoSs0q4pq2EydzO+nL/DXFNG1sxNvDHDn60zmOXv8Fi0bG5OTmAZCeY4hlMwfse/nUV9hCCFEn5HjMI8jT05O8vDxWrVqlT5CzsrJQq9UYGFT9V7pjxw4ATp06RWZmJp06dSp13cHBgYyMDI4cOQLAN998Q1BQEBYWFrRs2VJ/Dj42NpalS5dibW1NcnIyBQUFpKenk5CQUOn4Tz/9NMePH+fSpUtASUK+YMECAKytrbl48SIAu3fvBkrulOPp6UmnTp2YPn06zz//vP7TASHE48utp3Wp1892ssCycckmg6GRkj4vdOXtt1/n9aApvPDCC9jb2/Pss88y4dVX6yNcIYSoU7LT/ggyNjYmMjKSJUuW4O3tDZTshnt4eDB58uQq2ycnJ+PjU7ILtXjx4lI77/f6X7p0KXPnzqWgoABzc3Pmz58PwMKFCwkPD2fhwoVYW1uzYMECbGxscHV15aWXXsLOzo7evXtXOn6LFi345JNP+Mtf/kJxcTEtW7Zk4cKFAEybNo3Zs2ezYsUKBgwYAEDTpk0ZN24cr7zyCmZmZjz11FO8/PLLNVozIcSjZ/xgG5o0VnL0QhbtW5ry8iCbcutZmVozbNgwhg0b9pAjFEKIh0eh++OTKcRjTaVS1fie8I+qgoICEhMTcXZ2LnVMp74kJCRU+YZG1Jysa92Qda19sqZ1Q9a1bsi61r6q1rSqvEV22huoNWvWEBMTU6bcxsaGzz//vNK2gYGB+iMm93Nzc6u1+IQQQgghxMMjSXsD5e/vj7+//wO1jYiIqN1ghBBCCCFEvZIvogohhBBCCNHASdIuhBBCCCFEAydJuxBCCCGEEA2cJO1CCCGEEEI0cJK0CyGEEEII0cBJ0i6EEEIIIUQDJ7d8FEKIh2DHb1vZc+s7rLKbMNh8MM91d0OhVNR3WEIIIR4RkrQ/ZtRqNStWrACo8ZNPU1NTiYiIID4+HkNDQ0xNTQkICMDd3b2uwiU5OZlVq1bxySef1NkYQvwfe3ceVlW1PnD8ezgHDqCIqIA5DxiYOIQKjqhokQooak43lC6adTPt/hxC4ZrmkDmkiabpNaeroiGDSg45pF4HSJzCCkcMHEBlnuGc8/vD60mSSQNBfT/P0/N41l7v2u9emr5nsfbelangVgxR0bs4mn0Pt19b0TDbDoBrh4/T2KcjqhqV/7ZeIYQQVZ8U7QKAvLw8Ro8ejaurK3v37kWpVHLt2jV8fHyoX78+dnZ2FXLeW7duERcXVyFjC1EZIn5NY/3+26RnaRhhe5cm57cRlfImLXmN+vXz0JqmYJBVE1I0/PR1INebqUkwqYeZuTn9273KKzVMKvsShBBCVEGyp/0FFhQUhKenJ7179+bQoUMl9t23bx9qtZrx48ejVCoBaNasGTNnzkSj0ZQY6+Xlxfjx43F1deXXX3/l6NGjDBkyhIEDBzJ+/HiSk5MBOHHiBB4eHri7uzNu3DgyMjKYM2cO0dHRzJo1i4iICLy8vPTj+vr6EhwcTEZGBu+99x6DBg1i0KBBHDx48C/OjBAVIyktnzmbY4m9k8P9tHw0P+/nbGoXFBhg1+kk+Q57yW+/h/xWR9AptPyUlcgVawcy6jTltmEtvv05geScgsq+DCGEEFWQFO0vMDMzM0JCQvD392fFihUl9j1//jwdO3Z8rL1Hjx60atWq1HPZ2tqyb98+rK2tWbx4MWvXriU0NJRu3bqxaNEi8vLymDx5Ml988QW7du3i1Vdf1edmb2/Pp59+WuzYP/zwA/Xr1yc4OJi5c+dy+vTp0i9eiEpw8UYmBRqd/nOuzogsbTWs6t/CzPKuvl1b6xba2vHcq/8KCqM/Vta1Bkqi72U905yFEEI8H2R7zAusT58+ANjY2OhXu8tq0aJFHDt2jJycHLp3746/v3+J/du0aQM8KP5v377NqFGjANBqtZibmxMTE4O1tTUtW7YEYNKkScCDPfilef311/nyyy9JSEigZ8+efPjhh090LUI8K83rmaBQgO5/dfv3ed0YWu0CmiJ2vNwo+C/oHB5rN5abU4UQQhRBVtpfYA+3uSgUpRcB9vb2nD17Vv958uTJhIWF6bexlMbY2BgAjUaDg4MDYWFhhIWFERQUxLJlyzA0NCyUR3p6Onfu3Ck0hkKhQKf7Y5UyPz8fgCZNmrBnzx7c3d05ffo0Q4YMQavVlpqTEM9avdpqxg9sgJmJEqUBtHZoQS/fv2NduxE67R9/3Wq1cPnaZYx/24c2OUHfXkOppbVltcpIXQghRBUnK+0CgH79+rFur6NsXQABAABJREFU3TpWrlzJmDFjMDQ0JD09nYiICH3xXxZt27bF39+f69ev07RpU77++msSEhKYNWsW9+/f58qVK9jY2PDvf/8bgO7du1NQ8GAPr4WFBXFxceTm5pKdnU1UVBRdu3blP//5D3FxcUybNg1nZ2d69epFRkYGNWrUqJC5EOKv6OdYG9cOtdBodRipHhTqHUcOJiulLUm/HwKFAbUauVD3NcjJTKNmAxsuxN+nRk0LWlqaoTSQlXYhhBCPk6JdAGBkZMTGjRtZunQpAwcOBB6smru6ujJmzJgyj2Npacm8efP4+OOP0Wq1WFtbs3DhQtRqNQsXLmTq1Knk5+fTqFEjFixYQF5eHunp6UyZMoWFCxfSo0cP+vfvT/369Wnfvj0AAwcO5P/+7/9wd3dHqVQyZcoUKdhFlaY0UDxWfJvWtMG0ps0fn83/ONbFtvqzSk0IIcRzSqF7dD+CEC+Q3NxcoqOjsbe3R62u/GdhR0VF6b+IiPIj81oxZF7Ln8xpxZB5rRgyr+WvtDktrW6RlfaXyPr16wkJCXms3crKijVr1pQYO2nSJK5cufJYu4uLCxMnTiy3HIUQQgghxOOkaH+JeHt74+3t/VSxixcvLt9khBBCCCFEmcnTY4QQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOKkaBdCiD/RaDRcuXKF27dvV3YqQgghBCCPfBRCiELS0tJYvXo1SUlJALTp4Eivrt3JDwok59o1TG1tsR45EmV1eYupEEKIZ0dW2p+xiIgIvLy88PLyIiIi4olik5KS8PPz44033qBv3754enpy8ODBCsnvrwoODsbX1xd48AKm+Pj4vzzmQ08zd0KUJD8pm/v7r3JvzxWO/XBEX7CrbF7nklU7Vl/LIqx+OzIyskg9cYL4L+cSd+E4yQnl9+daCCGEKImstD8n8vLyGD16NK6uruzduxelUsm1a9fw8fGhfv362NnZVXaKQjyXNJl5xK85gzarAIBE3e9Y18ynWTM15+o5gUIBQJJ1Iy617UaLyD0ciY0gc+l/AXDo8za9Rk6otPyFEEK8HGSlvRIFBQXh6elJ7969OXToUIl99+3bh1qtZvz48SiVSgCaNWvGzJkz0Wg0JcauW7cODw8PBg4cyIwZM4DCK+FQePU6OTkZHx8f3N3d8fPzIy8vD4Bdu3bRr18/+vfvj6+vL/n5+SQkJODj48PQoUPp2bMnX331VbF5aLVa5syZQ//+/XFzc2P16tUA3Llzh3feeYdBgwYxZMgQzp07B8CePXsYOnQoHh4evPXWW5w5c6bE6xTiaWT8ck9fsAO0UJvj0i6d6rXM9AX7Q2k1LbmmSCGTfH3bmQPfcf9W7LNKVwghxEtKVtorkZmZGSEhIRw+fJjly5fj4uJSbN/z58/TsWPHx9p79OhR4jk0Gg3ffPMNx44dQ6lU4ufnR0JCQokx8fHxLF++nMaNG/PPf/6TrVu38tZbb/H5558THBxM3bp1mTJlCkeOHOHGjRu4ubnh6elJeno6PXr0KHZ7zdatW7l9+zY7d+4kLy8PLy8vXn31VaKjo+nZsydjxozh6NGjREVF0aZNGwIDA1m1ahW1atUiKCiI1atXs2rVqhJzF+JJKU0K/zVoWScTjQHU1sah1mWSq6imP1bt97vkGeSDrvAY6cl3qV2vyTPIVgghxMtKivZK1KdPHwBsbGxITk5+othFixZx7NgxcnJy6N69O/7+/kX2UyqVvP766wwZMoTevXvz7rvvYm1tXeLYHTp0oEmTJgC4u7sTHByMtbU1Dg4O1K1bF4CFCxfq+586dYq1a9dy+fJl8vPzyc7OLnLciIgIPD09USqVmJiY4O7uzsmTJ3nzzTf56KOP+PXXX+nRowfvvPMOBgYGrFixgkOHDnH9+nUiIyMxMJAfDInyV82uDuoGZuTGpwNgqK6DBlBRQPfsLfxi1J3kLGsMfsukmfYyamsdt+78EV/dwooGr7atnOSFEEK8NKRor0QPt7ko/vQj+KLY29sTGBio/zx58mQmT55McHAwkZGRJcZ+/fXXnDt3jqNHjzJmzBgWLVqEQqFAp/tjuTA//48f96tUf/yx0Ol0qFQqVCpVoTwf3qi3evVq4uLicHNzo0+fPpw4caLQuI/SarWFPut0OjQaDe3btyc8PJwff/yR77//npCQEJYvX86QIUPw8PCgY8eO2Nrasnnz5lLnSYgnpVAZUN/ndbKvJqPTajFpVpPbMWmk3onAXJeITexxfvmpPSavGOIwYRLaK50xjInm8u07VKtljWPfkagMjSr7MoQQQrzgpGh/TvTr149169axcuVKxowZg6GhIenp6UREROiL/6IkJSXxt7/9jaCgIF5//XXu3LlDTEwMDRs25OrVq+h0OuLj44mJidHHREVFcevWLerWrUtoaCjdu3endevWzJo1i7t372Jpacm8efNwcnLi+PHjzJo1CwcHB3788UcSEhIeK84f6tSpE6GhofTq1Yu8vDx27drF+++/z4IFC7C2tmb06NE4OTnh6elJbGwsCoWC999/H51Ox9SpU0vduy/E01IYKDBtUUv/ub79u1g290CTX0De5RT6tK1G81b1MFAaQDtXWrVzpVUl5iuEEOLlI0X7c8LIyIiNGzeydOlSBg4cCDzYr+7q6sqYMWOKjatVqxbDhg1jyJAhmJiY0LRpUwYPHoxKpWLHjh289dZbNG3alPbt2+tjbGxsmD59Onfv3qVTp04MGTJEvx/ex8cHrVZLu3btGDRoECYmJkydOhVjY2Pq1q2Lvb19sY93HDZsGLGxsQwYMID8/Hzc3d154403sLe3Z9KkSQQHB6NUKvniiy+ws7OjZcuW9O3bF4VCQbdu3YiKiirXORWiJEYmtcEE2rUveTuZEEII8SwodMXtZRDiOZebm0t0dDT29vao1erKToeoqKhCX45E+ZB5rRgyr+VP5rRiyLxWDJnX8lfanJZWt8hKexWyfv16QkJCHmu3srJizZo1JcZOmjSJK1euPNbu4uLCxIkTyy1HIYQQQgjx7EnRXoV4e3vj7e39VLGLFy8u32SEEEIIIUSVIc/QE0IIIYQQooqTol0IIYQQQogqTop2IYQQQgghqjgp2oUQQgghhKji5EZUIYQoB3cy8zibmEx8TgxknqNxsgmv2/XCsqFNZacmhBDiBVDlivaIiAiWL18OwPjx43FycipzbFJSEosXLyYyMhKVSoWxsTHjx4+nd+/eJcZt374dU1NT3Nzc/lLuVUlcXByLFi3i4sWLKJVKatWqxeTJk0t8PuixY8dYtGgRAL///jt16tTB1NSUBg0asGLFimLjpk2bxvjx46lfv365X4cQVU3Bzd/Qpt/HsOnrKNSmANxIy+E/F+/y4F3ATTG8r6Fe7NccPRtOk3ZDaf/myMpMWQghxAugyhXtTysvL4/Ro0fj6urK3r17USqVXLt2DR8fH+rXr4+dnV2xsWfOnMHR0fEZZluxkpOTGTlyJBMmTOCrr74C4OzZs3z00UeEhoZSp06dIuO6d+9O9+7dAfDy8irzl6aIiAg+/PDD8rsAIaqozN1LyLtwAACFqTlmXgtR1q5PxKWk/xXsD+TXtsHctDVNtbdITfoBrXYYBgbKyklaCCHEC6FKF+1BQUHMnz+ftLQ0/Pz8cHFxKbbvvn37UKvVjB8/Xt/WrFkzZs6ciUajKTbuxIkTHDp0iFOnTmFpaUnLli2ZMWMGd+7cQaFQMGnSJLp06UJAQAC3bt0iNjaWpKQkPvjgA06ePMn58+exs7NjyZIlREZG8vXXX6NSqYiPj6dNmzbMnTsXIyOjIs+dn5/P9OnTuXz5MgAjR45k6NCh+Pr64ujoyKBBgwCwtbUlJiZGn8PVq1dJTk5m2LBhjBkz5rFxt23bhoODA2+//ba+7fXXX8fX15fs7OySJ/0JrV69msTERN577z02b97M4MGDadOmDb/++itbtmxh48aNnDx5ktTUVKysrFiyZAl16tShW7duuLq6EhUVhVKpZOnSpTRs2JAvvviC48ePY2BgQJ8+fXj//ffp2bOn/stGSkoKbm5uHD58GENDw3K9FiFKorn7u75gB9BlpRK5dSNLU9x5004B9WsU6m9AAQDmtdRkp96gmkWzZ5qvEEKIF0uVvhHVzMyMkJAQ/P39S9yeAXD+/Hk6duz4WHuPHj1o1apVsXFdunTBxcWFCRMm0L17d+bOncvgwYMJDg5m5cqVzJgxg4yMDAAuXbrEpk2bmD17NtOmTWPs2LHs3r2bX375hZiYGODBirafnx979+4lNzeXzZs3F3vus2fPkpqaSmhoKN988w2nT58udU6io6NZt24dwcHBbNu2jYsXLz7W59y5c0XOhZubGw0bNiz1HE/ivffew8rKitWrV2NhYQGAs7Mz+/btIyMjg2vXrhEYGMi+fft45ZVX2LlzJwB3796lc+fOhIaG0rFjRzZv3szNmzc5evQoO3fuZOvWrVy5cgWNRsNbb73F3r17Adi/fz9vvPGGFOzimdPlZjzWlno/mbRMDc2v3ENV8Mda+ysFMdTUJuo/q4xMn0mOQgghXlxVumjv06cPADY2NiQnJz9R7KJFixgwYACurq7MmTOnzHEnTpxg2bJlDBgwgLFjx1JQUEBcXBwAXbt2RaVSUa9ePSwtLbGxsUGlUmFtbU1qaioAHTt2pFmzZigUCgYMGMCpU6eKPVeLFi24fv06Pj4+7N27l6lTp5aan5ubG9WqVcPMzAwXF5dix1coFPpfT506lQEDBvDGG2+wdu3aMs/F02rbti0AjRs35pNPPuG7775j/vz5nDt3jqysLH2/h1txWrRoQWpqKtbW1qjVaoYPH87GjRuZPHkyarUaDw8PwsPDAdi9ezceHh4Vfg1C/Jmyvh0Glo31n7UoOJz/4Mvx7bv3cD8WBxeOo7qwi/aZwfp+Naw7oq5W95nnK4QQ4sVSpbfHKJUP9oA+WoAWx97ensDAQP3nyZMnM3nyZIKDg4mMjCzzObVaLRs2bKBmzZoAJCYmUrt2bQ4cOFBodVelKnrqHuYMoNPpCn3+MwsLC8LDwzl+/DhHjhzB09OT8PBwFAoFOp0OeLCFprjxtVotSqUSPz8/oqOjAZgzZw6tW7fmzJkz/O1vfwNgwYIFAAQEBBQqmiuKWq0GHvxUYNKkSXh7e+Pq6oqBgYH+uh7t9/B6VSoV3333HZGRkRw9epThw4ezadMm2rRpQ2pqKhcuXCAhIYHXX3+9wq9BiD9TKAww+9vn5J7ejTbjPjsS7LhwyRqAbapGmN85T256LNkKLTtv1aBe7XwKtMZ80MenkjMXQgjxIqjSK+1Pol+/fmRnZ7Ny5Up9oZuenk5ERAQGBiVfplKp1O9779SpE1u2bAHgypUruLu7P9E+8KioKBISEtBqtYSGhuLs7Fxs34MHDzJlyhR69uyJv78/pqam3L59m5o1a3LlyhUADhw4UCjmwIED5OXlkZqayuHDh+nWrRtz584lLCyMsLAwWrduzYgRI4iKiiI4OFhfJN+7d49z586VOhdP49H5e9RPP/2Eo6MjI0aMoEmTJvz4448l3l/wyy+/8M4779CxY0c++eQTmjdvzvXr1wFwd3fn008/pX///uWevxBlZWBqjonz36jWbwJug3vRplk1AGrVqU6Dj4fTsc2DrXi5+QZcv6OmiW23ykxXCCHEC6RKr7Q/CSMjIzZu3MjSpUsZOHAgABqNBldX1yJv1nxUly5d+PLLLzEzM8Pf358ZM2bg7u4OPFilrl69epnzsLKyYurUqSQkJNC1a9dCN4P+mbOzM/v376d///76bSC2traMGDGCjz/+GHd3dzp16oSlpaU+Rq1WM3LkSDIyMhg3bhw2No8/A7pWrVoEBgayePFi1q5di0ajwdDQEA8PD0aNGlXmaymrnj178t577/Hvf/+7UHu/fv0YP368fi7t7e2Jj48vdpzXXnuNdu3a4ebmhomJCQ4ODvovPR4eHnz11VcsWbKk3PMX4mnUqmHIF2NtyMnTojZUoFAosG8yjPotWvD777/TuHFj+amQEEKIcqPQPbpfQfwlD58xv2nTpgoZPyAgAICPPvqoQsZ/0eTm5hIdHY29vb1+K05lioqKKvE5+eLpyLxWDJnX8idzWjFkXiuGzGv5K21OS6tbnquV9vXr1xMSEvJYu5WVFWvWrCkxdtKkSfotJ49ycXFh4sSJ5Zbjn+Xk5DBs2LAij02YMKHUFz9VBC8vL9LS0h5rHz58OCNGjHisvSpegxBCCCHEy+S5Ktq9vb3x9vZ+qtjFixeXbzJFcHJyeuxlRMbGxoSFhZXL+OW1wv6kPwkoz2sQQgghhBBP7oW5EVUIIYQQQogXlRTtQgghhBBCVHFStAshhBBCCFHFSdEuhBBCCCFEFSdFuxBCCCGEEFWcFO1CCCGEEEJUcS9d0R4REYGXlxdeXl5EREQ8UWxSUhJ+fn688cYb9O3bF09PTw4ePFhq3Pbt29m9e/fTplzl+Pr6EhwcXOb+Fy5cYOHCheVy7uDgYHx9fctlLCGe1J2kXJLS8is7DSGEEC+h5+o57ZUpLy+P0aNH4+rqyt69e1EqlVy7dg0fHx/q16+PnZ1dsbFnzpzB0dHxGWZbtVy5coX79+9XdhpCPLW8fC1zNsfyU0w6Bgro18GcUc1SwFBJkuEdtEfDuRJ/B9UrLWjSawT1GjevEm/hFUII8eJ4qYv2oKAg5s+fT1paGn5+fri4uBTbd9++fajVasaPH69va9asGTNnzkSj0RQbd+LECQ4dOsSpU6ewtLSkZcuWzJgxgzt37qBQKJg0aRJdunQhICCAW7duERsbS1JSEh988AEnT57k/Pnz2NnZsWTJEiIjI/n6669RqVTEx8fTpk0b5s6di5GRUZHnzs/PZ/r06Vy+fBmAkSNHMnToUHx9fXF0dGTQoEEA2NraEhMTo8/h6tWrJCcnM2zYMMaMGVPm+bx06RKzZ88mKyuLpKQk3nvvPfr378+yZcvIyspi5cqVvPfeeyxYsIDIyEg0Gg2DBg3C29ubiIgIFi5ciFarpUWLFvzf//0f06dPJz09ncTERDw9PSv0zbVClGR/VBI/xaQDoNbkYHXxONtybTDOzsT8ZhQJCQkk5dwlPdMKzY3/oFKqcHNzw9Hp5f2yLoQQony91EW7mZkZISEhHD58mOXLl5dYtJ8/f56OHTs+1t6jR48Sz9GlSxdcXFxwdHSke/fu/POf/2Tw4MH07t2bxMRERo4cSWhoKPCg6N22bRtnzpxh9OjR7Nq1iyZNmtCvXz9iYmIAOHv2LKGhoTRt2pSJEyeyefNm3n333SLPffbsWVJTUwkNDSUhIYHFixczdOjQEvONjo4mMDAQrVbLoEGD6Ny5M61atSox5qHvvvuOf/zjH3Tu3Jm4uDg8PDwYMWIEEyZMIDIykg8++ICtW7cCEBISQl5eHj4+Ptjb2wMQGxvL4cOHMTMzY+3atbi5ueHp6Ul6ejo9evTAy8urTHkIUd5u38/T/7qDRQK/9XDXfzZp2g73o3EczjlFiiIFgAJNATt37qJ1m9bk3D/N3evfg05DrUa9qdPE9VmnL4QQ4gXwUhftffr0AcDGxobk5OQnil20aBHHjh0jJyeH7t274+/vX6a4EydOcO3aNZYtWwZAQUEBcXFxAHTt2hWVSkW9evWwtLTExsYGAGtra1JTUwHo2LEjzZo1A2DAgAFs37692KK9RYsWXL9+HR8fH5ydnZk6dWqp+bm5uVGtWjUAXFxcOHXqVJmLdl9fX44dO8Y333zDpUuXyMrKeqzPyZMn+fXXXzl16hQAWVlZxMTEYGNjQ9OmTTEzMwPAx8eHU6dOsXbtWi5fvkx+fj7Z2dllykOI8tbptRqEHL+LTgeKxlaFjmUbq0isZUzOHUD3R7tWpyEu5iwF9zbr2xKvhGBcvQHV65Tt/ykhhBDioZe6aFcqlQAoFIpS+9rb2xMYGKj/PHnyZCZPnkxwcDCRkZFlPqdWq2XDhg3UrFkTgMTERGrXrs2BAwcwNDTU91Opiv6teZgzgE6nK/T5zywsLAgPD+f48eMcOXIET09PwsPDUSgU6HQPqov8/MI31T06nlarRalU4ufnR3R0NABz5swp9nwff/wxNWrUoFevXvTr16/Im281Gg1TpkzhzTffBB7c3FutWjXOnTuHsbGxvt/8+fOJi4vDzc2NPn36cOLECX3OQjxrrZtWZ9qIxuw+dQ+d8ePb0UxzCmissCJRl6JvU2qNMTVKIe1PfTNTLkvRLoQQ4om9dE+PeVr9+vUjOzublStX6gvd9PR0IiIiMDAoeRqVSqV+33unTp3YsmUL8OAGTXd39ydaQY6KerB/VqvVEhoairOzc7F9Dx48yJQpU+jZsyf+/v6Ymppy+/ZtatasyZUrVwA4cOBAoZgDBw6Ql5dHamoqhw8fplu3bsydO5ewsDDCwsJo3bp1sec7fvw4EyZMoE+fPhw9ehR4UKQrlUoKCgr01799+3by8/PJzMxk5MiRnDt3rsixfHx86Nu3L9evX9dfsxCVpXvrmnwx1oYJ/V+l9iPfqV+NTaVmRj6tDBpjmWeBoaYaJvm16dCsJ7XqPX6DummNJs8uaSGEEC+Ml3ql/UkYGRmxceNGli5dysCBA4EHBamrq2upN2t26dKFL7/8EjMzM/z9/ZkxYwbu7g/2xC5YsIDq1auXOQ8rKyumTp1KQkICXbt25e233y62r7OzM/v376d///6o1Wo8PDywtbVlxIgRfPzxx7i7u9OpUycsLS31MWq1mpEjR5KRkcG4ceP0W3T+7NNPP2X27Nn6z2vWrOGjjz5i5MiRqNVq7OzsqF+/vv6G2eXLl7No0SImTpzIjRs38PT0pKCggEGDBuHk5PTY4zfHjRvH1KlTMTY2pm7dutjb2xMfH1/meRKiolQ3UvJBhwbczMhDlZqD4nYmutfqUKNDPf5ew5HYnxOoUceUxvbWGBgosG4xmLvX9zzY097QBTOrdpV9CUIIIZ5DCp3sOXhuREREsHz5cjZt2lQh4wcEBADw0UcfVcj4z1pubi7R0dHY29tXicfvRUVF0b59+8pO44XzPMzrw79my7IVr6p4Hub1eSNzWjFkXiuGzGv5K21OS6tbZKX9EevXryckJOSxdisrK9asWVNi7KRJk/RbTh7l4uJSoY8qzMnJYdiwYUUemzBhAr17966wcwshyuZ5KtaFEEJUTVK0P8Lb2xtvb++nil28eHH5JlMEJycnnJycCrUZGxsTFhZWLuO/KCvsQgghhBAvGrkRVQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOKkaBdCCCGEEKKKk6JdCCGEEEKIKk6KdiGEEEIIIao4eeSjEC+Z7FwNEb+mYWRoQMdXzci9kkRBag7V7OpgWNO4stMTQgghRBGei6L94ZtAAcaPH//Ys8pLkpSUxOLFi4mMjESlUmFsbMz48eNLfenQ9u3bMTU1xc3N7S/lXlUEBAQQGBhInTp1gAcvZXrrrbf45z//WeFvWi2L+Ph4Ro0axaFDhyoth5dB8uWf2RD0M/9Na0YmJvxf9Wya5eUCkHTgOvXebYtx/Rpk3P+FnLTfMa1li6l500rOWgghhBDPRdH+tPLy8hg9ejSurq7s3bsXpVLJtWvX8PHxoX79+tjZ2RUbe+bMGRwdHZ9hthVv+PDh+hcoZWVl0a9fPzp06ICRkVElZyaehczvA+DcXkYDQ6obs03jwc82zThjZkHje7m0v5ZF6smbpL3+I/euf/8g6Cq80vIdLOp3q9TchRBCiJfdc1e0BwUFMX/+fNLS0vDz88PFxaXYvvv27UOtVjN+/Hh9W7NmzZg5cyYajabYuBMnTnDo0CFOnTqFpaUlLVu2ZMaMGdy5cweFQsGkSZPo0qULAQEB3Lp1i9jYWJKSkvjggw84efIk58+fx87OjiVLlhAZGcnXX3+NSqUiPj6eNm3aMHfu3GIL5fz8fKZPn87ly5cBGDlyJEOHDsXX1xdHR0cGDRoEgK2tLTExMfocrl69SnJyMsOGDWPMmDGlzqOpqSlt2rTh8uXLtGrVSt8eGRnJkiVLyMnJIS0tjWnTptGnTx98fX2pXr06Fy9eJCEhgQ8//JDBgwcXO35wcDA//vgj9+/f5+7du/Tq1QtfX18UCgWrVq1i586dKJVKunbtypQpUwrFXrp0idmzZ5OVlUVSUhLvvfceI0aMICAggHPnznH79m3eeecdRo4cWep1igc0ybfJO7cXAK1Wwdk7tqT3fQ1lrboAXLYADO7TQ5NPyo0DhWLvx+6Tol0IIYSoZM9d0W5mZkZISAiHDx9m+fLlJRbt58+fp2PHjo+19+jRo8RzdOnSBRcXFxwdHenevTv//Oc/GTx4ML179yYxMZGRI0cSGhoKPCgwt23bxpkzZxg9ejS7du2iSZMm9OvXj5iYGADOnj1LaGgoTZs2ZeLEiWzevJl33323yHOfPXuW1NRUQkNDSUhIYPHixQwdOrTEfKOjowkMDESr1TJo0CA6d+5cqBAvys2bN/U5FxQU6Nv/85//MGfOHJo3b87JkyeZN28effr0AeDOnTts2bKFS5cuMWrUqBKLdoCoqCjCwsKoUaMGo0aN4ocffkCtVnPo0CF27NiBoaEhH330EYGBgYV+T7777jv+8Y9/0LlzZ+Li4vDw8GDEiBHAg5+efP/99yWeVzxOl5el/3V2qjFXq9fRF+wP/W5tQrruJqArHPssEhRCCCFEiZ67ov1hAWljY0NycvITxS5atIhjx46Rk5ND9+7d8ff3L1PciRMnuHbtGsuWLQOgoKCAuLg4ALp27YpKpaJevXpYWlpiY2MDgLW1NampqQB07NiRZs2aATBgwAC2b99ebNHeokULrl+/jo+PD87OzkydOrXU/Nzc3KhWrRoALi4unDp1qsiiPTAwkAMHDqDValEqlbz//vu0b9+eiIgIfZ+FCxdy+PBh9u7dy/nz58nMzNQf69q1KwqFgldffZWUlJRS8+rdu7d+D32/fv04deoUarWa/v37Y2JiAsDgwYMJDQ0tVLT7+vpy7NgxvvnmGy5dukRW1h8FZ5s2bUo9r3icyro5ynq2aG7FoMk3oHp+Bml52SiMTPR9ClLjuKO7gu3rvbkfu1ffXqfxG5WRshBCCCEe8dwV7UqlEgCFQlFqX3t7ewIDA/WfJ0+ezOTJkwkODiYyMrLM59RqtWzYsIGaNWsCkJiYSO3atTlw4ACGhob6fipV0dP5MGcAnU5X6POfWVhYEB4ezvHjxzly5Aienp6Eh4ejUCjQ6R6seebn5xc7/sOC3M/Pj+joaADmzJkDFN7TXpyRI0fi5OSEk5MTnTt3ZvLkyfpjarUaKNvcF5eXVqt9rN+jK/0AH3/8MTVq1KBXr17069eP3bt3648ZG8vTTZ6W2fDZ5J4JR3flGu1/vMKtc/9F59ADhcoIXWYqqpNraTh6ItY2nTCt2ZyctN+pVssW05o2lZ26EEII8dJ7oZ/T3q9fP7Kzs1m5cqW+0E1PTyciIgIDg5IvXalU6ve9d+rUiS1btgBw5coV3N3dyc7OLnMeUVFRJCQkoNVqCQ0NxdnZudi+Bw8eZMqUKfTs2RN/f39MTU25ffs2NWvW5MqVKwAcOFB4z/GBAwfIy8sjNTWVw4cP061bN+bOnUtYWBhhYWG0bt26THmmpKQQGxvLxIkTcXZ25uDBgyXu/S/NsWPHSE9PJzc3l/DwcJydnenUqRPh4eHk5ORQUFDAjh076NSpU6G448ePM2HCBPr06cPRo0cB/lIe4gGFcTWMuwyl1ihfWnw8gdG6NFoe/hazfV9i+f0MevVxp2mbB78XZnVaY9msvxTsQgghRBXx3K20PwkjIyM2btzI0qVLGThwIPCg+HN1dS31Zs0uXbrw5ZdfYmZmhr+/PzNmzMDd3R2ABQsWUL169TLnYWVlxdSpU0lISKBr1668/fbbxfZ1dnZm//799O/fH7VajYeHB7a2towYMYKPP/4Yd3d3OnXqhKWlpT5GrVYzcuRIMjIyGDdunH6LzpOqWbMmQ4YMoX///qhUKjp16kROTk6h7SlPolatWowdO5bk5GQ8PDzo3r07AL/++iuDBw+moKCAbt268c4773Dnzh193EcffcTIkSNRq9XY2dlRv3594uPjnyoHUbTqbdpQvU0bGld2IkIIIYQoE4Xu4Z4LUSEq+hnoAQEBAKVue3nWHm5Bmj9/fqXlkJubS3R0NPb29vqtPZUpKiqK9u3bV3YaLxyZ14oh81r+ZE4rhsxrxZB5LX+lzWlpdctzv9K+fv16QkJCHmu3srJizZo1JcZOmjRJv+XkUS4uLkycOLHccvyznJwchg0bVuSxCRMmlPrip6ri+++/55tvviny2OjRo59xNkIIIYQQL67nvmj39vbG29v7qWIXL15cvskU4eFNnY8yNjYmLCysXMavzBX2fv360a9fv2KPP3ymvBBCCCGE+Gte6BtRhRBCCCGEeBFI0S6EEEIIIUQVJ0W7EEIIIYQQVZwU7UIIIYQQQlRxUrQLIYQQQghRxT33T48RQogXQW5CBpkX76GqoaZ6WysMDJWVnZIQQogqpEoV7Q9fRAQwfvz4xx6VWJKkpCQWL15MZGQkKpUKY2Njxo8fX+ozz7dv346pqSlubm5/KfeqIiAggMDAQOrUqQM8eCb8W2+9xT//+c8KedFTXFwcK1euZN68eeU2phAvugKNjl9uZGKpzsJSkUxedh1u/+ciaB+86+7uuRtca5zO2bNnqV69Oq6urjRv3rySsxZCCFGZqlTR/rTy8vIYPXo0rq6u7N27F6VSybVr1/Dx8aF+/frY2dkVG3vmzBkcHR2fYbYVb/jw4frnt2dlZdGvXz86dOiAkZFRuZ/r1q1bxMXFlfu4Qryo7iTl8smaq7TJPMYodTjpCg0ZurdB21Tf59fYy5y49isAKSkpbNq0iU8++QQTE5PKSlsIIUQlq7JFe1BQEPPnzyctLQ0/Pz9cXFyK7btv3z7UajXjx4/XtzVr1oyZM2ei0WiKjTtx4gSHDh3i1KlTWFpa0rJlS2bMmMGdO3dQKBRMmjSJLl26EBAQwK1bt4iNjSUpKYkPPviAkydPcv78eezs7FiyZAmRkZF8/fXXqFQq4uPjadOmDXPnzi22UM7Pz2f69OlcvnwZgJEjRzJ06FB8fX1xdHTUv5jI1taWmJgYfQ5Xr14lOTmZYcOGMWbMmFLn0dTUlDZt2nD58mVatWqlb4+MjGTJkiXk5OSQlpbGtGnT6NOnD76+vlSvXp2LFy+SkJDAhx9+yODBg4sdf86cOcTHxzNr1iw+/fRTVq9ezZ49e9BoNHTr1o0pU6Zw8+ZNPvzwQ5o1a8aVK1d47bXXeP311wkJCSE1NZUVK1bQvHlzXFxceOuttzhx4gQA8+bN47XXXuP69evMmDGDlJQUTE1N8fPzo02bNqVeuxBV0bYfE9Epc6n3eh2OF7xN2/iDKNOyC/W5pbuP2lCLiVpLSoaSvLw84uLiePXVVyspayGEEJWtyt6IamZmRkhICP7+/qxYsaLEvufPn6djx46Ptffo0aNQofpnXbp0wcXFhQkTJtC9e3fmzp3L4MGDCQ4OZuXKlcyYMYOMjAwALl26xKZNm5g9ezbTpk1j7Nix7N69m19++YWYmBgAzp49i5+fH3v37iU3N5fNmzcXe+6zZ8+SmppKaGgo33zzDadPny51TqKjo1m3bh3BwcFs27aNixcvlhpz8+ZNzpw5Q9u2bQu1/+c//2HOnDmEhIQwZ84cvvrqK/2xO3fusGXLFlauXMmCBQtKHN/f3x97e3s+/fRTjh49SnR0NEFBQYSGhpKQkMDOnTsBiImJYezYsYSFhXHmzBlu3rzJtm3bcHNzY9u2bfrxTE1NCQ0NZcKECXzyyScATJkyBS8vL3bt2sW0adOYOHEieXl5pV67EFVRUl4BNp1rc6WuIz836MkOhykUaH9Fpy3Q92n4SiKDuqbg5piGu1Mq1U10WFtbV2LWQgghKluVXWnv06cPADY2NiQnJz9R7KJFizh27Bg5OTl0794df3//MsWdOHGCa9eusWzZMgAKCgr0Wz+6du2KSqWiXr16WFpaYmNjA4C1tTWpqakAdOzYkWbNmgEwYMAAtm/fzrvvvlvkuVq0aMH169fx8fHB2dmZqVOnlpqfm5sb1apVA8DFxYVTp04V+aUkMDCQAwcOoNVqUSqVvP/++7Rv356IiAh9n4ULF3L48GH27t3L+fPnyczM1B/r2rUrCoWCV199lZSUlFLzeujkyZNcuHBB/1OCnJwc6tWrR/v27alTpw6vvfYaAHXr1qVz584A1KtXj/j4eP0YQ4cO1V+fr68vd+7c4ffff+fNN98EoF27dpibm3Pt2rUStz0JUVU1bGbCbU2+/nO2UQ1uW9bhdvQRDIyyyFem8VoXUBo8WFMxr6bFrUcdzM3NKytlIYQQVUCVLdqVygdPTlAoFKX2tbe3JzAwUP958uTJTJ48meDgYCIjI8t8Tq1Wy4YNG6hZsyYAiYmJ1K5dmwMHDmBoaKjvp1IVPW0PcwbQ6XSFPv+ZhYUF4eHhHD9+nCNHjuDp6Ul4eDgKhQKd7sHNaPn5+YViHh3vYUHu5+dHdHQ08GCrChTe016ckSNH4uTkhJOTE507d2by5Mn6Y2q1Gijb3D9Ko9EwevRo/ReVtLQ0lEolycnJj20TKm5uHp1brVZb5PYmnU5X4rYnIaoy23om3I4r/P+2ZYcuXI85SkJGBGY1jVEqC990WsP0WWYohBCiKqqy22OeRL9+/cjOzmblypX6Qjc9PZ2IiAgMDEq+RKVSqS8AO3XqxJYtWwC4cuUK7u7uZGdnlxReSFRUFAkJCWi1WkJDQ3F2di6278GDB5kyZQo9e/bE398fU1NTbt++Tc2aNbly5QoABw4cKBRz4MAB8vLySE1N5fDhw3Tr1o25c+cSFhZGWFgYrVu3LlOeKSkpxMbGMnHiRJydnTl48OBTF8FKpZKCggc/1u/UqRNhYWFkZmZSUFDAhx9+yL59+55ovPDwcAB++OEHmjdvTv369WnQoAH79+8H4Ny5c9y7d48WLVo8Vb5CVLb21tWpY/LHl9OWtUxo4dQb5/fHolDUJD0lh8y03EIxNawcnnWaQgghqpgqu9L+JIyMjNi4cSNLly5l4MCBwINVX1dX11Jv1uzSpQtffvklZmZm+Pv7M2PGDNzd3QFYsGAB1atXL3MeVlZWTJ06lYSEBLp27crbb79dbF9nZ2f2799P//79UavVeHh4YGtry4gRI/j4449xd3enU6dOWFpa6mPUajUjR44kIyODcePG6bfoPKmaNWsyZMgQ+vfvj0qlolOnTuTk5JCVlfXEYzVv3pz09HSmTJnCwoUL+e233xg6dCgajYbu3bvj6enJzZs3yzzemTNnCAoKwsTEhPnz5wMPtvLMnDmTgIAADA0NCQgIqJAn4QjxLJgaKhnXti6/p+WiVhrwSvUHf5YbtWrI21O/5tTOIG7fzOG1+jVQKXOoYeWARcOelZu0EEKISqfQPdyLIf6SingG+qMCAgIASt328jxzcXFh48aNNGjQoFzGy83NJTo6Gnt7e/2Wn8oUFRVF+/btKzuNF47Ma8WQeS1/MqcVQ+a1Ysi8lr/S5rS0uuW5WWlfv349ISEhj7VbWVmxZs2aEmMnTZqk33LyKBcXFyZOnFhuOf5ZTk4Ow4YNK/LYhAkTSn3xU1Xx/fff88033xR5LCws7BlnI4QQQgjx8nluinZvb2+8vb2fKnbx4sXlm0wRHt7U+ShjY+NyK2orc4W9X79+9OvXr8LPc+jQoQo/hxBCCCHE8+iFuBFVCCGEEEKIF5kU7UIIIYQQQlRxUrQLIYQQQghRxUnRLoQQQgghRBUnRbsQQgghhBBVnBTtQgjxAsvTaLmblY9WXskhhBDPNSnaK0BERAReXl54eXkRERHxRLFJSUn4+fnxxhtv0LdvXzw9PTl48GCpcdu3b2f37t1Pm3KFi4+Px8XFpcQ+W7duZevWrSX2OXLkCN27d2fSpEnlmZ4QL5yCggJ+jkvmy1PxrDp/h2XHbnDrdjo6rYa0hDPcjP6Wu9d2oynIruxUhRBClMFz85z2l0FeXh6jR4/G1dWVvXv3olQquXbtGj4+PtSvXx87O7tiY8+cOYOjo+MzzLb8jRgxotQ+e/fuZfz48cW+tEoIAT/88AP/PX4cZc+RKNQmAKQbKtl7+jquCfNIbVJT3zcz6TeadJhcSZkKIYQoKynaK1hQUBDz588nLS0NPz+/Eleb9+3bh1qtZvz48fq2Zs2aMXPmTDQaTbFxJ06c4NChQ5w6dQpLS0tatmzJjBkzuHPnDgqFgkmTJtGlSxcCAgK4desWsbGxJCUl8cEHH3Dy5EnOnz+PnZ0dS5YsITIykq+//hqVSkV8fDxt2rRh7ty5GBkZsWPHDtatW4dCoaBVq1b861//olq1anTq1Al7e3vu3r1LUFAQs2bN4vLly9y7dw9bW1u+/PLLMs1VQEAA8OBFUt26dcPV1ZWoqCiUSiVLly7l1KlTHDx4kJMnT2JgYMDbb79dxt8FIV4eV65c4fDhw2Bkgup/BftDqSbVSaxhzKMvx85KuUJeViJGplbPNlEhhBBPRLbHVDAzMzNCQkLw9/dnxYoVJfY9f/48HTt2fKy9R48etGrVqti4Ll264OLiwoQJE+jevTtz585l8ODBBAcHs3LlSmbMmEFGRgYAly5dYtOmTcyePZtp06YxduxYdu/ezS+//EJMTAwAZ8+exc/Pj71795Kbm8vmzZuJiYlh1apVbNq0iV27dmFiYsLy5csBSE5OZuzYsYSFhXHu3DkMDQ3Ztm0bP/zwA+np6Rw5cuSJ5+3u3bt07tyZ0NBQOnbsyObNm3n77bf11ykFuxBFu3Xr1oNf5GWjSbpT6Jj1nfukZOUVDlAoMVCZPqPshBBCPC1Zaa9gffr0AcDGxobk5OQnil20aBHHjh0jJyeH7t274+/vX6a4EydOcO3aNZYtWwY82NsaFxcHQNeuXVGpVNSrVw9LS0tsbGwAsLa2JjU1FYCOHTvSrFkzAAYMGMD27dsxNDSkV69eWFhYADBs2DCmTZumP2fbtm31sTVr1mTz5s1cu3aN2NhYsrKynui6H+revTsALVq04PTp0081hhAvm8Z16+p/nXd6H4Z2jljUaETdu7lkRKzjivFdallVw9BICUC1Op1RGVWvrHSFEEKUkRTtFUypfPAPo0KhKLWvvb09gYGB+s+TJ09m8uTJBAcHExkZWeZzarVaNmzYQM2aNQFITEykdu3aHDhwAENDQ30/laro3/6HOQPodDqUSiVarbZQH51OR0FBgf6zsbExAAcPHmTZsmWMGjWKQYMGkZycjO4pn1qhVj/4Ib5CoXjqMYR42VibmNAlOZno6tXJ1uRTLSIOk/x8koC8fB2a7Bx+DL1ELetq5Ocr8fpMfmolhBDPA9keU4X069eP7OxsVq5cSX5+PgDp6elERERgYFDyb5VSqdTve+/UqRNbtmwBHuxvdXd3Jzu77E+IiIqKIiEhAa1WS2hoKM7Ozjg6OnLo0CFSUlKAB0+rcXJyeiz25MmT9O3bl8GDB1OjRg0iIiJK3I8vhChf6gYNaGlhwYC7d+l9Px+zPCse/h+YbT2ALFMbCgq0ZKQb4jxsKoZG6hLHE0IIUTXISnsVYmRkxMaNG1m6dCkDBw4EQKPR4OrqypgxY0qM7dKlC19++SVmZmb4+/szY8YM3N3dAViwYAHVq5f9x99WVlZMnTqVhIQEunbtyttvv41SqWTcuHF4eXmRn59Pq1atmDVr1mOxb7/9NpMnTyY8PBxDQ0McHByIj48v+yQIIf4ShUJBo0mTSAwLJf/mFZo1jkVt1YXmTRrT0K4O8BbZGamoTaphoJR/AoQQ4nmh0Mm+A/GIiIgIli9fzqZNmyo7lb8sNzeX6Oho7O3t9VttKlNUVBTt27ev7DReODKvFUPmtfzJnFYMmdeKIfNa/kqb09LqFllmecbWr19PSEjIY+1WVlasWbOmxNhJkyZx5cqVx9pdXFyYOHFiueVYkf7K9QshhBBCvKykaH/GvL298fb2fqrYxYsXl28yRXBycipyr3p5+SvXL4QQQgjxspIbUYUQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOKkaBdCCCGEEKKKk6JdCCFEIQV3rmKa8Au63Cx9W2p+KhpdQSVmJYQQL7eXvmiPiIjAy8sLLy8vIiIinig2KSkJPz8/3njjDfr27YunpycHDx4sNW779u3s3r37aVOucPHx8bi4uPzlcX7++Wf8/PyeaHxbW1sAAgICCAgI+Ms5CPEyy8rVsGDbDQZ9+jMfBVzi198zS4/Z/w3p306g7rlAUr/+O3dvneeLHybx+dYx/Ou/E/k55fwzyFwIIcSfycuVnlJeXh6jR4/G1dWVvXv3olQquXbtGj4+PtSvXx87O7tiY8+cOYOjo+MzzLZytG7dmtatW1d2GkK8tDbuv8PhcykAXLmVzZz/xLLhk9dQKRVF9tekJpJ7ehcAd6o3J6KpGzd/zkV7uTm1zv+MwdEEtg1Yhl3/VWgyE0ChwLh6/Wd1OUII8VKTov0RQUFBzJ8/n7S0NPz8/Epcbd63bx9qtZrx48fr25o1a8bMmTPRaDTFxp04cYJDhw5x6tQpLC0tadmyJTNmzODOnTsoFAomTZpEly5dCAgI4NatW8TGxpKUlMQHH3zAyZMnOX/+PHZ2dixZsoTIyEi+/vprVCoV8fHxtGnThrlz52JkZMSOHTtYt24dCoWCVq1a8a9//Ytq1arRqVMn7O3tuXv3LkFBQcyaNYvLly9z7949bG1t+fLLL8s0V2XNb/ny5WzatIlffvlFv+r+6Bea+Ph4pkyZQlZWFm3bti3yXEePHmXZsmUUFBTQoEEDZs+ejYWFRZnyFOJlFh1beGU9Kb2AW/dzaWRlXGR/XU4GoCNV15Odbd8mz0j54EB7d9INqlHtwneY/BTPjVe+Ii/lCgDVa7eiYdt/oDBQVuSlCCHES++l3x7zKDMzM0JCQvD392fFihUl9j1//jwdO3Z8rL1Hjx60atWq2LguXbrg4uLChAkT6N69O3PnzmXw4MEEBwezcuVKZsyYQUZGBgCXLl1i06ZNzJ49m2nTpjF27Fh2797NL7/8QkxMDABnz57Fz8+PvXv3kpuby+bNm4mJiWHVqlVs2rSJXbt2YWJiwvLlywFITk5m7NixhIWFce7cOQwNDdm2bRs//PAD6enpHDlypMzzVZb8Hvrkk0+YPHkyISEhNGjQQN8+e/ZsBg0aRFhYGA4ODo+dIykpicWLF7N27VpCQ0Pp1q0bixYtKnOOQrzM7BqaFvpsXk1F3VpGxfZXWTdDW6sj8WY9/ijY/0dZtwnZpvVpUsdMX7ADZNy/SFrimfJNXAghxGNkpf0Rffr0AcDGxobk5OQnil20aBHHjh0jJyeH7t274+/vX6a4EydOcO3aNZYtWwZAQUEBcXFxAHTt2hWVSkW9evWwtLTExsYGAGtra1JTUwHo2LEjzZo1A2DAgAFs374dQ0NDevXqpV+NHjZsGNOmTdOf8+GKdseOHalZsyabN2/m2rVrxMbGkpX1x41npSlLfvCg8E5MTKRr164ADBo0iB07dgAQGRnJ4sWLAfDw8Hhs3s6fP8/t27cZNWoUAFqtFnNz8zLnKMTLbLRrXZLS84n4NY1XaquZ4NkAI1XJazUqB29qHIwHnQ4Uf2yj0WYko1AoaGnvCNprhWLyc57s70shhBBPTor2RyiVD1aWFIqi93s+yt7ensDAQP3nyZMnM3nyZIKDg4mMjCzzObVaLRs2bKBmzZoAJCYmUrt2bQ4cOIChoaG+n0pV9G/Vw5wBdDodSqUSrVZbqI9Op6Og4I+nPhgbP/jR+MGDB1m2bBmjRo1i0KBBJCcno9Ppypx7WfKDB/P56LiP5vwwv4f9DAwKFxQajQYHBwdWrVoFQG5uLpmZpd9MJ4QAMxMVM7yaotXqMDAo/e81gGp2r1B9XxwOv93nzKs1QalCc+8mBZfP0sDQllZOI7h2ag66/z1JRmFgSA2rdhV3EUIIIQDZHvPU+vXrR3Z2NitXriQ/Px+A9PR0IiIiHis8/0ypVOr3vXfq1IktW7YAcOXKFdzd3cnOzi5zHlFRUSQkJKDVagkNDcXZ2RlHR0cOHTpESkoK8OBpNU5OTo/Fnjx5kr59+zJ48GBq1KhBREREifvxn5aFhQX16tXjxx9/BCj05JwuXbqwc+dOAPbv309ubm6h2LZt23Lu3DmuX78OwNdff82CBQvKPUchXmRlLdgBVDXUvPKOPc0zMnE/Ho/1nhMY/3gO6/RWuA4fjrpaXRq3/5gaVg7UsO5AY4d/YmRqVYHZCyGEAFlpf2pGRkZs3LiRpUuXMnDgQODBqrCrqytjxowpMbZLly58+eWXmJmZ4e/vz4wZM3B3dwdgwYIFVK9evcx5WFlZMXXqVBISEujatStvv/02SqWScePG4eXlRX5+Pq1atWLWrFmPxb799ttMnjyZ8PBwDA0NcXBwID4+vuyT8AQWLlzItGnTWLp0Ke3atdO3z5gxgylTprBt2zbs7e2pVq1aoThLS0vmzZvHxx9/jFarxdramoULF1ZIjkKIB0yaWpDZ1QQHBwdqXkwk+U4GDe0sqdOgBgCmNW0wrWlTyVkKIcTLRaF7kv0QokqJiIjQP51FPC43N5fo6Gjs7e1Rq9WVnQ5RUVG0b9++stN44ci8VgyZ1/Inc1oxZF4rhsxr+SttTkurW2SlvQTr168nJCTksXYrKyvWrFlTYuykSZO4cuXKY+0uLi5MnDix3HKsSH/l+oUQQgghRPmRor0E3t7eeHt7P1XswyeiVCQnJ6ci96qXl79y/UIIIYQQovzIjahCCCGEEEJUcVK0CyGEEEIIUcVJ0S6EEEIIIUQVJ0W7EEIIIYQQVZwU7UIIIYQQQlRxUrQLIYQQQghRxUnRLoR4KhqtjouxmcTfzdG35WXd5W7sQVITo5H3tgkhhBDl56V8TvvDN4kCjB8/vszPOg8ICADgo48+KlP/uLg4Vq5cybx580rsZ2tri52dXaG2zz77jF9++QWAESNGlOl8T+rw4cPExsby7rvvPnbM19cXR0dHBg0apG970usHGDBgAGFhYX892f/Zvn07pqamuLm5lduYouw0d38n58Q28tKS2XrHnp+S7MhAgbOjJd7dU/n97HIUCh1aDLiXWRdtRg1eaW6PnVNvFApFZacvhBBCPLdeyqL9Wbl16xZxcXFl6ltUYdu2bdvyTqmQ6OjoCh0fir6uv+LMmTM4OjqW65iibHR5OaRv9kWXlYpWZ0K//La4GqWj0cGP0QlcKgjHxELHVVV7Lhr1JN/UCGVWFEb/nsvduMs4v/1BZV+CEEII8dx66Yv2oKAg5s+fT1paGn5+fri4uDzxGAkJCUyfPp309HQSExPx9PRk4sSJzJkzh/j4eGbNmsWnn376xOM+XNl+//33mT59OpcvXwZg5MiRDB069LH+e/bsYd26deTk5JCXl8e8efNwcHDAy8uL1q1bExUVRVJSEv7+/tSvX5/AwEAA6tWrx+DBg58ot3PnzjF37lxyc3OxsLDgs88+o3Hjxnh5eWFubs7ly5dZunQpAwcOJCYmhqlTpxITEwNAUlIS5ubm7N69m8OHD7N06VK0Wi0NGzbks88+o06dOri4uODh4cF///tfsrOz+eKLL0hLS+PQoUOcOnUKS0tLunfv/sRzKp5ewe8/o8tKBSBH44hGVxcApQJcCoy5pwONoibnjFzhf6vqmiYdKWj1JucOhUjRLoQQQvwFL33RbmZmRkhICIcPH2b58uVPVbTv3r0bNzc3PD09SU9Pp0ePHnh5eeHv78/y5cvLVLAPGDBA/2snJyemT5+u/3z27FlSU1MJDQ0lISGBxYsXP1a0a7VaAgMDWbVqFbVq1SIoKIjVq1ezatUqAPLz89m2bRuHDh3iq6++Ijg4mOHDhwMUW7AvW7aMDRs26D/fu3eP4cOHk5eXx//93/+xdOlS2rRpw549e/i///s/duzYATzY7vNw+9FDCxYsACAlJYURI0Ywa9Ys7t+/z4wZM9i6dSsNGjTg3//+N5999hnLli0DoGbNmgQFBbFp0ya++eYbAgICcHFxwdHRUQr2SmBgbq3/tUZXs9AxBQpSrltjUKeavmB/SFu7MYZq42eRohBCCPHCeumL9j59+gBgY2NDcnLyU43h4+PDqVOnWLt2LZcvXyY/P5/s7OwnGqOkbSQtWrTg+vXr+Pj44OzszNSpUx/rY2BgwIoVKzh06BDXr18nMjISA4M/7jN+WOS2aNGClJSUMuU0YcKEIve0x8bGUqNGDdq0aQNA3759mTFjBunp6QD69j8rKChg4sSJjBo1ivbt23P48GHatGlDgwYNABg2bBirV68uMuf9+/eXKWdRcZSWjVB3GkxuRAhGBpfI19rqj+UaZGN8uYDftGoUzgXoDP74q0V5M5ouA/5eGSkLIYQQL4yXvmhXKpUAf+kmufnz5xMXF4ebmxt9+vThxIkT5frkDAsLC8LDwzl+/DhHjhzB09OT8PBwvLy89H22bNnCkCFD8PDwoGPHjtja2rJ582b9cbVaDRR/nWPHjiUxMRGgUOFcFK1W+1ibTqdDo9EAYGxc9KrqvHnzaNiwof7G2j+Po9PpKCgoKHPO4tkzdfk7xh080GanYRJvzJWI89xRJhLx6gUaXUrG+rfa5B25QVa7eihrGNJEl0iPd3ywati8slMXQgghnmsvfdFeHo4fP86sWbNwcHDgxx9/JCEhAa1Wi1KpLFSEPq2DBw+yc+dOli5dSvfu3Tl58iS3b98utDp/8eJFFAoF77//PjqdjqlTp+qL6OIolUpyc3MBWLNmTZnzadasGSkpKVy4cIE2bdrw/fffU69ePWrWrFlszPbt2/nll1/YuHGjvq1t27Z8+umnxMfH06BBA7Zt21bqk3yUSmWp1yUqlkGNOhjUqIO5Ndi3q83NO99TJ7M+9e160WesKyqF6pEvWk0rNVchhBDiRSFF+xP65ptv+Pbbb/WfZ82axbhx45g6dSrGxsbUrVsXe3t74uPjadmyJenp6UyZMoWFCxc+9TmdnZ3Zv38//fv3R61W4+Hhga2tbaE+dnZ2tGzZkr59+6JQKOjWrRtRUVEljtuxY0c++eQT6tSpU2jVvjRGRkYsWbKE2bNnk52djbm5OUuWLCkx5rPPPqNhw4YMGzZMv8K+bds2PvvsM8aPH09+fj716tVj7ty5JY7TpUsXvvzyS8zMzHjrrbfKnLOoGGqlGo/6npWdhhBCCPHCU+jkDSjiBZWbm0t0dDT29vb6rTaVKSoqivbt21d2Gi8cmdeKIfNa/mROK4bMa8WQeS1/pc1paXWLrLT/yfr16wkJCXms3crK6om2kDzq999/L/aFRHPmzKF169ZPNa4QQgghhHg5SNH+J97e3nh7e5frmI0aNSr3lwwJIYQQQoiXh0HpXYQQQgghhBCVSYp2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQjx0tHqdGi08rRbIYQQzw95eowQ4qVw4VoGl+KzUNY24FJGDloddKhbnT6NzR95g6sQQghRNclK+/9ERETg5eWFl5cXERERZY4LCAggICCgzP3j4uKYPn16qf1sbW0ZMGBAof/Onz/P1q1b2bp1a5nP96QOHz7MunXrHms/ceJEkW8gXb58OZ9//nmZx3/0zasDBgx4qhxdXFyIj49/qljxctp6KIFv15whNmIP0WnZ5Gl1FOh0nLqdzm9J2ZWdnhBCCFEqWWl/xm7dukVcXFyZ+hb1bPe2bduWd0qFREdHF9neuXNn8vLy9G/qemjnzp0sX768zONHRkbqfy3PrhcVRafJ5/65nZxJ/xmj2k04eawl9gZniKtpjdGf+sbey8L0zh3qNnsFtYlJpeQrhBBClEaK9iIEBQUxf/580tLS8PPzw8XF5YnHSEhIYPr06aSnp5OYmIinpycTJ05kzpw5xMfHM2vWLD799NMnHvfhqv7777/P9OnTuXz5MgAjR45k6NChj/Xfs2cP69atIycnh7y8PObNm4eDgwNeXl60bt2aqKgokpKS8Pf3p379+gQGBgJQr149Bg8erB9HoVAwcOBAdu/erS/az5w5g7m5Oa+++ipHjx5l2bJlFBQU0KBBA2bPno2FhQUuLi60adOGX3/9lc6dOwPw9ttv891332Fra0tMTAwpKSn4+flx7do1jIyM8PX1pXPnzvznP/8hLCyM7OxsDA0NWbx4Mc2aNXviORMvn9vhC/iqzlUyzJSQd5P+FrlE3klCe1+DTqcrtB1GG7OWTNPr/HbDiFqNh9KwVbdKzFwIIYQommyPKYKZmRkhISH4+/uzYsWKpxpj9+7duLm5sX37dnbt2sWGDRv0xbG9vX2ZCvZHt8bMmzev0LGzZ8+SmppKaGgo33zzDadPn34sXqvVEhgYyKpVq9i5cydjxoxh9erV+uP5+fls27aNadOm8dVXX2FjY8Pw4cMZPnx4oYL9oUGDBrFnzx60Wi0AoaGhDBkyhKSkJBYvXszatWsJDQ2lW7duLFq0SB/n7OzMvn37mDlzJgDfffddoXG/+uorGjVqxJ49e1iwYAFLly4lIyODAwcOsGnTJnbv3k3Pnj3ZvHlzqXMmhDY7nYjMC2Solfq2TJMMaitqoEu7T/65w2gzUtBlptL4dhhNTa8DYGiUR0r8drSavMpKXQghhCiWrLQXoU+fPgDY2NiQnJz8VGP4+Phw6tQp1q5dy+XLl8nPzyc7+8n2zpa0faRFixZcv34dHx8fnJ2dmTp16mN9DAwMWLFiBYcOHeL69etERkZiYPDH97Tu3bvrx0pJSSk1nwYNGtC4cWMiIyNxcHDgxx9/ZOrUqfz000/cvn2bUaNGAQ++LJibm+vjStvS89NPP+mLfFtbW7Zt2wbA4sWLCQ8PJzY2lmPHjtGyZctScxRCoVShUyoLtZ1ofZURv/fkqCafpPgYjOOuorp/mlffsAT+2BKjVOZRkJuCkanVM85aCCGEKJkU7UVQ/u8f/L/yRIn58+cTFxeHm5sbffr04cSJE+h05feIOQsLC8LDwzl+/DhHjhzB09OT8PDwQjd6btmyhSFDhuDh4UHHjh2xtbUttFqtVquB4q9z7NixJCYmArB69Wqsra0ZPHgwu3fvJi0tjc6dO1O9enU0Gg0ODg6sWrUKgNzcXDIzMx87T3FUKlWhHK5evYqxsTGjR4/mnXfewdnZmTp16vDrr78+4SyJl5HCyITO9d7kVO5RMv+32l5DbYq9X1+aH47m2vULHDn9HxTA3Vsm1LD4o2jXUgtDE8tKylwIIYQonhTtFeT48ePMmjVLvyKdkJCAVqtFqVRSUFDwl8c/ePAgO3fuZOnSpXTv3p2TJ09y+/btQqvzFy9eRKFQ8P7776PT6Zg6dSoajabEcZVKJbm5uQCsWbPmseOurq4EBASQlpbGO++8AzxYSff39+f69es0bdqUr7/+moSEBObPn1/k+AUFBahUf/zR69ChA+Hh4dja2nL16lXGjh3LJ598QuPGjfH29iYnJ4dly5ZRt27dp5or8fJ5pZs3vjdf56e7x1HXbojjK70xVZli2rcztemMxdnX+PXkfoyr1SQrywhDVTyGxtbYOI2Uxz8KIYSokqRoLwfffPMN3377rf7zrFmzGDduHFOnTsXY2Ji6detib29PfHw8LVu2JD09nSlTprBw4cKnPqezszP79++nf//+qNVqPDw8sLW1LdTHzs6Oli1b0rdvXxQKBd26dSMqKqrEcTt27Mgnn3xCnTp1Cq3aP2RsbEyXLl2IiIigY8eOAFhaWjJv3jw+/vhjtFot1tbWxV5b7969GTBgAMHBwfq2CRMm4O/vj4eHByqVigULFtCyZUsCAwPp168fOp2Ojh076m+6FaIsatVvi2v9ordm2bzeHZvXuz/jjIQQQoinp9CV554NIaqQ3Nxc/SMqS9ui8yxERUXRvn37yk7jhSPzWjFkXsufzGnFkHmtGDKv5a+0OS2tbpGV9jJYv349ISEhj7VbWVkVuYWkLH7//Xc++uijIo/NmTOH1q1bP9W4QgghhBDixSNFexl4e3vj7e1drmM2atRIXi4khBBCCCHKRJ7TLoQQQgghRBUnRbsQQgghhBBVnBTtQgghhBBCVHFStAshhBBCCFHFSdEuhBBCCCFEFSdPjxFCCAFAnjaPQwk/EJ8Rh1ledV7XvY6BQtZ2hBCiKpCivYqJiIhg+fLlAIwfPx4nJ6cyxQUEBAAU++z3P4uLi2PlypXMmzevxH62trbY2dkVavvss8/45ZdfABgxYkSZzlce0tPT8fX1ZcWKFc/snEK8TDbGfsv9SzdxPdsZs5xq/BJ1GNt3upKniyP97jmMTCypVscJnVaJcTWjyk5XCCFeKlK0v6Ru3bpFXFxcmfoW9Tz5tm2Lfj18RUpNTeXXX3995ucV4mWQq8nl/P2zjDkzkOq5pgAY3VPx29HDKEx3YYAWgMRjuzl2pib16rXgnX94ojaW4l0IIZ4F+blnFRYUFISnpye9e/fm0KFDTzVGQkICPj4+DB06lJ49e/LVV18BD966Gh0dzaxZs55q3ICAAAICAsjPz2fKlCkMHDiQgQMHsn379iL7u7i4sGDBAn2/hyv1169fx8vLC3d3d4YNG8aFCxcA2LVrFwMGDGDQoEFMmDCB3Nxc5syZQ2JiIh9++OFT5SyEKJ7KQEWtHFN9wX63ppqwHo0ItbRnj8lH3DNoAICVVQbKGulcvXeejWs2VWbKQgjxUpGivQozMzMjJCQEf3//p94Ssnv3btzc3Ni+fTu7du1iw4YNJCUl4e/vj729PZ9++mmpYwwYMED/35+305w9e5bU1FRCQ0P55ptvOH36dLHjmJqaEhoayoQJE/jkk08AmDJlCl5eXuzatYtp06YxceJE8vLyWLp0Kd9++y3BwcHUr1+fa9eu4e/vj5WVlWyPEaICKBVKnBMzuWeWAkBkK0tyjB/8MDbHoDpn1W8BoNWBRqsAIPb2VXQ6XaXkK4QQLxvZHlOF9enTBwAbGxuSk5OfagwfHx9OnTrF2rVruXz5Mvn5+WRnZz/RGEVtj3moRYsWXL9+HR8fH5ydnZk6dWqxfYcOHQo8WHX39fXlzp07/P7777z55psAtGvXDnNzc65du0avXr0YMWIEffr0wdXVlZYtWxIfH/9EeQshnoyTQXMSdUHkqHuTXq1JoWMZitoAXL6pJjvvwXqPUgEKheJZpymEEC8lWWmvwpRKJfDX/lGcP38+mzZtol69enzwwQdYWFiU68qYhYUF4eHhvPPOO1y/fh1PT0/S0tIKrc4/pFL98R1Rq9Wi0WgeG0+n06HRaPD392fZsmWYm5szZcqUEr84CCHKh2nvv1PHsg6v8B31blwsdKxuYgxHj2byU4zJgwadjm5Or1dClkII8XKSov0Fd/z4cXx8fOjbty/Xr18nISEBrVaLUqmkoKDgL49/8OBBpkyZQs+ePfH398fU1JTbt28TFham/++h8PBwAH744QeaN29O/fr1adCgAfv37wfg3Llz3Lt3jxYtWvDmm29iYWHBuHHjGDBgAL/++isqlapcchZCFM2ghiU1vJdg/vEWWucm0vxiBDXv3ab5xQiMI2/gMHAGXVrUokUtBcPcevOmx9uVnbIQQrw0ZHvMC+Sbb77h22+/1X+eNWsW48aNY+rUqRgbG1O3bl3s7e2Jj4+nZcuWpKenM2XKFBYuXPjU53R2dmb//v30798ftVqNh4cHtra2RfY9c+YMQUFBmJiYMH/+fAAWLlzIzJkzCQgIwNDQkICAAIyMjJgwYQJ///vfUavV1K5dm/nz51OjRg3q1auHl5cXmzbJDXBCVBQDU3MUbVrjoVaT9csvGLdpgpnP4Ac/9XMofgucEEKIiqPQyV1E4hlwcXFh48aNNGjQ4JmdMzc3l+joaOzt7VGr1c/svMWJioqiffv2lZ3GC0fmtWLIvJY/mdOKIfNaMWRey19pc1pa3SIr7c+R9evXExIS8li7lZUVa9aseaoxf//992JfyDRnzhxat279VOMKIYQQQojyI0X7c8Tb2xtvb+9yHbNRo0bP5CbPp33OvBBCCCGEkBtRhRBCCCGEqPKkaBdCCCGEEKKKk6JdCCGEEEKIKk6KdiGEEEIIIao4KdqFEEIIIYSo4qRoF0IUkpGnQaPVkR0bS1ZMDDqttrJTEkIIIV56UrRXgoiICLy8vPDy8iIiIqLMccHBwTg6OjJgwAAGDBiAq6sr//rXvygoKCgxrrg3lD4LCQkJjB07tsQ+W7duZevWrQBMmzaNmzdvltj/SedNFE2n1RT6nJJbwJoLd1gSdYsvj13h5LdbuPH551yfNQtNVlYlZSmEEEIIkKL9uePi4kJYWBhhYWF8//33/PbbbwQFBVV2WsWytrYu9cVPI0aMYMSIEcCDLzTykt6KpUm5Q9rGydz/fCA3Vkwn+doVVuz5ieUHTnAnMx+AHCNjTvf0RGugJPfGDVKOHq3krIUQQoiXm7xcqZIFBQUxf/580tLS8PPzw8XFpcyxSqWSDh06cPnyZQB27NjBunXrUCgUtGrVin/9619Uq1ZN3z8zM5PPPvuMy5cvo9FoGDt2LG5ubiWeY9WqVezcuROlUknXrl2ZMmUKSqWS9evXs3XrVpRKJb169WLKlCncvHmTadOmkZSUhLGxMXPmzKF69eqMGjWKQ4cO4evri1qt5ueffyYzM5MPPviAgQMHEhAQAIBarSYxMZH33nuPzZs3c+rUKdatW0dOTg55eXnMmzcPBweHp5hl8ais7wNIuJbEseRR5NwxxeDyz+haHaday7+R8Ui/XJPq5JhUwzQzjYKUlMpKVwghhBDISnulMzMzIyQkBH9/f1asWPFEscnJyfz3v/+lXbt2xMTEsGrVKjZt2sSuXbswMTFh+fLlhfqvXLmSVq1aERwczObNm1m1ahVxcXHFjn/kyBEOHTrEjh07CAkJ4caNGwQGBnLhwgW2bNlCUFAQO3fu5OLFi0RHRzNr1ixcXV3ZvXs3H330EStXrnxszLi4OLZt28aGDRtYsGABd+/e1R977733sLKyYvXq1ZibmxMYGKj/0jBmzBhWr179RPMjilZwK4aotO7kaE0B0GqMaGORS13t1UL9jFLvkZOZAEolNTp1qoxUhRBCCPE/stJeyfr06QOAjY0NycnJpfY/dOgQAwYMQKfTodPpeOONN3Bzc2Pz5s306tULCwsLAIYNG8a0adMKxZ44cYKcnBx27NgBQFZWFpcvX6Zhw4ZFnuvUqVP0798fExMTAAYPHkxoaCg5OTn06tULMzMzANavXw/ATz/9xJdffglAjx496NGjB/Hx8YXGHDRoEIaGhtStWxcHBweioqKKPLeBgQErVqzg0KFDXL9+ncjISAwM5DtmeTBs1Jr0380LtakUSuzzfkSHgjtKG2po72Ed+TMq2xY0HjwKkyZNKidZIYQQQgBStFc6pVIJgEKhKFN/FxcX5s+f/1i79k9P+NDpdI/doKrValm4cCGtWrUC4N69e5ibFy7eShoToKCgAJVKVSjfhIQETExMUKn++OOk0+m4evUqxsbGheIfXu/D8R+NeVRmZiZDhgzBw8ODjh07Ymtry+bNm4vNVZSdab+PaHRpJ1cTLPVtN+6+Qlvz67TL+wH4gfyE+lzKuI/D7PkYqo2LH0wIIYQQz4QsXb4gHB0dOXToECn/23u8fft2nJycCvXp1KmT/iktiYmJeHh4cPv27WLH7NSpE+Hh4eTk5FBQUMCOHTvo1KkTHTp04MiRI2RmZlJQUMCkSZOIjo6mQ4cOhIeHAw9W9f/1r389NuaePXvQ6XTcvHmTCxcu0L59+0LHlUolGo2G2NhYFAoF77//Pk5OTvzwww9oNJrHxhNPzqB6LVymetGudzOsGtekdY8mNH9zINfohPauLbqrr5OX2Yy3fKdLwS6EEEJUEbLS/oKws7Nj3LhxeHl5kZ+fT6tWrZg1a1ahPuPHj2fmzJm4ubmh0WiYMmUKjRo1KnbMXr168euvvzJ48GAKCgro1q0b77zzDiqVinfeeYfhw4ej1Wp544036NKlC02bNsXf358tW7ZgYmLCnDlzHhszJyeHwYMHk5eXx2effabfzvNQz549ee+991izZg0tW7akb9++KBQKunXrVuxWGvHkDI2UdBnYsnBjs8p7NKgQQgghSqbQyfP1xDPi6+uLo6MjgwYNeibny83NJTo6Gnt7e9Rq9TM5Z0mioqIe+8mC+OtkXiuGzGv5kzmtGDKvFUPmtfyVNqel1S2y0l7FrF+/npCQkMfaraysSn3e+dM4ffo0s2fPLvLY6tWrsba2LvdzCiGEEEKIJyNFexXj7e2Nt7f3Mztfhw4dCAsLeybnKuoGWiGEEEIIUTq5EVUIIYQQQogqTop2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhJ5WpyVHk1PZaQghhBDiT+SRj0IIAM4mR7Ht9y2kF6TRskYr/t50LKaqauRqtMSl5VLbxBALY/krQwghhKgM8i/wMxAREcHy5csBGD9+PE5OTmWKCw4OZv78+bzyyisA5OTk4OjoyKeffopKVfxvna2tLTExMU+cZ3p6Or6+vqxYseKJY5+VZ/1W1ZdFtiaLjbHryNPmAhD3yz3+E3QQdQ1rbju8Qj4KFEDvxuZ0rlejcpMVQgghXkJStFdxLi4u+pcSaTQahg8fTlBQEMOHDy/3c6WmpvLrr7+W+7iiavr999/JzMzExsaGxLxE8rS5NL/dgDbXbDG8acjltIPcdBmIBgUAOuDHuDQcrKqjVpXPzjqtVscPUUlcvJHJa42r8Wb7WhgYKMplbCGEEOJFIkX7MxYUFMT8+fNJS0vDz88PFxeXMscqlUo6dOjA5cuXAdixYwfr1q1DoVDQqlUr/vWvf1GtWjV9/8zMTD777DMuX76MRqNh7NixuLm5FTv+nDlzSExM5MMPP2TFihWEhoayYcMGtFotrVq14tNPP0WtVtO1a1d69+7NhQsXqFOnDoMHD2bTpk3cuXOH+fPn4+joiJeXF3Z2dpw+fZrc3FymT59Ot27duHfvHn5+fty6dQuVSsU///lPnJ2dCQgI4Ny5c9y+fZt33nkHGxsblixZQk5ODmlpaUybNo0+ffo8/cSLQgIDA7lw4QIA5ubm/H3s37FNakb/n7o86GAMVoZvEWxsWCiuQKsjOz8Htcq0XPJYu/c2wcfuAvBDVDK/J+Twnlv9chlbCCGEeJHIjajPmJmZGSEhIfj7+z/xNpTk5GT++9//0q5dO2JiYli1ahWbNm1i165dmJiY6LfgPLRy5UpatWpFcHAwmzdvZtWqVcTFxRU7vr+/P1ZWVqxYsYLLly+zfft2AgMDCQsLo3bt2qxduxaAe/fu4ezsTGhoKLm5uRw4cIAtW7bw0UcfsWHDBv14GRkZhISEsHjxYnx9fcnLy2P27Nl06tSJXbt2sWzZMqZPn869e/cAyMvL4/vvv2fkyJH85z//Yc6cOYSEhDBnzhy++uqrJ5orUbybN2/qC3Z48BOWyJORuKW9UaifkdKUWrGFt1lZamLJvhFWbrnsibxf+PNPSeU2thBCCPEikZX2Z+zharGNjQ3Jycml9j906BADBgxAp9Oh0+l44403cHNzY/PmzfTq1QsLCwsAhg0bxrRp0wrFnjhxgpycHHbs2AFAVlYWly9fpmHDhqWeNyIighs3bjB06FAA8vPzee211/THnZ2dAahfvz7t27cHoF69eqSlpen7PIxt2bIllpaWxMTEcOrUKebMmQNAw4YNadu2LefPnwegTZs2+tiFCxdy+PBh9u7dy/nz58nMzCw1Z1E2WVlZRbbVtLQkmcLzXO3qAZq0zuG2sgVm2nu8mh9B5v3y29NuZqIkO1er/1zdRFluYwshhBAvEinanzGl8kFRolCUbd/uo3vaH6XVagt91ul0FBQUPNZn4cKFtGrVCniwQm5ubl6m82o0Gvr27Yu/vz/wYKuNRqPRHzcyMtL/+uE1/dmj7VqtFpVKhU6neyzvh+MaGxvr20eOHImTkxNOTk507tyZyZMnlylvUbqmTZtSq1YtkpIerGorFAocHBwwr1ePrJh75N7KAOB6RgT30uJpm36OxiY/6+PV1ctv+4q36yss+u53tFowUID3m3XLbWwhhBDiRSLbY55Tjo6OHDp0iJSUFAC2b9/+2FNpOnXqxNatWwFITEzEw8OD27dvFzumSqXSF/5OTk788MMP3L9/H51Ox8yZMwttfSmL77//HoCff/6ZtLQ0Xn31VTp16kRQUBAAcXFxnDlzhnbt2hWKS0lJITY2lokTJ+Ls7MzBgwcLfWEQf41KpeK9996jR48etG/fHh8fH5o3b47SxJD67znQYJwDjSY60qSjNS5qW4x+UmCgVQNgbNYI61eHlFsuvdpZ8O3klnwyvBFrJ9vR26FWuY0thBBCvEhkpf05ZWdnx7hx4/Dy8iI/P59WrVoxa9asQn3Gjx/PzJkzcXNzQ6PRMGXKFBo1alTsmLVr16ZevXp4eXmxadMmxo8fz+jRo9FqtbRs2ZL33nvviXKMi4vD09MTgCVLlqBUKvHz82PGjBkEBwcDD25+tbKyKhRXs2ZNhgwZQv/+/VGpVHTq1ImcnJwit3WIp1OjRg1cXV0fa1coFKjrmQFgM3w0umGjQKcDdGgKMlEZlf/jHq0tjLC2MCq9oxBCCPESU+j+vF9BiHLg5eX1RM+krwi5ublER0djb2+PWq2utDweioqK0u//F+VH5rViyLyWP5nTiiHzWjFkXstfaXNaWt0iK+2VbP369YSEhDzWbmVlxZo1a8r9fKdPn2b27NlFHlu9ejXW1tblfk4hhBBCCPHXSNFeyby9vfH29n5m5+vQoQNhYeX3yL7ibNq0qcLPIYQQQgjxspAbUYUQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOLk6TFCCCGEeO7lFmiJuJ3O3ex8WpiraGNds7JTEqJcSdEuhBBCiOfO5dM3Ob0zBqPsfHIuXeBam7rEpuUC8Mt9uBn7I33a9sDQ2KKSMxWifMj2mCosIiICLy8vvLy8iIiIKHOcTqdj2bJluLu74+HhwZAhQzh69Gi55hYcHIyvr+9fHmfr1q1s3bq1HDISQgjxskhPzubC1mg6YEA7U2OqX0/VF+wPXcmvR/zF/1RShkKUP1lpfwHt2bOHixcvEhISgkql4vr164wYMYLw8HBq165d2ekVMmLEiMpOQQghRBWnSYwl79djKKpboG7dh8QbKbQwMcJAoQDASKPDQKNFq/xjLVKty+LezWg+Cz+OiXkdvF1fwdGuRmVdghB/mRTtz4mgoCDmz59PWloafn5+uLi4FNv37t27aDQa8vLyUKlUNG3alGXLlqFSlfzbvWvXLlauXIlCoaB169bMnj2bpKQkpk+fTnp6OomJiXh6ejJx4sRCcSdOnGD+/PnodDrq1avH4sWLAZg+fToJCQkkJibSuXNn5s6dS2RkJAsXLkSr1dKiRQsaNGgAwEcffUS3bt1wdXUlKioKpVLJ0qVLadiwIRcuXODzzz8nJycHCwsLZs2aRcOGDf/ijAohhHgeFMT9QvrmaaAtACDv50NYeczh5v8KdgCjAh32l5O4YFsbFAoMdTm8ln+U28mGmNw9xvXsvszZHMv6qS2pZWZYWZcixF8i22OeE2ZmZoSEhODv78+KFStK7Dtw4EAyMjLo3LkzPj4+rF69mqZNm2Jubl5sTEJCAp9//jnffvst4eHhaDQajhw5wu7du3Fzc2P79u3s2rWLDRs2kJSUpI/Ly8tj8uTJfPHFF+zatYtXX32VkJAQfvzxR1q2bMm2bdvYt28fP/30ExcvXgQgNjaWDRs28MUXXxTK4e7du3Tu3JnQ0FA6duzI5s2bycvLw9/fn8WLFxMSEsK7777Lv/71r78wk0IIIZ4nuWfC9QU7gOZWDCZZN1DZFN6rbvdzJOr/rsfubhA9U5aTfPMeZ2OUwIPiPr9Ax8XYzGeZuhDlSlbanxN9+vQBwMbGhuTk5BL7mpubExgYSExMDCdOnODQoUOsXbuWoKCgYleoz549i4ODA3Xr1gVg4cKF+mOnTp1i7dq1XL58mfz8fLKzs/XHYmJisLa2pmXLlgBMmjRJf+zChQusX7+ea9eukZKSQlZWFgBNmzbFzMysyDy6d+8OQIsWLTh9+jSxsbHExcXxwQcf6PtkZGSUeP1CCCFeIMoiVsZVhjT3siPt9C1unY2lhiqTtGOneDVHTWSyBWcV1UCnxTjtBreqDQLAQAE29U2ecfJClB8p2p8TSqUSAMUjPw4szrp16+jcuTN2dnbY2try7rvvMmnSJPbt28eYMWOKjFGpVIXGfriavnr1auLi4nBzc6NPnz6cOHECnU6n72doaFgoLj09nczMTH744Qf27dvH0KFD6dKlC5cuXdLHGRsbF5u7Wq3WX6dOp0Or1dKgQQPCwsIA0Gg03Lt3r9Q5EEII8WJQOw4g77f/Qt6DBSNV8w6o6toAYO5YnyvKO9g5dEHdXEV65H7s1Vkkqk2wt7blXMbfKPhNi5laifdbr/BKLXVlXooQf4kU7S+g9PR0li5dyuLFi6lWrRoZGRnExcUxaNCgYmNat27NrFmzuHv3LpaWlsybNw8nJyeOHz/OrFmzcHBw4McffyQhIQGtVquPa9q0Kffv3+fKlSvY2Njw73//G3iwAj9s2DDc3d35+eef+e2339BqtRgYPNmOrGbNmpGamsrp06fp0KEDO3bsYNeuXWzatOnpJkcIIcRzRWXVFPNx35B/OQJFdQsMbRwf66NQKKjT04U6PV149GgfYEK+FqVSgdKg9EUvIaoyKdpfQP/4xz9YsmQJHh4eqNVqDAwM+Nvf/kbXrl2LjbG2tsbPzw8fHx+0Wi3t2rVj0KBBmJiYMHXqVIyNjalbty729vbEx8fr49RqNQsXLmTq1Knk5+fTqFEjFixYwIULF5g5cyarV6+mevXqvP7668THx9OoUaMnuhYjIyO++uor5s6dS25uLtWrV39sL7wQQogXm4FZbdQO/Z4q1shQbt8TLwaF7tG9DkK8QHJzc4mOjsbe3l6/7aYyRUVF0b59+8pO44Uj81oxZF7Ln8xpxZB5rRgyr+WvtDktrW6Rlfbn1Pr16wkJCXms3crKijVr1hQZk5OTw7Bhw4o8NmHCBHr37l2uOQohhBBCiPIhRftzytvbG29v7yeKMTY21t/QKYQQQgghnh+y0UsIIYQQQogqTop2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQghhF52vob4jDSyyNS35aTHk3onkoLc1ErMTAghXm7y9BghhHgJabPS0Nz6DaVVUwxqWAJw8lYaB28ko8OAfIWan6PX0DoundqGlwBQGBjSqN14qtWyrczUhRDipSQr7S+IiIgIvLy88PLyIiIiosxxOp2OZcuW4e7ujoeHB0OGDOHo0aMVmOkf0tPT+fDDD58o5uF1CiGeXv71s6Su8CZj+yxSV/yd3PP7Scst4OCNFHT/+2fBUFePO1esMDe4pI/TafO5e213ZaUthBAvNVlpf8nt2bOHixcvEhISgkql4vr164wYMYLw8HBq165doedOTU3l119/rdBzCCEel314PeTnPvig05J58FsOpNmhUykK9VMpaqH809KOpiDr2SQphBCiEFlpfwEFBQXh6elJ7969OXToUIl97969i0ajIS8vD4CmTZuybNkyVKqSv8/t2rWLfv360b9/f3x9fcnPzyczM5NPPvmEQYMGMWDAAHbvfrAiFxwczD//+U/+/ve/88YbbzBz5kwA5syZQ2JiIh9++CHx8fG89dZbjBgxgnfffZeMjAwmTJjAsGHD6NWrF9OnT0en0/31yRFCoM1MKfRZl53BpR1HMcjKL9SuuB1P3F3DQm0W9btXdHpCCCGKICvtLyAzMzNCQkI4fPgwy5cvx8XFpdi+AwcOZM+ePXTu3JkOHTrg5OSEp6cn5ubmxcYkJCTw+eefExwcTN26dZkyZQpHjhzh3LlztGrVii+++IKMjAyGDx9O27ZtATh79iy7d+9GqVTqi3N/f39GjRrFihUriI+P5/r16/z73/+mQYMG7N69m5YtW7Js2TLy8vLo378/Fy9eLPe5EuJlpG7dm5wT2/SfIwrsydca0OLoNQra1SfLWEWTWxmobyo5GmdGYkoONU3zqFG9Pq817Fl5iQshxEtMivYXUJ8+fQCwsbEhOTm5xL7m5uYEBgYSExPDiRMnOHToEGvXriUoKIiGDRsWGXP27FkcHByoW7cuAAsXLgTg66+/Jicnhx07dgCQlZXF5cuXAXj99depXr06AA0bNiQ1NZVq1aoVGrd27do0aNAAADc3Ny5cuMD69eu5du0aKSkpZGXJj+WFKA/GPd7BoIYl+bFnCb9mzuZ0JwxMdHS8e4qW5x5ZWTewJjvDlIvnzpJYkMkbXn0qL2khhHjJSdH+AlIqlQAoFIpSesK6devo3LkzdnZ22Nra8u677zJp0iT27dvHmDFjioxRqVSFxk5KSgJAq9WycOFCWrVqBcC9e/cwNzdn165dqNVqfX+FQlHkVhdjY2P9rzdt2sS+ffsYOnQoXbp04dKlS7I9RohyolAYoHboi9qhLzV/uk9+cDwYwL/NnPg/1X3qFZigQEGWIpXY9P+i0mZi3cSOlp3frOzUhRDipSVF+0suPT2dpUuXsnjxYqpVq0ZGRgZxcXEMGjSo2JjWrVsza9Ys7t69i6WlJfPmzcPJyYlOnTqxdetW/V71gQMHEhgYWOw4KpWKgoKCIo8dP36cYcOG4e7uzs8//8xvv/2GVqvFwEBuwxCiPLl2rI1lTSNOx6TRuK4xXV7vCJl5RJ8+T5ue3al1tQlajYYGr7ZFIf//CSFEpZGi/SX3j3/8gyVLluDh4YFarcbAwIC//e1vdO3atdgYa2tr/Pz88PHxQavV0q5dOwYNGkR2djYzZ87Ezc0NjUbDlClTaNSoEadPny5ynNq1a1OvXj28vLz4/PPPCx0bPXo0M2fOZPXq1VSvXp3XX3+d+Ph4GjVqVK7XL4QAhxZmOLQw+6OhhhqNuRIDAwPqt2hTeYkJIYTQU+hkz4F4QeXm5hIdHY29vX2h7TmVJSoqivbt21d2Gi8cmdeKIfNa/mROK4bMa8WQeS1/pc1paXWLrLS/BNavX09ISMhj7VZWVqxZs6bImJycHIYNG1bksQkTJtC7d+9yzVEIIYQQQhRPivaXgLe3N97e3k8UY2xsTFhYWMUkJIQQQgghnojcVSSEEEIIIUQVJ0W7EEIIIYQQVZwU7UIIIYQQQlRxUrQLIYQQQghRxUnRLoQQQgAajZb05Gx5+7IQokqSp8cIIYR44f2emMPVW9nYN62GpblRoWM5cXH8vPI7zqc2wtDQlFdtb2Nll4uFjT0WDbqhUMj6lhCi8r30fxNFRETg5eWFl5cXERERZY7T6XQsW7YMd3d3PDw8GDJkCEePHn2qHLZu3crWrVufKrY4vr6+BAcHP9YeERGBra0t33zzTaH2AwcOYGtr+0RzUJyEhATGjh37VLHBwcH4+voCMHbsWBISEv5yPkKIl1vIf+8ybkkMC7b9zvRFx7jxnwWkb/uUvF+PARD/9UoupDakhro6Tm0vYd7iJ3I1F7gTs4UfN75HwIdv8cOGhRTk51XylQghXmay0v6U9uzZw8WLFwkJCUGlUnH9+nVGjBhBeHg4tWvXfqKxRowYUUFZFs3a2pp9+/Yxbtw4fdv3339PrVq1ym384l7a9CTKYwwhxMstv0DLfw7cAcCQfKap11Dj93QKgIKrp9Hka8m6fZdcM1PsjQ3R1r1WKL6OtQF52ZlcOLKT6haWdPbwfvYXIYQQSNFeSFBQEPPnzyctLQ0/Pz9cXFyK7Xv37l00Gg15eXmoVCqaNm3KsmXLUKlKntJdu3axcuVKFAoFrVu3Zvbs2axatQqAjz76iG7duuHq6kpUVBRKpZKlS5fSsGFDIiIimDNnDkqlknbt2nH16lU2bdqEl5cX48ePx8nJifj4eEaNGsWhQ4dKzKFx48akp6cTFxdHw4YNycnJ4caNG9jY2Oj7LFmyhJMnT5KamoqVlRVLliyhTp06dOrUCXt7e+7evUtQUBDLli1j3759WFhYYGlpiYuLC46Ojvo8fH19qV69OhcvXiQhIYEPP/yQwYMHk5CQwPTp00lPTycxMRFPT08mTpxYKE8XFxc2btxIRkYGM2bMoKCgALVazeeff06TJk1K+d0UQgjQaHXk5GsBaKm8joVBOgBX67TjYr3uGN1X8sqrjakRfx+oj65AhcLwjxX1PI0SrUKJgU5D/KXzlXEJQggByPaYQszMzAgJCcHf358VK1aU2HfgwIFkZGTQuXNnfHx8WL16NU2bNsXc3LzYmISEBD7//HO+/fZbwsPD0Wg0HDlypFCfu3fv0rlzZ0JDQ+nYsSObN28mPz+fqVOnsnDhQkJDQ0v9YlAWb731Fvv27QPg8OHD9OrVS3/sxo0bXLt2jcDAQPbt28crr7zCzp07AUhOTmbs2LGEhYVx7NgxoqKi2L17N6tXr+aXX34p8lx37txhy5YtrFy5kgULFgCwe/du3Nzc2L59O7t27WLDhg0kJSUVGb9hwwbeffddgoODGTp0KOfOnfvL1y+EeDkYGynp1dYCgPu6B38/x9d8lT2t3+f32q24YtyYoz2HUbPWeZIzb3H7Wn20D2p8tDo4e9WUPGNLAF5p9lqlXIMQQoAU7YX06dMHABsbG5KTk0vsa25uTmBgINu3b6dbt24cO3YMNzc34uLiio05e/YsDg4O1K1bF4CFCxfqz/mo7t27A9CiRQtSU1O5dOkStWvXxs7ODoAhQ4Y81fU9qm/fvuzfvx94sNWnb9+++mONGzfmk08+4bvvvmP+/PmcO3eOrKws/fG2bdsCcOLECfr27YuRkRHm5uZFXgtA165dUSgUvPrqq6SkpADg4+PDK6+8wtq1a5k7dy75+flkZ2cXGd+jRw9mz57N9OnTMTMzw93d/S9fvxDi5fHx4Ib8w6M+9g4tudv0La5ati90XKEw5rBHI3aNOsqP5omEnTLnWHQ1dp4059odNQoDA+yc+uDU/51KugIhhJDtMYUolUoAFApFqX3XrVtH586dsbOzw9bWlnfffZdJkyaxb98+xowZU2SMSqUqNHZxK8tqtVqfh06nQ6lUon249FOEh48nKygoeOzY1q1bCQwMBGD48OE0a9YMeFCY5+fnc+XKFe7cuUPz5s31MdHR0UyaNAlvb29cXV0xMDAo9Ag0Y2NjAAwMDErMq6jreWj+/PnExcXh5uZGnz59OHHiRLGPWXvrrbd4/fXXOXz4MOvXr+fHH39kzpw5pZ5XCCEAVEoF7p3r/O/TR9y9ehMSC//dpVGkAFDQsgDFrdrcSMwAHizQfOT3LabVqj3DjIUQ4nGy0v6U0tPTWbp0KZmZmQBkZGQQFxdHy5Yti41p3bo1586d4+7duwDMmzePgwcPlnquZs2akZaWRkxMDPBgX/xDFhYWXLlyBXjwBJg/GzFiBGFhYYSFhT12w+tbb72Fv7//Y3v3f/rpJxwdHRkxYgRNmjThxx9/RKPRPDZ2ly5d2L9/P3l5eWRkZPDjjz+W6QsPwPHjx/Hx8aFv375cv36dhISEYr8AfPzxx/z8888MHz6ciRMnFrsNRwghyqJDk1doaPbHYx+1hhfJN4inmrIaf7MdxUcffUTfvn3p168f48ePl4JdCFElyEr7U/rHP/7BkiVL8PDwQK1WY2BgwN/+9je6du1abIy1tTV+fn74+Pig1Wpp164dgwYN4uuvvy7xXEZGRixYsIBPPvkEAwMDmjZtql/tHjNmDL6+vuzYsYPevXs/0TX07duXL7/8Ur/P/KGH/1A93IZib29PfHz8Y/E9e/bk7NmzeHp6Ym5ujpWVlX5VvTTjxo1j6tSpGBsbU7du3WLPAfD+++/j5+fHihUrMDQ0ZObMmU90nUII8Si10gBve2sSs/IwUhpQw6g+93IdsDCywNDAEPhjm6IQQlQVCp28+q3K02q1LFq06MGKj6kp69atIyEhQf8888py9uxZYmNj8fT0JD8/n2HDhjFv3jz93vvKlpubS3R0NPb29mX+MlGRoqKiaN++fekdxRORea0YMq/lT+a0Ysi8VgyZ1/JX2pyWVrfISnsJ1q9fT0hIyGPtVlZWxT5DPCcnh2HDhhV5bMKECU+8Gg4P9o7XrFmTIUOGYGhoSP369Zk7d+4Tj1PemjZtyvLly1m3bh06nY6BAwdWmYJdCCGEEOJFIkV7Cby9vfH29n6iGGNjY8LCwso9l/fee4/33nuv3Mf9K2rWrMnatWsrOw0hhBBCiBee3IgqhBBCCCFEFSdFuxBCCCGEEFWcFO1CCCGEEEJUcVK0CyGEEEIIUcVJ0S6EEEIIIUQVJ0+PEUKIMtLoCtDoNOhyUsi4+zNGppZUr9MahULWP4QQQlQsKdqFEKIIOq2OnLg0DNRK1HWrcyTxMLtuhVAr24jO2bWpo72JkgJM6zjQpF3VehyrEEKIF88LvTwUERGBl5cXXl5eRERElDlOp9OxbNky3N3d8fDwYMiQIRw9evSpcti6dStbt259qthH+fr6Ehwc/JfHSUhIYOzYsX95nEfZ2tqW63glmTZtGjdv3nxm5xMvH51WQ178deK+Ps2tb88RvzKKG4Fn/p+9Ow+IstofP/4eZmBwQUQUFJckF0RxzwVFU6BMBUQzkYzCi1kZUTc1KbllLrlwS0OtLmlq/LyiIqhIXjJxSxOVNMWFNMnAEtlX2Wbm9wdfJ4lVQ0H8vP65zvOczzmf53CDz5w58zxsT9qCorg3Gt0bfN/kBfY29SXLwJKCtB8pyE2p77SFEEI0crLSXom9e/dy/vx5IiIiUKlUJCYm4unpSVRUFObm5nfVl6en533K8t5YWlpW+TTXh0FsbCyvv/56fachGqnSPy6TF7aIgsxulGhG/nn8Yi6dTNpRbOqMTlm21lGkaMZ5wycZXrSN2EPRmDUzoWu/ETQ3a11f6QshhGjEGvVK+53CwsKYOHEiTk5OxMTEVNs2NTUVjUZDcXExANbW1gQFBaFSVf8eJzIyknHjxjF+/Hj8/f0pKSlh9erVrF69GoChQ4cyY8YMJkyYQElJCYGBgYwZM4Zx48axadMmgHKfCiQnJ+Po6FhhnJUrVzJlyhTGjBmDl5cXaWlplfZfmTv79Pf3Z/HixXh6euLo6MiOHTsA+OGHH5g0aRKTJk1i+vTpZGRkVMjlzuu6LSUlBR8fH6ZMmcKoUaP49NNPq52v0tJSAgIC8PDwwMnJiVmzZlFYWEhycjLu7u7MnTsXFxcXXnrpJbKysggODubmzZvMnDmTzMzMavsW4l4UfPsFutx0tLrmFc71iOuGTln+d0ChwoTfbhpyfE8Y+0M+YcP8adz87cqDSlcIIcQj5JEp2k1MTIiIiCAgIIC1a9dW29bd3Z28vDzs7e3x8fEhODgYa2trTE1Nq4xJSUlh6dKlfPXVV0RFRaHRaDh06FC5NpmZmbz88svs2rWL7777jh9//JHIyEi2b99OeHg4qampNV7HtWvXuHr1KqGhoURHR9OuXTt2795doX9DQ8NazArcuHGD//73v3z++eesWLECgM8++4wFCxYQHh7OsGHDuHDhQq362rNnDy4uLmzbto3IyEg2bdpERkZGle1Pnz6NoaEhW7duZd++feTm5urn7NKlS0yfPp09e/bQokULIiMjmTlzJhYWFgQHB2NmZlarnIS4G9qM3wEwUl4AtPrjGkMDsm4aorqZX6695vrP/HBag2Fx2ZvI4sICfty37YHlK4QQ4tHxyGyPcXZ2BqBr1641rtKampoSGhpKQkICx44dIyYmhvXr1xMWFkbHjh0rjTl9+jQDBgygbdu2AAQGBgJw8eLFcu369u0LwMmTJxk7dixGRkYYGRmxa9euWl3HY489xrx589i+fTuJiYmcOXOGTp06Vei/toYPH45CoaB79+5kZWUB4OTkhK+vL87Ozjg5OTF8+HCSk5Nr7MvHx4fjx4+zfv16Ll++TElJCbdu3aqy/aBBg2jZsiWbN2/m6tWr/PrrrxQUFABgbm5Oz549AejWrRvZ2dl3dV1C3AvD7kMo/mkfhga/Y2K4jRulDpzRPI6zR3eUn17D5PCv3OrZBo2pGsUf1xlg24oT6edQ3NGHRlNab/kLIYRovB6ZlXalUgmAQqGooSVs2LCBS5cuYWNjw/Tp0wkJCcHBwYHo6OgqY1QqVbm+MzIyKl1lNjY2rrR9cnKyvmDV6XRA2faRv4qPj8fHxwetVsuYMWNwdnbWt7+z/9pSq9VA+Xnx9vYmJCSETp06ERgYyOeff45CoSg3TmW5LVu2jJCQEKysrHjttdcwMzMrF/NX+/fvZ86cORgbGzNp0iQGDRqkb387r9u5VdePEHWl6dOvoh4yieymj3HcoB3rmvfAeootVt3MecKpI6qiIpqduUGLg7/i3K4VI5yewapLL328gVJFv9Hu9XcBQgghGq1Hpmi/G7m5uaxatYr8/LKPwvPy8khKSsLW1rbKmN69e3PmzBn9FpePPvqI/fv3V9l+0KBBfPvtt/rV6BkzZpCSkoKZmRlXrpTtif3uu+8qxJ08eZLBgwfj6elJ586dOXjwIBqN5u9cbgXPPfcc+fn5eHt74+3tzYULF2jRogVZWVlkZGRQXFzMkSNHKsQdPXoUHx8fxo4dS2JiIikpKWi12kpGKPPDDz8wduxYnn32WVq0aEFsbGyN16JUKuv8eoW4TWFoTFMnHzq/9Rlu771P0JyBjOjdEgCbiU/ywr9G4DiuLc+/N5yBkwehUCh4bs5KnLzeZqjLS7zwwTrad+tTvxchhBCiUXpktsfcjVmzZrFy5Urc3NxQq9UYGBgwbdo0hg8fXmWMpaUl8+fP16+C9+vXj0mTJvHZZ59V2v6pp54iPj6eSZMmodVqefHFF7G2tmbGjBn4+/uzY8cOnJycKsSNGzcOX19fXF1dAbCzs6vV1pW78fbbb+Pv749KpaJp06YsXrwYExMTZsyYweTJk2nbti29e/euEPfKK6/wzjvvYGxsTNu2bfW53bl9507PPfccc+bMISoqCkNDQwYMGFDjtYwaNYqZM2eybt26KrcqCXG/NLdsRY+xrcodM1Q3od/oifWUkRBCiEeFQif7DkQjVVRURHx8PHZ2duW229SXuLg4Bg4cWN9pNDoyr/eHzGvdkzm9P2Re7w+Z17pX05zWVLc8sivtGzduJCIiosJxCwuLKu9jXlhYiIeHR6Xn/Pz8Kl0Zrw+//fYbb7zxRqXnFi9eXOkq+f1y6tQpFi1aVOm54OBgLC0tH1guQgghhBAPq0e2aL+9X/tuGBsb1/ouL/WpU6dODSbPJ554osHkIoQQQgjxsJIvogohhBBCCNHASdEuhBBCCCFEAydFuxBCCCGEEA2cFO1CCCGEEEI0cFK0CyFEI6HTadFpNfz++++kp6frjxcXpKItLazHzIQQQvxdj+zdY4QQorHIKSol6aejNP/ha3altOAGTQDo37ktA/vkUpiXhIFSTVsbD1paDavnbIUQQtyLR2qlPTY2Fi8vL7y8vIiNja11nE6nIygoCFdXV9zc3Jg8eTKHDx++pxy2bNnCli1b7in2Tv7+/oSHh//tflJSUnj55Zf/dj93srGxuae4c+fOMX/+/Grb/P7774wZM4YJEyaQl5d3T+MI0Zj8dDOfoB9/J1zzOP9v4HvcbNNNf05tfIXCvCQAtJoi/ri0BU1JQX2lKoQQ4m+QlfZa2Lt3L+fPnyciIgKVSkViYiKenp5ERUVhbm5+V315enrepyzvjaWlZZUPk3rQevfuXeODn06cOIGdnR0ff/zxA8pKiIZLq9Px3bUsdCjKXiuNMLQdSlFqGAAtmmrLtddpSyjMTaVZq8ceeK5CCCH+nkdqpf1OYWFhTJw4EScnJ2JiYqptm5qaikajobi4GABra2uCgoJQqap/zxMZGcm4ceMYP348/v7+lJSUsHr1alavXg3A0KFDmTFjBhMmTKCkpITAwEDGjBnDuHHj2LRpE0C5TwWSk5NxdHSsMM7KlSuZMmUKY8aMwcvLi7S0tEr7r8ydffr7+7N48WI8PT1xdHRkx44dAPzwww9MmjSJSZMmMX36dDIyMirkcud13ZaSkoKPjw9Tpkxh1KhRfPrpp9XO1+1PQm5f94oVK/Dw8OCpp57i0KFDXLx4kVWrVnHkyBHef//9avsS4lGg1cGt0vKFucKoif7fN9LKPwb7Vn5Tvln3KxpN+RghhBAN3yNbtJuYmBAREUFAQABr166ttq27uzt5eXnY29vj4+NDcHAw1tbWmJqaVhmTkpLC0qVL+eqrr4iKikKj0XDo0KFybTIzM3n55ZfZtWsX3333HT/++CORkZFs376d8PBwUlNTa7yOa9eucfXqVUJDQ4mOjqZdu3bs3r27Qv+Ghoa1mBW4ceMG//3vf/n8889ZsWIFAJ999hkLFiwgPDycYcOGceHChVr1tWfPHlxcXNi2bRuRkZFs2rSJjIyMWsUClJSUsHXrVt59910+/fRTbG1t8fPzw9HRkYULF9a6HyEaK5WBgp7mTcsda5+cTCdFG7oo2vH470+i/LU3+ZkaUpJ0nP1hCKlJeSRdrPl3ixBCiIblkd0e4+zsDEDXrl3JzMystq2pqSmhoaEkJCRw7NgxYmJiWL9+PWFhYXTs2LHSmNOnTzNgwADatm0LQGBgIAAXL14s165v374AnDx5krFjx2JkZISRkRG7du2q1XU89thjzJs3j+3bt5OYmMiZM2fo1KlThf5ra/jw4SgUCrp3705WVhYATk5O+Pr64uzsjJOTE8OHDyc5ObnGvnx8fDh+/Djr16/n8uXLlJSUcOvWrVrnMmLECAC6deumz0UIUZ5b11YUF2g4/ksuWWkldE5qxijVgD8bJJly/tQPZOusMDRqDoBOq6unbIUQQtyrR3alXalUAqBQKGpsu2HDBi5duoSNjQ3Tp08nJCQEBwcHoqOjq4xRqVTl+s7IyKh0ldnY2LjS9snJyRQUlH1hTKcr+wNbWlpaIT4+Ph4fHx+0Wi1jxozB2dlZ3/7O/mtLrS77OP3OXLy9vQkJCaFTp04EBgby+eefo1Aoyo1TWW7Lli0jJCQEKysrXnvtNczMzMrF3EsuQojyVAYKpvaz4J8O7XGxbYXtWGsUqj9/tWcUJZGlLUVlOBgAs7bN6dTTor7SFUIIcY8e2aL9buTm5rJq1Sry8/MByMvLIykpCVtb2ypjevfuzZkzZ/RbXD766CP2799fZftBgwbx7bff6lejZ8yYQUpKCmZmZly5cgWA7777rkLcyZMnGTx4MJ6ennTu3JmDBw+i0Wj+zuVW8Nxzz5Gfn4+3tzfe3t5cuHCBFi1akJWVRUZGBsXFxRw5cqRC3NGjR/Hx8WHs2LEkJiaSkpKCVit7aYW4Hx6zNGbySAueGN6ODq8NxGx0Z0yfas/jsxzwWfYV9m79GPlcL559exhKlfzqF0KIh80juz3mbsyaNYuVK1fi5uaGWq3GwMCAadOmMXz48CpjLC0tmT9/vn4VvF+/fkyaNInPPvus0vZPPfUU8fHxTJo0Ca1Wy4svvoi1tTUzZszA39+fHTt24OTkVCFu3Lhx+Pr64urqCoCdnV2ttq7cjbfffht/f39UKhVNmzZl8eLFmJiYMGPGDCZPnkzbtm0rvevLK6+8wjvvvIOxsTFt27bV53bn9h0hRN0zat2UVqPK3yFmwNNd6ykbIYQQdUGhu5v9CkI8RIqKioiPj8fOzk6/1aY+xcXFMXDgwPpOo9GReb0/ZF7rnszp/SHzen/IvNa9mua0prpFVtr/z8aNG4mIiKhw3MLCosr7mBcWFuLh4VHpOT8/v0pXxuvDb7/9xhtvvFHpucWLF9d4b/S6dOrUKRYtWlTpueDgYCwtLR9YLkIIIYQQDwsp2v/P7f3ad8PY2LjWd3mpT506dWoweT7xxBMNJhchhBBCiIeFfBtJCCGEEEKIBk6KdiGEEEIIIRo4KdqFEEIIIYRo4KRoF0IIIYQQooGTol0IIYQQQogGTu4eI4QQQtSx7JJsfso6TTNlM/q27I/KoPyf25JiDQZKBUqlrJ0JIWqnURbtsbGxrFmzBgBfX1+GDBlSqzidTsfq1avZt28fCoUCIyMj/Pz8GDly5F3nsGXLFgA8PT3vOvZO/v7+DB48mEmTJv2tflJSUggICKjynvP3wsbGhoSEhDrrTwghGoOUwhsEXljMLV0RAF2bd+et7nMAKC0u5cRXZ7j+86+klf5CH0d7hrvf/d8YIcSjp1EW7fdq7969nD9/noiICFQqFYmJiXh6ehIVFYW5ufld9fV3i/W6ZmlpWacFuxBCiIqOX8zm8KVAbnUq0h+7kvczl/N+JqNExZZvrmBoZoyNZTu6ZJVyOHIB6GYwfOLz9Ze0EOKh0Og/lwsLC2PixIk4OTkRExNTbdvU1FQ0Gg3FxcUAWFtbExQUhEpV/XubyMhIxo0bx/jx4/H396ekpITVq1ezevVqAIYOHcqMGTOYMGECJSUlBAYGMmbMGMaNG8emTZsA8PLyIjY2FoDk5GQcHR0rjLNy5UqmTJnCmDFj8PLyIi0trdL+K3Nnn/7+/ixevBhPT08cHR3ZsWMHAD/88AOTJk1i0qRJTJ8+nYyMjAq53Hldt6WkpODj48OUKVMYNWoUn376abXzdePGDV544QUmTZrE5MmTOXPmDACOjo4kJycDZZ+WeHl56edmyZIlTJw4kXHjxvH9999X278QQtSHrLwSVv/3PG24Uf6EDuLO/MZxTUt+tWzG5U6m7BvaHuOmVvTr1xNjgxiuxi4hL+18/SQuhHgoNPqi3cTEhIiICAICAli7dm21bd3d3cnLy8Pe3h4fHx+Cg4OxtrbG1NS0ypiUlBSWLl3KV199RVRUFBqNhkOHDpVrk5mZycsvv8yuXbv47rvv+PHHH4mMjGT79u2Eh4eTmppa43Vcu3aNq1evEhoaSnR0NO3atWP37t0V+jc0NKzFrJQVzv/973/5/PPPWbFiBQCfffYZCxYsIDw8nGHDhnHhwoVa9bVnzx5cXFzYtm0bkZGRbNq0iYyMjCrbh4WFMWrUKMLDw/Hz8yMuLq7GMfLy8oiIiODjjz/G399f/8ZKCCEaiktJBWg1GoYk52Go0eqPm59txqXfisDgzz+5RUZKkrvkY2FbSpNmKgpzk0g6+zmlRTn1kboQ4iHQ6LfHODs7A9C1a1cyMzOrbWtqakpoaCgJCQkcO3aMmJgY1q9fT1hYGB07dqw05vTp0wwYMIC2bdsCEBgYCMDFixfLtevbty8AJ0+eZOzYsRgZGWFkZMSuXbtqdR2PPfYY8+bNY/v27SQmJnLmzBk6depUof/aGj58OAqFgu7du5OVlQWAk5MTvr6+ODs74+TkxPDhw/Ur39Xx8fHh+PHjrF+/nsuXL1NSUsKtW7eqbG9vb88bb7zBxYsXefLJJ3nhhRdqHGPKlCkA2Nra0qZNGxISEujdu3ftLlYIIR6ArlZNyVW04LeMHrx+7CJn2zWhabGOs390JL9dxd+Jhuo/yr3WaUspyLpMC8uBDyplIcRDpNGvtCuVSgAUCkWNbTds2MClS5ewsbFh+vTphISE4ODgQHR0dJUxKpWqXN8ZGRmVrjIbGxtX2j45OZmCggKg7IuwAKWlpRXi4+Pj8fHxQavVMmbMGJydnfXt7+y/ttRqNVB+Xry9vQkJCaFTp04EBgby+eefo1Aoyo1TWW7Lli0jJCQEKysrXnvtNczMzMrF/NXAgQOJiorCwcGBb775hldffVV/rqo5uP1zBNBqtTVuWRJCiAettakhb0/uxGbD54nIdKdN5jBGj/gXLVq1ofTaBbQ56fq2FsnXUV0/8ZceFBibVL5AJIQQjb5ovxu5ubmsWrWK/Px8oGxLRlJSEra2tlXG9O7dmzNnzui3uHz00Ufs37+/yvaDBg3i22+/1a9Gz5gxg5SUFMzMzLhy5QoA3333XYW4kydPMnjwYDw9PencuTMHDx5Eo9H8ncut4LnnniM/Px9vb2+8vb25cOECLVq0ICsri4yMDIqLizly5EiFuKNHj+Lj48PYsWNJTEwkJSUFrVZbyQhlVqxYwe7du5k4cSLvv/++fhvOnXPw1zn85ptvADh37hw5OTl07969ri5bCCHqjGN/M0Le68vsD6Yz8tU3Me7cm6effhojhY6iQ9spPrqTblEbcDy2lYGuc2jRdhAoDDBQNaGtjQdGTS3q+xKEEA2ULFfeYdasWaxcuRI3NzfUajUGBgZMmzaN4cOHVxljaWnJ/Pnz9avg/fr1Y9KkSXz22WeVtn/qqaeIj49n0qRJaLVaXnzxRaytrZkxYwb+/v7s2LEDJyenCnHjxo3D19cXV1dXAOzs7Gq1deVuvP322/j7+6NSqWjatCmLFy/GxMSEGTNmMHnyZNq2bVvplpRXXnmFd955B2NjY9q2bavP7c7tO3fy8vJi9uzZhIeHo1QqWb58OQB+fn4sWrSINWvW4ODgUC4mKSmJiRMnAmVfyL1z5V0IIRoapcGfn2J26dKFd955h5iYGIYNHkyzkhKM2rZFoVTSlK5obV9AoVChMJDfa0KIqil01e1jEKIB8PLyuqv77d9WVFREfHw8dnZ2+u1A9SkuLo6BA2Wval2Teb0/ZF7rnszp/SHzen/IvNa9mua0prrlkVtp37hxIxERERWOW1hYVHkf88LCQjw8PCo95+fnV+nKeH347bffeOONNyo9t3jx4gf6xc1Tp06xaNGiSs8FBwdjaWn5wHIRQgghhHjYPXJF++392nfD2Ni41nd5qU+dOnVqMHk+8cQTdZZLSEhInfQjhBBCCPGwki+iCiGEEEII0cBJ0S6EEEIIIUQDJ0W7EEIIIYQQDZwU7UIIIYQQQjRwUrQLIYQQQgjRwEnRLkQ9KMnI4FZiIrpqnhwrhBBCCHHbI3fLRyHqjUZH3oVUco6fIPv7naAtwahdOzq98w6GZmb1nZ0QQgghGrBHfqU9NjYWLy8vvLy8iI2NrXWcTqcjKCgIV1dX3NzcmDx5MocPH67T3MLDw/H39wfA0dGR5OTkKtvm5uby+uuv19jnu+++y/Xr1+ssxwftwIEDbNiwob7TuGvaEg3Nj9wiZesFbl1rjmFbNzBQk//HdY589jlnf75Z3ykKIYQQogGTlfZ7tHfvXs6fP09ERAQqlYrExEQ8PT2JiorC3Nz8geeTnZ3NxYsXa2wXGxtbq+K+oYqPj6/vFO5J/sU0VDl/boXJVhnwS0srEm/9iLZlMxSX4jn+awljOmbTttNI1M3a1mO2QgghhGhoHvmV9juFhYUxceJEnJyciImJqbZtamoqGo2G4uJiAKytrQkKCkKlqv59UGRkJOPGjWP8+PH4+/tTUlLCrVu3mD17Ni4uLri6urJz584q4/Py8vDz88PDw4PRo0fz3nvvodPpWLx4MTdv3qy2IA8ODubmzZvMnDmTzMxMHB0deeuttxgzZgzp6emsXLmSKVOmMGbMGLy8vEhLSwPAwcGBRYsW4e7uzrPPPktSUhIAy5cvx83NDXd3d9asWUNpaSkODg76uKysLBwcHCgpKakyp7179zJlyhTc3Nx45pln+PHHHwHw8vJixYoVeHh48NRTT3Ho0CGuXLlCaGgooaGh7Nixo9p5bmh0JX8W7L9ofye89ChnjIsoGPkapQMmUdKmGykmPfkurRWJJ1dQWpRTj9kKIYQQoqGRov0OJiYmREREEBAQwNq1a6tt6+7uTl5eHvb29vj4+BAcHIy1tTWmpqZVxqSkpLB06VK++uoroqKi0Gg0HDp0iNWrV2NmZsaePXvYtGkTq1ev5tKlS5X2cfDgQWxtbdm6dSvR0dGcPHmS8+fPExAQgIWFRbV5z5w5EwsLC4KDgzH7vz3UI0eOJDo6mry8PK5evUpoaCjR0dG0a9eO3bt3A2VvUOzt7dm5cyeDBg1i8+bNXL9+ncOHD7N79262bNnClStX0Gg0PPPMM/zvf/8D4Ntvv+Wpp57C0NCw0ny0Wi2hoaF88cUX7N69mxkzZhAcHKw/X1JSwtatW3n33Xf59NNP6dq1K1OnTmXq1Kk8++yz1f58Gppmtq0pVZcV7qc1v6D7v+NKq8fLtftd2Z3S0kJyU8882ASFEEII0aBJ0X4HZ2dnALp27UpmZma1bU1NTQkNDWXbtm04ODhw5MgRXFxc9KvQlTl9+jQDBgygbduyrQ+BgYE4Oztz/PhxJk+eDECrVq1wcnLixIkTlfbh4uLC8OHD2bhxI4sXLyYrK4uCgoJ7uVwA+vbtC8Bjjz3GvHnz2L59O8uWLePMmTPl+h0xYgQA3bp1Izs7G0tLS9RqNVOnTuXrr79mzpw5qNVq3NzciIqKAmDPnj24ublVObaBgQFr167l+++/59NPPyUiIoL8/PxKx8zKyrrna2wIlE0NyXuyGeftrpGvKtQf1xXklmvXRJeDAi1KI5MHnaIQQgghGjAp2u+gVCoBUCgUNbbdsGEDly5dwsbGhunTpxMSEoKDgwPR0dFVxqhUqnJ9Z2RkkJGRgU6nK9dOp9Oh0Wgq7SMkJIQVK1bQqlUrXnjhBbp06VIh/m6o1WqgbK+4j48PWq2WMWPG4OzsXK7f2+0UCgU6nQ6VSsX27dt58803ycrKYurUqSQmJtKnTx+ys7M5e/YsKSkp9O/fv8qx8/PzmTx5MsnJyQwaNAgvL69Kc6vNz+OhYKzkqUnP8diQx/SHSuK/h6KyN0cqXRH9i/9HMzMbTFr3qa8shRBCCNEASdF+j3Jzc1m1apV+ZTgvL4+kpCRsbW2rjOnduzdnzpwhNTUVgI8++oj9+/czdOhQwsLCgLJCfv/+/QwePLjSPo4ePYqHhwdubm4UFRVx6dIltFotKpWK0tLSGvNWKpWVviE4efIkgwcPxtPTk86dO3Pw4MEq3zgAXLhwgRdeeIFBgwYxb948unTpQmJiIgCurq588MEHjB8/vtpcfv31VxQKBa+++ipDhgxh37591Y55O//aXGdD1UTZBJ/xL+Pl5YX9UHscuvbBTWXMtC4teaV7KUP7TeCxAW+hMFDWd6pCCCGEaEDk7jH3aNasWaxcuRI3NzfUajUGBgZMmzaN4cOHVxljaWnJ/Pnz9Sva/fr1Y9KkSdy6dYsFCxbg6uqKRqPh1VdfpVevXiQkJFTo46WXXmLBggUEBwfTvHlz+vfvT3JyMk888QRWVlZ4eXkREhJSZQ6jRo1i5syZrFu3rtzxcePG4evri6urKwB2dnbV3mKyZ8+e9OvXDxcXF5o0acKAAQMYOXIkAG5ubnz66aesXLmy2jns0aMHtra2jB07FoVCgYODA3FxcdXG3H6T0Lp16wor8w8TW1vbSt7g9aiXXIQQQgjR8Cl0f2dvhRANWFFREfHx8djZ2em32tSnuLg4Bg4cWN9pNDoyr/eHzGvdkzm9P2Re7w+Z17pX05zWVLfISns1Nm7cSERERIXjFhYWfPnll5XGFBYW4uHhUek5Pz8/nJyc6jTHhjZ+Zby8vMjJqXgLw6lTp+Lp6fnA8xFCCCGEeNhI0V4Nb29vvL297yrG2NiYXbt23Z+EHoLxK1Pddh0hhBBCCFEz+SKqEEIIIYQQDZwU7UIIIYQQQjRwUrQLIYQQQgjRwEnRLoQQQgghRAMnRbsQosEqzC8m44/cv/XUXyGEEKIxeGSK9tjYWLy8vPDy8iI2NrbWcTqdjqCgIFxdXXFzc2Py5MkcPny4TnMLDw/H398fAEdHx2ofapSbm8vrr79eY5/vvvsu169fr7McG4LaXrtoHH6KucoX/zlJ8PEkVu1O4JfrqWhKi+s7LSGEEKJeyC0fa7B3717Onz9PREQEKpWKxMREPD09iYqKwtzc/IHnk52dzcWLF2tsFxsb2+gK3Npeu3j4ZV29zsHYJHJHPQ5ACbD9WibPxC/H3HAoHR0n12+CQgghxAP2yKy03yksLIyJEyfi5ORETExMtW1TU1PRaDQUF5et8FlbWxMUFIRKVf37ncjISMaNG8f48ePx9/enpKSEW7duMXv2bFxcXHB1dWXnzp1Vxufl5eHn54eHhwejR4/mvffeQ6fTsXjxYm7evFltQR4cHMzNmzeZOXMmmZmZODo68tZbbzFmzBjS09NZuXIlU6ZMYcyYMXh5eZGWlgaAg4MDixYtwt3dnWeffZakpCQAli9fjpubG+7u7qxZs4bS0lIcHBz0cVlZWTg4OFBSUlJlTo6OjqxYsQJ3d3fc3d25cOECAImJiXh5eeHq6oqHhwdnz57Vz9+ECROYNGkSfn5+FBUV1eraxcOt6FwMmV/N4+eln1DUsWW5cyWKJtw06kCO5jsSvv++fhIUQggh6skjWbSbmJgQERFBQEAAa9eurbatu7s7eXl52Nvb4+PjQ3BwMNbW1piamlYZk5KSwtKlS/nqq6+IiopCo9Fw6NAhVq9ejZmZGXv27GHTpk2sXr2aS5cuVdrHwYMHsbW1ZevWrURHR3Py5EnOnz9PQEAAFhYW1eY9c+ZMLCwsCA4OxszMDICRI0cSHR1NXl4eV69eJTQ0lOjoaNq1a8fu3buBsjco9vb27Ny5k0GDBrF582auX7/O4cOH2b17N1u2bOHKlStoNBqeeeYZ/ve//wHw7bff8tRTT2FoaFjtXDZt2pSdO3fi5+fHvHnzAJg7dy5eXl5ERkby7rvv8uabb1JcXMyqVav46quvCA8Pp3379ly9erVW1y4eXkUXv6cg8mPyLvxC05J0yIyr0KaZLguFAg6e3EVKSko9ZCmEEELUj0eyaHd2dgaga9euZGZmVtvW1NSU0NBQtm3bhoODA0eOHMHFxUW/Cl2Z06dPM2DAANq2bQtAYGAgzs7OHD9+nMmTyz7Wb9WqFU5OTpw4caLSPlxcXBg+fDgbN25k8eLFZGVlUVBQcC+XC0Dfvn0BeOyxx5g3bx7bt29n2bJlnDlzply/I0aMAKBbt25kZ2djaWmJWq1m6tSpfP3118yZMwe1Wo2bmxtRUVEA7NmzBzc3txpzmDJlClC26p6SksKNGzf47bffePrppwHo168fpqamXL16ldGjR+Pp6cmKFSsYM2YMtra293zt4uHwe+xBAAwMdKSTj0F8KAY3EspO6rR0LYnFTHuDUg3cyFJy7ty5+ktWCCGEeMAeyaJdqVQCoFAoamy7YcMGLl26hI2NDdOnTyckJAQHBweio6OrjFGpVOX6zsjIICMjo8IdMHQ6HRqNptI+QkJCWLFiBa1ateKFF16gS5cuf+sOGmq1GoD4+Hh8fHzQarWMGTMGZ2fncv3ebqdQKNDpdKhUKrZv386bb75JVlYWU6dOJTExkT59+pCdnc3Zs2dJSUmhf//+NeZw55YirVZb6bXfnpOAgACCgoIwNTVl7ty57Nq1656vXTwc/igp+/TK2KSIElUJipJbGEd+iPH2ufQ5F4x1Vgyp2SoOnDWhqMQAExOTes5YCCGEeHAeyaL9buTm5rJq1Sry8/OBsr3mSUlJ1a789u7dmzNnzpCamgrARx99xP79+xk6dChhYWFAWSG/f/9+Bg8eXGkfR48excPDAzc3N4qKirh06RJarRaVSkVpaWmNeSuVykqL4pMnTzJ48GA8PT3p3LkzBw8erPKNA8CFCxd44YUXGDRoEPPmzaNLly4kJiYC4OrqygcffMD48eNrzAfQr8zv27ePLl260L59ezp06MC3334LwJkzZ0hLS6Nbt248/fTTmJmZ8corrzBhwgQuXrxY62sXDyeDge4kaqwwUOro0aEYA0XZmzyDrOtcPnmEuKTuRMe1ICXTkI4dO9bqjaIQQgjRWMjdY2owa9YsVq5ciZubG2q1GgMDA6ZNm8bw4cOrjLG0tGT+/Pn6Fe1+/foxadIkbt26xYIFC3B1dUWj0fDqq6/Sq1cvEhISKvTx0ksvsWDBAoKDg2nevDn9+/cnOTmZJ554AisrK7y8vAgJCakyh1GjRjFz5kzWrVtX7vi4cePw9fXF1dUVADs7u2pvMdmzZ0/69euHi4sLTZo0YcCAAYwcORIANzc3Pv30U1auXFntHN72448/EhYWRpMmTVi2bBlQtnVowYIFrF69GkNDQ1avXo2RkRF+fn784x//QK1WY25uzrJly2jRokWtrl08nIYO6MiWrMX894dzFBs3w9mjKU3++JaS4kL6jppA+259SE5ORqvV0rFjx1p9UiaEEEI0FgqdPLVEPACOjo58/fXXdOjQ4YGNWVRURHx8PHZ2dvptP/UpLi6OgQMH1ncajY7M6/0h81r3ZE7vD5nX+0Pmte7VNKc11S2y0g5s3LiRiIiICsctLCz48ssvK40pLCzEw8Oj0nN+fn44OTnVaY4NbfzKeHl5kZOTU+H41KlTH3guQgghhBCNiRTtgLe3N97e3ncVY2xsXK9fjqzv8StT3ZYVT0/PB5iJEEIIIUTjIl9EFUIIIYQQooGTol0IIYQQQogGTop2IYQQQgghGjgp2oUQQgghhGjgpGgXQgghhBCigZOiXQghhBBCiAZObvkohBBCNHDaW7lobvyCsm0XDJqYVDivKS1FqynBUN2EUzfyOJ9WgKlaycgOLWjVxLAeMhZC1DUp2oUQQogGrPjn4+TvXAGlRaBS02yiP0bdBqPT6cj4I5vk+M+gNJHCW6VcUTpy1XJUWWAuJOUW8Xr/dhgoFPV6DUKIv0+2xzxEYmNj8fLywsvLi9jY2FrH6XQ6goKCcHV1xc3NjcmTJ3P48OEa47Zt28aIESNYvnz530kbgKCgIE6dOlVtm08//ZT9+/c/sJyEEOJhkPO//5QV7AClRfz8w5fE/XaaLYsPcCQ0GEOD3zA0UmJiqibXvGO52KwiDX/kFddD1kKIuiYr7Y+AvXv3cv78eSIiIlCpVCQmJuLp6UlUVBTm5uZVxu3Zs4elS5fi4ODwt3M4efIkQ4YMqbbNm2++WWM/dZmTEEI0dKUaHdq8DJT/93pb75actYKR/73A4wVtMXw8t1z75rosUu94baCAFmr5Uy9EYyAr7Q+psLAwJk6ciJOTEzExMdW2TU1NRaPRUFxcttpibW1NUFAQKlXVv8jXrFnDuXPn+PDDDzl06BCOjo689dZbjBkzhvT0dHbs2IGLiwuurq74+/uTn58PgIODA4sWLcLd3Z1nn32WpKQkdu7cSXx8PAEBASQkJFQ5pr+/P+Hh4SQnJ+Pu7s7cuXNxcXHhpZdeIisrq0JOQgjR2P2eXsT3xX0BuN7CkLNWTel/1YYnbnWgjZGK5gVW5dp3LzqKLjcDKCvYR3c0xcRIWaFfIcTDR4r2h5SJiQkREREEBASwdu3aatu6u7uTl5eHvb09Pj4+BAcHY21tjampaZUxvr6+2NnZsXjxYp588kkARo4cSXR0NGlpaXzxxReEhIQQGRlJkyZNWLNmDVD2BsHe3p6dO3cyaNAgNm/ejLu7u74vGxubWl3fpUuXmD59Onv27KFFixZERkZWmpMQQjRmbVsZsUM1ia1FT/OT8jEAbK531p9XXrfhxh8t0GihoEjB6fNamp+PYWYfS94aaMWw9i3qKXMhRF2Tov0h5ezsDEDXrl3JzMystq2pqSmhoaFs27YNBwcHjhw5gouLC0lJSXc1Zt++Zas9J0+eZPTo0ZiZmQHg4eHB8ePH9e1GjBgBQLdu3cjOzr6rMW4zNzenZ8+ef7sfIYR4mBmpDJgztQsnmj/N5usvYVBsSp5xgf68Qqek5c+j+DamFeFHzSjQdcBjyhQsmxnRzFBW2IVoTGSj20NKqSz7ZayoxR0BNmzYgL29PT169MDGxobp06cze/ZsoqOjmTFjRq3HVKvVAGi12nLHdTodpaWlFdopFAp0Ol2t+69srL/bjxBCPOz6dzXhq7m2aDQ6cjXW/ND8IEXflKIuUIECrOxa8s+JC9AoFBgayu0dhWisZKX9EZCbm8uqVav0+87z8vJISkrC1tb2nvobPHgwMTExZGVlAWV3dKnpS6ZKpRKNRnNP4wkhhAClUkFLIzPG9p6I7ezRWP2jH4+9PZS2HsMwMDKSgl2IRk6K9kfArFmz6NKlC25ubowbN46pU6cyceJEhg8ffk/99ejRg1deeQUvLy+eeeYZcnJyeOutt6qNGTFiBB988AE//vjjPY0phBDiTwqVAU0eM0XVQl1zYyFEo6DQyb4D0UgVFRURHx+PnZ1due029SUuLo6BAwfWdxqNjszr/SHzWvdkTu8Pmdf7Q+a17tU0pzXVLbKnvZHYuHEjERERFY5bWFjw5ZdfVhpTWFiIh4dHpef8/PxwcnKq0xwBli9fzrFjxyoct7OzY8mSJXU+nhBCCCFEYyBFeyPh7e2Nt7f3XcUYGxuza9eu+5NQFebNm/dAxxNCCCGEaAxkT7sQQgghhBANnBTtQgghhBBCNHBStAshhBBCCNHASdEuhBBCCCFEAydfRBVCCCHuUW5BKcmpRXQ2N+TWqd8pSS2gqY05Jn0s6zs1IUQjI0W7EEIIcQ8Onslk5Y4kikt1/FOdRxddKQB58aloC0oxHdq+njMUQjQmsj3mPomNjcXLywsvLy9iY2NrHafT6QgKCsLV1RU3NzcmT57M4cOHa4zbtm0bI0aMYPny5X8nbQCCgoI4derU3+5n//79fPrppxWO356bv0pOTsbR0REAf39/wsPD/3YOQghxP5RqdHy+5zrFpTpaotUX7LflnLlR1i47m+Q1azjmt4j4zef5bMkmdm/fRkZ6an2kLYR4iMlKewOzd+9ezp8/T0REBCqVisTERDw9PYmKisLc3LzKuD179rB06VIcHBz+dg4nT55kyJAhf7sfJyen+/KAJiGEqG9FJVpy8jUAFKKgRAeGijsa5CVz+noOBRt3kftLJvEGBRS3z2Jkz0JamWi4cuIYqe1nUGjclu5mTejdpln9XIgQ4qEhRfsDEBYWxrJly8jJyWH+/Pn61eTKpKamotFoKC4uRqVSYW1tTVBQECpV1T+qNWvWcO7cOT788EMCAgL48MMP6dOnDxcvXuS///0vBw8eZMOGDSgUCnr16sW//vUvmjVrhoODA2PGjCEuLg6lUsmqVauIi4sjPj6egIAA1qxZg42NTaVj+vv706RJEy5cuEBOTg5vv/02u3bt4tKlSzg7O+tXyk+cOMGyZcv4/vvvWbp0KWq1Gmtra30/Fy5cYP78+QD06NGj0rF27tzJpk2b0Gq19OrViw8++KDSx/sKIcSD0sxYycBuJsRdzqUQBd9ojHFT3UKBAgWFXG8aTciNErx/ucV5fqNIbUn/7iW0Mikr9H80eZbUfFPIv8WF9FsUarQMamtSz1clhGjIZHvMA2BiYkJERAQBAQGsXbu22rbu7u7k5eVhb2+Pj48PwcHBWFtbY2pqWmWMr68vdnZ2LF68mCeffBKAkSNHEh0dTVpaGl988QUhISFERkbSpEkT1qxZA5S9QbC3t2fnzp0MGjSIzZs34+7uru+rqoL9tps3b7J161ZmzpzJu+++y4cffsjOnTvZtm0bubm5+nbFxcX4+/sTFBREeHg4xsbG+nPz5s1jzpw5RERE0KFDhwpjXL58mW3bthEaGsquXbswNzdn/fr11eYlhBAPgr/nY0wa0YZ+XZrT8WlrWll+Q3PVDloafcFJ67LfgddaFAI6FDotps3KCvZ8RQtSlZ3L9fXTzfwHnL0Q4mEjRfsD4OzsDEDXrl3JzMystq2pqSmhoaFs27YNBwcHjhw5gouLC0lJSXc1Zt++fYGyrS6jR4/GzMwMAA8PD44fP65vN2LECAC6detGdnb2XY0xcuRIAKysrOjWrRvm5uY0b96cli1blusrISEBCwsLunTpAsDEiRMByMjI4ObNmwwfPhyASZMmVRgjNjaWa9euMWXKFCZMmMD+/fu5evXqXeUphBD3Q/MmSl4eZ8XSGV147kkLjNq2xEj5CwpFMc2Lygr0c8ObAGBUlMYfN8viDHVFGPxlD3wzQ+UDzV0I8fCR7TEPgFJZ9stYoVDU0BI2bNiAvb09PXr0wMbGhunTpzN79myio6OZMWNGrce8vX1Eq9WWO67T6SgtLa3QTqFQoNPpat0/gKGhof7f1W3f+Wvfd85HZcfvpNFoGDt2LAEBAQDk5+ej0WjuKk8hhHgQmoyejiYtCW3abzz5u4YrnZqS9jgUO1jQ5mQWv528SMtm/Wjbzoi+hpc5XWoLgLFSwZMdq/40VQghQIr2Bic3N5dVq1bx8ccf06xZM/Ly8khKSqp0Fbo2Bg8ezNdff82sWbNo2bIl27Ztq/FLpkqlsk4LYxsbG9LS0rh06RI9evQgKioKADMzM6ysrDh48CCjRo1iz549FWKHDBnCV199xWuvvUarVq1YsGABnTp14o033qiz/IQQoi4ozdrR4uXP0GbdoGXzVixQGvBL3mVa9jKjzYutiTt1isFD7QGwA4bdKiG9sJROJmrUKvngWwhRPSnaG5hZs2axcuVK3NzcUKvVGBgYMG3aNP0WkrvVo0cPXnnlFby8vCgpKaFXr158+OGH1caMGDGCDz74gOXLlzNgwIB7GvdOhoaGfPLJJ8ydOxeVSkXPnj315wIDA3n33XdZtWoV/fr1qzR/X19fXnrpJbRaLba2tsycOfNv5ySEEPeDQqFAadYOAEOgR4s/f98pDY3KtW3VxJBWTQwRQojaUOjudk+EEA+JoqIi4uPjsbOzaxB3m4mLi2PgwIH1nUajI/N6f8i81j2Z0/tD5vX+kHmtezXNaU11i6y014ONGzcSERFR4biFhQVffvllpTGFhYV4eHhUes7Pz+++3A99+fLlHDt2rMJxOzs7lixZUufjCSGEEEKIyknRXg+8vb3x9va+qxhjY2N27dp1fxKqwrx58x7oeEIIIYQQonLyzRchhBBCCCEaOCnahRBCCCGEaOCkaBdCCCGEEKKBk6JdCCGEEEKIBk6KdiGEEEKUcz3pN37++edyT9AWQtQvuXtMAxQbG8uaNWsA8PX1rfEJprfpdDpWr17Nvn37UCgUGBkZ4efnx8iRI6uN27ZtG6tXr8bFxeVv3zEmKCiIYcOG8cQTT/ytfoQQQtQNbfZNCr5bh+ZmIobW/Wji+A8URk3KzhUXU3jtGup27VA2b86tvBz+88libhaWlQfNmhjz2uu+tGrVqj4vQQiBFO2Nyt69ezl//jwRERGoVCoSExPx9PQkKioKc3PzKuP27NnD0qVLcXBw+Ns5nDx5stZvMoQQQtS9I+eyiDqeThO1AVNGWdB+/0do/rgMQFHm7+h0OpqN9eXGxTjSVwdjUFCEwtCQdj4+HLnwvb5gByi4dYsDMd/x7OQp9XU5Qoj/I9tjGriwsDAmTpyIk5MTMTEx1bZNTU1Fo9FQXFwMgLW1NUFBQahUVb83W7NmDefOnePDDz/k0KFDODo68tZbbzFmzBjS09PZsWMHLi4uuLq64u/vT35+PgAODg4sWrQId3d3nn32WZKSkti5cyfx8fEEBASQkJBQ5ZiRkZFMmDCBSZMm4efnR1FREbGxsXh5eenb+Pv7Ex4eTnJyMq6urrz55puMHz+el19+maysrLuYQSGEeHSc+SWXj/57jZ+u5nH8Yg5L1p/TF+y3lf5yiit5l7nw9VoMCooA0JWUkLJ5Mzeu/6pvZ9OhkMkjsrAxPcAfl7ag02kf5KUIIf5CivYGzsTEhIiICAICAli7dm21bd3d3cnLy8Pe3h4fHx+Cg4OxtrbG1NS0yhhfX1/s7OxYvHgxTz75JAAjR44kOjqatLQ0vvjiC0JCQoiMjKRJkyb6bTupqanY29uzc+dOBg0axObNm3F3d9f3ZWNjU+WYq1at4quvviI8PJz27dtz9erVaq/r559/5vnnnycqKoouXbrocxBCCFHesfPZ5V5nFKspVpuVO2bQ5jHOxR6nvYEbhu0nY9DCDoBfLR4jc/irGI+eSnObngzqXoDaUIeBQkdm8iGy/zj+wK5DCFGRFO0NnLOzMwBdu3YlMzOz2rampqaEhoaybds2HBwcOHLkCC4uLiQlJd3VmH379gXKtrqMHj0aM7OyX/geHh4cP/7nL+0RI0YA0K1bN7Kzsyt2VIXRo0fj6enJihUrGDNmDLa2ttW279y5s37Ljbu7e7kchBBC/KldK3W51zoMyB3+OormZXvSDdo8huET3tgd6YhKZYZCZYLKbBC5bfsQ6/QchU1MUTQ3Q9P9SW4oHy/X162cXx/UZQghKiFFewOnVCoBUCgUNbbdsGEDly5dwsbGhunTpxMSEoKDgwPR0dF3NaZaXfZLX6st/1GoTqcrdyeB2+0UCgU6na7W/QcEBBAUFISpqSlz585l165dFfooKSnR//vO7T06nU4/J0IIIcobO7gV/bo0B8BAAa5Dzek61B5T342YvvE1pi9/RnGWMQa68n9Tknv2BkX5kuCmgXW5183Mqv4EVQhx/0nR3ojk5uayatUq/b7zvLw8kpKSalzJrsrgwYOJiYnR7yHftm1bjV8yVSqVaDSaKs+Xlpby9NNPY2ZmxiuvvMKECRO4ePEiZmZmJCUlUVRURFZWFnFxcfqYxMRELl68CMCOHTtqvBuOEEI8qoyNlCyd0YV1s3vwtX9PZk3oAIDCQImBSdkNCdRWzSvE9ehZ8e9E3pUmaLRmqNSmtOniRgvLgfc3eSFEteTuMY3IrFmzWLlyJW5ubqjVagwMDJg2bRrDhw+/p/569OjBK6+8gpeXFyUlJfTq1YsPP/yw2pgRI0bwwQcfsHz5cgYMGFDhvEqlws/Pj3/84x+o1WrMzc1ZtmwZ5ubmPPnkk4wfP5727dszcOCffxxMTU0JCgrit99+w8bGhsWLF9/T9QghxKOifWt1lefU7Uwwf/pxMg9dQ1uqpUX/trQe0J5Rv+fyfVI2pRot6l8ysNK2pceTizBUS6kgREOg0N3NvgYhHrDk5GRefPHFGu+cU5mioiLi4+Oxs7PTb+WpT3FxceXejIi6IfN6f8i81r2GNqc6jRadFgwM//zQXaPVUarRYqDVPTTFekOb18ZC5rXu1TSnNdUtD8d/kUJv48aNREREVDhuYWHBl19+WWlMYWEhHh4elZ7z8/PDycmpTnMEWL58OceOHatw3M7OjiVLltT5eEIIIe6OQmmA4i9fEVIaKFAayPeGhGiIpGh/yHh7e+Pt7X1XMcbGxuzatev+JFSFv/tk1ds6dOhwT6vsQgghhBCNiXwRVQghhBBCiAZOinYhhBBCCCEaOCnahRBCCCGEaOCkaBdCCCGEEKKBk6JdCCGEEEKIBk6KdiGEEEIIIRo4ueWjEKJat7KvkfvrYYzNHkdV0pbfovahUxjwmOszpBUYozJS0a6LGQqFor5TFUIIIRqtRrPSHhsbi5eXF15eXsTGxtY6TqfTERQUhKurK25ubkyePJnDhw/XGDdhwoRqzyclJfHee+/VOo8HJSUlhZdffrlO+rrbuRYPn6yrMSSe+Ii01KMk/xxCYvQydD+eRHv+d6I+OcGez0+y89Mf2PP5SXRaebiyEEIIcb888ivte/fu5fz580RERKBSqUhMTMTT05OoqCjMzc2rjKvpYUW///47SUlJdZ3u32ZpaVnlk1OF+Kv0y7tB+ecKuqKrEuWNsVzR5pOhS8ZY04yCfEuSLqaSdCmVTj0t6jFbIYQQovFqlEV7WFgYy5YtIycnh/nz5+Po6Fhl29TUVDQaDcXFxahUKqytrQkKCkKlqn5qbGxsSEhIYPXq1aSkpHDt2jWuX7/Oc889x2uvvcbixYtJTk7mww8/5IMPPiA4OJi9e/ei0WhwcHBg7ty5XL9+nRkzZmBmZoaxsTGurq4cPHiQrKwsbt68ydSpU7l+/TrHjx+nZcuWrFu3DrVaXWVO9vb2PPXUU5w+fZpmzZrx73//mw4dOuDo6EifPn24ePEigYGBvPXWW8TExODv70+TJk24cOECOTk5vP322+zatYtLly7h7OyMv79/red8586dbNq0Ca1WS69evfjggw9Qq9U4ODgwZswY4uLiUCqVrFq1io4dO7J8+XKOHj2KgYEBzs7O+Pr6kp+fz8KFC7l8+TIajYaXX34ZFxcXwsPDOXLkCNnZ2SQlJTF8+HAWLFhQ69xE9YoK8jiy4z8k//wT7ax7MnLKazRpbgqATlMCSvhD2ZVfVE9ggAa1eSoXUy6WBRuASZMcTG/14FZ+cT1ehRBCCNG4NZrtMXcyMTEhIiKCgIAA1q5dW21bd3d38vLysLe3x8fHh+DgYKytrTE1Na31eAkJCaxfv57t27cTHBxMTk4OAQEB2NnZ8cEHH3D48GHi4+MJCwtj586dpKSksHv3bgASExMJDAxkw4YNAJw7d47PPvuM9evXs3TpUkaOHElkZCQAR44cqTaPjIwM+vfvT2RkJOPHj2fx4sX6cyNHjiQ6OppWrVqVi7l58yZbt25l5syZvPvuu3z44Yfs3LmTbdu2kZubW6vrv3z5Mtu2bSM0NJRdu3Zhbm7O+vXrgbI3Rfb29uzcuZNBgwaxefNmrl+/zuHDh9m9ezdbtmzhypUrFBUV8fnnn9OrVy/Cw8PZvHkzX3zxhf7TitOnTxMUFMTu3bs5cOAACQkJtcpN1Oy7kI/56cBO0q8nEv99FP9bt0R/zqzVANIV7Timfo4UVRf+UHXn14FDUDRprm+Tq0xHbWJA516W9ZG+EEII8UholCvtzs7OAHTt2pXMzMxq25qamhIaGkpCQgLHjh0jJiaG9evXExYWRseOHWs13pAhQzAyMsLc3JyWLVtWKHZ/+OEHzp49y6RJkwAoLCzEysqKgQMHYm5uTocOHfRtBwwYQPPmzWnevKwosre3B6B9+/bk5ORUm4darcbd3R2AiRMn8sknn+jP9e3bt9KYkSNHAmBlZUW3bt30W4JatmxJdnY2JiYmNV5/bGws165dY8qUKQCUlJTQs2dP/fkRI0YA0K1bN06dOoWlpSVqtZqpU6cyevRo5syZg1qt5tixYxQWFrJjxw4ACgoKuHz5MgD9+/fXz0nHjh3Jzs6uMS9RO7+cOVru9dVzx9FptSgMDDAf6kPW8aOgu+P9vVKFgcVjaK6dB8BQZcQkXwfUTQ0fZNpCCCHEI6VRFu1KpRKgVnez2LBhA/b29vTo0QMbGxumT5/O7NmziY6OZsaMGbUa784tKwqFAp2u/BfyNBoNL730EtOnTwcgJycHpVJJZmYmxsbG5doaGpYvfGrapnMnAwMD/TVrtVr9PPw1x6rGq2ys+fPnEx8fD8DChQtJTU3VvynS6XQolUo0Gg1jx44lICAAgPz8fDQaTYWxb8+NSqVi+/btnDhxgsOHDzN16lRCQkLQarUEBgbSq1cvANLS0jA1NSUyMrLGORb3ztyqMzcSL+pfm1l2RGHwZ5He3rovZ66Wf/OrvJWPhrL/z7lOcMHMsuY3d0IIIYS4d41ye8zdyM3NZdWqVeTn5wOQl5dHUlIStra2f6tfpVJJaWkpAEOHDmXXrl3k5+dTWlrK66+/TnR09N/O/a9u3bpFTEwMAOHh4fpV9L9jyZIl7Nq1i127dmFra8u8efPIysqioKCApKQkOnbsyJAhQ9i3bx/p6enodDoWLFjApk2bquzzwoULvPDCCwwaNIh58+bRpUsXEhMTGTp0KFu2bAHKtu24ubnxxx9//O1rENVzeuFtTMzLtrY0MzXnae93yp3v06YZXUyN73jdlHdmvoC3tzdz587liSeeeKD5CiGEEI+iRrnSfjdmzZrFypUrcXNzQ61WY2BgwLRp0xg+fPjf6rdLly7k5uYyd+5cAgMDuXTpElOmTEGj0TBixAgmTpzI9evX6+gq/vS///2PlStXYmFhwfLly+u0byMjI9555x08PT0pKSnh+eefx9LSEktLS3x9fXnppZfQarXY2toyc+bMKvvp2bMn/fr1w8XFhSZNmjBgwABGjhzJ4MGDWbBgAS4uLmg0GubOnUunTp04depUnV6HKK+tdQ9mLN9KTloKJq0sUP7lExeVgYLne7Yh/VYJSoWClsZl57t3714f6QohhBCPJIVO9hk0GrfvaCPKFBUVER8fj52dXbV33XlQ4uLiGDhwYH2n0ejIvN4fMq91T+b0/pB5vT9kXuteTXNaU93ySKy0b9y4kYiIiArHLSwsqrxneWFhIR4eHpWe8/Pzw8nJqU5zrI2achJCCCGEEI3TI1G0e3t74+3tfVcxxsbGNT5A6UGrKSdZZRdCCCGEaJwe+S+iCiGEEEII0dBJ0S6EEEIIIUQDJ0W7EEIIIYQQDZwU7UIIIYQQQjRwUrQLIYQQQgjRwD0Sd48RQgghGqPTJ2LI/nU/TRQ6utqOp7ipGenXE+nU6wlatLKs7/SEEHWo0RbtsbGxrFmzBgBfX1+GDBlSqzidTsfq1avZt28fCoUCIyMj/Pz8GDlyZLVxEyZMqPZ2jElJSXz++ed89NFHtb+Iv2n//v3Ex8fz5ptvVtlm27ZtNG3aFBcXlyrbhIeHs2zZMtq1aweU3S9+8ODBfPDBB6hUVf9f6N1338XX15f27dvf+0UIIYQAICn/D07dKEBX2oJO2cWknz+CRdtDWLQqe0bi9eQQju69TEFuMUqVIe5vLqdzr0H1nLUQoq7I9pi/2Lt3L+fPnyciIoLdu3cTGBjIO++8Q3p6erVxNd3T/ffffycpKakuU62Rk5NTtQU7wI8//khxcXGNfTk6OrJr1y527drFN998w6VLlwgLC6s2JjY2FnngrhBC1Eyn01F88XsKvvuS4ktHK5wPSwrlP+cuE3/TiPMZhezVaElsUoLa8M/fsSoVtOvcEgBNaQnHIzc9qPSFEA9Ao11pv1NYWBjLli0jJyeH+fPn4+joWGXb1NRUNBoNxcXFqFQqrK2tCQoKqnZFGcDGxoaEhARWr15NSkoK165d4/r16zz33HO89tprLF68mOTkZD788EOeeeYZAgMD0Wq1dOvWjbfffpv33nuP3Nxcbt68ycSJE3nzzTcJDw/n4MGDpKenk5qayujRo/H390ej0bBgwQIuX75MWloaNjY2fPLJJ6SlpTFjxgzMzMwwNjbG1dWVEydOsGzZMs6ePcvSpUspLCzEzMyMDz/8kKSkJGJiYjh+/Dht2rRhxIgRtZpPpVLJE088weXLl6tsExwczM2bN5k5cyabN2/m2WefpU+fPly8eJH//ve/fP311/zwww9kZ2djYWHBypUrad26NQ4ODowZM4a4uDiUSiWrVq2iY8eOLF++nKNHj2JgYICzszO+vr61ylUIIR4GhYe+pvDYNgCKTuxkb9NnMBr2PGMHm5NSeIPDKadooyu/CJNj3hMoX+CXFJX++e/CgvuetxDiwXkkVtpNTEyIiIggICCAtWvXVtvW3d2dvLw87O3t8fHxITg4GGtra0xNTWs9XkJCAuvXr2f79u0EBweTk5NDQEAAdnZ2fPDBBwD8+uuvbNq0ieXLl7Nnzx5cXFzYtm0bkZGRbNq0iYyMDADi4uL49NNP2bNnDz/99BP79u3j9OnTGBoasnXrVvbt20dubi6HDh0CIDExkcDAQDZs2KDPp7i4mICAAD7++GMiIiKYPn06//rXvxg2bBiOjo74+fnVumAHyMzM5Pvvv6dfv35Vtpk5cyYWFhYEBwdjZmYGwMiRI4mOjiYvL4+rV68SGhpKdHQ07dq1Y/fu3UDZmyZ7e3t27tzJoEGD2Lx5M9evX+fw4cPs3r2bLVu2cOXKFYqKimqdrxBCNHSFpyLLve6ff4igiGRiTmeSXZKNliJ0lJZr06zAkNSsPxeUcrO1/J6YpX/d13Hifc1ZCPFgPRIr7c7OzgB07dqVzMzMatuampoSGhpKQkICx44dIyYmhvXr1xMWFkbHjh1rNd6QIUMwMjLC3Nycli1bkpubW6GNtbU1JiYmAPj4+HD8+HHWr1/P5cuXKSkp4datW0DZFpfWrVsDMG7cOI4fP877779Py5Yt2bx5M1evXuXXX3+loKBsRcXc3JwOHTqUG+vXX38lKSmJ1157TX8sLy+vVtdyW0xMDBMmTECn06HT6Xjqqaeq3Qdfmb59+wLw2GOPMW/ePLZv305iYiJnzpyhU6dO+na330B069aNU6dOYWlpiVqtZurUqYwePZo5c+agVqvvamwhhGjIFCojdMW39K+LdYYAHD2fzXv9utBK3Zw87RFMNKMBMCzR8sQvBagzXfipyc+AEeOeH4txq9Ok/Z7I432GYd27dt/lEkI8HB6Jol2pVAKgUChqbLthwwbs7e3p0aMHNjY2TJ8+ndmzZxMdHc2MGTNqNd6dBaVCoah0X7exsbH+38uWLSMpKQkXFxecnZ05duyYPuZ27gBarRalUsn+/fsJCgrixRdfZNKkSWRmZurb39nvnXEdOnTQ77vXaDSkpaXV6lpuc3R0ZNmyZXcV81e35yU+Pp7Zs2fj7e3NmDFjMDAwKDdHt9vdnjuVSsX27ds5ceIEhw8fZurUqYSEhGBtbf238hFCiIbCeMTz3Ir+XP86vNgJgHatjFAqVPzTZi77bkSTfusA1k0G0DfdnCslpZzP0aLQ2DJyih2mndvRt/Nj9XUJQoj77JHYHnM3cnNzWbVqFfn5+UDZinRSUhK2trZ/q1+lUklpaWml544ePYqPjw9jx44lMTGRlJQUtFotAEeOHCE3N5eioiKioqIYOXIkP/zwA2PHjuXZZ5+lRYsWxMbGotFoqhz78ccfJzs7m1OnTgGwY8cO5syZo8+ruti/o6q+T548yeDBg/H09KRz584cPHiw2hwuXLjACy+8wKBBg5g3bx5dunQhMTHxvuQshBD1wXigCyY+QZzv7MV7BW9woGQQXa2aMHmkBQBmRq2Y0smT12xe5JlOdrTr344R8xx4/iNnXlrkRJd+7er5CoQQ99sjsdJ+N2bNmsXKlStxc3NDrVZjYGDAtGnTGD58+N/qt0uXLuTm5jJ37lwmT55c7twrr7zCO++8g7GxMW3btsXOzo7k5GQAWrVqxcsvv0xmZiZubm6MGDECCwsL5syZQ1RUFIaGhgwYMEDfvjJGRkZ8+umnLFmyhKKiIpo3b87y5csBGDZsGJ988gkmJiY888wzf+sa/2rUqFHMnDmTdevWlTs+btw4fH19cXV1BSh3vZXp2bMn/fr1w8XFhSZNmjBgwIAab8EphBAPG5VlFxye74JdXgnZ+Roes6z4yelfGTczegCZCSEaAoVO7snXYIWHh+vv/iLuXlFREfHx8djZ2TWIPfBxcXEMHDiwvtNodGRe7w+Z17onc3p/yLzeHzKvda+mOa2pbnkkV9o3btxIREREheMWFhZ8+eWXlcYUFhbi4eFR6Tk/Pz+cnJzqNMcHTeZECCGEEKLheiSLdm9vb7y9ve8qxtjYuMYHKNW1SZMmMWnSpAcy1sMyJ0IIIYQQjyL5IqoQQgghhBANnBTtQgghhBBCNHBStAshhBBCCNHASdEuhBBCCCFEAydFuxBCCCGEEA2cFO1CCCGEEEI0cI/kLR+FEOJhpNHq2P//9tPi+P9ooium+Zinaf7U01g0NaS4sJQLx34jJ62ALv3a0cGmdX2nK4QQog41upX22NhYvLy88PLyIjY2ttZxOp2OoKAgXF1dcXNzY/LkyRw+fPg+Znr3JkyYUOlxR0dHkpOTKxy/PQe35+RerF69mtWrV99TbG3da25CPGq2RVzAKmYzpgVpXO3ely2texF8NoU1313l/Mffc+ZoKJdvbGLzf1dzcO8P9Z2uEEKIOiQr7f9n7969nD9/noiICFQqFYmJiXh6ehIVFYW5uXl9pwfQaB9kdOLEifpOQYgGp/j8QQqPbUeHDuMhk1D3ceb6mR/ph46CZi2IH+wMBmXrLlnNjfixTynDmiYBoNXmcfRCBENG9aNJkyb1eRlCCCHqSKMu2sPCwli2bBk5OTnMnz8fR0fHKtumpqai0WgoLi5GpVJhbW1NUFAQKlX1U3TgwAFWrVqFVqulY8eOLFy4kNatW3Ps2DGWLVuGTqfDysqKjz/+mObNm1faR2xsLF988QWGhoYkJyfj6OhI06ZN+e677wAIDg6mdevW2NjYkJCQQFZWFnPnzuXGjRt06dKFoqIiAIqLi5k/fz7x8fG0b9+ezMzMCmNdu3aNBQsWkJWVhbGxMf/617/o2bNnbadU7/bq+xtvvAGUrfZ//fXXnDhxgiNHjpCdnU1SUhLDhw9nwYIFlJaWsmDBAi5fvkxaWho2NjZ88skn/Pvf/wbgueeeY/v27fprBAgPD+fEiRMsW7aM5cuXc/ToUQwMDHB2dsbX1/eucxbiYVF64wr5u/4N6AAo2LOSi82KyB5+BEKhoHlLfcF+m6alCorL/m1gAH2s8/j999/p0qXLg01eCCHEfdHotsfcycTEhIiICAICAli7dm21bd3d3cnLy8Pe3h4fHx+Cg4OxtrbG1NS0ypj09HTef/991q5dS2RkJAMGDGDhwoUUFxczZ84cli9fTmRkJN27dyciIqLa8X/66Sc+/PBDduzYwebNm2nVqhXh4eHY2NgQFRVVrm1QUBA9e/YkMjKSadOmkZaWBkBISAhQ9qlBQEAAv/32W4Vx5s2bx9y5c4mIiGDRokX885//rDave3H69GmCgoLYvXs3Bw4cICEhgdOnT2NoaMjWrVvZt28fubm5HDp0iICAAAC2b99eZX/Xr1/n8OHD7N69my1btnDlyhX9GxUhGqPSxNPcLthvi8zYR0YbHYdGGtA0O5kmeVnlzrcvvVTutaEK2rVrd58zFUII8aA06pV2Z2dnALp27VrpqvOdTE1NCQ0NJSEhgWPHjhETE8P69esJCwujY8eOlcacPXuWPn360KFDBwA8PDwIDg4mISEBS0tLbG1tAZg9e3aNuXbv3l3/B9bMzAx7e3sArKysyMnJKdf2xIkTfPzxxwAMGjRIn9+JEyfw8PAAoHPnzvTv379cXH5+PvHx8bz77rv6YwUFBWRmZmJmZlZjjrXVv39//acKHTt2JDs7m8GDB9OyZUs2b97M1atX+fXXXykoKKhVf5aWlqjVaqZOncro0aOZM2cOarW6zvIVoqFRWlhXOFag1IIOzvVVEt9bh6F2MyPMZpOelodF/HU6q7Og/Z/tm7YeTNOmTR9c0kIIIe6rRl20K5VKABQKRY1tN2zYgL29PT169MDGxobp06cze/ZsoqOjmTFjRqUxWq223GudTkdpaSmGhoblxszNzSU/P5+2bdtWOb6hoWGluVdGoVCg0+kqtP3r8b9u7dFqtRgZGZXbG3/jxg1atmxZ5VjV5XDn9ZeUlOj/fWdBfTun/fv3ExQUxIsvvsikSZPIzMwsl+uddDodCoWC0tJS/XVs376dEydOcPjwYaZOnUpISAjW1hULGyEaA8MuT6AeMomiU5GADnX/cdhbWhB94xsAdAYK+rfpzqTObaB7G271acUvp7NRGVnRzMSA5q16YNp2UP1ehBBCiDrVqLfH3I3c3FxWrVpFfn4+AHl5eSQlJelXyyvTt29ffvrpJ/2dW7Zu3cqQIUOwtrYmPT2dK1euALBu3Tq2bNlSZ7na29vrC++zZ8/qt8HY29sTGRmJVqvl+vXr/Pjjj+XiTExM6Ny5sz726NGjTJs27Z5yMDMz01/f2bNnSU1Nrbb9Dz/8wNixY3n22Wdp0aIFsbGxaDQaoOxNx+0C3czMjMuXL6PT6YiJiQHgwoULvPDCCwwaNIh58+bRpUsXEhMT7ylvIR4WTZ18aPnPUFr+M5SmT7+Cq5U70x57kUGthvBsBw+e7/Sivm2T5qbYjRhP9yEv0b6nlxTsQgjRCDXqlfa7MWvWLFauXImbmxtqtRoDAwOmTZvG8OHDq4xp3bo1CxcuxNfXl5KSEqysrFiyZAlqtZrAwEDeeecdSkpK6NSpEytWrKizXP38/PD392f8+PE8/vjj+u0xzz//PJcvX2bs2LG0b9+e7t27V4gNDAxkwYIFrFu3DkNDQ1auXFnjJxH/+c9/+Oqrr/SvP/zwQ8aNG0d0dDTjxo2jV69eNX6Z9bnnnmPOnDlERUVhaGjIgAED9G92nJycmDBhAuHh4cyePZtXX32V1q1bM3DgQDIzM+nZsyf9+vXDxcWFJk2aMGDAAEaOHHm30ybEQ0dhZPznvxUKhrUewbDWI+oxIyGEEPVFoatqj4IQD7mioiLi4+Oxs7NrEHvg4+LiGDhwYH2n0ejIvN4fMq91T+b0/pB5vT9kXuteTXNaU93ySK20b9y4sdK7uFhYWPDll19WGlNYWKj/cudf+fn54eTkVKuxT506xaJFiyo9FxwcjKWlZa36uR/uZV6EEEIIIcSD80gV7d7e3nh7e99VjLGxcZ081OiJJ55osA9Hupd5EUIIIYQQD458EVUIIYQQQogGTop2IYQQQgghGjgp2oUQQgghhGjgpGgXQgghhBCigZOiXQghhBBCiAbukbp7jBBCiPtLm59FadJ5lJaPozRrpz+u0WmISdnHhcxz2P1USpcUNSbdetDq6adRqFTcupZNzsnfUSgVmA7tgLpd83q8CiGEaHgaXdEeGxvLmjVrAPD19WXIkCG1itPpdKxevZp9+/ahUCgwMjLCz8+vUTx58+zZs0RHRzN37tz6TuVvS05O5sUXXyQmJqa+UxFC/EXJ1TjywhZDaTGgQDfqFX5uOZLO7YyJzfsf397cw4hDGqzOaslWqEk/8wtFN25gPn4Kv2/6CTRlz/rLu5BGpzcGoWpR/w9FE0KIhqLRFe33au/evZw/f56IiAhUKhWJiYl4enoSFRWFubl5faf3t1y5coX09PT6TkMI0cjdOrjp/wp2AB35Bzbx/6xtaJNpjMKgD80N8ulx6Vt+MbLjV6UxKpNT5Fw6Qcs/suld8jgWBi3LIos15F9Kw3Rw+3q7FiGEaGgaddEeFhbGsmXLyMnJYf78+Tg6OlbZNjU1FY1GQ3FxMSqVCmtra4KCglCpqp+iAwcOsGrVKrRaLR07dmThwoW0bt2aY8eOsWzZMnQ6HVZWVnz88cc0b175x703btxgzpw5FBQUYGBgQEBAAP369cPR0ZGvv/6aDh066D9BCAkJwcvLix49enDq1CmKiop47733cHBwqLTvnJwcgoKCKCgo4PPPP8fS0pKIiAiysrIYPXo0Li4uLFq0iIKCAjIyMpg5cyaenp6sXr2alJQUrl27xvXr13nuued47bXXuHTpEu+//z6lpaWo1WqWLl3K4cOHuXbtGv/6178AWLZsGW3btuW5555j4cKFXL58GY1Gw8svv4yLiwvh4eHlcujWrRvr1q1DqVTSoUMHAgMDUSqVLFiwgMuXL5OWloaNjQ2ffPJJLX/yQoj6oLuVW+71dYteWFo3+b9XKpprR3D1sd9Jz7RkkP0BTEyN0Wjhp6u/EfVbGu6KYZgpyn5Pyiq7EEKU16i/iGpiYkJERAQBAQGsXbu22rbu7u7k5eVhb2+Pj48PwcHBWFtbY2pqWmVMeno677//PmvXriUyMpIBAwawcOFCiouLmTNnDsuXLycyMpLu3bsTERFRZT9hYWGMGjWK8PBw/Pz8iIuLq/Ha8vLyiIiI4OOPP8bf35/i4uJK27Vo0QI/Pz8cHR157bXXAEhJSSEiIoK3336b7du3M2vWLHbs2MHXX3/NihUr9LEJCQmsX7+e7du3ExwcTE5ODps2bWL69OmEh4czZcoUzpw5g4uLC/v27UOj0aDT6fj2228ZP348n3/+Ob169SI8PJzNmzfzxRdfkJSUVCGHVatW8dVXXxEeHk779u25evUqp0+fxtDQkK1bt7Jv3z5yc3M5dOhQjfMihKg/Rn2eKvf6bNP+FdpctunIY93iMTE1AkBpAP0ev4XaSMNV7R8ANO3eiqbdH+5POIUQoq416pV2Z2dnALp27UpmZma1bU1NTQkNDSUhIYFjx44RExPD+vXrCQsLo2PHjpXGnD17lj59+tChQwcAPDw8CA4OJiEhAUtLS2xtbQGYPXt2tWPb29vzxhtvcPHiRZ588kleeOGFGq9typQpANja2tKmTRsSEhLo3bt3jXEAPXv21H+C4O/vz5EjR/jPf/7Dzz//TEFBgb7dkCFDMDIywtzcnJYtW5Kbm8uTTz7JwoULOXLkCI6OjowePRqlUkmPHj2IjY3F0NAQa2tr2rRpw7FjxygsLGTHjh0AFBQUcPny5Qo5jB49Gk9PT5ydnRkzZox+3lq2bMnmzZu5evUqv/76a7nchBANj7GDJwambShNPENsemsO/vE4to//eV4BOA59gqLDp8vFGRhAM2Mtbft2oUO/gfIlVCGEqESjLtqVSiUACoWixrYbNmzA3t6eHj16YGNjw/Tp05k9ezbR0dHMmDGj0hitVlvutU6no7S0FENDw3Jj5ubmkp+fT9u2bSvtZ+DAgURFRXHw4EG++eYbIiIi2LBhg75PgNLS0kqv7XYeNW3juZOxsbH+32+99RYtWrRg9OjRjBs3jj179ujPqdV/fjytUCjQ6XQ888wz9O/fnwMHDrBx40YOHjzI4sWLmTBhAt988w2Ghoa4urrq8woMDKRXr14ApKWlYWpqSmRkZLkcAgICuHTpEocOHWLu3Ln4+vrSvHlzgoKCePHFF5k0aRKZmZn6uRBCNEwKhQJ1n6dQ93mKJzU6cmPTiE8rwNBciWlTFQ4dWtCrdVN+s3Mk72a4Pi7vlgHq5h0Z4jis3O8dIYQQf2rU22PuRm5uLqtWrSI/Px8o236SlJSkX/WtTN++ffnpp59ITk4GYOvWrQwZMgRra2vS09O5cuUKAOvWrWPLli1V9rNixQp2797NxIkTef/997lw4QIAZmZm+j72799fLuabb74B4Ny5c+Tk5NC9e/cq+1cqlRWK/tuOHj2Kn58fzs7OHD58GACNRlNlX2+99Rbnzp1j6tSpvPnmm/pcnZycOHnyJEePHuWpp8o+Ih86dKj+um/evImbmxt//PFHuf5KS0t5+umnMTMz45VXXmHChAlcvHiRH374gbFjx/Lss8/SokULYmNjq81LCNGwKJUKJgxrw3zXx3hnWAde6deWXq2bAtCpz9O07fE8xi26oGjaA3ObGbw263Up2IUQohqNeqX9bsyaNYuVK1fi5uaGWq3GwMCAadOmMXz48CpjWrduzcKFC/H19aWkpAQrKyuWLFmCWq0mMDCQd955h5KSEjp16lRur/hfeXl5MXv2bMLDw1EqlSxfvhwAPz8/Fi1axJo1ayp80TQpKYmJEycCsHLlynIr73/Vp08f1qxZw7///W8ef/zxcufeeOMNnn/+edRqNT169KB9+/b6NyGVefXVV5k/fz5r167F0NCQBQsWAGWr9wMGDKC4uJhmzZoBZbfcXLBgAS4uLmg0GubOnUunTp04deqUvj+VSoWfnx//+Mc/UKvVmJubs2zZMtLS0pgzZw5RUVEYGhoyYMCAavMSQjxcWnUYSasOD/8tdYUQ4kFR6GTPwUPHy8vrru5B/6gqKioiPj4eOzu7BrGCFxcXx8CBA+s7jUZH5vX+kHmtezKn94fM6/0h81r3aprTmuqWR2qlfePGjZXexcXCwoIvv/yy0pjCwkI8PDwqPefn54eTk1Otxj516hSLFi2q9FxwcDCWlpa16qcq93JtQgghhBDi4fBIFe3e3t54e3vfVYyxsTG7du3622M/8cQTddIPQEhISIVj93JtQgghhBDi4SBfRBVCCCGEEKKBk6JdCCGEEEKIBk6KdiGEEEIIIRo4KdqFEEIIIYRo4KRoF0IIIYQQooGTol0I0SBoC3IouXYOXVEBADqdjrz4eLKOHKE0J4eioiJKSkrqOUshhBCifjxSt3x8kGJjY1mzZg3AXT0ISafTsXr1avbt24dCocDIyAg/Pz9Gjrz/Tw58+eWXWbx4cZX3jD937hyhoaEsWbKEbdu20bRpU1xcXKrsb/Xq1UDZU1fryoEDB/j111+ZPn16nfUp6l/xxe/Jj/wYSotB3ZQmE+eTuvcoeSdPogWOm5uTbaHExBh0xbZYNetFX8fH6dijdX2nLoQQQjwQUrQ3MHv37uX8+fNERESgUqlITEzE09OTqKgozM3N7+vYNT2EqXfv3vTu3RuAH3/8kcGDB9/XfCoTHx//wMcU95dOp6NgXzCFlHCjpRHtcm/x24bVpCdlc0ORR14TCyz6lGLfPh+AopITxB3VkPxFGlP8R9Rz9kIIIcSDIUX7AxAWFsayZcvIyclh/vz5ODo6Vtk2NTUVjUZDcXExKpUKa2trgoKCUKmq/1EdOHCAVatWodVq6dixIwsXLqR169YcO3aMZcuWodPpsLKy4uOPP8bQ0JAPP/yQuLg4DA0NmTVrFuPGjcPR0ZGvv/6aEydOcPDgQdLT00lNTWX06NH4+/tz4sQJ1qxZw2uvvUZMTAzHjx+nTZs2WFpasmjRIgoKCsjIyGDmzJl4enrWam727t3Lhg0bKCwspLi4mI8++ogBAwbg5eVF7969iYuLIyMjg4CAANq3b09oaCgAVlZWPPvss7X/IYiGS1vKxSYFbBtiSbHKAHWplhG70/jFMA+t+WMYGpvQvX2RvrnaUEenbolcOdWOX8/dhFb1mLsQQgjxgEjR/gCYmJgQERHBgQMHWLNmTbVFu7u7O3v37sXe3p4nnniCIUOGMHHiRExNTauMSU9P5/3332fLli106NCBdevWsXDhQv79738zZ84c1q9fj62tLR9//DEREREUFRVRUFDA3r17SU9Px9vbG2dn53J9xsXFsWvXLlq0aMGLL77Ivn379DkMGzYMR0dHBg8ezIgRI1iyZAmzZs3C3t6epKQk3NzcalW0a7VaQkND+eKLL2jVqhVhYWEEBwfzxRdfAFBSUsLWrVuJiYnh008/JTw8nKlTpwJIwd6IKJSGfNOnDcWqUgCKVAZcaNkBrfPrYGxCsaaU5JJddNBc0sc0Nyz7Oo5pm6ZkabLqI20hhBDigZIvoj4Atwvirl27kpmZWW1bU1NTQkND2bZtGw4ODhw5cgQXFxeSkpKqjDl79ix9+vShQ4cOAHh4eHD8+HESEhKwtLTE1tYWgNmzZ+Pl5cXJkydxdXXFwMCANm3aEBUVhZGRUbk+nZycaN26NUZGRowbN47jx49XOb6/vz9FRUX85z//YdWqVRQUFNRqXgwMDFi7di3ff/89n376KREREeTn5+vPjxhRtvWhW7duZGVl1apP8XDKNtSVe63p7QHGJgDolCrOGD7DnS2yfnucLv3bYd2n7QPMUgghhKg/UrQ/AEqlEgCFQlFj2w0bNnDp0iVsbGyYPn06ISEhODg4EB0dXWWMVqst91qn01FaWoqhoWG5MXNzc7lx4wYqlarc8WvXrlFcXFxpzrf7v/P1X7311lvs27ePLl268NZbb9V4jbfl5+czefJkkpOTGTRoEF5eXuXOq9VqoHbzJh5uA8wGlXutbVb+y9BFBk3hWn8M/uiC+tozDP/HFMb8YwAGBvL/DSGEEI8GKdobmNzcXFatWqVfcc7LyyMpKUm/Wl6Zvn378tNPP5GcnAzA1q1bGTJkCNbW1qSnp3PlyhUA1q1bx5YtWxg0aBDffPMNOp2O9PR0XnjhhQpF+5EjR8jNzaWoqIioqKgKd69RKpVoNBoAjh49ip+fH87Ozhw+fBhAf646v/76KwqFgldffZUhQ4awb9++GuOUSiWlpaU19i0eLs8/9gJj27nQw6Qn49u5MaRD+bvCdG1mRNvHnqJtl6l0ft4FU4tm9ZSpEEIIUT9kT3sDM2vWLFauXImbmxtqtRoDAwOmTZvG8OHDq4xp3bo1CxcuxNfXl5KSEqysrFiyZAlqtZrAwEDeeecdSkpK6NSpEytWrMDQ0JDFixfj5uYGwL/+9S+aN29ers9WrVrx8ssvk5mZiZubGyNGjCA2NlZ/ftiwYXzyySeYmJjwxhtv8Pzzz6NWq+nRowft27fXv4GoTo8ePbC1tWXs2LEoFAocHByIi4urNmbQoEHMmzeP1q1bV1iZFw8vIwM1LlYT9K81Wh0mhob8mlNI22ZGjGjfArVK1hiEEEI8uhQ6nU5XczPxKAkPD+fEiRMsW7asvlP5W4qKioiPj8fOzk6/1aY+xcXFMXDgwPpOo9GReb0/ZF7rnszp/SHzen/IvNa9mua0prpFVtrrwcaNG4mIiKhw3MLCosp7pRcWFuLh4VHpOT8/P5ycnOo0x7rk5eVFTk5OheNTp06t9a0hhRBCCCEeZVK01wNvb2+8vb3vKsbY2Jhdu3bdn4T+YtKkSUyaNKnO+gsJCamzvoQQQgghHkWySVQIIYQQQogGTop2IYQQQgghGjgp2oUQQgghhGjgpGgXQgghhBCigZOiXQghhBBCiAZOinYhRIOn0+mQR0oIIYR4lEnR/gDExsbi5eWFl5dXuaeK1kSn0xEUFISrqytubm5MnjyZw4cP38dM4cCBA2zYsOG+jlEVR0fHap+kmpuby+uvv/4AMxIP0sWcC4QlbeVo6mFKtaX64weTsllx4jorTl7ncHI2pcU53Mq5hk6nrcdshRBCiAdL7tPegO3du5fz588TERGBSqUiMTERT09PoqKiMDc3vy9jxsfH35d+60J2djYXL16s7zTEffBD2lH+37WN+tcXM8/yj7YeXNU050jynw/mOpSUgybh/2Gpu4aBoRmPD3q7HrIVQgghHjwp2h+wsLAwli1bRk5ODvPnz8fR0bHKtqmpqWg0GoqLi1GpVFhbWxMUFIRKVf2P7cCBA6xatQqtVkvHjh1ZuHAhrVu35tixYyxbtgydToeVlRUff/wxzZs318dduXKF0NBQAKysrHjmmWdYuHAhly9fRqPR8PLLL+Pi4kJ4eDgHDx4kKyuLmzdvMnXqVK5fv87x48dp2bIl69atIzU1lddee43HH3+cK1euYGVlRWBgIC1btqxxjvLy8njvvfdISUnh5s2b2Nvbs2TJEhYvXszNmzd5/fXXWbt2be0mXDwUDqceKPf6TM4ZDm/azan246F/+Qd9ZamssCy5hrYkk6txYdB08INMVQghhKgXsj3mATMxMSEiIoKAgIAaC093d3fy8vKwt7fHx8eH4OBgrK2tMTU1rTImPT2d999/n7Vr1xIZGcmAAQNYuHAhxcXFzJkzh+XLlxMZGUn37t2JiIgoF9u1a1emTp3K1KlTefbZZ/n888/p1asX4eHhbN68mS+++IKkpCQAzp07x2effcb69etZunQpI0eOJDIyEoAjR44A8PPPP/P8888TFRVFly5dWLNmTa3m6ODBg9ja2rJ161aio6M5efIk58+fJyAgAAsLCynYGyFDA6Nyr40yion74xba5Iqf/LTW/Kb/d1ZKsux1F0II8UiQlfYHzNnZGSgrkDMzM6tta2pqSmhoKAkJCRw7doyYmBjWr19PWFgYHTt2rDTm7Nmz9OnThw4dOgDg4eFBcHAwCQkJWFpaYmtrC8Ds2bNrzPXYsWMUFhayY8cOAAoKCrh8+TIAAwYMoHnz5vqVent7ewDat29PTk7ZdobOnTszZMgQoOwNyJw5c2ocE8DFxYWzZ8+yceNGrl69SlZWFgUFBbVapRcPp7HtxvPFlTWU6sr2svf5KYt0QHnjEobHNlLaxwUMmmCjOYK5wXV9XEZyO9p0qqekhRBCiAdIivYHTKlUAqBQKGpsu2HDBuzt7enRowc2NjZMnz6d2bNnEx0dzYwZMyqN0WrLfzlPp9NRWlqKoaFhuTFzc3PJz89n9erV+n3sixcvrtBXYGAgvXr1AiAtLQ1TU1MiIyMxNDQs17ayLTt3HtPpdPprr0lISAjR0dFMmTKFYcOG8fPPP8tqaiNn26IX7/daxIWbJ2jxzQaa3oTdOkABhue/xfD8t/RvM4Ofm6VypbMa0ybQNK0LyiaDMVDW/N+SEEII8bCT7TENWG5uLqtWrSI/Px8o2+udlJSkXy2vTN++ffnpp5/0d2HZunUrQ4YMwdramvT0dK5cuQLAunXr2LJlC0uWLGHXrl3s2rWL3r17o1QqKS0tW+0cOnQoW7ZsAeDmzZu4ubnxxx9/1Dr/xMRE/RdHd+zYwciRI2sVd/ToUTw8PHBzc6OoqIhLly6h1WpRqVT63ETjY65uzYiO4+j5zPu07tGLfjoLmupUGOkM6Kozw25oe8YYj6L7FTeszk3EUDmc0S8NqO+0hRBCiAdCVtobsFmzZrFy5Urc3NxQq9UYGBgwbdo0hg8fXmVM69atWbhwIb6+vpSUlGBlZcWSJUtQq9UEBgbyzjvvUFJSQqdOnVixYkWF+EGDBjFv3jxat26Nr68vCxYswMXFBY1Gw9y5c+nUqROnTp2qVf6mpqYEBQXx22+/YWNjU2ElvyovvfQSCxYsIDg4mObNm9O/f3+Sk5N54oknsLKywsvLi5CQkFr1JR4+ho/1xsxnKQO7Habj9u1ob93CdPhw2riOorVOQVFyDoatmqAyNa7vVIUQQogHRqGTfQfiPkhOTubFF18kJiam3nIoKioiPj4eOzs71Gp1veVxW1xcHAMHDqzvNB4qOp0OtFoU1Wytknm9P2Re657M6f0h83p/yLzWvZrmtKa6RVba69nGjRsr3MUFwMLCgi+//LLSmMLCQjw8PCo95+fnh5OTU53mWJe8vLz0X1S909SpU/H09KyHjERDplAooJbfhRBCCCEaMyna65m3tzfe3t53FWNsbMyuXbvuT0J1pEOHDpWussu2FiGEEEKIuydfRBVCCCGEEKKBk6JdCCGEEEKIBk6KdiGEEEIIIRo4KdqFEEIIIYRo4KRoF0IIIYQQooGTol0IIYQQQogGTop2IYQQ90VBdiKZyUcoLkit71SEEOKh12CL9tjYWLy8vPDy8iI2NrbWcTqdjqCgIFxdXXFzc2Py5MkcPnz4PmYKBw4cYMOGDfd1jAfB0dGR5OTkKs/f/pn81blz55g/f/79TK3GHIQQ9aO0WMOFY79xcu9lMm7kUvT77xQkJHDzym5+PbmcPy5t5soPH5Cb+lN9pyqEEA+1Rvdwpb1793L+/HkiIiJQqVQkJibi6elJVFQU5ubm92XM+Pj4+9Lvw6J379707t27vtMQQjwAOUWlHEjKJq2glK5mxvy6aRfXU06CwoAfonoyuCCBFooMdFOMUdx+mK1OS2riN5i06VuvuQshxMPsoSjaw8LCWLZsGTk5OcyfPx9HR8cq26ampqLRaCguLkalUmFtbU1QUBAqVfWXeuDAAVatWoVWq6Vjx44sXLiQ1q1bc+zYMZYtW4ZOp8PKyoqPP/6Y5s2b6+OuXLlCaGgoAFZWVjzzzDMsXLiQy5cvo9FoePnll3FxcSE8PJyDBw+SlZXFzZs3mTp1KtevX+f48eO0bNmSdevWkZqaymuvvcbjjz/OlStXsLKyIjAwkJYtW1aZt6OjI+PHj+fo0aOoVCpmzZrFV199xbVr15g3bx7jxo0jLS2N999/nxs3bqBQKJg9ezbDhg0jKyuLuXPncuPGDbp06UJRUdHd/WD+T2xsLGvWrCEkJAQvLy969+5NXFwcGRkZBAQE8OSTT3Ljxg3mzJlDdnY23bt35+TJkxw+fJjVq1cD8MYbb+iv5+uvv6Zly5a89957pKSkcPPmTezt7VmyZMk95SeEqDtfX7hOZmHZh7S/5xdT2qEJJQUmAJTqrtPMbAwqbRqliiPl4nSa4geeqxBCNCYNdnvMnUxMTIiIiCAgIIC1a9dW29bd3Z28vDzs7e3x8fEhODgYa2trTE1Nq4xJT0/n/fffZ+3atURGRjJgwAAWLlxIcXExc+bMYfny5URGRtK9e3ciIiLKxXbt2pWpU6cydepUnn32WT7//HN69epFeHg4mzdv5osvviApKQko20by2WefsX79epYuXcrIkSOJjIwE4MiRsj9wP//8M88//zxRUVF06dKFNWvW1Dg/rVu3Jjw8nC5duhAcHMxXX31FYGAgwcHBACxZsoRnn32W8PBwPv/8c95//33y8vIICgqiZ8+eREZGMm3aNNLS0mocqzZKSkrYunUr7777Lp9++qk+h7FjxxIZGckzzzxDSkpKtX0cPHgQW1tbtm7dSnR0NCdPnuT8+fN1kp8Q4t6cSb+sL9hvM2jXXf/vQkUpv+huoFR1QPFH23LtzDqOehApCiFEo/VQrLQ7OzsDZQVyZmZmtW1NTU0JDQ0lISGBY8eOERMTw/r16wkLC6Njx46Vxpw9e5Y+ffrQoUMHADw8PAgODiYhIQFLS0tsbW0BmD17do25Hjt2jMLCQnbs2AFAQUEBly9fBmDAgAE0b95cv1Jvb28PQPv27cnJyQGgc+fODBkyBCh7AzJnzpwaxxw5ciRQttJvYWGBSqXCyspK3+exY8e4evUqQUFBAJSWlpKUlMSJEyf4+OOPARg0aFCV83O3RowYAUC3bt3IysoC4OjRoyxduhSAp556ihYtWlTbh4uLC2fPnmXjxo1cvXqVrKwsCgoK6iQ/IcS9OZNzFC3DMKCJ/pguP6tcG8X//a/ql+Ecyr7M2KdaY2rRi+bmvR5cokII0Qg9FEW7Ulm2MVKhUNTQEjZs2IC9vT09evTAxsaG6dOnM3v2bKKjo5kxY0alMVqtttxrnU5HaWkphoaG5cbMzc0lPz+f1atX6/exL168uEJfgYGB9OpV9gcqLS0NU1NTIiMjMTQ0LNe2si07dx7T6XT6a6/Onf1W1qdWq2XTpk36bTY3b97E3NwchUKBTqfTt6vNWLWhVquB8j8vpVJZbqzbFApFufkvKSkBICQkhOjoaKZMmcKwYcP4+eefK40XQjw4zVVNyFF+QwuNCwaoKdVloLvw5xf9m6Kmi4EVACkYMHCcF+27mtRXukII0ag8FNtj7kZubi6rVq0iPz8fgLy8PJKSkvSr5ZXp27cvP/30k/7OKVu3bmXIkCFYW1uTnp7OlStXAFi3bh1btmxhyZIl7Nq1i127dtG7d2+USiWlpaUADB06lC1btgBlxbGbmxt//PFHrfNPTEzk4sWLAOzYsUO/iv53DB06lP/+979A2R58V1dXbt26hb29Pbt27QLKPm347bff/vZYVbG3t9dvBTp06JD+UwAzMzP9/J49e5bU1LJbwx09ehQPDw/c3NwoKiri0qVLFd5cCSEerNEWzhgbXyfVcCWphp/RweIH3uhchL3Bb9gbpPGc0WM0VRlhbN2SIW8Pp78U7EIIUWceipX2uzFr1ixWrlyJm5sbarUaAwMDpk2bxvDhw6uMad26NQsXLsTX15eSkhKsrKxYsmQJarWawMBA3nnnHUpKSujUqRMrVqyoED9o0CDmzZtH69at8fX1ZcGCBbi4uKDRaJg7dy6dOnXi1KlTtcrf1NSUoKAgfvvtN2xsbCqs5N+LgIAA3n//fVxdXQFYsWIFzZs3x8/PD39/f8aPH8/jjz9eq+0xp06don///vrXrq6ujB8/vsa4+fPnM2/ePLZt20aPHj3022PGjRtHdHQ048aNo1evXvTs2ROAl156iQULFhAcHEzz5s3p378/ycnJdOrU6V6mQAhRB8zV5nxgt5iLORdorjKhS/Ou6KxLGXPpKNq8DAxt7FG2bFtzR0IIIe6aQid7DhqM5ORkXnzxRWJiYuo7lTr39ddfM2zYMLp27cr58+f517/+RXh4+H0ds6ioiPj4eOzs7PRbdupTXFwcAwcOrO80Gh2Z1/tD5rXuyZzeHzKv94fMa92raU5rqlseypX2jRs3VriLC4CFhQVffvllpTGFhYV4eHhUes7Pzw8nJ6c6zbEueXl56beT3Gnq1Kl4enrW6VinTp1i0aJFlZ4LDg7G0tLynvp97LHHePvttzEwMECtVlc5hhBCCCGEqOihLNq9vb3x9va+qxhjY2P9/u2GqkOHDpWusoeEhDywHJ544on7Mk9PPvkkTz75ZJ33K4QQQgjxKGh0X0QVQgghhBCisZGiXQghhBBCiAZOinYhhBBCCCEaOCnahRBCCCGEaOCkaBdCCCGEEKKBk6JdCCHug4yMDH766ScyMzPrOxUhhBCNwEN5y0chhGhoDsQk8esPFzBtaYRlbzXfxHyHQbvH4fsfmTi0LwMGDqjvFIUQQjzEZKW9DsTGxuLl5YWXlxexsbG1jtPpdAQFBeHq6oqbmxuTJ0/m8OHDdZJTcnIyjo6OlZ57+eWXSUlJISkpiffee++e+7lt9erVrF69uto2QUFBnDp1qvqka+lu51mI+0VbWIrmVikR4Ze4GPETt26UcuNSAf878D3qUVMx6vMkRgOc+SYVNFp5+LQQQoh7Jyvt9Wjv3r2cP3+eiIgIVCoViYmJeHp6EhUVhbm5+X0b9/ZTY2NjY0lKSrpv49zp5MmTDBky5IGMJcSDkPa/X8g+cR10OloVF/IHCgC0mj9QdO6GQt1E31Zn2oZjp7bwRA8HmrToVF8pCyGEeIjJSnsdCwsLY+LEiTg5OVX6dNM7paamotFoKC4uBsDa2pqgoCBUqurfSx04cIAJEybg6urKrFmzSEtLA8DR0ZG33nqLMWPGkJGRQVFREW+++SZubm74+vqSnZ2tb5ecnMzixYuJj4/nww8/pLS0lICAADw8PHBycmLWrFkUFhbe9fX/v//3/3juuedwcXFh4sSJXL16lZ07dxIfH09AQAAJCQlcu3aN6dOnM3HiRDw9Pblw4QIA/v7+vPrqq4wdO5aYmBj27t3LlClTcHNz45lnnuHHH3+863yEuB8Kfskg+4dk0OhACx1Uxlgalf13W1J8CJXmVoWYwvwUkn76HJ1W86DTFUII0QhI0V7HTExMiIiIICAggLVr11bb1t3dnby8POzt7fHx8SE4OBhra2tMTU2rjElPT+f9999n7dq1REZGMmDAABYuXKg/P3LkSKKjo2nVqhXp6el4eXmxe/duOnbsWCGfgIAA7Ozs+OCDDzh9+jSGhoZs3bqVffv2kZuby6FDh+7q2vPy8vjuu+8ICQlhz549jBo1is2bN+Pu7o6dnR2LFy/GxsaGefPmMXfuXCIiIli0aBH//Oc/9X20bNmSvXv3MmrUKEJDQ/niiy/YvXs3M2bMIDg4+K7yEeJ+KU7Jr3CsmVoLgE6Xg/G5CCj+801vc20abTVXKC3KpKjgxgPLUwghROMh22PqmLOzMwBdu3at8a4Rpqb/n727j6v5/h8//jgXdUqliFjCcpUIczVy0Sb2MXSJiVkffDM2jH3mYi6ambExtqwYy3yy+fkslhKa9WExPi5ijVlGrkINia6vTnXO+f3h43zWdMFWCs/77bbbznm/Xs/X+/l+RZ7ndV7nfawJDw8nKSmJw4cPExcXx4YNG4iIiKB58+blxpw6dYrOnTvj4OAAgJ+fX5litkuXLsbHjo6O9OjRAwBvb2/mzp1bYS49e/bExsaGzZs3c+nSJS5fvkxBQcH9XfR/WVpa8vHHHxMTE8Ply5c5ePAgzs7OZfrk5+eTmJjIvHnzjMcKCgqMc9W5c2cAlEola9asIS4ujuTkZI4dO4ZSKa8xRd1g3rohKC7B77ap/9T/MLkFSjTJFlj9moJZ5NvYPjeYRg1VtCj9BRU6lGpzTM0b117iQgghHllSBVUzlUoFgEKhqLJvWFgYZ8+excnJiQkTJrBp0yb69etHbGxshTF6vb7Mc4PBQGlpqfG5RqMxPv79NhuDwVDptpvvv/+eWbNmYWZmxvDhw+nZsycGw4N9cO769ev4+fmRm5uLm5sbvr6+94yh1+sxNTUlOjra+N8333yDjY0NAGZmZsCd4n7kyJGkpqbSs2dP/P39HygXIWqSpokFTUZ1QGNvhWlTC9Ldi/nN7gY5T1/j9vNWtPMdQeunW9NGp6WTRTamaFFrrGnWcQJKlWltpy+EEOIRJCvttSg3N5dVq1bx8ccfY2FhQV5eHikpKQwfPrzCmC5duvDuu++SmpqKg4MDW7ZsqfADnhcvXuTXX3+lQ4cObNu2jT59+pRpV6lUxoL/yJEjDBkyhBEjRpCSkkJ8fDyurq4PdD2//PILLVu2ZPz48RQVFREcHEzTpk2N59LpdFhZWfH0008THR2Nt7c3hw4dYuHChezdu7fMWJcvX0ahUPDaa69hMBiYM2cOOp3sBRZ1h2WHxlh2uLNq3hxwKGhPSsFV2lq1o1GPsqvputIilCpTFApZJxFCCPHnSNFei6ZMmUJQUBBeXl5oNBqUSiVjx46lb9++FcY0atSIxYsXM23aNEpKSrC3t2fp0qXl9m3RogVr1qzh6tWrtGvXrszecYDWrVuTm5vL7NmzmThxIrNmzSImJgYTExO6detGamrqA11P3759+frrrxk6dCgGg4GePXty/vx5APr378+7777L8uXLWbFiBYsWLeKLL77AxMSEoKCge96ZaN++Pc7OzgwZMgSFQkG/fv1ISEh4oHyEeJgc6jXHoV7529pUarOHnI0QQojHjcLwoHsghHhEaLVaEhMTcXFxKbNtqLYkJCTQvXv32k7jsSPzWjNkXqufzGnNkHmtGTKv1a+qOa2qbpGV9hq2ceNGoqKi7jluZ2dnvF/6HxUVFeHn51du2/Tp0xk4cGC15ng//sx1CCGEEEKI6iFFew0bP34848ePf6AYMzMzoqOjayahP+nPXIcQQgghhKge8qkoIYQQQggh6jgp2oUQQgghhKjjpGgXQgghhBCijpOiXQghhBBCiDpOinYhxGNNq9M/8Lf7CiGEEHWN3D1GCPFY0eWXkLH/Mpm3CznQ2obrSgX1FHqGtTSlQd5R9KUFWNv3oZ61Y22nKoQQQty3J2qlPT4+Hn9/f/z9/YmPj7/vOIPBQHBwMJ6ennh5eTFy5EgOHDhQLTmlpqbi7u5ebturr75KWloaKSkpzJ8//0+PUxNCQkIICQm57/6/z+/atWsMHjwYb29v8vLyHui8wcHB/Pjjjw8UIx5/hVmp/CvhAxafmMPJr/aSc+waRyzUXFfe+abdAoOSHZcySb/ybzJ/O8jlY8s5M3cyyYsXU3TlSi1nL4QQQlTtiSra/6zdu3dz+vRpoqKi2LFjBytWrGDOnDncvn27Rs+7fv16mjRpwrVr10hJSanRcz1Mx44dw8XFhejoaCwtLR8o9vjx4+h0uhrKTDyKNJlX2XxwHodIJruwAJsb9QC4Vd+kTD+t0ooixX//vCnA0FxH0aVLpH72mWyfEUIIUec9sdtjIiIiWLZsGTk5OSxYsKDSVer09HR0Oh3FxcWo1WocHR0JDg5Gra58+vbt28eqVavQ6/U0b96cxYsX06hRI9zd3encuTNnzpxhxYoVaLVaZsyYQXJyMi1atGDp0qVYW1vj7u7OV199xZIlS0hNTeW9995jwYIFLFq0iPPnz3Pr1i2cnJz45JNP7uuaQ0JCuHbtGpcvXyYjI4PXX3+dI0eO8PPPP9O+fXuCgoJQKBSEhoaye/dudDod/fr1Y/bs2SgUCr744gu2bt1KgwYNqF+/Pp07dy73POvWrWPHjh2oVCr69u3L7NmzjW1nzpxh1apVFBQUsHDhQqZOncr8+fPJzc3l5s2b+Pr6MmPGDLRaLe+99x4JCQmYmJgwZcoUiouLSUxMJDAwkNWrV+Pk5HRf1y0ebzaX/0NSxzsFeomylGKDHlOFkvq3syiwbGrsZ6m/hbkh93+BxXf+V5KWRmlWFiYNGjzMtIUQQogH8sSutFtZWREVFUVgYCBr1qyptK+Pjw95eXm4uroSEBBAaGgojo6OWFtbVxhz+/ZtFi5cyJo1a9i5cyfdunVj8eLFxnY3NzdiY2Np2LAht2/fxt/fnx07dtC8efN78gkMDMTFxYV3332XEydOYGJiwpYtW9izZw+5ubn88MMP933d586dY9OmTbz//vvMmzePV199lV27dvHrr7+SlJTEgQMHSExMJCIigu3bt5OWlsaOHTv45Zdf2LZtG1FRUYSFhXHjxo1yx//hhx+Ii4sz9r1y5Qrh4eHGdmdnZ6ZPn467uzuLFy9m165deHh4sHXrVnbu3MmXX35JRkYGmzZtoqCggN27dxMWFsaaNWsYOnQoLi4uLFmyRAp2YaTQlWKXVwqAeZotZ/OL0RkMuCblwdVzGIoK0KWn4Hh9O4q7QXl6SLoTY2Jri7qSv8tCCCFEXfDErrQPGjQIgDZt2pCZmVlpX2tra8LDw0lKSuLw4cPExcWxYcMGIiIiaN68ebkxp06donPnzjg4OADg5+dHaGiosb1Lly7Gx46OjvTo0QMAb29v5s6dW2EuPXv2xMbGhs2bN3Pp0iUuX75MQUHB/V000LdvX9RqNfb29jRu3Jg2bdoA0KRJE7Kzszly5AinTp1i+PDhABQVFWFvb8+tW7d47rnnsLCwAODFF19Er9ffM/7Ro0cZNmwY5ubmAIwYMYLt27fz3HPPlZtPQEAAR48eZcOGDZw/f56SkhIKCws5fvw4o0aNQqlU0rhxY2JiYu77GsWTJadFL4ad3crXzzSgyETH9eJS0ktKqadUYhG3l3xNGgqlmrOFaWTY6On5wnDqX8qhQPsrmmb2PPV//4dC+cSuXwghhHhEPLFFu0qlAkChUFTRE8LCwnB1daV9+/Y4OTkxYcIEZs6cSWxsLBMnTiw35o8FrcFgoLS01Phco9EYH/9+m43BYKh02833339PcHAwf//73xk+fDiZmZkPtB/XxOR/+3zLO49Op2PcuHFMmDABgJycHFQqFVu2bClzHrVaTXFxsTEfAHd393IL+d9f9x8tW7aMlJQUPDw8GDRoEIcPHzbOwe9/NleuXOGpp5667+sUT44COydcOi2jy//bwTm9OekqExrrSsjR6bGq3xky/4nhv38uCwusaNN7NOaDrDHo9VKsCyGEeGTIv1j3ITc3l1WrVpGfnw9AXl4eKSkpODs7VxjTpUsXfv75Z1JTUwHYsmULvXr1KrfvxYsX+fXXXwHYtm0bffr0KdOuUqmMhe+RI0cYMmQII0aMoH79+sTHx1frBzN79+5NdHQ0+fn5lJaWMnXqVGJjY3F1dWXfvn3k5uai1WrZs2cPAAMHDiQ6Opro6GhmzJhB7969iYmJoaioiNLSUrZt20bv3r0rPN+hQ4cICAhgyJAhJCcnk5aWhl6vp2fPnnz77bcYDAZu377NK6+8QnFxMSqVSj6IKpcyi+AAAQAASURBVO6hcWhPv0kzMGvnTWGHVti5OzFo3DOMW/wyL81ahdOzA+nk5sHoeZ9hbnlnK4wU7EIIIR4lT+xK+4OYMmUKQUFBeHl5odFoUCqVjB07lr59+1YY06hRIxYvXsy0adMoKSnB3t6epUuXltu3RYsWrFmzhqtXr9KuXTv+8Y9/lGlv3bo1ubm5zJ49m4kTJzJr1ixiYmIwMTGhW7duxhcG1cHd3Z2zZ88yatQodDod/fv3x9fXF4VCwbhx4xg5ciT169fH3t6+3PgBAwZw5swZRowYQWlpKf369eOVV16pcA/85MmTmTNnDmZmZjRt2hQXFxdSU1N5+eWXWbJkCV5eXgC88847WFpa0r9/f959912WL19Ot27dqu26xaOvaUMNb41scc/x5u270rx911rISAghhKg+CoPc60w8prRaLYmJibi4uJTZjlRbEhIS6N69e22n8diRea0ZMq/VT+a0Zsi81gyZ1+pX1ZxWVbfISvt/bdy4kaioqHuO29nZsX79+nJjioqK8PPzK7dt+vTpDBw4sFpzvB9/5jqEEEIIIUTdJkX7f40fP57x48c/UIyZmRnR0dE1k9Cf9GeuQwghhBBC1G3ySSwhhBBCCCHqOCnahRBCCCGEqOOkaBdCCCGEEKKOk6JdCCGEEEKIOk6KdiGEEEIIIeo4uXuMEEKIR9K1W1o27b1BWmYx/TvZ4NWjAcXXr3NrewTF6enU79GDRt7eKFSq2k5VCCH+sidypT0+Ph5/f3/8/f2Jj4+/7ziDwUBwcDCenp54eXkxcuRIDhw4UC05paam4u7uXm7bq6++SlpaGikpKcyfP/9Pj1Pe9c6dO5fIyMhKx7x27RqvvfYanp6eeHh4MGPGDG7fvg1ASEgIISEhlcZXp8jISObOnfvQzieEqJt0OgML/nmJ/T9ncS49jRv/PselZf/h6j/PcSVVwZUbOZw+cIJz/15E0g+zSf3lC0qL82o7bSGE+NNkpf0B7N69m9OnTxMVFYVarSY5OZkxY8YQExODra1tjZ337pcixcfHk5KSUmPnqcjChQvx8fHBw8MDgM8//5x3332X1atXP/RchBAC4OL1QtJyc3nK7VvaKkv42+G/8UvpZU7oL1Kq0WPTsB79e2nRmeRwztCL5JyumJ24zAvtWtOmgXltpy+EEA/siVxp/72IiAh8fX0ZOHAgcXFxlfZNT09Hp9NRXFwMgKOjI8HBwajVlb/22bdvH97e3nh6ejJlyhRu3boFgLu7O2+++SaDBw8mIyMDrVbLjBkz8PLyYtq0aWRnZxv7paamsmTJEhITE3nvvfcoLS0lMDAQPz8/Bg4cyJQpUygqKqqGGbnXrVu3KCwsND4fO3YsY8eONT4/deoUo0ePZsCAAcZV97y8PKZPn46fnx8DBgxg/vz5GAwG4uPjGTduHAEBAQwePJjZs2cb53P79u34+vri7e3N/Pnz0Wq1xuODBw9mxIgR7N+/v0auUQjxaLGzMaVh+5OY2/1Go5wGZBhyOaY/Rwk6DBjINVdRv0EOqSpnftEMIk9pyy29NVuTbpGjLa3t9IUQ4oE98UW7lZUVUVFRBAYGsmbNmkr7+vj4kJeXh6urKwEBAYSGhuLo6Ii1tXWFMbdv32bhwoWsWbOGnTt30q1bNxYvXmxsd3NzIzY2loYNG3L79m38/f3ZsWMHzZs3vyefwMBAXFxcePfddzlx4gQmJiZs2bKFPXv2kJubyw8//FDl9QYGBuLt7W38r6oXKgBvvfUWK1euxM3NjbfffpsffviBZ599tsw1fvXVV2zbto0NGzaQl5fH/v37cXZ2ZsuWLcTGxnL8+HFOnz4NwIkTJ1iwYAHfffcdWq2WzZs3c/78ebZu3Up4eDjR0dHY2tqyYcMG0tLSWLlyJZs3b2bLli3k5+dXma8Q4vFnY6mmXds7iwlXG1/nliG7THupTkFunpo0lWOZ4zoDXMnRPrQ8hRCiujzx22MGDRoEQJs2bcjMzKy0r7W1NeHh4SQlJXH48GHi4uLYsGEDERERNG/evNyYU6dO0blzZxwcHADw8/MjNDTU2N6lSxfjY0dHR3r06AGAt7d3pXu3e/bsiY2NDZs3b+bSpUtcvnyZgoKCKq93yZIl9OrVy/j8fvaHu7m5ceDAAeLj4zly5AgrVqwgJiaGzz77DID+/ftjampKw4YNadCgAdnZ2Xh4eHDq1Ck2btzIpUuXyMrKMubXs2dPWrVqZbzOrVu3YmJiwpUrVxg1ahQAJSUldOjQgRMnTtC1a1caNWoEgKenJ0ePHq0yZyHE429w6558dTmRDKscfu2QhOIXBQYMxvZTJ51p6JoFJmXjmliYPtxEhRCiGjzxRbvqv3cVUCgUVfYNCwvD1dWV9u3b4+TkxIQJE5g5cyaxsbFMnDix3Bi9Xl/mucFgoLT0f2/NajQa4+Pfb7MxGAyVbrv5/vvvCQ4O5u9//zvDhw8nMzMTg8FQpo+3t7fxcXR0dJXXV56srCw+++wz5s+fj5ubG25ubkyZMoV+/fqRkZFxT94KhQKDwcCmTZuIjY1l1KhR9OnTh3PnzhnzU/3uTg4GgwGVSoVOp2PIkCEEBgYCkJ+fj06n48iRI2Wuq6qtSEKIJ0cv2z4UlBZwNDUWdaMU+jcs4XRec0rN6tO6WUeesmiDQ8vGKBQGfs3QYqJU4Na8Pnb1TKoeXAgh6hipgB5Abm4uq1at4uOPP8bCwoK8vDxSUlIYPnx4hTFdunTh3XffJTU1FQcHB7Zs2VJmpfv3Ll68yK+//kqHDh3Ytm0bffr0KdOuUqmMBf+RI0cYMmQII0aMICUlhfj4eFxdXcv0/7OF+u9ZWVkRFxdHhw4d8PHxAeDChQvY2tpWui3o0KFD+Pn54enpyS+//MLZs2fR6/UolUoSEhJIS0ujcePGbN++HTc3N5555hn++c9/8vrrr9OwYUMWLVpEixYtGDNmDO+//76x/7fffkv9+vX/8nUJIR4PA5oMYkCTQRj0OniuhBdNze7p0xIYVqpHpVSgVla9QCOEEHWRFO0PYMqUKQQFBeHl5YVGo0GpVDJ27Fj69u1bYUyjRo1YvHgx06ZNo6SkBHt7e5YuXVpu3xYtWrBmzRquXr1Ku3bt+Mc//lGmvXXr1uTm5jJ79mwmTpzIrFmziImJwcTEhG7dupGamlqt1wt3XiiEhoaybNkyPv30U8zMzLCzs2PdunVlVsz/aNy4cSxatIjQ0FAsLS3p2rUrqamptGjRAjs7O+bMmUNaWhp9+/blpZdeQqVSMW3aNMaNG4der8fZ2ZlJkyah0WgIDAxk/PjxmJub06ZNm2q/RiHEo0+hVIFpxb+TNOon/iNcQohHnMLwxz0VQtSg+Ph4Vq9ezaZNm2r8XFqtlsTERFxcXMpsQ6otCQkJdO/evbbTeOzIvNYMmdfqJ3NaM2Rea4bMa/Wrak6rqltkpf0PNm7cSFRU1D3H7ezsjPdL/6OioiL8/PzKbZs+fToDBw6s1hxrgr+/Pzk5OfccHz16NGPGjKmFjIQQQgghxF1StP/B+PHjGT9+/APFmJmZVcv+8dr0MFa+AXr16lXhnn4hhBBCCFE+2eQnhBBCCCFEHSdFuxBCCCGEEHWcFO1CCCGEEELUcVK0CyGEEEIIUcdJ0S6EEEIIIUQdJ0W7EEKIJ1ap3sDVHC25xbraTkUIISolRfvvxMfH4+/vj7+/P/Hx8fcdZzAYCA4OxtPTEy8vL0aOHMmBAwdqMNM7vL29K21PSUlh/vz5NZ5HZV599VXS0tIqbP/ll19YsGABAFu3bmXXrl2VjhcSEkJISEi15iiEeDLdLCgh5KdrfHn6JsE/XePY9VwADHo9NzZt4uyrr3Jo+rt890ksCbEX0BaW1HLGQognmdynvRrs3r2b06dPExUVhVqtJjk5mTFjxhATE4OtrW2Nnbeqe8Nfu3aNlJSUGjv//ajoC6nu6tSpE506dQLgp59+4tlnn30YaQkhBPtTsskr0QOgN8Dey7exVaRwYvcumhxK4oI+i4y8JEg8jMm557l8+nlGvNW3lrMWQjypZKW9AhEREfj6+jJw4EDi4uIq7Zueno5Op6O4uBgAR0dHgoODUasrf03k6urKwoUL8fT0ZPTo0aSmpgJ3XgSMGjUKLy8vXnzxRX766SfgzreWTps2jcGDB3PmzBmcnJwAyM/P5+2332b48OF4e3sbV6uXLFlCYmIi7733HgDr1q1j6NCheHp6smzZMnS6yt8O3rdvH97e3nh6ejJlyhRu3boFwOHDh/Hy8sLT05PJkyeTl5eHVqtl/vz5DB48GA8PD7799lsA3N3dSU1NJTIykunTpzN27Fj+9re/8eGHH2IwGIzvbhw+fJi4uDiCg4M5ePAg586dw9/fnxEjRjBgwAC+/vrrSnMVQoiqlF47R8GeUIqOfIO+KI8cbWmZdh0qLv24mZ/OZ7HbrgkpVhbYmNpjq2lKSfG/uX7xMrev5dZS9kKIJ50U7RWwsrIiKiqKwMBA1qxZU2lfHx8f8vLycHV1JSAggNDQUBwdHbG2tq40LiMjg65du7Jz506GDRvGkiVL0Ov1hIeHs27dOnbs2MHEiRMJDQ01xjg5OREbG4uzs7Px2Nq1a+nYsSORkZFs3ryZdevWkZKSQmBgIC4uLrz77rv88MMPxMXFsW3bNqKiorhy5Qrh4eEV5nb79m0WLlzImjVr2LlzJ926dWPx4sUUFxcza9Ysli9fzs6dO2nXrh1RUVFs2rSJgoICdu/eTVhYGGvWrDG+iLkrISGBTz/9lF27dvHzzz+zZ88eY1ufPn1wd3dn+vTp9O/fn2+++YYpU6awbds2vvrqKz766KNK51IIISpTcuUXcr+cifZ4NIX7NpL3/+bSsZF5mT4NdNdoZnYbC7M7CxpF9RzoaTeB/nYTeb7Ja6hIx9Rc3qAWQtQO+e1TgUGDBgHQpk0bMjMzK+1rbW1NeHg4SUlJxhXjDRs2EBERQfPmzSuM02g0+Pj4AODr68snn3yCUqlkzZo1xMXFkZyczLFjx1Aq//faqnPnzveMc/jwYYqKiti2bRsABQUFnD9/HgsLC2Ofo0ePMmzYMMzN7/wjNWLECLZv387YsWPLze3UqVN07twZBwcHAPz8/AgNDSUpKYkmTZoYXzTMnDkTgMmTJzNq1CiUSiWNGzcmJibmnjEHDhxIo0aNABg6dChHjx5l8ODB5Z5/7ty5HDx4kM8//5xz585RUFBQ4TwKIURVik9+Bwa98bnuZjLdS1LIN03hUoE5VobbOBUforhEQVHxf3/nKqCYUiwAG1N7ejg3x6qBefknEEKIGiYr7RVQqVQAKBSKKvuGhYVx9uxZnJycmDBhAps2baJfv37ExsZWGqdUKo3j6/V6VCoV+fn5jBw5ktTUVHr27Im/v3+ZGDMzs3vG0ev1rFixgujoaKKjo9m6dSv9+/e/p88flZaW3nOsov4Gg4HS0lJMTEzKzElubi43btxArVaXOX7lypV7Vtrvzunvr7cib775Jnv27KF169a8+eabFfYTQoj7YnLv706lxhw35x64q/fTpXgPGkUJ8Un10Onv/C5rrLCmgcLS2L+Vk/1DS1cIIf5IivZqkJuby6pVq8jPzwcgLy+PlJSUMltYylNYWGjcLx8ZGYmbmxuXL19GoVDw2muv0atXL/bs2VPl3vPevXsb93zfvHkTLy8vrl+/jkqlMhbmvXv3JiYmhqKiIkpLS9m2bRu9e/eucMwuXbrw888/G/fZb9myhV69euHo6Mjt27e5cOECAF988QVff/01PXv25Ntvv8VgMHD79m1eeeWVe4r2gwcPkpubi1arJSYmBjc3tzLtKpXKeK2HDh1i+vTpDBo0yHgnnqrmQQghKmLWyxeFuZXxuYlTH9RNW2NarzGte79Lmz6LcX7+Yzr2fZmC+g3IsWpKf2X3/w2gUmDZya4WMhdCiDtke0w1mDJlCkFBQXh5eaHRaFAqlYwdO5a+fau+y8B3331HUFAQdnZ2LF++nAYNGuDs7MyQIUNQKBT069ePhISESseYNm0aixYtwsPDA51Ox+zZs2nRogVWVlbk5uYye/ZsVqxYwZkzZxgxYgSlpaX069ePV155pcIxGzVqxOLFi5k2bRolJSXY29uzdOlSNBoNK1asYM6cOZSUlNCiRQs++ugjTExMWLJkCV5eXgC88847WFpalhmzYcOGvPrqq2RmZuLl5UX//v3L3FqzT58+fPLJJ1hZWfHGG2/w8ssvo9FoaN++Pc2aNTO+gBBCiAelsnWg/mvrKbl4HKVFQ9RPdzG2KRQKTOvdKcj79eyOi3MXfvg5k4zCYuxz81AZDFj3eApNU8uKhhdCiBqnMBgMhtpO4knl5OREUlJSbafxUERGRnLs2DGWLVv20M6p1WpJTEzExcUFjUbz0M5bkYSEBLp37151R/FAZF5rhsxr9ZM5rRkyrzVD5rX6VTWnVdUtstJ+nzZu3EhUVNQ9x+3s7Cq8F3lRURF+fn7ltk2fPr1a8/szqspv4MCBDzkjIYQQQghRHina79P48eMZP378A8WYmZlV+gVItb3KXlV+1Wn48OEMHz78oZxLCCGEEOJxIx9EFUIIIYQQoo6Tol0IIYQQQog6Top2IYQQQggh6jgp2oUQQgghhKjjpGgXQgghhBCijpOiXQghhBBCiDpObvkoxEOUk5FG/M6vyEq/Rrsez9Plee/aTkkIIYQQjwBZaX/I4uPj8ff3x9/fn/j4+PuOMxgMBAcH4+npiZeXFyNHjuTAgQM1mOkd3t5/rqh0d3cnNTWVyMhI5s6dW2353J2/R9GF82eJjfyAfOtSLnV7hR0mz7Bu935uRXyI9qfdyJcTCyGEEKIistL+iNi9ezenT58mKioKtVpNcnIyY8aMISYmBltb2xo778P68qXHXWpqKpal8bR8upTd5j4UKy0BSLdpTXTpTbxiV2OlzcfMdWQtZyqEEEKIukhW2mtRREQEvr6+DBw4kLi4uEr7pqeno9PpKC4uBsDR0ZHg4GDU6spfd7m6urJw4UI8PT0ZPXo0qampAJw6dYoxY8bg6+vL//3f/5GSkgKAv78/06ZNY/DgwZw5cwYnJycAsrKymDp1KkOGDMHb25sjR44A8P/+3//jpZdewsPDA19fXy5dulRhLidPnuSll17Cy8uLcePGceXKFQDCwsLw8vLCx8eHhQsXApCXl8f06dPx8/NjwIABzJ8//5Feib569Sot7IrJV1hT9N+C/a50i9asdW1M3q+V/xkQQgghxJNLivZaZGVlRVRUFIGBgaxZs6bSvj4+PuTl5eHq6kpAQAChoaE4OjpibW1daVxGRgZdu3Zl586dDBs2jCVLllBcXExgYCAff/wxUVFRTJgwgXfeeccY4+TkRGxsLM7OzsZjn376KS1atGD37t189NFHrFq1iry8PPbu3cumTZvYtWsXzz//PJs3by43j+LiYt566y3eeecdduzYwejRo3nrrbfQ6XR8/vnnbNu2jcjISEpKSkhLS2P//v04OzuzZcsWYmNjOX78OKdPn36A2a1bWrZsSUGREgtDFub6nDJtDbNySbMy4Zen6tVSdkIIIYSo62R7TC0aNGgQAG3atCEzM7PSvtbW1oSHh5OUlMThw4eJi4tjw4YNRERE0Lx58wrjNBoNPj4+APj6+vLJJ59w+fJlUlJSeP3114398vLyjI87d+58zzjHjx9n5cqVwJ2ifsuWLQB8/PHHxMTEcPnyZQ4ePFim0P+9y5cvU79+fePYQ4YMYeHChRQUFNC1a1dGjhzJwIEDmTBhAk2aNMHDw4NTp06xceNGLl26RFZWFgUFBZXOUV3WrFkzDv7QGWfTn+mt3cZPpkPIozEONwsxzz4PgKFdz1rOUgghhBB1lRTttUilUgGgUCiq7BsWFoarqyvt27fHycmJCRMmMHPmTGJjY5k4cWKFcUql0ji+Xq9HpVKh1+txcHAw7lfX6XTcunXLGGNmZnbPOGq1ukyeFy9exMzMjHHjxvHKK6/g5uZGo0aNOHPmTLl56PX6e44ZDAZ0Oh2fffYZJ0+e5MCBA0ycOJGVK1eSlJREbGwso0aNok+fPpw7d+6R3h4D0NapJ8eSB9Dr0i8MLcxBoS9Ap9Cx2e0clipLerQcUtspCiGEEKKOku0xj4jc3FxWrVpFfn4+cGdlPCUlpcKV7bsKCwuN++UjIyNxc3OjVatWZGdn8+OPPwKwbds2Zs2aVek4PXr0ICYmBrhTsL/66qskJibSsmVLxo8fT6dOndi7dy86na7c+FatWpGVlcWpU6cA+Pbbb7G3t0ev1zN06FDatWvHjBkz6Nu3L0lJSRw6dAg/Pz+8vLzQarWcPXu23ML/UfPqSCfsX34R024tMO3WgGTfXHo49WGOcyD1TerXdnpCCCGEqKNkpf0RMWXKFIKCgvDy8kKj0aBUKhk7dix9+/atMva7774jKCgIOzs7li9fjqmpKZ9++ilLly5Fq9ViaWnJ8uXLKx1j+vTpBAYG4uXlhVqt5qOPPsLZ2Znw8HCGDh2KwWCgZ8+enD9/vtx4U1NTgoKCeP/99yksLMTa2pqgoCAaNmyIn58fI0eOxNzcHEdHR0aMGEGbNm1YtGgRoaGhWFpa0rVrV1JTU2nRosWfmr+6pJGDJTi0BaA5925FEkIIIYT4I4XhUd9zICrl5OREUlJSbadRK7RaLYmJibi4uKDRaGo7HRISEujevXttp/HYkXmtGTKv1U/mtGbIvNYMmdfqV9WcVlW3yEp7HbJx40aioqLuOW5nZ8f69evLjSkqKsLPz6/ctunTp1drfkIIIYQQonZI0V6HjB8/nvHjxz9QjJmZWaVfgPSkrrILIYQQQjxO5IOoQgghhBBC1HFStAshhBBCCFHHSdEuhBBCCCFEHSdFuxBCCCGEEHWcFO1CCCGEEELUcVK0CyGEEEIIUcfJLR9rQXx8PKtXrwZg2rRp9OrV677iDAYDISEh7NmzB4VCgampKdOnT8fNza0m0wUgJSWFtWvX8sEHH1TbmKdOnSI2NpbZs2ffd0xISAgAb7zxRrXlIYQQdYUu/QolF39E2bAZJm2fRaG4d22tVG/g+9MpXC7QoyotwOTqL9hZmdGxbUuat+2MQinrcUI8jqRof4Ts3r2b06dPExUVhVqtJjk5mTFjxhATE4OtrW2NnvvatWukpKRU65gXLlzg9u3b1TqmEEI8qorPHyM/4n0w6AEoajuQp156q0wf7Y08dhw9xdkmzQEVKK3QWbbkwtFoin7bRdqvCpq06oW9sx9qU8tauAohRE2Ror2WRUREsGzZMnJycliwYAHu7u4V9k1PT0en01FcXIxarcbR0ZHg4GDU6sp/jK6urrzwwgucOHECCwsLVq5ciYODAydPnmTp0qVotVoaNGjA4sWLadmyJWFhYURFRaFUKuncuTOLFy9myZIlpKam8t5777Fw4UJWrlzJ3r17UalU+Pn5MW7cOK5cucKiRYvIysrCzMyMd955hw4dOjB37lwsLS05ffo0aWlpTJ06lRdeeIHg4GAKCgpYu3YtTZo0ISoqiqysLAYMGICHhwfvv/8+BQUFZGRkMGnSJMaMGVPd0y+EEHVG0dFtxoIdwPRcHL+e9aND+2YY9AZuhJ+mIOk2V59rUSZO1agZnZ10OD2lAiAv/Ti/6fJo2W3GQ81fCFGz5D20WmZlZUVUVBSBgYGsWbOm0r4+Pj7k5eXh6upKQEAAoaGhODo6Ym1tXWlcRkYGXbt2ZefOnQwbNowlS5ZQXFzMW2+9xTvvvMOOHTsYPXo0b731Fjqdjs8//5xt27YRGRlJSUkJaWlpBAYG4uLiwrvvvst3333HTz/9xM6dO/nmm2+IjIwkPT2dt99+m9mzZxMVFcX777/PP/7xD2MON27c4F//+hdr167lo48+on79+kyfPh13d3def/11ANLS0oiKiuKtt97im2++YcqUKWzbto2vvvqKjz766K9PthBC1GEFhaX3HNv3U8adtnO3KUi6886kVUFJmT6GonxaNMwrcyw/4wx6XXENZSqEqA1StNeyQYMGAdCmTRsyMzMr7WttbU14eDhbt26lX79+HDx4EA8Pjyq3rWg0Gnx8fADw9fUlPj6ey5cvU79+fTp37gzAkCFDuHr1KgUFBXTt2pWRI0eyevVqJkyYQJMmTcqMd/z4cYYMGYKpqSkWFhZER0dTr149EhMTmTdvHt7e3sycOZOCggLjNfXt2xeFQkG7du3IysoqN88OHToY3zWYO3cuWq2Wzz//nFWrVlFQUFDpNQohxKOusKMHeoPC+PxQ6TPo6zUAoDRHazze7cxt6hXeKdwNxVqKT/1AboGizFhqTQMUSpOHkLUQ4mGR7TG1TKW683amQqGooieEhYXh6upK+/btcXJyYsKECcycOZPY2FgmTpxYYZxSqTSOr9frUalU6PX6e/oZDAZ0Oh2fffYZJ0+e5MCBA0ycOJGVK1eW6adWq8vkm5qairW1NaampkRHRxuP37hxAxsbG+DOC4eqrtPMzMz4+M0336R+/foMGDCAoUOHsmvXrkpmRgghHn2OfQfw2RkV6pQfuaZvzBmTLnzctzEAFu0bcXtPMoZiHQ3yivH84QqnrQ9xQWmK+WULLlxTYN3XgFk9BSoTC+ydX7mvf1eEEI8OWWl/hOTm5rJq1Sry8/MByMvLIyUlBWdn50rjCgsLiYuLAyAyMhI3NzdatWpFVlYWp06dAuDbb7/F3t4evV7P0KFDadeuHTNmzKBv374kJSWhUqkoLb3z1m3Pnj3597//TUlJCYWFhUycOJFbt27x9NNPG4v2Q4cOMXbs2Erz+v2Yf3To0CGmT5/OoEGDOHDgAAA6ne4+Z0oIIR5Nr/1ff7qPfZV+vsP4YlYHHBrfWfBQ19fQ7P+6YNmlCZYujckdYcre565wuf95UkecweDzDM8MW0Nr13dp228Zlo061vKVCCGqm6y0P0KmTJlCUFAQXl5eaDQalEolY8eOpW/fvlXGfvfddwQFBWFnZ8fy5csxNTUlKCiI999/n8LCQqytrQkKCqJhw4b4+fkxcuRIzM3NcXR0ZMSIEWi1WnJzc5k9ezYrVqwgMTGR4cOHo9fr+fvf/46joyMrVqxg0aJFfPHFF5iYmBAUFFTpSk/nzp1ZvXo1K1eupFWrVmXa3njjDV5++WU0Gg3t27enWbNmpKam/uU5FEKIukypVNC9nVW5bZqnrGgyvD0ATQDLnIb8kn2KpmZP0du2D0qlGo3FUw8xWyHEw6QwGAyG2k5C1CwnJyeSkpJqO42HTqvVkpiYiIuLi3F7Tm1KSEige/futZ3GY0fmtWbIvFY/mdOaIfNaM2Req19Vc1pV3SIr7XXMxo0biYqKuue4nZ0d69evLzemqKgIPz+/ctumT59erfkJIYQQQoiHT4r2Omb8+PGMHz/+gWLMzMzKfAD0j57EVXYhhBBCiMeJfBBVCCGEEEKIOk6KdiGEEEIIIeo4KdqFEEIIIYSo46RoF0IIIYQQoo6Tol0IIYQQQog6Top2IYQQjyWDwYAu+yYGXUltpyKEEH/ZE1e0x8fH4+/vj7+/P/Hx8fcdZzAYCA4OxtPTEy8vL0aOHMmBAwdqMNPqk5uby9SpUx8o5u48lcfb27vSWJ1OR0BAAIMHD36gOb4fp06dYsWKFdU6phDi8aO7lULO56+Rs2YC2SHjKbmUcE8fg8FA8Y0b6IuLKS3RkhC7j22ffkfwslCWfbiM//f//h9ZWVkPP3khhCiH3Kf9Pu3evZvTp08TFRWFWq0mOTmZMWPGEBMTg62tbW2nV6ns7GzOnDlTbeNVdk94gLS0NJKSkvjPf/5Tbee868KFC9y+fbvaxxVCPF4K9q5Hn5EKgKEgi/yYT7GeGoZCqQLg2tXr7D98iiKdgaYXE7h0/T9otXnkWTuhNbcD4NdffyUvL4/XXnut1q5DCCHueqKL9oiICJYtW0ZOTg4LFizA3d29wr7p6enodDqKi4tRq9U4OjoSHByMWl35FLq6uvLCCy9w4sQJLCwsWLlyJQ4ODri7u9O5c2fOnDnDv/71Lw4ePMiXX36JXq+nY8eOvPvuu2g0Gnbu3MnatWtRKBR06tSJ999/n+LiYhYvXsz58+fR6XS8+uqreHh4EBkZycGDB8nOziYlJYW+ffuyaNEilixZws2bN5k6dSrz5s1j4sSJNGjQADMzM0JCQpg/fz5paWncvHkTV1dXli5dWuk1OTk5kZSUREhICGlpaVy5coXffvuNl156iddff53JkyeTlZXF8OHDiYyMLBMbEhLCtWvXuHjxIpmZmfj5+TFx4kTy8vLKzePYsWOsWLECvV5PkyZNOHPmDAUFBaxdu5bXX3/9/n/YQogniu7W1TLPDbm3OZdwmcKfUzDoYY9Tc7QtOwDwm6MzDfZfwzI9iQxTmzJxV69eRavVlvuV4kII8TA9cdtjfs/KyoqoqCgCAwNZs2ZNpX19fHzIy8vD1dWVgIAAQkNDcXR0xNrautK4jIwMunbtys6dOxk2bBhLliwxtrm5uREbG0tGRgZbt24lPDyc6OhobG1t2bBhA2lpaXz44Yf885//JCYmBp1Oxw8//MDatWvp2LEjkZGRbN68mXXr1pGSkgLAiRMnCA4OZseOHezbt4+kpCQCAwOxs7MzXmNycjIrVqwgLCyM/fv34+zszJYtW4iNjeX48eOcPn36vucwKSmJDRs28M033xAaGkpOTg5r167Fzs7unoL9rsTERMLCwoiMjGTLli2cPn260jwuX77Ml19+ydq1a5k+fTru7u5SsAshKmXSumeZ5ymqNpTuTsYqRUFWqSVaU9P/NSqU2PT7G/2HtWFAlzwUCoOxqWHDhpj+vq8QQtSSJ3qlfdCgQQC0adOGzMzMSvtaW1sTHh5OUlIShw8fJi4ujg0bNhAREUHz5s0rjNNoNPj4+ADg6+vLJ598Ymzr0qULcGf/+JUrVxg1ahQAJSUldOjQgRMnTtCtWzeaNm0KYNzL/dlnn1FUVMS2bdsAKCgo4Pz58wB07doVS0tLAJo3b052djYWFhZlcrK1tcXBwQEADw8PTp06xcaNG7l06RJZWVkUFBRUMXP/06tXL0xNTbG1tcXGxobc3NwqYzw8PIw5ubu7c/ToUQICAirMw9HRESsrq/vOSQgh6g0KQKFSU5L8EzdUzYi53YVROhMAzLWl9/Q3N9z53WVvB09fLyD5tgU2NjaMGDEChULxUHMXQojyPNFFu0p1Z2/j/fxCDgsLw9XVlfbt2+Pk5MSECROYOXMmsbGxTJw4scI4pVJpHF+v1xvPCRjfbtXpdAwZMoTAwEAA8vPz0el0HDt2rExuGRkZxnFWrFhBx44dAbh16xbW1tbs3LmzzFu4CoUCg+F/K0Z3mZmZGR9v2rSJ2NhYRo0aRZ8+fTh37lyZmLS0NCZNmgSAnZ0d69evLzNWVef79NNPiYuLA2D69OkAZebg7pxUlsfv8xVCiPuhMDGj3t8mA/DNt9dIyfjZ2NY4S4vjb7kkN7uzGGCtS6N1yY/G9kHu/Wnc9kXq1auHUvlEvyEthKhD5LfRfcrNzWXVqlXk5+cDkJeXR0pKCs7OzpXGFRYWGovWyMhI3Nzc7unTq1cv9uzZw+3btzEYDCxatIgvv/ySTp06cfLkSdLT0wH44IMP+P777+nduzdff/01ADdv3sTLy4vr169XmINaraa09N6VJYBDhw7h5+eHl5cXWq2Ws2fPotfrje1NmjQhOjqa6Ojoewr2+zFjxgxj/MCBAwHYu3cvxcXFZGdns2/fPvr161dlHnepVKoKr0UIIcrTz8WaK1lPcbjZZfSKO79XWlz7leGtYGxrFYO0GzGlCACF0oRmTs9haWkpBbsQok55olfaH8SUKVMICgrCy8sLjUaDUqlk7Nix9O3bt8rY7777jqCgIOzs7Fi+fPk97e3bt2fatGmMGzcOvV6Ps7MzkyZNQqPRsGDBAgICAtDr9TzzzDMMHz6cwsJCFi1ahIeHBzqdjtmzZ9OiRQt+/PHHcs5+ZzuMvb09/v7+fPjhh2Xaxo0bx6JFiwgNDcXS0pKuXbuSmppKixYt/txE3QeNRsPLL79MXl4ekydPpk2bNvedR+fOnVm9ejUrV65k1qxZNZajEOLx0b6FBYvHt2bXMQuudjlHx+YK3DoPoKHpnTt/FXR/k4yrcaBQ0rCFO6b1GtdyxkIIcS+Fobz9E6La3L3TirgjJCQEgDfeeKPGz6XVaklMTMTFxaVO3PkhISGB7t2713Yajx2Z15oh81r9ZE5rhsxrzZB5rX5VzWlVdYustP/Oxo0biYqKuud4eXu57yoqKsLPz6/ctrt7uIUQQgghhPgrpGj/nfHjxzN+/PgHijEzM6v0y4Zklb2sh7HCLoQQQgjxuJFP2QghhBBCCFHHSdEuhBBCCCFEHSdFuxBCCCGEEHWcFO1CCCGEEELUcVK0CyGEEEIIUcdJ0S6EEKJC5X0zsRBCiIdPbvkohBBPoJJSPRt2X+fAqSzsbEx5dZg9HZ+2MLYXFhbyxRdfcOnSJZraNWHkqJewt7evxYyFEOLJ9tiutMfHx+Pv74+/vz/x8fH3HWcwGAgODsbT0xMvLy9GjhzJgQMHajDT6pObm8vUqVMfKObuPD0q9u3bR1hYWG2nIcQjL+JAOtGHb5GZV0pSagGLNyWjLdFTmpdHemQkJ/8dy+VCMO0xmNuN27Bp0zeUFJfWdtpCCPHEkpX2P9i9ezenT58mKioKtVpNcnIyY8aMISYmBltb29pOr1LZ2dmcOXOmttOoUYmJibWdghCPrKKj2yj6cScKtYbikoGAk7Etp0DHpWsFaDZ8hPbqVTK7uaHp8cL/Yu1a8NU/3qRes754TfXFwtqsFq5ACCGeXE9E0R4REcGyZcvIyclhwYIFuLu7V9g3PT0dnU5HcXExarUaR0dHgoODUasrnypXV1deeOEFTpw4gYWFBStXrsTBwQF3d3c6d+7MmTNn+Ne//sXBgwf58ssv0ev1dOzYkXfffReNRsPOnTtZu3YtCoWCTp068f7771NcXMzixYs5f/48Op2OV199FQ8PDyIjIzl48CDZ2dmkpKTQt29fFi1axJIlS7h58yZTp05l3rx5TJw4kQYNGmBmZkZISAjz588nLS2Nmzdv4urqytKlSyu8npKSEubPn8/58+cBePnllxk1ahRz587l2WefZfjw4QA4OTmRlJRESEgI165d4+LFi2RmZuLn58fEiRPvGXfu3LloNBp++eUX8vPzef311/Hx8SEtLY358+eTm5vLzZs38fX1ZcaMGURGRhIVFUVWVhYtW7bkxIkTANjb2zNixIgqf/ZCiDuKzx2hMO6fABgAT77iB8WbXDc0BkBjoqRJYRppV68CYOrgRPHv4pWWNqjtHLC02EFy/GFMzcxp3MqTBg79H/KVCCHEk+mx3R7ze1ZWVkRFRREYGMiaNWsq7evj40NeXh6urq4EBAQQGhqKo6Mj1tbWlcZlZGTQtWtXdu7cybBhw1iyZImxzc3NjdjYWDIyMti6dSvh4eFER0dja2vLhg0bSEtL48MPP+Sf//wnMTEx6HQ6fvjhB9auXUvHjh2JjIxk8+bNrFu3jpSUFABOnDhBcHAwO3bsYN++fSQlJREYGIidnZ3xGpOTk1mxYgVhYWHs378fZ2dntmzZQmxsLMePH+f06dMVXs+JEyfIzs5m+/btfP755/z4449VznNiYiJhYWFERkayZcuWCsdPSUlhy5YtfPnll3z00Uekp6eza9cuPDw82Lp1Kzt37uTLL78kIyMDgLS0NKKioli9ejWjR49m9OjRUrAL8YBKr/xS5rkCA0MdrqNQQEMrNbNHNcfStj4oFAA8lZNTdgCDAZX5RVp3tEapLKG0OIfrZzdTlPfbw7oEIYR4oj0RK+2DBg0CoE2bNmRmZlba19ramvDwcJKSkjh8+DBxcXFs2LCBiIgImjdvXmGcRqPBx8cHAF9fXz755BNjW5cuXYA7+8evXLnCqFGjgDur2R06dODEiRN069aNpk2bArBixQoAPvvsM4qKiti2bRsABQUFxpXvrl27YmlpCUDz5s3Jzs7GwuJ/HyIDsLW1xcHBAQAPDw9OnTrFxo0buXTpEllZWRQUFFR4PW3btiU5OZmAgADc3NyYM2dOpfN29xx3c3B3d+fo0aN07Njxnn7Dhw/HxMSEpk2b0q1bNxISEggICODo0aNs2LCB8+fPU1JSQmFhIQAdOnSo8p0OIUTlVE+1ueeYj29vPBu1xkSlQKm8U6w3GDiQzL176fBjLOnNWlJgaQUGA5aJ+2lokQWU3SZYmH0JM8tmD+EKhBDiyfZEVEIqlQoAxX9XkCoTFhaGq6sr7du3x8nJiQkTJjBz5kxiY2PL3e5xl1KpNI6v1+uN54Q7BT2ATqdjyJAhBAYGApCfn49Op+PYsWNlcru7wqzX61mxYoWx8L116xbW1tbs3LnTOObd6zIYDPfkZGb2vz2nmzZtIjY2llGjRtGnTx/OnTtXJiYtLY1JkyYBYGdnx/r164mJieHQoUP88MMP+Pr6EhMTU+ZcJSUlZc73+2u+OwcLFiww7kO/++7DH/up1WqWLVtGSkoKHh4eDBo0iMOHDxvP8/vrEEL8OaYdn0f3WxLak7GgNsG872jUT7W95x+Bpq+8gk3//pw9doyA3nYkZWdxacc2rv+0h+yWT/2htwJz61YP6xKEEOKJ9kRsj3kQubm5rFq1ivz8fADy8vJISUnB2dm50rjCwkLi4uIAiIyMxM3N7Z4+vXr1Ys+ePdy+fRuDwcCiRYv48ssv6dSpEydPniQ9PR2ADz74gO+//57evXvz9ddfA3Dz5k28vLy4fv16hTmo1WpKS8u/u8OhQ4fw8/PDy8sLrVbL2bNny9x/uUmTJkRHRxMdHc369ev5/vvvmT17Ns8//zyBgYHUq1eP69evY2Njw4ULFwDYu3dvmXPs3buX4uJisrOz2bdvH/369WPp0qXGcTt16gTc+bCvwWDgt99+49SpU3Tv3p1Dhw4REBDAkCFDSE5OJi0trdz7Q6tUqgqvUQhRMYVCSb3Br2Mz6xts/hGOWe+Kt5iZtWyJrlUrbKwa0cuhDWOmvM1bX+xldOBXNHp6CEq1OWqNNU85j5VVdiGEeEieiJX2BzFlyhSCgoLw8vJCo9GgVCoZO3Ysffv2rTL2u+++IygoCDs7O5YvX35Pe/v27Zk2bRrjxo1Dr9fj7OzMpEmT0Gg0LFiwgICAAPR6Pc888wzDhw+nsLCQRYsW4eHhgU6nY/bs2bRo0aLC/eW2trbY29vj7+/Phx9+WKZt3LhxLFq0iNDQUCwtLenatSupqam0aNGi3LHc3Nz497//zbBhw9BoNHh5eeHk5MSYMWN488038fT0pHfv3jRu3NgYo9FoePnll8nLy2Py5Mm0aXPv2/EARUVFjBgxwvhB2wYNGjB58mTmzJmDmZkZTZs2xcXFhdTU1Htie/bsydtvv02jRo0eqVtVClFXKFQmfz5WocCujTd2bbyrMSMhhBD3Q2Eob1+FeGB376LypAoJCQHgjTfeqLTfH+8+U5O0Wi2JiYm4uLiU2U5UWxISEujevXttp/HYkXmtGTKv1U/mtGbIvNYMmdfqV9WcVlW3PJEr7Rs3biQqKuqe43f3cpenqKgIPz+/ctumT59erfkJIYQQQgjxe09k0T5+/HjGjx//QDFmZmZER0dX2P4kr7JD1Svsdy1btqyGMxFCCCGEePzIB1GFEEIIIYSo46RoF0IIIYQQoo6Tol0IIYQQQog6Top2IYQQQggh6jgp2oUQQgghhKjjnsi7xwjxKCu6do2shGPUs3sKq+7dUajlr7EQQgjxuJN/7YWo4wx6A6UFJfx2OZOES5e4YmJOqaUTT187QacrETz94huY1y//m22FEEII8XiQ7TF1SHx8PP7+/vj7+xMfH3/fcQaDgeDgYDw9PfHy8mLkyJEcOHCgWnMLCQkxfuvpnxEZGcncuXPvOZ6Wlsarr74KwL59+wgLC/tT4zyuCi5mcCXoKFdXHCE18iy/2tqTb2OL1sySpKb9SbZz5PLxj9Dm36jtVIUQQghRg2Sl/TGwe/duTp8+TVRUFGq1muTkZMaMGUNMTAy2tra1nV6lmjRpYvwW2sTExFrOpm4x6AzcjEpCl1sMwFVbLSjLvs6+pWzB06WnuH75KE939KmFLIUQQgjxMMhKex0VERGBr68vAwcOJC4urtK+6enp6HQ6iovvFHeOjo4EBwejrmSvc0lJCbNnz8bHxwcfHx+2bt0KwNy5c4mMjDT2c3JyMj4+deoUL730EsOGDePLL780Hl+3bh1Dhw7F09OTZcuWodPpSE1N5cUXX2TMmDFMmDABgCtXrjB27Fg8PDxYuXIlBoOB1NRU3N3duXDhAuHh4YSHh7Nt2zbS0tIICAhg1KhRPP/883z66acPPomPOF1+sbFgB9BmXcdg0Jfp00B/HYDNP+Sz96eMh5qfEEIIIR4eWWmvo6ysrIiKimLfvn2sXr0ad3f3Cvv6+Piwe/duXF1d6dGjB7169cLX1xdra+sKY06cOEF2djbbt28nLS2Njz/+mFGjRlWaU3p6Ov/617/Q6/UMHz6cZ599lps3bxIXF8e2bdswMTHhjTfeIDw8nOeee47k5GS++OILHBwciIyMJDU1lejoaCwtLRk3bhzff/897du3B6BNmzaMHj0agBEjRrBhwwY8PDzw9fUlNzeX5557Dn9//z8xk48udX0NpnYWFN/MB6B5kRmXfv4BE+deKE1Nebr0FI6lP/FbbiOOX2vH6d3XGdi1AQqFopYzF0IIIUR1k6K9jho0aBBwp5jNzMystK+1tTXh4eEkJSVx+PBh4uLi2LBhAxERETRv3rzcmLZt25KcnExAQABubm7MmTOnypyGDh1KvXr1ABgwYADHjh3jxo0bDBs2DHNzc+BOwb19+3aee+45bG1tcXBwMMa7u7vTsGFDAIYMGcKxY8eMRfsfBQQEcPToUTZs2MD58+cpKSmhsLCwyhwfN01Hd+TWdxcoSr6OafYNzH49TuHln8GgI8csnfUWozif1QIDSnSFOvQGUEnNLoQQQjx2ZHtMHaVSqQDua9U0LCyMs2fP4uTkxIQJE9i0aRP9+vUjNja2wpgGDRoQExPDK6+8QnJyMr6+vuTk5KBQKDAYDMCdLTS/9/vtNnq9HrVajV5fdrsGQGlpKQBmZmZVxldk2bJlbNq0CXt7e15//XUaNGhgzOtJYmJrzlNjO9HyzR44tL6ITdFVGqQfo1Hmz9B0KOeynsbw37/GA7s2QKWUil0IIYR4HEnR/hjIzc1l1apV5Off2UaRl5dHSkoKzs7OFcZ8//33zJ49m+eff57AwEDq1avH9evXsbGx4cKFCwDs3bu3TExsbCzFxcVkZ2ezf/9+evfuTe/evYmJiaGoqIjS0lK2bdtG7969yz3nDz/8QE5ODlqtlm+//ZY+ffqUaVepVMaC/9ChQwQEBDBkyBCSk5NJS0sr9wXCk0Jp2ZBWrwUzKWQ3o+etYdLHkbz22su84ePA811smDTMnmk+DlUPJIQQQohHkmyPeQxMmTKFoKAgvLy80Gg0KJVKxo4dS9++fSuMcXNz49///jfDhg1Do9Hg5eWFk5MTY8aM4c0338TT05PevXvTuHFjY4y9vT2jR49Gq9UyefJkWrduTevWrTlz5gwjRoygtLSUfv368corr3Djxr23IGzVqhWTJk0iJycHDw8P+vXrR2pqqrG9Z8+evP322zRq1IjJkyczZ84czMzMaNq0KS4uLmX6PqlMzCxo1raz8fnQXrYM7VW37xAkhBBCiL9OYXgS9xyIJ4JWqyUxMREXFxc0Gk1tp0NCQgLdu3ev7TQeOzKvNUPmtfrJnNYMmdeaIfNa/aqa06rqFllpf0Rs3LiRqKioe47b2dkZ73P+R0VFRfj5+ZXbNn36dAYOHFitOQohhBBCiJohRfsjYvz48YwfP/6BYszMzIiOjq6ZhIQQQgghxEMjH0QVQgghhBCijpOiXQghhBBCiDpOinYhhBBCCCHqOCnahRBCCCGEqOOkaBdCCCGEEKKOk6K9FsTHx+Pv74+/vz/x8fH3HWcwGAgODsbT0xMvLy9GjhzJgQMHqjW3kJAQQkJCqnVMgF9++YUFCxZU2mffvn2EhYVV2icyMpK5c+dWZ2pCPDFKtEXs3fQJ6+eMIurTt0m5mERubm5tpyWEEOI+yC0fHyG7d+/m9OnTREVFoVarSU5OZsyYMcTExGBrW7e/FbNTp0506tSp0j6JiYkPKRshnix6gx5tqYHN+w6TZu6M0r6E365c4PiGjSgUCnr06Im3hxe5P/3CrcivKcnIwLRNG/SdOqE0Na3t9IUQQiBFe62LiIhg2bJl5OTksGDBAtzd3Svsm56ejk6no7i4GLVajaOjI8HBwajVFf8YS0pKmD9/PufPnwfg5ZdfZtSoUcydO5dnn32W4cOHA+Dk5ERSUhIAp06d4qWXXqKgoIBRo0Yxbtw44uPj+eyzz1Cr1aSmptK5c2eWLl2KqakpQUFBHDlyhOzsbOzs7AgKCqJRo0b07t0bFxcX0tPTmTNnDuvWrWPTpk1cuXKFRYsWkZWVhZmZGe+88w6mpqaEh4cDYG9vT79+/Zg/fz65ubncvHkTX19fZsyYUV3TLsRjzVBaQtGRbziSc5xYOy2FSgMtmEKhdVuwBn0zF8yaHudvZt9jbaHjWkYch1ZqsS96Cr2iJwZ9HOozZ7i9ezeNvb1r+3KEEEIg22NqnZWVFVFRUQQGBrJmzZpK+/r4+JCXl4erqysBAQGEhobi6OiItbV1hTEnTpwgOzub7du38/nnn/Pjjz9WmVN6ejpffvklW7ZsYfPmzZw5c8Y41oIFC/juu+/QarVs3ryZK1eucOnSJcLDw4mNjeWpp55ix44dAGRmZvLqq68SHR1d5oXF22+/zezZs4mKiuL999/nH//4B23atGH06NGMHj2aESNGsGvXLjw8PNi6dSs7d+7kyy+/JCMj436mVIgnXsG/1/JbQjiRTXLJU5agN5hSWGxTpo+JQ2tsLHUoFNDMtgST5nfe6VJqGqOy6QFA4X9f7AshhKh9stJeywYNGgRAmzZtyMzMrLSvtbU14eHhJCUlcfjwYeLi4tiwYQMRERE0b9683Ji2bduSnJxMQEAAbm5uzJkzp8qchg4dSr169QAYMGAAx44do3379vTs2ZNWrVoB4O3tzdatW5kwYQJvv/0233zzDcnJyZw8eZIWLVoYx+rSpUuZsfPz80lMTGTevHnGYwUFBfdce0BAAEePHmXDhg2cP3+ekpISCgsLq8xdCAHFZw6S2sAUg0IBgAEtegpRYm7sY0lWmRhL6//9/VKYNgDAvE2bmk9WCCHEfZGV9lqmUqkAUPz3H9fKhIWFcfbsWZycnJgwYQKbNm2iX79+xMbGVhjToEEDYmJieOWVV0hOTsbX15ecnBwUCgUGgwG4s4Xm936/Kq7X643P7+YKdz4Uq1KpSExMJCAgAL1ez+DBgxk0aJBxXAAzM7MyY+v1ekxNTYmOjjb+980332BjY1Om37Jly9i0aRP29va8/vrrNGjQoMy4QoiKKes3pkVWMUr9f//OKHTkqL7DYNADUE8FHbRlPwSvzm5ifGzQXqPU2RnboUMfWs5CCCEqJ0X7IyQ3N5dVq1aRn58PQF5eHikpKTg7O1cY8/333zN79myef/55AgMDqVevHtevX8fGxoYLFy4AsHfv3jIxsbGxFBcXk52dzf79++nduzcACQkJpKWlodfr2b59O25ubhw/fpxnn32WMWPG8PTTT7N//350Ol2F+VhZWfH0008THR0NwKFDhxg7dixw50VBaWmp8XhAQABDhgwhOTnZeF4hRNXqDZpEA72GUacyaZivQ6E14fo5U9rrzfg/Fztm9HCge3c/8nMboitVkXHtKTKTOoGFCdauDrT96HWKBw2SD6EKIUQdIttjHiFTpkwhKCgILy8vNBoNSqWSsWPH0rdv3wpj3Nzc+Pe//82wYcPQaDR4eXnh5OTEmDFjePPNN/H09KR37940btzYGGNvb8/o0aPRarVMnjyZ1q1bc+vWLezs7JgzZw5paWn07duXl156iVu3bjFt2jQ8PT0BcHFxITU1tdLrWLFiBYsWLeKLL77AxMSEoKAgFAoFPXv25O2336ZRo0ZMnjyZOXPmYGZmRtOmTe9rXCHEHSaOz2Az/SsczyZhccKUjGwV3p1tGNnHDqXyzrt6apuWOD//Die+v0R+SRHtRjajVZemtZy5EEKIiigMsudA3If4+HhWr17Npk2bajuV+6bVaklMTMTFxQWNRlPb6ZCQkED37t1rO43HjsxrzZB5rX4ypzVD5rVmyLxWv6rmtKq6RVba65iNGzcSFRV1z3E7OzvWr19fbkxRURF+fn7ltk2fPp2BAwdWa45CCCGEEOLhkqK9jhk/fjzjx49/oBgzMzPjHvGa0qtXL3r16lWj5xBCCCGEEOWTD6IKIYQQQghRx0nRLoQQQgghRB0nRbsQQgghhBB1nBTtQgghhBBC1HFStAshhBBCCFHHSdEuhBBCCCFEHSe3fBRCPFJuFqVxJusaiVdsydBB/ds6zu2ajkJZTMfnPenUf1htpyiEEEJUO1lpryHx8fH4+/vj7+9PfHz8fccZDAaCg4Px9PTEy8uLkSNHcuDAgSrj5s2bx2+//fZXUq5RkZGRzJ07t9I+CxYs4Jdffqm0T3BwMM8//zxhYWHVmZ54ROy/Gcfi04H8cEZNhl4BCgU5jZ4iud0Afks+zb/DlnE2fm9tpymEEEJUO1lpr2N2797N6dOniYqKQq1Wk5yczJgxY4iJicHW1rbCuPj4eKZOnfoQM61+S5curbJPdHQ0YWFhODo6PoSMRF1Sqi9l59VvABMUZjZl257qQFHDLljknOd8wg881bI+2Td+xNTcFtuWf8PErEGt5CyEEEJUFynaH4KIiAiWLVtGTk4OCxYswN3dvcK+6enp6HQ6iouLUavVODo6EhwcjFpd8Y8qNDSUmzdvMmnSJDZv3kxKSgoffvghRUVFNGjQgPfee4/mzZvj7+9Phw4dSEhIQKvVMmvWLL766isuXrxo/CbWkJAQrl27xsWLF8nMzMTPz4+JEyei1+v54IMPOHLkCAqFAi8vLyZNmkR8fDwrVqxAr9fTtm1b3nrrLebPn09ubi43b97E19eXGTNm3Nc8+fv7M23aNAA+//xzzMzMuHjxIk5OTqxcuZIlS5aQlpbG1KlT+fjjj3F2dn6wH4R4pOkMOoopxaAAZVYBept6xjZ9xg1KTeuTa+NMY3szfkv8p7Et7/YZWrsuRKGQNxaFEEI8uqRofwisrKyIiopi3759rF69utKi3cfHh927d+Pq6kqPHj3o1asXvr6+WFtbVxgzadIkwsPDCQ0NxcLCgsDAQNatW4e9vT0HDx7knXfeYePGjcCd7TcRERGsXr2aJUuWsGPHDjIyMvDx8WH8+PEAJCYmEh4ejl6vZ/jw4bi6unLy5EmuX7/Ojh07KC4uxt/fn3bt2mFubs7ly5fZt28fVlZWbNiwAQ8PD3x9fcnNzeW5557D39//gefsxIkT7N69Gzs7O0aNGsV//vMfFi9ezH/+8x9CQ0NxcHB44DHFo02j0tApW83PNqU0vJYAhp7cqm+C7vZvFP9yEAC9uh62TUwoyf9fXHHBDYpyUzCv37KWMhdCCCH+OinaH4JBgwYB0KZNGzIzMyvta21tTXh4OElJSRw+fJi4uDg2bNhAREQEzZs3r/Jcly9fJiUlhddff914LC8vz/jYzc0NAHt7e7p06YK5uTnNmjUjJyfH2MfDwwMLCwsA3N3dOXr0KD///DO+vr6oVCrMzc3x9PTkyJEjuLu74+joiJWVFQABAQEcPXqUDRs2cP78eUpKSigsLLzPmfqftm3b0rRpUwBat25Ndnb2A48hHj/+jgE0i/+YRtmlNLp6jf2lp7houG5sV5hYUq9+E7LzL/0uSoHatP7DT1YIIYSoRlK0PwQqlQoAhUJRZd+wsDBcXV1p3749Tk5OTJgwgZkzZxIbG8vEiROrjNfr9Tg4OBAdHQ2ATqfj1q1bxnYTExPj44q23NzN9+54KpUKvV5fpo/BYECn0wFgZmZmPL5s2TJSUlLw8PBg0KBBHD58GIPBUGXef6TRaIyPFQrFnxpDPH7MW/VgSJO1pG09RUG2gV4qJwp1xVwz3KbEYMVzz3vR2NGOgswkSooyAAWNHIfInnYhhBCPPNnkWcfk5uayatUq8vPvvL+fl5dHSkpKlfu3VSoVOp2OVq1akZ2dzY8//gjAtm3bmDVr1gPlsHfvXoqLi8nOzmbfvn3069eP3r17s337dnQ6HYWFhezcuZNevXrdE3vo0CECAgIYMmQIycnJpKWl3VPwC/FXKC1ssB3WHWU9NeYKDUPUPehl7cPfRk7GY0BHTOs1pk2f92nZfSZt+r6PXWuv2k5ZCCGE+Mtkpb2OmTJlCkFBQXh5eaHRaFAqlYwdO5a+fftWGvf8888zadIkvvjiCz799FOWLl2KVqvF0tKS5cuXP1AOGo2Gl19+mby8PCZPnkybNm1o2bIlly9fxtvbm5KSEjw9PXnhhRfuuZ3l5MmTmTNnDmZmZjRt2hQXFxdSU1MfeB6EqIypnQUtZ/Si4FImF64n4z3w2TLtCqUKiwZtayk7IYQQovopDLLvQPxOSEgIAG+88UYtZ/LXabVaEhMTcXFxKbPdprYkJCTQvXv32k7jsSPzWjNkXqufzGnNkHmtGTKv1a+qOa2qbpGV9lqwceNGoqKi7jluZ2fH+vXry40pKirCz8+v3Lbp06czcODAas2xpsycOZMLFy7cc9zd3f2+bw0phBBCCPGkkaK9Fty9J/qDMDMzM364tCbV9Ar7xx9/XKPjCyGEEEI8juSDqEIIIYQQQtRxUrQLIYQQQghRx0nRLoQQQgghRB0nRbsQQgghhBB1nBTtQgghhBBC1HFy9xghhBCijtFezyU/6TZKUz2qernUa9sGlYVFbaclhKhFUrT/RfHx8axevRqAadOm0atXr/uKMxgMhISEsGfPHhQKBaampkyfPh03N7dK4+bNm8e0adNo1qzZX869JkRGRnLs2DGWLVtW26kIIUSdV1KqZ1fsr1y7eg1Lxw6MGvAU+itZ3Pg6EfR3+ujyk9Hlfkbj116jUdeu3L4aR2bqDyhVGhq3GoZV4y61exFCiIdCivZasnv3bk6fPk1UVBRqtZrk5GTGjBlDTEwMtra2FcbFx8czderUh5ipEEKImhL/zzW4pceiVBhIu92Q9Tf/wUiDyliwA2SYN+Q71VMUf/MNLidieKZFqrEt5dTntOmzGFPzRrWQvRDiYZKivRpFRESwbNkycnJyWLBgAe7u7hX2TU9PR6fTUVxcjFqtxtHRkeDgYNTqin8koaGh3Lx5k0mTJrF582ZSUlL48MMPKSoqokGDBrz33ns0b94cf39/OnToQEJCAlqtllmzZvHVV19x8eJF4xc7hYSEcO3aNS5evEhmZiZ+fn5MnDgRvV7PBx98wJEjR1AoFHh5eTFp0iTi4+NZsWIFer2etm3b8tZbbzF//nxyc3O5efMmvr6+9/2NpmFhYURFRaFUKuncuTOLFy++Z4Xe39+fadOmAfDZZ5+hVqtJTU2lc+fOLF26FFNT0wf4yQghRN2jy7qB838LdoAmygyeSt6F4WlvAJKfsuTKUxbcKCih5IIpFBZjpkgvO4hBT35GEqbNpGgX4nEnRXs1srKyIioqin379rF69epKi3YfHx92796Nq6srPXr0oFevXvj6+mJtbV1hzKRJkwgPDyc0NBQLCwsCAwNZt24d9vb2HDx4kHfeeYeNGzcCd7bfREREsHr1apYsWcKOHTvIyMjAx8fH+G2siYmJhIeHo9frGT58OK6urpw8eZLr16+zY8cOiouL8ff3p127dpibm3P58mX27duHlZUVGzZswMPDA19fX3Jzc3nuuefw9/evco50Oh2ff/45Bw8eRKVSsWDBAtLS0iqNOXHiBNu3b8fR0ZEZM2awefNmJkyYUOW5hBCiLjPk3jYW7Hc1MclF+awVF4uKie9s99+jTpg2aoJ2XzhZeap7xjGzcngI2QohapsU7dVo0KBBALRp04bMzMxK+1pbWxMeHk5SUhKHDx8mLi6ODRs2EBERQfPmzas81+XLl0lJSeH11183HsvLyzM+vrs33t7eni5dumBubk6zZs3Iyckx9vHw8MDivx9scnd35+jRo/z888/4+vqiUqkwNzfH09OTI0eO4O7ujqOjI1ZWVgAEBARw9OhRNmzYwPnz5ykpKaGwsLDKvFUqFV27dmXkyJEMHDiQCRMm0KRJk0pjevbsSatWrQDw9vZm69atUrQLIR55qmbtKbVogjr/fwsXDbu7c71pJoc7FvL78lxpaYPCxo6LN27QxCofRwclCqUJjRyHYF6/5cNPXgjx0EnRXo1Uqju/YhUKRZV9w8LCcHV1pX379jg5OTFhwgRmzpxJbGwsEydOrDJer9fj4OBAdHQ0cGcF+9atW8Z2ExMT4+OKttzczffueCqVCr1eX6aPwWBAp9MBYGZmZjy+bNkyUlJS8PDwYNCgQRw+fBiDoeyKUUU+++wzTp48yYEDB5g4cSIrV65EoVCUiS8pKSk3T4PBUOa5EEI8qhRKFbbjl5H3n63k37qJRZcBuDwzgOySbIpNfsD8d7+ODQY9FGRiUpDOhYQbDHrp/2FiZoFSZVLxCYQQjxW5T3styc3NZdWqVeTn5wN3VslTUlJwdnauNE6lUqHT6WjVqhXZ2dn8+OOPAGzbto1Zs2Y9UA579+6luLiY7Oxs9u3bR79+/ejduzfbt29Hp9NRWFjIzp07y70jzqFDhwgICGDIkCEkJyeTlpZ2T8FfnoyMDIYOHUq7du2YMWMGffv2JSkpiQYNGnDx4kUMBgMpKSkkJSUZYxISEozjb9++vco77AghxKNCaW1H/WHTeGrcYuo/MwAAaxNrfFq1AuXdd0YNNL1xiiZph3G0LMF3ymI0FjZSsAvxhJGV9loyZcoUgoKC8PLyQqPRoFQqGTt2LH379q007vnnn2fSpEl88cUXfPrppyxduhStVoulpSXLly9/oBw0Gg0vv/wyeXl5TJ48mTZt2tCyZUsuX76Mt7c3JSUleHp68sILLxAfH18mdvLkycyZMwczMzOaNm2Ki4sLqampFZzpfxo2bIifnx8jR47E3NwcR0dHRowYgVqtZtu2bbz44os4OjrSvXt3Y4ydnR1z5swhLS2Nvn378tJLLz3QdQohxKPm2cYu9Ghk4Le8YqxMVdhoWsBwz9pOSwhRixSG+93TIB4rISEhALzxxhu1nEnl7t4Hf9OmTQ8cq9VqSUxMxMXFBY1GUwPZPZiEhIQyL0ZE9ZB5rRkyr9VP5rRmyLzWDJnX6lfVnFZVt8hKew3auHEjUVFR9xy3s7Nj/fr15cYUFRXh5+dXbtv06dMZOHBgteZYU2bOnMmFCxfuOe7u7n7ft4YUQgghhBB3SNFeg+7eE/1BmJmZGT9cWpNqeoX9448/rpZxevXqdd/fMiuEEEII8biSD6IKIYQQQghRx0nRLoQQQgghRB0nRbsQQgghhBB1nBTtQgghhBBC1HFStAshhBBCCFHHSdEuhBBCCCFEHfdIF+3x8fH4+/vj7+9/zzd2VsZgMBAcHIynpydeXl6MHDmSAwcOVBk3b948fvvtt7+Sco2KjIxk7ty5lfbZunUru3btekgZiZpUeOk8KV+8R0zEP9j63UZ+PZFMabGuttMSQgghRA14Iu/Tvnv3bk6fPk1UVBRqtZrk5GTGjBlDTEwMtra2FcbFx8czderUh5hp9fvpp5949tlnazsN8Rfdiokh/ZtvSGnlwol2f8dgouZcZj5myz7H1qkX5/NsaG1vzugBTbAwU9V2ukIIIYT4ix6boj0iIoJly5aRk5PDggULcHd3r7Bveno6Op2O4uJi1Go1jo6OBAcHo1ZXPB2hoaHcvHmTSZMmsXnzZlJSUvjwww8pKiqiQYMGvPfeezRv3hx/f386dOhAQkICWq2WWbNm8dVXX3Hx4kXjly2FhIRw7do1Ll68SGZmJn5+fkycOBG9Xs8HH3zAkSNHUCgUeHl5MWnSJOLj41mxYgV6vZ62bdvy1ltvMX/+fHJzc7l58ya+vr739S2jhw8fJi4ujqNHj9K4cWNiYmLIysriypUrzJ49G61WS1hYGEVFRRQXF/PBBx/QrVs3/P396dSpEwkJCWRkZBAYGMhzzz3Hzp07+eKLL1CpVDg4OLBixQpmzpyJp6cngwcPBmD48OEsWbIECwsLFi1aRFZWFmZmZrzzzjt06NCBuXPnlsnh+PHjHDp0CKVSyaBBg5g2bRr5+fksXryY8+fPo9PpePXVV/Hw8HjwPySPCb1Wy63o7eiVSk7088BgcufPrcHcApP+XUjZ/w3pxR04caELKelaFv3dsZYzFkIIIcRf9dgU7VZWVkRFRbFv3z5Wr15dadHu4+PD7t27cXV1pUePHvTq1QtfX1+sra0rjJk0aRLh4eGEhoZiYWFBYGAg69atw97enoMHD/LOO++wceNG4M72m4iICFavXs2SJUvYsWMHGRkZ+Pj4GL8hNTExkfDwcPR6PcOHD8fV1ZWTJ09y/fp1duzYQXFxMf7+/rRr1w5zc3MuX77Mvn37sLKyYsOGDXh4eODr60tubi7PPfcc/v7+Vc5Rnz59cHd359lnn6V///7ExMRgY2PDunXr0Ov1TJgwgXXr1tGwYUMiIiIIDQ1l3bp1AJSUlLBlyxbi4uL49NNPee6551i1ahVbt27F1taW5cuXc+nSJby9vdm5cyeDBw/m8uXLaLVaOnTowOjRo1m4cCEdOnTgwoULTJ06ldjYWABjDr/99hsff/wxMTExFBYWMm/ePLRaLWvXrqVjx44sX76cvLw8Ro8eTZcuXWjevPl9/ul4vOiLizGUlFJqoqHY3KJMW6lpfXo65VOUeJZ0Q2uOnYVCrQ5zjay2CyGEEI+yx6ZoHzRoEABt2rQhMzOz0r7W1taEh4eTlJRkXH3esGEDERER91UIXr58mZSUFF5//XXjsby8PONjNzc3AOzt7enSpQvm5uY0a9aMnJwcYx8PDw8sLO4UXO7u7hw9epSff/4ZX19fVCoV5ubmeHp6cuTIEdzd3XF0dMTKygqAgIAAjh49yoYNGzh//jwlJSUUFhbe50yV1blzZwCUSiVr1qwhLi6O5ORkjh07hlL5v4889O/fH4C2bduSlZUFwIABAxgzZgyDBg1i8ODBODs707p1axYvXkxeXh67du3Cy8uL/Px8EhMTmTdvnnG8goIC48/pbg5NmjRBo9EwevRoBgwYwKxZs9BoNBw+fJiioiK2bdtmjD1//vwTW7Srrayw7NqVvJ9+ovG1i6Tbtza2NSs9g511KQCtFflcs7DB1OSR/uiKEEIIIXiMinaV6s5KokKhqLJvWFgYrq6utG/fHicnJyZMmMDMmTOJjY1l4sSJVcbr9XocHByIjo4GQKfTcevWLWO7iYmJ8XFFW27u5nt3PJVKhV6vL9PHYDCg0935YKGZmZnx+LJly0hJScHDw4NBgwZx+PBhDAZDlXmX5+64+fn5jBw5Ei8vL3r27ImTkxObN2829tNoNEDZ+Q0MDOTs2bP88MMPzJ49m2nTpuHt7c2AAQOIi4vju+++4/PPP0ev12NqamqcL4AbN25gY2NTJge1Ws0333zDsWPHOHDgAKNHj2bTpk3o9XpWrFhBx44dAbh161al74o8CZq99hqZ33+Pe2oSxxpmkmvSmCa6ZNqVHOG3HDXWWHBL2ZDXPO1RKav+OyGEEEKIuu2JXILLzc1l1apV5OfnA3dWyVNSUnB2dq40TqVSodPpaNWqFdnZ2fz4448AbNu2jVmzZj1QDnv37qW4uJjs7Gz27dtHv3796N27N9u3b0en01FYWMjOnTvp1avXPbGHDh0iICCAIUOGkJycTFpa2j0Ff1XX8EeXL19GoVDw2muv0atXL/bs2VNuv7tKS0v529/+RoMGDZg8eTLe3t6cOXMGAG9vb8LCwrCxsaFZs2ZYWVnx9NNPG4v2Q4cOMXbs2HvG/PXXX3nllVfo2bMnb7/9Nq1btyY5OZnevXvz9ddfA3Dz5k28vLy4fv36fV3v40ppaortkCG0e3UyI3v0ZKB+L07Fh8jOMCPrfDtetOvPO3O78FznBrWdqhBCCCGqwWOz0v4gpkyZQlBQEF5eXmg0GpRKJWPHjqVv376Vxj3//PNMmjSJL774gk8//ZSlS5ei1WqxtLRk+fLlD5SDRqPh5ZdfJi8vj8mTJ9OmTRtatmzJ5cuX8fb2pqSkBE9PT1544YV7bmc5efJk5syZg5mZGU2bNsXFxYXU1NT7Om+fPn345JNPjFtt7mrfvj3Ozs4MGTIEhUJBv379SEhIqHActVrN9OnT+b//+z80Gg22trYsW7YMgO7du5Obm8uYMWOM/VesWMGiRYv44osvMDExISgo6J53RTp06MAzzzyDh4cH5ubmdOvWDTc3N5599lkWLVqEh4cHOp2O2bNn06JFi/u63ieBmZUD7dwWUZqtJe/0TTq1NcGyY2OUprKPXQghhHhcKAx/dl+F+NNCQkIAeOONN2o5k8ebVqslMTERFxcX4/ae2pSQkED37t1rO43HjsxrzZB5rX4ypzVD5rVmyLxWv6rmtKq65bFdad+4cSNRUVH3HLezs2P9+vXlxhQVFeHn51du2/Tp0xk4cGC15lhTZs6cyYULF+457u7ufl+3hhRCCCGEEHXLY1u0370n+oMwMzMr82HJmlLTK+wff/xxjY4vhBBCCCEerifyg6hCCCGEEEI8SqRoF0IIIYQQoo6Tol0IIYQQQog6Top2IYQQQggh6jgp2oUQQgghhKjjpGgXQgghhBCijntsb/kohBBCiJpXWlxCZmkm5jpLLp24wfXbV2ncvD4unV0wNTWt7fSEeGxI0S6EEEKIKulzb1Ny/hjK+raoW/cAvYIr209QlJhNYmsbrtqYkZOdSvH5I3C8iLj9cUydOhVzc3MM+lIUSik5hPgrZHtMNYuPj8ff3x9/f3/i4+PvOy4yMhInJyd27dpV5vjGjRtxcnIiNTW12nI8ePAg3t7eeHt707VrV1544QW8vb2ZOnUqqampuLu7lxvn7e1d6bhOTk7VlqMQQoi6QaczsPe7H0lf/SoF360mb+t75G/7gNwT19GdyuVUu8acad2IfFtLVK3aY9rtBQAyMjL4OeEHLh37kDNx07gU/wHa/Ou1fDVCPLrkZW8d0rRpU2JjY/Hw8DAe27NnD/Xr16/W8/Tv35/+/fsD4O/vz7Rp0+jVqxdApS8OHsa3xQohhKhb1u36jeYnozA10RqPlZw7QrF+CAApTeqV6a9q7ABqUygtxrzoPxQV3QKgKPcqv53+klbPzn14yQvxGJGV9hoUERGBr68vAwcOJC4ursr+PXv2JDExkYKCAgCuXbuGhYUFVlZWxj6hoaH4+vri5eXFRx99hMFgACAoKIhRo0YxePBg/P39uXXrzi/Jfv368f777+Pj48OIESNISUmpMo+ioiL+8Y9/4OHhwcsvv0xmZibwv5X0rKwspk6dypAhQ/D29ubIkSNl4n/66Sf+9re/ceXKFUJCQggMDMTf3x93d3fWrl0LgE6n48MPPzRey8aNGwG4ceMGr7zyCsOHD2fkyJGcPHkSgOXLl+Pl5YWPjw+rV6+u8hqEEEJUjz0JmZhQes9xs6dMALAsKNtm0BaArgSFvgS14XaZtqKcKzWXqBCPOSnaa5CVlRVRUVEEBgayZs2aKvur1Wr69evHDz/8AMC3337LkCFDjO0HDhwgMTGRiIgItm/fTlpaGjt27ODKlStcunSJ8PBwYmNjeeqpp9ixYwcA6enpuLq6sn37dnr27MnmzZurzCMjI4MJEyawa9cuGjVqxLffflum/dNPP6VFixbs3r2bjz76iFWrVhnbzp49y4IFC1i3bh0tW7YEICkpiQ0bNvDNN98QGhpKTk4OW7duBSAqKoqIiAi+//57fvzxRyIiInj++eeJjIxk+vTpJCQk8Ntvv3HgwAF27NjB119/zYULF9BqtQghhKh5NpZq9pT0ptTwv5JB5dAB6/6dqe/enM6XbmBeWHynobgQRXwE5rmXsb51gvxcRZmx6jVo+zBTF+KxIttjatCgQYMAaNOmjXG1uipDhgxh69atDBkyhL1797J+/XpCQkIAOHLkCKdOnWL48OHAnRVxe3t7vL29efvtt/nmm29ITk7m5MmTtGjRwjjm3a0wbdu25ccff6wyBzs7Ozp37lxh7sePH2flypXAndX3LVu2GNsCAgJ48cUXadWqlfFYr169MDU1xdbWFhsbG3Jzczly5Ahnzpzh6NGjABQUFJCUlISrqytvvPEGZ86c4bnnnuOVV15BpVKh0WgYPXo0AwYMYNasWWg0mvuaTyGEEH9NwJCn+GhLCe8UTMHVNJEe3Z6mw2BPABo/14rGz7XimbQ0Lv58mj1RK9Frc42xRaVtaWprQkHWBcxtWmHv/EptXYYQjzwp2muQSqUCQKFQVNHzf3r16sU777zDuXPnaNCgQZmtMTqdjnHjxjFhwgQAcnJyUKlUJCYmMnPmTMaPH8/gwYNRKpXGbTOAscBVKBRljldErf7fH4vyYtRqdZlrunjxIo6OjgCsXLmSOXPm8NJLL9G+ffsy5//9eDqdjtmzZ/O3v/0NuLO6b2FhgUajISYmhv379/Ptt98SFRVFWFgY33zzDceOHePAgQOMHj2aTZs2Gc8phBCi5vTvZEPHpy04l9qSdg6DaGhlck8f8yZNcPlbE5RWJez7VzBF+Tm07NiTZ4dNxMzCqpxRhRAPSrbH1DEqlYq+ffuycOFChg4dWqatd+/eREdHk5+fT2lpKVOnTiU2Npbjx4/z7LPPMmbMGJ5++mn279+PTqersRx79OhBTEwMcKdgf/XVV41FvKurKzNnziQwMBC9Xl/hGL1792br1q2UlJSQn5/Pyy+/zMmTJ/noo4/YsWMHvr6+LFy4kF9//ZVff/2VV155hZ49e/L222/TunVrkpOTa+z6hBBClNXQyoTeztblFuy/18F1MK8FbWdKcAwjZ34iBbsQ1UhW2uugIUOGEB0dfc+tF93d3Tl79iyjRo1Cp9PRv39/fH19uXnzJtOmTcPT887blS4uLtV6i8g/mj59OoGBgXh5eaFWq/noo4/KrLz7+PgQGRnJpk2bKhxj9OjRXLlyBV9fX0pLSxk+fDi9evWiRYsWzJw5k8jISFQqFcuXL6dDhw4888wzeHh4YG5uTrdu3XBzc6ux6xNCCPHnqdQmmFtWXtwLIR6cwnA/+yWEeARptVoSExNxcXGpE3vgExIS6N69e22n8diRea0ZMq/VT+a0Zsi81gyZ1+pX1ZxWVbfISvtDtHHjRqKiou45bmdnx/r162shIyGEEEII8SiQov0hGj9+POPHj6/tNIQQQgghxCNGPogqhBBCCCFEHSdFuxBCCCGEEHWcFO1CCCGEEELUcVK0CyGEEEIIUcdJ0S6EEI8og96AQV9KUd419PqS2k5HCCFEDZK7x1QhJCQEgDfeeOO+Y0pLS1m/fj07duxAoVCg0+nw9fVl8uTJZb6E6I8MBgMhISHs2bMHhUKBqakp06dPr/KLhLZu3UpISAgeHh68/fbb951neYKDg+nTpw89evT4S+P8Vd9//z2JiYnMmDGjVvMQoq4pvZbE1SP7+HciqJXF9Ox+ERNTLSoTSxw6vYpFQ6faTlEIIUQNkKK9Brz33nvcunWLLVu2UL9+ffLy8pg6dSpWVlaMHTu2wrjdu3dz+vRpoqKiUKvVJCcnM2bMGGJiYrC1ta0wbteuXXz44Yf069fvL+d+/PhxevXq9ZfH+asGDhzIwIEDazsNIWpddn4pB8+kYVnPgKvZLS79aymb89uiV8DQntlgquaMSV/yFQ24cfY/PNdHinYhhHgcSdFejvj4eFasWIFer6dt27ZkZGQwevRo0tLSGD58eKWr7jdu3GDHjh0cOHCA+vXrA2BpacnChQu5cOFCpedNT09Hp9NRXFyMWq3G0dGR4OBg1OqKf0yrV6/ml19+4b333iMwMJD33nuPzp07c+bMGf71r3+xf/9+wsLCUCgUdOzYkXfeeQcLCwv69evH4MGDSUhIQKVSsWrVKhISEkhMTCQwMJDVq1djamrKwoULycrKol69eixYsIDOnTszd+5czM3N+fXXX8nJyeGtt94iOjqas2fPMmjQIObOnUteXh7z588nLS2Nmzdv4urqytKlSzl27FiZuQ0MDGTOnDlcvXqV5s2bc+PGDVavXs2xY8c4duwYy5Ytw93dHS8vL/7zn/9QWFjI8uXLcXFx+XM/XCEeIanpRQTu/X/Ua30cRaGeIykaHEps0f/3Dbv69XT8x2wst1XNAbgCNEjPp3Nji9pLWgghRI2QPe0VuHz5Ml9++SUODg7cvn2br776im3btrFhwwby8vIqjDt16hStW7fG2tq6zPHWrVszePDgSs/p4+NDXl4erq6uBAQEEBoaiqOj4z1j/d60adNwcXFhyZIlPPfccwC4ubkRGxvLrVu3WLduHZs2bWLnzp2Ym5uzevVq4M4LBFdXV7Zv307Pnj3ZvHkzPj4+xrGcnJyYPXs2/v7+7Ny5k3nz5jFjxgyKi4sBuHnzJlu2bGHSpEnMmzeP9957j+3bt7N161Zyc3PZv38/zs7ObNmyhdjYWI4fP87p06fLzO3y5ctZs2YNjo6OxMTEMHXqVM6dO1fuddrY2BAREcHo0aP5/PPPK51HIR4XW44nYtEuHoVKD0BqIy25ajtj+/msJsaC/a6TN/Mfao5CCCEeDinaK+Do6IiVlRUA/fv3x9TUlIYNG9KgQQOys7Mrjf39vvXvvvsOb29vPD09GTFiRKVx1tbWhIeHs3XrVvr168fBgwfx8PAgJSXlgXLv0qULcGery4ABA2jQoAEAfn5+HD161Nivf//+ALRt2/aea8rPz+fq1av87W9/A+CZZ57B2tqaS5cuARj32dvb29O2bVtsbW2xtLTExsaG7OxsPDw86Nu3Lxs3bmTJkiVkZWVRUFAAlJ3bQ4cO4e3tDUCnTp1o165dudf0+1yzsrIeaD6EeFTlKW6Wea4pNqVrSVdU//3V/fM5FRj0ZYOKch9WekIIIR4iKdorYGZmZnz8++0pCoUCg8FQYZyLiwsXL140rsa/+OKLREdHs3btWjIzMys9Z1hYGGfPnsXJyYkJEyawadMm+vXrR2xs7APlrtFoANDry/5jbjAYKC0tvadfeddU3jUaDAZ0Oh0AJiYmxuPlbd/ZtGkTH330EQ0bNuSVV16hdevWxjF/P7cqlarS+SwvVyGeFB7OXdGX/u/vl3mxKXaKhgxX96Wnsh19itvw9IXfvajX5tO9vq4WMhVCCFHTpGivZvb29nh5efH222+Tk5MD3LmbzP79+1EqK5/u3NxcVq1aRX7+nbe38/LySElJwdnZ+U/l8uyzzxIXF2dcmd66dWuVHzJVqVTodDosLS1xcHDg3//+NwAnT57k1q1btG3b9r7OfejQIfz8/PDy8kKr1XL27Nl7XkQAuLq6snPnTgCSkpI4f/68FOZC/Ff3p59iTJPXsSp2xEpvj3tbLzTNrKivqEdnlSNtlc2o/+NOzLbNw3RPEB1Of03HtuW/WyWEEOLRJh9ErQGLFi0iLCyMv//97+h0OvLz8+nVqxfr16+vNG7KlCkEBQXh5eWFRqNBqVQyduxY+vbt+6fyaN++PZMnT8bf35+SkhI6duzIe++9V2lM//79effdd1m+fDkrVqxg0aJFhISEYGJiQkhICKampvd17nHjxrFo0SJCQ0OxtLSka9eupKam0qJFizL9pk6dyrx58/D09KRFixY0atSozEq8EE86t6c74/Z0Z+Nz3dgSMv9zlZLbhVi0t+WFNp1pdfIQFja2OLrU/p2fhBBC1AyF4X72JghRQ6Kjo3FwcKB79+5cu3aNV155hb1791b5rsT90Gq1JCYm4uLiYtxeU5sSEhLo3r17bafx2JF5rRkyr9VP5rRmyLzWDJnX6lfVnFZVt8hK+5/w448/8v7775fbFhoaSpMmTSqM3bhxI1FRUfcct7Ozq3AlvqioCD8/v3Lbpk+f/kjfz7xVq1a8++676PV6lEolixcvrpaCXQghhBDicSJF+5/Qo0cPoqOj/1Ts+PHjGT9+/APFmJmZ/enz1XWdOnUiMjKyttMQQgghhKjTZElTCCGEEEKIOk6KdiGEEEIIIeo4KdqFEEIIIYSo46RoF0IIIYQQoo6Tol0IIYQQQog6Top2IYQQQggh6jgp2h9QSEgIISEhDxRTWlrK2rVrGTJkCEOHDmXw4MGsW7eOqr7XymAwEBwcjKenJ15eXowcOZIDBw78lfTv26uvvkpaWlqF7b/88gsLFiwAYOvWrezatavS8e5n3qo6J8C8efMYOHBgled73N39pl0hhBBCPBnkPu0PwXvvvcetW7fYsmUL9evXJy8vj6lTp2JlZcXYsWMrjNu9ezenT58mKioKtVpNcnIyY8aMISYmBltb2xrNuaIverqrU6dOdOrUCYCffvqJZ599tsbPCRAVFcWpU6cwNTX9y+d7VJ09e5ZtW7eQX6TFyaaIbk4lqOopsLbvjb2zHwqlqrZTFEIIIUQ1k6L9PsTHx7NixQr0ej1t27YlIyOD0aNHk5aWxvDhw3njjTcqjL1x4wY7duzgwIED1K9fHwBLS0sWLlzIhQsXKj1veno6Op2O4uJi1Go1jo6OBAcHo1ZX/mPbt28fq1atQq/X07x5cxYvXkyjRo04fPgwy5Ytw2AwYG9vz8cff4yJiQnvvfceCQkJmJiYMGXKFIYOHYq7uztfffUVx44dY//+/dy+fZv09HQGDBjA3LlzOXbsGKtXr+b1118nLi6Oo0eP0rhxY5o0acL7779PQUEBGRkZTJo0iTFjxtzXPP/+nAcPHiQ7O5uUlBT69u3LokWLeO211zAYDLz00kv885//rPEXLnWN3mDg3M1swv/9A8XFJZio9TzTuQDVf/84ZF8/gN5gRXMXz9pNVAghhBDVTor2+3T58mX27dvHxo0bOX/+POHh4eTl5eHu7s6ECROwtLQsN+7UqVO0bt0aa2vrMsdbt25N69atKz2nj48Pu3fvxtXVlR49etCrVy98fX3vGev3bt++zcKFC/n6669xcHDgiy++YPHixaxcuZJZs2axYcMGnJ2d+fjjj4mKikKr1VJQUMDu3bu5ffs248ePZ9CgQWXGTEhIIDo6mvr16/P3v/+dPXv2GHPo06cP7u7uPPvss/Tv35+lS5cyZcoUXF1dSUlJwcvL676L9t87ceIEu3btQqVS8eKLLzJmzBjWrVuHk5PTY/vtsJUp1Rv46vRNfssrRtVzKJq8TGx+2YLJH/4Gp19JlKJdCCGEeAzJnvb75OjoiJWVFQD9+/fH1NSUhg0b0qBBA7KzsyuNVSgUxsffffcd3t7eeHp6MmLEiErjrK2tCQ8PZ+vWrfTr14+DBw/i4eFBSkpKhTGnTp2ic+fOODg4AODn58fRo0dJSkqiSZMmODs7AzBz5kz8/f05fvw4np6eKJVKGjduTExMzD1bTwYOHEijRo0wNTVl6NChHD16tMLzz507F61Wy+eff86qVasoKCio9Bor0rVrVywtLTE3N6d58+ZVzvHjLimjkN/yio3PlZYNyLLpSKmubL/C/Cfr3QchhBDiSSFF+30yMzMzPv799hSFQlHpB0pdXFy4ePEieXl5ALz44otER0ezdu1aMjMzKz1nWFgYZ8+excnJif/P3p3HRVmujx//DDMMiOwoGIqKRKjhvuCGuZVggoob6pGDP0szzDqVSclBTWyRFo/UsTCP2zG1RARzzRT1WGKSppiamAuooIAsg7LNzO8Pvk4SmyII4vV+vXq9hud5rvu57nsMrrnnnnumTJnC2rVr6devH7t27aowRqfTlfpZr9dTXFyMsbFxqRcPubm5pKamolKpSh2/dOkShYWFpdpQKv9cI63T6Ur9/FevvfYa33//PS4uLrz22muV9q8yJiYmhsdVjfHjoECrK3NMaWTO5dOtId8MdAoKrrWk2VPeDz85IYQQQtQ6KdprmaOjI76+vsyZM4ecnBygZDeZuLg4jIwqH/7c3FyWLFli2CVEo9GQnJxsmC0vT6dOnfj1119JSUkBYOPGjXh4eODs7ExGRoZhHf1XX33F+vXr6dGjB9u3b0ev15ORkcHf/va3MkX7wYMHyc3NpaCggG3bttG/f/9S55VKJVptyZTvoUOHmDVrFkOGDDHsdHPnnKi+traNMFP9+e9FUVzIwFRj2t3sjcnPIzA+NA5rR39cOjvVYZZCCCGEqC2ypv0hmD9/PitXriQgIMCwVZ+Hh0eVu6W8/PLLfPrpp/j6+mJiYoKRkRGTJk2ib9++FcY0adKEd999l5kzZ1JUVISjoyOLFi3CxMSE8PBw3nrrLYqKimjZsiWLFy/G2NiYsLAwfH19AfjnP/9ZZn2+ra0tL774Ijdv3sTX1xdPT0/i4+MN5/v06cMnn3yChYUFr7zyChMnTsTExIS2bdvSvHlzwwsIUX1mxkqmdnAgIU1DfpGOG5eNOebkRn9FPg4mCiw6OWD2pG1dpymEEEKIWqLQP+7rDkSlNm/ezJEjR/jggw/qOpX7VlBQQGJiIu7u7qWW29SVhIQEunXrVtdpNDgyrrVDxrXmyZjWDhnX2iHjWvOqGtOq6haZaa8BR48eZeHCheWei4yMxMHBocLYVatWER0dXea4vb19hTPx+fn5jB8/vtxzs2bNYvDgwfeQdd2YPHmyYZnQ3fz9/au1y4wQQgghxONAivYa0L1792pvQxgYGEhgYOB9xZiamj60bQ/9/Pzw8/OrsfbWrl1bY20JIYQQQjwu5IOoQgghhBBC1HNStAshhBBCCFHPSdEuhBBCCCFEPSdFuxBCCCGEEPWcFO1CCCGEEELUc1K0CyGEEEIIUc/Jlo9CiEeeXq9n69Ut/O/GAYoK1JilDuA5514809GmrlMTQgghaoTMtD+AiIgIIiIi7iumuLiYZcuW4e3tzbBhwxg6dChffPEFVX0xrV6vZ+nSpfj4+ODr68uYMWM4cODAg6RfL0yePPm+rk9JSWHQoEG1lI14FN3WG7HrSgK7L2+n0b4kuuw/Q+eba4jZsZXte1Oq/H9LCCGEeBTITPtDtmDBAtLT09m4cSOWlpZoNBqCgoKwsLBg0qRJFcbt2LGDU6dOER0djUql4sKFC0yYMIFt27ZhZ2f3EHtQs44cOVLXKYhHlF5bzL5fT/NjoR36ZAXNb79GJ/uNtHa4DkD75of4Lb6AjYfdeH5GDyxsGtVxxkIIIUT1SdF+n+Lj4wkPD0en0+Hq6kpmZib+/v6kpaXh5+fHK6+8UmFsamoqsbGxHDhwAEtLSwDMzc0JDQ0lKSmp0vveuHEDrVZLYWEhKpUKZ2dnli5dikpV+VPYu3dvnn32WY4dO0bjxo356KOPaNGiBTt27GDlypXk5+dTWFjIe++9R9euXZk8eTJWVlacO3eOJUuWkJCQQExMDLdv38bY2JiPP/6YNm3a8OOPP/LBBx+g1+txdHTk448/plGjRixevJgjR46g1Wrx8/MjMDCQ+Ph4vvzyS0xNTTl//jxubm589NFHLF68GICxY8fy7bff0qtXL9zd3blx4wabNm1iwYIFnDt3jvT0dNzc3Pjkk0/u89kSDdm1qHB+bDERvUIBQHEjS9KdetC6cBsACoWCFi7nOHbQkaM7zjFwYse6TFcIIYR4ILI8phouXrzI6tWradGiBRkZGaxZs4aoqChWrFiBRqOpMO7EiRO4uLhgZWVV6riLiwtDhw6t9J4jR45Eo9HQu3dvpk6dSmRkJM7OzmXa+qvMzEy6dOnC1q1bef755wkLC0On07Fhwwa++OILYmNjeeGFF4iMjDTEuLm5sWvXLpycnNizZw9r167lu+++Y8CAAaxbt47CwkLefPNNPvzwQ7Zu3cpTTz1FdHQ033zzDQDR0dFs2rSJH374gaNHjwJw7NgxQkND2bFjB1evXuV///sfISEhAHz77bcA3Lx5kxdffJGYmBiOHz+OsbExGzdu5Pvvvyc3N5f9+/dX2lfx+Ci++js5acnoFaV/hd1WWJT6Wa9TApB1Pe+h5SaEEELUBplprwZnZ2csLEqKA09PT9RqNba2ttjY2JCdnY25uXmFsYr/mxUE2LlzJ8uWLUOn06FWq4mKiqowzsrKig0bNnD27Fl+/PFH9u7dy4oVK9i0aRNOTk4VxpmYmDBy5EgARo0axSeffIKRkRGff/45e/fu5cKFCxw5cgQjoz+Ln44dS2Ykzc3N+fjjj9m2bRsXL17k4MGDtGvXjrNnz+Lg4EC7du0AeOONNwCYNWsWp0+f5vDhwwDcunWLs2fP8uSTT+Lq6kqzZs2Akhcp2dnZ5ebbqVMnAHr06IG1tTXr1q3jjz/+4OLFi9y6davCforHjE5L09zLWN9KJcusmeGw8Y3fwfL/LtFBctKTALTp6FAXWQohhBA1Rmbaq8HU1NTw+O7lKQqFotIPvbm7u3P+/HnDbLyXlxcxMTEsW7aMmzdvVnrPlStXcubMGdzc3JgyZQpr166lX79+7Nq1q9I4IyMjwwsFnU6HUqkkLy+PMWPGkJKSQo8ePcp8GPRO/65du8b48ePJzc2lf//+jBo1Cr1ej7GxcakXH7m5uaSmpqLVapk9ezYxMTHExMSwceNGxowZA5S8eLiXcbpz7x9++IE333wTU1NT/Pz86NGjh3ygUBgom7fFuLkbI48voUNKHI6pN2hz/CwXjl5i73Fzjv/eiD8uDUHVqC29R7al4wDnuk5ZCCGEeCBStD9Ejo6O+Pr6MmfOHHJycoCS3WTi4uJKzXSXJzc3lyVLlpCXV/I2v0ajITk52TDbXZHbt2+zd+9eADZv3kz//v25ePEiCoWCl156CQ8PD77//nu0Wm2Z2JMnT9KqVSsCAwPp0KEDe/bsQavV4uzsTEZGhmEd/ldffcX69evp1asX33zzDUVFReTl5TFx4kSOHz9eaX5KpZLi4uIyx3/66Se8vb0ZPXo0lpaWxMfHl5ujeDwpFAosJi7CftDf6KBLY+LTSnpdOcmYXDM6XtLznPsofF8cw+g3+tJlsAsKI0XVjQohhBD1mCyPecjmz5/PypUrCQgIQKvVkpeXh4eHB8uXL6807uWXX+bTTz/F19cXExMTjIyMmDRpEn379q3ynjt37uTTTz/F3t6eDz/8EBsbG9q1a4e3tzcKhYJ+/fqRkJBQJq5v376sX7+eYcOGodfr6dGjB+fOncPExITw8HDeeustioqKaNmyJYsXL0atVnPp0iVGjRpFcXExfn5+eHh4EB8fX2FugwcPZsSIEWzevLnU8bFjx/Lmm2+ybds2jI2N6dq1KykpKVX2VTw+FMammHTxJktnj8tTnXAJ60RhWhoqa2uM7npnRwghhGgIFHpZc9Cgubm5cfbs2bpOo04UFBSQmJiIu7t7qeU5dSUhIYFu3brVdRoNjoxr7ZBxrXkyprVDxrV2yLjWvKrGtKq6RWbaa9jRo0dZuHBhueciIyNxcKj4A3GrVq0iOjq6zHF7e/sKZ+Lz8/MZP358uedmzZp1DxkLIYQQQoj6Tor2Gta9e3diYmKqFRsYGEhgYOB9xZiamlZ6v8d1ll0IIYQQoiGRD6IKIYQQQghRz0nRLoQQQgghRD0nRbsQQgghhBD1nBTtQgghhBBC1HNStAshhBBCCFHPye4xQgjxENy+cIHcX35BbW+Pec+eFGq1mJmZ1XVaQgghHhFStAshRC0oTvsDhZGS+IRf+HX7KnS5ObTRW6E0cSB+1y5u63S0c7Vn+PAR2DR1rut0hRBC1HNStNegiIgIAF555ZV7jikuLmb58uXExsaiUCjQarWMGjWK6dOno1AoKozT6/VERETw/fffo1AoUKvVzJo1i/79+z9wP+6oTn/ux4kTJ9i1axezZ8+uNzkJ8aD0xYVovplP8cVfuVKo5ccbSowUxliqm3K6KINsGzd0aHm2Sy4ONplc+/UMt57ohWP7v1f6/7wQQojHmxTtdWzBggWkp6ezceNGLC0t0Wg0BAUFYWFhwaRJkyqM27FjB6dOnSI6OhqVSsWFCxeYMGEC27Ztw87O7iH2oPqSkpLIyMio6zSEqFGFp/ZTfPFXLlmpiWk9ESPrnqBQ4HBFQ/vjv/Gd/hfcHPNxsCk2xGRfO4z1E71obNu2DjMXQghRn0nR/oDi4+MJDw9Hp9Ph6upKZmYm/v7+pKWl4efnV+mMcGpqKrGxsRw4cABLS0sAzM3NCQ0NJSkpqdL73rhxA61WS2FhISqVCmdnZ5YuXYpKVfFTWlRUxDvvvMO5c+cAmDhxIuPGjSM4OJiePXvi5+cHgJubm+GbVE+cOMHYsWO5desW48aN4+9//zt6vZ6PPvqIPXv2oFQqGT9+PH//+9+5dOkS8+fPJysrC1NTU/75z3/Svn17goODMTc359SpU6SlpREUFMSzzz7L0qVLuXXrFsuWLcPBwYHo6GiysrIYOHAgw4cPZ+HChdy6dYvMzEymTZvGhAkT7uu5EaIu6HJuALCrnQdGjXoZjv/RwgLH660wT0mksemtMnGFtzNo/NCyFEII8aiRor0GXLx4kX379rFq1SrOnTvHhg0b0Gg0DBo0iClTpmBubl5u3IkTJ3BxccHKyqrUcRcXF1xcXCq958iRI9mxYwe9e/eme/fueHh4MGrUqDJt3e3YsWNkZ2ezZcsW0tLS+Pjjjxk3blyl97lx4wZff/01Op0OPz8/evbsycWLF/nll1/YunUrRUVFTJw4kWHDhjFnzhxCQ0Np3749SUlJBAUFsWvXLqDkBcrXX3/N77//TkBAAKNHj2bWrFkcOXKEGTNmsHnzZtLS0ti+fTsqlYpFixbx8ssv07t3b5KTk/H19ZWiXTwS1G59yD+0kXxj+zLbc+WaqxnaqAfx13+hrdMVjP5vNUxxsRJTq3YPPVchhBCPDinaa4CzszMWFhYAeHp6olarsbW1xcbGhuzs7AqLdqDUGtadO3eybNkydDodarWaqKioCuOsrKzYsGEDZ8+e5ccff2Tv3r2sWLGCTZs24eTkVG6Mq6srFy5cYOrUqfTv35+33nqryr4NGzbMsMPFwIEDOXLkCJcuXcLb2xu1Wo1arSYmJoa8vDwSExN5++23DbG3bt3i5s2bAPTt2xeFQsFTTz1FVlZWufdq37694Z2C4OBgDh48yJdffsnvv//OrVtlZyaFqI+U9q0xnxBGu/PbOaPSofi/0l2h1+N44xZOnZ7kj7NWJB7+nebOF9FqVaSluOH+rHXdJi6EEKJek6K9Bpiamhoe3708RaFQoNfrK4xzd3fn/PnzaDQazM3N8fLywsvLi5SUFAICAiq958qVK+nduzdt27bFzc2NKVOm8MYbb7Br1y5eeOGFcmNsbGzYtm0bhw4dYv/+/YwaNYpt27aVyrOoqKhUzN390el0qFQqVCpVqRcbKSkpWFlZGQr4O1JTU7G2tgbAxMTEMCYVuXscX3vtNSwtLRk4cCDDhg3ju+++q3Q8hKhPjFt1YGxLd2IvJXDmujGNb5nSJbUQ584O2DzTil5uduxYriEz3gGFkYIB/h0wUsrXZgghhKiY/JWoQ46Ojvj6+jJnzhxycnKAkt1k4uLiMDKq/KnJzc1lyZIl5OXlAaDRaEhOTqZdu4rfYv/hhx+YPXs2AwYMICQkBDMzM65du4a1tbVhDf2ePXtKxezatYvCwkKys7OJi4ujV69e9OjRg927d1NUVMTt27d54YUXSE9Pp3Xr1oai/dChQ5V+kBZAqVRSXFxc7rlDhw4xa9YshgwZwoEDBwDQarWVtidEfaJQKBjRujtzenZi5gA3+vp3wG5IG4yMlTi1bULAu4MYNr07k+cPpF3v8t8dE0IIIe6QmfY6Nn/+fFauXElAQABarZa8vDw8PDxYvnx5pXEvv/wyn376Kb6+vpiYmGBkZMSkSZPo27dvhTH9+/dn9+7dPP/885iYmODr64ubmxsTJkzgtddew8fHh169etG0aVNDjKOjI/7+/hQUFDB9+nTDevvExET8/PzQ6XQEBATg7OxMeHg48+fP56uvvsLY2JhPP/200pn1jh078tlnn/HRRx/Rpk2bUudeeeUVJk6ciImJCW3btqV58+akpKTc46gKUf+ZNlbT2t2hrtMQQgjxiFDoK1u/IcQjrKCggMTERNzd3Q3Lc+pSQkIC3bp1q+s0GhwZ19oh41rzZExrh4xr7ZBxrXlVjWlVdYvMtNeyo0ePsnDhwnLPRUZG4uBQ8UzbqlWriI6OLnPc3t6+wpn4/Px8xo8fX+65WbNmMXjw4HvIWgghhBBC1CdStNey7t27l/pw5v0IDAwkMDDwvmJMTU2rfT8hhBBCCFE/yQdRhRBCCCGEqOekaBdCCCGEEKKek6JdCCGEEEKIek6KdiGEEEIIIeo5KdqFEEKUotfrUBRnUFyoqetUhBBC/J8GXbRHREQQERFxXzHFxcUsW7YMb29vhg0bxtChQ/niiy+oajt7vV7P0qVL8fHxwdfXlzFjxhi+ybMyb7/9NleuXLmvHGvT/v378fT05I033njgtr755hu+++67GsjqT/Hx8UyePLlG2xTicZVRkEF8xk9cvV3yO6jgdhFn4k9yJu6fmOZu5tz/gslMjqvTHIUQQpSQLR//YsGCBaSnp7Nx40YsLS3RaDQEBQVhYWHBpEmTKozbsWMHp06dIjo6GpVKxYULF5gwYQLbtm3Dzs6uwrj4+HiCgoJqoyvVsnPnTmbOnFnhXu/345dffqFnz541kJUQoqaduPILvx44hLJYwbncDbRJKuC0dihtOifi4JQBgF5XTNq5KKya9UBp3LiOMxZCiMdbgyva4+PjCQ8PR6fT4erqSmZmJv7+/qSlpeHn58crr7xSYWxqaiqxsbEcOHAAS0tLAMzNzQkNDSUpKanS+964cQOtVkthYSEqlQpnZ2eWLl2KSlXxEEdGRnL9+nWmTZvGunXrGD16NB07duT06dN8/fXXrFmzhp9++ons7Gzs7e359NNPadKkCf369WPo0KEkJCSgVCpZsmQJTk5OfPjhhxw6dAgjIyOGDBnCSy+9xIABA9iyZQtNmjQhKyuL4cOHs2/fPoyNjcvk8+233/LDDz/w008/YWRkRGxsLFZWVpw7d44lS5aQmprKkiVL0Ol0ODk58e6779KkSRMGDRqEr68v//vf/7h9+zYffvghOTk57N27l8OHD9O0aVPatWvH3LlzuXr1KiqVin/84x/079+fiIgIrl69yvnz57l58ybjx4/nhRdeQKfT8d577/HTTz+hUCjw9fVl2rRp9/ivQAhRkey8Ynb+7zptE27QPb8dF/XXUei6k377OlnujsS7uqM3AteiI7QvOoheV0RRQbYU7UIIUcca5PKYixcvsnr1alq0aEFGRgZr1qwhKiqKFStWoNFUvEbzxIkTuLi4YGVlVeq4i4sLQ4cOrfSeI0eORKPR0Lt3b6ZOnUpkZCTOzs5l2rrbtGnTsLe3JzIyEhsbGwD69+/Prl270Gg0/PHHH2zYsIFdu3bxxBNPEBsbC5S8QOjduzdbtmyhR48erFu3jitXrnDgwAFiY2NZv349SUlJaLVavLy82LlzJwC7d+/m2WefLbdgBxg7diyDBg1i1qxZjB07FgA3Nzd27dqFvb09oaGhfP7552zdupWuXbvy7rvvGmKtra3ZtGkT/v7+fPnll/Tp08fQlqenJwsXLqRXr15s3bqVpUuX8s4775Ceng5AYmIiK1euZPPmzWzcuJFTp06xfv16rl27RmxsLN9++y27d+8mLi6u0udACFE5rVbP7C+TOH0gBVW+EdHFP3JQm8gB/Wl+ba3iVldHipSmFCtMOa3uzzXlk6gbN8Ok8RN1nboQQjz2GmTR7uzsjIWFBQCenp6o1WpsbW2xsbEhOzu70liFQmF4vHPnTkaMGIGPjw+jR4+uNM7KyooNGzbwzTff0K9fPw4ePMjw4cNJTk6+r9w7deoEQKtWrZgzZw7ffvstH3zwAcePH+fWrVuG6zw9PQFwdXUlOzsbBwcHTExM8Pf3Z82aNbz55puYmJjg6+vLtm3bAPjuu+/w9fW9r3w6duwIlLyg6dixIy1atABg/PjxHD58uNx8srKyyrRz+PBhxowZA4CTkxOdOnXi119/BWD48OE0btwYCwsLBg0axOHDh4mPj2fUqFEolUoaNWqEj48PP/30033lLoQo7cQFDck3CihEQZLuKhryDeeK7JqVuV5j6UGrLrNK/V4UQghRNxpk0W5qamp4fPfyFIVCUekHSt3d3Tl//rxhNt7Ly4uYmBiWLVvGzZs3K73nypUrOXPmDG5ubkyZMoW1a9fSr18/du3adV+5m5iYACWzz1OnTkWn0zF06FCGDBlSKvc7193pk0ql4ttvv+XVV18lKysLf39/Lly4QMeOHcnOzubEiROkpaXRpUuX+8rnzljqdLpSx/V6PcXFxeXmU56/jrter0er1QKgVCoNx3U6HUqlstz73bleCFE9ZiYl/6+d1BmT8ZdfhdrMa2Wuf7pNd4xNbR9GakIIIarQIIv26nJ0dMTX15c5c+aQk5MDlOwmExcXh5FR5UOVm5vLkiVLyMvLA0Cj0ZCcnEy7du0qjVMqleUWoz///DM9e/ZkwoQJtG7dmri4uEqL1t9++42//e1v9OjRgzlz5uDi4sKFCxcA8PHxYd68eTz//POV5lKZOzPjKSkpAGzcuBEPD4977luvXr3YtGkTAMnJyfzyyy907twZgD179lBYWEh2djb79u2jX79+9OrViy1btqDVarl9+zZbt26t8n5CiMq5OZnR52krilGwVecKqA3nFBnJqA6txrjoFmYqI9yUGp60aVR3yQohhCilwX0Q9UHNnz+flStXEhAQgFarJS8vDw8PD5YvX15p3Msvv8ynn36Kr68vJiYmGBkZMWnSJPr27Vtp3IABA5g2bRpfffVVqePDhg1j5syZ+Pj4ACXvAtwpmMvTvn17OnfuzPDhw2nUqBFdu3alf//+APj6+vKvf/2LTz/99F6GoFxNmjTh3XffZebMmRQVFeHo6MiiRYsqjenTpw+ffPIJFhYWzJ07l9DQUDZv3gxAWFgY9vb2QMks/cSJE9FoNEyfPp0nn3ySVq1acfHiRUaMGEFRURE+Pj48++yzxMfHV7sPQggImdSKkxfyyNIU49qsLb8ePcTFE4ch4wrOtk0Z0L05JmbmJCSk1nWqQggh7qLQV7UBuRC16M4++pXt6lNdBQUFJCYm4u7ubli+U5cSEhLo1q1bXafR4Mi41g4Z15onY1o7ZFxrh4xrzatqTKuqWx67mfajR4+ycOHCcs9FRkbi4OBQYeyqVauIjo4uc9ze3r7Cmfj8/PwK9zyfNWsWgwcPvoesa9bkyZMNy3/u5u/vz4QJEx56PkIIIYQQonKPXdHevXt3YmJiqhUbGBhIYGDgfcWYmppW+361Ze3atXWdgkFtzLALIYQQQjQ08kFUIYQQQggh6jkp2oUQQgghhKjnpGgXQgghhBCinpOiXQghhBBCiHpOinYhhBBCCCHqOSnahRBCCCGEqOceuy0fhRBCPH7yivM4mnmEwku/8vTxRBqjplG/iVy3aM3+/fspLCzEw8OD9u3b13WqQghRLinaa0F1vuWzuLiY5cuXExsbi0KhQKvVMmrUKKZPn45CoagwTq/XExERwffff49CoUCtVjNr1iz69+9/33mvX78eoEa/YCk4OJiePXvi5+dX7vm9e/cyY8YMoqKicHd3r7K9pUuX0qdPH7p3715jOQohGob07CKiD90gW1PM4K42dHnSAoBbxbf4b+xcmiRlc9NGwf6n9Lx0JJnczR/zVWFHCouKAEhKSuKFF17A2dm5LrshhBDlkqK9nliwYAHp6els3LgRS0tLNBoNQUFBWFhYMGnSpArjduzYwalTp4iOjkalUnHhwgUmTJjAtm3bsLOzu68c6uLbUDdv3oyXlxcbN268p6L9559/xsPD4yFkJoR4lBQV65j9ZRKpNwsB2Hv8JmFT2tDV1YLEHf+lf2wWKFQo7fowIKU1OcY5XC/eZyjYoWQSJDExkWYtnLiWcQVHKytMG1nXTYeEEOIvZE17DYmPj2fMmDH4+fmRkpLCiRMn8Pf3Z+DAgYaZ94qkpqYSGxvLBx98gKWlJQDm5uaEhobSpEmTSmNv3LiBVqulsLDkD5WzszNLly5Fpar89djWrVsZNmwYzz//PMHBwRQVFREREWHItV+/fixcuJCRI0cyevRokpOTDf308fFh5MiRzJ8/n8mTJwMwefJk4uPjAUhJSWHQoEFVjBhkZmZy+PBhZs+ezY4dO9BoNIZz5d1/y5YtJCYmEhISwtmzZ6tsXwjx+Dh5Ic9QsAPo9bDnl0wATON/B0Bp1RllYxcUKDEpssFY27tMO9dyM/j058usu2DE0mOpnDp34OF0QAghqiBFew26ePEiq1evpkWLFmRkZLBmzRqioqJYsWJFqYL0r06cOIGLiwtWVlaljru4uDB06NBK7zly5Eg0Gg29e/dm6tSpREZG4uzsXKatu6WlpfH+++/zn//8h23btqHVatm/f3+pa27cuEHv3r3ZsmULPXr0YN26dRQVFfHWW28RHh7Oli1bqnxhUJXY2Fj69u1LixYtcHd3JzY2ttL7jxw5End3d8LCwnBzc3ugewshGharxmV/H1n/3zELy5LJD4WJfanzzYyewLJAV1LhA6rCbDJa9ESrMAagQNGY/WkqigtzajN1IYS4J1K01yBnZ2csLErWUHp6eqJWq7G1tcXGxobs7OxKY+9et75z505GjBiBj48Po0ePrjTOysqKDRs28M0339CvXz8OHjzI8OHDDTPj5Tl27Bhdu3alWbNmAISHhzNkyJAy13l6egLg6upKdnY2v//+O3Z2drRt2xaAMWPGVJpbVaKjoxk+fDgAw4YNY8OGDZXeXwghKuLi2IghXW0MP9tbGzOqX1MAHEaNRmGiRl9wvVRMsQIa5aRhfeNnrG4kYJn7O8XGFqWuuaWwoig/q9bzF0KIqsia9hpkampqeHz3LLRCoUD/fzM55XF3d+f8+fNoNBrMzc3x8vLCy8uLlJQUAgICKr3nypUr6d27N23btsXNzY0pU6bwxhtvsGvXLl544YVyY1QqVakXCZmZmeVeZ2JiUip/pVKJTqerMJc7fSwuLi5zbv369Yai3N/fn44dO/L777+zaNEi3n//fbRaLdevX+f48eN07ty53PsLIURl3hjbkhF9m5CVW0xHF3PUqpJ5KTNXV54M/4i8xNPknVeRf/EWKhtTLuu0GKV1QFmQVNKAFqxyz5Nt4WJos6XiEqYWXnXRHSGEKEVm2usBR0dHfH19mTNnDjk5JW/DFhcXExcXh5FR5U9Rbm4uS5YsIS8vDwCNRkNycjLt2rWrMKZDhw4cP36cGzduAPDee+/xww8/VJlnmzZtyMnJMawn37p1q+GcjY0NSUklf/j27NlTJnbChAnExMQQExPDhAkT2Lx5M+PGjSMuLo69e/eyf/9+RowYUWa2/a+USiVarbbKXIUQj6cnHc3o7mZpKNjvUFlaYtXHA8fJ3WjzT09azuxBOx83TMzaozb1R6nqipObH4G9u9PJPBsHxXW6mV7At4sHCoX8qRRC1D2Zaa8n5s+fz8qVKwkICECr1ZKXl4eHhwfLly+vNO7ll1/m008/xdfXFxMTE4yMjJg0aRJ9+/atMMbBwYG5c+cydepUdDodnTt3xs/Pj3//+9+V3kutVrN48WLmzJmDkZERzs7OhncXXnjhBYKDg4mKimLw4MGVtlNYWMh3333HmjVrSh0PDAxk/PjxvP322xXGenp6Mm/ePD788EO6du1a6X2EEKIyzZxt+Nu8AVw+7Y5VUzOeaGMLgG+HqneyEkKIh02hl3UH4h7pdDo++ugjZs6ciZmZGStXriQtLY3g4OC6Tq1cBQUFJCYm4u7ublhqU5cSEhLo1q1bXafR4Mi41g4Z15onY1o7ZFxrh4xrzatqTKuqW2Sm/SE5evQoCxcuLPdcZGQkDg4OFcauWrWK6OjoMsft7e0rnInPz89n/Pjx5Z6bNWtWlbPh5TEyMsLa2poxY8ZgbGxM8+bNWbRo0X23I4QQQggh7o8U7Q9J9+7diYmJqVZsYGAggYGB9xVjampa7ftVZtq0aUybNq3G2xVCCCGEEBWTT9cIIYQQQghRz0nRLoQQQgghRD0nRbsQQgghhBD1nBTtQgghhBBC1HNStAshhBBCCFHPSdEuhBBCCCFEPfdYF+0RERFERETcV0xxcTHLli3D29ubYcOGMXToUL744guq+o4qvV7P0qVL8fHxwdfXlzFjxnDgwIFq5b1+/XrWr19frdiKBAcHs3nz5jLH4+PjcXNz48svvyx1fM+ePbi5uREfH09aWhovvvhiue26ublVet9XXnkFHx+fe8oxNzeXoKCge7pWiPouN/MWyWduUFRQXNepCCGEeATIPu33acGCBaSnp7Nx40YsLS3RaDQEBQVhYWHBpEmTKozbsWMHp06dIjo6GpVKxYULF5gwYQLbtm3Dzs7uvnKYMGHCg3bjvjg4OLBr1y6mT59uOLZ9+3ZsbW0N5yv6kqfKZGZm8ttvv9G0aVN++eUXunbtWun12dnZnD59+r7vI0R9c3zvH/y05TR6PRQ0ziDPozV6u+aYGxXj37k1DmYqjIyUdZ2mEEKIeuSxK9rj4+MJDw9Hp9Ph6upKZmYm/v7+pKWl4efnxyuvvFJhbGpqKrGxsRw4cABLS0sAzM3NCQ0NJSkpqdL73rhxA61WS2FhISqVCmdnZ5YuXYpKVflTsHXrVpYtW4ZCoaBDhw4sXLiQL774AiiZpe7Xrx9Dhw4lISEBpVLJkiVLcHJyIj4+nrCwMJRKJZ07d+b8+fOsXbuWyZMnM3PmTDw8PEhJSSEgIIC9e/dWmkOrVq3Izc0lOTkZJycn8vPzuXTpEk8++SRAqXZSUlKYPXs2t27dolOnTlX2rUePHjz11FNs2LDBULRv3ryZgwcPkp2dTXJyMn379mX+/PmEhYVx/fp1goKC+PzzzyttW4j65rb2Ft9e3sDp9NO0iO2PQm+EkVEBWZ3sUTVzBkCDmv/En8Fqy5u0froPQ6cEY2zSqI4zF0IIUR88lstjLl68yOrVq2nRogUZGRmsWbOGqKgoVqxYgUajqTDuxIkTuLi4YGVlVeq4i4sLQ4cOrfSeI0eORKPR0Lt3b6ZOnUpkZCTOzs5l2rpbWloa77//Pv/5z3/Ytm0bWq2W/fv3l7rmxo0b9O7dmy1bttCjRw/WrVtHUVERb731FuHh4WzZsqXKFwb3wsvLi127dgGwb98+Bg4cWO51CxcuxM/Pj5iYmCpnzjdv3oy3tzfe3t7s2rWLrKwsw7ljx46xdOlSYmNj2bdvH2fPniUkJAR7e3sp2MUjaXPyt8Rn/sTtWwUotEZYq4xoZZGPkZ1jqet0ZrZ4jOiCseIM8dvW1lG2Qggh6pvHsmh3dnbGwsICAE9PT9RqNba2ttjY2JCdnV1prEKhMDzeuXMnI0aMwMfHh9GjR1caZ2VlxYYNG/jmm2/o168fBw8eZPjw4SQnJ1cYc+zYMbp27UqzZs0ACA8PZ8iQIWWu8/T0BMDV1ZXs7Gx+//137OzsaNu2LQBjxoypNLd74e3tze7du4GSpT7e3t7lXnfkyBHDOV9fX4yNjcu97vTp06SmptKnTx+eeOIJ2rVrx5YtWwznu3Tpgrm5OY0aNcLJyanK50WI+u5s7hkAisxvk+eQjrOpGnsja3RZ10tdZ6rLpRG5OLnYkHsjsS5SFUIIUQ89lkW7qamp4fHds9AKhaLSD5S6u7tz/vx5w2y8l5cXMTExLFu2jJs3b1Z6z5UrV3LmzBnc3NyYMmUKa9eupV+/fobZ6/KoVKpSLxIyMzPJzMwsc52JiUmp/JVKJTqdrsJ27/SxuLjsB+DWr1/PiBEjGDFiRKkPu7Zq1YqioiKSkpJITU3FxcWlyvYVCgVGRiX/xF588UVDu2lpaURFRVFYWMjQoUMZNGgQFy5cYMOGDWX6dHe/hHiUOZm1NDy+PCgefeNbWCsa0+VsBvrrKaDXY67LwKMgGiNK/r07ODlW1JwQQojHzGNZtFeXo6Mjvr6+zJkzh5ycHKCk8I2LizMUpxXJzc1lyZIl5OXlAaDRaEhOTqZdu3YVxnTo0IHjx49z48YNAN577z1++OGHKvNs06YNOTk5nD17FihZO36HjY2NYf39nj17ysROmDCBmJgYYmJiynzg1cvLi5CQEAYNGlThvfv06UNsbCwAu3fvpqCgAIDly5cb2rWxsWHr1q2sWrWKvXv3snfvXn744Qdu3LhBfHx8hW2rVKpyX2gI8SgY4zSeNo1LPgdSUNSIXSpj9Ho9HYqbMemXQsbs285zt76gia7k3Te9Htr2m1yXKQshhKhHpGi/T/Pnz6dr164EBATg4+PDc889x6lTp6rcPeXll1/GxcUFX19fhg0bhr+/P6NGjaJv374Vxjg4ODB37lymTp3K8OHDMTU1xc/Pr8oc1Wo1ixcvZs6cOfj5+ZGammp4d+GFF17g66+/ZtSoUeTn599X3729vTl27BjDhg2r8JrQ0FB27dqFr68v+/fvp3HjxmWu2bt3L82bNy/1QVVzc3PGjh1barb9r+zs7HB0dGTyZClkxKPHRm3LG23n8HHnCCbbhqBs7sZh1+aoOtpj7m6M46AutHj6Bcxs3Ghs155W3V7DzLJ5XacthBCinlDoZd1Bg6PT6fjoo4+YOXMmZmZmrFy5krS0NIKDg+s6tYeqoKCAxMRE3N3dSy23qSsJCQl069atrtNocGRca4eMa82TMa0dMq61Q8a15lU1plXVLY/dlo9VOXr0KAsXLiz3XGRkJA4ODhXGrlq1iujo6DLH7e3tK5yJz8/PZ/z48eWemzVrFoMHD76HrEszMjLC2tqaMWPGYGxsTPPmzVm0aNF9tyOEEEIIIeoHKdr/onv37sTExFQrNjAwkMDAwPuKMTU1rfb9KjNt2jSmTZtW4+0KIYQQQoiHT9a0CyGEEEIIUc9J0S6EEEIIIUQ9J0W7EEIIIYQQ9ZwU7UIIIYQQQtRzUrQLIYQQQghRz0nRLoQQ4oHpCrUUXs9Dr5Ov/hBCiNogWz4KIYS4b3qdjuxDh7h97hwKS2dybv6BzjQTVUFLGnfvj727A0qVzAsJIURNeWx+o0ZERBAREXFfMcXFxSxbtgxvb2+GDRvG0KFD+eKLL6jqS2T1ej1Lly7Fx8cHX19fxowZw4EDB6qV9/r161m/fn21YisSHBzM5s2byxyPj4/Hzc2NL7/8stTxPXv24ObmRnx8PGlpabz44ovltuvm5lbh/QYMGMCIESMYMWIE3t7e/Pe//61W7kuXLuXo0aPVihVC1Jzr33zDtRUryDrwP7IKfqTY+Wd0T5ynsPU+rv64hbXz9pJ+Jaeu0xRCiAZDZtorsWDBAtLT09m4cSOWlpZoNBqCgoKwsLBg0qRJFcbt2LGDU6dOER0djUql4sKFC0yYMIFt27ZhZ2d3XzlMmDDhQbtxXxwcHNi1axfTp083HNu+fTu2traG8xV9u2tlZs2ahZ+fHwDp6ek8++yz9O7dGxcXl/tq5+eff8bDw+O+7y+EeDA6nZ6jv+eSkVOERztLsuLiANCbqtHbp1CMMdeVrWmkz8Wq+XlunW7J4dgzDJ/Rs24TF0KIBqJBF+3x8fGEh4ej0+lwdXUlMzMTf39/0tLS8PPz45VXXqkwNjU1ldjYWA4cOIClpSUA5ubmhIaGkpSUVOl9b9y4gVarpbCwEJVKhbOzM0uXLkWlqny4t27dyrJly1AoFHTo0IGFCxfyxRdfAPDKK6/Qr18/hg4dSkJCAkqlkiVLluDk5ER8fDxhYWEolUo6d+7M+fPnWbt2LZMnT2bmzJl4eHiQkpJCQEAAe/furTSHVq1akZubS3JyMk5OTuTn53Pp0iWefPJJgFLtpKSkMHv2bG7dukWnTp0qbfduTZo0wdnZmaSkJJydnXnvvff46aefUCgU+Pr6Mm3aNFJTU3nzzTe5desWRkZGhISEcPHiRRITEwkJCeGzzz6rcGZfCFHzwtZdxOzc9wwy/pnTu82wu/P7rCifXH0L9ptNosDIHIAndMfIN8oiN9O8DjMWQoiGpcEvj7l48SKrV6+mRYsWZGRksGbNGqKiolixYgUajabCuBMnTuDi4oKVlVWp4y4uLgwdOrTSe44cORKNRkPv3r2ZOnUqkZGRODs7l2nrbmlpabz//vv85z//Ydu2bWi1Wvbv31/qmhs3btC7d2+2bNlCjx49WLduHUVFRbz11luEh4ezZcuWKl8Y3AsvLy927doFwL59+xg4cGC51y1cuBA/Pz9iYmLo2rXrPbd/5swZLl++zNNPP8369eu5du0asbGxfPvtt+zevZu4uDg2bdrEgAED2Lx5M7NmzSIhIYGRI0fi7u5OWFiYFOxCPEQXrt2m+PcfmWoag7PyKu2NkmhsfgO9QoFCC7/e6mYo2AGuNe5Ctl0qLl2eqMOshRCiYWnwRbuzszMWFhYAeHp6olarsbW1xcbGhuzs7EpjFQqF4fHOnTsZMWIEPj4+jB49utI4KysrNmzYwDfffEO/fv04ePAgw4cPJzk5ucKYY8eO0bVrV5o1awZAeHg4Q4YMKXOdp6cnAK6urmRnZ/P7779jZ2dH27ZtARgzZkylud0Lb29vdu/eDZQs9fH29i73uiNHjhjO+fr6YmxsXGGbS5cuNYzfP//5T959911atGhBfHw8o0aNQqlU0qhRI3x8fPjpp5/o3bs3//nPf3jjjTfIysrib3/72wP3SwhRPQVFOrqqzpQ6Zm6p4eTf27D7OSVpRuVMFjQ2pbuX60PKUAghGr4GvTwGwNTU1PD47llohUJR6QdK3d3dOX/+PBqNBnNzc7y8vPDy8jIsD6nMypUr6d27N23btsXNzY0pU6bwxhtvsGvXLl544YVyY1QqVakXCZmZmeVeZ2JiUip/pVKJTqerMJc7fSwuLi5zbv369WzYsAEAf39/2rRpA5QskSkqKiIpKYnU1NRK153faV+hUGBkVPIa8MUXX+T69esAREZGAqXXtN/tr7nr9Xq0Wi3dunVj27ZtxMXFsX37dqKjo1m5cmWFeQghao+bkxknLFpA/i+ljju0bM8Bi8uY5ZzEks6G47qcDLq6OmFkpEAIIUTNaPAz7dXl6OiIr68vc+bMISenZAeE4uJi4uLiDMVpRXJzc1myZAl5eXkAaDQakpOTadeuXYUxHTp04Pjx49y4cQOA9957jx9++KHKPNu0aUNOTg5nz54FStbF32FjY2NYf79nz54ysRMmTCAmJoaYmJgyH3j18vIiJCSEQYMGVXjvPn36EBsbC8Du3bspKCgAYPny5YZ2HRwcKs2/V69ebNmyBa1Wy+3bt9m6dSseHh4sXryY2NhYRo0aRWhoKL/99hsASqUSrVZb1bAIIWqQQqFg+LS/kWHbEQC9kTGmnpPwdB5BL7u+5FteJk+7AeOMc5hc+Q0P1U2eHzasjrMWQoiGpcHPtD+I+fPns3LlSgICAtBqteTl5eHh4VHl7ikvv/wyn376Kb6+vpiYmGBkZMSkSZPo27dvhTEODg7MnTuXqVOnotPp6Ny5M35+fvz73/+u9F5qtZrFixczZ84cjIyMcHZ2Nry78MILLxAcHExUVBSDBw++r757e3vzySefsHjx4gqvCQ0NZfbs2WzcuBF3d3caN258X/cAGD9+PBcvXmTEiBEUFRXh4+PDs88+i7u7O2+88QabN29GqVTy4YcfAiXLg+bNm8eHH354X+vohRAPxsy8MU++9D663AwUxqYoTEv+f5/cOhD/lpMwUhihVCjrOEshhGi4FPqqNh0X9ZpOp+Ojjz5i5syZmJmZsXLlStLS0ggODq7r1OpcQUEBiYmJuLu7G5YV1aWEhAS6detW12k0ODKutUPGtebJmNYOGdfaIeNa86oa06rqlsd6pv3o0aMsXLiw3HORkZGVLu1YtWoV0dHRZY7b29tXOBOfn5/P+PHjyz03a9as+54NBzAyMsLa2poxY8ZgbGxM8+bNWbRo0X23I4QQQggh6q/Humjv3r07MTEx1YoNDAwkMDDwvmJMTU2rfb/KTJs2jWnTptV4u0IIIYQQon6QD6IKIYQQQghRz0nRLoQQQgghRD0nRbsQQgghhBD1nBTtQgghhBBC1HNStAshhBBCCFHPSdEuhBCPKV3ODfTa4nLP5eqV7LmUxcGUbPKKSn8LcVH+TfS68uOEEELUjsdqy8eIiAgAXnnllXuOKS4uZvny5cTGxqJQKNBqtYwaNYrp06ejUCjuO4cRI0bU6LaPKSkpBAQEsHfv3jLnJk+eTGpqKmZmZuj1evR6PTNmzGBYNb5e/O2332bmzJk0b9680uuqM8b3Izg4mJ49e+Ln51cr7QvxONBmXkGzKQxd+mUUZtYYD59J+hPNuHXTmlu3VDzxhJpDRbboruYCcPx6Hi91aoa+IIPkX5dRkHcVpbEFjk8HYNGkQx33RgghHg+PVdFeHQsWLCA9PZ2NGzdiaWmJRqMhKCgICwsLJk2adN/t1cY+7ZUJCwvDw8MDgLNnzzJmzBg8PT2xsLC4r3bi4+MJCgqqjRSFEA/Z7T1foUu/DECS6S02pK/gdrYCbaGa64e9cG7RHusWasP1WQVazmXlY5GyiYK8qwBoi3K5+tsanur3AQojZZ30QwghHicNvmiPj48nPDwcnU6Hq6srmZmZ+Pv7k5aWhp+fX6UzwqmpqcTGxnLgwAEsLS0BMDc3JzQ0lKSkpErvm5WVxdy5c/njjz9Qq9UEBwfTu3dv3NzcOHv2LBEREaSlpXHp0iWuXLnC2LFjmTFjBkVFRcybN4+EhAQcHBxQKBS8/PLLAHz22WesXbsW+HPGuWfPnvc8Fm5ubpiZmXHp0iVcXFwICQnh7NmzKBQKpk6dysiRIzlz5gyhoaEUFxdjYmLC+++/z+7du7l+/TrTpk1j3bp12NjYlGr3q6++4ptvvsHGxgZLS0s6duwIwL59+1iyZAk6nQ4nJyfeffddmjRpwqBBg+jYsSOnT59m5cqVzJ8/n/T0dACCgoIYPHgwR44c4dNPPyU/P5+cnBzefvtthgwZcs99FUJUTJt+yfB4WzsrbhuXvGtorL1Fv+Rl3Db1QddieKmYpJgTPPnERTC+q53CXIqLcjE2sX4IWQshxOPtsVjTfvHiRVavXk2LFi3IyMhgzZo1REVFsWLFCjQaTYVxJ06cwMXFBSsrq1LHXVxcGDp0aKX3/Ne//kXLli3ZsWMHixcvZsmSJWWuOXv2LCtWrODbb78lMjKSnJwcNmzYwO3bt9m5cyfvv/8+J0+erFafy3Pw4EEAnJ2diYiIwMbGhu+++47Vq1cTERHBmTNnWL16NVOmTGHz5s2MGzeO48ePM23aNOzt7YmMjCxTsJ88eZKoqCiio6NZuXIlqampAGRkZBAaGsrnn3/O1q1b6dq1K++++64hrn///uzatYv4+HiaN2/O5s2bWbRoEUePHgXgv//9L2FhYURHRxMWFsa//vWvGhsHIR53xi49DI9vmv45S956Rxr6rFx0F0+gv/3n70ZtxjX443eU1x1KtWNq7iQFuxBCPCQNfqYdSorUO8tBPD09UavV2NraYmNjQ3Z2Nubm5hXG3r1ufefOnSxbtgydTodarSYqKqrCuJ9//pmPPvoIKJnh3rhxY5lrPDw8UKvV2NnZYW1tTW5uLocOHWLcuHEoFAqaN29O7969q9ttAEJCQjAzM0Or1WJlZcWSJUto3Lgxhw8f5r333gPA1tbWMLv9zDPP8O6773Lw4EEGDRrEwIEDK23/Tkzjxo0B8PLyQqfTceLECTp27EiLFi0AGD9+PJGRkYa4Tp06AdClSxc++eQT0tLSGDBggGEJTnh4OPv27WPnzp38+uuv5OXlPdA4CCH+1GjQ/wMjJUV/JNAh34xfzEsKdFX6bYoBI80N8vZtQNmsNfriQnTXL2Np1AXlxU6AAhxvYObQCgfX0XXaDyGEeJw8FkW7qamp4bFK9WeXFQoFer2+wjh3d3fOnz+PRqPB3NwcLy8vvLy8DB/+rIxKpSpV8J8/fx5nZ+dS15iYmJTJRalUotPpyrT311yLiorKXDNixAjD4ztr5+9e0363v/Zbr9ej1Wrx8vKiS5cu7Nu3j1WrVhEXF0dYWJjhupMnTxISEgKUjI+Li0uptlQqFYWFhWX6oNfrKS7+c7eJO31v3bo1O3bs4ODBg+zbt4///Oc/bN++nYkTJ+Lh4YGHhwe9e/fmzTffLNMHIUT1KIxNMHt2GgCTdQU0ubaNM1m/Y2yeTfHNa5jcvk7hrSYUXSn5PeOieIIWiiYodApUf3TFpnVrbDu2qssuCCHEY+exWB5TXY6Ojvj6+jJnzhxycnKAkt1k4uLiMDKqfOi6d+/Otm3bgJKC/cUXX7yn3Wb69OnD9u3b0ev1pKWlceTIERQKBTY2NiQnJ1NQUEBWVhYJCQllYmNiYgz/VaVXr15s2rQJgMzMTH744Qd69uzJa6+9xsmTJ/H39+fVV1/lt99+A0CpVKLVaunQoYPhHosWLaJ3797s27eP3NxcCgoK+P7774GSmfRff/2VlJQUADZu3Fjui4f//ve/RERE4O3tzbx588jMzCQnJ4eLFy/y6quv0r9/f3744Qe0Wm2ZWCHEg1MbmTCiuR9zng7m729H4GjeDKVeT4ubSYxs7cg47wDc9e0Nv790ZiqsujvWcdZCCPH4eSxm2h/E/PnzWblyJQEBAWi1WvLy8vDw8GD58uWVxs2aNYuQkBB8fX1RqVQsXrz4nor2cePGcebMGXx8fGjatCmOjo6Ympri6urKM888w/PPP0/z5s3p1q3bA/UrKCiI+fPn4+Pjg1ar5aWXXuLpp5/mpZdeYu7cuXz++ecYGxszf/58AAYMGMC0adP46quvcHJyMrTTrl07/v73vzNmzBgsLS1xdCz5Y96kSRPeffddZs6cSVFREY6OjixatKhMHiNHjuT111/Hx8cHpVLJ7Nmzsba2ZsyYMTz//POoVCp69epFfn4+t27deqA+CyEq17iJAxOWfktRRgYnzpyhW9++AOS0b8m1n69gbdsI+26OKJQy3yOEEA+bQl/Z+hDx0MXFxaHX6xk4cCC5ubmMHDmSqKgorK2t6zq1R05BQQGJiYm4u7uXWopUVxISEh74xZYoS8a1dsi41jwZ09oh41o7ZFxrXlVjWlXd8tjPtB89epSFCxeWey4yMhIHB4dyzwGsWrWK6OjoMsft7e2rnImviIuLC2+99ZZht5lZs2ZJwS6EEEII8Zh77Iv27t27V/sLjwIDAwkMDKzRfJycnFi/fn2NtimEEEIIIR5tsjBRCCGEEEKIek6KdiGEEEIIIeo5KdqFEEIIIYSo56RoF0IIIYQQop6Tol0IIYQQQoh6Top2IYSoYXqdrq5TEEII0cA0+C0fIyIiAHjllVfuOaa4uJjly5cTGxuLQqFAq9UyatQopk+ffk/favpXI0aMqPa2kuVJSUkhICCAvXv3ljk3efJkUlNTMTMzQ6/Xo9frmTFjBsOGDbvv+7z99tvMnDmT5s2b10TaZSQnJ7Ns2TLee++9e47ZvHkzR44c4YMPPqiVnIR4EBk7D5G5Zz/FNy9w08ODA0+0o0DdGO3NLEy1zZg4uBWtmzWq6zSFEEI8ghp80V4dCxYsID09nY0bN2JpaYlGoyEoKAgLCwsmTZp03+3VZMF+L8LCwvDw8ADg7NmzjBkzBk9PTywsLO6rnfj4eIKCgmojRQCuXr1KcnJyrbUvxMOQfeMqu1d9SJPrzrQ064JR474o1R35wdEe7J7ACDCytMMm5wQH9nyPzfDxWFnb13XaQgghHjENsmiPj48nPDwcnU6Hq6srmZmZ+Pv7k5aWhp+fX6Wz7qmpqcTGxnLgwAEsLS0BMDc3JzQ0lKSkpErvm5WVxdy5c/njjz9Qq9UEBwfTu3dv3NzcOHv2LBEREaSlpXHp0iWuXLnC2LFjmTFjBkVFRcybN4+EhAQcHBxQKBS8/PLLAHz22WesXbsWgODgYHr27EnPnj3veSzc3NwwMzPj0qVLuLi4EBISwtmzZ1EoFEydOpWRI0dy5swZQkNDKS4uxsTEhPfff5/du3dz/fp1pk2bxrp167CxsTG0+f777+Pg4MD/+3//Dyh5F8PX15cuXboQGhpKamoqCoWCN954gz59+lTY77CwMFJSUliwYAFeXl6lnrPXX3+dd955h9zcXK5fv86oUaN49dVX77nfQjwsO1e8R86FNLo28zMcy25kAnZPlLrulnkrnlFu5fKxT3B/JgyFUYP89SuEEKKWNNi/GhcvXmTfvn2sWrWKc+fOsWHDBjQaDYMGDWLKlCmYm5uXG3fixAlcXFywsrIqddzFxQUXF5dK7/mvf/2Lli1b8vnnn3P27FlCQ0Pp3bt3qWvOnj3LunXryM3NZciQIUyaNImYmBhu377Nzp07uXr1Kj4+Pg/W+bscPHgQAGdnZyIiIrCxseG7774jMzOTsWPH0rZtW1avXs2UKVPw9vYmOjqa48ePM23aNDZs2EBkZGSpgh1KlvuEhITw//7f/0Oj0XDs2DE+/vhj5syZw+jRoxk8eDDXr19n4sSJbNmypcJ+h4SE8NlnnzFv3jzi4+MNz5mFhQUrVqxg+PDhjBo1itzcXJ555hkmT55cY+MiRE1JOXeCpuo2pY5ZFRlDfh6YNjYcs9ClA6DUZpGXlYS5bduHmqcQQohHW4Mt2p2dnQ3LQTw9PVGr1dja2mJjY0N2dnaFRTtQat36zp07WbZsGTqdDrVaTVRUVIVxP//8Mx999BFQMsO9cePGMtd4eHigVquxs7PD2tqa3NxcDh06xLhx41AoFDRv3rxMoX+/QkJCMDMzQ6vVYmVlxZIlS2jcuDGHDx82rB+3tbVl8ODBHDlyhGeeeYZ3332XgwcPMmjQIAYOHFhp++3bt6ewsJBLly5x7NgxBg0ahFqt5scff+SPP/5g6dKlQMlnA+4sfymv339193M2depUDh8+zIoVKzh37hxFRUXcvn37gcZFiNrwRJunST1/mrziTBqrbIGST/jbnzhJWpdOKIwb0ViXScfC7w0xxibWdZOsEEKIR1aDLdpNTU0Nj1WqP7upUCjQ6/UVxrm7u3P+/Hk0Gg3m5uZ4eXnh5eVl+PBnZVQqVamC//z58zg7O5e6xsTEpEwuSqUSXTm7Tfw116KiojLXjBgxwvD4ztr5u9e03+2v/dbr9Wi1Wry8vOjSpYvhnYm4uDjCwsIM1508eZKQkBCgZHwWLVqEr68v27dv59ixY0ybNg0AnU7H6tWrsba2BuD69evY2dmxZ8+ecvv9V3c/Zx988AHJyckMHz6cIUOG8OOPP1b6vAlRV7ymvs13n8/n4LXlPGk5lEbGrlwrNOKPbsfRmP2Auc6SEYVGqPRZANg6DcKkcbO6TVoIIcQjR7Z8/AtHR0d8fX2ZM2cOOTk5QMmMcVxcHEZGlQ9X9+7d2bZtG1BSsL/44ov3tNtMnz592L59O3q9nrS0NI4cOYJCocDGxobk5GQKCgrIysoiISGhTGxMTIzhv6r06tWLTZs2AZCZmckPP/xAz549ee211zh58iT+/v68+uqr/PbbbwAolUq0Wi0dOnQw3GPRokUA+Pj4sH37di5dukS3bt0M7X/99dcAJCUl4ePjU+nsuFKppLi4uNxzhw4dYurUqXh7e3PhwgXS0tLKfWEjRF2zbdaSgIX/YciLy8iwcOOiSsGVnhfRtLgOCi0d7Z+mg+ciWnd/kyf7vEszt3F1nbIQQohHUIOdaX8Q8+fPZ+XKlQQEBKDVasnLy8PDw4Ply5dXGjdr1ixCQkLw9fVFpVKxePHieyrax40bx5kzZ/Dx8aFp06Y4OjpiamqKq6srzzzzDM8//zzNmzc3FMfVFRQUxPz58/Hx8UGr1fLSSy/x9NNP89JLLzF37lw+//xzjI2NmT9/PgADBgxg2rRpfPXVVzg5OZVq64knnsDGxoYuXboY+hgSEkJoaKhhTf7ixYsrXYbk4uJCbm4us2fPZsyYMaXOTZ8+nbfeegtTU1OaNWuGu7s7KSkpD9R/IWqTm0cr3DxaASXvYl2+dYlGykbYmzoAYGb9ZF2mJ4QQ4hGn0MuagzoXFxeHXq9n4MCB5ObmMnLkSKKiogzLTET1FBQUkJiYiLu7e6nlOXUlISHhgV94ibJkXGuHjGvNkzGtHTKutUPGteZVNaZV1S2P5Uz70aNHWbhwYbnnIiMjcXBwqDB21apVREdHlzlub29f5Ux8RVxcXHjrrbdYsmQJUDJjLwW7EEIIIYS447Es2rt3717tLzwKDAwkMDCwRvNxcnJi/fr1NdqmEEIIIYRoOOSDqEIIIYQQQtRzUrQLIYQQQghRz0nRLoQQQgghRD0nRbsQQgghhBD1nBTtQgghhBBC1HNStAshhBDikZJVeJMiXRF6rQ508nUz4vHwWG75KIQQQohHT3ZRNsvP/5sLmj8Y/JsHHS+6YgnEHDnB15lGONmbEuTbHOcnGtV1qkLUOCnaH3EREREAvPLKK/ccU1xczPLly4mNjUWhUKDVahk1ahTTp09HoVDUVqpCCCFEtRRfOYMmaT/HVBewJpP2GU50Ou8KgAJwv34Tm8LGnLqo5d3/XmTFG20xMpK/Z6JhkaL9MbRgwQLS09PZuHEjlpaWaDQagoKCsLCwYNKkSXWdnhBCCGGQdWQreT+uILu9Aw5FCppgjMY4Hz06FHet8vUsvsIlVWtSMwu5kV2Eg426DrMWoubJmvZHUHx8PGPGjMHPz4+UlBROnDiBv78/AwcONMy8VyQ1NZXY2Fg++OADLC0tATA3Nyc0NJQmTZpUGpuVlUVQUBDe3t6MGDGCn376CQA3NzfDNZs3byY4OBiAQYMGsWTJEsaMGcPzzz9PYmIiAJcuXWLKlCmMGjWKCRMm8NtvvwEQHBzM5s2bDW3dafenn37Cz88PPz8/pkyZQmZm5v0MlxBCiEdQcVEhW//9T1Z8sZjExuZgpCBF2Y5tZq+yx3oGu/o5cMtECYBer0d9+zIANhYq7CyN6zJ1IWqFFO2PqIsXL7J69WpatGhBRkYGa9asISoqihUrVqDRaCqMO3HiBC4uLlhZWZU67uLiwtChQyu957/+9S9atmzJjh07WLx4MUuWLKkyT2trazZt2oS/vz9ffvklAHPmzGH27NlER0ezcOFC/vGPf1Taxr///W/mz5/P5s2b6dOnj6HIF0II0XCd2B/L70fjAMhXNKYYYxJMnqdIUbJePdPcgl9dLNAXZaPNOMAZIyua2aoJ9m+FSilLY0TDI8tjHlHOzs5YWFgA4OnpiVqtxtbWFhsbG7KzszE3N68w9u516zt37mTZsmXodDrUajVRUVEVxv3888989NFHQMks+MaNG6vM09PTEwBXV1d2795NXl4eiYmJvP3224Zrbt26xc2bNytsY/DgwcycOZMhQ4YwePBg+vbtW+V9hRBCPNoyrlwwPD57WYl1C2uKFSalrsluXEBh6hZsPD15a8IETExlhl00XFK0P6JMTU0Nj1WqP59GhUKBXl/x9lfu7u6cP38ejUaDubk5Xl5eeHl5kZKSQkBAQKX3VKlUpQr+8+fP4+zsDJS8NalQKCguLi4VY2JiYsgLMLw4iImJMVyTmpqKtbV1qdyLiooM5wMDAxk4cCD79u0jPDycEydOMGPGjEpzFUII8Whr3cGDE/tjASjKuM6+H61QD8xGa/rnO8VPd3yK2/Yv0b5nz7pKU4iHRpbHPGYcHR3x9fVlzpw55OTkACW7ycTFxWFkVPk/h+7du7Nt2zagpGB/8cUXUSgU2NjYcO7cOfR6PXv37q20DQsLC1q3bm0o2g8dOmT48Ku1tTVJSUkA7NmzxxAzduxY8vLyCAwMJDAwUJbHCCHEY8C1a38GTfoHTVq0wdHamia6JzA68jONNVnYmijp42iBZwsrUCrrOlUhHgqZaX8MzZ8/n5UrVxIQEIBWqyUvLw8PDw+WL19eadysWbMICQnB19cXlUrF4sWLUSgUvPHGG7z00ks0adKEbt26VbrUBSA8PJz58+fz1VdfYWxszKeffopCoWDChAm89tpr+Pj40KtXL5o2bQrA66+/TnBwMCqVCjMzM8LCwmpsLIQQQtRfXQb70WWwX12nIUS9oNBXtpZCiEdYQUEBiYmJuLu7G5bp1KWEhAS6detW12k0ODKutUPGtebJmNYOGdfaIeNa86oa06rqFplpb4COHj3KwoULyz0XGRmJg4NDhbGrVq0iOjq6zHF7e/sqZ+KFEEIIIUTtkKK9AerevXupD3rejzvrxoUQQgghRP0hH0QVQgghhBCinpOiXQghhBBCiHpOinYhhBBCCCHqOSnahRBCCCGEqOekaBdCCCGEEKKek6JdCCHEQ3Mx9TbHknIp1lb+FSHF2fncvpyNXqt7SJkJIUT91qC3fIyIiADglVdeueeY4uJili9fTmxsLAqFAq1Wy6hRo5g+fToKhaLCOI1GQ0BAAIWFhURERODs7FztvJOTk1m2bBnvvfdehdekpaUREhJS6d7pVeV04sQJPvroI9LS0lCpVHTs2JHZs2dja2tb7dyrqzrPlRDi0RIRncL2IxkANLNRs3i6C02t1GWuu7rtHLeOXEGBgnxu0WS8Cw7tnwIgL/MsOWlHUZnaYNtiAEpjs4faByGEqCsNumivjgULFpCens7GjRuxtLREo9EQFBSEhYUFkyZNqjDu9OnTqNVqNm/e/MA5XL16leTk5EqvcXBwqPLLjirLKSkpiZdffpnFixfTp08fdDodX331FQEBAURFRdWLbxAVQjQcF1JvGwp2gNSbhUQfvMG04c0BKPj1ewp+3cVlU3NMEgdg9H+TJKaYcXr1bmzfbUl+7jmSj/8bKJmlz71+HOeeb1c6oSKEEA1Fgyva4+PjCQ8PR6fT4erqSmZmJv7+/qSlpeHn51fpTG5qaiqxsbEcOHAAS0tLAMzNzQkNDSUpKanCuIyMDN555x3S09N56aWXeO6554iOjiYrK4uBAwcSEBDA3LlzuXr1KiqVin/84x/079+fiIgI0tLSuHTpEleuXGHs2LHMmDGDsLAwUlJSWLBgAfPmzSv3nikpKQQEBLB3716Cg4MxNzfn1KlTpKWlERQUxIABA0rl9MUXX5SK/+qrrxg/fjx9+vQBwMjIiGnTprF792527NhB9+7dmTFjBm3atCEpKQlHR0fCw8OxtrbmwIEDLF26lOLiYlq0aMHChQuxsbFh0KBBdOzYkdOnT/P111+zdetW1q9fj1KpZODAgcyePZvg4GB69uyJn58fAG5ubpw9e7ZUbv/973+JiYnh9u3bGBsb8/HHH9OmTZsy7dvZ2VX9D0IIUS9kaYrLHMvMLTlWePYnbm1bwo+tGvN70dP4KhRcaWpGir0ZlnlFWJ8zJ+X3X1EU/cydgh0gP/cy+bmXaWTZ6mF1Qwgh6kyDXNN+8eJFVq9eTYsWLcjIyGDNmjVERUWxYsUKNBpNhXEnTpzAxcUFKyurUsddXFwYOnRohXF2dnaEhYXh7u5uKI7T0tKIjo7m9ddfZ+HChfTq1YutW7eydOlSQzENcPbsWVasWMG3335LZGQkOTk5hISE4O7uXmHBXp7U1FS+/vprli1bxuLFi8vN6W4nT56kY8eOZY736NGDxMREAH7//XcmTpzItm3bcHFx4bPPPiMzM5OPP/6YFStWsGXLFvr168dHH31kiO/fvz+7du3iypUrfP3112zatInY2FhOnTplaLcyGo2GPXv2sHbtWr777jsGDBjAunXryrQvBbsQjxb31o2xtzYudWxwVxsAin7/CYC4NubYX73Kbw4q9ndrxnknS461teNItzZYNmnG1dSMMu0aqUxrP3khhKgHGtxMO4CzszMWFhYAeHp6olarsbW1xcbGhuzsbMzNzSuMvftt1p07d7Js2TJ0Oh1qtZqoqKh7zqF9+/aoVCXDe/jwYcLCwgBwcnKiU6dO/PrrrwB4eHigVquxs7PD2tqa3Nzc++4vQN++fVEoFDz11FNkZWVVeb1CoaC4uOzMV1FRkeFx69at8fDwAGDkyJG8+eab9O3bl2vXrhEQEACATqcr9SKnU6dOAPz8888MHDjQ8DysWrXqnvphbm7Oxx9/zLZt27h48SIHDx6kXbt2ZdoXQjxajFVGfDT9SaIO3uCmppjBXWzo4VbyjqaRbckSGZ1CQeOiQpKal16el+fojNL2CX4+raN/ewUmxiWz7UlX1bgaP/zP4AghRF1okEW7qemfMy93CmcoKVT1+op3LHB3d+f8+fNoNBrMzc3x8vLCy8vLsBSlujn89Z56vR6tVgtQau14VflV5k47Fa3tnDt3rmGmOywsjI4dO3L8+HEGDx5c6rpjx44xefJkoPTY6fV6lEolWq2Wrl27GmbvCwoKyMvLK5OHSqUqlUtaWhqNGjUq1ce7XyDcce3aNSZPnszf/vY3+vfvT5MmTTh9+nSZ9oUQj56m1mpe8mle5rhpdx+KLxyjz6ULnGlnjm1+NhocDOeNFKA2UmBq7siWnwpwtC0iL98IncoBH1WD/DMmhBBlNMjlMdXl6OiIr68vc+bMIScnByjZTSYuLg4jo+oPVa9evdi0aRNQsjPML7/8QufOnSu8XqlUljsL/iAWLVpETEwMMTExdOjQgenTpxMVFcWhQ4eAkqL83//+N/n5+Xh7ewNw4cIFQ8EcFRVF//796dSpE8ePH+fChQsA/Pvf/2bx4sVl7te9e3f2799PXl4excXFvPHGGyQmJmJtbW34fMCePXvKxJ08eZJWrVoRGBhIhw4d2LNnj+EFjhCiYVKYmGHxtw8Y+dwShvV5gaaOGSi1f76o7+1ogZmxEh8fH8wt7Lh03YR8nQ2jRo2SD6EKIR4bMkXxF/Pnz2flypUEBASg1WrJy8vDw8Ojyp1aKjN37lxCQ0MNu7iEhYVhb29f4fUuLi7k5uYye/ZswsPDq33fyrRq1YoVK1bw0UcfERYWhlarpVu3bqxdu9Ywm21lZcXSpUu5fPkybm5uhIWFYWZmxnvvvcdrr72GTqfDwcGh3Byffvpp/va3v+Hv749Op+PZZ5+lT58+tGjRgtdeew0fHx969epF06ZNS8X17duX9evXM2zYMPR6PT169ODcuXO1MgZCiPpFafMEHXmCjg69ea5Iy4XsAuwaqXiiccm2kI6OjrzxxhvcvHkTa2trlEplHWcshBAPj0Jf3fUYokG7e3eaR1VBQQGJiYm4u7vXi2U1CQkJdOvWra7TaHBkXGuHjGvNkzGtHTKutUPGteZVNaZV1S2P3Uz70aNHWbhwYbnnIiMjcXBwKPcclHyYMjo6usxxe3v7B5qJr8jly5cr3KIyLCyMDh061Pg9hRBCCCFE/fPYFe3du3cnJiamWrGBgYEEBgbWbEKVaNmyZbVzfVAtWrR4pGfZhRBCCCEaEvkgqhBCCCGEEPWcFO1CCCGEEELUc1K0CyGEEEIIUc9J0S6EEEIIIUQ9J0W7EEIIIYQQ9dxjt3uMEEI86vS6YjSZp1EoVDS2dUOhkPkXIYRo6KRoF0KIeiijIIMtF06QW6Cmo509g1q4AqAtusWFo4spzEsFwMz6SVp1/QcKI/l2UCGEaMhkeqYSERERRERE3FdMcXExy5Ytw9vbm2HDhjF06FC++OILqvriWY1Gg5+fH8OHD+fChQsPkjbJycm88847lV6TlpbGiy+++EA5nThxgoCAAIYOHcrzzz/P22+/TWZmZrltbd68meDg4Erz2LdvHytXrqw0p4raEeJRkZev5YutV3jt3+f4avtV8gu1pc7rtDounk7l8x8TuHrzSXJvteRQsikxf5wHIOvqj4aCHeBWVhK56Sceah+EEEI8fDLTXsMWLFhAeno6GzduxNLSEo1GQ1BQEBYWFkyaNKnCuNOnT6NWq9m8efMD53D16lWSk5MrvcbBwaHKb3GtLKekpCRefvllFi9eTJ8+fdDpdHz11VcEBAQQFRVV7tfvVpVHYmLiPcUI8Sj7NCqZQ4nZAJxNvkWWppg3x7UEID+vgM3v7yIrV4XR2Pbc/VI/8Uo+Q/J/Iz8vpUyb2qK8h5G6EEKIOiRF+1/Ex8cTHh6OTqfD1dWVzMxM/P39SUtLw8/Pj1deeaXC2NTUVGJjYzlw4ACWlpYAmJubExoaSlJSUoVxGRkZvPPOO6Snp/PSSy/x3HPPER0dTVZWFgMHDiQgIIC5c+dy9epVVCoV//jHP+jfvz8RERGkpaVx6dIlrly5wtixY5kxYwZhYWGkpKSwYMEC5s2bV+49U1JSCAgIYO/evQQHB2Nubs6pU6dIS0sjKCiIAQMGlMrpiy++KBX/1VdfMX78ePr06QOAkZER06ZNY/fu3ezYsYPu3bvzwgsvYGNjg6mpKT4+Ply6dIlJkyaRnZ3NgAEDeOONN7hy5QoBAQFERkayYcMGABwdHenXrx/vvPMOubm5XL9+nVGjRvHqq6/e13MpRH2j1+v56bfsUscOncrmzf97fPKb3WRlK2nXGOJ1CoruWvGivVXIuf8sRW0BDDcFo5KSXmlsjkXTzg8lfyGEEHVHlseU4+LFi6xevZoWLVqQkZHBmjVriIqKYsWKFWg0mgrjTpw4gYuLC1ZWVqWOu7i4MHTo0Arj7OzsCAsLw93d3VAcp6WlER0dzeuvv87ChQvp1asXW7duZenSpYZiGuDs2bOsWLGCb7/9lsjISHJycggJCcHd3b3Cgr08qampfP311yxbtozFixeXm9PdTp48SceOHcsc79Gjh2HG/MKFC4SHhxuWvKSkpBAREcHmzZtJSEjghx9+MMQ9+eST+Pv74+/vz+jRo/nuu+8YPnw433zzDVu3bmX16tUVLr0R4lGhUCh4wkZd6pij3Z8/56WllRxTm/Fk0p9LYPQ6HYW/J3Da3BxFjh6252Nu6o5tyyE495iDSm3+cDoghBCizshMezmcnZ2xsLAAwNPTE7Vaja2tLTY2NmRnZ2NuXvEfSIVCYXi8c+dOli1bhk6nQ61WExUVdc85tG/fHpWq5Ok5fPgwYWFhADg5OdGpUyd+/fVXADw8PFCr1djZ2WFtbU1ubu599xegb9++KBQKnnrqKbKysqq8XqFQUFxcXOZ4UVGR4bGdnR0tWrQw/Dxo0CBsbW0B8Pb25siRI7Rt27bc9qdOncrhw4dZsWIF586do6ioiNu3b99nr4Sof4JGtuD9ry+Re1uLVWMVM3ybG8496abmzBUt+To9dheSyb/+P4ysmqLLuIr+Vg65ypKpd0WWHktdR6yf6l9X3RBCCPGQSdFeDlNTU8PjO4UzlBSqlX2g1N3dnfPnz6PRaDA3N8fLywsvLy/DUpTq5vDXe+r1erTakg+v3b12vKr8KnOnnbtfdNxt7ty5hhn0sLAwOnbsyPHjxxk8eHCp644dO8bkyZPL9AFKj6VOpyv181998MEHJCcnM3z4cIYMGcKPP/5Y7b4JUZ90edKCtW+352p6Ac2bmqBW/fmGp6O3H89djyDlgh0Oxq1R5+RQkJNhON8yPx8AZePGmHfp8tBzF0IIUXekaK9Bjo6O+Pr6MmfOHN5//30sLS0pLi4mLi4OI6Pqr0Tq1asXmzZtYsqUKSQnJ/PLL78wf/58zp49W+71SqWy3FnwB7Fo0aJSP1taWjJhwgR69epF37590ev1LFu2jPz8fLy9vblx40aZNvbv38+rr76KiYkJ27dvZ9asWWXyLigoAODQoUMsWLCArl27EhcXR1paGjqdrkb7JERdMTE2wvmJRmWOG5ma02b627TOy0avN+bvvzvz428/k3c7jw5OTrS8cgUjtRqbZ59F9X/vBgohhHg8SNFew+bPn8/KlSsJCAhAq9WSl5eHh4dHlTu1VGbu3LmEhoYadnEJCwvD3t6+wutdXFzIzc1l9uzZhIeHV/u+lWnVqhUrVqzgo48+IiwsDK1WS7du3Vi7dm2FO8e0adOGadOmkZOTw/Dhw+nXrx8pKX/uhNGjRw/mzJlDkyZNmD59Om+99RampqY0a9YMd3f3UtcK0ZAZNS75XEzrrq607upax9kIIYSoDxR6WXMgGqiCggISExNxd3e/5y0oa1NCQgLdunWr6zQaHBnX2iHjWvNkTGuHjGvtkHGteVWNaVV1i8y036ejR4+ycOHCcs9FRkbi4OBQYeyqVauIjo4uc9ze3v6BZuIrcvny5Qq3qAwLC6NDhw41fk8hhBBCCFHzpGi/T927dycmJqZasYGBgQQGBtZsQpVo2bJltXMVQgghhBD1h+zTLoQQQgghRD0nRbsQQgghhBD1nBTtQgghhBBC1HNStAshhBBCCFHPSdEuhBCiQdDJDsZCiAZMdo8RQgjxSDubeZudF26SW6ilrV0jfF1sUStlTkoI0bA89kV7REQEQIX7mZenuLiY5cuXExsbi0KhQKvVMmrUKKZPn45CoagwTqPREBAQQGFhIRERETg7O1c77+TkZJYtW8Z7771X4TVpaWmEhIRUugd8RTndvHnTsD1leno6AE2aNAFK9pu3sbExtLF+/XoAJkyYUO3+3KvqPF9CiIZBV1BM6t5LaM5lcDn9Mim6JLoMe44dSnuKdCWz7KczbmNrmoPnE405cOAAKSkptG7dmn79+qFUKuu4B0IIUX2PfdFeHQsWLCA9PZ2NGzdiaWmJRqMhKCgICwsLJk2aVGHc6dOnUavVbN68+YFzuHr1KsnJyZVe4+DgUOWXNlWUk42NjWGP96oK5YdRrAshHm9X0ws4+cUxniwqQAk4K5pSlHeaXbGfUzRifqlrr2TnE/XjTk6cOAHA2bNnyc7OxtfX9+EnLoQQNeSxLNrj4+MJDw9Hp9Ph6upKZmYm/v7+pKWl4efnV+ksbmpqKrGxsRw4cABLS0sAzM3NCQ0NJSkpqcK4jIwM3nnnHdLT03nppZd47rnniI6OJisri4EDBxIQEMDcuXO5evUqKpWKf/zjH/Tv35+IiAjS0tK4dOkSV65cYezYscyYMYOwsDBSUlJYsGAB8+bNK/eeKSkpBAQEsHfvXoKDgzE3N+fUqVOkpaURFBTEgAEDSuX0xRdfVGv8WrRoAZQU9f/973+JiYnh9u3bGBsb8/HHH9OmTRsGDRqEr68v//vf/7h9+zYffvgh7u7u/P777wQHB6PVaunevTsHDhzg+++/Jzg4mJ49e+Ln5weAm5sbZ8+evaf8hBANz/KYZCYWFsBdb2a2MOvIqRv7URTeQq82MxxvlPo9JoU/Y6wyo6i4ZJnMr7/+KkW7EOKR9tgu+rt48SKrV6+mRYsWZGRksGbNGqKiolixYgUajabCuBMnTuDi4oKVlVWp4y4uLgwdOrTCODs7O8LCwnB3dzcUx2lpaURHR/P666+zcOFCevXqxdatW1m6dKmhmIaSWaIVK1bw7bffEhkZSU5ODiEhIbi7u1dYsJcnNTWVr7/+mmXLlrF48eJyc7pXd8bvww8/NBzTaDTs2bOHtWvX8t133zFgwADWrVtnOG9tbc2mTZvw9/fnyy+/BCA4OJhXX32VmJgYnJyc0Gq195WHEOLxcD4tnzxKLz+8rc1BUVyAyf8+wzY7BWPtbZyLEnBTHMbFsZCeT90yXPvX39lCCPGoeWyLdmdnZywsLADw9PRErVZja2uLjY0N2dnZlcbevW59586djBgxAh8fH0aPHn1fObRv3x6VquTNjsOHDzNmzBgAnJyc6NSpE7/++isAHh4eqNVq7OzssLa2Jjc3977uc0ffvn1RKBQ89dRTZGVlVauNO+4evzvMzc35+OOP2bZtGx9//DH79u3j1q0//2h6enoC4OrqSlZWFllZWVy5coVnnnkG4L7HTwjx+Oj8lCWbtY0o/r8NYop0tzmVtQs9cLN1KsP3fIJv/id0LdyJkpIX/0/YFgGgVqvx9vauo8yFEKJmPJbLYwBMTU0Nj+8UzlBSkOsr2TbM3d2d8+fPo9FoMDc3x8vLCy8vL8NSlOrm8Nd76vV6w6yziYnJPedXmTvtVPRh2blz55KYmAhAWFgYHTp0uKfc77h27RqTJ0/mb3/7G/3796dJkyacPn26wvsrlcoK+3J3P4uKiqrqmhCigZs+vDlfGSlY8ns2rZ/+jtzMMygcbpHn3ApbMyVm183JyykCyz/noiwtnZg6dTzNmzcv93eWEEI8Sh7bmfbqcnR0xNfXlzlz5pCTkwOU7CYTFxeHkVH1h7NXr15s2rQJKNkZ5pdffqFz584VXq9UKikuLq72/cqzaNEiYmJiiImJqbRgr8jJkydp1aoVgYGBdOjQgT179lS63MXCwgInJyf2798PwNatWw3nrK2tDZ8R2LNnz33nIoRoWBqbKnnVz4llwe6MGjCSos42ZPa2Q/2ELeOeGEOTV5di18Qb8kt+D6uMrHHqMgUXFxcp2IUQDcJjO9P+IObPn8/KlSsJCAhAq9WSl5eHh4dHlTu1VGbu3LmEhoYadnEJCwvD3t6+wutdXFzIzc1l9uzZhIeHV/u+Nalv376sX7+eYcOGodfr6dGjB+fOnas0ZvHixbzzzjssWbIENzc3wx/XCRMm8Nprr+Hj40OvXr1o2rTpw+iCEOIR8JRFW8I6LOZGwXXsTRxQGZX8KXPoPwp7/Qi0hRpUJpZ1nKUQQtQshb66ay2EqAGfffYZ48aNw97ent27d7N161bDFpMPqqCggMTERNzd3UstMaorCQkJdOvWra7TaHBkXGuHjGvNkzGtHTKutUPGteZVNaZV1S0y016Oo0ePsnDhwnLPRUZG4uDgUGHsqlWriI6OLnPc3t7+gWbiK3L58uUKt6isal16feDo6Mj/+3//D5VKhaWlJYsWLarrlIQQQggh6h0p2svRvXt3wxcL3a/AwEDDN4k+DC1btqx2rvWBn5+fYS92IYQQQghRPvkgqhBCCCGEEPWcFO1CCCGEEELUc1K0CyGEEEIIUc9J0S6EEEIIIUQ9J0W7EEIIIYQQ9ZzsHiOEEEI8DHo9ep0ehZGizKnUvEKOXMtFD/RoZo6jed1/t4QQon6Rol0IIYSoZTcPXMJ6XzZ/bP0BCn5Dqb6K7fOjsPTwIKugmFWJ1ynSlXzX4akbuUxskUlrp651nLUQoj6R5TG1KCIi4r6/3bO4uJhly5bh7e3NsGHDGDp0KF988QVVfXGtRqPBz8+P4cOHc+HChQdJm+TkZN55550HauOOF198kbS0tDLHJ0+eTHx8fJnjwcHBbN68mZSUFAYNGlQjOQghRG05/Fs2y7df5cCJrAp/T9++lE3mDxdBpwKMwaQT57La8fWKKJa/PpXte/caCnYALUp++eMUuTd+fTidEEI8EmSmvZ5ZsGAB6enpbNy4EUtLSzQaDUFBQVhYWDBp0qQK406fPo1arWbz5s0PnMPVq1dJTk5+4HaAWvkWWCGEqA82xqWxaleq4edzV5oy1duxzHUFV3LLHNMaF5Gn+QmyIONYHAxsV+q8qV5DTtovWDTtVNNpCyEeUVK017D4+HjCw8PR6XS4urqSmZmJv78/aWlp+Pn58corr1QYm5qaSmxsLAcOHMDS0hIAc3NzQkNDSUpKqjAuIyODd955h/T0dF566SWee+45oqOjycrKYuDAgQQEBDB37lyuXr2KSqXiH//4B/379yciIoK0tDQuXbrElStXGDt2LDNmzCAsLIyUlBQWLFjAvHnzyr1nSkoKQUFBtGnThqSkJNq3b0+XLl2Ijo4mOzubzz//HBcXFwYNGsSaNWuwt7dn7ty5JCYm0rx5c27evAmAXq/ngw8+IC4uDnt7e7RaLT179ix1r/T0dEJDQ0lNTUWhUPDGG2/Qp0+f+31qhBCiRsX8mF7q560/ZTBl6BMY/WXNeqPWVmVib9z+BQC9QokmpxDTzGT0tk4A2Gkv41R8CuNGz9VS5kKIR5EU7bXg4sWL7Nu3j1WrVnHu3Dk2bNiARqNh0KBBTJkyBXNz83LjTpw4gYuLC1ZWpX/Bu7i44OLiUuH97OzsCAsL47PPPuOLL75g8+bNpKWlsX37dlQqFa+++iq9evViypQpJCcnM2HCBLZs2QLA2bNnWbduHbm5uQwZMoRJkyYREhLCZ599VmHBfsfZs2d5//33adu2LUOHDsXe3p6NGzfy2WefsXHjxlJLbNauXQvAjh07uHjxIr6+vgDs2rWL3377je+++47c3FzD8bstWrSI0aNHM3jwYK5fv87EiRPZsmVLheMohBAPg4mq9ApTY5UCRdnPmGLiaEETX1fSd5ykuEjLBY2eG4UZABSa2KIzUnPr0He0e9qSVs0KsdNfpZFFS+xaDn4Y3RBCPCJkTXstcHZ2xsLCAgBPT0/UajW2trbY2NiQnZ1daazirt/4O3fuZMSIEfj4+DB69Oj7yqF9+/aoVCWvyQ4fPsyYMWMAcHJyolOnTvz6a8laSQ8PD9RqNXZ2dlhbW5ObW/Zt3Io0adKE9u3bY2RkRLNmzejduzcAjo6O5OTklLr2yJEjeHt7A9C6dWu6dOliOP7cc89hbGyMra0t/fv3L3OfH3/8kaVLlzJixAhefPFFiouLa2z5jhBCVNfEwQ6livSJgxxK/Q6/m1U3R7K8m1D4j+Yc7v4jKrO+gAnodYZrTp/K4cD/bpFpNJQ2Hu+gNG5cyz0QQjxKZKa9Fpiamhoe3ymcoaQgr+wDpe7u7pw/fx6NRoO5uTleXl54eXmRkpJCQEBAtXP46z31ej1arRYAE5M/txWrKr+/UqvVpX5WKpUVXvvXtu+MS0XH76bT6Vi9ejXW1tYAXL9+HTs7u3vOUwghasOz3Wxxbd6IxAt5POVkxlMtzKqM6WDdicKhhfzU+RBWOWPprGrJT4fOcS21ZG28sakNnXsMqe3UhRCPIJlpr0ccHR3x9fVlzpw5hpnq4uJi4uLiMDKq/lPVq1cvNm3aBJTsDPPLL7/QuXPnCq9XKpUUFxdX+37l6d27N1u3bkWn03HlyhV++eUXw/EdO3ZQWFhIdnY2Bw8eLDf/r7/+GoCkpCR8fHy4fft2jeYnhBDV0bpZI4b3bnJPBfsd3Wx7MLPda7zgMZ3u3byZ8fLLTJw4kbFjx/Lqq68a3qkVQoi7yUx7PTN//nxWrlxJQEAAWq2WvLw8PDw8HmgXlrlz5xIaGmrYWSYsLAx7e/sKr3dxcSE3N5fZs2cTHh5e7fvebeLEiZw7dw5vb2+aN2/OU089BcCQIUM4efIkw4cPp0mTJuWu3Q8JCSE0NBQfHx8AFi9eLOvZhRANhkqlwt3dva7TEELUcwr9/ayHEOIRUlBQQGJiIu7u7qWWAdWVhIQEunXrVtdpNDgyrrVDxrXmyZjWDhnX2iHjWvOqGtOq6haZaX/Ijh49ysKFC8s9FxkZiYODQ4Wxq1atIjo6usxxe3v7WtkP/fLlyxVuURkWFkaHDh1q/J5CCCGEEKIsKdofsu7duxMTE1Ot2MDAQAIDA2s2oUq0bNmy2rkKIYQQQoiaIx9EFUIIIYQQop6Tol0IIYQQQoh6Top2IYQQQggh6jkp2oUQQgghhKjnpGgXQgghqqDV6Um6coucvOp98Zy2KA90+TWclRDicSK7x9RTERERABVuuVie4uJili9fTmxsLAqFAq1Wy6hRo5g+fToKhaLCOI1GQ0BAAIWFhURERODs7FztvJOTk1m2bBnvvfdetdsQQoj6JOVGASEr/yDtZiHGKgUvDW/OMA+7Mtfp9Xo0iTcoSMnhD2s98X+c4MbvJxjQxYhmFmmY6vVcSfwdx/YBKIyUddATIcSjTIr2BmTBggWkp6ezceNGLC0t0Wg0BAUFYWFhwaRJkyqMO336NGq12vCNqQ/i6tWrJCcnP3A7QghRX6z9/hppNwsBKCrWE7ntKs90ssboxinij/+HXO0tutj3xjS3Pzd/TGF/t2Zcwwza9MTEwQVbVoFehwLITo2nsV07rJ/oVad9EkI8eqRor0fi4+MJDw9Hp9Ph6upKZmYm/v7+pKWl4efnV+mse2pqKrGxsRw4cABLS0sAzM3NCQ0NJSkpqcK4jIwM3nnnHdLT03nppZd47rnniI6OJisri4EDBxIQEMDcuXO5evUqKpWKf/zjH/Tv35+IiAjS0tK4dOkSV65cYezYscyYMYOwsDBSUlJYsGAB8+bNK/eeGo2G119/nfT0dACCgoIYPHgwkydPZubMmXh4eJCSkkJAQAB79+4lODgYExMTTp48SV5eHjNmzGDkyJHVH2ghhLgP1zILS/1cUKTjZkY26859ymXHkj+jewsOMjO+NdeaNOZaUzPDtbrGdlwo7Ixb0eE/4zXXHk7iQogGRYr2eubixYvs27ePVatWce7cOTZs2IBGo2HQoEFMmTIFc3PzcuNOnDiBi4sLVlZWpY67uLjg4uJS4f3s7OwICwvjs88+44svvmDz5s2kpaWxfft2VCoVr776Kr169WLKlCkkJyczYcIEtmzZAsDZs2dZt24dubm5DBkyhEmTJhESEsJnn31WYcEO8P3339O8eXMiIyM5ffo0sbGxDB48uNJxSU5OZuPGjWRkZODn50ffvn1p2rRppTFCCFETPDtYc+7KbcPPbZ4wJS/vRy5bqWh9QUf//VrMNaBrWUSBuuyylwLMSv1s3sS91nMWQjQ8UrTXM87OzlhYWADg6emJWq3G1tYWGxsbsrOzKyzagVLr1nfu3MmyZcvQ6XSo1WqioqLuOYf27dujUpX80zh8+DBhYWEAODk50alTJ3799VcAPDw8UKvV2NnZYW1tTW5u7j2136VLFz755BPS0tIYMGAAQUFBVcb4+flhbGxMs2bN6Nq1KwkJCXh5ed1zn4QQorpGezZFpVTw42/ZtGhiwqTBzcjKz8U4Q89zu7Soi0quy8v8mebG/TEp1BqKd71WS3riNbKaWmNiZoRLtxE0tnGtw94IIR5VUrTXM6ampobHdwpnKCnI9Xp9hXHu7u6cP38ejUaDubk5Xl5eeHl5GZaZVDeHv95Tr9ej1WoBMDExuef87ta6dWt27NjBwYMH2bdvH//5z3/Yvn17qfsVF5feoUGp/HP2SqfTlRobIYSoTUZGCkb1a8qofn++u2dn2Q33o5aoizINx9JyE0guPE6Lne5cfdKFQiMdJueuYZTrTuIfbrQfZoP1Ex510QUhRAMgWz42EI6Ojvj6+jJnzhxycnKAksI3Li4OI6PqP829evVi06ZNQMkSlV9++YXOnTtXeL1SqSxTcP/Vf//7XyIiIvD29mbevHlkZmai0WiwsbExrL/fs2dPqZgdO3ag1+u5cuUKJ06coFu3btXukxBCPCiFQsHkQe+ib/Tn5IUtpuQUpXEtbQ+KQ19icnA57ds403lwG8a82ZdG1jLZIISoPvkN0oDMnz+flStXEhAQgFarJS8vDw8PD5YvX17tNufOnUtoaKhhZ5mwsDDs7e0rvN7FxYXc3Fxmz55NeHh4udeMHDmS119/HR8fH5RKJbNnz8bS0pIXXniB4OBgoqKiyqxxz8/PZ/To0RQWFvLuu+9iY2NT7T4JIURNMGlkTuvXXif1668pSk+nRY8BeLk24/C2tRQX5tN5sB89vccZrr9wtQ6TFUI88hT6e13TIEQdCQ4OpmfPnvj5+d1XXEFBAYmJibi7u5daylNXEhIS5B2CWiDjWjtkXGuejGntkHGtHTKuNa+qMa2qbpGZ9kfI0aNHWbhwYbnnIiMjcXBwqDB21apVREdHlzlub2//QDPxFbl8+XKFW1SGhYXRoUOHGr+nEEIIIURDJUX7I6R79+7ExMRUKzYwMJDAwMCaTagSLVu2rHauf/XBBx/USDtCCCGEEI8q+SCqEEIIIYQQ9ZwU7UIIIYQQQtRzUrQLIYQQQghRz0nRLoQQQgghRD0nRbsQQgghhBD1nBTtQgghhBBC1HNStAvxgG7dusW5c+fIy8sDQJebQeGp/WjTL9dxZkIIIYRoKB6bfdojIiIAKvzCn/IUFxezfPlyYmNjUSgUaLVaRo0axfTp01EoFBXGxcfH89lnn7F27doHzvuOQYMGsWbNGlq0aHHfsfHx8XzyySfcvn0brVbLM888wxtvvIFSqayx/CqydOlS+vTpQ/fu3Su85l//+hfu7u4MHjy41vOpaadPn2b9+vUUFxdjZKSgn3UjWj51E53pLbLPtcDYoS9Pd/eksXHtj7UQQgghGq7HpmivjgULFpCens7GjRuxtLREo9EQFBSEhYUFkyZNquv07klhYSFvvPEG69evx8nJicLCQmbNmsW6desICAio9fv//PPPeHh4VHrNq6++Wut51JbNW6MoLi4GQIGOJ56+AsZ6fjYZSYrF0wDEHbvG35+2r8s0hRBCCPGIa9BFe3x8POHh4eh0OlxdXcnMzMTf35+0tDT8/PwqnXVPTU0lNjaWAwcOYGlpCYC5uTmhoaEkJSXdcw4RERGkpaVx6dIlrly5wtixY5kxYwZnzpwhNDSU4uJiTExMeP/992ndunWV7RUVFTFv3jwSEhJwcHBAoVDw8ssvV1gY3759G41Gw+3btwFQq9XMnTvXsJSjIleuXOHtt98mMzMTU1NTwsLCaNu2LVu2bGH16tXodDqefvpp5s2bh4mJCf369WPo0KEkJCSgVCpZsmQJCQkJJCYmEhISwmeffYabm1u59woODqZnz5707NmTmTNn4urqyunTp7Gzs+Nf//oXjRs35p133uHcuXMATJw4kXHjxlU5Vg9DnuaW4bF1Yy3GxnpyFE1IUT1tOF6g1XP4Wi73/x6JEEIIIUSJBr+m/eLFi6xevZoWLVqQkZHBmjVriIqKYsWKFWg0mgrjTpw4gYuLC1ZWVqWOu7i4MHTo0PvK4ezZs6xYsYJvv/2WyMhIcnJyWL16NVOmTGHz5s2MGzeO48eP31NbGzZs4Pbt2+zcuZP333+fkydPVnq9lZUV06dPx8/PDx8fH8LCwkhLS6Nt27aVxi1YsIChQ4fy3Xff8corr7Bs2TLOnTvHN998w4YNG4iJicHOzo4VK1YAcOPGDXr37s2WLVvo0aMH69atY+TIkbi7uxMWFlZhwf5XZ86cYcqUKXz33XdYWlqydetWjh07RnZ2Nlu2bOHLL7/k6NGj99TWw6BorTc8zspTUlxkRLFCXea6Qq2+zDEhhBBCiHvV4It2Z2dnLCwsAPD09EStVmNra4uNjQ3Z2dmVxt69bn3nzp2MGDECHx8fRo8efV85eHh4oFarsbOzw9ramtzcXJ555hkWLlzIO++8g4WFBT4+PvfU1qFDh/Dx8UGhUNC8eXN69+5dZcyMGTM4cOAA06dPJy8vjxdffJFVq1ZVGvPzzz8zYsQIAJ555hn+9a9/ER8fz6VLlxg3bhwjRozghx9+4I8//jDEeHp6AuDq6lrl2FbEzs6O9u3bl2rH1dWVCxcuMHXqVHbu3Mlbb71VrbZrwyDvQdx212CryKdJrp78X92wzdVgo71quEYBdHMwr7skhRBCCPHIa9DLYwBMTU0Nj1WqP7urUCjQ6yue/XR3d+f8+fNoNBrMzc3x8vLCy8uLlJSU+14LbmJiUua+Xl5edOnShX379rFq1Sri4uIICwursi2lUolOp7vnex8/fpxTp04xadIkhg8fbvjvvffeIzAwsMK4u8dKr9dz/vx5tFot3t7ehISEAJCXl4dWqy3Tz6rGtjLljZWNjQ3btm3j0KFD7N+/n1GjRrFt2zbDsqW6NPiJZ2k61JF/F+5jwPFULv+hJfNyRwodCxkYYMEtnZ6n7cxobmFCQl0nK4QQQohHVoOfaa8uR0dHfH19mTNnDjk5OUDJbjJxcXEYGT34sL322mucPHkSf39/Xn31VX777bd7iuvTpw/bt29Hr9eTlpbGkSNHKt3JxsrKis8++4wzZ84Yjp06dYp27dpVep/u3buzbds2AH788Uf++c9/4uHhwffff09GRgZ6vZ758+ezevXqSttRKpWlCvvq+OGHH5g9ezYDBgwgJCQEMzMzrl279kBt1qSOdk/j086fdebjWGE3mLgWXRj1Qnf6tbTmudY2NLcwqboRIYQQQohKNPiZ9gcxf/58Vq5cSUBAAFqtlry8PDw8PFi+fPkDt/3SSy8xd+5cPv/8c4yNjZk/f/49xY0bN44zZ87g4+ND06ZNcXR0LPVuwl85OzvzwQcf8M4776DRaFAoFHTs2JHQ0NBK7xMaGkpISAhff/01jRo1IiwsjCeffJKZM2fy97//HZ1OR7t27Zg2bVql7Xh6ejJv3jw+/PBDunbtek99/Kv+/fuze/dunn/+eUxMTPD19b3nNfIPy/MeTejT3oprmYU82bzR/2fvzsOqqvbHj78P5zCoh1EFQ7QUCQe0wgE1tURvIikqpZIm4bduWqh1y1KLCHNIxQYlxTAvDreUFBRM08whywGUVMQpRTFRQWX0MJ/h9wc/T5IMaiCon9fz9DzHvfda67MWSp+9ztprY6aS+2EhhBBC1ByF4W7XMYg6sWvXLgwGA3379uX69esMHTqU6OhobGxs6jq0eqe4uJjk5GTc3NzKLbupK4mJiXTu3Lmuw3jgyLjWDhnXmidjWjtkXGuHjGvNq25Mq8tbHuqZ9oMHDzJjxowKz0VERODg4FBp2eXLl7N+/fpbjtvb29/1TPyYMWOMS3Fu5ufnx0svvQSU7V7z/vvv8+WXXwIwadIk8vLyeOWVVyqsc+bMmXTs2LHCc3PnzmXv3r23HHdzc2PWrFl31YfK3Mu2hBBCCCEeNA910t6lSxdiY2PvqmxAQECVD3Lejdt5g2qLFi1YvXr1Lcfvph9Tpky54zJ36162JYQQQgjxoJGFt0IIIYQQQtRzkrQLIYQQQghRz0nSLoQQQgghRD0nSbsQQgghhBD1nCTtQgghhBBC1HMP9e4xQjxI9IXXKUnahqFQg5lbX5RNWtR1SEIIIYSoIZK0C/EAMOhKub5yMvrMNPIsGhOf04gcRx0NrhbTJF1D66eakt0yjd1Xd2FmYobXI8/T1qpdXYcthBBCiNskSXstCAsLA2DixIm3XUar1bJ06VLi4uJQKBTodDqGDRvGuHHjUCgUlZa7sWf7jZcv/VMxMTEkJCQwZ86cGqnv7+5mbG6WlJTE1q1bee+992oyrPue9twh9JlpGFAQ12kiOY2agQ6wa0jKxaP8ui4ag5mBfI9cdPalnDuTQnCHmTQ2b1zXoQshhBDiNkjSXk9Mnz6da9euERUVhZWVFRqNhsDAQCwtLRk9enSl5WoqWb9fnDlzhszMzLoOo/5RmgGQ1eiRsoT9Jg1atcBwIZHSEgUND1pyfWAWWrScvH6cp81710W0QgghhLhDkrTXkPj4eEJDQ9Hr9bi4uJCVlYWfnx8ZGRn4+vpWObOcnp5OXFwcu3fvxsrKCgC1Wk1wcDBnzpypst2bZ6579erFgAEDSExMRKlU8uWXX9KiRQvmzp3Lnj17MDExoX///kyYMOGWGW9PT09WrlxZru4ff/yRyMhIioqKKCkpYfbs2bi7uzNmzBisra05ffo0X375Je3aVbzMoqJ2oWy2/O9jo9frmT17Nvv27UOhUODj48Prr79eblwdHBw4ceIEBQUFhIeH88Ybb9zGT+bhoHqsE6oWHWh06SxKnR6d8q9nzJuZX8O1Sy6bD1qjLVSiKFZgsDDQzOKROoxYCCGEEHdCdo+pQampqaxYsQInJycyMzNZuXIl0dHRLFu2DI1GU2m5pKQknJ2dsba2Lnfc2dmZAQMG3Hb7V69epUePHmzYsIGuXbvy7bffcvHiRXbv3k1cXByrV6/mzJkzFBcXV1uXXq9nzZo1LFmyhLi4OF577TUiIiKM511dXdm6dWulCXtV7VY0NqtXr+by5cvExcWxdu1afvrpJ3bt2gX8Na7h4eFMmjQJT09PSdj/RqEwQT1qNvH2/rifzESp1wGg1l+jfelurBrpadG0BL1lKQoLE/o5PIezuk0dRy2EEEKI21XpTPvMmTOrLBgUFFTjwdzvWrVqhaWlJQC9e/fGzMwMOzs7bG1tyc3NRa1WV1r25nXrW7ZsITw8HL1ej5mZGdHR0bcdQ+/eZcsdXFxcOHjwIA4ODpibm+Pn50ffvn2ZPHky5ubm1dZjYmLCokWL2LFjB+fOnSMhIQETk7/u8Tp16lRl+ararWhs4uPjGTZsGEqlkgYNGjB48GD27duHp6dnuXEVlVMoVbg//xypiw4yWHGQ/Mf+xNJwjRt/s6wVOsaPnUDTJvY0UjWq01iFEEIIcWcqnWm3sbGp8j9xKwsLC+Nnleqv+yGFQoHBYKi0nJubGykpKcbZeC8vL2JjYwkPDyc7O/uOYriRGN9oU6VSsXbtWt566y1ycnLw8/Pj3Llzt8RUWlparp78/HxefPFF0tLS6Nq1K2PGjKm0rxWprN0b5264EYdery9X3mAwoNPpbqst8ZeW9ha4/fsJKG2LVcl1Y8KuL1Yy5OUPeaxZK0nYhRBCiPtQpTPtN9Yfi9rn6OiIj48PU6ZM4dNPP8XKygqtVsuuXbvKzW7fjePHjzNjxgxWrVpFjx49OH78OOfOncPW1pb4+HigbHnO1atXy5VLTU1FoVAwfvx4DAYD77//vjGJ/iftVqZ79+5s2LCBvn37UlJSwsaNGxk/fvwt1ymVSrRa7W3H8TCyc7LEbnwftMVPkJueAAolNo94oDSVZF0IIYS4X1X5IGpGRgYREREkJiaiUCh46qmneP3112nWrFlVxcRdCAkJITIyEn9/f3Q6Hfn5+Xh4eLB06dJ/VG/79u158sknGTRoEA0aNMDd3Z0+ffpw/fp1tm7dire3Nx06dKB9+/blyrVt25Z27doxcOBAFAoFvXr1IjEx8R+3e+zYsQqvHzlyJKmpqQwZMoTS0lIGDx7Mv/71L+ONxQ2dOnXiq6++Yv78+UyePPnOB+QhojK3pvGj/6rrMIQQQghRAxSGStZtXL58mZEjRzJgwAB69uxJSUkJ8fHx/PTTT0RFRdG8efN7HasQd6S4uJjk5GTc3Nxuax1/bUtMTKRz5851HcYDR8a1dsi41jwZ09oh41o7ZFxrXnVjWl3eUulM+5dffsk777zD0KFDjccGDBhAhw4d+PLLLwkNDf1nkT9kDh48yIwZMyo8FxERgYODQ6Vlly9fzvr16285bm9v/49n4v+pMWPGkJeXd8txPz+/h24PeSGEEEKI2lJp0n78+HHmzp17y/EXXnih3NZ/4vZ06dKF2NjYuyobEBBAQEBAzQZUQ1atWlXXIQghhBBCPPAqfcqxqt1OzMzMaiUYIYQQQgghxK0qTdqVSiUZGRm3HM/IyJCkXQghhBBCiHuo0qTdz8+PDz74oNybPDMzM3n//fcZNWrUPQlOCCGEEEIIUcWa9pdeeok///yT3r1706ZNG7RaLampqfj7+/PCCy/cyxiFEEIIIYR4qFW5T/uUKVN45ZVXSEpKAuCJJ56ocpcTIYQQNaMwJYXSrCwaubmhbNCgrsMRQghRx6p83WZBQQFNmjThueee47nnnsPBwYGioiK++OKLexVfnQgLCyMsLOyOymi1WsLDwxk4cCDe3t4MGDCAJUuWVPlAb03Zvn07CxYsqPKaDz/8kKNHj3L9+nUCAwOrrdPV1fUfx5WRkcG///3vO6rf09OTtLQ0YmJimDp16j+OQYj7Udp/I0mdMYOLixaR8v77FF28SPqp7zmxYxJ/7H6fnEt76zpEIYQQ91ilM+0bNmzgo48+omHDhqxYsYK2bdvy888/M3PmTCwsLPjPf/5zL+Os96ZPn861a9eIiorCysoKjUZDYGAglpaWjB49ulbb7tevH/369avymlmzZgGQlpbGiRMnajWeGxwcHOp8H3kh6qPdSTkcOavh8eYN6N/ZDqWJgpI/9vF7+iV2qtqhdfWkufkjdNm1HgoNXPrlO4rsUwDQlpRw6fgqGtg4Y95QvvkUQoiHRaVJ+5IlS1i9ejV//vknS5cupVmzZnz77beMHz+e//u//7uXMd4T8fHxhIaGotfrcXFxISsrCz8/PzIyMvD19WXixImVlk1PTycuLo7du3djZWUFgFqtJjg4mDNnzlTZbmFhIUFBQZw6dQqFQsGrr77K0KFDKS4uZvr06SQmJmJqasqbb76Jt7c3e/fuZc6cORgMBhwdHfnss8/46aefSEhIYM6cOXh6euLl5cXevWUzcbNnz6Z9+/aMGTOGCRMmEBkZyZUrVwgMDGTRokV88cUX7Nu3j9zcXOzt7fniiy9o0qRJteMVExPDrl27yMnJ4cqVK/j5+XHx4kX279+PjY0N33zzDVevXsXf358dO3aQlpbGe++9R0FBAU888YSxnpycHN577z3S09NxdnamuLj4lraSkpL49NNPKSoqwtbWlunTp9OiRYtqYxSiPlq9M4OVP6UDsBk4fbGQV+12kbcvhm2954LCAhRwsXUH1FpL7M6kYao9QtNytRgozE2VpF0IIR4ilS6PMTU1xc3NDW9vb/bv309CQgIbN25k/PjxD+yWj6mpqaxYsQInJycyMzNZuXIl0dHRLFu2rNwuOn+XlJSEs7Mz1tbW5Y47OzszYMCAKtsMCwvD1taWH374gRUrVhAWFsbJkydZtWoVBQUF/Pjjj0RGRrJo0SJKSkqYPHkyc+fOZePGjTz++OMVvim1YcOGbNiwgUmTJjFlypRy54KCgrC3t2fRokWcP3+es2fPsmbNGrZu3cojjzxCXFzcbY/X0aNHWbx4McuWLePTTz+lT58+bNy4EYBff/213LUzZszA19eX2NhY3N3djccXLlxI+/bt2bhxI6NHj+batWvlypWUlBAUFMRnn33G+vXrGTt2LB999NFtxyhEfbNpf2a5P289mEVRQix/2jiWJew3udDYkh26I/yR8/ebWQUNrVvXcqRCCCHqk0qTdpXqr0l4c3NzIiIiHvjZzVatWmFpaQlA7969MTMzw87ODltbW3Jzc6ssq1AojJ+3bNnCkCFDGDx4cLU77ezfv58XX3wRADs7O/r160dCQgIHDhxg8ODBmJiY0LRpUzZt2sSpU6dwcHCgXbt2ALz77ruMGTPmljpHjBgBlK0Pz8jIICsrq8K2H330UaZMmcLatWuZM2cOhw8fpqCgoMp4b+bu7o5araZ58+YA9OjRA4DmzZuTl5dX7tqEhAQGDhwIgI+PD6ampsbj3t7eAHTt2vWWv2OpqalcuHCBN954gyFDhjB//nwuXLhw2zEKUd80NC//a9fC1ASFUkXz3DT0lP/3V5h5HoBz6WYkn7eguFRBaamS5h0CMGtYfu5dCCHEg63K3WNusLa2xtbWtrZjqXMWFn/Nct1806JQKKp8oNTNzY2UlBQ0Gg1qtRovLy+8vLxIS0vD39+/yjb/Xq/BYECn06FSqcrdCJw/fx5TU9Nyx65fv05+fv4tdd4cu16vR6lUVth2cnIy7777LgEBAQwYMAATE5M7enD2RuJdUbsVuVG3QqHAxMTE+PnmNv8eq16vx8nJidjYWAB0Ot0ts/FC3E/G/KsZc9acR68v+/PL/3LAwvQlDNu+5qnUb0hq/AqYN6LRhTxKTx/7/2m8gsMpDTly2pxW/MkTAz3qsAdCCCHqQqUz7Xl5eWzbto2ffvqJ69ev89NPP5X7T/zF0dERHx8fpkyZYpxh1mq17Nq1y5icVqZ79+6sW7cOgKysLLZv3063bt3o2rUrmzdvxmAwkJmZycsvv2xctnNjnfw333zD6tWrb6lz06ZNAGzbtu2WZTsqlQqtVgvAgQMH6NatGy+99BKPPfYYu3btQqfT/fMBqUDPnj2NS29++ukn49r1Hj16GBPypKQk/vzzz3LlWrduTW5uLgcPHgQgOjqayZMn10qMQtwLvTva8M27bXnnxRaEv/U4Q3o2xaKrD5YBX/Bcm948l5+H3brjmMenYVPYHMVN99ENNKm0ePyJyisXQgjxwKp0atTR0ZGVK1cC8Mgjj7Bq1SrjOYVCwXPPPVf70d1HQkJCiIyMxN/fH51OR35+Ph4eHtXunhIYGEhISAiDBw9Gp9Mxfvx4OnTogIuLCzNnzsTHxweAjz76CLVaTWhoKO+//z6lpaW0bNmSefPmsXXr1nJ1/v7776xbt44GDRowZ86ccucaN26Mo6MjY8aMYf78+UyYMIHBgwcDZd8YpKWl1eCo/CU4OJj33nuPqKgo3NzcaNSoEQCTJk1i6tSpPP/887Ru3fqW5TFmZmYsWLCAWbNmUVxcjFqtZu7cubUSoxD3yiN25jxiZ17umMrxcVSOj9PZXU9hyTFOJVykoZUTA92bcyQxluJrqbh0eJJnRla/ZasQQogHj8JwLzYSF/eMp6cnK1euxMnJqa5DqXPFxcUkJyfj5uaGubl59QVqWWJiIp07d67rMB44Mq61Q8a15smY1g4Z19oh41rzqhvT6vKW21rTLuDgwYPMmDGjwnMRERFVvil2+fLlFe7yYm9vX6/3Md+8eTNff/11heduLGkRQgghhBC1T5L229SlS5e7TlQDAgIICAio2YAqsWPHjhqry9vb27izixBCCCGEqDtVPyUphBBCCCGEqHO3NdNeUlJCYWFhua35bGxsaismIYQQQgghxE2qTdpXr17Np59+SmlpKVC217ZCoeDEiRO1HpwQQgghhBDiNpL2ZcuWsXr1ajp06HAv4hFCCCGEEEL8TbVr2ps0aSIJuxBCCCGEEHWo2qS9V69efPfdd2RkZJCTk2P8TwghhBBCCHFvVLs8JiIigpKSEj755BPjMVnTLoQQ996Nty1bWVnVdShCCCHusWqT9qSkpHsRxwMjLCwMgIkTJ952Ga1Wy9KlS4mLi0OhUKDT6Rg2bBjjxo1DoVDUVqgAbN++neTkZN56661Kr/nwww/x8/PjscceY+rUqSxatKjKOl1dXTl16lRNhyrEQ0ObdpzCPVH8mnKaU9eKMFfoaN3jBRJPXSA/P58mKkuGdOxFqxeexsREdu4VQoiHQaVJe2xsLEOGDCEyMrLC82PHjq21oB4206dP59q1a0RFRWFlZYVGoyEwMBBLS0tGjx5dq23369ePfv36VXnNrFmzAEhLS5NvWISoZXpNNtdXB7GtUXP+6PIuBkt78rPr1dNVAAEAAElEQVTTuPT7TvQF+QBc015n5+FDqC5c4dF3XqjjiIUQQtwLlSbt58+fB+CPP/64Z8Hcr+Lj4wkNDUWv1+Pi4kJWVhZ+fn5kZGTg6+tb5ax7eno6cXFx7N692/iVt1qtJjg4mDNnzlTZbmFhIUFBQZw6dQqFQsGrr77K0KFDKS4uZvr06SQmJmJqasqbb76Jt7c3e/fuZc6cORgMBhwdHfnss8/46aefSEhIYM6cOXh6euLl5cXevXsBmD17Nu3bt2fMmDFMmDCByMhIrly5QmBgIIsWLeKLL75g37595ObmYm9vzxdffEGTJk2qHa+TJ08SHByMVqvF3NycTz/9lMcee6zcDH1MTEy1cQnxIEk6q+HrHy7SOjee/1MW84frKxga2gNgsHWiSc8+9Cv9Hzn5SvafbESWRkPJVSWl165hehv/7oQQQtzfKk3aJ02aBMCnn356z4K5n6WmprJz506WL1/O6dOnWbNmDRqNBk9PT8aOHYtara6wXFJSEs7OzlhbW5c77uzsjLOzc5VthoWFYWtryw8//EBWVhbDhw+nbdu2/PbbbxQUFPDjjz+SmZlJQEAA/fv3Z/LkySxbtox27drx2WefsX79eho1alSuzoYNG7JhwwZ27NjBlClT2Lhxo/FcUFAQ/v7+LFq0iPPnz3P27FnWrFmDiYkJ77//PnFxcfzf//1ftWO1YsUKxo4dy8CBA1m/fj2HDx/mscceq7JMVXEJcb8rLNYxY1UqmiIdChM7tJYqDA0dyl1TbNEUpR4aW+no7abhbIIzlOSj///v0BBCCPFgq3ZN+6FDh4iIiKCgoACDwYBeryctLY1du3bdg/DuH61atcLS0hKA3r17Y2Zmhp2dHba2tuTm5laatAPl1q1v2bKF8PBw9Ho9ZmZmREdHV1pu//79zJ49GwA7Ozv69etHQkICBw4cYMSIEZiYmNC0aVM2bdrE0aNHcXBwoF27dgC8++67QNmM9s1GjBgBgKenJ1OnTiUrK6vCth999FGmTJnC2rVrOXfuHIcPH6Zly5bVDRMAzzzzDJ988gm//vornp6e9O3bt9oyFcVlZ2d3W+0JUd+dSy9CU6QDIEXfgq1F3bEqSCGv4V837g66s8bPVg31PGVqj5n6EuaPPHLP4xVCCHHvVfsEU1BQEE899RQajYbBgwejVqt57rnn7kVs9xULCwvjZ5Xqr3shhUKBwWCotJybmxspKSloNBoAvLy8iI2NJTw8nOzs7Crb/Hu9BoMBnU6HSqUqdyNw/vx5TE1Nyx27fv066enpt9R5c+x6vR6lUllh28nJybz66qvo9XoGDBhA//79q+znzby8vFi/fj2dOnVi+fLlfPzxx7f0SavV3lVcQtyPWtpbYG7616/jb4u9sSt+BHvyMdGUYJ9zmieLtxjPm5Q2oGkPS1q88++6CFcIIUQdqDZpVygUvP7663Tr1o3WrVvz5ZdfsmfPnnsR20PB0dERHx8fpkyZQl5eHlCWsO7atavaXSG6d+/OunXrAMjKymL79u1069aNrl27snnzZgwGA5mZmbz88ss4OTmRmZlpXCf/zTffsHr16lvq3LRpEwDbtm27ZdmOSqUyJtMHDhygW7duvPTSSzz22GPs2rULnU53W31+++23OXr0KH5+frz11lscP34cAFtbW06fPo3BYGDHjh23HZcQ9zt1AyVT/FrS1NoUExPo3dGaF/u1YVyPtnjpDVj8pkFz1QaDQYG52olHn36bJs/1x8TMrK5DF0IIcY9Uuzzmxprnli1bcvr0aTp37ixbjNWwkJAQIiMj8ff3N+7D7OHhwdKlS6ssFxgYSEhICIMHD0an0zF+/Hg6dOiAi4sLM2fOxMfHB4CPPvoItVpNaGgo77//PqWlpbRs2ZJ58+axdevWcnX+/vvvrFu3jgYNGjBnzpxy5xo3boyjoyNjxoxh/vz5TJgwgcGDBwNl3xikpaXdVn/Hjx/Phx9+yKJFizA1NSUkJAQoW7Izfvx4mjRpQufOnct901BVXEI8CHq0t6ZHe2t0OgNK5V/finUe0Ab355yBwbW+BawQQoj6S2GoZk3DzJkzuXbtGm+99Rbjxo3D09OT+Ph41q9ff69iFPeIp6cnK1euxMnJqa5DKedu4youLiY5ORk3NzfMzc1rKbrbl5iYSOfOnes6jAeOjGvtkHGteTKmtUPGtXbIuNa86sa0uryl2pn2999/n+PHj9OqVSs++OAD9u7dy2efffbPon7IHDx4kBkzZlR4LiIiAgcHhwrPASxfvrzCGyR7e/tqZ+Lr0ubNm/n6668rPBcbG3uPoxFCCCGEuL9Vm7QPHz7cmGQ9++yzPPvss7Ud0wOnS5cud52oBgQEEBAQULMBVeLv68j/CW9vb7y9vWukrpqMSwghhBDiflTt4vQGDRpUuMuIEEIIIYQQ4t6odqa9sLCQfv360axZMxo2bGg8Li+3EUIIIYQQ4t6oNmn/8MMP70UcQgghhBBCiEpUm7R369YNgIsXL5KUlET79u159NFHaz0wIYQQQgghRJlK17T//vvvDBgwgDFjxvDrr78yaNAgvv76a4YPH37L3t5CCCGEEEKI2lPpTPvcuXN5++23yc7O5s033yQiIoIePXpw7tw53n77bQYMGHAv4xRCiEqVFmWTdWEXem0hNo49aGDdqq5DEkIIIWpUpTPtBQUFDBw4kFGjRtG0aVN69OgBQKtWre6rt/KFhYURFhZ2R2W0Wi3h4eEMHDgQb29vBgwYwJIlS6jmPVT/2JgxY2q1/srExMQwderUKq/5/vvv+eGHHyo898svv9C7d2/efffdO2r36NGjxmcmjh07xrPPPsvo0aPvqA4hMJRy7sBcMs9vJfvibs4dnE9h3vm6jkoIIYSoUZXOtCuVSuNnKyurcufup6T9bkyfPp1r164RFRWFlZUVGo2GwMBALC0tazWpTEhIqLW6/6nff//d+HzD323ZsoUJEyYwcuTIO6qzY8eOdOzYEYCdO3fi4+PDO++8849jFQ8Hnd7AH79fIuPgMRq0yfnrhEFHdtpeGrSXZ2+EEEI8OCpN2m9OzO+3JD0+Pp7Q0FD0ej0uLi5kZWXh5+dHRkYGvr6+TJw4sdKy6enpxMXFsXv3buPNilqtJjg4mDNnzlTZbmFhIUFBQZw6dQqFQsGrr77K0KFDKS4uZvr06SQmJmJqasqbb755y4uHZs6cCZS9zGrt2rXs3r2bhQsXotVqcXJyYsaMGdja2uLp6cnzzz/Pnj17UKlUvPnmm/z3v//l/PnzTJkyBW9vb6ZOnYq5uTlHjx4lPz+fN954g6FDh97W2P34449ERkZSVFRESUkJs2fPpqioiB07drB//36aNm1K7969jdevXbuW7du3s2/fPkxMTIiLi2PChAl4eHiQlpaGv78/O3bsYOPGjXzzzTcolUqcnJwIDQ3l8OHDfPXVV7z22musXr0aADMzM/z8/Pjwww+5dOkSKpWK//znP/Tp04ewsDAOHz7M5cuXefnllxk1atRt9Uk8GPSaLAp+/gbt5dPsdhjIkaadwUSBtYMzLfgdJTrjtbm/HcXiUlPs+vevw4iFEEKImlNp0n7q1Cnc3d0BKCoqMn42GAyUlJTcm+j+gdTUVHbu3Mny5cs5ffo0a9asQaPR4OnpydixY1Gr1RWWS0pKwtnZGWtr63LHnZ2dcXZ2rrLNsLAwbG1t+eGHH8jKymL48OG0bduW3377jYKCAn788UcyMzMJCAigf//+mJmZGcsGBQWxatUq1q5dS1ZWFp999hkrV67E2tqaNWvWMH/+fGbNmgVAkyZNiImJYdq0aURERLBy5Up+//13Zs+ebbwZuHDhAlFRUWRmZuLr68vTTz9N06ZNq4xfr9ezZs0alixZgp2dHevWrSMiIoIlS5bg6elJt27dyiXsUHaTkZiYSLdu3fD19SUuLq7Cur/88ku+//57GjduzNy5czl79qzx3DPPPIOfnx8AEyZM4K233qJ79+6MHTuWCxcu8NJLL7FhwwYASkpK2Lx5c5X9EA+m/Nj5aM8fIadBU4406wyKstV9uc2cOZTVjS7m+wAoKFRi+ocFGXv/h3nz5jRq164uwxZCCCFqRKVJ+7Zt2+5lHDWuVatWWFpaAtC7d2/MzMyws7PD1taW3NzcSpN2KP/NwpYtWwgPD0ev12NmZkZ0dHSl5fbv38/s2bMBsLOzo1+/fiQkJHDgwAFGjBiBiYkJTZs2ZdOmTVXGfuTIES5fvoy/vz9QlkzffBPRp08fABwdHbG3t0elUuHo6EheXp7xGl9fX0xNTWnWrBnu7u4kJibi5eVVZbsmJiYsWrSIHTt2cO7cORISEjAxqfalubelb9++vPTSS/Tv358BAwbQrl074uPjK7x2//79xm8eWrRowRNPPMGRI0cA6NSpU43EI+4vBm0p2vNlfweuqVsYE/YbUvKbk3XMEjOVgYwsc17MvghAwYkTkrQLIYR4IFSatDdv3vxexlHjLCwsjJ9Vqr+6qVAoqnyg1M3NjZSUFDQaDWq1Gi8vL7y8vIxLPary93oNBgM6nQ6VSlXuRuD8+fPk5uby0UcfGdu8MYsOoNPpcHd3Z8mSJQAUFxeTn59vPG9qalph32528zMJer2+0utulp+fz4svvoiPjw9du3bF1dWVb7/99pbrhgwZYvwcGxt7y/kb46DVao3HgoKCOHnyJL/88gvvvfceEyZMoFmzZhXGUdk4Qvmfq3h4KFSmmNg5os+6xCO5Z1DqStEp//p3oL92kSs5ZX9uXliASlcMgEUr2UVGCCHEg6FmplEfII6Ojvj4+DBlyhTjzLVWq2XXrl3Vzjp3796ddevWAZCVlcX27dvp1q0bXbt2ZfPmzRgMBjIzM3n55Zdp3bo1sbGxxMbGGhN2pVKJVqvliSee4PDhw5w7dw6AxYsXM2/evDvqx48//ojBYDC+FKtz587VlklNTUWhUDB+/Hg8PDzYtm2bMVlWKpXGzzfirihht7W1Na79//nnn4Gy8XvuueewtbVl3LhxDBkyhBMnTlQax83jeOHCBX7//XeefPLJO+q/ePA0ev5tFJZNaFSSR/ej31GSU0hxgQ6rrEwUFmfQNinB1vI6PfNzUJiZ0djbG8unnqrrsIUQQogaUf3060MoJCSEyMhI/P390el05Ofn4+HhwdKlS6ssFxgYSEhICIMHD0an0zF+/Hg6dOiAi4sLM2fOxMfHB4CPPvqowuU5/fr1Y8iQIcTExDB79mzefvtt9Ho9Dg4OhIaG3lEfioqKeOGFFygpKeGTTz7B1ta22jJt27alXbt2DBw4EIVCQa9evUhMTASgZ8+efP7551haWla5zOa1115j6tSpREdH069fP6Ds24BJkybxf//3f5ibm9O4cWPmzJlT6YO9H374IcHBwcTExABlD+na29vfUf/Fg0fVogPWgf/FoMnGpbARpleK6dhKTcqpTDoO/Ijk3CSUChUd1O1QokRxG98uCSGEEPcLhaG2Nx8X99zUqVOND4Y+zIqLi0lOTsbNzQ1zc/O6DofExMTb+sZD3BkZ19oh41rzZExrh4xr7ZBxrXnVjWl1ectDORV18OBBZsyYUeG5iIgIHBwcKi27fPly1q9ff8txe3v7amfi69LmzZv5+uuvKzxX0TIXIYQQQghRfzyUSXuXLl3uOlENCAggICCgZgOqYXPmzLnlmLe39y17wwshhBBCiPuDPIgqhBBCCCFEPSdJuxBCCCGEEPWcJO1CCCGEEELUc5K0CyGEEEIIUc9J0i6EEEIIIUQ9J0m7EEIIIcQdys64SFrSYXQ6bV2HIh4S90XSHhYWRlhY2B2V0Wq1hIeHM3DgQLy9vRkwYABLliyhtt8lNWbMmFqt/16IiYlh6tSptxxPS0vD09PzluMZGRn8+9//vhehVRqDEEIIca9si1jCHwv2UBydy/FPvyctMZbCvPMAFBTrKCzW1XGE4kH0wO7TPn36dK5du0ZUVBRWVlZoNBoCAwOxtLRk9OjRtdZuQkJCrdVdXzk4ONTrF0sJIYQQ/8SVnZu5mnSExk31rL9qwYWMTOBPPKytcXE7T162nryEH0kteYbwvR0AGNy9Mf9+3hGFQlG3wYsHRr1N2uPj4wkNDUWv1+Pi4kJWVhZ+fn5kZGTg6+vLxIkTKy2bnp5OXFwcu3fvxsrKCgC1Wk1wcDBnzpypst3CwkKCgoI4deoUCoWCV199laFDh1JcXMz06dNJTEzE1NSUN99885aXFc2cOROA4cOHs3btWnbv3s3ChQvRarU4OTkxY8YMbG1t8fT05Pnnn2fPnj2oVCrefPNN/vvf/3L+/HmmTJmCt7c3U6dOxdzcnKNHj5Kfn88bb7zB0KFDK407JiaGXbt2kZOTw5UrV/Dz8+PixYvs378fGxsbvvnmG8zNzdmwYQMrVqxAr9fToUMHPv74Y+Px8PBw1Go1zZs3p2HDhrf5kyqb/fb392fHjh1MnToVtVrNsWPHyMjIIDAwkBdeeIHr16/z/vvv8+eff9KiRQvS09P56quvSEhIICEhwfhCqDFjxjBhwgQ6d+5MSEgIp0+f5tq1a7i6uvL555/fdkxCCCFETTjwv20ciNcDnSj48zxZ5mllJ0yU5Lg9yi8Nn8ZOd5G2pXtorvwNE4MLJXpT1u+5xpNtLOnW1qpO4xcPjnq9PCY1NZUVK1bg5OREZmYmK1euJDo6mmXLlqHRaCotl5SUhLOzM9bW1uWOOzs7M2DAgCrbDAsLw9bWlh9++IEVK1YQFhbGyZMnWbVqFQUFBfz4449ERkayaNEiSkpKypUNCgoCYO3atWRlZfHZZ5+xbNkyNmzYQK9evZg/f77x2iZNmhATE4OzszMRERH897//JTQ0lIiICOM1Fy5cICoqihUrVjBv3jyuXr1aZexHjx5l8eLFLFu2jE8//ZQ+ffqwceNGAH799VdOnz7N999/z5o1a4iNjaVx48YsW7aMjIwM5s+fz7fffktUVBT5+flVtlOd9PR0vvvuO8LDw5k3bx4AixYtolWrVmzatInAwED++OOPKus4dOgQpqamREVFsW3bNq5fv84vv/zyj+ISQggh7kRJYSm/HygCymbLixV/LXsxdXuaPy2f5pryUf4w60mi+fOoTHQoTfTGa1LTC+91yOIBVm9n2gFatWqFpaUlAL1798bMzAw7OztsbW3Jzc1FrVZXWvbmr6O2bNlCeHg4er0eMzMzoqOjKy23f/9+Zs+eDYCdnR39+vUjISGBAwcOMGLECExMTGjatCmbNm2qMvYjR45w+fJl/P39AdDr9eVuIvr06QOAo6Mj9vb2qFQqHB0dycvLM17j6+uLqakpzZo1w93dncTERLy8vCpt093dHbVabRyXHj16ANC8eXPy8vKIj4/n/PnzjBgxAoDS0lLat2/PoUOHeOqpp2jSpAkAgwcPZv/+/VX2rypPP/00CoWCxx9/nJycHAD27NljvGnp2LEjjz/+eJV1dO3aFRsbG7799lvOnj1LamoqBQUFdx2TEEIIcadKinXo9H/NbzbQ2pFvdhkA5SNtyl17SdmWFKUBbYMCuG6OQgFPuVje03jFg61eJ+0WFhbGzyrVX6EqFIoqHyh1c3MjJSUFjUaDWq3Gy8sLLy8v4zKOqvy9XoPBgE6nQ6VSlbsROH/+PLm5uXz00UfGNmfNmmU8r9PpcHd3Z8mSJQAUFxeXm8E2NTWtsG83UyqVxs96vb7S6yqqs6J6dTodAwcONH4jkJ+fj06nY9++feX6faPc0aNHjde6ubnxxhtvVNn+Debm5kD5GyelUlnhz+zvP8vS0lIAtm/fzsKFC/H398fX15fs7Oxaf4hYCCGEuJnaxgInFxvSTucAYKGzoXuzVlxtZMI1QwklmBuvVerz2Galx6mpCoXaguF97HFpfvtLTYWoTr1eHnO3HB0d8fHxYcqUKcaZa61Wy65duzAxqbrL3bt3Z926dQBkZWWxfft2unXrRteuXdm8eTMGg4HMzExefvllWrduTWxsLLGxscaEXalUotVqeeKJJzh8+DDnzp0DYPHixcalIrfrxx9/xGAwcPHiRZKSkujcufOdDkU5Hh4ebNu2jczMTAwGAyEhIaxYsYLOnTtz+PBhMjIy0Ov1bN68GSibEf97/+5Wjx49jEt1Tp06xenTp1EoFNja2pKSkoLBYODChQucOnUKgH379jFw4EBeeOEFrKysiI+PR6eTp/GFEELcW16ve9Dt+cdp09GWfn6u+Ez6N6+++ip+7q0xU5ZNJukp5qr5jzxu1Y7F/+7FokmuPPukbR1HLh409Xqm/Z8ICQkhMjISf39/dDod+fn5eHh4VLvLSWBgICEhIQwePBidTsf48ePp0KEDLi4uzJw5Ex8fHwA++uijCpfn9OvXjyFDhhATE8Ps2bN5++230ev1ODg4EBoaekd9KCoq4oUXXqCkpIRPPvkEW9t/9gugbdu2TJgwgVdeeQW9Xk+7du14/fXXMTc3JygoiICAABo0aECbNm0qrePSpUs89dRTxj/feGC0OoGBgUybNo3BgwfTsmVLmjRpgoWFBT179iQ6OhovLy9atWplvDEZPnw4kydPZtOmTZiamuLu7k5aWto/6r8QQghxp8wsVHTxcgFcyh1/1MqCdzo7cSz7In8WnaSJRU+62nnUTZDioaAwyJqDemnq1Kl069YNX1/fug6lRsTGxuLk5ETnzp25dOkSL7/8Mj///HO133z8E8XFxSQnJ+Pm5mZcslOXEhMT//G3JeJWMq61Q8a15smY1g4Z19oh41rzqhvT6vKW+3am/eDBg8yYMaPCcxERETg4OFRadvny5axfv/6W4/b29vV6v/HNmzfz9ddfV3guNjb2HkdzZ1q3bs3HH3+MXq/HxMSETz75pFYTdiGEEEKIB8l9m7R36dLlrhPVgIAAAgICajagGnZj3/KbeXt737I3/P2iY8eOxMTE1HUYQgghhBD3JZnqFEIIIYQQop6TpF0IIYQQQoh6TpJ2IYQQQggh6jlJ2oUQQgghhKjnJGkXQgghhBCinpOkXQghhBBCiHruvt3yUQhRM/SlegpOZ6JQKjBtasLVA7EYFCU06eKDhd0jdR2eEEIIIajHSXtYWBgAEydOvO0yWq2WpUuXEhcXh0KhQKfTMWzYMMaNG4dCoaitUBkzZgyrVq2qtfrvhZiYGBISEircH97V1ZW2bdsax7RRo0ZMnz4dV1fXf9zumDFjmDBhAh4e5V/9vGDBAtzc3OjXr98/bkNU7M8TVzmy9Qytc0uw0IMBAyUdfgK7LADy9h+iVdcpNGjaqo4jFUIIIUS9TdrvxvTp07l27RpRUVFYWVmh0WgIDAzE0tKS0aNH11q7CQkJtVZ3fXHzi6xWrVpFcHAwUVFRtdbeW2+9VWt1C8i5ks/mrw/gpFJh3tCMM4bLXLe8QIvGcMh8FLkmDtibn8PwezQdBkyu63CFEEKIh169Strj4+MJDQ1Fr9fj4uJCVlYWfn5+ZGRk4OvrW+Wse3p6OnFxcezevRsrKysA1Go1wcHBnDlzpsp2CwsLCQoK4tSpUygUCl599VWGDh1KcXEx06dPJzExEVNTU958881b3kg6c+ZMAIYPH87atWvZvXs3CxcuRKvV4uTkxIwZM7C1tcXT05Pnn3+ePXv2oFKpePPNN/nvf//L+fPnmTJlCt7e3kydOhVzc3OOHj1Kfn4+b7zxBkOHDq007piYGHbt2kVOTg5XrlzBz8+Pixcvsn//fmxsbPjmm28wNzdnw4YNrFixAr1eT4cOHfj444+Nx8PDw1Gr1TRv3pyGDRve1s/Jw8ODzz//HCi7Yfniiy8oKioiLy+PadOm0b9/f6ZOnUpOTg7nz5/nvffeo7i4mMjISIqKiigpKWH27Nm4u7sDsG7dOubMmUNeXh4ffvghnp6eTJ06lW7dutGtWzfeeOMNWrduzZkzZ3B0dCQ0NBQbG5vbilVU7M8TV9DrDKhM4ZA+hUP6FJopSrlkPpJcpQMAaaoOFOlLaKstRakyreOIhRBCiIdbvXsQNTU1lRUrVuDk5ERmZiYrV64kOjqaZcuWodFoKi2XlJSEs7Mz1tbW5Y47OzszYMCAKtsMCwvD1taWH374gRUrVhAWFsbJkydZtWoVBQUF/Pjjj0RGRrJo0SJKSkrKlQ0KCgJg7dq1ZGVl8dlnn7Fs2TI2bNhAr169mD9/vvHaJk2aEBMTg7OzMxEREfz3v/8lNDSUiIgI4zUXLlwgKiqKFStWMG/ePK5evVpl7EePHmXx4sUsW7aMTz/9lD59+rBx40YAfv31V06fPs3333/PmjVriI2NpXHjxixbtoyMjAzmz5/Pt99+S1RUFPn5+VW2c4PBYGDTpk089dRTAPzvf/9j5syZrF+/npkzZ7JgwQLjtTY2Nvz44488++yzrFmzhiVLlhAXF8drr71Wrs+WlpasX7+eoKAgFi1adEubf/zxB6NGjWLTpk04Ozvz1Vdf3VasonLqwrMAXC7RclKfBkBGfiNjwn5DlvljXDh1+F6HJ4QQQoi/qVcz7QCtWrXC0tISgN69e2NmZoadnR22trbk5uaiVqsrLXvzuvUtW7YQHh6OXq/HzMyM6OjoSsvt37+f2bNnA2BnZ0e/fv1ISEjgwIEDjBgxAhMTE5o2bcqmTZuqjP3IkSNcvnwZf39/APR6fbmbiD59+gDg6OiIvb09KpUKR0dH8vLyjNf4+vpiampKs2bNcHd3JzExES8vr0rbdHd3R61WG8elR48eADRv3py8vDzi4+M5f/48I0aMAKC0tJT27dtz6NAhnnrqKZo0aQLA4MGD2b9/f6XtDBkyBICSkhKcnZ355JNPAAgNDWXnzp1s2bKFI0eOlEv+O3XqBICJiQmLFi1ix44dnDt3joSEBExM/rpf7N+/PwBt2rQhOzv7lrYfe+wx45r3oUOHMnmyLNf4pxqnb6ZNQ3tSCtqj05uACRhKSjDk56Jo9NffWUVGCg3bdKzDSIUQQggB9TBpt7CwMH5Wqf4KT6FQYDAYKi3n5uZGSkoKGo0GtVqNl5cXXl5epKWlGZPoyvy9XoPBgE6nQ6VSlbsROH/+PLm5uXz00UfGNmfNmmU8r9PpcHd3Z8mSJQAUFxeXS2JNTf9aYnBz326mVCqNn/V6faXXVVRnRfXqdDoGDhxo/EYgPz8fnU7Hvn37yvX7RrmjR48ar725fzevab/ZqFGj8PDwwMPDgx49epRLqG/8LPPz83nxxRfx8fGha9euuLq68u23397S58oeFr65TwaDodwYibtjYmpGV+vddFQf4LROzU8lj6BHQfHvP2P+ZG8UlvaYpJ+iTfEf2LccVtfhCiGEEA+9erc85m45Ojri4+PDlClTjDPXWq2WXbt2lZvVrUj37t1Zt24dAFlZWWzfvp1u3brRtWtXNm/ejMFgIDMzk5dffpnWrVsTGxtLbGysMaFVKpVotVqeeOIJDh8+zLlz5wBYvHgx8+bNu6N+/PjjjxgMBi5evEhSUhKdO3e+06Eox8PDg23btpGZmYnBYCAkJIQVK1bQuXNnDh8+TEZGBnq9ns2bNwPQsWPHW/pXmZycHFJTU3nrrbfo06cP27dvR6fT3XJdamoqCoWC8ePHG+Op6LrKnDt3jhMnTgAQHR1t/MZC3D2LniPARIWFspCOZld5s3tzRowYwcQAPwY9peMJ/TZGPdGEEQFT6jpUIYQQQlAPZ9r/iZCQECIjI/H390en05Gfn4+HhwdLly6tslxgYCAhISEMHjwYnU7H+PHj6dChAy4uLsycORMfHx8APvroowqX5/Tr148hQ4YQExPD7Nmzefvtt9Hr9Tg4OBAaGnpHfSgqKuKFF16gpKSETz75BFtb2zsq/3dt27ZlwoQJvPLKK+j1etq1a8frr7+Oubk5QUFBBAQE0KBBA9q0aXPHddvY2PDiiy/y/PPPo1Kp6N69O0VFRRQUFNwSQ7t27Rg4cCAKhYJevXqRmJh42+1YW1uzcOFC/vzzT1xdXY0P/4q7Z9rqKazGLUF79ndMGjth+9gTOP7/c81ohnvTbnUanxBCCCHKUxiqWnMi7qkbO6b4+vrWdSj1xo3lTTt27LjjssXFxSQnJ+Pm5oa5uXktRHdnEhMT//E3J+JWMq61Q8a15smY1g4Z19oh41rzqhvT6vKW+2qm/eDBg8yYMaPCcxERETg4OFR4DmD58uWsX7/+luP29vbVzsTXpc2bN/P1119XeK6ydeZCCCGEEOLBcl8l7V26dLnrRDUgIICAgICaDaiGVfQ2Um9v71v2hn+YODk53dUsuxBCCCHEg+SBeRBVCCGEEEKIB5Uk7UIIIYQQQtRzkrQLIYQQQghRz0nSLoQQQgghRD0nSbsQQgghhBD13H21e4wQQog7l12SxfXS6zTOs+H08VNYNLPi8XaPV/u2aCGEEPWHJO1CCPGAunw2ix83/sa1/EwetdRz/nIGOWgwaeKE+blc1A3N8HC0omdb57oOVQghRDVkmuUBFBYWRlhY2B2V0Wq1hIeHM3DgQLy9vRkwYABLliyhpl6YO3XqVGJiYm45vn37dhYsWADAwoULOXjw4F3VI4Qo73p2IXFf7afojJLG6Q5YZJiSgwZFQ0vMPLyhsSOaBk3Ynm3Gvv3/48qxjehLS+o6bCGEEJWQmXYBwPTp07l27RpRUVFYWVmh0WgIDAzE0tKS0aNH11q7/fr1o1+/fgAcOHAADw+PWmtLiIfJn8evoistu+k2NVFQihYAk6YtUZgoy19bbIa1ZhNZv26hZb+3aejics/jFUIIUTVJ2h8Q8fHxhIaGotfrcXFxISsrCz8/PzIyMvD19WXixImVlk1PTycuLo7du3djZWUFgFqtJjg4mDNnzlTZbmFhIUFBQZw6dQqFQsGrr77K0KFDiYmJYf369eTk5NC3b18Adu3axf/+9z9KS0t544038Pb2JiYmhoSEBLp3705ycjJBQUF89dVX5Obm8sUXX1BUVEReXh7Tpk2jf//+NTdgQjzgrJs0NH7W6PQ8prfHlHPoNNm3XGtpyARA76QlfeVKWs+Ycc/iFEIIcXskaX+ApKamsnPnTpYvX87p06dZs2YNGo0GT09Pxo4di1qtrrBcUlISzs7OWFtblzvu7OyMs3PVa13DwsKwtbXlhx9+ICsri+HDh9O2bVsAMjIy2Lx5MyqViqlTp1JYWMj3339PZmYmL7zwAl27djXWM3ToUKKjo5kwYQKurq5MmjSJmTNn4uzszL59+5g9e7Yk7ULcgeaPN6Zdjxac2H8BDHDSSkNfhSWXc/K4cOYQxa07gcKE5roTtNQeLStUZKDk8uW6DVwIIUSFJGl/gLRq1QpLS0sAevfujZmZGXZ2dtja2pKbm1tp0g6gUCiMn7ds2UJ4eDh6vR4zMzOio6MrLbd//35mz54NgJ2dHf369SMhIQG1Wk379u1Rqf76KzZs2DBUKhUODg48+eSTHDlypNJ6Q0ND2blzJ1u2bOHIkSPk5+ff9jgIIcr+Tfcd1YkuA13QleqxtlWSG/5vntBlYfjzN1LPNoSe/bDgCCgAnQEOaVE/6V7XoQshhKiAJO0PEAsLC+Pnm5NlhUJR5QOlbm5upKSkoNFoUKvVeHl54eXlRVpaGv7+/lW2+fd6DQYDOp3ulngAlMq/1tHq9XpMTU0rrXfUqFF4eHjg4eFBjx49mDx5cpVxCCEqZmnb4K/PY+ZRHB+DvvA6HTv1x9S5C0XZF7mybS2lJ6/SyNWVpi++WIfRCiGEqIzsHiNwdHTEx8eHKVOmkJeXB5TtJrNr165q93Hu3r0769atAyArK4vt27fTrVu3Cq/dtGkTBoOBixcvkpycTMeOHcudVyqV6HQ6cnJySE1N5a233qJPnz5s377deCMghLh7SttHaOgViHrYVEyduwBgYducliPexjl4Fs38/VE2bFhNLUIIIeqCzLQLAEJCQoiMjMTf3x+dTkd+fj4eHh4sXbq0ynKBgYGEhIQwePBgdDod48ePp0OHDpw6deqWaxs2bIivry9arZZPPvkEOzu7cud79+7Nxx9/zNy5c3nxxRd5/vnnUalUdO/enaKiIgoKCmq0z0IIIYQQ9wuFoaY24hainikuLiY5ORk3NzfMzc3rOhwSExPp3LlzXYfxwJFxrR0yrjVPxrR2yLjWDhnXmlfdmFaXt8hM+0Pi4MGDzKhkG7eIiAgcHBwqLbt8+XLWr19/y3F7e/tqZ+KFEEIIIcQ/J0n7Q6JLly7ExsbeVdmAgAACAgJqNiAhhBBCCHHb5EFUIYQQQggh6jlJ2oUQQgghhKjnJGkXQgghhBCinpOkXQghhBBCiHpOknYhhBD3JV1+Kbr80roOQwgh7omHLmkPCwsjLCzsjspotVrCw8MZOHAg3t7eDBgwgCVLllDbW9yvXr2a1atXV3nNwoULOXjwYJXXLFiwgO3bt1d5zffff0/v3r2ZO3duheezs7Pp2LEj//3vf6sO+i7FxMQwderUWqlbCPHgyEtIIG3J1/wZto3flxxkfexJtm9LoahU3poshHiwyZaPt2H69Olcu3aNqKgorKys0Gg0BAYGYmlpyejRo2ut3Zdeeqnaaw4cOICHh0eV17z11lvV1vPDDz/w6aef0qtXrwrPb9y4EU9PT6Kiohg7diwKhaLaOoUQojI5Gi0rfrpMyqVCnmyj5uV+zTAzrXoeKXvnTtJXrEDR4FGyXJ9kR/dHMJiU/S46e+gyr3VtLr+bhBAPrIciaY+Pjyc0NBS9Xo+LiwtZWVn4+fmRkZGBr68vEydOrLRseno6cXFx7N69GysrKwDUajXBwcGcOXOmynbDwsK4dOkSKSkpZGdnM3LkSF577TU0Gg0ffPABGRkZXLlyhR49ejBr1iwSEhLKxenk5ATAxIkT2b17NwsXLkSr1eLk5MSMGTP45ZdfSE5OJigoiK+++gpXV9cK45g6dSrdunWjW7duTJgwARcXF06cOEHjxo1ZsGAB//vf/zh69CjTp08nKCiIZ5555pY6YmJimDZtGjNnzmT//v306NEDgDFjxtCxY0cSExPJysoylk9PT2fy5Mnk5uby+OOPc+DAAXbv3m38luPGmHt6erJy5cpybf34449ERkZSVFRESUkJs2fPxt3dnTFjxmBtbc3p06f58ssvadeuXZXjL4Sov+asOc+RFA0Apy8WUlisJ3CIU5Vlcn79FS16Sk0bcLqllTFhB0jXGZi/6FsczYvo1cOKhg0bYuP4NKYWtrXaDyGEuFcemuUxqamprFixAicnJzIzM1m5ciXR0dEsW7YMjUZTabmkpCScnZ2xtrYud9zZ2ZkBAwZU225ycjKRkZHExMQQFRXFsWPH2LVrF+3atSMqKoqtW7dy4MABjh07Vi7Om5epZGVl8dlnn7Fs2TI2bNhAr169mD9/PkOHDsXNzY2ZM2dWmrD/3cmTJxk7diw//PADVlZWbNy4kQkTJhjrqShhP3nyJNeuXaNLly4MHDiQqKiocudLS0uJiopi2rRpLFiwAIBZs2YxcOBANm7ciJeXFxkZGbcVn16vZ82aNSxZsoS4uDhee+01IiIijOddXV3ZunWrJOxC3McKinXGhP2Gfcdzqy2Xp9SyU3Ge34t/R6nT33K+qPgy7Z0SyU/fwdWzP3A2YTbakus1FrcQQtSlh2KmHaBVq1ZYWloC0Lt3b8zMzLCzs8PW1pbc3FzUanWlZW/+unXLli2Eh4ej1+sxMzMjOjq6ynYHDRpEo0aNgLJZ5f379/Pqq6+SlJTE8uXLOXv2LDk5ORQUFNwS5w1Hjhzh8uXL+Pv7A2WJ7d9vIm5X48aNad++PQAuLi7k5lb/P8p169bh5eWFUqnE29ubxYsXc+3aNZo0aQKUjeeN+nJycgDYs2cPn376KQD/+te/jN9SVMfExIRFixaxY8cOzp07R0JCAiYmf91bdurU6bb7KoSonyxMTWhspSIzT2s85tjYvNpyZ0yyKVXoyS29jPLwalQOr6I1LfvfmO7yWdo0uoS56V/PGulKrpOXkYhdi2drvA9CCHGvPTRJu4WFhfGzSvVXtxUKRZUPlLq5uZGSkoJGo0GtVuPl5YWXlxdpaWnGJLoqSqXS+Fmv16NUKlm1ahVbt25lxIgR9OzZkz/++MMYw81x3qDT6XB3d2fJkiUAFBcXk5+fX32nK2Bu/tf/GCvq+9GjRwkKCgLK+v7xxx/zww8/oFKp2LFjh/G6mJgYXn/99XJ13nxzo1QqKxxXhUKBXv/XDFlpafmdH/Lz83nxxRfx8fGha9euuLq68u233xrPVzQ+Qoj7i4mJgknDWhAa9SeaIh1NrU0ZN6h5teWKtMXGz1mXf8E06hDZIwfQ8LA1Jemn0Dndup7dRGlWo7ELIURdeWiWx9wtR0dHfHx8mDJlCnl5eUDZbjK7du0qNwNcmZ9//pmSkhJyc3PZuXMnvXr1Ys+ePYwcORIfHx+Ki4s5efJkuUT275544gkOHz7MuXPnAFi8eDHz5s0DypJjna7mdk3o2LEjsbGxxMbGMmvWLHbu3ImtrS2//fYbO3bsYMeOHXzyySdERUVVebPTo0cPNm7cCMAvv/xiHDtbW1vjswBJSUlcvXq1XLnU1FQUCgXjx4/Hw8ODbdu21Wj/hBD1Q7e2Vvzvg/YseduVyPfa4ezYoNoyHZ4eWO7POqsS8hsdJd/xBEq9GWfTzcgr+Ov3snkjR6wcOtd47EIIURcempn2fyIkJITIyEj8/f3R6XTk5+fj4eHB0qVLqy1rbm7OqFGj0Gg0jBs3jjZt2vDKK68QEhJCREQEarWap556irS0NFq2bFlhHU2bNmX27Nm8/fbb6PV6HBwcCA0NBcqWpnz88cfMnTsXd3f3Gu03lM2ojxo1qtyxQYMG8fnnn/Prr79WWu7DDz9kypQpfP/997Rt29a4PMbb25utW7fi7e1Nhw4djEt1bmjbti3t2rVj4MCBKBQKevXqRWJiYo33SwhR98xNTXjU4fa/PXvScxjmDRpx5tBv2No25tG+/diS/ytX2mfQtn0nmqQ60aRlE5o2yQSFAssmT2CiNK3FHgghxL2jMNT2ZuMPsb/vlPIwWblyJT179qRNmzYcO3aMjz76iJiYmHsaQ3FxMcnJybi5uZVbFlRXEhMT6dxZZv1qmoxr7ZBxrXkyprVDxrV2yLjWvOrGtLq8RWbagYMHDzJjxowKz0VERODg4FBp2eXLl7N+/fpbjtvb29/Thybnzp3L3r17bznu5ubGrFmz7lkcNzz66KO88847mJiYYG5uXun4CiGEEEKI6knSDnTp0oXY2Ni7KhsQEEBAQEDNBnQXpkyZUtchlPPMM89UuH2kEEIIIYS4c/IgqhBCCCGEEPWcJO1CCCGEEELUc5K0CyGEEEIIUc9J0i6EEEIIIUQ9J0m7EEIIIYQQ9Zwk7UIIIYQQQtRzsuWjEEKIWqHTGSgs0aNuoLzrOrRaLfHx8Vy6dInWrVvj7u5O3pVErl85hGmDJjRu+S9UZuoajFoIIeqnByZpv5u3j2q1WpYuXUpcXBwKhQKdTsewYcMYN24cCoWitkJl9erVALz00kuVXrNw4UJ69uxJly5dKr1mwYIFuLm50a9fv0qv+f777wkLC2PQoEG37OUeHx/P559/TmFhITqdjmeeeYZ3330XpfLu/wcrhBAA+4/nsnBDGtnXtXRs1YgPRj2Kjdr0jurIOJ/Dd6tWc7XgAgCHDh2i4MKvNFafNF6Tn3mC1h4f1GjsQghRHz0wSfvdmD59OteuXSMqKgorKys0Gg2BgYFYWloyevToWmu3qmT9hgMHDuDh4VHlNW+99Va19fzwww98+umn9OrVq9zxkpIS3n33XVavXk2LFi0oKSlh0qRJfPvtt/j7+1dbrxBCVKaoRM9nay+gKdIBcPRcPit+Suct3xYA6LIvU/TbavTXr2HW4VnMn3iuXPlSrZatO7dz4sBRsotyy53Tl5wu39b1PynSXMJC7ViLPRJCiLp3Xyft8fHxhIaGotfrcXFxISsrCz8/PzIyMvD19a1y1j09PZ24uDh2796NlZUVAGq1muDgYM6cOVNlu2FhYVy6dImUlBSys7MZOXIkr732GhqNhg8++ICMjAyuXLlCjx49mDVrFgkJCeXidHJyAsq+Fdi9ezcLFy5Eq9Xi5OTEjBkz+OWXX0hOTiYoKIivvvoKV1fXCuOYOnUq3bp1o1u3bkyYMAEXFxdOnDhB48aNWbBgAf/73/84evQo06dPJygoqNwbSgsLC9FoNBQWFgJgZmbGhx9+SH5+PgBjxoxhwoQJeHh4kJaWhr+/Pzt27GDq1KmYm5tz9OhR8vPzeeONNxg6dChhYWEcPnyYy5cv8/LLL9OmTRu++OILioqKyMvLY9q0afTv35+pU6fSoEEDjh8/Tl5eHu+88w6xsbGcPHnSeP52x3Hu3Lm3/5dFCHHPZGSXGBP2G1Iulf2uMei0aL6dhj7vKgDa1CNgosS8Y9k3hjq9gcV7TpCnbg9922ORn0vRbzFQUgRAafHfvgVVmKAybVTLPRJCiLp3XyftAKmpqezcuZPly5dz+vRp1qxZg0ajwdPTk7Fjx6JWV7zWMSkpCWdnZ6ytrcsdd3Z2xtnZudp2k5OTWbNmDXq9Hl9fX3r06MG5c+do164dCxcupKSkhOeff55jx46Vi9PS0tK4lCcrK4vPPvuMlStXYm1tzZo1a5g/fz6zZs0iOjqaCRMmVJqw/93JkyeZPXs27du3Z+LEiWzcuJEJEyYQHx9vTL5vZm1tzbhx4/D19aVVq1Z4eHjg5eVV5XKcGy5cuEBUVBSZmZn4+vry9NNPA2Wz95s3bwZg0qRJzJw5E2dnZ/bt28fs2bPp378/AFeuXCEqKor169czbdo0tm7dirm5OX369CEwMJBffvnltsZRCFE/OTU1x97GlCs5pcZj7i5l/2Z1l04ZE/YbSk/8akzaT2UXkmdmYzynaGSNqkVbtCmHURhAlVQKjU3AzABAk8e8UJmX/z0uhBAPovs+aW/VqpUxgevduzdmZmbY2dlha2tLbm5upUk7UG7d+pYtWwgPD0ev12NmZkZ0dHSV7Q4aNIhGjcpmdzw9Pdm/fz+vvvoqSUlJLF++nLNnz5KTk0NBQcEtcd5w5MgRLl++bFyOotfrb7mJuF2NGzemffv2ALi4uJCbm1tNCXjjjTcYOXIke/fuZc+ePfz73//mrbfeIiAgoMpyvr6+mJqa0qxZM9zd3UlMTASgU6dOxmtCQ0PZuXMnW7Zs4ciRI8YZfIA+ffoA4OjoiIuLC40bNwbAxsaG3NxcBg0adEfjKISoX5QmCkL8W/H1pktculZMj/bWjPJ0AMDEqikoTMCgN15vYu1g/FyqM9xSX3szZ/QlubTJOoDaUIKj3b9RudhgatEE80YOt1wvhBAPovs+abewsDB+Vqn+6o5CocBguPWX/w1ubm6kpKSg0WhQq9V4eXnh5eVlXApSnZsf1tTr9SiVSlatWsXWrVsZMWIEPXv25I8//jDGcHOcN+h0Otzd3VmyZAkAxcXF5ZLbO2Fubm78XFHfjx49SlBQEFDW9+HDh3Ps2DFGjx7NoEGDjP/Nnj3bmLTfqEOr1VbZ9xvjfnMfR40ahYeHBx4eHvTo0YPJkycbz5ma/vUw2s0/sxvudByFEPVPq0caMOe1W7+1NLG2x6L3KIp+/Q4Mekwat8Ci53DjeVe7BjQ4raPQpOz3jEqrx/VSEelPllJq6sqjHr40eqzVPeuHEELUFw/tPu2Ojo74+PgwZcoU8vLygLLkdNeuXZiYVD8sP//8MyUlJeTm5rJz50569erFnj17GDlyJD4+PhQXF3Py5En0en2ldTzxxBMcPnyYc+fOAbB48WLmzZsHlCXGOp2u0rJ3qmPHjsTGxhIbG8usWbOwtrbmq6++4uTJv3ZhOHbsGO3atQPA1tbWuLb/559/LlfXjz/+iMFg4OLFiyQlJdG5c+dy53NyckhNTeWtt96iT58+bN++/Y76cqfjKIS4vzTo9RLWE1dg+X8LsHp9MSaWTYznLFQmvPakI09kaGh3NocB+y5ib98IL7/xPD3yXUnYhRAPrft+pv2fCAkJITIyEn9/f3Q6Hfn5+Xh4eLB06dJqy5qbmzNq1Cg0Gg3jxo2jTZs2vPLKK4SEhBAREYFareapp54iLS2Nli1bVlhH06ZNmT17Nm+//TZ6vR4HBwdCQ0OBsqU+H3/8MXPnzsXd3b1G+w1ly0zmzJnDBx98gEajQaFQ0KlTJ4KDgwF47bXXmDp1KtHR0bdsKVlUVMQLL7xASUkJn3zyCba2tuXO29jY8OKLL/L888+jUqno3r07RUVFxiUu1bnTcRRC3H9M1HaYqO0qPGfTyIzBQ9pS9GceCgWYt7Cq1W14hRDifqAwVLWGRFTobvaEf1Dc2LHG19e3rkOpVnFxMcnJybi5uZVbPlRXEhMTb/lWQvxzMq61Q8a15smY1g4Z19oh41rzqhvT6vKWB3qm/eDBg8yYMaPCcxERETg4VP4A0/Lly1m/fv0tx+3t7cs9cFnb5s6dy969e2857ubmxqxZs+5ZHEIIIYQQou480El7ly5diI2NvauyAQEB1e6ici/8/S2mdW3OnDl1HYIQQgghxEPnoX0QVQghhBBCiPuFJO1CCCGEEELUc5K0CyGEEEIIUc9J0i6EEEIIIUQ9J0m7EEIIIYQQ9Zwk7UIIIe47utwr6K6er/T85UuXSUz8nezs7HsYlRBC1J4HesvH+uBuXsSk1WpZunQpcXFxKBQKdDodw4YNY9y4cbX6VsDVq1cD8NJLL1V6zcKFC+nZsyddunSp9Jr76QVMQoj7T/7mMEoObwUMqFq4oR4ZQuGfF7m6bh3a3Fz2Wj/GibyyhF6hUDBq1Cg6dOhQt0ELIcQ/JEl7PTR9+nSuXbtGVFQUVlZWaDQaAgMDsbS0ZPTo0bXWblXJ+g0HDhzAw8Oj1mIQQogbDAYD13JLsbMyRWlSNmFR+mcyJYe3GK/RXkimMH4jF77bib5YR6ldL07nnQYUgAGDwcCmuM2StAsh7nuStNeC+Ph4QkND0ev1uLi4kJWVhZ+fHxkZGfj6+lY5656enk5cXBy7d+/GysoKALVaTXBwMGfOnKmy3bCwMC5dukRKSgrZ2dmMHDmS1157DY1GwwcffEBGRgZXrlyhR48ezJo1i4SEhHJxOjk5AWXfCuzevZuFCxei1WpxcnJixowZ/PLLLyQnJxMUFMRXX31Fbm4uX3zxBUVFReTl5TFt2jT69+9f7fiUlpbywQcfcPr0aQBGjRrFiBEjbpmhd3V15dSpU5X2Swjx4DqXXsjM/6VyKbOExlamTPVriVsrNfrcK+WuK1YqyD13En1hIaomz5L6eHtUj3dHpTJFd+Ekdmk7cXnkAumnvqfxo/0xtbCrox4JIcQ/I0l7LUlNTWXnzp0sX76c06dPs2bNGjQaDZ6enowdOxa1Wl1huaSkJJydnbG2ti533NnZGWdn52rbTU5OZs2aNej1enx9fenRowfnzp2jXbt2LFy4kJKSEp5//nmOHTtWLk5LS0vjUp6srCw+++wzVq5cibW1NWvWrGH+/PnMmjWL6OhoJkyYgKurK5MmTWLmzJk4Ozuzb98+Zs+efVtJ+6FDh8jNzWXDhg1kZGTw2WefMWLEiDvul8ycCfHgWhR7kUuZJQBk5pXyZfQFvpncDtPW7mDWAEoK2d+yIVtdrDAv/BN/BWgaP8ZBN3vjMkLVY244N/uTx3SHyLqwg7wrh2jT8xNMlKZ12TUhhLgrkrTXklatWmFpaQlA7969MTMzw87ODltbW3JzcytN2oFy69a3bNlCeHg4er0eMzMzoqOjq2x30KBBNGrUCABPT0/279/Pq6++SlJSEsuXL+fs2bPk5ORQUFBwS5w3HDlyhMuXL+Pv7w+AXq+/5SYCIDQ0lJ07d7JlyxaOHDlCfn7+bYwMuLi4cO7cOV599VX69OnD+++/X22ZivolSbsQD67z6UXl/nwxs4QSrR6zRjZYjv6UKwmr2dz8AnoFlFrC7j4mtMnXwd+e+8lWOoLuEADa4mzys09i2aTjPeuHEELUFEnaa4mFhYXxs0r11zArFAoMBkOl5dzc3EhJSUGj0aBWq/Hy8sLLy4u0tDRjEl0VpVJp/KzX61EqlaxatYqtW7cyYsQIevbsyR9//GGM4eY4b9DpdLi7u7NkyRIAiouLK0zIR40ahYeHBx4eHvTo0YPJkydXGx+Ara0tmzZtYs+ePfzyyy8MGzaMTZs2lRub0tLSavslhHhwdXG1ZNeRHOOfn3RWY6Yq2/BM9YgLBZ5+6P8INZ5P7qTEovgCCr0LBpO/Evcm+j/L1asys6rdwIUQopbIlo/1jKOjIz4+PkyZMoW8vDygbDeZXbt2YWJS/Y/r559/pqSkhNzcXHbu3EmvXr3Ys2cPI0eOxMfHh+LiYk6ePIler6+0jieeeILDhw9z7tw5ABYvXsy8efOAsuRZp9ORk5NDamoqb731Fn369GH79u3odLrb6uP27dt57733ePbZZwkKCqJhw4ZcvnwZGxsb47r9n3/+udp+CSEeXBOGOjGwmx3Nm5jT90kb3hvZstz5Rxu1wlJVPgFv4/IYvm2bYGumpKHKhJ7NzHA2vWw8b93MgwZWj96T+IUQoqbJTHs9FBISQmRkJP7+/uh0OvLz8/Hw8GDp0qXVljU3N2fUqFFoNBrGjRtHmzZteOWVVwgJCSEiIgK1Ws1TTz1FWloaLVu2rLCOpk2bMnv2bN5++230ej0ODg6EhpbNaPXu3ZuPP/6YuXPn8uKLL/L888+jUqno3r07RUVFxmU3VenTpw8//fQTzz//PObm5vj4+ODq6spLL73E22+/zeDBg+nevTtNmzatsl9CiAdXIwslk4a1qPS8qYkpE13+w8ZLG8gpyaaLXTd6NXkGhUJB+8YNjdcZHg0hP/sPlKZqGlhV/DtPCCHuBwpDVWs1xH3lbvaEvx/cbb+Ki4tJTk7Gzc0Nc3Pz2gjtjiQmJtK5c+e6DuOBI+NaO2Rca56Mae2Qca0dMq41r7oxrS5vkZn2OnDw4EFmzJhR4bmIiAgcHBwqLbt8+XLWr19/y3F7e3s6depUYzH+U0VFRYwcObLCc5MmTaJfv373OCIhhBBCiPuXJO11oEuXLsTGxt5V2YCAAAICAmo2oFpgYWFx1338uwftmwMhhBBCiDslD6IKIYQQQghRz0nSLoQQQgghRD0nSbsQQgghhBD1nCTtQgghhBBC1HOStAshhBBCCFHPSdIuhBBCCCFEPSdJex0JCwszvjTodmm1WsLDwxk4cCDe3t4MGDCAJUuWcK/ej7Vw4UIOHjxYo3VOmzaNixcv3lEZV1fXGo1B1H8GvY6CnZHkLPQn779vUZp6hLOaM3z/52qOFB8m5cRFigpKMeh15F05RM6lvehK8+s6bCGEEKLGyD7t95Hp06dz7do1oqKisLKyQqPREBgYiKWlJaNHj6719g8cOICHh0eN1hkfH09gYGCN1ikePMWJmyjetw4AnSaTw9s/5dtOj2NTMBiVrjHRB65i/d+jPDPoEPrS8wAozSxp1XUqZg0a12XoQgghRI2QpP0eio+PJzQ0FL1ej4uLC1lZWfj5+ZGRkYGvr2+VLxFKT08nLi6O3bt3Y2VlBYBarSY4OJgzZ85U2W5YWBiXLl0iJSWF7OxsRo4cyWuvvYZer2f27Nns27cPhUKBj48Pr7/+Ounp6UyePJmCggJMTEwICgoiNTWV5ORkgoKC+Oqrr9Dr9QQHB1NUVIS1tTXz58+nWbNmRERE8OOPP6LT6ejVqxfvvfceFy9eZMKECbi4uHDixAkaN27MggUL+P7777ly5Qqvv/463377LS+88AKdOnXixIkTfPfdd6xcuZJ9+/aRm5uLvb09X3zxBU2aNKnRn4m4P2jPHyn354RmZthoR6I0s8IAFLs0xsIix5iwA+hKrpOdthsHl2H3OFohhBCi5snymHssNTWVFStW4OTkRGZmJitXriQ6Opply5ah0WgqLZeUlISzszPW1tbljjs7OzNgwIBq201OTiYyMpKYmBiioqI4duwYq1ev5vLly8TFxbF27Vp++ukndu3axbp163j22WeJiYlh0qRJJCYmMnToUNzc3Jg5cyaurq5MnjyZN998k40bN+Lt7c2KFSvYvXs3ycnJrFu3jg0bNpCRkUFcXBwAJ0+eZOzYsfzwww9YWVmxceNGXn/9dezt7YmIiMDW1haAPn36sHXrVjQaDWfPnmXNmjVs3bqVRx55xFiXePgoHZzL/5mmKLEqd+ySTaNbyhn0JbUalxBCCHGvyEz7PdaqVSssLS0B6N27N2ZmZtjZ2WFra0tubi5qtbrSsgqFwvh5y5YthIeHo9frMTMzIzo6usp2Bw0aRKNGZUmNp6cn+/fv58iRIwwbNgylUkmDBg0YPHgw+/bt47nnnmPixImcOHGCZ555hpdffrlcXVlZWVy9epW+ffsCMGrUKADmzp1LUlISvr6+ABQVFeHo6Ejnzp1p3Lgx7du3B8DFxYXc3NwK43ziiScAePTRR5kyZQpr167l3LlzHD58mJYtW1bZR/Hgsujui+7qeUpP7UXRwJJ+Vp2JLi6k1LyB8ZrizGvkNTTBqpEeAIWJKTbNe9VVyEIIIUSNkqT9HrOwsDB+Vqn+Gn6FQlHlA6Vubm6kpKSg0WhQq9V4eXnh5eVFWloa/v7+1barVCqNn/V6PUqlEr1eX+4ag8GATqejc+fObNq0iV27drF582bWr19PZGSk8TpTU9NyNxDFxcVcuXIFnU7HK6+8wtixYwHIy8tDqVSSnZ2Nubn5bfX1xnXJycm8++67BAQEMGDAAExMTO7ZA7ei/lGYWqD2nYahtBiUKhQJB+i2bR0HevtQorZGd+VPSk4msMVgRVtHLZ79e2P9iAfmjZrVdehCCCFEjZDlMfcJR0dHfHx8mDJlCnl5eUDZbjK7du3CxKT6H+PPP/9MSUkJubm57Ny5k169etG9e3c2bNiATqejsLCQjRs34uHhwbx584iLi2PYsGEEBwdz/PhxoCzx1+l0WFpa4uDgwG+//QZAbGwsCxYsoHv37sTGxpKfn49WqyUwMJCtW7dWGdeNOv/uwIEDdOvWjZdeeonHHnuMXbt2VXideLgoTM1RmChp2KYNj6SdwfvbUFRxSymJ3wSlxZRoTdCqXLFvM0QSdiGEEA8UmWm/j4SEhBAZGYm/vz86nY78/Hw8PDxYunRptWXNzc0ZNWoUGo2GcePG0aZNGx599FFSU1MZMmQIpaWlDB48mH/961+4ubnx7rvvEhMTg1KpZO7cuUDZcp6PP/6YuXPnEhoaSkhICKGhodja2jJv3jzs7e05efIkI0aMQKfT0bt3b4YNG1bllo7PPvssr7/+Ot988025497e3kyYMIHBgwcDZd80pKWl/YPREw8S0yZNcHz9da6uW0fvzDQSmzYhX2lGa5fWvOA3pq7DE0IIIWqcwiBrDh54N/aDr2p3mgdRcXExycnJuLm5lVueU1cSExPp3LlzXYfxwJFxrR0yrjVPxrR2yLjWDhnXmlfdmFaXt8hMez1y8OBBZsyYUeG5iIgIHBwcKi27fPly1q9ff8txe3t7OnXqVGMxCiGEEEKIe0+S9nqkS5cuxMbG3lXZgIAAAgICajYgIYQQQghRL8iDqEIIIYQQQtRzkrQLIYQQQghRz0nSLoQQQgghRD0nSbsQQgghhBD1nCTtQgghhBBC1HOStAshhBBCCFHPyZaPQogHTvq5k+xeG05eZjqPd36Wp9r3wqxxE8wfeaSuQxNCCCHuiiTt9cjdvLlUq9WydOlS4uLiUCgU6HQ6hg0bxrhx41AoFLUVao35/vvvadiwIYMGDbrtMmPGjGHChAl4eHjUYmTifqUtLWb9gvcpyMsGIGHLd6QdPY+VZUvatnqENsOH1XGEQgghxJ2TpP0+N336dK5du0ZUVBRWVlZoNBoCAwOxtLRk9OjRdR1etX7//Xe6detW12GIB8iVP88YE3aAkmfGkfL4MwAc0ZZivuK/NCs6RoeWxVg0aIiDszd2LZ6to2iFEEKI2yNJex2Lj48nNDQUvV6Pi4sLWVlZ+Pn5kZGRga+vb5Wz7unp6cTFxbF7926srKwAUKvVBAcHc+bMmSrbDQsL49KlS6SkpJCdnc3IkSN57bXXiImJYf369eTk5NC3b1/8/f0JDg4mPT0dhULBu+++S8+ePcnJyeHDDz/k7NmzmJmZMXXqVHr06MHu3btZuHAhWq0WJycnZsyYga2tLZ6envj4+PDbb79RWFjI3LlzycvLY8eOHezfv5+mTZuyadMmcnJyOH/+PO+99x7FxcVERkZSVFRESUkJs2fPxt3dvUbHXzx4rPRFKJVKdDodenUTdP8/YQfQq0wpbeyMu0UCAAZtHumn1mBh1ZKG1q3rKmQhhBCiWpK01wOpqans3LmT5cuXc/r0adasWYNGo8HT05OxY8eiVqsrLJeUlISzszPW1tbljjs7O+Ps7Fxtu8nJyaxZswa9Xo+vry89evQAICMjg82bN6NSqfjPf/7DCy+8QL9+/bhy5QqjRo1iw4YNLFiwgJYtW7Jo0SJOnTpFcHAwrq6ufPbZZ6xcuRJra2vWrFnD/PnzmTVrFgA2NjasW7eOVatW8fXXXxMWFoanpyfdunWjd+/ebNq0CRsbG5YsWYJer2fs2LEsWbIEOzs71q1bR0REBEuWLPmHoy0eZCXHf6V0w1x6NTFj/9UiCk1u/RVnZnbr8/d5V05J0i6EEKJek6S9HmjVqhWWlpYA9O7dGzMzM+zs7LC1tSU3N7fSpB0ot259y5YthIeHo9frMTMzIzo6usp2Bw0aRKNGjQDw9PRk//792Nra0r59e1Sqsr8ae/fu5ezZsyxcuBAoW0N/4cIFDhw4wPz58wFwdXUlKiqKnTt3cvnyZfz9/QHQ6/Xlbih69+4NgIuLCz/99FOFMXXq1AkAExMTFi1axI4dOzh37hwJCQmYmMhmR6JqRQc2AAacLU15TK2iVJ/P91dyyLO3KbvAYEBxIQkeLV8u/7rdPY5UCCGEuDOStNcDFhYWxs83kmUoS8gNBkOl5dzc3EhJSUGj0aBWq/Hy8sLLy4u0tDRj4lwVpVJp/KzX641/vjkevV7PihUrsLGxAeDKlSs0btwYlUpV7oYhJSUFnU6Hu7u7cTa8uLiY/Px84zXm5ubGflXmRtv5+fm8+OKL+Pj40LVrV1xdXfn222+r7ZN4uClumllXKhQoVSb0ytNx7cpVNA1U2GfkciyrhCRdA9q1LAKDCRdOu9BnVMc6jFoIIYSonkxd3sccHR3x8fFhypQp5OXlAWUz4bt27bqtWemff/6ZkpIScnNz2blzJ7169brlmu7du/Pdd98BcObMGQYPHkxhYSFdunRh06ZNQFnC/u9//5tOnTpx+PBhzp07B8DixYuZN29elTHcWHv8d6mpqSgUCsaPH4+Hhwfbtm2r8DohbmbR40Uw+etm1PypgXQa3BbXnCKePJ2NY56e51v2wVL3Ens2PU/C9kG07DQEqyYN6zBqIYQQonoy036fCwkJITIyEn9/f3Q6Hfn5+Xh4eLB06dJqy5qbmzNq1Cg0Gg3jxo2jTZs2JCUllbsmKCiI4OBgBg8eDMC8efNQq9VMmjSJoKAgfHx8UKlUzJs3D3t7e2bPns3bb7+NXq/HwcGB0NDQKmPo2bMnn3/+uXF50A1t27alXbt2DBw4EIVCQa9evUhMTLzD0REPG9M2XbH692JKUw6ibNICVSt3FAoFLQK7kn/iGiYWKhq5NqaFyoRCTQmmZkpUZsrqKxZCCCHqmMJQ1foL8cC6mz3h7zfFxcUkJyfj5uZmXJpTlxITE+ncuXNdh/HAkXGtHTKuNU/GtHbIuNYOGdeaV92YVpe3yEx7PXfw4EFmzJhR4bmIiAgcHBwqLbt8+XLWr19/y3F7e3vjA59CCCGEEKL+k6S9nuvSpQuxsbF3VTYgIICAgICaDUgIIYQQQtxz8iCqEEIIIYQQ9Zwk7UIIIYQQQtRzkrQLIYQQQghRz0nSLoQQQgghRD0nSbsQQgghhBD1nCTtQggh6iVdfj6FqakYtNq6DkUIIeqcbPlYx+7mJUdarZalS5cSFxeHQqFAp9MxbNgwxo0bh0KhqK1QhRDinsndu5fLy5djKCnBYKOmxTvvYNmydV2HJYQQdUaS9vvQ9OnTuXbtGlFRUVhZWaHRaAgMDMTS0pLRo0fXdXhCCHFHDh29ROqRI1g0d+apLo9xKiufvIOnaIkJZoAiR8Peb2bR6OlnUZXoadWhDY2sbWlk64rCRFnX4QshxD0hSXsdiI+PJzQ0FL1ej4uLC1lZWfj5+ZGRkYGvr2+Vs+7p6enExcWxe/durKysAFCr1QQHB3PmzJkq2w0LC+PSpUukpKSQnZ3NyJEjee2114iJiWH9+vXk5OTQt29f/P39CQ4OJj09HYVCwbvvvkvPnj3Jycnhww8/5OzZs5iZmTF16lR69OiBq6srp06dAiAmJoaEhATmzJmDp6cnPj4+/PbbbxQWFjJ37lzc3Nw4f/48ISEh5OTkYGFhwUcffUT79u2ZOnUq3bp1w9fXF8BY7759+wgNDQXA2tqazz77DDs7u5r4UQgh6ljCT7/Q4sAXPKYo5cpVR74x/RCDUgld+5PSphNPbNjAeTNrrhVeRbktka6ds8k8u49MwFztxGNdJqNUWdR1N4QQotZJ0l5HUlNT2blzJ8uXL+f06dOsWbMGjUaDp6cnY8eORa1WV1guKSkJZ2dnrK2tyx13dnbG2dm52naTk5NZs2YNer0eX19fevToAUBGRgabN29GpVLxn//8hxdeeIF+/fpx5coVRo0axYYNG1iwYAEtW7Zk0aJFnDp1iuDgYGP5ytjY2LBu3TpWrVrF119/TVhYGFOmTCE4OJj27dtz5swZAgMD2bp1a6V1LF68mJCQEDp16sTSpUs5fvw4vXr1qravQoj6T33oOywUpQCcav50WcL+/123tSexTU+ycn4FlDxqr8SuaQPj+WJNGrmX92PX4tl7HLUQQtx7krTXkVatWmFpaQlA7969MTMzw87ODltbW3JzcytN2oFy69a3bNlCeHg4er0eMzMzoqOjq2x30KBBNGrUCABPT0/279+Pra0t7du3R6Uq++uwd+9ezp49y8KFC4GyNfQXLlzgwIEDzJ8/HyibBY+Kiqq2n7179wbAxcWFn376ifz8fJKTk5k2bZrxmoKCArKzsyuto1+/fkyYMIH+/fvTr18/nn766WrbFULcH9SG68bPJgbdLef1qhzjZzNTwy3ndaX5tRKXEELUN5K01xELi7++zr2RLENZQm4w3Po/phvc3NxISUlBo9GgVqvx8vLCy8uLtLQ0/P39q21XedMsll6vN/755nj0ej0rVqzAxsYGgCtXrtC4cWNUKlW5G4aUlBRatWoFgMFgQKFQoP3bLg/m5ubGft2o28zMjNjYWOM16enp2NjYlOt7aWmp8XxAQAB9+/Zl586dhIaGkpSUxBtvvFFtX4UQ94G2feH4BgA6XvyFY4/0psS0bDa9gaYYi4wscv7/r60LV814snUh5v8/eVeYmGLVrEtdRC2EEPecbPl4n3F0dMTHx4cpU6aQl5cHlM2E79q1CxOT6n+cP//8MyUlJeTm5rJz584Kl5l0796d7777DoAzZ84wePBgCgsL6dKlC5s2bQLKEvZ///vfKBQKbG1tOX36NAaDgR07dlTZvqWlJY899pgxad+zZ4/x4VkbGxvjuvyff/7ZWGb48OHk5+cTEBBAQEAAx48fr7afQoj7Q4shr2J45nWyHbqiaPscgV1b4t3aFl+XxrzkbEcDvRMNKbv5Lyox4eThNqgbd8fWqQ+tuk7BvKFDHfdACCHuDZlpvw+FhIQQGRmJv78/Op2O/Px8PDw8WLp0abVlzc3NGTVqFBqNhnHjxtGmTRuSkpLKXRMUFERwcDCDBw8GYN68eajVaiZNmkRQUBA+Pj6oVCrmzZtnfFB1/PjxNGnShM6dO1e51AUgNDSUkJAQvvnmG0xNTfniiy9QKBS89NJLvP322wwePJju3bvTtGlTAN555x2mTp2KSqWiYcOGzJw58y5HTghR3ygUJtg9PQS7p4cYj3W+sWy9SUNGhwzk/EE3rqWm0tjOhjbPuqGyNK+bYIUQog4pDFWtxRAPlLvZE/5+VlxcTHJyMm5ubsZlOnUpMTGRzp0713UYDxwZ19oh41rzZExrh4xr7ZBxrXnVjWl1eYvMtNdDBw8eZMaMGRWei4iIwMGh8q+Dly9fzvr16285bm9vT6dOnWosRiGEEEIIce9I0l4PdenSpdyDmnfixrpvIYQQQgjx4JAHUYUQQgghhKjnJGkXQgghhBCinpOkXQghhBBCiHpOknYhhBBCCCHqOUnahRBCCCGEqOckaRdCCCGEEKKeky0fhRAPjczdp8g+cYicAhMKnOxw6+eOnZ1dXYclhBBCVEtm2h9QYWFhxjeg3i6tVkt4eDgDBw7E29ubAQMGsGTJEmr7pbljxoyp1fqFAMg8+CsZBWGUOO+igdsO/szcxOeffc6JEyfqOjQhhBCiWjLTLoymT5/OtWvXiIqKwsrKCo1GQ2BgIJaWlowePbrW2k1ISKi1uoUoKNZBYR7Xzq8Hay3pSmeOmT5DSccGqCxO8tPWbbRr166uwxRCCCGqJEn7AyQ+Pp7Q0FD0ej0uLi5kZWXh5+dHRkYGvr6+TJw4sdKy6enpxMXFsXv3bqysrABQq9UEBwdz5syZKtsNCwvj8OHDXL58mZdffpmnn36akJAQcnJysLCw4KOPPqJ9+/ZcvHiRadOmkZWVhYWFBTNnzmTdunUADB8+nLVr1+Lq6sqpU6cAiImJISEhgTlz5jB37lz27NmDiYkJ/fv3Z8KECTU0auJBZTAY+PqHS2yKz+RZZQLPP1VIkaIR+8xfRK8o+9WndO1O1sEtHPvtCB16PVHHEQshhBCVk6T9AZOamsrOnTtZvnw5p0+fZs2aNWg0Gjw9PRk7dixqtbrCcklJSTg7O2NtbV3uuLOzM87OztW2W1JSwubNmwHw8/MjODiY9u3bc+bMGQIDA9m6dSvTp09nwIABjB49ml9++YXw8HAWLFjAqlWrWLt2baV1X7x4kd27d7Np0yYKCwuZNm0axcXFmJub38HIiIdNwsnrxO69BkCBwpRG17L409rVmLDfoLJtzC/ff0mHXpF1EaYQQghxWyRpf8C0atUKS0tLAHr37o2ZmRl2dnbY2tqSm5tbadIOoFAojJ+3bNlCeHg4er0eMzMzoqOjq2y3U6dOAOTn55OcnMy0adOM5woKCsjOzubAgQN8/vnnADzzzDM888wzt9UnBwcHzM3N8fPzo2/fvkyePFkSdlGts+mFxs8HtB14/vJv6C1ToYUBbvq7bppxguKCtDqIUAghhLh98iDqA8bCwsL4WaX6655MoVBU+UCpm5sbKSkpaDQaALy8vIiNjSU8PJzs7OzbbvdGkh8bG2v8b+3atdjY2JSLx2AwVLrs5kacWq3W2I+1a9fy1ltvkZOTg5+fH+fOnas2JvFwc29jaczNSzHl48LxNG3pyXXVVigpAL0O5enfUJ34GYdWsjRGCCFE/SZJuwDA0dERHx8fpkyZQl5eHlCWNO/atQsTk9v/a2Jpacljjz1GbGwsAHv27DE+xNqlSxc2bdoEwN69e/noo48AUCqVxgTd1taW06dPYzAY2LFjBwDHjx/n5ZdfpmvXrkyZMgVnZ2dJ2kW1XFs0ZPLwlrR+xILWj1jwn+Gt6dzDh9fbP4t9o81Ybgmh4d4VPOrqwdBJQXUdrhBCCFElWR4jjEJCQoiMjMTf3x+dTkd+fj4eHh4sXbr0juoJDQ0lJCSEb775BlNTU7744gsUCgXBwcEEBQXx3Xff0aBBA2bOnAlAv379GDJkCDExMbz77ruMHz+eJk2a0LlzZ7Kzs2nfvj1PPvkkgwYNokGDBri7u9OnT5/aGALxgPF8yhbPp2zLHWujdqFNl/9AlzoKSgghhLgLCkNtb8ItRB0pLi4mOTkZNze3erEGPjExkc6dO9d1GA8cGdfaIeNa82RMa4eMa+2Qca151Y1pdXmLzLQ/RA4ePMiMGTMqPBcREYGDg0OlZZcvX8769etvOW5vb3/HM/FCCCGEEOLOSNL+EOnSpYtxrfmdCggIICAgoGYDEkIIIYQQt0UeRBVCCCGEEKKek6RdCCGEEEKIek6SdiGEEEIIIeo5SdqFEEIIIYSo5yRpF0IIIYQQop6T3WOEqCWZmZns2LGDqxnXaKhrilmhNebHfsQ29zgNHG2xGTAME7Vt9RUJIYQQ4qEnSbsQtUCn07Fs2TJycnL+/5EL2Ba1ISfNnpYFx7j++2Wsd62j91szsWzjXpehCiGEEOI+IMtj6kBYWBhhYWF3VEar1RIeHs7AgQPx9vZmwIABLFmyhJp+oa2rq+s/riMtLQ1PT08Apk6dSkxMzD+u84a7Gbu6kJaWdlPCXsbcIht1iytc/teTFD31OKcKNXy36EPOXCqomyCFEEIIcd+Qmfb7xPTp07l27RpRUVFYWVmh0WgIDAzE0tKS0aNH13V44m9sbGwwMTFBr9cbjzVs15rzbbqU/eExaN1qM+nr/8fUz3fR3q0tH49phVKpqJuAhRBCCFGvyUz7PRIfH8+LL76Ir68vaWlpJCUl4efnR9++faudOU5PTycuLo45c+ZgZWUFgFqtJjg4mCZNmlRZdt++ffj6+uLr68vYsWPJysoqNxMOt85ef/TRRwwZMoSAgAAuXboEwIkTJxg+fDiDBw/m5ZdfJj09Ha1WS1BQECNHjqRfv368+eabFBUVVRpLdHQ0gwYNYvDgwUydOpX8/HxKS0t57733GDp0KEOHDuX7778H4I8//mDMmDG88MIL9O3bl9WrV1c9wPWMtbU1//rXvzChLAm3QU32Y+3KXXOhcV/UtuaUKhtw4NR19p/IrYtQhRBCCHEfkKT9HkpNTWXFihU4OTmRmZnJypUriY6OZtmyZWg0mkrLJSUl4ezsjLW1dbnjzs7ODBgwoMo2Fy9eTEhICDExMfTs2ZPjx49XG2fXrl2JjY3lX//6F7NmzQJg8uTJvPnmm2zcuBFvb29WrFjBoUOHMDU1JSoqim3btnH9+nV++eWXCus8deoUS5YsYdWqVWzcuJEGDRrw1VdfcejQIXJzc9mwYQNff/01Bw8eBGDt2rW8+eabREdHs3LlSubNm1dt3PXNM888w2udRzBM1RNfVU8MivL/3AyYkNnSkRITOwAy87R1EaYQQggh7gOyPOYeatWqFZaWlgD07t0bMzMz7OzssLW1JTc3F7VaXWlZheKvZRNbtmwhPDwcvV6PmZkZ0dHRlZbr168fEyZMoH///vTr14+nn36atLS0Sq+3sLDAx8cHgCFDhvDll1+SlZXF1atX6du3LwCjRo0yXm9jY8O3337L2bNnSU1NpaCg4vXZBw4coG/fvtjalu2WMnLkSKZNm8brr7/OuXPnePXVV+nTpw/vv/8+ULYW/tdff+Xrr7/mjz/+qLTe+q6FdwcsdKYU/JHJ4xmZHHV0Mp5rXJhIXPZ4ACzMTOjR3qquwhRCCCFEPSdJ+z1kYWFh/KxS/TX0CoWiygdK3dzcSElJQaPRoFar8fLywsvLi7S0NPz9/atsMyAggL59+7Jz505CQ0NJSkrCx8enXHtardYYj4nJX7PBBoMBlUqFqalpuZuG4uJirly5wh9//MHChQvx9/fH19eX7OzsSvtx89ruG3VrtVpsbW3ZtGkTe/bs4ZdffmHYsGFs2rSJDz/8ECsrK/r27Yu3tzc//PBDlf2sr5QNVDQb0R6A7MRE2jqZcfbKZRwbqTBVDCT7ajZKEwVDezWhqY1ZHUcrhBBCiPpKlsfcBxwdHfHx8WHKlCnk5eUBZYn2rl27yiXZFRk+fDj5+fkEBAQQEBDA8ePHsbKyIicnh6ysLEpKSvj111+N1xcUFLB9+3agbA16z549sbS0xMHBgd9++w2A2NhYFixYwL59+xg4cCAvvPACVlZWxMfHo9PpKoyjW7du7Nixw7ijyvfff4+Hhwfbt2/nvffe49lnnyUoKIiGDRty+fJl9uzZw6RJk+jfvz+7d+8GqLTu+0lbBwe8Oz7Jk63d6NDKiil+jzJ5REvaODas69CEEEIIUY/JTPt9IiQkhMjISPz9/dHpdOTn5+Ph4cHSpUurLPfOO+8wdepUVCoVDRs2ZObMmVhaWvLaa6/x4osv0qxZMzp27Gi83srKip9//pkFCxbg4ODAp59+CkBoaCghISGEhoZia2vLvHnzyM7OZvLkyWzatAlTU1Pc3d0rXXrTtm1bxo0bx5gxYygtLaVDhw5Mnz4dc3NzfvrpJ55//nnMzc3x8fHB1dWViRMnMmrUKMzNzWnbti3NmzevclmPEEIIIcSDTGGo6Y2+hagniouLSU5Oxs3NDXNz87oOh8TERDp37lzXYTxwZFxrh4xrzZMxrR0yrrVDxrXmVTem1eUtMtNeTxw8eJAZM2ZUeC4iIgIHB4dKyy5fvpz169ffctze3r7amXghhBBCCFH/SdJeT3Tp0oXY2Ni7KntjvboQQgghhHgwyYOoQgghhBBC1HOStAshhBBCCFHPSdIuhBBCCCFEPSdJuxBCCCGEEPWcJO1CiIeGQasl//hxii9eBECnN6CXXW+FEELcB+rt7jFhYWEATJw48bbLaLVali5dSlxcHAqFAp1Ox7Bhwxg3bhwKhaLScklJSWzdupX33nvvH8ddXxQUFBAWFsb27dtRqVQoFAoCAgIYPnx4pWWys7ONu9Bcu3YNgCZNmgBl20ra2tpWWO7777+nYcOGDBo0qGY7IcRduHCliGyNlvaPNkKl/OvffWlmJufnLsZAa0pNzNjfzYnLjzhhpjTh2RZWdH3Esg6jFkIIIapWb5P2uzF9+nSuXbtGVFQUVlZWaDQaAgMDsbS0ZPTo0ZWWO3PmDJmZmfcw0to3ceJEmjdvzsaNGzE3N+fKlSu8+uqrNG3alGeffbbCMra2tsZtJ+/kpun333+nW7duNRa7EHdrcWwaG/eX/VtuZmfGvNedsb2eQsmJX8k6cgXMPNCY6PjhkWx4xAmAIp2eLak5PGptgX1D07oMXwghhKhUvUra4+PjCQ0NRa/X4+LiQlZWFn5+fmRkZODr61tlApmenk5cXBy7d+/GysoKALVaTXBwMGfOnKm0XF5eHgsXLqSgoIDw8HBef/115s2bR0JCAjqdDl9fXwICAoiPj2fJkiWYmpqSlpaGp6cnDRs25OeffwbKXoDUpEkTevTowb/+9S8OHTpEo0aNmD9/Pk5OTpW2HxkZyfr16zExMaFTp0588sknxMTEkJCQwJw5cwAYM2YMEyZMAGDx4sWoVCrS0tLo1KkTs2bNwszMrFydv//+O6dPnzbGC2UvWvrkk08oKiq6jZ/E7du7dy87duxg//79NG3alE2bNpGTk8P58+d57733KC4uJjIykqKiIkpKSpg9ezbu7u6MGTOGjh07kpiYSFZWFkFBQTzzzDNs3LiRb775BqVSiZOTE6Ghobz77rsMHjyYAQMGAODr68vMmTNp3759jfZF3N/OZxQZE3aA9KwS9mzayTPnvwKDnpKrHVBYmXNMcRidzeMo/1b+7OVM7J2b3dughRBCiNtU79a0p6amsmLFCpycnMjMzGTlypVER0ezbNkyNBpNpeWSkpJwdnbG2tq63HFnZ2djslcRKysrJk2ahKen5/9j787DqqrWB45/D4fDIDMaKOKAE1pA4RCSYgmOlAPgbJjezMzx/lLLkryOXRWHEkujvKZeSk0wnL055ZBCkoh0CUcUUlEBmacz/P7wepQYRAVBfT/P4/Ocs/ca3r2OwLvXWXtv3nvvPTZt2gTAli1b2Lx5M/v27ePEiRMAnDp1itmzZxMeHk5YWBi2trZERETg7OzMjh07AEhPT8fd3Z1t27bx+uuvM2/evHL71mg0fPXVV4SHhxMREUFxcTGpqakVjs/JkyeZMWMGu3fvprCwkLCwsFJlTp06xUsvvaRP2O9wd3fH09OzwvYf1CuvvIK3tzeTJk3Cy8sLAGtra3bt2sVrr73Ghg0bWLVqFVu3bmX06NGEhobq6xYXF7Nx40Y++ugjPv/8cwA+++wz/vWvfxEREUHDhg25cOEC/fr1049vUlIShYWFkrCLUtKzi0tta5x6AHRaAFQW1yly3Ufbzgl0eO5syYJaDSfXzUcn69uFEELUUrVqph3AyckJC4vba0u9vLwwMjLC1tYWGxsbMjMzMTc3L7fuvevWd+/ezcqVK9FqtRgZGREeHl6p/o8dO0ZCQgLHjx8Hbq8NT0xMpEWLFrRq1YoGDRoAt5eS3EmAHRwcyMrKAsDY2Jj+/fsD4Ofnx9KlS8vtS6lU4u7uzoABA/Dx8WHUqFHY29tXGF+HDh1o1qwZAP369WPTpk2MGjWqwjp3TnyKi4tp1qwZK1asuP9APAI3NzcADAwM+OKLL9i/fz8XL14kOjoaA4O754l3kvyWLVty69YtALp27crQoUPp1q0bPXv2pE2bNjRv3pw5c+aQk5PD9u3b6du3b7XGL55MLk3NsLNWcf3W3eS9bl0LSLn9WtOqGJ31dQCc+C95BTYk0B6KCzGO+jd5ybGkJv1Bfac2NRG+EEIIUaFal7SbmJjoXxsa3g1PoVBUOAvm4uLC+fPnycnJwdzcnF69etGrVy9SUlIYMWJEpfvXaDRMmzaNHj16ALdnzs3MzIiNjS01c61U/vUL9tuJ6p2TB61WW2aZe3355ZfExsZy6NAhRo8ezeLFi0sda3Hx3STk3vZ0Oh1KpZLvv/+eDRs2ADBkyBBcXV1Zu3YtGo0GpVLJiBEjGDFiBFFRUdWesMPdzzA3N5cBAwbQt29fOnTogLOzc4lvBoyNjYGSJ1tBQUH88ccf/Pzzz0ybNo0JEybQr18/unbtyv79+9m9ezdfffVVtR+DePKoDA0IfrcF4YdukJ5djI+7DQ1th5D975NQlI/atOTP7wuao6Qe3kf+n5cx0N7+GTMxs6yJ0IUQQoj7qnXLYx6Wg4MDffv25cMPP9TPeqvVag4ePFhidrcsSqUStVoNQMeOHdm0aRPFxcXk5uYybNgwYmNjKx1Hfn4++/fvByAiIoIuXbqUWzY9PR1fX19atWrF5MmT6dSpE4mJidjY2HD+/Hl0Oh3JyckkJibq68TExJCamopWq+XHH3+kS5cuDB06lMjISCIjIxk6dCjt2rWjRYsWzJ07V7+GvaCggMOHD993LB6GUqlEo9GU2p6UlIRCoWDs2LF4eHjw008/lVnuDrVaTY8ePbCxseHdd9+lX79+JCQkALe/VVizZg3W1tY0bNiwyo9BPB3srI14r29DZgxvSsfnrTCs3xyr976hzht/x7LZayXKFmKAOu2qPmF/sWt/rO3k/5YQQojaqdbNtD+KWbNmsWbNGkaMGIFGoyE3NxcPDw++/vrrCuu5ubmxYsUKFi9ezOTJk7l06RJ+fn6o1Wr8/f3x8PAgKiqq0nHs3r2bZcuWYWdnx8KFC8stZ2try+DBgxkwYACmpqY4OTkREBCAoaEh4eHh9OrVCycnJ9q1a6evY2dnxwcffEBqaiqdOnUq8xaOCoWCL774gi+//FK/v6CggFdffZXg4OBKH0dlvfLKKyxdulS/rOmO1q1b06ZNG3r37o1CoaBz587ExMSU246hoSGTJk3ib3/7G8bGxtStW1d/MW67du3Izs5m6NChVR6/eLoZmFlj7Nad53RauGBLVmoMKhNbnFr48ULnelxOiMHC1g77Js41HaoQQghRLoVOrryqUs7OziVmxqvSneUt69evr5b2nzaFhYXEx8fj4uKiX4pTk2JiYkqcgImqIeNaPWRcq56MafWQca0eMq5V735jer+85YmaaT9x4gRz584tc19oaGiFF3F+++23bNmypdR2Ozu7+87EP6opU6aUedtJb29vJk+eXK19l2XhwoX88ssvpba7uLgwf/78MuvUtmMQQgghhHiWPFFJe/v27fUP/3lQI0eO1D/tszqVNcu+ZMmSKmnbw8MDDw+PR27nww8/fOA6VXUMQgghhBDiwT01F6IKIYQQQgjxtJKkXQghhBBCiFpOknYhhBBCCCFqOUnahRBCCCGEqOUkaRdCCCGEEKKWk6RdCCGEEEKIWu6JuuWjEEI8ra6u303uH8VgoCLPPpNibwNsk7KIuaIi47oJ1qoGvOTdnJbtHGo6VCGEEDXgmZ1pDwkJISQk5IHqqNVqVq5cSe/evfH19aVnz56sWrWK+z1UNi4ujuDg4EcJt1aJiIhg+vTplS6fnZ3N+PHjq6TvlJQUvL29q6QtIarbrRw1kb/cYGd0GrkFmnLLZf56ityzRigMLVEYmGJ2oz4nDiTw9ZFz/J78X+o3OkKjlpu4dPJbrpy7+hiPQAghRG0hM+0PYPbs2dy8eZONGzdiaWlJTk4O48ePx8LCguHDh5db79y5c6SlpT3GSGuXzMxMEhISajoMIR6rtKxiJoacISNHDcCWIzcImdASEyNlqbK5p1NQKMxLbMtLNQAUdHo+B4e6xQBYml/mxvkNOLT4v2qPXwghRO3yTCXtUVFRBAcHo9VqadmyJenp6QwZMoTU1FT8/f2ZOHFiuXWvXbvG1q1bOXToEJaWlgCYm5szc+ZMzp07V269rKwsli9fTl5eHitXrmTMmDEsWrSI6OhoNBoN/v7+jBw5kqioKFatWoVKpdLPJtepU4e9e/cCEBoaSr169fD09KR79+6cPHkSMzMzFi9ejKOjY7n9r1mzhi1btmBgYICbmxtz5swhIiKC6OhoFixYAEBgYCATJkwA4Msvv8TQ0JCUlBTc3NyYP38+RkZGlRrfnJwcPv74Y1JTU7l+/Tqenp7Mnz+fefPmcf36dcaPH88XX3zBjz/+yNq1a9Fqtbzwwgv84x//wNjYmI4dO+Li4sKNGzfYvHkzs2fP5uzZs9y8eRNnZ2eWLl1aqTiEqA3+E5OuT9gBUm4U8svvWXi725QqW+d5R/KSMsito+K31nXJsDAiL+1lFPFHaGBbXKKsSplU3aELIYSohZ655TFJSUmsXbsWR0dH0tLSWLduHeHh4axevZqcnJxy68XFxdG8eXOsrKxKbG/evDk9e/Yst56lpSWTJk3C29ub9957j02bNgGwZcsWNm/ezL59+zhx4gQAp06dYvbs2YSHhxMWFoatrS0RERE4OzuzY8cOANLT03F3d2fbtm28/vrrzJs3r9y+NRoNX331FeHh4URERFBcXExqamqF43Py5ElmzJjB7t27KSwsJCwsrMLy9zp48CBt2rRh48aN7Nmzh19//ZXff/+doKAg7Ozs+OKLLzh79iybNm1iw4YNREZGUrduXVavXg1ARkYG77zzDpGRkcTGxqJSqdi4cSM//fQT2dnZ/Pzzz5WORYgaV8aqufKW0ll3fBHq3+Twi/VIsTcjt44KXaM2GL7wCll5JX9Nm1o2rI5ohRBC1HLP1Ew7gJOTExYWFgB4eXlhZGSEra0tNjY2ZGZmYm5uXm5dhUKhf717925WrlyJVqvFyMiI8PDwSvV/7NgxEhISOH78OAB5eXkkJibSokULWrVqRYMGDQCwsbHB09MTAAcHB7KysgAwNjamf//+APj5+VU4+6xUKnF3d2fAgAH4+PgwatQo7O3tK4yvQ4cONGvWDIB+/fqxadMmRo0aValje+ONN4iLi+Pbb7/lwoUL3Lp1i7y8PKytrfVloqKiuHTpEoMGDQKguLiY559/Xr//xRdf1MdhbW1NWFgYFy5cICkpiby8vErFIURt0K2dDZG/3CQz9/Zsu0NdI155warc8jdaKMiwqFNim6l9Y7S5bdEpElDoclGZ1qNBm6HVGrcQQoja6ZlL2k1MTPSvDQ3vHr5CoajwglIXFxfOnz9PTk4O5ubm9OrVi169epGSksKIESMq3b9Go2HatGn06NEDuD1zbmZmpp9ZvpdSWXrtq4GBgf7kQavVllnmXl9++SWxsbEcOnSI0aNHs3jx4lLHWlx89+v3e9vT6XQolUq+//57NmzYAMCQIUMwNjYus6/169ezZ88eBg0axCuvvMKZM2dKjalGo6F3794EBQUBkJubi0Zz9wK9O5/Pvn37WL58OSNGjMDf35+MjIz7XvArRG3ynJURX05uxc+nbqFSKnjtJRtMjcv/ea3foBGKazfRmdfTb6tnrKDTa6PRaTUUF95CZWKDQvHMfUEqhBCCZ3B5zMNycHCgb9++fPjhh/pZb7VazcGDBzEwqHgYlUolavXt2baOHTuyadMmiouLyc3NZdiwYcTGxlY6jvz8fPbv3w/cvotLly5dyi2bnp6Or68vrVq1YvLkyXTq1InExERsbGw4f/48Op2O5ORkEhMT9XViYmJITU1Fq9Xy448/0qVLF4YOHUpkZCSRkZEMHVr+LN/Ro0cZPHgwffv2pbCwkD/++AOtVouhoaH++D08PPjpp59IS0tDp9Mxa9Ys1q5dW6qtY8eO0bt3bwICArC0tCQqKqpEci/Ek8DWQoVf5+d4w7Me5qYVn2A3denAC9n/RZFz+6J104J0+r94+1svhYESI9O6krALIcQz7JmbaX8Us2bNYs2aNYwYMQKNRkNubi4eHh58/fXXFdZzc3NjxYoVLF68mMmTJ3Pp0iX8/PxQq9X4+/vj4eFBVFRUpePYvXs3y5Ytw87OjoULF5ZbztbWlsGDBzNgwABMTU1xcnIiICAAQ0NDwsPD6dWrF05OTrRr105fx87Ojg8++IDU1FQ6derEwIEDy2x727Zt7NmzR//+3Xff5a233mLWrFmEhoZibm6Ou7s7KSkptG/fHgcHBwIDA1m/fj0TJkzgrbfeQqvV0qZNG8aMGVOq/YEDBzJ16lR27NiBSqWibdu2pKSkVHqMhHjSKBQK/PyH0zMnizy1hnrWjWo6JCGEELWIQidrDp4ozs7OJWbGq1JUVBQrVqxg/fr11dL+41ZYWEh8fDwuLi7lLul5nGJiYkqcIImqIeNaPWRcq56MafWQca0eMq5V735jer+8RWba73HixAnmzp1b5r7Q0NAKL+L89ttv2bJlS6ntdnZ2952Jf1RTpkwp87aT3t7eTJ48uVr7FkIIIYQQ1U+S9nu0b9+eyMjIh6o7cuRIRo4cWbUBlaGsWfYlS5ZUSdseHh54eHhUSVtCCCGEEKLqyFVNQgghhBBC1HKStAshhBBCCFHLSdIuhBBCCCFELSdJuxBCCCGEELWcJO1CCCGEEELUcnL3GCEEACkXb/Dr8d8xszKmy2ttMalT8/e2F0IIIcRtT1TSHhISAsDEiRMrXUetVvP111+zdetWFAoFGo0GPz8/3n33XRQKRbn14uLi2LNnD9OmTXvkuGuDqKgoxo4dS+PGjVEoFBQUFNCqVSs+/fRTzM3Nq/WhTZXl7e3NunXrcHR0rNE4niVFaXnc2HWe3JRMUjLyuZabS1HxMeK3f0bbV714pe/fMDKtU9NhCiGEEM+8p355zOzZs4mLi2Pjxo3s3LmT8PBwjh07xnfffVdhvXPnzpGWlvaYonw8XFxciIyM5Mcff2T37t0AfPXVVzUclagpOp2OS+tOU3A2HWW+hiYmRrQwvoG6+BccG+ZjaXqSxENTuH5+W02HKoQQQjzzav1Me1RUFMHBwWi1Wlq2bEl6ejpDhgwhNTUVf3//Cmfdr127xtatWzl06BCWlpYAmJubM3PmzDKfIHpHVlYWy5cvJy8vj5UrVzJmzBgWLVpEdHQ0Go0Gf39/Ro4cSVRUFKtWrUKlUpGSkoK3tzd16tRh7969wO2nqNarVw9PT0+6d+/OyZMnMTMzY/HixRXOJq9Zs4YtW7ZgYGCAm5sbc+bMISIigujoaBYsWABAYGAgEyZMAODLL7/E0NCQlJQU3NzcmD9/PkZGRvcd25dffpkjR46U2JaamsrHH39MdnY2169fx8/Pj8mTJxMREcHhw4fJzMwkOTmZTp06MWvWrHLbTklJ4b333qNZs2acO3cOBwcHgoODsba25sCBA3z22WdotVoaNWrEnDlzqFevnr5uTk4OH3/8MampqVy/fh1PT0/mz59PdHR0if8LCxcuvO8xivKpMwsxuFVAppmKZHsz6hSosU2ui7nOGBcPh/+V0nHz4g5MLByxtHOv0XiFEEKIZ9kTMdOelJTE2rVrcXR0JC0tjXXr1hEeHs7q1avJyckpt15cXBzNmzfHysqqxPbmzZvTs2fPcutZWloyadIkvL29ee+999i0aRMAW7ZsYfPmzezbt48TJ04AcOrUKWbPnk14eDhhYWHY2toSERGBs7MzO3bsACA9PR13d3e2bdvG66+/zrx588rtW6PR8NVXXxEeHk5ERATFxcWkpqZWOD4nT55kxowZ7N69m8LCQsLCwiosD5CXl8f+/ft56aWXSmzfvn07b7zxBps2bWLbtm2sXbuW9PR0fT/Lly9n69atHDhw4L7Lac6cOcOwYcPYsWMHzZs3Z8WKFaSlpTFz5ky++OILtm3bRtu2bZkzZ06JegcPHqRNmzZs3LiRPXv28Ouvv/L7778Dd/8vSML+6AzNjbhirWRXJ0fiWtly3M2OXzo4Yd7AvlTZ1OSTNRChEEIIIe6o9TPtAE5OTlhYWADg5eWFkZERtra22NjYkJmZibm5ebl17123vnv3blauXIlWq8XIyIjw8PBK9X/s2DESEhI4fvw4cDvhTUxMpEWLFrRq1YoGDRoAYGNjg6enJwAODg5kZWUBYGxsTP/+/QHw8/Nj6dKl5falVCpxd3dnwIAB+Pj4MGrUKOztSydR9+rQoQPNmjUDoF+/fmzatIlRo0aVKhcfH0+/fv2A22v9O3bsWKrc22+/zfHjx1m9ejVnz56luLiY/Px8ANzd3fVj3ahRIzIzMyuMq2nTpnh4eADQv39/pk6dSqdOnXBzc9N/0zB48GBCQ0NL1HvjjTeIi4vj22+/5cKFC9y6dYu8vDyg5P8F8WgUhgb80dwQrcHdn5FbdvVQn2kMZJQom1Vg9pijE0IIIcS9noik3cTERP/a0PBuyAqFAp1OV249FxcXzp8/T05ODubm5vTq1YtevXqRkpLCiBEjKt2/RqNh2rRp9OjRA7g9c25mZkZsbCwqlapEWaVSWaq+gYGB/uRBq9WWWeZeX375JbGxsRw6dIjRo0ezePHiUsdaXFxcZp86nQ6lUsn333/Phg0bABgyZAjNmjXDxcWF9evXV9j3ggULSE5O5o033qBbt2788ssv+n6Nje/eTeR+Yw8lP6s7cWm12hJldDodarW6xLb169ezZ88eBg0axCuvvMKZM2f0fd37f0E8OsuGdblWVHKbm5MHUYmHcGuaj1IJZ/40wad/t5oJUAghhBDAE7I85mE5ODjQt29fPvzwQ/2st1qt5uDBgxgYVHzoSqVSn0x27NiRTZs2UVxcTG5uLsOGDSM2NrbSceTn57N//34AIiIi6NKlS7ll09PT8fX1pVWrVkyePJlOnTqRmJiIjY0N58+fR6fTkZycXGJpSkxMDKmpqWi1Wn788Ue6dOnC0KFDiYyMJDIykqFDh1Y61qNHj/L222/Tu3dvLl68qG/3YVy8eJGEhAQAwsPD6dKlCy+++CKnTp0iJSUFgI0bN+pn4++NYfDgwfTt25fCwkL++OOPh45BVKxzq8YYcvfkq1kdHT4D+tOm3SAOnWnF0fMuuHi+Q926dWswSiGEEEI8ETPtj2LWrFmsWbOGESNGoNFoyM3NxcPDg6+//rrCem5ubqxYsYLFixczefJkLl26hJ+fH2q1Gn9/fzw8PIiKiqp0HLt372bZsmXY2dlVuB7b1taWwYMHM2DAAExNTXFyciIgIABDQ0PCw8Pp1asXTk5OtGvXTl/Hzs6ODz74gNTUVDp16sTAgQMrHddfvfvuu3zwwQeYmJhQv359XFxc9An2g7KysmL58uVcvnwZZ2dn5s2bR506dZgzZw4TJkyguLgYBwcH5s+fX6LeW2+9xaxZswgNDcXc3Bx3d3dSUlJo3LjxQx+XKFtDC2PGujvwR3oelkaGtLY1BW6fqHbs2LGGoxNCCCHEHQrd/dY4iEdWnfdAj4qKYsWKFfdd9vK43VmCdOcbhppQWFhIfHw8Li4uJZb21JSYmJgSJ1uiasi4Vg8Z16onY1o9ZFyrh4xr1bvfmN4vb3niZ9pPnDjB3Llzy9wXGhpa4UWc3377LVu2bCm13c7O7r4z8Y9qypQpZd520tvbm8mTJ1dr31Xl8uXL5d5ys6I75AghhBBCiAfzxCft7du3JzIy8qHqjhw5kpEjR1ZtQGUoa5Z9yZIlVdK2h4dHqTXhj0vjxo0rHPuanGUXQgghhHiaPNUXogohhBBCCPE0kKRdCCGEEEKIWk6SdiGEEEIIIWo5SdqFEEIIIYSo5SRpF0IIIYQQopaTpF0IIZ4iOp1OniAshBBPoVp5y8eQkBCAcu8BXha1Ws3XX3/N1q1bUSgUaDQa/Pz8ePfdd1EoFOXWi4uLY8+ePUybNu2R464NoqKiGDt2LI0bN0ahUFBQUECrVq349NNPMTc3r5YHPQUGBta6hzsJ8TTS6XRcSb/Fr+latDro0MCc5+roOJZ2lKziTFTnjIk59BtqtRoPDw969+5d4e8/IYQQT45ambQ/jNmzZ3Pz5k02btyIpaUlOTk5jB8/HgsLC4YPH15uvXPnzpGWlvYYI61+Li4uJZLoSZMm8dVXXzFlypRq6S86Orpa2hVC3KW+dp6rO77i385jUCtvPynvj/Q8zIt+wPL3eDIUJty4bK0vf+TIERwcHHjppZdqJmAhhBBVqtYk7VFRUQQHB6PVamnZsiXp6ekMGTKE1NRU/P39K5x1v3btGlu3buXQoUNYWloCYG5uzsyZM8t86ugdWVlZLF++nLy8PFauXMmYMWNYtGgR0dHRaDQa/P39GTlyJFFRUaxatQqVSkVKSgre3t7UqVOHvXv3ArefvFqvXj08PT3p3r07J0+exMzMjMWLF+Po6Fhu/2vWrGHLli0YGBjg5ubGnDlziIiIIDo6mgULFgC3Z7EnTJgAwJdffomhoSEpKSm4ubkxf/58jIyM7ju2L7/8MkeOHCmxLTU1lY8//pjs7GyuX7+On58fkydPJiIigsOHD5OZmUlycjKdOnVi1qxZ5bZ958mnAwcO5IcffuDQoUMsX74ctVqNo6Mjc+fOxcbGBm9vb15//XWOHj2KoaEh48aN41//+heXLl3iww8/xNfXl+nTp2NsbMzp06fJzc3lvffeo3///uTn5xMUFERiYiIKhYK3336b/v373/e4hXiaZPy4lHN1mukTdgCNDuontEb7e30cWpzlBbeb3MpR8vtlE4rVBqSkpEjSLoQQT4lataY9KSmJtWvX4ujoSFpaGuvWrSM8PJzVq1eTk5NTbr24uDiaN2+OlZVVie3NmzenZ8+e5daztLRk0qRJeHt7895777Fp0yYAtmzZwubNm9m3bx8nTpwA4NSpU8yePZvw8HDCwsKwtbUlIiICZ2dnduzYAUB6ejru7u5s27aN119/XZ/QlkWj0fDVV18RHh5OREQExcXFpKamVjg+J0+eZMaMGezevZvCwkLCwsIqLA+Ql5fH/v37S/3h3r59O2+88QabNm1i27ZtrF27lvT0dH0/y5cvZ+vWrRw4cKDC5TRBQUEA/PDDD6Snp7NkyRJWr17Njz/+SOfOnVm8eLG+bL169YiIiKB58+aEhobyr3/9i+DgYEJDQ/VlkpOT2bhxI2vXrmXRokXcuHGDkJAQbGxs2L59O2vXriUkJIQ//vjjvscuxNNCq9VikH4J88JbpfZZK+rz0kvpuLpcxbFeMS5NC/Byuf37smnTpo83UCGEENWm1sy0Azg5OWFhYQGAl5cXRkZG2NraYmNjQ2ZmJubm5uXWvXfd5u7du1m5ciVarRYjIyPCw8Mr1f+xY8dISEjg+PHjwO2ENzExkRYtWtCqVSsaNGgAgI2NDZ6engA4ODiQlZUFgLGxsX4G2M/Pj6VLl5bbl1KpxN3dnQEDBuDj48OoUaOwt7evML4OHTrQrFkzAPr168emTZsYNWpUqXLx8fH069cPuL3Wv2PHjqXKvf322xw/fpzVq1dz9uxZiouLyc/PB8Dd3V0/1o0aNSIzM7PCuO44deoUV69eZcSIEcDtROPeE6kuXboAt8fMzs4OQ0PDEuMH4O/vj0qlon79+rRt25aYmBiOHz/Op59+CoCtrS0+Pj5ER0fTunXrSsUlxJMuK0/L7+rmPH8zliZp8Vyq6wKAXXo+Ta/moHG/VKK8g62aerpruLi41ES4QgghqkGtStpNTEz0rw0N74amUCjQ6XTl1nNxceH8+fPk5ORgbm5Or1696NWrFykpKfoEsjI0Gg3Tpk2jR48ewO2ZczMzM2JjY1GpVCXKKpXKUvUNDAz0Jw9arbbMMvf68ssviY2N5dChQ4wePZrFixeXOtbi4uIy+9TpdCiVSr7//ns2bNgAwJAhQ2jWrFmpNe1lWbBgAcnJybzxxht069aNX375Rd+vsfHdr9/vN/b30mg0tG3bllWrVgFQWFhIbm6ufv+9Y3jv53uve49Rq9ViaGhYqn+dTodGo6lUTEI8DazMlESYDiM/L5xOseswN/WgIR7UyyoCQFNUB+pk68sXF2loXM+ypsIVQghRDWrV8piH5eDgQN++ffnwww/1s7ZqtZqDBw9iYFDxISqVStRqNQAdO3Zk06ZNFBcXk5uby7Bhw4iNja10HPn5+ezfvx+AiIgI/cxyWdLT0/H19aVVq1ZMnjyZTp06kZiYiI2NDefPn0en05GcnFxiaUpMTAypqalotVp+/PFHunTpwtChQ4mMjCQyMpKhQ4dWOtajR4/y9ttv07t3by5evKhv92HcGcMXX3yR2NhYLl68CNw+KVm0aNEDtbVr1y50Oh1//vkncXFxtGvXjo4dO7J582bg9rjt27ePl19++aFiFeJJpFAoGD/Mla02bzMxbzoxNn1oUN9Cv9/w4otoim6fCGs1WlIuqvEe9n5NhSuEEKIa1KqZ9kcxa9Ys1qxZw4gRI9BoNOTm5uLh4cHXX39dYT03NzdWrFjB4sWLmTx5MpcuXcLPzw+1Wo2/vz8eHh5ERUVVOo7du3ezbNky7OzsWLhwYbnlbG1tGTx4MAMGDMDU1BQnJycCAgIwNDQkPDycXr164eTkRLt27fR17Ozs+OCDD0hNTaVTp04MHDiw0nH91bvvvssHH3yAiYkJ9evXx8XFhZSUlIdqy8fHh379+hEREcGnn37K3//+d7RaLfb29gQHBz9QWwUFBQQEBFBUVMScOXOwsbFh/PjxzJo1iz59+qDRaBg7diwvvPDCQ8UqxJOqZcM6fDHJGZ1Od/sbMLWWrJPXKLqei1krV0yavU7erYtotCa49Gxa0+EKIYSoYgpdZdc+iPuqjnug3xEVFcWKFSue6vuhT58+nZdffhl/f/8qaa+wsJD4+HhcXFxKLPmpKTExMSVOwkTVkHGtHjKuVU/GtHrIuFYPGdeqd78xvV/e8sTMtJ84cYK5c+eWuS80NLTCizi//fZbtmzZUmq7nZ3dfWfiH9WUKVPKvO2kt7c3kydPrta+q8rly5fLveXmvHnzcHV1fcwRCSGEEEI8W56YpL19+/ZERkY+VN2RI0cycuTIqg2oDGXNsi9ZsqRK2vbw8MDDw6NK2npQjRs3fuixfxB37k0vhBBCCCFKeiouRBVCCCGEEOJpJkm7EEIIIYQQtZwk7UIIIYQQQtRykrQLIYQQQghRy0nSLoQQQgghRC0nSbsQQgghhBC13BNzy0chhHhSZBaqOXsjC/MiNY0VKkwbWaEwNODw6Vv8mpiFU31TXveoi5FK5k2EEEJUjiTt1SgkJASg3AcTlUWtVvP111+zdetWFAoFGo0GPz8/3n33XRQKRbn14uLi2LNnD9OmTXvkuKuLt7c369atw9HRscz9p0+fZsOGDcyfP7/cNq5cucKoUaMwMTEhLCwMc3Pz6gpXiAeiLSggKyqKS/mw3bwJWqUSgGYpN+kUkcjvro1YceDm/0pn8PulXIKGN62xeIUQQjxZJGmvZWbPns3NmzfZuHEjlpaW5OTkMH78eCwsLBg+fHi59c6dO0daWtpjjLTqubq63vfpqtHR0bi4uFTZQ6uEqAo6tZqYefPIuX6dWJ/RaK2U+n0XHC1wOZ9BUfRlnLO2UbcogRxDB3475U9Wf0cszeTXsBBCiPuTvxZVLCoqiuDgYLRaLS1btiQ9PZ0hQ4aQmpqKv79/hbPu165dY+vWrRw6dAhLS0sAzM3NmTlzJufOnSu3XlZWFsuXLycvL4+VK1cyZswYFi1aRHR0NBqNBn9/f0aOHElUVBSrVq1CpVKRkpKCt7c3derUYe/evQCEhoZSr149PD096d69OydPnsTMzIzFixfj6OhIbGws8+fPp7CwEBsbG+bMmUOTJk0IDAzEysqKs2fP8tlnnxETE0NkZCT5+fmoVCqWLFlCs2bNKjV2K1asYP369QQGBuLq6kpMTAzp6ekEBQVhZ2fHZ599Rl5eHjNnzmTOnDkP+OkIUT2+/+Yb4rVaqFcPY2NNqYuFilr+SpP8WzhfjyJPU0QdzU3qaNMxUnWtkXiFEEI8eWRBZTVISkpi7dq1ODo6kpaWxrp16wgPD2f16tXk5OSUWy8uLo7mzZtjZWVVYnvz5s3p2bNnufUsLS2ZNGkS3t7evPfee2zatAmALVu2sHnzZvbt28eJEycAOHXqFLNnzyY8PJywsDBsbW2JiIjA2dmZHTt2AJCeno67uzvbtm3j9ddfZ968eRQVFfH+++/zySefsHXrVoYMGcL777+vj8HZ2Zk9e/bQqFEj9u7dy/r169m+fTuvvfYaYWFhDzWOxcXFbNy4kY8++ojPP/+cNm3a6I9TEnZRWyQnJxN/+bL+fXFSHOh0+vd26vOYWf2BSf1reHRrioHB7WVu5sUpaPJvPe5whRBCPKFkpr0aODk5YWFhAYCXlxdGRkbY2tpiY2NDZmZmheuw7123vnv3blauXIlWq8XIyIjw8PBK9X/s2DESEhI4fvw4AHl5eSQmJtKiRQtatWpFgwYNALCxscHT0xMABwcHsrKyADA2NqZ///4A+Pn5sXTpUpKSkrC0tMTNzQ2A3r17M3PmTLKzswH0283NzVmyZAk7duwgKSmJw4cP06ZNm0rF/VdeXl4AtGzZklu3bj1UG0JUtzs/A3dor19CeWAvpvVfoulzZ2lR55B+n0kdFTZ2dUi7louZVV1MzS0fd7hCCCGeUJK0VwMTExP9a0PDu0OsUCjQ3TMD91cuLi6cP3+enJwczM3N6dWrF7169SIlJYURI0ZUun+NRsO0adPo0aMHcHvm3MzMjNjYWFQqVYmySqWyVH0DAwP9yYNWq0WpVKLVakuV0+l0aDSaEsd89epVAgMDefPNN+nSpQv16tUjISGh0rHfy9jYGKDCC3CFqGktWrTAwsKiRPIe8HpbEkwukXt9P8qikv9/C/KKMbOqS6+3P8ZAKb+ChRBCVI4sj6lFHBwc6Nu3Lx9++KF+1lutVnPw4EEMDCr+qJRKJWq1GoCOHTuyadMmiouLyc3NZdiwYcTGxlY6jvz8fPbv3w9AREQEXbp0oVmzZty6dYu4uDgAdu7ciYODA9bW1iXqnj59miZNmjBy5EhcXV3Zu3evPrEX4mlkZGTEu+++i4eHB66urowaNQrnl16if+t+vPj8KIqM7nyzpsC2cTcCZ29izOLNNHV5uUbjFkII8WSRaZ5aZtasWaxZs4YRI0ag0WjIzc3Fw8ODr7/+usJ6bm5urFixgsWLFzN58mQuXbqEn58farUaf39/PDw8iIqKqnQcu3fvZtmyZdjZ2bFw4UKMjIxYtmwZc+fOJT8/HysrK5YtW1aqXqdOnfj+++/x9fVFp9PRoUMHzp49+8DjIMSTxNbWln79+pXa7lKvIzqvlynIuoTSyAIj03o1EJ0QQoingUJX0XoN8UxydnYmMTGxpsN4ZIWFhcTHx+Pi4qJfalOTYmJiaNeuXU2H8dSRca0eMq5VT8a0esi4Vg8Z16p3vzG9X94iM+2P2YkTJ5g7d26Z+0JDQ7G3ty+37rfffsuWLVtKbbezs7vvTHxt8SjHL4QQQgjxrJKk/TFr3749kZGRD1V35MiRjBw5smoDKkN1zrI/yvELIYQQQjyr5EJUIYQQQgghajlJ2oUQQgghhKjlJGkXQgghhBCilpOkXQghhBBCiFpOknYhhBBCCCFqObl7jBBCiIei0ehQKMDAQHHfslqtjtzMAkyUBigMFKSi5vjNaNLUCbS0bMWrz3XFQCHzSEIIUR75Dfk/ISEhhISEPFAdtVrNypUr6d27N76+vvTs2ZNVq1Zxv+dVxcXFERwc/CjhVjtvb29SUlIeuZ2ynhJZUfuBgYFERUURFRVFYGDgI/cvhKh6Wq2OlVv/xG/WaQbP+53IX25UWD41KYN/zzpA7MKjJC05Rth/zvOv02n892pzriS9zG+/bePXqJlc+X0dhbnXHtNRCCHEk0Vm2h/B7NmzuXnzJhs3bsTS0pKcnBzGjx+PhYUFw4cPL7feuXPnSEtLe4yR1hy5J7sQT5/9sRlsPXYTgGK1hlXbruDmZI5TA9Myyx/4/jRmucU4mJtwzdaEyw3M9fuUZnY0K3oJi5zj3Mq5SXbaaVq+MhcDQ5PHcixCCPGkeKaT9qioKIKDg9FqtbRs2ZL09HSGDBlCamoq/v7+TJw4sdy6165dY+vWrRw6dAhLS0sAzM3NmTlzJufOnSu3XlZWFsuXLycvL4+VK1cyZswYFi1aRHR0NBqNBn9/f0aOHElUVBSrVq1CpVKRkpKCt7c3derUYe/evcDtp4fWq1cPT09PunfvzsmTJzEzM2Px4sU4OjoSGxvL/PnzKSwsxMbGhjlz5tCkSRMCAwOxsrLi7NmzfPbZZ8TExBAZGUl+fj4qlYolS5bQrFmzSo1dZeJzdnYmMTGRW7duMW3aNK5du0bz5s0pLCwEoKioiBkzZhAfH0/Dhg3JyMgo1delS5eYNWsWt27dwsTEhE8++YTnn3/+vjEKIarHmeS80tv+zCs3ac+4mk0zYxUA+cal/+zkKyz0rzVF2eRmJGLx3ItVFK0QQjwdnvnlMUlJSaxduxZHR0fS0tJYt24d4eHhrF69mpycnHLrxcXF0bx5c6ysrEpsb968OT179iy3nqWlJZMmTcLb25v33nuPTZs2AbBlyxY2b97Mvn37OHHiBACnTp1i9uzZhIeHExYWhq2tLRERETg7O7Njxw4A0tPTcXd3Z9u2bbz++uvMmzePoqIi3n//fT755BO2bt3KkCFDeP/99/UxODs7s2fPHho1asTevXtZv34927dv57XXXiMsLKzSY1eZ+O5Yvnw5zz//PNu2bWP48OHcvHl7lm79+vUA7Nq1i6CgIC5fvlyqnw8//JBp06axZcsW5s6dy//93/9VOkYhRNVzbWZe4r2BAlyampdTGho/b8f1Yg06nQ6Hm3koi4rv7tRpaaT+vUR5Q2ObKo1XCCGeBs/0TDuAk5MTFha3Z3m8vLwwMjLC1tYWGxsbMjMzMTcv/w+RQnH34qvdu3ezcuVKtFotRkZGhIeHV6r/Y8eOkZCQwPHjxwHIy8sjMTGRFi1a0KpVKxo0aACAjY0Nnp6eADg4OJCVlQWAsbEx/fv3B8DPz4+lS5eSlJSEpaUlbm5uAPTu3ZuZM2eSnZ0NoN9ubm7OkiVL2LFjB0lJSRw+fJg2bdpUKm6gUvHdER0dzZIlSwDo0KEDjRo10m8fPHgwAE2bNsXd3b1EvdzcXOLj4/noo4/02/Ly8sjIyMDGRv6wC1ETvFytGdGjkB3Hb2KiMuDNbvVpWM+43PLew904tC6K+DOXaGCi5eVDVzje3IJiI1MMUk5Tp3kq/G+S3saxC6aWjR/TkQghxJPjmU/aTUzurps0NLw7HAqFosILSl1cXDh//jw5OTmYm5vTq1cvevXqRUpKCiNGjKh0/xqNhmnTptGjRw/g9sy5mZkZsbGxqFSqEmWVSmWp+gYGBvqTB61Wi1KpRKvVliqn0+nQaDQljvnq1asEBgby5ptv0qVLF+rVq0dCQkKlY69MfHf8dTzvlP3r9ns/gzvHZGRkVGJt/LVr17C2tq50nEKIqje0qz1Du9pXqqyphTE9xnlxcc4Bfkr6mZwbxZheBCMDI16yMcal9ydo69dHqTLDqI5dNUcuhBBPpmd+eczDcnBwoG/fvnz44Yf6WWW1Ws3BgwcxMKh4WJVKJWq1GoCOHTuyadMmiouLyc3NZdiwYcTGxlY6jvz8fPbv3w9AREQEXbp0oVmzZty6dYu4uDgAdu7ciYODQ6lE9/Tp0zRp0oSRI0fi6urK3r179Yl9VfP09NQn3nFxcfplMJ6enmzbtg2tVsuff/7Jb7/9VqKehYUFTZs21dc9evRohRf5CiFqJ4VCQdPp0/H1n0gLx+dp8FwDvNxfpOukxRg7e2Jq5SQJuxBCVOCZn2l/FLNmzWLNmjWMGDECjUZDbm4uHh4efP311xXWc3NzY8WKFSxevJjJkydz6dIl/Pz8UKvV+Pv74+HhQVRUVKXj2L17N8uWLcPOzo6FCxdiZGTEsmXLmDt3Lvn5+VhZWbFs2bJS9Tp16sT333+Pr68vOp2ODh06cPbs2Qceh8qYNGkS06dP5/XXX6dZs2b65THDhg3j7Nmz9O7dm4YNG9KqVatSdYODg5k1axbffPMNKpWKZcuWlViaJIR4MhgYG9Oojx+N+vjVdChCCPHEUejud1NxUavduTuLKK2wsJD4+HhcXFwwNi5/ve3jEhMTQ7t27Wo6jKeOjGv1kHGtejKm1UPGtXrIuFa9+43p/fIWmWmvwIkTJ5g7d26Z+0JDQ7G3L38957fffsuWLVtKbbezs7vvTHxt8SjHL4QQQgghqo4k7RVo3779Qz8caOTIkYwcObJqAypDdc6yP8rxCyGEEEKIqiMXogohhBBCCFHLSdIuhBBCCCFELSdJuxBCCCGEELWcJO1CCCGEEELUcpK0CyGEEEIIUctJ0i6EEEIIIUQtJ7d8FEKI/1n/0zV2RKVhamTA68015MReozCnGNvXmpLayIoCjZb6RVepe+sSz7t0oEmTJjUdshBCiGfEMz3THhISQkhISKXLR0VFERgY+EB9VKZ8YGAg3bt3p1+/fvp/YWFhnD59mhkzZjxQfw8iOTmZjz/+uMx9ERERTJ8+vcS2hzn+GTNmcPr06YeO8a/i4uIIDg6usvaEuOPgqQy+259KZq4anf1BCo9e4gWNAa51zfijnhkZhRry1TouGtRHVyeV6L3L5GnEQgghHhuZaa9m0dHRlSo3b948PDw8Sm13dXWt6pD0rly5QnJycrW1DzB//vwqbe/cuXOkpaVVaZtCAMRfzAXApN6fNDa7TnvzNhgqFFysZwYGihJl05SNadfkNCej99HSyQkDI6OaCFkIIcQz5JlL2qOioggODkar1dKyZUvS09MZMmQIqamp+Pv7M3HixAduU61WM2vWLM6ePcvNmzdxdnZm6dKlLF68GICBAwfyww8/PFSsK1asYP369axZs4YtW7ZgYGCAm5sbc+bMKVX+zJkzzJ07l7y8PNLT0xkzZgxDhw4lJCSE1NRULl26xJ9//snAgQN57733mDdvHikpKcyePZt//OMfDxTbzZs3mTFjBleuXMHQ0JD/+7//o0uXLoSEhBAbG8vVq1d588032bVrFxMmTCAxMZHw8HAACgoKSE5O5ueffyYnJ4eZM2dy69Yt6tSpw4wZM3Bzc2P69OmYm5vz+++/k5qayvjx4+nevTvLly8nLy+PlStX8t577z3wmApRHudGddgRlYbKMoO6BioMFbcT9bqZBaDTgeJu4m6r/RMAg+Q/ODNxIs/160ddX98aiVsIIcSz4ZlL2gGSkpI4cOAA3377LWfPnmXDhg3k5OTg7e3NqFGjMDc3f6D2Tp48iUqlYuPGjWi1Wt566y1+/vlngoKCWL9+faUS9qCgIOrUqQOAmZkZ3333nX6fRqPhq6++4vDhwyiVSmbMmEFqair29vYl2vjhhx8YN24cnp6eJCcn07dvX4YOHQpAYmIiYWFhZGdn061bN4YPH05QUBArVqwoN2Hfv38//fr107/Py8ujfv36AMydO5eOHTsyatQokpOTGTp0KD/++CMARUVF7Ny5E4Bdu3YBMGLECEaMGIFOp2PixIkMHDiQ5557jvfee48xY8bQo0cPYmNjmTx5Mnv27AHg2rVrfPfdd5w5c4YRI0YQEBDApEmTiI6OloRdVDkfdxsuXM3nP/GNud7ipH67ZZ6al3+/yclWZmhURjRVx9JUfYr8QgUOl/PRFRZzfdMmzFxdMWnUqAaPQAghxNPsmUzanZycsLCwAMDLywsjIyNsbW2xsbEhMzPzgZP2Dh06YG1tTVhYGBcuXCApKYm8vLwHaqO85TEASqUSd3d3BgwYgI+PD6NGjSqVsANMnz6dw4cP89VXX3HmzJkSMXh4eGBkZETdunWxtrYmOzv7vjF5e3uzYMEC/fs7M/8Ax48fZ968eQA0atSIF198kVOnTgHg5uZWbpuff/45KpWK0aNHk5uby+XLl+nRowcAL730ElZWVly4cAGATp06oVAoaNWqFbdu3bpvvEI8CgMDBe++0ZB3fB1I+FNDfFI0rS+3xVBrSPOU30g4/h31GtehYfN6JBfBjbg02hfU1dcvvHxZknYhhBDV5plM2k1MTPSvDQ3vDoFCoUCn0z1we/v27WP58uWMGDECf39/MjIyHqqdinz55ZfExsZy6NAhRo8ezeLFi4mMjCQ+Ph64nfSHhoZiaWlJ165d8fX1Zfv27fr6xsbG+tdlHefnn3/O/v37AZg0adJ94/lrfZ1Oh0ajAUqO7712797NgQMH2LBhQ5lt/LWdOzErFIpS5YSoLgYGCl5o9BpNLH+hyDAEHSq0SjWGJipSL2WSeikTACed1d1KSiV1WreuoYiFEEI8C57JpL2qHTt2jN69exMQEEBycjJRUVF4enoCt2fJ1Wp1iZODB5Wens7w4cPZvHkz7u7uXLt2jcTExFIXeR49epRdu3Zhb29PWFgYgD4BLsud2AAmT57M5MmT9fsiIiIqjKljx45s3rxZvzzmt99+Y9asWeXeTSMhIYGFCxeybt06TE1NATA3N8fR0ZH//Oc/+uUxN2/epGXLlpWKWYjqZOb3IUbnotFm3kDV0oM+V5LZ9+9lZN64Qst2r9LesR25R45iYGpKvX79UNWte/9GhRBCiIckSfsDOnHiBO7u7vr3ffr0Yfjw4UydOpUdO3agUqlo27YtKSkpAPj4+NCvXz8iIiJKzHY/CFtbWwYPHsyAAQMwNTXFycmJgICAUuUmTpzIsGHDMDY2pnXr1jRs2FAfR1maN29OdnY206ZNe+DbKM6YMYOZM2fqk/t58+ZhZ2dXbvng4GDUajWTJ0/Wn0h88sknBAcHM2vWLEJCQlCpVISEhGBUwZ043NzcWLFiBYsXL2bq1KkPFLMQD0JhoMSolaf+fRNre/72aVjJQm/0ecxRCSGEeFYpdFW9jkOIWqKwsJD4+HhcXFwe+oSpKsXExNCuXbuaDuOpI+NaPWRcq56MafWQca0eMq5V735jer+8RWba/+LEiRPMnTu3zH2hoaFlXgBaGYGBgWRlZZXaPmTIEP0dXoQQQgghhCiLJO1/0b59eyIjI6u83fXr11d5m0IIIYQQ4tlgUNMBCCGEEEIIISomSbsQQgghhBC1nCTtQgghhBBC1HKStAshhBBCCFHLSdIuhBBCCCFELSd3jxFCPJRbhw+TExeHsaMjdXv2BCNjsvI0WJvLrxUhhBCiqslfVyHEA0vbuZPrmzaBoQV555XcjN3JRssWRF3X0fw5Ff/n50hzJ8uaDlMIIYR4asjymHuEhIQQEhJS6fJRUVEEBgY+UB+VKR8YGEj37t3p16+f/l9YWBinT59mxowZD9Tfg0hOTubjjz8utT0nJwd3d3dSU1NLbI+OjsbPz6/S7S9fvpwTJ04AMGPGDE6fPv3AMU6fPp2IiIgHrieq1vVD+0BhiMrelxtN3Nn+qjvKjjZ49TDiZaNj7Fu+nx2rfqW4SFPToQohhBBPBZlpf8yio6MrVW7evHl4eHiU2u7q6lrVIelduXKF5OTkUtvNzc3p3r07O3bs4G9/+5t++48//siAAQMq3f6vv/6qP6b58+c/esDisSk8vY/is1Eo6zYiz/01/lRm4GjiCIZ1iHJ5jgLj279KNCbm5LzUho5NwvjtZ2/iD9vi7tO8ZoMXQgghngLP/Ex7VFQUAwYMwN/fn5SUFOLi4hgyZAhdu3Z9oFn3e6nVaoKCghg8eDA+Pj6MGzeOgoIC5s2bB8DAgQMfOtY7M/Vr1qyhb9++9O/fn5kzZ5ZZ/syZMwQGBhIQEEDXrl35/vvvgdvfKAQFBREYGIi3tzcrV64Ebp8oxMfHM3v27FJt+fv7s337dv37wsJCDh48yBtvvMGlS5cYNWoUfn5+DB06lP/+97/A7VnxsWPH0rt3b7Zs2UJ8fDxBQUEkJiYSGBhIVFQUOp2O4OBgevbsia+vL2vXrgVun9wMHToUPz8/fHx82Lt370ONmXh0Bb9uJW/bUor/OErB0Q3EHlrCMU8FRQb5aA0U5NZRlSifbVAXE1MNDZpcJuNaTg1FLYQQQjxdZKYdSEpK4sCBA3z77becPXuWDRs2kJOTg7e3N6NGjcLc3PyB2jt58iQqlYqNGzei1Wp56623+PnnnwkKCmL9+vX88MMP920jKCiIOnXqAGBmZsZ3332n36fRaPjqq684fPgwSqWSGTNmkJqair29fYk2fvjhB8aNG4enpyfJycn07duXoUOHApCYmEhYWBjZ2dl069aN4cOHExQUxIoVK/jHP/5RKh4PDw+ysrK4cOECzZo1Y+/evXh6emJlZcW7777LzJkzef755zl37hzjx49nz549AFhbW7Nq1SoAIiIimDBhAs7Ozvp2d+/ezW+//ca2bdsoLi5m2LBh+Pr68u9//5t58+bRvHlzjh07xqeffkq3bt0e6HMQVaPodMkTJtvLl7jmUY81wzPoE3UOu5t2XK9npt/fQH0WAAOlhiYv2D3WWIUQQoinlSTtgJOTExYWFgB4eXlhZGSEra0tNjY2ZGZmPnDS3qFDB6ytrQkLC+PChQskJSWRl5f3QG2UtzwGQKlU4u7uzoABA/Dx8WHUqFGlEna4PdN9+PBhvvrqK86cOVMiBg8PD4yMjKhbty7W1tZkZ2dXGI9CoaB///5s376dSZMmERkZyciRI8nNzSU+Pp6PPvpIXzYvL4+MjAwA3NzcKmz3119/pXfv3hgZGWFkZERkZCQAwcHBHDhwgN27d3Pq1Clyc3MrbEdUH4WZTYn3TXPAu+5rHEw7THiXY3TUqjC87ICJnTX2uiRcig5SrIZGLj40f6lBDUUthBBCPF0kaQdMTEz0rw0N7w6JQqFAp9M9cHv79u1j+fLljBgxAn9/fzIyMh6qnYp8+eWXxMbGcujQIUaPHs3ixYuJjIwkPj4euJ30h4aGYmlpSdeuXfH19S2xvMXY2Fj/uqzj/Pzzz9m/fz8AkyZNwsfHB39/f/72t78xbNgwkpKS8PT0JCcnp0SyDXDt2jWsra2BkmNbFkNDQxQKhf59SkoKtra2BAYG4uHhgYeHB56enkydOvXhBko8MtMub5Lz5x/oCnIABaZd3iSgaQA9Hfuh1qqxNrImp002P34XirHBn6TZ2OLR413qWDjUdOhCCCHEU0OS9mpw7NgxevfuTUBAAMnJyURFReHp6QncniVXq9UlTg4eVHp6OsOHD2fz5s24u7tz7do1EhMTS13cefToUXbt2oW9vT1hYWHA7aU15bkTG8DkyZOZPHlyif0ODg40aNCA5cuX07dvXxQKBRYWFjRt2pTIyEj69evH0aNHmTlzZplr0JVKZan+O3TowLp16xgyZAhqtZrRo0ezaNEikpKS+O677zAyMmLx4sUVxi2ql2GDlliNX4M65b8Y2DZEaXN79tzc8O43UObmFrw5ZkpNhSiEEEI89SRpf0QnTpzA3d1d/75Pnz4MHz6cqVOnsmPHDlQqFW3btiUlJQUAHx8f+vXrR0RERInZ7gdha2vL4MGDGTBgAKampjg5OREQEFCq3MSJExk2bBjGxsa0bt2ahg0b6uMoS/PmzcnOzmbatGkEBweXWSYgIIAPPviAn376Sb8tODiYWbNm8c0336BSqVi2bFmJ2fM7vLy8+Mc//sHChQv127p37058fDz+/v5otVpGjBiBm5sbAwYM4PXXX8fQ0JCOHTtSUFDwwEuMRNVRGNdB1bx9TYchhBBCPLMUuqpetyFELVFYWEh8fDwuLi4PfYJUlWJiYmjXrl1Nh/HUkXGtHjKuVU/GtHrIuFYPGdeqd78xvV/eIjPt93HixAnmzp1b5r7Q0NAyLwCtjMDAQLKyskptHzJkiP4OL0IIIYQQQoAk7ffVvn37EhdZVpX169dXeZtCCCGEEOLp9Mw/XEkIIYQQQojaTpJ2IYQQQgghajlJ2oUQQgghhKjlJGkXQgghhBCilpOkXQghRLXI1+STnHcZjU5d06EIIcQTT+4eU0uFhIQAtx+QVBlRUVGsWLHige5KExgYeN/ygYGBXLt2jTp16ui3DRo0CDc3NzZs2FDqKazV7aOPPmLChAk0bNjwsfYrhHgwv2Wc4MdTq7FLLqLARkVf17+x71RDEi7n8kJTMwK718dYZYCBAhQKBYV5qRQXFhG9K4IrZ0/j0MKFTv7vYGxqVtOHIoQQtYIk7c+w6OjoSpWbN28eHh4epba7urpWdUj3FRUVxfjx4x97v0KIytPo1Bw++C8GbctHqQXQ8N/ELzmS9jfSdVakX8shS1VEoaUh5ioD2uTtp1HRUQCKCwpIvXSe1EuJ5GZl0Oe92TV6LEIIUVvI8phaJCoqigEDBuDv709KSgpxcXEMGTKErl276mfeH5RarSYoKIjBgwfj4+PDuHHjKCgoYN68eQAMHDjwoWMNDAwEYM2aNfTt25f+/fszc+bMMstPnz6df/zjH/j7+9OzZ09+/PFHAPLz85kyZQpvvPEGffr00W//448/GDRoEP7+/gwdOpSkpCRCQ0O5fv06Y8aMISMj46HiFkJUv3xNAW7H7yTstzX/L3gaxPK6Mh8/Z0MKLA3RAdnFWmIMO1GECQCNGptg26geAOd+O1QD0QshRO0kM+21TFJSEgcOHODbb7/l7NmzbNiwgZycHLy9vRk1ahTm5uYP1N7JkydRqVRs3LgRrVbLW2+9xc8//0xQUBDr16/nhx9+uG8bQUFB+uUxZmZmfPfdd/p9Go2Gr776isOHD6NUKpkxYwapqallPik2OTmZjRs3kpaWhr+/P506dWLNmjXY2Niwfft20tPTGThwIK1bt2bt2rWMGjWK3r17s2XLFmJjYxkzZgwbNmwgNDQUGxubBxoHIcTjY25ojlmxEri7ll2p0YHOnJ7KQg5al/z51ShUZBk8Rz1tMgDGVpaQfBOb+o0eZ9hCCFGrSdJeyzg5OWFhYQGAl5cXRkZG2NraYmNjQ2Zm5gMn7R06dMDa2pqwsDAuXLhAUlISeXl5D9RGectjAJRKJe7u7gwYMAAfHx9GjRpVZsIO4O/vj0qlon79+rRt25aYmBiOHz/Op59+CoCtrS0+Pj5ER0fz6quvMmfOHA4fPoy3tzddu3Z9oJiFEDXLsXsfMjdu0b83qqcixdgVA00e9ukFXKt39zoZla4Aa+01ADQauJGShdLQnG6BUx573EIIUVtJ0l7LmJiY6F8bGt79eBQKBTqd7oHb27dvH8uXL2fEiBH4+/uTkZHxUO1U5MsvvyQ2NpZDhw4xevRoFi9eTGRkJPHx8QD6pThKpVJfR6vVYmhoWCoWnU6HRqOhV69euLu76791OHjwoL4dIUTt59C7Hxb2jcg+dgAj++ew7TuY2RiSsuIErS/eIt9YyaUG5lgaK6mbEUdqFuh0Ki6eb4iy0JOm7q1wbPViTR+GEELUGpK0P+WOHTtG7969CQgIIDk5maioKDw9PYHbSbRarS5xcvCg0tPTGT58OJs3b8bd3Z1r166RmJhY5l1ldu3aRa9evbhy5QpxcXHMnz+fjh07snnzZoKCgkhPT2ffvn2EhITw97//nTfeeIMhQ4bQvHlz/vnPf+pj1mg0Dx2vEOLxsWjbFou2bfXvjYEmb79ExuHLdMkqxNzGFAs3e6ARBzY04/dfkjFAiZGJknY9nWssbiGEqI0kaX+KnDhxAnd3d/37Pn36MHz4cKZOncqOHTtQqVS0bduWlJQUAHx8fOjXrx8REREYGxs/VJ+2trYMHjyYAQMGYGpqipOTEwEBAWWWLSgoICAggKKiIubMmYONjQ3jx49n1qxZ9OnTB41Gw9ixY3nhhRcYO3YsM2bM4IsvvkClUjFr1iwAXnvtNcaMGcM333xDo0ay3lWIJ42hlTHPvdGy1PauQ9xp/XITMq/n0qjNc5hZmZRRWwghnl0KXVWvlRCiDNOnT+fll1/G39//sfVZWFhIfHw8Li4uD31SUpViYmJo165dTYfx1JFxrR4yrlVPxrR6yLhWDxnXqne/Mb1f3iIz7U+QEydOMHfu3DL3hYaGlnsB6P0EBgaSlZVVavuQIUMYOnToQ7UphBBCCCGqjiTtT5D27dsTGRlZ5e0+yFNUH9aCBQuqvQ8hhBBCiKeVPFxJCCGEEEKIWk6SdiGEEEIIIWo5SdqFEEIIIYSo5SRpF0IIIYQQopaTpF0IIYQQQohaTpJ2IcQToaBIi1qjQ5NfTNHNvJoORwghhHisJGmvISEhIYSEhFS6fEpKCi4uLvTr14/+/fvz+uuvM2rUKK5du1ZhvcDAQKKioh413If2zjvvkJqaWu7+06dPM2PGDAA2bdrE9u3bK2zvQcdNPPnUGh1LN19m6D9Osv7jf3P+n4dJDvmVSyHHUWcXgbaAvFvn0WqKazpUIYQQotrIfdqfIHZ2diXu075gwQIWLVrE0qVLazCqin399dcV7nd1dcXV1RWA3377jZdffvlxhCWeILujb3DzxEU83SC9fieO3SqkXUIapjcLuXpkByaqvSSd0KA0sqDxSxMxtWxc0yELIYQQVU6S9scoKiqK4OBgtFotLVu2JD09nSFDhpCamoq/vz8TJ058oPY8PDz0CXtsbCzz58+nsLAQGxsb5syZQ5MmTUqUDw0NZdeuXWg0Gjp37sy0adNQKBTltn/gwAE+++wztFotjRo1Ys6cOdSrV49ffvmFBQsWoNPpcHBwYMmSJahUKmbPnk1MTAwqlYpx48bh6+uLt7c369atIzo6moMHD5KWlsaNGzfo2rUr06dPJzo6mhUrVvDee++xf/9+jh8/znPPPYe9vT1z584lLy+P9PR0xowZI09nfQZpczPRHNiOZXsPChtaAnDZVEWSQTrGJw7yBtcxQAOApiib6+e20KTt5JoMWQghhKgWsjzmMUtKSmLt2rU4OjqSlpbGunXrCA8PZ/Xq1eTk5FS6neLiYvbs2cNLL71EUVER77//Pp988glbt25lyJAhvP/++yXKHzp0iPj4eDZv3syPP/5IamoqW7duLbf9tLQ0Zs6cyRdffMG2bdto27Ytc+bMoaioiKlTp7Jw4UK2bdtGq1at2LJlC+vXrycvL49du3axZs0avvjiC4qKikq0GRMTw+eff8727ds5deoUP/30k37fK6+8gre3N5MmTcLLy4sffviBcePGER4ezrp161i0aFGlx0Y8PXI2zaJOZirF9c1LbFc850ihMh8DlabE9uKC9McZnhBCCPHYyEz7Y+bk5ISFhQUAXl5eGBkZYWtri42NDZmZmZibm5db9/r16/Tr1w+AoqIi3NzcmDJlCklJSVhaWuLm5gZA7969mTlzJtnZ2fq6x44dIy4uDn9/fwAKCgpwcHAot6+4uDjc3NxwdHQEYPDgwYSGhpKYmIi9vT1t2rQBYMqUKQC8++67DBo0CAMDA5577jl27NhRqk0fHx/q1asHgK+vL8ePH6dnz55l9j99+nQOHz7MV199xZkzZ8jLkwsPnzWatD/RXD2DvUkBylsFaOrW0e/TZd2ksNiAaxmG1LdR67db2reviVCFEEKIaidJ+2NmYmKif21oeHf4FQoFOp2uwrp/XdN+R1kXo+p0OjSau7OQGo2Gt956i1GjRgGQlZWFUqksty+tVluqPbVajUqlKrGkJjs7m9zcXAwNDUtsv3TpEg0aNCjRxr39abXaCvv/+9//jqWlJV27dsXX1/e+F6iKp4+ijiUoDWlkfBmr67vIMO6NzrwO2pxbFJ06CMDhODP6uJtQt6kN5nVdsG3sXbNBCyGEENVElsc8BZo1a8atW7eIi4sDYOfOnTg4OGBtba0v07FjRyIjI8nNzUWtVjN+/Hj27NlTbpsvvvgip06dIiUlBYCNGzfi4eGBk5MTaWlpnDt3DoBvvvmG77//ng4dOrBz5050Oh1paWm8+eabpZbHHD58mOzsbAoLC9mxYwddunQpsV+pVOpPNI4ePcqkSZPo1q0bhw4dAihxEiKefgamFph2CQSFAYNTf6Jd+qc4WuzE4erPGGanY65Q0OMFd3RN+tKk7d+p26QbCoX8ShNCCPF0kpn2p4CRkRHLli1j7ty55OfnY2VlxbJly0qU8fb25o8//mDQoEFoNBq8vLzw8/Mrt8169eoxZ84cJkyYQHFxMQ4ODsyfPx9jY2OCg4P54IMPKC4upnHjxixatAiVSsW8efPo27cvAJ988kmppT62tra88847ZGRk0LdvX7y8vErcjvKVV15h6dKlWFhYMHHiRIYNG4axsTGtW7emYcOG+hMI8eww8RyA0fNd0GRcpZdjGxSGRuBSskxMTEzNBCeEEEI8Rgrd/dZkCFEFIiIiiI6OZsGCBY+tz8LCQuLj43FxccHY2Pix9VuemJgY2rVrV9NhPHVkXKuHjGvVkzGtHjKu1UPGterdb0zvl7fITHstcuLECebOnVvmvtDQUOzt7au0v4KCAgYPHlzmvkmTJuHj41Ol/QkhhBBCiIcjSXst0r59+zIvNK0uJiYmj60/f39//Z1rhBBCCCHEg5GrtoQQQgghhKjlJGkXQgghhBCilpOkXQghhBBCiFpOknYhhBBCCCFqOUnahRBCCCGEqOUkaRdCCCGEEKKWk1s+CvEUUmvV5KizsTayITvjBgnH/4OhoTHNG3fCUKsix8GcX2/modHpaGdvjqNFzT98SgghhBDlk6T9MQoJCQFg4sSJlSqfkpJCr169aN68OQqFguLiYuzs7PjnP/9J/fr1y60XGBjIhAkT8PDweOAYP/roIyZMmEDDhg0fuO7jUBNPVn3SnL51in9fWkuOOpuGxfWwDDtFYW42HeoO5madM+QbKdnu5UixSgnA7zfzGO1mj10do0fuW6PVkZWrxsZC9chtCSGEEOIuSdprOTs7uxIPQFqwYAGLFi1i6dKl1dJfVFQU48ePr5a2RfW5fv06W7Zs4cqVKxQ9V0Cuew6YQG7sHxjnZmNt1JCGdVzRKYu43FKjT9gBNDr4/WY+do0fLWmPPZ/N4k3JpGUV06yBCTOGN8WhrszgCyGEEFVBkvZqFhUVRXBwMFqtlpYtW5Kens6QIUNITU3F39+/0rPud3h4eOgT9tjYWObPn09hYSE2NjbMmTOHJk2alCgfGhrKrl270Gg0dO7cmWnTpqFQKMpsOzQ0lOvXrzNmzBjCwsJITk7mn//8JwUFBdjY2DB79mwaNWpEYGAgzz//PDExMRQWFjJ16lTWrVvH+fPnGTlyJCNHjiQkJIQrV65w/vx5MjIyGDx4MKNHj0ar1fLpp59y7NgxFAoFffv2ZcyYMaXG6f333+fjjz8mOzub69ev4+fnx+TJkx/uQ3gGbNiwgWvXrgGguKLEVGFBXscs+N9HbWRgik6hofjFvRhZ2gMvlKhvrnq0y1s0Wh1LfridsANcuFrAV9uvMPstp0dqVwghhBC3SdL+GCQlJXHgwAG+/fZbzp49y4YNG8jJycHb25tRo0Zhbm5eqXaKi4vZs2cPL730EkVFRbz//vt89tlnuLm5sWvXLt5//33Cw8P15Q8dOkR8fDybN29GoVAwbdo0tm7dSr9+/cpsf8yYMWzYsIHQ0FDMzMwICgpi1apVODg4cPjwYT755BO+/fZbAHQ6HZs3b2bFihXMmzePrVu3kp6eTv/+/Rk5ciQA8fHxbNiwAa1Wi7+/P56ensTGxnL16lW2bt1KUVERgYGBtGrVClNTU/04WVhYsHr1at544w38/PzIzs7m1VdfJTAw8JE+h6dVQUGBPmG/Q3nz9vKU7DbW1DudzY28i+RZnMHQLJP6mizs1edJNWwOQAMzFW52Zo8UQ06+hpuZxSW2JV3Lf6Q2hRBCCHGXJO2PgZOTExYWFgB4eXlhZGSEra0tNjY2ZGZmVpi0X79+XZ9kFxUV4ebmxpQpU0hKSsLS0hI3NzcAevfuzcyZM8nOztbXPXbsGHFxcfj7+wO3kzsHB4dKxZyUlERycjLvvfeefltOTo7+dZcuXQBwcHDgxRdfxNTUlIYNG5KVlaUv88Ybb2BmdjsZ9Pb25vjx45w6dQo/Pz+USiWmpqb06dOHY8eO4e3tXWKc3n77bY4fP87q1as5e/YsxcXF5OdLElgWExMT7OzsuH79un6bmX0dTI0NcbFzpevfm3Nq6T+4ceskDVBggI7OhRtIL26ARf2OuLXpUe63L5VlZWZICwdTzl25+xm1a2XxSG0KIYQQ4i5J2h8DExMT/WtDw7tDrlAo0Ol0Fdb965r2O/46swq3Z781Go3+vUaj4a233mLUqFEAZGVloVQqS9Uri1arxdHRUd+3RqPh5s2b+v0q1d0LDe89pnvd25dWq0WpVKLVasuN+d5xWrBgAcnJybzxxht069aNX3755b5j9SwbPHgwmzdv5urVqzRr1oyBAwdiZWWl3+/59gRSf9hIbpoR1L29FOY5ZRZOTds+csJ+R9CbTflq+59cvFpA25YWjPZtUCXtCiGEEEKS9idWs2bNuHXrFnFxcbi5ubFz504cHBywtrbWl+nYsSPLly9n0KBBGBsbM378ePz8/PQz72VRKpVoNBqaNWtGZmYmJ06coH379oSHh7Nt2zbWr19f6Rj37t3LiBEjyM/P58CBA6xatQpDQ0N+/PFHunbtSlFREdu2bWPs2LGl6h49epTZs2fTtm1bDh48SGpqaqmEX9zVoEEDJk6ciE6nKzMJN2nXmybteqPVFJN94ySa4jws7dtiaGRZZTHY2xgxM1DWsAshhBDVQZL2J5SRkRHLli1j7ty55OfnY2VlxbJly0qU8fb25o8//mDQoEFoNBq8vLzw8/OrsN3XXnuNMWPG8M033/D555/rL3Q1Nzdn4cKFDxSjsbExw4YNIycnh3fffZcWLVrQpEkTkpKS6NevH8XFxfTp04fu3bsTFRVVou67777LBx98gImJCfXr18fFxYWUlJQH6v9ZdL9ZcwOlCqv6Lz+maIQQQghRVRQ6WXMgqsGD3pO+OhQWFhIfH4+LiwvGxjV/68GYmBjatWtX02E8dWRcq4eMa9WTMa0eMq7VQ8a16t1vTO+Xt8hMew07ceIEc+fOLXNfaGgo9vb2VdpfQUEBgwcPLnPfpEmT8PHxqdL+hBBCCCHEo5OkvYa1b9++zAtNq4uJiclj6a8mZ9iFEEIIIZ42j/ZEFSGEEEIIIUS1k6RdCCGEEEKIWk6SdiGEEEIIIWo5SdqFEEIIIYSo5SRpF0IIIYQQopaTu8cIIYQQ4qmRnl3Mzqg0cgs0dG9nS7MGpjUdkhBVQpJ2IYQQQjxxdGotOb/fwPhMEUWNc9EaFnLj54NsP3qLnxXOZCrN2RGVxrL3WtLcQRJ38eSTpP0J8DBPF929ezehoaGo1Wp0Oh39+vVj9OjRVRZTSkoKI0aMYP/+/Y/UzunTp9mwYQPz58+vosiEEEI8TXQ6HQWH/k1h7G4UxmaYvjoCozadufJdPAXnMzAFkv6I4uDNMDILLtJAa8Tfacxndm+SY6jkp5h0mjs0rOnDEOKRSdL+FEpNTWXhwoVERERgY2NDbm4ugYGBODk51bonnrq6uuLq6lrTYQghhKiliuIPUHB0AwC63FvkRi5Co2pMwfkMADJ1ucRYHMXheVu0Vn1I1tiSfyEBH4Pvie2o5pz6OVILJmFvUr8mD0OIRyZJey0VFRVFcHAwWq2Wli1bkp6ezpAhQ0hNTcXf37/CWfeMjAyKi4spKCgAwMzMjAULFmBsbFxhnwkJCcycOZOCggKsrKxYvHgx9erVY9asWZw9e5abN2/i7OzM0qVLS9T7888/+eijj0hPT8fExIR58+bRunVrli1bxrFjx8jMzMTOzo5ly5ZRr149OnbsiIuLCzdu3OCDDz5g1apVrF+/nsDAQFxdXYmJiSE9PZ2goCBeffVVbt68ycyZM7l27RoKhYIpU6bwyiuvPPogCyGEqPXUl0+X3KDVkJ54ljspzB+mp/F8MY1fTIdww7A5ANdsnahz0wb4iXzDG2xO3sj4lpMfb+BCVDG5e0wtlpSUxNq1a3F0dCQtLY1169YRHh7O6tWrycnJKbde69at8fHxoVu3bgwYMECf/Ddp0qTC/qZOncq4cePYtm0bvr6+rF27lpMnT6JSqdi4cSM//fQT2dnZ/PzzzyXqzZ49m549e7J9+3YmTpzIypUruXTpEhcuXGDDhg3s2bOHBg0asHXrVuD2ScU777xDZGQkhoYlzxuLi4vZuHEjH330EZ9//jkA8+fPJyAggIiICFauXMnMmTMrPH4hhBBPD0OHVn/ZosCwSWOuF6kBsLRLR2NgROr/EvY7cuq+oH99Jf/P6g5TiGonM+21mJOTExYWFgB4eXlhZGSEra0tNjY2ZGZmYm5uXm7d2bNnM27cOI4cOcKRI0cYNGgQixcvpkePHmWWT09P58aNG3Tt2hWAYcOG6fdZW1sTFhbGhQsXSEpKIi8vr0TdX3/9VT/7/uqrr/Lqq68C8OGHH/LDDz9w8eJFYmNjady4sb7Oiy++WGYcXl5eALRs2ZJbt24B8Msvv3DhwgWWL18OgFqtJjk5mTZt2pR7/EIIIZ4ORi/2QJN6gcJTP6EwMsX0tRHYuLQkqsFNrlzKwijPGkOyMNHmUGBw9++i2uCW/vULVi41ELkQVUuS9lrMxMRE//reGWmFQoFOpyu33sGDB8nLy8PX15eAgAACAgLYtGkTmzdvLjdpV6lUKBQK/fvCwkKuX7/OmTNnWL58OSNGjMDf35+MjIxSfd8bm06n4/z58xQUFDBlyhRGjhxJz549MTAwKFHv3mO7150lPPfGotVqWbt2LdbW1gBcv36dunXrlnv8Qgghnh4KAyV1eo3HtMdYUBjo/z68/t7LnP3tKmd+V1Kky+Olot2cMO6DWmGMqSHUtbiMUm1HG8vn6dcwoIaPQohHJ0n7U8jExIS5c+fi5uaGo6MjOp2OhISECmemLSwssLe358iRI3Tu3JnIyEiio6Oxtramd+/eBAQEkJycTFRUFJ6eniXqtm/fnh07djB48GB++eUXVqxYQY8ePXj55ZcZOnQoGRkZHDx4sNwThvvp2LEj3333HePGjePcuXMMHz6cffv2VfhNgxBCiKeLwkBZ4r1SpaS1hyO5hqm4t5tLQXYKHjoluQZ1saujQmkwtIYiFaJ6SNL+FOrYsSMTJkxg7NixFBcXA7eXnYwfP77CesHBwcyaNYvg4GBsbGxYtGgRGRkZTJ06lR07dqBSqWjbti0pKSkl6s2cOZOgoCC+++47TE1NmTdvHhYWFkyYMIE+ffoA4OLiUqpeZQUFBTFz5kx9W4sWLZKEXQghRAkmFo6YAJY1HYgQ1UShq2idhRBPsMLCQuLj43FxcbnvnXMeh5iYGNq1a1fTYTx1ZFyrh4xr1ZMxrR4yrtVDxrXq3W9M75e3yEz7E+rEiRPMnTu3zH2hoaHY29uXuW/KlCmcO3eu1HZvb28mT5bbYQkhhBBC1EaStD+h2rdvT2Rk5APXW7JkSTVEI4QQQgghqpPcp10IIYQQQohaTpJ2IYQQQgghajlJ2oUQQgghhKjlJGkXQgghhBCilpOkXQghhBBCiFpO7h4jhBDPGI1GR2pGEXY2RhgqFVw49QuJvx7AxOo52ncfgIW1bU2HKIQQ4i8kaX/KhISEADBx4sRK19m9ezehoaGo1Wp0Oh39+vVj9OjR1RViCR999BETJkygYcOGla7j7OxMYmJiNUYlxNNDm5+NLi8LZd3bP2OJyXnMC0vi1q08fDQJuJgncPLyL+RYt6bYOJd9JxfRzy8AAwP5IlYIIWoTSdqfcampqSxcuJCIiAhsbGzIzc0lMDAQJycnfHx8qr3/qKgoxo8fX+39CPEsKji2mfxD60GjRtmgFeaDZrHix1ScsnPpb5ZDer3W6G5oKTRLQWtqQ7tmudS3UXPtj39j27RPTYcvhBDiHpK0PwWioqIIDg5Gq9XSsmVL0tPTGTJkCKmpqfj7+1c4656RkUFxcTEFBQUAmJmZsWDBgjIfn3uvhIQEZs6cSUFBAVZWVixevJj69esTGhrKrl270Gg0dO7cmWnTpvHnn38yYcIEWrZsSUJCAnXr1uXzzz9n06ZNXL9+nTFjxhAWFkZAQABubm4kJCTw3XffsW7dOo4dO0ZmZiZ2dnYsW7aMevXqVenYCfG00mZeJ//gWtBpAdBcPUPB8R+4daMDA+x17GrbDK3SAKiP8vc6tDc6QkuHQgBsLDTk5x8EutVY/EIIIUqS7z+fEklJSaxduxZHR0fS0tJYt24d4eHhrF69mpycnHLrtW7dGh8fH7p168aAAQP0yX+TJk0q7G/q1KmMGzeObdu24evry9q1azl06BDx8fFs3ryZH3/8kdTUVLZu3QrAH3/8wahRo9i+fTuWlpZs27aNMWPGYGdnR2hoKDY2NgB06dKFPXv2kJOTw4ULF9iwYQN79uyhQYMG+raEEPenybiqT9jv0KZfwbuREf9tYfO/hP1/253b06BuybKmBjfRagofS6xCCCHuT5L2p4STkxMWFhYAeHl5YWRkhK2tLTY2NmRmZlZYd/bs2ezfv5+hQ4dy5coVBg0axH/+859yy6enp3Pjxg26du0KwLBhw/jwww85duwYcXFx+Pv74+fnR3x8POfOnQOgbt26PP/88wC0bNmy3JhefPFFAJo0acKHH37IDz/8wIIFC4iNjSUvL+/BBkWIZ5ihYxsUZtYltqlaeTIgwIkiVclf/TqlkuxckxLbNDozFAZG1R2mEEKISpLlMU8JE5O7f3ANDe9+rAqFAp1OV269gwcPkpeXh6+vLwEBAQQEBLBp0yY2b95Mjx49yqyjUqlQKBT694WFhVy/fh2NRsNbb73FqFGjAMjKykKpVJKRkVFiuU1FMd0pFx8fz5QpUxg5ciQ9e/bEwMCgwuMQQpSkMDTCYtin5B8KQ5uThtELXTF+sTvGQDt7cw7kFunL1i3KIeWUO9Yv/4qpWT7FRUaorb1K/JwLIYSoWTLT/owzMTFhyZIlpKSkAKDT6UhISKBNmzbl1rGwsMDe3p4jR44AEBkZyeeff07Hjh2JjIwkNzcXtVrN+PHj2bNnT4X9K5VKNBpNqe2//vorL7/8MkOHDqVp06YcPHiwzHJCiPIpn2uCecDHWL61BJP2b+i3d3azZ0CrurjbmdGzqTVjurShXc9XuHQ+gKtXBuP44mwwblSDkQshhPgrmWl/xnXs2JEJEyYwduxYiouLgdvLa+53R5fg4GBmzZpFcHAwNjY2LFq0CDs7O/744w8GDRqERqPBy8sLPz8//vzzz3Lbee211xgzZgzffPNNie2+vr5MmDCBPn1u38HCxcVFf2IhhHh0berWoU3dOvr3Ll2a4tKlqf590rUaCEoIIUS5FDpZcyCeUoWFhcTHx+Pi4nLfu+E8DjExMbRr166mw3jqyLhWDxnXqidjWj1kXKuHjGvVu9+Y3i9vkZn2Z8CJEyeYO3dumftCQ0Oxt7cvc9+UKVP0F5Ley9vbm8mTJ1dpjEIIIYQQonyStD8D2rdvT2Rk5APXW7JkSTVEI4QQQgghHpRciCqEEEIIIUQtJ0m7EEIIIYQQtZwk7UIIIYQQQtRykrQLIYQQQghRy0nSLoQQQgghRC0nSbsQQoin1s3MYorU2kqVvXTpElFRUdy8ebOaoxJCiAcnt3z8n5CQEAAmTpxY6Tq7d+8mNDQUtVqNTqejX79+jB49+oH7Pn36NBs2bGD+/PkPXLc8ERERREdHs2DBglL7nJ2d6dy5M6tXr9ZvS09Px8vLi7Fjxz7QGJTnnXfeYd68eeXeA748KSkpjBgxgv379/P555/j4uKCj4/PI8cjhHi23LhVxJz1SZy7ko9lHSWT/ByxbXyFyJRwstVZvFzXk/aWvqTkFNPQ3Ii4Q/s5cvQwAAYKBa6OljSoZ8lLXf2wrFe/ho9GCCEkaX9oqampLFy4kIiICGxsbMjNzSUwMBAnJ6cHTjJdXV1xdXWtpkjLdvHiRW7duoW1tTUA//nPf7C0tKyy9r/++utHbkMe4CSEeFj/2n2Vc1fyAcjK0/D51rM07PUtRboiAA7/mUrc5Rv68sVXs/SvtTodv59PIeXXWH4/uotR88MwMbN4vAcghBB/8Uwn7VFRUQQHB6PVamnZsiXp6ekMGTKE1NRU/P39K5xxzsjIoLi4mIKCAgDMzMxYsGBBmY+dvVdCQgIzZ86koKAAKysrFi9ezKVLl1ixYgXr168nMDAQV1dXYmJiSE9PJygoiFdffZVr164xdepUMjMzadWqFb/++iuHDh0q9Q2Bt7c369atu++x+/j4sG/fPgICAoDb3xp0795dv3/Xrl2sWbOGgoICioqK+PTTT2nbti2BgYFYWVlx9uxZPvvsMy5evMjy5cupU6cObdq0QaPRsGDBAn0c0dHRHD58mMzMTJKTk+nUqROzZs1CrVYza9Yszp49y82bN3F2dmbp0qUlYpw+fTovv/wyPXr04P3339d/ZT1+/HiZfRdCVOjy9QL9a2tFFq9Zbyfufwk7gIXGq0R5w5ZtUV84pX+vUpoBkJeVwbmTh3Hp7FvNEQshRMWe+TXtSUlJrF27FkdHR9LS0li3bh3h4eGsXr2anJyccuu1bt0aHx8funXrxoABA/TJf5MmTSrsb+rUqYwbN45t27bh6+vL2rVrS5UpLi5m48aNfPTRR3z++ecAzJ8/n969e7Nt2zZ69epFamrqIx1379692bNnD4A+GX7uuecA0Gq1bNiwgVWrVrF161ZGjx5NaGiovq6zszN79uzB3t6eTz/9lLVr17J582YyMzPL7OvkyZMsX76crVu3cuDAARITEzl58iQqlYqNGzfy008/kZ2dzc8//1xm/Z9++omGDRsSERHB/PnzOXHixCMduxDi6de+1d1vDqeZrqNX/n8x0OoAMNGCqVZZoryBQcn3TbV36xvXMa/GSIUQonKe6Zl2ACcnJywsbn/t6eXlhZGREba2ttjY2JCZmYm5efm/rGfPns24ceM4cuQIR44cYdCgQSxevJgePXqUWT49PZ0bN27QtWtXAIYNGwbcnvG/l5fX7Rmgli1bcuvWLQCOHj3KP//5TwC6d+/+yEtZ3N3duXjxItnZ2ezevZuePXvqk3cDAwO++OIL9u/fz8WLF4mOjsbA4O75nZubGwAnTpzA3d1dv269f//+7N27t8y+7oxjo0aNyMzM5OWXX8ba2pqwsDAuXLhAUlISeXl55ca6dOlSUlNTee211xg/fvwjHbsQ4uk3vJs9Gq2OM/+9iFPRFSiE/r/fYrezJc20htRXRxNv5K0v75xxAQulC+m6HBwVdbmatR+Ahq1epJnbKzV1GEIIoffMJ+0mJib614aGd4dDoVCg0+nKrXfw4EHy8vLw9fUlICCAgIAANm3axObNm8tN2lUqFQqFQv++sLCQ69evlyp3Z4nNvWWVSmWZ8SgUCrTau3dGKC4uLrH/9OnTBAUFAeDi4qK/2FWhUNC1a1f27dvHnj17+PzzzwkLCwMgNzeXAQMG0LdvXzp06ICzs7N+H9wdMwMDgxJ9l+feJUN3xnXfvn0sX76cESNG4O/vT0ZGRrnj3bRpU3bt2sXhw4c5cOAA//rXv9i5c2eJEwkhhLiXkaEBo30d0HWz4dZyUyjKp+2VfF66kk+hixu36hzDSnudmwaNsNVeof7ZVIzM+9BcA5bt7HGws8fDaCRN2rRDIb9rhBC1gPwmekgmJiYsWbKElJQUAHQ6HQkJCbRp06bcOhYWFtjb23PkyBEAIiMj9ctf7sfT05Nt27YB8PPPP5OVdfuiKRsbG86dOwdAXFwcN27cKFHP1dWVyMhIIiMjS92dpnfv3nz33Xf6bxfuSEpKQqFQMHbsWDw8PPjpp5/QaDSlYmrbti2nT5/m+vXr6HQ6du7cWeJEoyLHjh2jd+/eBAQEYGlpSVRUVJl9APz73/8mJCSE3r17849//IP09PQKly4JIcQdCiNT6nQfA4ZGABha2fNcxzEY12lEfc15XIoP4pCeiH2bV2j1YWdaftwZ+54taeHemaYvdJCEXQhRazzzM+0Pq2PHjkyYMIGxY8fqZ7e9vLzuu3QjODiYWbNmERwcjI2NDYsWLeLixYv37W/GjBl8+OGHbNq0idatW+uXx/j6+rJnzx58fX154YUXeP755yt9DC+99BI3btxg4MCBJba3bt2aNm3a0Lt3bxQKBZ07dyYmJqZUfVtbW4KCgvjb3/6GkZERjo6OlV62M3DgQKZOncqOHTtQqVS0bdtWfwL0V/379+f999+nT58+KJVKpk2bVqV3uhFCPN2MX+yBqpUn2szrKO2aojBQ0uy5j8i5+TtFqdewbOuOyrZeTYcphBAVUugqWgMiao1169bxyiuv0KJFC37//Xc++eQTIiIiajSmjIwM1q9fz4QJEzAwMGDevHk0adKEwMDAGo3rjsLCQuLj43FxcbnvXX0eh5iYGNq1a1fTYTx1ZFyrh4xr1ZMxrR4yrtVDxrXq3W9M75e3yEx7BU6cOMHcuXPL3BcaGlrug4OmTJmiX7JyL29v74e+93iTJk14//33MTAwwNjYuNy4Hidra2uysrJ44403UCqVvPDCCwwaNKimwxJCCCGEeOpI0l6B9u3bExkZ+cD1lixZUuWxvPrqq7z66qtV3u6jUCgU+otchRBCCCFE9ZErbIQQQgghhKjlJGkXQgghhBCilpOkXQghhBBCiFpOknYhhBBCCCFqOUnahRBCCCGEqOUkaRdCPBPysy6RkXKYwtzUmg5FCCGEeGByy0chxFPjWOw1Dh84SbLaDp9XGvOiiwUXM/LITNyJs/LI/0opcHQdjaW9PDRECCHEk+OZmGkPCQkhJCTkgers3r0bf39/+vbtS58+ffjmm28equ/Tp08zY8aMh6p7r4iICKZPn/7I7QC88847pKZW3WxjYGAgUVFRVdZeRTZt2sT27dsfS1/iyXLt1Aka7xjHO/krmJa/lYIzl/n3f29w9Gou8Zav8ofqlf+V1HH2l+85vHw76pzcGo1ZCCGEqCyZaS9DamoqCxcuJCIiAhsbG3JzcwkMDMTJyQkfH58HasvV1RVXV9dqivThfP311zUdwkP77bffePnll2s6DFELqX9ejZmikBydC8Uaby471S2x/4yqI62Lf7n9xkBD3Jli0j5ZyGsfjcXazqEGIhZCCCEq76lN2qOioggODkar1dKyZUvS09MZMmQIqamp+Pv7M3HixHLrZmRkUFxcTEFBAQBmZmYsWLAAY2PjCvtMSEhg5syZFBQUYGVlxeLFi7l06RIrVqxg/fr1BAYGYmVlxdmzZ/nss884d+4cK1euRKFQ4Orqyty5c1m1ahWAPj5vb2/WrVtXop9du3axZs0aCgoKKCoq4tNPP6Vt27al2m/Tpk2Zcd5pMzo6msOHD5OZmUlycjKdOnVi1qxZXLt2jalTp5KXl4eBgQFBQUG89NJL+nqOjo5ERUXpj+sOtVrNrFmzOHv2LDdv3sTZ2ZmlS5diYmJS7pj9+9//JjIykvz8fFQqFUuWLKFZs2Z4e3vTt29fjhw5Qn5+PgsXLiQrK4v9+/dz/PhxnnvuOby8vCr8PMSzxbQojctWKq4rXqBZKijQldh/7/vk8/UoyFvJefI5P/0gnQPG4PH6m487ZCGEEKLSnurlMUlJSaxduxZHR0fS0tJYt24d4eHhrF69mpycnHLrtW7dGh8fH7p168aAAQP0yX+TJk0q7G/q1KmMGzeObdu24evry9q1a0uVcXZ2Zs+ePdja2vLPf/6Tf/3rX+zYsQONRsPPP/9832PSarVs2LCBVatWsXXrVkaPHk1oaGip9stL2P/q5MmTLF++nK1bt3LgwAESExPZvHkzr732GhEREUyaNImYmJhKt6VSqdi4cSM//fQT2dnZFR5TTk4Oe/fuZf369Wzfvp3XXnuNsLAw/X5ra2s2b97MkCFD+Oqrr3jllVfw9vZm0qRJkrCLUkxdXuWnVpbctMgG4PkLt0rsN06JIfFyHWKin+diwjkg/397dByLXENBbvZjjVcIIYR4EE/tTDuAk5MTFhYWAHh5eWFkZIStrS02NjZkZmZibm5ebt3Zs2czbtw4jhw5wpEjRxg0aBCLFy+mR48eZZZPT0/nxo0bdO3aFYBhw4YBlFrr7ebmBtxOcNu2bUv9+vUBCA4OBm7P1lfEwMCAL774gv3793Px4kWio6MxMLh77nWn/cpyd3fXj0OjRo3IzMzE09OTiRMnkpCQwKuvvsqbb1ZuBrJDhw5YW1sTFhbGhQsXSEpKIi8vr9zy5ubmLFmyhB07dpCUlMThw4dLnGzcScxbtmzJf/7znwc6LvHsMe0+htzfzvCr+X9pmG5H60tglZ1Pbrv6tHZ1wO4lP/74qQ3Rv11GpztSoq5GXURBbjYmZhY1FL0QQghRsad6pv3eZRmGhnfPTxQKBTqdrqwqABw8eJCdO3dib29PQEAAy5YtIygoiM2bN5dbR6VSoVAo9O8LCwtJTk4uNyZDQ8MS5dPT00lPTy8VW3FxcYn6ubm5DBgwgJSUFDp06EBgYGC5x1wZ9y75udN3u3bt2LFjB507d2bnzp2MHTtWX+ZObGq1ulRb+/btY+rUqZiYmODv70+HDh0qHOerV68yePBgsrOz6dKlC35+fiXK34nt3nESojwKpQoPxx4UGhWxsfN/+MZnC793+42enZvRxMoEU1NT3Pu6M2L2q7i7l7wuwqGFq6xrF0IIUas91Un7wzIxMWHJkiWkpKQAtxPVhISECpecWFhYYG9vz5Ejt2fwIiMj+fzzz8st7+rqSmxsLDdu3ADg008/Zd++fdjY2HDu3DkA4uLi9PvvSEpKQqFQMHbsWDw8PPjpp5/QaDSPdLx/tWjRIrZu3Yqfnx8zZ87kv//9L0CJ2Pbt21eq3rFjx+jduzcBAQFYWloSFRVVYWynT5+mSZMmjBw5EldXV/bu3XvfY1EqlVV+vOLp0bO+L8MaB/KitTudWnTlrdajS5UxrWtN1/FT6f1OEK3av4bH64H4TV5YA9EKIYQQlfdUL495WB07dmTChAmMHTtWP9Pt5eXF+PHjK6wXHBzMrFmzCA4OxsbGhkWLFnHx4sUyy9rb2zNjxgzefvtttFotL730Ev7+/mRlZbFnzx58fX154YUXeP7550vUa926NW3atKF3794oFAo6d+5c6TXnlRUYGMiUKVOIiIhAqVSycOHthGbSpEnMnTuXFStW0Llz51L1Bg4cyNSpU9mxYwcqlYq2bdvqT3zK0qlTJ77//nt8fX3R6XR06NCBs2fPVhjbK6+8wtKlS7GwsKBXr16PdqDiqaNQKOj0XBc6PdflvmWf9+zJ8549H0NUQgghxKNT6CpavyDEE6ywsJD4+HhcXFzue+efxyEmJoZ27eSBPlVNxrV6yLhWPRnT6iHjWj1kXKve/cb0fnnLMzvTfuLECebOnVvmvtDQUOzt7cvcN2XKFP0SkXt5e3szefLkKo3xUQQGBpKVlVVq+5AhQxg6dOhji6OgoIDBgweXuW/SpEkPfN97IYQQQohn0TObtLdv357IyMgHrrdkyZJqiKbq3Xv/9JpkYmLyUOMshBBCCCHukgtRhRBCCCGEqOUkaRdCCCGEEKKWk6RdCCGEEEKIWk6SdiGEEEIIIWo5SdqFEKKW0hYWUpyeXtNhCCGEqAWe2bvHCCFEbXbr8GFSv/sObX4+ps2b4zhpEjqdMUWpuSjrm5CVeQWb+o1RGdX8MwiEEEJUv2dypj0kJISQkJAHqrN79278/f3p27cvffr04Ztvvnmovk+fPs2MGTMequ69IiIimD59+iO3A/DOO++QmppaJW3B7XvER0VFPVTdfv36Vbhfo9Hw9ttv07Nnz4fuQ4jarjAzmz+/XYs2P5/k5q5sf7E7K6Iucfj701z7Lp5LS35h1z/nETrFn8sJv9V0uEIIIR4DmWmvhNTUVBYuXEhERAQ2Njbk5uYSGBiIk5PTAz8cyNXVFVdX12qK9OF8/fXXNR2C3v3u6Z6amkpiYiJHjhx5TBEJ8fit/yGeTho1N55rSJTPQFAoADj6og5z9VmszH/npSYt+CUuhe0rF9Bv4koatqxbw1ELIYSoTs/MTHtUVBQDBgzA39+flJQU4uLiGDJkCF27dr3vrHtGRgbFxcUUFBQAYGZmxoIFC2jRokWF9RISEhg4cCB9+vThzTff5Nq1a0RFRREYGAjcnpGeMGECPXv2JCEhgW3btuHr68vrr7/O9OnTKS4uLvWtgLe3NykpKSX62bVrF4MGDaJv37706tWL3377rcz2y3OnzYiICP7v//6Pv/3tb3Tv3p1Zs2YBcO3aNd588038/f0ZMGAAsbGxpWK597juUKvVBAUFMXjwYHx8fBg3bpx+DMvj7OwM3P42JCgoiMDAQLy9vVm5ciUA7777Lrdu3cLf37/CdoR4UhUWa9l6wZg8pTFxLV7QJ+wAKBT8+cJVNI3+QNXkT17p2QydNp3I5cc5c+LPmgtaCCFEtXtmknaApKQk1q5di6OjI2lpaaxbt47w8HBWr15NTk5OufVat26Nj48P3bp1Y8CAAQQHB6PVamnSpEmF/U2dOpVx48bpk/G1a9eWKuPs7MyePXuwtbXln//8J//617/YsWMHGo2Gn3/++b7HpNVq2bBhA6tWrWLr1q2MHj2a0NDQUu23adPmvm0BnDx5kuXLl7N161YOHDhAYmIimzdv5rXXXiMiIoJJkyYRExNT6bZUKhUbN27kp59+Ijs7u1LHdEdiYiKrV6/mhx9+IDQ0lKysLFauXImdnR0RERGVbkeIJ4nSQIGVsRr7hjfIy7tVar+l4pr+tcpISUOn5gCcPpT0mCIUQghRE56p5TFOTk5YWFgA4OXlhZGREba2ttjY2JCZmYm5uXm5dWfPns24ceM4cuQIR44cYdCgQSxevJgePXqUWT49PZ0bN27QtWtXAIYNGwZQah22m5sbcDvBbdu2LfXr1wcgODgYoMIZcgADAwO++OIL9u/fz8WLF4mOjsbA4O652J32K8vd3V0/Do0aNSIzMxNPT08mTpxIQkICr776Km+++Wal2urQoQPW1taEhYVx4cIFkpKSyMvLq3QsHh4eGBkZUbduXaytrcnOzn6gYxHiSWSoVDDyZR1mJwtplHGKP5KcUDa+fdJtfvM09c3OlSiv071wu55K+dhjFUII8fg8UzPtJiYm+teGhnfPVxQKBTqdrtx6Bw8eZOfOndjb2xMQEMCyZcsICgpi8+bN5dZRqVQo7vlau7CwkOTk5HJjMjQ0LFE+PT2d9PT0UrEVFxeXqJ+bm8uAAQNISUmhQ4cOpZao3HvMlWFsfPdOFHf6bteuHTt27KBz587s3LmTsWPH6svciU2tVpdqa9++fUydOhUTExP8/f3p0KFDheNcmViEeBZ4d2+L1tSaLsZXcfjvTgr2fIvi53V0blYXU4vG+nI5WRZc/7MJBoYGtO1e8XI9IYQQT7Znaqb9YZmYmDB37lzc3NxwdHREp9ORkJBQ4ZITCwsL7O3tOXLkCJ07dyYyMpLo6GgGDhxYZnlXV1dmz57NjRs3eO655/j000/x8PDAxsZGPzsfFxfHjf9n784Doq7Wx4+/h2GTRRhcUMEQkSsYUrliiQv41SKVBEPwRuXNyhS1X8ZVi0xCS0Uypa7F1UrNXEFRcd8q01AoUwpNUxREcWEHWWb5/cF1kmRxAUF8Xn/B53Oec55zLH3mzJnPXLlSKS4tLQ2FQsG4cePQ6XT8+9//RqPR1N3kgXnz5mFra8tLL71E7969GTFiBAAqlYrTp0/Tvn179uzZc0vcoUOHeOaZZ/D39yc9PZ3ExET69OlTp7kJ0RQpDI2wCpyJ8Z6lBOZloXN2x3LgSyiNjNFpe1OY/TvodOTl2GLeuoT2rq1o3sKsodMWQghRj6Rovw0eHh6EhIQwbtw4/U63p6cnEyZMqDEuMjKSmTNnEhkZiUqlYt68eZw9e7bKtra2trz77ru88soraLVaHn/8cfz8/MjPz2fHjh34+Pjw6KOP0qVLl0pxLi4uuLq68swzz6BQKOjbt+9tnzm/XcHBwUyZMoW4uDiUSiVz584FYNKkSURERPDpp5/St2/fW+Kef/553n77bRISEjAyMqJbt263fIhWCFE1w7bOWL4w55brCgMlli0rnkBl2Qrs/3G/MxNCCNEQFDo5cyCaqNLSUlJSUnBzc6t01KahJCcn071794ZOo8mRda0fsq51T9a0fsi61g9Z17pX25rWVrfITvv/JCUlERERUeW9mJgYbG1tq7w3ZcoUTp8+fct1Ly8vJk+eXKc53ovg4GDy8/NvuR4YGEhQUNB9y6OkpIRRo0ZVeW/SpEl3/Nx7IYQQQoiHgRTt/9OjR49av9inKlFRUfWQTd1bsWJFQ6cAVHw+4G7WWQghhBDiYfZQPT1GCCGEEEKIB5EU7UIIIYQQQjRyUrQLIYQQQgjRyEnRLoQQQgghRCMnRbsQQgghhBCNnDw9RgghhKiFWqPjh+O5ZOWU0aeLFQ62pqQXn6dIXYiz5T9QKir/c3rm10scz8jjSktzmluZ8KRd8wbKXAjRVDTpoj06OhqAiRMn3nbM9u3biYmJQa1Wo9Pp8PX1ZezYsXc89vHjx1m9ejWzZ8++49ibxcXFcfjwYebMufWbEe/Uq6++yqxZs6p95vydCg4OJiQkhN69e9dJf0II0VjNXpnGT6kV33Wxck8W3gGHOFWeBEBLk1a81fnfWBlZo9WUc2TbWv7MyeZPJ1/Q6riYU8KZvFI8lfLmthDi7jXpov1OZWVlMXfuXOLi4lCpVBQVFREcHIyjo+Mdf+lP165d6dq1az1lenf++9//NnQKQgjxwMm4UqIv2AGUzS9xKS+VZ3/vS4sCa862vsB+yz34OvhzJjkaS9M/MHjECxQKfUy5VsdlhXFDpC+EaCKaXNGemJhIZGQkWq0WZ2dnsrOzCQwMJCsrCz8/vxp33XNycigvL6ekpAQAc3Nz5syZU+VXyd4sNTWVGTNmUFJSgpWVFfPnz+fcuXN8+umnrFixguDgYKysrDh16hSffPIJp0+fZvHixSgUCrp27UpERASff/458Ne7Al5eXixfvrzSONu2beOrr76ipKSEsrIyPvzwQ7p163ZL/66urlXmeaPPw4cP88MPP5CXl0d6ejpPPfUUM2fO5NKlS7z99tsUFxdjYGBAWFgYjz/+uD7O3t6exMRE/bxuUKvVzJw5k1OnTnH16lU6d+7Mxx9/jKmpaZV5lJeX884773Dq1CkARo8eTUBAANOmTaNXr174+fkB0LlzZ06ePEl0dDSZmZn8+eef5OTkMGrUqLt690MIIe5ORfFtqShirMkGmlmnYXh4NK3zbQBoWWDNhWa5lLbKoiz/DwDMdXm39GKm0Ny/lIUQTU6TfK8uLS2NZcuWYW9vz7Vr11i+fDmxsbEsXbqUwsLCauNcXFzw9vZm0KBBjBw5Ul/8Ozg41Dje22+/zfjx49m8eTM+Pj4sW7bsljadO3dmx44d2NjY8NFHH/Hll1+SkJCARqPhu+++q3VOWq2W1atX8/nnn7Np0ybGjh1LTEzMLf1XV7D/3S+//MKiRYvYtGkT+/bt4+TJk6xfv54BAwYQFxfHpEmTSE5Ovu2+jIyMWLNmDbt27aKgoKDGOf3yyy/k5eWxceNGvvjiC5KSkmodIyUlha+++oq4uDjWrFnDb7/9dlu5CSHEvbJvZcKTj1rxgkkCPY1+x/magb5gv6FdZgsUKPW/d1D/SmvNGf3vj7Uyo4Wi/L7lLIRoeprcTjuAo6MjlpaWAHh6emJsbIyNjQ0qlYq8vDwsLCyqjQ0PD2f8+PEcOHCAAwcOEBAQwPz58xk8eHCV7bOzs7ly5QoDBw4EKnaNoWLH/2bu7u5ARcHarVs32rRpA0BkZCRQsVtfEwMDAz777DP27t3L2bNnOXz4MAYGf73mutH/7XriiSf069C+fXvy8vLo06cPEydOJDU1lf79+/PCCy/cVl89e/bE2tqalStXcubMGdLS0iguLq62vbOzM2fPnuWVV16hX79+/Pvf/651jKFDh2Jubg5UvGPw008/8eijj95WfkIIca/eCXLg6qILcB2MtdcpUhSDzkx/38JWhVGzFlw4V4SdgzlK1PQpWsWe323pe1lDz49mkZyc1nATEEI88JrkTvvNxzIMDf96XaJQKNDpdNXG7d+/n61bt2Jra4u/vz8LFiwgLCyM9evXVxtjZGSE4qZzi6WlpaSnp1ebk6GhYaX22dnZZGdn35JbeXnlHZmioiJGjhxJRkYGPXv2JDg4uNo5346bj/zcGLt79+4kJCTQt29ftm7dyrhx4/RtbuSmVqtv6WvPnj28/fbbmJqa4ufnR8+ePWtcZ5VKRUJCAi+88AJnz55lxIgR5OfnV1qDv89fqfxrB0ur1Vb6XQgh6ptSqcDcsQsACoUGC+V2FIpSAIxamdFicEcUCgVWbYeQuO88R48WsGfnFVx+TaF9l84NmboQoolokkX73TI1NSUqKoqMjAygolBNTU2t8ciJpaUltra2HDhwAID4+HgWLlxYbfuuXbty9OhRrly5AsCHH37Inj17UKlUnD59GoBjx47p79+QlpaGQqFg3Lhx9O7dm127dqHR1O35yHnz5rFp0yZGjBjBjBkz+P333wEq5bZnz55b4g4dOsQzzzyDv78/zZs3JzExscbc9uzZQ2hoKAMGDCAsLAwzMzMuXryItbW1fpzdu3dXitm9ezdlZWXk5eWxb98++vbtW1fTFkKI22L2f69h6NQDFAY0a6uh/dgOPPJmbx4J6YmRTTMAevm8gHfgTNqq7Rlg0YkezwVjGxTUwJkLIZqCJnk85m55eHgQEhLCuHHj9Du9np6eTJgwoca4yMhIZs6cSWRkJCqVinnz5nH27Nkq29ra2vLuu+/yyiuvoNVqefzxx/Hz8yM/P58dO3bg4+PDo48+SpcuXSrFubi44OrqyjPPPINCoaBv3763feb8dgUHBzNlyhTi4uJQKpXMnTsXgEmTJhEREcGnn35aZbH8/PPP8/bbb5OQkICRkRHdunXTv/CpSr9+/di5cyfPPvssJiYmDB8+nM6dOxMUFMSbb77JsGHD8PDwoFWrVvoYExMTRo8eTWFhIa+//jqdOnWq07kLIURtDMytsRwVXmu7R7r24pGuve5DRkKIh4lCV9M5BiEagbt53j5UHFVKSUnBzc2t1icA3Q/Jycl07969odNocmRd64esa92TNa0fsq71Q9a17tW2prXVLQ/dTntSUhIRERFV3ouJian2i4emTJmiP7pxMy8vLyZPnlynOd6L4OBg8vPzb7keGBhI0H18i7akpIRRo0ZVeW/SpEl3/Nx7IYQQQoiH2UNXtPfo0YP4+Pg7jouKiqqHbOrezc9Pb0impqZ3tc5VudMddiGEEEKIpkY+iCqEEEIIIUQjJ0W7EEIIIYQQjZwU7UIIIYQQQjRyUrQLIYQQQgjRyEnRLoQQQgghRCP30D09Rgjxl7JyDQcO/46Btohuj3WhefPmDZ2SEEIIIaogRbsQD6n0yyVEL1yKoe4CAD/u3czzQ1pC2UWaWXeirUsghsZSxAshhBCNgRyP+Z/o6Gj9N2/eru3bt+Pn58fw4cMZNmwYS5YsqdOcMjIy8PLyAmDatGnExcXV2H769OlcuHChxjZr165ly5YtdZbj/Zaens4777zT0Gk8sPJ/uUT6f5JIX5zE5nVx+oIdwMM1D3XhSdRl+RRc/pnM379pwEyFEEIIcTMp2u9SVlYWc+fOZenSpWzatInVq1ezdetW9uzZ02A5JSYmotPpamzz888/U1ZWdp8yqnuZmZmkp6c3dBoPpOvncrmy8STXrxRzRqujQ3mbm+7qaKNSV2pflJ16fxMUQgghRLUe6uMxiYmJREZGotVqcXZ2Jjs7m8DAQLKysvDz86vxmzhzcnIoLy+npKQEAHNzc+bMmYOJiUmNY6ampjJjxgxKSkqwsrJi/vz5tGnThs8//5xNmzahVCp56qmnCA0NrbaPBQsWcOjQIfLy8mjdujULFiwgLi6Oy5cv89prr7Fy5UpUKtUtcQcPHmTv3r389NNPtGrVioSEBHJzczl37hyhoaGUlpby1VdfUVJSQllZGR9++CHdunUjODiYrl27kpycTHZ2NmFhYfTv35/NmzezZMkSlEol9vb2REZGMmXKFIYNG8aQIUMA8PPzY9asWXTp0qXKufzxxx9ERERQXFxMdnY2r732GkFBQURHR5OVlcW5c+e4cOECzz//PG+88QazZs0iIyOD8PBw3n///RrXWlRWmHSS68ZKdnm0o9DMCGiD2WULihM3AgpyCpTYNNfo25tatm+oVIUQQgjxNw/9TntaWhrLli3D3t6ea9eusXz5cmJjY1m6dCmFhYXVxrm4uODt7c2gQYMYOXKkvvh3cHCocby3336b8ePHs3nzZnx8fFi2bBnfffcde/fuJTY2lg0bNnDu3DlWr15dZfy5c+c4c+YMq1evZseOHbRt25ZNmzbx2muv0bp1a2JiYqos2AGefPJJvLy8mDRpEp6engBYW1uzbds2BgwYwOrVq/UvHsaOHUtMTIw+try8nDVr1jB9+nQWLlwIwCeffMKXX35JXFwcdnZ2nDlzBl9fXxISEvRrW1paWm3BDrBu3TrGjx9PbGwsy5cvZ968efp7J0+eZOnSpaxbt46YmBjy8/MJCwvDzc1NCva7oL50jNPtLf9XsFfQtW6LmZkBpoXpHD+UTmFexYtQEws72rm+0FCpCiGEEOJvHvqi3dHREUtLSwA8PT0xNjbGxsYGlUpFXl5ejbHh4eHs3buXoKAgMjMzCQgIYOfOndW2z87O5sqVKwwcOBCA0aNHM3XqVH766SeeffZZmjVrhqGhIf7+/hw6dKjKPhwcHJg6dSrr1q1jzpw5HD16lOLi4rucPbi7uwNgYGDAZ599xoEDB1i4cCEbNmygqKhI3+5Gke/s7Exubi4AAwcOJCgoiHnz5jFkyBBcXV3p378/v/zyC4WFhWzZsoXhw4fXOP60adMoLS3liy++4JNPPqk0l969e2NsbEyLFi2wtramoKDgrucpwMzRkFLdrf9NKyy0mBemUXwthx8S/uT8OTucPN7DxKJdA2QphBBCiKo89EW7qamp/mdDw79OCykUihrPh+/fv5+tW7dia2uLv78/CxYsICwsjPXr11cbY2RkhEKh0P9eWlpKeno6Wq32lrZqtfqWawApKSm88soraLVahgwZwqBBg2o9x16TG/MvKipi5MiRZGRk0LNnT4KDgyu1u3Hs5+b8w8LCWLRoEVZWVoSGhhIfH4+xsTEDBw5k7969bN++naFDh9Y4/ptvvsmuXbtwcnLizTffrHLMG+PeyzwFWA4cicvlXRho/vpvy0ypI3jkv3B4tCdmzVW4evwfA4LebLgkhRBCCFGlh/pM+70wNTUlIiICd3d37O3t0el0pKam4urqWm2MpaUltra2HDhwgL59+xIfH8/hw4d59tlnWbx4MaNGjcLQ0JDY2Fg8PDyq7OPIkSP06tWLoKAgcnJy2L9/P4MHDwZAqVSi0WiqjLuhujZpaWkoFArGjRuHTqfj3//+d419qdVqfHx8WLFiBa+//jrl5eWkpqbi6+uLr68vs2bNwtraGjs7uxrz+fHHH9m2bRu2trasXLkSoMZxlUpltS9oRM0Mmlni/nY41ilH+bXEDPPWbejZxoLmJoY8MuXjhk5PCCGEEDWQov0ueXh4EBISwrhx4ygvLwcqjpBMmDChxrjIyEhmzpxJZGQkKpWKefPm0bp1a1JTU/H390etVtO3b19eeOEFLl26dEu8j48PISEhDBs2DAA3NzcyMjIAGDBgAK+99hpLliyhffuqP0T45JNP8vHHH+uPBN3g4uKCq6srzzzzDAqFgr59+5KcnFztPAwNDZk0aRL/+te/MDExoUWLFsyZMweA7t27U1BQQFBQUI1rATBx4kRGjx6NiYkJLi4u2NnZ6edTFScnJwoKCggNDSUyMrLW/kVlCoUBDl27UfMnL4QQQgjR2Ch0cuZANFGlpaWkpKTg5uZW61N97ofk5GS6d+/e0Gk0ObKu9UPWte7JmtYPWdf6Ieta92pb09rqFtlpr0FSUhIRERFV3ouJicHW1rbKe1OmTOH06dO3XPfy8mLy5Ml1mmNjHP/v5s6dy8GDB2+57ubmxuzZs+97PkIIIYQQDxop2mvQo0cP4uPj7zguKiqqHrJ5cMb/u6lTpzZ0CkIIIYQQD7SH/ukxQgghhBBCNHZStAshhBBCCNHISdEuhBBCCCFEIydFuxBCCCGEEI2cFO1CCCGEEEI0cvL0GCHEA6NcoyXlajEF5Rq6tDCjZTOjhk5JCCGEuC8eup326OhooqOj7yhm+/bt+Pn5MXz4cIYNG8aSJUvqNKeMjAy8vLwAmDZtGnFxcTW2nz59OhcuXKixzdq1a9myZUud5dhY3M7cRdO1OOkSW87k8F16Pp8fvURGQSnodFyOjeWPkBBOTZlCzoHv0ahLGjpVIYQQok49dEX7ncrKymLu3LksXbqUTZs2sXr1arZu3cqePXsaLKfExERq+yLbn3/+mbKysvuU0f1zO3MXTVPyuQLytBr97zrgq22H2LbsC1ZtXUlaUTbqRwy4WLSak/v+H+cTY9Dd1F4IIYR4kD0Ux2MSExOJjIxEq9Xi7OxMdnY2gYGBZGVl4efnx8SJE6uNzcnJoby8nJKSip07c3Nz5syZU+XXy94sNTWVGTNmUFJSgpWVFfPnz6dNmzZ8/vnnbNq0CaVSyVNPPUVoaGi1fSxYsIBDhw6Rl5dH69atWbBgAXFxcVy+fJnXXnuNlStXolKpbok7ePAge/fu5aeffqJVq1YkJCSQm5vLuXPnCA0NpbS0lK+++oqSkhLKysr48MMP6datG8HBwXTt2pXk5GSys7MJCwujf//+bN68mSVLlqBUKrG3tycyMpIpU6YwbNgwhgwZAoCfnx+zZs2iS5cuVc5l2rRpmJiYcPz4cYqKinjjjTd47rnnuH79OmFhYZw8eRKFQsErr7zCc889x4kTJ5gxYwZqtRoTExM++ugjdu7cWevcRdOi0+ko+W45pb9sw8isI7i/Uem+GjXllq1QG0KeiQb7Rwv09woLfuba2X/Q0mnAfc5aCCGEqHsPzU57Wloay5Ytw97enmvXrrF8+XJiY2NZunQphYWF1ca5uLjg7e3NoEGDGDlypL74d3BwqHG8t99+m/Hjx7N582Z8fHxYtmwZ3333HXv37iU2NpYNGzZw7tw5Vq9eXWX8uXPnOHPmDKtXr2bHjh20bduWTZs28dprr9G6dWtiYmKqLVqffPJJvLy8mDRpEp6engBYW1uzbds2BgwYwOrVq/UvHsaOHUtMTIw+try8nDVr1jB9+nQWLlwIwCeffMKXX35JXFwcdnZ2nDlzBl9fXxISEvRrW1paWm3BfkN6ejpr1qxh2bJlzJs3jytXrhAdHY1KpWLLli0sW7aM6OhoTpw4wbJlyxgzZgxxcXEEBARw9OjR25q7aFrKju+h5OBadNcLaH/tV9pf+11/T6cuR332WEU705bYtmp7S3zxxT/vW65CCCFEfXpoinZHR0csLS0B8PT0xNjYGBsbG1QqFXl5eTXGhoeHs3fvXoKCgsjMzCQgIICdO3dW2z47O5srV64wcOBAAEaPHs3UqVP56aefePbZZ2nWrBmGhob4+/tz6NChKvtwcHBg6tSprFu3jjlz5nD06FGKi4vvcvbg7u4OgIGBAZ999hkHDhxg4cKFbNiwgaKiIn27G0W+s7Mzubm5AAwcOJCgoCDmzZvHkCFDcHV1pX///vzyyy8UFhayZcsWhg8fXmsOfn5+GBkZ0aZNG7p160ZycjI//fQTI0eOBMDGxgZvb28OHz5M//79iYiI4J133sHS0pJhw4bd9dzFg0ud/lul34ce/xTl0RSKfk+idP9qdHlXAVDoNOReLgGtolJ78xY1v5AUQgghHhQPTdFuamqq/9nQ8K9TQQqFosYz0vv372fr1q3Y2tri7+/PggULCAsLY/369dXGGBkZoVD8VTyUlpaSnp6OVqu9pa1ara6yj5SUFF555RW0Wi1Dhgxh0KBB93SW+8b8i4qKGDlyJBkZGfTs2ZPg4OBK7W4c+7k5/7CwMBYtWoSVlRWhoaHEx8djbGzMwIED2bt3L9u3b2fo0KG15qBUKvU/a7VaDA0Nb5mTTqdDo9Hw9NNPs2HDBtzd3fn66695//3373ru4sFlaOdS6XelTsdb/l15oY8rutL/vUOm09Gs8Bw5jygwz3sGRYENiuuWWGgH0sK1TwNkLYQQQtS9h6Zov1umpqZERUWRkZEBVBSVqampuLq6VhtjaWmJra0tBw4cACA+Pp6FCxfi4eFBQkICJSUlqNVqYmNj8fDwqLKPI0eO0KtXL4KCgujQoQP79+9Ho6n4UJ1SqdT/XJ3q2qSlpaFQKBg3bhy9e/dm165dNfalVqsZPHgwKpWK119/HV9fX1JTUwHw9fXlq6++wtraGjs7uxrzAdi2bRs6nY4LFy5w7NgxunfvjoeHh/4FUHZ2Nnv27KFXr168+eabHD9+nMDAQCZPnszvv/9+23MXTYex+yBMegwDQ2MU5taYPTsJ09b2uHVx4dX/xl/W4gABAABJREFUNxZb75YYDlTTfUogwePn4fD8cDoNnME/vGbzyOBRDZ2+EEIIUWceig+i3gsPDw9CQkIYN24c5eXlQMURkgkTJtQYFxkZycyZM4mMjESlUjFv3jxat25Namoq/v7+qNVq+vbtywsvvMClS5duiffx8SEkJER/LMTNzU3/wmHAgAG89tprLFmyhPbt21c5/pNPPsnHH3+sPxJ0g4uLC66urjzzzDMoFAr69u1LcnJytfMwNDRk0qRJ/Otf/8LExIQWLVowZ84cALp3705BQQFBQUE1rsUNJSUl+Pv7U1ZWxgcffIBKpWLChAnMnDmTYcOGodFoGDduHI8++ijjxo3j3Xff5bPPPsPIyIiZM2fe9txF06EwUGI2eBzN/u/1Su/+ADi26Mhk77dITk6mu2N3/XUja9O/dyOEEEI88BQ6eX6euA+mTZtGr1698PPzu29jlpaWkpKSgpubW61P+7kfkpOT6d69e+0NxR2Rda0fsq51T9a0fsi61g9Z17pX25rWVrfITjuQlJRERERElfdiYmKwtbWt8t6UKVM4ffr0Lde9vLyYPHlynebYGMf/u7lz53Lw4MFbrru5ud33XIQQQgghmhIp2oEePXoQHx9/x3FRUVH1kM2DM/7fTZ06taFTEEIIIYRokuSDqEIIIYQQQjRyUrQLIYQQQgjRyEnRLoQQQgghRCMnRbsQQgghhBCNnBTtQgghhBBCNHJStAshhBCNhFar4/SFYq7llzd0KkKIRkYe+SiEEEI0Atfyy3ln6Z+cv1yKgQGM9rJldN/mHMv5mdNXztPCvCVPduhPaZ6WksIyWto3r/RNwSXFBfz5ywGMTc3o+NiT6FBgaCj/zAvRVMj/zQ+g6OhoACZOnHjbMdu3bycmJga1Wo1Op8PX15exY8fWGPPbb78xYcIE7OzsWLly5T3lvG/fPtLS0hgzZky1bfbs2UNKSkqNXwxVlzkJIURjsmZ/FucvlwKg1ULx96vYk5GMQf5QHr9qhxYtB5rv4uQ5BTod2LS1ZNhrT2De0pKC7MusjHiNorxrtLRXcer39WQXGZJT2p4R/gHY29s38OyEEPdKivaHQFZWFnPnziUuLg6VSkVRURHBwcE4Ojri7e1dbdy+ffsYPnw4b7311j3nkJKSUmsbb2/vGvOp65yEEKIxycr560hMe4NLjDTZzR5FP5642hYAAwxwyLfkkrKYXLWW7IsF7Hv3vzz2qCHn2hqT16ITJv1fopmqlLbliXTgOpnXzrJmzRreeuutSrvyQogHjxTtD4jExEQiIyPRarU4OzuTnZ1NYGAgWVlZ+Pn51bjrnpOTQ3l5OSUlJQCYm5szZ84cTExMqo357rvvWLVqFQDGxsZkZGSQm5vLuXPnCA0NxcbGhtmzZ1NaWopKpeKDDz7AwcGB4OBgunbtSnJyMtnZ2YSFhWFnZ8fq1asBaNeuHf7+/lWOGRcXx+HDh5kzZw5eXl4MHz6cAwcOcP36debOncu1a9cq5RQSEnJXaymEEI1Rv65WHD6RD0A7g8sAWBVZ3tLOzMCAXLQAlCjMKPz5J856PkWZ92TKgJPAZWUHvEq+pl2Lcn46cZmSkhKaNWt2v6YihKgHUrQ/QNLS0ti3bx9ff/01p06dYvXq1RQWFuLl5cWYMWOwsLCoMs7FxQVvb28GDRqEq6srvXv3ZtiwYTg4OFQ7Vv/+/QkMDAQgJCSEadOmYW1tzeeff05ZWRlPP/00n3zyCe7u7mzbto233nqL2NhYAMrLy1mzZg179+5l4cKFxMXF6fuqrmCvirW1NevXr2fFihV88cUXREdHV8pJCCGaEu9uNmi0sP/XHFqbP4Hu/AZsS1OBR/VtNDodV8s1+t9bq9MBKGj7WKW+cpR25CtaYK65RouWtlKwC9EEyNNjHiCOjo5YWlbsunh6emJsbIyNjQ0qlYq8vLwaY8PDw9m7dy9BQUFkZmYSEBDAzp0772h8d3d3oOLFQ/PmzfW/P/PMM5w/f56CggJ9bgDOzs7k5ube0Rg3q6t+hBDiQTG4hw0fvuLE+EA3LAM/wLGVBUatD1HWoghFp2ao/F3o0M0WG91lulz/iVbqCwBYm5tV6keh02CsKyEzvw0jA4IbYipCiDomO+0PEFNTU/3PNz8RQKFQoNPpqo3bv38/xcXF+Pj44O/vj7+/P2vXrmX9+vUMHjz4jsfXarW33NPpdGg0Fbs/N47d3Ov5ybrqRwghHkRGj7hh9M+P+PsBmUGPtaG4jwVZa9JRZ1vTvHdvvLt14uKJaxSrK/5+7qm6Tpeub2Jq2f7+Jy6EqBdStD8ETE1NiYiIwN3dHXt7e3Q6Hampqbi6ut5Vfx07diQ3N5djx47h7u7O1q1badeuHdbW1tXGKJVKSktL73IGQgghbmbWuTOOM2ZUujaxW1vO55eiMjWkRTOjBspMCFFfpGh/CHh4eBASEsK4ceMoL694OoGnpycTJky4q/6MjY1ZsGABERERXL9+HSsrKxYsWFBjTM+ePZk6dSotW7YkOFjeqhVCiLpmrDSgk0rOrgvRVCl0NZ2rEOIBVlpaSkpKCm5ubjU+Ked+SU5Opnv37g2dRpMj61o/ZF3rnqxp/ZB1rR+yrnWvtjWtrW6RnfYmIikpiYiIiCrvxcTEYGtrW+W9KVOmcPr06Vuue3l51fglR3dr69atfPHFF1Xei4+Pr/PxhBBCCCGaAinam4gePXrcVdEbFRVVD9lUz8fHBx8fn/s6phBCCCHEg04e+SiEEEIIIUQjJ0W7EEIIIYQQjZwU7UIIIYQQQjRyUrQLIYQQQgjRyEnRLoQQQjQx2WXXuHg9s6HTEELUIXl6jBBCCPEAKj93nJKDa9CVl2DS7VlM3AYCsOrcCn68+gM6dDhb/INxnSZiqjTVx2VkZHB41+9k/6FF1UJHt//rgONjd/cN2UKI+0d22utZdHQ00dHRdxSzfft2/Pz8GD58OMOGDWPJkiW1xvz2228MGDCAf/7zn3ebqt6+ffv46quv7rmfrKwsXn311Srvde7cucrrXl5eZGRkEBcXx7Rp0+45ByGEaIq0+VcpXDMD9dlf0GSkUrxpPj/v+5HThac4cPV7dFR8b2J+xlV+/uUAOo0WgLi4OP7zn/+QdGofti47cHxsJ2eyE/jt8OdoNWUNOSUhRC1kp72RycrKYu7cucTFxaFSqSgqKiI4OBhHR0e8vb2rjdu3bx/Dhw/nrbfeuuccUlJS7rkPAFtbW/773//WSV9CCCH+Un72Z1BXLrJPfLcfk7ZP6n/3SeqLS2YHAM7/eIQSu0sk/ZwEQBuVGvNH2rHNxB+twgiFWkP+6RT6dO523+YghLgzUrTXg8TERCIjI9FqtTg7O5OdnU1gYCBZWVn4+fkxceLEamNzcnIoLy+npKQEAHNzc+bMmVPl19ne8N1337Fq1SoAjI2NycjIIDc3l3PnzhEaGoqNjQ2zZ8+mtLQUlUrFBx98gIODA8HBwXTt2pXk5GSys7MJCwvDzs6O1atXA9CuXTv8/f2rHDMuLo79+/eTm5vL5cuXCQwM5MKFC/z0009YW1uzZMkSrly5wosvvsjevXvJyMggNDSU4uJiHnvsMX0/ubm5hIaGcunSJZycnCgtLb1lrGPHjvHRRx9RUlKCSqUiPDyc9u3b1/4HIYQQTZTSxv6Waxe1LTE7a4dJGxNsrlrqC3YAdXYJWedOwf9OyVg003DceCBahREAOoWSAzlWeOh0KBSK+zEFIcQdkuMx9SQtLY1ly5Zhb2/PtWvXWL58ObGxsSxdupTCwsJq41xcXPD29mbQoEGMHDlSX/w7ODhUG9O/f38CAwMJDAwkJCQEAGtra7Zt20bfvn156623eO+999i0aROBgYGVduPLy8tZs2YN06dPZ+HChXTq1EnfV3UF+w3Hjx/nP//5D0uXLuWjjz6iX79+bN68GYAffvihUtuIiAj8/PyIj4+nW7e/dnIWLVpEly5d2Lx5M//85z+5evVqpbiysjLCwsKIiopiw4YNjBkzhvfee6/GvIQQoqkzbN+F/H88i0ZX8c94stqF78q706FFCyb/420eNexyS0xrLGleXg5A5jUjSjGvdL9UZ4hWV/+5CyHujhTt9cTR0RFLS0sAPD09MTY2xsbGBpVKRV5eXo2x4eHh7N27l6CgIDIzMwkICGDnzp13NL67uztQ8eKhefPm+t+feeYZzp8/T0FBgT43AGdnZ3Jzc+9ojG7dumFhYYGdnR0Affr0AcDOzo78/PxKbQ8fPswzzzwDwPDhwzEyMtJf9/HxAaBnz5637KCnpaWRnp7OG2+8ga+vL/Pnzyc9Pf2O8hRCiKbIYeR4NrrMY1LRv4m6/iI9urTAu5sKB/MO+D41GqWlsb6tTqeFojMMvnaNRwsKsCguxeBsYqX+nEw1KA1kl12IxkqOx9QTU9O/PqlvaPjXMisUCnS66rcy9u/fT3FxMT4+Pvj7++Pv78/atWtZv349gwcPvuPxtVrtLfd0Oh0ajQZAf+zmbt4OvVF433DzPKtyY94KhQIDAwP9zzevh1KprBSj1Wqxt7cnPj4eAI1Gc8tuvBBCPKzG+rviN7gTao2O1tZ/FekGxkrsxj5B3qEMNNfV6MrSyDmfRTOg+/XrtAoey9btX3Lh0nm0bbtg17wZzz/r03ATEULUSor2RsbU1JSIiAjc3d2xt7dHp9ORmpqKq+vdPY6rY8eO5ObmcuzYMdzd3dm6dSvt2rXD2tq62hilUlnl2fJ78eSTT7Jp0yb++c9/snPnTn3/ffr0IT4+HhcXF44dO8b58+dvyT8vL4+kpCR69OhBbGwsmzdvZsWKFXWanxBCPKhsLI2qvG5kbUrLZzr97zcXrJ96lNL0dMxcXTFSqQju5UHWuT8wNbPAqlW7+5ewEOKuSNHeyHh4eBASEsK4ceMo/9/ZQ09PTyZMmHBX/RkbG7NgwQIiIiK4fv06VlZWLFiwoMaYnj17MnXqVFq2bElwcPBdjft3M2bMIDQ0lDVr1uDm5oa5ecVZykmTJjFt2jSeffZZOnbseMvxGGNjYxYuXKj/IK2FhQVz586tk5yEEOJhYtq+PaZ/+zvW1uEfDZSNEOJOKXQ1ndUQ4gFWWlpKSkoKbm5uNT59535JTk6me/fuDZ1GkyPrWj9kXeuerGn9kHWtH7Kuda+2Na2tbpGd9gaQlJRERERElfdiYmKwtbWt8t6UKVM4ffr0Lde9vLyYPHlyneYIsHXrVr744osq7904Yy6EEEIIIeqfFO0NoEePHndV9EZFRdVDNtXz8fHRP9lFCCGEEEI0HHnkoxBCCCGEEI2cFO1CCCGEEEI0clK0CyGEEEII0chJ0S6EEEIIIUQjJ0W7EEIIIYQQjZw8PUYIIYR4AF3ee4rcnzLQKLSUe5jiPvCpSvcLrh6nOOc0zaw6UFzcAZ1WRxtHFQqFooEyFkLcCynaG7Ho6GgAJk6ceNsx27dvJyYmBrVajU6nw9fXl7Fjx9YY89tvvzFhwgTs7OxYuXLlPeW8b98+0tLSGDNmzD31I4QQ4i/awmyKd8WgvnACo/aPonUYRcF3mSgxQIkBxvvV/LYlDIvWlrQcFciuvFz+KDTGTNcW9/QEik+acuZ3V1o7WOM7sTdGJvLPvxAPGjke04RkZWUxd+5cli5dyqZNm1i9ejVbt25lz549Ncbt27eP4cOH33PBDpCSkkJhYeE99yOEEOIvRVsWUJ76A7r8K5T9tp+rP+6/pY1hmSV5qSl8vWULx4ttKDWwIEdpxyHT57F1PI8ODZfP5XIiMeP+T0AIcc/kpXYjk5iYSGRkJFqtFmdnZ7KzswkMDCQrKws/P78ad91zcnIoLy+npKQEAHNzc+bMmVPlV+He8N1337Fq1SoAjI2NycjIIDc3l3PnzhEaGoqNjQ2zZ8+mtLQUlUrFBx98gIODA8HBwXTt2pXk5GSys7MJCwvDzs6O1atXA9CuXTv8/f2rHPPEiRPMmDEDtVqNiYkJH330ER06dKBz586cPHkSgLi4OA4fPsycOXPw8vLi6aef5uDBgwB8+OGHdOnS5c4XVwghHhAnzhfx+eZMLmaX8uSjVrx49mil+4aFxyjDodI1XellfldcJbdNx0rXyxRm5Bi05qJ5Ei2ud6E4v7S+0xdC1APZaW+E0tLSWLZsGfb29ly7do3ly5cTGxvL0qVLa9zFdnFxwdvbm0GDBjFy5Eh98e/g4FBtTP/+/QkMDCQwMJCQkBAArK2t2bZtG3379uWtt97ivffeY9OmTQQGBvLWW2/pY8vLy1mzZg3Tp09n4cKFdOrUSd9XdQU7wLJlyxgzZgxxcXEEBARw9OjRWtfEzMyMjRs3MmnSJKZOnVpreyGEeFCVq7V8sCKNkxnF5Bdr2H4km1xTu0ptrGy1XOtRRolRKeWK66ivHUJXdo1rlGBw9UyltkpdGelphWgN1OQ1O0unbu3u53SEEHVEivZGyNHREUtLSwA8PT0xNjbGxsYGlUpFXl5ejbHh4eHs3buXoKAgMjMzCQgIYOfOnXc0vru7O1Dx4qF58+b635955hnOnz9PQUGBPjcAZ2dncnNzb7v//v37ExERwTvvvIOlpSXDhg2rNSYgIAAALy8vsrKyyM7OvpMpCSHEAyPjSik5hepK19YqAzBQVRTbBjb2mPlMpNew/6PV249RPtYaY3sdANaG5hj9Eo8yLQl0WpRlhRj+vpuTaRX/3CvNNbRoZ3l/JySEqBNyPKYRMjU11f9saPjXH5FCoUCn01Ubt3//foqLi/Hx8cHf3x9/f3/Wrl3L+vXrGTx48B2Pr9Vqb7mn0+nQaDQA+mM3d/okgqeffponnniCffv28fXXX7N//35mzZql71+hUKBWV/4H6+Z10Gq1KJXKOxpTCCEeFG1bmGBhqqSwRKO/ZtnhHzQfFoOuOB+FWXP937utTW1pbW8L0zzQFBVhV5zPtqWzydj1MdbtOlJu15Pz6Zn6ftzdu973+Qgh6obstDchpqamREVFkZFR8SEjnU5Hamoqrq6ud9Vfx44dyc3N5dixYwBs3bqVdu3aYW1tXW2MUqm8peD+uzfffJPjx48TGBjI5MmT+f333wFQqVScOnUKnU7H3r17K8UkJCQAsGvXLpycnLCysrqrOQkhRGNnamzAvwMfobW1EQoF9HJpTvD/tUGhUGBgblXtRonS3JzmrdoyatqnTP5iN6/MWsZLL79Cnz59cHBwYODAgTz77LP3eTZCiLoiO+1NiIeHByEhIYwbN47y8nKg4gjLhAkT7qo/Y2NjFixYQEREBNevX8fKyooFCxbUGNOzZ0+mTp1Ky5YtCQ4OrrLNuHHjePfdd/nss88wMjJi5syZAEyZMoVx48bRsmVLunfvTk5Ojj7m559/Zv369TRr1ow5c+bc1XyEEOJB0bNzc77+tyvlGh3Ghne+v2ZoVPFOaLNmzW7rCKIQovFT6Go6byFEI+Dl5cXy5cuxt7e/o7jS0lJSUlJwc3Or8Qk690tycjLdu3dv6DSaHFnX+iHrWvdkTeuHrGv9kHWte7WtaW11i+y0P2CSkpKIiIio8l5MTAy2trZV3psyZQqnT5++5bqXlxeTJ0+u0xyh4ijNF198UeW9+Pj4Oh9PCCGEEKIpk6L9AdOjR4+7KnqjoqLqIZvq+fj44OPjUyd9/f18uxBCCCHEw0Y+iCqEEEIIIUQjJ0W7EEIIIYQQjZwU7UIIIYQQQjRyUrQLIYQQQgjRyEnRLoQQQgghRCMnT48RQoh6pNPpKD0ST1nqDxhY2dKs3z9R2thV2Tbz9O+k/XaSTk/0pvUj7e5zpkIIIRqzJlW0R0dHAzBx4sTbjtm+fTsxMTGo1Wp0Oh2+vr6MHTu2xph3332XwMBAunbtWm2b4OBgVqxYcdt53C+vvvoqs2bNqvZ57rfrbtZaiIdRaXIC13f/FwDNhROUpaey2DqMs5fL6fEPS8Y83RYTIwN2fv0Jv6YkQfl1ft3zBd0GPoNzzyewbtMLA0PTBp6FEEKIhtakivY7lZWVxdy5c4mLi0OlUlFUVERwcDCOjo54e3tXGzd79uxa+z58+HBdplpn/vvf/zZ0CkI8VMpPHqz0u6LgMpmXTmCsa4NhYg57L+XQc2hrjli7o/X3B8C29Gcs1du4dCKVa+e/o1Ofd1Eo5DSjEEI8zB74oj0xMZHIyEi0Wi3Ozs5kZ2cTGBhIVlYWfn5+Ne4E5+TkUF5eTklJCQDm5ubMmTOn1q+8Dw4OJiQkBIAvvvgCU1NT/vzzTzp37sz8+fOZN28eAM8//zzr1q3j+++/Z9GiRajVauzt7YmIiEClUuHl5YW7uzupqalERkby3nvv0bFjR06fPk2XLl144okn2LBhA3l5eXz22Wc4OTnVmJOLiwtJSUmUlpbyzjvv0LdvX6ZNm0Zubi7nzp0jNDSUWbNmsXz5cg4fPsz+/fvJzc3l8uXLBAYGcuHCBX766Sesra1ZsmRJretww7Fjx/joo48oKSlBpVIRHh5O+/btCQ4OpmvXriQnJ5OdnU1YWBj9+/dn8+bNLFmyBKVSib29PZGRkZiYmBATE8O2bdvQaDT07duX0NBQLly4QEhICM7OzqSmptKiRQsWLlyItbX1beUmREMzULWFc7+SYWVEpqURj1xTY13UnJcNCzFQABnXOLijEG1nZ33MOZNuOGqP0UJ7gfLiCxRln8CiRZeGm4QQQogG1yS2btLS0li2bBn29vZcu3aN5cuXExsby9KlSyksLKw2zsXFBW9vbwYNGsTIkSP1xb+Dg8Ntj/3LL78wY8YMtm3bRmZmJgcOHCAsLAyAdevWkZ2dTVRUFEuXLmXjxo307duX+fPn6+P79evHjh07sLGx4eTJk7z66qvEx8fz888/c+HCBdasWcPQoUNZs2ZNrbkUFhayYcMGoqKimDZtGmVlZQBYW1uzbds2vLy8KrU/fvw4//nPf1i6dCkfffQR/fr1Y/PmzQD88MMPtzX/srIywsLCiIqKYsOGDYwZM4b33ntPf7+8vJw1a9Ywffp0Fi5cCMAnn3zCl19+SVxcHHZ2dpw5c4bvv/+elJQU1q9fz8aNG8nKymLTpk0AnDhxgjFjxrBlyxaaN2+uz1GIB0EzzyC+79qezz1aselRaz7t25KeZtcrCvb/KW5mcUtcscJK/7NCobwfqQohhGjEHviddgBHR0csLS0B8PT0xNjYGBsbG1QqFXl5eVhY3PoP4g3h4eGMHz+eAwcOcODAAQICApg/fz6DBw++rbGdnZ1p06YNAE5OTuTl5VW6/+uvv3Lx4kVefPFFALRaLVZWf/1j/Nhjj+l/btmyJV26VOymtWnThj59+gDQrl07MjIyas0lICAAAFdXV1q1asXJkycBcHd3r7J9t27dsLCw0K/PjfHs7OzIz8+vdTyoeMGUnp7OG2+8ob928wslT09PoGKdcnNzARg4cCBBQUEMGjSIIUOG4OrqyqZNmzh27Bh+fn4AlJSU0K5dO7p3706LFi306+Ls7HzLGgvRmGnMrdhvbwhaTcUFA1CorkLWXx9GfeRSEafaNwdFRSVvqCvBVnMGgPwSc8xUzrf0K4QQ4uHSJIp2U9O/PqRlaPjXlBQKBTqdrtq4/fv3U1xcjI+PD/7+/vj7+7N27VrWr19/20X7zUdIqhpPo9HQrVs3Pv/8cwBKS0spKiqqMt7Y2LhSrFJ5Z7trN7fXarX6tbh5fW5mZGRU6feb1w5g1apVrF69GoDAwEB9EW1hYYFOp8PQ0BCtVou9vT3x8fH6+V69evWW+SkUf20rhoWFceLECb777jtCQ0MJCQlBo9Hw0ksvMWbMGADy8/NRKpXk5OTUusZCNGY6tKi16krXzrqfw+37R6C0opBvmf4bT2bv4+xjT2LWqSPZyd9xtNgAi+btGfD0WDnPLoQQomkcj7lbpqamREVF6XexdTodqampuLq63nPfSqUStVrNY489xtGjRzl79iwA//nPf/Rn3uva1q1bgYpjL/n5+fzjH/+4p/6CgoKIj48nPj6eoKAglixZQnJyMgAnT56kffv2dOzYkby8PJKSkgCIjY3l7bffrrZPtVrN4MGDUalUvP766/j6+pKamoqHhwfx8fEUFRWhVquZMGECO3bsuKf8hWgMjA1M6NPyqUrXHvtHLzpM7o31kyo0Bd+jufo99pfPEehkxWh3e0LGjOWfr81lZPC7tGx1b096EkII0TQ0iZ32u+Xh4UFISAjjxo2jvLwcqDjOMWHChHvu29vbG19fX+Li4vjwww9588030Wq12NraEhkZec/9VyU9PZ0RI0YAsGDBgjveqa/NW2+9xcyZM/nwww9xcXFhyJAhGBsbs3DhQmbPnk1paSkWFhbMnTu32j4MDQ2ZNGkS//rXvzAxMaFFixbMmTOHFi1acOLECQICAtBoNHh6ejJixAguXLhQp3MQoiEEPvJPnCycyChOp3PzLrhZVTwutsUQd1RerpRlZmLcpg0GN72r9Pd3woQQQjzcFDo5a9Ak3HiiTe/evRs6lUajtLSUlJQU3NzcbvtJOPUpOTmZ7t27N3QaTY6sa/2Qda17sqb1Q9a1fsi61r3a1rS2uqXJ77QnJSURERFR5b2YmJhqv2RoypQpnD59+pbrXl5eTJ48uU5zvF015SSEEEIIIZquJl+09+jRQ/8hyTsRFRVVD9ncm8aYkxBCCCGEqH8P9QdRhRBCCCGEeBBI0S6EEEIIIUQjJ0W7EEIIIYQQjZwU7UIIIYQQQjRyUrQLIYQQQgjRyEnRLoQQQjRSBeUFZF6/gHylihCiyT/yMTo6GoCJEyfedsz27duJiYlBrVaj0+nw9fVl7NixNca8++67BAYG0rVr12rbBAcHs2LFitvO415lZWURFhbGf//732rbHDt2jB07dhAaGlptm4yMDJ5++mmcnJxQKBSUl5fTunVrPvroI9q0aVNt3Nq1azEzM2Po0KH3NA8hhGhqdOoyNFfPczLfmuxSQ7r/wxIzk8rfYr3r0g42Z25Ao9PQztSO8U6T+X3bRU4cSsfE3Jg+w11weqJtA81ACHG/Nfmi/U5lZWUxd+5c4uLiUKlUFBUVERwcjKOjI97e3tXGzZ49u9a+Dx8+XJep1srW1rbGgh3g9OnTXLt2rda+WrduXel593PmzGHevHl8/PHH1cb8/PPP9OrV6/YTFkKIh4A6/XcK10egu56Ptc6Eb64H8p9mjxI1rhPtWlR8C2JuWS6bLsShRQtAZskFYvcc4IrWAc2QR1BeSOHqknkEv/sOLdq1asjpCCHukyZZtCcmJhIZGYlWq8XZ2Zns7GwCAwPJysrCz8+vxl33nJwcysvLKSkpAcDc3Jw5c+ZU+XWyNwsODiYkJASAL774AlNTU/788086d+7M/PnzmTdvHgDPP/8869atw8PDAzc3N65cucL69esJDw/n1KlTXL16lc6dO/Pxxx9z9epV3njjDTp27Mjp06dp164dkZGRWFtb88033xAfH8/169cxMjIiKiqKjh074uXlhbu7O6mpqURGRvLmm2+yd+9erl69yowZM7h06RIKhYIpU6bg5ubGokWLKC4uZvHixbzxxhu3vca9e/eusWA/ePAge/fu5aeffqJVq1YkJCSQm5vLuXPnCA0NpbS0lK+++oqSkhLKysr48MMP6datG8HBwXTt2pXk5GSys7MJCwujf//+bN68mSVLlqBUKrG3tycyMrLWPxMhhGiMind9ge56PgBmilLGmMYzubAzGw5cYYKvPQDZZdfQosX0uo42mTquGRlxtbkTahtLANTOHhRrrrN7xceMmvpRg81FCHH/NNkz7WlpaSxbtgx7e3uuXbvG8uXLiY2NZenSpRQWFlYb5+Ligre3N4MGDWLkyJH64t/BweG2x/7ll1+YMWMG27ZtIzMzkwMHDhAWFgbAunXrgIoXB6+++irx8fEcPXoUIyMj1qxZw65duygoKOC7774D4I8//mD06NEkJCTg5OTEp59+SmFhIbt372bFihVs2bKFAQMGsHLlSv34/fr1Y8eOHdjY2OivzZ49G39/f+Li4li8eDEzZszAwMCASZMm4eXldUcFe3l5OTt27ODxxx+vts2TTz6Jl5cXkyZNwtPTEwBra2u2bdvGgAEDWL16NZ9//jmbNm1i7NixxMTEVOp/zZo1TJ8+nYULFwLwySef8OWXXxIXF4ednR1nzpy57XyFEKIx0eZeqvR7C0UeSjQUXtforzmYO+B60ZxRy7Roj7RA+Ws7ys0sK8UZdHDnSvqx+5KzEKLhNcmddgBHR0csLSv+gvP09MTY2BgbGxtUKhV5eXlYWFhUGxseHs748eM5cOAABw4cICAggPnz5zN48ODbGtvZ2Vl/1tvJyYm8vLwq2z322GMA9OzZE2tra1auXMmZM2dIS0ujuLgYgA4dOtC7d28AnnvuOd5++20sLCyIiooiISGBtLQ0fvjhB1xdXW/p92YHDx7kzJkzLFq0CAC1Wk16evptzQfg8uXL+Pr6AlBWVoa7uztTpky57XgAd3d3AAwMDPjss8/Yu3cvZ8+e5fDhwxgY/PX68UaR7+zsTG5uLgADBw4kKCiIQYMGMWTIkErzFUKIB4mRy1OUHd2h/z1Z7YpOoeTpni3015QKQwYfsSDJVEOekSHWxoUotXkUG1jp21hpLtLSodN9zV0I0XCabNFuamqq/9nQ8K9pKhSKGj+Fv3//foqLi/Hx8cHf3x9/f3/Wrl3L+vXrb7tov/nYRk3j3chxz549LFq0iBdffBE/Pz9ycnL0MTfnrtPpUCqVXLx4keDgYF544QX69etHy5YtSU1NrXL8G7RaLcuWLcPa2hqoKMJbtGhRKa4mfz/TfjduzLeoqIiRI0cyfPhwevbsSefOnSu9U3Ajf4VCob8WFhbGiRMn+O677wgNDSUkJET/IkIIIR4kZoPHYWBmTcnZY5zV2nPG+lnmdW/Hox3MK7UzKCqhWFnx4dTrpQb0K4nnF9NhFBmoaKFJp+OVXfR84c42T4QQD64mezzmbpmamhIVFUVGRgZQUSinpqbWyc6uUqlErVbfcv3QoUM888wz+Pv707x5cxITE9FoKt4mPXv2rL6wjo2NpV+/fhw/fhwHBwdefvllunbtyu7du/Xtq+Ph4cG3334LVHz4dNiwYVy/fr3anOqCUqmsMq+0tDQUCgXjxo2jd+/e7Nq1q8b81Wo1gwcPRqVS8frrr+Pr63vbLzaEEKKxURga02zAi6jGzKfbK28yzt/5loIdwMrTkw7XrwNQWm7AuRPXGFT4H4YXRTJIuw2vEWHYtH3kfqcvhGggTXan/W55eHgQEhLCuHHjKC8vByqOa0yYMOGe+/b29sbX15e4uLhK159//nnefvttEhISMDIyolu3bvoXDVZWVixatIjz58/TuXNnZs2ahU6nY9WqVfj4+KDT6ejZsyenTp2qceywsDBmzJjBsGHDAJg3bx4WFha4u7vz6aefMn/+fN5+++17nuPNnnzyST7++GP9MaUbXFxccHV15ZlnnkGhUNC3b1+Sk5Or7cfQ0JBJkybxr3/9CxMTE1q0aMGcOXPqNFchhGhsWg4fTg9ra0ySkjhRBobFVhhdccauT1ssOzpXejdSCNH0KXTyjQ2NVkZGBi+++CJ79+5t6FQeSKWlpaSkpODm5tYonjSTnJxM9+7dGzqNJkfWtX7IutY9WdP6IetaP2Rd615ta1pb3fJQ7rQnJSURERFR5b2YmBhsbW2rvDdlyhROnz59y3UvLy8mT55cpzneb7ImQgghhBCN10NZtPfo0eOuPlQZFRVVD9lUz97e/r7tsj8oayKEEEII8TCSD6IKIYQQQgjRyEnRLoQQQgghRCMnRbsQQgghhBCNnBTtQgghhBBCNHJStAshhBBCCNHISdEuhBBCCCFEI/dQPvJRCCHu1Omc6yRdKOTSlVJaleroV1AIV4owdbCixSBHDEwMKSspJvviOVrYdcTIuOG/0EsIIUTT0WR32qOjo4mOjr6jmO3bt+Pn58fw4cMZNmwYS5Ysqafs7s67777L8ePHb7k+bdo04uLibrl+8xp07tz5rsZMTEwkODj4rmJv16JFi0hKSqrXMYS4F79dLWbViaucKiihwFTHJW0pZSmXKcsqIv9wJkfm/EhCzDq+eMuPlRGvETNlBOknfmnotIUQQjQhTbZov1NZWVnMnTuXpUuXsmnTJlavXs3WrVvZs2dPQ6emN3v2bLp27drQadS5I0eOoNFoGjoNIap08OoPxJ05VulascqENPMytDodAFZqHScTl1NWUgRASVEB+75deN9zFUII0XQ1qaI9MTGRkSNH4ufnR0ZGBseOHSMwMJCBAwfWuuuek5NDeXk5JSUlAJibmzNnzhw6depUY9zZs2cJDg5m2LBhjBo1imPHKv5xv3DhAi+++CJDhw5l5MiRnDhxosZ+nnrqKWbMmMFzzz3H2LFj2bZtG6NHj8bLy4vDhw8DEBwcTGJiIjqdjo8++oghQ4YQHBzM+fPn9f0sWbKEwYMHV8rlZkVFRUydOhU/Pz98fX3ZsmVLjXlV5+878Dd2+zMyMnjuuecIDQ1l6NChvPTSS+Tm5gLwzTff8PzzzzN06FBGjBjBmTNn2LhxIykpKYSFhXHy5En9HAEyMjLw8vICYPPmzfj6+uLn58ekSZMoLS29q7yFqI36wgkKYz+kcF04v/+xhZXnlnNdl1OpjU6n45DuJ/7ouJlil++4bn0BnS6vUpu8qxfvZ9pCCCGauCZVtAOkpaWxbNky7O3tuXbtGsuXLyc2NpalS5dSWFhYbZyLiwve3t4MGjSIkSNHEhkZiVarxcHBocbxQkNDCQ4OZvPmzUyfPp3JkydTVlZGeHg4Q4YMYcuWLUycOJHFixfX2M/Vq1fp168fGzdupLS0lN27d/Ptt98yceJEli1bVqntjh07+P3339myZQsLFy7UF+3Hjx8nNjaWDRs28NVXX3Hp0qVbxlm8eDGPPvoocXFxrFy5ks8//5z09PQac7tTJ06cYMyYMWzZsoXmzZuzefNmCgsL2b17NytWrGDLli0MGDCAlStX8txzz+Hm5sasWbNqPMLzySef8OWXXxIXF4ednR1nzpyp05yFANDmXaZg5TuUn/yR8lOHOf7rSgCKDA6g5fpf7dKOMeTRTBzti1C2ysTY/Qdat6v83+8/egy8r7kLIYRo2prcB1EdHR2xtLQEwNPTE2NjY2xsbFCpVOTl5WFhYVFtbHh4OOPHj+fAgQMcOHCAgIAA5s+fz+DBg6tsX1RUxPnz5/X3H3/8caysrDhz5gxHjhzh448/BqB///7079+/1tz79esHgJ2dHd27dwegXbt25OfnV2p3+PBhBg8ejJGRETY2Nvq4w4cP079/f8zNzQF4+umn0Wq1lWIPHjxISUkJsbGxABQXF3Pq1Cnat29fa363q0WLFnTp0gUAZ2dn/bpHRUWRkJBAWloaP/zwA66urrfd58CBAwkKCmLQoEEMGTLkjmKFuF1lpw6D+q93cdoUlAGgNrjMFaNFmBY7YXJIR1vDTMxb6/TtFAp4xLENJheuUdbShA59vOg99MX7nr8QQoimq8kV7aampvqfDQ3/mp5CoUCn01UVAsD+/fspLi7Gx8cHf39//P39Wbt2LevXr6+2aK+qP51Oh0ajqTS2Tqfjzz//rPWojbGxsf5npVJZbbu/z+XGWFVdLysrqxSr1WqJjIzk0UcfBSp2+K2srGrM63ZyKC8v1/9sYmJyS7uLFy8SHBzMCy+8QL9+/WjZsiWpqalV9n2jX7Varb8WFhbGiRMn+O677wgNDSUkJARfX987zluImhhYta70u9ulEs4/7shh3XkMDDT07fgI549e4HrhrW9Stiq4SGsDFR3f/AATO7v7lbIQQoiHRJM7HnO3TE1NiYqKIiMjA6goHFNTU2vc0bWwsMDe3p6dO3cCcPToUa5evYqzszM9evQgISEBqNjdfu+99+os1z59+rBt2zbKysrIy8vjhx9+0F/ft28fBQUFlJaWsmvXrltiPTw8WLVqFQCXL19m+PDhXLx452dvVSoV6enplJaWkpubS3Jyco3tjx8/joODAy+//DJdu3Zl9+7d+g+fKpVK/c8qlYrTp08DsHv3bqCieB88eDAqlYrXX38dX1/fagt+Ie6FUaceGLn20/9u3OFxXnB/m3mPL2DeY5/wnL0/L730Ek4uHlzMb6Fvpyg1xtzIlUemTJGCXQghRL1ocjvtd8vDw4OQkBDGjRun3zX29PRkwoQJNcZFRkYyc+ZMoqOjMTIyIjo6GmNjY2bMmEFYWBjffvstzZo1Y9asWXWW66BBgzh+/DhDhw6lZcuWODk5AeDq6spLL73EyJEjad68Oe3atbslNiQkhJkzZzJ06FA0Gg2hoaE88sgjNY6XlJTEE088of992LBhfPDBB/Tv359nn3220nGe6jz11FOsWrUKHx8fdDodPXv25NSpU0DFOr///vvMnTuXsWPHMm3aNGJjY/H29gYq3jGYNGkS//rXvzAxMaFFixbMmTPnjtZMiNuhUBhgMWIqmv4vgEaNslXFZ1qa3dTGysoKPz8/wI/SwkzU5YWYWTmhMKj+3TEhhBDiXil0NZ0ZEeIBVlpaSkpKCm5ubpWO7DSU5OTkWl/ciDsn61o/ZF3rnqxp/ZB1rR+yrnWvtjWtrW55qHbak5KSiIiIqPJeTEwMtra2Vd6bMmWK/sjGzby8vJg8efJtjV1SUsKoUaOqvDdp0iT9rnJDuNt1EUIIIYQQ98dDVbT36NGD+Pj4O46Lioq657FNTU3vauz74W7XRQghhBBC3B/yQVQhhBBCCCEaOSnahRBCCCGEaOSkaBdCCCGEEKKRk6JdCCGEEEKIRk6KdiGEEEIIIRq5h+rpMUIIIe5eeZmGX3ad5lJaLu2cbHjCuyNKI/lSKSGEuB+abNEeHR0NwMSJE287Zvv27cTExKBWq9HpdPj6+jJ27Nj6SvG+KSgoYNq0aXz22WcNnUqd8PLyYvny5djb2zd0KkI0ObrSYjTZF7imucia899iYmBCv9YDsDFuwf5VxziVlAnAH6dPcPzUOtydr9LMsITmtt1o6/oCSkPTBp6BEEI0TU22aL9TWVlZzJ07l7i4OFQqFUVFRQQHB+Po6NigX3xUF/Ly8khNTW3oNIQQjVzZH4co2hTFJeNyEjxaob6iACDx2iHe6/IBp5JSsFIUoTFuRqbpCbyccjE1rPhS7fysJAyNm9Omc0BDTkEIIZqsJlW0JyYmEhkZiVarxdnZmezsbAIDA8nKysLPz6/GXfecnBzKy8spKSkBwNzcnDlz5lT5NbI3O3v2LDNmzCA3NxczMzPeffdd3N3duXDhAtOnTyc7OxtTU1NmzZqFi4tLlX2Ul5fzzjvvcOrUKQBGjx5NQEAA06ZNo1evXvj5+QHQuXNnTp48SXR0NJmZmfz555/k5OQwatSoGt8RmDVrFpcvX2bChAlMnz6dsWPHolKpMDU1JTo6mnfeeYesrCwuX75Mnz59mD17NocPH+aLL77A1NSUP//8k86dOzN//nzKysp46623uHr1KgATJkzAzs6O0NBQNm/eDMDevXtZt24dixcvJiYmhm3btqHRaOjbty+hoaFcuHChUg5Tp05lxowZqNVqTExM+Oijj+jQoQPffPMN8fHxXL9+HSMjI6KioujYsWONfx5CiLuj02kp3r4Yyq5ztENz1ErF/24YYnvGjSW/7UXVuRm9rzzCAXUKzZtpMDXWVeqjOO9MA2QuhBAPhyb3QdS0tDSWLVuGvb09165dY/ny5cTGxrJ06VIKCwurjXNxccHb25tBgwYxcuRIffHv4OBQ43ihoaEEBwezefNmpk+fzuTJkykrKyM8PJwhQ4awZcsWJk6cyOLFi6vt45dffiEvL4+NGzfyxRdfkJSUVOs8U1JS+Oqrr4iLi2PNmjX89ttv1bYNCwujdevW+uMxZ8+eJTIykq+++or9+/fj6urKmjVr2LFjB0eOHNH39csvvzBjxgy2bdtGZmYmBw4cYNeuXdjZ2REXF8fs2bNJSkrCxcUFhULBH3/8AUBCQgLDhw/n+++/JyUlhfXr17Nx40aysrLYtGnTLTksW7aMMWPGEBcXR0BAAEePHqWwsJDdu3ezYsUKtmzZwoABA1i5cmWt6yKEuEvqcnSF2QCYlmv1l9vlP0dBG2/yHB8jrXtvjndSYakwI79YSUmZolIXZlbyoloIIepLkyvaHR0dsbS0BMDT0xNjY2NsbGxQqVTk5eXVGBseHs7evXsJCgoiMzOTgIAAdu7cWW37oqIizp8/z+DBgwF4/PHHsbKy4syZMxw5cgRfX18A+vfvz8KFC6vtx9nZmbNnz/LKK6+wfft2/v3vf9c6z6FDh2Jubo6lpSVeXl789NNPtcbc0KJFC/158KFDh/LUU0/x9ddfM2vWLHJzcykuLtbn1aZNGwwMDHByciIvL48nnniC3bt3M378eI4fP86ECRMAGD58OAkJCZSUlHDkyBG8vLw4dOgQx44dw8/PjxEjRpCSksLp06dvyaF///5ERETwzjvvYGlpybBhw7CwsCAqKoqEhASioqLYt2+fPi8hRN1TGJlg1KknAD0zimlRpEahM0JrWvkdwrN2FnQxaE9LVHyfYkFuoRKtzoDmtj1p5TS8IVIXQoiHQpM6HgNgavrXh6AMDf+ankKhQKfTVRUCwP79+ykuLsbHxwd/f3/8/f1Zu3Yt69ev1xflf1dVfzqdDo1GU2lsnU7Hn3/+SadOnarsR6VSkZCQwI8//sh3333HiBEjSEhIqJRzeXl5pRil8q8nNmi12kq/1+bmNVqxYgU7duwgICCAJ598kj/++EM/5s1Hg27k0qFDB7Zt28YPP/zAvn37+PLLL9m6dSvDhg3jpZdewsXFhb59+2JiYoJGo+Gll15izJgxAOTn56NUKsnJyamUw9NPP80TTzzBvn37+Prrr9m/fz8TJkwgODiYF154gX79+tGyZUs5ly9EPTMbPoWSH77F8NJpXrjYgvM9+3EwXY3C2FjfxrRUg7HCiGGGvVH0aUULdzusrKwaMGshhHg4NLmd9rtlampKVFQUGRkZQEWhnZqaiqura7UxFhYW2Nvb63fjjx49ytWrV3F2dqZHjx4kJCQAcPDgQd57771q+9mzZw+hoaEMGDCAsLAwzMzMuHjxItbW1vqd6d27d1eK2b17N2VlZeTl5bFv3z769u1bbf+Ghoao1eoq7/3444+MGjWK4cOHU1payokTJ9BqtVW2Bfjmm2+Ijo7mmWee4f333yc7O5vCwkJsbW1p27YtMTExDB9esdvm4eFBfHw8RUVFqNVqJkyYwI4dO27p88033+T48eMEBgYyefJkfv/9d44fP46DgwMvv/wyXbt2Zffu3Wg0mmrzEkLcOwNTC8z+7zUsg+dR0GkQgzr2wbTYGP73d4JBeSltTv6I2lFN2zGP0dGzixTsQghxnzS5nfa75eHhQUhICOPGjdPvant6euqPf1QnMjKSmTNnEh0djZGREdHR0RgbGzNjxgzCwsL49ttvadasGbNmzaq2j379+rFz506effZZTExMGD58OJ07dyYoKIg333yTYcOG4eHhQatWrfQxJiYmjB49msLCQl5//fVqd/Gh4ihKu3btCA4O5qOPPqp076WXXmLmzJnExMRgYWHBE088QUZGBo888kiVfT333HO89dZbDBs2DKVSSWhoKM2bNwfA19eXBQsW0KtXL6Di0YwnTpwgICAAjUaDp6cnI0aM4MKFC5X6HDduHO+++y6fffYZRkZGzJw5EycnJ1atWoWPjw86nY6ePXvqP6grhLh//v1Me345W0B6bgl93dtg06/6v2uEEELUH4WupjMjolG6m2fQP4xKS0tJSUnBzc2t1qcA3Q/Jycl07969odNocmRd64esa92TNa0fsq71Q9a17tW2prXVLQ/VTntSUhIRERFV3ouJicHW1rbKe1OmTNEfU7mZl5cXkydPvq2xS0pKGDVqVJX3Jk2adM/Pgr/buQkhhBBCiMbvoSrae/ToQXx8/B3HRUVF3fPYpqamdzV2VaraYb/buQkhhBBCiMZPPogqhBBCCCFEIydFuxBCCCGEEI2cFO1CCCGEEEI0clK0CyGEEEII0chJ0S6EEEIIIUQjJ0W7EKJO6cpL0Olu/VZdjVrNhVPHyL+W1QBZCSGEEA82KdrrWXR0tP7LkG7X9u3b8fPzY/jw4QwbNowlS5bUU3aVLVy4kD179tTYxtfXF4Bjx44RGRlZY9vExESCg4PrLD+A9PR03nnnnTrtU9QNbUkhBWveJzdyJHnRL1Gc/CPXdp/h6s5TnP3pvxzfPp60pPmsm/sihzZ91dDpCiGEEA+Uh+o57Q+CrKws5s6dS1xcHCqViqKiIoKDg3F0dLznL2Cqze18UdSNZ8GfPn2aa9eu1Ws+VcnMzCQ9Pf2+jytql7V9OaZ/JqHTQWK2KSnJl8HWFDuDPFwKf8fE1ABjUzO69WvP/k3L6eo5DAtVy4ZOWwghhHggyE57PUhMTGTkyJH4+fmRkZHBsWPHCAwMZODAgbXuuufk5FBeXk5JSQkA5ubmzJkzh06dOtUYd/bsWYKDgxk2bBijRo3i2LFjAFy4cIEXX3yRoUOHMnLkSE6cOAHA119/zZAhQ/Dx8dHvmE+bNo24uDgyMjIYNmwYkydP5tlnn+XVV18lNzcXgM6dO5Ofn8+iRYvYu3cvixcvprCwkEmTJjFq1CgGDhzIO++8g06nu621+uOPPwgODsbf35+BAweyatUqoOIdirCwMIKDg/Hy8mLx4sUAzJo1i5SUFMLDw2+rf3F//HA8l7PHfwNgl6ItBx8ZzPWuPbjeujWnWzrzk+lIfVsTU0MsmxtSlHf/X/QJIYQQDyop2utJWloay5Ytw97enmvXrrF8+XJiY2NZunQphYWF1ca5uLjg7e3NoEGDGDlyJJGRkWi1WhwcHGocLzQ0lODgYDZv3sz06dOZPHkyZWVlhIeHM2TIELZs2cLEiRNZvHgxx44d49tvv2X9+vVs2rSJ3377jZSUlEr9/fHHH4wePZqEhAScnJz49NNP9feaN2/OpEmT8PLy4o033mD//v24urqyZs0aduzYwZEjR/jtt99ua53WrVvH+PHjiY2NZfny5cybN09/7+TJkyxdupR169YRExNDfn4+YWFhuLm58f77799W/+L+WPfdZX5TO/Frm2b8bGCD0s650v2ryke4rrAEQF2uwdjMltaPOFfVlRBCCCGqIEV7PXF0dMTSsqJI8fT0xNjYGBsbG1QqFXl5eTXGhoeHs3fvXoKCgsjMzCQgIICdO3dW276oqIjz588zePBgAB5//HGsrKw4c+YMR44c0Z9D79+/PwsXLuTIkSMMHDgQS0tLDA0N+frrr3Fzc6vUZ4cOHejduzcAzz33HD/99FO14w8dOpSnnnqKr7/+mlmzZpGbm0txcXHti0TF7n5paSlffPEFn3zySaW43r17Y2xsTIsWLbC2tqagoOC2+hQNI76sPwmOrdGaadBdr/zC1FBbhpGuBHW5gvzC9ox482MUBvLXjxBCCHG75Ex7PTE1NdX/bGj41zIrFIoaj47s37+f4uJifHx88Pf3x9/fn7Vr17J+/Xp9Uf53VfWn0+nQaDSVxtbpdPz5558YGhqiUCj017OysmjWrFml+L/HKZXKanNesWIFO3bsICAggCeffJI//vjjto/HvPnmmzRv3pyBAwfi4+PDli1b9PdMTEz0P9e2bqJh+fVtxby118nFAlO3fEx+PoSBdWsUJs1Aq0V1+DQtOw2m7dBnUSikWBdCCCHulPzr2ciYmpoSFRVFRkYGUFEwp6am4urqWm2MhYUF9vb2+t34o0ePcvXqVZydnenRowcJCQkAHDx4kPfee48ePXrw3XffUVRUhFqtZsqUKbccjzl79iypqakAxMbG0q9fv0r3lUolarUagB9//JFRo0YxfPhwSktLOXHiBFrtrY/8q8qPP/7IpEmTGDRoEN9//z0AGo2m2vY3jysajwGPq1jwhjOuhv3QWmnI6f8HDgcX4LH5S4Z88wlPFx3BdtAgKdiFEEKIuyQ77Y2Mh4cHISEhjBs3jvLycqDieM2ECRNqjIuMjGTmzJlER0djZGREdHQ0xsbGzJgxg7CwML799luaNWvGrFmz6NSpEy+88AKBgYFotVr+7//+jyeffJJNmzbp+7OysmLRokWcP3+ezp07M2vWrErjubu78+mnnzJ//nxeeuklZs6cSUxMDBYWFjzxxBNkZGTwyCOP1DrfiRMnMnr0aExMTHBxccHOzk7/gqUqTk5OFBQUEBoaWusjJ8X91bm9GZ3bD+WPAmdO5v+O3RuP8GhJO3RlZZjW8pkMIYQQQtRMoZMzB+JvMjIyePHFF9m7d29Dp3JPSktLSUlJwc3NrdJRm4aSnJxM9+7dGzqNJkfWtX7IutY9WdP6IetaP2Rd615ta1pb3SI77Q0gKSmJiIiIKu/FxMRga2tb5b0pU6Zw+vTpW657eXnd1jPWG8rcuXM5ePDgLdfd3NyYPXt2A2QkhBBCCPFgkaK9AfTo0UP/JUV3Iioqqh6yuZW9vX2d7rJPnTq1zvoSQgghhHgYyafChBBCCCGEaOSkaBdCCCGEEKKRk6JdCCGEEEKIRk6KdiGEEEIIIRo5KdqFEEIIIYRo5KRoF0LcE51Wi7akpKHTEEIIIZo0eeSjEOKu5Rw9yk/ffENpcTGd2rXH6fXXadbKpqHTEkIIIZoc2Wm/j6Kjo4mOjr6jmO3bt+Pn58fw4cMZNmwYS5YsqafsKqSnp/POO+/U6xjVmTZtGnFxcTW2mT59OhcuXLhPGYmalJeUsHTVKn4wNuawtTWrCwvYNPszNn/0HzTq8oZOTwghhGhSZKe9EcvKymLu3LnExcWhUqkoKioiODgYR0dHvL2962XMzMxM0tPT66XvupCYmMiECRMaOg0BpP78M9lKJUqHLhjad0ZXVsL1U5l0L2/OL99G4uD5BNbt+mBkYt3QqQohhBAPPCna61liYiKRkZFotVqcnZ3Jzs4mMDCQrKws/Pz8mDhxYrWxOTk5lJeXU/K/88Lm5ubMmTMHExOTGsc8e/YsM2bMIDc3FzMzM959913c3d25cOEC06dPJzs7G1NTU2bNmoWLi0ul2FmzZpGRkUF4eDjvv/8+MTExbNu2DY1GQ9++fQkNDeXChQtMmDCBjh07cvr0abp06cITTzzBhg0byMvL47PPPsPJyQkvLy+efvppDh48CMCHH35Ily5dbmvdFixYwKFDh8jLy6N169YsWLCAuLg4Ll++zGuvvcbKlStRqVS31ZeoW+oLJ7h+YBWFVwtRtuuCsXt//b0LLdpRVPg5ZsYFXPnzPNnp+3DyeA9DY8sGzFgIIYR48MnxmPsgLS2NZcuWYW9vz7Vr11i+fDmxsbEsXbqUwsLCauNcXFzw9vZm0KBBjBw5Ul/8Ozg41DheaGgowcHBbN68menTpzN58mTKysoIDw9nyJAhbNmyhYkTJ7J48eJbYsPCwnBzc+P999/n+++/JyUlhfXr17Nx40aysrLYtGkTACdPnuTVV18lPj6en3/+mQsXLrBmzRqGDh3KmjVr9P2ZmZmxceNGJk2axNSpU29rvc6dO8eZM2dYvXo1O3bsoG3btmzatInXXnuN1q1bExMTIwV7A9EW51OwKgz1n0l0zDuJ0q7yf4taI2OuNrPV/64pyyf/UtL9TlMIIYRocqRovw8cHR2xtKzYafT09MTY2BgbGxtUKhV5eXk1xoaHh7N3716CgoLIzMwkICCAnTt3Vtu+qKiI8+fPM3jwYAAef/xxrKysOHPmDEeOHMHX1xeA/v37s3DhwhrHPnToEMeOHcPPz48RI0aQkpLC6dOnAWjZsiVdunTBwMCANm3a0KdPHwDatWtHfn6+vo+AgAAAvLy8yMrKIjs7u8YxARwcHJg6dSrr1q1jzpw5HD16lOLi4lrjRP1Tn/sVyq4DYIKO9sq0W9pYaCv/GSsM5A09IYQQ4l7Jv6b3gampqf5nQ8O/llyhUKDT6aqN279/P8XFxfj4+ODv74+/vz9r165l/fr1+qL876rqT6fTodFoKo2t0+n4888/OXLkCKtXrwYgMDCQjh076ttoNBpeeuklxowZA0B+fj5KpZKcnByMjY0rjaFUKqvM5+YxtVptte1ulpKSwpQpU3j55ZcZMmQIBgYGNa6TuH8MbOwq/f5s6jbWNe9JrokNOq0O69OX0KnUYFZx39jMluZtejRApkIIIUTTIjvtjZipqSlRUVFkZGQAFYV2amoqrq6u1cZYWFhgb2+v340/evQoV69exdnZmR49epCQkADAwYMHee+99wgKCiI+Pp74+HiCgoJQKpWo1WoAPDw8iI+Pp6ioCLVazYQJE9ixY8cdzeHGeLt27cLJyQkrK6taY44cOUKvXr0ICgqiQ4cO7N+/H41GA1S8OLjxs7j/DG07YvpkABhUvPgyb9+ZCX2caVeo5NSPhfyeYwVOb9Ouy8u0e/RlOvaajtKwWQNnLYQQQjz4ZKe9EfPw8CAkJIRx48ZRXl7xCD1PT89an54SGRnJzJkziY6OxsjIiOjoaIyNjZkxYwZhYWF8++23NGvWjFmzZt0S6+TkREFBAaGhoURGRnLixAkCAgLQaDR4enoyYsSIO3rk4s8//8z69etp1qwZc+bMua0YHx8fQkJCGDZsGABubm76Fy4DBgzgtddeY8mSJbRv3/628xB1p9mAlzDp9Ry6shKU1hXn11/5PzNe+b92N7Vq3TDJCSGEEE2UQifnDkQ98fLyYvny5djb2zfI+KWlpaSkpODm5lbrE3fuh+TkZLp3797QaTQ5sq71Q9a17sma1g9Z1/oh61r3alvT2uoW2WlvYElJSURERFR5LyYmBltb2yrvTZkyRf+h0Jt5eXkxefLkOs2xLs2dO1f/CMibubm5MXv27AbISAghhBCi8ZOivYH16NGD+Pj4O46Lioqqh2zq1t69e2+5druPfRRCCCGEEH+RD6IKIYQQQgjRyEnRLoQQQgghRCMnRbsQQgghhBCNnBTtQgghhBBCNHJStAshhBBCCNHIydNjhBBC1Dv1pdOUJm5Apy7DpPtQ1AoHynNKMOtkg6GFcUOnJ4QQjV6j32mPjo4mOjr6jmK2b9+On58fw4cPZ9iwYSxZsqSesquQnp7OO++8U69j3A/Tpk0jLi6uxjadO3eu8rqvr299pHRHOQghGqfss7/x++L/R+GxfZSfPMifq74n88tfubzlV86sXs7llF1o1CUNnaYQQjRqTW6nPSsri7lz5xIXF4dKpaKoqIjg4GAcHR3x9vaulzEzMzNJT0+vl74fFHfzrHkhRNO35esvSDm0EcPyQowNwKxPJwac74rOuJiyJ3aAcQlXLyWRn3+Ajr3fxUApu+5CCFGVRlm0JyYmEhkZiVarxdnZmezsbAIDA8nKysLPz4+JEydWG5uTk0N5eTklJRW7Nubm5syZM6fWr7E/e/YsM2bMIDc3FzMzM959913c3d25cOEC06dPJzs7G1NTU2bNmoWLi0ul2FmzZpGRkUF4eDjvv/8+MTExbNu2DY1GQ9++fQkNDeXChQtMmDCBjh07cvr0abp06cITTzzBhg0byMvL47PPPsPJyQkvLy+efvpp/beGfvjhh3Tp0qXavKdNm0azZs34/fffyc/P56233iI+Pp4TJ04waNAgpk2bhkajYd68eRw+fBiNRoOfnx8vv/wyOp2OOXPmsH//flq3bo1Go6FXr163+8dUSefOnTl58iTR0dFkZWVx7tw5Lly4wPPPP88bb7xBeXk577//PsnJydja2qJQKBg/fjwAn376KStWrNDPp1evXvj5+bFgwQIOHTpEXl4erVu3ZsGCBbRs2fKu8hNC3H8x0V+SdvEctHgCpRJMu/Qiv40zP6oMeDzvAEbGf+2ulxVnUXDlKFZt7u7vICGEaOoa7fGYtLQ0li1bhr29PdeuXWP58uXExsaydOlSCgsLq41zcXHB29ubQYMGMXLkSH3x7+DgUON4oaGhBAcHs3nzZqZPn87kyZMpKysjPDycIUOGsGXLFiZOnMjixYtviQ0LC8PNzY3333+f77//npSUFNavX8/GjRvJyspi06ZNAJw8eZJXX32V+Ph4fv75Zy5cuMCaNWsYOnQoa9as0fdnZmbGxo0bmTRp0m19g+jly5dZs2YNr732GtOnTyc8PJyNGzeydu1aCgoKWLt2LQAbNmxg/fr17Nmzh6SkJHbs2MHvv//Oli1bWLhwIefPn691rNtx8uRJli5dyrp164iJiSE/P5/Vq1dz/fp1tm/fzkcffcTx48dr7OPcuXOcOXOG1atXs2PHDtq2batfRyFE43fu3DnSLp7W/67sOQxth+7oTJtzvq0FSe0euzVIp7uPGQohxIOlUe60Azg6OmJpaQmAp6cnxsbG2NjYoFKpyMvLw8LCotrY8PBwxo8fz4EDBzhw4AABAQHMnz+fwYMHV9m+qKiI8+fP6+8//vjjWFlZcebMGY4cOcLHH38MQP/+/enfv3+NeR86dIhjx47h5+cHQElJCe3ataN79+60bNlSv2vepk0b+vTpA0C7du3IyMjQ9xEQEACAl5cX06ZNIzs7Gxsbm2rH7Nevn74fZ2dnWrRoAYC1tTV5eXkcOnSI1NRUfvrpJwCKi4s5efIkf/75J4MHD8bIyAgbGxt9P/eqd+/eGBsb06JFC6ytrSkoKODHH38kICAAhUKBnZ2dfu7VcXBwYOrUqaxbt46zZ89y9OhRHnnkkTrJTwhR//Ly8ir9rmxlX+n3LLOWkK8EEw0Axs1aYdn68fuVnhBCPHAabdFuamqq/9nQ8K80FQoFuhp2Y/bv309xcTE+Pj74+/vj7+/P2rVrWb9+fbVFe1X96XQ6NBpNpbF1Oh1//vknR44cYfXq1QAEBgbSsWNHfRuNRsNLL73EmDFjAMjPz0epVJKTk4OxceWzmkqlssp8bh5Tq9VW2+4GIyOjKmNvzik0NFQ//+zsbMzNzZk3b16luVcVezduPop0489LqVSi1Wpvafv3P8/y8nIAUlJSmDJlCi+//DJDhgzBwMCgxj93IUTj4uzsjLGRCWXlpQBo865iYPXX8TbrKxdgVxF0UGL1pCdtegVgoKz5GKMQQjzMGu3xmLtlampKVFSUfudap9ORmpqKq6trtTEWFhbY29uzc+dOAI4ePcrVq1dxdnamR48eJCQkAHDw4EHee+89goKCiI+PJz4+nqCgIJRKJWq1GgAPDw/i4+MpKipCrVYzYcIEduzYcUdzuDHerl27cHJywsrK6o7X4WYeHh6sXbuW8vJyioqKGD16NEePHqVPnz5s27aNsrIy8vLy+OGHH+5pnJo8+eSTbN26FZ1OR1ZWFocPH0ahUKBSqUhPT6e0tJTc3FySk5MBOHLkCL169SIoKIgOHTqwf/9+NBpNveUnhKhbzZo1443x43BxepS2No/QU6mlRbOKjYEWmhJ6HtmFgcaYFo8Mol3fl1AamTVwxkII0bg12p32u+Xh4UFISAjjxo3T79p6enoyYcKEGuMiIyOZOXMm0dHRGBkZER0djbGxMTNmzCAsLIxvv/2WZs2aMWvWrFtinZycKCgoIDQ0lMjISE6cOEFAQAAajQZPT09GjBjBhQsXbnsOP//8M+vXr6dZs2bMmTPnzhagCoGBgZw7d44RI0agVqvx8/Ojd+/eABw/fpyhQ4fSsmVLnJycbqu/J554Qv9zu3bt9C8yahIQEMCJEycYNmwYrVq1ol27dpiamuLs7Ez//v159tlnsbOzo3v37gD4+PgQEhLCsGHDAHBzc6t0hEgI0fjZ2try4iv/rHStRK3F1NAA3VPhoNOhMGhye0dCCFEvFDo5c9CoeHl5sXz5cuzt7Wtv/ADZv38/Op2OgQMHUlBQwHPPPUdsbCzW1tb1NmZpaSkpKSm4ubnV+vSg+yE5OVn/okTUHVnX+iHrWvdkTeuHrGv9kHWte7WtaW11ywO5056UlERERESV92JiYrC1ta3y3pQpUzh9+vQt1728vJg8eXKd5liX5s6dq38E5M3c3NyYPXt2nY5VUlLCqFGjqrw3adKku37WvZOTE//+97/55JNP9H3VZ8EuhBBCCNGUPJBFe48ePe7qy3yioqLqIZu6tXfv3luu3c5jH+uKqalpvXxRUvv27Vm1alWd9yuEEEII8TCQw4RCCCGEEEI0clK0CyGEEEII0chJ0S6EEEIIIUQjJ0W7EEIIIYQQjZwU7UIIIYQQQjRyUrQLIYQQQgjRyD2Qj3wUQghxd3Q6HcfOFHEpp5Se/2iOTXMjAMquFKEwUqIxhdTUVC5evIhGo0GpVDZwxkIIIUCK9joTHR0NwMSJE287Zvv27cTExKBWq9HpdPj6+jJ27Ng6yae6b1ZduHAhbm5ueHt7ExwczIoVK+6qnxsSExP59NNPa+xn3759pKWlMWbMmDufyN/czToLIf7y9apEOp9eQae8bNLzzclqZYd5u8GUX1FTyHU2c4Ti8usAXLx4kVdeeQUDA3lTVgghGpoU7Q0kKyuLuXPnEhcXh0qloqioiODgYBwdHe/6W0dvx83f/Hr48OF6G+dmKSkp92UcIUTNLl0rofeZ/2B9vZC8a80xRk15gQnlV9QApGrSKdZWFOwKhY6y0nQO/rKbHo96YGravCFTF0KIh54U7fcgMTGRyMhItFotzs7OZGdnExgYSFZWFn5+fjXuBufk5FBeXk5JSQkA5ubmzJkzBxMTkxrHPHv2LDNmzCA3NxczMzPeffdd3N3dmTZtGrm5uZw7d47Q0FAAPv30U06cOIGJiQnh4eG4uLgwbdo0evXqxe+//w7A888/z7p16/jmm2+Ij4/n+vXrGBkZERUVRceOHe9oPQ4fPsyCBQsoKSkhPz+f6dOn06FDB1avXg1Au3btePrpp/nggw84deoUGo2GV199laFDhxIXF8eGDRvIzc1l4MCBDB06lIiICIqLi8nOzua1114jKCjojvIRQlRWlneNtgbXyCq1BECNliwjJTf+T1ej+d9POro85cRZ60HsK1Ny8OdMAjsX8UiLtg2StxBCCPkg6j1LS0tj2bJl2Nvbc+3aNZYvX05sbCxLly6lsLCw2jgXFxe8vb0ZNGgQI0eO1Bf/Dg4ONY4XGhpKcHAwmzdvZvr06UyePJmysjIArK2t2bZtG15eXgA4ODiwceNGxo8fz7Rp0yr1ExYWBsC6desoLCxk9+7drFixgi1btjBgwABWrlx5x2vxzTffMGvWLDZs2MCsWbNYuHAhnTp1IjAwkMDAQPz9/Vm8eDGPPvoocXFxrFy5ks8//5z09HSg4t2HDRs28NZbb7Fu3TrGjx9PbGwsy5cvZ968eXecjxCisvYd2pBvYMXlVhV/9WdznQvFx9HptAD8w8AOJQa0slFwznogOkXFefZShTl7z15psLyFEEJI0X7PHB0dsbSs2LXy9PTE2NgYGxsbVCoVeXl5NcaGh4ezd+9egoKCyMzMJCAggJ07d1bbvqioiPPnzzN48GAAHn/8caysrDhz5gwA7u7uldo///zzAPTv35/MzEzy8/Or7NfCwoKoqCgSEhKIiopi3759FBcX394C3CQyMpJTp07x2Wef8dVXX1FUVHRLm4MHD7J69Wp8fX355z//SXFxMadOnQKgS5cuGBpWvPkzbdo0SktL+eKLL/jkk0/uKh8hRGUKAyUtA6ahaWvCH/9QYKIw4lrZORKvfkvW9T8ovZ6OfYEJzi6PolEYV4ot0hg1UNZCCCFAjsfcM1NTU/3PNwpOAIVCgU6nqzZu//79FBcX4+Pjg7+/P/7+/qxdu5b169fri/K/q6o/nU6HRqO5JReg0lMfdDpdpfxudvHiRYKDg3nhhRfo168fLVu2JDU1tdrcqzN69Gh69+5N79696dOnD2+//fYtbbRaLZGRkTz66KMAXL16FSsrKzZv3lwp/zfffJPmzZszcOBAfHx82LJlyx3nI4S4lXlHd/o7LuXrM/9l3+UjtNhnx6XTJ7lUcgKFgS2uHm/ytE8fzh9K5prBX8dhHm1p3oBZCyGEkKK9gZiamhIREYG7uzv29vbodDpSU1NxdXWtNsbCwgJ7e3t27tzJ4MGDOXr0KFevXsXZ2bnK9ps3b+bFF19k165dODk5YWZmVum+UqlErVZz/PhxHBwcePnllykpKWHRokW0adPmjuaTm5tLWloa3377LcbGxsyfP1//YkKpVFJaWgqAh4cHq1atYtasWVy+fJnnnntOf+b9Zj/++CPbtm3D1tZWf1TnRn9CiHtjoDDgX06vc9XeD103HeXp1znz61ns/uFKh0dbozBQ8ISxjium2WSXGdK5pTUej7Rr6LSFEOKhJkV7A/Hw8CAkJIRx48ZRXl4OVByvmTBhQo1xkZGRzJw5k+joaIyMjIiOjsbY2LjKtmlpafj6+uo/5Pp33t7e+Pr6snbtWlatWoWPjw86nY6ePXvqj6zcLmtra0aOHMmzzz6LoaEhHh4elJSUUFxcTM+ePZk6dSotW7YkJCSEmTNnMnToUDQaDaGhoTzyyCMkJSVV6m/ixImMHj0aExMTXFxcsLOzIyMj445yEkLUrKVJq4ofOkG7TpU/T2NsYMjwro81QFZCCCGqotDVdIZDiAdYaWkpKSkpuLm51fpUnvshOTmZ7t27N3QaTY6sa/2Qda17sqb1Q9a1fsi61r3a1rS2ukV22utRUlISERERVd6LiYnB1ta2yntTpkzh9OnTt1z38vKq9Jz1++Vu5yGEEEIIIeqGFO31qEePHsTHx99xXFRUVD1kc/fudh5CCCGEEKJuyCMfhRBCCCGEaOSkaBdCCCGEEKKRk6JdCCGEEEKIRk6KdiGEEEIIIRo5KdqFEEIIIYRo5OTpMUIIUU80uZcwMLVEYWp+y73yslLKS9Sc+vkypUVlOHe3Q9XGogGyFEII8SCQol0IIeqYtjiPwnUfoLlwAgyNaTbgJYwfe4aCy1fYd92Uk1nZcPFPlD9+hVGJE0bGffllzxn833qSlvZWDZ2+EEKIRuihPB4THR1NdHT0HcVs374dPz8/hg8fzrBhw1iyZEmd5ePl5UVGRsYt1xcuXMiePXsACA4Ovut+6kNiYuJt5XSzG/lpNBpeeeUVhgwZQmJi4h31sW/fPr766qs7ihHifjr6ZwHbP/9vRcEOlOjKSd+6klOTJ7Nx7y8cv3adMsNmlLV3w2RoGJ4+V/F8NoGOrr/y249pDZu8EEKIRkt22m9DVlYWc+fOJS4uDpVKRVFREcHBwTg6OuLt7V1v49787aeHDx+ut3Hut6ysLE6ePMmBAwfuODYlJaUeMhKibuQWljNz2VkmGmaCIRx6xJzdThb8c7kWs5ISLts5VW5voUKpMENJKXaOaRRd/w14rGGSF0II0ag9NEV7YmIikZGRaLVanJ2dyc7OJjAwkKysLPz8/Jg4cWK1sTk5OZSXl1NSUgKAubk5c+bMwcTEpMYxz549y4wZM8jNzcXMzIx3330Xd3d3pk2bRm5uLufOnSM0NBSATz/9lBMnTmBiYkJ4eDguLi5MmzaNXr168fvvvwPw/PPPs27dOr755hvi4+O5fv06RkZGREVF0bFjx9tag88//xwjIyMyMjLw8vLCzMyM3bt3AxATE0PLli35/vvvWbRoEWq1Gnt7eyIiIlCpVBw4cICPPvoIExMTHB0dqx1n3759fPLJJ2i1Wtq3b88HH3xAy5Yt9fdff/11cnNz8fPzY+3atcycOZNTp05x9epVOnfuzMcff4ypqSlff/01q1atQqlUMnDgQEaMGMHq1asBaNeuHf7+/rXOWYj76fjZIkrLdfyMK53MT7Gtc3OMS8HsuhYA62tZXDK31Lc31+ZgSKn+95Zt8+97zkIIIR4MD9XxmLS0NJYtW4a9vT3Xrl1j+fLlxMbGsnTpUgoLC6uNc3Fxwdvbm0GDBjFy5Eh98e/g4FDjeKGhoQQHB7N582amT5/O5MmTKSsrA8Da2ppt27bh5eUFgIODAxs3bmT8+PFMmzatUj9hYWEArFu3jsLCQnbv3s2KFSvYsmULAwYMYOXKlbe9Br/++ivh4eHExsaycuVKbGxsiIuLo3PnziQkJJCdnU1UVBRLly5l48aN9O3bl/nz51NWVsa0adNYtGgRcXFxmJqaVtn/tWvXmDFjBp999hmbN2+mW7dufPDBB5XaLF68mNatWxMXF8cvv/yCkZERa9asYdeuXRQUFPDdd99x7Ngxvv32W9avX8+mTZv47bffKCkpITAwkMDAQCnYRaPkYFvx/8Xe8p6sMuyL1kBBSTMFmW0VALge3II290pF4+I8ul2PR3FTfPPW/7jPGQshhHhQPFRFu6OjI5aWFbtcnp6eGBsbY2Njg0qlIi8vr8bY8PBw9u7dS1BQEJmZmQQEBLBz585q2xcVFXH+/HkGDx4MwOOPP46VlRVnzpwBwN3dvVL7559/HoD+/fuTmZlJfn7VO24WFhZERUWRkJBAVFQU+/bto7i4+PYWAPjHP/5B27ZtadasGSqVij59+gAVO9f5+fn8+uuvXLx4kRdffBFfX19WrlzJuXPnOHnyJK1bt8bJqeLt/REjRlTZ/7Fjx3B3d8fe3h6AUaNG8dNPP1WbT8+ePRk9ejQrV65k9uzZpKWlUVxczJEjRxg4cCCWlpYYGhry9ddf4+bmdtvzFKIhPNLalFeeaYuJkZIfrgzCQF3x1Jjtzyj5rYsCMwsF2h/juL59Kdf3fMuJ43mUlBujUJqgsh+AjX3/Bp6BEEKIxuqhOR4DVNodNjT8a+oKhQKdTldt3P79+ykuLsbHxwd/f3/8/f1Zu3Yt69ev1xflf1dVfzqdDo1Gc0suAEqlslK7m/O72cWLFwkODuaFF16gX79+tGzZktTU1Gpz/zsjI6NqxwXQaDR069aNzz//HIDS0lKKiorIzMysNKcbcVlZWbz22msAtG7dmsDAwFvmrFarq81nz549LFq0iBdffBE/Pz9ycnL081co/tqDzMrKolmzZrc9TyEaysh+rRnq0ZJytZZ8bNmcuZFcsxysX+rNE63/j+Iff2Tbtm3ogEt5FqhcXqrxuJkQQggBD9lO+90yNTUlKipK/2QWnU5Hamoqrq6u1cZYWFhgb2+v340/evQoV69exdnZucr2mzdvBmDXrl04OTlhZmZW6b5SqUStVnP8+HEcHBx4+eWX6dq1K7t379a/EKgLjz32GEePHuXs2bMA/Oc//2HevHl07tyZq1evcuJExRMxEhISALC1tf3/7N19XM73/sDx19XVHd1QUWa5CalI5raGHMoYR5oi7Cw35+C4yZxzsLmf0BlLMxrbGsfwsxFFmJttbmcS5SZN7mUlu0iJSnV1Xdfvj45rmm5wSrH38/E4j3Nd3+/3/fm8P5+s3tfn+lzfi5iYGGJiYvjyyy9p27YtZ86c0c/Vpk2bcHd3L7O/2NhY+vbti7+/P5aWlsTFxaHRaOjYsSOHDh0iNzeXoqIipkyZQlJSkn4ehKjJTI0NsKhtyKu17RnXIojpLnPoZdcbhUJBt27d+Ne//sU777zDe++9JwW7EEKIJ/KHWml/Vh4eHgQFBTFu3DjUajVQvL1m4sSJ5caFhoYyb948wsPDMTIyIjw8HGNj41KvTUlJwdfXV/8h19/z9vbG19eXyMhIvvnmG/r164dOp6NTp05cunTpfx/kf9WvX59///vf/OMf/0Cr1WJnZ0doaChGRkZ8/PHHTJs2DUNDQ1q1alVqfL169Zg/fz5BQUGo1WoaNmxISEhImf0NHjyYqVOn8u2332JkZET79u1JS0tj8ODBvPPOOwwdOhStVssbb7xBly5dMDIy4v3336devXpPfctJIWoKGxsbbGxsqjsNIYQQLxCFrrx9IUK8wAoKCkhKSsLV1bXCO/08DwkJCXTo0KG603jpyLxWDZnXyidzWjVkXquGzGvlq2hOK6pbZKX9v+Lj41mwYEGp5yIiIrCzsyv13JQpU7h8+fJjx728vErcZ/15edZxCCGEEEKImkuK9v/q2LEjMTExTx0XFhZWBdk8u2cdhxBCCCGEqLnkg6hCCCGEEELUcFK0CyGEEEIIUcNJ0S6EEEIIIUQNJ0W7EEIIIYQQNZx8EFUIIYR4Rg80D0iI20HOpWs0aNiSVq+/ibG5fHuzEKLy/aFX2sPDwwkPD3+qmD179uDn58eAAQPw8fFh1apVlZaPl5eX/ptEH7Vs2TL27dsH8ERfKFRWO6WNNzo6munTp5fbXmFhIcHBwfTv3x8fHx/+8pe/kJiYCEBcXNxz/ZKjtLQ0vLy8nlt/QghRlqTss/x7/SjiVoVTePIetQ6b80toHKrN58jJzONa4q/k3M2v7jSFEC8JWWl/CiqVisWLFxMdHY2VlRW5ubkEBgbi4OCAt7d3lfX76P3ejx8/XmX9lOWrr75Cq9WyY8cOFAoFCQkJTJgwgQMHDjz3XIQQoqbY/Ms31E66jaWRHY3qdOOc9ga1tMY4nNVy4sQNfnlQiKa+GY29jainiaVu4XVuXU7DtoVvdacuhHgB/eGK9ri4OEJDQ9FqtTg6OpKZmcnQoUNRqVT4+fkxadKkMmOzsrJQq9Xk5xevnJiZmbFo0aIKv23z2rVrzJ07l7t371K7dm1mzZqFm5sb06dP5+7du1y/fp1p06YB8Omnn3L+/HlMTEwIDg7G2dmZ6dOn07lzZ86dOwfA4MGD2bx5M//3f/9HTEwMDx48wMjIiLCwMJo1a1ZJM/WbjIwM1Go1arUaY2NjOnTowL///W+0Wi0AmZmZjBkzhl9++QUHBweWL1+OsbExS5cuJTY2luzsbGxtbVm6dCn16tXj9ddf54033uDUqVOYmZmxZMkS7O3tSUxM5MMPPyQ/Px8rKyuCg4Np1KgR586dY9asWQA4OztX+viEEOJp3Dh/naSkG2Q1zsDOyABDk4ZsLTpKERoALihu4KZ4jQdONuR1eJW7AAaNcdN+hyJlN6aWTbC0fa0aRyCEeBH9IbfHpKSksHbtWuzt7blz5w7r1q0jKiqK1atXk5OTU2acs7Mz3t7e9OrVi0GDBumL/yZNmpTb37Rp0wgMDGTHjh3MmDGDyZMnU1hYCEDdunXZvXu3fstHkyZN2LZtGxMmTHhs28rs2bMB2Lx5Mzk5Ofzwww+sX7+enTt30qNHDzZs2FDh2Ddu3Iivr6/+f8uXL68wZvjw4Zw5c4bXX3+d8ePHs27dOtq1a6d/sZKens7cuXPZvXs3GRkZHD16lOvXr3P16lU2btzI3r17eeWVV9i+fTtQXOS3a9eOHTt28Oc//5mFCxdSWFjI7NmzCQsLY+vWrYwaNYo5c+YA8P777zN16lS2bt2Kvb19hfkKIURV+fnztdxb9AGNd0YwbI2O/Nb1uGFYoC/YAVS6LK4XZfKglW2J2AvGXQB4kH3tueYshHg5/CGLdgcHBywsLADw9PTE2NgYa2trrKysyM7OLjc2ODiY/fv3M2zYMNLT0wkICOC7774r8/rc3Fx++eUXevfuDcBrr71GnTp1uHr1KgBubm4lrh88eDAAf/rTn0hPT+fevXultmtubk5YWBjffvstYWFhHDhwgLy8vArHPnToUGJiYvT/e/fddyuMsbe3Z+fOnaxZs4a2bduybds2fH199bk5OzvTqFEjDAwMaN68OVlZWTRp0oT333+fzZs3s2jRIk6fPq3Pz8TEhLfeeguAgQMHEhcXR0pKCqmpqYwfPx5fX1+WLFlCamoqmZmZ3Lp1i65duwLg5+dXYb5CCFEVCn/9FYNjv20LrPtATZcLlmjsjR+7NqtICwaKEse0KAGobdWiahMVQryU/nDbYwBMTU31jw0Nf5sChUKBTqcrM+7gwYPk5eXRr18//P398ff3JzIyki1btuiL8t8rrT2dTodGo3ksFwClUlniukfze9TNmzcJDAzknXfeoXv37tSrV4/k5OQS18yaNYukpCQAFi5cWOa4KvLxxx/zl7/8BTc3N9zc3Bg3bhxDhw7lp59+wtrautQ5TEpKYsqUKYwcOZI+ffpgYGCgnwsDAwMUiuI/ZlqtFqVSiVarxd7enpiYGAA0Gg0ZGRmP/UwenR8hhHieikpZ1Mm91ZBBzY2IzLiH+r/rYE2aNKWLswfx2QWk1f/t96OjOoH6zX2xqNfmueUshHh5/CFX2p+VqakpYWFh+juz6HQ6kpOTcXFxKTPG3Nwce3t7/Wr86dOnycjIwNHRsdTrd+zYAcD3339P8+bNqV27donzSqWSoqIizp49S5MmTRg5ciRt2rThhx9+0L8QeCgkJES/ot6mzbP/kVCpVKxYsUK/pef27dtkZmbSsmXLMmNOnDhB586dGTZsGE2bNuXgwYP6/B48eMD+/fuB4rvXdO/enWbNmpGdnU18fDwAUVFRTJ06FSsrKxo2bMjBgwcB2Llz5zOPQwgh/he1WrRAW7deiWN3mnek9ciZTJ76Hm+++SaDBg3ir38dRZs/OTBqgDPDnOvR7VVLhjnXo6l5S+o79K2m7IUQL7o/5Er7s/Lw8CAoKIhx48ahVquB4u01EydOLDcuNDSUefPmER4ejpGREeHh4RgbP/52KhTvt/f19dV/yPX3vL298fX1JTIykm+++YZ+/fqh0+no1KkTly5d+t8HWYo5c+awePFi3nzzTWrVqoWRkRFTp06lefPmZGRklBrTr18/goKC8PHxAcDV1bXEbSj37NnD0qVLsbW1ZfHixRgbG7Ns2TJCQkIoKCjA3NycxYsXA8XzN2PGDD755BNee+21KhmjEEJURKFU0nLuTK5u3k5GWgaaNh0Z5dcdAGtra7p37/5YTAurWrSwKr5ve8JzzVYI8bJR6MrbDyJEFXBycuLChQtV3k9BQQFJSUm4urpWeIef5yEhIYEOHTpUdxovHZnXqiHzWvlkTquGzGvVkHmtfBXNaUV1i6y0/058fDwLFiwo9VxERAR2dnalnpsyZQqXL19+7LiXl1eJ+6zXVIsXL+bo0aOPHXd1dSUkJKQaMhJCCCGEEA9J0f47HTt21H8Y8mmEhYVVQTbPz/vvv//c+noeq+xCCCGEEC8T+SCqEEIIIYQQNZwU7UIIIYQQQtRwUrQLIYQQQghRw0nRLoQQQgghRA0nRbsQQgghhBA1nBTtQgghhBBC1HBStJciPDyc8PDwp4rZs2cPfn5+DBgwAB8fH1atWlVF2f1m1qxZnD17ttxrAgMDqzyP8ixbtox9+/aVe42vry8AiYmJhIaGlnttXFxctY9JCFG1dFoNRekX0eZklTgeeyKR8BWf8+WXX3Jq2/9xfst7JO/8J1f2hnP55CFyszOrKWMhhKh6cp/2SqBSqVi8eDHR0dFYWVmRm5tLYGAgDg4OeHt7V1m/T/KlR8ePH6+y/p/Ek3yx1MP74l++fJk7d+5UdUpCiBpMk3WTnG9mob2rAgNDanmNxLTzQMI2nCLj5y0o0AE62thmY1JXC0ABP5MTf4OdnwfTf3wwLdp5Vu8ghBCiCkjR/l9xcXGEhoai1WpxdHQkMzOToUOHolKp8PPzY9KkSWXGZmVloVaryc/PB8DMzIxFixaV+hW0jwoMDMTZ2Zn4+HgKCgqYOXMm3bp14+LFiyxYsIC8vDwyMzMZO3Ysw4YNIzw8nNOnT3Pz5k3eeecddu/eTVBQEO7u7kRERLB79240Gg3dunVj2rRp+qJ+8ODBbN68mQMHDvDJJ5+g1Wpp1KgR8+fPp169emXmd+3aNebOncvdu3epXbs2s2bNws3NjRs3bjBjxgwyMzMxNTVl4cKFODs789VXX/HNN9+gVCrp2bMn06ZNY/r06XTu3JnOnTszfvx4mjVrxuXLl2nYsCGhoaHUrVsXJycnTpw4wfLly8nLy+Ozzz4jMDCQmTNnolKpuHXrFq+//rp8M6sQfwD5P24oLtgBtEU8OPAVVy3dOZuUjH2DJhg2fw2lgY6cWj9hqbmojzO31YEGDkeulKJdCPFSku0xj0hJSWHt2rXY29tz584d1q1bR1RUFKtXryYnJ6fMOGdnZ7y9venVqxeDBg3SF/9NmjSpsM+cnBy2bt1KWFgY06dPp7CwkM2bNzNhwgSioqJYt24dH330kf76wsJCdu3axdtvv60/dvjwYZKSktiyZQvbtm1DpVKxfft2Zs+eDcDmzZu5c+cOc+fOZcWKFezYsYP27dszf/78cnObNm0agYGB7NixgxkzZjB58mQKCwsJDg6mT58+7Ny5k0mTJvHZZ5+RmJjI119/zZYtW9i+fTs///wzSUlJJdq7ePEib7/9Nt9++y3Nmzfn008/1Z+ztLTk3XffxcvLi/Hjx3Pw4EFcXFzYtGkTe/fu5cSJE/z8888VzqcQ4sWmvXur5AFNEVmq22Bpi3GnPihtXgGrhsSa+HPXwE5/mSLXEp1OR969u883YSGEeE6kaH+Eg4MDFhYWAHh6emJsbIy1tTVWVlZkZ2eXGxscHMz+/fsZNmwY6enpBAQE8N1331XYZ0BAAAAuLi7Ur1+fCxcuMH36dAoKCvjiiy/45JNPyMvL01/v5ub2WBuxsbEkJibi5+fHwIEDSUpK4vLlyyWuSUxMxM3NDXt7ewCGDBnCsWPHyswrNzeXX375hd69ewPw2muvUadOHa5evcqJEyf0+9D/9Kc/sWzZMk6cOEHPnj2xsLDA0NCQr776CldX1xJtNm3aFHd3dwDeeuutcvvv378/Xbt25auvvmLhwoXcvXu3xDwIIV5ORi7dSjw3qNeYVu1dMG9hiULxyJ8shQG/4lT88L41KWdz0VJE6659n2e6Qgjx3Mj2mEeYmprqHxsa/jY1CoUCnU5XZtzBgwfJy8ujX79++Pv74+/vT2RkJFu2bNEXvWVRKpX6x1qtFkNDQ/7xj39gaWlJz5496devHzt37iw1x4c0Gg0jRoxg1KhRANy7d69Euw/bfpROp6OoqKjMvEobr06nQ6PRlJgbnU7HlStXMDQ0RKFQ6I+rVCpq1apVIv73cb/P8VHr169n7969BAQE0KVLFy5evFjuz0AI8XIw6egDBgaozx/FwKoBtbq9jYGFMa2d7pOR+0qJa1UJjbBSD8DCIY+ixon07DWZ13q+VT2JCyFEFZOV9kpgampKWFgYaWlpQHFBmpycjIuLS4Wxu3btAuDs2bPcu3ePli1b8tNPP/Huu+/Sq1cvDh8+DBQX5mXx8PAgJiaG3NxcioqKmDhxInv37gWKXxQUFRXRtm1bzpw5o89x06ZN+lXv0pibm2Nvb69/t+D06dNkZGTg6OhIx44d+fbbbwE4evQoc+bMoWPHjhw6dEifw5QpUx7bHnPt2jWSk5MBiIqKonv37iXOP8wV4KeffmLIkCEMGDCAgoICzp8//9gLDyHEy0ehUGDaoT8Wf/k3Zv3excCy+HM33RrXJ8/gFDq06NBSUHiOdm9Y8Kfpfek4bBA+E+bTvtcgDJSyFiWEeDnJb7dK4OHhQVBQEOPGjUOtVgPF22smTpxYYWxqaioDBw4EYOnSpSiVSiZNmsTbb7+NiYkJzs7OvPrqq/piuzReXl6cP3+egIAANBoNnp6e+ja9vb3x9fUlOjqa+fPnExQUhFqtpmHDhhV+sDM0NJR58+YRHh6OkZER4eHhGBsbM3fuXGbPns3XX39NrVq1WLhwIS1atOCdd95h6NChaLVa3njjDbp06cL27dv17dWpU4fly5fzyy+/4OTkxMKFC0v05+bmxqeffsqSJUsYMWIE8+bNIyIiAnNzc9q1a0daWhqNGzeucE6FEC+fNnXd6GJ/lQOqFRhgQK+mnni88lp1pyWEEM+NQid7DqpNYGCg/u4vL7u0tDSGDx/O/v37n1ufBQUFJCUl4erqWuGdfJ6HhIQEOnToUN1pvHRkXqtGTZ1Xra74HTcDxYv3RnFNndMXncxr1ZB5rXwVzWlFdYustD+h+Ph4FixYUOq5iIgI7OzsSj03ZcqUxz4UCsWr4zVBefk9yT3WhRDieXoRi3UhhKgMUrQ/oY4dO+q/BOhphIWFVUE2led55Wdvb/9cV9mFEEIIIV4msmQhhBBCCCFEDSdFuxBCCCGEEDWcFO1CCCGEEELUcFK0CyGEEEIIUcNJ0S6EEEIIIUQNJ0W7EEIIIYQQNZwU7UI8B8cPf8/BmA189fEc0q/8XN3pCCGEEOIFI0V7NQkPDyc8PPypYvbs2YOfnx8DBgzAx8eHVatWVVF2v5k1axZnz5596rjp06cTHR1NWlpapX+RlJOTU6W2V9X2Ra5n254D3Cky5WImrF65jHsZv1Z3WkIIIYR4gciXK70gVCoVixcvJjo6GisrK3JzcwkMDMTBwQFvb+8q6zckJKTK2v4jiPv4Pxz69SK1zXUYtvKksIErOp2Gb89eZljPBtWdnhBCCCFeEFK0P0dxcXGEhoai1WpxdHQkMzOToUOHolKp8PPzY9KkSWXGZmVloVaryc/PB8DMzIxFixZhYmJSbp+BgYE4OzsTHx9PQUEBM2fOpFu3bmRkZDB37lx+/fVXFAoFU6ZMoUuXLoSHh3P69Glu3rzJO++8w+7duwkKCqJz584sWbKEH374AaVSyZAhQxgxYgTHjx9n6dKl5Ofnc+/ePWbMmEGvXr1KzSUjI4NZs2aRnp6OoaEh//znP+nevTuxsbGEhoYCUKdOHcLCwrC2tmbp0qXExsaSnZ2Nra0tS5cupV69es84+8/ftaNnSLhmR+vWSVg6ORBv2hYFAEouGzYhMT0Ht4bm1ZylEEIIIV4Esj3mOUtJSWHt2rXY29tz584d1q1bR1RUFKtXryYnJ6fMOGdnZ7y9venVqxeDBg3SF/9NmjSpsM+cnBy2bt1KWFgY06dPp7CwkJCQEPz9/YmOjuazzz5j7ty5+v4LCwvZtWsXb7/9tr6NPXv2cPLkSXbs2MHmzZuJjo7m9u3b/N///R8LFy5k69atLFy4kGXLlpWZx4IFC/Dw8GDHjh0sX76cmTNnkpGRwcqVK5k3bx7R0dF06dKFc+fOcf36da5evcrGjRvZu3cvr7zyCtu3b3+Kma5+aedvY2yST+tmeWQrH19V/+K7dPILNdWQmRBCCCFeNLLS/pw5ODhgYWEBgKenJ8bGxlhbW2NlZUV2djbm5mWvvAYHBzNhwgSOHDnCkSNHCAgIYMmSJfTu3bvcPgMCAgBwcXGhfv36XLhwgaNHj3L16lWWL18OQFFREampqQC4ubk91saJEyfo27cvxsbGGBsbExMTA0BoaCgHDhxgz549nDlzhtzc3DLzOHbsGAsXLgSgUaNGtG3bljNnzuDt7U1QUBC9evXC29ubrl27AvD++++zefNmrl27xunTp2ncuHG546xpbF2ac+1qLAYGYKtJ4ZKRx28ndTpu3igg/uJ9urnWrbYchRBCCPFikKL9OTM1NdU/NjT8bfoVCgU6na7MuIMHD5KXl0e/fv3w9/fH39+fyMhItmzZUmHRrlQq9Y+1Wi2GhoZotVrWrl1L3bp1Abh16xY2Njb88MMPJXJ8NFeFQqF/npaWhrW1NYGBgbi7u+Pu7s7rr7/O1KlTy8zj9+PT6XRoNBpGjhxJz549OXDgAKGhoSQmJuLp6cmUKVMYOXIkffr0wcDAoNz5qYlaujfl5oV0cu+Z08DyCm4F33HFqBPKAiPq3bjJ0Rwb6pjJf4JCCCGEqJhsj3lBmJqaEhYWRlpaGlBc8CYnJ+Pi4lJh7K5duwA4e/Ys9+7do2XLlnh4ePD1118DcPnyZXx8fHjw4EGZbXTq1InvvvsOtVrNgwcPGD16NJcvXyYlJYXJkyfTvXt39u3bh0ZT9nYPDw8PtmzZAkBqaionT57ktddeY/DgweTm5jJy5EhGjhzJuXPnOHHiBJ07d2bYsGE0bdqUgwcPltt2TaQwUNBjZFdc35hBgUVL7O9e5o2kY7S8kMAeVT5dW9ehjYPsaRdCCCFExWSZ7wXh4eFBUFAQ48aNQ61WA8XbayZOnFhhbGpqKgMHDgRg6dKlKJVKZs+ezdy5c/Hx8QHgo48+KndrzhtvvEFSUhJ+fn5otVqGDx+Om5sbgwYN4s9//jOGhoZ4eHiQn59PXl5eqW3MmjWLuXPnEh0dDcDChQuxtbXlX//6F9OnT8fQ0JDatWuzcOFCatWqRVBQkD4/V1dX/QuWF00tCxvauf+LwwmHMOpuRZ3bdsyubYFTo9rVnZoQQgghXhAK3Yu250A8lcDAQIKCgnB3d6/uVJ67goICkpKScHV1rfAuO89DQkICHTp0qO40Xjoyr1VD5rXyyZxWDZnXqiHzWvkqmtOK6hZZaa9B4uPjWbBgQannIiIisLOzK/XclClTuHz58mPHK/tLjYQQQgghRPWQor0G6dixo/6uLE8jLCysCrIRQgghhBA1hXwQVQghhBBCiBpOinYhhBBCCCFqOCnahRBCCCGEqOGkaBdCCCGEEKKGk6JdCCGEEEKIGk7uHiOEEEJUAq1Oy/l759CmP6DOORNqv2qNeRtzbt26gbVt0+pOTwjxgpOV9moUHh5OeHj4U8Xs2bMHPz8/BgwYgI+PD6tWraqi7B4XGBhYqe3dv3//ib7R9VFxcXGVnocQQvyv1Fo1H19YTPymzSg2P+CQzpD/FOayPiGeX6+u5di307l6+Xx1pymEeIHJSvsLRKVSsXjxYqKjo7GysiI3N5fAwEAcHBzw9vau8v6PHz9eqe1lZ2eTnJxcqW0KIURV02mKKPrlLApTcwxfcQTgzN1TpN69gvfV/pzsWI+UVy0AuIkTBQZm9LRey69XEnjwwI9atWpVZ/pCiBeUFO3PWVxcHKGhoWi1WhwdHcnMzGTo0KGoVCr8/PyYNGlSmbFZWVmo1Wry8/MBMDMzY9GiRaV+1e2jAgMDcXZ2Jj4+noKCAmbOnEm3bt3IyMhg1qxZpKenY2hoyD//+U+6d+9ObGwsoaGhANSpU4ewsDBWrlwJwODBg9m8eTM7duzgs88+Q6FQ0KZNGxYsWEBhYSHz58/n0qVLaDQaxowZQ//+/YmOjubHH38kOzub1NRUunbtyrx581i4cCG3bt1i4sSJzJgxg9GjR2NlZYWpqSnh4eHMnDkTlUrFrVu3eP311wkJCamkn4IQQjwbbU4m99e/jzYrHYCi5t0w+vM0HmjyML8PWp2SX+uVLMozlfaoMcailoZ79+5J0S6EeCZStFeDlJQUDhw4wFdffcWlS5fYuHEjOTk5eHl5MWrUKMzNzUuNc3Z2xtvbm169euHi4oK7uzs+Pj40adKkwj5zcnLYunUrycnJjBkzhv3797NgwQI8PDwYNWoUqampDBs2jG3btrFy5UrmzZuHm5sbX375JefOnWP27NmsX7+ezZs3o1Kp+PDDD4mOjqZBgwZMmzaNQ4cOcfr0aVq3bs3ixYvJyclh6NChtG3bFoBTp06xc+dOlEolb775JsOGDWP27NkMHz6cFStWkJaWxrVr11i1ahX29vbs3LkTFxcXli9fTmFhIX/+85/5+eefK/XnIIQQT6sgfoe+YAcwvHKEDxa78loPF9T1zMkuPE/dey35tf5vf17NtJkYUsit7LrY2tpWR9pCiJeAFO3VwMHBAQuL4rdOPT09MTY2xtraGisrK7Kzs8ss2gGCg4OZMGECR44c4ciRIwQEBLBkyRJ69+5dbp8BAQEAuLi4UL9+fS5cuMCxY8dYuHAhAI0aNaJt27acOXMGb29vgoKC6NWrF97e3nTt2rVEW6dOnaJ9+/Y0aNAAQL8qv3LlSvLz84mKigIgLy+PS5cuAdCuXTv9uBo1akR2djZmZmYl2rWxscHe3h6A/v37k5iYyFdffcXVq1e5e/cueXl5FcysEEJULW1e9mPHzHW5RP6Qy0fvTuN64F7s9hzlXjsP8uqaY6LOwjFrB6dSFLRo2xuFQlENWQshXgZStFcDU1NT/WNDw99+BAqFAp1OV2bcwYMHycvLo1+/fvj7++Pv709kZCRbtmypsGhXKpX6x1qtFkNDw8f60ul0aDQaRo4cSc+ePTlw4AChoaEkJiYyfvz4Ejk/+ocnMzNT325oaCitW7cGICMjgzp16rBjx44SW3jKGuej87J+/Xr27t1LQEAAXbp04eLFi+XOjRBCPA/Grl4UnvkedFoA7mgtSdI0B+BBtgX92/8V2hdfm5pymcvHDmFS61W8Rk7g/OVr1ZW2EOIlIHePeYGYmpoSFhZGWloaUFxkJycn4+LiUmHsrl27ADh79iz37t2jZcuWeHh4sGXLFgBSU1M5efIkr732GoMHDyY3N5eRI0cycuRIzp07BxQX/kVFRbRp04bTp09z+/ZtAP7973+zb98+PDw8+OabbwC4desWAwYM4ObNm2XmZGhoSFFRUannfvrpJ4YMGcKAAQMoKCjg/PnzaLXaJ5wpIYSoGkaNXTEftpCsV7uxu7ALwXl/pxBjLGsraeNQ8t3DRk1b0HPoJLr4jsKsjnU1ZSyEeFnISvsLxMPDg6CgIMaNG4darQaKt9c8yW0TU1NTGThwIABLly5FqVQya9Ys5s6dS3R0NAALFy7E1taWf/3rX0yfPh1DQ0Nq166t30Lj7e2Nr68v0dHRzJo1i7/97W9otVpee+01/Pz8ePDgAfPmzaN///5oNBqmTZtG48aNiY+PLzUnGxsbGjZsSGBgIB9++GGJcyNGjGDevHlERERgbm5Ou3btSEtLo3Hjxs88f0IIURmMmralWdO2XDxxB7uTWTiZGfK2tx21TJQVBwshxDNS6GTPwUsvMDCQoKAg3N3dqzuV56qgoICkpCRcXV0rvMPO85CQkECHDh2qO42Xjsxr1ZB5rXwyp1VD5rVqyLxWvormtKK6RVbaa5j4+HgWLFhQ6rmIiAjs7OxKPTdlyhQuX7782HEvL69KzU8IIYQQQjx/UrTXMB07diQmJuap48LCwqogGyGEEEIIURPIB1GFEEIIIYSo4aRoF0IIIYQQooaTol0IIYQQQogaTop2IYQQQgghajgp2oUQQgghhKjhpGgXQghRYxTlFKLJU1d3GkIIUeP8IYv28PBwwsPDnypmz549+Pn5MWDAAHx8fFi1alUVZVf5ZsyYwY0bN54qxsnJqdTjs2bN4uzZs+XGLl++nB49erBmzZqn6rMi9+/ff6JvfxVCvDi0hYXcXLuWi5Pe5eq8SK6HxpISGsuvuy5zOC2bjcm3OXrjHg/yCrl7K7e60xVCiGoj92l/AiqVisWLFxMdHY2VlRW5ubkEBgbi4OCAt7d3dadXobi4uEordkNCQiq8JiYmhjVr1uDg4FApfT6UnZ1NcnJypbYphKg6hck/8uDw/6ErfIBJ+37U6jr0sWsytm/n7oEDGJg1R6f775fHaXV8/6CQlNR7AFy6m8/RfVepfeIG9ewt+fO4TpjVMX2eQxFCiGr3hyna4+LiCA0NRavV4ujoSGZmJkOHDkWlUuHn58ekSZPKjM3KykKtVpOfnw+AmZkZixYtKvUrZh8VGBiIs7Mz8fHxFBQUMHPmTLp168b06dO5e/cu169fZ9q0adSrV48PP/yQ/Px8rKysCA4OplGjRiQnJzN37lzy8/OpU6cOS5YsoUGDBkRERLB79240Gg3dunVj2rRp3Lhxg6CgIBwdHUlOTsbGxoZly5YRGRnJrVu3GDt2LBs2bMDf3x83NzeSk5P5+uuvWbduHbGxsWRnZ2Nra8vSpUupV69euWMKCgoC4IsvvsDU1JQrV67g5OTEkiVLWLhwISqViokTJxIWFoaLi0uJn8HKlSsxNDQkLS0NNzc3QkJCMDY2ZunSpaXm4eHhgaurK7dv36Z+/frcunWLiRMnsmLFiqf58QshnjNN1k1yt30EOi0A+YfWo7R+FWMXTx5o8tj4ywZ+zk7C72QhVoDCqK4+Vgtcb2Beoj11s1oUxa7g5tW2nNhdlx5D2zy/wQghRA3wh9oek5KSwtq1a7G3t+fOnTusW7eOqKgoVq9eTU5OTplxzs7OeHt706tXLwYNGqQv/ps0aVJhnzk5OWzdupWwsDCmT59OYWEhAHXr1mX37t1069aN2bNnExYWxtatWxk1ahRz5swBYOrUqUyYMIEdO3bQr18/1q5dy+HDh0lKSmLLli1s27YNlUrF9u3bATh//jyjRo1i586dWFpasmPHDsaOHYutrS0RERFYWVkB0L17d/bu3UtOTg5Xr15l48aN7N27l1deeUXf1pM4deoUc+fOZffu3aSnp3PkyBHmz5+v7+/Rgv3RmFmzZrFnzx4KCgrYsGED169fLzOPrKwsxowZQ0xMDPPmzcPW1lYKdiFeAEWpSfqC/aGTB47y19BkPjj4FfGZx3mgySO1XgEA2gep+usMAOP//q58qLYih6atLClSHyHt4tEqz18IIWqaP8xKO4CDgwMWFhYAeHp6YmxsjLW1NVZWVmRnZ2Nubl5mbHBwMBMmTODIkSMcOXKEgIAAlixZQu/evcvtMyAgAAAXFxfq16/PhQsXAHBzcwOKX0ikpqYyfvx4fUxOTg6ZmZncvn2bnj17AvD2228DsHjxYhITE/Hz8wMgPz+fhg0b0qFDB2xsbGjVqhUAjo6OZGdnl5pT27ZtAWjSpAnvv/8+mzdv5tq1a5w+fZrGjRuXO55HOTo60qBBAwCaN29eZn+P6tSpE82aNQPA19eXyMhIRo0aVW4eD/MVQrw4DBs4Pnbs4M163CwqRKm8hvF/j8W5G2CZraPpL7fRPojHuKE7hhZmNMk7z2WT1mgVhih1hbgV/oDWqjYARia/PseRCCFEzfCHKtpNTX/bA2lo+NvQFQoFOp2uzLiDBw+Sl5dHv3798Pf3x9/fn8jISLZs2VJh0a5UKvWPtVqtvt+HuWi1Wuzt7YmJiQFAo9GQkZGBkZERCoVCH1tQUMCtW7fQaDSMGDGCUaNGAXDv3j2USiVZWVkltuuUN6aH1yUlJTFlyhRGjhxJnz59MDAweCxmzJgx3Lp1C4CIiIhS2ymrv3379rF8+XIAvLy88PDwKDEfOp0OpVJZYR6P/tyEEC8GpW1Tar3xd/J//D906gIOqTtyuKg9AAWZthhb3C1+bKrgiH893nBeiNLIWP97z/m0liY3w8k3qY+V9leMKOBMevEHUV27dq6WMQkhRHX6Q22PeVampqaEhYWRlpYGFBebycnJpW7/+L1du3YBcPbsWe7du0fLli1LnG/WrBnZ2dnEx8cDEBUVxdSpU7GwsMDOzo4jR44AxR/uXLZsGR4eHsTExJCbm0tRURETJ05k79695eagVCrRaDSPHT9x4gSdO3dm2LBhNG3alIMHDz523ZdffklMTAwxMTHY2dlVON5HeXt762MnT54MQEJCAiqVCq1Wy7Zt2+jevfsT5QHFL7SKioqeKgchRPUx7TSAOv/4hrpTt3DUdhi6//7JyUzshiaz+N00WxM7RjUbi6GxSYmFijZu7cjIb4P6djo5OUUkXdBy60oG7XsNplWXPtUyHiGEqE5/qJX2Z+Xh4UFQUBDjxo1DrS6+f7Cnp+cT3ZElNTWVgQMHArB06dISK80AxsbGLFu2jJCQEAoKCjA3N2fx4sUAhIaGMm/ePEJDQ7GysuKjjz7C1taW8+fPExAQgEajwdPTk4EDB5Z7S8cePXowduzYx25T2a9fP4KCgvDx8QHA1dVV/8Kkqtja2vLee++hUqno2rUrgwcPJiMj44nysLGxoWHDhgQGBrJ+/foqzVMIUTkUBkpAyURfexZuSCHtdgFWpnUIavFPnJuYYmhQ+p8hAwMD+g8cRV7eEAwMDOhiYoJOp8XAQFnq9UII8bJT6MrbFyL+Jw/vtOLu7l7dqdQIcXFxfPrpp8+t4C4oKCApKQlXV9cK7/TzPCQkJNChQ4fqTuOlI/NaNapiXnU6HZn3i6hrbojSQFFxwEtG/q1WDZnXqiHzWvkqmtOK6hZZaf+v+Ph4FixYUOq5iIiIMreGTJkyhcuXLz923MvLq1LzE0KIF51CocDG0qi60xBCiBeSFO3/1bFjR/2HQZ9GWFhYFWTzcnJ3d5d3HYQQQgghnoF8EFUIIYQQQogaTop2IYQQQgghajgp2oUQQgghhKjhpGgXQgghhBCihpOiXQghhBBCiBpOinYhhBBCCCFqOLnloxBCVIPcfA1f71ehun6PzpYGdO35CmYNLTh25yg/3T5MLWVt3nzlzzQzb17dqQohhKgBXvqV9vDwcMLDw58qZs+ePfj5+TFgwAB8fHxYtWpVFWVX+WbMmMGNGzeeKsbJyamKsql8qampzJw5s7rTEOJ/Fhr5C9eO3CDgpormF2/y6xcnObT/BNv2JHB7031SYlL59Pgy7qvvV3eqQgghagBZaf8dlUrF4sWLiY6OxsrKitzcXAIDA3FwcMDb27u606tQXFwcEydOrO40qkx6ejqpqanVnYYQT0VX+IDCs/vR5mVj3Ko7RZYNOX7+HrMM81Eqiq855lqfq7UsMGv2FrpXcij4aRsGR+9ytkUSuQdMuZWSjtUr9fEc1AYL61rVOyAhhBDP3UtZtMfFxREaGopWq8XR0ZHMzEyGDh2KSqXCz8+PSZMmlRmblZWFWq0mPz8fADMzMxYtWoSJiUm5fQYGBuLs7Ex8fDwFBQXMnDmTbt26MX36dO7evcv169eZNm0a9erV48MPPyQ/Px8rKyuCg4Np1KgRycnJzJ07l/z8fOrUqcOSJUto0KABERER7N69G41GQ7du3Zg2bRo3btwgKCgIR0dHkpOTsbGxYdmyZURGRnLr1i3Gjh3Lhg0b8Pf3x83NjeTkZL7++mvWrVtHbGws2dnZ2NrasnTpUurVq1fmmNasWcPWrVsxMDDAzc2N+fPnEx0dzfHjx1m0aJF+3EFBQQCsXLkSQ0ND0tLScHNzIyQkBGNj4xJtRkdHc/DgQe7cucPt27fp2bMn06dPR6PRMG/ePC5dukRGRgZOTk58/PHHZGRkMHr0aKysrDA1NSUjI4O0tDSCg4P54IMPnujfgxDVSafTcn/DDDQ3LwGQH7sZ83c+wtrCENMHOgCyzI25am+hj1HUMseweVt0SUdI330Te+vjvNr1LgX5JhyN6kafMYOrZSxCCCGqz0u7PSYlJYW1a9dib2/PnTt3WLduHVFRUaxevZqcnJwy45ydnfH29qZXr14MGjRIX/w3adKkwj5zcnLYunUrYWFhTJ8+ncLCQgDq1q3L7t276datG7NnzyYsLIytW7cyatQo5syZA8DUqVOZMGECO3bsoF+/fqxdu5bDhw+TlJTEli1b2LZtGyqViu3btwNw/vx5Ro0axc6dO7G0tGTHjh2MHTsWW1tbIiIisLKyAqB79+7s3buXnJwcrl69ysaNG9m7dy+vvPKKvq3SaDQavvjiC6KiooiOjkatVqNSqcod/6lTp5g1axZ79uyhoKCADRs2lHpdQkICy5YtY+fOnZw5c4bvv/+eU6dOYWRkxKZNm/j++++5f/8+hw4dAuDatWuEhoayZs0aZs+ejaurqxTs4oVR9EuSvmAvPlBI4endjB9gzzGFKQCFxqX8KjY2xbCWIbZmP2NpdRcAE9MC7Br+iLqg4DlkLoQQoiZ5KVfaARwcHLCwKF658vT0xNjYGGtra6ysrMjOzsbc3LzM2ODgYCZMmMCRI0c4cuQIAQEBLFmyhN69e5fbZ0BAAAAuLi7Ur1+fCxcuAODm5gYUv5BITU1l/Pjx+picnBwyMzP1q84Ab7/9NgCLFy8mMTERPz8/APLz82nYsCEdOnTAxsaGVq1aAeDo6Eh2dnapObVt2xaAJk2a8P7777N582auXbvG6dOnady4cZljUSqVtGvXjkGDBuHt7c2oUaOws7Mrd/ydOnWiWbNmAPj6+hIZGcmoUaMeu87b21u/wt+vXz+OHTvG3LlzqVu3Lhs2bODq1aukpKSQl5cHgI2NDfb29uX2LURNpTBQlnJQSdfWdXhtRgcOLVmGYaoGY+feFFpaA6DT6TBVXSXg7RHcPx9RItTYpBB0uUD57/4JIYR4uby0Rbupqan+saHhb8NUKBTodLoy4w4ePEheXh79+vXD398ff39/IiMj2bJlS4VFu1L52x9nrVar7/dhLlqtFnt7e2JiYoDi1eyMjAyMjIxQKBT62IKCAm7duoVGo2HEiBH6wvfevXsolUqysrJKbNcpb0wPr0tKSmLKlCmMHDmSPn36YGBg8FjMmDFjuHXrFgARERGsXLmS06dPc/jwYUaPHs2SJUse60utVpc6fp1Oh1Kp5JtvvmHjxo0ADB06FBMTk8fmSalUsm/fPpYvX87w4cPx8/MjKytL38+jP0shXjRK+1YYNm5D0S9niw+Y1Ma0ow8AZqZKdPXvc/bqDyi3H8LQ9U10terS7tJFXu/bm7rNm3P9vhu5GT/+1p6xLYYmVtUxFCGEENXopd0e86xMTU0JCwsjLS0NKC4+k5OTcXFxqTB2165dAJw9e5Z79+7RsmXLEuebNWtGdnY28fHxAERFRTF16lQsLCyws7PjyJEjAMTExLBs2TI8PDyIiYkhNzeXoqIiJk6cyN69e8vNQalUotFoHjt+4sQJOnfuzLBhw2jatCkHDx587Lovv/ySmJgYYmJiMDIyol+/frRs2ZLJkyfTtWtXLly4gJWVFVeuXEGn05Gamqp/NwGKt72oVCq0Wi3btm2je/fuDBs2TN/msGHDAPjxxx+5f/8+BQUFfPvtt3Tv3p3Y2Fj69u2Lv78/lpaWxMXFlToOpVJJUVFRRT8KIWoMhUKB+bAFmL01nVq9x1Nn7Oco6//2Llenvn/B2LQ2igfZGJ/YRPNDX+Ok0GLZqRMAjdoMxsr+TxiaWGNu40rTDhNLvMgXQgjxx/DSrrQ/Kw8PD4KCghg3bpx+FdnT0/OJ7siSmprKwIEDAVi6dGmJFWUAY2Njli1bRkhICAUFBZibm7N48WIAQkNDmTdvHqGhoVhZWfHRRx9ha2vL+fPnCQgIQKPR4OnpycCBA8u9pWOPHj0YO3bsY7ep7NevH0FBQfj4FK/wubq66l+YlMba2pohQ4YwaNAgatWqhYODA/7+/hgaGhIVFcWbb76Jg4MDHTp00MfY2try3nvvoVKp6Nq1K4MHl/5hOWtra8aMGUNWVhYDBgzA09MTW1tbpk6dyrfffouRkRHt27cvNb/mzZtz//59pk2bRmhoaJn5C1GTKJRGGLfyLPWcbeMW/G3xJq6d+gnDzHu88moLzF97DQMjIwAMlMa84jyMV5yHPc+UhRBC1DAKXXl7RcQTe3gXFXd39+pOpVrExcXx6aefsn79+nKv+/3dZ6pSQUEBSUlJuLq6Vnj3n+chISGhxIscUTlkXquGzGvlkzmtGjKvVUPmtfJVNKcV1S1/yJX2+Ph4FixYUOq5iIiIMj9wOWXKFC5fvvzYcS8vr0rNTwghhBBCiEf9IYv2jh076j8M+jTCwsKqIJuXg7u7+xO9y+Dn56e/G44QQgghhHgy8kFUIYQQQgghajgp2oUQQgghhKjhpGgXQgghhBCihpOiXQghhBBCiBpOinYhhBBCCCFqOCnahahhHuQUUqR+/NtghRBCCPHH9Ye85aMQNYFOp+N+oQZzYyUKLWQnqUj6/irnf7kLJkpe93Wmdbcm1Z2mEEIIIWoAWWmvgcLDwwkPD3+qmD179uDn58eAAQPw8fFh1apVlZpTXFwcgYGBzxyflpZW5pdQjRkzBpVKRWpqKjNnznzmdl4kqtxCVp7+lWUnb/LRsRvsXX2GO9EXeOW+mm51TDEqVHN488/k3M2v7lSFEEIIUQPISvtLQKVSsXjxYqKjo7GysiI3N5fAwEAcHBzw9vau7vQq9OWXXwLFLwxSU1OrOZvnY/e1LDLziwBQo+OCgwXN719Ca56J9q41lvlp3H/QmKxfczCva1rN2QohhBCiuslKew0RFxfHoEGD8PPzIy0tjcTERIYOHUrPnj0rXHXPyspCrVaTn1+8KmtmZsaiRYto0aJFuXFr1qxhwIABvPXWW8ydOxeA6Ohopk+frr8mMDCQuLg4fT9/+9vf8PHxYdasWRQWFgJw4MABfH198fHxYcKECWRkZADg5eXFP/7xD/r06UNmZiYFBQVMnjyZAQMGEBQURHZ2tv66tLQ0Fi5cSFJSEsHBwRQVFTF79myGDBmCt7c3EyZM0I/vZZCe+6DE83vmxhS0PYCm+Sl07feR0SiNX81PojHOraYMhRBCCFGTSNFeg6SkpLB27Vrs7e25c+cO69atIyoqitWrV5OTk1NmnLOzM97e3vTq1YtBgwYRGhqKVqulSZOy90NrNBq++OILoqKiiI6ORq1Wo1Kpys0vLS2NOXPmsH37dnJzc/nmm2+4c+cOc+fOZcWKFezYsYP27dszf/58fUz37t3Zu3cv1tbW3Llzh8DAQLZv306jRo1YsWJFifZnz56Nq6srH3zwAadOncLIyIhNmzbx/fffc//+fQ4dOvSEM1nz5Ssulnhev+gaBmgBUCjAtckDtAY6vt/3XXWkJ4QQQogaRor2GsTBwQELCwsAPD09MTY2xtraGisrK/2qdFmCg4PZv38/w4YNIz09nYCAAL77ruyCT6lU0q5dOwYNGsSnn37KqFGjsLOzK7ePjh070rRpUxQKBT4+Phw/fpzExETc3Nywt7cHYMiQIRw7dkwf07Zt2xLj69ixIwC+vr4cP368zL46derE22+/zYYNGwgJCSElJYW8vLxy83tR6HQ6cg33kmdwkiLuoMxLpFPethLXGPz3v8y7d+8+9/yEEEIIUfNI0V6DmJr+tnfZ0PC3jxsoFAp0Ol2ZcQcPHmTXrl3Y2dnh7+/P0qVLmT17Nlu2bCm3v5UrVzJv3jx0Oh2jR4/m+PHjj/WlVqtLzUmn02FoaIhWqy3Rpk6no6ioSP/cxMSk3Piy7Nu3j6lTp2Jqaoqfnx+dOnUqdw5eJAqFgu52XblnuJMM4xXcqLsNbt0tcc351OJ/C23atHn+CQohhBCixpGi/SVgampKWFgYaWlpQHFBnJycjIuLS5kxmZmZ9OvXj5YtWzJ58mS6du3KhQsXsLKy4sqVK+h0OlJTU7lw4YI+JiEhgfT0dLRaLdu2baNLly60bduWM2fO6PvetGkT7u7upfZ55coVzp07B0BUVBRdunQpcV6pVOoL/tjYWPr27Yu/vz+WlpbExcWh0bw89y73fdWPMc3G08uuD+OaB+Ha6W/UK2yImUFjbhZ0Rm3cij59+vDGG29Ud6pCCCGEqAHk7jEvAQ8PD4KCghg3bpx+ZdzT05OJEyeWGWNtbc2QIUMYNGgQtWrVwsHBAX9/fwwNDYmKiuLNN9/EwcGBDh066GNatGjBzJkzuX37Nh4eHgwaNAilUsn8+fMJCgpCrVbTsGFDQkJCSu2zcePGrFixgl9++YWWLVvyz3/+s8T55s2bc//+faZNm8bo0aOZOnUq3377LUZGRrRv317/wuBl8ZpVe16zal/8pC7YOncFQO7MLoQQQojfU+helj0HQvxOQUEBSUlJuLq6ltimU10SEhJKvAgSlUPmtWrIvFY+mdOqIfNaNWReK19Fc1pR3SIr7S+I+Ph4FixYUOq5iIiIMj9EOmXKFC5fvvzYcS8vLyZPnlypOQohhBBCiKohRfsLomPHjsTExDx1XFhYWBVkI4QQQgghnif5IKoQQgghhBA1nBTtQgghhBBC1HBStAshhBBCCFHDSdEuhBBCCCFEDSdFuxBCCCGEEDWcFO3VKDw8nPDw8KeK2bNnD35+fgwYMAAfHx9WrVpVqTnFxcURGBhYqW0+5OvrW+751NRUZs6cWe41aWlpeHl5VWZaQrx0chITSfv0U27+5z8U3LxZ3ekIIYSoBHLLxxeISqVi8eLFREdHY2VlRW5uLoGBgTg4OODt7V3d6VWooltWpqenk5qa+pyyEeLFVajW8O+f/o9bteJQ6JR0t+pHW50DBw4coOD+fRxSUmiZlwfA/VOnaP7RRyhr1QJAp9Wgzs/EqJYNCoWs2wghxItCivbnLC4ujtDQULRaLY6OjmRmZjJ06FBUKhV+fn5MmjSpzNisrCzUajX5+fkAmJmZsWjRogq/7XPNmjVs3boVAwMD3NzcmD9/PtHR0Rw/fpxFixYBEBgYSFBQkL6fv/3tb9y6dQs3Nzc++OADjI2Nef3113njjTc4deoUZmZmLFmyBHt7e3bv3s2aNWvIz8+nsLCQf//737Rv357AwEDq1KnDpUuX+OSTT3jrrbe4cOECubm5zJ8/n0uXLqHRaBgzZgz9+/dn4cKFpKWlERwczKxZs5g3bx6XLl0iIyMDJycnPv7440r6KQjxYvvs6AFuWxxBAYCaH3/dRuL39dBpdSjtW5Ll6cavv5yl681aGFk4cz3sODZvtMCwZR43zn5JUeE9jEytsXf7O7Usm1TzaIQQQjwJWWapBikpKaxduxZ7e3vu3LnDunXriIqKYvXq1eTk5JQZ5+zsjLe3N7169WLQoEH64r9Jk7L/6Go0Gr744guioqKIjo5GrVajUqnKzS8tLY05c+awfft2cnNz+eabbwDIzMykXbt27Nixgz//+c8sXLgQrVbLxo0b+fzzz9m+fTujR48mIiJC35aTkxN79+7FxcVFf+yzzz6jdevWREdHs2HDBj7//HNSU1OZPXs2rq6ufPDBB5w6dQojIyM2bdrE999/z/379zl06NCTTrEQL7X0+0klnhveNkan1WHY6nWM23lj2LQ1t7oP5WLH7igMjNCpIWPXZdLPrqOo8B4A6vxMbp7/pjrSF0II8Qxkpb0aODg4YGFhAYCnpyfGxsZYW1tjZWVFdnY25ubmZcYGBwczYcIEjhw5wpEjRwgICGDJkiX07t271OuVSiXt2rVj0KBBeHt7M2rUKOzs7MrNr2PHjjRt2hQAHx8foqOjGTFiBCYmJrz11lsADBw4kI8//hgDAwNWrFjB/v37uXbtGsePH8fA4LfXgm5ubo+1f/ToUfLz84mKigIgLy+PS5cuYWZmpr+mU6dO1K1blw0bNnD16lVSUlLI++/b/UL80Tmpa5HwyHOtZREAhk1al7juUiNL2l7KAkCHFnXh7RLnC3N/rdI8hRBCVB5Zaa8Gpqam+seGhr+9blIoFOh0ujLjDh48yK5du7Czs8Pf35+lS5cye/ZstmzZUm5/K1euZN68eeh0OkaPHs3x48cf60utVpeak06n0z83MDBAoSh+Q16r1aJUKsnNzWXQoEGkpaXRqVOnxz7E+uhYH9JqtYSGhhITE0NMTAyRkZF4enqWuGbfvn1MnToVU1NT/Pz86NSpU7lzI8QfyaBuA+l5KYfahRrqPCjC52YG3Vs7gEZd4jojjVb/WIEBtS1cSpw3r9/mueQrhBDifydF+wvE1NSUsLAw0tLSgOKCOjk5ucTWk9/LzMykX79+tGzZksmTJ9O1a1cuXLiAlZUVV65cQafTkZqayoULF/QxCQkJpKeno9Vq2bZtG126dAHgwYMH7N+/H4Do6Gi6d+9OSkoKCoWCcePG4e7uzvfff49Goyl3HB4eHvotN7du3WLAgAHcvHkTpVJJUVHximFsbCx9+/bF398fS0tL4uLiKmxXiD8Ky/q2+Hb8F7N+rs17p6Fbc3/e/MsYejezAd1/C3WtlnpnjlKg1VCAjvq+LbFv9zfqNuyKiVlDrOz/xCvOb1frOIQQQjw52R7zAvHw8CAoKIhx48bpV8Y9PT2ZOHFimTHW1tYMGTKEQYMGUatWLRwcHPD398fQ0JCoqCjefPNNHBwc6NChgz6mRYsWzJw5k9u3b+Ph4cGgQYP05/bs2cPSpUuxtbVl8eLFWFlZ4eLiQt++fVEoFHTr1o2EhITSUtELCgpi3rx59O/fH41Gw7Rp02jcuDEWFhbcv3+fadOmMXr0aKZOncq3336LkZER7du3179YEUKAUYtO1G3RqcQxj8b1aGxhzIlTp7h75jxqVT0u25vRbVArLBsUb8lr2KpqbukqhBCiail0sudAPCEnJ6cSK/I1XUFBAUlJSbi6ulZ4h53nISEhocSLI1E5ZF6rhsxr5ZM5rRoyr1VD5rXyVTSnFdUtstJew8THx7NgwYJSz0VERJT5IdIpU6Zw+fLlx457eXkxefLkSs1RCCGEEEI8X1K01zAdO3as8EuIShMWFlYF2ZT0Iq2yCyGEEEK8TOSDqEIIIYQQQtRwUrQLIYQQQghRw0nRLoQQQgghRA0nRbsQQgghhBA1nBTtQgghhBBC1HBStAshhBBCCFHDSdEuhBBCCCFEDSdFexULDw8nPDz8qWL27NmDn58fAwYMwMfHh1WrVlUYExkZyc6dO581zSqXlpaGl5dXudd88803fPPNN+Vec+jQITw9PZkyZUplpieqibpQwy9nU7l3J6+6UxFCCCFqNPlypRpGpVKxePFioqOjsbKyIjc3l8DAQBwcHPD29i4z7uTJk3Tu3Pk5Zlr5hg0bVuE1e/bsISgoiCFDhjyHjERV+S4+k9OHz2J1/Q4FWkPQ3sWUPWiNH9DB+c9YGIJBng02r3XAyrNxdacrhBBCVDsp2qtAXFwcoaGhaLVaHB0dyczMZOjQoahUKvz8/Jg0aVKZsVlZWajVavLz8wEwMzNj0aJFmJiYlBlz9OhR9u/fz7Fjx6hfvz4uLi7MnTuXX3/9FYVCwZQpU+jSpQvh4eGkp6eTkpJCZmYm48ePJzY2ljNnzuDs7MzSpUs5fvw4K1euxNDQkLS0NNzc3AgJCcHY2JioqCjWrFmDQqGgdevWzJkzBzMzMzw8PHB1deX27dts2bKF4OBgLl26REZGBk5OTnz88cdPNG8P35GYNGkS3bp1o0+fPiQkJKBUKvnkk084duwY+/btIzY2FgMDAwYPHvwUPxVRU/x49i5Lo1LxVyeTapqBWpmHobExpq/0wLpuHYpsEiniDgC3Lt7A1P4v1HKwquashRBCiOol22OqSEpKCmvXrsXe3p47d+6wbt06oqKiWL16NTk5OWXGOTs74+3tTa9evRg0aJC++G/SpEmZMV26dMHLy4t3330XT09PQkJC8Pf3Jzo6ms8++4y5c+fq+7x48SLr169nwYIFzJgxgzFjxrBz507OnTvHhQsXADh16hSzZs1iz549FBQUsGHDBi5cuMDnn3/O+vXr2bFjB7Vq1eLTTz8Fil9ojBkzhpiYGE6fPo2RkRGbNm3i+++/5/79+xw6dOip5+/27du8/vrrbNu2jU6dOrFhwwYGDx6sH6cU7C+uoz9nA5BuqEKtzAOT2hj2/Asat77cbtyF/bVHkqewBEBjn8yD1KzqTFcIIYSoEWSlvYo4ODhgYWEBgKenJ8bGxlhbW2NlZUV2djbm5uZlxgYHBzNhwgSOHDnCkSNHCAgIYMmSJfTu3fuJ+j569ChXr15l+fLlABQVFZGamgpA165dMTQ0pGHDhtSvX58WLVoAYGdnR3Z2cTHVqVMnmjVrBoCvry+RkZEYGRnRs2dPrKyKVzyHDBnCjBkz9H22bdtWH1u3bl02bNjA1atXSUlJIS/v2fYre3p6AuDo6Eh8fPwztSFqnldsTAAt+QYFACgbNkdhbKo/X6QwJdWwFU7qY6DQYdLIopoyFUIIIWoOKdqriKnpb0WIoeFv06xQKNDpdGXGHTx4kLy8PPr164e/vz/+/v5ERkayZcuWJy7atVota9eupW7dugDcunULGxsbfvjhB4yMjErN61FKpVL/WKfToVQq0Wq1Ja7R6XQUFRU9Nt59+/axfPlyhg8fjp+fH1lZWeWOtzwPtwRVNGfixTKwWz1OXbrPgzRrapEJ6sLHrjHSFR+rbdIeM4f6zztFIYQQosaR7TE1jKmpKWFhYaSlpQHFxXFycjIuLi7lximVSjQaDQAeHh58/fXXAFy+fBkfHx8ePHjwxDkkJCSgUqnQarVs27aN7t2707lzZ/bv38/du3eB4rvVuLu7PxYbGxtL37598ff3x9LSkri4OH1eQgBY1DJk6QRHxvz1HeyavEJRxiW0OSr9eRtjDW1fseNV19E06f7XasxUCCGEqDlkpb2G8fDwICgoiHHjxqFWq4HibSITJ04sN65Lly58/PHHWFhYMHv2bObOnYuPjw8AH330UbnbcX7P1taW9957D5VKRdeuXRk8eDBKpZK///3vBAYGolarad26NcHBwY/FDh48mKlTp/Ltt99iZGRE+/bt9S9AhHhUqxYNaNViEjcfpHM66zS6ImMczJrT0qo2SoOm1Z2eEEIIUaModLLvQDwiLi6OTz/9lPXr11d3Kv+zgoICkpKScHV1LffuO89LQkICHTp0qO40Xjoyr1VD5rXyyZxWDZnXqiHzWvkqmtOK6hZZaa8G8fHxLFiwoNRzERER2NnZlXpuypQpXL58+bHjXl5eTJ48uVJzrCpfffUVW7dufey4ra0tX375ZTVkJIQQQghR80nRXg06duxITEzMU8eFhYVVQTYlubu7l7pXvbKMHDmSkSNHVln7QgghhBAvI/kgqhBCCCGEEDWcFO1CCCGEEELUcFK0CyGEEEIIUcNJ0S6EEEIIIUQNJ0W7EEIIIYQQNZzcPUYIIYSoYQrUWo6cvcuDAi3d2tShrrkRAFq1mtyzZ1EYG2PWqhUKA1l7E+KPQor2ShIeHg7ApEmTnjhmz549REREUFRUhE6nw9fXl9GjR5cbExkZSe3atenfv///lG9VSUtLY/jw4ezfv7+6UxFCiBeSukjLlM8vcyX9AQDr9/3K8oktKVLnsvuHY1BYQOvEY7xSzxKDtwLJzb6PYwcnDI2V1Zy5EKIqSdFeTVQqFYsXLyY6OhorKytyc3MJDAzEwcEBb2/vMuNOnjxJ586dn2OmQgghnqeEi/dRqs7zd9MT5OuM2Z3XlZhj5qjMNeDgCsDN5m7Ybl1HzpIRgBqjtU15e04Y9V61rd7khRBVRor2/0FcXByhoaFotVocHR3JzMxk6NChqFQq/Pz8yl11z8rKQq1Wk5+fD4CZmRmLFi0q9WtrHzp69Cj79+/n2LFj1K9fHxcXF+bOncuvv/6KQqFgypQpdOnShfDwcNLT00lJSSEzM5Px48cTGxvLmTNncHZ2ZunSpRw/fpyVK1diaGhIWloabm5uhISEYGxsTFRUFGvWrEGhUNC6dWvmzJmDmZkZHh4euLq6cvv2bbZs2UJwcDCXLl0iIyMDJycnPv744yeat9jYWEJDQwGoU6cOYWFh5OXllVihf/Sdi9dff5033niDU6dOYWZmxpIlS7C3t3+ivoQQ4kVjlHmF2bW+xFChBcDD8Cwb8v8OdVv+dpGhEXdbvIphvBoAdWEK36/9Er/JfyPnzs+YmL2CmbULCoWiOoYghKgCshnuf5SSksLatWuxt7fnzp07rFu3jqioKFavXk1OTk6Zcc7Oznh7e9OrVy8GDRqkL/6bNGlSZkyXLl3w8vLi3XffxdPTk5CQEPz9/YmOjuazzz5j7ty5+j4vXrzI+vXrWbBgATNmzGDMmDHs3LmTc+fOceHCBQBOnTrFrFmz2LNnDwUFBWzYsIELFy7w+eefs379enbs2EGtWrX49NNPgeIXGmPGjCEmJobTp09jZGTEpk2b+P7777l//z6HDh16ojlbuXIl8+bNIzo6mi5dunDu3Llyr8/MzKRdu3bs2LGDP//5zyxcuPCJ+hFCiBdRy9wT+oIdoI5BLmYFdx67zlJrWeK5sWEaV47NR3VxM7+cWs6vFzZWea5CiOdHivb/kYODAxYWFgB4enpibGyMtbU1VlZWZGdnlxsbHBzM/v37GTZsGOnp6QQEBPDdd989cd9Hjx5l+fLl+Pr6MmbMGIqKikhNTQWga9euGBoa0rBhQ+rXr0+LFi0wNDTEzs5On1enTp1o1qwZCoUCX19fjh07xokTJ+jZsydWVlYADBkyhGPHjun7bNu2rT727bffZsOGDYSEhJCSkkJeXt4T5e3t7U1QUBDz58+nVatWdOvWrdzrTUxMeOuttwAYOHAgcXFxTzxHQgjxojG0sHrsmGed2mjv3NQ/12WqcEjLLHFNizaWoPut2M+68SNFhWUvHgkhXiyyPeZ/ZGpqqn9saPjbdCoUCnQ6XZlxBw8eJC8vj379+uHv74+/vz+RkZFs2bKF3r17P1HfWq2WtWvXUrduXQBu3bqFjY0NP/zwA0ZGRqXm9Sil8rcPLel0OpRKJVqttsQ1Op2OoqKix8a7b98+li9fzvDhw/Hz8yMrK6vc8T5q5MiR9OzZkwMHDhAaGkpiYiIDBgwoEV9UVKTP28DAQP8Wr1arLZG3EEK8bEza9aXw7H60d4oXYYwcO9Oudz/yPvmWJC6jVChpn22BTe/O3Pg+kYLcLJw698LS5g4P7j2yWKTTAdrSOxFCvHBkpb2amJqaEhYWRlpaGlBcHCcnJ+Pi4lJunFKpRKPRAODh4cHXX38NwOXLl/Hx8eHBgwdPnENCQgIqlQqtVsu2bdvo3r07nTt3Zv/+/dy9excovluNu7v7Y7GxsbH07dsXf39/LC0tiYuL0+dVkcGDB5Obm8vIkSMZOXIk586dw9LSkrt375KZmUlhYSE//vij/voHDx7o97pHR0fTvXv3Jx6jEEK8aAxqWWA5ZgXmwxZiMSIM88EfYKA0oMuEvgzt3A0/5w64ju6Gg1cH/vbhZ0xYvhHvd0Zj3dgb+G0Pe50GnTE0tiy7IyHEC0VW2quJh4cHQUFBjBs3DrW6+INEnp6eTJw4sdy4Ll268PHHH2NhYcHs2bOZO3cuPj4+AHz00UeYm5s/cQ62tra89957qFQqunbtyuDBg1Eqlfz9738nMDAQtVpN69atCQ4Ofix28ODBTJ06lW+//RYjIyPat2+vfwFSkX/9619Mnz4dQ0NDateuzcKFC7GwsGD06NEMGjSIBg0a0KZNmxIxe/bsYenSpdja2rJ48eInHqMQQryIFAZKjBzalTimrGWIlWfjMmPqNOiIkak1ORlnMTF/BUvbDlWdphDiOVLonnRPg3ipxMXF8emnn7J+/frqTqVCTk5O+g/PPo2CggKSkpJwdXUt9648z0tCQgIdOsgf0com81o1ZF4rn8xp1ZB5rRoyr5WvojmtqG6RlfYqFB8fz4IFC0o9FxERgZ2dXannpkyZwuXLlx877uXlxeTJkys1x6ry1VdfsXXr1seO29ra8uWXX1ZDRkIIIYQQLy4p2qtQx44diYmJeeq4sLCwKsimJHd391L3qleWh/vVK8OzrLILIYQQQrxM5IOoQgghhBBC1HBStAshhBBCCFHDSdEuhBBCCCFEDSdFuxBCCCGEEDWcFO1CCCGEEELUcFK0CyGEEEIIUcNJ0S7EH4RWpyVfk1/daQghhBDiGbzw92kPDw8HYNKkSU8cs2fPHiIiIigqKkKn0+Hr68vo0aPLjYmMjKR27dr079//f8q3qqSlpTF8+HD2799f5jWJiYns3buXadOmPcfMRHXTaHXsTTvLTxkHybt8BbPzFhioDaijtccGB17zas5r3s2qO00hhBBClOOFL9qflkqlYvHixURHR2NlZUVubi6BgYE4ODjg7e1dZtzJkyfp3Lnzc8y08l2+fJk7d+5UdxriOdCpC8g/Gkle2kU2NR3KHQMrTBlI7bq3yFXHoNUUcYcUdA9MOLqtEJtXLWjkXL+60xZCCCFEGV7Ioj0uLo7Q0FC0Wi2Ojo5kZmYydOhQVCoVfn5+5a66Z2VloVaryc8v3iZgZmbGokWLMDExKTPm6NGj7N+/n2PHjlG/fn1cXFyYO3cuv/76KwqFgilTptClSxfCw8NJT08nJSWFzMxMxo8fT2xsLGfOnMHZ2ZmlS5dy/PhxVq5ciaGhIWlpabi5uRESEoKxsTFRUVGsWbMGhUJB69atmTNnDmZmZnh4eODq6srt27fZsmULwcHBXLp0iYyMDJycnPj4448rnLN79+6xfPly8vLy+Oyzz7Czs2Pr1q3cvXuXnj170r9/fxYsWEBeXh6ZmZmMHTuWYcOGER4ejkql4vr169y4cYPBgwczfvx4zp8/z9y5cykqKsLExIQPP/yQw4cPc/36debMmQPAokWLaNCgAYMHD2b+/PlcunQJjUbDmDFj6N+/P9HR0SVycHR0ZNWqVSiVSuzt7QkNDcXExISIiAh2796NRqOhW7duTJs2DYVC8ZT/av5Y8vZ+RmHi95x7pRt3DCz1x7UWtrh2bsjPsdfRoaBQeZ/aRfVIv5wpRbsQQghRg72QRTtASkoKBw4c4KuvvuLSpUts3LiRnJwcvLy8GDVqFObm5qXGOTs74+3tTa9evXBxccHd3R0fHx+aNGlSZl9dunTBy8uLzp074+npyT//+U/8/f3x9vbm1q1bvP3222zbtg2AixcvsmnTJk6ePMmIESPYsWMHTZs2pV+/fly4cAGAU6dOsW3bNhwcHJg8eTIbNmygS5cufP7550RGRmJlZUVwcDCffvop77//PllZWYwZMwZ3d3dOnDiBkZERmzZtQqvVMmLECA4dOkTr1q3LnS9LS0veffddjh8/zvjx44mOjkalUrFr1y4MDQ0JCQlhwoQJvP7666SmpjJgwACGDRsGwIULF9iwYQP379+nV69e/OUvf2Ht2rWMGjWKvn37snXrVk6fPk3//v156623mDlzJgYGBnz33Xds2rSJzz77jNatW7N48WJycnIYOnQobdu2BSiRg7e3N5GRkdjY2LB48WKuXr3K7du3SUpKYsuWLSgUCqZNm8b27dvx9fV92n8yfyiFyT8W/79R7cfOmVkY8YqNmvQ7xphoigt6uyZ1n2d6QgghhHhKL2zR7uDggIWFBQCenp4YGxtjbW2NlZUV2dnZZRbtAMHBwUyYMIEjR45w5MgRAgICWLJkCb17936ivo8ePcrVq1dZvnw5AEVFRaSmpgLQtWtXDA0NadiwIfXr16dFixYA2NnZkZ2dDUCnTp1o1qx4D7Gvry+RkZEYGRnRs2dPrKysABgyZAgzZszQ9/mwyO3UqRN169Zlw4YNXL16lZSUFPLy8p543h7VqlUrDA2L/wlMnz6dH3/8kS+++IKLFy+WaNPd3R1jY2NsbGyoW7cu9+/f509/+hPz58/nxx9/xMvLi549e6JUKnF2diYuLg4jIyMcHByoX78+R48eJT8/n6ioKADy8vK4dOnSYzn07NmTYcOG0atXL/r06YOLiwvbt28nMTERPz8/APLz82nYsOEzjfePxKCOHdqM6ziqTnC8aV+KlLUAMNI9wF6TTJaRAY66pqgNbGnbx4GmbeyqOWMhhBBClOeFLdpNTU31jx8WfQAKhQKdTldm3MGDB8nLy6Nfv374+/vj7+9PZGQkW7ZseeKiXavVsnbtWurWrQvArVu3sLGx4YcffsDIyKjUvB6lVCr1j3U6HUqlEq1WW+IanU5HUVHRY+Pdt28fy5cvZ/jw4fj5+ZGVlVXueMvz6Bz+4x//wNLSkp49e9KvXz927typP/fo1qGH8/vmm2/Srl07/bsdBw8eZOHChfj6+rJr1y6MjIzw8fEBiucrNDRU/25ARkYGderUYceOHSVymD17NufPn+fQoUNMmzaNoKAgNBoNI0aMYNSoUUDxNp9H50+Urnbvv5MbHYJFfhb+58NJcPwTCoWOZuqT1CospFt2f8xam9Dg7e4oDGSrkRBCCFHT/eFu+WhqakpYWBhpaWlAcXGcnJyMi4tLuXFKpRKNRgOAh4cHX3/9NVD84U4fHx8ePHjwxDkkJCSgUqnQarVs27aN7t2707lzZ/bv38/du3eB4rvVuLu7PxYbGxtL37598ff3x9LSkri4OH1eFVEqlSVeCDzqp59+4t1336VXr14cPnwYoNx2//GPf3D27FmGDh3K5MmTOXfuHADe3t6cOHGCn376iTfeeAMonq9vvvkGKH6BM2DAAG7evFmivaKiInr37o2VlRV///vf8fX1JTk5GQ8PD2JiYsjNzaWoqIiJEyeyd+/eJxrvH5lR07bUCVqHxYgwHId/hO9r7WmfcR7LtLoYnfLG0OgBdoNfl4JdCCGEeEG8sCvtz8rDw4OgoCDGjRuHWq0GirfXTJw4sdy4Ll268PHHH2NhYcHs2bOZO3eufiX5o48+Knc7zu/Z2try3nvvoVKp6Nq1K4MHD0apVPL3v/+dwMBA1Go1rVu3Jjg4+LHYwYMHM3XqVL799luMjIxo3769/gVIRdzc3Pj0009ZsmSJfnvOQ5MmTeLtt9/GxMQEZ2dnXn311XLbHTduHLNmzWLFihUYGRkxb948oPhFUfv27SksLMTMzAyAoKAg5s2bR//+/dFoNEybNo3GjRsTHx+vb8/Q0JB3332Xv/71r5iYmGBjY8OiRYuwsbHh/PnzBAQEoNFo8PT0ZODAgU803j86hbEphq86A1DbuBkt/eZQlJODrkiDUd061ZydEEIIIZ6GQveseyvEM4mLi+PTTz9l/fr11Z3KS6+goICkpCRcXV3LvTvQ85KQkECHDh2qO42Xjsxr1ZB5rXwyp1VD5rVqyLxWvormtKK65aVcaY+Pj2fBggWlnouIiMDOrvQP3U2ZMoXLly8/dtzLy4vJkydXao5V5auvvmLr1q2PHbe1teXLL7+shoyEEEIIIcT/6qUs2jt27EhMTMxTx4WFhVVBNiW5u7uXule9sowcOZKRI0dWWftCCCGEEOL5+8N9EFUIIYQQQogXjRTtQgghhBBC1HBStAshhBBCCFHDSdEuhBBCCCFEDSdFuxBCCCGEEDXcS3n3GCGEEEL87wqLtBgoFBgqS357sk6n4/ivOZy/8wCbWoZ0t7fE0kRKCiGqkvwXJoQQQogStFodX+xM54fjN2lvdBEPt/p4+XqhMFACcCgtgx/T8gH45X4Bv9zN5R0HEyytbaszbSFearI9poqEh4cTHh7+xNenpaXh5OTE3LlzSxxPTk7GycmJ6OjoSsstKysLX19ffH196dq1K127dtU/z8rKwsvLi7S0tMfiZs2axdmzZ8tsNzAwkLi4uErLUwghRPU4nHiXg8eu8W/TT5hgtIH2yZ9w6z/vo9UU8fX19RxOuVri+juFsGzJAvasDkGn1aIuuIu6ILuashfi5SQr7TVI3bp1+fHHH9FoNCiVxasZu3btwtraulL7sbKy0n/51MMXFpMmTaowLiQkpFLzEEIIUTNdSn+At9EJbA2y9MeMbyVz5vxWzGPVNLW25Porv12v06jJN7QhMe4QTR0N0RamAFDnFXcathqOQiFrhEL8r+S/okoUFxfHoEGD8PPzIy0tjcTERIYOHUrPnj2faNXdzMwMFxcXTpw4oT/2008/0aVLF/3zw4cPM2jQIN566y2CgoLIyir+hbp7924CAgIYMGAAb775JidPngSKV78/+ugjhgwZwhtvvMGhQ4eeaCwrVqzgrbfeok+fPpw5c0bfVlxcHDqdjtDQUPr06UO/fv1Yu3Ztidg7d+7Qv39/fvjhB+Li4vjrX//KhAkT6NOnD++++y6FhYUAbNu2jYEDB+Lr68vMmTMpKChArVYzbdo03nrrLd566y0iIyMB2LFjB76+vvj5+fHuu+9SUFDwROMQQgjx9No2M8dU8fjv2ftpD2id2hy3S5koc3MB0GmKUP8cC0WF2DaxRlt4DdABOrJvHuP+7TPPN3khXlJStFeylJQU1q5di729PXfu3GHdunVERUWxevVqcnJyKozv27cve/fuBSAxMREnJyeMjIwAyMzMJCwsjNWrV7Nt2za6devGkiVL0Gq1bNy4kc8//5zt27czevRoIiIi9G2q1Wo2bdrEjBkzWLZs2RONo0WLFmzbto3AwEBWr15d4tyePXs4efIkO3bsYPPmzURHR3P79m0A7t+/z9ixYwkKCqJXr14AnDp1irlz57J7927S09M5cuQIly5dIjIyko0bNxITE4ONjQ2rV6/m1KlTZGdns23bNr744gvi4+MB+OSTT/jPf/5DdHQ0r776KlevlnxrVgghROXp7GyJ3etvUoiR/pjCwoYmpm4AWOQV0eHQKfIPbSb/+3Vorv8MOi11a2sfa6sw79Zzy1uIl5lsj6lkDg4OWFhYAODp6YmxsTHW1tZYWVmRnZ2Nubl5ufFeXl588sknaLVadu/eTd++fdm1axcAZ86c4ebNmwwfPhwArVZLnTp1MDAwYMWKFezfv59r165x/PhxDAx+ez3m6ekJgKOjI3fv3n2icTwsuFu0aKF/EfHQiRMn6Nu3L8bGxhgbG+u32gB88MEH1KtXj969e+uPOTo60qBBAwCaN29OdnY26enpXL9+nYCAAKD4hUWrVq0YNmwY165d429/+xvdu3fnvffeA6Bnz54MGzaMXr160adPH1xcXJ5oHEIIIZ5Nnz6voWn3CQWJP6AwMsGkfT/Misy4figOhQZaGDQkNyefM0V30WkKsNY9wK3HKPLvbKd4pR1QGGBez7VaxyHEy0KK9kpmamqqf2xo+Nv0KhQKdDpdhfFmZmY4OzuTkJDAsWPHmDJlir5o12g0tG/fns8//xyAgoICcnNzyc3NZdCgQQwYMIBOnTrh5OTEhg0b9G2amJjoc3hSD/fUlxZjaGhY4nhaWpp+3/2YMWM4dOgQ33zzDX/5y19K9P/oPGg0Gvr27cvs2bMByM3NRaPRYGlpybfffstPP/3EoUOHGDhwIN9++y2zZ8/m/PnzHDp0iGnTphEUFISvr+8Tj0cIIcTTU9o2pXav0frnBsCrI17j7k+p6Iq0uNXritXdDtg0tKB118YojZTcv/0qd65/DwoDbJr0wtT81eobgBAvESnaa6C+ffsSFhaGq6tricK/bdu2zJ49m2vXruHg4MDKlStRqVQEBgaiUCgYN24cOp2O9957D41GU2X5derUiXXr1jF06FCKiooYPXo0n332GQAuLi706NFDvypeFnd3d/7zn/8wfvx4rK2tmTdvHo0bN6ZVq1Zs376dTz75BE9PT2JjY7l58yaDBg1i/fr1/P3vf0etVpOcnCxFuxBCVINaTepQq0kd/fMWvztvUd8Ni/puzzcpIf4ApGivgXr27MmsWbOYPHlyieP169fn3//+N//4xz/QarXY2dkRGhqKpaUlLi4u9O3bF4VCQbdu3UhISKiy/N544w2SkpLw8/NDq9UyfPhwHBwc9OebNm3KX/7yF+bPn6/fyvN7zs7OBAUFMWLECLRaLS4uLowdOxYDAwO+++47/vznP2NiYsKAAQNwcnLi3Xff5a9//SsmJibY2NiwaNGiKhufEEIIIURNo9A9yZ4NIV5ABQUFJCUl4erqWmKLTnVJSEigQ4cO1Z3GS0fmtWrIvFY+mdOqIfNaNWReK19Fc1pR3SIr7c9RfHw8CxYsKPVcREQEdnZ2zzkjIYQQQgjxIpCi/Tnq2LFjiTutCCGEEEII8STkPu1CCCGEEELUcFK0CyGEEEIIUcNJ0S6EEEIIIUQNJ0W7EEIIIYQQNZx8EFUIIYT4H2mKtFw+don716/TrN2rWLdqDRTfwu2XX36hfv361ZyhEOJFJyvtTyAuLo7AwMAnvn758uX06NGDNWvWMGPGDG7cuPHYNWlpaXh5eT1VHmW19Sy8vLxIS0srcez69et06tSJgoKCEse3bt1KUFDQU/dx4MAB1qxZU+q5WbNmcfbs2TJjAwMDiYuLe+o+hRDieUs+9j3fhgfyIHsJyjpbOfT9QdYdOMnC2F9Y/OMl1m7fy0ehoZy7cKW6UxVCvMCkaK8CMTExrFmzhlGjRhEXF0dlfX9VZbZVmiZNmtCyZUsOHjxY4vi2bdsYNGjQU7eXlJRETk5OqedCQkJo06bNs6QphBA1Ruavv3Bi51JatLHA2ESJiamOB+0acN20PjoUKMzqYNyhNygM+DkpidtZudWdshDiBSXbY/4HERER7N69G41GQ7du3Zg2bRoffPABKpWKiRMn8tZbb3Hr1i3Gjh3Lhg0bsLKyeqJ2ly5dSmxsLNnZ2dja2rJ06VKio6NLtJWamsqHH35Ifn4+VlZWBAcH06hRIwIDA6lTpw6XLl3ik08+ISEhgZiYGB48eICRkRFhYWE0a9aszL79/PzYuXMnffr0AeDXX38lJSUFT09PEhMTy+yzTZs2JCQkkJmZyezZs3n11VfZuHEjAA0bNiQ9PZ3Tp09z8+ZN3nnnHXbv3k1QUBCdO3dmyZIl/PDDDyiVSoYMGcKIESMqnGeFQvGMPzUhhKg8Ny4mUrderRLHMg3sSzxXmNRCYVYHg/uZHDiZQYC32fNMUQjxkpCV9md0+PBhkpKS2LJlC9u2bUOlUrF9+3bmz5+Pra0tERERjB07Vv/4SQv269evc/XqVTZu3MjevXt55ZVX2L59e4m2zMzMmD17NmFhYWzdupVRo0YxZ84cfRtOTk7s3buXRo0a8cMPP7B+/Xp27txJjx492LBhQ7n99+3blxMnTnD//n0Atm/fjq+vLxqNptw+1Wo1mzZtYsaMGSxbtowWLVowdOhQhg4dir+/PwCFhYXs2rWLt99+Wx+3Z88eTp48yY4dO9i8eTPR0dHcvn27wnkWQoiaoIGDM3cz8kocs9GmlniuK8hDl3MXM20djExqP8/0hBAvEVlpf0axsbEkJibi5+cHQH5+Pg0bNvyf223SpAnvv/8+mzdv5tq1a5w+fZrGjRuXuCYlJYXU1FTGjx+vP/boNhQ3NzcAzM3NCQsL49tvvyUlJYUff/wRFxeXcvuvXbs2PXv25LvvvsPf35/t27fz6aefVtinp6cnAI6Ojty9e7fUth/m9agTJ07Qt29fjI2NMTY2fuwbY6tqnoUQojLUb9QC1x5/41pyFPbNzdFiwH3FEereteG+VTOM8/IwORuPnaIpmdra9HztyRZwhBDi96Rof0YajYYRI0YwatQoAO7du4dSqSzz+rNnzzJ79mwAXF1dSxS/j0pKSmLKlCmMHDmSPn36YGBg8Ng+dq1Wi729vb7A1Wg0ZGRk6M+bmpoCcPPmTQIDA3nnnXfo3r079erVIzk5uURbs2bNIikpCYCFCxfSpk0b/P39WbFiBc7OztStW5emTZty/vz5cvs0MTEBKHfbysO8HmVoaFgiJi0tDWtra/3zp51nIYR43tr3GoTOy48HRQ+YdvYfQC512MA70a0xNmsN1EOde547Ps7UNZc/u0KIZyPbY56Rh4cHMTEx5ObmUlRUxMSJE9m7d+9j1ymVSjQaDW3atCEmJoaYmBhCQkLKbPfEiRN07tyZYcOG0bRpUw4ePIhGoynRVrNmzcjOziY+Ph6AqKgopk6d+lhbZ8+epUmTJowcOZI2bdrwww8/6Nt6KCQkRJ/Xww+GduzYEZVKxddff63f2vKkff5+7EVFReVe06lTJ7777jvUajUPHjxg9OjRqFQq/fknnWchhKhOCgMDahub4WxR/G5mdl0FX/f7mZuNfsKybQ4tZgVSq06tCloRQoiyyUv+JxQfH0+7du30z318fOjduzcBAQFoNBo8PT0ZOHDgY3E9evRg7NixrFq1ikaNGpU4l56eXqLNDh06EBISQlBQED4+PkDxqvzDWzM+2tayZcsICQmhoKAAc3NzFi9e/FjfXbt25ZtvvqFfv37odDo6derEpUuXnmi8vr6+fPnll/p3B4yNjZ+oz0d16tSJ999/n3r16pV5zRtvvEFSUhJ+fn5otVqGDx+Og4OD/ryXlxfnz5+vcJ6FEKImGNVsLDvTY0jL+wWnBs54ePfHyMCo+OT169WbnBDihabQVeU9BIWoRgUFBSQlJeHq6qrfvlOdEhIS6NChQ3Wn8dKRea0aMq+VT+a0asi8Vg2Z18pX0ZxWVLfI9hghhBBCCCFqOCnahRBCCCGEqOGkaBdCCCGEEKKGk6JdCCGEEEKIGk6KdiGEEEIIIWo4KdqFEEIIIYSo4aRoF0IIIYQQooaTol0IIYQQQogaTr4RVQgh/oB0Gi2FufdQGKoxrl0fAHWRli+/TedQ4l3MjJX8wyoHt2bm1ZypEEIIkJX2ahcXF0dgYOATX798+XJ69OjBmjVrmDFjBjdu3Cj1Oi8vL9LS0sptKzIyEk9PTxYvXlzieFpaGl5eXk+cE1BmLlOnTiUiIqLEMZ1Oh7e3N+fPn3+qPoCnmishRLHs2+kc3b6GQ7v+Q879LO4nqri04XOuHJvJ5aNzuHZ8CZqiB2z58TY7jt3hXp6Gm3cVzF9/jfxCTXWnL4QQAinaXzgxMTGsWbOGUaNGERcXh06ne+a2du7cyYcffsj777//P+dVVi7+/v7s2LGjxLGEhATq1q2Ls7PzU/dz/PjxZ85RiD8Sbd498o9GciM6jK/mDCd223+I37KGL+eN4Ne9ceQ1vEiyyeucNO7L9Rw1d67v4+zVnBJt5OZruZz+oJpGIIQQ4lGyPaaGioiIYPfu3Wg0Grp168a0adP44IMPUKlUTJw4kbfeeotbt24xduxYNmzYgJWVVantpKWlERQUhKOjI8nJydjY2LBs2TL+7//+j7NnzxIcHMzs2bP505/+9ER5LV26lNjYWLKzs7G1tWXp0qVER0eXmYuHhwe5ublcuHABJycnoPiFh7+/PxqNho8++ojjx4+j0Wjw8/Nj5MiRxMXF8cUXX2BqasqVK1dwcnJiyZIlfPTRRwAMHjyYzZs3/48zLMTLS6cp4v7699DeSeXnjHyKCgv15+rmmqM1vs+Ppm9zV/kKANcM25GRuBWTXy9SjyZk0AIAEyMDmtrVqpYxCCGEKElW2mugw4cPk5SUxJYtW9i2bRsqlYrt27czf/58bG1tiYiIYOzYsfrHZRXsD50/f55Ro0axc+dOLC0t2bFjB0FBQbi6urJw4cInLtivX7/O1atX2bhxI3v37uWVV15h+/bt5eaiUCjw8/Nj586dABQWFnLgwAH69+9PZGQkAFu3bmXLli3s27eP+Ph4AE6dOsXcuXPZvXs36enpHDlyhNmzZwNIwS5EBYp+OYv2TioACkXJc3fVN8nQvKov2B9edMW4LQW5GTRSJGClSMWylo5pQxpjXkv5HDMXQghRFllpr4FiY2NJTEzEz88PgPz8fBo2bPjM7dnY2NCqVSsAHB0dyc7OfqZ2mjRpwvvvv8/mzZu5du0ap0+fpnHjxhXGDRw4kOHDh/Ovf/2Lffv24eHhgaWlJbGxsSQnJ3Ps2DEA8vLyuHDhAi1atMDR0ZEGDRoA0Lx582fOWYg/IoWRif6xs6UxZ3OL0BVqAdAp6nExU/1YTF5ukf7xwHb5ODho6Ni6TtUnK4QQ4olI0V4DaTQaRowYwahRowC4d+8eSmXZq11nz57Vr0K7uroSEhJS4ryJyW9/wBUKxWN7z38fP378+FL7SUpKYsqUKYwcOZI+ffpgYGBQYVshISG8+uqrNGrUiJMnTxITE8PIkSP145w2bRq9e/cGIDMzEzMzM06fPl1hzkKIshnat8KweUeKrsRjbmSAf8sGfFe/CQ9ibVAaOPMguxCTy3coaGEDgK4wn6LLp/Txdna2j63QCyGEqF5StNdAHh4eLF++nICAAExMTJg4cSIDBw7Ur7w/pFQq0Wg0tGnThpiYmGfu7/fxZd115sSJE3Tu3Jlhw4aRlZXFwYMH9QV3Rbn4+fmxZcsWrl+/jru7u36ckZGR9OzZk8LCQt5++22Cg4PLzVWpVFJUVIShofzTFaI85gEfUHTtFNq8bOq06MwYU3Mut04nNuY8D3IKed3UkFfqg+r0WVS/XOTUg3toACcnJzw8PDh79mx1D0EIIcQjpPKpAeLj42nXrp3+uY+PD7179yYgIACNRoOnpycDBw58LK5Hjx6MHTuWVatW0ahRo0rNKT09vUROHTp0ICQkhKCgIHx8fIDilfSHBX5FufTp04eFCxcyYsQIFP9dwhs6dCjXr19n4MCBFBUV4efnh7u7O3FxcWXm5e3tja+vL9HR0SVW44UQJSkUBhg161DiWIv2DWnRvuRWuxYtGgH96JefT2FhIZaWls8xSyGEEE9KoZN9B+IlVVBQQFJSEq6urjWiwE9ISKBDhw4VXyieisxr1ZB5rXwyp1VD5rVqyLxWvormtKK6Re4eI4QQQgghRA0nRbsQQgghhBA1nBTtQgghhBBC1HBStAshhBBCCFHDSdEuhBBCCCFEDSdFuxBCCCGEEDWcFO1CCCGEEELUcPLlSkIIIfTSLp7h8snD3MvX4tbGFSNjE86fP098fDy1atXC09MTW1vb6k5TCCH+cKplpT0uLo7AwMAnvn758uX06NGDNWvWMGPGDG7cuFHqdYWFhSxduhQfHx98fX0JCAjg6NGjlZJzWloaXl5eTxUTGBhIXFzcU4/3SahUKjp37szD78bS6XS8/vrrzJ49W3/Njz/+qM+htP5VKhVjxowB4MCBA6xZs+apcggPD8fJyYlTp06VOB4SEoKTk1O5sffv32fixIn655U9P0KIp/fziUOsPxjHkdpt+bnInE3/nsTeBR+wbt1azp07R0JCAl98EcHWLfHsX7WTO1dSqztlIYT4w3ghVtpjYmJYs2YNDg4OeHl5lSj2HjVjxgyMjY3ZsmULJiYmXLhwgb/+9a+sXbuWFi1aPOesq5adnR1WVlZcvnwZR0dHfv75Z5ycnIiNjdVfEx8fT5cuXcpt48svvwQgKSnpmfJo0KABe/fupV27dkDxi4cTJ05UGJednU1ycrL++fHjx5+pfyFE5bjzy37icvMpatMXgKL6DvxiZkVKwmUwVuuve/Agj9o/rOKV/HxUR7ZQNPJv2PXwrK60hRDiD6NG7WmPiIhg4MCBDBgwgI8++gidTsfcuXNRqVRMnDiRiIgIbt26xdixY8nKyioRe/36db777jvmzJmj/+pXJycnPv74Y0xNTQHYtm0bAwcOxNfXl5kzZ1JQUACAh4cHo0ePxtfXF7VaXWoeUPz1spMnT2bAgAEEBQWRnZ0NQGJiIsOGDWPgwIH89a9/JTW17NWnhyvfUHL1fvr06QQHBzNkyBD69u3L999/T1BQEL169WLRokWltvX6669z8uRJAI4cOcIbb7xBvXr1uHLlClD8dbldu3YFIDMzkzFjxtCnTx/GjRtHYWGhvv/Lly+zceNGNm7cSFRUFLm5ubz//vv4+fnh6+vLzp07yxyPt7c3+/bt0z+Pj4/ntdde0z/Pycnh3XffZciQIfTs2ZOZM2ei0+lYuHAht27dYuLEiSxcuBCAwYMHA3D48GEGDRrEW2+9RVBQkP5n7eXlxT/+8Q/69OnDnTt3ysxJCPF0cjPPo7oYicq4ZYnjmsYdMNGZPnZ9bY0GAAVwK2rr80hRCCH+8GpM0X748GGSkpLYsmUL27ZtQ6VSsX37dubPn4+trS0RERGMHTtW/9jKyqpEfHJyMk2bNqV27doljru7u2Nvb8+lS5eIjIxk48aNxMTEYGNjw+rVqwHIyspizJgxxMTEEBsbW2oeAHfu3CEwMJDt27fTqFEjVqxYQWFhIbNnzyYsLIytW7cyatQo5syZ80xzcOvWLTZt2sTYsWOZMWMGwcHBbNu2jcjISO7fv//Y9R4eHiWKdk9PT7p27cqPP/5IYWEh169fx9XVFYD09HTmzp3L7t27ycjIKLFtqEWLFgwdOpShQ4fi7+/PZ599RuvWrYmOjmbDhg18/vnnZb4QsbKyolGjRiQmJgKwa9cu+vXrpz9/8OBBXFxc2LRpE3v37uXEiRP8/PPPzJ49G1tbW1asWKHf0rN582YyMzMJCwtj9erVbNu2jW7durFkyRJ9e927d2fv3r3Y2Ng80xwLIR6Xm3UJAHNtZonjFg+KeKOWM8aa336vNnuQSz31byvviqLC55OkEEL8wdWY7TGxsbEkJibi5+cHQH5+Pg0bNnzieAMDA/0Ke2ni4uK4fv06AQEBAKjValq1aqU/37Zt23Lz6NChAw4ODnTs2BEAX19fpk+fTkpKCqmpqYwfP17fVk5OzhPn/aju3bsD0LBhQxwdHfWFad26dcnOzsbCwqLE9e7u7ixdupScnBwyMjJo3LgxXbp04T//+Q+urq60b98eA4Pi12XOzs40atQIgObNmz/2TsWjjh49Sn5+PlFRUQDk5eVx6dIlffzv9e3bl71799K6dWtOnTpV4kVL//79SUxM5KuvvuLq1avcvXuXvLw86tatW2pbZ86c4ebNmwwfPhwArVZLnTp19Ocf/pyEEJWnlmUTAF4r3MMxk8HkG5hjolbT+ecMLJQmvJbfkTMNkshod5laJwzgkV8fNr2e7rM+Qgghnk2NKdo1Gg0jRoxg1KhRANy7dw+lUlnm9WfPntWv0Lq6ujJx4kSuXLlCfn6+fjsMwFdffUX9+vXRaDT07dtXH5Obm4vmv2/xAvqYsvLIysrC0PC36dLpdBgaGqLVarG3tycmJkYfn5GRUe5YH263KSoqKnHcyMhI//jRvh6aNWuWfu/5woULadOmDbVr12b37t24u7sD8Nprr3HlypUSW2N+355CodDnUBqtVktoaCitW7cGICMjgzp16jzW/0O9evVi2LBhdOvWjY4dO+pfKACsX7+evXv3EhAQQJcuXbh48WK5fWs0Gtq3b8/nn38OFG9Jys3N1Z8v74WZEOLZWNR3w6bpmyh+2U+/B1+Qe7Mdda80Rfnf/1TrtDPEpqOSlqZd6fraG1zbkUitW7/Q7HVX6nXxqN7khRDiD6LGbI/x8PAgJiaG3NxcioqKmDhxInv37n3sOqVSiUajoU2bNsTExBATE0NISAgNGzakR48eLFiwQL9X/dy5c6xatQpHR0fc3d35/vvvuXPnDjqdjnnz5rF27dqnyuPKlSucO3cOgKioKLp06UKzZs3Izs4mPj5ef3zq1KlljvPhh0cBfvjhh6eao5CQEP2Y27Rpo8/3q6++olu3bkBxcd6sWTN27txZomiviFKp1L+I8PDw4JtvvgGKt+wMGDCAmzdvltr/wzG9+uqrLFu2rMTWGICffvqJIUOGMGDAAAoKCjh//jxarRZDQ8MSL1oe9t+2bVtOnz7NtWvXAFi5ciUfffTRU82TEOLp2bV4C+ceS3HqspgG2a30BbtpY0t6DPUiyOmfDGsSSOO6DfhTYG86TxktBbsQQjxH1bbSHh8fr7/jCICPjw+9e/cmICAAjUaDp6cnAwcOfCyuR48ejB07llWrVj22XePf//43S5YswdfXF2NjY2rVqkVoaCgtWxZ/uCooKIgRI0ag1WpxcXFh7Nixj7Xv5eXF+fPnH8vjxo0bNG7cmBUrVvDLL7/QsmVL/vnPf2JsbMyyZcsICQmhoKAAc3NzFi9eXOa4R48ezfTp04mKisLb2/tZp0/Pw8ODdevW4eHx2x/Pbt26sW7dOl599dUnbqfT/7N353FRVvsDxz/DsCoiuKDhngsuqBEq4IpQmgsgoKQWLi3cFMtbSWKSmkKLlF5Ry0gvmlkuiAya5m7uoJgCuW8ELiAKIiADzMzvD3/OlXCjQBC/79frvl7znOec83yfL135cuY8M127MnnyZOrVq8eECROYMWMGgwcPRqPREBgYSNOmTR86/pVXXmHhwoUlfqYAo0ePZsaMGURERGBubo69vT1paWl06dIFGxsb/Pz8WL58OW5ubnh6ehIdHc1nn33Gv//9b7RaLQ0aNCAsLKxsSRFC/C0KAyWGNZQ0eceBxC2HaG3bBrMWligMFJUdmhBCPPMUuoftVRDiKaZWq0lOTsbOzq5KbKtJSEjAwcGhssOodiSvFUPyWv4kpxVD8loxJK/l71E5fVTdUmW2xwghhBBCCCHuT4p2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOIq7cuVhBBCCF1xIUVnD4GBEqOWXVAo5deSEELczzO30h4XF4efn99j9w8PD8fFxYXIyEimTJnCpUuX7tuvsLCQuXPn4u7ujqenJ76+vuzfv79cYk5LS8PV1bVMY/z8/IiLiyvz/ZbF0aNHGT16NB4eHgwePJgZM2ZQUFBQpjlWr17Nhg0bKiQ+IUTVpi3IJWfxu2Rt+YqUpO84vXkC187GIt/5J4QQpcmSxiOoVCoiIyNp0aIFrq6uBAQE3LfflClTMDY2JioqChMTE06dOsUbb7zBsmXLaNWq1ROOuuKdPHmSCRMmsHDhQjp37kxxcTGzZs3ik08+ISws7LHnOXLkCN26davASIUQVVVh0g4y1FdR2zbEwFABwLWLG6HIlLgdaZxKP4d5bVO8XxtL/YaNKzlaIYSoXFK0/7+IiAg2bdqERqOhZ8+eBAYGMn36dNLT0wkICGDIkCFkZGTg7+/PihUrsLKy0o9NSUlhy5YtxMXF6b921tbWljlz5mBqagpATEwMy5YtQ6vV0qFDB6ZPn46JiQlOTk7Y2dlx7do1oqKiiIyMLBUH3Plq24kTJ3LhwgWaNm1KaGgotWvXJjExkc8//5yCggKsrKz49NNPadKkyX3v0c/PjwkTJuDo6EhaWhqjRo1ix44dBAUFYWZmxvHjx8nJyeGDDz5ApVJx8uRJXnrpJYKCgkrNtWTJEnx8fOjcuTMAhoaGBAYGsm/fPgAyMzOZOnUqly9fxtDQkPfff5/evXszf/58jh49ypUrVxgxYgQ7duzg4MGD1K9fn3bt2jFt2jSuXr2KQqHgww8/pHv37rz77ru0bNmSf//73yxatIgTJ04wb9688vvhCyEqha4wn98b1cHubsFu0JQ/jF24fa0WN81uUlys4/r123w7fx7vfziT37edIy+7gNZdbGj1ok0lRy+EEE+WFO3A7t27SU5OJioqCoVCQWBgILGxscycOZO9e/cSERFB48aNWblyJRERESUKdoATJ07QvHlzatSoUaLd0dERgDNnzrB69WpWrlyJiYkJX3/9NUuWLGH8+PFkZWXx9ttv4+jo+MA4HBwcuH79On5+fnTp0oUvv/yShQsXMmnSJIKDg1m0aBE2Njbs2bOHTz75hKVLl5Y5BxkZGaxatYp169YxZcoUNm/ejImJCb179yYgIIBatWqVuueXX365RJu5uTn9+/cHYNasWTg5OTF27FhSU1MZMWIEMTExwJ2tRBs3bgTgjz/+oFu3bvTq1Yv3338fHx8f3NzcyMjIYOTIkcTExDBjxgy8vLxo164dq1evJjo6usz3J4SoepTte5OVshW0OtQGNdhn+ioahTEowaidE7qCfDRppyjQGfHznGiKb1oCcCEpHUAKdyHEM0WKduDAgQMkJibi7e0NQEFBATY2j//LwMDAQL/Cfj9xcXGkpKTg6+sLQFFREe3bt9efv7ta/aA4HBwcaNGiBV26dAHA09OToKAgLl68SGpqKuPGjdPPlZub+9hx36t3794A2NjY0Lp1a+rWrQuApaUlN2/eLFW0KxSKh97zwYMHCQkJAaBJkyZ07tyZY8eOAdCpU6f7jtm/fz/nz58nPDwcgOLiYlJTU2nXrh1BQUG89957fPfdd1haWv6texRCVC3GVjbkPd8Aza50rjs0ulOw38PAugmatFOg01Fw06jEL6zThy9L0S6EeKZI0Q5oNBpGjx7N2LFjAcjJyUGpVD6wf1JSEsHBwQDY2dkREBDAuXPnKCgo0G+HAVi6dCn169dHo9EwYMAA/Zi8vDw0Go2+390xD4ojKysLQ8P//ah0Oh2GhoZotVoaN26MSqXSj8/MzHzovd59wKu4uLhEu5GRkf71vde6a+rUqSQnJwMQEhKCnZ0dSUlJ9OnTR98nNzeXSZMmER4eXupBMp1Op7/ne3N0L61Wy7Jly/RFeUZGhv6Ph/Pnz1O3bl2Sk5NxcXF56D0KIZ4ewzsH8MPVedgevQw9dKBQ6M/pcq4D0KbJc+SfrAn3/LNSs/aDFw2EEKI6euY+PeZ+nJycUKlU5OXlUVxcTEBAAJs3by7VT6lUotFo6NixIyqVCpVKRWhoKDY2Nri4uDBr1izUajUAx48fZ/HixbRu3RpHR0e2bt3K9evX0el0zJgxg2XLlpUpjnPnznH8+HEA1q5dS/fu3Xn++ee5efMmhw8f1rdPmjTpgfdpZWXF2bNnAdi2bVuZchQaGqq/544dOzJmzBh+/vlnEhMTgTvvHnzxxReYm5tjbGyMk5MTUVFRAKSmpnLkyBFeeOGFB+b07v3/9NNPAJw9exZ3d3du377NiRMnWLduHdHR0URHR3Py5MkyxS6EqLpszBrhYT+dxdl+nE/Op7hIh06no8ntQl4yrck7b77BmPHvYe/2PPx/PW9RrwYvvlz9HvAXQoiHeSZX2g8fPoy9vb3+2N3dnX79+uHr64tGo6FXr154eXmVGufi4oK/vz+LFy8u9bDnZ599xldffYWnpyfGxsaYmZkRFhZGmzZtAJgwYQKjR49Gq9XSrl07/P39S83v6urKyZMnS8Vx6dIlmjZtysKFC/nzzz9p06YN77//PsbGxsybN4/Q0FDUajXm5uZ8+eWXD7zvt956i6CgINauXYubm9vfTR9w50HbsLAwQkNDuX37NkVFRXTv3l3/bsLUqVOZNm2afv95SEgI1tbWpebp3r07c+bMoVatWgQHBzNt2jTc3d0BmD17NiYmJgQFBTFlyhQaNmzIRx99xOTJk4mKiirx7oAQ4unVvllNZo5uycb4G5heBfcedWnbqCbQUt/H2bMd7bs3Je+mmoYtLDFQypqTEOLZotDJB+KKakqtVpOcnIydnd1D998/KQkJCTg4OFR2GNWO5LViSF7Ln+S0YkheK4bktfw9KqePqltkqUIIIYQQQogqTop2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOKkaBdCCCGEEKKKeya/EVUIIYQQ4mmnyc+j6PQhFEotxrbO/JmlYGtyCpY1DBn0YnPMTJSVHaIoR1K0/0VcXBwLFixg+fLlj9U/PDyc6OhoRo8ezenTp5kwYQKNGjUq0efbb7/l119/BeDkyZO0bdsWgFdeeYUGDRoQHx/PF1988VjXS0tLY9SoUezYsaMMd1X+XF1dMTU1xcjICJ1Oh6GhIR999BFOTk6VGpcQQghR3RWps7m6ZzO3T+VxO6M+F0wuYLzvANENDTBpch6dDnb/2pKJz/fFpkU7zMwtKjtkUQ6kaP+HVCoVkZGRtGjRAldXVwICAkr1GTduHOPGjQPA1tYWlUqlPxcdHf3EYi1vERERNG7cGIAdO3YwadIk9u7dW8lRCSGEENWXOu8qF+K+QEsB2MLR1n1IMR+CQqGgSUEO13VLMbmQivWWjcRofsHQ2AT3cTN5vnP3yg5d/ENStD+miIgINm3ahEajoWfPngQGBjJ9+nTS09MJCAhgyJAhZGRk4O/vz4oVK7CysnrsuVNSUvDz8+Py5cs4OzsTEhJCcXExM2bM4MyZM2RmZmJra8ucOXNKjDt9+jSzZs0iPz+fGzdu4O/vz4gRI5g/fz6XL1/m4sWL3Lhxg3HjxnHgwAGOHTtG27ZtmTt3LvHx8SXeUQgKCqJbt27069ePDz74gMzMTAACAgJwc3N75D04Ojpy7do1srKy+PLLL8nOziYlJYXAwEDq1KlDaGgoarUaKysrZs6cSbNmzfDz86Nt27YcPnwYtVrNxx9/TM+ePcnMzGTatGlcvXoVhULBhx9+SPfu3Zk/fz5Hjx7lypUrvP7664wcObIMP0EhhBDi6XcjdRdabQEA+Ypa/GneHYVCAYCBqQX1//TEaO8nGGh0ABQXqtm1aqEU7dWAFO2PYffu3SQnJxMVFYVCoSAwMJDY2FhmzpzJ3r179SvOK1euJCIiokwFO8CVK1eIiYmhRo0avPTSS5w5c4bs7GyMjIxYtWoVWq2W0aNH89tvv9GhQwf9uDVr1jB+/HicnZ1JTU3Fw8ODESNGAHcK+lWrVnHkyBFGjx7N+vXrad68OQMHDuTUqVMPjGXr1q00atSIiIgITpw4QWxs7GMV7Rs2bKB58+b6e7e0tGTRokUUFhbyyiuv8J///IdOnTqxadMmPvjgA9auXQtAbm4u69at48SJE7z99tvs2LGD0NBQfHx8cHNzIyMjg5EjRxITEwNAYWEhGzduLFN+hRBCiOpDp39VoKgFipKfKaKkNoZ5mhJtedmZTyQyUbGkaH8MBw4cIDExEW9vbwAKCgqwsbEpt/m7dOmCpaUlAE2bNiUrK4tu3bphaWnJihUrOH/+PBcvXiQ/P7/EuKCgIPbs2cN3333H6dOnS5zv0aMHhoaG2NjYUL9+fVq1agVAgwYNuHnz5gNjsbe3Z86cOaSnp+Pi4nLf7T53+fv7Y2RkRFFREc899xz/+c9/9Oc6deoEwMWLF7GwsNAfDxgwgGnTpnHr1i0AfH19AWjXrh3169fn1KlT7N+/n/PnzxMeHg5AcXExqampJeYVQgghnkVWjXuTnbYPHcVYaa9gVnyd24Z19efNLuZQ3KAliitn9W3tnPtVRqiinEnR/hg0Gg2jR49m7NixAOTk5KBUPviJ7KSkJIKDgwGws7MjNDT0ofMbGv7vx6BQKNDpdGzfvp3w8HBGjRqFt7c3WVlZ6HS6EuP+/e9/Y2FhQd++fRk4cCAbNmzQnzMyMrrv/H+9zl1FRUUANG/enE2bNrFnzx527tzJf//7X5YtW4a/vz8A1tbWfP/990DJPe1/ZWpqCoBWqy11TqfTodHcWQW4N49arRZDQ0O0Wi3Lli3T/yGTkZFB3bp12bZtm35eIYQQ4llkat6Ihla+XNmxDIUa2mVH8XvnfihqmGN2MY+al/PwDfoPp+JjuXzuDxq37sSLL/tWdtiiHEjR/hicnJwIDw/H19cXExMTAgIC8PLy0q+836VUKtFoNHTs2LHEw6Z/x4EDBxgwYAA+Pj6kpqYSFxeHs7NziT779u1j06ZNNGjQgBUrVgDoi+FHsbKyIjU1FbVaze3bt0lISKBHjx78+OOPpKamMmXKFHr37k3fvn0xMzP72/fz/PPPk52dTWJiIp06dWLjxo3Y2NjoC/KNGzfSqVMnkpKSyMnJoU2bNjg5OfHTTz8xfvx4zp49y2uvvcb27dv/1vWFEEKI6sbSvid5BxK59cdhnieN584dJaORM8p65nQe1hHL+rVxHORX2WGKciZF+30cPnwYe3t7/bG7uzv9+vXD19cXjUZDr1698PLyKjXOxcUFf39/Fi9eTJMmTf5RDMOGDWPSpEn88ssvGBkZ8eKLL5KWllaiz7vvvsvIkSMxMTGhbdu2NGrUqFSfB2ndujV9+vRh0KBBNGrUCAcHBwCGDBnCBx98gLu7O0qlksDAQCws/v5HRRkbGzN37lxmzZrF7du3qV27NnPnztWfT01N1edy7ty5KJVKgoODmTZtGu7u7gDMnj0bc3Pzvx2DEEIIUZ0oDAxoPGEC6suX0RUVYdqsWWWHJJ4Ahe6vey6EeEL8/PyYMGECjo6OFTK/Wq0mOTkZOzs7TExMKuQaZZGQkKD/40iUH8lrxZC8lj/JacWQvFYMyWv5e1ROH1W3GNxnjBBCCCGEEKIKke0xotI87rfOCiGEEEI862SlXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOKkaBdCCCGEEKKKk6JdCCGEEEKIKk4+PUYIIUSF0Wl13Iy/RP7payhraKj7SgcMzc0qOywhhHjqyEr7Uy4uLg4/v8f/quLw8HBcXFyIjIxkypQpXLp06b79CgsLmTt3Lu7u7nh6euLr68v+/fufWMw7d+4kMjKyXK4nhHjy1u29RsiS34iL+g+XT63kfFoSlxOvcSEkitvnzqG+nYc6P7eywxRCiKeGrLQ/Y1QqFZGRkbRo0QJXV1cCAgLu22/KlCkYGxsTFRWFiYkJp06d4o033mDZsmW0atWqwuNMTk6u8GsIISrGr4eus/63JN7tuo4k0/78aWiHSas88o/tp8NlA05+E8LZnIuAjo69BuP2+gcoDGQNSQghHkaK9moqIiKCTZs2odFo6NmzJ4GBgUyfPp309HQCAgIYMmQIGRkZ+Pv7s2LFCqysrPRjU1JS2LJlC3Fxcfqv0bW1tWXOnDmYmpoCMHfuXA4cOMDNmzextrZm7ty51KtXD1tbW06dOgVAdHQ08fHxfPHFF+zdu5fPP/8cExMTWrRoob9WfHw8c+fOpaCggJycHKZMmULz5s1ZuXIlADY2NrzyyivMnDmTM2fOoNFoePvttxk8ePCTSqUQoowO/HGTETZbuGDSlRSjzgAUKCww6PwSRzN+pHZ2Cga6YgCO7VLRtH0X2nRxqcSIhRCi6pOljWpo9+7dJCcnExUVRUxMDOnp6cTGxjJz5kysra2JiIjA399f//regh3gxIkTNG/enBo1apRod3R0pHHjxqSkpHD+/HlWrlzJ5s2bee6554iNjX1gPIWFhQQFBREeHk50dLS+8Af48ccfCQkJYd26dYSEhDBv3jxatWrF8OHDGT58OD4+Pnz77bd06NCB6OhoVqxYwaJFi0hNTS3fpAkhys0LZim01V3ghkGjkicMDKF2XXQGJdeLMtPOP8HohBDi6SQr7dXQgQMHSExMxNvbG4CCggJsbGwee7yBgYF+hf1+mjVrxuTJk1mzZg0XLlzg6NGjNG3a9IH9T506hbW1NS1btgTAy8uLefPmARAWFsbOnTv59ddfOXbsGHl5eaXG79+/n4KCAtauXQtAfn4+Z86coUmTJo99T0KIJ6dvo2w0+/KwaHSVKxZt9O06TRHmt29gqFWju6d/c7tuTz5IIYR4ykjRXg1pNBpGjx7N2LFjAcjJyUGpVD6wf1JSEsHBwQDY2dkREBDAuXPnKCgoKLEqvnTpUurXr0+zZs348MMPGTNmDP3798fAwACd7n+/gnU6HQqFguLiO29/KxSKEufvjWXkyJE4Ojri6OiIs7MzkyZNKhWfVqslLCyMDh06AJCZmUnt2rX/TmqEEE9ArTb25OxRUHTiFLUbtiDHpgG627cpvHSAUe+8hvpcDw5tXIFWp6VL/1exaWVX2SELIUSVJ9tjqiEnJydUKhV5eXkUFxcTEBDA5s2bS/VTKpVoNBo6duyISqVCpVIRGhqKjY0NLi4uzJo1C7VaDcDx48dZvHgxrVu35tChQ3Tr1o0RI0bQvHlzdu3ahUajAcDKyoozZ86g0+nYsWMHcGc/fGZmJidPngTgl19+ASA7O5uLFy8yceJEevfuzfbt2/XzKJVKfdHv5OTEzz//DEBGRgYeHh5cuXKlAjMohPgnlNbNqekZSP9a1zEwWktB6kpylT/iMrApzeu0wLZrX16fvphRM/5Le+f+lR2uEEI8FWSlvRo4fPgw9vb2+mN3d3f69euHr68vGo2GXr164eXlVWqci4sL/v7+LF68uNRWk88++4yvvvoKT09PjI2NMTMzIywsjDZt2lC7dm0mTJiAu7s7cGd1Pi0tDYAPP/yQd955h3r16uHg4EBWVhZGRkbMmTOHwMBADA0Nad++PQCWlpYMHTqUQYMGYWhoiJOTEwUFBeTn59O1a1cmT55MvXr1mDBhAjNmzGDw4MFoNBoCAwMfuh1HCFH5jNv3pl773kwAcotvYaQwxkT54G13QgghHk6hu3ffghDViFqtJjk5GTs7u4fu0X9SEhIScHBwqOwwqh3Ja8WQvJY/yWnFkLxWDMlr+XtUTh9Vt8j2GCGEEEIIIao4KdqFEEIIIYSo4qRoF0IIIYQQooqTol0IIYQQQogqTop2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQghhBCP5coNNelZhZUdhhDPJPlG1KdQXFwcCxYsYPny5Y/VPzw8nOjoaEaPHs3p06eZMGECjRo1KtXP1taWtm3bolAo0Gg01KxZk08//RRbW9sHzr1z504uXrzI2LFj//b9CCGEqHp0xcXcSjqGwtgQo1bt+XzJPk6m5nOLhri8UJdJw5piYKCo7DCFeGZI0f4MUKlUREZG0qJFC1xdXQkICHho37uWL1/OtGnTWLVq1QP7Jycnl2usQgghKl9xbi7nln1CZisLbhpZo01cjeaSlpYKBbepxW9HX6J3R0uc2teu7FCFeGZI0V6NREREsGnTJjQaDT179iQwMJDp06eTnp5OQEAAQ4YMISMjA39/f1asWIGVldVD53N0dGTOnDkA+Pn5MWHCBBwdHUlLS2PUqFFERESwcuVKAGxsbOjZsycff/wxt27dIiMjAy8vLyZOnEh0dDS7du0iOzubjIwMhg8fzqVLlzh48CCWlpYsXrwYExMTYmJiWLZsGVqtlg4dOjB9+nRMTEzo2bMn/fv3JyEhAaVSyX/+8x+aNGlS4fkUQohnVebuX0jq4MAJkz4AGDQrpnGxij9PZGDGLfppVnNsZ2Oc2k+s5EiFeHbInvZqYvfu3SQnJxMVFUVMTAzp6enExsYyc+ZMrK2tiYiIwN/fX//6UQW7Tqfjl19+wd7e/oF9WrVqxfDhwxk+fDg+Pj5s2LCBwYMHs3r1atavX8+yZcu4ceMGAElJSXzzzTcsWbKEzz//nN69e7N+/XoA9uzZw5kzZ1i9ejUrV65EpVJRt25dlixZAsC1a9dwdnYmJiaGrl27smLFinLKmhBCiPvJL7rBKeMe+mOtwpD8Ro7640bGbSn6/Vfif91ZGeEJ8UySlfZq4sCBAyQmJuLt7Q1AQUEBNjY2ZZ7H09MTgMLCQlq2bMnMmTMfe+ybb77JwYMHWbJkCWfOnKGoqIjbt28D8OKLL2Jubo65uTkAzs7OADRq1IicnBzi4uJISUnB19cXgKKiItq3b6+fu1evXgC0bt2aw4cPl/m+hBBCPL5aHfuivaos0abWmQBghCGtDBpRZNKcY9s30e2VvpURohDPHCnaqwmNRsPo0aP1D4Tm5OSgVCof2D8pKYng4GAA7OzsCA0NBUruaf8rnU4HQHFx8X3Pf/HFF6SmpjJ48GBeeukl9u/frx9jZGRUoq+hYcn/9DQaDQMGDNDHlJeXh0aj0Z83Mbnzy0KhUOjnFEIIUTHqP9+WVjeOc7aolr7N6lwGzQyaY2vQGHNMuFl0hZo1WlZilEI8W2R7TDXh5OSESqUiLy+P4uJiAgIC2Lx5c6l+SqUSjUZDx44dUalUqFQqfcH+MFZWVpw9exaAbdu2lZjvbhG/b98+3nzzTQYMGMCFCxdIT09Hq9U+VvyOjo5s3bqV69evo9PpmDFjBsuWLXussUIIIcqf74vtGNDCii4NzHm1dR3ca9Wjq0FraugMSMz+hds6c/oMH1nZYQrxzJCV9qfU4cOHS+w3d3d3p1+/fvj6+qLRaOjVqxdeXl6lxrm4uODv78/ixYvL9DDnW2+9RVBQEGvXrsXNzU3f3rVrVyZPnky9evX417/+xUcffYSpqSkNGzbEzs6OtLS0x5q/bdu2TJgwgdGjR6PVamnXrh3+/v6PHZ8QQojypTRQ0KWh+f8aRnShWF3IqZ37eC5/MC/16YZF3RqVF6AQzxiFTvYaiGpKrVaTnJyMnZ2dfntNZUpISMDBwaGyw6h2JK8VQ/Ja/iSnFUPyWjEkr+XvUTl9VN0i22OEEEIIIYSo4qRoF0IIIYQQooqTol0IIYQQQogqTop2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhBBCCCGqOPlGVCGEEKKK02oKuXp6DbeuHcW4RgMatvHFzKJpZYclhHiCZKX9KRYXF4efn99j9w8PD8fFxYXIyEimTJnCpUuX7tvP1tYWT09PhgwZgru7O8OHD+fUqVMPnTsoKIjo6GjS0tJwdXUFYN68eWzfvr1U3/nz5zN//vzHjlsIIZ5Vt4uKuJJ+jj93LiT70h40hbe4nX2W1GPfotNqKjs8IcQTJCvtzxCVSkVkZCQtWrTA1dWVgICAh/a9a/ny5UybNo1Vq1aV6XoTJ07827EKIcSzrLBYy+zfTqA1M0OpUdBKY0NH5f8WT4rVWVw+G0+jNs6VGKUQ4kmSlfZqKCIiAi8vLzw8PJg9ezY6nY5p06aRnp5OQEAAERERZGRk4O/vT1ZW1iPnc3R05PTp0wDEx8czYsQIvLy8cHNzY9u2bQ8cd3f1HWDx4sX069ePV199lcTERH0fW1tb/evo6GiCgoIAcHV15euvv8bb2xtfX1927drFqFGj6NOnDxs3bvxbeRFCiKfFin3p6GpYoFAYoTU04rRFdy4rW+vPq4sULFsYzs+fjaewIL8SIxVCPClStFczu3fvJjk5maioKGJiYkhPTyc2NpaZM2dibW1NREQE/v7++tdWVlYPnU+n0/HLL79gb28PwI8//khISAjr1q0jJCSEefPmPTKmpKQk1q5dy7p164iMjOTq1auPdS/16tUjOjqali1bEhERwX//+1/CwsKIiIh4rPFCCPG0yrt2q1RbaoHNnXMFBuz9oyb5Jg25fDaJ5L2ykCHEs0C2x1QzBw4cIDExEW9vbwAKCgqwsbEp8zyenp4AFBYW0rJlS2bOnAlAWFgYO3fu5Ndff+XYsWPk5eU9cq74+Hj69OlDzZo1AXjllVfQarWPHNe7d28AbGxssLa2xtDQEBsbG3Jycsp8P0II8TRprS4m/i9tF5Kvc/6mFRotgAKl9k5hf+tG+pMOTwhRCaRor2Y0Gg2jR49m7NixAOTk5KBUKh/YPykpieDgYADs7OwIDQ0FSu5pv9fIkSNxdHTE0dERZ2dnJk2a9MiYFAoFOp1Of2xoaEhhYaH+WKfToVAoKC4uLjHOyMioxBghhHhWdH/RGsWeFI4/b4kOBe0uZHHyqikZxgpQADotNXIvojAwwLara2WHK4R4AmR7TDXj5OSESqUiLy+P4uJiAgIC2Lx5c6l+SqUSjUZDx44dUalUqFQqfcH+INnZ2Vy8eJGJEyfSu3dvtm/fjkbz6E8vcHZ2ZufOndy6dQu1Ws3WrVv156ysrDhz5gw6nY4dO3aU/YaFEKIaqtWuHt3sGuCVnInPyes4Odjg3KsrnZUt6KjJ44WCRNo2s8H7/a9o2KJdZYcrhHgCZPnyKXf48GH9fnMAd3d3+vXrh6+vLxqNhl69euHl5VVqnIuLC/7+/ixevJgmTZo81rUsLS0ZOnQogwYNwtDQECcnJwoKCsjPf/hDUO3atWP06NEMHToUCwuLEtt1PvzwQ9555x3q1auHg4PDYz0YK4QQzwLL7o2x7N5Yf+z44nM4DumMNjcLhZk5CqXRQ0YLIaobhe7efQtCVCNqtZrk5GTs7OwwMTGp7HBISEjAwcGhssOodiSvFUPyWv4kpxVD8loxJK/l71E5fVTdIttjhBBCCCGEqOKkaBdCCCGEEKKKk6JdCCGEEEKIKk6KdiGEEEIIIao4KdqFEEIIIYSo4qRoF0IIIYQQooqTol0IIYQQQogqTr5cSQghhBDlSnvrOgVx69Deuo5xhz4Yt3EiNTWVlJQUmjZtStOmTSs7RCGeOrLSXk3MmzePgQMHMmjQICIjIzzHBEsAAOxhSURBVB/Z38/Pj7i4uBJtubm52Nvbk56eXqI9Pj7+vt+q+iiJiYmEhYU9MN7t27c/cGxQUBDR0dFlvqYQQojKpdNqyF4+lXMJW9n/51H27JjD1qU/8O2337Jx40YWLVrEvn37KjtMIZ46stJeDcTHx3Pw4EFiY2MpLi5m4MCB9OnTh+eff75M85ibm/Pyyy/zyy+/8MYbb+jbY2JiGDp0aJnjOnv2LNevX7/vuYkTJ5Z5PiGEEFXf8V8Ps+dELwqLLlJDqaFuJ0eSjcGg7k20168AsHPnTnr06FHJkQrxdJGivRro1q0bP/zwA4aGhqSnp6PRaLhx4wbjx4/HysoKU1NTvvvuO6ZOnUpycjKNGjUiKyvrvnN5e3sze/ZsfdGuVqvZtWsXkydPJiUlhRkzZpCdnY2pqSmffPIJ7du3JygoCHNzc/744w/S09MJCAjg5ZdfJjw8nPz8fL799lsaNGjAunXryM7Opm/fvmRkZNCtWze8vb1ZunQpP//8M0qlkr59+xIYGFgippiYGJYtW4ZWq6VDhw5Mnz79vl/vK4QQovLodFoun1SRr95D266ZnDp6mfQ+wVyxbgmAcfN2FMZvRJvxJ1qttpKjFeLpI9tjqgkjIyPCw8MZNGgQzs7ONGjQgAsXLhAWFkZkZCTLly8HYNOmTQQHB/Pnn3/edx5HR0dycnI4f/48ANu2bcPZ2ZnatWszefJkAgMDWbduHbNmzeL999/Xj7t69So//fQT3377LbNnz8bCwoL33nsPV1dXxo0bB0B6ejrr1q3jgw8+0I9LTEzkp59+IioqitjYWP744w+Sk5P158+cOcPq1atZuXIlKpWKunXrsmTJknLPnxBCiH/mespWbl7aTM1a+Vjb1KDNS05o/79gB1AoFBg2aw9Az549KytMIZ5astJejbz33nu8/fbbvPPOO+zfv5+6devSuHFj4M4WmldffRWA5s2bY29vf985FAoFQ4YMYcOGDbz33nuoVCrGjBlDXl4eycnJTJkyRd83Pz9fv2Lfo0cPFAoFbdq0ITs7+75zt2/fHkPDkv/JHTp0iL59+1KrVi0Ali5dWuJ8XFwcKSkp+Pr6AlBUVET79u3LlhghhBAVLjczucRxDRNNqT6WxSb06eWBvavTkwpLiGpDivZq4Ny5cxQWFtKuXTvMzMzo168fO3bswNTUVN9HoVCg0+n0x3eL53nz5rFjxw7gTtHv5uaGt7c3b7zxBiNHjuTixYs4OzuTm5uLsbExKpVKP8fVq1extLQE0G9XUSgUD4zz3njujePeMenp6ZiZmemPNRoNAwYMIDg4GIC8vDw0mtK/CIQQQlQuE3Mb8rPP6I9rFF3H6MxvFLXuA4CiSEvPFk2x7/JcZYUoxFNNtsdUA2lpaQQHB1NYWEhhYSHbt2/HwcGhRB9nZ2fWr1+PVqvl0qVLHDlyBLjzQKhKpUKlUuHm5gaAjY0Nzz33HOHh4Xh4eKBQKKhVqxbNmzfXF+379u3jtddee2hcSqWS4uLih/bp0qULv/32G3l5eRQXF/Phhx+W2B7j6OjI1q1buX79OjqdjhkzZrBs2bIy50gIIUTFqv/8YMxq39kOozAwQa1pxcsNjfFtUZO+z1nwvlNjukjBLsTfJivt1UCfPn1ITExkyJAhKJVK+vXrx8CBA1m5cqW+z8iRIzlz5gwDBgygUaNGtGnT5qFz+vj48NFHH7F161Z9W1hYGDNmzGDx4sUYGRkxd+7ch66sd+rUiQULFvDVV1898JNsOnTowOuvv87w4cPRarW8/PLLdO/endjYWADatm3LhAkTGD16NFqtlnbt2uHv71+W9AghhHgCDI1r0aJrIEXqbJSGNTFQGunP2VZiXEJUFwrdvXsmhKhG1Go1ycnJ2NnZVYlPm0lISCj1Doj45ySvFUPyWv4kpxVD8loxJK/l71E5fVTdIttjhBBCCCGEqOKkaBdCCCGEEKKKk6JdCCGEEEKIKk6KdiGEEEIIIao4KdqFEEIIIYSo4qRoF0IIIYQQooqTol0IIYQQQogqTop2IcqRTqdDU6wh50Y6Wq2mssMRQgghRDUhRXs18+WXXxIUFASAn5+fvt3W9tHfRzdp0iQiIiJKtOl0Otzc3Dh58mSZY7n3+vdKSkpi6tSpDxwXFxf3wLFViU6j48aOi6R+c5irq/7gxLbzLA5cwbx3vPh+0lC+DxxG2unEyg5TCCGEENWAFO3VyIEDB1i3bp3+OD4+vkzjfXx8WL9+fYm2hIQELC0tadu2bZnjedD1O3bsSGhoaJnnq2qy9vxJ1m8pFKbnkXc8k6JdKeRm/4JOmwVAbtY1tkR+UclRCiGEEKI6kKK9msjOzmbu3Lm88847AISEhAAwbNgwfZ9p06bh4eGBh4cHKSkppeZwcnIiLy+PU6dO6dtUKhU+Pj5oNBo+//xzvLy88PDwYOnSpcCdVfE33niD8ePH079/f9577z0KCwtLXd/JyYm33noLT09P9u3bp19JP3HiBMOGDcPd3Z3XX3+dq1evlogpJSWFsWPH4uXlxYgRIzh+/Hg5Zeyfyz19nWOtrPilR2N2vFCP2+YG1DTQleiTlZ6KpriokiIUQgghRHUhRXs1MW3aNN5//30sLCwACA4OBmDNmjX6Pt27dyc2NpYePXqwcuXKUnMoFAq8vb3ZsGEDAIWFhezcuZPBgwezevVqANatW0dUVBTbt2/n8OHDAPz+++9MmzaNTZs2cfnyZfbu3Vvq+llZWbz99tuoVCoMDQ3115w0aRLjx49n/fr1DBw4kGXLlpWIafLkyQQGBrJu3TpmzZrF+++/Xy75Kg9/NK/NH62suFnLmKsNLdjlbMWNms+V6NO0fReUhkaVFKEQQgghqgvDR3cRVd2aNWt47rnncHZ2Jjo6+oH9XnrpJQBatWqlL7j/ysvLi1GjRvHBBx+wfft2nJycsLCw4MCBA5w4cYKDBw8CkJ+fz6lTp2jVqhWtW7emYcOGALRs2ZKbN2/ed+7OnTuXOL5x4wbXrl2jb9++AIwcORK4s3oPkJeXR3JyMlOmTNGPyc/PJysrCysrq0fmpaJdqmcC6v+trBcaW9G4Ux1uxHXCRHMW4zpNGPj2J5UYoRBCCCGqCynaq4GNGzdy7do1PD09uXnzJvn5+Xz22Wel+t1d4VYoFOh0OpKSkvQr4nZ2doSGhtKoUSOaNGnCkSNHUKlUjBkzBgCNRkNgYCD9+vUD7hTcNWvW5OjRo5iYmOivcXfu+zE1NS1xbGRkhEKh0B+r1WoyMjL0x1qtFmNjY1Qqlb7t6tWrWFpaliE7FcfKpJAr6v+tohvq1DQwy8akiRp7o+Y85z+HmrVrVmKEQgghhKguZHtMNRAZGcmGDRtQqVS89957uLq68vHHH6NUKikuLn7guI4dO6JSqVCpVCUeDPX29iYqKoqUlBQcHR2BO3vSV69eTVFREXl5eYwcOZKjR48+NK5HXb9WrVo0aNCAvXv3Anf2z8+bN6/E+ebNm+uL9n379vHaa689Mh9PSt9m9bDU3NmDb6QrwF69iewsDZ36vELbDxdiaSkFuxBCCCHKhxTt1Zibmxuenp6o1eoyjevfvz/bt29n8ODB+pXw4cOH07x5c7y8vPDx8cHb21tf0P+T64eFhbFw4UI8PT3ZuHEjH330UanzUVFRuLu78/XXXzN37twSq/OVqY65BWNsTeh3O5J+t8IhI4VOL43GrudQFEp5E0sIIYQQ5Uehe9BeBiGecmq1muTkZOzs7Eps4aksCQkJODg4VHYY1Y7ktWJIXsuf5LRiSF4rhuS1/D0qp4+qW2SlXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOKkaBdCCCGEEKKKk6JdCCGEEEKIKk6KdiGEEEIIIao4KdqFEEIIIYSo4qRoF0IIIYQQooqTr20UQghRLRUVFrFz505OnjtJ3YZ18XrFixo1alR2WEII8bfISns1FxcXh729PZ6ennh4eDBgwACWLVtWpjk8PT3L1L+wsJBPP/2UwYMH4+7uzmuvvUZiYiIAt27dIiAgoEzzCSFEWV3em8ripZvZffwcV9Ou8sfhP/jyv1+g1qjv21+rlS8HF0JUbbLS/gyws7Nj+fLlAOTm5jJo0CB69OhBq1atHmu8SqUq0/WWLl2KVqtl/fr1KBQKEhISGD9+PDt37uTmzZucOHGizPcghBAPU6S+yc0rBwAFeUUdWKnRUNixMyZ0RnP1AoWHfqXocjH7VLPpeLs+Fm4emDS0YefRLBZvvExOvoaXXrQiwLMxhkpFZd+OEEKUIkX7M0atVqNUKqlVqxaurq506tSJEydO8NNPP/HDDz9w4MABbt68ibW1NXPnzqVevXrY2tpy6tQp5s+fT3p6OikpKVy6dIlhw4Yxbty4UtfIzMykqKiIoqIijI2NcXBw4LPPPkOr1RISEkJGRgYBAQEsXLiQmJgYli1bhlarpUOHDkyfPh0TExN69OiBm5sbiYmJ1KtXDx8fH5YvX87Vq1f54osv6NatWyVkTwhRFRWrczgfF4Km8BYAvxtrKDTuqD+vbNgCRe16KLKyUP9qSGbhQTK3HaT2vyby9XoDNNo7/X49dIOm1qZ49axfGbchhBAPJdtjngHJycl4enri7u6Oq6sr3bp1w9raGoDevXuzefNmcnNzOX/+PCtXrmTz5s0899xzxMbGlprr1KlTLFmyhDVr1hAREUFOTk6pPqNGjeLYsWM4Ozszbtw4fvjhB+zt7TExMSE4OBhra2sWLlzImTNnWL16NStXrkSlUlG3bl2WLFkC3Cn8e/fuTUxMDGq1mm3btvHTTz/x7rvvlnl7jxCiert5NV5fsAMU32eh3MBAifmtDC6YdOKG0hp0kLVutb5gv+tkan4FRyuEEH+PrLQ/A/66Peatt94iIiICgM6dOwPQrFkzJk+ezJo1a7hw4QJHjx6ladOmpeZydHTE2NiYunXrYmlpya1bt7CwsCjRp3HjxmzYsIGkpCT2799PTEwMS5cuJSYmpkS/uLg4UlJS8PX1BaCoqIj27dvrz/fu3RuARo0a4eDgAICNjc19/1AQQjy7FAbKEsctio6QquyATnFnXco46xqmJ9ehVNQHM7iprEcdTQbGCg2GSgXFmv/tZ+/YvOYTjV0IIR6XFO3PGHNzcwYMGMD+/fsBMDExAe6sxn/44YeMGTOG/v37Y2BggE5X+sGsu/0BFAoFOp2OqVOnkpycDEBISAhbt27ltddeo1OnTnTq1Il33nmH4cOHs2/fPjp2/N9b1hqNhgEDBhAcHAxAXl4eGo1Gf97Y2Fj/Wqks+UtZCCHuqt2wG9f/3E7R7UwAbEwLGduhDuu2bCU37RTKkztR6DQYGnW6019zp1/9Qe58XLcZ//31Ctm5xfRzqMMAx7qVdh9CCPEwUrQ/YzQaDfHx8bRv354zZ87o2w8dOkS3bt0YMWIEWVlZ7Nq1i379+j3WnKGhoSWOf/zxRxYuXEhwcDDGxsZcu3aNGzdu0KZNGwwNDSkuLgburNr/97//Zdy4cdSpU4cZM2bQtGlT3n333fK7YSFEtac0qsnzjlO5lfE7oMDC2h4DQ1PeHtyfI1tvcu5WZ3KzbDA2bkdryyu0qGGFRd+RmHd6AWfAuX3tyr4FIYR4JCnanwF397QrFAqKi4uxtbXl7bffLvGpMAMHDmTChAm4u7sDd7bUpKWl/a3rffLJJ3z55Ze88sormJmZYWRkxKRJk2jZsiVFRUXY2Njg5+fH8uXLmTBhAqNHj0ar1dKuXTv8/f3L5Z6FEM8WpaEZljbdS7SZmNXE2WMszh6VFJQQQpQjhe5+eyCEqAbUajXJycnY2dmV2NZTWRISEvR780X5kbxWDMlr+ZOcVgzJa8WQvJa/R+X0UXWLfHqMEEIIIYQQVZwU7UIIIYQQQlRxUrQLIYQQQghRxUnRLoQQQgghRBUnRbsQQgghhBBVnBTtQgghhBBCVHFStAshhBBCCFHFSdEuhBBCCCFEFSdFewWJi4vDz8/vsfuHh4fj4uJCZGQkU6ZM4dKlS/ftZ2trW6rN1dWVtLQ0kpKSmDp16t+OWQhRsTRaHZsvZDH38CWWJKbzZ466skMSQgjxlDCs7ADEHSqVisjISFq0aIGrqysBAQFlnqNjx4507NixAqITQpSHA1duEX81F4DcokJWnrzGv+rW4NChOJIunEVZZEL7lk3p7tmdGuYWlRytEEKIqkSK9icsIiKCTZs2odFo6NmzJ4GBgUyfPp309HQCAgIYMmQIGRkZ+Pv7s2LFCqysrB577ri4OBYsWMDy5cvx8/Ojbdu2HD58GLVazccff0zPnj0JCgrCxMSEpKQk8vLyGDduHEOGDOH27dsEBwdz6tQpFAoFb775JkOGDEGtVvPpp5+SkJCAkZER48ePZ+DAgWzatInIyEgKCgooLCzks88+48UXX8TPz4/27duTkJCAWq1m0qRJ/PDDD5w7d44xY8YwZswY5s+fz+XLlzl37hxZWVm8+uqrvPXWW0RHRxMfH88XX3wBgJ+fHxMmTKBZs2ZMmjSJ/Px8DAwMCA4O5oUXXqign5AQFedcdl6JY7VGhypmJyevJ+jbrh85wtHtX5La0I+B3p7071L3SYcphBCiCpKi/QnavXs3ycnJREVFoVAoCAwMJDY2lpkzZ7J3714iIiJo3LgxK1euJCIi4oEFu6enZ4njjIyM+/bLzc1l3bp1nDhxgrfffpsdO3YAkJqayqpVq7h+/Tre3t706NGDyMhIrKys2LBhAzdu3GDYsGG0bduWvXv3kp+fz6ZNm7h+/TpjxozhpZdeYuXKlSxatIg6deoQFRVFREQEixYtAkCn0xEVFcWCBQsICQkhNjaWGzduMGTIEMaMGQNAcnIyK1euRKvV4u3tjbOz8wPzFhUVhYuLC2+99Ra7d+8mISFBinbxVNIZXAP+9/9rpa4IrXFSiT5FJnXQKeC59JXMX9uJNo1q0OI5syccqRBCiKpGivYn6MCBAyQmJuLt7Q1AQUEBNjY2ZZ5HpVKVOHZ1db1vP19fXwDatWtH/fr1OXXqFADe3t4YGRnRsGFDXnzxRRISEjh48CCfffYZAHXq1MHNzY34+HgOHTqEr68vBgYG1K9fn19++QWAhQsXsmPHDi5cuEB8fDwGBv97PKJ3794A2NjY0LlzZ8zMzGjUqBE5OTn6PoMHD6ZmzZr6+A8ePPjAP1KcnZ159913OXHiBH369OH1118vc86EqAqaml+hODOdK0pbTHW5dC7cQi2bLE5fqanvo9AWo9BpMKIYpSaP5It5UrQLIYSQov1J0mg0jB49mrFjxwKQk5ODUql8YP+kpCSCg4MBsLOzIzQ0tEzXu3durVaLoaHhA9t1Ol2JsTqdDo1Gg6GhIQqFQt+ekpJC3bp1GTp0KB4eHnTt2hVbW1tWrFih72NkZKR/ffeaj4pNqVSiUChKxFFUVASAg4MDv/zyC7t27WLjxo2sW7eOyMjIMuVCiKqgS90XsD41HR2GGFCMAijWWWGMIYUUg05HjVsXUKAj26gFhUpL2jSuUdlhCyGEqALk02OeICcnJ1QqFXl5eRQXFxMQEMDmzZtL9VMqlWg0Gjp27IhKpUKlUpW5YAfYuHEjcKf4z8nJoU2bNgBs2rQJnU7HpUuXSExMxMHBAScnJ6KiogC4ceMG27dvp1u3bnTt2pWNGzei0+m4fv06r7/+OsePH0ehUPDOO+/g6OjI1q1b0Wg0ZYpt27ZtFBYWcvPmTXbu3EnPnj2xsrLi3Llz6HQ6UlNT9e8MzJ49m9jYWLy8vJg2bRrHjx8vcy6EqAosajTA4jlnlP9fsKPTYXm9Jm91cmeARRM651+nDjqu1uzJuYbv4D/IBtsmUrQLIYSQlfYKdfjwYezt7fXH7u7u9OvXD19fXzQaDb169cLLy6vUOBcXF/z9/Vm8eDFNmjT529dPTU3Vzz937lz96nZBQQE+Pj4UFhYyc+ZMrKysCAgIYMaMGbi7u6PRaHjnnXfo0KEDrVu3JiQkBA8PDwA++eQTHBwcaNeuHQMGDEChUNCzZ08SEhIeGMf9mJiYMHLkSHJzc/nXv/5Fq1ataNq0KWvXruWVV16hRYsWODg4AHceSP3www+Jjo5GqVTy5Zdf/u2cCFHZmnYYTa61A/l/xlPDuCE1+76EwtCYxnTV99FqdSgUlHiXSwghxLNNofvrvghRLdz95BVHR8cS7UFBQXTr1k2/r74yzJ8/H4B33323Qq+jVqtJTk7Gzs4OExOTCr3W40hISND/ISLKj+S1Ykhey5/ktGJIXiuG5LX8PSqnj6pbZHuMEEIIIYQQVZxsj6mmli9fft/2u5+BXpkqeoVdCCGEEKK6kZV2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOKkaK/i4uLi8PPze+z+4eHhuLi4EBkZyZQpU7h06dID+2ZlZdGxY0f++9//lkeoj+1x7ikoKIjo6OgnFJEQ1YNGo2P7oWss/eEECYev8selRH77aR2HwmPY+tnXrJjlT9LuDZUdphBCiL9BPqe9mlGpVERGRtKiRQtcXV0JCAh4YN/169fj6urKqlWrGDt2rHxluhBPoVvXErmVmYhJjQZEbn8O5e+pmKAl7hA41zWksa4OAHXowq2sy2xZ+iU1LKxo+UKPSo5cCCFEWchK+1MqIiICLy8vPDw8mD17NjqdjmnTppGenk5AQAARERFkZGTg7+9PVlbWfeeIjo5m5MiRGBsbc/DgQX27n58fn3/+OUOHDsXd3Z3ffvuNN998ExcXF5YuXYpWq8XV1ZULFy4AkJ+fT58+fVCr1WzcuJFXXnkFb29vpk6dSlBQEAB79+5l0KBBeHt7s3r1av214uPjGTFiBF5eXri5ubFt27ZScc6dOxdfX1/69++Pn58fmZmZ5ZlKIZ5a2Zf3k3rsG7Iv7SX9zFo6m/1IVs1DpDe5grqFEjMDsxL9G5l1AuDs73sqI1whhBD/gBTtT6Hdu3eTnJxMVFQUMTExpKenExsby8yZM7G2tiYiIgJ/f3/9aysrq1JznDx5kszMTLp06cKAAQNYtWpVifM6nY6oqCj69+9PSEgICxYsYMWKFSxcuBADAwOGDBlCbGwsAFu2bMHFxYW8vDw+++wzli1bRlRUFDdv3gSgsLCQoKAgwsPDiY6OxtTUVH+dH3/8kZCQENatW0dISAjz5s0rEUdKSgrnz59n5cqVbN68meeee05/XSGedVmXShbfjepnY+TUC8Ne/cl17kBsr8bkmv3vDdXbmmwA6jzX7EmGKYQQohxI0f4UOnDgAImJiXh7e+Pl5UVycjJnz54t0xxRUVG88sorKJVKBg4cyLZt20qsYPfu3RsAGxsbOnfujJmZGY0aNSInJwcAb29vNmy4szd23bp1eHt7c/jwYezt7WnQoIG+sAc4deoU1tbWtGzZEgAvLy/9dcLCwjhz5gwLFy4kMjKSvLy8EnE2a9aMyZMns2bNGr744guOHj1Kfn5+2RImRDVlYFhyJT2T56BBK/2x2tSIk80sAMgvzuZkzk6a2znyQt8hTzJMIYQQ5UD2tD+FNBoNo0ePZuzYsQDk5OSgVCof2D8pKYng4GAA7OzsmD59Ohs2bMDQ0JAdO3bo+0VHR+Pv7w+AkZGRvt3QsPR/Jo0bN8bGxoYtW7Zw/fp1OnfuzLZt29BqtaX6KhQKdDqd/vjeWEeOHImjoyOOjo44OzszadKkEmOTk5P58MMPGTNmDP3798fAwKDEXEI8y+q3GEh+1ll02kIAzl2rBTVL9iko+pOiKzsxNk5j2IQPqNupdyVEKoQQ4p+SlfankJOTEyqViry8PIqLiwkICGDz5s2l+imVSjQaDR07dkSlUqFSqQgNDWXnzp1YWVmxd+9eduzYwY4dO5g5cyarVq0qU0Hs4+NDSEgIHh4eALz44oskJSWRkZGBTqdj48aNKBQKbG1tyczM5OTJkwD88ssvAGRnZ3Px4kUmTpxI79692b59OxqNpsQ1Dh06RLdu3RgxYgTNmzdn165dpfoI8ayqYdmK1j1DaGT3Js26TKaWcXO0udn68wqtBoecLdRvcpKGdhbUsZOHT4UQ4mklK+1PgbvbTu5yd3enX79++Pr6otFo6NWrV4ktJ3e5uLjg7+/P4sWLadKkib797gOo9xo8eDBz5sxhz57Hf0CtX79+fPLJJ3h6egJQp04dgoODeeONNzA2NqZx48ZYWFhgZGTEnDlzCAwMxNDQkPbt2wNgaWnJ0KFDGTRoEIaGhjg5OVFQUFBi+8vAgQOZMGEC7u7uwJ13CtLS0h47RiGqO0NjC2o37ArAUJ8WuOXe5vfM2xRooV3uGeo3rIdBm3aYOg9FYfDgd+SEEEJUbQqd7DUQf4NOp2P37t38/PPPLFq0CLjzue/Lly9nwoQJGBgYEBISQrNmzcr0OfPlSa1Wk5ycjJ2dHSYmJpUSw70SEhJwcHCo7DCqHclrxZC8lj/JacWQvFYMyWv5e1ROH1W3yEq7+Fs+++wzdu7cyffff69vs7S0JCcnh8GDB6NUKunQoQO+vr6VGKUQQgghRPUgRbv4W6ZOncrUqVNLtCkUCv0Dr0IIIYQQovzIg6hCCCGEEEJUcVK0CyGEEEIIUcVJ0S6EEEIIIUQVJ0W7EEIIIYQQVZwU7UIIIYQQQlRxUrQLIYQQQghRxUnRLoQQT7m0tDT5pmAhhKjm5HPaxRORm5vL119/zaFDh1AqlVhYWBAUFESHDh349ddfiYiIoLi4GJ1Oh6enJ2+99RYAfn5+XL16lRo1aujn8vX15bXXXqusWxGiyigqKkK1ah51TC6i00F88fMMenkoRb/9gObGJYxbO2La+3UUSvmnXgghnnbyL7mocFqtlrfffhtHR0diYmIwNDTk4MGDvP3226xbt44vv/yS6OhorKysyMvLw8/PjxYtWuDm5gZASEgIjo6OlXwXQlQ9e7f8QpMG1/jd7FUyDZpQR5PG3qgIXsz6HYCCzD/BQIlZH79KjlQIIcQ/JdtjRIWLi4vjypUrvPfeexga3vk70cnJic8//5yUlBSKioooKCgAoGbNmnzxxRe0atWqMkMWoso7GHuSGxeP8bvZYK4pm6NTKLlu2IykVh7cKtTq+xWdPVSJUQohhCgvstIuKtzx48dp27YtBgYl/0bs06cPAG5ubrz00ku0a9cOR0dH3N3dadasmb5fcHCwfntMzZo1+emnn55c8EJUQZoiDYm7LlCrfj2uGzQuce5WzYbsTq/JgMb5GCgUKOs3raQohRBClCcp2kWFMzAwwMTE5IHnP/30U8aPH8/evXvZu3cvvr6+fPXVV/Tr1w+Q7TFC3I8OyLrcjNq3r5FV4zl9e73sAnI1xaTf1tC4hS1mLqMrL0ghhBDlRrbHiApnZ2fH8ePH0el0JdrnzJnDrl272LhxIw0aNMDHx4e5c+cSHBxMVFRUJUUrRNWnNFLSqU9zQEGtnTnUz8pFodVR/8Ztno/fS17xdYy8ZmHxZjgGFvUrO1whhBDlQIp2UeG6dOlC3bp1WbBgARqNBoA9e/YQHR1Nfn4+X3/9tf7j6nQ6HSdOnKBdu3aVGbIQVZ6zZzsG/qsLTbpZUasgjvZR31HrlzCS/1xKjdb9aO3QrbJDFEIIUY5ke4yocAqFgm+++YbPP/+cwYMHY2hoiJWVFREREbRv3x61Ws0777xDUVERAL169SIgIKCSoxai6mtu14Dmdg0ABwoHqTl8MB6nhg1oadumskMTQghRzqRoF09EnTp1CAsLu+85Ly8vvLy87ntu+fLlFRmWENWGsYkJ3fv0quwwhBBCVBDZHiOEEEIIIUQVJ0W7EEIIIYQQVZwU7UIIIYQQQlRxUrQLIYQQQghRxUnRLoQQQgghRBUnRbsQQgghhBBVnBTtQgghhBBCVHFStAshhBBCiJLUam6fPYlWnV/ZkYj/J0X7A8TFxeHn5/fY/cPDw3FxcSEyMpIpU6Zw6dKlB/bNysqiY8eO/Pe//y2PUMssOjqaoKCgSrm2EEIIIaounUbLuZhfMfs+goshX3D23Xe4tUW+6LAqkG9ELScqlYrIyEhatGiBq6srAQEBD+y7fv16XF1dWbVqFWPHjkWhUDzBSIUQQgghStIWargWe5rc5Ax0RToMzJqjy7+IptCA/fu3c7pWOpaXrbHIyeRF5740aWtf2SE/c2SlvYwiIiLw8vLCw8OD2bNno9PpmDZtGunp6QQEBBAREUFGRgb+/v5kZWXdd47o6GhGjhyJsbExBw8e1LefOHGCYcOG4e7uzuuvv87Vq1fR6XSEhYXRv39/Bg4cyLJlywDw8/MjLi4OgLS0NFxdXQEICgri008/5dVXX2XAgAFs3bqVCRMm8NJLL/HFF1/or5WSksJrr73G4MGD+eqrr9DpdADExMTg5eWFp6cnH3/8MWq1GoCePXsya9YshgwZgo+PD6mpqQB8+eWXeHh4MGTIEBYsWHDf+42Pj2fEiBF4eXnh5ubGtm3b9LG+8847DBgwgB07dpCYmKjv98Ybb+iv8aDxQgghhCgf2ftTyU3KAB1gqiSvdzGakabkeNQi26YT2RofLtr0JbGNFz+vXUna6cTKDvmZI0V7GezevZvk5GSioqKIiYkhPT2d2NhYZs6cibW1NREREfj7++tfW1lZlZrj5MmTZGZm0qVLFwYMGMCqVav05yZNmsT48eNZv369vkD/9ddfOXLkCOvXr2fNmjVER0dz7dq1h8aZkZHBqlWr8Pf3Z8qUKXz66afExMSwevVqbt26Bdwp9OfPn090dDQJCQls376dM2fOsHr1alauXIlKpaJu3bosWbIEgGvXruHs7ExMTAxdu3ZlxYoVXLp0id27dxMbG8vPP//M2bNn9UX+vX788UdCQkJYt24dISEhzJs3T3/O0tKSTZs20bNnT4KDg/n6669Zt24dY8eO5ZNPPnnkeCGEEEL8c+pLt/SvbzTfj1m9TAwMoJZFEantXwLl/2/OMDCksNtwThzYXEmRPrtke0wZHDhwgMTERLy9vQEoKCjAxsamTHNERUXxyiuvoFQqGThwIN988w2ZmZkYGBhw7do1+vbtC8DIkSMBmDlzJgMGDMDY2BhjY2NUKtUjr9G7d28AbGxsaN26NXXr1gXuFMg3b94EwNXVlTp16gAwYMAA4uPjuXr1KikpKfj6+gJQVFRE+/bt9fP26tULgNatW3P48GEaNGiAiYkJw4cPp2/fvkyaNAkTE5NS8YSFhbFz505+/fVXjh07Rl5env5cp06dALh48SKpqamMGzdOfy43N/eR44UQQgjxz5k1tyT/9I07B7VulDhXZFCjxLHOtBY1apVemBQVS4r2MtBoNIwePZqxY8cCkJOTg1KpfGD/pKQkgoODAbCzs2P69Ols2LABQ0NDduzYoe8XHR3NiBEjSuxtV6vVZGRkYGhoWKI9LS1NX2zf3dJSXFxc4rpGRkb614aG9/8R39uu1WoxNDREo9EwYMAAfcx5eXloNBp9v7sFuUKhQKfTYWhoyJo1a4iPj2f37t0MHz6c5cuX89lnn5GRkQHc2U40fvx4HB0dcXR0xNnZmUmTJunnNDU11cfQuHFj/R8lGo2GzMxM4M4fMA8aL4QQQoh/rrZTY4pz1NxKzCDnZg3MzQv15xoVJJJi1lV/XDM1gRcGeVdGmM802R5TBk5OTqhUKvLy8iguLiYgIIDNm0u/PaRUKtFoNHTs2BGVSoVKpSI0NJSdO3diZWXF3r172bFjBzt27GDmzJmsWrUKc3NzGjRowN69e4E7D7bOmzePrl27smXLFoqKirh9+zZvvfUW6enpWFlZcfbsWYC/tcf7t99+IycnB7VazcaNG+nevTuOjo5s3bqV69evo9PpmDFjhn4P/f0cP36c119/na5duzJ58mRatmzJhQsX+P777/X3bWJiwsWLF5k4cSK9e/dm+/btJf4QuOv555/n5s2bHD58GIC1a9cyadIksrOzH2u8EEIIIf4+hVJBvQGtaDG5O891eI0/M0zQaODGLSV18rJxa2ZOS9Niuprm8O4wb2rWrlPZIT9zZKX9IQ4fPoy9/f+ejnZ3d6dfv374+vqi0Wjo1asXXl5epca5uLjg7+/P4sWLadKkib797gOo9xo8eDBz5sxhz549hIWFMWPGDMLCwrCysmL27NlYW1uTnJyMt7c3Wq2WUaNG0aJFC9566y2CgoJYu3Ytbm5uZb63559/Hn9/f3Jychg8eDA9e/YEYMKECYwePRqtVku7du3w9/d/4Bzt27fnhRdeYPDgwZiZmfHiiy/qt+bcZWlpydChQxk0aBCGhoY4OTlRUFBAfn7Jz301NjZm3rx5hIaGolarMTc358svv3zo+Bo1Sr5dJ4QQQoh/rkOXjuRqRmJUuzatraxo0KABAN1tZEtMZVLo7u6xEKKaUavVJCcnY2dnd9+99k9aQkICDg4OlR1GtSN5rRiS1/InOa0YkteKIXktf4/K6aPqFtkeI4QQQgghRBUnRbsQQgghhBBVnBTtQgghhBBCVHFStAshhBBCCFHFSdEuhBBCCCFEFSdFuxBCCCGEEFWcFO1CCCGEEEJUcVK0CyGEKDd5Nwu4dSP/0R2FEEKUiRTtVVhcXBx+fn6P3T88PBwXFxciIyOZMmUKly5dKtVn0qRJRERElGjT6XS4ublx8uTJMsdYlvgA0tLScHV1BWD+/Pn06NEDT09PPDw8GDx4MD/++GOJ/kePHmX06NH68zNmzKCgoKDMcQohKo42/ya3oj5j85S5LAvexvLpO9n0/WE0xdrKDk0IIaoNKdqrEZVKRWRkJGPHjiUuLo77fdmtj48P69evL9GWkJCApaUlbdu2LfM14+Pj/3a8AMOHD0elUhEbG8sPP/zAqlWrWLNmDQAnT55kwoQJfPDBB8TGxhITE4NOp+OTTz75R9cUQvw9BbdSuZWZjFZTWKI9f/Mi4i5e5lxuG0ABwIXEdM4cLr1wIIQQ4u8xrOwARNlFRESwadMmNBoNPXv2JDAwkOnTp5Oenk5AQABDhgwhIyMDf39/VqxYgZWVlX6sk5MTeXl5nDp1CltbW+BOse/j44NGo2H27NnEx8ej0Wjw9vZmzJgxxMXF8d1332Fqasq5c+ewtbXlq6++Yvbs2QAMGzaMNWvW4OTkhJ2dHdeuXSMqKopPP/2UM2fOkJmZia2tLXPmzHnofdWpU4dx48bx/fffM2zYMJYsWYKPjw+dO3cGwNDQkMDAQPbt21dBmRVCPMjlEyvIvrQHAEMTS5p3mYSxWT0AjuX9waEatphZGWOq1qLIL0YDZGfkVWLEQghRvchK+1Nm9+7dJCcnExUVRUxMDOnp6cTGxjJz5kysra2JiIjA399f//regh1AoVDg7e3Nhg0bACgsLGTnzp0MHjyY1atXA7Bu3TqioqLYvn07hw8fBuD3339n2rRpbNq0icuXL7N3716Cg4MB9CvjWVlZvP3226hUKo4ePYqRkRGrVq1i69at3Lp1i99+++2R99emTRvOnz8PwIkTJ+jQoUOJ8+bm5vTv3/8fZFAIUVbq3Mv6gh2gWJ3N9ZSt+uMD2sYUPT+QWwPacs2zHXW6NaKlcRpHtgexds4kblz9szLCFkKIakVW2p8yBw4cIDExEW9vbwAKCgqwsbEp0xxeXl6MGjWKDz74gO3bt+Pk5ISFhQUHDhzgxIkTHDx4EID8/HxOnTpFq1ataN26NQ0bNgSgZcuW3Lx5875z310V79q1K5aWlqxYsYLz589z8eJF8vMf/XCaQqHA1NRU/9rExKRM9yaEKH/FRaVXzIsLbwFw8+ZNcgycMap9Z9UdhYKTLevgftmOKxf3cjE5jtiFwYyZ9cOTDFkIIaodKdqfMhqNhtGjRzN27FgAcnJyUCqVD+yflJSkXxG3s7MjNDSURo0a0aRJE44cOYJKpWLMmDH6uQMDA+nXrx8AN27coGbNmhw9erRE8axQKO67Xx7QF9zbt28nPDycUaNG4e3tTVZW1gPH3OvUqVO0bNlSH29SUhJ9+vTRn8/NzWXSpEmEh4djbGz8yPmEEP9cjdrPY1yjAYX56fo2SxtnAK5evYqBWa2SAxQK8kwNsTCy5rr6ItcvXSA3OxNzy3pPMmwhhKhWZHvMU8bJyQmVSkVeXh7FxcUEBASwefPmUv2USiUajYaOHTuiUqlQqVSEhobqz3t7exMVFUVKSgqOjo76uVevXk1RURF5eXmMHDmSo0ePPjQepVJJcXFxqfYDBw4wYMAAfHx8sLCwIC4uDo1G89C5MjIyWLRoEa+99hoAY8aM4eeffyYxMRGAoqIivvjiC8zNzaVgF+IJUhgoaebwAXWb9aN2Q0eavvAutep1BKBJkyaQcbFEf6MCNXWz8skoOAeAuWU9atSyfMJRCyFE9SIr7VXc4cOHsbe31x+7u7vTr18/fH190Wg09OrVCy8vr1LjXFxc8Pf3Z/HixXd+qf5F//79CQkJYfTo0SgUdz7tYfjw4aSkpODl5UVxcTHe3t44OjoSFxf3wPjc3Nzw9PQkOjq6RPuwYcOYNGkSv/zyC0ZGRrz44oukpaWVGr9y5Uq2bdumX71/9dVXGTRoEAC2traEhYURGhrK7du3KSoqonv37vp3DoQQT46RSW0atPYu1V6jRg1ef7knsYeOkGfeAHM1dLkMZ9hNXvF1atVtwCtvTMFAKb9uhBDin1DoHmfPghBPIbVaTXJyMnZ2dlVib3xCQgIODg6VHUa1I3mtGOWR14L8W5iY1kRhIG/qgvy3WlEkrxVD8lr+HpXTR9UtsvQhhBCiQpjWqPXoTkIIIR6LLH8IIYQQQghRxUnRLoQQQgghRBUnRbsQQgghhBBVnBTtQgghhBBCVHFStAshhBBCCFHFSdEuhBBCCCFEFSdFuxBCCCGEEFWcfE67EKJCpKWlsXv3boqLi3FycqJNmzaVHZIQQgjx1JKV9mdEXFwcfn5+j90/PDwcFxcXIiMjmTJlCpcuXarA6B5fUFAQ0dHRlR2GeIAs9Q1WnNjAiiPr+X7x9yQnJ3Py5EmWLVtGampqZYcnhBBCPLVkpV3cl0qlIjIykhYtWuDq6kpAQEBlhySqGE12OgpTcwqUptQwUnIlL4PPD39BowuNqJWhpFWDHDo0K0ChgON/mpKcnEyTJk0qO2whhBDiqSRF+zMuIiKCTZs2odFo6NmzJ4GBgUyfPp309HQCAgIYMmQIGRkZ+Pv7s2LFCqysrPRjP//8cxo0aMAbb7wBwLvvvouHhwf29vZMmzaNq1evolAo+PDDD+nevTsHDhwgLCwMgNq1a/P1119jbGzMBx98QGZmJgABAQG4ubmRkpLCjBkzyM7OxtTUlE8++YT27ds/+QSJUrR52eSu+ZTLtwrY0uFtbprVp56ZIQU58dj/0pvuppZctziLZevb+jH2LW+TZ3r7IbMKIYQQ4mFke8wzbPfu3SQnJxMVFUVMTAzp6enExsYyc+ZMrK2tiYiIwN/fX//63oIdwNPTkw0bNgCQm5vL77//Tp8+fQgNDcXHx4fo6Gi+/fZbpk2bRm5uLt988w0zZswgOjqa7t27c/z4cbZu3UqjRo2Ijo4mNDSUw4cPAzB58mQCAwNZt24ds2bN4v3333/i+RH3V7BvJZrLp9nedjQ3zeoDkHm7mNuFrWiuMMdQoaBu7cJS45o0UD7pUIUQQohqQ1ban2EHDhwgMTERb29vAAoKCrCxsXns8e3bt6ewsJCUlBR+//13XF1dMTY2Zv/+/Zw/f57w8HAAiouLSU1Nxc3NjQkTJvDSSy/h5uZGjx49uHjxInPmzCE9PR0XFxcCAgLIy8sjOTmZKVOm6K+Vn59PVlZW+SZA/C2a62loUXDDvFGJdp2pOaADwCCnPpq/jDOva/tkAhRCCCGqISnan2EajYbRo0czduxYAHJyclAqH7wampSURHBwMAB2dnaEhobi4eHBxo0b+f333/H39wdAq9WybNkyLC0tAcjIyKBu3bq0a9eOvn37snPnTsLCwkhMTGTcuHFs2rSJPXv2sHPnTv773/+yZs0ajI2NUalU+mtfvXpVP5+oXEatulF84XcaZ50kzaqtvr2ZkY60gts8Z2yEUY41ynP2FDVJolhbQG6eFe3rtH3IrEIIIYR4GNke8wxzcnJCpVKRl5dHcXExAQEBbN68uVQ/pVKJRqOhY8eOqFQqVCoVoaGhALi7u7Nx40ZSUlJwcHDQz/vTTz8BcPbsWdzd3bl9+zbDhg0jLy+PMWPGMGbMGI4fP86PP/7I/PnzGTBgANOnT+fGjRvodDqaN2+uL9r37dvHa6+99oSyIh7FpIs7Zn3H0P/aDlrfvoiFoQ67ejXwfrEJ3ZqkknrtCBnZZ7icnMIfhzTcUnfFccjMyg5bCCGEeKrJSvsz5PDhw9jb2+uP3d3d6devH76+vmg0Gnr16oWXl1epcS4uLvj7+7N48eJSn/7x3HPPYWVlhb29PQqFAoDg4GCmTZuGu7s7ALNnz8bc3JwPPviAoKAgDA0NqVGjBiEhIdSrV48PPvgAd3d3lEolgYGBWFhYEBYWxowZM1i8eDFGRkbMnTtXP7+oXAqFAlPnYdg4D2P4X861+WAcNomJFGdnU+uFoRjKuyNCCCFEuVDodDpdZQchREVQq9UkJydjZ2eHiYlJZYdDQkKC/t0IUX4krxVD8lr+JKcVQ/JaMSSv5e9ROX1U3SLbY4QQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOinYhhBBCCCGqOCnahRBCCCGEqOKkaBdCCCGEEKKKk6JdCCGEEEKIKk6+XEkIIYQQ4hmjU+ejPp9Mfup1imrXw8SuI5Y1TSs7LPEQstJeTuLi4vDz83vs/uHh4bi4uBAZGcmUKVO4dOnSY48NCgoiOjr674T5UD///DM///xzqfbo6GiCgoLKNJetrW15hSWEEEKIcpCpvkahVk3Rhd/J/Ho0F8MWsOV8Nt8X12d+4jVmxe5l1fKvSUmOB/nuzSpHVtoriUqlIjIykhYtWuDq6kpAQEBlh8SIESMqOwQhhBBClLMbhddZdHYBl26nYaY0w+NsIc2uKbhWvzlnOvf8X8f6zahhcZy8q//FLKMVhc3aY1y/RuUFLkqQlfYKFhERgZeXFx4eHsyePRudTse0adNIT08nICCAiIgIMjIy8Pf3Jysrq9T4pUuX0r9/fwYOHEhYWJi+fdeuXQwdOpS+ffuyatUqAG7fvs2HH37I4MGDcXd3JyYmBrizUu7n54e7uztz5swhMzOTf/3rX7i7u+Pl5cXu3bsBmD9/PvPnzwcgJiaG/v374+Pjw65du+57b2lpabi7uzNx4kQGDRrE22+/TXZ2dok+eXl5TJ48GW9vbzw9PdmwYQMAn3/+OYGBgQCsX7+eV199FY1Gg6urK2lpaUDJdy8iIyPx8PBgyJAhTJs27W/8JIQQQohnU+yldVy6fed3623NbWKaFKNBwS3LeqX63jKoe+eF9Vku/Rr/JMMUjyBFewXavXs3ycnJREVFERMTQ3p6OrGxscycORNra2siIiLw9/fXv7aysioxPjExkZ9++omoqChiY2P5448/SE5OBqCwsJA1a9bw3XffMXfuXOBO0W1lZcWGDRtYtmwZ8+fP5+TJkwCkp6ezbt06PvjgA2bNmoWTkxPr168nPDycjz/+mMzMTP1109PT+eqrr1ixYgWrVq0iLy/vgfd4+vRpRo4cyS+//ELLli1ZsGBBifPffvstHTp0IDo6mhUrVrBo0SJSU1N5//33SU5OZsOGDcyZM4fZs2ejVCrvew2NRsN3333H2rVriY6OpqioiPT09LL/QIQQQohn0NWCKyWO1YYKiq0LaXjpLAbFRSXOPVd8Rv86/8aNJxKfeDyyPaYCHThwgMTERLy9vQEoKCjAxsbmsccfOnSIvn37UqtWLeDOqvtdbm5uKBQKWrdurV+hP3jwIJ999hkAderUwc3Njfj4eMzNzWnfvj2Ghob6fiEhIQA0adKEzp07c+zYMf3cv//+O/b29tSrd+cvcHd3dw4ePHjfGJs3b46joyMAQ4YMYdKkSSXO79+/n4KCAtauXQtAfn4+Z86coUmTJnz++ecMHz6cTz75hGbNmj0wD0qlEnt7e4YOHYqbmxtjx46lQYMGj5dEIYQQ4hnXsXZnUvP/1B83MGlA496uqE8c45UzWznyfA8y1bewN06ggfYiAIr8Wtwofq6SIhb3I0V7BdJoNIwePZqxY8cCkJOT88DVZICkpCSCg4MBsLOzo02bNigUCv359PR0zMzMAPTz3Hte95eHRnQ6HRqNBgBTU9PH6nd3znv73C32/xrfuHHj9OfuzvPX+9NqtYSFhdGhQwcAMjMzqV27NgAXLlygTp06+ncP/hpfcXGxvu2bb77h6NGj7N69m7feeouvvvqKbt26IYQQQoiHe+W5gejQkZh9FGuTBng29qaGiTU1eozAAXAAIgJHcsNUjXWrVhgW1yb9rClt/9W+skMX95DtMRXIyckJlUpFXl4excXFBAQEsHnz5lL9lEolGo2Gjh07olKpUKlUhIaG0qVLF3777Tf9+A8//LBUgfvX60VFRQFw48YNtm/fft/C9t5+qampHDlyhBdeeEF/3sHBgaNHj5Keno5Wq2Xjxo0ApeKDO4X3iRMnAFi7di29e/cuda27n0iTkZGBh4cHV65cIT09nf/85z+sWrWK48eP89tvvwFgZWXF2bNnAdi+fbv+XgYOHEibNm2YOHEiPXr04NSpU4/IvhBCCCEAlApDBtt48nH76bzV8h3qm1iX6uMZMJ2btwzY+dt+th/6ndx2z9Okee1KiFY8iKy0l6PDhw9jb2+vP3Z3d6dfv374+vqi0Wjo1asXXl5epca5uLjg7+/P4sWLadKkib69Q4cOvP766wwfPhytVsvLL79M9+7diY2Nve/1AwICmDFjBu7u7mg0Gt555x06dOhQqsCdOnUq06ZN039sZEhICNbW//s/cL169QgODmbMmDGYmZnRqlWrB95z7dq1CQ8P588//8TW1la/7eauCRMmMGPGDAYPHoxGoyEwMJCmTZvi7+/P2LFjadKkCTNnzmTixInExsby3nvvMWvWLBYsWEDPnneeaK9Tpw6vvvoqQ4cOxczMjBYtWuDj4/PAmIQQQghRNg2a2/LO3NWob+diWqMWCQkJlR2S+AuF7q97JYR4TGlpaYwaNYodO3ZUdij3pVarSU5Oxs7ODhMTk8oOh4SEBBwcHCo7jGpH8loxJK/lT3JaMSSvFUPyWv4eldNH1S2yPUYIIYQQQogqTop28bc1bty4yq6yCyGEEEJUJ1K0CyGEEEIIUcVJ0S6EEEIIIUQVJ0W7EEIIIYQQVZwU7UIIIYQQQlRxUrQLIYQQQghRxUnRLoQQQgghRBUn34gqhBBCVLDL5/7gqOobktapaduqLS90fZkitRGahg05lZqKqakpHTp0wNBQfi0LIe5PVtr/X1paGnZ2dnh6euLp6Ym7uzuurq6Eh4eTlJTE1KlTHzo+KCiI6OjoUu2JiYmEhYWVacyDPGyusoqOjiYoKKhU+6RJk4iIiCjRptPpcHNz4+TJk2W+jp+f333bH5XTuLi4B44VQoiniTo/l7VzPiQ77TTXL6ewb/dmdnw1hxMLFzLvh5VsulTAuj9vs2DNBjQaTWWHK4SoouRP+ntYW1ujUqn0x+np6fTv359BgwYRGhr6t+Y8e/Ys169fL5f4ynOuB/Hx8eGzzz7D399f35aQkIClpSVt27Yt83zx8fH3be/YsSMdO3b823EKIcTT4tLZJApv55VoO21Yi3N126Ho7omBkTEAt+o1YvJ/40m9Wos+nSx5e5ANRoaytiaEuEP+NXiIa9euodPpSE5O1q/6nj59Gm9vbzw9PZk1axYvv/yyvv+uXbsYOnQoffv2ZdWqVeTk5BAeHs6OHTv49ttvH/u6p0+fxs/PDx8fH/r27cvPP/9cai6NRsPnn3+Ol5cXHh4eLF26FLizQj106FC8vb2ZPHky6enpvPnmm/j6+uLi4sK8efMeem0nJyfy8vI4deqUvk2lUuHj4/PQa77xxhuMHz+e/v37895771FYWEhISAgAw4YN08/91ltv4enpyb59+/Q5PXHiBMOGDcPd3Z3XX3+dq1evlogpJSWFsWPH4uXlxYgRIzh+/Phj51IIISqbmclNurk1x75XEyysTAFoYe6AcZM2KP6/YL+r2NyMnHwN6w9eZ+2ea5URrhCiipKV9ntkZGTg6emJWq0mKyuLjh07smDBAoyN//ePalBQEBMnTqRPnz4sXbq0xFuZhYWFrFmzhjNnzjBq1CheffVV3nvvPeLj4xk3btxjx7FmzRrGjx+Ps7MzqampeHh4MGLEiBJz/fzzzwCsW7eOwsJC3nzzTezs7AC4ePEiO3fupFatWixZsoTBgwfj5eXFrVu36NOnz0O3nSgUCry9vdmwYQO2trYUFhayc+dOAgMDWb169QOv+fvvv7Np0yasra3x9fVl7969BAcHs3z5ctasWQNAVlYWb7/9No6OjsTFxemvOWnSJCZNmkTfvn356aefWLZsGS4uLvrzkydPZtq0abRv356zZ88SEBDA5s2bHzufQghRWW5dO0ZWagx1G9QEoG6Dmuz/RUu7Wu0wL9CS8df+eSZAIQCJ53MZ3rfBkw1YCFFlSdF+j7vbY7RaLV988QXnzp2jR48eHDp0CIDs7GwuXbpEnz59gDtbSX744Qf9eDc3NxQKBa1btyYrK+tvxxEUFMSePXv47rvvOH36NPn5+aX6HDhwgBMnTnDw4EEA8vPzOXXqFK1ataJFixbUqlULgDfffJODBw+yZMkSzpw5Q1FREbdv337o9b28vBg1ahQffPAB27dvx8nJCQsLi4des3Xr1jRs2BCAli1bcvPmzfvO3blz5xLHN27c4Nq1a/Tt2xeAkSNHAuiL+ry8PJKTk5kyZYp+TH5+PllZWVhZWT08kUIIUclyMn4vcWxkrOS5xk4oCxQ0z1Fy5WImF5rVBYWC3BsFXL1YqO9r26TGkw5XCFGFSdF+HwYGBnz00UcMGTKEJUuW0KlTJwCUSiU6ne6B45RKJXBntfp+pk6dSnJyMoB+68j9/Pvf/8bCwoK+ffsycOBANmzYUKqPRqMhMDCQfv36AXeK35o1a3L06FFMTU31/b744gtSU1MZPHgwL730Evv37y9xD0lJSQQHBwNgZ2dHaGgojRo1okmTJhw5cgSVSsWYMWMeeU0TExP9nAqF4oF5ujc2ACMjoxL5UqvVZGT8b+1Jq9VibGxc4lmDq1evYmlp+cD8CSFEVWFsVr9Um1l9G/Ku6qhZpMD5ZA6dL+RxyT6fWs0duZx0iRs5RfSwq82rLtaVELEQoqqSov0BDA0N+eijj5g4caK+wK5VqxZNmjTht99+o0+fPqxfv/6R8yiVSoqLiwEe+2HWffv2sWnTJho0aMCKFSuAOwXzvXM5OTmxevVq+vbtS2FhISNHjuTTTz+971yffvopL774Irt27SI9PR2tVqs/37FjxxIF8V3e3t5ERUWRkpKCo6Njma55v/t/0MeY1apViwYNGrB371569uyJSqUiPj5evw++Vq1aNG/eHJVKpd8LP23aNLZt2/YYmRRCiMpVp6krudePc/vmOXQoqNesH+1fGoAmr5ArO09zM/06Zm1q0r9nDxQKBd3bW6DRgqHy/os/QohnlzyI+hC9e/fG3t6+xMObs2fP5ptvvsHLy4vExMRSK8d/1alTJ44dO8ZXX3113/PTp0/H3t5e/7/Dhw/z7rvvMnLkSAYOHEhCQgKNGjUiLS2txFzDhw+nefPmeHl54ePjg7e3t764vte//vUvPvroIwYPHsyPP/6InZ0daWlpj7z3/v37s337dgYPHqxfCX/ca97Lzc1N/5zAg4SFhbFw4UI8PT3ZuHEjH330UanzUVFRuLu78/XXXzN37twHvpshhBBVidLQjBZdA2npPIOC2iNp0NrrTntNYxoPtqPDm31o1cte/2+aQqGQgl0IcV8K3cP2e4hSFixYgK+vL9bW1mzZsoX169czf/78yg5L3IdarSY5ORk7O7sS23cqS0JCAg4ODpUdRrUjea0YktfyJzmtGJLXiiF5LX+Pyumj6hbZHlNGNjY2vPHGGxgaGmJhYfG3P79dCCGEEEKIxyVFexl5e3vj7e1d2WEIIYQQQohniOxpF0IIIYQQooqTol0IIYQQQogqTop2IYQQQgghqjgp2oUQQgghhKjipGgXQgghhBCiipOiXQghhBBCiCpOivYnIC0tDTs7Ozw9PfH09MTd3R1XV1fCw8NJSkpi6tSpDx0fFBREdHR0qfbExETCwsLuOyY6OpqgoKCHzpubm4u3tzeDBw/mwoULj3XNB3lQLCkpKXTt2rXUN6KuW7eOCRMmPPb8d+3cuZPIyMgyjxPiSVDn5HJ60RrOfbaMjIX/oejsIQCKCrK4cvJn/vx9AdmXD1RylEIIIZ5G8jntT4i1tTUqlUp/nJ6eTv/+/Rk0aNDf/oKms2fPcv369b8d04kTJzA2Ni5TcV7WWJo1a0abNm3YtWsX/fv317fHxMQwduzYMl8nOTn5H8UpREW5cfVPzoTvoFaNlmi1Om5lNEf90yYsB6i5fD0ajWE+ALnXk9HptFg16lHJEQshhHiayEp7Jbl27Ro6nY7k5GT8/PwAOH36NN7e3nh6ejJr1ixefvllff9du3YxdOhQ+vbty6pVq8jJySE8PJwdO3bw7bffPvRaQUFBhISEMGLECFxdXVm7di3Xr1/n448/5tSpU7zzzjuPHffp06fx8/PDx8eHvn378vPPPz8yFm9vbzZs2KA/vnr1KhcvXqRXr14kJiYyYsQIvLy8eOONN0hNTQXAz8+P2bNn8+qrr/Lyyy/z22+/cfbsWVauXMnKlStZu3btY8csxJOwe91STjt0I9q1GWvdmnOstRWZamd2RCfoC/a7ThzbyprfMrhxq6iSohVCCPG0kZX2JyQjIwNPT0/UajVZWVl07NiRBQsWYGxsrO8TFBTExIkT6dOnD0uXLkWj0ejPFRYWsmbNGs6cOcOoUaN49dVXee+994iPj2fcuHGPvP7Vq1f56aefOH36NKNGjcLHx4eQkBAWLFjAokWLHvs+1qxZw/jx43F2diY1NRUPDw9GjBjx0FgGDBhAWFgYt27dolatWsTGxuLp6YlGoyE4OJhFixZhY2PDnj17+OSTT1i6dCkARUVFrFq1ih07djBv3jyio6MZPnw4AD4+Po8dsxAVbX/mHpKNjNHZ1AJAp4A/WlpR4/INrmU0ppX2BIp7lkgyM2+wck8S6/Y25JuJbbA0N6qkyIUQQjwtZKX9Cbm7PWbjxo14enqi0+no0eN/b49nZ2dz6dIl+vTpA5QuSt3c3FAoFLRu3ZqsrKwyX79Hjx4oFAratGlDdnb2376PoKAg1Go13333Hf/5z3/Iz89/5JgaNWrQt29ftmzZAkBsbCze3t5cvHiR1NRUxo0bh6enJ1999ZV+pR2gV69eALRu3fofxSxERdt2dQsFTZuUaj9vakKh2pQLp+ug1d1py71tQHKKGbW5TFZuMTuPZj/ZYIUQQjyVZKX9CTMwMOCjjz5iyJAhLFmyhE6dOgGgVCrR6XQPHKdUKgFQKBT3PT916lT9fu+QkJBS501MTP7R+Lv+/e9/Y2FhQd++fRk4cGCJbS8Pmqtjx474+PiwcOFC2rZti6WlJc2bN+fkyZM0btxYv9dfo9GQmZn52DELUWUoIM/qT0yK72nTaNFcvoUSyD1uTMz12tQ01ZKZY4hOp0DNnVV5Q6X89y2EEOLRpGivBIaGhnz00UdMnDhRXyDXqlWLJk2a8Ntvv9GnTx/Wr1//yHmUSiXFxXeqhL8+zHrmzJkyxfS4D8Pu27ePTZs20aBBA1asWAHcKbYfFgtAly5dSE9P56efftK/i/D8889z8+ZNDh8+TJcuXVi7di3r169n+fLlD7y+Uqks9Uk0QlS2lxu8wo8pS7mpXE8NbVdq6cxpcKYAAzMjWnWxprWVKco//+To2bPodDqydI25QTMaWhnj8oJlZYcvhBDiKSBFeyXp3bs39vb2zJs3jwYNGgAwe/ZsPv74Y/7zn/9ga2uLqanpQ+fo1KkTCxYs4KuvvmLSpEnlHuP06dOZNWuW/vj777/n3XffZeTIkZiYmNC2bVsaNWpEWlraY8Xi6enJ999/T3BwMADGxsbMmzeP0NBQ1Go15ubmfPnllw+NqWvXrkyePJl69erpH+AVorI51+vBc2Y2nMo5QeMaZnSo3Q6cS/YZBrxy6xZ5BUUk/QlanY6edpbUNFVWSsxCCCGeLgrdw/ZkiCdqwYIF+Pr6Ym1tzZYtW1i/fj3z58+v7LCeWmq1muTkZOzs7PRbbSpTQkICDg4OlR1GtSN5rRiS1/InOa0YkteKIXktf4/K6aPqFllpr0JsbGx44403MDQ0xMLC4m9/frsQQgghhKhepGivQry9vfH29q7sMIQQQgghRBUjH/kohBBCCCFEFSdFuxBCCCGEEFWcFO1CCCGEEEJUcVK0CyGEEEIIUcVJ0S6EEEIIIUQVJ0W7EEJUQzdv3OZcwhXyU7IrOxQhhBDloMKK9rS0NOzs7PD09MTT0xN3d3dcXV0JDw8nKSmJqVOnPnR8UFAQ0dHRpdoTExMJCwt74LijR48yevRoPDw8GDx4MDNmzKCgoOAf38/DYnqQuLg4/bd2+vn5ERcXVy5x3BUcHMzSpUv1xz/++CO2trakp6fr21599VV9HPe7/rx589i+fbs+xrKytbXlzTffLNF248YNOnTo8Mgvhlq9ejUbNmwAYOfOnURGRpb5+kKI0n77I4P5J67xU2Exi09d5+Kms6SlpbFz126itySy7cgN8tWayg5TCCFEGVTo57RbW1ujUqn0x+np6fTv359Bgwb97S8OOnv2LNevX7/vuZMnTzJhwgQWLlxI586dKS4uZtasWXzyyScPLfSfVk5OTmzZsoUxY8YAsHfvXnr27MmePXsYOnQoBQUFnD9/Hnt7+wfOMXHiRP3r+Pj4vxXHhQsXyM7OxtLSEoAtW7ZgYWHxyHFHjhyhW7duACQnJ/+tawshSrpVqGHPzQJ0BgoAbtYyZlPKZVK/+d+/xRlmTflxWx/mBbSmdk35ug4hhHgaPNHtMdeuXUOn05GcnKxf1T19+jTe3t54enoya9YsXn75ZX3/Xbt2MXToUPr27cuqVavIyckhPDycHTt28O2335aaf8mSJfj4+NC5c2cADA0NCQwM5KWXXgIgMzOT8ePH4+3tjY+PD/v37wdg/vz5vPnmmwwcOJCffvqJlJQUxo4di5eXFyNGjOD48eMlYvL29sbd3Z2NGzcCoNFo+Pzzz/Hy8sLDw6PE6vdf3bv6Dv9bvU9LS8PT05P3338fd3d3Jk+ezMqVK3n11Vd55ZVXOHfuXKm5nJyc+P333wEoLCzk3LlzjB49mr179wJ33nWwt7fH2NgYgKioKLy8vHBzc2PHjh0lrh8SEgLAsGHDANi9ezdDhw5lyJAhTJgwgaysrAfek5ubm361HuDXX38t8XPctGkTvr6+eHh48Morr3DkyBH279/Pjh07CA8PZ9myZaxcuZKVK1eydu1a8vLymDx5sv6/i7ur8dHR0fj5+eHu7s6cOXMeGI8Qz7Kb6mJ0CkWJtutm2hLH1uqLjD23gNT3J3B1xQp0Gll1F0KIqq5Cl1gyMjLw9PRErVaTlZVFx44dWbBggb6IhDtF48SJE+nTpw9Lly5Fc88vj8LCQtasWcOZM2cYNWoUr776Ku+99x7x8fGMGzeu1PVOnDhRolgEMDc3p3///gCEhobi4+ODm5sbGRkZjBw5kpiYGP217hbhw4cPZ9q0abRv356zZ88SEBDA5s2bAbh9+zarV6/m+vXr+Pj40LVrV7Zt2wbAunXrKCws5M0338TOzq7M+Tp16hSff/45bdu2pX///lhbW7Nq1SoWLFjAqlWr+Pjjj0v0r1evHrVr1yY1NZVLly7xwgsv0K1bN6ZOnYpWq+Xw4cN0795d379WrVqsW7eOnTt3smDBAlxdXfXngoODWb58OWvWrOHGjRt8/fXX/PDDD9SuXZuVK1fy1VdfPfDdkQEDBrBo0SJ8fHzIzMwEoH79+gBotVpWrlzJokWLqFOnDlFRUURERLBo0SJcXV3p1q0b3t7e5OTkAODj48NXX31Fhw4d+PLLL8nNzWX48OH6P8TS09PZuHEjhoayOijE/SgzL2JcUEihqaW+zab4BGfv7aOBeuo8DICsrVsxtramzl/+7RRCCFG1PJHtMVqtli+++IJz587Ro0cPDh06BEB2djaXLl2iT58+wJ2C7YcfftCPd3NzQ6FQ0Lp164eu9N6lUCgwMTF54Pn9+/dz/vx5wsPDASguLiY1NRWATp06AZCXl0dycjJTpkzRj8vPz9df38vLC0NDQxo0aMALL7zAsWPHOHDgACdOnODgwYP6/qdOnaJVq1aPnSu4U4S3b98egIYNG+Ls7AyAjY0NaWlp9x3j5OTEkSNHOHPmDD169MDU1JSWLVty6tQpDh8+THBwsL7v3XccWrVq9dB8Hjt2jCtXrjBq1CjgTuFdu3btB/a3t7fnwoUL3Lp1i19//ZX+/fvri3cDAwMWLlzIjh07uHDhAvHx8RgYPPwNnv3791NQUMDatWuBO/k8c+YMAO3bt5eCXYiHSDt1BKeiw1xUunLbwILGxcdpZv475xVWaHV3VuDb5uaVeJs1//RpKdqFEKKKeyLVj4GBAR999BFDhgxhyZIl+gJZqVSi0+keOE6pVAJ3ivH7mTp1qn4vdEhICHZ2diQlJen/CADIzc1l0qRJhIeHo9VqWbZsmX7vdUZGBnXr1mXbtm2YmpoCdwpUY2PjEnvxr169qh9zN6a7fY2MjNBoNAQGBtKvXz/gzoOYNWvW5OjRo6ViVigUJe65qKhI//redyD+ei2ApKQkfRFuZ2dHaGgoTk5O7Nu3j2PHjjF69GgAevToQUJCAleuXCnxh8Oj8nmXRqPhxRdfZNGiRQCo1Wry8vLue/278/Xt25ft27ezefNm5s2bx4oVK4A7fwQNHToUDw8Punbtiq2trf7cg2i1WsLCwujQoQNwZ1tT7dq1Wb9+vf7nJIS4vwbNbEk/sYWuhev1bcVaBfWN6pPS4k8MaxTSeVN+iTFmzz//pMMUQghRRk9sT7uhoSEfffQR33zzjX4VtlatWjRp0oTffvsN/o+9Ow+v6VofOP49OSejCBESQlBEDBE1JmilCRpBnAzm21D0tpTSe0uaoi5FmwY1Ba1bt8WlQRsiqHnqQKia0hKCkKRkkggZTs70+yM/50pDDEWC9/M8fZ6cvfZa692LxnvWXnttIC4urrwmgJLEU6fTASXLXWJjY4mNjaVVq1a8/vrrfPPNN5w8eRIoSYgjIiKwtbXFwsICLy8v1qxZA5Q80BoQEEBhYWGp9qtWrUrDhg1NSftPP/3E3/72N1P5li1bMBqNpKWlkZCQQKtWrfDy8mLdunVotVry8/MZMmTIHRN2AHt7e1JSUtBoNOTm5nL06NH7HsNWrVqZrvdWwuzp6cmRI0cwGo2mJSldunRh7dq1tG3b9r7bhv+NbevWrTl+/DgXL14EYMmSJURGRt6x/1v8/f1Zs2YNFhYW1KhRw3Q8OTkZhULBqFGj8PT0ZOfOnaYlUEqlstTPt/5cvby8+Oabb4CSL1Z9+/blypUrD3QtQjyv6jdvCxbNSk0OVK/WlqGWewnNv4T/zQzs3KuisrdHoVJR3dtbZtmFEOIp8ETXGXTt2pU2bdqwYMECnJycAIiMjGTSpEnMnz8fNze3e86kenh4EBUVxZw5c5gwYUKpMjc3N2bPns2sWbMoLCxEq9XSuXNn0+zwlClTmDp1KgEBAaa+bW1ty/Qxe/Zspk2bxpdffom5uTnz5s0zzU7b2NgQHByMTqfjo48+okaNGgwaNIhLly4RFBSETqcjODgYT0/PO26x6Orqire3N71796Zu3bq0a9fuwQfyNlWrVsXa2pr27dubjjVv3pzs7OxS69nvR7du3VCr1cTExPDxxx/z7rvvYjAYcHJyuufuOy+++CKZmZmmB1lvadasGc2bN8ff3x+FQsFLL71k+qLSuXNnPvvsM6pWrUqHDh14//33qVmzJmPHjmXatGn06dPHdBejfv36/PLLLw90PUI8rzr0eZ/83GQKc89hU/0FbKo3QdfIh2anf0RhVxNLj+4ozK0wGo33vPMmhBCiclAYy1uf8gRERUUxYMAAHB0d2bFjB3Fxcffc31uI+6HRaEhISMDd3b3cZx2elKNHj/7lL2miLBnXx0PG9dGTMX08ZFwfDxnXR+9eY3qvvKXCn+hzdnZmxIgRqFQq7OzsHnr/diGEEEIIIZ5VFZ60BwcHExwcXNFhCCGEEEIIUWk90ZcrCSGEEEIIIR6cJO1CCCGEEEJUcpK0CyGEEEIIUclJ0i6EEEIIIUQlJ0m7EEIIIYQQlZwk7UIIIYQQQlRyFb7loxBCiGfXqcx8Ll4vonYVC9o52aI0K3kDa076Tc4fu0KV6la4tnNGZa6s4EiFEKJyeyZn2lNTU3F3d0etVqNWqwkICMDX15eFCxdy6tQpJk+eXG798PBwYmJiyhw/efIks2fPvmu948ePM2zYMPr27UufPn2YNm0aRUVFf/l6yovpbuLj4wkNDQUgNDSU+Pj4RxLH7YqLi5k3bx4BAQGo1WoGDBjAzz///EBt3LhxgzFjxjzy2IQQT56h6Cb530dxfdnb5G9dyA/JmWxMusaJzAK2J+ey6fw1AK5ezGFdxA8c3nKWvatPsnnJ4QqOXAghKr9ndqbd0dGR2NhY0+f09HT8/Pzo3bv3Q791NSkpiezs7DuWnTlzhrFjx7J48WJat26NTqdjxowZfPjhh+Um+k+zDz74AAsLC7799lssLS1JTExkxIgRrFixgiZNmtxXG9evX+f06dOPOVIhxJNQsHUh2jM/YVCacd14jV+q+IBFdVP5b1kF9G5kz6kDyeh1BtPxP5KukX4pF6cG1cs2KoQQAnhGZ9rvJDMzE6PRSEJCgmkG+uzZswQHB6NWq5kxYwY9evQwnb9v3z769euHj48Pa9euJS8vj4ULF7Jnzx6WLl1apv3ly5cTEhJC69atAVCpVEycOJHu3bsDkJWVxdtvv01wcDAhISGmGelFixYxcuRIevXqxZo1a7h06RLDhw8nKCiIwYMH8/vvv5eKKTg4mICAALZu3QqAXq/nk08+ISgoiL59+/L111/fdQxun32H/83ep6amolar+cc//kFAQADvv/8+0dHRDBw4kJ49e3L+/PkybV26dIkdO3bw4YcfYmlpCYCbmxufffYZVlZWAHz33Xf06dOHgIAAwsPDyc/PB8DLy4s33ngDtVrNtGnTyMjIMM22b9y4kaCgINRqNZMmTUKj0fDbb7/RpUsXrl27Rm5uLj4+PpLoC1EJac8dJt9SSVqrOtxsXB2VsrBUuUGrYeniKLJu/lGmrtn/L5sRQghxZ8/sTHtGRgZqtRqNRkNOTg6tWrUiKioKCwsL0znh4eGMHz8eb29vvv76a/R6vamsuLiY9evXc+7cOYYOHcrAgQMZN24chw8fZvTo0WX6O336dKmkH8DW1hY/Pz8AZs2aRUhICN26dSMjI4MhQ4awceNGU1+3kvBBgwYxdepUWrRoQVJSEmPGjGH79u0AFBYWsm7dOrKzswkJCaFDhw7s2rULgA0bNlBcXMzIkSNxd3d/4PFKTEzkk08+oVmzZvj5+eHo6MjatWuJiopi7dq1TJo0qcz1NmzYEBsbm1LHPT09Te19/vnnrFu3Dnt7e6ZPn05UVBTvv/8+OTk5/P3vf8fT05PU1FSGDh3K4sWLOXfuHOvWrSM6OhpLS0vmzp3L8uXLefvttxk4cCCRkZFotVoGDx5M8+bNH/gahRCPl7KmC/EuN2luVjIf1FK7n4Nm/TAoSv6p0SYeIf3qVTLNMqhj0Q5FccnvY5dmNanlUq3C4hZCiKfBM5u031oeYzAYiIiI4Pz583Tp0oUjR44AkJubS1paGt7e3gCEhISwcuVKU/1u3bqhUChwdXUlJyfnnv0pFArTjPOd/Pzzz1y4cIGFCxcCoNPpSElJAcDDwwOA/Px8EhIS+OCDD0z1CgoKTP0HBQWhUqlwcnLixRdf5MSJExw8eJDTp09z6NAh0/mJiYn3vTzllpo1a9KiRQsAateuTadOnQBwdnYmNTW1zPlmZmblXu+RI0fw8fHB3t4egIEDB5a6rlt3JG4XHx/PpUuXGDBgAABardYU0+jRowkJCcHKyuqZXW4kxNNO8eobZF5eTPP/n2CvrT9Pz8LFJKa35reLVzDm5wJgMBjwCHDEzlCHKtWteKF17YoLWgghnhLPbNJ+i5mZGWFhYQQGBrJ8+XJTgqxUKjEajXetp1SW7GSgUNz5lu3kyZNJSEgAYObMmbi7u3Pq1CnTlwCAmzdvMmHCBBYuXIjBYGDFihVUr14dKLkT4ODgwK5du0zLSQwGAxYWFqXW4l+9etVU51ZMt841NzdHr9czceJEXn31VQCuXbtGlSpVOH78eJmYFQpFqWvWarWmn2+/A/HnvgBOnTrFlClTAHB3d2fMmDGcP3+eoqIiU/wAX3/9NbVq1cJgMJSqbzQa0el0ps+317lFr9fj7+9v6ic/P9909+PGjRvk5+eTn59Pbm4uNWrUKFNfCFGxbOq580dWFTR5BVial/zutC404HBOj1GTW+rcF5o0oF69ehUQpRBCPJ2eizXtKpWKsLAwlixZQlZWFgBVq1bFxcWF/fv3AxAXF3fPdpRKpSnxnDVrFrGxscTGxtKqVStef/11vvnmG06ePAmUJMQRERHY2tpiYWGBl5cXa9asAUoeaA0ICKCwsPR6z6pVq9KwYUNT0v7TTz/xt7/9zVS+ZcsWjEYjaWlpJCQk0KpVK7y8vFi3bh1arZb8/HyGDBlyx4QdwN7enpSUFDQaDbm5uRw9evS+x7BVq1am6501axbOzs688sorzJgxA41GA8Dvv//Ol19+iaurKx07dmTPnj3k5uYCsG7dOtPSmdupVCrTmHp6erJz506ys7MxGo1MmzaNFStWADB9+nRee+01hgwZwvTp0+87biHEk6NUKFE3GEJ0LSWnb+rJSakKJ3xopG+Ai8EOAHNzc1599VVJ2IUQ4gE98zPtt3Tt2pU2bdqwYMECnJycAIiMjGTSpEnMnz8fNze3O87+3s7Dw4OoqCjmzJnDhAkTSpW5ubkxe/ZsZs2aRWFhIVqtls6dO5tmjadMmcLUqVMJCAgw9W1ra1umj9mzZzNt2jS+/PJLzM3NmTdvnmm238bGhuDgYHQ6HR999BE1atRg0KBBXLp0iaCgIHQ6HcHBwXh6et5xi0dXV1e8vb3p3bs3devWpV27dg8+kLf5+OOPmTNnDmq1GgsLC6ytrZk9ezZNmzYF4K233iI0NBStVkvLli3vmGw7ODjg7OxMaGgoq1atYuzYsQwbNgyDwUDz5s1588032bp1KykpKXz22WcYjUZCQkLYunUrvXr1+kvxCyEevXY1OtDcrgXpzdOpZ+2CSqHCUKzn76pX0OuKMTMzw9zcvKLDFEKIp47CWN4akWdcVFQUAwYMwNHRkR07dhAXF8eiRYsqOizxiGg0GhISEnB3dy93/f2TcvTo0b/8RUmUJeP6eMi4Pnoypo+HjOvjIeP66N1rTO+Vtzw3M+134uzszIgRI1CpVNjZ2T30/u1CCCGEEEI8Ts910h4cHExwcHBFhyGEEEIIIUS5nosHUYUQQgghhHiaSdIuhBBCCCFEJSdJuxBCCCGEEJWcJO1CCCGEEEJUcpK0CyGEEEIIUck917vHCCGEEEI8LQyFNyj+bR8YjVxv0pJfi05jq7KlY41OWCor/n0k4vF6LpP21NRUevbsSePGjQEwGAzk5+cTGBiIj48P0dHR5e7ZHh4eTseOHctsF3ny5Em2b9/OxIkTSx3Pycnh9ddfByArKwuAmjVrAvD1118TEhLCypUr7/u13nfr/0mKiYkhIiKCOnXqAFBUVETHjh3517/+hUr1XP61EkIIIR4po9FI1qZNXP/5Z1RVbbliTCWh2By9uZGznlvR1NQD8PP5nfQxdqVOw+bUqFO/gqMWj8tzm105OjoSGxtr+pyeno6fnx+9e/d+6JcsJSUlkZ2dXea4vb29qa9bb1x95513HqqPysTX15eIiAgA9Ho9gwYN4ttvv2XQoEEVHJkQQgjx9Mvdt4+sDRsASMvJYbuDAygUoAfLH40U98zGJvU6yh1n2GY8AAoF3V/7J619Ais2cPFYyJr2/5eZmYnRaCQhIYHQ0FAAzp49S3BwMGq1mhkzZtCjRw/T+fv27aNfv374+Piwdu1a8vLyWLhwIXv27GHp0qUP3P/ixYsJDAzEz8+PEydOAHD48GEGDx5MUFAQ3bp1Y9euXWXqzZs3jwEDBuDn50doaKhpJr9Lly5MnTqVwMBA3njjDb7//nuGDBmCr68vhw8fBiA0NJT4+Hig5O6Dr68vAHFxcajVaoKDgxk3bhwajeae8SuVStq3b8+5c+dMdzIGDx7M8OHDMRgMzJw5k969e9OnTx+WLVsGQHx8PMOGDWPkyJH4+fkxceJEiouLAdi4cSNBQUGo1WomTZpkisHLy4s33ngDtVqNVqt94HEWQgghnhb5CQkAGO0UGDuq6NQiHwc7HWaODVDVa0nVsw2o+cN1FMb/r2A0snfdMowGQ8UFLR6b5zZpz8jIQK1W07NnTzw9PZk/fz5RUVHUrl3bdE54eDjjx48nNjYWFxcX9Hq9qay4uJj169fzxRdfMG/ePOzs7Bg3bhy+vr6MHj36geNp0qQJGzduJDQ0lOXLlwPw3//+l5kzZ7JhwwZmzpzJggULStW5dOkSFy5cIDo6mu3bt1OnTh02bdoElCzD6dq1Kxs3bkSj0bBr1y7WrFnDO++8w4oVK8qNZf78+fznP/8hJiaGunXrcuHChXvGn5OTw48//siLL74IwMWLF5k9ezZfffUV33zzDVeuXGHTpk2sX7+eHTt2sG/fPgCOHTvG5MmT2bZtGxqNhtWrV3Pu3DnWrVtHdHQ0sbGxODg4mMYkJyeHv//978TGxmJubv4gQyyEEEI8VSxdXDBaAH4WODY00LhOMXadX8XSsxcWHt7YNB6Cwrr00lqtppCcGzKp9Sx67pfHGAwGIiIiOH/+PF26dOHIkSMA5ObmkpaWhre3N4Bp3fkt3bp1Q6FQ4OrqSk5Ozl+Op3v37kBJ8r59+3YAZs+ezd69e9m2bRsnTpwgPz+/VJ0GDRrw/vvvs379ei5evMjx48epX/9/a9m6du0KQN26dWnXrh0Azs7O5OXllRuLj48PgwcPpnv37vj5+dG8efM7nrdnzx7UajVGoxGj0UiPHj3o06cPaWlpODg4mNbox8fHExQUhFKpxNramoCAAA4ePIivry8dOnSgUaNGAKjVatatW4e5uTmXLl1iwIABAGi1Wlq0aGHqt3Xr1vc3qEIIIcRTzKFnT27kHqfI8ioAuWaOXDV3+98J5ir0HgMx2/uR6dAf1l5k3dBTo9qTjlY8bs9t0n6LmZkZYWFhBAYGsnz5cjw8PICS5R5Go/Gu9ZRKJQAKheKO5ZMnTybh/29rzZw5k1atWpUbx53aGzJkCJ6ennh6etKpUycmTJhQqk5CQgLvvfcer7/+On5+fpiZmZWK2cLCokz7f3brfJ1OZzo2ZcoUzpw5w/79+5k4cSJjx44lOTmZPXv2ADBu3Dig9Jr2P7OysjL9bPjTbTqj0Wi6a3F7XEajEaVSiV6vx9/fnylTpgCQn59f6i7H7W0LIYQQzyozKytq9Qkh5fhiAAx3SNsUKifMLQPIN6Ry3soNbR1vGtexftKhiifguV0eczuVSkVYWBhLliwxrQmvWrUqLi4u7N+/HyhZ530vSqXSlPzOmjWL2NhYYmNj75mw30lubi7JycmMHz+erl27snv37lKJK8CRI0fo2LEjgwcPpmHDhuzbt6/MOeWxt7cnKSkJwLReXqfT8eqrr2Jvb89bb72FWq3m9OnTpmVCsbGxdOvW7YGuxcvLi40bN6LX6yksLCQuLg5PT08Ajh49Snp6OgaDgY0bN9K1a1c8PT3ZuXMn2dnZGI1Gpk2bds8lPUIIIcSzyNahJbY1S/IIe8Mf1Ci+8r9CgxGrc9dQmbfkRqPhNPLszayRTVAq7zyhKJ5uz/1M+y1du3alTZs2LFiwACcnJwAiIyOZNGkS8+fPx83N7Z4zvB4eHkRFRTFnzpwys+IPqnr16vTr14/evXujUqnw8vKiqKiIgoIC0zm9evVi7NixBAQEAODu7k5qaup99/HGG28QHh7Od999Z0rEVSoV48aNY8SIEVhaWuLg4HDX2fT7NXDgQJKTk00PjwYEBNCjRw/i4+NxdHQkLCyM9PR0unTpQv/+/VEqlYwdO5Zhw4ZhMBho3rw5b7755l+KQQghhHgaKRRm1H9xDIXXL6LTFDHoSnVOG6DIzpIqGfmYta1Do9a1qeUi62GedQpjeWtAnnNRUVEMGDAAR0dHduzYQVxcnGnLRvHXxcfHExUVxapVqx5L+xqNhoSEBNzd3bG0rPiXThw9etT0bIF4dGRcHw8Z10dPxvTxkHF9PGRcH717jem98haZaS+Hs7MzI0aMQKVSYWdn99D7twshhBBCCPFXSNJejuDg4Ap96+iz7tZDtkIIIYQQonzyIKoQQgghhBCVnCTtQgghhBBCVHKStAshhBBCCFHJSdIuhBBCCCFEJSdJuxBCCCGEEJWcJO1CCCGemLy8PE6cOEFGRkZFhyKEEE8V2fKxkktNTaVnz540btwYAIPBQH5+PoGBgfj4+BAdHV3u/vHh4eF07NixzNaVJ0+eZPv27UycOPGO9Y4fP868efPIycnBYDDQvn17wsPD7/lW2PsRGhrK2LFjy93uMTQ09LG9dEkIUTHOnj3Lf//7X3Q6HVDyVueXXnqpgqMSQoingyTtTwFHR0diY2NNn9PT0/Hz86N3794P/cKnpKQksrOz71h25swZxo4dy+LFi2ndujU6nY4ZM2bw4YcfMnv27Ifq70EdPnz4ifQjhHj89Hojy2PPc/boBiyMWurU0FLNxsDBA1to37YdVjbWFR2iEEJUerI85imUmZmJ0WgkISGB0NBQoGQGKzg4GLVazYwZM+jRo4fp/H379tGvXz98fHxYu3YteXl5LFy4kD179rB06dIy7S9fvpyQkBBat24NgEqlYuLEiXTv3t3UV2hoKCEhIfj4+PDNN98AsGjRIhYtWmRqx9fXl9TUVIqLi5k4cSL+/v688cYb5OTkAKDT6ZgyZQoDBw6kW7duvP322xQVFTFz5kwA+vfvD8CBAwfo168fgYGBjB071lRfCPF0OLZuJa+cnEVVQz4dmhbQuH1jilv1pl6XNvwQ/QV71izgyoXfKzpMIYSo1GSm/SmQkZGBWq1Go9GQk5NDq1atiIqKwsLCwnROeHg448ePx9vbm6+//hq9Xm8qKy4uZv369Zw7d46hQ4cycOBAxo0bx+HDhxk9enSZ/k6fPl0q6QewtbXFz88PgPXr1/P222/TqVMnUlJS6Nu3L4MHD75r/LeWuXz//fckJyfTt29fAI4dO4a5uTlr167FYDAwbNgw9u/fz5QpU1i1ahXr16/n2rVrzJ07l5UrV1KtWjWio6OZM2fOQ99hEEI8WfrsNBpe+I64nL/hYJONWYP6HLX0M5VnN7qKZuU/Ob5nAwPCFlCvaesKjFYIISovSdqfAreWxxgMBiIiIjh//jxdunThyJEjAOTm5pKWloa3tzcAISEhrFy50lS/W7duKBQKXF1d72uWWqFQYGlpedfy8PBwfvjhB7744gvOnj1LQUFBue0dPnyYgQMHAtCwYUPatGkDQIcOHahevTqrV6/mwoULJCcnl2nrxIkTXLlyhaFDhwIla/qrVat2z2sQQlQO+uwUruvsKTTYYqM1J8XcuVR5jmVtrKo6YnYjg1MHNkvSLoQQdyHLY54iZmZmhIWFkZ6ezvLly03HlUolRqPxrvWUSiVQkozfyeTJk1Gr1ajVak6dOoW7uzunTp0qdc7NmzcZNWoUxcXFvPvuu+zcuZPGjRvz7rvvms5RKBSl4tBqtXc8rlKVfFfcvXs3EyZMwMrKiuDgYDp06FDmOvR6PW3btiU2NpbY2Fi+/fZbFi5cWN4wCSEqEZVLS2yti1EqtBRpLFEV6kuVK/RaFJp8ACysbCoiRCGEeCpI0v6UUalUhIWFsWTJErKysgCoWrUqLi4u7N+/H4C4uLh7tqNUKk07OMyaNcuUFLdq1YrXX3+db775hpMnTwIlyXdERAS2trZYWFjw008/MW7cOLp3786BAweAkuTa3t6epKQkoGR3mszMTAA6depEXFwcBoOBtLQ0fv31VwAOHjyIv78/ISEh2NnZER8fb1rWcyu+1q1bc/z4cS5evAjAkiVLiIyMfCRjKYR4/Mysq+IwZCqdGl/EQlmM9kABquKikkKjAdWRdSiK87GuWp22PfpXbLBCCFGJyfKYp1DXrl1p06YNCxYswMnJCYDIyEgmTZrE/PnzcXNzu+fWjB4eHkRFRTFnzhwmTJhQqszNzY3Zs2cza9YsCgsL0Wq1dO7cmSlTpgDwzjvvMGTIECwtLWnWrBl169YlNTWVXr16sX37dnr16kXLli1p0aIFAEOGDOHcuXP4+/tTt25dmjZtCpQ8aDphwgS2bNmCubk5bdu2JTU1FShZ0qNWq4mJieHjjz/m3XffxWAw4OTk9MR2sBFCPBqqes3xGN+cllo9mkIdxoJcUrLycGrowg37HuR3ak8jDy8sbWwrOlQhhKi0FMby1lWIp0ZUVBQDBgzA0dGRHTt2EBcXV2onl+eRRqMhISEBd3f3ctfoPylHjx6lXbt2FR3GM0fG9fGQcX30ZEwfDxnXx0PG9dG715jeK2+RmfZnhLOzMyNGjEClUmFnZye7qwghhBBCPEMkaX9GBAcHl3nrqRBCCCGEeDbIg6hCCCGEEEJUcpK0CyGEEEIIUclJ0i6EEEIIIUQlJ0m7EEIIIYQQlZwk7UIIIYQQQlRykrQLIYQQQghRycmWj0IIIcRTLO16IftPnKc4/yZNzc9Qp1oWVWt5cDm3Lbn7L1NDr6NOWyccu9ZHYaao6HCFEA9JkvZKKjU1lZ49e9K4cWMADAYD+fn5BAYG4uPjQ3R0dLkvUAoPD6djx45l9m4/efIk27dvZ+LEiWXqLFq0iOjoaGrWrAlAUVERPXv25B//+Ee5sYaGhrJq1aoHvUQhhBB/UZ5Gx8qEdHTm1aB6NVKNdfC58RX212M4e2Ebxsxm1Ddrys29ySTsTKJq53p06NUUhUKSdyGeNpK0V2KOjo7ExsaaPqenp+Pn50fv3r0f+o2nSUlJZGdn37V80KBBvPPOOwAUFBTQq1cv2rdvz8svv3zXOocPH36oWIQQQvw153KK0JkpTZ+NCjPSlM2wN1ylvqOGzcnJ1FBUpYnCGQcU/LwtCXsnW1zb163AqIUQD0PWtD9FMjMzMRqNJCQkEBoaCsDZs2cJDg5GrVYzY8YMevToYTp/37599OvXDx8fH9auXUteXh4LFy5kz549LF269J792djY4OHhwblz54iPjzf1CSUz+TExMcycOROA/v37A/Df//6X/v3706dPH4KCgrhw4QIAvr6+zJ07l+DgYAYMGMC+ffsYOnQo3t7ebN26FYCsrCzefvttgoODCQkJ4eeffwZK7gBMmTKF0NBQfH197yt2IYR4HthZKsscszHmAXCzqOSf+AxjLgAFBh0Af5y/9mSCE0I8UpK0V2IZGRmo1Wp69uyJp6cn8+fPJyoqitq1a5vOCQ8PZ/z48cTGxuLi4oJerzeVFRcXs379er744gvmzZuHnZ0d48aNw9fXl9GjR9+z/7S0NH799Vdat25913OmTJkCwPr167l58ya7du1i1apVbN68mVdeeYXVq1ebzq1ZsyYxMTE0btyYZcuW8Z///IfZs2ezbNkyAGbNmkVISAgxMTEsXbqUqVOncvPmTQASExNZvnw569evZ9myZeTl5T3YYAohxDOoSXUrmio1ps81dck00J0kv8iMY+etAaitsKdAl8uZG2cBcGpQvSJCFUL8RbI8phK7tTzGYDAQERHB+fPn6dKlC0eOHAEgNzeXtLQ0vL29AQgJCWHlypWm+t26dUOhUODq6kpOTs599RkdHc2uXbswGAwolUpGjRpFu3btiI+Pv2ddW1tb5s6dy5YtW0hOTuaHH36gefPmpvKuXbsC4OzsjKOjIyqVCmdnZ1MC/vPPP3PhwgUWLlwIgE6nIyUlBQBPT08sLCxwcHCgevXq3LhxAzs7u/u6JiGEeFYpFAoGdmxCevZ1ClJSqV2zNht2FvPbRTsoNlKl4A8uaZI4pU3H2nYoHt4v4NaxXkWHLYR4CJK0PwXMzMwICwsjMDCQ5cuX4+HhAYBSqcRoNN61nlJZctv0bg8cTZ48mYSEBADTMpfb17TfTqFQlOpLq9WWOefKlSuEhoby2muv0bVrV2rWrMnp06dN5ebm5qafVaqyf/UMBgMrVqygevXqQMmdBgcHB3bt2oWlpeVdYxFCiOedk0M1cKgGQNPOr/Kz21bqxKVgdbOIXKB+l5fpP2KEPIAqxFNMlsc8JVQqFWFhYSxZsoSsrCwAqlatiouLC/v37wcgLi7unu0olUp0upJ1jbNmzSI2NpbY2FhatWpVbj17e3tSUlLQaDTk5uZy9OjRMm2eOnWKBg0a8Prrr9OqVSt27dpVarnOvXh5ebFmzRqg5IHZgIAACgsL77u+EEIIaNs0mM51X+Fqv0akDWqE0/jB9BsxUxJ2IZ5yMtP+FOnatStt2rRhwYIFODk5ARAZGcmkSZOYP38+bm5uWFlZlduGh4cHUVFRzJkzhwkTJtx3366urnh7e9O7d2/q1q1Lu3btTGXdunVDrVazbt06vvnmG3r16oXRaKRDhw6cO3fuvvuYMmUKU6dOJSAgwHRttra2911fCCEEmCnMGNJgKH3rlmz5a6uS36NCPAsURlln8FSLiopiwIABODo6smPHDuLi4li0aFFFh1UpaDQaEhIScHd3L7W8pqIcPXq01Jcd8WjIuD4eMq6Pnozp4yHj+njIuD569xrTe+UtMtP+lHN2dmbEiBGoVCrs7Oweev92IYQQQghReUnS/pQLDg4u89ZTIYQQQgjxbJEHUYUQQgghhKjkJGkXQgghhBCikpOkXQghhBBCiEpOknYhhBBCCCEqOUnahRBCCCGEqORk9xghhBCVXu4fP5OXcQwL65o4NOyJuWW1UuVZqdc5vuciep0B95cbUNfVoYIiFUKIx0OS9kouNTWVnj170rhxYwAMBgP5+fkEBgbi4+NDdHR0uXuzh4eH07FjxzLbQp48eZLt27czceLEMnUWLVpEdHQ0NWvWBKCoqIiePXvyj3/8o9w4hw4dyp49e0x9dunShSlTpvDvf/+7zPlubm4kJibe1xgIIZ5P2pxCcvZd4qbmF4pq/mg6nn75KNctetO2XTtsbW3Jv17EhgWH0BbpALh44iohE7pQy6Xa3ZoWQoinjiTtTwFHR0diY2NNn9PT0/Hz86N3794P/TKlpKQksrOz71o+aNAg3nnnHQAKCgro1asX7du35+WXX77vPpycnO6YsAshxL1k3Sxmw6FUcuytcNTX5UWjJRZoADBX5HHoxy0cPHSIcePGkZyQaUrYAQwGI0nHrkjSLoR4pkjS/hTKzMzEaDSSkJDAtGnTWLVqFWfPniU8PBy9Xk/79u05cOAAO3fuBGDfvn2sWbOG7OxsRo0ahb+/PwsXLqSgoIClS5cyevTocvuzsbHBw8ODc+fO0alTJ6ZNm8a5c+fIysrCzc2Nzz777I71bp99T01NZeLEiRQUFNC6dWvTOYsWLQIwfUHw9fVl5cqVHD58mH379pGbm0tGRgaDBg0iLS2NQ4cOUb16db788ss7vuJXCPFsiP79CjnVrQBIoQlm2h60L94MgMEARcVmFOVf57fffqNmNZcy9W3/v64QQjwr5EHUp0BGRgZqtZqePXvi6enJ/PnziYqKonbt2qZzwsPDGT9+PLGxsbi4uKDX601lxcXFrF+/ni+++IJ58+ZhZ2fHuHHj8PX1vWfCDpCWlsavv/5K69atOXbsGObm5qxdu5adO3dy48YN9u/ff882ZsyYQXBwMLGxsbRt2/a+rvvUqVMsWbKE5cuX88knn9C1a1fi4uIA+OGHH+6rDSHE06dAqydHX/qfpwyzRgAYjHDiojVF2pJypVJJgxaONGr9v9+HtV+wp5lnvScXsBBCPAEy0/4UuLU8xmAwEBERwfnz5+nSpQtHjhwBIDc3l7S0NLy9vQEICQlh5cqVpvrdunVDoVDg6upKTk7OffUZHR3Nrl27MBgMKJVKRo0aRbt27QCoXr06q1ev5sKFCyQnJ1NQUHDP9g4fPszcuXMB6Nu3L1OmTLlnnbZt22Jra4utrS0AnTp1AqBu3brk5eXd13UIIZ4+1iozVMpCdHpr07FqmVqOHskiRVWPm7qS4xpFNZo1a4HCTEHPN9qR/ccN9Do9jvWrV1DkQgjx+EjS/hQxMzMjLCyMwMBAli9fjoeHB1Ay02Q0Gu9aT6lUAqBQKO5YPnnyZBISEgCYOXMmUHpN++12797NwoULGTp0KMHBweTk5JTb9+1unadQKDAzMzP9bDAYTOdotVrTz+bm5qXqq1Ty11WI54FCoaDHC5ZsPn8NpbEGNnl/UDthNYqbRi4rrUi1bI1OYUWh0gVzCwtTPQfnqhUYtRBCPF6yPOYpo1KpCAsLY8mSJWRlZQFQtWpVXFxcTMtUbi0hKY9SqUSnK3lwa9asWcTGxhIbG0urVq3KrXfw4EH8/f0JCQnBzs6O+Pj4Uktx7qZz585s2rQJgB07dqDRlDxQZm9vT1JSElCyo01mZuY92xJCPPva12rA6Na1aVc/gU7ttPhNnoN+4Of8aDWYTEUzcmhIn861USnvPBkhhBDPGpm6fAp17dqVNm3asGDBApycnACIjIxk0qRJzJ8/Hzc3N6ysyn8Iy8PDg6ioKObMmcOECRPuu+/+/fszYcIEtmzZgrm5OW3btiU1NfWe9aZOncrEiRNZu3Yt7u7uVKlSBYBevXqxfft2evXqRcuWLWnRosV9xyKEeLY5WTvRq66/6bO6Sy3qO1lx8sJNXOva0Lml7A4jhHh+KIz3u7ZBVGpRUVEMGDAAR0dHduzYQVxcnGlnlueVRqMhISEBd3f3SrHTzNGjR03PBYhHR8b18ZBxffRkTB8PGdfHQ8b10bvXmN4rb5GZ9meEs7MzI0aMQKVSYWdn99D7twshhBBCiMpHkvZnRHBwcJm3ngohhBBCiGeDPIgqhBBCCCFEJSdJuxBCCCGEEJWcJO1CCCGEEEJUcpK0CyGEEEIIUclJ0i6EEEIIIUQlJ0m7EEI8ZkaDAYD0oqvc1N1EU3CTrD+uYjTIazKEEELcH9ny8S9ITU2lZ8+eNG7cGACDwUB+fj6BgYH4+PgQHR1d7n7p4eHhdOzYscxWjSdPnmT79u1MnDixTJ1bL0x65513TMdiYmI4fPgwERERTJ48mUGDBtGqVatHcYlCiL9Ac+UKf/z73xReuEBOXSs2d9NheeImVU9dBfRYWLcgaNxH1HNzquhQhRBCVHKStP9Fjo6OxMbGmj6np6fj5+dH7969H/oFR0lJSWRnZz9UXXmpkhCVR9p/vqCoXhpGLyuq5ZvR+Eg1LuTW5HoNB2yvn6O48He2/vtr/j47DIVCUdHhCiGEqMQkaX/EMjMzMRqNJCQkMG3aNFatWsXZs2cJDw9Hr9fTvn17Dhw4wM6dOwHYt28fa9asITs7m1GjRuHv78/ChQspKChg6dKljB49+oH6Dw0NZezYsQAsWbIElUpFamoqHh4ezJo1i4yMDEaPHk2jRo1ISkrC2dmZ2bNnU716dfbu3cv8+fMxGAy4uLjw0UcfUbNmTX7++WciIiIwGo04Ozszd+5cACZNmkR6ejoZGRl06tSJWbNmcfjwYT7//HPMzc1JTU3F19cXGxsbdu3aBcCyZcuoWbMmnTp1okePHhw7dowqVaowZ84c6tWrh6+vLytXrqRevXrEx8cTFRXFqlWr+Oqrr9iwYQNmZmZ4eHjw0UcfPcI/NSEej5s10jnqGkKasjnWVW7Q3HYHyfsy0VlU42a1plS7doKCvDR0xXrMLeXXsRBCiLuTNe1/UUZGBmq1mp49e+Lp6cn8+fOJioqidu3apnPCw8MZP348sbGxuLi4oNfrTWXFxcWsX7+eL774gnnz5mFnZ8e4cePw9fW9a8IeHR2NWq02/bdw4cI7nnfs2DEmT57Mtm3b0Gg0rF69GoCzZ88yZMgQtmzZQuPGjYmKiiI7O5upU6eyePFi4uLiaNu2LR999BHFxcVMmDCBTz/9lLi4OJo2bcqGDRvYt28fzZs3Z+3atWzfvp0jR47w22+/AXDixAmmT5/Od999x+rVq6lRowYxMTG4ubmxZcsWAK5du0abNm2Ii4ujd+/ezJw5865jrNfr+eKLL/juu++IiYlBq9WSnp7+YH9QQlSAs66vkKpqiVFhRoFZNY5XUVOlaklyrrOwwwhorZtTbJRZdiGEEOWTpP0vurU8ZuvWrajVaoxGI126dDGV5+bmkpaWhre3NwAhISGl6nfr1g2FQoGrqys5OTn31eegQYOIjY01/Tdu3Lg7ntehQwcaNWqEQqFArVZz6NAhABo2bIinpycAgYGBHDp0iJMnT+Lh4UG9evUAGDhwIIcOHSIxMREnJyeaN28OwHvvvUdoaCh9+vShS5cufP3118ycOZPc3FwKCgoAaNq0KXXq1MHa2hp7e3s6deoEgLOzM3l5eQBYWloSGBgIQFBQEPHx8Xe9XqVSSZs2bejXrx9RUVEMHz4cJydZAywqv+tV3Up91issyDevBYBSW0ihVQA/W3Vk16/XKiI8IYQQTxFJ2h8RMzMzwsLCSE9PZ/ny5abjSqUSo/HuO0QolUqAu65nnTx5smlG/dSpUw8U0622AYxGo+mzSqUqc9zw/7tb3H5cp9Nhbm5eKrYbN25w9epVVq1aRWRkJDVq1OC1116jcePGpus0Nze/axy3mJmZmdo1GAxlYgXQ6XSmY0uWLGHatGkYjUbeeOMNDh8+/EBjIURFaFLHpdRnha4YY+41iowOnFKF8HM1P4rMVNwo0N+lBSGEEKKEJO2PkEqlIiwsjCVLlpCVlQVA1apVcXFxYf/+/QDExcXdsx2lUmlKWGfNmmWaUX/QHWGOHj1Keno6BoOBjRs30rVrVwAuXrzI6dOnAfjuu+/o2rUrrVu35sSJE6SmpgKwdu1aPD09eeGFF8jOziYpKQmAL7/8km+++YaffvqJgQMH0rdvXzQaDWfOnCmT+JensLCQPXv2ACW739yKzd7e3tTX7t27gZKlNL169aJp06aMHz+eLl26kJiY+EBjIURF6FKvBu2cqmCpgBqaYnrlFvOP198l1doPDVUBsDRX8Epr+wqOVAghRGUnTz49Yl27dqVNmzYsWLDAtIQjMjKSSZMmMX/+fNzc3LCysiq3DQ8PD6KiopgzZw4TJkx46FgcHR1Ns/9dunShf//+XLlyhWrVqrFw4UIuX76Mm5sbM2fOxMbGho8++oixY8ei1WpxdnZm1qxZWFpaMnv2bMLCwtBqtdSvX5/IyEhOnjzJtGnTWLZsGba2trRp04bU1FTq169/3/Ft27aNefPm4ejoyKeffgrAuHHjmDFjBlFRUbz00ksA1KhRg4EDB9KvXz+sra154YUXyiwzEqIyUpkp6NWoBr0a1Sh1fP7b1mw+lIVWb6RXRwfq1bKsoAiFEEI8LRTG8tZuiEciKiqKAQMG4OjoyI4dO4iLizPtt/643L7zyu1SU1MZOnSoaZa7ori5uT322XKNRkNCQgLu7u5YWlZ8UnT06FHatWtX0WE8c2RcHw8Z10dPxvTxkHF9PGRcH717jem98haZaX8CnJ2dGTFiBCqVCjs7O9lLXQghhBBCPBBJ2p+A4ODgMm89fdw8PT1NO8Tcrl69ehU+yw7ImnQhhBBCiAcgD6IKIYQQQghRyUnSLoQQQgghRCUnSbsQQgghhBCVnCTtQgghhBBCVHKStAshhBBCCFHJSdIuhBDPOaNBXtchhBCVnWz5KIQQzxmjQU/Rj99w/eA+fs1qx+Xi+lhWsaSTuhnNPOtVdHhCCCHuQGbaK4HU1FTc3d1Rq9Wo1WoCAgLw9fVl4cKFnDp1ismTJ5dbPzw8nJiYmDLHT548yezZs8utGxERgZeXF8XFxX/pGh5UaGgo8fHxdy1PTU3F19f3CUYkxLNNr9dz6tQp1mzcTfQXKzj9fQxbz+ZxJmcfmqKDFOQVsnfNSW5cK6joUIUQQtyBzLRXEo6OjsTGxpo+p6en4+fnR+/evR/6DapJSUlkZ2fftVyn0/H999/Tpk0btm/fTkBAwEP1I4So/NatW8cZQ1WUDd3B0ZVL1Wqi2v0ZCoMeneEPAMwVnci4fJ2qNWwqOFohhBB/Jkl7JZWZmYnRaCQhIYFp06axatUqzp49S3h4OHq9nvbt23PgwAF27twJwL59+1izZg3Z2dmMGjUKf39/Fi5cSEFBAUuXLmX06NFl+ti3bx/169cnMDCQlStXmpL2+Ph4Pv/8c8zNzU0z3jY2NuzatQuAZcuWsXfvXg4dOsTcuXMBWLRoEZaWlgwePJiwsDAuX76Mi4sLV69eJSoqCkdHRyZPnkxCQgJ169YlJycHKPniMG3aNM6dO0dWVhZubm589tlnpeI8e/YsM2bMoKCggGvXrvHmm28yePDgxzb2QjxrMq4koTNLQ9VwoOmY9oU2VG8eQv7v6wDQ6xOxVHam9gv2FRWmEEKIcsjymEoiIyMDtVpNz5498fT0ZP78+URFRVG7dm3TOeHh4YwfP57Y2FhcXFzQ6/WmsuLiYtavX88XX3zBvHnzsLOzY9y4cfj6+t4xYQeIiYmhZ8+eeHt7c/r0aZKSkkxlJ06cYPr06Xz33XesXr2aGjVqEBMTg5ubG1u2bKFXr14cPHiQmzdvArB582bUajWLFy/mhRdeYMuWLYwZM4azZ88CsGrVKgC+//57pkyZwuXLlwE4duwY5ubmrF27lp07d3Ljxg32799fKs7169fz9ttv891337Fy5UoiIyMfwYgL8Xww6Iu5dnYZ1Z2qlSmzc+pg+tlCVZ0er7ehSjWrJxmeEEKI+yRJeyVxa3nM1q1bUavVGI1GunTpYirPzc0lLS0Nb29vAEJCQkrV79atGwqFAldXV9Msdnmys7P56aef8Pf3x8rKCh8fH6Kjo03lTZs2pU6dOlhbW2Nvb0+nTp0AcHZ2Ji8vjypVquDt7c3OnTv55ZdfcHFxwcnJiZ9++gm1Wg1Aq1ataNq0KQCHDx/G398fgIYNG9KmTRsAOnTowJAhQ1i9ejWzZs0iOTmZgoLSa2rDw8PRaDR88cUXzJ8/v0y5EOLu8nMSMWjzcNJfQGHUlyqrm1kIgHlVW177aDqNX6xTESEKIYS4D7I8ppIxMzMjLCyMwMBAli9fjoeHBwBKpRKj8e7bsimVSgAUCsUdy28tTQGYOXMmv/zyC0ajkX79+gFQVFSEVqtlwoQJAJibm9+x/duFhISwdOlS6tWrR3BwcLlxKhSKUsdVqpK/ert372bhwoUMHTqU4OBgcnJyytR/9913sbOzw8fHh169erF58+a7joMQojSVRckMu60xh86adSSad0FXXIXmZ/VY1M+nQ88wurj5o1TKPwdCCFGZyUx7JaRSqQgLC2PJkiVkZWUBULVqVVxcXExLR+Li4u7ZjlKpRKfTATBr1ixiY2OJjY2lVatWxMTEEBERwZ49e9izZw8//vgj1apVY+vWrfcdZ/v27bl69Srx8fF0794dgE6dOpliS0xM5Ny5cygUCtNxg8FAWloav/76KwAHDx7E39+fkJAQ7OzsiI+PL7XsB+Cnn35i3LhxdO/enQMHDgCUOUcIcWfWdvWp7lxy1662/gK+mi30u66nY0dnvEJ607VFgCTsQgjxFJDf1JVU165dadOmDQsWLMDJyQmAyMhIJk2axPz583Fzc8PKqvy1px4eHkRFRTFnzhzTDDrAqVOnyMnJoUePHqZjZmZmDBs2jOjoaN577737jrNHjx7k5uZiYWEBwJgxY/jggw8ICAigfv361KxZEysrK4YMGcK5c+fw9/enbt26pmUz/fv3Z8KECWzZsgVzc3Patm1LampqqT7eeecdhgwZgqWlJc2aNaNu3bqkpqbSoEGD+45TiOeZc4tQatTvhr74BjbVm6AwK3vnTAghROWmMJa35kJUKlFRUQwYMABHR0d27NhBXFwcixYtqpBYjEYjWq2W4cOHM2nSJFq2bAlAbGws9erVo127dvzxxx+89tpr7Nq1CzOzJ39TR6PRkJCQgLu7O5aWlk+8/z87evQo7dq1q+gwnjkyro+HjOujJ2P6eMi4Ph4yro/evcb0XnmLzLQ/RZydnRkxYgQqlQo7O7uH3r/9UcjMzKR3797079/flLADNGrUiH/9618YDAbMzMz46KOPKiRhF0IIIYR4lkjS/hQJDg42PfBZ0RwdHTly5EiZ47fWywshhBBCiEdHpkCFEEIIIYSo5CRpF0IIIYQQopKTpF0IIYQQQohKTpJ2IYQQQgghKjlJ2oUQQgghhKjkJGkXQgghKhmj0Yg2+QSaEzsx3LxW0eEIISqB53rLx9TUVHr27Enjxo0BMBgM5OfnExgYiI+PD9HR0eXuhR4eHk7Hjh3LbMN48uRJtm/fzsSJE+9aNyIigo0bN3LgwAHT20SfJF9fX1auXEm9evWeeN9CCCHKV7BlAcUnd2I0whn7jvzULoACoIpVGiFOTShKTsXBuSGO9V0rOlQhxBPyXCftULLfeGxsrOlzeno6fn5+9O7d+6FfXpSUlER2dvZdy3U6Hd9//z1t2rRh+/btBAQEPFQ/Qgghni2G4mIy163hxg9H0Nq4c9a6M6debo3RoMQMKCyoxdqvFmF+7iAAXn1fp0vgyIoNWgjxRDz3SfufZWZmYjQaSUhIYNq0aaxatYqzZ88SHh6OXq+nffv2HDhwgJ07dwKwb98+1qxZQ3Z2NqNGjcLf35+FCxdSUFDA0qVLGT16dJk+9u3bR/369QkMDGTlypWmpN1oNDJnzhx27dqFUqlk4MCBDBs2jNOnTzN16lSKioqoVq0ac+bM4dKlS0RFRbFq1Srgf7P+HTt2ZMyYMTRq1IikpCRatGhBmzZt2LBhA9evX2fx4sWmOwtRUVGcOXMGS0tLpk+fTrNmzcjKymLq1KlcvXoVhULBe++9R+fOnVm0aBHp6elcunSJtLQ0+vfvz+jRozlz5gxTp05Fp9NhaWnJJ598QsOGDUtdr06nY9q0aZw7d46srCzc3Nz47LPPyMrK4o033sDe3h4rKyu+/PJLIiMjOXz4MHq9nuDgYF5//fW71reysnqMfxOEEOLJS1mzhsRDh6jVqilWzsXYmt3AaK4sdY6h7ovw/0n7ka2raf/qQCxtbCsgWiHEk/Tcr2nPyMhArVbTs2dPPD09mT9/PlFRUdSuXdt0Tnh4OOPHjyc2NhYXFxf0er2prLi4mPXr1/PFF18wb9487OzsGDduHL6+vndM2AFiYmLo2bMn3t7enD59mqSkJAC2bdvGr7/+SlxcHOvXrycmJobMzEwmTJjA22+/TVxcHL169WLFihXlXlNiYiJ///vfiY2N5ddffyUtLY21a9fSp08f1q5dazqvQYMGbNy4kbfffpvw8HAAZs2aRUhICDExMSxdupSpU6dy8+ZNU7vLly9n/fr1LFu2jLy8PFasWMHw4cOJiYlhwIABHD9+vEw8x44dw9zcnLVr17Jz505u3LjB/v37Abh48SKzZ8/mq6++Yt26dQBs2LCBb7/9lt27d/PLL7+UW18IIZ4VKSkp/CcxkautbbBsdgWjXTZVqp4uc55ZTqrpZ71Oi06reZJhCiEqyHM/035reYzBYCAiIoLz58/TpUsXjhw5AkBubi5paWl4e3sDEBISwsqVK031u3XrhkKhwNXVlZycnHv2l52dzU8//cTMmTOxsrIyrZ2fMmUKR44cwd/fHwsLCywsLIiNjeXatWtkZmbi4+MDwJAhQwCIj4+/ax81a9akRYsWANSuXZtOnToB4OzsTGrq/37Z9+/fHwBvb28mTpxIXl4eP//8MxcuXGDhwoVAySx5SkoKAJ6enlhYWODg4ED16tW5ceMG3t7efPTRR/zwww/4+vqa4rxdhw4dqF69OqtXr+bChQskJydTUFAAgIODg2ld/cGDBzl9+jSHDh0CoKCggMTERP72t7/dtb4QQjwrdu/ejVahwKVWsemYnTEb9+I9/K58BYPSDGN+IqrfdpjKG7/4ElWqOVREuEKIJ+y5T9pvMTMzIywsjMDAQJYvX46HhwcASqUSo9F413pKZcltS4VCccfyyZMnk5CQAMDMmTP55ZdfMBqN9OvXD4CioiK0Wi0TJkxApVKVaic1NZVq1aqVOqbRaMjIyEChUJSKS6vVmn7+84Ott2K8W+xQsjRHpVJhMBhYsWIF1atXB0ruRDg4OLBr1y4sLS1N59/qv2fPnrRp04a9e/fy9ddfs2/fPnx8fExJv6+vL+7u7ixcuJChQ4cSHBxMTk6OKfbbl7jo9XomTpzIq6++CsC1a9eoUqUKu3fvvmt9IYR4VuTn5wNwo8AMp+r/O+6micfmXEPcglpSv44vFxysuHDiZxycG+LxirpighVCPHHP/fKY26lUKsLCwliyZAlZWVkAVK1aFRcXF9NyjLi4uHu2o1Qq0el0QMlyk9jYWGJjY2nVqhUxMTFERESwZ88e9uzZw48//ki1atXYunUrHTp0YMeOHWi1WgoLC3njjTfIysrCycmJH3/8EYDY2FgWLFiAvb09KSkpaDQacnNzOXr06ANf761r2blzJ40bN8bGxgYvLy/WrFkDlDxQGxAQQGFh4V3bePfddzl16hSDBg1i/Pjx/P7773Tr1s10zePHj+fgwYP4+/sTEhKCnZ0d8fHxpZYY3eLl5cW6devQarXk5+czZMgQjh8/ft/1hRDiadauXTsATl60Jufm/0+qGFU4OPXFb4w3DZ1rYqYwo0mbl3j19TDavToAcwvLcloUQjxLZKb9T7p27UqbNm1YsGABTk5OAERGRjJp0iTmz5+Pm5vbPR+A9PDwICoqijlz5jBhwgTT8VOnTpGTk0OPHj1Mx8zMzBg2bBjR0dGsW7eOhIQEgoODMRgMDB06lBdeeIHZs2czbdo0Zs+ejb29PZGRkTg6OuLt7U3v3r2pW7eu6Zf9g0hOTkatVlOlShUiIiIAmDJlClOnTjU9HBsZGYmt7d0fcBo1ahSTJ09m8eLFmJubM23atDLn9O/fnwkTJrBlyxbMzc1p27ZtqWU6twwaNIhLly4RFBSETqcjODgYT09Pqlevfl/1hRDiaebl5YWNjQ1nzpxBU9UBl7au2NjWRGluU9GhCSEqAYVR1hncU1RUFAMGDMDR0ZEdO3YQFxfHokWLKjoscQ8ajYaEhATc3d1LLe2pKEePHn2oL1eifDKuj4eM66MnY/p4yLg+HjKuj969xvReeYvMtN8HZ2dnRowYgUqlws7O7qH3bxdCCCGEEOJhSNJ+H4KDg8u89VQIIYQQQognRR5EFUIIIYQQopKTpF0IIYQQQohKTpJ2IYQQQgghKjlJ2oUQQgghhKjkJGkXQgghhBCikpOkXQghxAMz6IrIyzhGwfULFR2KEEI8F2TLxwqWmppKz549ady4MQAGg4H8/HwCAwPx8fEhOjq63H3hw8PD6dixY5ktKU+ePMn27duZOHFiqeOXLl2iX79+/Pjjj6U27t+wYQO7d+8mKirqgeLfu3cvycnJDB8+/L7r3B6zm5sbzZo1A6C4uJjGjRszceJEGjRoYDq2ePFi9uzZg5mZGZaWlrz77rt07tz5geIUQjw6xQUZXPxlDvriPACq1fGibsvXS52TdOIXtm7ZQ6EWPJq9iEeN2lz87SCZxgu4d+2Na7uuFRC5EEI8vSRprwQcHR2JjY01fU5PT8fPz4/evXs/9IuckpKSyM7OLnO8QYMGNG3alH379uHn52c6vnHjxgdKvG9JSEh4qPhud/u1f/PNN4wcOZKtW7diYWHBBx98gIWFBd9++y2WlpYkJiYyYsQIVqxYQZMmTf5y30KIB5d9aacpYQe4fuUQDg16YGVbt6T8xAG+/nYPCicXjEUF/HBiHzbKdtQza4ZNcTU2L55K0D8jaejesaIuQQghnjqStFdCmZmZGI1GEhISmDZtGqtWreLs2bOEh4ej1+tp3749Bw4cYOfOnQDs27ePNWvWkJ2dzahRo/D392fhwoUUFBSwdOlSRo8eXar94OBgNm/ebErar169SnJyMi+//DInT57kk08+oaioCHt7e6ZPn46LiwuhoaG0atWKo0ePcu3aNaZMmULdunWJjo4GSt4a+8cff3D8+HGuXLnCa6+9RpMmTZg3bx5FRUXk5eXxwQcf0L1793KvffDgwfz3v//lhx9+oEmTJuzYsYP4+HjTXQE3Nzc+++wzrKysHvWwCyHuk15XUPaY9n/Hfj14AItuQ1BYWgOgSzvH5eOJ1KMm1SzqUNu6GYmH90jSLoQQD0CS9kogIyMDtVqNRqMhJyeHVq1aERUVhYWFhemc8PBwxo8fj7e3N19//TV6vd5UVlxczPr16zl37hxDhw5l4MCBjBs3jsOHD5dJ2AH8/f2ZPXs2N27coGrVqmzatAm1Wo1er2fKlCl8/vnnODs788MPP/Dhhx/y9ddfA6DValm7di179uxhwYIFxMTEMGjQIABCQkJYtGgRxcXFbN26FYBx48Yxc+ZMGjduzMGDB/n444/vmbQDNGnShAsXLqDVamnYsCE2Njalyj09PR94jIUQj0515y7kpf8KGAGwrFIHm+qNTeVXnVubEnYAVV1XzM/nwP/n9QrMMK9a60mGLIQQTz1J2iuBW8tjDAYDERERnD9/ni5dunDkyBEAcnNzSUtLw9vbGyhJkFeuXGmq361bNxQKBa6uruTk5NyzPxsbG3x8fNixYwchISFs2rSJqKgokpOTSUlJKZXo37x50/Tzyy+/DICrqyu5ubl3bNvDw8P08+zZs9m7dy/btm3jxIkT5Ofn39d4KBQKrKysTGvYhRCVi61DCxq0fZfr6UdQWVSjhssrKBT/29egyMkJDKXr1LOoAwVabmqzOKu9ibaK9xOOWgghnm6ye0wlYmZmRlhYGOnp6Sxfvtx0XKlUYjQa71pPqVQCJcnunUyePBm1Wo1arebUqVNASeK/efNmfvvtN6pXr07Dhg0xGAzUq1eP2NhYYmNjiYmJYc2aNaZ2biXQd+sHKLVsZciQIZw8eRJ3d3dGjRp1HyNQIjExkSZNmuDu7s758+cpKioqVf7111+zZcuW+25PCPHoVanhhnPz13BsHIDKomqpshfq2WC8LWu3zclCl3WSzZpi5hZbcrDGPykwWP+5SSGEEOWQpL2SUalUhIWFsWTJErKysgCoWrUqLi4u7N+/H4C4uLh7tqNUKtHpdADMmjXLlIi3atUKgPbt25Oens6aNWsICQkBoFGjRly/fp1ffvkFgO+++44JEybcdz+3y83NJTk5mfHjx9O1a1d2795daknP3axZswaFQoGnpyfOzs688sorzJgxA41GA8Dvv//Ol19+iaur6z3bEkJUjFfqNENV5XvyzY5wQ7mXK3XWsrxma7YpHMk0d0GlMqN72xoVHaYQQjxVZHlMJdS1a1fatGnDggULcHJyAiAyMpJJkyYxf/583Nzc7vkgpoeHB1FRUcyZM+euibdarebf//43U6ZMAcDCwoIFCxYwa9YsNBoNtra2fPrpp+X206FDB95//31q1qxZ6nj16tXp168fvXv3RqVS4eXlRVFREQUFZR9gU6vVQMl2ly4uLvz73//GzKzk++THH3/MnDlzUKvVWFhYYG1tzezZs2natGm5cQkhKo7KTMUE9+H8mnOUIn0Rbe0DKW5kzeZDWRRo9LzargaNnWWmXQghHoTCWN66C1FpREVFMWDAABwdHdmxYwdxcXEsWrSoosOq1DQaDQkJCbi7u1eKtfFHjx6lXbt2FR3GM0fG9fGQcX30ZEwfDxnXx0PG9dG715jeK2+RmfanhLOzMyNGjEClUmFnZ/fQ+7cLIYQQQoinjyTtT4ng4OAybz0VQgghhBDPB3kQVQghhBBCiEpOknYhhBBCCCEqOUnahRBCCCGEqOQkaRdCCCGEEKKSk6RdCCGEEEKISk6SdiGEEEIIISo52fJRCCH+guM5v7Lpjw0U6AroUvNl+jirUSgUpc4xGo0kJf5OVup53Fq+SI069SsoWiGEEE8rSdqfIampqfTs2ZPGjRsDYDAYyM/PJzAwEB8fH6Kjo8t9KVN4eDgdO3Yssx/8yZMn2b59OxMnTnys8d+P1NRUhg4dyp49eyo6FCG4pslmZdJW9CiwLTCSfTqZE3V/wsOrM2bmZuh1Bn7ckMD+XzdSpCgCYNvWLfTu3pWOvf5WwdELIYR4mkjS/oxxdHQkNjbW9Dk9PR0/Pz969+790G9RTUpKIjs7+1GFKMRTT3c1iesHolnl1AN7i2EA1Ll+ky6nMzA7redK0knqDn+RX3ckEX/wMEVWRaa6WisH9n6/kTbdgjG3tK6oSxBCCPGUkTXtz7jMzEyMRiMJCQmEhoYCcPbsWYKDg1Gr1cyYMYMePXqYzt+3bx/9+vXDx8eHtWvXkpeXx8KFC9mzZw9Lly4t1XZOTg5dunRBq9Wa2u3bty8AGzduJCgoCLVazaRJk9BoNGi1WiZOnEhgYCCBgYGsW7cOgLi4ONRqNcHBwYwbNw6NRgPAsmXLCAoKom/fvkRGRmI0Gh/7eAlxL0athpvffMipQituWDibjl+pZcuVWjYAFCVfpygtj5TELPSK4jJt6IwKtMWaUsduZJ7g0q8LuHx8Mfk55x7vRQghhHjqSNL+jMnIyECtVtOzZ088PT2ZP38+UVFR1K5d23ROeHg448ePJzY2FhcXF/R6vamsuLiY9evX88UXXzBv3jzs7OwYN24cvr6+jB49ulRf9vb2eHh48OOPPwKwZcsW+vbty7lz51i3bh3R0dHExsbi4ODA8uXLOXbsGNevX2fjxo188cUX/PLLLwDMnz+f//znP8TExFC3bl0uXLjAgQMHSEhI4Ntvv2Xjxo2kp6ezadOmJzCCQpRP90cixsI88i2rlSkrtFTe9klBzbp22Ohqwu3fNw06mjZpgk3V6qZDBdcvknLic/KvneZm1ikuH1tIcaHc3RJCCPE/krQ/Y24tj9m6dStqtRqj0UiXLl1M5bm5uaSlpeHt7Q1ASEhIqfrdunVDoVDg6upKTk7OPfvr27cvW7ZsAeD7778nICCA+Ph4Ll26xIABA1Cr1ezevZsLFy7g6urKxYsXGTlyJNu2bSMsLAwAHx8fBg8eTGRkJH5+fjRv3pyDBw9y8uRJgoODCQoKIiEhgaSkpEc1TEI8NGWNumCmpGn6Ecz0OtNxc62euhkFACQaVVjVrUqHXk1p2KQ+tQpbYaOzxN4cfNu5ETh6aqk2b2Qc5/bM3mjQcjM74UlcjhBCiKeErGl/RpmZmREWFkZgYCDLly/Hw8MDAKVSWe4yE6WyZKbwz7tf3DJ58mQSEkqSiZkzZ9KtWzciIiI4cuQIderUwcnJCb1ej7+/P1OmTAEgPz8fvV6PnZ0dW7Zs4aeffmL//v0EBQWxZcsWpkyZwpkzZ9i/fz8TJ05k7Nix6PV6hg0bxvDhwwHIy8tDqVTe1xcJIR4ns6oOWHd/k5p7v6LH3s853eBlzHRaXE+f4LquLtE2L2LfypFegLWtBep3vCgqaIeFpRIz5Z3nSSxsapY9Zl3rMV+JEEKIp4nMtD/DVCoVYWFhLFmyhKysLACqVq2Ki4sL+/fvB0rWk9+LUqlEpyuZUZw1axaxsbHExsbSqlUrLCwsePnll/n4449N69k9PT3ZuXMn2dnZGI1Gpk2bxooVK9i9ezcTJ07klVdeYcqUKdjY2HDlyhVeffVV7O3teeutt1Cr1Zw+fRovLy9iY2PJz89Hp9MxZswYtm/f/phGSogHY9W+D9XH/5e2o8fT0+ImnS8eQ2tXk91NPWnqXY8xwS6lz7cxv2vCDlCtjhe2Du7//0lB9TqdqVKj+WO8AiGEEE8bmWl/xnXt2pU2bdqwYMECnJycAIiMjGTSpEnMnz8fNzc3rKysym3Dw8ODqKgo5syZw4QJE8qUq9VqNm3ahJ+fHwDNmjVj7NixDBs2DIPBQPPmzXnzzTcxMzNjx44d9O7dG0tLS/r27Yubmxvjxo1jxIgRWFpa4uDgQEREBA4ODpw5c4YBAwag1+t5+eWXCQoKIi0t7dEPkhAPQWFhjaqmNU6DBuEENAZefsi2zMzMqd9mLMUFGSjMVJhb1XiEkQohhHgWKIyyJcdzJyoqigEDBuDo6MiOHTuIi4tj0aJFFR3WI6fRaEhISMDd3R1LS8uKDoejR4/Srl27ig7jmSPj+njIuD56MqaPh4zr4yHj+ujda0zvlbfITPtzyNnZmREjRqBSqbCzs3vo/duFEEIIIcSTIUn7cyg4OLjMW0+FEEIIIUTlJQ+iCiGEEEIIUclJ0i6EEEIIIUQlJ0m7EEIIIYQQlZwk7UIIIYQQQlRykrQLIYQQQghRyUnSLoQQQgghxF0YjUauXswh43JuhcYhWz7ep9TUVHr27Enjxo0BMBgM5OfnExgYiI+PD9HR0eXudx4eHk7Hjh3LbLV48uRJtm/fzsSJE+87jqFDh7Jnz56Hv5i7UKvVxMbGljnu6+vLypUrqVev3n21c+tFTe+8884jjU8IIYQQ4mHd0N4gpeASLjYNqGpeFYD0/GISsgqwtVDyYq0qWKr+N5996uBuko//RMYlKLrpjkJhiUvzWvR+qz1myic/7y1J+wNwdHQsldSmp6fj5+dH7969H/oFRUlJSWRnZz+qEP+SOyXsQgghhBBPuxO5x/nqwjK0Ri0qhYoRjd7EQdmCFb9lYDCWnHMyM583WjlRrDPy2WdfYZH4tam+mdlZLK0Hk3I6k4un0mn8Yp0nfg2yPOYvyMzMxGg0kpCQQGhoKABnz54lODgYtVrNjBkz6NGjh+n8ffv20a9fP3x8fFi7di15eXksXLiQPXv2sHTp0jLtp6WlMXToUPr06UO/fv04c+YMAEVFRfzjH/+gT58+DBkyhJycHAD27t2LWq0mICCAt99+m6ysLKBkpvzdd9/Fz8+P7OxsvvvuO/r06UNAQADh4eHk5+cD4ObmBkBubi5///vfCQgI4N1330Wj0dzx+sPDw/nXv/5FcHAwfn5+bNy4scw5Bw4coF+/fgQGBjJ27FhycnK4cuUKnTp14vz58xQXFxMQEMC+ffuIiYkhPDzcVDc0NJT4+HiuXr3Ka6+9RnBwMP369eP48eMP+CclhBBCiOdZTMo6tEYtADqjju9S1nE44XdTwg5wNV/Lvp0L+e+/p3IjNwmtgxdKpS0ABsMlDIZcAAqu3zkvetwkaX8AGRkZqNVqevbsiaenJ/PnzycqKoratWubzgkPD2f8+PHExsbi4uKCXq83lRUXF7N+/Xq++OIL5s2bh52dHePGjcPX15fRo0eX6W/69On4+fmxefNm3nnnHVNif+3aNYYPH87mzZupWbMmW7duJTs7m6lTp7J48WLi4uJo27YtH330kamtrl27sn37drKysvj8889ZtWoVcXFxWFtbExUVVarfhQsX0qJFC+Li4vjb3/5mSv7vJCUlhbVr17JixQoiIyPJzMw0lV27do25c+eyfPlyNm7cyEsvvcScOXOoU6cOEyZMYNq0aSxevJg2bdrwyiuv3LWPb7/9lldeeYWYmBjGjRvH0aNH7/6HJIQQQgjxJ3m666U/F+dC2u9lzjNX5dKpaRbONbXkmZtj79gLO3MnQIlCYYm5pZIXPJyeTNB/Ikn7A7i1PGbr1q2o1WqMRiNdunQxlefm5pKWloa3tzcAISEhpep369YNhUKBq6uraXa8PEeOHEGtVgPg7e3NggULTHF4eHgA0KRJE3Jycjh58iQeHh6mdecDBw7k0KFDprZat25tatPHxwd7e/s7ngdw+PBhevXqBUCHDh1wcXG5a4zBwcGYm5tTu3Zt2rZtWyqhPnHiBFeuXGHo0KGo1WpWr17NpUuXTGNjaWlJXFxcqdn1O+nUqRP/+c9/eO+998jNzeW11167x8gJIYQQQvxPxxpepT6309akdepeLLQFpmO1dUnUMFwBoH6tYgCyyadJ1ZeoVb8HzTu5EvRuZ2ztrZ9c4LeRNe0PwczMjLCwMAIDA1m+fLkpgVYqlRiNxrvWUyqVACgUijuWT548mYSEBABmzpyJSvW/Px6j0cj58+exsrIqdVyhUGA0GjEYDKXaMhqN6HQ602dLS0uAe553e5t/jvvP8d1edqvt22PT6/W0bduWzz//HACNRmNaiqPRaLh69Sp6vZ6rV6/SqFGjMv1qtSW3sdq1a8eWLVvYt28fW7duZcOGDXz11Vd3HEMhhBBCiD8bUH8wtSwduZCfxAtVmvDSjWoUFczgtfh/ccK6MxYttdTRJ5nOv1FYkt/UUdTA8YVW+IzpVFGhm8hM+0NSqVSEhYWxZMkS0/KRqlWr4uLiwv79+wGIi4u7ZztKpdKUNM+aNYvY2FhiY2Np1aoV7du3Z8uWLQD8/PPPfPjhh3dtp3Xr1pw4cYLU1FQA1q5di6enZ5nzOnbsyJ49e8jNzQVg3bp1Zc7r1KmT6aHUkydPcvny5TvGB/D9999jNBpJS0vj5MmTtGvXrlRMx48f5+LFiwAsWbKEyMhIAObPn4+XlxcffPABH3zwAXq9Hnt7e86fP4/RaCQlJYXExEQAIiMj2bRpE0FBQUydOpXffy97O0sIIYQQ4m6UChXda/vxZuMx9Kjth7WrF1YvDcFGoaNNxkGcE06j+P+JzZzrliSnVsFVUZe2yiY0fLVpBUdfQmba/4KuXbvSpk0bFixYgJNTyfqmyMhIJk2axPz583Fzc8PKyqrcNjw8PIiKimLOnDlMmDChVNnUqVOZMmUKa9aswdra2jS7fSc1a9bko48+YuzYsWi1Wpydne+4o02zZs146623CA0NRavV0rJlS6ZPn17qnHHjxhEeHk7v3r1p1KhRuctjioqKCAkJobi4mI8++si07AagVq1afPzxx7z77rsYDAacnJyYPXs2x48fZ/v27WzatAlbW1s2bNjAf/7zH4YNG8Z3331Hz549eeGFF0xfAEJDQ3nvvfeIiYlBqVTy6aefljumQgghhBD3Yt31b1i9PASFQkHNnBxunk/AwtmRZjUa08LpCvo8DVVa1sK6QbWKDhUAhbG89RzigUVFRTFgwAAcHR3ZsWMHcXFxpn3LnzV323u+stBoNCQkJODu7m5aHlSRjh49WupOhHg0ZFwfDxnXR0/G9PGQcX08ZFwfvXuN6b3yFplpf8ScnZ0ZMWIEKpUKOzu7h96/XQghhBBCiFskaX/EgoODK+3M86MWERFR0SEIIYQQQjwX5EFUIYQQQgghKjlJ2oUQQgghhKjkJGkXQgghhBCikpOkXQghhBBCiEpOknYhhBBCCCEqOdk9RgghhBDiAaTd0FCgM9DQzhJz5d3nPw0GI6mJJW9Nr+dWEzMzxZMKUTyDJGmvYNu2bWPZsmXodDqMRiNqtZo33njjrueHhoYyduxYPD09y5RduHCByMhI0tLSAGjatCmTJ0+mRo0a9x3P3r17SU5OZvjw4QBcu3aNuXPncvjwYVQqFVZWVowdO5Zu3bo94JWWdvPmTV5++WW2bdtmepsswOHDh/nkk0/YsGHDHetV9hc6CSGEeDbcOHqUazt3olAqUXq15aaVGfWatmZHhpGErAIA7CyUvO7uSDXLsulUsUbH1vkH+SM1D4BaLtUIfLcT5hbKJ3od4tkhSXsFSk9P59NPPyUmJgZ7e3vy8/MJDQ3lhRdeeOCkOD09naFDh/LRRx/h6+uL0Wjkiy++YOzYsaxZs+a+20lISDD9XFxczLBhw/Dz82Pbtm0olUouXLjAyJEjqVu3Ls2aNXugGG9na2tLjx492LJlCyNGjDAd37hxI/369XvodoUQQoi/orCwkO0xMVw4dgwnjQa7m6mcPb0JAEVtV/IDppvOzSvWc/jKDXo0tC/VhuaPG6SsPEmrQgNNqtlw4mYRmSnXSTr6B807uTzR6xHPDknaK1BOTg5arZaioiIAqlSpQkREBJaWlvj6+rJy5Urq1atHfHw8UVFRrFq1CoB169bxySefAPDBBx/g6enJN998g5eXF76+vgAoFAr+/ve/U69ePXQ6HVqtlilTppCYmIhCoWDkyJEEBgYSExPDhg0byM3NpUGDBhw7dgwoebOrhYUFlpaWjB071hRzo0aNmDZtGnq9HgBfX188PDw4ffo0a9asYeXKlRw8eJDr16/j6OjIvHnz2Lt3L4cOHWLu3LkALFq0CEtLS4KDg4mMjDQl7RqNhn379vH+++9z8eJFpk6dSm5uLjY2NkyePBkPD48n8KcihBDieWXUali/LpoziWfBwoIsCwuslPZUyStZ4qJTWZepk1qQxce/L0Sj1/BSLW961PYjc/M5FIU6AKyVZrSsYsnPeYUUFRQ/0et5HJL+KKBIY6BFgyqy3OcJk6S9AjVr1oxu3brRvXt3mjdvjqenJwEBATRo0KDcejY2NmzcuJEzZ87w5ptvsmvXLk6fPo2Xl1ep85RKJX369AHgs88+w97ens2bN3Pt2jX69+9vmilPT09n69atqFQqFi1aBEBISAgzZ86kQ4cOZfr39vYu9blr167Mnz+fS5cuceHCBaKjozEzMyMsLIxNmzYxcOBA5s2bx82bN7G1tWXz5s2sXLkSR0dH8vLyuHDhAo0aNWLXrl106tSJatWqMXLkSN58801effVVjh8/zvjx49m+fftDj7UQQghRnsIfo0m/uIXWTlVo7QS/X7bmVLI1GisHquSdA8Dsj99Q5mejr+IAgAI4lf8tGrNUADamfUsty1rYZeSXattWaYa5lYombZyf6DU9SkajkVmrL/HTb9cBaFTHik//3gRba1nu86TI7jEVbPr06ezZs4fBgwfzxx9/MGDAAHbs2FFunVvLR5o1a4aDgwMXLlxAoVBgYWFx1zqHDh0y1atRowbdunXj8OHDALRo0QKV6t7f3+bMmYNarcbPz4+ZM2eajrdu3RqABg0a8P7777N+/XoiIiI4fvw4BQUFVKlSBW9vb3bu3Mkvv/yCi4sLTk5OKBQKAgMD2bx5MwCxsbGEhISQn5/P5cuXefXVVwF48cUXqVatGhcuXLhnjEIIIcSD0v2RyPUT6ymoUwVzFZiroHWjQmrba7HS/W92XGHQ87Iuic7OVWldqwpt6qajMSv9b9OZG6excS39LJnGzoKQ9zpTtUbZmfqnxbGkm6aEHeDClSK+P5xdgRE9f2SmvQLt27ePgoICevXqRUhICCEhIaxbt45vv/0WKPlWC6DT6UrVUyr/963WYDCgUqlwd3cvtR79Vtm4ceOYNm2aqa1bjEajaYmLlZXVHeNzd3cnOjra9HnChAlMmDCBmJgYU8IPYGlpCZSsh3/vvfd4/fXX8fPzw8zMzNRvSEgIS5cupV69eqUeIg0ODmbEiBEMGTKE5ORkOnXqRH5+6RmKP8crhBBCPEr69IsUVyk78VXHQYF/j+HkZXQmMyWJBi070tyrh6k8raCArZml67hYu1Crb1PMrFQUXbqOZT07Gvo1QnmH9p8mOTe093VMPD4y016BrKysmDt3LqmpJbfVjEYjp0+fpnnz5tjb25OUlATA7t27S9WLi4sD4NSpU+Tn59OgQQMGDhzI/v372b9/v6mtJUuWkJ2dTc2aNfHy8jJ9Gbh27Rq7d++mY8eOZWJSKpWmLwm9evWisLCQpUuXotWW/I9548YN4uPjMTMr+1fnyJEjdOzYkcGDB9OwYUP27dtnSrTbt2/P1atXiY+Pp3v37qY6zs7O1KlTh4ULF9K3b18UCgW2trbUq1fPdMfh+PHjZGVl4erq+pAjLYQQQtydqoEHFjfLJqA91W/g+uKLtHt1ID1HTi6VsAPUtalHUN1+WJlZYYaSTg5d8KrZBaW1OY5qN+qP64hTcLOnPmEH6NjMjqq3LYUxMwPv1vbl1BCPmsy0VyAvLy/Gjh3LqFGjTEnxyy+/zJgxY2jbti0zZswgKiqKl156qVS9goICAgMDMTMzY+7cuZibm1OrVi3+/e9/ExkZyZw5c9Dr9bRo0YLFixcDMGbMGKZNm0ZAQAB6vZ5Ro0bRsmVLEhMTS7XdoUMH3n//fWrWrEloaCgrV65k/vz5BAYGAqDX6/Hz87vjtpS9evVi7NixBAQEACUz9be+kAD06NGD3NzcMst4QkJCCAsLY+fOnaZjs2fPZtq0aSxatAhzc3MWLVpU7vIfIYQQ4mEpazhT49X3MBz/Lzeq6lBYWFOzaSBVHZres2732n684tgNA3oszCyfQLQVo6qNirmjmrDhp0wKNQZ6eTrg5mJT0WE9VxTGP6+bEOIRMxqNaLVahg8fzqRJk2jZsuUT6Vej0ZCQkIC7u7tpCU9FOnr0KO3atavoMJ45Mq6Ph4zroydj+njIuD4eMq6P3r3G9F55iyyPEY9dZmYmXbp0oXXr1k8sYRdCCCGEeJbI8hjx2Dk6OnLkyJGKDkMIIYQQ4qklM+1CCCGEEEJUcpK0CyGEEEIIUclJ0i6EEEIIIUQlJ0m7EEIIIYQQlZwk7UIIIYQQQlRykrQLIYQQQghRycmWj0IIIYQQogyDvpizf+xhd84hriqK8HToRK86AZgpzNBqCjG3tK7oEJ8rkrQ/5aZPn86vv/6KVqvl8uXLNG7cGIChQ4cSEhJS6ty9e/eSnJzM8OHD79peTEwMhw8fJiIiAoCDBw+yePFiMjMzMRgMNG/enEmTJlG7du2/FPf69evZtm0by5cvL3X8gw8+oHnz5gwdOvSO9dzc3EhMTPxLfQshhBDizg6fyWP9gQyUmjwu5X/HZWUzLI09cGEv3xdvxjxbQ/r6rWSmnqdWfVd6v/UvHOo0qOiwnwuStD/l/vWvfwGQmprK0KFDiY2Nveu5CQkJD9T2L7/8wsSJE4mKiuLFF18EYPXq1YwZM4bvvvvuoWMG8Pf3JyIiguzsbBwcHAAoLCxk7969hIWF/aW2hRBCCPHgUjKK+GjVRfQGCPC8xm/mLwFwA1AaB9Ny6xF+vxaN4XomAJmXz7HjqwgGT1pagVE/PyRpfwZdvHiRqVOnkpubi42NDZMnT8bGxobo6GgAnJ2deemll5g0aRI3btwgIyODoKAgxo8fX6qdJUuWMHr0aFPCDvC3v/2NoqIiiouLOXbsGLNnz8ZgMODq6so///nPO7Y5ZMgQxowZQ5cuXTAajfj5+bFq1Sq6d+/O1q1bCQ0NBWDXrl14eXlhb2/Pd999x1dffYVCoaBly5Z8+OGHVKlS5YmNoRBCCPG8+eXsDfQGqKtNx9LGtlSZXmFBdSdzLhR6oLMoxPxmElaFGaQnn62gaJ8/8iDqM2jixImEhoYSFxfHBx98wPjx46lfvz6DBg1i0KBBhISEsHnzZvr06cO6deuIi4tjxYoVXLt2rVQ7x48fp0OHDmXaHzlyJBYWFgAkJyezYsUKPv3007u2GRISYroD8Msvv1C/fn2cnJxMcdyyceNG+vXrR2JiIp9//jmrVq0iLi4Oa2troqKiHuOICSGEEKJeLUvMjAZGXNuE/dU/ShcajfyWcZYCiilWKsm3a4pOVYX6zdtWTLDPIZlpf8bk5+dz+fJlXn31VQBefPFFqlWrxoULF0qdN3LkSA4dOsTy5cs5d+4cWq2WwsLCMu0pFAoAiouL6d+/PwDXr1/ns88+A+CFF16gatWq5bbp7+/PvHnzKCgoYMOGDQQHBwPQoUMHcnJySElJwcrKiuTkZDp37syaNWvw8fHB3t4egIEDB/LBBx88htESQgghxC3tm1YluCXYX71J1QM/c82uHlcc3VAadNQ8l0hywY3/naxQUK1RG14d/l7FBfyckaT9GWM0Gu94TK/XlzoWERFBSkoKffr0oXv37vz8889l6rZq1Ypff/0VV1dXLCwsTLPloaGhaLVaAKysrO7Zpo2NDV27dmX79u0cOnTItA5foVAQGBjI5s2bsbKyQq1WY2ZmhsFgKBO/Tqf764MjhBBCiLtSKBQMH+TO2UO2qPJv0mXjajSW1hRU96TQwobkP53fc9Bb2FavWRGhPpdkecwzxtbWlnr16rFjxw6gZIlLVlYWrq6uKJVKU/L7008/MXLkSPz9/bl48SLp6ellkuV33nmHxYsXc+LECdOxM2fOkJKSglKpLNN3eW2GhIQwb948Xn75ZSwtLU11goKC2LlzJ9u2bTPNwHfs2JE9e/aQm5sLwLp16/D09Hx0gySEEEKIOzIzN6fe6FEY/v8uevV6jrQd1hL3Dq1ppXoBJWZYqCzo0aMHDRs2rNhgnzMy0/4Mmj17NtOmTWPRokWYm5uzaNEiLCws6NChA++//z41a9bkrbfeIiwsDCsrK2rXro27uzupqaml2mnfvj3z5s1j/vz5ZGVlUVBQQJ06dXj//fdp37498fHxpc6/W5v169enXbt2KBSKMttQ1qlTB3t7ewwGA/Xq1QOgWbNmvPXWW6YZ/ZYtWzJ9+vTHO2hCCCGEAMDW3Z2iYcNo4+GB2f8/w2bVAgb3dTPdub/T5J14vBTGO62nEOIRMhqNnD17lvfff5+NGzc+sX41Gg0JCQm4u7uXmt2vKEePHqVdu3YVHcYzR8b18ZBxffRkTB8PGdfHQ8b10bvXmN4rb5GZdvHYrVixgi+//JIFCxZUdChCCCGEEE8lSdrFY/f666/z+uuvV3QYQgghhBBPLXkQVQghhBBCiEpOknYhhBBCCCEqOUnahRBCCCGEqOQkaRdCCCGEEKKSk6RdCCGEEEKISk6SdiGEEE+torQ88o5eQXut0HSsMDmZ/DNnMP7pLc9CCPE0ky0fn5Bt27axbNkydDodRqMRtVrNG2+88Vj6SkxMJCwsDIArV65gY2NDtWrVsLCwYP369Q/U1gcffMDYsWOpW7fufddRq9XExsbetTwmJobDhw/Trl07tm3bxvLly8v02bx5c4YOHXrH+m5ubiQmJt53PEKIZ9O5uCTMfkkr+WCmwGlAc3J2fsPNX38FwNLFhQbh4SirVKnAKIUQ4tGQpP0JSE9P59NPPyUmJgZ7e3vy8/MJDQ3lhRdeoFu3bo+8Pzc3N1PSHB4eTseOHQkODn6otuLj4xkzZswD1SkvYb+dv78/ERERZGdn4+DgAEBhYSF79+41fekQQog/M+iLWbM9gfpJRTgpFaj0RjAYSd90nAOXk7hSzQYrTT4t0lKptn8/Dr16VXTIQgjxl0nS/gTk5OSg1WopKioCoEqVKkRERGBpaYmvry8rV66kXr16xMfHExUVxapVqwgNDaVZs2b88ssvaDQaJk2axEsvvUR4eDi5ublcunSJiRMnotFo+OqrrygqKqK4uJiPP/6Ytm3b3jWWZcuW8f3336PX63nppZeYOHEiaWlpjB07FldXV06fPo2DgwMLFixg3bp1ZGRk8Oabb7J69WouXbrErFmz0Gg02Nvb89FHH9GgQQNCQ0OpVq0a586dY/78+QQGBpKYmEh6ejqTJk3ixo0bZGRkEBQUxPjx402x2Nra0r17d7Zu3UpoaCgAu3btwsvLC3t7e7777ju++uorFAoFLVu25MMPP6SKzJgJ8Vy7mX2aQ7/t5XJ1Py561cJcp8P7aAaOOUXszDvB5Wq2JedVqc6vuYk4nj+PQwXHLIQQj4KsaX8CmjVrRrdu3ejevTv9+vVj9uzZGAwGGjRoUG69mzdvsmHDBubOnUt4eDjFxcUAVK9ene+//55XXnmF6OhoPv/8czZt2sQbb7zBsmXL7tregQMHSEhI4Ntvv2Xjxo2kp6ezadMmAM6cOcPw4cPZvHkzdnZ2xMXF8eabb+Lo6MiyZcuoUqUK//znP/nwww/ZtGkTgwYN4p///KepbTc3N7Zv307z5s1NxzZv3kyfPn1Yt24dcXFxrFixgmvXrpWKKSQkhM2bN5s+b9y4kX79+pGYmMjnn3/OqlWriIuLw9ramqioqPsfdCHEM+nKmTUcU76CXmEBgFal4tdmDhQYNVw2lv79UmRThws3cysgSiGEePQkaX9Cpk+fzp49exg8eDB//PEHAwYMYMeOHeXWGTBgAADNmzenVq1apnXcHh4eAJiZmbF48WJ+/PFHFixYwIYNG8jPz79rewcPHuTkyZMEBwcTFBREQkICSUlJADg4ONCiRQsAXF1duX79eqm6ycnJ2NnZmfr29/fn8uXL3Lhxo1RMtxs5ciR16tRh+fLlzJo1C61WS2FhYalzOnToQE5ODikpKWRmZpKcnEznzp05cuQIPj4+2NvbAzBw4EAOHTpU7ngJIZ5tRqOBoqJcihSl77hdrwLft/sJMP6pgoGaLzR5cgEKIcRjJMtjnoB9+/ZRUFBAr169CAkJISQkhHXr1vHtt98CYDSW/EOj0+lK1VMqlaafDQYDKlXJH5eVlRUA+fn59OvXj759+9KhQwfc3NxYvXr1XePQ6/UMGzaM4cOHA5CXl4dSqSQnJwdLS0vTeQqFwhTT7f3/mdFoRK/Xl4rpdhEREaSkpNCnTx+6d+/Ozz//XKZdhUJBYGAgmzdvxsrKCrVajZmZWZn+jEZjmfERQjxfFAozqtd0xznvLH+ompmO51kc50a9P7DKtMXygnXJQaOBGgozOgc93PM8QghR2chM+xNgZWXF3LlzSU1NBUoS0NOnT9O8eXPs7e1Ns927d+8uVW/r1q0AnDp1iry8PJo2bVqqPDk5GYVCwahRo/D09GTnzp2mJPpOvLy8iI2NJT8/H51Ox5gxY9i+fXu5sSuVSvR6PY0aNSI3N5eTJ0+aYnN2dqZ69ep3rfvTTz8xcuRI/P39uXjxIunp6XdM/oOCgti5cyfbtm0zPTDbsWNH9uzZQ25uLgDr1q3D09Oz3FiFEM8+55ZDebXWdVoqfqOu+XWcq6VyQ7kTAGV7I30H+dGldVsGBfTj3TlRWNw2ISGEEE8zmWl/Ary8vBg7diyjRo1Cq9UC8PLLLzNmzBjatm3LjBkziIqK4qWXXipVLyUlhaCgIADmzZtXauYdStbKN2/eHH9/fxQKBS+99BJHjx69axy+vr6cOXOGAQMGoNfrefnllwkKCiItLe2udV555RXefPNNvvzyS+bNm8eMGTMoLCykWrVqzJs3r9zrfuuttwgLC8PKyoratWvj7u5u+uJyuzp16mBvb4/BYKBevXqma3vrrbcIDQ1Fq9XSsmVLpk+fXm5/Qohnn1JljUuzfrjcdqxP0QtkajJoYtsUK6UVlF2tJ4QQTz2F8c/rFUSlEBoaytixY2V2+S/QaDQkJCTg7u5eavlPRTl69Cjt2rWr6DCeOTKuj4eM66MnY/p4yLg+HjKuj969xvReeYssjxFCCCGEEKKSk+UxldSqVasqOgQhhBBCCFFJyEy7EEIIIYQQlZwk7UIIIYQQQlRykrQLIYQQQghRyUnSLoQQQgghRCUnSbsQQgghhBCVnCTtQgghhBBCVHLPTNK+bds2goOD6du3LwEBAXz55ZePra/ExETUajVqtZqOHTvyyiuvoFar6d+//wO39cEHH5T7RtI7UavV5ZbHxMQQHh7O+vXrGTly5B37XLly5V3ru7m5mdrx9PQkKyvLVJaamoqvr2+5/aekpDBp0iQABg8ezJYtW0qVFxQU4OnpybVr18pt589u3LjBmDFjHqiOEEL8mUanY9u5FL46dYU9l3PR6g0lx0/u4ua3M8nd/h9O7d7FlQtnKjhSIYT4n2din/b09HQ+/fRTYmJisLe3Jz8/n9DQUF544QW6dev2yPtzc3MjNjYWgPDwcDp27EhwcPBDtRUfH//Aieitvu/F39+fiIgIsrOzcXBwAKCwsJC9e/cSFhZ2X23k5+fzr3/9i8WLF993fH/88QcpKSkAhISEEBcXR+/evU3lO3bswNPTkxo1atx3mwDXr1/n9OnTD1RHCCFuV1yYRfSxBC4rGgM6Um/eIPHaJWrm78Dt2E8UJTvzU+5RDIaSyQqX5p3pPyEChUJRsYELIZ57z8RMe05ODlqtlqKiIgCqVKlCREQETZo0wdfXl9TUVKAkQQ4NDQUgNDSUWbNmERQURK9evfjxxx+BkiR81KhR+Pv7s2fPHr7//nsGDBhA37596dmzJ7/++mu5sSxbtoygoCD69u1LZGQkRqOR1NRUAgMDmThxIn369GHYsGHk5uaybNkyMjIyePPNN8nJyeH48eP079+fvn37MmzYMC5dumSKdezYsfj5+XH69GnTTHh6ejojR45kwIABvPLKKyxYsKBULLa2tnTv3p2tW7eaju3atQsvLy/s7e357rvv6NOnDwEBAYSHh5Ofn1/mevz8/Lh06RJxcXFlygoLC3nvvfdMbWzcuBGAmTNnkpCQwPTp0/H39+fXX38lNzfXVG/Tpk2EhISQn5/P+++/T3BwMGq1ms2bNwMlM/z/+Mc/GDFiBD169GDatGmmdjMyMmS2XQjx0DLObyaFF0ody71RjbY7OqLLDmGvthpZDo3JqdWRIuvapJz+mZQz5f/eF0KIJ+GZSNqbNWtGt27d6N69O/369WP27NkYDAYaNGhQbr2bN2+yYcMG5s6dS3h4OMXFxQBUr16d77//nldeeYXo6Gg+//xzNm3axBtvvMGyZcvu2t6BAwdISEjg22+/ZePGjaSnp7Np0yYAzpw5w/Dhw9m8eTN2dnbExcXx5ptv4ujoyLJly6hSpQr//Oc/+fDDD9m0aRODBg3in//8p6ltNzc3tm/fTvPmzU3HNm/eTJ8+fVi3bh1xcXGsWLGizJKTkJAQUzIMsHHjRvr160diYiKff/45q1atIi4uDmtra6Kiospck7m5OZ988gkRERGllskALFq0CHt7ezZv3syKFStYtGgRZ86cYcqUKbi7u/Ovf/2LKlWq0K1bN7Zt2waUfNG4ePEiL730EkuXLqVly5bExMSwevVqPv/8c9MM/bFjx1i4cCGbNm1i7969JCYmMmXKFBwdHR9o1l8IIW6nK8rCxphb6lgVjQaAPJ0116soMCotMCgtya/mik5Vhfzc7AqIVAghSnsmknaA6dOns2fPHgYPHswff/zBgAED2LFjR7l1BgwYAEDz5s2pVasWiYmJAHh4eABgZmbG4sWL+fHHH1mwYAEbNmy442z0LQcPHuTkyZMEBwcTFBREQkICSUlJADg4ONCiRQsAXF1duX79eqm6ycnJ2NnZmfr29/fn8uXL3Lhxo1RMtxs5ciR16tRh+fLlzJo1C61WS2FhYalzOnToQE5ODikpKWRmZpKcnEznzp05cuQIPj4+2NvbAzBw4EAOHTp0x+tq1aoVISEh/Otf/yp1/NChQ/Tr1w+AGjVq0K1bNw4fPlymfnBwsOmLQ1xcHH379kWpVPLzzz8THR2NWq3mb3/7GwUFBZw7dw6ANm3aYGtri7W1NS4uLmXGSwghHkZVx7a0Kd6GubHkzqyFoZB2v+UAcNWYU+Z8vXUtXvDo9ERjFEKIO3km1rTv27ePgoICevXqRUhICCEhIaxbt45vv/0WAKPRCIBOpytVT6lUmn42GAyoVCXDYWVlBZSs5+7Xrx99+/alQ4cOuLm5sXr16rvGodfrGTZsGMOHDwcgLy8PpVJJTk4OlpaWpvMUCoUpptv7/zOj0Yhery8V0+0iIiJISUmhT58+dO/enZ9//rlMuwqFgsDAQDZv3oyVlRVqtRozM7My/RmNxjLjc7uxY8eWSr5v1blbvLfr0KEDmZmZXLlyhU2bNplm9A0GA7Nnz6Zly5YAZGVlUa1aNeLi4u45XkII8TBquPhge6UQt5T15Oid6ZhcE+uCqgA4KqqXOb/3a2OwqlL1CUcphBBlPRMz7VZWVsydO9e0dt1oNHL69GmaN2+Ovb29abZ79+7dperdWut96tQp8vLyaNq0aany5ORkFAoFo0aNwtPTk507d94xKb3Fy8uL2NhY8vPz0el0jBkzhu3bt5cbu1KpRK/X06hRI3Jzczl58qQpNmdnZ6pXr37Xuj/99BMjR47E39+fixcvkp6efsfkPygoiJ07d5p22AHo2LEje/bsMa01X7duHZ6ennfty8LCgk8++YTPP/+81PXe+mJ07do1du/eTceOHVEqlWW+AAQGBrJ06VKqVatG/fr1TfW/+eYbADIyMujbty9Xrly5awwqlarcLxZCCHEvCoWCVm38ib0QxPrjbVh2vTbnVXqKakAr/7Z0atQIczMzrCwt6dWrF607eFV0yEIIATwjM+1eXl6MHTuWUaNGodVqAXj55ZcZM2bM/7V351FV1/kfx5/3IsjgBrjhiqmJJpqCNi64oC2iLENoEg025l6ay0/M0kkUmTGttNJGbTwtZi6ZG1opatqUpuaS6bgwoyi4ACoosXP5/v5wvMmogKXcS/N6nOM593u/n+/n8/68u93zvp/7uV/w8fEhJiaG+fPn4+fnV+y6pKQkQkNDAZg7d26xlXe4vle+VatWBAQEYDKZ8PPzY//+/XeMo1evXhw/fpynnnoKi8VCt27dCA0NLfGWjj179mT48OH8/e9/Z+7cucTExJCTk0ONGjWYO3duifMeMWIEkyZNwtnZGQ8PD7y9va0fXG5Wr1493NzcKCoqomHDhta5jRgxgsjISAoKCmjdujXTp08vcbw2bdrw7LPPWn+U+sILLxAdHU1QUBAWi4WRI0fSunVr0tPTyczMJCoqijlz5gDXt8j06tWL2NhYa3+jR48mOjqawMBALBYLUVFRNG7cmO+///6249esWZP69esTGRnJ0qVLS4xVROROnJ3MzB3VnC/3XSE7z4KXjzeeda9/mxnUpRmBhqG7xYiI3TEZ/6P7Dm7ckaWk1WWp2PLy8jhy5Aje3t7FttvYyv79+/H19bV1GL85yuv9obzee8rp/aG83h/K671XWk5Lq1t+E9tjRERERER+y34T22N+CW2vEBEREZGKQivtIiIiIiJ2TkW7iIiIiIidU9EuIiIiImLnVLSLiIiIiNg5Fe0iIiIiInZORbuIiIiIiJ37n73lo4iIiNhOVq4Fswl+V7n4XyPPLsjm+707uZxpIb9BE1q416O2kUP9+vUxm7XWKP+7VLSLiIhIuSkqMpi/Ppkt31/BZDLxh661GBJQ33r+4AdbMPIacNSnLsZPJk7+lE3h2WOYDr9Dt4eb0y3oKS6d3kB2xr9xcW0GRU1tOBuR8qOiXURERMrNP45k8MXeK/85Mlj9dRq+LarRrlk1Lp07j0eyG/GP1MAwmazXODTyIvfYHr7ZtZuaVf+Fk9NVAPKzL+LkmAx0Lf+JiJQzFe1S7goLC4mOjiYhIYFLly7h5eVFw4YN8fDw4LnnngNgzJgxBAcH06ZNGyZOnMjVq1dp0aIF+/bt4+uvv7bxDERE5Jc6fSHX+vhhhxM0cTjP5RPZ0KwzTianEq+1ODhTqVIG8HNBby5Iuk+RitgXbQ6Tcnfw4EEcHR1ZuXIl8fHxZGZm4uHhwcaNGwH46aefOHjwID169CA2NpaAgADi4uLo06cPKSkpNo5eRER+Dd8W1QAY6LSZl1w+ZGDleHwOzSTv0Gaq169FdkMLLROvYjIM6zWW5JOQn0Pl3DTy84rvgTccXMszfBGb0Uq7lLuOHTvi6urKsmXLOHXqFImJibi5uZGfn8+ZM2c4ePAgvXr1wsnJiW+//Za//vWvADz22GNUr17dxtGLiMiv0eaBqkwIrUfbrbuKPZ/73Woqt3uC1n/qyem5H+G7LY0Tdd3J/Ok4xrnvqZKbQs3KFuq1fIafUjZRkHsFR2d3Mh272WgmIuVLRbuUu23btvH2228zaNAgnnzySdLT0zEMg+DgYD7//HMOHjzI8OHDAXBwcMC4abVFREQqvkd93cjYYYbCW8+ZHc00ejaAa68vIimlDU6m2hhGLx542Jk+Qx7H7FAJo3lnCnLTcXR248CBg+U/AREbUNEu5W737t0EBAQQFhZGUlISe/bsoXPnzgQFBTF8+HDy8/Px9fUFoHPnzsTFxREREcHOnTu5du2ajaMXEZFfy+TgiPMjIeTuWmV9zrlTf+tjp7p1affaVJqdTuZCahHV61anXlP3n683mXH6Xc1yjVnE1lS0S7kbMGAAEydOZNOmTTg6OuLj40NycjL16tXDzc2N9u3bY/rPXQOmTJnCSy+9xKpVq2jZsqW2x4iI/Eb8ruezVGrUmsKL/8LR82EqNWxV7LzJbKZ6s8ZUb2ajAEXsjIp2KXdeXl7ExcXd9txHH31U7Hjz5s1MnTqV5s2bc/ToUU6ePFkeIYqISDlwbNYBx2YdbB2GSIWgol3smqenJxMmTMBsNlO5cmViYmJsHZKIiIhIuVPRLnatR48e9OjRw9ZhiIiIiNiU7tMuIiIiImLnVLSLiIiIiNg5Fe0iIiIiInZORbuIiIiIiJ1T0S4iIiIiYud09xgREbmnrhZkcODgLpyTTDTybEoDnxaYzCaK8vPJPHAAioqo5uOD2dnZ1qGKiFQYNl1pT05Oxtvbm5CQkGL/li1bdtv2X331Fe+//z4Ay5cvZ/ny5b86hpv7LKvIyEj27NnD9OnTCQkJoW/fvsXm8dlnn/3isdasWcPkyZMBmDx5MmvWrCmx/apVq9i4ceNdxQ+wY8cOwsPDCQ4OJjAwkHnz5lFUVHTX/dzOlClT+PHHH+94Pjk5mV69enHmzBk6duxIXl5esfNr165l9OjRd7z+Rv5FxP7kWnLZsHEZjTdVoc5hF3LiLrI1/jgffvtv3ly8lg9WxfH9Bx9w6s9/xvLTT7YOV0SkwrD5SnudOnVYv359mdoeOXLE+vjpp5++J+Pf3OfdmjZtGnC9CB00aFCp8/g1Y93JgQMHeOSRR+7qmq+//poZM2awZMkSHnjgAXJzcxk3bhxvv/0248aN+9UxxcbGlqmdp6cnLVq0YMeOHTzxxBPW59etW8fgwYN/dRwiUv5+vPoDLf/VyHq8v1VNEqpXvX7g24Vr1Suz7dhenrh8ieSP4+k5MtRGkYqIVCw2L9pvp6CggFdeeYWEhAQAIiIi8PHxYcWKFQDUr1+f8+fPAzBmzBi6du1K7969OXz4MLVq1SIsLIylS5dy8eJFZs2axSOPPMLevXuZO3cuubm5XLt2jZdffpkmTZoU67NPnz7MmDGDhIQELBYLw4YNIzAwkPz8fKZMmcKRI0do0KAB6enpJcZ/+vRpXn31VTIyMnBxcWHKlCm4uLgUG8vPz49XXnmFzMxMUlNTCQ0NZezYsXfss1evXgQHB/PNN9+Qk5PDa6+9xrVr19i+fTvfffcdtWvXZtOmTWRkZHDmzBmioqLIy8vj/fffJzc3l/z8fP7yl7/g4+PDwoULGTVqFA888AAAzs7OREdHc+rUKeD6SnaNGjVISEhg3rx57N+/n/Xr15OTk4OjoyNvvPEGTZs2vW1M3t7eREZGMnr0aHx9fYmOjiYhIYFLly7h5eXFm2++WWxeTz75JBs3brQW7RcvXiQxMZFu3bpx6NAhYmNjycvLw83NjRkzZuDp6XlXryURKR/5OZcosuThZK5Mjvn6t3YG8O+G1Yq1q9T4IQqP7+X47yqTe/Qizseu0qlVDRtELCJSsdj8h6ipqam3bI85ePAgV69eZd26dSxatIjvv/+e5s2bEx4eTnh4OGFhYcX6uHTpEt27d2fdunXk5eWxdetWPvnkE8aMGcOHH34IwMcff8zMmTNZu3YtM2fO5K233rqlz7/97W+0bt2aNWvWsGzZMhYuXEhSUhJLly4F4IsvvmDq1KmcPXu2xDlFRUURGRlJXFwcL7/8MmPHjqVx48bFxtq4cSOBgYGsWrWKuLg4PvzwQ65cuVJiv66urqxevZrw8HAWLVpEly5d6NWrFy+++CLdunWztvniiy/o2bMnK1asYOHChWzYsIGhQ4eyePFiAI4dO8ZDDz1UrG8PDw+6dOliPfby8mLz5s00atSIrVu3snTpUjZu3EjPnj2LbV/675hudvDgQRwdHVm5ciXx8fFkZmayc+fOYm0CAgLYt28fmZmZAGzYsIGQkBAsFgsTJkzgz3/+Mxs2bCA8PJwJEyaUmB8RsY3zxz7mX99O5dR3MVRPiCexzQWKKMIEOBYaxdoaBde3wxUUZWNUhYMJ2iIjIlIWNl9pv932mPT0dE6fPs2QIUPo3r07kyZNKrWf7t27A9CgQQN8fX2B6yva165dA2DOnDl89dVXfPnll/zwww9kZWXd0seuXbvIzc217knPzs4mISGBvXv3MnDgQACaNGlC+/bt7xhHVlYWZ8+e5fHHHwegXbt21KhRw7qKfcOQIUP47rvvWLJkCQkJCRQUFJCTk1PiHG8U5g8++CBbtmy5bZu2bdsCYDabWbBgAdu3b+f06dPs3bsXs/n6ZzSTyUTlypVLHOtGP1WrVuWNN95g06ZNJCYm8o9//INWrVqVKaaOHTvi6urKsmXLOHXqFImJiWRnZxdr4+Ligr+/P1u2bCEsLIwNGzYwf/58EhMTqV69ujWOgIAAXn31VWtxLyL2ISs9gYxz31iPc67+m94tQklpVgPjbC5+tZ3ZdjUfTCaMoiIKj+/FoTCb5o7n2engjn/939kwehGRisPmK+234+bmxqZNm/jjH//I6dOnCQ0NtRbfd+Lk5GR97ODgcMv5iIgIDh8+jLe3NyNHjrxtH0VFRcyZM4f169ezfv16Vq1aRbdu3TCZTBjGz6tFlSrd+bPOze1ufs5isRR7btasWSxdupT69eszatQo3NzcbnvtzW4U2iaT6Y5tnP9zN4asrCz69+9PcnIyHTt2JDIy0trG29v7lv31p0+fLvbh6EY/Fy5cYODAgWRmZtK9e3dCQ0OLxVlSTNu2bWPixIk4Ozvz5JNP0rFjx9vO8cY3D0ePHsXV1ZUmTZrc9kext8ujiNhWQe7lW54rzE3Hu5kPbfy70KW1B6MerkOdH9fitPplqhxdS8OMA1Sq1hSPdp3o7eNmg6hFRCoeuyzat23bRlRUFD179mTq1Km4uLhw4cIFHBwcKCwsvOv+MjIySExMZOzYsXTv3p1t27ZZi7+b++zUqZP1jjSpqakEBwdz4cIFOnfuTFxcHEVFRZw7d44DBw7ccayqVavSsGFD66rzoUOHuHTpEg8++GCxsb799luGDBlCQEAAp0+fJiUl5RfdvcXBweG2hWxiYiImk4mRI0fy+9//nvj4eGu7oUOHWlez4XqBP2vWLOrVq3dLPz/++COenp786U9/ok2bNmzdurXMhfPu3bsJCAggLCyM6tWrs2fPntte26FDB1JSUvjkk0+sW5+aNm1KRkYGhw8fBuDzzz+nfv36uLq6lmlsESkfVWu2xuxw860bTVSv61usTa0qzgwfOpqBz73IH0IGEDHpLfymvM3Y/p44mO+8CCEiIj+z+faYG3vab9auXTucnZ3p168flStXJjg4GC8vL65du8ZLL71ErVq17moMV1dX+vfvT79+/ahUqRKdOnUiNzeX7OxsOnbsaO1z9OjRREdHExgYiMViISoqisaNGxMREUFCQgIBAQE0aNCAFi1alDjenDlziI6O5p133sHR0ZF33nkHJyenYmONGDGCSZMm4ezsjIeHB97e3iQnJ991/rp06cKbb75JtWrFf+zVsmVLWrVqRUBAACaTCT8/P/bv3w9c30o0fvx4xo8fj8ViobCwkD59+tz2Notdu3Zl+fLl9O3bF8Mw6Nixo/UHwqUZMGAAEydOZNOmTTg6OuLj43PHOYaEhPDee+8xdepU4Po3J3PnziUmJoacnBxq1KjB3Llz7yY1IlIOKjlVw9N3ApfPbMZSmIt7g25UcXvwlnYms5kH2nSCNp1sEKWISMVnMkrbkyFSQeXl5XHkyBG8vb1L3cNfHvbv32/9vYXcO8rr/aG83nvK6f2hvN4fyuu9V1pOS6tb7HJ7jIiIiIiI/ExFu4iIiIiInbP5nnaR++XGzq/8/HwbR/KzvLw8W4fwm6S83h/K672nnN4fyuv9obzeeyXl9Ea9cqed69rTLr9ZmZmZnDx50tZhiIiIiJRZixYtbrnBCKhol9+woqIisrKycHR0LPHe9iIiIiK2ZhgGBQUFVKlSxfoHMW+mol1ERERExM7ph6giIiIiInZORbuIiIiIiJ1T0S4iIiIiYudUtIuIiIiI2DkV7SIiIiIidk5Fu4iIiIiInVPRLiIiIiJi51S0i9xjcXFx9O3bl8cff5xly5bdsd2kSZNYs2ZNOUZWsZWW161btxISEkJwcDDPP/88V69etUGUFU9peY2PjycoKIh+/foxefJk65/Zljsr63vAjh076NWrVzlGVrGVltf58+fj7+9PSEgIISEhJeZeristp6dOnSIyMpLg4GCGDBmi99UyKimvx44ds75GQ0JC6NatG4GBgWXr2BCRe+bixYuGv7+/kZ6ebmRlZRlBQUFGQkLCLW1GjBhhtG3b1vjss89sFGnFUlpeMzMzja5duxoXL140DMMw5s2bZ8TExNgq3AqjtLxmZWUZfn5+RlpammEYhjFu3DhjxYoVtgq3QijLe4BhGEZaWprRp08fw9/f3wZRVjxlyeuIESOMAwcO2CjCiqe0nBYVFRmPP/64sXPnTsMwDGPOnDnG7NmzbRVuhVHW9wDDMIzs7GyjX79+xr59+8rUt1baRe6hXbt20alTJ1xdXXFxceGJJ57gyy+/LNYmLi6O3r17ExAQYKMoK57S8lpQUMC0adOoW7cuAF5eXly4cMFW4VYYpeXVxcWF7du3U6tWLXJycrh8+TLVq1e3YcT2ryzvAQBTp05l9OjRNoiwYipLXo8cOcKiRYsICgpixowZ5OXl2SjaiqG0nB49ehQXFxe6d+8OwMiRI3nmmWdsFW6FUdb3AIBFixbRsWNHOnToUKa+VbSL3EOpqanUrl3belynTh1SUlKKtRk6dCgDBgwo79AqtNLy6ubmxmOPPQZAbm4uixcv5tFHHy33OCuasrxeHR0d2blzJz179iQ9PR0/P7/yDrNCKUtOP/roIx566CEefvjh8g6vwiotr1lZWbRq1YqoqCjWrl3LtWvXePfdd20RaoVRWk7Pnj1LrVq1eOWVVwgNDWXatGm4uLjYItQKpSzvAQCZmZmsWrXqrj68q2gXuYeKioowmUzWY8Mwih3LL1PWvGZmZjJ8+HBatmxJaGhoeYZYIZU1rz169GDPnj34+/sTHR1djhFWPKXl9OTJk2zZsoXnn3/eFuFVWKXltUqVKrz33ns0a9aMSpUq8dxzz7Fz505bhFphlJbTwsJC9u7dy9NPP83atWtp1KgRs2bNskWoFUpZ31c3bNjAo48+Ss2aNcvct4p2kXvIw8ODtLQ063FaWhp16tSxYUS/DWXJa2pqKhEREXh5eREbG1veIVZIpeU1IyODb775xnocFBTEiRMnyjXGiqa0nH755ZekpaURFhbG8OHDra9bKVlpeT1//jyrV6+2HhuGQaVKlco1xoqmtJzWrl0bT09P2rRpA0BgYCCHDx8u9zgrmrLWAVu3bqVv37531beKdpF7qEuXLuzevZsrV66Qk5PDli1brPsB5ZcrLa8Wi4WRI0cSEBDAlClT9O1GGZWWV8MwiIqK4vz588D1gtPHx8dW4VYIpeX0xRdfZPPmzaxfv57FixdTp04dPvnkExtGXDGUlldnZ2fmzJlDUlIShmGwbNky65Y5ub3Sctq+fXuuXLnC8ePHAdi+fTutW7e2VbgVRlnqAMMwOHr0KO3bt7+rvvUxVOQeqlu3LuPHj2fQoEEUFBTQv39/2rZty7Bhw3jxxRetKxZyd0rL68WLF/nnP/+JxWJh8+bNAHh7e2vFvRRleb3GxMQwYsQITCYTzZs3Z/r06bYO267pPeD+KEteZ8yYwahRoygoKMDHx4fBgwfbOmy7VpacLliwgKlTp5KTk4OHhwezZ8+2ddh2ryx5vXLlCo6OjlSuXPmu+jYZhmHcp7hFREREROQe0PYYERERERE7p6JdRERERMTOqWgXEREREbFzKtpFREREROycinYRERERETunol1ERMqNl5cXQUFBhISEFPuXnJz8i/qbPHkyS5YsKbHNtm3bmDlz5i/q/3aWLFnC5MmTiz1XVFTEo48+yqZNm25pHxMTc1fjv/XWW6xbt+7XhikivzG6T7uIiJSrDz/8EHd393Ibr3fv3vTu3fu+jmE2mwkPD2f16tX069fP+nxubi5xcXGsWLGizH2NHTv2foQoIhWcinYREbELa9euZcGCBaxfvx6TyURYWBgjRoygXr16vP7669SvX59Tp07h7OzMrFmzaNasWbHrV69ezcqVKykoKODq1asMGzaMiIgI1qxZw+bNm1m0aBGRkZG0a9eOAwcOcOHCBTp37kxMTAxms5kDBw7w+uuvk5OTg9lsZvTo0fj7+1NQUMDMmTPZtWsXNWvWpGbNmlSrVu2W+MPCwpg/fz7nzp2jQYMGAHzxxRd4e3vTpEkTZs6cyQ8//EBWVhaGYTBz5kx8fX2ZPHkyGRkZJCUl0bNnTy5fvsyDDz7IkCFDSpxTfHw8ZrOZM2fO4OzszGuvvUazZs1IS0tj2rRpnDp1yvphYtCgQWRmZhIbG8vJkycpKCigc+fOTJo0iUqVVAqIVAT6P1VERMrVs88+i9n88+7Mhg0bsmDBAkJDQ/nmm2+YM2cO+fn5dOjQgT/84Q/s2bOHI0eO8NJLL9GhQweWL19OVFQUa9assfaRlZXFp59+yuLFi3Fzc+PQoUMMHjyYiIiIW8Y/e/YsS5cuJTs7m4CAAPbu3UurVq14+eWXWbJkCQ0bNiQlJYWnnnoKLy8v4uPjSUxMZNOmTRQWFvLHP/7xtkW7m5sbffr0Yc2aNYwZMwaAlStXMnToUH744QdSU1NZuXIlZrOZxYsX89577+Hr6wtcX5G/sbXmxtab0ua0b98+Nm7ciIeHBzExMSxevJjXXnuN6dOn06RJE959910yMzN5+umn6dGjBwsXLqR169bMmjULi8XC5MmTef/99xk2bNg9+i8rIveTinYRESlXJW2PmT59OiEhITg7Oxcrylu2bEmHDh2A6yvaM2bMID093Xq+SpUqLFy4kJ07d5KYmMjx48fJzs6+7Rj+/v6YzWaqVq2Kp6cnV69e5dChQ6SlpfHCCy9Y25lMJk6cOMHu3bsJDAzEyckJJycngoKCOHHixG37joiIYNy4cbzwwgucOnWK1NRU/P39cXBwoEaNGqxYsYKkpCT27NlDlSpVrNfdKN5vVtqcWrdujYeHBwAPPfQQ8fHxAOzatYuoqCgAqlWrxsaNGwHYsWMHP/74I6tXrwauf1AQkYpDRbuIiNiNy5cvk5eXR35+PqmpqTRq1AgABweHW9re/NzFixcZOHAgTz31FL6+vvTp04evvvrqtmM4OztbH5tMJgzDwGKx0KxZMz799FPruZSUFNzd3Vm5cuUdx/1vbdu2xc3Njd27d7Njxw7Cw8NxcHBgx44dxMbGMnjwYHr37k3Tpk3ZsGGD9ToXF5db+iptTrebB0ClSpUwmUzWc0lJSbi5uVFUVMRbb71l3VZ07dq1Yu1ExL7p7jEiImIXCgoKmDBhAmPHjmX06NGMHz+egoICAI4fP87x48eB61tO2rdvT/Xq1a3XHjlyBHd3d55//nn8/Pysxa3FYinT2O3atePMmTPs27cPgGPHjvHEE0+QkpJCt27dWLduHXl5eeTl5fH555+X2NczzzzD2rVriY+Pp3///gB8++23+Pv7ExERgbe3N1u3bi01tl86p86dO/PZZ58BkJmZybPPPktiYiJ+fn588MEHGIZBfn4+o0aN4uOPPy5TfkTE9rTSLiIi5eq/97QDTJgwge+++45atWoxYMAAALZu3crcuXPp0aMHtWrVYt68eZw7dw53d3dmz55d7PquXbuyevVq+vTpg8lk4pFHHsHd3Z0zZ86UKSZ3d3fefvttZs+eTV5eHoZhMHv2bBo2bEh4eDhnz54lMDAQV1dXPD09S+yrX79+zJ49mx49eli3AYWHh/N///d/BAUFUVhYSNeuXdmyZQtFRUV37OeXzunVV18lOjqaoKAgDMNgxIgReHt7M2XKFGJjYwkKCqKgoIAuXbowdOjQMuVHRGzPZNz4Pk1ERMQO7dmzh5iYGOvebBGR/0XaHiMiIiIiYue00i4iIiIiYue00i4iIiIiYudUtIuIiIiI2DkV7SIiIiIidk5Fu4iIiIiInVPRLiIiIiJi51S0i4iIiIjYuf8HiD7w+elCdUgAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 720x4320 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for plotting Figure 3 Supplement 2\n",
    "sns.set_theme(style=\"whitegrid\", palette=\"muted\")\n",
    "f, ax = plt.subplots(figsize=(10, 60))\n",
    "sns.stripplot(data=cv, x=\"EV\", y=\"Label\", hue=\"fold\", ax=ax);\n",
    "ax.set(ylabel=\"Brain ROI\", xlabel=\"Explained Variance\");"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "figure: Figure 3—figure supplement 3.\n",
    ":::\n",
    "![](elife-72904.xml.media/fig3-figsupp3.jpg)\n",
    "\n",
    "## Per site explained variance across the different test sets.\n",
    ":::\n",
    "{#fig3s3}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 129,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the files containing evaluation metrics for each site across all test sets\n",
    "full_per_site_ev = pd.read_csv('docs/blr_controls_full_site_metrics.csv')\n",
    "qc_per_site_ev = pd.read_csv('docs/blr_site_metrics_qc.csv')\n",
    "pt_per_site_ev = pd.read_csv('docs/blr_site_metrics_pt.csv')\n",
    "transfer_per_site_ev = pd.read_csv('docs/blr_site_metrics_OPNtransfer.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 130,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Exclude outliers for plotting purposes\n",
    "full_per_site_ev = full_per_site_ev.query('EV > -1')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 131,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0, 0.5, 'Site')"
      ]
     },
     "execution_count": 131,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 2280x1520 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAW1CAYAAABBEmh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZhcVZ3/8fe599bee/YVCIQEZBEB2VQgsgnjMqMDjoiAqDO4oL9RVBTBYWZYnmFkFAZXEAkMosiAbLIYHILIYtgCIQGyd5Lel9rvcs75/XGrK91JJ+lOOl1dxXk9T3joqlu37r3d/e1T557zOUJrrTEMwzD2OqvSB2AYhvFOYQquYRjGODEF1zAMY5yYgmsYhjFOTME1DMMYJ6bgGoZhjBNTcI0hMpkM//mf/8lRRx1FY2MjqVSK9773vfzsZz9DKbXX37+jo4NcLjdm+zvppJPYd999x2RfnuexadOmMdnXjqxZs2aX2wghdvnvvvvuY926dViWxVlnnbXT/d10000IIXjggQfG6jTGnRCCCy64YMhjI7mW482p9AEYE8eqVav4yEc+wtq1azn33HO58MILKRaL3H///fzjP/4jTz31FIsXL0YIsVfe/5FHHuFTn/oUL730EqlUaq+8x+5av349p512Gpdddtl2v9hj5fTTT2fGjBncdtttu9x24cKFfPe7393h80cddRSzZ8/mhBNO4PHHH6evr4+mpqZht/31r3/NpEmTOOOMM3bzyCtv8eLF7L///uWvf/nLX/LFL36RQqFQwaMahjYMrXWhUNALFizQLS0t+pVXXtnu+S9+8Ysa0D/84Q/32jFceeWVGtBr164ds32eeOKJep999tnj/Tz55JMa0L/85S/3eF87Aujzzz9/RNudeOKJI9rnj3/8Yw3oX/3qV8M+v3HjRi2E0F/84hdHcaQT3/nnn68nYnkzXQoGADfffDOrVq3ihhtu4LDDDtvu+euvv57m5mZ+8pOfVODojN119tlnE41G+e1vfzvs83fffTdaaz796U+P85G9Q1W64hsTw9FHH63r6uq053k73ObNN9/UrusOeeypp57SH/zgB3UqldKpVEqffPLJ+v/+7/+GbLPPPvvof/zHf9SLFy/WBx98sI7FYvqAAw7QN910U3mbgRbJwL+BFtyJJ56oTz/9dP3d735Xp1IpPWXKFP3qq69qrbV+9dVX9Uc/+lHd2Nio4/G4PuaYY/T//u//DnnvbVu4xWJRf/WrX9X77befjkajevbs2fqLX/yi7unp2eF5//KXvxxybIN/bXp6evSXv/xlPXPmTB2NRvXChQv1f/3Xf2ml1JB9/PjHP9aHHnqoTiQSuqWlRX/sYx/Tr732mtZa67Vr1263/yeffHKHx8MoWrhaa/2Rj3xEx2Ix3d/fv91zRx99tN5///13+vqB1v1DDz2kzz//fF1fX68nT56sL7zwQt3Z2TlkWymlvv766/WCBQt0NBrVM2fO1JdccsmQ9x7Y32233aYPOeQQHYvF9IUXXrjD9//Tn/6k3//+9+vGxkadSqX08ccfr3//+98P2YZBnw5OPPHEIddy8KeGZ555Rp9yyim6rq5O19XV6VNPPVU/99xzOz3/sWQKrqGVUtpxnFH9Emut9f33368ty9Lz58/X1157rb722mv1/vvvrx3H0ffff395u3322UfPnTtXNzc36yuuuELffPPN+vDDDy//Emsd/iL87d/+rQb0DTfcoB977DGtdfjLk0ql9Lx58/TNN9+sL730Uh0EgX7++ed1MpnU06dP11dddZX+wQ9+oI844ggNDCnk2xbcz33uczqZTOrLLrtM/+IXv9Bf+9rXtOM4+tRTT93hea5evVp/5zvf0YD+whe+oBcvXqy11jqbzepDDjlENzY26ssuu0zffPPN+hOf+IQGhnxEv+OOOzSgP/OZz+if/exn+t///d/1lClT9OTJk3VfX5/OZrN68eLFGtDvf//79eLFi3VbW9sOjwfQxx9/vO7s7Bz2X29v75Dtf/Ob32igfNyDzwvQV1xxxQ7fS+utBXLu3Ln64IMP1j/4wQ/0//t//087jqMPOeSQIX+EL7jgAm1Zlv7sZz+rf/KTn+ivfvWrOhqN6iOPPFIXCoUh+0ulUvriiy/WP/zhD7f7Qzlg5cqVOpVK6fe97336v//7v/VNN92kDz/8cC2E0EuXLh1yTQYK62OPPabf//73l8/5mWeeKT8eiUT00UcfrW+44QZ97bXX6gULFuhYLKafeuqpnV6DsWIKrqE7Ojo0oD/5yU+O+DW+7+vZs2frOXPmDGm99Pb26lmzZulZs2aVW8v77LOPFkIM6RvesmWLFkLoT33qU+XHhuvDHWitbNviO+aYY3RdXZ3euHFj+bFCoaDf85736EQiUW55bVtwE4mE/tKXvjRkX5dffrk+6qijdCaT2eH5DteHe+WVV+poNFpucQ+47LLLNKBffvllrbXWH/rQh/S73vWuIds89NBD+uCDD9ZPP/10+bFtW2M7sm1reNt/hx9++JDtC4WCbmho0B/96EeHPH711VdrQL/55ps7fb+Bc9/2e/3zn/9cA/onP/nJkO0Gvh7w6KOPakD/13/915DtRvIH/rrrrtPAkJZ0V1eXPvDAA/WPfvSjIddk8LXbtg9XSqnnzZunTzjhBB0EQfnxbDarDzjgAP3ud797l8cyFkwfroFt2wBIKUf8mhdffJHW1la+/OUv09DQUH68qamJL3/5y2zatIm//vWv5ccXLFgwpG94+vTpTJs2jba2tl2+VyKR4AMf+ED56/b2dp577jnOO+88Zs+eXX48Ho9z6aWXUigUePzxx4fd1+zZs7n77ru57bbb6OvrA+Bf//VfeeGFF6irqxvx+QP87ne/45BDDmHGjBl0dXWV/33sYx8D4MEHHyy/58qVK/mXf/kX1q1bB8CZZ57J66+/zgknnDCq9xxw2GGH8fjjjw/776c//emQbePxOH/3d3/Ho48+SiaTKT/+61//mve+973Mnz9/RO/5pS99acj3+oILLqC5uZnf//735eshhODMM88ccj3e8573MH369PL1GHD66afv8j0Hvr9f/vKXWbZsGQCTJk1i1apVfOUrXxnRcQO89NJLrFmzho997GP09vaWj61QKPDhD3+Yl19+mdbW1hHvb3eZgmvQ3NxMNBqlo6NjxK9Zu3YtEBbSbR100EFAOJRqwJQpU7bbLhaLjajIT5o0Ccva+qM6ULRG+t6D/fjHP0YpxYUXXsiUKVP4wAc+wA033EB/f/8uj2Nbq1ev5sUXX2TKlClD/h1zzDEAbNiwAYArrriCgw46iO9///vst99+vOtd7+Kyyy5j9erVo37PAc3NzZxyyinD/ht4/8E+/elPUywWy0Vv5cqVvPrqq6O6WXbwwQcP+dpxHPbbb7/y92P16tVorZk7d+5216Stra18PQZMnTp1l+/593//93ziE5/g7rvv5qijjmLmzJl87nOfY+nSpSM+7oFjA7j00ku3O7YbbrgBgI0bN45qn7vDjMM1EEJw3HHHsWzZMoIgwHGG/7G4/PLLWb16NTfccAN6JzHKAxMkotFo+bHBBXO0BlrgA0b73oN98IMfZMOGDTzwwAM8+OCDPPbYY/zzP/8zN9xwA8uWLRv2D8OOSCl53/vex5VXXjns8zNnzgTCVtorr7zCk08+yf33388f/vAHrr32Wn7wgx/w2GOPceKJJ474PXfXySefzMyZM7nnnnv4h3/4B37961/jOA7nnHPOiPcx3DWVUg75hFRfX8+999477OsTicSQr7f9vg4nEonw29/+luXLl3PvvffyyCOP8Mtf/pJbbrmFa665hm9/+9sjOvaBP+z/+q//yrHHHjvsNgsXLhzRvvaEaeEaAPzd3/0d2WyWu+++e9jnC4UCv/jFL3jiiSeYNGlSefbWypUrt9t21apVAMyZM2evHOvuvrfrujz33HP09fXxyU9+kjvuuIO2tjb+4z/+g40bN/LrX/961MeRyWS2a2EeeeSR9PX1lSdvLF++nNdff50PfvCD/OhHP+LNN9/k6aefRmvNj370o1Ge/e6xLIt/+Id/4JFHHqFQKHDPPfdw2mmnjaiVOWDbFrnv+6xbt67cJTFwPY466qjtrkl/fz/JZHLUx71hwwaefvppDj30UK688kqeffZZ1q9fz/z58/mP//iPEe9n4Gemrq5uu2NrbGxESrndH4S9wRRcA4AvfOEL7LPPPnz961/ntddeG/KclJKLL76Y9vZ2vvWtbxGJRDjyyCOZMWMGN998M+l0urxtOp3m5ptvZsaMGRx55JGjOoaBFs+uphBPnz6do446ijvuuGNIv5vnefzgBz8gFotx6qmnbve6np4ejjvuOK655pryY5ZlcfTRRw95/5Ee20c+8hFeeeUVHnrooSHb/tu//Rt///d/X76Of//3f8955503pPvkiCOOIBqNDnlPy7L26vTpc889l0KhwK233srrr78+6rG3P/3pT/F9v/z1L37xC/r7+/n4xz8OhNcD4N///d+HvO6BBx7gE5/4BP/zP/8z6mO++uqr+eAHPzhkSvXs2bOZPXv2qL5fRx11FDNmzOBHP/oR2Wy2vF06nebss8/mwgsv3OEnuzE1LrfmjKrw4osv6smTJ+t4PK4vuugi/ZOf/ET/+7//u373u9+tAf33f//3WkpZ3v6ee+4pDwu77rrr9HXXXafnz5+vbdseMsxnn332GfaO9LaPD8yK+qd/+qfysLIdzRR75plndDweLw8Lu+GGG/SRRx6pgSF3r7d9/ac//WkthNAXXHCB/tnPfqavueYaPWvWLD1t2rTtxpQO9sYbb2hAn3zyyfoXv/iF9n1fd3d3l8fzXnLJJfqnP/2pPu+88zSgP/ShD5Wv1S9+8YvyXfmbbrpJ33jjjfq9732vtm17yOiLadOm6Tlz5uif/exnev369Ts8FkAvXLhQL168eIf/BoZCbevggw/WTU1Nuq6uTudyuR2+x2ADowri8bg+9thj9Y033qi//OUva9u29UknnVQ+T6WU/uhHP6oB/Xd/93f6xz/+sf7Wt76lU6mUnjt3bnmo22hm7b366qs6kUjoefPm6euuu07/7Gc/05/85Cc1oK+66qoh12TwKIVvfetbGtCXX365/uMf/6i13v7n9Yc//KE+5JBDtBBC/8///M+IrsWeMgXXGKK1tVV/4xvf0AcffLCuq6vTyWRSH3vssfrWW2/dbjC/1lo/8cQT+sQTT9TJZFI3Njbq0047bbsxjSMtuL29vfqUU07RsVhML1y4UGu986m5y5Yt02eddZZuaGjQqVRKn3DCCfq+++4bss22r8/n8/qKK67QBx54oI7H43rSpEn67LPP1m+99dYur81XvvIVXV9fr+vq6vTbb7+ttda6ra1Nf+ELX9AzZszQsVhMz58/X3/ve9/brpj96le/0kceeWT5WE888cTyWOMBt912m54+fbqOxWL69ttv3+FxsIthYdsWn8H+/d//vTwmeKQGCuQPf/hD/clPflInk0k9c+ZMfemll+p8Pj9kW8/z9L/927/pAw88UEejUT1r1iz9mc98ZsgfkNFOk/7zn/+sTzvtND1lyhQdi8X0oYceqm+88cYhP4/bnvO6dev00UcfraPRqD799NPLjz/xxBP65JNP1nV1dbqhoUEff/zx+oEHHhjxtdhTonSwhmEYw/rTn/7EySefzC9/+cu9FtzzTmH6cA3DMMaJKbiGYRjjxBRcwzCMcWL6cA3DMMaJaeEahmGME1NwDcMwxokpuIZhGOPEFFzDmCAKniSQ5pZKLTMF1zAmiL+syfLC+uyuNzSqlolnNIwJoiPj0xDfdWShUb1MC9cwJoBioEgXJZ7pUqhppuAaxgRQcBUFXyOVKbi1zBRcw5gA+gsBEQuU1hT9vZeJa1SWKbiGMQGki5KobSEV5D1TcGuVKbiGMQFkXYljC0Tp/43aZAquYUwARS/su3VsQV8hqPDRGHuLKbiGMQEUSv22jiXoz5sWbq0yBdcwJgA32NpvWzA3zWqWKbiGMQEU/bBLQSrM0LAaZgquYUwAeS/sRpDajMWtZabgGkaFKaUZGAkmlcZMNqtdpuAaRoV5UjOw8IpSYbeCUZtMwTWMCvOkYqAXQWoNmCZurTIF1zAqzAsgYkEqGs40U2aZwZplCq5hVFjRC2hJOrzZXiBdDNAafNORW5NMwTWMCsv7mpwryRQl3WkfrYeOyzVqhym4hlFhbqDoyQUUPIVti1LBNS3cWmQKrmFUWCA1vfkAN9AIBEppXN9M761FpuAaRoVJDf1FhQYUCqk0ORPRWJNMwTWMCgukIjcQyagFxUCRc03BrUWm4BpGheW8rRMfLEuQdZXJxK1RpuAaRoXligFKi9JX4YgFs8xObTIF1zAqrK8osUv11gs0WkNgAmxqkim4hlFhmaLELlXcgZhGbRq4NckUXMOosP68xBJhwXUDhSUEpoFbm0zBNYwKCqQeskqvF+hweJjJU6hJpuAaRgUFUpXDx4FysTVZCrXJFFzDqKBA6+2GgGkNRZOlUJNMwTWMCvIlFLaZ5KA05F2zVHotMgXXMCoo7wYoHS6Pbpd+Gy0BWVeZboUaZAquYVRQxlUIBHNaosQdgdYa2xLkXGUiGmuQKbiGUUGZokRYkHdleYaZ0uFoBc9ENNYcU3ANo4L68gHJqEVPPsAWUPBkWGg1FE1EY80xBdcwKihdlKRiNplCQN7XWLbAkwrbDrsbjNpiCq5hVFCmKElFLdKuJO9J4raFF2gcS5AtmoJba0zBNYwKyhQliahNtqDIe4poROAFGsvCRDTWIKfSB2AY72SZvEQLgdQ6XC7dtvClQmDhmT7cmmNauIZRQf1FiVRhfgIAWiN1OL23YOY+1BxTcA2jgrKuJFAaMWgEmJQapaHgm4pba0zBNYwK8QNFzlMEUiPEoMdluJCk65txuLXGFFzDqBA3UHgSfKWxSgVXAL7Upem9pg+31piCaxgVknM1FhrXV4hBTdwwQ0GQKZqCW2tMwTWMCkkXfaK2RXFwALnUOHa4ppkXmFzcWmMKrmFUSH8+IBEVuIMyE1xfEbEEvgxHLpjVe2uLKbiGUSHduTBHoTBovG0xUERKs80sGLL8jlH9TME1jArpKyjiEXvIaAQv0EQcwjwFC3ryZmhYLTEF1zAqpCcfEItY5H1F3BEcOy9FwZNErIE8BYvenCm4tcQUXMOokP58gACk0kyuj7Clz8OTGiEEUoUzznJmqZ2aYgquYVRIX16idZh9m4xabOr1SEYsIJxpJpWmYCY/1BRTcA2jAtxAkXUlMqy3CKCvIKmL2QAopZFKkzeTH2qKKbiGUQFFX5Hzw+AaAUitKXiKWCRc10zqcLn0jGcKbi0xBdcwKqAvFyADCCQIQbnwakAqCKTCsiBTkBTMWNyaYQquYVRAR9bHskAqVSq4YeHVOuxOGJj4kHMVvVm/0odrjBFTcA2jArqzAUILAqmxRNiNIIRAAMVAgtYEpd6Ejf1eRY/VGDum4BrGONNa0571sB1BMdBEbFGe/CAE5D2NZQncQIGG/rzpx60VpuAaxjhLFyX5oiYREbi+JOoIikGpn1aH03kdW1D0FVJDwVfh8DGj6pmCaxjj7O32In6gSEQsin7YwvVKLVxXagRbW72OFY5oaEubftxaYAquYYyzNzuK4Qq9jkXRV0RtK+w+ICyuloCoLdAQLrXjKVZsLpRf7wWKN9sLvLY5R24X43SVMi3jicSs2msY42h1ZxFXhkuiR+ywK6E+bpe7FLxA49gCxxaUunAp+pq1PS5/eK0PITRruzw04Fjw4voc79knxbtmJIeEmLf1e/xxZT8FX3HAlDjHzKsnETHtq0ozBdcwxkl/PuCxFX1Mq4+SdSWT66OlLoWw1QphHm4iYhOOV6DUpytpiUTK3QrxQYVTafjzWxnWdbkcNCNJMmLx8qYcqztd6qI2jmWxptOlvyBZtKCB+oT5la+kmrv6vu9z8skns3DhQn7xi18A0NrayqmnnsqBBx4IgFKKeDzOt7/9bY488kgApJTcfvvtPPDAA0gpy/v56le/SjQa5cYbb+TOO+9k2rRpAARBwIIFC7jkkkvYd999d3lc99xzD7feeitBEHDcccdx+eWXE4lEys+vXLmSz33uczz99NNjfEWMiWBNV5HHVvQRdywitiDnKSZpjVa6nH8rRDgyIWJH0FqjNVhCkCkqWlI73ncsYtOVlTz6ej9SaVIxi7qoXX7esgTduYDH3ujnpAMbmFQX2fHOjL2q5gru448/zsKFC3nttddYvXo1+++/PwDxeJz777+/vN3DDz/MZZddxmOPPQbA97//ffr7+/nVr35FfX09+Xyeb3zjG3z3u9/lP/7jPwA488wzueKKK8r7uO+++zj//PN56KGHqKur2+Exvfnmm9x444387//+L01NTXzjG9/gtttu4/Of/zxBEHDHHXfw85//nHw+vzcuiTGGtNZIFebV5j1FTy4gXVp7rCFu05K0SURtLBEul7Op1+PVTXm6cwGpUhFUWuPJsKDqUjeA0mCLgTzcrf23gVLIEU40S0Z33GVgCUG6IPn9q70cND3BAVPj1MdtIpbAssQOX2eMrZoruHfddRdnnnkmc+fO5Ve/+hVXXXXVsNv19fUxZcoUIGwBP/DAAzz99NPlwplMJvmXf/kXXnzxxR2+18c+9jF+//vf88ADD/AP//APO9zuj3/8I4sWLaKlpQWAc845h3/7t3/j85//PCtWrGDVqlXcdNNNfPaznx31+d7ydAebzcD4caM1CCu822xbgnjEIhYJC5YXhHkISoWzxIQQpGIWcUfgWOCWZjLk/XCJdE8qpFIordFoDpiaYFNvEdBIpfACTca1SESs8mvHwosbc/zpzTSBCou+MbbmT03wyaMnDftcTRXct99+m5deeokf/ehHvOtd7+K8887j//2//wdAsVjkox/9KADpdJrOzk7++7//G4DXX3+dAw44YLtW6pQpUzj99NN3+p4LFizgzTff3Ok2W7ZsYfbs2eWvp0+fTnt7OwCHHXYYhx12GK2traM72ZKL3jd1t15nVM6WPo/OdMCklM26riJT6yM0JyNMb4hgo2lIOLQkI0xpiNCUdGhOOnzk3S2VPmxjDNRUwb3rrrs4+eSTaW5uprm5mdmzZ/Ob3/yGs846a7suhWeeeYYvfelL/P73v8eyLJTavYAQIQTxeHyn22w7aF1rjWWZO8bvVN1Zn3hE4AUa2wqTwhwrzE1wbAspFVJr8p6iIQG+DFvN5qN/9auZ3/p8Ps/999/PsmXLWLRoEYsWLaKzs5M77riDINg+Nf/4449n7ty5LF++nMMOO4w1a9aQzWaHbNPe3s4XvvAFisXiDt93+fLlLFiwYKfHNmPGDDo6Ospfd3R0MH369FGeoVErunJB6UaZwiqt7pCKWvQXfATg+QpfKmSp8zZQlPuJjepWMwX3gQceoKmpiaVLl7JkyRKWLFnCE088QT6f5w9/+MN2269du5ZNmzZx0EEHMW3aND784Q/zne98p1x0s9ks3//+92lqatphC/a3v/0tra2tfOhDH9rpsS1atIglS5bQ3d2N1pq7776bU045Zc9P2qhK6YLEFuGEBquUFJaM2eRcBQLcIJwAMXCzzBaCTX1uZQ/aGBM106Vw1113ceGFF2LbW4fDNDQ0cN5553HbbbcN6cOFcGjYVVddxX777QfAlVdeyc0338wnP/lJbNvG8zxOOeUUvvKVr5Rf8/DDD7Ns2TKEECil2G+//bj99tuJxWI7PbaFCxfypS99ifPPPx/f9zn88MP5/Oc/P8ZXwKgW3VmfqBMuHimEQGlNImqxuVcxqU4TKDVk6XTQtPX7vGtmxQ7ZGCNCm1QMwxg3fqD42dJ2JtVFWLEpR0fGJ+4I/EDz17Vp9p2cQAiIOIIDpyeZ3RLHsQQtdTZnHWpunFW7mmnhVtqnPvUpcrncsM/deeedOx2na7xz9OUDpALHCtPAIrbACxSOZeGrsCshGRFITXmqbqA0RU8RyHDar1G9TMEdI//zP/9T6UMwqsDGXo9ExMK2wtzbiCPIuxo7Ei5iVvQVdbEIQoSTFQZIBa29LvtO3vmIGGNiq5mbZoZRDVp73TCcZqCFWwoaVxo0YZiNZYU3ygYPVZRas6Zrx6NljOpgCq5hjBOlNFtKATRKhzfHHDscjztwK6XoK2xL4Dhht4JUA49rMkVV/tqoTqbgGsY4aUt7+EFYMKUENGFEoxe2cAWlxSQJoxfR4XThAXlP8trm4e8TGNXB9OEaxjh5YW2uHDATKI3ShBMgSkE2A122SmsENhrwAkmi9Jqir1nf5bJwepKYs+O2ktaadd0uy1tz9BckMUcwuS7CnJYYc1tixEwubsWYgmsY46Az47Ox1yUVC8eJFwMVhuCIcEn0bbsKlFKlG2uKxuTWx7syAUvfSnPigQ1E7O0LZ1fG57EVffTm5dbi7mlyPR4r24oIoZnTEmPfSTH2mxQjFTclYDzV3NWutjzcnp4errjiCtavX4+UkhNPPJFLL73UZC3UkO6sz70vdpeLLYDrKRxLoDRhP67U5WFgGkpJXpqCN7QQC0uwpqNIrig5Ym6KmU1RhBB0ZX2eW5tlfbdLKmoNG9U40FLuzARs6vV4cmWayXVOqQBHmVQXIVGKkPQCRc5VZIoBvtSkYjZNSWdI+LkxejVXcKstD/fqq69m//3356abbsJ1XT772c9y77338olPfGJvXB5jL1NKk/ckPbmA1j6PjT0enRl/SAG0LegtSiwRxj1GB5ZELxGEgTV5T+MME1gTcSx68pLfv9KLIMzU1VqTjFrUDSrqOxN1LKIOFAPNqvYCL23MIQhHRyDCm3VKg1UanhYoTdSGGU0xZjdH2G9ynMaEg20CdUal5gputeXhnnrqqbznPe8BIBaLMX/+fDZv3jzi8737hU629A9a0XUXN7HH+h73WE9U3OnexvvcRriV1uAHmmKgcYMwHyFiWySiFgP1KDtoscdk1KIt7ZF1FTlXooTGFgxZGt0NoCPj0ZR0aE+PLO94VwtK7qk80FfI81qrJusqBJpk3CHqhIU6nJOxkwL8DqnN0xuifPK9k4d9rqYKbjXm4Q7e/4oVK3jwwQdZvHjxCM8Yzjl6yoi3NSaO/32xi4V5SdQRuL6iJWkTtWFzf0Bz0sb1FYfOTbHvpDgffvfwYdZG9ampglvNebhLly7l0ksv5fLLL+eggw7arWMxqkemFLcYBIqoI+jLB+jSuFtfht0EBS/8f6N21EwPeDXn4f7yl7/km9/8Jj/4wQ/42Mc+NsIzNqqV1uEkBgBfaZJRm758gBBh360vNY4ANwiX4Mnv5a4CY/zUTMGt1jzcO++8kzvvvJPf/OY3HH/88Xt4FYxqUPDCdcwgnNhQF7foz/sopUEpvEAhBEipkRp6cts3GIzqVDNdCtWYh+t5Htdffz11dXV8+ctfLm9/xhlncPHFF4/VpTEmmGxRIlV4o8z1wxZuuqAQwiIWsfECjSUsNBCxYVOfx+yWnf+MGdXB5OEaxjh7fVOOpW+lqYvZtPa4TG5w+MWfNjO5LgIaHMdmTnOUyQ1RFs5M0pR0OP1dzZU+bGMM1EwLt9JMHq4xUh3pcMUHu5QYZgGeF2beNiYdioFGWOFU36Kv8IPdu6FrTDym4I4Rk4drjFRXNuyTta2BG2Og0RR8xTTHIuNKLCHCflwFbqDxpRp2Kq9RXcx30DDGkVKa7txAwRUUfE0gt95AizjhrDEptwaQS6XZ1DuyyQ/GxGYKrmGMo/5CgFfqIgi7FCReINF66zQsrUERhtpAmKuwptOEj9cC06VgGONodUexHABji7BV65X6bAeEt7EFgdxadDPFIBzZYLILqppp4RrGOFrZli8vBCk1KB1Odhj8iyiVAjSB0uUbZpmiYvnGnYePS6UpBgpfmptsE5Vp4RrGONnS59Kbl+WYRqnChSM9qYfkuoTrm0EgFcVAkYzZeFLzZkeBWS1RptRHy9vmXMmKzXlWdxTpzvkoLXAsaEzYTK6PMKUuwqzmKC2piFnxdwKouYJbbXm4W7Zs4bvf/S5dXV0opbjooov427/9271zcYyKybmSB17pGZKJG6jwJpnrKUSpq0AwsOKDQGvIuYqWVLh91lXc/1Iv+02OYQnoyPh0ZHxijoVji3KWLYSxi629Huu6XZ56SxF3YEp9lMn1EZoSDomohVSKghcWfMcSTGlwmN4QJbqT1SSMPVNzBbfa8nD/5V/+hQ984ANccMEFdHV1cdppp3HccccNyVowqk+2GNCZDdjS59GR8Wnt9YhHhrYwfRlm2OY8OeQxQZi3UAwU8WBovq1lwfoet/x1ahf5t44lqI+H2/QVJH0FWV5hQojwedsSKK3Je4pkxGKfSTEOmpFkRlPU9BmPsZoruNWWh3vzzTeX08Q2b96M4zi7nCo82MPLe+jKmLn2O7QXM3Q14Wd/qcOhXTlPkSlIevM+UoX5tjHHKq9Vtq36uIUfKLIFiRuErcysG64imS6EN8mCIFwVYjyt7izy4Ks9OJZgemOU+rhNpLS0uyhl3grGPn+4VjQkbD52xPCRmjVVcKsxD3cgpvG8885j2bJlXHDBBTQ3j3wa58kLm5DS/OhXQmlxBIQlsMTo87Vf2pCltcflidd6OOGABmJOuGZZKhZl7qQYccfisH3qOPPQlr1x+KOiCcN0Bn7STCDAju3sQ0FNFdxqzsNdvHgxPT09XHjhhfzud7/j4x//+IjePxGxIDK6YzYmhqKvSEQt8l5AczJKb86jLx8wtTFKIAEHhGbi9KnWVLWojAnyndxz1ZqH+4c//KH8vi0tLZxyyimsWLFixOdtVK+8G07XzbphJGNfXhJ1IGILAqkQQuCrrTPRjOpXMwW3WvNw77rrLu644w4AMpkMf/zjHzn22GP35FIYVSLnSiIWIMOJDf15n0TEJmpb+FJjWeHQsf6C6aOvFTXzIaEa83ABrr32Wq644go+/OEPA3D22Wdz6qmnjtl1MSaunCuZ0hDBiYRL7OQ9TSxigSiNVhDh4oytPS6T6ky/US0webiGUQFaa378ZBsLpsW4/c9ttHa7ZIqSQ+ckido2gYZ5UxMcMC1BY9LmtHdV/saZsedqpoVbaSYP1xiNgheuV+ZKTdyxyJdWi9RaEEiJEnY41MyVJKM7H2trVA9TcMeIycM1RiNblCgdrtprW+AHCquUYOMGYNnhB09favK+JO9KkruY5GBMfDVz08wwqklX1ifmCIq+RiGgHM+o8QKJ0hqtw7SwQGpWbM5X9HiNsWEKrmFUQFvaI+pYFHwJg8aAu77GEmE0YxhgEy690572zPCwGmAKrmFUwMAyOwVPodk6TS3vKRxHoFWYqVD0FRpo6/f481v95fByozqZPlzDGGeB1HRlfJIRi4In0XprPGPBkzSnbAIrXGKn6IcFVgjByrY8rX0uB81IcvDMVDnI3KgepuAaxjhr73eRpWjGbDEMqxGlhJu8F84+C7RGEUYnDojYFq6veWFthhWb8rxrVpJ3zUpNnKm/xi7VXMGttjzcAZ7nce6553LGGWdw0UUXjfFVMSaS59dmSUYtoo6gGEi8YGtRLfoKISBqC6QcPiQmYlt4UvPcmgzLW/PMmxJnVlOUhpRDxN6a5CWAeMTabrVfP1B053y0hkl1EVOwx1HNFdxqy8MdcPXVV7Nx48YxvRZGZbmBIl0I8ANFLGLjWIKVW/Js6vdIRixitoUXKAre0H5ZpcIbZ55UO82jjToWgdKsasvz8sYsQdhYxhJhvq0QgnhEMKUuwvTGCBHboi3tsaHHxQ/CmWyTUhEOnpkwLeVxUnMFt9rycCEs3JlMhpNOOmnU59uZ8c2NlIrTaA2BCnNsN/d5tPa4dOcClA7j+pQCSi3XWESQ9yQq6eD5mrwrhyTKSQW2DZmipDFpkx8UUL4zW+ulJlxNJ1ygclOfy6Y+t3wsAAON3t68z5MrPZ5fm2W/yTGmN8VoiNs41tZuDmN0lIY5LcNP96+pgluNebirVq3i9ttv54477tjhH4ed+cvbadrT3qhfZ4yhQZ/hY45FKmYzqT7CpPqd5x/MaIxgWeHkhlTM5qj96nj6zf6wS8ERRCOC5mSEWc0jD6TfExlX0bYhixsoky6+BxbOSL4zCm615eFmMhm+9a1vcf3115NMJnfr/T+yg2R5Y+LTWvPwK91EbMHslgR5V9KYcEhEbRJRwYKZdTTFLT52xCTT2qwRNVNwB/Jwo9EoixYtAsKIxTvuuGPYVurgPNwjjzyynIc7uJXb3t7O9773PX70ox/t8H2XL1++y7DwHeXhLl26lHQ6zde//nUgbAn/+c9/JpvN8tWvfnVU529UH0+qcO0yT1IXt1m1KUdD3MYSYVYuhEuph0HlZlpvLaiZgjuQh/voo4+WIxrT6TQnn3zyqPJwr776aurq6sY8D/eLX/wiF198MS0tLeU83DPPPJMzzzyzvN23v/1t5s+fb0YpvEPkXYWUoEor9PbkfGY0RwmkCnMWpEIqi3RRmoJbI2qm4FZrHq7xztVfCEpdpRqlFKo0u6zgKZIxi0CGY3U7+z2mNUQre7DGmDB5uIZRIS+uy/DbZ9t5YV2GA6cl+Ouafg6dU0/WlcxoirLv1BSzJ8WYnHI46aCRLyxqTFw108KtNJOHa4xWb9ZHARFLDBrap8m6kogdTuv1A03BN8P+aoUpuGPE5OEao9Wb89Fak4xZ5FyJEAIhIO9KLEsgpaLoKwJpJiTUCvOdNIwK6c0HSAWpmEPWDSc3+EGYg2sJQaA0SoMbaHxpWrm1wBRcw6gA15fkXIkbSKKOwC1N73UDRaw0ZXeAlJq2fjO5pRaYgmsYFdCR9ZEaCqWVegulNc2KviIasZBKbw2uEbC6vVC5gzXGjCm4hlEBa9uL2EJQ8MMbZK4fVteir4g7FkqBKlXcnKvIFOV2MxaN6mMKrmGMM6k0m3pdFJpiaUaZLo3ILXiKWMRCak2gBp4LF518q92sa1btTME1jHH28voMQoSFNx/IsOugtIikG6hyTGLRVeVWbd7XLN+YozvrA5SnBLu7SIpzfcXrrTmefrOf9V3FvXdSxojU3LCwagsgz2QyHH/88cybN6+87WWXXcaxxx47xlfGqDStNa+15vjL6gxzJ8XxfE0gw8d1eRsQaFxfIaJbZ5sB9OYldz3bTiJi4waaQGksIBmzSEZtpNZ4gcKxBKm4jS81nWkfSwhiEYvXWnMsmJHguAMazfI8FVJzBbfaAshffvlljj76aG699da9cTmMCtJaU/AUXVmfN9sKrO8qUigF0WgdFkytKa1pNrBGA0CYl5uIhoU1UvotFUKQiIZfxCKCgQnlGsiVQ8wFngQvF96EG5zBEHEs3mwr0pnxOWJuHftMjpvQ8XFWcwW32gLIX3rpJfr6+jj77LPxPI+zzz6bT33qUyM+39uWtrG5b+RDhkZ122UXG+sxDE3dk/tBu3zpKPc9FmeltUaqcFWFgYzcgXKaLQRELfB8hZSKQEIyajOlIcL6LhelNbmiZGo9dKVd0GObo7DFk6zu6KToaWwLbEuY+McxtO/kOJ86buqwz9VUwa3GAHLbtlm0aBFf+MIX6O3t5TOf+QxTp07llFNOGdE5X/D+6SPazphYOtMuXiBp7YnTnLJ59z51KKXpzfphRCMwe1KMo+c18P4FJkehVtRUwa22AHKAL33pS+XHp02bxjnnnMPjjz8+4oJrVKf+gkRqTcQOV3xwLEFPIZx5JgTkPYlgay6uURtqpgNnIIB82bJlLFq0iEWLFtHZ2ckdd9xBEATbbT84gPywww4rB5AP1t7ezhe+8AWKxR3f3V2+fDkLFizY6bHtKIAcYPHixWzevLn8nNYax6mpv4PGMHpzAUpBPGLj+opAKtL5gPp42PXgBRqpGLJMulH9aqbgDgSQL126lCVLlrBkyRKeeOIJ8vn8qALIB4ruWAeQL1myhO7ubrTW5QBygGXLlnHLLbcAYb/yPffcMySU3KhN2UJAwZfEIhZFTyFLC1DWxW08qXHsMEFsdz95GRNTzTSlqjWA/IorruCKK67grLPOIggCzj33XE444YSxvDTGBJT1JAVXEXEECk3ODZPB4hGB6yscO1z9NVeUuH44GcKofiaA3DAq4O5n21i+MYcQ0NFXpCcTsLGnyGFz6sj7kohtMW96klnNcU49tIU5LTu/T2BUh5pp4VaaCSA3RsoLFL7U5D1JU9JBCEHOC+8zaMLpvYl6G63BDyTrOgqm4NYIU3DHiAkgN0aqPx9g2xZ5VzKlPoIQgqK/9YNmwZPE7BgWgp5sQNYz/bi1wnQMGcY429TrEnPCYHEhwLHCfNwBRU/hOBaBCvt1827Yj2tUP1NwDWOcbewuIhBhhoIGWwj8IGzhCgFSA1qHwTQijGx8bWN25zs1qoIpuIYxjpTSbOr18GW4fI7SGrXN8+WEMFdhiXAxyQ09RTIFvzIHbYwZ04drGONoc5+LJxW+VAgohddsfd6TmohtoYFioLBKEQddWZ+HXunm3XPrmTc1sdPQmUAqXlqXYUOPS0PCZv60JPtOSezV8zJGxhRcwxhHz7zVTzJqUfQktiXCpXQGTW5w/TAPd2C0gl2quJYQ5FzFE6/3EF1lMbs5zpSGCPOnJWhKRcqv70p73P9iF54M99OXD1jdXuTAUizj4PQwY/zVXMGttjxcKSU333wzS5YsIZ/Pc+KJJ3LZZZeZ9KYatLo9T3u/R33cJl2Q2BYoVUonK327i74i5ggE4AcKpcMVeyN22KIdKJhb+l1ae4s8u7qfmU0xJtVF6M0FtPa6JKPWkBZwxBG83V6gI+1z8kFNTGvc+UQdY++puT7cbfNwBwyE19x///088MADXHjhhVx22WXl57///e/z0ksv8atf/Yr777+fe+65h7Vr1/Ld7363vM2ZZ55Z3sdDDz3EBz7wAc4///ztMhi2NZCHe8cdd/CHP/yBTCbDbbfdBsDtt9/O888/z1133cUDDzzAyy+/zMMPPzy2F8UYF4EcGFEwdP0xpTSvtWZ55NUekjGbiGORcSVCCKRSQ5JwB2aVCU2Yl1t6bDi2JUhG7bAV21GgJ+eTjA7/K21bgpwr+d9lXTy/pp+CJ4fdzti7aq6FW215uPfddx/f+ta3ynkNN954I5FIZIf72tY9z3fQkd5xHu7uTiMcq/mHO83M3b2nRvf+u7mjnb5Mb923QuN6ipwnKXhb1yCzBCSiAksIssVwCm8yErZOm1MOrd1FMoWAmB2OUNBA1BZkipJJdQ7ZoqTghtN/O/oLTK4fu0zc3y/r4nfPd9KcckhE7VIe7taib+yZpmSETx0/bdjnaqrgVmMe7rp163j77bf56U9/Sk9PD4sWLeKSSy4Z8Tl/4r3DBx0bE9vtT21GC+jOeGzucTn2gEaituC1jVkmN8RoSDhMb45yxH71NCUcPnjIpEofsjEGaqrgVmMebhAEvPLKK/z85z/H8zwuvvhiFi9ezAUXXLBbx2NMfFprMq6kMekgpQoXjrQFmXyALzWCcDHJeNTC9RVuxMSd1Iqa6cOt1jzcqVOnctZZZxGNRqmrq+OMM87g5ZdfHsWZG9Wm4EkCqUujFARFL7w5BmG/bbiNwi6NwR14zKh+NVNwqzUP9/TTT+f3v/89Sil83+fJJ5/k0EMP3cOrYUxk6YJE6fBGltIa15dIqfGVxi6PVpBYVhjR6AUKbxfLoRvVoWa6FKo1D/drX/sa119/PX/zN3+DlJLjjz+e888/fywvjTHBdKY94hGBUyqoRV+hFeRdSSJio9F4vsYuDQ1UCtr7PeZMMolh1c7k4RrGOFvyeg9rOgtMqY+wfH2G51enmd0cpbXHJeYIZk1K0JHxOHh2HdMao+ENtMYYJx5kFpOsdjXTwq00k4drjFRXJhzGJwQgQGuFF4RdC3XxcPhXIAFNKTdXkS1ufx/CqD6m4I4Rk4drjITWmq5sQNQRKKVBg2NbuEFpKR1HINAopUoB5JqoExbdTCGgPmF+ZatZzdw0M4xqkC5IvCCc5RUojdThEumur3EDTdQJh4JZg26eQbhs+kvrM5U6bGOMmIJrGONofVehnHMgJUhFWGQHjUJwgzAxzLLCQgth18LG7iLrOgsVOW5jbJiCaxjj6M32rQXXk2GRjToW3qBsg6IviTgiHComBy294ysefbWLP63ooSdjsnGrkSm4hjFOXF/S1usO+joMrok6DGnhFr0wHcwNto7LHWDbFm+15/ndC+0882afWXqnypgeeMMYJy+uy1Ca0Y0lIOcqtCr12wZbW7JFXxKxBQVf0jDMTTJRSpp5dWOWjd1Fjp3fyD6ThwaMK6VJFwPSBUncETSlIjsNLTfGR80V3GrLw/3kJz9JobC1X27t2rWcffbZXH755WN8ZYxK6s/7LFubIV6KT3RsQcGTSBXOOJNSI0p3ylxfE3EErqdwUjvO8HJsQcaVPPBiFzOaokypj6LQ9GR92vp9PF8hLMrrpk1ucJhcHyUVtXFsQUtdhJlNMZIxE0o+Xmqu4G6bh7v//vsDbBde8/DDD3PZZZfx2GOPAWEebn9/P7/61a+or68nn8/zjW98g+9+97v8x3/8BxDm4V5xxRXlfdx3332cf/75PPTQQzsdZzuQh/u///u/NDU18Y1vfIPbbruNz3/+8/z6178ub/fHP/6R//zP/+SrX/3qmF4To3JcX/J2e4H/e6OPWGRr8XQsgRfo8ogFPSgeMZziK8jLraMVdiYetejNB/Tmt47VjTqCqDO0kOZcRc4Nc0G01hR9hWMJ9pua4OCZKWa1xMsrTBh7R80V3GrLwx18PFdeeSU//vGPqa+vH/H5/t8bPfTmzKD4ShnoCNBKE2hNwVWkC+FH+e6cjxeE/bExZ2ghm1wfob3fJVsMiDkWfhAuGBlIRdGXFDxJZ9qjJeXQkwtwtu3MHUPrOos8/HI3cceiuc7BsQSB1HhSIZXGsQWpqEMiZpGM2sQcC8cW5RxdMFm6gzWlIpy0g1mBNVVwqzEPd8DPf/5zTjzxxFEH1xw4I0XR3DipOEuE2QixiIUzglaibcG9L3Tw1uY8QkBzKsLfvGcKK1uzzG6KMb0pxoEzUkyqj3Lc/EamNIxdAPmeUDq8wRdIHa7HVukDmoAiO/njWFMFtxrzcAFc1+U3v/kN995776jff0aTWZ+qWllClCY+QFPSYWNXESEgGglXYXBsQTJqkffkkIUijepVM7ctqzUPF+Cpp55i4cKFzJkzZ6Sna1Q5tzSDzPXCqMZJDVFWt+eIRSwidrg0UaA0COgyY25rRs0U3GrNwwV4/vnnOe644/bg7I1qU/DDPtu8Fw4Nq4s7dGc8hBBYAgQC1w9DbUyXUe2omS6Fas3DBVi/fj2HHHLIWF0Kowr05XyijsCVGq1BoJEKpFKAQIiw4BY8ScoM26oZJg/XMCrgxTX9rOsq8tCLnTSlbNCCP6/s4ch5DeRdybwZdbi+Yp8pCZqSET561BQzcaEG1EwLt9JMHq4xGt25AK0h4oDnaxw7jGrUOgy0CaQuLzGvtKaj32O2WfGh6pmCO0ZMHq4xGr1ZH9DYVpiFawkbIcLiqpTCl7o8vMwSsLojbwpuDTCfUQyjArqzPp4shdT4moFRia6vsSxB0ZdhZgKQcyU519w4qwWm4BrGOMu5AW6gwtUcIuHsMikVQgiKniRiW3i+Lk/r9aWm4EmTDFYDTME1jHHW1utiiTCeMRGxUVqU4xkLviIaEeVl0gd4vuSNTdkd7NGoFqbgGsY4e7OtQH3CIe/JcOSB1hRKrdeCp4iUgm0ssXWKaN5TbOp1t5u1aFQXc9PMMMaRlJq1nQXq4zYFT4UBMJbALa344PqSqGMjlYfW4WgFxxYoDT1Zj9c2Zjl07s7DjVxfsnJLnrc358m4AamYzbTGGPtNTTCrOYZlEsEqxhRcwxhHr23MlBO4Cp4iGbOJOoJ0LmzheoHGscOhYQC+VDilyTxFX/PS+gyWgNmT4vRkfdZ1FsgUw40tAZlCQFfGR1gQK43b7csH9OZ8XlqXZlpTjAXTkxw8O0UsYiZUjLeaK7jVFkCey+X4zne+w+rVq1FK8fGPf5yLLrpo71wco6LWtOd5alUf8YhFxBbk3YBEzCLmWOUWLoSRj76UaDReoEhEtxZG11cseb2HQIJlMWx4+EDI+WBCCJIxm0wh4Jm3+li2Ns0hc+o4dG4dqVjNlYEJq+audLUFkN96663E43EefPBBstksZ511FkcffTSHHXbYiM636EmU6dfbqzThhASlwy6Boi/pywf05wO8QCMEJKM2TUmHVNzGssLJDP15n460R28uoL3fo+BJElGbQIb9s/0FSXOq1Nr1ZTlcV2vKw8QyBbldQXRsi4Fs8UCO/ntvCYEvNX9dk+Yvb/Uxf3qS2ZPiTG+IEY9Z2EJgWSbjdndpxA6nY9dcwa22AHIpJblcjiAIcF0XpRTR6MizT+9+tp0tfe6uNzRGbbiCY4mwYMWjYcvUsQSacAVe11P4KsxGsIQgHgm3sxAkIhaJyNaWZ8wREIaBEXMESsH7FjbzzKpelAZbhKtC+L4c8rqxZ9OV9mntLpJzVTjxIpz0Vj5/8+d8dA6cnuLv3jt12OdqquBWYwD55z73Oc477zze//73k81mOffcc1m4cOGIz/n8D8wc8bbGxJF3A95qy9OSiqA1TK6PUhe3mdYYJWoLZrXE2X96ivq4zYfePaXSh2uMkZoquNUYQH7VVVdxwgkn8M///M90dXVx4YUXcsQRR+yy0BvVreiFy9f4pbtjLfUOb27J0ZCMoAmn+HqBQkozcrOW1Mx3s1oDyB9//HHOOeccLMti6tSpnHHGGTz33HOjOXWjCvXmAxzbCkNqtCIVd9jcUyQRsdBKI2V4g8z0z9eWmim41RpAfvDBB/PII48A4R+NpUuXcvjhh+/JpTCqQE/WJx6xcAOFAuIRi6KnQISzzZRSSBVO6zWTHWpHzXQpVGsA+XXXXcdVV13Ffffdh2VZfOhDHxpynEZt6ssHRB2LTMFHKwYt/wu5YkCiNDJBKk2mKGlI1Myv6juaCSA3jAq4+5ktuIFmY3eeoqvIuwHPrOzliP0a6MkGzGyJsXBOA40JmyPnNXDA9FSlD9kYA+bP5hgxAeTGaPTmAuoTDq6nCaQKuw00oKHgBlhWDKU1Qgg2drum4NYIU3DHiAkgN0Yq7wYUPUVznUCqcKFIpUAIwtSw0hjcoBTLWHDlrndqVIWauWlmGNWiO+OjCFd0CDQUfclAx17eUzgWOFY4gsENNG4QDiEzqp8puIYxztZ0FEjFbGxLoKTCL/0TQlBwJY5jYdsCPwhbtl6gWNdRqPBRG2PBFFzDGGdrOwqIgbwCIdAqzF4AKHiSuBOub1YsZeTmXMnqjnwlD9kYI6YP1zDGUW/Woy/vk4w5SKmJ2hZKg1tqzRY8FaZ9KSiUHgsUbOkpsnJTloWztt58zRYD1nYU6C8E1MVs5k9PkoqbX+mJzHx3DGMc/WlFL/FS3KLUmogj0Bq8UmtWKo0tBIFWDF7CzJXwx9d6WNGaJRax6CylkEUdi4hjEUjF82/3c/DsFO/et4E6U3gnpJr7rlRbHm5raytXXnklmzdvJplMctFFF3HmmWfunYtjVNRL69Js6CpsndQgdXn1hYE1zQZ4vkZsszJDxLHoym6dpj64NevYYe/g8o05Xl2fYd+pCabUR2lKRYhHLITYGjGpSkPQHFuQiNmkYvaQzF1j76m5glttebjf/va3OeaYY7jlllvIZrN85jOfYd68eaNKDDMmLqU03VmPp1f2sqGrWC62AJ7UCCAaEUMCyBFh3GNUjL4I2pYAy6a1x2NDtxsG4CjCaitEGLlYquNh7q4i5gimNsaYMynB/tMStNRFcWyThrs31FzBrbY83Ndff51rr70WgLq6Oo455pjyH42RWLx0E1v6vK0P7GL00J4MLhrLSYm73NNePY89fPORbKl1aRytwrEF9QknXKk32Pq98nwLXyosIWhMObiBT9FXKKUpuhIN9OW8Hb3DmMl7mnWdBdZ0FHjwxQCtNYmojWNbWCK8sWfSyEduZlOMT79/+NjUmiq41ZiHe9hhh3Hvvffyla98hd7eXp566qlyN8dInPf+WSPe1phYlq3u4+22Am9ZWZqTDi0pj/VdReoSDmjN3ClJLjlrv0ofpjGGaqrgVmMe7nXXXcc111zDRz7yEWbNmsVJJ5200zhIo3ZkihKtwzSwTMHHtijHMRY8heuH/2J7dcUHYzzVzHeyWvNwi8Ui11xzDQ888AA/+clPSKfTzJ07dzSnblSpfFHiSUU8YpPOBYBASoXvK6RSSK1JF7b/2TWqV80U3GrNw73xxhu56667yse0ZMkSTjvttD25FEaVyLqSQGqSMZu+nI8gXB69GCgsy8ISgs5+s15dLamZLoVqzcP95je/yaWXXsp9992Hbdtce+21zJgxYywvjTFB5V0f19dEHYucG1DwJVFb4PqKuriNbUFbv8vBc+orfajGGDF5uIZRAUppfvrEBgquYlKdw88eW8e8aSnS+TB8fFpjlNlTEhwyt4EPHWEWkawVNdPCrTSTh2uMRsGXYV6CJ5HaQSvIu5J41KLoS2w7zFgYWGTSqA2m4I4Rk4drjEamILGFRdFXBH6YgVv0FJMbomSKPrZlhRMgAjNSoZaY76JhVEBHn0td3ML1w5EK6FJSWDT8ldRopAwnQWzoMtGMtcIUXMOogLZ+l2jEJgg0ricRlsAvpYcNLLfjSU3RU6zvNNGMtcIUXMOogLY+t7TiQ7iiw+CZs+Ft7LCF25cPyLthS9eofqbgGsY4K3qS3mxQLrLuoBzGgRXTNWH/rS81eTdg5absMHsyqo25aWYY4+zNzTksSxAoTSxik3dlGBBDmBGjVBho4/maoifJuIp1nQUOnFk3JMVLa81rG7O8tiGDYwumN8c4cHqKqY1RhBAUPUm6EJCK26Ri5ld9Iqi578JEzcMF8DyPf/zHf+Scc87hjDPOAKBQKHD55ZezYsUKlFJceuml5VloRu3Ju5KnV/USi4SLRCYjFh35oYlgSkMgNVpBwVdoDZt6XJ59q48TFjQhhMALFA/8tZ1NPW450Lwn6/PXt/upi9tYIsxqCBQ0J20O37eB9+zXWM7fNSqj5gruRMzDBXjppZe46qqrWLNmDeecc0758RtvvJFkMskjjzzC5s2bOeecczjkkEPKWQtG9dJas7GrwAtvp9nS7yIIx9XGI2GB9ANFImaTK27NSxCEfbhuEMY6qtI4XA28uj5NT9ajPu6wcnMWrSkXWwiDlFJxBw1IDcmBoHMNz73dR0/W57gDm6hPRMbpChjbqrmCOxHzcAEWL17M17/+dX76058OefyJJ57g+uuvB2DmzJmccMIJPPLII1x44YUjOt/7n2+jM+OPaNvBRnwLZjfu1eg9SqvdZl9jtKuxPN+dbqI1SmvSeUl7v4sGkrHhg8RbUg4aTX/exxIQKEXRlwRS0Z/zScVtAqVZO2gByY3du58kt7HT5fFXu5jeGCMZc7BtsIRp8Y61WMTivA8MH5taUwV3oubhAvzgBz8A2K7gbtmyZUh2wrRp02hra9vl/gZ89L2mJVytnnurj2wx4OW3+zjxkAa6+z2ELZjVEmN6U4xJ9REO27eRvzlqWqUP1RgjNVVwJ2oe7s5orcs3TAYMZOUatS1X8LFtQcGXFFyJJcI+3phjldY4E+zmj6UxQdXMb/ZEzsPdmZ1l5Rq1LVuUpVEJ4ZI6ANmCT8Sx8AKFEILAVNyaUjMFdyLn4e7MBz/4Qe6++24A2traWLp0KSeffPJu78+oHn25ACnDPr9sMQA0haIk6ljhmo9o/ECRd+Uu92VUh5rpUpjIebg785WvfIXvf//7nHXWWUgpufTSS82KD+8Q6WKALxWJqE22IMsLNkZsC09KFGG+Qn/e3+GNN6O6mDxcw6iAghvwk8c2cMD0BA++0M7GzjzNqQhFX7H/jDp68wH7Tk0yrTHCEfOaOXL/xkofsjEGaqaFW2kmD9cYjXRBohR4Qbgkeb4YEI9YxGNOeUlyS0B/XtKd2ftLpRvjwxTcMWLycI3RaO93iUUtXC+c4CCVpuBKWuqioMPVewdW8/UCc+OsVpiCaxgVsKXHJeZYFLwwKUwjKPqSeNQOl05XYahNoDAjFWpIzYxSMIxqsrmngGMLCt7WIYtSgWWFWQpKawq+wrHDbofe7OhnExoTjym4hjHO8q6kLx8QcSxyRYkqBzKGU5mlUigdJoU5loVSmHjGGmEKrmGMsxUbMzi2Rcwpjb/VYkgAuVRhWlix1L+bLQb05kwLtxaYPlzDGEeuL3n+rT6ijkUsErZwt03oKZa6GXT5NYpM3mdjV545k5NDttVak3clGojYgkDChq48b7RmKXqKWZPivHu/ehqT0XE4O2NXarLgVlsmLoQhNmeffTb3338/LS0tY3g1jIkgXfBZ05bn+bf7oJSdEXXCHAWnNOEBwhFhYVdCONFB6bDg9uclL65N05SMUJ+M4PmS1zZmeXltmv582PoVQqC1xrJEOQJyRWuW1u4CxxzYzAHTU+N+3sZQNVlwqy0T97777uNHP/rRkEwFo3oEUpMt+EitiTk28Wg4Nbc35/P6xixvb8mRKYR9tlHHwi515EUdiyBQBIMCHzWaoq+pT4QF2BKQKQSk4g6be1xu/9MmknGbTCFACEHUscq5t8OxhCBbVDz2cicbZhU4fN96JtXv/sxIY8/UZMGtpkzc9vZ2nnjiCW655ZYhLd6RWt+ZH7ImlrH3Sakp+pKOtM+mriKbe4sESqM15em5iHBoVyJmlzNnXV8N+V4VPYknNUpqBtaILHgqXGLHDrfPFQMKviYV3zqaoVDehx7V937Z6n6eXtnDlIYY05uiNKeiNCRtEhEb2za5uGPFDTSHzq0f9rmaK7jVlok7bdo0brrpppGf4DZWbsrR0e/u9uuN0bMAx7ZIxixmtMSY0bJ7LcapjVFiUUE+L3nv/Gba+4ooFa7i0JyKohEkYg6T6gULZ4/9TMV03qe9zyWQCvMne+y8a87wxRZqsOBWYybunjj93VMq8r7GnuvJuDQnoxQKAYmooCXlkPcUdTGbqY1RGlNRHFswpSHKh94ztdKHa4yBmhoWVq2ZuMY7U6YgiTqCohfOKLOEIO9KHNsqd0MEUuNLjVQmY6oW1FTBrdZMXOOdqTfnEYvYuL5CKwWEkx2iEcHg+hpIRZ8Zh1sTaqpLoVozcY13pkwhwLYEvgxvuGnCqb4RO8xTGGAJwdr2HJPqzVjaamfycA2jQh76axsvr+3nzyu6OGhWPVIqXt+Y4cgDmmmqj9GUimBZgvqEQ3NdhDOOMP241a6mWriVZjJxjdEYmK4bsSxcX+JYotTSBSUVgdRErXBqb13crPhQC0zBHUMmE9cYKdeX5IvhWmW2LfADjYiAEGHF9aUmUIoo4SQK11f053waU5EKH7mxJ2rqpplhVIverB9OWtCaiCXwpMLzNRHHQgOBCheQHBAoxWsb0pU7YGNMmBauYVTAxu4CgdYoLYhGrLC4aoiU5v36QYAfbO1GyBYkfbnthzYa1cW0cA2jAlq7iniuQmuF4wgCqQikKhfcoqeRg+5nKw3ZYsDa9uHvERjVwRRcwxhnBU/Sm/Up+gFS6XBZdF/jBTpc30wqvECx7fChbDFg1aYsZmBR9TIF1zDG2bOrekjELNxA4XphwQ1KRTZqC9xS363N0EAZqaC93+Pltf2VOGxjDJiCaxjjIJAK15csX59m+foM8YhNoMANJI4t8AKFHygiTjhEDML1zbbl+opVm3Js7Crs8D2MiavmbppVW/h4T08PV1xxBevXr0dKyYknnsill16KNdxvm1F10nmfR1/uZHNPEXSYd5uMOaWuA43rKZJxG18qtIaII8h7mpgDtjV8ZGK6EPDnlT28f2ELsyYnyBZ8lr7Rw1ubcwhgRkuc+TNSzGiOYdvh2N6oY1GfcMpB50Zl1FzBrbbw8auvvpr999+fm266Cdd1+exnP8u9997LJz7xiTG7Jsb4Cpe9Uby2oZ9n3+wjHrFIRIdOXFAaHDtcGr0h6RBIjdbhTTPX94jUR3daHNP5gN89u4Vk1CbrBsQjNvHSe/RkfZ5e2UPBC/MZ0OBYFtOaY8ybmmD/6SmaUhEcx/xRH281V3CrKXwc4NRTT+U973kPALFYjPnz57N58+YRn+/PH1vP5t4dJ5kNGPFtlhFuaG7b7JhWGrs0JTcasfDl1lV5BxQ9iSWg4MrSa+DdBzQhpSolholyF8GOCq9lCYqBwrEtgnBt9SHPxyNDC2p3xqOj3+XxVzvxArAIE9NNm3dszZuW4ryTZg/7XE0V3GoLHweG7H/FihU8+OCDLF68eJf7G/D50/YZ8bbGxNGT8fADRTYf0FIfYVpLjKmNUdp6CkxtjDGjJc6cKUnOOmraTpfQMapLTX0nqzl8fOnSpVx66aVcfvnlHHTQQXu8P2NiSxd8YhGLoifRGhqTUd7elGVyU4z+oodS4bI7mYI0BbeG1EwnTjWHj//yl7/km9/8Jj/4wQ/42Mc+tkf7MqpDX9YnYgtkaS20xpRDa3eBeMRCqTBwXGhNT8Ysn1RLauZP50D4+KOPPlrOw02n05x88smjCh+/+uqrqaurG7fw8TvvvJM777yT3/zmN8yZM2e392NUl4FpulprNBrHEhQ9CTocbzvQG9uZ9jCfd2pHzRTcagwf9zyP66+/nrq6Or785S+XHz/jjDO4+OKLd2ufRnXIFIJwZAKUbnYJBm6tBTIsvHlPlRPFjNpgAsgNowLu+NMGIrbNwy9sYf6sFOmsz3MruznpsCm8tiHNUQdOoiEZYd+pCc46ekalD9cYIzXTwq00Ez5ujJTWmr58QEtSgIDwfq1GCBAC/FJsYzbvE6hEpQ/XGEOm4I4REz5ujFTelfi+xg80lij145Y+Z2oNSmt8pbHQ+AMZC2aSQk0w30XDGGe9WR+tNb6UWEJgCYHnh8MSi35YXP1AoUo30Dr6zEiFWmEKrmGMsw2deeoSDgVPYVlg2VAszSgruJJEzCm3fi0Bq9vylT5kY4yYgmsY42xjd4GYY1FwZRg4rsH1wz6FfDEgGbXxAoVlCTL5gLxnVnqoFabgGsY48nxJW6+L41jlzASBwCvFKua9gHjUwgsUtiXwpaboynLmwnCkVGQKPtlCgFJm0NFEZm6aGcY4eqM1gwAitiDvBtiWhSDsuwXIu4rZkx368uFzAH05n5fX9nHcwknl/fhSsbY9x2vrMmzqKRLIcIWI5roI86alOHhOPVMad298uLH31FzBrbY83C1btvDd736Xrq4ulFJcdNFF/O3f/u0YXxVjIsi7kqdX9BCL2ERsi7wnSUZthAVeELZgPV8RscORCkoptNZ4AbyyLk22EGDbFl1pl7Y+F60gHrWJOlZ5FIPna97YmOGVtWn2m5Zg7pQk0xpjWFZY1C0haEpFqEvU3K9+Vai5q15tebj/8i//wgc+8AEuuOACurq6OO200zjuuOOYPn36mF0TY+xJqci6kv6cT7rgkytICr5CKU08YtFUF2VaY5R41CaQirUdef78Ri9WKWrRtgVFT1GfcLBEGNcIhBkKYmB4WPj1QLfDmvatqzzEHHvY44IwUCkWEWzucdnQWaDoha1f2wr3a1kwZ3KCBbPrOGB6XTlH19j7aq7gVlse7s0331xeFHDz5s04jjOqqcJ3P72J9t6dDRvacZ/eLnv7drLBTl+7ix3vbi/jnkyK3NNz1YRjZQOpyBQCPF9j2QLHEkQdq1QUt/ICTdGX4TELQSJiE3W2bhGLWGQLAc2pCJ6vCCRMbozSk/YAQa4Y4PqKbE9xrxTENzZmeWVtmrwraUpFiEdtIrYY8YoQZuGIHWtMRfjMycPnotRUwa3GPNyBpXTOO+88li1bxgUXXEBzc/MIzjZ0zvtmjXhbY+LIFHx6Mi5zJifo6C1w8Nx69puW5E+vdhKPWrz3wGbmTE5wxP7NHDDTzFKsFTU1SmFwHu5hhx1WzsOFrV0K999/P08++SQ/+9nP+NrXvsbGjRsnRB7u4sWLefrpp/nzn//M7373uz3enzGxFVyJluHKEH6gaUg6tPUUw5UbCPt0bUvQ2W8mPdSSmim41ZqH+4c//KH8vi0tLZxyyimsWLFit/dnVIe+XEAkIrAtgSfDSQ89WY+GeAQA11NIpUnn/QofqTGWaqbgDuThLl26lCVLlrBkyRKeeOIJ8vn8qPJwB4rfeOXh3nXXXdxxxx0AZDIZ/vjHP3Lsscfu9v6M6tCbdYnYFpYAPwhX7O3P+tQnbSwRZuN6QVh0jdpRM3241ZiHC3DttddyxRVX8OEPfxiAs88+m1NPPXW392dUh3QuwLLCDFypQClNwZPMiCWQSuMFiqJvCm6tMXm4hlEB9zzdSnfGY1pTjFdW95IrBPz1rR6O2L+ZRNym6Crmz2lgSmOMjx47E9sywwJqQc20cCvN5OEao9Gb9YBwXKxtWxQ8CaWBZa6vyuOupFT053xa6qOVOlRjDJmCO0ZMHq4xUq4vybmSRNQujdPVFNyto2SKniIeCbvGhBC0duVNwa0RNXPTzDCqRV/WK/fNCkG4fpm7dSRNoehjl34zpVK09e54lIxRXUzBNYxxtqGrQGKb2WNuaWovIgywiZSyETIFSSDNbZZaYQquYYyz9e35ITfBhBAUg61dCnk3IBIJfzWl0hR8Sa5oMnFrgSm4hjGOPF+yqWdrF4EGGBRegw7H5Q4elFB0FcvX9Y/rcRp7h7lpZhjj6JW1/UNbOTociaCURgiBF2hEqdpqHT6WLQZ0ZzyKntxpkI0XSHrSHr1ZH9u2mNwQxjAKIcgXA3JFSTJu05iMjDikxhhbNVdwqy0Pd/Bz5557LmeccQYXXXTRGF0NYyLpzrj8ZWUPsVJ3gWOJcJKDv7WP1gtkOdt2IJoRYENHjkf+2sbMSXHypVjIvLu139f1FOm8T6A0UcdCKY2UGtu2AI0sLcUejdgsmFXHew9soTEVGcezN6AGC2615eEOuPrqq9m4ceMen78x8XiB5NW1aZ55o3tIRKNtCwIZFkY0pa4FRaRUZP1A4ZSGK1iWRUe/S3tfcYet05HGOL69JcvGrgLHLWzhwFn1ZlLFOKq5glttebgQFu5MJsNJJ500wrPc6vGX2unJeKN+nTH2dOk/Go1Umkw+oKPfpTvtEXGscMHIQRpTERoS4YKRgVI4wiLvBjhWWIjXbMmTjO+9X9HX1vfTnIoyvSlGPGpjOwJ7INXX1ODdlojafOTYmcM+V1MFtxrzcFetWsXtt9/OHXfcscM/DjtzzIIW/MAMG5pIhADbEkScnVctIWDpa530ZFwOn9fM1MYoK1szTG6I0ZBwOO0903j3/iPPRt4TUoXh6ruZUmoMYu1kKEJNFdzBebjNzc3lPNyzzjpruy6FZ555hi996Uv8/ve/r1gebiaT4Vvf+hbXX389yWRyt/bRkDT9cNXM8zVaQUPSIZP3KXqSaMRCWILejE8yVlO/ou94NfPdHMjDjUajLFq0CAgjFu+4445hW6mD83CPPPLIch7u4FZue3s73/ve9/jRj360w/ddvnw5H//4x3frmJcuXUo6nebrX/86EC4o+ec//5lsNstXv/rV3dqnUV1yRR+lFYJwDbOCFxAp3fRq6y3s8vVGdamZgjuQh/voo4+WIxrT6TQnn3zyqPJwr776aurq6sYlD/fMM8/kzDPPLH/97W9/m/nz55tRCu8QSmmKng5X6NXhymlKhYPji56kYJvFHWtNzRTcas3DNd653EAhlcLzwxZuwZPEHAtNuKR6fdL0zdcak4drGBXSm/W49+mNrFjfj2NbtPfkKXiK/WfWk/ck+0+v4ysfO7DSh2mMoZpp4VaaycM1RiuT95EqzMQtegEFT5GK22jCJdYV4WKTiZjpWqgVpuCOEZOHa4xWb9YHEQ4PKxQlni9prosCAteT2AI2dRfMMuk1xITXGEaFpAt+Ob2m4ClcX4VDwgA30GgB69uH/9RkVCdTcA2jQtK5AKUVoHGDAC8Ip/VqNEopXE9S8CTmNkvtMAXXMCpAKU2m4JdndnleuFS6EAIlNVqH43IzBZ+2XreyB2uMGVNwDaMC+nM+WoMvFUII/FIAuSAMI4/YFmjoyXi8sTFd4aM1xoopuIZRAW9tyRKPhoU24gg8X5afc72w4GoNBU/R2lVgZaspurXAjFIwjHGmteb1df201EeRKmzVSh2OVlBoCm5ALGqX4hoD8m7A/73ayYaOHH4Qtnr3mZrkqPnNezVNzBh7NffdqrYA8kwmw/HHH8+8efPK21122WUce+yxY3VJjAlmTVuO/rxPY9IZdENMlP/r+pK6ZATLgmIh7GrQwJq2fHkfr63vZ0tPgUP2bSQVt8kVJZMbokxtipvVHCawmiu41RZA/vLLL3P00Udz66237tb59ma9cv+fsfcopXH9cMny3tIy58mYg9KaoqdwbMGkhijTmmJEHJvhMr2l0mzszPOn5Z3EHIuirwikQqvwJtlABm3RU0QsQdFTeL7cuqLvNtp6i2zoyiOlxrEtAqnYZ2qKQ/ZpYFJjDMcEi1eEVJoZLYlhn6u5glttAeQvvfQSfX19nH322Xiex9lnn82nPvWpEZ/v4y+2095n7mLvfRrbsqhL2ERLeR2Z/NBCuKWnyHPFoBREs32xE0AybjN3cgqAqCOIOBaWLTh0XiP9GQ9LCJTSJGJhFHhzXZRpTcP/8u7I82/2UnAlZjBZZSyYXffOKLjVGEBu2zaLFi3iC1/4Ar29vXzmM59h6tSpnHLKKSM657M/MGdE2xkTz4r1/aTzHjJQCK2JO4KIDcmoxeTGOFOaYjTXRfnwsbMqfajGGKmpglttAeQAX/rSl8r/P23aNM455xwef/zxERdco3qF43DD9cyUCtuj+aLEsS201hQ9iTbt1JpSM8PCBgLIly1bxqJFi1i0aBGdnZ3ccccdBEGw3faDA8gPO+ywcgD5YO3t7XzhC1+gWCzu8H2XL1/OggULdvu4Fy9ezObNm8tfa61xnJr6O2jsQLYQzi4TQhNIjQByxQDHsUBr/EAhJWamWQ2pmYI7EEC+dOlSlixZwpIlS3jiiSfI5/OjCiAfKLrjEUAOsGzZMm655RYg7Fe+5557hoSSG7Wr4EmKniQSsci7PhoourI0vZdwRV+lybnD3zQzqk/NNKWqNYD8iiuu4IorruCss84iCALOPfdcTjjhhN3en1E98m6A6yvijk2+KBFagCDsUgACFa4E0Zv2qDPjbWuCCSA3jArQWnP7E+to7cxTH7f5y+ud1CUcAqWpT0SZPS2J0nDgrHpmTUpwzEGTK33IxhgwfzbHiAkgN0aj6IdhNVIpbMuh4AY4tkU8aoVDxUrbeIGiL+9X+nCNMWIK7hgxAeTGaOQKPpYAJTWWJSi4AdGITSphE3EEQghcP4xnrDMTW2pGzdw0M4xq0tHvkojb+FLjS4VU4Uq9UcfCsS2k0kgZzm6TKpy9ZFQ/U3ANowLaeorlFXr9QIctWk8Sj9igNa4vcexwtpoXKLb0FCp7wMaYMAXXMCpgS08BDTiWwPdlOXAcIcJYRldtLbi+5K1N2Z3uz6gOpg/XMMaZF0i6+j0SURvHFngyXGYnDGoEWWrhJhPhcMNMISBfDAikwrG3tpE8X/LMG92s3ZKlIRVhv2l1HLxPA/GoWeV3ojIF1zDG2br2HEqH/bKObVFwt45C0Gi0CpdHd6ytxXVLb4GX3+7lyANbEELQ2pnngec2I1VYhDv7XTZ3F3hzU5oj9m9h/qw6LJMWNuHUXMGttjxcKSU333wzS5YsIZ/Pc+KJJ3LZZZeZTNMapbXmLyu6ScQsfBmu9pDND70hFkiJ64fPbX1M8+yqHtZ35Mm7kq6MW2ohby3KEceiL+fz6LLNvL25nvfMb2Z6867zcX2peHNjmvY+l/qkw4JZ9TSkomN74gZQgwW32vJwb7/9dp5//nnuuusuLMvi05/+NA8//DBnnXXWmF0TY2LwfMmfXu2kL+cTi1i4vkLAdvE0vhJIFY7TVUqXW6qOLehMh1GciZ10G0QjNhs6c6xpyzJvRh0HzKxj9uQkyZhdLr5aa3LFgNfW9bPs7V4CqYhFbKTSPL+qh0P2aWThnHomNcSGFHVjz9Rcwa22PNz77ruPb33rW+W8hhtvvJFIJDLi873tsTVs6dlxuM4u06b27Ontt9/D0Ut7/Xh3ssGeDrza2aRNpTWBhPpkhFjEouhJgiAc8qUVzJycJFsIuxaCQOH5YaBNOh8Qjex+wVvVmuHlNX3kiwGWEEScMG/XCzSWCI8n4oT7zw/KbPjrmz388eUOtNZEHIFji1IP8ziq0g95M1uSnH/qvsM+V1MFtxrzcNetW8fbb7/NT3/6U3p6eli0aBGXXHLJyE4YuOC0ebveyJiQnny5nd6sy0urPA6cXU865xOP2ARSMWVWHfOmp3jfoVOYOSlZ6UM1xkhNFdxqzMMNgoBXXnmFn//853iex8UXX8zixYu54IILdnufRnXIFv1wDbNAIUQ4RrPoBlCa8mvZgu60ZwpuDamZzplqzcOdOnUqZ511FtFolLq6Os444wxefvnl3d6fUT0y+fDn0vVkaVkeyBVl+NFdhB/hu9Nm+aRaUjMFt1rzcE8//XR+//vfo5TC932efPJJDj300N3en1E90rmwhesHCqXCAPK8F4AASwgCqSjuYAFJozrVTJdCtebhfu1rX+P666/nb/7mb5BScvzxx3P++efv9v6M6hBIFSaGIbCscNxt3LFwXYndaGFb4XLpUo78Bqox8Zk8XMOogHTO4+cPr2bejBRPvtiO6wWkYjZbegrsM6OOVDzKtEkJZrTE+fBxsyt9uMYYqZkWbqWZPFxjNPqyPrYdDtGyrXD1B8cOW7u2bWHZ4Uw0L1DbTek1qpcpuGPE5OEao7Glp0Aq5oTjlkXYfeD7NpZl4VgCuzStVypNd9plWnOisgdsjAnzZ9MwKqCtt0gkYuGXshB8T1H0wyXSEQK7NLvMEoK1W4b/5GRUH1NwDWOcaa3Z3F3AsQSep4g6Fm4g8X1FLGKhlUYwMEwsoN8ssVMzTME1jHHWm/HIFSW2LfAChSUgCDRFPyy+UFqxV2nyrsT1JYEcOjGnJ11k2ZvdtHbldzql2JhYTB+uYYyz51d1k4iGS+m4vgrbskLg+bKcmyBVmKUQtQSZXMCKdf0ctn8zSmn+sqKL51Z2E4tYCOCQ/Zo4esEkEjGTgzvRmYJrGONoY0eONzakiUdtIrbA9QJAgA4jGCOWhdIKKS0CpYhikS74LF/XT96VvLkpQ0/GG1JcX13TS3tfkaMObGGfqalyupjWmkwhQEpNfdIxIx0mgJoruNWWh/vJT36SQmHrelVr167l7LPP5vLLLx+rS2JMAJ4vefr1Ll5d01tekcGyBF6gSxGNujSlF5QWYQs3UFCaU5PO+yx7uwdLCGLbpIfZtkVXv8v9f97ElKYYkxqiuL5ic3eBfFGitWb25CSHzmtkwZwGU3grqOYKbrXl4f76178u//8f//hH/vM//5OvfvWre34hjAnBDySvrunjmRXdaDSxyNaWqdZhNGNYbAceBK00sjQTrWHQvqxdBInHohbpvE960E22ZDx8v96cx+MvtvPq2j7mz6xn1uQkTXUR4lHbhN2Po5oruNWWhzv4eK688kp+/OMfU19fP5JTBeDepzfS1b9NwMkubqLs6hbLaO/B7EkG7dZN9uzGzx7n8I7o9SO/rlJp+jM+vTmPeNQu3wwbLOoIil6AlIpkwqHgSiRhy1b7AjfjI+XY3hDrSbu8vq6foisJFMSjFo2pKKlEuL6aLYQpwHsoGrG54LT9hn2upgpuNebhDvj5z3/OiSeeOOrgmr9735xRbW9MHL0ZjzseX0Ou4HPyEdN5a2M/8agDaBpSEQ6dN4nTj55R6cM0xlBNFdxqzMMFcF2X3/zmN9x77717tB+juhT9ALe0RHpv2qU+EQGtKfqSVDyClLv3M2lMXDXTe16tebgATz31FAsXLmTOHNNafSfJ5SWB1IDGDxSWJQikxvPCZdOlNgW31tRMwa3WPFyA559/nuOOO26P9mFUn7wbhItECkGuEDYKgkBS9CRKg9amL7XW1EyXQrXm4QKsX7+eQw45ZI/2YVSfghugtCLq2GQLAcm4jetLvEBV6/qJxi6YPFzDqJA/vdLOUy+3kYzavPRmN/tMT9Hd7xJoWLhPI/NmNvDh42bv0aq9xsRSMy3cSjN5uMZoFV2JUiCEDuMZAxXeKLMsbMtCaU1/3mNK457dlDUmDlNwx4jJwzVGQ2td6qtVaGw8X1L0FLZtgSUQAgSC9p6iKbg1xHxWMYwKKPrhSg6WJdA6XNmh4AU4jkXEttClpdLbegq73plRNUzBNYwKyOQ8pFJEHCscGqYFRU/iWIKIExbcdN7HD8zQsFpiCq5hVMDm7gK2JXBsiyDQaK1xvbDFG7EtNJpM3seXYS6uURtMwTWMCtjYmQcEtgiXTEeAF4TL7UQiYQvXDxSuJ9nQbpbYqRWm4BrGOJNKs6Ejjy8VIMrBPZ4vcZxwPTNLgOsperMua9qyyFIr1w8UuUJAb8ajL+NttxKEMbHV3CiFasvDzeVyfOc732H16tUopfj4xz/ORRddNMZXxRhvWofTdSOOtV361ppNGTxfEgSlXz898JrS/5e+9nyJVPD6uj42duSRSpHOh7PTBgrw9OY4C+Y2cODsBhpTEZP0NcHVXMGttjzcW2+9lXg8zoMPPkg2m+Wss87i6KOP5rDDDhuza2KMH60169qzLHmpnWzBZ+akJAfOrueAWQ3EIxbtvUX+8MIW4lG7fENscGSCEAKlNa4nGZhu5tgWeTec+rtt+Hi2GPD8ym6eXt7JlKY4c6Yk2Wd6kpb6GIFU9GY8HNtixqTEkCxeozJqruBWWx6ulJJcLkcQBLiui1KKaDQ64vN95vVOejPurjc09qpAQV/GY+XGfvJFSSwaFsZNXQX+sqILf2C6roBYxCYasUg44eSGQCmk0ggBSmt8X5IuBlgC1rZld/q+g7X1Fnh1TS+er9BaowDHEmgNsajNvOkpJjXGSEQdhDA34vaWhlSU9x86ddjnaqrgVmMe7uc+9znOO+883v/+95PNZjn33HNZuHDhyE4YmDkpQXP9yAu0sXc4tkUqbnPmsTNHtL0Q8OzrXfRmXNZuylCXiDC5McbB+zaSywd4UjNzSpKTjpg+psdZdGUYdG5m9O81kZ0sYVRTBbca83CvuuoqTjjhBP75n/+Zrq4uLrzwQo444ohdFvoB+043U4arloaIFbZqLSHYf1Y9jz3byvRJCWZMThGP2GaWWY2pmVEK1ZqH+/jjj3POOedgWRZTp07ljDPO4Lnnntvt/RnVI1cM1x7zfEldwqG7vwgCtnQXcCxBtuBhsqVqS80U3GrNwz344IN55JFHgPCPxtKlSzn88MN3e39G9cgVJRqBHyjmTq9j7aYMlhBopWntzNKbLlJwZaUP0xhDNdOlUK15uNdddx1XXXUV9913H5Zl8aEPfWjIcRq1aSC8JmqD6ysaUhb5YkAq4aA0tPcWWTC3iS3defaf1bDrHRpVweThGkYFFD3JLQ+9RUPS4ZnlHUxrjvPca+1MakwQyHD87iH7N7PPtDo+eer+lT5cY4zUTAu30kwerjEaBTdAAEppoo5Fb8YDQGkFIpx71tadZ3pzAqk0tmUmNNQCU3DHiMnDNUajP+cRjdgoLUjFHTa0ZRBCIKXGKuXh+kEYQL5ibS+H7t9S6UM2xkDN3DQzjGrS2eeSiNlorYjFLPpKLdyBCRCCMNRmU0eeLV05M1qhRpiCaxgV0JN2iUbCmWZoUc5GUEojRBheA+AFks7eIuu2ZCp4tMZYMQXXMCqgo6+IY1u4niq1XsOCK0sFdyCEJpCatzalebu1v4JHa4wVU3ANY5xtDZURuJ5kcL54uUuhVHAH4hjTOZ8tXSYXt9qZm2aGMc7ae4oEMmzZWpbAdYNygVVKI4DBgxIyBZ831vURsS3ef4RD0VPUJRzqk5HKnICx20zBNYxx9tLbPcSjNkqFKV59WW+7bfQ2X2zszNOQivLafSuJRhxiUZv5s+pYMLeRac0JXF/ydmuGtzdnyBUCJjfGmDezjgVzGolFTSzjRFFzBbfaAshbW1u58sor2bx5M8lkkosuuogzzzxzjK+KUQmuJ/ECScSxiUXCIPKO3gJvt6aJRW2kUsR3VHD11lAbCEct9GRcYjGHVCL8tV3bluONDWkAlIJoJFwjDWBLT4ENHTmWLu9gv2l1NNVFiUYtWupjTG2Kk0o4Jqy8Amqu4FZbAPm3v/1tjjnmGG655Ray2Syf+cxnmDdv3ogjGgOpzCKDFaZ0+H0ougHtfUU2tufZ3FWgP+8hpUZYkIqFrdLejEcsYqFUuCJELGKRybmU08bL+9RICcLZ+nhbT4F37dtEEISLTQJEnaG3YQb/LNiWAL01U1drjRsotIZEzGZSfYzGughNdTGmNsVoqo8Si9g4toWZZ7EnBNHI8LfHaq7gVlsA+euvv861114LQF1dHcccc0z5j8ZI/OoPq9nSXRjRtsbeoEEIBODYgkTMIR61EUBdfOivVxAo6hNbH1NKI6VCabAtOOk9M1jy183l3QLY27RClYKi59HSkNitox286kMm75PJ+2xoy5H3JK4vkbK0wprWbPtHwBiZeTPr+dQp+w37XE0V3GoMID/ssMO49957+cpXvkJvby9PPfVUuZtjJC46a/6ItzUmluWre3h9TQ+JqM3k5gSJqE1LfZSoE67cO605wdTmoYW1LuEwtSXBGcfOqdBRG3uipgpuNQaQX3fddVxzzTV85CMfYdasWZx00kk7zd81akeu4JMvBghL0FgXZc2mNI11UXwZLhJZ9LaPZswWApoChZQKeycrCxgTU818x6o1gLxYLHLNNdfwwAMP8JOf/IR0Os3cuXN3e39G9Sj6imwhHBLWkIywbkuGprow6tMv9bUOJwgUG9pHvtaZMXHUTMGt1gDyG2+8kbvuuqt8TEuWLOG0007b7f0Z1UMpTXc6/GNuWQLXUzi2QCqFlDqc9jsMP1C8vTE9nodqjJGa6VKo1gDyb37zm1x66aXcd9992LbNtddey4wZM3Z7f0b1UGi6+8MVl7XSDDRpA6nRWuywhduf9cykhyplAsgNowKU0ix5cQu/fHAlRU9x+P7NPPdaO0cunMJbm9JEnHAByX1n1mFb238QnTk5yenHziYRq5k20zuC+W6NERNAboxG3g2QUuEH4c3awa2eINDEImELOFcMaEhGt3u9VJp1W7IctG/T+BywMSZMwR0jJoDcGI2+rEcgFYEM08EGf85USiGs8LF01t9BwVVsbM+YgltlauammWFUk82dOTxfbg0WL/ffhqE2tiXCiQhKsU2yAgCZfEAgTW9gtTEF1zAqoL2nSCbnAyBEWG+FELi+IhZxEAys7KvoTrvbvd71JH6gCOTujR83KsMUXMMYZ1IqerMefRkPgSDqWHh+OMmh6AXEY+FIG6XB9SX9WQ/X334seSAV7T1mWnc1MQXXMMbZW61pIo5FTyZsucaiNsWBgutKYhELrUGXGq/ZQkB7T3GYdc0EazeH43FdT7K5K0dnX9GEGU1g5qaZYYyjTN7nj3/dwtzpKfqyLpowUMZ1w4LrepK6ZISgGPbfDowrT+d82rrzzJicZCBUJl8M6O53efAvG1ndmiaQYKHZf3YD757fwtxpZmTMRFNzBXei5uHeeuut/O53v8O2bVpaWrjqqquYO3cuhUKByy+/nBUrVqCU4tJLL+WUU07ZOxfHqBitNa+t6eVPL7Vh2QKlNb4fNmGjEYtcLszEdX1JLGKTd8PkrgFKa7r6wxjHyU0xAqlZtyXNzMkpIjGHaMQmWpoLsakrz4a2LAfv18yRC1porNv9iTnG2Kq5gjsR83CfeeYZ7rnnHn7zm99QV1fHnXfeyWWXXcadd97JjTfeSDKZ5JFHHmHz5s2cc845HHLIIUyfPn1vXB5jL3E9ScENkFqTHIhoFAKtNR19RR57bhPdabe8+oLnK4LS+mXRiE2PF/bRFr1Sl4LS241C0EB7XyGM4xQa2xbMssJJFJY9NErRdize2NDHm639HLJfMwft00hLQ8yEjldYzRXciZiHO3nyZL7//e+X933ooYeWW99PPPEE119/PQAzZ87khBNO4JFHHuHCCy8c0fne+dgaOnp378aJHma40TYbDPe/u9x2FE/tcovRzIPckzmTuz6/7bfQGqQOU708X4WB32yNko1FLIpe+HhDMvxVc0sJYBGLMC9BaRxLUHAV5cA6ISj64fCwgZtpwx2wUhrPU6RzLnWprWN1bUvQ0hAjGXdwPclfXu/g4b+0EovYJOI2jiXKAebG2Guuj3H+hw4Y9rmaKrgTNQ93oCsDwmV2rr/++vISO1u2bBmSnTBt2jTa2tpGeMZw7mnzRrytMXE882obazencWzBtOY4azYKUvGw9RtzLBqSDqlkhP1mNOx0Py0NMWZOTvCBI2aWH9vSleOF19vZ0pUnFrE5en4LC/ZpYsaU1F49J2PXaqrgTvQ83J6eHi655BLq6urKfwi01tt9zLOGmTtv1JbejEtQarxaIkwIswb9HPiBRoxgxYVcwccLSpGOvuSxZzfw5vp+oqU11PIy4PXV3azbkubdB07m8AMnm26FCqqZ3+yJnoe7cuVKPvGJT3DwwQfz3//930Sj4UfAGTNm0NHRUd6uo6PD9N++A/SkiwSliqvL/9lKSolSepihYEO5pRtv2bzPrx5cxerSApWDi6oQgnwhYPlbPby0smssT8MYpZopuBM5D7etrY3zzz+fL37xi3znO98ZEiH5wQ9+kLvvvru83dKlSzn55JN39zIYVUApTX/WxyvdFNNKbdeHrFQ4MsELdtCHW5KIhX2yv7j3dVwvKK/aO5xM3mPdljTrNpss3UqpmS6FiZyHe/PNN1MoFFi8eDGLFy8GIBqN8tvf/pavfOUrfP/73+ess85CSsmll15qVnyocQU3wPMVfumGmGLoco1CUO7iyhUCYpHhf01jEYuWhhj3P7mWSU0xWqK77tpq68qxar3DzCkpooMWlDTGh8nDNYxxtqkzy51/eJu3WtPYluCA2Q385dW2ch/u4fMnsXJDH5ObksRj9rATGKIRi+nNCR5+eh22LWhIRZk1wptidckIB8xp5PjDTdD9eKuZFm6lmTxcY6Taewo4tlUeaaaUHtLCdX1JxLHwA0k0un0XgWMLZk5O8tDT68JleFSYuzBS2bxPb9olnXVpMJMixpUpuGPE5OEaI9XV5xLspEJ6viRmW0ilUVKjlCqPXLEEzJma4rG/bEAGqpylGwRhP/BIxx909RVY9kYnJx89e89PyBixmrlpZhjVoqMnT9ENsK1w4JdSQ4cGFl1ZnpEmlaZnUDzjPtPr+L9lm8Ll1Qe9RmlNobj9aJwdyRUCcgWfTGlKsTE+TME1jHEkpaI345F3JUKA41h4wdAx4EVva8F1PUm+KAHN3Gkpnn+9nd60u91MMak06VEWz76sx1/f6Nj1hsaYMQXXMMZRNu/j+ZJ8qTUajVi43tCWadGV5REESmuKviQVd3hzfR+b23PDTssNgq3ro41UOuuRLwTl6cbG3mcKrmGMoy3dBYQIW7EAUcferuAV/a0tXIBUzKYn7bJiTc92ITUDpNIEapfpGNvJ5j1eXtU5ylcZu8sUXMMYRxs7sniBKoeERyMWnj+0ZaqUxhLhtO9Y1GbmlCTPvLyZoid3GtCjlCab99GEq0G4vtxlGHlvxqM37e5yRpsxNmpulEK15eEOWLlyJZ/73Od4+umnx/iKGBPJ5s4c7T1FnFJLNepYFLztb3ZpwtEHB+3TyNMvbgbC/lylNMm4Q8QJ20pK6zC1TIZFPJcPoBTZqDXEYzYtDTEmN8bLaWaDKaUpuAGrW/s5YE7T3jtxA6jBglttebhBEHDHHXfw85//nHw+vzcuiTFBuL5k9aY02YJfLn7RiI3nDtf3qtlneh1vru/D9WV5REIgFX3Z4W+O2QKaG+IIKE/xlVLT3l2gP+sxpSlOU110u/Ca/qzL6ta0KbjjoOYKbrXl4a5YsYJVq1Zx00038dnPfnbU5/vIMxvpzmy/qutYGstPm8PuagRvMOJDGOGGu3tKo/voHbYytYZCUWJZ8Mb6fmKDptQGSpMt+MhtPvpbIpziu6a1HyGsER2xBHypKLoSe5u+3rwb0NlbxHEsUjGbxoYYjhAUvAA/0HiB5tYHV5npvmNAazjvDJOHOyHzcA877DAOO+wwWltbR3eyJacdM2tUs4yM8SUE5RblEy9sRKnpQ1qYc6alWLuxb7tIznfNa+GRP69n+qTkqOIUbUswtTnO7Knbf+JKxh2mNCfI5jzae/L4vmTG5AR1yQiTG+PUpaIcd5iZ7rundpbtXlMFtxrzcPeUbVuYNsnEp7Vm/ZbsdoV1oME8uKY218fY3JEjWwioT0ZG9T5SafxA43qSeGmkgxAwa2qK7r4if3h6HV6gsAf9IVBak0w4vPdd0+nPFJncnNz9EzV2qmZGKVRrHq7xztCXdsnk/e0eV8MM5Zo7vY6XVnXu9i9nvujT1VdE6XDds31n1vPX19t59tW28pI+g1vNlhAUi5IXXm/nt0+8zSurOrfr4jDGRs20cAfycB999NGtS0un05x88smjysO9+uqrqaur2yt5uJdeeimf+MQn9vxkjarz8uruYWMWlQatYOBjyrSWBGs39+MHCrGb645pDT1pF9uCww+czENPrSXvSiI7ycoF8APFxrYsf1Zb6M+6HH3IdBKxmikRE0LNXM1qzcM1ap9UmpXr+oedIaakGpI4M31Skj8+t5Fk3MHeRYHcmYgjmDu9nnuXrMYfNMohHrWJR53ysLTBgkAhpUYqzfK3uii6kvceMo2mhpF1mRm7ZvJwDWMvW9Oa5v6l64hFt2/fNNVHePKFTTi2xbSWBMWiz+rWNNGITTLm4ERGX3QtS/DuAyfx9LLNFLxgu5tutiVIxhyiw+w7HnNorIsypTkBaPad1ch73zXV9OuOkZpp4VaaycM1hqO15qlXtgxbbAFksDUpbFpLgiUvdCOEIJBqh9N4d+XQA1p47tW2YYsthC3uvBugsYcMUYNwckWxPNVYsLa1HwG899BpTGpM7NbxGFuZgjtGTB6uMZwNbVl60l55xMBggrDf1BLQVB+lrSvPQKit1iPPth3s4P2aWf5WN+mct9PhZFJpCm7Y1RB1trZ0tdYEgaRQDEjEHYQQrN3UjxBw3OEzaDSB5XukZkYpGMZEI6Xi0edahy22EEYzFkut0NlT61i1vm+7IrmrLITB9p/dQGt7hs7u/IjG7g60dH059D1cX9E7ZDKNYM2mNM8vb6fgjjxz19ieKbiGsZc8s4sC5diinH2bLXgEcuhYcA0jHp41c0qKQjFgbWt6VKMbpNTkiz7BoKI7EPU45L01rG7t49lXt2x3nMbImYJrGHvBxvYMy1Z2EXF2PC0l4lgUXcl+M+p54+2e8iKSAwRh8duVyU1xEjGL5W917dZQskBqctsUXT9Q9PQXhmynFLy9MSy65l777jEF1zDGWHd/kXv/tG6XuQSObeF54coP2cL2kyKkVLtMUJjUGKelIcbzy9v34IjDopst+OXVJ1xPUhgmVMf3NWs2pvnr63v2fu9UpuAaxhja0pXjzkffLqd17UzEsWhpjLFybe+wfa6eVMNGKg6YPinJpMYYz76yBWBUmQvDkaU83bwbhIHmUg67bE+24LOmNc2qtb179H7vRFU3SmF3824XLVrED3/4Qw499FAWLVpEJBIhHo+jtUZrzZlnnsnnP/95HMfZbn+D/fa3v93ltNxNmzZx44038tJLL+E4DkEQcMYZZ/DlL3+ZSCRCa2srH/7wh3nppZeGvO6WW27hrbfe4tprrx2LS2WMI6k0L6zo4NnXOkacuBVxLKIRi47ewnbdCQCer6hPDr+v+XMaKbgBfxmjYjtAEyabFV2J64fDw5JxZ7s/IN39RVau66WpPsq0yakxee93gqoruLubd7ut66+/nkMPPRSgnH17zTXX8L3vfW/Y/Y1Ue3s755xzDpdccgnXXHMNQghyuRzf/va3ue6667j88stHvU9j4pJSsXpTmqde2kKuEIwq3jCVcFi3KbPD4V9S6u1mpzXWRdl/dgOvvdXNls7cbk//3SkRFt58MSAWtXn17W6S8QjxqE0sahNxLBJRm7Wb+4lFLT5QFyMZr7pSUhFVd5V2J+92V5LJJFdccQWnnHLKHqd4/exnP+O0007j7LPPLj+WSqX43ve+x6OPPrpH+x7O5s7cdqu+GmNr4P6Q0pogUBTcgJ6My6aOHK0deZRS5YkNvhz5sKmobfF2ax8gdngTKly5QTNnej2TGmN09xV44tkNyNLS6nv75lUm51GXjFB0w1YvhNdhYLjaqvV9tPcUSKWiTGpM0FQXIR4NV6SwbIEo/TkZowZ4VSh6koX7NA37XFUV3N3Nux2J6dOnU1dXx5o1a2hpadkuewHgPe95D1deeeVO9/PXv/6Vr371q9s9PnXqVM4777wRH89IvfhmFx09hV1vaOwxQfjRPRqxiMccGlJRDt5v91LfIo5FtuBhCwunNPHgXfOaScUdXngjXNRx5pQU+82sp+hJNnfmeHNtD0prIo7N6EIb90zEtolErB32S7+9sZ9DDphEd3+BLV05fKlRSpXD199JxRbgoH2bd/hcVRXc3c27nTNnzoj2L4QgkQinL+5ul4LWekh/2i9+8QseeOABALq6unjooYe2y0QdoJTa4XM78jcn7DPqYzQqT2vNz+59nYa6KBHHIpVwsAS8sbqboxdOxnJs1m7qZ+mLmxECGpIRGlLjWWYHHSuaRMweNtR8QLHoc+TBUznkgMnjeGTVp2pGKexJ3u1IbNq0iXw+P2Rhx91xxBFH8Pzzz5e//tznPsf999/P/fffT1dXF0opGhsbKRaLuO7QpXG6u7tpamrao/c3qkN3f5G2rjwDf19nT62jtS2DZQmKXsBTf91Ia3sWqTSWEGN2U2x3aBUGmvdnd7yUU64QsGJ1D+u3pMfxyKpP1RTcgbzbpUuXsmTJEpYsWcITTzxBPp/fZd7trqTTaf71X/+Vc889d5dRi7ty8cUX88gjj3DfffchZdjnFQQBDz/8MACWZZFKpTjyyCP51a9+VX5de3s7f/jDHzjxxBP36P2N6vDMK21orcujE2ZPS5HJeWzuzIU33xy7XGS11qgKTzQouAHp7PZrrw3W1Vfk1Te76O7fcWD/O13VdCnsad7ttr7xjW8Qj8exbRspJaeddhr/9E//VH5+uD5cgGuvvXanRXz69Oncfffd3HTTTdxyyy0A5HI53v3ud/Ob3/ym3IK9/vrrufrqqznrrLOwLAvbtrnkkks45phjRnVdjOpTKIbjWP1SUtiCfRrZ0p6lL+NiCUFbZ46pLQk2d4d981qD6ykSsQoupqQhk/fo7LWYPmnHUY0btmSIRdp533tmmZELwzB5uIYxzp58oZXXVnezoS1LU32MVMxmbWs/G7ZkgHARwncfNJXlq3sQIrzPH41Y1CUq04c7WCRiMbkpwaTGHYeSCwEH7dfCCUfMJOJUzYfocWH+BI3Ss88+yzXXXDPsc8cccwzf+c53xvmIjGri+ZLXV/dgWxaWJahLROhLF+nozpe3UTpcZ2zgDr+mNCSttB5ZJfm+oruvgG0JmuqH737TGlau6cGxLY47fPoerVxRa0wL1zDG0bOvbuH51zqwbYHjWPzphU28e8Ek/vLyliETII48eCovv9VV7kITAmIRm9QE+ZhuWYLJzXEmNSZ2OP3YtuDwBVN47yHTh11e6J3I/OkxjHHi+5K/vtGJ44Qfy5e/2YVUivA+1NB2T3/WpX5QF4LWYevS8yUTgVKatq48a1r76ejNU3SD7SZhSAXL3+rmhdfbR5XrW8smxp9Lw3gHWPZGB1JqojGLIJC0d+exHQsldXmlhwE9/S4tjXHynVu7GqTWZAoBsUARcaztlscZb5YQuJ6kvbvA5o48jmORjNkk4hGSCTvscw7g5ZWdCOCod017x7d0TQvXMMaB60teWNFBxLGYOSXFUy+FExrqkhHSOXe7cbZ9GZem+tiwU3ddX5EvBuQnyOoLgjBMHa3JFwO6+wqs25Rh9cY0XX0FvEDx4hudPP9aG/IdHl5uCq5hjIOnX9qM1uGU3r6MS1/aRVgWTXUx+tLbj1tVSg+bIFZ+vtTF4E/QHA3bEni+ZEtnjs0dOfKuz0srO3n21bYJe8zjwRRcw9jL0lmX5W9149jhGNbnlreVe2wb66L0pnc0g0ujdtIiDKTC9eUuQ8orSQhBX9alrStPrhDwyptdPPPyZooTpHU+3kzBNYy9SGvNw0+vJ+JYOHZYfDp7iuXu2kjEwvOGL6quJ8vBNsMSoty9MKGLLpDJ+3T2Fih6ktdXd/Pnl7eQGSbcvNZV1U2ziR4+/u1vf5v58+dz0UUXAZDJZPinf/onJk2axPXXX88VV1yx0+cffPBBHn30UX7605+O6XUzKmdNaz9buvPEIjYtjXH+8PQ6FHrQtF1AbHPHrKQ37dJcH6Mns/PCNDBCIBl3dtoNUUlh0fWwLMHMKSlWretFSsV7D5lGU8OOJ1HUmqoquBM9fHyw7u5uPve5z3HEEUdw+eWXb5cCtqvnjeqhtcb1FV29BTZ2ZEFDc32MqS0JfrdkDX0Zj2zeo+gG9Of8oXfq1fYjFAb0pIvsM7NhlwWX0miBINDE4zYxxy5PmNBa4weKQGosES7N7tjWDkPP9yod5uu2l4ru6o19KK05+pDpO525VkuqquBO9PDxAZs3b+azn/0sH/3oR7n4/7P33vFxlNf+/3tmtu+qN8u94gYumGKTdjHkBwFsQwgXCKGFmpsEEgKEC+kJEEJIgRTIJQkd8yUYbAOmOIRmwAb3Jnf1upK2l9kpvz9GWmutlbSSJVmS5/2Kg3bKM8+stGfPnOecz/nWt3q9vzf8/ZVd1HeoUgJ6LUp9tKUvPZ5+xAV6Pr4frjlI6B3spcMu4XbaEIBRhS7Wr6yn2RfDZpU4YXwOOw+0IAok3w+bVSQud45lZrttzJicx459zbgdVnRNy0gtTNU0gmENv5ZqoEVRQGyvWNMO/30Iyf8bXCIxhTpvGIDPdjdyoDpAMCyjDpVf6lEyptjDNUtmpN03bAzucBAfB0Ol7Otf/zqiKHLNNdf0en9vue7CWUc9hkn/s7/KT3V9kMmjsxEFyM9xsKe8NcWTK8hxEI2pOOypH8P5M4v4aHMNp504ClnTyMuyj7jy2Cy3jVGFrrZcYp35M4pYNGcU2Z6jU+sb6gwbgzscxMfBkJH8/e9/z7PPPsuPfvQjHnrooV7tNxn+RGIJ1qyrwG4zChOK851s3NXYSQchy21jf3Nq59sxxR7Kq30oikZjS4Qstw1F1UacwQ1FjUU0Q9Rc4GC1H4so8rn5pZ2+gEYSw+K3OFzExwFuvvlmFi9ezIMPPshnn33GP//5z17tNxneqJrOincOJJ/Uhbbn9qbWzrm2bqelUxvyUYUuKutCCIJARW2QbLcNaWiugx0VuqYTiSp4fYclKPdVtrJ++8gujhgWXyXt4uNvvvlmUswjEAhw5plnDinxcSCZxZCfn8/vfvc7rr32WmbNmpXUue1pv8nw5v2NNTT74klZwqI8J9v3eenKQdVVPdl5VxBoMzZGVFhRNVTVyD6Qh4aEQr8iJ1RC0QRZbht2q4Smw4FqP1aryBlzRx/r6Q0Iw8LgDhfx8SNZsGABt9xyC9///vdZsWJFr/ebDC/2VrSyda83pVW61SJS0xROK6uoqFpKgkJRnpPGtsWkdoIRGYdNQo6OQIsLhCMJvK1RxrT1S4vF1TbP3jsi+6OZ8owmJv1AU2uU59bsTRHcLsh1cLDKT2VdoFOWgQBMGZfN+m31yX1zphWwbU9TSulrUZ6TiaOzqWgMH9O+ZgOJ1SJSkOugMNeZ3DZuVBYLTyymqMB9DGfW/wwLD3eoYIqPm6QjFEnwwpv7DAGXDnicFsprA2n1Yt0uK/6QnGJErVYJOaGmbGv2RTlxWgGqqmGxHFt1sIEioWgEIwncTivOtgWzmoYgW+0SX8pxjqiuEabB7QULFy486oIIk5FFNJ7g2dfLEARSDGVelp2yg6105ZRmuW00txzOnxYEUNTOYQNNN/7JCXXEGlyAcDRBsy/G6GI3oiCg6VBVH2LD9no+N3/kxHNHzleHickgE40neOa1vclmkB3JybKxr8rXZalttttGcweVsByPHV8X3W4VVRuRmQop6OAPyzS0Nc4Eo1NwfXOEA9W+YzevfsY0uCYmfSAYlnlydRlxWe0kqp3jsbG/0tdtOZxFElJEawpzHTS1xtLGaVt9MfKyRn7pq67p+EPxZKoYQENzhP2VfmJpKvKGI6bBNTHpJeW1QZ5YtRtV1dN2MMjLtrP7UGu33Q3adQ7ayfLY8HUh01jfHKYwb+QbXABF0Wj2x2jp4P1X1gXZuLPxGM6q/zBjuCYmGRJPqLyzoZqy8tYu29tke2wcrPajaXqXzRWhLd+24+5kX7PO5/gCcTwuK5qmHRciR4mERmNLFHSjJDqhaFQ3hDhY7Wfy2JxjPb2jwjS4JiY9EI0rbNzdyOYyL7qud9tLLD/bzrrNtd0aW6tFJBZTUu1tN00WNR10zYjl2o4DgwuGp1vnDSMrGkV5Dpr9MfZV+hhd7MZhG75ma0jOfDjo3m7ZsoUVK1bgcrmS2+fPn8/q1at54403eP7551m5ciUejye5/3vf+x4Wi4Xf/va3KXNtZ/v27dx666288847R/cGmhwVmqYTjMiU1wbZU95KbVMEUQSLJNKdvFZelp39lT17t9luG63Bw33Mst02/MHOfc06oqMjyyo265D8yA4Iug6NLRHC0QQFOQ4OVPvIcdtYOLf0WE+tzwzJ395w0L2tqanh3nvv5d577+2077rrrmPdunXcf//9yf0rV65k9+7dZkXZEKFdwzYeVwhFZJr9cZr8UZpbYzS1Ro1uC5KIxSJis2bmVeZk2XhvY3W3xhaMsMP+8sOiNYV5Thq9oW7PicQUXI6RmxbWFaIgEI0pVESCNLZIqIqOJAnMnFxgCK4Psy7AQ9LgDgfd26uuuoqVK1fy5ptvcs4556TsEwSBBx54gGXLlvHuu+8yc+ZMHnzwQR5//HHc7v6tnHlp7X6aOqzqHklPdYRd7k5zot7lix7G6jR090f2POcuDtCPmIfeplerg6Yb/b/khIqc0FEUo8BAFAUkUcBmlZCOIvdqdJGbT7bXE0uoPXZdsFpFWoKHF8iy3FbKDsTIaZMm9Ic6C47XeSMU57mobu76dz3SSUQ0Nu/xogMvv3MIHR2X04LdZsEqicbvUhKSRvjI38JgFeo5bBauWZpeAmDIGdzhonubn5/Pr3/9a37wgx8wZ84cSktTH3OKi4u59957+dnPfsakSZP4zne+w4wZ6UWJj4aLz57a72Oa9J5AWOYfL+9kVL6rx2PHlrgp29+C2Gbgs1yGeMu8mUVoqs767XWdFseC4TjTxudSUuQZsSW+maOz7MxJnH7SqGM9kV4z5AzucNG9Bfj85z/PRRddxB133MFTTz3Vaf/ixYt54403aGlp4bLLLus0jyPRdf24WIUeaei6zhsflnff8LEDckJF03XaG92oqkZ+roP6xjCKolKQY6c1mEg5JxZXkSSBcFzB5bD2+z0MLwR2H2qhKM857LIWhtSnezjp3rZz2223EQ6HefTRR9PuHzduXNrr5eXl4fP5UrZ5vV5yc3P7bW4mg8PBaj81jeGMGjiKAoQjSvKx1+204A/FKS1yU90QpLohxOjirLTnaqqOL5C+Gu14IxJV2HmgmXA00fPBQ4gh5eEOJ93bdmw2Gw899BD//d//TSyW+Yfhi1/8Is8//zynn346NpuNaDTKCy+8wJe+9KV+m5vJwCMnVN786HB3h55wOqy0+KPJeGJetoO6xhATRmcRbUsVs0gCut65XDihat2mjx1vVNUF+WxXI1+YP3rYLJ4NKYM7XHVvJ0+ezA9/+EN+9KMfZXzOzTffzO9+9zsuuugiJElCURTOOussbrrppozHMDm26LrO6x8cQlX1jBfc3E4L+ysPl/DmeGzs3Bdl/CgPycIH3UhNO3JMXyCOI0PDflwgCByobMXjtLJgVvGxnk1GmHq4JiZ9ZPs+L/9eX5UiON4T40d5eOPDctod1dlT8vlwYzXzTiji0+11CILAzCn5VNYHkZXUj2ZhrpNJY7IRrZYRJVl4tBTkOjhlVjFTxuUe66n0yJDycIcKpu6tSU80Nkd4Z0N1r4wtGFVjSgcNBlXTyc2y4wse9np9gTg5HjtNvtQQVWswxkx7Ps1Bmfyc40NbIROafTF2Hmghx22jMIMskWOJ6eGamPQSQylsNwLps026ozjfyVvrKrBYRJx2C/nZNoJhGX8ghrfFyLF1OixMGpfDvkp/p/NPnzOKeELH4+66EvJ4RNd1pozL4Yy5pUO61br5XGJi0gvC0QTPvFbWJ2NrsYj4g/Fk/m1+jp2mligel41g5PBqezSm4LRb0xaIJBIaNovQY/HI8YYgCByo9vPxtnqCofSqa0MB0+CamGSIPxjnyVW7UbXOGQSZ4HFaaWqOJNPHcjx2mn1RHDaJWOzItEc9bemequlEYgpyYmQ2lTwaBAT2V/n4cEsdrV1IXR5rzBiuiUkGlNcGWP3eQURByCjfNh0el5XG1sOluaJotEI3OEKaUQdN15E4MlMhhstpJRxVsA9j1ayBQkDgYLWfaEzhtJNKGFuSPqf5WGF6uCYm3ZBQNN76uIJX3jmIJIpHVVYrika4oB1V1dp0Hjp7s6qmk245rrVNgyEvy4zhdoUgCNQ3R3jro0q27mnq8KV27DG/Ik1M0qCqGrsOtvDBploURctYMaw7ZFlNSjc6bBKhSMIogEgTjw2FZdwuK+F4auggGJZx2i2IgoCsaGZ6WDfEZJX3N1ZTWR9i3vRCxpYcex2KIWdwh7oW7iOPPEJrays/+clPUrZfcMEF/PjHP+b000+nsbGR++67jwMHDgCGZsNNN93E2WefnZxrS0sL69atS1EPW7FiBf/7v//LH//4R84999yjeBdN+oKu6wTDMtv2NrN9v5e4bBjaTDUSusNqEWkJxBHaFszysh14WyMIgpBWHS0Qlsny2AjHU9XB2o8NRGVUVSf3OOh1djRIkkRVfZBDtT6mjM1l+oQ8JozOwnqMOiAPOYM7HLRwe+JHP/oRZ5xxBn/4wx8AQwHt8ssvZ9KkScn7ycvL4+233+bCCy9MnvfKK69QWFg4IHPqbzRNJ6FqJBIaiYRKLKESl1USCZWEqqGphoiiIIAkClgkEZtNwmGVsNkkbBYJq1XEajm6x/SjQVU1wtEEjS1RKuoClNcG8IcSWC0Ckpi5Dm4m5HhslB1sScZ/87Lt7C9vwWE3FsyOfA9CYZnCvBzqu5BjrKoJMHPK8PhbGQpYRImK2iD7Knx4XDYmjcmiON/F6EI3WR5br/Op+zyPQblKLxgOWrg90dTURCwWS/agmjp1Kn/961/Jzs5OHrN06VJWrVqVNLjtwjqTJ0/u1bU+2VaX0lq6KzppyOqHt+ma8bOmGV6eomgkVA1F1UkoKglFI6FoyAmVuKwRl5U2xavDY9FmWAWh/V+HS+nGuJqmH45XCsZ5FouA3WbBYbNgtxlGzmqRsFrENo1aEUkEUTS0tUTRWBhBOKxvKiAcvhed5IKTrhttaRIJ434Siko8rhKMJgiFE8ZKv2B0crBKA/to7nZaOFTjR2sLJyYUlUgsQWGei0BYNt4XjPdQ1XRC0QQOu4VEQu1kjCOxBKFIgoSiUtsYxjpIxmKk0NQS5VC1H1XXjfdXFHA5LGS7bbgdVqw2EZskYbGIWCShTTeZ5N+1QPIPL4nQ4UVOlo3/OmVs2msPKYM7XLRwe+LOO+/kjjvu4J///Ccnn3wyCxYsYMmSJSlfEF/60pd48cUXaWxspLi4mJUrV3LhhRfy5ptv9upaJ0zIY3xp5iuxHf9Y2nNJBcFQ1m//wzIWh3o1jQFF10HVtOQXQrsxTZeLmrwf0cgmkKS+ZxX0J/GEQn1TOClyU1rkJi/bwZgSD03NYRw2C/NmFmGzSByq9tPUGsVqEcnPcXYSZtF1mD4hl9xsOydOLeT0OcNPF3Y40L6gqartf3OG05AicJ8md6+7cMWQMrjDQQu3q8dfTdOSojuLFi3i3XffZcuWLXz22Wf85z//4c9//jNPPvkkc+bMAcBqtXLOOefw6quv8s1vfpM1a9bw9NNP99rgmiWew4OaQyHs1rZQikUkFJKxWkQ8TivlEZncbDuRSIJP99Wy6OSxNLVGjK9GXUc6QiM5EJKZNCaHSERBUTVcDgvSAHvoJv3DkPktDRct3HQ6tgDNzc3k5ubS3NzMz372MwRB4JRTTuHmm2/m2Wef5bzzzuOVV15JOefCCy9k1apVbNq0iUmTJplauCOY/ZW+ZJwwy22jvjmMIAjYbRLRmMrEMdnsq2hBQMDbHCbXY0MQDM/+SOKyisUiomk6obDM7oMtg307Jn1kyBjcdi3cDz74gHfeeYd33nmHtWvXEolEhpQW7hlnnMHHH3+czEAAY7HL4/EwefJkcnJy+Oijj3jqqaeSj7zRaJTKykpmzZqVMtbcuXOJxWL8/ve/56KLLjqqeZkMXTRNp6o+mHztcVnxtkSSr3V0LKKILBspYIeq/YwfnU08oXYZ2tE0nWgsQbMvRr03bJb6DhOGTEhhuGjhTpo0iV/+8pfceeedKIqCLMuMHTuW//u//0MURURR5O9//zsPPvggTz/9NC6XC0EQuOiii/ja177Wabxly5bx7LPP8oUvfCGj98lk+NHijxGJKTjbKsN0XScmq0iiiKZpuB1WgmE5uZiotqmJNbdGcTutKGmqeOMJhbisoGo2AuEE5TV+Jo3NHdT7Muk9plqYickA8+6nVezY15xcvCvOd7L2I0Mx7ISJuXhbIjQ2hWn1H5ZjPHF6IfXeCLk5Dvyhzm1kcrPt5Oc4cNitWCSByeNyOWvhuGOe2G/SPUPGwx0qmFq4Jv2JpunsLW9NGlubVaTVH0t2c9B1Qw+3bH9zimpCozdCltuGx2lNa3D9gThjS7JQNR1FBX8ozoFKH1Mn5A3GbZn0EdPgHsHChQsHrCDC5PijsTlMKJLA0RZOyPbY2XOwGUEQsFlFonEVmyRypHiNtzXK2NJsJEv6/mY6baGJuILTYaiQHaoNMGlsjpmxMIQxfzMmJgPIJ9vqsXcoTHA5LDS1LZi5HFYiERlN0zqJ12iajiiComjJoogjicQU4m0LbZoOtY1hNpc1DcyNmPQLpsE1MRkgQhGZ8tpAineqajoJxUj1cjktCIKAz5++27Om6YTDCTQ1vcFtbA6T5bYmX4cjCWqbQjS1hPvxLkz6E9PgmpgMEP9ZX4WlQ9GCKEA4IidfuxxWHDbJKHJIs9jlD8SRJKFLecFwVMFmkVJydWvqgmzb6016viZDC9PgmpgMAHWNIfZX+VLKcrPcNmoaQ8ltdruEzSbi66I7QYsvhtMuYbN0nXkQV1TCHdrz6AjsK/exfltdv3SFUFWNmKygaWYyU39gLpqZmPQz0ViCFf/ej+2Imvpsj41NO8OHvVm9TXhH11PET9rxBWM4HAW4nBbinRMVAKhtCDGmxJOyTdNh+14v0bjCgtklFOY6k/t0XScSVfD6oviCcRRFMxpaOiw4bRKabrQSqvdGqGsK4Q/JaDpku61MGpPN5PG5jCvJ6qTvYJIZpsE1MelHgmGZ5a+XoWukMUoCkVgimUWQ0u0hjf3SdcPDdDqsxBPpLW4oksBuk4jJGpYO2QmCILC/wseeQy2MKcnC7bQQiao0tkSIxhPoGlitEqJgGGhV1ZJerNUiJufYPmYsrrL7YCtb9zQxeVwu86YXMa40y8z77SVDxuBmKjzudru56qqrOO+88wBDEPzZZ5+lpKQEAEVRmD59OrfccgsTJ04EYNu2bdx3331Eo1E0TeP6669PVpn961//4h//+AeKorBo0SJ+9KMfYbVaiUaj/OhHP2LXrl1omsYdd9yRFBDvihUrVvDmm2/y2GOPAYY3cd9997Fu3Toef/xxPvnkk273a5rGkiVL2Lx5c/++uSYDTlxW2FLWxIbt9UbfsyOMrSgKBDvEbwE0XUPv4VFd1fQe436BoIwugMWZKpwvCAIWSaLBG0nZbremfuwlASQxM4lHm9VCdX2I/ZU+JpRmM3dGIRNGZx8zQe/hxpAxuJkKj9fU1HDNNdcgSRLnnHMOAOedd15KB4ZXXnmFq6++mtdeew23280tt9zCfffdxxlnnEF9fT0XXXQRc+fORZZlHnnkEV5++WVyc3O5/fbbeeKJJ7jhhht45JFHcLlcrFmzhtraWi699FJOPPFERo3KTApPVVXuvvtuKioqeO655zoJ06TbX11d3ev3LRSRUZSh07NpJKK3/Z+O8aWvaDrxuEIgnKDBG6amMURTSxQBwRCVQefIPK+CXAflVX6ApCdpkURCkQQIQroGvQBEokb8VFW1Lr3J8toAJ51QSDTeWTt3oJBEkeqGEAer/bhdViaUZlGQ6yA320GWy4bVKiKJHaQxhbRO/IhE1XQKOoRxOjJkDG6mwuNjxozhlltu4e9//3vS4B5JuwrX6tWr+epXv8q3v/1tzjjjDMDQxc3Pz6e+vp7NmzezePFi8vPzAbj00kv51a9+xQ033MDatWv57W9/C8Do0aP53Oc+x5o1a7j22mt7vBdZlvn+97+Prus88cQTOByOXu3vDSv/c5BGr5kGNCgIbXq7GDq7NpuEwyYhigIlha5uTx1d7GLL7nocDuMj1y6wHgjGkwI1BXlOpk/Mo6ouQFV9CIBWf5SSIg/+qJISMjgSRdOwWQWyPEcnztRXWgIxvL4o0biKLKtGayvaNIuPs/W2yeNyWbZ4Stp9Q8Lgdic8no4ZM2awd+/ebsecPn06e/fuxW63c8kllyS3v/DCC4TDYebNm8frr7/O2LGHldlHjRpFQ0MDAHV1dZSWlib3lZSUUF9f3+O9RCIRbrjhBjZs2MArr7zSyZj2tL+3XHH+jKM632RwaA3E2Lq7CYfd+Mi5nda2uGoiKds4e2oB76+v5LQ5o2nxxUioOsFwgumTbQiiSE5W18ZUEgWmjM9l8cLxZlx1CDMk0sI6Co/PmTMnKTzeFYIg9Gio0h3zt7/9jUceeYRHH3002WCyI7quI4pi8ucj/3BFsee3a8OGDZx88snceuut3HrrrYRCoV7tNxmZ7D7QnNI3y26T2nqqGVrPY0o8HKryAbB9byPTJuah6zpyQkUURaKxLtIU2lA1HV/Q0FMwGbocc4PbW+FxgO3bt6ftuHvkMdOnTweMR/jbbruNV199leXLlzNjhuEVlpaW0tjYmDynsbExGaPtbl93nHHGGdx6663cdNNNjB07ljvvvDPFsPe032Tkoeu60UCyw0Ka3SYRjiZof94eVeShpj6IIAjE4ioOm5RcUFMUDZ2e4/RNLRHKawNmzuwQ5pgb3L4Ij//lL3/hm9/8Zpdjvvjii1RXV/OVr3wFMLRxQ6EQy5cvTwkhLF68mHfeeYfm5mZ0XeeFF15IZiKcddZZvPDCCwDU19fzwQcfcOaZZ/Z4P+0t1gVB4MEHH2Tnzp389a9/zXi/ycjD64viD6UWN1gtItHoYYdC0/QUQ9ngjVCQazyhqaqGpvRsRHUdWlqj7Nxn6ikMVY55DLc3wuOiKGK327ntttv4r//6r+Txr7/+Ohs3bkQQBDRNY9KkSTz11FPY7XY2b97Mm2++ycSJE7n88suT59x+++184Qtf4Nvf/jZXX301iUSCuXPncsMNNwDw3e9+l5/97Gecf/75qKrKHXfc0ev2PHl5efz+97/n6quv5sQTT+xxf2879poMD9ZvrUsRsAFAgHhbJVh+roPm1tSFz+qGIHOmF9MSaKLVH8PpsJIJzf4Y9d4IJ0xSkw0rTYYOpgC5ickAEo7KPP7i9pT4LcCksdms31zL/opWZk8rZM8BL9FYagjt1DmlbN7dSH6uk8njcrHaLBlVeDlsEjOmFLBo3uh+vReTo+eYe7jDiVAoxBVXXJF2n9vt5rnnnhvkGZkMdf6zviptOpdFEvEFDJUwh91CNGrk43YkLqtYRAF/MI7LaSEcU5NZDt0Rk1Wamo3S3NIiT4/HmwwepsHtBR6PxxQnN8mYqroA+yt8aR/tJVHAFzQMrqbpaat7axuCjC7xJHNyIxE5I4MLUNsUYveBZorzXaYg+RDC/E2YmAwA/mCcle/sT2ts7TaJWFwhkdAOe7dp8LZGKch1ous6qqIR6SE1rCO6DuU1fjbuaujzPZj0P6bBNTHpZxqbwzyzatfhstYjsNukZJfewjwn3tZwt8UKuqYTlzWEXn5a47LGgQofew+19O5EkwHDNLgmJv2Eqmp8srWW5a+VIbSVAafDYbcYQuQCFOQ68bZEuxxTTqhYLAJeXwSPw9blcV3hC8bZsqeR8mp/r8816X/MGK6JST9Q2xRizXuHCEcSWI9MATsCl8NCZY2Rl2uxCCQSaqcFs3YavGFKCtw0t0YZXexJWwHZE82tMd7/rIpgWGbGlAKsls5+lq7rxGQFOaEiiSJOu8WM/Q4ApsE1MTkKguE4az+qoKI2iM0qYrX2bKTsNgstvlhb3niXcrgANDVHmDurhNqmJmxWiVBMwW7r/cc2HFX4z/pKtu9rYtyobNxOK5quEwzH8bYYwjNyQjWKLwSB3CwbE8fkMHaUhwmlOdjMnN5+YdAN7kjRvf3Zz37Gv/71r5QS45tuuolzzjmHyZMnc/XVV/P8888za9as5P5nn32Wp59+mpdeeolf/vKXTJs2jeuuuy5l7Pnz57N69eqUijiToYWu67QG43yyuZZ9Fa1YLGKvigwsFoFWfwxJFFDV7tvgqJqO1ObRappOMCRjz+/bx9ZqlfAHZfxBb7KcvKO33DFXOBZXKTvYwrY9TTjsEhNG51CY5yQ3y469rTNEIqEaRlrXsdss5GbZyfHYTePcDYNucEeK7q2u6/zgBz/gX//6F3Z7qorTvHnzuPHGG7nzzjtZsWIFNpuN8vJyHn74YZ588kncbnd/vZ0m/YCiasTjKtF4gkAoTjCcIBZXMXrgCEii0QonoWj4g3FqGkMEgnGsNqlTQUMmSKJIIBQnL8eBzx/rMUSgaBqgoygaiUR6fZHekmlYwmaV0DQ4VO3nYJWPhHK4M4QoGkLrAsYXg6LouJwSY4qzKCl0UVzgpjDXgctpNcMTbQy6wR0pureLFi0ikUjwwAMPpHwJtPOtb32Ljz/+mN///vfcfvvt3Hnnndx2221J4Zz+4umVO2lsiaTd12UJYTe1hSm7uihCzHTcri/TxbgZ1jx2fVwGV2zTBm/Xa43LKroOFklAEgWsVgmrVeJI+9DpsV8wPLzeIokCobCMqmrkZNlp8oa7nbdxKZ0vnDqOglwXWVlWFE0gEIpn/H71N8mWbLqO2qGFuyQZ7+fBah8Hqn3E4gpxWUVTdWw2CYskIoogCqIxxghVkSzIdXLNRZ1L+WGQDe5I0r0VBIEHHniAZcuW8YUvfKGTsI0oijz44INcdNFFtLS0MHbsWC699NIex+0tVy6b3e9jmgwsn2yuIcdjZ0yxh8pqX2edhTbycx1Mn1xAdY2f2jo/0ZhKXq6DRfPHcuKkPMaOyaGk0GM2dBxGDKrB7ah7m5eXl9S9Pf/889MefzS6t0899RSPP/74gOneAhQXF3Pvvfdy9913s2rVqk77S0tLuf322/nd737HW2+91Wne6dA0LUXIx2Tk0eyLIojG34Cm6mkTFEqLPRTnu/jg4wp0dAryXcgJFUXRKK/yUVMfYN1nlYwZlc3E8XlMHp9Lfq7LFB8f4gyawW3XvbXZbCxevBgwtAmeeeaZLkMGmereXnzxxYChe3vXXXexf//+FCnGTHRvCwsLk/t689i/ePFizj33XH74wx9isXR+O8eNG0d+fj4eT2pNe15eHj6fL2VbKBQiHo+TnZ2d8fVNhh91jSHENmU7Xe+cEZaTZWdUoZsNm6uTLX3QMR7fdQhGZApyndhtFrwtEZqaw3y0oYLRo7IZNzqH0pIsigvcOBwW0wAPMQYtkj3SdG87ctddd9HY2MjHH3+c8Tlf/OIXWbNmTTK0oes6Tz75JKeeeqq5qDaCkWWFppYIoiCgqDqCkPr0JYoCs04o4rOtNanntRVAaJqeoqMLhqdsazO+m7bX8vLru/i/5zby/MvbePPd/WzYUk3Z/iYamkKEI7IpUH4MGTQPdyTr3trtdh566KGUGHJPLFy4kBtuuIEbb7wRgFgsxqxZs3jooYd6dW2T4UUomqC5NYrbZSUQ7JyhMGtaIVt31KFpqaGuaEzB4zZyZ+VuMhUEQcDeJnDjD8bxB+Po5cbiVkLRsFgEsjwOCvOdFOS5KMxzMaY0G7er91VsJr3H1MM1MRlEDlS28Pt/fMrYkiyaW6M0eg/3tPO4bUwam8OmbbVpQwH5eU40TcdqEZk0Lg9bBkUWPZFQVGxWielTCpkyMZ9xo3PMMMQAYlaapcHUvTUZKBq9UXTNiNPuL29O2Td9cgGfba3u2uDpEI8r2Kx2/ME4RfnOo56P1SKh61C230vZfi+zTijmxBlFFOSZYa2BwDS4aTB1b00GAl3XqW8Oo6NjsYjIspZcMMty24hEZZSE1qXBVRQVVdMR2n4eCHbuacDbEmHOzGKmTS4ckGscz5jlHyYmg0QokqDVF0US2zIUOuw7YVI+u/Y2dvs4H40rOGwWdCChaCSUnjv59hZBEGj0hli/uYZtu+rMjtL9jGlwTUwGier6IC3+KIIgoKpGBRmAzSaRUFSURPcGNJHQsFhFdB0i0QSt/tiAzTUYirNlZwNbdtabRrcfMUMKJiaDRF1jiFZ/HIdNIhw93Db9hIn57NnvzWyxSgc5oaDrhgaEqulIA1RpFo7IbV43zJtd2vMJJj1iergmJoNAMBwnFJEJBONkZ9nx+eNGUYMADoeFUFjOaBxVM4R2LBaRSDRBi697L1fTdOSESjSmEI0pyLKaIkDTE4FgnL0Hminb15TR8SbdY3q4JiaDwLqNNei6jqZrZHvs1NYFABhbmk1ltS/jcWIxBavVEIJRVJ1gKI7NKpKTdVixTlU1AiEZfyhONKZ0Mq7t3SgEwVAuk0QBSRKQJNFQAGvztNsFfuqaQsiKIcU4e3qxqfx1FBzzdy6RSPD5z3+e66+/vtO+559/nqVLl3Leeedx/vnnc8cdd1BbW5vcf+WVVzJ9+nSqqqpSzlu/fj3Tp0/n73//O2Bo6XZUJWtoaOCuu+5iyZIlLF26lEsuuYS1a9dmPGdZlrn22mtTKuSi0Sg/+MEP+MpXvsI555yTMt7WrVu5+OKL+cpXvsLVV1+dUmb82GOPce655/LlL3+ZRx55xIyXjUBqG0PsPdSCLKugg9NhIdTWOLKk0E1tXTDj3Ne4bOTN6rqhu5FQNGobQxyq9rd1CW5lz6FW6r1h4nEVURCwSGLKP0kUEdtKhjXNKIiIxVXCkQTBkJwsmAiEZIIhmUBQ5tOtdWzYWstLb5SxeVdDxh65SSrH3OAeqY/bzgMPPMBbb73FY489xuuvv87q1av53Oc+x6WXXpqi5jV69OhOKVyvvPJKUhvhSFpaWrjssstYuHAhq1atYtWqVfzyl7/kxz/+MevWretxvps3b+bSSy9l06ZNKds76ur+85//5Oc//zn19fXIsswtt9zC3XffzZo1azjnnHO45557AHjvvfdYs2YNK1as4NVXX2X9+vWsWbMm4/fOZGijaTr7K1tZ8eYePG4bzb4ooigYX6q6IVkYjyvoPcgzpkNRVBSlTZdWEJBllUhUQVWNmG5XDSz7igDsKGtAjit8sqWaJ17ezur/7OPT7XUcqvLR7IsQjSZQ1f7PnBhJHPOQQjp93Pr6epYvX867775LTk4OYJT7XnjhhezYsYPHHnuMn/70pwAsXbqU1atX853vfAcwPM1NmzaxaNGitNd77rnnOPnkk7nwwguT22bMmMHDDz+ckWjM008/zQ9+8AMee+yxlO1d6erOmTMHj8fDggULAPja177GfffdR2trK2+//TYXXHABLpcLgK9+9ausWrUq2eUiE177z35aA4fjeL1xkI/GmU4xEpnq6/ZwQI+G52iu0/HYXtx45hq9enIeuqYTjCTwthqaCQ67BYfdQnm1n5isEpdVFE3nhLG5eFsiCKLQK30DTdMJRxO4XVZicv8IkmfKx5uqOG3eWKoaQrT4Yuh6g6FipuromvEbdDosxr+2+7ZajFBFexhDbPvvSEVRda756klp9x1Tg9uVPu7WrVuZPHly0th25IwzzuAPf/hD8vXMmTN555132Lp1K3PnzuWtt95i8eLFtLa2pr3mjh07+MIXvtBp+6mnnprRnH/3u98BdDK4XenqFhcXp3SPsNls5Ofn09DQQF1dXcoXQ0ed3kw5/8ypvTre5Nig6zqPPbeZSWNzcDut5Oc4mTezmG076/jcgrGs35K+nDcdqqbhcVnJzXYwuiRr0I1XLCJz7ucnsmDOaLMMuJcc05BCR33cOXPmJPVxwehZlg5Zljv9kpctW5bUo33llVe46KKLurymIAgDEiftSldX0zpXDum6jiRJnc7pqNNrMrIIRxJE4wpup5UWX5ScLBvxeIKdexqprg1QUph5KW17HFdt83QHG03X2bKjjm27euccmBxDg9uuj7tx40YWL17M4sWLaWpq4plnnuHEE0+koqKCpqbOqSjr169n/vz5KduWLFnCm2++SVVVFaFQqFsN3Xnz5rFly5ZO25cvX84///nPPt9PV5q7R25PJBL4fD5KSkq61ek1GVnUe8OIAricVlr9MebOHMXGrbWgQ2WNn3Gl2Rk7Arohi4ucUI/Z4lVC0di6q54dZabR7Q3HzOB2p4+7adMmrrzySm677baUR+yXXnqJt956Kymt2E5JSQnTp0/n7rvvTko8dsWll17Khg0bWLVqVfIPfMeOHTz88MM9ip13R1e6unPnzsXn8yUX2V566SXmzZtHdnY2Z511FqtWrSISiSDLMitWrOixY7DJ8KSi2ofVIuJ0WGgNRMnNsVNZ7Us+4SQSKqLQuzhuNJpA0/Rj1tssHJHZvruBnXtMo5spxyyG25M+7ksvvcSLL77It771LWRZRpZlTjrpJJYvX86YMWM6jbds2TLuvvtuHnnkkW6vm5uby9NPP82DDz7IY489hiiKOJ1O7r33Xj73uc/1+X6609X905/+xC9+8Qui0Si5ubk88MADgCGMvnfvXi655BISiQRnnXVWymKeycihotZv6DjrOnnZDrzecEpIqbrOz5iSbKobQj2MZBCLK9hsEoqqEYrIZLmPjZ6tLxBj594mBARmTS8+JnMYTph6uCYmA0w4muD/lm/GbpUoLfbgD0aprQ2wY3dD0uAKAiyYM5rNuxoyWogSgLwco5dflsfGqCJP9ycMMCVFHmZMKWDW9JJjOo+hzjFPCxtqfP3rXyccDqfd9+yzz3bqTWZi0hMV1X5EwTCqsXiCLJeduvrgEQumIIjpF1/T0dbt3RC9UXTisordduyajzY0hZDaUr9mnmB6ul1hGtwjMMXFTfqbXfu9WC0SLqcVQRAIh+O0+iMYfuphYjEFm0UkU9VFVdXQVJ1oLIHPH6Ok6NiKhtc2BJEkEatVYuqkgmM6l6GKmYNkYjKAxGWFusYgAJ62vmG+QCztQld9Y7hXoYFYXMFqEdF0nUhMwR+M93zSAFNV62ffwWbq2+7ZJBXT4JqYDCBlB7zJbBi304q3OWJUZKUxuM2tEQryXBmnh8kJDUky9HHlhIIvECMcGfy83CMpr25l594mwhFTb+FITINrYjJAaJrOZ9vrsVqM2Gp2lp3qWh/BUHpPVNN0elv3ouugtMUgYnGF2sYQ3tYoiR7EzAcWgUMVLWzcVmu2ZD8CM4ZrYjJA7KtoIRiSk4tZhkEVaPV3bo/ejq6DrmkIUmYLYDE5gaWDXKKmaXhbIjQ1h9t0DCREkcPZEKKARRSwWEQcdgs2q4Q4AALmCUWjus7P5h11LJgzut/HH66YBtfEZACQZZX/fFSRNLbZHhsHK1rJzXFQ1tC1mLc/ECPbYyMUzaxJZCyukpdtNZpLttnNdr1bOWFo2KZD03Q0HSSxXVxHwmqVsFokLBYxmXHQyRS3ic8YYjTdz80fiNPoDdPoDVFcaGb3wCAY3EQiwZlnnsmMGTN4/PHHU/Y9//zzPP/88yiKgiAIzJo1i+9///uMHm18I1555ZVs2LCBtWvXMm7cuOR569ev56qrruLOO+/kuuuu45FHHqG1tZWf/OQngKF3+/vf/56dO3ciCAJ2u52bbrqpxyqu9evXc8MNNzBp0qSk5oIkSXznO99h8eLFVFdXs2TJEjZv3kx1dTVf/vKXU6rTdF3nqquu4mtf+xpg6EH83//9H6tXr056GKeddhq33norubm5AGzbto377ruPaDSKpmlcf/31PVbLmQxtVE3j5bf3oChqUqx7/OgcXl6zi0nj8ojHFY7MUGinqTlCcaGHULU/o2u1h3tVTUvxdHtCFIVkPDEuK8Rlo22Pputt8pGkpq11mHG7QbdaxKSBtkgCoigidJiCKAjEYk1IksB/nTEJm/XYpa0NFQbc4B6pdztlyhTA0LstKyvjscceo7S0FE3TWLVqFZdeeikvvvhiUlOgXe+2XX4RMtO7vfXWW7n//vsRBIGysjKuvfZanE5nj9Vk48ePT9HXLSsr4/LLL+ff//53p2MdDkfKsQ0NDVxwwQWceOKJzJgxg9tuuw2r1cpzzz1Hbm4uiUSCJ554gksvvZSXXnoJt9vNLbfcwn333ccZZ5xBfX09F110EXPnzmXixIkZv8cmQwdfMM6ra/fSEohh7WAALZJAqy/KxHG5Kcar0/mBGNMmF6DrvoyVuOSEahjeo7RnggCSIHQzu1QUVUNRNWgLSadb69N0HQSBfRUtzJhSREmRh3GlWWR77Mel0tiAG9zhpnd7JDNmzMDhcFBTU0NeXl63x5aUlDBhwgTKy8uJRqNs2bKFd955B4vFeJutVis33HADmzZtYvny5Vx55ZV8+9vf5owzzgAMecb8/Hzq6+szNrgbd9QNiXSg4wpDPxxN19E0nbis0OKPUV0bwB+KY7VKKSarIM/J9jJDN1ZTddB09G5sja5rqEpnlbmuCATj5OU6jQyFIWjDdh9o4tQ5Y1i7rhwwDHVetoOCfCc5HjsOuxWbVUSSDE8Z2sIVQ/BeMsHjtHHavPRx6wE1uMNR7/ZI3nrrLURRZOrUqTQ3N3d77ObNm6msrGTu3LmsWbOGefPmJY1tR8444ww++ugjrr/+ei655JLk9hdeeIFwOMy8efMynl+W245kSjoOKu2P1KJgLD7ZbRJOR9cfJZtV4u/Pf0ZBniE0b7VKnYyp22Xl9JPHsme/F1EQcbssWK2ZfzydDgslhW4c9qG5LGORBBYvHM9JMzuX/hotfhSjuaWqJ8Maw1V0oLvQyYD+djrq3ebl5SX1bidOnNgnvdu5c+fyyiuv8L//+7/84x//SHv+0erdVlZWJmOoiqIwatQo/vKXv+B0OjsdG4vFkseqqkpeXh4PPvhgUoi8N/f4t7/9jaeeeorHH38ch8OR8XxPmJSf8bEmx4bq2gD+QJyCPCeBYCxtVsAJkwt4b91BTp4zmgZvmNwsB7FepHapqkZcVpL6CkONWFxB13Q8LhueYyS0MxQYMIPbrndrs9lYvHgxAKFQiGeeeYbly5cn9W6LiopSzutK7/biiy/mmmuuyVjv9hvf+EbK9uXLlxONRrn22mu7nfeRMdzuODKG25GTTz6Zf/zjH0Sj0U7Gev369UmPW5Zl7rrrLvbv38/y5csZO3ZsRtc2GT5s2FxNPK5SkO+mqjr9k5kkGX3JgqE4fn+M0aNzqMlQOQyMIgiHXU+mng1FGpvDbNpeyxcXTjzWUzlmDNiz6EjTu+0t8+bN47TTTuOuu+7C7zdWnFVV5dFHH6W8vJzLLrsMgNtvv51QKGQa2xFKNJagstZHPKHicVnxdeg/147dJhkeIDo19QEK8p24nNZeP6nJCS3t+EOFYChONJrAP4TnONAMmIc70vRu+8KDDz7IP//5z6S3Lcsyp59+OsuXLycrK4vNmzfz5ptvMnHiRC6//PLkebfffnvaOLTJ8GPLzjrispFFIAgCutZZDay4yEN9g6Ee5vPHmDa5EE3T0DQdScrcWzXSu6S2a/X3nfQPTc1htu6qP269XFMP18RkgFA1jcef3UR1nZ9AKM7sE4r5+NOKTgZ37qxRbNtZS6KtRPeUeWOIRBNU1oWw9jJ31W6TyMm2k5/Tec1hqDBpfB6LFowjJ3toxpsHkqG5pDmAmHq3JoPFwfIWYtEEwbAMCKhq+kUwi0VMGlswqsCamsPkZtkJx3rXBj0uq8RiCopbw2IZmtkrTd4w23bV84Xj0Ms97gyuqXdrMhjous4nG6tRNA1V1cjy2AmF4mlza3X0FOHxVl8USRIpyHcSru29zGEwLGORRAoL3AzF9bNQRCYcTRAMxcny2I/1dAaVofkVaGIyzKlrCNHsi9LcGkUUBbI9dlq7WCw6MqrnbYmQm+XAbrP0KcVR16HVH8PbEu7Sqz7WNLZ5uccbx52Ha2IyGHywvhxRMLw5QRDIznKkTQlzu2yEQqm6scFQnKwsO7re+4WzdnSguTVKOJIgJ8uOy2nDYhHQdaNDcCyuEJcNYRurRcLtsuB0WPt0r30hHJEJhY1/x1NermlwTUz6mUZviPqmEE3NkWR1qt0mEU0Tj83JshMIppFr1CEaV4wf+oggCMRllUZvGFULJa+h6zpSe5O1tot5WyE/10l+jnPQYr/1TUG27arnjFPHD8r1hgJmSMHEpB/RdZ131h1CUTRD46KDkUsXHvC4bQSDnTsj6Og0NAbJ64+VfEFAkkRDIUw0fk7NGzOEC1pao9R7Q8TimUlDHi2RqEIwFD+uOkOYBtfEpB9paAxRU+ensjaQ0r2hq84HLpeNUKSz+JCcUAmFZfJzXQM11c4IAqGwTH1TiEh0cFr11DcF2brz+InlmiGFfuJI3d+//e1vvPbaa4Chz5CXl0dWVhYAX/7yl3n11Vd54403Usbwer2cffbZrF27tkv5SZOhi67rvLp2D5W1gbYthhdpsYhtGridEcX0xtgfiJHltmOziRm3Tu8fBKNVT0OQkkIPWZ6Bja9GogqBUJxAMEZ21sjPyzUNbj9xpO7vjTfeyI033ggYQupXXHEF5557LgDxeJynn36ajRs3smDBguQYL730EmeddZZpbIch4Uicdz8uZ8uuhrZFrsMGMttjxxeIdtNWp7NBNdqee9p6lqm9Ug7rDxRVp7YhSH7cQW6OE+sAxnUbmkJs3dXAF06fMGDXGCqYBrefSKf72xV2u52LL76Yl156KWlwdV3nxRdf5De/+c1gTdkkA9rjrrpu/KxpOoqmEY8bQjNVtQHKq/3k5dh5672DyQ4PHcnOsncpWkMXWVuBYJxpkwpo9UXwOK3ElcEvCG3PdGj2RXE7bYbRbVPj07TDMWlRErFIIjariM16RIue9l5q3TjokWiCQDBOU3OYogL3INzZscM0uP1AV7q/3QmWX3755Vx44YXcc889uN1uPvroIzweDyeffHKvrv235zZS35S+cs6kn+jQoqG9n5ckCtjadHBLS7Io22+0Q0+n1JXlthEIxtIKamtdZCHouo4gCtQ2hJg2KR+3247NKlFR48MXGETB+TZLGYn1HNPVNR1VazPGAHr7f3u+TNl+L9X1Aeq94WHfCWL86ByuuWRu2n2mwe0HutL9vemmm7o8Z9y4cSxYsIA1a9bwta99jRdeeIErrrii19e+8esLej7IZEBp8UWpqGxl5tT0oaDRJVm4nTaEI4yx02FBSajYbOk/hqIgIAowd/YoNnxWRUNjkPlzRhMtUNGHuVFKR3GBmzMXTeKEKQXHeioDhpmlcJS06/5u3LiRxYsXs3jxYpqamnjmmWdIJLr3Cr7+9a/zr3/9i5aWFjZu3MiSJUsGadYm/YWmaax+q6ytNUx6FEU1ensdgdtlIxDq2lvVdJ38XAe1dQFq63yIksjWnXVke2xDtoLsaGhoClJT7++y0/BIwDS4R0l3ur9HZiEcyRe/+EW8Xi9//etfWbp0aa86PZgMDT7ZVI0/mF4jAYwn8lhcSbvf47YR6sbgBoJxZkwtYuPmKsRkbFigotqHJIw8kT9dh4pqH1t21B7rqQwYpsE9SnrS/e0OURS57LLLePbZZ1P0cE2GBw1NITZure12Bd/psNLqi6RdNHK7bARDXSf9JxSVaDRBOJLAZjn899XkDeNx21GUkeflRmMKdQ1hqqp9x3oqA4Kph2ti0gfissI/l29G07rvrluY72L/IS8NaRY258wsYd368i6X8OfOGkVTU5D6xhC5OQ4SCS3p6U4cn4eiaDjdI1FtS2f6lCIWnTJuUPUdBgPTwzUx6SWapvPKG7tR1Z5bmbtdNlp90bT7evJ0rDaJYCiOjtHZtmMcuLrWT36u86gapg5dBPaVN7Npe22XFXrDFdPgmpj0Al3X+c9Hh2hoDGfUrFEQSKpydRpL67oVuNtlIxSMIQjGNSORBHabhfYTFEVDECA6SCW4g42m6uw96GXzjroR9aViGlwTk16weXsdO8sasFoz++gkEmqXXpqm6WlzcwHGj8mhvKoVEJJFFwBqh7GaWyOII3DxrJ1YTGVnWQM7yhqP9VT6DdPgmphkyI6yBj78tCLjPmOiIBCNJtKGHSRJIKF0nf7kclkJhWQSipZMOYvGEikdHOoaQuRmj9SwgkE4mmDLzjp2lDWOiPs0Da6JSQZs3VXPO+sOYbVk3tTR7bbS1BxOn6HgtBEMy2mNsSAY4QZ0nYSsYmvTUYjHFcPYt3u7qoYAxOMjM6zQTigss2FTFVt21g/7mK5pcE1MukHTdN7/uJz3PirvtYBLlttuiJCnMaoul5VwOH0OblGBm6amEGDINHYMX8hyahFFLK4Qi/au0eRwJJ5Q+XhjFes2VBDs4n0bDpgG18SkC6KxBC+u3sGWXXUZx2w7YrdL+IPp+5i5nF0XPZSWZFNTF0BoE4oRhMMZDeGIjK2Dl1tbHyA/7/gomBGA7WUNvPHOPvYd9A5Lb9c0uP2Iqqr885//5Ktf/SrLli3jvPPO48EHH0SWZdavX88FF1wAwPr165kxYwbr1q1LOf8Xv/gFjzzyyLGYukkHNE1j2656/rl8M96WSK/CCB1RFA1NTW8U3C4roUj6UIDFIqSWt3ZYNANjIa79dSgs47RbR2SpbzoEQcDbEuGNd/fz1nv7qahuHVaG1xSv6Ud+9rOf4ff7efLJJ8nKyiISiXD77bdzzz338LWvfS3lWKvVyg9/+ENWrVpFfn7+MZqxSUdicYXde5vYuL2WSETGapX6rFwlCgKRSKLLLAQB0FStU9GDIBgpUej64fY87f/Xdmh7J4iEooIgoCga4bBMdn+04xkmWCSRQ5Wt7D3gZdyYXCaPz2XSuDyysuxDWm3MNLj9RHV1NatXr+bDDz/E4/EA4HK5+PnPf86mTZs6HT9hwgTmzJnD3XffzaOPPjrY0z3uSSgqsZiCLxCjqtZPVY2fRq9RDWaxiBlnInRFVpad+sZglzqwXflkBfluvM2pVWlyQsViEVM8uWgskWz22NQcwuE8fjrfdsRqlahvDFJbH+Ddj8sZVeRhTGk2eTkOCvJcuN02HHYLFkkcEobYNLj9xM6dO5k6dWrS2LZTVFTEOeecw/r16zud86Mf/YiLLrqIZ555hm984xt9uu6Lq3fQ3BrptD2TDJquj9F72J/5GF1u7eK8lM1dDK53+eLwJv2Ig3RdJ5FQicsaiYSCDkiSiNUiYrdbEDu4onIXhQq9oaTQQ2Wtvy2k0HmSSlt+7pE2YHSxB1lWmDQhn4qqVnTdyE5wOqwpmrThqExBnotYTKG+IcRJs0ppCaTp/nucUV0boLo2gKJqxGUVVdNQVQ1JEnDYrdgsIoIkIIoikmDomXQnkt7z2yl0+qmo0M1Xz5uV9mjT4PYToiiiab2Lo7lcLn73u99x1VVXcdppp/XpupcsObFP55kMLHFZoabO32XL8YJ8N9lZjpRqNYfDwtzZpax+fQc2m4UvLprIp5trSCgaToe1k9et6zpFhW6K8t2Ulri58PxZ5OcNYtNJk15jLpr1E3PmzOHgwYOEQqGU7Q0NDdx4443EYulXq2fPns23vvUtfvCDHxCPD990F5NUGptCXS5kSZJALJbo5D2dNKOEt/+9h9bWCI2NQdZ/WsEpc8fQ7qEfuTikqjrxuEI4KhOLqew70DRAd2PSX5gGt58oKSlhyZIl3H333UmjGwqF+NnPfkZubm63WrfXXXcdhYWFrFq1arCmazLA7D3oxWZLHwd22K2EQqkaupMm5HGovNlIFWvbnkhobN9Zy9zZo9A0Pa0Bj8YShMIyLb4I0Qza4JgcW0yD24/89Kc/ZerUqVx22WUsW7aMSy65hKlTp/KrX/2q2/MEQeCBBx7A7R7ZDfSOF3Rdp7yytct4qt0uEeiQvC8IkJvtwOsNGWLlHY4NBOMEg3GyPXbENOPpOoTCceoaAsiySmIEd0sYCZh6uCYm/UxLa4SnXtxsqHulYfSobDZtqSLQJj4+fmwurc1hYtE4zS2dF0ABFp0+kb37vShd5Jw67BZOnjOauSeNZtqUov65EZN+x/RwTUz6mW2767stlrDbRIKRw50eCvJc1DcE2lqQpz9n05YqZkwr6lLAJRZXqK4LsHe/96jmbjKwmAbXxKQfUVWNPfu83Wrl6jrJCjS3y4bfF0EUjHO7KpSIx1XqGwIUF3Yddqqq8REMx6mp8x/VPZgMHKbBNTHpR/Yd9BLrQb1LUbRkxsGk8Xns29+E3W4lHlO6srcAVFS1UpDnxGJJf5SuG4Lkr75Zxq69jSjHSbnvcMI0uCYm/YSqaazbUImti9htO0oHHVxJEojFE9hsErF496pfqqqzdXsdM6cVdxlaaGwKkUgo/Pv9/ax6Yzdbd9bR3BJGlpURoSc73DELH0xM+omNW2sIt2kwdIUkCUSiCURRINtjp7UlDDqIAmkrzzqi60Zq2KHyZsaNyaG6NtDpmEZviHmjRhOMJmhoClHXEESWVexWiaxsO3m5TgpynZSWZDN2dDaWPgrzmPQN0+CamPQDjd4QGzZW96jB4HRY8beV4I4bk8O2bTVtMox0Gb89kvqGIKWjsnHYJWLx1DQwXYeYrBCLJXA6bYiigMNhfMxDYZlQWKaqxs+nW6qZND6fmdOKmTIp/7gvCR4szJCCiclR4g9EeWn1DkSpZ6PldFiTGrkWq0gslkCSxG7b7XREb4v9bttey7RJhWnDBIfKW8jrQTnMarVQXRfg7ff38eH6CoKh9JWQJv2LaXBNTI6C6lofz7601VBPzMBLdDosBIIx7HYLkTYBcrtNIh7vfsGsHUXTEUUBTYfyyhZKS7I6HROLK4iigCxn0glCYPvuel59q4wDh5qHlbbscGTYGtzuxL4feeQRpk+fzksvvZRyTiQSYf78+dx0000AKaLgPXHgwAG++93vsmTJEpYuXco3vvENPvvss+T+6dOns2TJEpYtW5Y8Zu3atcn9V155JW+88Uby9aZNm7juuuuSx994443s3bv3aN4Sk0EkEpV54997WfHaLgRByPiRXJJEojGF0aOyqKzyIQgCVptEPJ5hhVjSo9WpbwhSkOtE1ztnIxwsbybLnZlkoyAI+AJx1ryzl39/cICaOn+vDa+u60SjCWrq/ew54GX/oWaamsNm5dsRDNsYbndi3+PHj2f06NGsXLmSiy++OHnOW2+9hcvVezWlgwcPcvXVV3P//ffzhS98AYCPP/6Ym2++meeff55p06YB8OSTTybFxLdu3crVV1/Nhg0bsNlS//A//fRT7rjjDv70pz9x4omG2teqVau48sorWbNmjSlIPkSREyoNjUG27KinoqoVQRR6rZurqhq6BjlZDna0RpJerY6eaQi3rW26URJctreRiWPzqKhJzb0NhmQEjO4Qmc5RkkT2HfSye28jY0ZlM35sLqUlWRTkuXA4LJ2+VOJxBW9rmPKKViprfTR5I6iajkUSkwt8WR47Y0fnMHZ0DuNGZ5PlcXSbozzSGZYGtyex77179/KFL3yBtWvXUl9fz6hRowB4+eWXWbp0KQcPHuzV9f7v//6Piy++OGlsARYtWsRDDz3UpSiNz+cjPz8fi6XzW/zwww/zP//zP0ljC7B06VLsdjuq2juP4D8fHsAXGD7xt4wzkzLRws3o1C7G6WIgTdeTLW1UVScSTRCOyLT6o8TjKpJFMHqK9ZEsj41YXCEeV4yuu4KApultsdjMDJGqakZYQdPw+aPMOKEYm9XQdU0ktKSIzY7d9cyYVkRNY7DXi2Kt/ig79jQgyyqqqmO1SbgdFgRRJKFqRMJxNM3IuuhKpAcgEIpTUx/g48+qkGUFm1WiqNCN22XD4bBikQQkUQAhs5DMcECWVS69cE7afcPS4PYk9r13714sFgtf+cpXWLVqFTfeeCO1tbWEw2GmTZvWa4O7Y8cObr/99k7bv/SlL6W8vvrqqxFFkUgkQlVVFb/4xS8Qxc5Rmx07dvDTn/600/ZzzjmnV/MCWHTKeNQu+maZ9BLB8BoFod0I9L8B2L6rHlXRiIbj5GQ7sLZ1crBZpIyzFABKR2UzeWIBmq6hqzrTJuaj6WC1iDicViwWEZvVQmGhmzO/MJXx4/L6/V76hTbZSU3XjS/BEfCn3N3i6bA0uJmKfS9btox77rmHG2+8kZUrV3LhhRf26XqGF9Lz9TqGFHbt2sW1117LlClTWLBgQZ/mnwkOh7VfxjEZHFpaIxQVuvlobwNiW0giEIhlbNyzsx3Mml5MU2OQjz4+mOx1lp/nIi6riG2dfsHw1iVJYMzoXKZPK6Yg343LbSM/10lWthO3y5rWITAZOIblu52p2PecOXNQVZXdu3fz+uuvZ7xAdiTz5s1jy5Ytnbb/6U9/6lLDdtasWSxYsICNGzemHW/r1q2dtv/85z/no48+6tMcTYYH3pYwAhCJGo/9kiQSzyibAE6YVsSEcbl88skh9u5vNAolRGPBLh4/XEnWvogniSLoAl5viI2bKtm0pYr3P9jPiyu28OTTH/Ps8s9497297CqrJxw2xe8Hg2FpcHsj9r1s2TLuu+8+Jk2aRG5ubp+ud9111/Hiiy/y4YcfJre9//77PP3008yYMSPtOc3NzezYsYOTTjqp075vfetb/OlPf2LHjh3JbStWrODNN9/khBNO6NMcTYY+qqrh90eJRmQO943Te4xrCwIsmD+WgD/Cli3VaLp+ON7ZdnI0lsBuk0j3TB6Pq6iajiwb6WJ2uwWLxUI4LFO2t5H/vLuXl1Zs4bONlQSD0X68Y5MjGZYhBTDEvv/yl79w2WWXIUkSsixz9tln893vfpfHHnssedzSpUv5wx/+wF/+8pc+X2vChAk8+uij/OEPf+CBBx5A0zTy8/P561//mmIg22O4ALIsc+ONN7Jo0aJO451yyin86le/4t577yUSiZBIJBg/fjxPPfUUhYWFfZ6nydAmFI5jd1ioazi8iKUq3YeWRFHg1AXj2L2rjlZfJGVhSdeNsIHYXqmmg6JqWKTOi1ixmILPH6O4yNNpnySJRGIJNmysoLqmldmzSpk6pWjELGINJUwBchOTQWLP/kb27PeyfkM58biCRRJRFI1gKP3jvCDA6aeMZ9v2GoLB9B15BUFAkgSgzXOVBAQh/YOr220lO9uBq4eW6m6XjTknjWbOSWNMo9vPDFsPtz/55JNPuP/++9PuO/3007n77rsHeUYmI5GqmgAWSSTaJl5jtUqEuomdLpg/ll276ro0tmAEELS26rN4XMGZ40BRNNKlPESjCqIo92hwwxGZbdtrUVWd+fPGmka3HzENLrBw4UJWrlx5rKdhMsKpq/e3GTsjtUAUhbZKrM4Gbe5JpRw61NwpjNAJvb1kwhhT1w293XQqYJqmo2lGnq6zh+yWcERm7/5GRElg3pyxvblNk24YlotmJibDjUhURtV0GjsUIXS1YDZ1ciFeb4jGxkBG3mXHFuqyrNBFRAEwqsNCwcwyEny+KNXVPg4eNNv29BemwTUxGQQqqnzk5bqorTP0EwRoe/RPpajQjc0mUdlN1990aJqhJBaLK9itFrqqIFAUHVXT0147HdU1PiqrWgiZamL9gmlwTUwGgZ1lDdhsIuGIkX9rsRgdHjoaVZfTyqQJ+WzfXtOHIjcdVdOMqkOBLqoPjYouOaHQ6A0SiyWMPmo9cLC8hS3basyOEf2AGcM1MRlgIhGZuvoAY0dnJzUTrFYRf+Bw7zNRFJg3Zwwff3KQZPlYH9BUjVhcQVE0EqrapgtBsnwWXScSEcjJcVBZ7UOSRNxuG26X8S+dsIwsKzQ1hdi5q44TZ4/u25tgApgG18RkwPlkYyVZ2XaamsJJgyYIQpt3abxeMG8sW7ZUoijq0WUFCBCJJPB4bElvOnW/gE6b4ljbpnBYJhiM43RayfbY8XjsnQxvQ2OQvFwnkWjPWQ4mXXNchBQGUzv3kUceYeHChSxbtoxly5axdOlSFi9ezP333598JDtSGxegpaWF6dOn99MdmwwVWv1RdpY1UpDnpqYtfgtGvLX9CX3GCcVUVLYQDMX7JQVL07S2st6uj4lGE1ikwx//9rSyBm+Imjo/gWCskyZuVY2PzVuqjnp+xzPHhYc7mNq5AOeddx4/+clPkq/9fj9Lly7l85//fIrEo8nIJhCM8eIr25AkAatFJNRmUEVRQE4oCAKUFHtA16mr8/drvqumad1GJeSEittlI3GERy0KArKs0tAUwu+P4fHYcbmsWC0SoVAcvz/Glu3VxGWNJm+YcFTGIonk5booLHAxtjSb3BzXca152x0j3uAOtnZuOrxeL7FYjJycnKMeq9PYzWFkU1V/CKCjaUbmgT8YY/9BL4cqWpAsEoJgxHEVRUMURawWkUhExumwMm5sLuvXH6I9h7a/iEQTOOwWYrE0YYU2EoqKompdKoZF4wrReAKtSUdos96HKluZPXMUzYF4ilGtqvWjazqyrFJY4GL0qGxyc5xkZzlwOi1YLRKiKLQtBo5sYyzLChPHp28iMOIN7mBr5wK8/vrrbNy4kWg0it/vZ9asWfz85z9nzpz0osRHw7oN5TQ1h/t9XJO+IYoCDpsFh9PKlEkFADjsFny+CB63DUEQcDqshMMyC04ey8efHExp0TOqJIuJ4/NRVY14XGH7zro+ScQqikaWRzIKK7qwb/G4QnaWHVHqZWRR1ynItZOd3fUTYCyuUFsX4EBFCwlZNUTWR4LYbQZMnVhw/BrcwdbOhcMhBVmW+eUvf8n+/ftZvHhxcn+6R0dd1/ukTbrsK7P7PE+TweOlV7YwbkwuYKiGjR2Tw66ddegayaqw0lHZ5Oe5+GT9IdB1crIdnHH6RD75rLJP1xQEQ19B6ubvymKRyM9zYbdnbgriMYUTTijm82dMTlvRZtI1I37RbLC1cztis9n48Y9/TCgU4je/+U1ye15eHj6fL+VYr9fbZ/lIk6GNqhrxznYK8t3U1vnw+aPJL1+73cLYMbls21ZtHCQI+INxduyoYd5JpX3KgY3HFcQe4sKJhEow2LuiBk3XaW4OsWVrTa/ndLwz4g3uYGvnHonNZuOnP/0pzz33HLt27QLgi1/8IitWrCAYDAKgKArPPvtsp5Y9JiMDnz+aFBnP8tiREyoVFS0pTzqzZ41i8+bKTs3W/ME4AX+MUSWdZRV7Ih5XsFq7/4gnEhpah9LgTGnyhgmGYt3GiE06M+INLhjauVOnTuWyyy5j2bJlXHLJJUydOpVf/epXKcctXbqUzz77jIsuuqhfr3/KKaewZMkSfvGLX6DrOl/96lc588wzufzyy1m2bBnnn38+AD/60Y/69bomQ4PyyhasFgmLRaS42GOEDDoEVrM8dmLRBPFYIm2rnX0Hmpg4vqDXXm6yoXoP58XjKn5/74XH6+sDbN5a3evzjmdMPVwTkwHmldXbqW8IcMLUIt55dy9N3lBKvP7keWPZsqWqTTksPfm5TkaNzmHPvt4JybhdtozWB7Ky7BQWuHudzjVtahGnLhhPdrazV+cdr4z4RbP+xtTONekNmqbR2Bhkwvg8Nm2p6qRta7NJqKpGQla6bSTZ4osyZUoxkiT0qktzNJYgy2Pv8ZxIRMZvEcnL613ueU2tH6ejjjMWTe7VeccrpodrYjKAtLSGefvfe4lE4uzYWUc8rqB2iJfOnFFCxSGvsXDVwwKX22Vl6pRidpQ19GoOuTkOEoqWzKXtCrtdIi/PhdvVu9LdSZMKmD9nLMXFWb0673jkuIjhmpgcK+rq/VitAjt31SGKAuoRKYoet41gMJ5Rm/RwJIHVKiH18rHfEB7v2a+Kx1W83jA+X5REQkXPcCGtutrH3n2NvZrT8YppcE1MBpBAIM7Hn5QDRjFCx+fJ3FwnrS0RuhU9OILdZXXMnF7cqzlEY4mMjbSiaHibw5RXtHCgvJmKqlaamkKEw3KnDIp2EgkVnz9KZWVLr+Z1PGIaXBOTAUKWFV59fSd6W1tzOZGqWzBpQj4HD3kz8m7bCUcS2KxSW+PIzEgkNKwWKeNKL0PvQURAQEloBIJx6huCeFsiKEr6hb3aOh8VVa2mZm4PmAbXxGQA0HWdl1duIxqVEQQBTdM7iX1LkmgslvWSXbvrmDmtd16uqmpovVhsS4ffH6W5JYKcZs6aBt7mELt7GV8+3jANronJAPDpZ5WU7WlAatMpMLo7HN5fVOihsTHYp7HDkQQ2m0RvKsHDUbnHIoieEQiF4rS0RojHOxvdxsYgTd5Qt+ltxzumwTUx6WcOlTez4bMKYnGjCiuhqCli4wBjx+RQVdXSq3BCR3aX1TPjhMy9XFXVM9YV6R6BcFimuSVMNJpaZabrUFfnY+s2sxiiK457gzuY4uSJRILf/OY3LFmyhKVLl7JkyRIeffTRZNxrxYoVyTFNhietrWHeeMso4ZZlFUXRiMeUToJFkiSiHIUnGArLOGzWXnm5kaic9LiPDoFoVKHRGyIQiKXEbX3+GIFAnFAos87AxxvHfeHDYIqTP/nkk1RXV/Pyyy9jsVgIBoNcffXV5OXlcemll/bnbZn0EU3TkBMq8ZiCPxijpTWC3x8jGIoTlxUkUcTptJDlceBx28jJcZKT7cBus6DrOv9asQVV1fD5osTiCqqqdTK2OTlOWluPXlKzbE89M6YVs2tPZilZsmyIjsvyUbbxaUNJaDQ2hQiF47hddpxOCxaLRGV1K06nhUULzWKIIzmuDe5gi5M3NTWRSCSQZRmLxUJWVha/+c1vjuox76nnP6OxKZR+ZwfPo8vlEj3tj10elOkidNfH9X6srsdNP0Bvxu14qK4bbW8kSUCSRGxWCbvd0qXilqbrxOMKCUVl1owSPvhgP9FoguxsBz5fBE3T2yIGqROaMC6XXbvqugwnzJwxCpfTyq5ddUTTxErbCYaMPmSCoGd8z8FQHLfLllG33kwQBKNdTySSQFG1ZL6voqh8+EkFiD2VW/QPQ0nSvLDQw9VfPyXtvuPa4A62OPm1117L//zP/7Bw4ULmzp3LySefzDnnnMOsWbP6fA9XXZ7+F2syeOi6zhtv72bCuFwkySjVjUcTCF3kvmZ57CiKltJTrJ3Zs0ppbAxwcH+I006bxMbNVchy16GHffsaOXFGKYd6kQNrs0nk5nhw9bKirDeoqsaiU8dzxqJJfdJ5Hqkc1+9Eb8TJV69eDXBU4uSjRo1ixYoVrFixgnPPPZdDhw5x6aWX8uyzz/ZpPJOhwcZNlRw40IQkGWLc/kCsS5fL5bIRCMTSuuFutw1RhIY6P4mExob1h1gwfxzdPXsY3XYtvcp/jUYThMLxfvNy06HrUFvnZ/uO2gG7xnDkuDa4gy1O/pvf/IZDhw4xdepUrrjiCh5++GF+9atf8fzzzx/1vZgcGw4c8rL+04rDnQ90CHQQFj+ScWNzOVTenHb/tKlF7O4QakgoGrt31TF7Vmm3c9izt5FJXbR06YpQMI7PF824fLcvtLRGaGkJ91rgfCRzXBvcwRYnb2lp4Y9//CPRqKE9qus6+/btO6qQgsmxo7klzJtv7UpZ+Y/GEiSUrj1Hp8NKONTZAAmCgMUiIR8Rs21pjaAmVAoL3F2OGQjEcLms6HrmHquO0VW4xRcZ0OqwQxWtbN9perntHNcGFwZXnPynP/0pxcXFLF26lPPPP59zzz2XYDCY0lLdZHgQjcq8tGJzJ0+1uTncpaas3W4hHI6nXeAqLc2mpro17Xm7dtUxdUohFkvXH9c9exuZOL4g8xvAELUJBuO0tET6toKZAbKs0NgYZN9+U9wGTHlGE5Neoygqzy3/jFBETslgiMcVKqtauzS4UyYXUlnRjM/XubvCgpPHsfGzii5VvZwOCyfNHctnG6u6nNcpC8azZ28DWi/X7K1WCbfbRkF+11700TJzRgmnnzoRh8M6YNcYDhzXWQr9jSlOPvLRNI3Vr+0gGIqnFhHo0NAQ6LZjQlaWPa2xBSOkoKlal6li0ZhCdWUL8+eOZduOmrSC4jt31jJ9+ij2HexdV4hEQiUaTdDaGum1AHmmHDzUjMNu5fTTJg7I+MMF0+D2IwsXLmTlypXHehomA4Su67z7/n5qanxYrKntwf2BaCc1sI5YLKLRswydI1MYPB57Rj3FausCBAIxTpo9GlESEQTDqy6vaCEUihONKWi6jtUqkkj0LgMhHlcQRQFLKE6Wx96rczMdv74hyN59jZzQS+GdkYRpcE1MMmTzlmp2767rZGwTCZUmb7jb6q0xo3OpqGhB1zs7saWlOdTX+jLSVQiFZTZtrEi+djitTJtWAqLAjh217NpVx7y5Y9m1p6HX1WTRaAJRFLBZRez2/n/0r6v3k5NtZ8zoXNzugcsBHsoc94tmJiaZsO9AEx9/cgjJkmpsNU2jqtrXo63My3XS1BRKawRzsh34/ZHMJyMIyX+xmML27TXU17Qyf95YEgmVSETG5eybwQyHZfyBWJe6t0fL/oNetm2vPm51c02Da2LSA7V1Pt5+ezfSEVkCmqZTVeXrsX2NKAptkoVdlSLrvWn6kJYmb5iGej/TphRRtqeBKZML+2zUgm05utoAFEYoikZFZctxWxBhGlwTk25oaQmzcvV2xCPKcFVVo7Kq1WjO2IN3O7o0h6qq1rSZVw6HhdgRMod9pabGj8tpxeWy0lAfoDC/7wtg/oCRozsQ1Wg+f4zaWj+1df5+H3uoc0xjuKqq8tRTT7F69WpUVSWRSHDmmWdy66238thjj/Hcc8+xatUqioqKkudccMEF/PjHP+b0009n8eLFWK1WHA4HgiCQSCT43Oc+x1133ZW2fnvNmjX89a9/Rdd18vLy+MUvfsHEiRMB+OpXv0osFsNqNR7FlixZwvXXX09ZWRk/+9nPiEQiiKLI97//fb70pS+ljLt27VruuOMONm/eDEAwGOSee+7h4MGDaJrGhRdeyI033pj2/n/961/zwQcfoKoq3/zmN7n88sv76+01OUqCwRgvrtjcaXs8rlBd40sbj01HQYGbvWX1acMJJSXZ1Nf7+6yLeyTbttewaNFkPvrkEIsWTaa5JdLnsf3+GIqikZfjwu7oX1NRXtmMy2UjP891XKWKHVOD25M0YigU4oc//CF///vfu1wA+O1vf8tJJ50EgCzLXHnllTz33HN84xvfSDmuqamJn/70p6xatYpRo0bxzDPP8Mtf/pK///3vRCIRKisr+fjjj5MGt5077riDW2+9lbPPPpu9e/dy6aWXsn79emw2I+hfXl7OAw88kHLOH//4R0pKSnj44YeJRCJccMEFnHrqqcyfPz/luOXLl1NeXs6rr75KOBzm0ksvZfbs2cyZM+eo3leToyccjvP8/9vYpvhl/O3puk5LS5hWXywZRu0JQQBN1YzH+zQn5Oe5qDjUuzSu7tA0nX17G5g2tYiysnomjM+noip9QUUmhMMy0WiCnBwn2R57pwXDviOwd38DdrvEqadM7DadbiRxzAxuJtKIS5cuZevWrfzjH//guuuu63FMm83GggUL0qp4FRUVsW7dOqxWK4qiUFNTkyzR3bZtGy6Xi+uvv56WlhYWLVrEbbfdhsPh4OWXX06KklRWVpKdnZ18HY1GueOOO7jrrru4/fbbk9e65557UFVj0aGpqQlZlsnKyuo0p7Vr1/Lf//3fWCwWcnJyOP/881m1apVpcPsZTdOIRhMEQ3FaWyOEInHiUQUEsNks2O0WsrMc5OY4cLlsKIrG8/9vY/JxWpZVgsEY/kA0xQBnwqiSbGpqfGmSwQxEUWgTUOo/g9PYFGLS5EIOHvIyZXIhFklAOYp+Zpqm09ISobU1gsdjx+Gw4nRYsFqkLhXRMkFRdPbua8RmszB/3rg+jzOcOGYGNxNpRLvdzkMPPcTXv/51Fi5cyOzZs7sds6Ghgf/85z9873vfS7vfarWyfft2br75ZmKxGI8//jgA4XCY008/nXvuuQen08ntt9/OQw89xD333IPFYigxnX322dTU1HDPPfckDe5PfvITLr30UqZPn55yHaMu3sLtt9/Om2++yZe//GUmTZrUaT51dXWUlh4WJhk1ahR79uzp8b3ryGtv7KK11Vjh7mmRJP3uzPRpe9K37Wl9Jv2le9DrTdHqTXOEnv5cXddRFJVoVCEakYknVCRRQJREbDapU8twXTcWcxwOK2PH5rBu3YHkQpiugyAKSKLQpyfzwgI3n3xyMDmvTrfQvmAmHN43enQukYiMz9eLzIUj2LG9ltkzS9m6rZq5c8ayfVddv4iO+3wRdB1UTQddx2KR2t5bAUEQktcQkv/XM6FIgt17GntcfBwuaJrOVVecmnbfMTO4mUojTp8+ne9973v84Ac/YMWKFZ3233777TgcDjRNw2q1cskll3DOOed0Od5JJ53EunXreP/997nppptYu3YtZ511FmeddVbymJtuuonvfve73HPPPYBhQNeuXUtVVRVXXHEFU6ZM4eDBg1gsFr72ta9RXZ2+h9Nvf/tbfv7zn3PLLbfw5z//mVtuuSVlf3v77I6ve6sdev65pvBNfxEIRFn+4iZmTC/pF+MkCgL5eS5cTjtimrbmTqeVhKwiWcTk9ebPH0dTY4DCcbkUFropL89c57YjcVkxSnZddjRV54SpxZ0W/oYSOTkO5s8dw+jS3GM9lQHlmBncjtKIHb3choYGfvzjHzNt2rTktiuvvJIPP/yQe++9t9M4HWO4HXn++edZvnw5ACeeeCK33HJLsoMDwBe/+EU8Hg+VlZU0NjaSlZXFqaca30q6rmOxWJBlmbfffpuvfOUriKLIuHHjOOOMM5IyjbFYjGXLlpFIJJI//+1vf2Pv3r2ccMIJlJSU4Ha7Of/883nrrbc6zbG0tJTGxsOiHo2NjcmuEiaDS1NTkJde2drpS/BoKCx0s/9AE0IXdq4g302TN5i83qhR2fhaw1SWe0EQmDt3LFlZdoLBvvUHKyurM0p9DzRy6ikTaWoODVkx8MrKFhw2C06Hlby8gdN0ONYcs3e/N9KIAPfffz/vvfceFRUV6YbrxOWXX87KlStZuXIl9957L7Isc9tttyXP/+STT1AUhSlTplBfX88DDzxALBZDVVWeeOIJzjvvPGw2G3/4wx947bXXAOPLYP369Zx66qn861//4tVXX2XlypX87W9/w+FwsHLlSkpKSlizZg1//vOf0XUdWZZZs2YNCxcu7DTHs846i5deeglFUQgEArz22mucffbZR/O2mvSBAwe9vPjSln41tgDZWQ7qav1djpmb66TZe7i32YQJ+RzY35hcXNu+vYaZM0b1OZ82FlOwSCKCDvsPNOIZwA4PR4sgCOw70Mj2HXUjugHlMc1S+OlPf8pf/vIXLrvsMiRJQpZlzj77bL773e/y2GOPpRybn5/Pr3/9a66//vo+XWvcuHH86le/4rvf/S6CIJCdnc2jjz6K0+nksssuo6qqiosuughVVTn99NP59re/DcCf/vQnfvGLX/D4448jiiJ33HFHWo+6I3fddRc//elPWbJkCQBnn302V111FWBkMADceuutXH755VRWVia95EsvvZTTTjutT/dn0ns0TeOT9eVs3lrdT91sDyNJIsGQ0VWhq0d5URRQFEN/Iamn0CGbQdN0vE0BCgvcRnpXH9hdVs/kyUUcLG9mzJhcdE1DGKJeLgjsKqtHkgQWnDx+RKaLmfKMJscl0ajMq6/vpKExcLhbQz8yujSH3bvr8XYIGRzJSSeW8snHBxEEgZNOGsPeslqiRxRBCILAaadNYsNnFX32vk89dSLbttdgsxvZAM2tkX715PsbQdCZc+IYTp4/Hrt9ZMm9jKy7MTHpAV3XOXDQy7//swdV1QfE2IKxINadsbXbLUQiiZTX0YjcKVdX13XCoRhut5VIpOsOvt1RXd1KcXEWzS0Raqp95Oa5iCcGRiuhP9B1ga3bjdLfkWZ0h+qzhYlJvxMMxljxyhbeeGsXus6AJdu73Tbq6wPdpsrl57toajIMss1mIRaVuzx2775Gpk0t7nMst67Oz6iSbHRdp64hYHSOGAbPtVu31/DZxgoi3bw3ww3T4JqMeMLhOG+v3c1Tz26gsSk0YF5tO8VFWezZ09CtQc/Pc9PsNRaLR4/OoaamtcvSNVlWsFokjsZKxmKJ5Hx27KylsMA9DPJeBbbtqGXDpxUEAj3rBQ8HRo6vbmLSAV3XafKG+PTTCioqW0AQ+n1hLB2iIKAqGrGo3G3eq8UikpAVEATy890c3N/Q7bjVVS2MHZNLTW2gT/MqL29m3JhcKqsNDYjdZfVMm1pEazcdhocCgiCwu6yeWCzBvLljGVWSfayndFSYBtdkxKDrOn5/lN1l9ezZ20QwGMVilQY14b+42MOevfU9lrxqmp5a7tuDEk5tnZ/TT59MdU3XaWbdEQzGyPLY0TQdURQIBmM0NATIy3cRifYtNjxYCILAofJmAsEY8+eOZeqUoiH9JdEdpsE1GdbEYgr1DX4OHvRSUdlMMCRjsUiIooDVNvh/3h6Pndpucm/BaNpotNsxFsviscxilLGojN0mIfeyfU474YiMzSKitIUSamr9uN12HHaJWHzoLqKBYXRbWiK8/+F+AoEYJ84uHZCuFAONmRZmMqyQZYWmpiAHDjVTVd2KzxdFVTWsVumYez05OQ6i4QS7dtd1G78tKc4iIatUV7cwZkwuipygLgNtWI/HzvgJBZTt6VvLcZfLxqTJhRw6olx41sxRIBrdI4YDqqoxcXw+J544mvHj8o757703mHq4PejhtuP3+/nqV7/KHXfcwbnnngvAypUrk9KRTqeTe+65J1kU8eyzz/Kvf/2LWCzG7Nmzue+++5KSjh3v39TD7R5F0WhpCXGovJmKyla8zWESioqtzcBKkjgosdlMKCr08O8tu3vMfsgvcLNzu6G/kZ/vZteO9FocRxIKxfF47H2uiItEZJx2C7qmp4Q8du6qY/bMUrI8NoKhoZ8RIEkiVTU+qmtamTmzlBnTSygq9AwLw2vq4faghwtGbPCHP/xhsgQZ4ODBgzz44IOsWLGC4uJi3nvvPb773e/y7rvv8tZbb/HMM8/w/PPPk52dza233soTTzzRSYTc1MPtjKKotPqiVFa0UFndSkNjkHg8gc1mQRAERFHAfgxCBT3hcFhpbg6TSHRdWdaO1SolvUmrVUounmVCwB8ly2MnFO6bYYzLaqdLCYLAzt11TJpYQHFxFt4+VrUNNjoCO3fVsXNXHSecUMyUiYWMGZOLtd80e/sfUw+X7vVwAf7yl78wffp0wuFwyrV+9atfUVxstHw+8cQT8Xq9yLLMK6+8wje/+c3k+D//+c9JJDq3UTme9XA1TScuJwiHZJq8IRoaAtQ1BPD5okYalNWS9BSHQ6xuzOgc3ntvX2YLdJrewUvtXUTv0CEvM2eWsnV7bZ88uurqVkaX5lBbn5rtIAgC5RUt+HxRZs8eTYsvQjw+9EMM7e/Bvn1N7NpVR3a2k8kTCyksdDOqJBuPxz6kDLCph0v3erjr1q3j008/5e9//zvXXHNNcqyxY8cyduxYwPCA77//fhYvXozNZqO8vJzm5mauu+46GhsbOeWUU7jjjjs6zac/9HA3b62iuXlwPZLUsP9h3VhdN37QdB1NM7QKZFkhoWjIskpcVoiE4oTC8eSHWdeNFKnOIaDhI2DidtuoqfER8Ed7zE6QJJFYLIGm6TgcluTiWaZ2Nx5TcDis6KqG3gdNhObmMJMnGdoK6Qx2Q2OQxqY9zJpVSk62g8qqVmR5aC+odcTni1FZ2YqmaSiKhmQRycqyk+Vx4HRasdsshiayZPzNiaKAKLQZ7mQXj8PvS1++1NxuG4tO76x/DaYebrd6uNdeey2//vWv+cc//pEUHT+SSCTCXXfdRX19fdKAK4rCunXr+Otf/4rNZuOuu+7i97//fVJft53+0MMdMzqXvNy+NwvsG20i00KHV4Ih0C2KQts/EYtk/EEPg9DaUWGxiLzwwkamTSvq8djcXCehYAy320ZpaQ6+1nCn1uvpEEWBE08cjd1mwWoR+a//mkYwLFNWVk9vu0VYrQKlowzvryvisQTxWIKT541l0sQCioo8PYrMDydUTUdRNDRNQ1MNJ6HdYWj7Txu9v+nuSpFNPdxu9HDfeOMNotFocvGssrKS3/zmN7S2tnL55ZdTW1vLzTffzJQpU3jqqaeSIYji4mL+v//v/0ve19KlS/nzn//caY79oYdbXNS5dY/J4LJvXwOxmIzV2vPHKT/fQ/mhZiRJorAwi61bKnr8QrLZJE45dRLbNlcQ9BsVV9k5TkRR4tSTx7N5W22vqsYam0LkZDkQMzD0Bw54KSurp6jQw4QJ+RQVZ1FY4MHtHlqP6sOFY2ZwO+rh3nfffXg8nk56uNHo4XK++++/n6VLl+L3Z9Za+fLLL09Z8a+qquK2227jX//6FxMmTEjRw922bRt/+ctfeOaZZ7BarUk93G9+85t885vfTI5x5ZVXcsUVV3DuuecSCoW48sorueiii/jOd76Tcu1zzjmHNWvWcMkll2C321m7dm3aL4V2PdwzzzyTSCTCa6+9xs9//vPevpUmxxBFUXnv/f1Ilsw+SjarRCgUA4S2arPOi1gdEUWBU06dxKcfH0COJZKPFaIgEghE2byxgjnzx7N5a03Gj7+NjUHmzBmLPxDL6Byr1YLPH8O3rRZFUdE0DZvNQna2k5wcB9nZDlxOO1lZdkpKssjOdg6LjIFjgamH24Meblc8++yz1NbW8vbbb/P2228ntz/xxBN8/etfT6aRqarK7NmzueuuuwBTD3eksX59uSH0bcksFKQoxiOsKAnoqgZdtpc0OGnOWLZtrkgxtgDRmGwojEUT7CurZ9rkQvYfas5oDsbjsk48lsDh7J0ouaFDYXi2gUCMQCCW3Ke2dSeeMCGfSZMKmTK5EGcvxx/pmIUPJiZ9pLU1zPPPf5Zx6bAgQHGRh48+OojdbmHShDy2bKns0hssLPRQkO+mbGcN6Yxybp6LQJuXOvukMdQ3BAlFOmfDpGPChHwSCRW7Y2AMoqpqjCrJYtasUqZNKx5wwaDhwtDIGDcxGWYoisbKVdt71Sbc47HT7A0hCIY8o9cb7vbRe8rUYsp21tKVB6xpenLP7p21TJ1SlLGEY22tn8ICT88H9hFJEmnyhnn3vb18uO4ATU3BAbvWcMI0uCYmvUTXdf79ThmhULxXscqcHCf1DQGENoWwpqaulb9Gj8mltqq12/7z0YiMw2nkKGuaTk11C6OKMmvAmEioyRY/A4kgiOzeXc/7H+xn377GPmv6jhRMg2ti0ks2bqxk397GjOO27djtlmQHXptVIh7v+vF/7Ng8Ksubuq1ASyRUrFYpacSqq1opLc1BzzBjIRJNGFVuA4wgCDQ1hfhw3X62basZcCM/lDENrolJhui6zqZNlazfcAhLH1KilISKphq5593loGfnOPG3RjJKAVVVDbGDUa445GV0aWapgrW1PvLyBi+HOx5X+ejjA3zyySHC4eFT2NKfmAbXxCQDFEXj3/8u4+NPDnZZBNMdVqtEMBhHEI10sHg3nuWUyUUc2NuQkb5CJCLjdB0ufa6vD1BSnIWeQVFRKBTHbrcOaucHQRDZvqOWd/6zh4aGvompD2eGngqIickQQtd1ampaWfvvPYTatHb7Qk6Og5rq1mT81lg8S29QJUkgkVDIpIJMVTQkSUypWqysaKa0JIv6pnAPZ0MioRCLxnG5Hb26n6NBEASqq320tu7i9NMmMm1aca8rLIcrpsE1MUlDXFY4sL+JzVuqaG2NYLFIvY7ZdiQry0Fjo7FSX9BBnvFIRo3Kob7W31N6bgqJhIokCbQ7tXW1fk5bOJm6xq6Nejv19QFycpyD3lNSEAQikQT/eXcvDY1BTjxxNPl5mS34DWdMg2tighFT9fujHDrUzP4DTTR7QyiqjtUq9UsOqYAhni6KIjabRCyWSBsxGDM2l03rD2Us1whGWCE7y5Ei2ej1Bsnx2An0IOPY3Bxm/Ph8Wn3HqreZwM6ddRw86OWkE0czfXoJHs/geduDjWlw+4nuxNRtNhstLS387ne/Y/369TidTkRR5IILLuDaa69NxgQXL17MH//4x7RlwCb9TyQiU1vr48CBJqqqW4lEEknlMkEUsfbTU64oCimLRF3FTNsEq4yFtV4Yv3ZB8Y5hhfKDXhacMoGtO+t7NKQJWSEalXG5uhazGUgEweg2sX5DBZs3VzF9xigmjM9j1KhcbLaRVTBhGtx+ojsx9R//+MdcfvnlXHLJJfzsZz/DYrHg9/v5yU9+wp133slDDz10rKc/4tF1nVgsQZM3xKFDXiorW/H7o+g6SREW2wAJm+fluqip9iEIxoKZLCukixkUFmbR1MeFpHgsgdUqoSjtWRA60VgCm0Ug0UMWVlV1K6NG5fS5V1p/IYoCiqqzc2cdW7ZU4XbbGTM6h+LiLPLz3eTluXG7rX1atBwqmKW9/UB1dTUXXHBBipg6GF0mNm3aRHl5Obt37+YPf/hDynnxeJwzzzyTRx99lDlz5vTJw23XVh3ppNxhu5QeoKOjt2nvapqOqunIbR5bMBDD54/i80XxeoNEIgqapg+61zR5ciEfvL8XRdEoKspC1zWqKjrrHsybN46dW6tI9GQh0yFAbo6LQPCwtoHdbmHmiWPYVdbQo5d78snjaWoKDWqH496QSKig69jsFvLyXGRlOfC47bjcNhx2C06nDbvdgs1mST6liCJt8qDtEqFt/z3ivejvQIqm6V1KX5oebj/Qk5j6zTffnJSF7IjdbmfBggVs2rSpz10eXlqxmaamUM8HjiCSjRLa9XjbPlDt/xVFEZtVxGazJA2Iy2U/Zo/MTqc16UmPGpXNju1Vafue2WwWIzuhG+M4ekwuo8fkgaaDANFogj1ldUnP9rBxMYyURRKxSAJiD15hJBLHZpeGRfxU03T8/ij+NqlKVdFIKCqKoqKqOrpm6NtCm1i+nvqFPdAu5qxZpfx/X56Zdp9pcPuBTMTU07XYAaMP29FwxddNdbGhzq5dtYwdk4vFIlI6Kpud2w0j3BGbTUJRjEW1dN5obp6LGTNLqalsZvOGg8lqMk+Wg9MXTmZvWT2hcBy325piUBrqfUybUkRC7d7KaKrGrJmlfP7zU01pxQFkaD4/DDM6iql3pKGhgRtvvJH58+ezYcOGTueFw2G2b9/OySefPFhTNTkG7N1Tn0wpSyRUtDTGr7Q0l+qq9G1vJk8pYvz4fD75cB+V5V7DoBouPaFQnI/f38u4cXkU5Ls7ZVS0NIfJynagqt07BKqqEwrGKC/PTOLRpG+YBrcf6Cim3m50O4qpX3HFFRw4cIC//e1vqKoRn/P7/dx1112ccsopx0XTyOMVWVaorzfyby0WkXA4jpDmU5eb66I5TaHC1BNKQNfZurHceDxO530KAls2VVJUlEVOjrNTTD/oj6LIPcs21tb6qKluPe4FZgYSM6TQT3Qnpm6z2XjhhRf44x//yHnnnYfVakUQBC644IKUjhImI4/KihYUxRCZyc520timFtYZI/bYcd+o0hysFpFdu2oyShPburmS0xZOIRqJE+6gi1t+yMusk8bg83ff4UFRNAKBGIcONTF5cnGv7tMkM8wsBROTAeSlf23E6zWeeiZOLOCTj/YTjaV6m1arxJTJRWz+rDxpEC0WkQWnTuSTD/b2KidXFOBz/zWDLZurUtYV5s4bT31jAIez+4VDQYDZs8dw+sJJpmj4AGCGFExMBohwOE59/eG8WkkSOxlbgKKiLBrqfCne5+yTxrJ9c2Wvr6np8Nn6g8yZM4aOa/OVlV6yM8hA0HU4eKiJrVvTlx6bHB2mwTUxGSA2flaekv6VSChpc6bzC9xJnQUAh8MKuk44FOuVd9tONCpTtquGmTNHJ+OxrS0RPFn2HhfPACJhmUMHvezdW9/ra5t0j2lwTUwGgHhcYffu+qTBdTistDSH09pPURBQOhQ7TJ9Zyu6dmcVt06KD3xelqTHA+PH5yc3hUBw5nlkaYnNziG1ba9i/v7FvczBJi2lwTUwGgHXr9qV4k3n5LmprfZ0WrQSBpCg5GGEHSRKIR48uP1vTdaoqm7HbLOTmOAFDtrGoMDNxcjCM7kcfHWD7tuq2cmSTo8U0uCYm/UxjY4Ddu+uROpTJulw2Wlo6p33lF3hoagomDfHEyYUc6gevUlN1REFgx7Yqxk8swGY3FMqslu5b+xxJNCLzwQf7WLt2N4cOeTMKSZh0jWlwTUz6kUhEZuUrW5GOKN1VElqKJ9uOsWDmT77Oz3fT4g32PZxwBLoOG9cf4MTZYxEEaG4OIvVyaEkSqaps4fXXt/Hqq9vYuaOGUOj4bJFztJh5uCYm/URzc4iXX96MqqopoQOrVSIYiKZVSXHYLUSjMgICTqeNSD/2+tI0HUEwqsi2bi5n9uwx7NxZy9z542nxdZ+Tmw6LJFFf56emuhXrRweYOq2EcePyGDcuD7vd2vMAJqbBNTE5GhRFpbk5zKZNlRw86EUS6WTICgo87N+fXpdWU/WkEM+EiQVUHOq+U29v0DQdq0VE1XXCoTjexiCFBR40DWJRGWcfxXwkSUTTdPbuqWfnjhpcbjtTpxYzbmwepaNzjCwLk7QMusGdPn06H3/8Mfn5h1dPV6xYwZtvvsljjz0GGBoEv//979m5cyeCIGC327nppps4++yzAUOo22q14nA4EASBRCLB5z73Oe66666MeiPt2bOHpUuX8oMf/IAbb7wxo3lfeeWVbNiwgbVr1zJu3Ljk9vXr13PVVVdx5513ct111yXH//Of/0xZWRmSJCGKIl/72te45pprEASB9evX88tf/pJXX3015Rp33XUX06ZNS45jcmzRdZ1oNEEwEMXnjxIMxohGE0QjMqGwTCAQIxaVkWUFm03C0sWzusdjw5tG0S0ry4Hfdziu68lyEPRH+83ggpGX227Qyw81cdoZU6mq9JKfn4XSDyVPVqtEQlbYvauWbVursFolxozNZdSoHHJzXBQUuvF4HEnN4eOdIefhtrS0cNlll3Hrrbdy//33IwgCZWVlXHvttTidTj73uc8B8Nvf/japGyvLMldeeSXPPfcc3/jGN3q8xnPPPceSJUt49tln+eY3v4nFktnbMHr0aFauXMl3vvOd5LZXXnmFwsLC5Ov2uf7yl7/k4YcfTt7T//zP/wBw7bXXZvZGmAwaWgcN3ZaWCA0NAbzeEE1NAWJRJVma266t2hFBMHRnu0OWFVRFQzzCIBeXZFN1yJsUJjcaR/YvqqphsYjJfNxd26uYOLmErBwH3pZIvzZvbDeqNdU+qqtaUVUNVdWx2y0UFnkoKsoiN8dJdo6T3FwXTqct+b4eLww5g/vcc89x8sknc+GFFya3zZgxg4cffpjs7Oy059hsNhYsWMDBgwd7HD8UCrF69WpefPFFysrKePPNNzn//PMzmtvSpUtZvXp10uBGo1E2bdrEokWLksf84Q9/4Prrr0964wD5+fn84he/YM+ePRldpze8+P8+o7n5sJekd1T+zMCDybSyO5PD+jZW1+dkds2ux0p7um6cY8xVIxZTUVUNSRIQJRG7zYLVakmJt0oWCU1ve/zvZbvFrCwHdbV+EDrfj8djx++PICAwZmw+NZUtnbzbKdNKcDgs7NvTcFSpWXqblxsMxrHbLPhaQ0QjCjaHrc9j9oyAKAkkFI26ugB1dQHQdWRZNb6EVA1dp004XEIQBURBNITQ2oxwxy+4YWGWBSMj5aqrFqXdfUwM7tVXX53yzer3+5k+fToAO3bsSCvWfeqpp3Y5XkNDA//5z3/43ve+1+O1V65cycSJE5kyZQoXXnghTzzxRMYGd+bMmbzzzjts3bqVuXPn8tZbb7F48WJaW1uTx3z22Wd8//vf73TuCSecwAknnJB8XVlZybJly1KOqaurY9q0aRnNpZ1L/vuUXh1vMvg89+wnTJlS1Gl7Xq4Tp9OKKIqMHpPLho+akDp4wQtOnUTlIS8NNVFOWziZzRsPEYv13ujqGN6nta3TRfmhRqZMG8XMWQV8/kvT+3xfJr3nmBjcJ598Mm0MF4xvtEw8pdtvvx2Hw4GmaVitVi655BLOOeecHs9bvnw5//3f/w0YHuvvfvc7Nm/ezPz58zOa+7Jly1i1ahVz587llVde4X//93/5xz/+kdzfsZEfwH333cf69evRNI1oNMratWsBGD9+PCtXrkwZ+6677spoDibDh0gkTmtLuFOLdZtNItBBvUtHT2YVAEyYVEhDnY/Geh8IsGHdPk773FQ++Wh/7zsW6Dq6rhu5uZJAJCJjsUj4WkKEQzHcw6DLw0hhyIUU5s2bx5YtWzrFYpcvX040Gk3GQDvGcDPls88+Y9++fTz++OP885//BMBqtfLEE09kbHCXLFnCxRdfzDXXXEMoFErxWoGk2Hj79rvvvhsw+p4tWbKkV/M1Gf7s3VOfdg0sN9dNVYURv3U4rW3pYMZzvyBAyagc1n+wN/kcragq2zZVMO/kiWz67FCvU7pUTUdQtWSrndqaFgoKPOzeVcMpp005ups0yZghV/hw6aWXsmHDBlatWpX0dHfs2MHDDz/cybj1lueff55ly5bx3nvv8c477/DOO+/w6KOP8vbbb1NbW5vRGCUlJUyfPp277767U0gA4Ac/+AGPPfYY7777bnL+sViMt99+u18XKEyGPrqus2tXXUrFWTtZWQ4aBA4slwABAABJREFU2zr0jhqVQ21VS9KITphUlLbaLBSK0dwYYOKkwk77MpgMmq4nK8Ua6v04nDbCoaMrITbpHUPOAuTm5vL000/z1ltvccEFF7BkyRJ+8YtfcO+99yYzFPpCS0sLb731VqeUq0WLFjFv3jyefvrpjMdatmwZmzdv5oILLui0b+bMmTz55JOsXr2apUuXcv7553PBBRewf/9+/t//+399nr/J8CPgj9LSnL7Bp6ZpycaPObmulOOKirNprPOlXSWqKG8iP9/TZVfY7tBU7XDeL5CQFaqrW2hq7FtrdpPeYwqQm5gMEGvf3sn+fZ1blEuSSGGhh0/W7UcUBebMG8f6D/chCOBy25k4qZCdWyq7XJYXBYGFX5jOJx/t60MHWgGrVcRilcjNczF6dB6Tp41i0ed7t1hr0jeGXAz3aAiFQlxxxRVp97ndbp577rkuz121ahV///vf0+5bsmQJ119/fb/M0eT4QJYV9u9rTBtrzcl1UlfrQxCM7AFDGcyI306aUszBPbXd5kBpus62TeUsPGMaWzaVE41mLkYDeptnLeBrjTBpUgnRqIymaWbIaxAwPVwTkwHg44/2s3lTRdr47eTJRXz43h4SCZXS0blEwzHqa30AnHL6ZD5dty+jpFOrRWLmSWOxO6zUVLdS1zZGplgsEvNPmYiiapy+aBonzBjVq/NNes+I8nBNTIYCsViCbVur0hpbMFIfZVlBEATyC9xsKW8CDJHyaCTzRayEYmQuCAKMGVfAqadPpra6hZoaX0bnK4pKdVUzDoeVndur8XqD2OwWrDYJj8dBUZGHrCxnrzMiTLrGNLgmJv3Mv9fuQtP0tCWrgiAQjcnJfG1JElFktc1o5lNd4e1dSZVgBCOqq5qprmxm1kljUTWd+g6Sj93RUOdn7skTSSgKmzdVYLFK6O3ZDKLApImFTJhQwKTJxbhcA1mVdnxgBm1MTPqR/fsaqDjk7VIfIDvHQUOHzg+6drhcODfPhS+NSHnGCLBrRzXjxuVjtWb20dY0Q6i8srwZW5sWgqHtIGERDR3c997dwwvPr+fjj/fT1BTMuITbpDOmh2ti0k80NgZY+/ZOJEvXxi4/z83eXbUIgkBWdqpaWB9SDtKybXMFJ540jk0byzMKB4TDMYKBKBMnF9HkDXX6spAkEVlW2Lq5kk2fHmLc+ALGjsunqCiLnFwXDocVSRLTivuYpGIaXBOTfuDggUbeenNnj8cJokA0mkAQBIqKsqipbEYQBAoKPTSnkXDsC7FYAllWcLtsRDLIYKiraaWkJIdgIIqmqIi29GZBEAQsVgt1dX5qa30kEioCApJFRJREbDYJm1XCarfgsFlwOGw4XFbcLjtZWXYKCj1kZzsNcaDjlAG/8+Gqf9uVNu38+fNZvXo1Y8eOBeDll19m+fLlxGIxEokECxYs4I477iA7O7vTfabj17/+Nc888wxr165l1ChzlXg4oWkaXm+Ij9btp6a6tU0voWsPT5JEwqE4um6IgmVlOfH7IgCMKs1l/566fpPE2ru7ltlzx7F5Y0WPXqffH2Xq9FLKyuqYN38CTc2hHs8RBAFbR8Os68hxBTmuQJr2O6qqoSQ0XG47RSUeigqzyM11UVDgISvbicNhOS7S0o75V81Q1r/tiUcffZT333+fP//5zxQWFpJIJLjvvvu4+eabu835bScej/PKK69wzjnn8Mwzz3D77bf3y7xMDDRNIx5TiMsK4XCccDhOPJ5AjqskEoZGrfEQr6PrAgKGByogIIhtSolthkcwDkNVNaIxQ3zc6w0RiyaMQoJuwgjt5Oe7qa5qSWor6LqeNL4Oh5VYRO43gyvLCuhgt0nIiQwaP+ogxxUCgSi6piP0tvFZDxjdiEVUVaW+1k99rR9N00jIGpJFxOG0kpvrIifbiSfLjstlx+22kZ3jxOm04XBYsViGv4j5MTe4Q1n/tjsikQiPPfYYL7/8clKA3Gq1cuedd/L2228jyz2n97z22muMHz+ea665huuuu45vf/vbOJ3OXs3jnbW78AeixouepHB1vZt9HX9Mc4SeZty0h6U7MN25nQ/ocey05xilqomESiyuIMcTxGMKsZiMLKtGPFIQkCShLc4o9mdDhV5RWppDVXkzmq4jSSLxeKJNIcxQyNONG+qRvHw30ahMrIdwQdnOGqZNL2X7tpoex/T7I9jsFvaU1XPyKRM5eKhpUOOxoVAMb1Mw+VoHNMUof9Y0DU03FNZcbhtulx2bzYLFIiJZRCwWCamDd2xMW2j/36AL6QYDMa66Jr0MwaAY3OGqf9sdBw8exOFwMHHixJTtTqeTpUuXZjTGc889x4UXXshJJ51EUVERL7/8Ml//+td7NY/FZ8/q1fEmxw6fL0xluReb1WJkJLSG8WTZycp2EInEEaXuF50EAU5dOJWWpiBZWQ58/giHDjZ1eXxcVnC57bjcFgShew/c748wbWoJsbiCIMB5581hzrzxfb5Xk/QMisEdjvq3Xf3ha5qW7FOmaRk8qnXBzp07KSsrSxr/Cy+8kKeeeorLL7/cXOkdoezf04ClTR4xJ9fF3t2GQl1xSQ5V5d4ef++zTxrHvp01tDaHQIBZJ42jsNCD19v1YtvB/Q2MG19AdVVrl8cAhIIxnG2LbK3NYVqaQ/h9EXJyXb28S5PuOOYhhaGqf5uXl4fP50vZFgqFiMfjZGdnU1BQgKIolJeXp3i58Xic73znO/zqV7/qdvxnn30Wi8XCxRdfDICiKDQ2NvL+++/zpS99qVf3aTI82Lu3PplyZZFEo6pMMJpHBnyRbh99XW47okjS2ILRn2zRF6fT4t2H1sXJLc0hpp4wiqrKlh4Nuq7rxKIyLredA/sacDptLDht0oiInQ4Vjvmy4FDVv/3iF7/ImjVraGhoAIw/xieffJJTTz0Vt9uNzWbjhhtu4J577sHr9QLGYt59991HNBqlpKSky7EDgQCvv/46jz76aHJe77//PkuXLuXJJ588qns2GZoEg9GUogY5oaJpbTH1DsUPXTFj5mjKtlV3Msq7t1UzfeaYbs+tr/ORX+DOaI7tkT9V1dm1s4btW6uO6knOJJVj7uG2698++OCDPPbYY4iiiNPp7Df925deeille0f92x/+8Iddnr9w4UJuuOGGZBpZLBZj1qxZPPTQQ8ljbr75ZpxOZzJ1LB6Pc9ppp/GXv/wlecwHH3yQ4k1nZWVx3XXXMWXKFBYuXJhyzW9961ucf/757N2796i/bEyGFrt31Ca9W7vdQtAfQRANARlZTrR3Mk+L3WFFVVUj5eqIg3y+MFOmj8JmEZGV9IaxqsLLqadPpaU53K2X21DvZ/yEQiIRYzEuIats3liOruvMPmksdru1t7dtcgSmWpiJyQCjaRpP//ND4m0NIItLsqkqb6K+3k9xSTaaolFd1dzl+bNPGkf5vnrCoVja/S6XnakzStm2tbJT1992Zs4eQ32dn2is+8yG+SdPxNscTqk2U1WNKdNKmDlrNGPG5R9Xbc37m2Pu4R4Npv6tyXCgrtZPKBBPds31ZDnwtlWVFRRmsXtbVbfnu902wsFYly5wJBLHYjGqvLrycvftqWPO/Ins2tl9ipim68TjMk7n4Y4SkiRSfrCJA/samDy1mEmTixg/sQDHgLZYH5mYHq6JyQDzrxc20NwUTD7OT5pSxLtv7QBRYO78Caz/cG+XxrSoOBu3y0b5vobuF9Uy8HLnL5jEnj21dBeSnTS5iFgsgc3etTFVFQ1Ptp0TppcybkIBo0pzjosqsf7AfJdMTAaQxgY/DfX+lNipHFdor3EzFqS69nnGTyig8lBjj8n7kUgcq1XC2k3F2949tUyaXNTtOA31/z97/x0f113n++PPc850jaRRr5ZlW+49veEUshsCabA/Fu4F7wK5kOVe9rt0wlJCvywsl0DYZUNZwtIXSIjTe3Uc23KXZUtW713T22m/P440lqwZaUbFluTzfDwS23Pa54w0r/mc9+f9fr195OW7p91HsohEwjJHD7fz6J8P8exTdZxp6CUez6TzxMWJKbgmJguEpmk8/2wdlglG5O5sB0MDfgRBwGqTiMeUlHIrCEY+uKak9xDacLKbdRtSZyyEgjFcLgf6NFPccDiO3WZJKzd+3M+3o22I556u46nHj3PqZDexmCm8qTAF18RkgTh0oJXRkfCk2W2ux0V/vzHjzc93MzgmvskoKfXQ1z19wcJEgsEoLpcNcZoZc1vLABWV+Sm3gxHHjUYza59usUj09/p4+YVTPPnYMU7X9xhZFSaTMAXXxGQBaDzVS+2BVqznFA04HVb8XsP7oqDQzfA0LcorKvPo6RzOyAugqaGXmrVlKbcPDvgpKs4Zy/1Njs8bmnVMVpJEBvv9vPRcPY8/epjT9T3ETOFNYAquick8oes6wWCUF56t4/nn6pL2NJNlBU01HumtVktKMUqEE9TM1rRHR4Lk5Wcx3cpYV+cwRcXZKbf39/nJz5+5UGI6JIvI0GCQl56vZ8/Dhzh2pB2/LzKncy4HFm1a2HL20V2/fj0VFRW88MILkx4nH3jgAX70ox/xpz/9KeMyZpOFQ1E0hgYDdHUM0d/vx+cNE4sb5tsWi4DVKiGKAqFQjHAojiiKCc+EidjtFsP/duxX7+yC2dQpbGl5Hn1d6YcTJtLeMsDK6iLaO5Ln9nZ3jnDlNWsZnJA5MZFIJI7NZiEQiM45+0CSREZHQux7vYn9bzSxak0x5RV5lJblkpPrwmq9uMqGF63gzsRS9tEFYzZUW1ubcEXTdZ2nnnqK3NzcebvGckHTDJs+RdEYN5C1SCIWq7gg6Ui6rhMOx+juHKW5qZ+ujhGiMQWbVZoiUPFzvLan8x3IL3DT1NibMO+ORVNXmJWXeziyv3lW1oJ9vV6uuHYt7e1DKVPEBgd8eHKd+PzJiyk0VSMajuNyOzIfQBLGiyVamwdpPjOAIqvYnRby893kely43XYcThtOl5WsLMfYv63YbNZlVWixZAV3qfrojnPHHXewZ8+ehOAeOnSImpoaotHkH4BUdHeNGmbTi5Qpq91jpq+advY/VdVQFJVYVCEcjhOLyoTDcSJhwzQ8EpZRVNWw0B0TXAEQRXA4bbhcdpwuKw6nHYfDQlaWHafLjs0mJXptjfvijg0KXTcaKCqKihw3ruv3RxgZDjE8GCAeVxBFAWmCgM41Fmm1SQz2+9F18ORlMdjnRxhvuzuBcVHXVH3WXq6+0TA5OU78KQS1tWmQS69azcjhjqSz3L5eL3aHlegMlWlzIRKW6Q6P0j0+k9fP/j5omuEZbHdYyM5xkp3tIMvtwOWyYbNZsNkkLFYJi0VK/HzHzePPfc/Ot/te0B9hawpry0UtuMvRR3ec2267jd27d/OlL30Jm83GI488wjvf+U7q6uoyOk/DqR6GBgIz73gBmagn47/74zFKYcwcXBQNI2mLRUQQBbLcdrLcdgozvZam4/OFGR4KoKoaqmqIq65riXEYjRyMa4uigMUiYrVaECWRwqJsCotSxzfnQl6+C6fThiiJVKzI5+jBlqQNJ0vLPPT3enG4rFx65RpkWeXgG2fQM1Df5qZ+tu1cydEjqVvshIJR8vNdyEnSzkLhOKtrSrA5rIvKLjQcihEIRFEUFVVRx760x36+4973E27nQox83YbUi5aLWnCXo4/uOAUFBWzbto2XXnqJ66+/ntraWr761a/OOK5zuemvNmd8jMmF4cSxDgqLs5EkEc+Yz6w9ScPGFVUFHNp3hh2Xr6b2jTPk5DhZv7Gcxoa+tK+lqRqiKOCwWVKGFbrahtl6yUqGUsRyXVk2tu5YSXFJ8idGk8xZ1II7HUvVR3cid911F3v27CEej3PTTTfNa4zYZPHR1jSQyFxQxmZnUpL4pNFLDXRNQ44pDA8FWLO+zMg8yCBm3d46SHllHj3d3qTbVVUjHpWJxxTsjqlOYIFAlDONvabgziNLNi1sqfroTuStb30rR44c4Te/+Q3vfOc75zRmk8WNoqj09fkAsFolQsEoydaCPHlZjAwFqFpVRHvzQOL1/l4vRSWZLagODwbIL8ie9kmwtXmAohQhlKEBP7qqp/UkaZIeS1Zwx310n332WW677TZuv/12vva1r82bj+65aV0TfXSnY6KP7p133snb3vY2mpqaJvnojmO327npppuIx+Om/+0yp7/Pnyh5zcl1MdjvS/oYX74ij/aWIQoKs42iiLFdutqHqKwqSNp8czpisXjSWfQ4kXA8kTFxLpqmE4nG6evxZnRNk9SYbmEmJueBF545QVNjH4IgsGpNMW++1kg8iefAtktWcuC1Ri67ajW1e89MWvW57Oq11L7ZlFFYITvHScWKAtpaUzebLC7NweV2oCYpssjJdbJiZSHX7lqf9jVNUnNRBg1NH12T84mqarS3nm0SKYpCUrF1ZdkJBSJkZdsJJknnGh0J4snLwptBxVbAH8Gd7UDXdIQUM92BPj+XXFFIf79vSl6z3xdBVVSikTgOp+l/O1fMGa6JyQLT3TnMX/5YmzAgX7mqkFeer5/yqL9uYzktDb2UVHgY7vNO6oEGRqudtRvLqTveldH1N2ypoKdrhHg8dblvzfoygsEIVtvUxbO8/CyqVxdz+VVrMrquyVSWbAzXxGSpcLi2DYvV+KhZrRKhQCzpgpnLZSMYiJKb68J3jtgCxKKy0WUhwzlSW/MgVSuLp92nvWWA4lJP0gWy0ZEQkXCMgN/0QpgrpuCamCwgoWCUrgktynNyXQz0e6csmEmSOOaNq4/lmCc/nxxXpjUZT4YRDrBO6xAmyyq6pqesWmw608/p+p5Ep2GT2WEKronJArJ/b9OkuoOcXCeD/VMrA0vKcuntGjH+Mc0MtrtjmIqqTOvvjO6+Lvf0Mdi25v6ULmGKrHKqrouTJzpRVbNt+mwxBdfEZIHw+yM0NvROMl8RRSFpR4TCohwG+rzYbBbkabwxhgb9FBS5Mw4rtLcMUjWDUAf8UVwuO4qiJt0ejcq88Wojr718io62QULBKLGoTDQqE43EkWXFzNmdgYsyS8HEZKHRNI2n9hyZUlUrx1V0VUOY4pVrmLYUFOcwMhSY1gRAmIVDgBxXsNos02YrAPR2j2Bz2lL68AqCYa5+8lgngihO+jKRxrwoKlfkU1GVT2mZx2wueQ7mu2FiMs/ous7LL9QzPBScFKvNyrIzPBSYInhZbgcBfwQdIyNgdCQ47fmHB/0UFEzf6DHVcbke57T79HZ7KcjPmjFWa7VZsFjOOrGJouFtMjjg53BtK4/+qZbnnz5Be+ugGYKYwKIT3PXr1zMyMjLptYcffph77rkn8e/+/n7uvfdebr/9du644w7e/e538/zzzye233TTTdxyyy3ceeed3HXXXbzjHe/gW9/61pjh88w0NDSwfv16fvKTn6S1/xNPPDHJJhKM0uO3vOUtkx6xPvzhD/Pb3/6W/fv3c9ttt005z9e+9jUeeOCBtK5psjiJxWSe3HOEhpM9WM5Z3PLkZdHfO3XBrLwyj862YQRBwO12EEphqThO1yzjuB3tQ1SsKJhxP583gq7PXiTHm0u2tQzyxF8O88RfDtPU2Je2jaiuG7aZ8biCoqjLKkyx5EIKi9F4/Nprr+Vzn/scXq8Xj8fDyMgIAwMDFBQUcOLECbZt24aiKBw6dIivfOUrdHVllkdpsvjQx71bFY1YXMY7GuLM6T6am/pRFTWp7aLTZWM0SbpXVpadYCD9lCs5rmCzSQlv4HRRFQ1JEtE0fVpT79amfnZctoqBaRpcpovFKtHX66Wrcxh3tpOVKwvJL3ST5bZjtUqoqkY4FMfvC+PzRfB7wwT8UcP/eCz84XLZ8eS5yPG4yMl2kp3rIDvXidNpw2oZ88SVhITl5mJmyQnuYjQe93g8bNmyhdraWm6++WZefvllrrvuOgoKCnjxxRfZtm0bx44do6KigoqKinkV3P/62SsM9J9tRDjzZODsDsto4nD+GWvVIIkikkXEZpdwOG1GJ4okvczAcP/SdW1SXFMUBRRVBV1PiMW5kmGxSGzcWonNYaWva4TuzhEjJ9duIRZPvsCViv7eUQoL3Yx6w9PeWsAfQRQELPPUAsdqlVAVlZbmfpqb+sd6u+ljJu/ipP5vgghW8ex1ZVlhcMDP4IAfHVDiKrGYjKrqaJqGpmqcGwEx3kohk++jeaOkNJfdd+9Kum1RCu5SNB5/y1vewv79+7n55pt56aWXuOuuuygoKODLX/4yH//4x9m3bx/XX3/9jOfJlL/7X/N/TpOFof5EJ5UrCiaJS15+Fr7REA6nDYfTRjwmI07YbrFIXHHdWo4eaCYciFKzsYI160rp7hiialURnR0jyS6VkpGhINsvrSYrhQfuOHJcYfPWSq68bl3SZpgms2NRCu5SNB7ftWsXX/ziF4nH49TW1vKd73wHu93O0NAQQ0ND7N+/n3/6p38CSLlyq2mauaq7jGlvGZwiXnn5bk4d70IQBDx5WVNCDjuuWMWRfU1EwkbztKZT3ey8qoa+rhE8eVl0tA9n9Bg93tYolQfuxP2GBgPU13WxdXvydjEmmbMoBXc6Fqvx+JYtWxgeHub5559ny5YtOJ3GavBb3vIW9u7dS2trKzt27ACSm5QDDA8Ps3bt2ozGbLI00DSN3hQ2h/G4PCa4LprquxOvl5TnMTzgT4jtOHWH29hySTXyWN+1TENDXe1D5BVmz9ijrb/XS0FhNrGYjN2eWpxN0mfJTacWq/G4IAhcc801/Md//Ac33HBD4vUbbriB//zP/+SKK65ILL6tXr0am83Gk08+mdivqamJ/fv3z8nL12TxMjocIhqOT3rNYhEJBqOJsLrDZSMyYZ/qNUW0NvROOZccV9B1aGvqY9XqoozHMjwUJCfXmVbWTkfbIHVHOzK+hklylpzgLlbjcTDCCg0NDdx4442J16677jqam5vZtetsEF0URR588EH+/Oc/c/vtt3Pbbbfxz//8z3znO9+hurp61vdgsnhpOtObMLAZJ78wm+6OoURerq6d7a5QWJLDQK839fnqu6lYUUB2jnNaj4RUjA4FEdI4LBiIMjocpKc7s1ixSXJMe0YTkwVG13V+99BrhIKTQwM160t55dm6RJHB1h0rqN17BkEQuPSqNRzZd2baAoTLrltHR9sQDpedvl5fRmOSJJHtl1anl/olwNYdK7n0ytVYrUsuCrmouKjePdN43ORCEPBH8HnDWCyTU6wURUNRVERRxOmyEQpEE0UD44tb0xH0RwgHolTXlNLbM7WgYjqM/NcYmqohWWZI/dLhzOkebHYLOy9btehzXRcz5gzXxGSB2fdaA8cPt08qNnA4rDicVo4fakMQBMoq84iGYvR3j1K1qohoOMZAz+i053W67KxaV8rISAi705ZyUS4VFqvE1h0rGRxMr8Ahv9DN5m1VbNhckdF1TM6y5GK4JiZLCVXVaDjZPaWyq7A4h84JbXfy8t2MDhm2jUWluTOKLUAkHMPpstHXNUJJmSfjWK4iq4TDsbQrYEaGgrQ299PRlro/msn0mIJrYrKAtDUPED4nOwGMGa539GzOrdUqER9P08rgoVNRVCwWkfamfioq8zIe35lTPZRV5KXtV9DVPkxDfQ/90yzomaTGFFwTkwVC0zTeeK0Ba5Ly2HhcQZvgoqWNZSjk5hmVZ+nS3T5M+YoC+nu9FJfmTjpnemPU6WwbxpVlT/uY1qZ+6o510N/vzehaJqbgmpgsGMePtBNM0gcsJ9dJf593kk3jeDigoqqAnvahtK8x1O+jqCQHdJ32lgHKKz0Zj7OvZxSnw4oopbcYJggCzY19HD3QSk+XmS6WCabgmpgsAMNDAQ7sbZqSmQBGd4eJ8Vt3toOA3zCTcbpshEOxKcdMhyAIoOv093hTNoKcieOH2ygtzc1IdDvahtj3WiNNDX3LykJxITnvaWHr169n3759Sb0SHnzwQcAwm/n+97/PyZMnEQQBu93OPffcw8033wwYfrdWqxWHw4EgCMiyzLXXXsu99947rRfBww8/zDe/+U0qKysB45GvoqKCj33sY2zZsmXacXd1dfHWt76Vyy+/nF//+teTtt1777088sgjk+7rT3/6E3/4wx8IhULE43FWrFjBxz/+cbZv3544Zu3atVMKLZK9PyZLi8F+H3v+dJCEpdg5CKJANBKftGDmHR4zK59NEcNwEE++G683TNAfmZWLmK7DoTebufSqGoaHg8SiU9sAJWNkKMArL9YxNOhnw+YKPHnJe6KZGCy6PNyF9ru97LLLEsIO8MYbb/C//tf/4s9//jMVFdOnu9jtdlpbW+nu7k7sGw6HOXz48KT9/t//+38cPHiQ+++/P7Hfvn37uOeee3j44YcpLy/P7E0xWfRomobXG+bI/haaGvsQBJKmWtntFiNGO0GLc/NctJ/pIyvbkZEv7jjd7UOs2VCO1xum9Uw/azdV0Hh6aknwTCiKxoG9jWzZUUVefhb9vb60Zq6aonP8cBun67pYu7GcihX5FJfk4nTZzJzdc1h0grvQfrfncs011/BXf/VX/O53v+PTn/70tPtKksStt97KY489xj/8wz8A8Oyzz/LWt76V//zP/wRgaGiIX/7ylzz33HMUFxcnjr366qu59957iUQy/0BNxxOPHDrHYWqGD4ie9K8p9p3gnZvhuDJ5xJy86znHTXOaKZtmvPX0b37ykPQp24yXDAPyUChGLCpjsUg4XTYkScCd7UyYbBtPYYaHq8fj4uSxDnT0RNxWFAVkWaGiuoCBXm/G73UkEsfhsqHrGtFoHLvdgiIrk2weM+FobSu5HhebtlcxPBwk4EvvdzYeVzhysIUDb5whFjVM0h1OG3aHBVEUEUURQRQQl6AIZzJkXdd5/93JbVMviOBeSL/bZGzYsIFXXnklrX3vuusuPvOZzyQE9y9/+Qv//M//nBDco0ePsmbNmkliO/HYiTz00EPs2bNnVmMe5x3vvHROx5vML7GITG/3ML0dw/iGg0RCURRFw2a3UJDrJCfHyebNFVisFhAFfN4InjwXdoeV4lIPnc0Ds/Kf1VQNp8sOCEQicSoq87E5pm+LPhPd7SNUVRdw3fUbWb22xJytzgMXRHAvpN9tKhwOR1r7bdmyBUmSqKuro6CggFAoNMml7NyxTywnDofD3HrrrXzyk58E4AMf+EDSGK7J0kLXdQZ6Rzn0eiO9ncNjubFJymX7fcSiMgN9hu+B3WGldEU+udl2dly+ivKqfLpaPAz1+zJuvNjbNUJxaS4DfX6624ZYu6mC0dHUXR3SQRQFujpG8HkjhEIxtu6oMkV3jiy6kMJC+t2moq6uLiNrxzvuuIM9e/aQn5/PnXfeOWnbtm3baG1tZXR0lLy8PNxuN48++igADzzwAKOjM1cQmSwdvMNBXn7yCAM93kRfraRiO0YwEB2rOhOQ4yq9HcN0tQwSCcfIy3fjyLKzdWc1ktXwUwgFonhHQ4QCUaKReEohHur3sf3yNQz0+YnFFCSLiCIrxkx6jgT8EU4d70DXNLZfumrO57uYWXSC+573vCchaLfffjuCICT8br/73e/O+/VeeeUVXn755Ywe7e+8807e/e534/F4+K//+q9J20pKSvi7v/s7/umf/olvf/vbiQWy7u5uDh8+zJo1a+Z1/CYXBlXVOPjqKepqW43eZkmaRp6Lruljq/9nZ4kWSSIWMeK/0ajMyFCA3gl5uO4cJ7kFWVRWFWB3WrFYJCPGO/4kNZYSBlBQnM3WHVUgGmbmLpcdySYR8EfxjYSQ5cwyFybi90bo7hjG4bSxfpPppTBbFp3gjvvdfve73+XBBx80nJSczjn73Y5TW1ubmJUKgkBxcTE///nPKSpK38i5pKSENWvWkJ2djcfjmbL9E5/4BHv27OFTn/oUkUiEQCBAbm4ub3/721O6lZksHULBCE/8fh++4RBiGkI7TjQqo2n6pMdyURJQFBWHw4oiK1MWZ4KByOTMhWmibc4sG7GYgqbpSJKI3WFFEATyi3Mprcwny+1AVjX6erwzOpElo7tjhOwcJ8UlueQVuDM+3sR0CzMxyYjezmGe/tMBVFXNOJ450OdDPic/1uWyMTocJCvHQcgfmVMBgSGyNiIRw7shO8dJPK4wPqPWdR1PoZuajRUgiPT2eDO+nsUqsmlbFZdfU2P235sFi26GOxfm4ncL8PGPf5zW1tak277//e+zevXqOY/RZOnSeKKT1545DilybKdDUVTicQXhnEIIbUzwBEEw0sTmsCalqtqk0Ma4p+64U5kgCPiGQ9S+1kBunosN26vx+SP400z7AlBkjY62QbLcdrbsWDn7wV6kmDNcE5MZ0HWd4weaOfDq6Sk2i+kyPBggGokzUVElSQQBwsEo7mwHfm84o3zPZLhzXISCUcBosW6zW1DV5B9xXddZs6Gc/JJcursyW8yt2VDKjstWkVeQPbcBX2SYzwQmJtOg6zqH9jaw/5VTsxZbRdGmiC0Yj+dyTEYgI0fGaZHjcsKdTFHUsZze5CcXBIGWhl5OH21j5coCpDR9FACaG/s4c7ov4/S1ix1TcE1MUqDrOrWvN3DkjaZZFSOMMzocSPq6JInIsorFKqHI6pxntwCxmIJtQktzTddnNCYP+qPUvt5ARbkHqzW9+9Q1aD7dQ/3xzjmN92LDFFwTkxQc2XeGo2+eSdtBKxmhYIxY7OzC1UTGZ7UWi4QsK7O+xrknFQQSk9r4WE7uTCiyyoFXT1NcnJO26AaDMbrah+hsNTtApIspuCYmSag71MKh1xvntBIfi8p4R4JTFsrASJ/VNA10kCwSqjJ/j+aKrCZEVo4rY4UYM8csdB1qX2+gqMiNLU3R7WofpvlMH0MD/rkM+aLBFFwTk3NorOtk34v1s57Z6jqEAtExEUp+Dst4Sx1h/Jj5W7uORuI4nGfDCrpO+nm3Ohx6/QzFxdlpx6wb63uoO9rO0KApujOx4FkKS9X/NtXYn376aX7zm9/wq1/9CgC/388Pf/hD9u/fb7ghCQLve9/7ePe73w3A7t27ed/73sfb3va2pNeQZZkbb7yRDRs28LOf/WzGMZksLG1n+nj+0UMZx1N13TCQiUbiBALRsZhs6pO4XDa83hC6ps9bhsJEsnNdBP1REGbOVkiGKAlcdt16urpG0PWZB6brOuUr8tm6cyVVq4pMz4UUXPA83MXsfzsTsViM97///dx+++088sgjWCwWuru7+cAHPgCQEN3peO6559iwYQN1dXU0Nzebpb8XkN7OYV7Yk1xsNVVHVTUURUVVxv5UNVRFQ9U09LGcVwQQENISHF3TEURhVlVfMyHHFWMxTlFRFBVXlh1FkdMWQk3VObLvDJdcvZb2jtEZvwwEQaC3a5S+rlHWbalgVU0JpeUerPPg5bCcuODvxmL2v52JJ598EpfLxYc//OHEaxUVFdx///3IcnqO+b/73e94+9vfTlVVFb/85S/52te+ltEY3nytwZjJmEwmHS9f3fDIzXLbsUgirzx5FF03mjlqqo6qaQlxhXEhJTNz1CSIY/64uqZjHctQOGfIOJw24jF51mIcjci4c5zIfiNsEQ7FsNosY5Vn6aEoKscONrN+axWNDX1pi/WB1xp546VTWKwSeflucj2G/aTFKiFJ419GQuLLabkRDkW542+vTLrtvAjuUva/nY66ujouueSSKa9v3rw5reObmpo4cuQIP/zhD9m8eTO7d+/mE5/4BHl56be73ry9KvGBNckcUTLa3ez59V5yPC5EUVh4ERBgdCiIw2nD4bQSCkQnfT52Xl1DPCqT43Fx6kg7Xu/sbBYFAWwOa8Lw2263kFfgxmbL7GMfj8S5+datbNg218oyHUXRxirgtPGXlh3TpRCeF8Fdqv63yb7RNU1LfDjSHXsqfve733HjjTeSl5dHXl4elZWV/Pd//zf33HNP2ufIznHO+vomRpXXX/57P4JA0nbmC4GuQzwmIwggSqJRPDD2q7Zp50o6mvoY7jc8c6+6aTMHXzvNbOoLopE4doc1kQERicTHypIdWG0WNFUjHlNQFBVRErHbrVhtU98DvzfEYM8o2blOajZWzvq+TRZBSGEx+9/m5eXh9XonfVkMDw8nHMJ27NjBb37zmynHvfDCC9TW1vK5z30u5bnD4TCPPvooNpuNm266CTC8IH7961/zoQ99CKvVmvJYk/khGonz8C9fRZaV87rII8cVVE0zZp76eOsfAWeWHatFTIgtwMlDLWzYVsXJox0ZX0dRNFySiCJrRo81IBqOEw7FEpOF8TCJjrG45s52kJU9dTLS2TqIy+3Ak5dNYWnu7G/+IueCp4W95z3v4cCBA+zZsycxWxz3v83EFDxdxv1v3/Oe98y4765du/jVr36VePzx+Xw88sgjXH+90a/or//6rwkGg/z0pz9FVY3H+s7OTr797W/PuPj12GOP4fF4eO2113jxxRd58cUXef755wmHwzz99NNzvEuTmYjHZB755auTuueeL4KBSOKamq4nHqs3bF1B/eHJ5kkBXwSH08ZsC93kuDolM00UjKCJKAiJcLQAqIpKMBBNuSbQeLKL1saetDv6mkzlgs9wF7P/7Re+8AW+/e1vc9tttyFJxqPWnXfeyTvf+U7AWLz7xS9+wXe/+11uv/12JElCkiQ++tGP8q53vStxns9+9rN8/vOfT/z7f/7P/8nevXv54Ac/mDgvQE5ODrt37+ahhx7i9ttvn/O9myRHjis88l+vTei+cP7QNZ1oOI4ACKKIOrYgZ7FKoOtT7BsBWk73UL22jOaGzDvxRiNx3GM2jencqaqoRKNxRFHA5bZPGXtjXReSJLHzmrVm6tcsMN3CTC4qxsXWNxq8IH6uwUAU30gQQRCMrIGYTCymsH7LCno7h/CPBJMed/mujRx8vWFWGRLubAfxmJLRl4vL7cCd40jaLqio1MOajeVsvsRst5MpF3yGOxdM/1uTTIjHZf7yy9fweUMXRGx1XSfgCydmhpJFRA4aM9rsXCcNx5KLLUDAFybLbScUimd83UgohjPLnlE2SzgUQxQFcjyuKdsG+7zk5mXR3TFMRVVBxuO5mDFnuCYXBbFonEd++RoBf+S8hxHG8fvCBLyRxCTVmWVndDiI02Vj9bpSTh5K/uU/vu+q9WXUH5udO1dOrpNoVE6kiKWDZJHIznXiyrIn3b7tsjVsvXw1Dtfc2rFfTFzwRTMTk4UmHIryp/98heAFFFtFVgn6IpMiArqug65TvbaUtsbp47ORUMwQvlnOj6IROWOLSVVRiUXklMY6p0+0c+po27z6QCx3TME1Wdb4RoL88WcvEwnHEC6Q2GqqzmC/b3KOv2C8DuDKshMKzFwtGAnFcTpnN5uMxxWsVinjOoNIOEY4FEuq8/GYQuuZPk4dbZ/VmC5GTME1Wbb0dAzz8EOvnfc824koikp/r9Eld+IILBYJOW541aYbW21r6mNlTfGsxzLbNunBQJRwMPkXwuhQgN6uEbo7hpJuN5nMkl40MzFJhq7rnDrawRsv1BkJ/xdAbDVNJ+CLEApExsoaJmOxSETCMcpWFNLXNZzWOUP+CO4cpxFWmMU9RcNx3LlO4rH0UsTG0TXNKJYQhaTx3NaGHtw5TvILs3G6ksd7TQxMwTVZVqiqxuvPHKehrnNObXFmg64baWcBf4RYJJ7QxWTiJogCqqpTXJbLkb2NaV9DjqtYrSKyknncVMfIpZ2NYMtxJVEQca7oCoLAqaNt2O0Wtl1Rc8Hi5EuBRRlSWL9+PSMjI5Nee/jhhyd5DPT393Pvvfdy++23c8cdd/Dud7+b559/PrH9pptu4pZbbuHOO+/krrvu4h3veAff+ta3zppmpODhhx/m0ksv5c477+TOO+/k9ttv5x/+4R+oq6ub9diffvppdu/enTj/+vXr+eEPfzhpH13Xeetb38ptt92W1nVMphIJx3jkv16l8cT5FVtN1Qj4IvT3jDLQ5x1rGDm9po0vmGXqx9HVNkhF9cxFO6mIhA3XsNmgyArekRB+b3hKGERVNBrrusx47gwsyRnuUvbQBSgvL2fPnj38f//f/5d4rba2lmg0itNpmtHMhu62QZ77S61hxJJGD6+5ous6sahCMBAxSl3HJo3ppF0JooCqaLjcDkKBSEbXHe73sWpdKW1n+mcVVlBVHVEU0HQ9oxSxBLpOwB8hFDSyJhwOK1a7BVEUCPjCdLUNkp3rpGpNSebnvghYkoK7lD10AdatW0dvby+HDx9O2Ds+8sgj3HHHHbz22msZncvnDV209oyCABarhYOvnqLxRNcCxGr1xOq8pumGu1ZcIR6TiceVKU/m6U5U7RYLsWicylXF9HWkF7+dNCoNBF2ftbNhJBzHarMkfH5ng6qqBPxh/D4QRSHhNBb0d2B3WInF4uR43GNdUABhgunlMo84xGMKZZX5SbctWsFdrh6649x11108+uijXHLJJUQiEQ4dOsR9992XseC+8swJRgaTt+FezpRW5OFwWjnw8ili4fjCpnyNLbwJgmD45YoCdkdmbm6SJLJ6fRkOlw0RnVhEobAsl+fP9Gb8RdHfPULpinz6e30z75wEVdVwWaXEvcwHOrrxJaQpvPlKPZfE19HTc3oscDwvl1gyrFhVtPQEd7l66I5z++23c+edd/KFL3yB5557jptuummSkU263PGeqzI+ZqmjaRonalupfe00+YXuRW+i4sl3U1yRx4l9jYwO+dFVHVlWKKnM57Lr1tN2po/+Hm/a5+vrHmH7FTWMDodmPSZZNtruJCvdnQ/6u4bZefkatl2xZtH/fM4ni1Zwp2Mpe+iOU1RUxKZNm3j11Vf5y1/+wr333svo6Oi8jHU5EwxEePbPBxjq9yNZxEX/YS4u82CxSrz2+CHDf1YQ0NAQJRH/aIgDL9WxcWc1DqeN9uaBtM6pqTqiJCbONxs0VUORVWJROePZejrEYwqNdZ1Y7VY27Zhrp4jlw6LMUpiJpeyhO5G77rqLX/ziFwQCgQUZ93JC0zSOH2zhv3/6EiNDAaTzsDA2V/KLcrBYRA6/Wg+cffrRNB2b3Wq0SQdOHWnD6bJSviL5Y2gyRof85Myx20c0EicWkRMVb/ON3xumtaGHloaeBTn/UmRJznCXsofuRG6++Wbuu+8+PvGJT8x5zMuZgC/Msw8fZHhgacxqwWgCmVfg5o1njk4ar64b3X0tVolI6Gz1VsOxdnZeu56gP4LfN3PmQlfrEOu3raChrmtO4wwGIwgiZLmdiNL8v699XSO43A6cWY6Ucc2LCdMtzGTRomkaJw62UPt6w5wen883giCwcXsVrz15GDk+uax4vAuwO9tBwBeectyVN21h/8unSKdZ76XXreN4beu8vC9Olx2X274g4QVd19m4fSWbLqkmryB73s+/lFiSM9y5YHroLg18o0GefbiW0bHwwVIRW4DqtaUce7NxitiCkSEgikLS9ue6rlN/uIUtl67i+MGWGfNsw8EYdsfZ0MRciIRjRMIxsrIdOF12bPb5kwZBEDh9vB2LRWLzpdW4cxZmoW4pYM5wTRYVqqpxeF8jx99sMjwIlpDQArjcdvIL3Bx6pX6KYOqakTpldNJVkePJhXLDjmr6ukYZHZk+CyErx0HlqmJaG/vmbfxgGKO7s5243I7Z1FakRBBg6+Vr2HLJKpwpPHaXO4t/5cHkomFk0M8ff/4SR/aeMRLll5jYAqxcU8LRN5K3whkvNLBapZRiC0Y8d/22FTNWUoT8UdzZjnn3o1UVDb83TNAfMbwX5gldh+MHWzh5pI1oOPPOFcuBiy6kYLL4UBWV/S+fov5oG8CSyEBIRnF5Hi2nulBkdcqXha7pZ8MIM3yR6LpOW2MPq9aX0trYP+2+8Zjhc6ukMAmfLbquE/QbhulZ2c75m+nqOscONIOus/kinOkuzd9sk2VDf/cIv//pS9Qdbk1Ucy1FBAHyCtx0nOmbeg/6WS9aQRDQZzBQAujvGqGwJJeZEgeaT3WzsmZhfAv0hG/CzOboGZ6YYweaOVHbQtCfmZfEUsec4ZpcEOS4wuvPnqDpVDeiKJx3K8X5pqK6iFOHW5JmU6iqmnjst9qktBe5Go61s357FfVHO1LuEw7GyHI7FiyLQ9eMma4oTG2bPldO1DajyCobd6wkr/DiyF4wBdfkvKLrOu3N/bz65DFi0TjiEhdaMHwS7A4rg90jU0RP07RJj/s2myXtWV3AG8LpsmG1iMjThAwGer3kF7hnXGSbLZqq4feF0dFxZc3nQppA/dE2opE4G3eupKxy+XcAXvq/7SZLhnAwyuO/38ezDx9ElpVlIbYAK1YXc/JA0xSPFl3TkePnOHJl6H97+mgbG3esnHYBrbN5gBVrSha0maOmavhGQgR84ZRNJWeDIAi0NvZy6LUG2hp7l31DykU3w12/fj379u1Lalwz7lHb39/P97//fU6ePIkgCNjtdu655x5uvvlmwDAft1qtOBwOBEFAlmWuvfZa7r333ikmMhN5+OGH+eY3v0llZSVgzE4qKir42Mc+xpYtW6Yd9913382uXbv4+7//ewBaW1t529vexj333MMnP/lJwPBUuP7669m3bx/f/OY3Wbt2LXffffek8+zcuZPHHnssMYblgKpqHN3fxLE3z6Bp+pIPH0xElEQkScQ7HJhc4DDmVTARQSBjQQkHo4gi2B0WYrHkdoq6ruMfDeHOds5/vPUcgmMxXZfLjtVmwWq3IEninLs89PeM4veGCYfjrNtcicWauZHTUmDRCe5MLFbz8V27drF///6E4L700kvceOONvPDCCwnBffPNN7nkkkvIzr444lW6rtPZMsDrz5wgGIgsuQKGdKgci92iGxaFuqajKFpSYbVYLdOmg6Wi4Vg7G7ZXc2x/c8oMh+ZT3ey4qmbeKs+mQ9d0QsEoum74BYuiYIivTcJqtWCxSlgsmds/RsIx3ny+joA3xPptVXjy3Qt4FxeGJSe4i9V8fNeuXfzbv/1bworxpZde4hOf+ASf/OQn6ejooKqqin379nHDDTdkPIbp+NNDrzA80Q93mgnUlE3niMK0cy994l9T7ylJIivHHm+P7W8mGo4iCBNntOnP8C7I02UG1xREKC7Npa9j6GyjyGnEzmazpOx+O+m8AhSUesgryE6kZFWuKcHmsBKLygR8EUYG/fgmxGxVRSMcNrowRM5TjquRVWL8XY4rY18mMTTN+OLRdX2Sl/C48fhMEtzZPsjJw21Uriqms21wXkMY5wN3joP/ec9bk25blIK7FM3HV61aRU5ODg0NDZSXl9Pa2sqOHTvYtWsXL774Ih/4wAfYt29fwjpyvvj/fWCqC9mFxO8N88bzJ+hsGaCwOBtBSP4luByorC6ivbEbm8Oa1qzSapMAPeXjd26+mzUbK9B1neE+L/0dQ4T8YXQdTuxrxOl2EIvGyfa4KSnJZf3mClRdp+V0D+FgjPbGXnZctZbujuEl/ySh6zrdbYPsuHw1a7dWkpObdaGHNC8sSsFdqubj42GFgoICrrnmGkRR5MYbb+Q3v/kNN998M4IgsGbNmsR9JEPTtFkZkV9oRocDvPniSbrahhAEllWcNhXOLBtDPaNpi9v4I/i5u4uSyJbLViPHZI690ZB0RqdpOgICmqrjHQrgHQqArmO1W1i3vRrJZqH+aDvDA/4FKYS4EGiaxpE3z9DeMsDWy1ZRvbYUq3VRSlbaLLnRL2bz8V27dvGnP/0Ju93OW99qPFJcffXVfPGLX5wSThg3Kp9IMBgkFoulDI0sNjRNo7dzmIOvNTDQM4ooChdNi+yyFQWcOdF+NpQwA5JFNPJvz9nZ4bKx4+r11O1vJDiDLWM4FMXpshMOxYwXBAE5rnLyYDPuXCeXXbOO44db2HrZGjpbB6ddIF4qCILA6KCfVx4/StfmCtZurqRiZeGSncEvuZ/IYjYfv/LKKzl16hQHDhxIhD0cDgebN2/m17/+9SQT8l27dvHUU0/R32+Ubuq6zi9/+Usuv/xysrIW9+NTJBzjyL4z/P7BF3j8d/sY7vchSctvQWw6cnJd9Hem/+hutVqIx+RJemt3WNlx1TpqX6qbUWzBSM0SRCFpmDjoi3DwxTq27qimp2MId/by6v4sSAItp3t45s8H2ffiSfp7RpZkCtmSm+EuZvNxp9NJdXU1sixPykS4/vrr+e53v8uVV16ZeO2qq67iwx/+MB/5yEcAiEajbNq0ie9973tzvoeFIB6T6Wjup+5wG0N9XnRdRxTFZZu+Mx3jngnJwgOpEARDMMcRJZGd127g0MsnM+q6HAlGcbpshENTF8ZUVaP25Xouu2Ezmq7j94aX4c9Hp/5IGw0nOtiwvZrV60opLs9bMl/2pj2jSUrCoRjtZ3o5U9/NYK8XRVGxWJbbBzhzNmxbwSuPHcroGLvDin80lBDondes48yJDoLe8PQHJiE710UwkDrbwWa3cMmujQQCcXzehak+WwzoY63i129Zwap1ZZRVFSz638+LSnBN8/HpURSVkQE/jSe76GodJOA1yjkvhgWwdCksySXsC9FyujvtWZXFKqEqKtFIHAGoqikFTaPjzOx8bCWLiN1hmzb9q6A4h5ptK2lvG1r0IjQfKLLKitUlrN5Qxso1JYvWheyiElyTyWiaTsAXpu1MH21n+hgZ9BOLyFisF1c8NhM2bK/i1ccOZRQ/dLps+EdD6LqO1WZh+5U11L5cP6dxzDTLBdhyRQ2CJDIyErpofp6apuFw2Vm3uZKq1SUUlXsW1ReOKbgXGZFwjJ72YVoaeujrGjFKRyVhWaxoLzR5BW4UWebM8Y6MBMzpsuEdCSJghBJOHWqZswG3ZBFxOJPHcscRJZFr37adpoZeJMuSW66ZE7quoyoapRX5VK8rpXJVEXmF2Rf899wU3GWOLCsM9/toaeils7mfgC+CqmmL6lt/qbBhWxWvPnkIPYO24uPWk8FAhPyiHIpKc2k82j4v43HnuggHo9NW5BWVe1i5voKe7tELLjYXinHxrVhZyMqaUspW5JNXlHNBQmUX19feRYCmafi8YTqb+mlv6meo32uECWySUWIpClhEU2wzJScvi/7uYTRZy8gfwGa3EApEEYCaTZUcevnkvI3JyFiYkJebhMEeL6s3VmKRxLQ6AS9HBEHAYpXo7xmlr3sEVVEpLPGwcm0JxeV5FJfl4XDazs9YzBnu0kbXdUKBCD0dw7Sd6aOva4RIKIY4Dw5OJmdZv20Frz91BC3DCi6ny45vJEhxRR4ul4220z3zOi53jotwaPpZrsttZ/s162lu6sdmm/826EsZRVZxOG1UVBdSWplPUVke+YXZWG0LMxc1Z7hLnN8/+AIBXxiEs10Tll/u5YXFne1kdMCHGlczmt0KgpDo9lC9tpSDL9bN+9jCoQhOl2PaWW44GCMcipKT4yQanXtL9eWExSqhKCrtTf20nelDiau4sh1UrCyksMRDflE2+UXZOLMc8zKBWRDBvZCetvv37+fDH/4wq1atmvR6Xl4eDz300CTP23FfBqfTyec+9zl27tw57X1NHJOmaWiaxt/93d/xnve8h5/85CccO3aMf/u3fwOMmeeuXbuoqKjg97//feIcb3/72/nc5z7H8PDwpPdjnN27d/O+972Pt73tbWm806AoGpIZj11QyqsL2ffMsYzEFgwP21AgSlGZh8Ge0QVxP9PG4smiKJxtUpmEU7UtXHr9JtqaB5HML+SkCIKA1W5YaLad6aO1sRdVMUJInnw3xWUe8gqzyfa4yM1343Y70jYuGueCzHAX2tO2qqqKRx99NOX2cz1vX3zxRf7xH/+Rl19+GcsMq7kTx9Tb28stt9zCrl272LVrFz/72c8S9ownT56koqKC9vZ2hoaGKCwsZHBwkJ6eHq666iqeeOKJtN4rkwuLK8uOfziAHI+fYzM5M4IgoioqK9eWcuTVUws0QggHI7hzXAQDEVI5O8RjCiF/hFyPk0AwdtGkic2F8dgvQMAXNp4kMSr6NFXDYpXIznGRk59Fdq6LrGwHTpeNeExh2+Vrkp7zggju+fa0nYmrr76awcFB/H7/pFn5TPh8PpxOJy6Xi7KyMux2Ow0NDWzcuJGXXnqJG264gebmZl566SXe/e53s2/fPq666irs9vlLyo5F4kQj8rydz2Qyq9aVceDFE+ga6KQfvzXMamQcLjvRcHza2edECko8SBaRwZ6RtGfEum7EIi1WC8o0BuenDhuz3JHhIGr61cQmKVBkjWjYx2CfL/Ga0ffNfv4F90J62nZ0dCT8EMZ529vexkc/+tEp++q6zh/+8AfWrVuXltiO2z7GYjHa29v5yEc+Qm5uLgBvectb2L9/f0Jwv/Wtb7FixQoef/zxhOBONLCZ6NswceyZ8L8+c1tG+5tkRltjD80n2jJOo9OBwV4vG3ZU03CkZcb4nyiJXPKWDQz1jKIqKle9dSuHXzuVaK8+E4ZPbhZRUZjW4CEairF6XSk3v+tKs4LwArBggnshPW1nCimMC50gCMTjcVavXs0Pf/jDNO5qckihs7OTD3zgA6xdu5bbbruNXbt2sWfPHm699Va8Xi8bNmygvLycr3zlK6iqyv79+/nHf/zHxLnODW2AEcM1WRxoqsb+F0/MKmdZjivGY6dFJBqa+RF+6xU1NBxpJTBqeB/0dw1zya6NHHihLu0mFJFQFJvDNq1IN53sZOuVazl9rI3NlyztUvSlyAUJKVwIT9uJJBO62bBixQpuuukmDh48yG233ca1117L17/+dV566SV27doFQE5ODuvXr+fZZ58lKyuL8vLyOV/X5PzQcrob/0gYiyXzmWDAG6Z6fRmt9TN7LuSX5BIORBJiCxCPypw+3MrGS1dTfyi9MJoiq9js480qk+8TjynEInE6m/pZs7HyvOWfmhhckGeK8+1pu1CEw2EOHjzItm3bAMjOzqa6uprf/va33HjjjYn9brjhBv7jP/5j3vuZmSwcqqpy4MW6WYmtLKvEYjKeAjcjA74Z91+zsZKmE1NDSb7hAIIAWe70Y/7hYAS73TptQ7imk52oisrJw8mNmEwWjgsyw11oT9tkMVyA//zP/5zzucfDHIIgEIlEuPXWW/mbv/mbxPZdu3bx4x//mKuuuirx2g033MB3v/tdvvSlL835+ibnh/pDrYSD0YzjnDrgHQ5SXOahv3Nk7JXUM1xPYTajA76UIbbTh1vZcd0GDr1Sn7b5bjgYxeGyEY8nDy1Ew3EEXae3bYD+lUWUVKa/UGwyN8xKMxOTc4jHZH73b09nXFUGEApG8Y2EuOS69Uahwwwfrx3XrufEvkZUJXXcdd32avq7hvCNpu+d63DaQBRR1eT3kJXjpKqmlBU1Zey4eh3SLGbyJpmz5CrN5uppOx0/+9nPeOyxx5Juu/vuu7njjjtmfW6TpcP+50+gxJWMzV5kWcU/GiIr20E4EEHXtGnjt5JFAp1pxRagqa6DHddt4PCrp9Ke5UYjcbKyneh68oKIkD+C3WHl1NE2bA4rW1OkMZnML+YM18RkAr6RIH/+2QtpNYaciCyrDPcboYHNl63hVG0T8ej0+dEr15UR9IYY7vPOeP5Nl62hvbGHUDB1Ce+56Bi+uXJcRUvyMfcUuCkqz8dTlMv67VWsWF2S9rlNZof5HGFiMoam6by05+CMYYCJ6EDQH0n0eZMsIqIkEIvM7HdbUJKbltgCNB5vZ+22lRmNTQCCvjBWmyVpHrB3OEi2x0XzqW46mvsZGfSnfW6T2bHkQgomJgtF88lOhnq9aS2UqapG0B8hGo6hqnriSb96XTmtJ7tmTAWTLCJqBjFio4LMMChSM/RZDPpCuHNcKKo2Jabb0dRHrieLU0fbEUWJTZesJDfPndH5TdLHnOGamGCUSO977vi0YqsD8bjC8ICfgZ5RQsEomqZPCqvm5GUxOjTzTLFiVTHdLf0ZjbH1VCdrNldmdMw4AX8YAbCfYzs41OslvzAHXdM5ebiFI2+cYaB3dFbXMJkZU3BNLnp0Xeflx2qRp/EhUBSNkUE/Q30+4jEjNnvuHLa4Ip/e9qG0HvsLSjwM9WUmbL7hIDn52aBlnj0hYFSiRaNxHE7rpBBDT/sgLpfhetVU38VrTx3lTF3ntO+HyewwBdfkoqelvovOlv6kcU4dCPgjDPaOEo/K0yYJVFQX0dXcm5YTlzB+8gzp7xyipLIg8wPHUOIKAW8YiyRit1sRgN6OIYpKPGhjWRXekRAvPXGEFx6tpflUF7EZFv9M0mdRxnCXq5/uvffey9q1a7n77rt54IEHGB0d5ctf/vKkfW677Ta+9KUvceWVV2b0npnMjlAgwuvPHEU653dCxyiv9Y4EDU/UGTQ0K9tJ0BtG1/QZBTcnLwv/SHBW4+1s7uPS6zfT3z2SdorYFHSdYCCCxSLhcjvQNJ3B3lEcNom4YnwLSJJId/sQHS0DePKyWLOpgvKqQgrLPFiti1I2lgRL8p1byn66JvOPrusoiooiq2iajigISBYRi1Wa9stVVTWe/sMbqLKaEEld14lFZQK+MHJcRZjefCvBqo3lnHzzTFqz2/LqYjoautO+v0noEA3HcLpsROZgyylg5P/6vSGsNgsD3cNsvWodbc0Dk+5BkkQC/ghH9p2h9tXTuHOdVK4uIb8wG3euC5fLjsVmmPuoikY8rqDEFRRFRVU0o4JOB0E0HNGsVgs2hxWny47dYcXusF1URRdLUh2Wi5/ufHDiYDOhQOS8XnOhmRgC1XXQdQ1d09FUjVhUJhKJE43EiYRiRIJRwqFY0uIBq91ClttJltuBM8uG3Wl8yCWLSGllPkf3NtDdNgC60QonHlcSmQOZTB4li4Su6UbebRrHObPshIPR6XcSSBlyaK7rZM2WFdQdbE5/kNMgx2TkmMxwzyiFBVmMDIfwppiBhwIR+rtGACONTtf0RFmyIAggGH+Oi/bE99H4WRr769rYNhFcWQ6ysh243E5cbjtOlx2rVUIY68snCOKk8yx273Rdg6tv3pJ026IV3OXqpzvfeAqysS8Tx6dJnyNBQAAEUUi0GrdYLVjtFsQ5fOJ0QBRFzpxoZ2TAR1a20zjfHM5ZVVNK26kurHbLjDNcQ4zG7jXFvtuvXY8kiYSDEU4fap2yXywSx5llzCzFDLtQTEdbQzfbr11PeZaDa/5qCwUlngvSWl3TdeTY+CxZPSvsMOnbeLFWbFmnaWG0aAV3ufrpjpPqg6lpGpKUvv/qitXFGV3XBDpb+jl5sBmna346b7hznIwOBdISp8KyPIZ6RlP2R6taW8Zg1zC9bQOs2VJFcUUeg73eKft1NfVRWV1Cb8fQXIefQNch5I/iHw3S2z7I2m0rWbW+nLKVRWYH6Hli0QrudCwHP928vLyk4Y3h4WE8Hs+czm2Smv7uEV54eP+8PZYWluXR3thjqFUaJy2pzOfkgTMptxdXFlD7wnEAmus6uOymrQz2jE4590D3CJfesJme9sF57U/WUt/Flitr6O0Y4szxdprrO9l86RrWbF5BXmH2vF3nYmVJRquXg5/uNddcw759+2huPhuH+8tf/oLb7Wb1atOJfyHo6xrmqd/vRc+wUms6Copz6WruT1v0JIuEHEu+2JVf4mGoZ2TSayMDPvKKkq9LBLwhXG5HZgOeAVVRiYXjifdIUzSOv9nIc3/ax6nDrWmVLJukZknOcJeyn+44q1at4utf/zqf/exnURSFeDxOZWUlP/3pTy9I3Gy509bYy8t7Ds6r2GZ7XAz2jKCp07uCjWOxphZbgBVrSjixr2HSa+2nu9ly1TpGB09PmeW21nex8bKatDtCpEvzyU42XbaG3s6hxAJYyB/hjWeP0nq6m81XrKFyVYnZE20WmG5hJssaTdM4/HoDx/c1zvvq9tptVbz5zDGUNBs9VqwqJhwIM9g9knT7JW/ZyOFXTk59/frNHH71pJFbdQ47rttI3YGmeV+6X7+jGt9IMOnClKZprN22kk07V1NY5pnX6y53luQMdy6YfroXD+FglOf+/CaDvaNTChvmit1pI+SPIMdlhDQzBfJLcuk4nTz/1p3rIuhPbjA+0D1MUXl+0sWz9oZuqtaW0dHUl/bY06GprpOtV61NGiMWRZGmEx20nupmy+VGfNdTYMZ308Gc4ZosOxRZpe7AGY7uO4OmqvO6qDROzZYVHHr5JNFw+jHNbVev5dBLdUnHs3Z7Nb0tfQR9U0VXskhsvnItx99oSDqTvfSGzRx9o3He73PttioCvvC01hC6rmN32dm4cxXV68vIK8xZkPd7uXDRzXBNli+RcIxTh1upP9RCNBxDksQF+fDbHFZiUaPwIt3zO90Owv7UBSruHGdSsQVjIctikVJmQowO+MjJyyLgTb8FTzo0n+xix7Xr6WodSHmfgiAQj8Q5uvc0x/c3snZLFZWrSihdWWg0szSZhCm4JkuWeEwm4A3T1dJP+5lewwRc0xBFcUEXdFasKeHIq6czOqasqpCettTCNZPDWNAfJivHmbTjQ1tDD9uuXj9vlWfjaKqGd8iPxSKl7I02jiAI6KpO47F26g+1kO3JonpdGYVleRSV5eHOdWaUX75cMQXXZFGgKCpKXEGWjT9jMZl4VEaOy0QjcWIRmVg0TjQcJxyM4B0KEo/JyDHF6LIgjlemLezKuc1uJR6TCQcjGc2esz0uGg8Hk5b+Olx2ouHpW+d0NfWxoqaUhmPtU7ZpqoamaYhi8v5lc6HlVDeXXb+Z9qa+tIsfLBaJSDDKqcOtaFozmqaTnZtFYZmHguIcsnJcuD0usnOzcDitWG0Xz0zYFFyTecWok9dRVc0ozZRV5LhCNBInGokRCcaIhmNEwjEioRjhYJSQP0IsKqNpmlHKOdZBYbysd2Jt/rlYbed31lS1ttRoWZ4hRmmqjpBEcYsr8+nvHJ72+HAgQlaOK2VYoaW+k+r15bScmqUpTip06GjqJceTRXCakEgqRFFEFA0v3s6mPjqb+tA1HUVVERBwZTvwFGSTV5SD2+PC6bTjKcwm25OF3WFddvFgU3AvchRFJR4dM4MJGkIYj8rEY8Z/sqyiyoapizrWosUQRc1o2aKoqIqOqhj7aJpmzLI0HVXT0TQVTdENtyhRTAhoMgSM2dFi/a3MyjbirJFgNCMhyC3InrZfWF5hDp0NPTOeR1PHZrFJJrFBb5jsXBe6PrM9ZKYMdI1QuboE32hwXsICgihgFY0fcjwqM9A9wkD3WUMcRVGxO20UluZSWllATr6bwlIPOR43lml8CpYCi/RX22Q+UVWNSChKwBvGPxoi5A/jGwniHQniHw0l7PREQUCUpp9RZoIogChJsLQ/Iwkq15TwxlNHMn5vyqoKOXO8LeVxopieN0h/1zBFFfkJt64p27uHKSjOXZBmkI3H2li5vpyhPt+8n3sioihgs1nQVY3B7lEGu0fRNB1VVcnNd1NWVURBSS4Fxbl4inKW3Cx4QQR3uRqI33TTTYyMjLB3716ysrIm3dvnP/95fvCDH/C2t70NgIMHD/Lggw/S2dmJIAg4HA4++MEPJirYzn0/xtm9ezfve9/7EudJF03TicdkIqEo/tEQ3qEAvpEAo0MBvEMB5LiCpmlYLFKSvErjl9wkNYVleXS39CPHlYw/4HanlWgoNufahP7OIbZetS6l4HY397PzLRsZHvDNuwgFfRHDa1gS0NTzm0kqigKiaCEciNJ8spOmug4UWcVqt1BY4qG4sgBPQbYRish14XDZFm215gX5lC1lA/G8vDyee+65SV68f/nLXygsLEz8+5VXXuHLX/4y3/ve97jssssA6Orq4u6778bpdPLXf/3X014jE55/eD8jg34iwSiKrCLLCpIoIp6zSi8IApIkJTxJTdJHsojkFWbz+v4zIAgZ2QJKFnGsN5gRwT0XV7YzbT9jTdUM790UcVxd14lF4ljtFuR4etVvmXDqUAuX3bCZtobelG5n5wvJIqGpOgM9owz0jMKYCb1kkXBm2fEU5uDOceJyO3Fm2bA5bNgdVmx2Kza7BckijQm5mFgrSFiCjr+3Y1aa5zLTnWs62B3JFwIviOAuZQPxO+64gz179iTG3t3dTTgcnmQ486//+q98/vOfT4gtQGVlJd/85jcJh+c3V1JTNdB1nFnzYzVoMpWV68o4+trpRLglE0qrChnoGh778E49tqDEw0ifd9JrOXlu1mxZAYAcVzhV24Q6NquMhKK4suwpuz00nexk7dYqztR1ZjTOdGlv6KFkRQGR0PRZFReakD9MaELlnqpoiS4UxjqDhq4B6GhjXSnQxz135zYpWb2pklvefXXSbQsmuMvVQPz666/nj3/8IwMDAxQXF/Poo49y1113Jbx6/X4/jY2NXHfddVOOnSjAcNZX99yxZ8Jfp/jBmswfrae6sdokisszN5hftaGCA88exZaiCKCw1ENdW19ixli2sojiinxO7D2Nrmq4cpxccfN2jr5+imgkTk/rABVrSmlv7E16Pk3VsDtt5BdlIy1Qu6dcTxaXX7+Z0qrCmXc2mcSCCe5yNRC3Wq3ccsstPP7443zoQx/iqaee4le/+lXi3ia1Gxnj4x//OK2trciyTEFBAb/61a+A5L66u3fvTmscJueHUDDCa08ennVMUNd14/E+xSO4ZBFRZQ0EyM5zU1yRz/HXTiUeW8P+CIdfOM4lN23jwIvH8Y8GWbO1atpshOaTnVStLWNkYP4Xz8DwzHXnusgrylk23UbOFxckpLDUDcTvuusu7rvvPnbs2MGqVasmGYbn5uayZs0aDhw4wI033gjA/fffDxgLel//+tfnMnST84iqqDz9m9dR5cwXysAwuPGPBNGF1HE/4wtaBwQ2Xrqa2ueOTdlXkVXq9zey5Yq1HN/XkHjkTTWmkD+C3WFDGS8JXgBOH2nFYrOw9Yq1Fzyeu5S4IEt5S91AfPv27USjUb7//e/zzne+c8r2e++9l2984xscPnw48VowGOTll19etKunJpPRNZ0XHz6Adzgw6xX/orI8upr7Uh5vs1uNxpPAqo2VtNd3kjTJFgh6jfS9nLwshvtGyS9MvtYxTuvpLgqKc2c17nSIR2Uaj7XTcKxtwa6xHLkgM9zlYCB+55138pvf/CZpLHrXrl38v//3//jxj39Md3c3siyj6zq7du2ac2sek4VH13TeePYoHU29c/JkcLrt+IYCKbfnFeUw0u8FUaCgJJe2uo5pV8AbD7ew84YtHHnjFBt2rknZWRfANxxk9aYVjAz6FszDIOgNceZEBxarhZqxRT6T6THtGU1MJqBrOnufPkrj0dYpqXWZIEkiFauKOfDCiZSP3BsuWc2ZI82UrSohNBpkOIUx+URqtlcz2DtC9aYqju8/M+3sO9vjYkVNGcP9C1usUFDmYfPlNazeWLmg11kOLLlsd9NA3GShUGSVF/78Jt0t/XMSW4CCsjw6m3qnTdq02S3EIjKFpR7aZ5jdjtNS18H2t2wiGo1jsYqoSur5UsAbxmqVxoxtFi6UNdzr5chrp1BklZrNK+b83i1nzBmuiQkw3O/luT/uI+yPzItgrN22kr1PH0afpipr61VraT/Viacgm7YM8mY3Xl7DYM8IztwsutsGp93X7rSxYecqejuGFrwEVhAEtly5lrXbqsjJcy/otZYqS26Ga2Iyn0TDMQ68eILmMcGbD7EVBAE5LqMpasr2O6IkoskaVevKOfF6Zt66LXUd1OxchWiVpjUHB4hF4oQCEWx261jF28Kh6zrH9zXQfqaXjTurqVpXTla2c0GvudQwZ7gmFx26pjM67OfEvkbaGnpQFS1tr9d0KCrPY3TAR1dL6vbp+cW5uNwOPPlZHH81c7vHS27cQtAfofFkB6I4w6KYAJffsIX2xvNXkqtpOq4sO6s3r6CksoCiijycWY4lZTSzEJiCa7Ls0TWdSCjGcL+X9sYeuloHCPnC01pFzoV121ey98nD05qBr9myAkkS6WvpwzuLRa3S6mJc2Q7CYZmB3tEZ93fnulizeQV9M/juLgSqoiKIAvklHgpKPGR7XDizHDiybDgchs+BYSIvjjnVAQIJ1zpBFBAlEYskLfmcXzOkYLIsUGSFWFQmEoziHQ7gHQzgGw3iGw4QDkaJR+Ux8xdxzMhnYRZ2JItENBwfE5nU13BlOxF0jdF+X1qLZefS1z7AJTduxa1q9PeMzPjFEfSF8Q75cec6CfoyNxKfC9JY8YV30I93zDpS1/WxThV6oohDmPAFKAhGtYjhkWxBskpYrSI2l51sTxa5+W7c2U5yC3PwFLixO21LYvZsCq7JkmDcKD0SihHwhvCPefn6RoL4R4x2O4qsoikq4pgT1MQPoOEMtfDGvKVVBbTUdyZ185qIJInEgrFZiS0AOsTGumYYfrozH9Le2MvWq9Yix4wvpwuJIAhIFiktq2RVVVFVlXgUQoEoo2NPBLquo8gqdoeN4sp8SqsKyS/KpbDcs2jDF+ctpGB65KY+/gc/+MGClDAvBKqiEo8pKHGZWNToNybHZOM1WUGRVaMLhKoZbWUm/HYlWswIRimrMYmZ/KHQNH3sGjKxiNHDLBQMI8dV1LiKoqpI0vSdIy4k63dU89pjtdNbOApw011XcvDZI/jmYBbuynFSvWkF0ZhMW0NyM5tz0dG57PrN9HYMoSrTN4Zciow/WRRX5lO+spiC0lwKy/JwZTkWRThi0cxwl7tH7mJF0zRUWR1r4qiONWoc6zUWiBINRwkHYoQCEUKBCPGYjKZoKLKx4i2IAuI5j4MLhSgJ2KRF8ys7hdyCbHrbBtFmaHPjznGho+Md9M9+hothbGN32pCslrRb6wgIHHn9NJdev4metkEUef59cy8k4+GLoZ5RhnpGURUVBAFPYTZFZXl4CrITTSxdbgc2uwWL1YpkOT+5w4vmt3e5e+QeO3aMb3zjG0QiEaxWK5/97Ge5+uq5Wyu+8Oc36e0cShia6OO+nrqOro2/phnG4xivKbKKEpcTzv2JZo1jf0oWCcky/QKFdE5vKeOyF/f6a3FlPvuePmKI6DTvRVGZh9E+b0ZiK0oilTVlZOdlERgN0dXUi6Zq+Ib8xGMyJeV5hhF3GmiKyqGXT3LZjVvoaulHXmaiOxFhLFbvGwniGyuF1lQNOW6EnzRNQ9N1JFFEskpYLBKSZPwdwZhMAGc/Cwlv8rFnM2FqW9DsvCxu23190vGcV8G9WD1yZVnm//yf/8M3vvENbrjhBurq6vj85z8/7Yw7Xd76N1fN+Rwm80PHmV5OF+YkZlmp2HzFWl575M20nwiKKwtYuaGC1pMd9Lf2kVOYzSU3bqa3pZ/Ohh42XbkOe7YDXRAyqijraOxh+3Ub2bBzFQ6XaWB/PjivgnuxeuQ2NjYiiiI33HADAFu2bElZQmyyNNE0jQPPH59RbAGsNgveNL1qy1eX4CnMpva5o4nXhntGGe4ZZc32aqrWlyNZRDpOdZNbmEPAl35HEV2HY6+fRtd01u9YiSvblfaxJrNj0YQUlrNHriRNbdzY2Ng4KeRgsrRpre/CPxKcsVLNYpXwDvgMtZthhptTkE1hmYcTr59Kur35WBurt64k7DM8E3ILsgj4Qszcdessuq5zbO9pNEVl3c5VZHuyZj7IZNYsGpeJ5eyRu3r1agRBYO/evQCcPHmSv//7v0fTlt8q8cWIHFd489ljaZUFV9aUcuZo68xpYxaRDZetoW7v9GW/LSfasTmsFJR5qHuzkcrVJbOKpR9/s5H6g814hxamS4SJwaKZ4S5nj1ybzcYDDzzAt771Lb7zne9gtVp54IEHsNmM9iTvf//7J8XePv3pT6d0RDNZXOi6zqt7DhKLxtOKnxaU5HLomSMz7rfx8rWc3Hc6LfE8ua+Ba++8AnTobRskvyiH0Wl8eJMhCAL1tU0ossL6ndUUlmXev81kZszSXhOTOXDqUDNvPnN02qqycSxWiQ07V/H8b16ddr/cgmzKVhXTcPBM2uPIznOz4Yq11L5yko2X1RAKRomG42kfP46u61SvL2f9zlWUryrJ+HiT6Vk0M9y5YHrkmlwImk92sP/Z42mJLUBJZQGtdR0zxm/X7VzFoReOZTSWwGiQaDCCJy+LU4eauOT6LbMqbhAEgfbGXoK+CLGoTPWGikVZYLJUMWe4JiYZoqkah1+t58SbjRmJ0bod1Rx94Tj+aVrjlFQVYnda6TzdnfG4nFkOtl2/mQMvnkCyiFx64zbaGnuYvuwtNXanle3XbGDNliqzO+88sWgWzUxMFju6ptPd2s/DP3mWY3sbMhJbySKhySrRSGza/arWV8xKbMHw9u1u6mXV+go0Vef43lNU1ZTNenE2FpF587ljvPnsUXraBtCncT8zSQ9zhmtiMgPRSJwzR1s5daiFoDeMOIsy0LLqIvwDPlrr2hMVfudSWVOGqij0tfbPeqxZ2U42XLGWY/sa0HTIyXdTvXEFPe2DcwoNCAKs37mKlevKKa4sSCvf2GQqpuCamCRBlVW6W/s5sb+Rwe5RNFWbUzeIdTuqOf5ynZF2lewTJ8DlN2+j9tmjs74GGEUVbk8WpatKaDjeDkDpyiJy8t2MDM6+5fs4qqJSWlVE1dpSCsvzyC/2mOGGDFgWi2YmJvOBrumMDvmpP9hEe0M30VAMyWp8RObUwdciEovEiMfklPHU6k0raDuZfl+zVMhxhXg0js1hxWoVkWWNvvZBsrJdOLPss8pcmIhkkRjsGWGgexhVUbHZrRSW51FYnk+OJ4tsTxY5+Vk4XQ4sNlNezsWc4c6SmewmH3jgAUZHR/nyl78MGM5mn/70pxkaGuLHP/4xL7zwwiRrynF2797N+973vmktHU3mB03ViIbjeIf8tDf20HGmxwgZSOK8rsyXrixkpHuY/vZBYkkETxAFLr1xC4eezywzIRVOtwNd11l3aQ0nDpxtpb7l6vUM9Y6iTtPYci7ouj6WFaHjzHKQV5xDXlEu2Z4snG4HeYXZuHNd2BwX74zY/Ao6D4TDYf7xH/8Rh8PBL37xC+x20yhkIVAVlaAvzMiAj9FBP0FviEg4RiwSH/PS1dA0w6d33JZSjitomma4o42ZYs83OXluWo60oKRo4rhm60qaj7fN2/Vi4Th2pw01LpOVZSc8JvJ1bzZw6Q1b6GjqI5Py33QRBAHLmIucHFcY6BphoGsEMLwmNEXD7rKRX+qhqCQPT0kOBcUesj1Z2BzWeR/PYsQU3AXG5/Nxzz33sGHDBr785S9n5OZkkhpVUQmHongH/PR2DDHQNYR30E80EkcQxbRb6IiSOC+deqc7fzwSS5iyJ9ueW+Cm+ej8WYxqmtEUs/FwC1uu28jRN8YyKnQ4+topLrlhM62ne85rfq0oiog2EVXRGOwaYbBrJGE2b7NZcLrteIpyx/xqnVhtRlsdUZSQJMM6VJJEJIsFq03CYrNgsUpYrRYsVsuiMBdPB1Nw58B0dpMAQ0ND7N69m66uLh544IEpYjvuUDaRjo6OjMaw//ljhPwpelSNPTlOGzUa3+fc4KKe5K9j55lyNn3qP6ZeMtXrE/YYP782fh3jT1XRiEfjxCJxYuE4AW8IVdUQRNHwLz1P5tGzoXxVMW31XUZDySQ3v+XqdbTWzz12ey7RSAyrzUrYFyY7x4nPa7iIqarGsb2n2XTFWhqPti2KogY5JhMKRBjq9U56XR/zdSbx1o37POtj/svG/3R0rDYrNrsVm8OKzW7B5rCNvWYIM+PNKcc7jYyZ5i8E0VCMty8GP9zlxnR2kwDPP/88X/nKVzhx4gQf//jHeeihh7Bazz46JXMo2717d0ZjuPzGrcvG+Pts48ALLwLzhaZq/Pf9j2GRRKy2yY/NNduryS/OxemycToaJ+BN31px5uvqSFaJtvpOdtywhbbG3kni6h8KcMNdV7Dpspp5u+ZSQWdcxBfmczPdl5gpuAvIu971Lv72b/+WO++8k7/927/lX/7lX/jiF784r9dYyMdhk7kz2DlMJBQ1mjZO+Bxm52VRVJnP3kfeREfnkrdup/a5YzO6iGVCLBzHarcw2u/D4bQSi52NIQd9ITobe3Bm2Vm9uWrerrkUuJBf6OandQEZdwOz2+384Ac/4JFHHpmXLg8mS4fTB5vG2oFPjt+uv3QNda+dTCziDfeOkl/qmddrq4qKKIq01ndQVlU0ZUbX3zlET+sAA93D83pdk9SYgnueqK6u5hvf+Ab33Xcfp04lN5Q2WV4oskpPcz+RUGzSrMrmsOLMsuOf0LG383QXVesrpg9yz4JoOIrVamGgY5Ast2PK9qbjbXQ09BD0h+b1uibJMfNwTUwWiM4zPTz761fxDvomvb7j+s10N3bTf04J786btnH4xeMgzO88yOl2oMQVLvmr7bSe7p4SYxQlgW3XbmTTZTVY7RdHetaFwpzhmpgsEKcPNCFH45OyOARBoKKmdIrYAoz0jZJXnDvv44iGolgdVroae/Dkuads11Sdk2820ni01WgrbrJgmIJrYrIAxKNx+toHCAejkxbLNl5RQ1cKN7De1n7KVpfO+1h03fCGGOwcIq84J6nrlxxXOPHGaRqPtJqtnxYQU3BNTBaAjoZuAqNBI/92jJx8NzkF2XSc7kp6TDwSx+6wzXscFyAWiWO1W2k92UlBSfJZdCwqc/T1UzQcbjFnuguEKbgmJgvAyX0NxmLZ2OxWsoisu2Q1oZEgIz0jKY/TdR2EhVlWiYVj+If8uHNdKXNQ49E4tS+coP5gE9Hw9N69JpljCq6JyTwT9IZoq++aFLvdcvUG6l47BcL0Cfe+IT+ewvmP44KRNSGKAi3H2yiepkmkpmkcevEEtS8cZ6DLTBmbT0zBNTGZZ9548hByXEnEbqs3raCvtR9VUYiGotMeO9g1RGFFwYKNLRKMEg1GcTitCNMIvyAKNNd18PLD+zi5v5FwIEX5uElGmIJrYjJP6LpOV3MvdftOJ+r0i1cUYrGK9DT3UlhRwFB36nACQMgXxu1xLUgc1xgjxGMyLSfaKa6cWdgjoRgHXzjOC//9Bo1HW4hG5uane7FjCq6JyTygqRoHnj9G4+FWNNlY5c8tyKZ4RQENB5oAgbwSD6N9ozOeyyiSWLj0eDmmEA3FEEUhLQEQBIGRAS97nzjE8394naYT7cSipvDOBtNLYRbMZD7+8MMP881vfpPKykrAmPkEg0Euu+wyvv71ryf8cA8fPsy//du/MTQ0hKZplJWV8elPf5p169ZdkPsymR0j/V5efmQ/nsJsWk60g2B00F29bSW1zxxJtEWXJBEtiUXjuSiKgmSRFswoHCASjNByvI0NV6yjrTE9q0ZRFBnuHeW1Rw9QsrKIDZesprKmDJtZLJE2puAuEOc6gcViMf7H//gfPPLII7z3ve/l4MGDfOYzn+FHP/oRW7ZsAWDPnj3s3r2bp556apKYmyw+FFmhr2OIY6+dYqBrGEGEspVF+Ib8WG1WNl+9jtpnj4CmTzCkSU9AvQM+PMW5DJ9jVzif6LqxuDfcPUyOx0XAl36MVpREBruG6WsfpKSykDVbVlC+uoTsPPec7R7Hc4AFQVgU1pHzjSm45wmv10swGCQ311iB/uEPf8j//t//OyG2AHfccQd2ux1VTT8HcqhnxFigMZkz47Z9Y/8wWsZoGqqsEI8qhAMRRgf9DPWM4B8JoihqosNBUWk+7ac60XWdbddt5OhLdahxNSG2bk8WQW96fgWjfV5K15QuqOCCUWHWVt/FFW/bgXckmLKb8HT0tg/Q09aPrusUluVTXFlAVo4Lh8uO3WnFYpESPtCqpqHIKkpcJhKKEfJHiAQjhAIRwoEIkWAMVVURRAGbzUZWrpOsHBdZOU6cWQ5sDit2hw2r3YJkkbBYJvrcklikvND2niF/mJpt1Um3mYI7S2YyHx83F4/FYni9Xqqrq/nQhz7ErbfeCkBdXR333XfflPPecsstGY2jbl8jIwO+mXc0SROdMVNe42M73mnAKmGzWRElgYIyDwVlnklHVawu4cXf7+Wyt26jofYMsUgMYYJ1ZmFFPsPT5N9OJOQPU1xZQF5RLrqu09nYs2DpWZqmcfjFOq56x6UE5yETIRaJEQ1FkWMKsqygqVriO0wUMEzjrUbHBkkSEUQBd64Ld64r5Tnj0TjxaBxV0VBkBUVWjfOOGZFP+B8L0TooU1ZuqEi5zRTcWTKT+fh4SEHTNP793/+dxx9/fFJjSFEU56WE8oa/uWrO5zCZO80n2tl89Xq6znQT8oaxWid/tPKKc+ms70zrMdnuspNXlMszv3geNJ0tuzajxGX8Iwvj6KUpKif3nWbzVRvYfPU63J6pfgsm84OZpbDAiKLIxz72MSoqKrj33nsTr+/YsYNjx6Z2af3qV7/KG2+8cT6HaDJHNE2jr22A4Z5h+lsHUoiqgJ7mF+yGy2s4+NQhw/NAEDj5+inWbl81tQ3SPOIb8NNS18aBp4/QUNtMyDd/3SdMzmIK7nnivvvuY+/evTz//PMAfPSjH+VHP/oRdXV1iX3GZ8lmlsLSYqBzCN+Qj/aTKWawAmnn1TrdDuSoTGAkkGiEqes6rcfbWLm2fB5HPZW+lgFG+ry01Xfw3O9e4+QbDfR3Di6bFk6LATOkcJ6oqqriwx/+MP/3//5f3vKWt3DZZZfxjW98g29+85uEw2FkWaaqqor/+q//orCw8EIP1yRNNFWj+Xg7DQebUu6TW5CDb9CXVvucVVtX0nykBVXRkKwS2lhbnOGeEVZurqK9sRthnv1yJ9LZ0E3JyiIq15Vz+OXjuHJc1GxfReWaUgrKzcyZuWIakJuYzIHOxm7+dP9j6JqeMj67eutKept7Z85SEGDnDVs5+sIxBMDhdhANnTWQKaoswO520t06MI93kBxHlp3N124g6Asz2DVMbkEOm69eT/WmFVht5jxttpghBROTWRINx3jswWemFVsAV64rrZSwgrJ8hnqMbIRks6DBrmGKVhSel0f8aChG7TNHGe0dZfXmKnILszn80nFOvtlAYCS44NdfrpiCa2IyCzRV488/fJxIKDpz5oFOWjHc8tWl9DX1Tj70nOMCQ36yc1KnUM0ngiAw0DHEwWeO0Hiwidz8bPzDfjoauxk0G0/OCvPZwMRkFrz68D762wYQZ4inipKIlmYhi8Uqoshn99U1HVEUJml1W107G6/dyIk3Gs5bJZYgCIQDEU692Yiu67jzsli7cw1lq4pZtaUKu9N+XsaxHDAF18QkQxpqmzj8wom0BC+vONcwrJlhX7cna8qjuiKrSFYLyoRKQkVWEQBJNKqGzzeCIBDyhjn60gnqXrewYn05m65eT+XaclzZzvM/oCWGGVIwMcmAntZ+nvzP59NJOADG4rIzWDICFK8sor998mKYqiiJ0uGJdNR3UrW+Mr0BLCCKrNDR0M0rf3yDA08dpuN0l5lCNgOm4JqYpIGu6/S29fPnsYyEdLG7bDOajgNke9wEz5nhGto1Vdm9Az48RTmLQtxUWSUciHDmSItRNHGo2fT2mAYzpGBiMgNyTKb5eBuv/WU/ckzOKHaq63rCnnGGPVO+rutTsyB8gz5y8934Rxem3DcTNFUj5Auh6zq1zxxBlRVqdqzG7rRd6KEtOswZ7ixYv349IyOTHxMffvhh7rnnnil/n8g999zDww8/DMC9997Lz3/+87TObXJh0FSNM0dbefPpIxx95SSB4UBGYmu1W5Gj8oz7ObLsk/JtJ6LreqJ7xETaT3ZSNY1JyvlG1yHoC+EfCVD73DHOHG4mZnaHmII5wzUxOYd4TKa1roMTr5/C4bJjsVnoae7NOCugoCzPcAib4biiFUUMdCQvZlBlFYtFmpS9AKAqxuKZKMI8eCDNCwICsXCceERm/9OHURWVTVdtwGo3ZWYc850wuSjRdR1NNfxZ5ZhMyB9moGuY7jO9hsewrJDtycJTmsvBpw7PymM1vzSPU2+ennG/vOJcuk51JN2myCp2l32K4MLY4tm6CtpOd2c8toVE13V8Q34OPHuUgDdEblEOnsJccvLd2J22MWtGKenMfbljCu4smckPNx0eeugh9uzZM6dx/PmBJxgZ8J59YVIo8Ow/Uq+vpLFPig0pLpXa1epCr/Gce/2xtjeiJGK1W7E7rCAIWGwW7C47a7ZV8/ojbxq7zkIcLDZpUkpXKkRBAB1yi3JYvX0V3We6GWgfMoasG7m4yfAO+Fi1fRU0dC+67ggCAiFviPb6TopWFHL0lfqEp62uaGhoRlcHxt9bAUFaXPcwWzwFObz747cn3WYK7iyZzg93ohBPRNO0Sds+8IEPcPfdd0/aJ1PR/pt/fEdG+5ukh6ZpPPtfL5GTn51S8GbC4bSNdSVIvY/FakFRFKxWiXWXruHQM4fYfN1m4uEYvqFAYj/RIhrCfA6BkQBlK4sXbWaApmiIosCuO69g5aYVF3o4Fxxz0WwByMvLw+v1Tnl9eHiYvLy88z8gk4wYX23vbx+ctdg63Q78I8EZPWwLK/IZ6hqi5tIaTr95GkGHU6/Xs/bSmsSThaqqKWewnfWdlKxc3O5yvc39dDf3pZWPvNwxBXcB2LlzJ+3t7dTW1iZe279/P93d3ezcufMCjswkHZqOtnD6YFPKJ5V0yC3KYah7aMZH/fzyfIa7hnG67YTHDG50XWewfYDiKkNIlbiatAACjMUzVC3t8uELRdORFjobugkH597GZyljhhQWgJycHH70ox/xve99j1AohKqq5Ofn8+CDD5KTk3Ohh2cyDX3tA+x/8vCcY6Juj5uRvtEZ9xNFkbySPIY6hya93nm6kx0372SgYwhNVRElW6Ks91za6zspWlnMSP/i7W0nCAIn3ziNzWFh/eXrUn6BLHdMP1wTkzF8wwGe+MkzqMrc86zW7KjmwBO10+4jiiIbr1qHrqqcfuMUmjJ5lrrh6o20HG8lGo7jdDuJReNJ47gAO966ndZTXXOalZ8PrHYLO27cyvpLay7KLIXF/dMxMTlPhIMRnvr5c0nTrzLFYpWIhWIzlt7mlXoY6R1BskhTxBag7Xgrq7ZWA0boYDoxHekbweFY/JVdckzh1L4GzhxpWRSlyecbU3BNLnqi4RhP/ORZ4tHMynZT4Sn2MNCRqpnkWQorC/APBoiFk3stRENRnG4H6BpyTMYyTaeFzvouylYXLwkRC/rCnK5tovl424UeynnHFFyTi5pYJMbjP32GSDANI/E08RTlMNg184q8zW7FU5zDQFvqljmDHYMUryga81NInSut6zqBkSAWy9L4SPsGfNS/0UDzsbYl8SUxXyyNn46JyQIQDUV57MFnCPsi81s4IIASn8FDQTBE0lPiwTuxcOUcepp6KF9bDrqOElcQpykOaDveRvnq0iUjYL4hP0dfqaP5aCuaukjqkxcYU3BNLkp8wwH+8u9PEfbPr9iKkkgsPHP8NqcgB/+gH1FgWidxXdPRNQ3JIiLHFKw2a8rMXlVRiYVjsyhCvnCEfWEOPHOE+v2NF0XKmCm4JhcdHae7ePwnzxCPxOe9JDa/1MNA++CM+xVVFjLQMZhWuXPnqU6qNq4A9LHFs9RjbjnaTMWakiUzywXDoOfwc8eofeYoPS19S2rsmWIKrslFgyIr7N1zgJf/uBdN0RbEf8BTnMtAx+CM53ZlO7DZLXgHvTOe09vvxVPiAV0nFoljtVtT7ivHFDRVQ9CX1iO6IAq013fy8h/2cuzlOkanCbMsZUzBnQNdXV1TKseefPJJrrzySvbt24eqqvziF7/gXe96F3feeSdvf/vb+e53v0s8bviEPvDAA3zta1+7EEO/qNA1nfZTXTz8w8dpOtwyK+evtK+l6yjyzL4Gug4F5QUMp9n9NuIP48pxAjrRYBSb05bS9rHpcDPla8qW5ExRVVSOv1bP0794kUPPH6Ovrd+oplsmmJVm88jvf/97/v3f/52HHnqIjRs38qUvfQmfz8cvf/lLsrOzCYfDfPrTn+YLX/gC3/3udy/0cJc9clym83S3YR4+EkAUDWewhcLpdhAYDiTt0DARV7aTSCCM25NFizeUlvy3n2hn1c7V1O9rQNM0IsEoziwHOjpyTJmUvhCPxNE1zQhXLKWA7hiCIKDEFer3NXDi9XoKKwqo2lBJYXk++WV52J22ReeOli6m4M4TP/nJT3j44Yf57W9/S2VlJV1dXTz22GO8/vrruN1uAFwuF1/96lc5fPjwBR7t8kPTNOKROEFfmIGOQbrP9DDYNUw8KiNZpPNSgVVYUUDLsZYZxaBoRSED7YNUb6pMWw9jkRh2lz3RrkfXNMKBMKIkYXfZEBCIx+SE8DYdbmbtpTX0tM0cT17MSJLEaJ+Xkd5RNFXD6rBSVFFAflkeOQXZuD1ZuHOzsDlt2OzWBf1CnQ9MwZ0HvvOd7/Dzn/+cL3/5y1RWGt1UT548SU1NTUJsxykqKuKWW26Zt2u/8se9BEbHmg+OTXKme5Q8u2mSge3YH0mO08/ZO61zn/1H0r3P3ZZsTOecc/KpjT5fckwmHpWJR2KoioYoiUgWCavdgiCMffAEAfU8pRzZXTb8w8EZ98spyKazviPtR2XJIlG6uhTQKV5ZyEDH2TCEpqpEAhEEUcTpdhCPyuhjsV4do/MvwuIWobQRBOSYQk9LPz0t/UaqnKygyiqarqNpGnaHDYvVgsVm/CdZpDGz8/FTCCAYHsTjX4zzXWIsWSRu/dDNSbeZgjtHwuEwjY2N/OQnP+ETn/gEO3fuZNOmTYiiiHYeep9c/+5rF/waJunR09xLw4FGJMv0xizObCeFFQWM9o7OOBvOKcph3WVraTveSm9DF5uv3UwsdIyQf2oKVTwSx5ntxO6yI4oiIz0j7LxhK9tv3Dqn+zKZP5bJV9+Fw+Fw8OMf/5jrr7+ee+65h4997GN4vV62bdtGS0sLweDkGU9/fz8f+chHiEZnbp1tsrRoPNQ84yOtzWEl4g9TUFHAyAwLZq4cF2t2ruHQUwcZ7hpiqHOIg4/vZ8MVa7GmcNuKhqLEwjFAJx6JEw1FGehc2mGF5YQpuHNEFEWsViNN5yMf+Qg1NTV86lOfoqioiNtvv51//ud/TohuMBjkK1/5Ch6PB4fDcSGHbTLPKHGFvpa+mf1vy/Lpb+3HZrcSjyTv1DvOxms2cvyFo5PiKXJU5vTeejZetT5peEfXjIq0aNg4d0d9J73NfRnfj8nCYAruPCIIAv/yL/9Cc3Mz999/P/fddx81NTW8973v5c477+Td7343NTU1fOMb30gc89///d/s3Lkz8d973/veC3gHJrOl60x3Wm3Bs/PdDPeOTBsLB6jeWk3HybYpLmKqoqKpGsERP/kluUmPlWMyumpUqMXCMWKhaFrevCYLj+mHa2IyR3Rd54mfPMNov3fGfWt2rub4i8dZsb6cM/sbkubSipLI9pu2cfTZ5NksdqcNRVHZeuN2jr5Ul/QckkXC5rThdDtxZNlZf8Vatl5vxnIvNOYM18Rkjoz2e9OaQVrtVsJj8dvhrqGUhQurd66h+XBTyvPEozJWm5XAsJ+c/Kyk+6iKiq7paKpKNBQjGorhG1i8HSEuFkzBNTGZA7quz9jZYZz8sjwG2vrJK/HgTTUbFiA7L4vAkH/aawpA27FWqresTBmeiEfjiTBHe30nHac70xqnycJhCq6JyRzoONXJQOfMzSLByL8d7h5BFIWkHR4AKtZV0tXQNeO54tE4klVCUzWkFHmkmqqhqRqqrBANRomFYvgGUwu5ycJjCq6JySzxDvp449EDaSfO65qRnD+d92txVRFD7akNycdRVQ3JItFZ30HVxsqU+8UjcaMCDZ32U520n2xPa6wmC4MpuCYmGaKqKo2Hmnnqp88iz2Q0PkZWrstw/Sr24E0R783Oz8Y/nH6cVY0rhEaD5Bbnpgwr6LqOKqvEozIRf4RYJG5mLFxAzEozE5M00HUd35CPhgNNtNd3EglEEC1i2iYqRZWFNOxvoGJtOR3HW5MumFVtrqLxwOm0xxSPyTjdTsK+EE6XjUgkufjHo3Eki4Ru02g70Y7DZSe/NC/t65jMH6bgmphMg67p9LX1c/CZw4z2eRFEowZfzLB3mNVhJeyL4HDZiYaSVBkKRgtxJZrejDkxPl2nu6GbyvWVnDnamnK/aCiaGLt/JED3mW4q1lZkdC2TuWMK7hzp6uri9ttv58iRI4nXnnzySb761a9SXFyccKlqbm6moqIiUWH2gQ98gIceegiA3t5e7HY7+fn5AHzpS1/isssuO783YjKFwGiQvX95k4H2QQRRmLUTlcVmIRqMoo+bgo85fk2kuKqYgbb+jM8dC8ewuwx/hmTnHUfXdSLBCAjQeqKNnPxsSleVzuj7YDK/mII7z5zriTvOTTfdxL/+67+ydevZ5PN3vvOdANx7772sXbuWu++++7yP12Qqclzh6IvHaaw9g6pqc3aTKllZTOepTnIKsvEPJo/Rlq4ppe7FYxmfezxFLBaK4HBaiUZTm5/rmk7YF0aVVVqOt2GxWdh49YaMr2kye0zBnUfO9cQ1WVqEAxEaD57h9MEzxCIxRDH9GO10uHNdjPZ5WXvpGjpOTI3fipKIrmmz7tAQi8QZaOuncn0lTcfaZt4/HKPtRDs5BdkMdA6SX5qPI8uOPctBdl4WrhwXNsfSNflezJiCO08k88Q9H5x47SSRwPLvdjoXpsiYrqPrRjVWyB8mOBpkqGsYRVGRpPkR2XGsdiuBkQCqomB32pP+rEpWldDfYhjMWGwWlPjMLXomomka0WAUV47TyO9Nc/zHXjrOZW+7lINPH0aRFbSxtDUAR5aDnHw3OQU5OLLshom7JJ41cp9wCVOWJxP0hrjpf16fdJspuPNAKk/c80HlugrkWGYLLRczhgG1gCgJWKyGQfVCTuQki8Rrf3ydospCbI7x602+YEl1CcdfOMLGazZisVkQRdFwCctgYPFYHAHILXQj2WxpH9de184Vb7+EFesrsdhSy4Gqaihxo0Glruvo07R2v9iZLi5uCu48MO6Ja7VaE564Dz/8MB6PZ8GvnVey8NcwmT2xSIzBzmGKVxbT29RrTAcnzg4FAXSdnIIc5JhMw956ileVULW1mo4MihQ0RWWoywgPBHzpP/HoOhx76QRosHrnKlzZrgzuziRTzMKHeSCVJ+756PhgsrhpPtSMIit4ij0MtPdPmd0Wryymv62P6m2raDvSDMBAaz8F5QUzWjieS19LH4WVBRnHgnVV58gLx6h96hDdTT3TVsKZzA1TcOeZcz1xTS5eNFWj/s3TWMfMxnVlqhAWrSxmsH0AXdcnCV3XqQ5WbKzK7HqKCrqOHMm8m4ggCHTUd/Hir19i36Nv0lbXbq4NLACmH66JyQLRcqyV1/+0l+pt1bQdbcE36J08wxVg666tDLT0oqsaA62TOzNs/+tLOPrc4YxiuVVbViKIEn7v3MRS0zRyi3JZva2avLI8SlYWY7Vb53ROE3OGa2KyIKiKyuHnjiBZLThcdvyDvinhhMLKQoY6ByiqKmIwSdFDJBDG6XZmdN3eph7yy/LmvKgliiKB4QDHXjrBK79/lf1PHKTtRBvx6MxdLUxSYwquickCcOKVk4R9EVZsrOTMwcakLehLqkvoa+pFEISkcdeOE+2s3Loqo+vKURlN1Sgs98x26FPQNWg73s6rf9zLgSdq6WroNtcnZomZpWBiMs94B33U760npzAbURAY7RlJmttr5LUKKHLyvNtoMII9yz5tyW7y46LEIzE0RUWcx9JdURRpO9FOx6kONl29kZVbVppZMhlixnBNTOaRWCTGYw88DqJI9ZaVHHj0TVRVmSK4+WX5ON125EgcXdMYbE3uo7DmsrX0NvcS8oXSHkNOYQ6FK0uwu5z0tS9Mi3Rd13F7sth83SZWbKzMOPRxsWKGFExM5oloKMqT//E0ntI8KtaWcfCx/UnFFqC0pozexh4KKgsZ6RpKec6u+g4qN67IaBz+IT9uTxaSTUJVMqtaSxdBEAj5wux/7CCv/uF1mo+2EAtP3/bdxAwpmJjMGV3X6W3u48DjB6ncWEn3qU5O761H17WUZcKSJKLKCharhConb7cDhu+BI8uRcVhBV3VajjVTubGKwa6RjO8pXQRRYLBziP72AfJKPNRcWkP5mlJyCnNML4YkmIJrYjJLNE1jqHOIQ88cQVUUympKOfJULbFIDEEQUgqOp9iDr88LpFfbEPaFceW4CGeQFzvYMYA7NwtXjhNFUbBYFvajLooivkE/tU8dQrJK1OxcTXlNOcXVRdjs6ZcaL3fMGK6JSQbomk5gJEBj7Rna69oJ+cLkleXjKcrh2PNHDLvEGWZ2m67dRMMb9YiSSPW2as7sm77LgyPbyYrNK2k80JD2OEVJZNNbtjLQOYjd5SCYQbnvfKEqKiXVxazatorKdeVkeZK3dL+YMGe4c2A68/H777+fD3zgA+zbty9hLA7w9NNP85vf/IZf/epXvPe97yUSiSDLMq2traxbtw6Ampoavve97533+zFJzrjINh1toa2uneBwAGHMutGVk0XRikJqH98PkNZjtGSzoMRkSlaXJma60xENRIxFqQzCCpqqIYoCA+0D7PyrnfhHO846fZ0nJIvEUNcwg51DHH3BwtrL1rJiQyX55flI0sVpfG4K7jySynx8uv3hrHA/+uijCz1EkzRRFRXvgI/2k+20n+wgOBKEsTCBOEEsVm1byYHH96c1swXILsghMGZC7inNo+1wU1rjiYYiOLKcRMPpl+2GvEHcuS58gz5sNgklSWnx+UAQBOSYysnXT3Hi1ZOU15RRua6CgooCcgpzsDtsczZ5XyqYgjtPXCjz8UgggjLNoosJTHTE1QE03fAu0HV0RUORFaLhGCFfiNE+L8M9w/gG/MixOKI0wU5R1ycVMKzYUEnToTMoUXnM9WvmkVSsLae5thEAm8NGPJJe5VZXfSeVG1fQVHsm3Zumu7GbFZtX0nKslc1v2ULbyc4LvpAlINDb1EdPUy+aoiJZJBxZDmwuOxar8V7r4z8fTQd0BAQki4jNZcfpduB0O7G7HNjsFqwuOza7FZvdalhfWkTE8fi5KJzj1Xt+7l2Jy+SlaNJpCu48cKHMxwFe+u0r+AbSb6190SKc8xfBmHmJAgiSiNVmwWK3IkkiFotEQfn0XW0li0ReaS4N+05itaf/MXJkOYzy2CQzutWX1iAIwpggT94e9oWMGKhA2mGFaCiK0+1EEIwQQ25hFnbXEsiXTTHbVWIygZhMYDgAgKbqKHEFRVFQFQ00DUOj9QmLkfqkP84HxdXFvHX3jUm3mYI7R6YzH082m9A0bV5jaW+/523zdi6T9NF1nWd//gzZ+emnPzmzncRCUURRNBpS6mOyOnZ4dn72WbvcJKeMBSO4sl3E0pwVgxEaycrJYrh7iLWXr2P7TdvTPtZk/jELH+bIuPn49ddfnzAf93q9AOTl5SX+Ps7w8PB5MSY3WVj62/oY6hjM6BG9dHUp7XVtCIJgxHKHfGfFtjAH34CX0b4RckuSz6676juo3JDZE1R/Sx95pR7i4ThKXMY/ZD4NXUhMwZ0j05mP79q1i1/96lcJow+fz8cjjzzC9dcn73dksjTQNI2Djx1AEDL7+FjsVqJjubSeEg+jvWcLEvLLCxjtGWaka4j8ioKkx4f9YVy5rowMxkf7RvCU5KHrOn1NfbTXpd9FwmT+MQV3HjnXfPwLX/gCsViM2267jdtvv533v//9vP3tb0+0RzdZmnSd7sSXot15KnIKcxjuGEyIpTs/m+BYLBKM7IXgkN/ILMjLTlkREQ1EcLjs6V9YB13VUOMKvkEfmqqZFosXELPwwcQkA1RVZc/9jxLxZ1ZIUHNpDceeO5xo+Ln5+q3UPXc4EVLYctN2Tr5w1Pj7W3dy4oUjSRfHnDkuKjZU0TzWjicdiquLsdishANRSlaXULq6jM1v2ZzR+E3mB3OGa2KSAU2Hmgh5g5kdJICOTjw2YWY5y3lOxB/GlevMKKww2D5IQWUhuq4z0DqAqqgpLSFNFhZTcE1M0kSOyxx/4RiimFmVVNGKInoauhKpSTanjfg0zlq6pk1bCBDxR3BmpR9W0HUdXddQZcUQ3fZ+mmvTK7gwmV9MwTUxSZPDT9fOyoIwvzyfvubeREaDpyQPb/9oIpxwrgCHvEGyPO6U5+s82c6KTSszGsNA2wA5BTmJv8djcWIR007xfGMKrolJGoz2j9JyuCXjHGqH20Fg2D+pI29usQdf32ji31l5bkKjZ8MUwZEAWXmpBTcajOB0OzILK7QNkF+ZbxyjQ/ORFpoPpx8HNpkfTME1MZkBRVZ45dcvjZWaZkb5ugpaDzdPyte1OW3EJngiZOW6CU/o6BAaDeLOz572vCM9wxm1t9F1HV3VjVbqQNgbYrhriO7G7rTPYTJ3TME1MZkGTdN47XevEPSGMvYhEC0iAhAOJslomKDdjmxnIj8XznEHS0F3QxcV6yozmuV2N3SRX37Wua6zvpOu010Md6fuOGEyv5iCa2KSAk3V2PunvXSf6ZlVOXbl+kqaahsnC6eA0QZ3AnaXnWjorODquj6je5amqAgCiBm4bHn7RvEU505qod5Ue4Yjzx2hva49kbJmsnCYXgoT+N3vfsfvfvc7FMXoQ7Vp0yY+8YlPUF5envG5Tpw4wU9/+lN++MMfptwnGo3y1a9+lRMnTqDrOtu2beO+++7D4XDM5TZM5oGwP8Qrv32F4e6hjLMSwGg9Y89y4Ov3TpoZu/MmFzwAaTuNnUtPQxflNWV0n+lN+5iwP8zEAjlBEBhoHaCvqQ9XjhNPaR52lx3JIiFaJCSLhMVqwWo3/rPYrFisFsMLYsyNSxQlbE4r9iwHjiwH0jx2Cl5umII7xr/8y79w+vRpHnzwQcrKytA0jT179vCe97yHP/7xj5SWlmZ0vq1bt04rtgA//vGPjUT6PXvQdZ3PfOYzPPjgg/zTP/3TXG7FZJZoqoZv0Ef96yfprO9EVdRZiS1A+dpyWo40TfHJ9ZR48PaNTjanmaVr4HD3ENs3X0pXY0/a4Y6OunZW71xDb8vkLsGiJBINxehr7pv2eF3XJ8yQz7py6ZqOZBVxF2RTtrqM/PJ8CioLySnMuWjNxpNhCi7Q19fH73//e15++WVyc3MBwyPhrrvuoq6ujgcffJBdu3bx4IMPEo/HGRkZ4a677uLjH/84oVCIz3/+87S3tyOKIps3b+ZrX/saBw8e5Otf/zqPP/44tbW1fPvb3054Ktxzzz3ccsstXH755VRUVCQeVzdu3EhTk5kfudBoqoYcl4mFY4S8QUZ7RxhoG2S4e4hwIII41s1htt6xokXEleNiOIm5TU5hDt0n58/PIDDsJzvPTdCbXhv1WDiG1WFDVRSkWfQ5EwQBQUr9voRGQjSNNI0t0mnkVeRTuqoUT2keuYU5ZOVmYXPajfj2Rdhk0hRc4NixY6xevTohthO55ppruP/++2lqauLb3/421dXV9Pf3c+ONN/J3f/d3vPrqq4RCIR599FFUVeW+++6js7Nz0jkeeOABPvjBD/KOd7yD06dP84c//IFbbrmF6667LrFPd3c3v/zlL/n617+e0diffvAp/IN+gEnm2DM9oiZbbElrAWZ8RpNi3+QvTx1XOmM9a2mafF892YH61BPq+tieum5UWOkYj8uSiMVmwWq3Mj7NtDsz8ClIwcqt1TS8eQqYatEpWiQ0VWXStFYHq8PKii3VtIwZjCtxBclqMXxep6H9eBsbr9vMyddPpi1gnfUdFFUV4h/KsGJuFoRGQzSPNqPrOvFI3PCulVUkSUSySljsVsSxcU8avyAgIJwvz/B5xWKz8K7P/E3ybed5LIsWRUle6hiPxxEEgf/4j//g5Zdf5vHHH6e52fgFikQiXHrppXz/+99n9+7dXHPNNfz93/89K1eupK/v7KPZrbfeyte+9jVefPFFrrnmGj75yU9OukZdXR0f+9jHeP/738+NNyY3Lk7F2+65NfObNVlQhruGaKltTOr6b3NYx7pInH1NEGD1JWvJynXhyLITC8WI+sO4c7MI+maYuepGVZqnKBdBSnNhT9cpW1POjbs3YneZ6wXnEzNLAdixYwft7e0MDg5O2bZ//342bdrEO9/5Tk6ePMmmTZv47Gc/i8ViQdd1VqxYwXPPPcdHPvIRgsEgH/zgB3nxxRcnneO9730ve/bs4dprr+X111/njjvuIBYzqnyeeOIJPvShD/GpT32Kf/iHfzgv92uycKiKyt7/fjXpE4DD7SQ0EmTiDNzmtBMPx7C77LQdaaJktbFWEPaFcOa60rpm29EmSteUZTTOwfYBmg42ZnSMydwxBRcoKSlh9+7dfPKTn6S//+xiwp///GeeffZZ3vnOdxIMBvn4xz/OTTfdxP79+4nH42iaxm9/+1s+//nPc9111/GZz3yG6667jvr6+knnf+9738upU6d417vexde//nX8fj+Dg4O8+OKLfOMb3+DnP/85t99++/m+bZMF4PBTtQSGA0kf73OLcxnumhzXdbgdRIMRdHR8/aPkFOcBOhF/GGd2eoIb9oWxu+yTqtlmYrBjAE3VzVSw84wZUhjjU5/6FH/84x/56Ec/SjweJx6Ps3XrVn7/+99TUVHBDTfcwK233orNZmPdunXU1NTQ3t7OXXfdxYEDB3j729+O0+mkrKyM3bt3c/r06cS5P/3pT/Otb32L+++/H0EQ+NjHPkZlZSV33303uq7zxS9+MbHvJZdcwn333Xch3gKTOdJ9uoum2kYjZSoJ7vxsmvafnvSaM9uFpulE/WGj5c6YFof9YVakOcMFaD3SRNm6SgbaB9I7QIfeph4sNgsbrzOtGs8Xph+uick84B/08cx/PDFtB+Way9Zy6LH9TAwpVG1bha4oyKEY/U3dbL55JyeePwIIbL5pBydfPZH2Yti2m3fSeqItoyKNzddvZd1VG3BkmbHc84EZUjAxmSMhb5Bnf/Y0cjy1x6woichRGf2cKjOn24nFZiU4OtaJVtGQxmfIGa7Qtxxuomx1ZrHctuOttBw2UxHPF6bgmpjMAf+Qn6f+/XHi4di0M1FPaR6DHf1TXpdsFhxZDsJjpubBET/u/JyzO2TwABocCWCxW9Ptog4YRjkhbzD9UITJnDAF18RklnSf7uTpHz9OPBKf8bE/rzSPobaBpPuJkog+tuAVGg3iyss6uzHDgN+Z/aeo2JCZqU3L4WaGOgZQzS4QC465aGZikiGKrHDoiYOJR/F0YqyiJCLHZm7eGPGF8JSOOXppekazVQA5EiceimG1W1DiqePJE9FUjabaRiSrxPqrNmZ2QZOMMGe4JiZpoms63Q1dPPb9RzLKYbXYrUQCkeSzznNeiwYiOLKdgE4kEMHhdmY8zuZDZ1ixsSqjWW5oNERPQxcdJ9oyvp5J+pgzXBOTGdBUjd7mXo4+ewhv3yiiKKZM/UpG8cpiuk91pDUTnmh2E/GHcea4iGbY1kdTVHrP9OAp9mTUzr2vuQ+rw47FaaW8piKja5qkhym4JiZJUGUV76CX1sNNdJzsIOwPIUnSrHxx3XnuSS11xhElEV3TJvnTTiTiD5FVkMNokmNnor+5h+1/fSm+QS+ZpDt0nmxHVQy/ifK1pujON6bgTuB8++EGAgG+8IUv0NLSgqZp3HXXXXzkIx+Zyy0sSXRNR1M1VEVBkQ1zEzkqI8dllLiCpqhoug66jiAYs0vJZvi0WmzGf6IkIUqGA5Vhyi1g2Afq6Joxc9Q0DXQdbex6mqKixBXkuEw8HCPoCxEcDjDaN0JwyE8sEhvzPRBmbTFotVuJBqNoSeKxDrcDTdaQo9HJGyYUPxStyswWdCIN++pZfcnajNvo9DR0ExwOEAvHWLFxBRabddZjMJmMKbhjXAg/3B/84AeUlJTwwx/+kHA4zG233cbll1/Ozp0753Ir5wVd1w1hjMnEo3Fi4SixUIxYOIYciyNH48gxGSWmjAmniiobfyqyjCqrqKqGrmrGn5qGpupoqoo61ncrYZEoYDhHMeYQpo+5lemGH6sggCBJCOJZsRUEHV2fILo6oBuzSV3T0XQdAcE4VhQQBNG4zgRVnI194bmUrS2n7UgzRrrBZMV1uF1omjqpvc44AhAPx7DNwb0sGoggR2NGV+DIzAt2E/EP+dn3x9fpv7SG6q3VFFUXz8v7cbFjvoNcOD/cL3zhC6iqIS6Dg4PE43Gys6dvHrjQJIQ0LiNH4kSCEeM/X5hIIEzYHybkCxP2BolHZVRFRY0rY6IlJP6cLYIgYLGm/rUUZng8Nh7Px40bzz6qCwCCiCABEpwXS2wBHFkOAkO+pO+JM9tYEIue0/NMjsSxOmzEozIIk+O6mdJ0sJGdt15O06GmjM8hiAKtR5ppPtRIeU0F5esrya8oILswB7vTflH62c4VU3C5cH64giBgsVj49Kc/zTPPPMNf/dVfsWrVqozG/v9n77zj46iu/v3M9l2tumQVW7Zc5Q6mGQM2uNCMC70kLwFCAgkJ9Q0JBAIEg4EfgZcSIMEJJWBCNbhgG3djG+Nuy03F6r2upO1lZn5/rLTWWqtqNYt5PiG2Zu69c2fkPXvn3HO+5+D6A9RV1PrLZMkycpMKv9x8Zef/O5LfEMmNr9U+tyewAvW6vY2rUl/jqk/VuGL0v8K357uUJf+16Vgk0k+CxFFJ5B/KbXQntDRO+jADgqAKGFyNXospIgxngx1TZBgeV52/odylCjz+rqLMid1ZJI5OpiSz6xV6izOKKc4owtvo4tEa9RjDjeiNenRGLWqtptGdo0JQN3359l0QVF9+F9SW1HDdH28KeU4xuI30pR7u3/72N/7617/ywAMP8NZbb/HAAw90eN5nX97/3Q8/VbxuLyv+35fEJMWEPB+THIuzwY7b5kJQCZx11XnYa6247S5MkWE01FhRCQLmGDNave605mIKNzLnl5eTNGbIaY2jcHoocbj0nR7utm3bAnKQYWFhXHPNNS2kHRXOXNLX78ftdLXeQACVICD5RIZMTCVvTxZZ3x8mOikWrcG/USXjD/M6XfIP5VJTUoOjPUFzhR5FMbj0nR7umjVreOutt/zlRzwe1qxZw4UXXtjbt6/QA9gsVnL2ZLXpipGlk0WCopNiqSupBqC2uApNY1SE1+VB6I4ijDIc23qYoiP5igZuH6K4FBrpCz3cxx57jKeffjogPj5nzhx+8Ytf9NUjUOgmJEli2ydbEH1imxtLsuT3q2t0Gryuk1EEJUcLmHjluXAotzHbzIDUTm2zDs3LJ5K+8SCCSkXqlBHoDKdfv02hcyh6uAoK3czRLYc4tG5/uxuNw88ZicfuwlJchdfpobbg5NvV2fMuZP/q3cSmJqIz6XHUO7pxhjKjp40n9ewRxCTHKtEGvYiywlVQ6EYsZbUc3Zzefkaa4E8ZRhCIGRLH8U0Hg067HS70Rh3OBgeRidHdbHAFsn44Rs6eLEacO5q4YYOITY7FHBOOoFKMb0+iGFwFhW7C6/aw5cMN7boSALR6HR6HB5D8/tpT0ntri6qITRlEaW4ZRrPptGJxQyE0btad2JVB9s7j6M0Ghk5KJWZwHImjkjFFdLy8j0LHUTbNFBS6AUmU2PLBBlwNjg4ZRn2YHtEn4nW4kaWW/tn6slpiBsc2GmK5U0LknUVQCXgcbk7symTXl9vZ880PFB7Jb1XjQaHrKCtcBYXTRJZl9q3aRWV+xcnyOO2gNxmQRB9qrYb6ipbiNKJPRKVpGsuv/aDuhUQCQSVQllWCpaQat91F6tkj0eoVLYXuQlnhKiicJpk7jnFiT1aHjS3403olUUZvNmBpDAdrjl9FDITGbEGxlcScnsJld3Nw7V5y92bh7qQ8pELrKAZXQeE0yDtwgkPf7etsvUcMZiOqRt0Ih8XW4rwsSdhq6omIj8Dr9vZJmqzoFTn03X5y92UrRrebUAyugkIXyd6Vya6vd3aqskIAAXQmPT63N6SxlkSZhso6opPjcFhsGMP7ZhNLkiTS1+0nR1npdguKwe0kBw8e5Pbbb2f+/PnMmzePX/3qV2RnZ3P33Xfz4YcfBtrl5eWRlpbGq6++GjhWU1PDxIkTsVr9JbFra2uZPHkyTz/9dK/fh0LXkUSJfat2s3fljxBiw6sjyJIcECAPeV6WcVismGPCsdY2EBbZd1EDsiyT/t1+sn48HijnrtA1FIPbCTweD/feey+PPfYYK1euZNWqVcyfP59f//rXzJgxg127dgXabt68mZkzZ7Jx48bAsR9//JFzzjknIMH45ZdfMnv2bFatWkVdXV1v345CF7BW17P2rRVk/nC0026E5kiihFqrxtPWqlH2h2/Za62YosyncbVuQIAjGw+Svm4/FbllSgRDF1GiFDqB0+nEarXicJwMQl+wYAFms5kRI0bw1ltvIUkSKpWKzZs38/DDD/PII49QWFjI0KFD2blzJ5dddhngf1X77LPPePrpp3E4HHz++ec/yWoPZwKSJFFXUceRTYcoyyxCEqUuldoJIIAsShjMRiqzitttLrq9aLSabo/F7SyCIFB4OJ+io4WMOG8Ug1ITiUyIRm/SBc1LUAmo1P6KHEoiRTCKwe0EkZGRPProo/zqV78iLi6Oc845h6lTp3LNNddgNBqJiIggMzOT5ORk8vLyOPvss5kxYwabNm3izjvvZOfOndx1110AbNu2DZfLxUUXXYTdbueFF17gl7/8JZpOqurn7M3Cae3OLKSfFkHuV0kOlOLxurw46uzUlFRTV25BkiS/RnA3XFMfZsBWayUyIZKGyro22zosVsKiwpAkCXudvVPFK3uSwxsO+sV3ZMkvCn/Kg1Fp1Gh0WgzhBkwRYRjNRgyN+rkqrV9fWRBUjYL1J/V+B0KWseSTmHz5OSHPKQa3k9x1113cdNNN7Nmzhz179rBkyRKWLFnCl19+GXArxMbGctFFF6FSqZg5cyZLly5lzpw5CILAyJEjAX/9tPnz56PRaJg9ezZPP/00a9euZd68eZ2aj0anPW2t1J82/k+4v0yP3xBodBp0Rp0//rQHLIBaqyZz+1H0JiOuZnKJOpOeyXMvwFZdT8aWQwDUldcSN3QQOoOOs688h9Qpo7p9Pr2GLPtryLm9+DxeRJ+/xFJAKN/fqC9n2C1owluPW1bEazrBvn37OHDgAL/61a8Cx3w+H/PmzeOhhx7CYDDw5ZdfotfrmT17NnPnzsXlcjF79mweeughMjMzefLJJykpKWHOnDnExcWh1fp/OXV1dYwYMYIvv/yyr25PoRf5/j/rSRyZzNZ3vw0sDsfNOosTO48x9KyRVJwowe3wIPlE0i49C4/XhzkmgvMWTuvTeSucHv3j/eQMISYmhnfeeYe9e/cGjlVVVWGz2RgzZgxTp07l+PHj7N69m+nTpwNgMBiYMGECH3/8MZdeeikAn332Geeeey7btm1j06ZNbNq0iWXLlnHs2DH279/fJ/em0HvIsozT6sRtc558Exf8bys+p4eigzmkTBqB5BMboxkE6isszTLPFM5UFJdCJxg+fDhvvfUW//d//0d5eTl6vZ7w8HAWL17MiBEjAEhNTcXr9QYVg7z00kt5+eWXmTp1Kh6Phy+//JLFixcHjZ2amso111zDBx98wDnnhPb/KAwMfB4fWp0GZ8NJ33tUcmwg48zr8qDRa5FFCUGtAtkfHaHRapAlWdmIOoNRXAoKCr2MtbqBo1sO0VBWTeHebABGXzKRwgPZeOz+kjwjLxpP6ZECPB4fw6eOpfR4IWMunczI89KISozuy+krnAbKO4qCQi9TX1lHRHwk9SU1gWP6MH3A2AJU5ZQRNyIRQSVQX1ZLeGwEbpuLkuOFfTFlhW5CMbgKCr1MTVEVpihzmyFhDRUWIhL8K9n6sloiE6KxlNXgaVaKR+HMQzG4Cgq9TE1hJbIoIov+tF59mAGXzRmyrSxKeBwutAYdDVX1aDRqfJ7eVQ5T6D4Ug6ug0ItIokRdhQVfs5VqZFIM9WW1Ldp6XR7U2pOauLIoYbNYKTiU00uzVehuFIOroNCL2CxWPHYXbrsrEOLvN7g1LdpaiquJTopt1MOVkLwiJccLcdvdXVMoU+hzFIOroNCLlGYWY4o2Y62qDxzTGXR4nS19s5biKqIGxyEI0FBpISwqDJ/HR0VOKUVH8ntx1grdhRKHq6DQixQcPEFUYnRIF8Kp+NxeNDotgiBQX24hfkQSVcXVVOSWIXpFRJ9I7JB4NHoNGo0GrUGnxOj2cxSDq6DQS9gtNupKa0m6bAjFB050XAhHALvFyrCo0VDsT46oLqqkqqDCL/OoUaHWaokZ4q+4GzM4ltiUeHRGfY/di0LXUAyugkIvsW/Vj0iyjN5kwG33RyXoTHrczeJvT8VldWAIM+C0uWjaOBMaFcMElYBapQb8Nc+q8supyi9HEkX0JgNJY4YQl5pA5KAoIhOi0BsNLVbAcqOgjMfpxuNw4/P4kCQRQVChUqvRGrToTXr0ppZ9FTpPhwzuwYMHeeWVV6irq0OWZRITE/nTn/7Eiy++yIwZM7jjjjsAf5WDq666invvvZdHHnkE8Fc5uPTSS9m5cyfPP/88o0eP5u677w4af8qUKaxcuZIhQ4a0OY9ly5bx8ccf4/P5EEWRs88+m8cee4zw8HCWLVvGd999xz//+c8W/d58800sFgtPPfUUb775Jn//+99ZvHgxN9xwQ6CNw+Hg4osv5oILLgg5Rk8iyzKPPfYYY8aMafFsFAYGBYdzKcssRhAEBJWA6BUBMMdFYqupb7VfbWElMSnxlBwvAllG9PrQqNtWh1Op1XjdXgoP51GQnoskSmh0GiLiIgmLDkdn0iF6Rdx2FzaLDY/dhdftRRTFYL1d2f9/Wr2O2KHxJI0eQtywQcSmxKHupIyogp92n1pTlYP33nuPCRMmALB8+XJ+/etfc9ddd7Fr166AwW1e5aDJ4J5a5aCrpKen89Zbb/HVV18RFRWFKIr89a9/5ZlnnuGVV17p1FjJycksX748yOCuW7cOk6n3y5jk5OTw17/+lfT0dMaMGdPp/rIkIw8ASbsBQ6ORkkQZ0efDUe8gc/sRCtLzkBrL6UheHzRWTDDHRmApqmh1uLryWpLGD6XkaAGOOjtanQapkxEKKrUqEI5WF6IkOwACqDXqkKdEUaQyr5zKvHJkUSIyMYahk4cTkxxLRHwUOpMOtUaDSi34B1IWwq0K1LdrcLuzysHpUFVVhSzLuFz+1y+1Ws2DDz5IdnZ2p8eaPn06GzZsoLy8nMTERAC+/vprFixYQG5ubrv933jjDdavX49WqyU6OpoXXniBQYMGkZOTw/PPP09dXR2iKHL77bdz4403YrfbefzxxykoKEClUjFhwgSeffZZVCoVS5cu5aabbiI5ObnT9wGw/KXPqG/tQ6TQ6zSJcQsqFSq1Cq1eiyHciCnC/2WuD9Njr7U2NSYs2kxxuj+uNmH0YMxxEeTsPEaT1ZLFRuFzQaChoo6Y5FhcLm9f3FoAySeSv/8E2TuP43G4EX0+JFH212eT+ckvAKKSYlj4p1tCnmvX4HZnlYPTYcaMGaxevZpZs2aRlpbGlClTmDFjRkDysDNoNBquvvpqVqxYwT333ENpaSl2u53Ro0e3a3DLysr48MMP2blzJzqdjvfee4/09HQuu+wyHnjgAf7f//t/TJgwAavVyi233MKoUaPIz8/HbrezfPlyRFHk6aefpqioiGHDhvHUU08BsGPHji49l2sfv7VL/RT6jl2fbkFQ+42oWqsGUULAb3BFjw+NVhNwOQAgyai1GiRRJHH0ECZddV6fzV3h9OhQHO5dd93Fjh07ePLJJ4mPj2fJkiVce+21WK3WQJWD77//PqjKwfbt2ykuLg6qctBaPSZJklCrQ7/ONKHVannllVfYvHkzd911F16vlz/96U88/PDDnbxlPwsXLmTlypWA30Vy7bXXdqhfQkICY8eO5brrruOll15i3LhxzJkzh/z8fAoLC/nzn//MwoUL+Z//+R9cLhfHjh3j3HPP5cSJE9x+++28++673HHHHQwbNqxL81Y486kpbOZCaFwManRaPA43lSeKiR8Z/LbTUGEhPC4CySciiSIupaTSGUu7Bnffvn3861//wmw2M3PmTP74xz/y7bffIggCO3bsYMaMGezdu5ctW7YEXAfTpk3j+PHjLdwJ0dHRLarT2mw23G43ERERbc7jyy+/ZOPGjSQkJLBgwQIWLVrE119/zdq1a6mtbT+m8VQmT56MKIocP36c1atXd7i0jUql4uOPP+aFF14gKiqKxYsX8//+3/9DFEXCw8NZvnx54L/PP/+cG264gZSUFNavX88999yDzWbjrrvuYtOmTZ2es8KZjyRJNFTUnazc0+iPjR4Sh6WkirqSGqKTY2leaqa2qJLoIXEgg+j1UXmitPcnrtAttGtwu6vKAfjdAmvWrKGiwv8NL8syH374Ieeffz5hYWFtT1Sl4m9/+xvl5eWBY9nZ2SQnJxMZGdm5u25k4cKFLF68mOHDhxMVFdWhPhkZGcybN4+RI0dy7733cuedd3L48GGGDx+OwWBg+fLlgN/1MG/ePI4cOcInn3zC448/ziWXXMKjjz7KJZdcwrFjx7o0Z4UzG7fNhcfpBgS0Rh3eRk2F6JR46oqqEL0+VNpgT5/DYsMYGYbo82GrbaC2pKoPZq7QHbTrw+2OKgdNXHjhhfz6178OlAN3uVyMHz++Q1EG119/PU6nk1//+td4PB4EQSA1NZV///vfAXfEtm3bmDJlSqBPeHg433//fatjLliwgNdee42333673es3MXbsWK6++mpuuOEGTCYTBoOBJ598Ep1Ox9tvv83zzz/Pv/71L3w+Hw8++CDnnnsu48aNY/fu3cydOxej0UhSUhK33357h6+pMHCw1zbg8/g3vcwxEdhqGgDQ6LUB40srUQgeh5u60lqik+N6Za4K3Y9S8UFBoRfJ/D6d7R+sQxAEUiaPoK64EmtlHeMvP5fj6/1vkeMvP49jG/YF2d20y84if18WOrOJsTPPYvysKai1SizsmUa/+Y3ZbDZ+/vOfhzwXFhbGJ5980mtz+de//hXYUDuVu+++mwULFvTaXBQGFlV5JzfMwqLNlKS3lFp01NswRoXhsJwsoV5TWEn0kHhstTZ8Hh/V+RUkjB7cK3NW6D76jcE1m80B/2df86tf/SqoFLqCQndRnl0c2DBTadRIPrFFG1t1PebYyCCDW1tYSdrMs6ktrcFea6U8q1gxuGcgijyjgkIv4fP4sFc3cDIVy+8z8G+euQPt7DUNmGOCMzMln4hKJYAkU51X4Y/fVTjjUAyugkIvYa2qC2yYAYHIL1OUGUedLXDY1eDAEBEGp2Rs+dxeJFHCUWdFEqU2RW8U+ieKwVVQ6CVKjxcGKjVo9Fq8bn9UgjEyDGfdSfeBLMshk4Sq88qJTYnH43DjsNjI25vROxNX6DYUg6ug0AtIokTBvuyAqIk5JrzRvdBocOttbXUHoLa4ipiUeCSfSMG+bGqLa8jfn01DVR0epxuv24PH4cbj9ASEctqaj9vuCl5xK/Q4/WbTrKdIS0tj586dxMTEBI6tXbuWpUuX8tFHHwHQ0NDAG2+8wa5du1A1CoX8/Oc/56abbgLg9ttvp6SkJBBn7PP5uPTSS7nvvvswm81dmtfrr7/OsGHDOpxSrHBmU11QQWVeWeBnc2wEDeX+DElDuAm3NXTV3ubIouRX9JJl7HU2NFoNP366BQTQ6rWA4F8dqwQi4qNIGJ1M7NBBxKYMQm8yIPpE6spqKNh/gpJjBXicbsxxEYw4fyxJaUMIj+taApFCxxnwBrc93G43//M//8P8+fP5+uuv0Wg0lJSUcOeddwIEjO4f//hHrrrqKgC8Xi/PPfccf/jDH/jHP/7Rpes++OCD3TJ/hf5PTXE1JccLkZoJ0oTFRlB2NB/wa4y0CIdvReLQVtNAWLQZe72D+vJaDOFGPE4Poq/ZilYES2kNltKaQEUIrV6HKIp4XZ6A+hhAQ2U9B1b9SMGBOMZddhZJaUOU+N4e5CfvUli9ejUmk4lf//rXaBpFlQcPHsxrr73G6NGjQ/bRarU8/vjj7Nmzh5ycHCRJ4rnnnuOmm25i7ty5XH311ezbtw+r1co555xDVdXJVMybbrqJrVu38thjj/Hvf/8b8Ms9zp8/n+uvv567776bysrKnr9xhS4hen04Gxw0VNVRX2nBbrHidXmQpWCDKcsybruLIxv2s+Vfq/G5givtqjUqRK+v1et4nR60hpZC4+UZhSSOTQGg5Eg+yWkpbVbwValVyDJ4XB5Er4hKrW7hHxYEAUtpDTuWbmD/ih+oOFGCz624GnqCn/xX2ZEjRzjnnHNaHG8SW28Ng8FAamoqWVlZNDQ0UFlZyWeffYZKpeLdd99lyZIl/OMf/+Dyyy9nxYoV3H333eTk5FBdXc306dNZs2YN0Lrc45w5czo0/20frsdW23DyQNBnL/QHsa3cwqAPbwfGajle6P4tencgwbH1uZw6tY4lS7ZqmJodb3EvjT+LPhGP04XoFhHUqkaxbf+Ykk8KVFXQmfTIMrisTgSVgD7MQMzgWCzFLcugn0ryxOFUnijB5/LgrPfrJ3hddUFtXFYnxnATyDKSKGGracBkNuDpFo1cFYUHc8ndnYnPK2KMNKE16FGpBFRqFYLwk1+fdQiP08WCP/8s5LkBb3BD7fY2CaY3ne9qdrMgCBiNRqZMmUJkZCSffvopRUVF7Nq1KyDGc9NNN/HXv/6Vu+++m6+++oobbrghSA2+udzjjBkzmDFjBtOmTevwHKbfcXmX5q7Qu6x/fRkRg6ICP2sNOlAJ/pI7AsSNSMIUYWT0JRM5vn4fjjo7pigz1uqGFmN5PV7CYsJRadTUFFYy+arzGXHhWLT6tkvvKPQ9A/4rK5QkZE1NTUAd7Oyzz+bgwYMt+m3cuJGXXnqp1XGdTic5OTmMGjWKLVu2cO+99wIwe/ZsbrvttkC78847D5/PR3p6OqtWrQoq6wOtyz0qDBw8TjfWqpN1y9RadUCoRmvQ4XG6SRg9mNwfjqJWqxAEcDbYMUaGVtAryygifri/UgmyTM7u4xTs7XzlE4XeZ8Ab3BkzZvDRRx8FwmTq6+v5+uuvA7KRV1xxBTabjSVLliCK/k2NoqIiXnzxxYBw+qm4XC4WL17MjBkzGDJkCDt27GDmzJn87Gc/Y+LEiWzYsCEwFvhXuYsWLSItLY2kpKSgsVqTe1QYOFTlluFt5hM1RYVjq6r3vyFFhuGsb4zBlWVq8suJHZaAq8GOMSJ0jT1rhYXw+MjAm5m9xkp5dgnFh/N6/F4UTo8B71J44oknePHFF5k3b15AxnHhwoVcd911AOh0Ot5//31efvll5s+fj1qtRq1W89vf/pbrr78+MM7/+3//j3feeQeVSoXP5+Oiiy7iiSeeAODWW2/lf//3f5k/fz4+n4+LL76YdevWBVwX1157La+++iqvvvpqi/m1JveoMHDI25OJSn1ybRMWY6Yqxx8iZowMw+fy4rH5w8JqCyoYNnUc1QWVCCqV36kcwi3mdXqCzpVlFKI3G9CF6Rk0omv18RR6HkWeUUGhB/G6vaxa/EnQrv+IqWM5um4vottL6nljkHw+7FV1WAr8SmLjr7qAI2v3MP7K8zm2YX9Ig2uOiyB+RDJV+cEVf4efn8awc0YRPzypRR+FvmfAuxQUFPqSkiP5eBzuoGMqtQrJ4w8JM0aY0IcZsVbWndKzcR3UynrIVt1AWHR4i3C0vD2Z5O3OpOJESXdMX6GbGfAuBQWFvkKSJDK3HAxyJwDIkhzwvwoqFVqDDp/zpFF225zoTYa2IvEAcNmdIfMjCg6cwGVzInp9JI9TipX2JxSDq6DQQ1TlllFfWdciNFESpZMCNSFWsA3ltUQmxSCKol8zVwptecuOFpAwNoXKnLIW5yqyS3A2OPB5fAweP0zJHusnKC4FBYUeQPSJ7Fu2vYWx1Rp0uG2nljkPNqj1ZTVEJMbganC0GqkAYLdYMUWEIbciVNNQYWH3Z1s5tukgdWU1XY43V+g+lK89BYUe4PCa3Vir6lu4E8JiwrE2hoSB35/rdQb7eD12FwazkfqcMowRJuzNpBtPxVFvQ61W0coiGFmSOL7pACd+OMqwKaOIHZaAOTYCnUmPIAj4PD7cdicumwuP3YnX5UWlVqE16jCYjUQmRmOKCm9xHwpdQzG4CgrdTO6u45z44VhIIxUWE05Jei7g18RVaTXYi0JrZzhqG4gemgC0Xha95Gg+Q88eTVlmUattBEHA5/aS8+NxTuw8hiRKIMsICMj41cWaC9o0IUsSgiAwaMwQksemEDssgajEGFQapdpEV1EMroJCNyGJEkfW7SNrW3qrr+/GcBP2Wqv/75FhIMk46qwt2sn4Kz8Yo0JnmzXhtjrRmfRIotShVaggCH6Jxw4gNKagV2aXUJFVDEDK5BEkjRtKwqhkjBFtz02hJYrBVVA4TWRJpiq/nP3LttNQaQkYqpBtkUH2+1yNkWEggCOEy8BhsWEIN6LV6VpNfmjCVl2H3qjD62ldfex0aVr9Fh/Ooyg9F1OUmZFTx5KQlkJUUkyQPohC6/Sbp5SWlkZtbW3QsbVr13L77bcDsGzZMtLS0njjjTeC2siyzOzZs5k3bx4A//3vf3n33XfbvNasWbO6lD5bUVHBY489xvz581mwYAE33XQTGzZsAODdd9/ld7/7XdC8pk+fzq233ho0xty5c9m6dSsAS5YsYeHChSxYsIB58+bx0ksv4fF4Oj0vhb7B5/VRePAE6177ii3/WIW1ur5NYwsgi3Ig6sAUGQaCEGITDRrK/RtnHaH0aAEJY4Z0/ga6iCAIOOvtHP5uLxvf+IYfP9lM4aEcnA12ZWOuHc6oFW5ycjIrVqzggQceCBzbu3cvLpcLo9EIECQc053U1tZy66238uCDD/LCCy8gCAIZGRncddddGI1GZsyYwb/+9a9AOu/Ro0cZPHgwBQUFVFdXExcXR1VVFaWlpVx44YWsWbOGDRs28Nlnn2EwGHC73TzwwAP8/e9/55FHHumRe1A4PWRZxuvyUFtYRf6+LCqyi3HZXH7pQlXrK9AmdGGGoGKRxggTotuDEMJGWcstDL+oYym6XpcHtVbTYbdCd9G06i05kkdxei5qrZpBo5KJTRmEKTocQ7gBvdmIzqBDrdOi0WlQazUhFfx+KpxRBnfMmDGUlZWxf//+gIbt119/zYIFC9i2bRsAb775JhaLhaeeeoq8vDyeeuopamtrUalU/Pa3v2Xu3LkAfPbZZzz99NPU1taycOFCHn744Tav/cknn3DOOecElcQZO3Ysb7zxBhEREaSlpaHX68nMzGTcuHFs3ryZyy67jJycHDZv3sxNN93Ezp07ufDCC9Hr9VRVVSGKIi6XC4PBgF6v5y9/+UuLVX57HN2wH1dDyxVSf6FV3dqgv7YlnBtizI7o2rY6idAnTnZtTEqQ/dfxeXw4G+w46+xYq+qQJVBpVKjU6kBVBtEnthg5FFGD47CUVCEggAyCoEKWg0O6tCY9arUal9WBVq/F55NAkqEdg15XXIUh3Ijd0n5ttJ7C5/VRlJ5HUXoeyDKyJCGLMjKy//nKMmqdBkOYEb3ZiD5Mjy7MgM6oR6VWo1ILCGqV/7EKQof+LfRHqvPLufKRG0OeO6MMLsC1117L8uXLOeecc3A6nezbt4+nn346YHCb88gjj3DjjTfy85//nLKyMm6//XZmzJgBgF6vZ9myZVRVVTFr1ixuvfXWFkpezTly5AjTp09vcfz8888P/H369Ons2rUrYHAXL15MSkoKq1atChjcJpWy6667ji1btnDJJZcwYcIEpkyZwuzZs4PG6wijL56A1MEPvEIrhKiAIKiEbvdLCioV6//vC8xxEYDfuPocJ0udj770LFRqFaLHiyHSjOTz4XW50Ycb0Rr1bY5tra5nwhXnMeqitoXz+zOyLCNLcugCmGeQq6Itt1K/MbjtCYU3MX/+fBYuXMgTTzzB+vXrmTVrVkAFrDl1dXVkZGQEapIlJSUF/K1AwOcbHx9PXFwcNTU1bRrcjgiVz5gxgxUrVnD11VdTV1fH2LFjSU5O5plnnkEURXbt2sX9998PQHh4OO+99x5FRUX8+OOP7N69m3vuuYef/exnPProo21epzm6dj6ICv0Hj8uDs95x8t96s9Vt6tTx1BVVUptbCoAx0sy4q6dSmZuF1qBr9zVcFiW8Tg8epxtTVNcKmyr0PP1m06w9ofAm4uPjGT9+PN9//z3ffPNNQGbxVJrqkzX/h5qbm4vL5Qo639SmPWPamlD5p59+yvvvvw/AxRdfzKFDh9i8eXNgJd3kbli3bh1hYWEkJ/v9ckuWLGH//v2kpKRw00038fLLL7NkyRI++eSTNuehcOZiq/SXM29CpVbjtjsxRZvRh+kDxhbAWW+jaH8W0UkxGMyGDo1flV9G0aGcbp+3QvfRbwxue0Lhzbn22mt5//33sVqtjBkzJuR4ZrOZCRMm8M033wD+2mG33XYbVmvLmMeOcMstt7B7925WrFgRMM5HjhzhjTfeCMwhPDyc1NRUPvnkE2bOnBnoe9lll/GPf/yDyy67LHDM5XLxyiuvBH3JZGVlMX78+C7NT6H/U5FdHNjUUms1CCoVzjobwy8cT+729Bbta3JKMEWb0eo79iJqKaxE8olKpEA/pt8Y3CeeeAK32828efOYP38+//M//8PcuXNDrmDnzJlDRkYGCxcubHPMV155hTVr1rBgwQJ+85vf8PzzzxMfH9+l+UVFRfHRRx+xbt26wByfffZZnn/+eS6++OJAuxkzZlBYWMiFF14YOHbZZZeRkZER9OVx3333MW3aNG699VauvvpqrrzySvbt28drr73Wpfkp9H9KjxUE3riMkSakxqogLqsjINfYHEmUyP/hKINGJHfIiMqSjLPBQVlGQfdOXKHbUATIFRR6Aa/Lw6rnPkZsNKzxI5KIGBSF6PORvX4PYitlybVGHWPmnMeJXccRVO2vdLVGHWMuPYtxs6Z06/wVuod+s2nW1+Tm5rYaGjZ8+HBl5alwWlTmlOJ1egIuBUOEyR/qJYqtGtsmivZmMDhtKKXZpW22A3/pHWtlHaXHCkger2jh9jcUg9vIiBEjWL58eV9PQ2GAkrPzaFBSgj7MgCkqjKw9x9vuKIO9uoGh5/vDxFSa9j+yhQeyMcdGEJEYjTkm4nSnrtCN9BsfroLCQMVld1KdWx50TJZBbzZiaUUprAlJkkCAqsxCohOjO3ZBGY6u38uRNXsoOZKHy+ZUNtL6CcoKV0Ghh8nacgjR4wtK/xUEAUdNQ8gSOc2RfRIqrYbqE6WMnTuVuqqGDqXGCggUH8qh8EA2epOeIWePIjEthUEjk9EadKd5RwpdRTG4Cgo9iNvhIndXRguthbBYM8W7M9rtL0kSGpWAqBLwOt2okZDouB6tSqXC6/KS9+NxcnceY/j5Yxl6zijiRyR3SP9BoXtRXAoKCj2ELMvs/u+mFhUdBJWAwWyi6kTrouFB4+BfERcfPEHS2K5vhAmCQP7eTLZ/8B0Zmw9grarr8lgKXUNZ4Soo9BDZ2w9TkVncwgVgiAjDabHiayc6IYDsF4Bx1loxRBiRRREhRDp7R5E8Po6s3UPu7gxGTRtPwughRCbFKiveXqBfrXD7uyburl27AtfYtWsXaWlp/OlPf2rR7vbbb2fKlCmBdpMnT2bhwoVce+21LFy4kOuvv55NmzZ16toKZw6yLHPih6McWb075PlBo5KpzCyE0LUfWyCJkl9hDLBX16M3aE97joIg4LTYSP92F5veXs6hb3dSnlmErwdFzBXOwBVuX2rinkp8fDybN2/G6XQGrl1SUkJeXl5Qu6FDhwaFnGVkZHDbbbexceNGYmI6JjKtcGbgsjnZ99U2yo7ltyovGDc8kf070ltIM7aG5BPR6LWATOnhXFIvnEDB4fxu0ZUVBAHJK3Ji2xGyvk9n8PjhpEwZRcKoZPRm42mPrxDMGWdw+1IT91SioqJISUlhw4YNzJ8/H4BvvvmG+fPn8+mnn7bab+zYsRgMBkpKSrBYLDzxxBN4PB5kWQ7ISXaUhgoLPk8HX01/yshNf/glAEWfiNfpxlFnw1ZVj7W6Hlt1PS6rE5VKQKPXoTPo0Ri0IIDoFRF9IqLHiyyD1qjFFGnGGBmG3mTA63RTlVdOQ6UFWZTaLIkjeX34nC7k1krtnjp12V/oEUHA63CjNerwuTyotN3/8S0+nEtxeg6GCBNJ44YRmRSDMSIMfZgBtVYdXGxS8UCExFlvZ/DE4SHPnXEGF/pOE7e1uXzxxRcBg7tmzRpeeumlNg3uunXrUKlUjBo1ikWLFjFr1izuueceqqqqWLx4MbfddluHtVjTV+/CWmHp1Jx/8gh+rVu1ToPWqGsUv1YTkRBDRELnhnJZnbisTgDCYiMIi2070cAYYaKhpJpQ1soYZWb4RROQJRmVRk3F8QKqcxqzy2S/upigEmgoryVhRALaiPDOTbaTuO0uKrNL8Djd+Nxev/aDEs7bLgljhpwZBre/a+KGYubMmTzzzDNUV1dTUFDAiBEjiIyMDGpTWFgYENrx+XwkJiby9ttvYzQaufzyy/nTn/5Eeno606ZN48knn+yU8PUld13Vqfkq9C2yJLPhpaUtNqgiB8czZMooMr/bjeT1+1GHTZuA1qSn7HCe348rgMFspKG4itGzzyXt8vN+0uVqzkT6lcFt0sRt7tfsiCbuY489hsXScpXXmiZukyZtZzVxQ6HT6bjiiiv49ttvOXHiREh1s1N9uM2ZOXMm3333HT/88AM7d+7krbfeYtmyZSQmJnZ6Lgr9H2e9lYbSmqBjOpOBlHPHcHTF9qB1b8HOo4y5/Dwaympx1lpR67WB6h4+j5ea3FLiRg7uxdkrnC79Kkqhv2vitsa1117L119/zZ49e0KW4WmL//3f/2X16tVcc801PP3005jNZgoLC7t1fgr9h6rMIkRvsM991MyzyVq3O6RLNHvjPkZcPBFJEhEEAlEEloIKKo4rMoxnGv3K4PZ3TdzWmDJlCk6nk5kzZwatmjvCfffdx8qVK1mwYAE333wzc+bM6XRdM4Uzh+KDJ5AlOVCiKyIpFkdNAz6XJ2R7WZKpOVHCoNFD/IUtGxcjtXllaPS6Dm+8KfQPFD1cBYVewuvy8N1f38dWVQ8C+Nxexl9zIRlrfvRX5m2DCQsu4diaHxFUKvRhRgSVwKhLz2bQuGEMGpPSS3egcLr0Kx9uX6No4ir0JLX5Zbjt/pp6siSjC/OHk7VnbAGs5TWY4yJx1tnxebxoDTpq8stQadSKwT2DUAxuMxRNXIWepHh/Fsh+LQXJKzL47NGU7M/qcN8xl59P9uYDgZLhlsJKEicMDxnJo9A/UX5LCgq9gOQTqcwsQvT6ZRplScYYGYarztbh/gDIMqLH69dhkGU8NidVmR0TwVHoexSDq6DQCzRU1OKstyF6fYCANsyAx+Hq1BjlR3JJSEtBUKmQRAlJFKk6UUxtQVnPTFqh21EMroJCL1C0NzMoyiBxfCrlR/La6RVMXVElUUMTEAQBr8uD6BWpL65CrdEgiR1UwlHoUxSDq6DQw8iSTNnhXESvr9H9KhMWG4Gjuq7TY3mdblQaFQLgcbjxurw46mwhY3JlWcbjcuO2ORWD3E9QNs0UFHoYe009jtoGfG5vW5o2HaL8SC4JY4dSejgPySvic3koPpCNJErowo0YIsLwOtxUniimPKOI2qIqZFH05/dPHklC2hAMZlP33JhCp1EMroJCD1O0Pwuv24skSqhUAub4aKzlNe13DIG1wsKQ88YiHMn3V4IAGkqqGXz2KDb835eo1Wp/1IJaFZTSXnasgNKj+YTHRzFi2gSihw7CFGUOaDpodFql1lkv0G9dCv1djPzNN98kLS2Nr776Kui4w+FgypQp3HvvvYF2zz77bMgxKisreeihh5g/fz7z58/npptuChLXUTjzkWWZoj0ZeJ1uBEBQqYgZnkR1dnGXxxTdXgRBCFotex1udDq/mphaow4paiMIArbqeg6t2MHm179izXMfs/q5j1nz/FI2vPoFB5fvoPRIHt5Wst4UTp8zeoXb12LkycnJLF++nBtuuCFwbN26dZhMHXtle/LJJ7nooosCCRUnTpzgtttuY/jw4YwcObInpqzQS8iyjNflobagnOrcUmRJbjS4AjqTHo/N2eWxy4/lMWhsChUZhYhuv7ZCaXoOg8akUH6itN3+giAgaNRNE0WWZRwWKznbD5P9/SFihiaQen4aMUMTCIuLQKvXKapk3cQZbXD7Wox8+vTpbNiwgfLy8oC6V9P1c3Nz2+1fVVWFy+UKBK6PGjWKd955h4iItjVVm7P+b5+3KAbYoWztU9qE7tKRcTrQo535hJxvi0Ptz6VDSeohGrU81JGbOrXJKc9Tkhk0ejAqSQJZRtX46q5Sqzo40ZbEj0khdmQykldEHxlGxfFCUPmL7zgtVsJiI9CX1SKcZhKEq95Oxob9uO0uvE43MqDRNVPeEwTFALeBLszAvKd+EfLcGW1woW/FyDUaDVdffTUrVqzgnnvuobS0FLvdzujRoztkcP/4xz/y6KOP8v7773POOedw7rnnMn/+/E6J61z+h5s73Fahd5EkiQ0vLMUUfVIoXGcy4O7C6jbtivOxlteSufpHtHotY6+ZRtzwRGqLqgK+V8nrY9ysKYyccVa33YNC99JvfbidESNfv349Ho+nS2LkZrMZCC1G3hEWLlzIypUrAVi+fDnXXntth+9x2rRpbNmyhbfeeouzzjqLzZs3c9VVV5Gent7hMRT6L9YKC46a+qBj4UkxWArLOzXO6FnnUHksn/JDJxDwi94c/WYbMUMTCI+LDGShVWQUtijJrtC/6LcGt0mMvDkdESMPJeUIrYuRu1yuoPNNbToqojZ58mREUeT48eOsXr06YLjbo6amhmeeeQZBEDjvvPP4zW9+w9KlS5k7d25Av1fhzCZve3qLf0fmQdE0lFZ3eIz4tKE4ahuoL6oMOi5LMrlbDzDknDEB/Wi31YEsg6O24fQnr9Aj9FuDeyaJkS9cuJDFixczfPjwFl8IrREZGckPP/zAf/7zn8CH0ul0UlhYyPjx4097Tgp9i+j1UXo4t8WbmqqxSm5HUOu0JIwdStmB7NANZMjZtI/U88fidfsjCywF5RTuzTituSv0HP3W4J5JYuQLFixg7969ra6uP//8c6ZMmRL479Zbb0Wj0fDvf/+bAwcOBMLYbr75ZmbOnMmNN9542nNS6FsqjhfgbrC3OC6JHTO2ACMumUTu5gOtnhe9Ih6rAwC1WoXX6aYisxCVSqUIk/dTFAFyBYVuRpZlvn/tCyynuAEMEWFEJESRv/Nou2Pow00MmzqeE+v3tNlOa9AhyzKj5pzHsTW7ETRqxl09lbiRyQyZEvptT6HvOOOjFHoKRYxcoavYaxqoK6lqcTwiKRZLfvtxsgDDL55Ezub9HWrrc3vx2JwYo8w46+0U7s5A8olEJscTnhDdqbkr9CyKwW0FRYxcoatkrtvdWNY82H9rio2gYGf7GY06sxHJJyJ2IONL8omoNGoKfzzKyFnncvy7PdgqLag0ajI27mPERROJTVUqQPcXFIOroNCNeBwuyg7nhU4MkOmQb3XY1PEU7DzSoeuJPhGtQYfX5UHy+tCHGXA73NQVVeKyObFX1zNy+mQSxg5FZ9R39nYUuhnF4CoodCNZG/bidblDGlxZ9LXbX63ToNFr8XYhOaLgx6MMnTqB7C0HKTucy7i5U8nZeYya/DLMcdEMGjOY8IQYDOEmTLERhEWZ0TUWpFToHRSDq6DQTXhdbgp2HQ9pbI1R4dhOScEORcp54yjafbxT15V8Iiq1Co/Nic6oQ0BGlsBldaLRaRC9IvbaevJ+9CdhyLLsl3M0GogZOohBaSnEDEskNjXRn3qs0GMoT1dBoZs4vmYXHnvosjnm+EgsBRXtjhEWF4GjA4a5OaJPRK31r53K0nNInuwXPirak8ngicNbtBcEv6KY6PVSlVPC0dU/sv3dVWRvORhys0+h+1AMroJCN+CyOijcndHq67kxyoy9HUMaPSwRS97p1SerK6wgeuggkGW8DleHhWxk0ceR1TvJ2nKQioyW1SMUuoceM7gDQc+2oaGBhQsXsnDhQi6//HImT54c+Pmll15q9xobN27kueee69S8FM48ZFnm4Oeb8LpC6xg0FYtsL+Q9ccJwyo+0L3oUCkmUAu4Aa1kNkUn+cLD8nUcZMmlEh8YQBIHiA9mkr/yB4oPZiJ72fc4KnaNPfbj9Xc82IiIiEBq2a9cuFi1a1KlQsdmzZzN79uzunbRCv6P6RAkVxwtC+m69Tre/llk70Qlaox7R44UuZohJXh9qvRZJlCjZn8WYKy+gfs1u3A0O1HqtvzREB4e2VljYs3Qjo6ZPImnicKKHDkKtUbZ7uoM+fYpnsp7t888/T1hYGA899BCVlZVMnz6dDz/8kAsvvJDly5ezefNmZsyYwXfffcc///lPbr/9ds4++2z2799PWVkZ06ZNY9GiRUiSxKJFi9i/fz9arZYhQ4bwwgsvEBYW1qFnuO+zTTjqbB1qG0SHdGE72K+L12spO9sRXdyWB0POu2OTanmkIzq8jYcEtYph56Wx56PvkL3Bq0FJlPwVegWBiMRYbBWWNmcy5JwxFLehgaCPMBE9LAmnxUp9cWWL8zInhZkkn4gkSqi1GkSfSMHOoww5ZwwlnaoSLHNiWzqZG/aj0qkJi41AZzKg0mj8K+keDGw407V2G0prmPvMnSHP9fnX1pmqZ3vFFVfwwgsv8NBDD7Ft2zbi4+P54YcfuPDCC9m0aRNXXnllQImsicLCQj766CMcDgdXX301u3fvRqPRsHv3blavXo0gCLz88stkZmYGvoDa49xbZnWonUL3I8syuz9Yg06vQ2gjxjVh3DAqjuQGRMhDYYoJx2UJLaQ0+JwxhMVFUnk8n7DYSFIuGEvZoRPU5ARnrUk+EbXGX9Os7EAWQ88bQ0WWv5SPMcrMJfcuIH7U4C7cqUJ30WM+3IGuZ3vuuedSUVFBdXU127Zt47e//S07duzA4/GwZ8+ekKpmM2fORKVSYTabGTZsGPX19YwZMwa1Ws1NN93Ea6+9xpVXXtlhY6vQt+R8f4iyw7ntxrEao8zY2yiJHhYX2eqGWszwJDQGHSfW7aahqJLyQ9kcW7YVY5SZCQsvwRR7Uty8KesM/CvelPPHMXL6ZEbOOAvJJ2KrqO2w7KhCz9BjBneg69mqVCouu+wytm7dSnp6OjfddBNVVVWsXbuWKVOmhHQJGAyGFnNs8hP/6U9/Qq1W89BDD7F06dIOzUGh7yhNz+HY6p0da9xYN6w1kiaPpDSEBKMgCCRPGUPRDy03hEv3ZZK1eifJk0Yybv5FjLj0LIZdPInRV17A2LnTiElN5PBnG8lcsY2Mr7eSv2kv9ooaCne1L5yj0HP0mMEd6Hq24Hcr/Otf/2LMmDHodDouvPBCXn31Va644ooOj7F582buvPNOpkyZwv3338+1117LkSMdS+tU6BuK9mWx75MNHdK1VWnV/iq4bRhcrUGPL4RuwuBz0yjZ23oShOj1kbvlAJkrd1CyN4PywzlkrNhG1qodFO86hq2sGpVaDch4bA6OL99GwbZDFO89rsg39hE9ZnAHkp5ta0ybNo3KykouuugiAC655BKqq6uZNavjftUZM2YwatQo5s2bx/XXX8+BAwf43e9+16l5KPQOkk/k0LKt7P/vBn9EQQeISIxtUa2hOVFDE7AUhC65EzkknvrC9pMlALx2F54Ge9Aen9ziL1B5LJ+sNbso2n1UcS/0AYoeroJCO0iiRMWxPI4s34Gtuq5TVXGHXTievO8P4bE5Qp5Pu/ICsr/zq4s1J3KIX1qxdF9mp+fbPAJMpVIhqFVBwudqnZZB44eTMnU8wy6a1OnxFbpOn0cp9BSKnq3C6SD6RGyVFgr3ZFCanoOjpgFBJXS6BLlGr8Njb0WIRvD7aU81tgAJE4aTu2lfV6buDxFr/FOSJLQ6jb/QZOP2h+jxUp1RQERSLGVhRpLOGtWl6yh0ngFrcBU9W4XOIIkS9poGqk8UUXG8gNqCCtwNjoBR7KqilixJyJJMqNDS6KGJrboT1FoNkrd7Mr1kya/N2zzO2ef2kLtlP6bYCGwVtZgTYrrlWgptM2ANroJCW8iyjNvmpDavlLLDuVRmF+OqdwByIBLmdGULDZFhOGoaOLnmDCY+LYUTG/a2OB6RHEfDaYrINF/lil4fap0WsZkBl2UZ0ePj2MrtaE0GjDERAQEchZ5DecIKPwkkScJtdVBfXEVFVjGVmYU4axoQvd6Am8BvZ7svyylmWCKVGfmtZk6p1OqQkQ6Dxg2jYEd6t83Dv0sjtLD7kijitbvI/m43glrF0Asndts1FUKjGFyFAYN/1ebF43DjqG2gvrQaa4WFhrIa7NX1eGxORFEMSr7prE+2M5hiwltN6W1rFasx6DpUXqc9gny5Ph8qjbpF1WDJJ1JfUkl5eg7GqHDixw477esqtI5icBXOKESfiMfmxFlvx1Fbj62qDnt1A7ZKC856Gz6XF5/b7a8pplK1WF2emunYk8iSP+Eh1Po2Ydww8rYebHFcpVV3m++2OZIoodVqQpZpl3wiRT8eJSI5DlNCFGHRkd1+fQU/isFV6JfIsozP5cFe20BDWQ31JdXUFVXQUFGL1+5G8okI6pYG1Y/QGPDfdwTSeWWZUDtmGr0Wn7tlLG/M8OTT1sRtTvNVrixJCAghRYIkUeTIV1vQhhlJmDQSc5xidHuCfmtw09LS2LlzJzExJ3dP165dy9KlS/noo49YtmwZjz/+OL/73e+C5B1lWWbOnDkYjUZWrVrFf//7X6xWK/fcc0+r15o1axavv/46kyZ1LiZxyZIlrFq1yl+yRJKYPn06Dz/8MDqdLtBm06ZN/Pa3v+X//u//Aspm4FdBW7p0KQkJCQD4fD7S0tJ44IEHSE1N7dQ8+huiT8TrcOF1efC53Ihe0Z/ZJAio1CrUWvVJ1Sn8Kyyvy4Pb6sBaacFaXktdUSXOejtep9sfjnXqSlXTtwa1PeJHD6Fw97GQXwjm+ChslXUh+8UMTyJnY8uNtNOhyeiG2jwLaidJHF++DY/DRXhyPIPSUtCZDCHbKnSNfmtwO0Jf6umuWbOGDRs28Nlnn2EwGHC73TzwwAP8/e9/55FHHgm0++STT5g/fz4ffPBBkMEFmDt3Lk899VTg52+++YY77riDb7/9NiDK01+RJAmvw42rwY692v9qb620YC2rwV7bgM/lOSlgHWR0ZP//mufbCAKCAIKgCoRhNXGm1tjShRlxtSKbmTBhOIU7Q2saqDRqZF/7KcNdopXNs+Y4LQ1UHsnFUlhB1sZ9DD1/LFEp8UQkxqEzKVV/T5cz2uD2pZ5uVVUVoijicrkwGAzo9Xr+8pe/BFW5KCoqYvfu3WzevJm5c+dy8OBBzj777FbHvPbaa1mxYgUrV67s8BdFwZ7jjaFHnaFl/mfgiCT7Xznlk6/1XpcHr9ON1+HGWW/DUdOArym1VSbkCrSz+K/fQ4aml1HrtbitDmRRCulO0Br1eB2uRn/tyXsWVIK/Tw/QZGMDm2dtGPXKo3mMuvx86ktrOPjZJqTGON6wuEjM8VHowk0YzEZ/GFnjW4v/S1Pwf2EGbqj5qGe2xm1nsFfVcd7tV4Y8d0YbXOg7Pd3rrruOLVu2cMkllzBhwgSmTJnC7NmzOf/88wNt/vvf/3LZZZcRGxvL3Llz+eCDD9rNcEtLSyMrK6vD9x+RGIs+zNjh9q3h/7D4A/xVKpX/T60GtVZzxq4y+wq1TsvhZVsxRJlbfBEZIsOQvD4mXjcDr92J3myi5FA2tXllRAyOw1rWMVnRriADiBJqnRZtG/q9AEW7jjLxxplEjxyM1hC6rSxJ+Dw+JK8vILguy/JPXhgnbmTrmsP91uB2Rk934cKFPPHEE13S020ilJ5uWwY3PDyc9957j6KiIn788Ud2797NPffcw89+9jMeffRRPB4Py5YtY/HixYDfQN92222UlZW1Oa4gCEEyju0RnTKow20VegfR66MmtyTkF1XixOGYosM5+ukGpMZNs5FXXIDo8hA1NJGqY52pytB5ZEAWRXyS5DekbSR3ZH23i3HzLiblwonKl2430W+fYn/X012yZAn79+8nJSWFm266iZdffpklS5bwySefALB69WoaGhpYtGgRs2bN4qGHHkIQBD766KM2xz18+DBpaWlttlHo31RmFvrTgkOQOGE4mV9vDRhbgJz1uxk2bSJaox5nK1UfupOmTTOP0+0PQWtlReq1uyj44QiFIfR4FbpGvzW4/V1P1+Vy8corrwR9KWRlZTF+/HgAPv30U37zm9+wefNmNm3axKZNm3jmmWf44osvcDhCfxi/+OILiouLufrqq7s0J4W+R5ZlstfvCZkWHDM8iZrsIjynGmMZinako9X1zgtn01pC8vnw2F14XY2GN8Qio76ogrqiijZ1eRU6Tr91KTzxxBO8+OKLzJs3L+AiWLhwYat6uk8//XS7G12vvPIKf/3rX/noo48QBOG09HTvu+8+BEHg1ltv9Ss+SRITJ07ktddeIyMjg+PHj/P2228H9bn22mt55513+PrrrwH/Knjfvn2B/sOHD+c///kPer2yG3ymYq2opa44dAbZiOlnsfuNL0L3K60m5aJJ/o2zXvCBih5fY5FJH6LX/59Gr0Ot1SCc4j4o+vEo5vhoGkpriEiO7fG5DWQUPVwFhW5ClmV2vP011dlFLfYgwhNjSBg1hIyvt4bsq1KriEhJwBATTkmIcjs9gdag8ydfNE1VBrWucaP0FCEbtV7LuHkXM+ziyf0+Bro/029XuH2Noqer0FmqsouoySkJueGbfNZocr79odW+glpFfUE5iWePpmR/Vshwsu5G9Pr8oWlNIWJCo39XBmRQNXNxiG4v5YdzkGWZEZcpRU67imJwW0HR01XoDF6Xm/1L14f0g2pNegRZxl3f+n5B00atvaIWc0J0q5lo3UlAX0EWg8JkRZ8PGRmNQNBKtzqriLgxQ7GWVROeFNfj8xuI9NtNMwWFMwXJJ/LDO9/gqg+dWZY8eRSlu452yDdbdjCL5LNGt1l0sjvxebwhdXAln4jYGGPbnPzthyg/ktsrcxuIKAZXQeE08Lm97Hh7GZb8slaz7fThpvYFxRvtq8/pQWPQtd22G2nSuAiVCSb6fH6j2ywrzVVnw2tzUX44p9fmOJBQDK6CQheQZZma3FI2vvgxNbmlrerqRqUMwl5ajehuXd9WpVYF1TWzllYTOfj0q1F3FNHtQaPTEEJEzG903d6glW7+zsPYKmqVqr9dQPHhKih0An8WWSlZ6/dQm1vq17ttY4MrduRgijbvb9OdIKjVSM3KrlccziH1snOoL6nqlc0zv0C5GFKgHJr5dPH7dEWXB3eDndL9mQw+d2yPz28goRhcBYVW8Hm8OOtsNJRWY8kvoza/HFtVHR6ro0WsakgEUKvVeBrsbTcTgheXotuLupeSIALX9IlodFoElQpZaimgI/lEvKKMRpZRazQU7TmOzmxq9wtHIRjF4CooNOJze7GW11CZWUhlRiHW8ho8dhcgB7kMOmRsgeiUBGylVYjelkLj7eGsacAUG4GjtudTfZvwebxo9FpkgZCl22XZL8kp6UR/PTSHm8pjeSRMGNFrczzT6ZcG90wXH3/99dfZtGlTUPusrCzuv/9+7rvvPgC+/PJLPvvsM+x2Ox6Ph5SUFB566CHOOuusTs1DoeOIPhHR40X0+PB5PHjsbhy19TSU1lCTU4ytsg6PzQnN5Cb9KbpdW8HFjBxM4ca9bQYctKbbUXk0l4SzRpO37VCXrt1VfG5/1IJa2yRUfsrcGmN1RY+PvG0HkUQRrclIeFIs2l7c7DtT6ZcGtyP0Z/HxBx98kAcffDDQ/t1338XpdPKzn/0MgFdffZU9e/bw2muvMXiwX8pt586d3HvvvSxbtozk5OQOz8XjcIX0uw14mnR8G+uGyaKEJIr43F48diduqxNnnRVnnQ2nxYqj1oq7weaXE/SJjc9MaKnl2/h+f9obQgJoNGo8DaFDxQLN1KqQGrjuejuGyLBWS/T0JKLXhyAIqHVaEPzuhFBzdFTVAbD55aUYIsOJSU0ieuggDFHh6MON6MOMaIw6VBo1KrUaoVFoHkHo6nfYGYHo8REWG7pE0RlrcPu7+HgT69evZ8mSJXz66adERUVRXV3Nhx9+yPr16xk06KS04rRp03jsscdwOp2deg473lrWamXYAU9TdYjGahGCSoVKo/Kv0PQ61M1e/TU6DZq4qF6bWnhiDI7K2pBl0JujUqsQ3V5SLz0bQ3QEOet24XW4AZA8PrR6LT5P9xeVbBdZxuf2IAj49RW0/tWrJIpBMcJVGfkkjU/F6/bhsTmoOJbvF653e/G5vcii6NfKlWWQ5cY/e/92epPIIfHMeOjmkOfOWIML/Vt8HCAjI4PHH3+cV199lZEjRwJw8OBBRo4cGWRsm99PZ5n56M863Ueh55FEkU1PLvG7J9oyMIJAzJgU3PV2SncfY+TlF5CxYhsgUHU8n/i0YZT1UaJB0yJU9IrgFRFUAmqdBpVa7ddTEARsFRZSpk5g6LRJ6MKU+mft0S/jcDsjPr5+/Xo8Hk+XxMeb6oaFEh9viybx8TVr1nDjjTdSU1PDPffcw8svvxxoU1tby3333cfvf//7gGGHlq+qNpuNhQsXsnDhQi6//HJeffXVNq+tcGZgLa3BVlHT/mpOhkEThlNxMAuf0427zoap8XW0vqiCyKEJvZZ11h6yJONzefHYXXjsLkSPF1mSqC+upGBH7/qaz1T6pcE908XHvV4vDzzwANOmTePOO+8M6jt58mTy8vKwWPxuALPZzPLly1m+fDkLFizAZmvb56dwZlCy51i77gRBJaALN+JqJjpeuvc4Seek0VRs01/jvH8Y3OZIPn+Ugtfppmx/lv9zEyKcTCGYfmlwz3Tx8UWLFiEIAs8880yLvgkJCfziF7/gwQcfpLS0NHC8pKSE/fv3t1jFK5x5SKJEwfcH220nqFTEjx9ORfqJwDGvwxVUb8xWWk1Ecv8VipG8Is46Gw6LlRPr9/T1dPo9/dKHeyaLj5eVlfHZZ58xdOhQbrzxxqB+l112GQ8//DAPP/wwK1as4H//939xOp1YrVYiIyOZO3cuP//5z7s0J4X+g7WsGmcH4mcFlQpDlBlXbXDVZZelAWNUOM46G1XH8xly4UQayltuyPYnCrenM/iC8ZQcyCJxwoheT9w4U1AEyBUUupn9/15J/ub97YZzqQ1aRsw+jxOrdgQdN8VHET1qCEU7jwIwZv7FZKz6odfDwzrLuIWXkLs9nQkLZ5A0aSSm2Ii+nlK/Q/kaCoEiPq7QVbwuD4U7j3TIOJrjY7CXt9ygdVTVMWTaJJqcuKLLg8agxefug/CwTlCenkPM0ESOLNtKQ2k1qRdNJDq19WifnyKKwQ2BIj6u0BVkWaZ417GgirytIahURI1IouJgK+V0mse6Hi/wh4el929JREteGeOvHU1NXhlFu45RV1jB+AWXMGjssJBFNX+KKDs0CgrdhCW/jOJdRzsUVSCoVejDTbjrQvt6nbV+Py5AQ0klkSmD+mW0wqnUF1diivbP21pWw55/ryJ/Rzpep7uPZ9Y/UAyugkI34GpwUJVZSHVGQYfcCYKq7fDDurwyokc0png3NTsDDG7pgSwSJw4P3JvkE0n/YjNHlm3F2s83/noDxeAqKJwmPreXH978Ap/TjeztoJ9VENo0oNayasxJcTRZW2tJVa+KkncVWZTwOlx+QfNGBEGgcNcx9vx7FWWHc/yVgn+iKAZXQeE08DhdbHv1U3ThJmoyCjq2ChUETDHhOKrrW28jy6ia+T2rjhcQN25YN8y45yn84QiDzxkTtIIXBAFbpYW9/15Fxuqd1OaVBuLsf0oom2ZdpD0JyVtvvRWn04nX6yUvLy+QlDFq1CheeeUVHA4Hb775Jps2bUKn8wuDzJo1i9/+9rcYDEpO+pmAJb+MPe+txllnZfSc88hYtrVD7gSVWkXYoGispdVttpN8YmP5HRmf0+1PiOgD9bDO4nW6kSUZtU7TIttOliF3ywEKdhwm9ZLJDBo3jOjURDT6n4a0o2Jwe4hPP/0UgOLiYubPnx8U9eDz+bjrrrs4++yz+eabbzAajTidTl555RXuvvtuPvzww6B0Y4XT56Rsox2Pw43UqMCl0qrRmgzow03ow4yo9do2KxhIkoSt3MLxVTuoyihAEiVUarW/0GIHZTKFRoNb1Y4oja2iFnNCLA2NhtlfYLL/h4cBFO5IZ9glkyncnRHyvOj1kbN5P9kb9hKZHEvSWaMIT4ojbFAUhogwtEY9Ko16wFWTUD7VfcDatWuRJInHH388cMxoNPLEE09w7bXXsn79eq6++uo+nOGZhyRJSB4fXpcbt9WJo6Yea3kttopaGkqqcNbbG1deUqOkY+MHuVEyUBAEdGEGwuKjMA+KxhgdgSHChKDxZzp6rA6s5bXU5pXirLMhSydLy8SOGkz1sbxOrT5VWk2LEuSn0lBYQdTIwQGDW52Rz6C0YZT28/AwwF8pQxBQaVRIvtZdByq1CmuFBeu6PQFdY41eg1qnQ2PQogszoDUa0Jr0aI2N/5kMaI16NAYdWpMeXZgRvdmIRq9DrdOi0qr7bYq8YnD7gAMHDnDeeee1OC4IAtOmTWPfvn0dNrg7//4VtppGX2CTKHcoP2KIY3Ibu99tJiA2ngtuIgf94f/rKcdCXafFX07+ENT8lL5N85N9Il6XG2T8QteN/6l1WlTN9HBVahV6s7H1e2rEUdOAo6ahzTY6U7DLJ3bUYI59dhw68CEX2hGjSZg8CkEtUH4gG0dNPclTJ9CUANFQXEXilDGUHc7p924FgILt6Qy/dAolB7O7tFIVPT6cHhtOSyuCTrJfBlPyiYiNIumyKCJJMhqDtlFGUoNKrUJQq4L+PbT2/ILF6Ds9ZQAM4SamP3JryHOKwe0iHZWQbA2fL/TqxuPxhJSYbI1pv7+hw20Veoa6gnJOGPV09BMqen3Ivpbuh9i0YWiMOkSnm8SzR1N+MLuxOMLJFbmAgM5s6nBdtb5GliXOvmU2SWeP7uup9AvOjN9aP6SjEpKhOOecc9i7d2+LXVpJktizZw9Tpkzpxpkq9DR5m/d1KkTWFBuBraJlTGr8hOGU7TpKZfoJokcM9mdnNUk0NtJQXEnYGaRRULTrGM46q9/HraAY3K7SGQnJU7nyyisxGo0sXrw4oMnrcrlYtGgRYWFhXH755T06d4Xuw+fxUp1R0PFXZlnGnBiL7ZQIhfDB8ViLygM/Vx3JIS5tKI7qOkzNSgNVZxQQO3pId0y9V5BFiYqjeRT+eKSvp9IvUAxuF3niiSdwu93MmzeP+fPn8z//8z/MnTu3VRH05mg0Gt577z1MJhPXX3898+bN47rrrsNkMvHee++h1Wp74Q4UuoOqI3m46+0dbi96fYTFRwUKMDYxaNJIKg6d1MWtzS4iZvRQ6grK/Wm9jfhcHjR6HbLU/7POmqjOLMTrcGOr+onW3muG4sPtIhERESxevLjddkOGDOHAgQMtjhsMBh555BEeeeSRnpieQi+Rt2kfQid2xCWvz5/We4o7Sa3TIHmaZWDJMrIo4qyy+CtAyFkBP67P4UKlFs6ETN8AJzbuRWPQERYb9ZMWslFWuAoKXcRZ20B9UUXHO8hyyOwqbZgRr93V4nhdbglRw5NaGKiq4wXEjTxz3AoAPqebsoPZFO051tdT6VMUg6ug0EVyN+5B7Kh2An53glqnbaElEDs6hdqswhbta7OLiB0ztDEE7uRy1lpaTXhyXLu19/obNSeKaSiupDq7qK+n0mcoBldBoQuIHi9l+zsXXyp6fIQnxbVI6Q0fHIe1tKpFe39qrxpbaTWGRqnGJnxO9xmZhZW79QB1heXYT/Fh/1RQDK6CQhco25+FqxUt21DIkoQsSYQnx2I7xbgKKgHE0NlYoseLrbiSiGYbZwAV6ScYNCal8xPvYwQEjq/YTuWxPJz1P70K1YrBVVDoJJIkkbN+d6c2y3wuDwDG6IigsugIQpsRB5bcEgyxkUQkB0sz2sprMSfEnHFuBQBkOPrN95QdyMZp6Vrl7DMVxeAqKHSS2uwibCFqkbWGLEmtBv6bE0PXNWuiPr/Mv3GmUbVICfbaXaj7qWZAe8iixJFlWyjadTSgFfFT4Mz8bSko9BGyJJPxzfd0JtHe62heXibYaEalJlGXX9ZqX8nrQ63R4HO6W/QtO5hF4qQRHZ5Hf0MAMr79gex1u6nKLDwzV+udRDG4CgqdwJJfSkNxyw2u1vC53IGYW53ZiMfmDDpvjInA2SQ+1AqyJNFQWNFi48xZ04AxOrxFTO+ZhCAIlO7P5ODH31G48wjOuoHt11UMroJCB5EliaOfb+pwlpfP5Ub0nAwbC0+Oo6GkpbFub61sK69BlkQihya0OGfJLSU8ISZErzMLV72NQ/9dz4GP1lCyLwO3zdHXU+oRlEyzbuDLL7/k/fffR6VSER0dzQsvvMD777/PoUOHsNvtyLLMc889x7nnnstjjz2GwWAgKyuLmpoaZs2aRVRUFJs3b6aqqornnnuOadOm9fUtKYSg4kguDUWV7bSSkXwSPpenxcozPDmOsi4E/tfnlxEzZij6qHAqDgeLllcezWPMNRdhrbSckWFizREEgZrsYqqzijAPiiblgvFEDk0gcnA8OrOxU5uU/RXF4J4mGRkZ/O1vf+Prr78mKSmJDz74gKeeeoqwsDA+++wzVCoV7777LkuWLOHcc88F4NixYyxdupS6ujouueQSnnzyST799FM+/PBDlixZ0imDm7HqB9zWk7n8LfxgoTRrA21PHU0O+deQPwed6uI12/HZdUSTt2OnWr+v4Km2fnLwuWns//dKxMZogxZXkCT/yleWG5esLY2fLizYpdBahlkTKq0Gc2IsDcWVmOIiEcWm8U+OfbJooxbRMzCKMwqAvdJCxqodyKKE6PWhNekxRoWjjzSjMepRN9M+RhCaPXLh5CCEkFHthS+lisM5XPH8vSHPKQb3NNm5cyeXXHIJSUlJANx5553ceeed5Obm8umnn1JUVMSuXbsICwsL9Jk5cyZarZb4+HhMJhPTp08HYOjQoS0kH9tj7LyLuu1eFFrn+NdbEQCtqev15vzle6DJGkQMjsdWFtofrAs3Meqai7FkFTJ46gQ8TjeeBhsakx71KeJG5ek5jL36QkbMOb/Lc1PoRm6d0+qpM3+N3seo1cF1l1wuF0uXLuXee/3fcLNnz+a2224L6tNUNLIJpX5Z/8ZWXkPh9kOn90orgCyKQavm8OQ4bCWhQ6KGX34B2cs2U7Evg5Lth9BqNdhKqjBEhrVoK7o8uK0OqjMLuj4/hV5BMbinydSpU9m5cyeVlX7f3qeffsq2bduYOXMmP/vZz5g4cSIbNmxA7GCBQYX+hej1sffd5XidoV0JHcUYE4H9FHlCbZgRT4jNobDEWBwVtYiNmgu2smokUQQBolOTQ45fvOso9e36lxX6GmVpdZqkpaXx6KOP8qtf/QqA+Ph4fve73/Hss88yf/58fD4fF198MevWrQupFKXQf5ElmYMffIutvPa0N6TCE2OxFlcG+RBbGzL5vHHkrt0ZdKxk20EGX3I2kkoVKHrZHI/ViafBTtXxfOLHpZ7WXBV6DkH+KUQbKyh0ElmWyf72B7LX/Ngt4w2feQ4nVu9A8p580xl9zUWcWLU9qJ2gVjPyqgvJPeU4wNibZlNfVkXZwRxUIdxQKp2GsQunkzrj7AGxoz8QUX4rCgqnIMsyOet2k7Nud7eNKWjUQcbWEB2Oy9KyOnDc2GHUZuSHHKM2uxDR4Uaj14U8L3l81GQWUrzrp605259RDK6CQjOakhuyVu1AakXBq0tIUlDYmTkpDmtZyw2zqBGDseSUhByiNqOAqGFJIRMgmqhIz8Frd2KvrjvtKSt0P4oPV0GhEVedlX1LVjRqG3RfvKZar23UQjhJeFIsxTsOtWgrCCC04uWTPD4kSUKrU4f04zaRvXYXGqM/blWlUZ/+DSh0G4rBVfjJ43W6yV6zk+IfjuBxuLo9YysiOZ76goqgXTKNQdfCCJuTYrGFWPU2IUkSluwijDGRyKKI0Eo4oc/pJnfTPlQaNUOmTuiem1DoFhSDq9CryJKE1+n276rbnYgeL7Iko9Kq0RoN6MNN6MyGkJtC3YnoE2koriR/836qjuXhsfsNbU+kx0YMiadgy/5228WOTaV87/E229TnFhM7LhVDZBgeu7vVdvbyWop3HkWt05I0ZUyn56zQMygGV6FH8bo82CtqsZZWU1dQjiWnBEd1PT6X258EEMi8kpFlGbVWgyk+ithRQ4gYmkBYfDThyXH+XPrTMIaiT8RV20DtiWIqjuRSl1eGu97mn0IPGdom1EYdXkczlTAhdNqyPtyEt6HtkuuyJCP7RMzxUdTa2y5gWZNdhKACQa0iYdLIM15rYSCgGFyFbkOWZbx2J7byWmpOFFObXUx9QRkeuxMEVdAHvmXYkj8fXpZk7BUW7BUW5O3pIMtoDHqiRyYTO2oI5qQ4wgZFY4gMQ2PQtRhHEiV8ThduqwNbRS11+WVYckqxV1rw2ByNUgSBRPtu9NS2gSiBdFIDwRgTgav2lAiFdio/NCFLMvX5ZehMemRJajf8qzqzCIfFhuQTGTRheKsRDgq9gxKHe5qsXbuWpUuX8tFHH7XaZtasWbz++utMmjSJX/7yl/ztb38jJubMldSTRBGf043H5sRpsVJfVEFDUQX1hZW4G+z4nB5Q9cyqUZb9Ai5akwGtSY/WZECt1SD5RDwON6Lbg+jx+v2jKlWfr+p0ZiPxY4eRv3FPwODGTxyBx2qnoZnwuDk5jvCkOCracSkIgoDaoGXE1ReTtyMd0d3BqsECjL5qKglnjSHylPpoCr2HssLtZXbs2NHXU2gTySfidbhw25246+y46qw4LVZclgYc1fU4LQ34nI1GrUk565RXckHdc9GGgiCAIOBzefC5PDhrQ9fEEtT9Y3c+cmgClrySoA0zc2IsRaeURY8ankzNsbx2x5NlGVn0h5jFDk+iMqODJcdlyFr9I4U7DjN89nnEjR1GeFIcqh78XSm0RDG4XeD1119n5cqVREVFMWzYMAA8Hg9/+9vf2LNnD6IoMn78eJ588knMZnOg3+OPPw7AHXfcwbvvvktGRgb//Oc/8Xg81NbWcu211/LQQw/16NxlWUb0ePHaXbjqbTiq63FU12GvrMNWUYOzpgHR7TdmNBq31laJSjZT+4Qnx7fQwNXotYjuYG0GY0wE7lPdDG1gLalCUAkdcis0IQgC7gYHx5dtRVBBwlmjGTR+OOHJfjeN1mTo8zeCgY5icDvJhg0bWLduHd988w0Gg4Hf/e53ALz77ruo1WqWLVuGIAi8+uqr/O1vf+OZZ54J9H3hhRdYtmwZH374IdHR0fzxj3/kxRdfJDU1lYqKCmbOnMkvfvGLTrkbLLmluOptfj1W0V+sUBJFRI8Pj82Bx+7CY3PisTpw1VtxWWzIkozk8yFLsr9Ed2ueTFkmhNqtQqfwb3J164iiTPWxXIZedi7RqW5qc1uvidb6GFC2N5OyvZnIkoRap8EYE0FYYiymmAi0YUa0Rj0avRaVVo1KrUZQqxFUgn9V3PyLOPBn0x7oT9toW0uqWpXKVAxuJ9m5cyeXX355YOV6ww038NFHH7FlyxasVis//PADAF6vl9jY2FbHEQSBf/zjH2zZsoVVq1aRk5ODLMs4nc5W+4SiPD2b+oIKBJWAoFKhUqv8f2rUgZWPRqdFExuJKTayi3et0BXUeq3/96FtJuEpNL44NGunNRnwOfxC5COunoYxJoIT327DXRe6zIwsikhuLyqNmuiRgzHGRnZrGJ3o9iK6vThlGckn+q8nSoEvdb8fHfyRJYFZBf3xUybx7NGtnlMMbhdovs+obvQVSpLEn//8Zy699FIA7HY7bnfrcZIOh4PrrruOOXPmcN5553HDDTewYcOGTlcuHXftpV24A4XeIv0/q9EZT4qWG2MjcTa5DhqNcOSIwdTllRExLBFXTR1FG3Yx4ppLyPxmK6HePuTGvq6aemxVdQy55CxSZ57b8zejcNooTrhOMmPGDNauXUtDQwOSJLF8+XIALrnkEpYuXYrH40GSJP7yl7/w6quvtuivVqvx+XwUFBRgs9l46KGHmDVrFrt27Qr0VRgYSKJIdUawKHj4kHgaCsqDXrsjUxKwFpSRMCWNir3Hkbw+RI8Xjb719ZAsSVQePkHEkHh8Tk/I4pQK/Q/F4HaSSy+9lBtuuIEbbriBm266ifBwf+nq++67j8GDB3Pdddcxd+5cZFnmsccea9H/qquu4vbbb0cQBC677DKuvvpqrr76ajZv3syoUaMoKFBU+wcKtrIaXJbgKApTfDS28pqgY4JG7U9okES/yA1QlZ7NoEmtv5rKPhGf3YXObCL72+3U5ZX6450V+jVKHK6CQg9x/IuN5G3aF7TzP/zy88latuVkI0Fg1NXTqM0oQKPXUHs0J3Bq5MJLyVr+Pa1taqq1GlJmTKHsUBaSLDD22ktJmDIGY3R4D92RwumirHAVFHoAySdSfjC7RZhVoLJvI+bEWGzlNcSkpWDJavl2I7SxCyV5fVQdySFh0mhkn8ixLzaS/p/VlOw6ir3S4i/Lo9CvUDbNFBR6gJrMAhw1DahUJw2uISYCxyl1zSJTk6jNzCc8OQ7ZG5w15qqpxxAbibMmdHKHDDiqLKTERwXicWszC6nJKEBQCUQMTSB2zLDGdOgozImxp1V1WOH0UQyugkI3I0sSWSu2BRlbgKhhiVhOFAdtmBljI3HXWgO+2+bU55UQlZqMsyazjWvJWIsqSJgwnIpj+SeFeGRoKKigoaDCn50myZiTY0k+fwKRQxOISk1EZzZ1300rdAjF4CoodDNVx/NpKG4ZNWCMi6Jo28EWx8OSYrGXtWxvL6shfspYIIO2BNHL92cy/MqpDI2NpHDboRZuDEEQENQCjgoLJ1ZtR5ZkwhKiGTxtIlHDEolISURnNnb2NhW6gGJwFRS6EZ/Lw5FP1gX5aQPIMsgSTcZTpdUgebxEDU+m9lhuy+aShKoDabui24MgCNQcyyP5/HGU7c1os72gEnBU1ZG9YjuyJBE5LJHkqROISEkgalgiap22Q/eq0HkUg6ug0E2IXh97/v4FrtqGFqtMndmEu97WTAMYIocm0lBUQfTIwbhq61tZw8oIyMjtCEmW78sgLDke0ekicmgC9YVta+U2IahUNBRV0lBUiSRLJJ6dRtJ5acSOGYY+XHE5dDdKlIKCQjdgLa1mx4v/wZJTElIAJnbsMKqP5QYnPKQm0ZBXCrTuMHDW1GPsQEq2tbiSiJRBlOw8QsyoIV3aHFMJKioPZXPwXyv58W9Lyd+yH2dNxwV1FNpHWeEqKHQBWZZxW+2U7TlOya5j2MprkLy+VtW2jHGR2Ctqg45pjHq8Tndo90MjtpIqzMnxOFqJVGhO3YliokcOJmf1D4xeOIMTa3/skvqXIPhdDsc+20DGN1sZMnUCgyaNJHzwIPQRYYqk42kwYA1ue8Lgoijy4osvsm3bNkRR5Je//CW33XYbAPn5+TzxxBNYLBZMJhMvvfQSI0eODPT1eDzce++93HLLLVx11VUA3HrrrUHCM3l5edx88808+eSTrFmzhnfeeQdZlomOjubZZ58lNTU1aD7PP/88hYWF/POf/+zmJ6HQXciShKO6ntLdRynbn4Wzpg7Rc9LItmbcAlV7m1V9aBwRY1wkrpq6Vq9pL6tmSNo5VB5u6eM9lcr0E6TdMBNLTgkVB7MYNHEEVUfb19htDUEQkD0+irYdonDrQVRaNYbocPSRYWgM+kahJDWCxi+apNZp0ZmNGGMj0YebMMZHYYwKR2PQd3kOA40Ba3Db49NPPyU/P59Vq1Zht9u55ZZbmDBhApMnT+YPf/gDd9xxB/Pnz2fr1q08+OCDrFy5EkEQOHDgAM8++yy5ubnccsstQeM1sXHjRl555RUefPBBqqqqePrpp1mxYgWJiYl8/PHHLFq0iH//+9+B9qtXr2blypWcddZZvfoMFNpHkiSc1fWU7cugdM9RHJV1SKLUrpFtTuLZYyjfG6yJqzOb8FodhCfHY2tDB0F0exrL4jRz/raGLFOXU0L0yMFYTviLTaq0aiTv6SdACCoBWfQ/C2d1fbvtmypz6MJNhA8ZRMSQBMxJMRiiwjFGh6Mzm9CY9Kj6iVB8bzGgDG4oYfC9e/fy4osvBkRh7r33Xq688ko2bNjAzTffjEajITIykmuuuYYVK1aQkJBAbm4u11xzDeDXTvjrX//KsWPHmDBhAh999BH/+7//2+pKtK6ujqeffpp33nmH8PBwwsPD2bFjB1qtFp/PR0lJCVFRUYH2OTk5/Otf/+J3v/sd27dv79kHpNACWfLLDUqi5BeNcXtxN9hpKK7EkltKbXYhrtoGv3ZwJ4xscwwxEdjLa1v4b+vySolNG4olo/3Va4cMLlBxMIu0G2dhySmhcNM+Ui6dQsH3B3tdWLypMofX7qI2s5DazMKArKMsS2iMerRGPab4aEzxURhjIzFGh6MNM6Azm9CFGVHrdai1agSNGqFRdrSnC372NAPG4LYmDP7mm29y1113cc0115CRkcFnn33GlVdeSVlZGUlJSYH+iYmJZGZmUlZWxqBBg4LCcRISEigvL2fChAkBBbDWDO6SJUu49NJLmTRpUuCYVqvl8OHD/OY3v8HlcvGvf/0L8Es4Pvroo7z44oscOXKkS/e9+al3sZ8ihgIE+QWDXYRyyL/+lBEEFYLa/1qs0qhR6bVoDXp/XTaVCmNcVJfHjh0zlNrsgsbrnDQUESkJ5H+Xy6DJo4gZPZTwlATy1uwgpBxjo7HvkOqJLFN9OIeEs0dTmZ6D6PESlhjToQKVfYGr3oar3gYnigG/KI/o9SF6fMhikxav3PjFKIFMo2h+K/QDY2yMiWD2i78LeW7AGNzWhMGvvvpqnn32WTZt2sRFF13EI488AvhfeZp/AGRZRqVSIUlSi29QWZYDurdt4Xa7+fzzz1m2bFmLc5MmTWLHjh18//333HvvvWzYsIGnnnqK22+/nTFjxnTZ4M589p4u9VPoHUS3l++ffhfdKSFWGpMeWZRQa9REjhpCbfoJki6YQNnuYy3GcFZbCIuPxl5V16Fr1mbmM+aGWVjyy6g4kMWoeReTOus8pSRSP2BA/QZCCYPfeuutrFixgosvvpjt27ezYMEC3G43SUlJVFZWBtpXVlaSmJhIcnIyVVVVQWM1nWuP77//nrFjx5KSkhI4VlFRwbZt2wI/z5gxA7PZTEZGBnv37uWDDz5g4cKFvPHGG+zdu5df//rXp/UMFPoXGcs2+1dwzRBUQqDsTlhyHBU706nPLSY8JZFQrx22kirMg+M7dd3CTXsZcuFERI8XZ00DxT927QtdoXsZMAa3NWHwW2+9lePHj3P99dezaNEiGhoaqKqqYvbs2Xz11Vf4fD4aGhr49ttvmTNnDomJiQwdOpTVq1cDsG3bNlQqFWPGjGl3Drt372batGlBxzweD4888khA5/bHH3/E5/MxadIktm/fzvLly1m+fDkPPPAA5513HkuWLOnmJ6PQVzhq6inbc6zFG1NYUhzWogpM8VEgyTgaw8U8DbaQ+gb28hrCElov1xQKl6UB2efDEGmmdPdRfHZXp6uJKHQ/A8alcOmll5KZmckNN9xAREQEY8eOxWKx8Ic//IHFixfz2muvIQgCv//97xkyZAi33XYbhYWFLFy4EK/Xyy233MIFF1wAwKuvvspf/vIX3nnnHXQ6Ha+//nqHUiwLCgqYOHFi0LGUlBSee+457r//fgRBICIign/84x8YjUru+kBGliQO/XsFXqe7hcGNSk2mdMchokYk47Kc3PGvOZJD7MSRlJ2yGpW8PtQ6jd8Z3wkfZeHmfaTdOIfsNT/gsTmpPppL/MSR7XdU6DEUAXIFhR6g4mAWB979JuS54VdOJfvLTaTdPAdbbjEVu08a2JHXziT7m82cunk2csEMsld8D0LnXkrDBw8iOm0o1VlFDJ99HsMvn9rZW1HoRgaMS0FBob8gerwc/3xj6w0kGSQZU2wkDYXBJc5bK0oviVKXYlatJZWo1BoEQUD0+LCWVLbfSaHHUAyugkI3k71qO05LaA0CY2wkjgp/GJ/WZMB5Srqv6HSjMeha9LOXVxOWGNOl+RRs3EPKxZMp/vEI1cfzuzSGQvegGFwFhW7EWVtP8faWmrRNRI0cjCW7CFQCktfXQkehPq+UyNTkFv1sxZWYBw/q0pxkSaR4637iRqf4s8Vq2s8UU+gZFIOroNBNyJJE+gff+gVpWsEYHYGj0oIxJgJ3fUtBGmtBKREhDK6j0oJpUEybQjdtYSurxud0UZ1RQNn+tvVyFXoOxeAqKHQTFYeyqWtFnhEAAWRRBEkmcuQQHCEyBEW3t1EA/BTDKsstSvZ0luJtB4lOTcLncGEtqz6tsRS6hmJwFRS6Aa/DxfHP1rcZ62pOjqehoBzwuxZsReVduNLpBRXlrv4BZE5qGyj0KorBVVA4TWRJYv8/luGqt7fZLmbkEGoy8kEAU2wktlAaGIAkiiEjErx2F7qw04vf9tod1BzNpaGgjLK9x09rLIXOM2AN7tq1a7n99ttbPS+KIs8//zxXXXUVl19+Of/9738D5/Lz8/n5z3/O3LlzufHGG8nJyQmce++997jmmmtYsGABd955J4WFhQDU1tby+9//nvnz5zN37lxeeumlgELZmjVrWLBgAfPnz+cXv/gF+fn5gfG+++47rr/+eubNm8c999yDxRJcRluhfyPLMkc++Q5LdlG7KlYaox6f3eX/u0GPu5XNK0d5DWGJLTPLrCVd3zhrTs3xPNRaDdXH86jNLjzt8RQ6zoA1uO3RXA/3yy+/5MMPPyQ9PR2AP/zhD9x6662sXr2a+++/nwcffBBZlvnhhx/48ssv+eyzz1ixYgWXX345jz/+OACLFy9m5MiRrFy5kq+//pr09HSWLVsW0MN99913WblyJVdccQWLFi0C4PDhwyxatIg33niDVatWkZqayv/93//12TNR6ByS10f6+ysp+eFwuxlg2jADHqs9sOkl+cRWN8BsxRWYUxJCHK/stKZCa+St3UlYbBSFW/ZTk1mguBd6iQGT2gs9r4cbFxfHM888E1AkmzRpUkBq8fLLL+ecc84BQK/XM3r0aEpLS4mPj29VD3fFihXccMMNDBkyBID777+furq63npcCl3E63RTdSSH7FXbcVRY2pYLbCRuwggqD2SBALpwE16bo9W2jkoLCRdM5FQNXK/N4S/s2MkU31DIkkTu6h0MnXU+B979huGXX0DMmKGED45vFDxX6AkGjMHtDT3c2bNnB455PB7+9re/BUrsXHnllYFzx44dY9WqVYHyPq3p4ebn55OWlsZvf/tbStuCZysAAFm8SURBVEpKGDNmDH/+8587dd+H3l+Fq3mQ/SkrlZYLl1N3v1tv3LJr26ugNldJnZkHp2Rcndq3s/MMGqrt67bkZAOv3Y2zth4Q0Jr0qLQatGEdK9YYNiiG4qq9gEBYYpx/tdvqJU9Kh6r1WuImjUJQq6k5msNJA3z6uq/uejs1x3KJGzuMvPW7ObFqB6LXgz4iHF24CbVWjUqjQVBqmHUKR0UtM1/6fchzA8bg9qYebm1tLQ888ABms5mHH344qO22bdt49NFHefLJJxk3blzgeCg9XJ/Px+bNm/nggw+IjY3l5Zdf5sknn+Ttt9/u8H2fdde8jj8khT7Dkl2E2qBHEARixqXirKxtt0/E0ESSpk2mfMchJK+XYZedizbciD7SjCR2jwvAWlxFzNhhTPnVQmLHpXbLmAqtM6C+unpDDzcjI4Mbb7yR8ePH89Zbb6HTnXz9ev/99/njH//Iq6++yrXXXgu0rodbWFjIoEGDmD59OvHx8ahUKq6//noOHjzYE49GoY8p2LQ38HdzQiy20tbrmAEgQPKFkzjx6XfYi8pxlteQv/J7qnYdYdTV0+jOch0FG/diK6nEUa1s2PY0A8bg9oYebnl5OXfccQf33Xcff/7zn4NWvUuXLmXp0qV8/vnnXHTRRYHjrenhjhw5kiuvvJLNmzcHIhPWrVsXVJpHYWDgc3mwZBYE3py0YS01FE7FPCSBglXbWjgO6rILqfjxMCPmnN/lrLMWyJC5bAu1GYV4Ha7uGVMhJANKnvHdd9/liy++COjhFhYW8uCDD7J48eKAq2DBggXcdddd+Hw+XnrpJX744YeAHu7dd98N+H2rf/nLX7BYLOh0OhYtWsSECRN46qmn+Oabbxg+fHjgmjqdjqVLlzJ16lTMZjMxMScFRq666ip++9vf8t133/HWW28F9HAff/xxxo8fD8Ann3zCJ598giRJJCcn8/zzz5OQ0HKHWuHMpWRHOoc/+DawuTbl9zey/6UPWjWY8eeMRXZ7sBzLDVmLTKVREzFiMGHDkin+sWVJnq6iMRkYe/Nsks4fh0ozYLyN/YoBZXAVFPobkiSxc9F72Er9qbQak57xt13Bodc/Cd1BEBhz0xxOfLYOlUbtDx87habjCVMn4hNlqjOLum2+htgIRi+8lKTzxyk10HoA5YkqKPQgdTnFAWMLYE6Kx21pKVrTRPzZaVTubzsDTBYlBJWKil1HiBgchyEyrNvm66pp4MSK7ynfl4HcGEqp0H0oBldBoYeQJYmsrzYHHTMPjsPbRkhY5MjBNGS3vWKVZTngnshftZ1hl03pUCxwR3FW15O9fCvl+zORfL5uG1dBMbgKCj1GzfF8GvKDBWoM0RG4akOn9BoHxQSHi8lyu9G2sihSuPYHUi+d0n2baICzqp7jS9dSvuc4Hruz28b9qaMYXAWFHkD0+jj26boWySBaox5HVegIhcQLJlD54+HAz7IsQysr1ya3AoCrug5PXQPhidHdNHs/Xoebwx9+S/66XTQUdkXZTOFUlK1IBYUeIOPzDf6032ZJNIJKQGPU4aoMEe8qCKi0GkS39+QxSUZQq0LWOZNlGZVahdzoZi3ddoAxP7uarBXbaH9d3AlkyFv7I6W7jpI653yixwzFnBSHWqsJzMPn9OCy1GMtrsRaXImj0oLP6UZj1GNOjid8cDzhQxMwxUe3K/Az0FEMroJCN1NxIJPSnYdbGBdjXBSyKOOqbVnvLHrMUOqyCoKOydCmgZIlvy9XlmSQZUq/30fSlDGUHsjulvtojttiJePzjQiC3y1ijIlAFEU8Vic+h7MxfldoMd/Kg9nIsow+wsSwOX69hsjUpJ9sBIRicBUUuhFLTjFH/7MaydsynCs8JQF3XUPI3f/oscPJX7m1U9eSJQmVRo0s+a9lK6ogYeokVMhI3bnKbaTJmLosVlynRFoIbZRvFwQBj9VJ9tdb0YUbGXH1RcSOH445Ka7b59jfGbBfM72th1tWVsYvf/lLFixYwLx58/j6668DfdrSw/3nP/8ZmMObb76pyOSdociyTPne4xz4+xd4HaFrmpniovCG2IASVCq/+JfY+TAsWZRQNROXKd22n+QLxrXRo2/xWJ0c/2wDB/+xjJKdh3E1tC3aPtD4ya5wm+vh2u12brnlFiZMmMDkyZP5wx/+wB133MH8+fPZunUrDz74ICtXrmTnzp18+eWXfP7555jNZpYuXcrjjz/O0qVL+etf/8qMGTO48847qa6u5oorrmDatGmo1WqefvppVqxYQWJiIh9//DGLFi3i3//+N1u3bmXNmjUsW7YMtVrN3XffzciRI5k7d25fPx6FTuCxOzn28Rqq0nNCJioEECDgdG1G9NhULMfzQveRZQSh9QAEWZYRUCEIArIs46yoxTA9AkQRQlSN6A8IgoC9vJbD768ietQQhs46j5gxQ9FHdF88cX9lQBncvtTDffvttwOr09LSUjQaDXq9nujo6Fb1cNevX8+8efMwmUwAXH/99axYsUIxuGcAoseLrbSawi37qEo/gcfmbNPfqtJqkEUpUPGhOdFjhpL7zZaQTgBZkkFQhTTUTUii6HctNBr76kOZxI8bRlVWcafvqzcRBIG6nBIsJ4oJS4hmyPQpRAxLIHzwILRhxgG5wTZgDG5f6+E2tb/99tvZt28fd955J9HR/jCd1vRwy8rKmDZtWtAcKioqOnXfBRv34LEqcZItaUsXOJTWbssqubIs+/vJMl6HC4/VgbvOiq20Cp/Li6AS/LXHhCY98NbdQeFD4vFabTirQkcoCLKMJsyI71SXgywjqFTtaoP5XQtqJFGkPruIUTdfQVVGAZwBm1OC4Bddz/pqE7IoATKGmEhMCTHozCa0ZiMag87/nAT/w25pivuPca7NzGfqn34R8tyAMbj9RQ/3o48+ora2lrvuuouvvvqKG264AQith9vaHDrDoClpiB5v+w0V2iXot64SEASV36hqNae92lJpNeR+uw3Lsbyg65hTErAVVaANNzH6liuwFpRRtP7HwGz8kQoh5ncqsgwCqLV+wXBXjYVRc6eRMufC05p3f0ISRWSfiCz5vwybvkX7267H4Isnt3puwBhcaF0Pd+bMmezYsYNt27bx97//nbVr13ZID7fpQ3aqHu59993HnDlz+NOf/hS4ztq1a7nkkksCimFz5szh2LFjXHLJJWRlZTF9+nQgWA+3tTl0BmNMRBeelEJv43N5UKvVuGqCV7ix40dQunUfSdOnkPP5OlIuv9BvYU+xIh0x97JPRGiMj606kMnweTPQmgfmq/mZSv9/3+ggfa2H+9///pePP/4YAKvVysaNG7nwwgvb1MOdPXs2K1aswOFw4PF4WLZsGXPmzOnlJ6fQG9hKK5FECckTrE2gMRnwOd1ozSa8DXYackuITE1u0b+jqzhJFJFFCdHpRvL53QsK/YcBs8K99NJLyczM5IYbbgjo4VosFv7whz+wePFiXnvtNQRB4Pe//z1Dhgzhtttuo7CwkIULFwb0cC+44AIAXn31Vf7yl7/wzjvvoNPpeP3111GpVLz99ts4nU4++uijQL0ynU7HF198wYsvvshTTz3F/PnzAbj55pu5/PLLAXjuuee4//77A3q4//jHPzAajcyaNYusrCxuuukmvF4vs2fPDlSKUBhYVB3M8v+l2VuY1uwvJimo1ciif8OrPruQQdMmU59XerKz1Pi21ZGQQUlGVskIkowlMx/J6yVqzNDuvBWF00DRw1VQ6GFkSWLns+8SN2EUed+cVA9LvHASDfmlqDVqTAkxVO/1i4kPv24WOV9vosmRIAj+WF25E3G6Kq0GlU7LyBvnkHL51J9sZld/Q/ktKCj0MC6LFcnjw32KSlhYYhzOsmrMQxKwF1e20rtxYdtJP6wsSUheH6Lb01jtV6E/oBhcBYUepnz3EYxx0djLTgqRC2pVIMXXOCgaVzNZRtHtQa3XntY1ZVECWaY+t5i6jPzTGkuh+1AMroJCDyJJEqU70wlLiA0yuJEjU6jL8W9oCSpVkL6Co6yasKT407+2T8RyJAddeJhSvaGfoBhcBYUepCG/DGdFLWqTPiipITptGPWZ/siVU42hvbSqhcGVJalVbdxWkWVElwef20N9Tv/OOvupoBhcBYUeQpZlTny92S+j6D8QOKfSqJG8/hCxU+NkXVUWjIOiCQoGk+Q2FblanYMkYc0vpfT7/cFauwp9gmJwFRR6iIaCMupzilpU3zXERuKsqQMa43AdwfoKcqhsR+hy9mrNoSw0Bh0H//4ZBRt2UbHvOHW5JXisdkWdrpcZMHG4Cgr9Ccnr4+h7K5B9EmFJcdhLTkYhxE0eQ9WBDAAMMZG4Go1vTyG6PKgNOmqP52HJLAikxRrjo4mdOJLoMUOJGJaEITbSrw2h0GMoBldBoZuRJYkj763AXlaNIAiYhwzCcjw3cF4fZcZj8Vd9MMRGhiwq2ZRa3nwBGvDjSp1flbqq6zBEhOFuUjUTBFw19ZRs3U/xln0IKhWmhGhMCXEYosPRRZkxxkQSlhRHWFIcat3pRU0o+BmwBnft2rUsXbo0kBF2KqIo8uKLL7Jt2zZEUeSXv/wlt912G+AXIH/iiSewWCyYTCZeeuklRo4cCfgFyL/66ivUajUxMTE8++yzDB06lLKyMp544gmqq6uRJIm7776b6667Luia6enp/OxnP+P7778nJiYG8EsyulwutFr/P+j58+fzq1/9qqcei0IP43N7OLzka6rTswNuAUNcFM6qOgBUOm2Q2JA+JgJbXkmLcTz1NvSRZlx1tpMHJRmhWYWHzlB9IItBUydQsvNIi3NNWWyO8loc5SfD0/wrYYidNJLECyYSMy4VQ1R4p6+tcJIBa3Dbo7cEyJvEaGpra3nmmWfwek9+2BwOB4WFhezcuTNgcBXOPGRZxtNgp/SHQxRv2YertiG4eCRAYyRCzLjh1B47udrVRYThsbaseuCsrMUQHx1kcOXGsZr+7AyeBhu6CHMLhbq28K+EofZoLjVHclAb9CScO5a4SaMJGxyPMSZCWfl2kgFlcPujADn4YzEfffRRHn744aDVa3p6OiaTiV/96lfU1tYybdo0HnnkEQwGQ4fv2VlTr8gz9iRN7/Sy37DKooTo8eC1u3BWWajPLaY+txR3vQ3Z6wtYwqZ/CyqNOuj3EzE8mbxvtoS+RjOcVRYiRw+l7lTxmc7oKpyC12pHq9PidXs63RdAdLoo3X6Q0u0HkfF/WUQMTSJ8aALG2Eg0YUa0ZhMag87vC1Y1Kyr5E1Is89RZiRk3POS5AWNw+7MA+euvv87kyZMDEo1N2O12pk6dyhNPPIHRaOQPf/gDr7zyCk888USH7/v4f77FUVHbfkOFLhPIrBWERtFxFSqdDo1Bh6BSEZYYS1hibMi+YUlxOCtrA8ano8bSXVuPITYKkDHERjFk1vlIPh9IMiVb9uG1Ojp9H9WHskk4fxxOi639xh1FlrEWlNNQUIbk9uJzeZB8Pv8XjnTyy+qnROTIwQPf4PZXAfLY2FjS09P597//3WLOs2fPDjLi9957L/fff3+nDO45D/+sw20V+oY9L7yHxqDHPHgQ9tKqIHdAa+s+WZQQVAI6s4lhV11E7mdrwSeiMRlInX8pFfszsLWhvxAKT4ONsOR40n4+F5V2wHz0zygGVBxuawLkK1as4OKLL2b79u0sWLAAt9vdIQHyU8+BX4D8xhtvZPz48bz11lvodDrAv0lns/lXDs0FyL/66ivKy8u57rrrWLhwIQB33HEHhw8fZtOmTezZsydo/hqN8kEYSPic7sBGVPS44dQePnHypCC0ufgTBIGUK6eRv2wDNMbx+hwucj/7jtixqUSE0M1tD0+9jeoj2Z3up9A9DBiD218FyN98803WrFnD8uXLA3P68MMPmTRpEuXl5bz00ku4XC5EUeSDDz5QCkgOMKxF5Xht/k0xtV6Lz3EyvVcfFY6nztpqX02YEY+lAcnZsux64cqtRI8aQvjQhE7Np+ZoDo6Sqk71Ueg+Bsxyqj8LkLfGrbfeSlFREddddx2iKDJ16tSA71lhYFCx5xgIArpIs9+4NlvS6mMi2kx6MCXHU7BsQ6vnC1duJfX62Yhub4f9+PaiCtQXn+2v9KskOfQ6igC5gkIPIYkSO//yFq6qOpKnT6Fq71Hc1SeTHAadPwF7SQWO0pYrTkGtYtzd15G15Mu299gEgRG3XEnJ9oO4alomUIQidd50IkamEDd5dGdvSeE0GTAuBQWF/oa9rApXo4HVR4XjrmkIOm+IjcTdipGMGjOM6r1H29/hl2XyvljHkEvPQRdp7tC8LJkFNOQq6mF9gWJwFRR6iJKt+5AlCW24CXedtUU4mFqvRWwlJjYqLRXL4WzoQGkcWZTI+3wdw664EI2p/Rju+hOFaM0mf5iZQq+iGFwFhR5A9HipOpCJIAjETR5N9b7jneovqFVIXl+H8wUkr4+8L9YxfN501Hpd241lcNXUU9nJOSmcPorBVVDoASr3HsNt8UcgGGKjcFXXdbivIS4KV5Wl09cUnW7yv9rAiAUzUBvaNrqVe4/hrm1os41C96MYXAWFbkYSRfLX7EBQCRgHxeAoq+pUKm5UWir1mfldurbP5iD/qw2kXjmN+ClpJ1NqZfwl1EUJWZRwVVsQVAJui2J0exPF4CoodDOl2w8G6pfFT0mjcndLhS6VXovoDe1DNSbE4Kyo6fL1fXYnuZ+uxVNRQ+pV00idewnJM6YQNmQQsk9E8niR3F5qj+aQv3o73malfxR6FsXgKih0Ix6rg7wVW/26CWqVX7zG0TJxwRAd0WqEgsDJlF9Z7nKhBxpyiihYtpGCr9ZTtfMgerOBUTfPIXqsX9ipal8G2jAju59/j6LNe7BX1CgbaT3MgEl8OJXe1sO99dZbcTpPrhTy8vK4+eabefLJJ1mzZg3vvPMOsiwTHR3Ns88+S2pqaqBtQ0MDP//5z1m8eDGTJk3quYei0KNIXh8H3/gEd70NQRAYdO44Kne1XN0C6GNCC48HEiSakGW/W+A0w+V9VgeWQ1lYDmWReNl5aEwGqvZn4iivAUkkc+kaBJUK85BBRI5IIXxoAvqYSMzJceijwhE6EC2h0D4D1uC2R3fr4X766aeBsTdu3Mgrr7zCgw8+SFVVFU8//TQrVqwgMTGRjz/+mEWLFgXEbLZu3crixYspKWkpQq1w5uB1ujj0xn9pyCsNiB+FJcVTtmVfyPaG2EgsR3NaHDcPTcJWUNbsSJPB7b65lm/ZS8rc6TiSqynfcYiRN84mZ+X3IMvYiiqwFVX4ryzLqHVaotNSiR6XSlhSPMZB0egjwlDrdYoR7gIDyuD2pR5uE3V1dTz99NO88847hIeHEx4ezo4dO9Bqtfh8PkpKSoiKigq0/89//sPLL7/MQw891PMPSKFbEb0+3PVWyncepmTrPtx11oCxjT9nLFX7j7e6Mm1NR8GckkDZxl2Bn2UZVIKA3M0ah8VrdzDyZ1eTsXQNddmFRI0cQn1u8Je+IAhIXh81R05Qc+REQNBJazKiNRvQR0WgizSjCzehDQ9DF25Crdeh0mnQR4ShiwxHYzL4j2nUHRY+H8gMGIPb13q4TSxZsoRLL700yDWg1Wo5fPgwv/nNb3C5XEFGOpRsY2fY+8J7gfItQMsP5qmf0zZeTTud5d2sfcuuHZ9Hy67tzOOU88E/tn3dNu+xo/cvy/4qvIKAxqhHazai0qgxxkUBIGjURI1KIeuHQ60Kbwsqlb9G2Smo9VqkU5Mhumin1EY9g6ZORhcVjqeugcqd6YFEC1mSKN+2n8EXn0XJjnRG33aVv4pvB+ulyZKMq7a+1XpskseH6PYg+UR/PLFGjUarAZUKQa3y+7hVqq47qPs50195JOTxAWNw+4Mertvt5vPPP2fZsmUt5jdp0iR27NjB999/z7333suGDRuIiIg47fs+7/FfnvYYCt2LLMsc/edXCFoNqtYMrkbdo7YmfMQQBk2dSNn6H3FVWTDERzP8+tlU7ErH2riStRWUEX/+RLRhBoo27mLkdbNImj5FWYn2IAPKCdOXergA33//PWPHjiUlJSVwrKKigm3btgV+njFjBmazmcLCwu5/AAr9guoDmVTvz2jbcIVYTasNupar2y5gHpZEzKRR5H2yJpBA4aqykPvJamImjCJ8+Ekd3bLv95E4dSLeBjtVBzJChrApdB8DxuD2tR4uwO7du5k2bVrQMY/HwyOPPEJBQQEAP/74Iz6fLxD1oDCwsBWVk/GflUhi25V1Q7k2wlISsRWWn9b1NWFGEi46m6LlW0KeL1qxhUHnT0QX5X8TdFXWYoiJQABq0rNpyC3Bcjz/tOag0DoDxqXQ13q4AAUFBUycODFoXikpKTz33HPcf//9CIJAREQE//jHPzAajb37gBR6nNpjORx7dxmeBnubq1ttRBjehpZ1xcKHJlK1p+UKU5blQLXe9ki5+hKKlm9u0x9d8PUmht98JdlLvwWgcmc6CeeNo3zvcYo27EJt1KM26IgY3vmKEgpto+jhKiicJh6rnez/rqXqQCZSByooh6cmo9FpqD2UFXQ89bqZFH69qUX7JuPd3kc1Mi0VfaSZ6l2H252DOTUZ88gUSjftBmDELVeS8/VmUKuRZZnUedOJOzuNyBFD2h1LoeMMmBWugkJv47Hayf16M1V7j+GxOTq82WSIjcSWX9rxC8myX6axHYMbd+548hpXre1hyy8lasIoDPHRuKosWI7mEJ02DMuJYgRBIH/VNkSXB8nrIzotteNzVWiTAePDVVDoLUSPlxNfbmDXE29RsmUvXruzUzv7hphIXNXBamCCWgUhwsSgWZn2Nog5O43agxkdngNAydodpFx5EYDf4I4bETDqgiBQvHE3Rd/tpObwic6HDCqERDG4CgqdoD6niF1PvU1Bo+hLV0KoVDoNkjvY9WBKjAtZaqejRI8bQX2IzLW2kEWRim37SZ55PsgyrspajDHBoYrVh7LI/nwd1QcyEDvgLlFoG8XgKih0AMknkrfiew787SNcVXWnF6sq08I9YE5N7nKEQuSYYdRn5nWpry2/FG2YEUNcFJU7D/H/2zvv+CiL/I9/nu0lm2TTE1JI6E2KVFEBkSYEEBA9OfXAO+4U23mnP7CBCIpdQCwnSBFBEAjY6NIiGHonlJCE9LbZZHt5nvn9scmSze4mu8lmU5j36xXNzjPPzHee3XyZ/c7M5xs5sIeTbfr8Elz8eivyD52GvhEqZhTqcCmUerEYjDi/bAMyU373aFGsfpy/nkvDlTAW15F5tw7VsNA+XaA67V04oSa5O1MRN2ao7RQaIeALnZd2iJXFtY07cfW7X1F6/hqsRmcFNEr90EUzCqUOdAUlOLd0AwzFNsFun+AqVMug/mPXLlTDJGFKm8xjI2KsxMqi6OgZRA/rj8I/ziJqUE/k/XHO2USGQfmVTKgu30R4366IHNQTisQYSEKCaMp1D6EOl0JxASEEeQdPInPb7zA3MFbrCoFcCotO71Reb+s2FRunyXHEPXehYM+fjbZLezMPyp6dAEIgDgm0LeC5UQNjGAalZ6+i5Ew6eHw+AuIiIG8XCWlECESBcggkIjB8PvgSEYRyKURBARDKpfXnWrsDaLMO1996uDqdDq+99hoyMjLAcRymTp2Kp59+GgDc6uEuWrQIJ06csNtUVFSE8PBw/Pzzz038dCh1YarU4sr/tqE8PctJc6OxyCJCYCh0jIOKQ4NgdCNGXg2Bs2oYw+OBLxSCNRh9YlvuzlQkPTYWRScuIbRHEsrqOXHGMAwIx0GTXQhNtmP82b6rgRDw+DyIQ4IR1DEOQZ3iIA1TQh4bCXGQ/I6TeGyzDrc+fK2H++2330IikeCXX36BVqvF+PHjMWDAAERHR7vVw33jjTfs9uTm5mLGjBn44IMPmvGp3NlYdAZk/ZaKwtQzMGs831frDdLIEKgvO+4mUCTU1sD1DGXPjlBfuO4r00AsVuTtPorokYPAcQRllzPr34/mBvuzYxgQAhjL1DCWqVGUdgGEEAgkIii7d0Bojw5QtI+GLCYcgjtgBtymHG5z6uGyLAudTger1QqTyQSO4yASiRAeHl6nHm41b775JmbOnIlu3br54Um1fAgh4CxWsEYzrEYjLFoDWIMJrNkCUiWNyBPwwROLIJBJIAqQgi+2HUnlCTyLJ3IsC4tGj4qMXBQeOwf11Vuw6GyOtqkUsyQhQTDWkNMEAHm7CJQ3wHEGdUlA9uY9PrLMhrFYhYL9aYifPMJ2EOKa70WWGIYBa7Kg9Ew6Sk5fAUMIREoFlN2SoOyaCHm7cEhCgyGUSz1+L1sLbcbhNrce7t///nc88cQTuO+++6DVajFjxgx07doVQN16uIAt60N+fj6eeOIJr8d9Y/MemCq0NWJ7xPF/NRdTqn4ntV7bCohDkctFmDrvt/3ifH+Ndmu3WaM9YmVh1Rlh0elh1Rth1ZsABrbFGJ4tPxjDs+mo3s5ES0A4AsKxtmy0HAEIIJCJIJBKIJBJIJBKbLHPKliDGWatDpZKHViTGTyhADyR0HbwAIBAKnYetw/hCflOz4ER8EHcJJQUBsoRkBADzmKFNjMXDMcBBBAqZLBqmyb5o7FYhRurtiPqwUFQdm0PwtT62k/I7feOEKguZdiTZjYU1mRB6dmrKD1zFZyVBbFYQUAgVgZCKJOAL5VAIBWBJxTaFi+r/1FkGDA8pkWFJlSXMnDvp/91ea3NONzm1sNduHAhhg4dipdffhmlpaWYOXMm+vbtizFjxgCoWw937dq1+Oc//+mkPuYJHaeP9voeSvNhKClH1vYDYGr4XB6P57xoxjCITx4GzmyB5kY2BCIh2k8cjsrMPKjOX0fEvX1R+uf5JtPUJSyLgr1/AiAQBgaALxICADir7VsHa7KAYQCRMhARQ/ugw8MPIKhTPHhV9SiuaTn/LPiA5tTD3bt3Lx599FHweDxERERg7NixSEtLq1cPV6VS4dy5c06ZIyhtE2OpGqiRVUEgk8Cqdd61EDf+PqhOXkTBziPQXr+FiksZyN68G0KJCMruSRAHKWB2kW3Bp3AcAAZWnQGm8kqYyith0ehtGRyqZplmtQa5vx7BlaXfoyTtAgxFjZvptnXajMNtbj3c7t27Y+fOnQAAvV6PI0eOoHfv3vXq4Z4+fRq9evWCTCbz5+OiNBPabEfRGnlcpNMJM2lUGFiDEYa8YtSm+MhpBHdt3+CTZd7CAB7t8WWNJlz9ZivUF29Am9M4Td+2TJuSZ/zf//6HH3/80a6He+vWLbz44ot499137aGCiRMnYubMmbBarXj//fdx9OhRux5u9TaurKwsvPnmmygvL4dIJMI777yDHj164K233sL27duRmJho77NaDzc3NxcLFy5Ebm4ueDwexo0bZ48j7969GytWrLDr4c6bNw/du3cHAKxcuRKZmZlYvHix/x8Yxe9c+nIzSo5fsr9uN3IQig6dgFV3Ox6bMGUk8n8+6PZUmzBQjsgRA226t02dFKw6Tsr3cG7G46Hz0w8jqEcHSEKCmta2VkibcrgUSkuGEIK0ectgLLp9hDch+X5kb9lrf83weUiYNBw5W/e5bYfhMYidNAJ5u46CNTT9EVuGz3N7CMIVggAZEh8bi8ihfcDQE2gOtJmQAoXS0rHqDLBU6hwLa813AjsloDI9y20bDMMAHEHRoVOIvLdvE1jpDCHErXSkK6xaPcpOXkbhoVNNaFXrhDpcCsVP6ItVsOpunwrji0VgjY5JI4O7JqIyvY74bNXpXrOqAuLQIHiWeKeRVG238wbV2XRwVit0NJ7rAHW4FIqfKL+U4RBylcdFQnfL8YQZw2dA3CSgtC1g3X6tzcqHPCHaZd0mwcvoY84vh1FRdTyaYoM6XArFT6jOX3fY4x0QF+WQaocvEdUdk62lFlZ26jJC+3WDP2a5pOqQiTdY1BqYVGqUHK8/x9qdAnW4FIofsOqN0Nc6jSUMkMKiuR3TVSTGQnsz130jtcTCiMUKnsB2dom4+fEZhNgO+HnZaP7eP8HqjOCsdaeNv1OgDpdC8QPllzNgqX3AoZbzCkhsB11mnsv7a4cTqtFm5iGgfTu3/frS8RJCAOL54hkAcGYLdLcKUHjopI+saN1Qh0uhNDGEEOTuS3MIJ/BEQnAWx322AokIrLtMCjzGZSy0/MI1KHt3Rn1u1SezXi9DCtUUHjkNhmF8lC2jdXPHO9y0tDRMmDChuc2gtGH0BaWorDVzVSREQ+MUPnDt0Oo62sCZLF4Lezck7GCvT+C14yUWKzQ3c1Fw6ET9lds4d7zDpVCaEo5lkb5ym1OWXkVSrKPDZRj3i1JVe2/doc8tgjw2ssE2uov/unTKHAfCcTaJTI7zeOdC8R9nwePz7/hZbptRC2sMer0e//73v3Hz5k2YTCYsWrQI3bp1w6JFi3D69Gnw+Xw8+OCD+Pe//4158+ZBLBYjPT0dZWVlGDp0KN544w0Ihe5VkmbOnIlx48Zh+vTpAIAvvvgCarUaL730EhYsWIDs7Gyo1WrI5XJ89NFHSEpK8tfQKU0IZ7Hi8jfbUJmZ56RAxxcLwepv78kVKwNhLncjRuOcyswB1Zl0RI0cBF2us/aCryG4nemBsDajmCqJRNSUzqx9H8tCczMPhAAxIwc1uZ0tFepwARQWFuLTTz9F7969sWbNGixfvhxdu3aFyWTCb7/9Zk/Bc/z4cQDA+fPnsX79egiFQsyaNQubNm3CX//6V7ftz5gxA1999RWmT58OjuOwZcsWrFy5EocPH0ZgYCA2bdoEAHjrrbfw/fff48033/TY9qJj52DWOKtNUfxIDQ1gQgisBiMqrt+COj3LNgtk4JAaB4xtr21NHyqJCoWx0DkFOcPU2JrgIokkALAGIwQySZUhTaytANh2LKDmsMlt51ttJ2N/Zaf48GnI2kXi1q4/wDA8v5jaHOgLStHlqWSX16jDBRAXF4fevXsDALp27YqtW7fi6NGjmDdvHvh8Pvh8PtavXw8ASElJwcMPPwy5XA4AmDRpEvbv31+nwx0xYgQWL16M9PR0FBUVITY2FklJSUhKSkJcXBy+++47ZGdn4/jx4+jb17vjmsIAeWMStlJ8BMMwAI8BTyCAUCFDxIAe7usK+Cg7dQU8Ad8+85XHREB1wsV+1arZZMR9/SCNDoNAKkHuL4dsmXprYCgshTQqzKXT9jmE2AThPc2KUSVwTzgW+rwi8OVSyBNimtLCZiWkZwe316jDBRzCAQxjWw0WCoUOH6iCggJIJBIAcJBlrBYurws+n49HH30UW7ZsQXFxMR577DEAwIYNG7B582bMmDEDycnJCA4ORm5uHfswXRDSq6NX9Sktg5vXdjpkKRApFbCoNQ51mKrU6YpO8WB4DHI27wYj4KP9jAnI+O5nh7iu6vQVRNx3N/J2pvrFfkKqJqiepI6vMdstPnoWHZ6YgMjBvVpUlgZ/ceeN2EOGDBmClJQUcBwHs9mMF154wZ5hd+fOnTCbzTCZTEhJScGIESPqbe+RRx7Bvn37cOnSJYwaNQoAkJqaiocffhiPPPIIEhMT8fvvv4N1c6yT0nbgLFboamW5dfk1heGBEIKwQb1QUrWPlVhZFO3/E9HD+jtUtWr1ECpk8Iu2AlAlZuN9X8TKQpddgJITF31vUyuAOlw3PPfccxAKhZg0aRImT56MYcOGYfRoWzobiUSCxx9/HMnJyejfvz+mTp1ab3uhoaHo2bMnJkyYYJ9RV8d/k5OTMWPGDPTo0cOeCYLSdtHnl8BcUelYWGsXQrXwd2CX9qisleVXn1sESVSYUwzUVFoOcZjS9wa7wWWeOg8oPHIanMF0R2osUD1cL5k7dy46depkFyv3FJVKhWnTpuH77793SF5JufPI2rYP2TsO3g5Z8XiIHzcUOdtua+AyPB4IxyFh+hjk/LjbWcaxSyL4AVKUnbpiLxMGyhE+pA/ydh/1yzgA77Vyq4l5cDCCe3VEaN87K0s1jeH6iMcffxw6nc7ltWnTpmHFihV4/vnnqbO9wyEch9LTVxzWByShQTCWlttfV8dueSIhOLPZ5Syy8mom4h8di7JTl1E91bVU6iAMVsBvuxVQFcvliGex3BoUHDwBeUK0UzLXtg6d4VIofsRYqsbJeUvB1UiLruzRAaxWB801W9676tlt6MCeMJeo3OorxE56APl7/oDVcFtTN3xIb+jyiqC7VdS0A6lBQ2e57UbfA2XvzlD26tQEVrVMaAyXQvEjRUfPgq112koSEQJjlZKYbd+tTSAmoL17MRsAKDt5EaF396hVdqmqzH/zKMJxXmWEqCb/wHGYVBV3VCyXOlwKxU8QlkPx0bNOX6GFCjksGp199xSxHeeyObI6MOQVQxoTjprO1ZbCnOffXGIEtmPJDdBY0OcWQX35ZhMZ1vKgDpdC8RMV17NhKHJ1MKHKUfFuayYEtI+BPivfRd1ad7KcU0Zd1enLCOvfvbHmegchVTNd75xu/oHjMJWW3zGzXOpwKRQ/QAhB5pa9rr/pVx2VRY3UYUHdklB5JcNFZUc017IR1CnBoUybmYeAxFj4M6wAwOZ0WRaErXK8HjhRYrZCn1eM8gvX/GBg80MdLoXiB9SXb0LrIh7L8PkAy9lCCDUclEAmgVVnqLfdivSbCOzWAbWdq/ZmLhQd4hptd4PgOHB2x8vVm4Qy//fjMJXeGbFc6nAplCaGNZlxfe0OmwOqhSQsGKzB6DAbZAR8l3VdQSxW8ITO8drSk5cQend3+H2WW0X1wQ3CVjtf93KOxGyBobAEpXdA7jPqcP3IhQsX8MILL7i9vnTpUmzfvt1/BlGaHM7K4tJn62EoUrm8HtyjAwz5JQ5uMSAhBroszzU1LBVaiALltTrmYKnUQqQMbIDVvqXa+XIsVyPc4Fin4PcTsOpNbjMWtxXoPlwKpYkwqTW4/PlGVF6/5XJzP8Pnoed/n0L6x2sdwgfRo4ZAdfwCLBUap3tcIYuPhjQ6HCVpjjNEgVyK6AcH49aOA2hJWojVmrq1NXQjhvZBULckRN1/d/Ma2ITQk2Z+JC0tDW+//TbCw8PRo0cPvPrqqzh69Cjmzp2Lbdu24aOPPvL62DBrttS7fYjSRNhlB20r9MRihdVggj6vGMXHL6Di8k1Yqhypq3lNzMhB0GXlO8VqhUEBHjtbANDnFCJ0YC8g7TxqOlarzmCTjJRJwOrrSL/eDFRr6FYrjjEMg+LUswjs3B66/BIIA2S3JSDt+rqtA2JlIQyQubxGHa6f4fF4+PDDD/Hwww+jX79+WLhwIT7++GOEhYU1qL0zC750s9WI0nQw9v9VC24zfNveV55QAIFMAp5QCEl4CCThrluQRIRAIBK5XRhL+MtDUJ+/iopL9e9UsO9ycEHRwZOIHtYfebv+qL+d5qJKuB2EQ3HqaajOX4X6SqZtIkGqswU73NBclnqENDIU/d91HTqkDrcZiIiIwDvvvINnn30Wzz//PAYMGNDgtty9sZSWDWu24MzryxE+qJdDOU8shDQqDIW/HETY0L6ouHQDnkzvzBUaiJWBMJU7zozN5ZUQBsjAE4s8XohrTiqv30KHJ5OR9Ph4SMP9p3zmL+iiWTNx48YNhIWF4fz5881tCsXPEEJwY/UOGMvUTqnS5fExYECgz8xF5cXrCOqS6FGbFZcyENTNdS684j/OIGJI70bb7S9yd6ZC3Ub35VKH2wycP38e69atw9atW6HRaLB27drmNoniR8rPX0Pp8QuQRobCWOy4eyEgKQamEptyWOXlDAR2TfToAIEhvxiymAi4+rptyC+BNCrUJ7b7A1NJOYwlaqjaoNOlDtfPGI1GvPzyy3jjjTcQGRmJJUuW4IsvvsDly5eb2zSKH7Bo9bjx7XZwFiskkaEw1MpBJmsXBV2mbUsYZ7aAJ3KfDdobyo5fRFi/1qM9m7srFeZyTZtLq05juH5k0KBB2Ldvn0NZfHw80tLSAABLlixpDrMofoKwHK4s+x5GVQUYhoE0IgQV56461BGHBKEwI+f2PRYreAIeOLb+Wa5JpYYkLBjGUud065qMHIQNugulpy67TWXeomA5FB0+BcJxiB7e8DWOlgad4VIofiJry15UpGfZ9+TyJSKwxtvbtXhiEXgCPkw1xMj1OYWQx0Z51H7FxQwEdXOfMbbs1CWE9XefTbilUXktG5ZKHSpvepdYtSVDHS6F4gfKTl9Bwd5jddYJaB8Dc5naYU+CLisP8sR2HvVhLC6DNDIU7rZNVV7NQkD7GPAEfpRubCTZ23+HIb8ErMlcf+VWAHW4FEoTo8spxPVVKU7C47UXwwIS28FSqXUoM5eWQxSq9DxZYz3hgoK9x9Bu7NAGJX9sFqwscn89jNI2kuWXOlwKpQkxFKtw8aO1sGgc893xpWJY9UaHMmGQwuVBCG8iroaCEsii3Zy2AGAqU0OXnY+IoX28aLV50ecVo/zcNVv8uZVDHS6F0kTo8ktwYfE3MKmcF7GkUWEwFJQ4lAkVMhhrldkgYDw8XVVx6QaCe3Sss47q9BVYK3VImDISgZ0TwJeIPWq7OSlJuwDtzTxUXMtqblMaBd2lQKE0AWVn03FjVQpMao1L4RppdBg06Zn213ypGHyRCMb8Yqe6ZrUGoiAFTJWus0I71C2vhMiDzL2qM1egvngdgV3aI+r+fuBLxWAEApT8eR76PGcbWgK3fjoAnkgAnkgERfuY5janQVCHS6H4ENZkRsZ3v6D0z/NgzRa3KcAlYUqUlJy2vw5o3w6cxQJTibOMozG/GNJ2ETBVZjpdcwUhxBbLrWdSzFmsUF+8AfXFG7YChkHsxOHgCQXQepDex98wDIOsLXvBGs0gHIvApGYSWG8ENKTQDMydOxerVq1yKqd6uK0X1mhG3u6jODX3MxQeOum8QFYLhsc4ZLqVt4+BVaMDqZE+vRpDfjGkMREe26LLLkBAQgNmgIQgd8cBhA3oAYFE5P39foBhGOT+ehi3Un5H+cUb4KzOz6slQ2e4LYgXX3yxuU2geIHVYIQ2Kw9Fh09DfSkDpvJKm86rJwcLas0+BXIpOBfOFgAsag2EwYG2nQUetF15JQMR9/dv8Cw17+dDiH5wEHJ+PtxiD0mUn7sG9eWbiJ80AspenSCPjwLPn5mKGwh1uE1IWloaPv30U8TFxeH69euwWq14++23Heq8++67uHr1Kr744gu88847XuvhUpoOQgiIlQVrMsNqMMFSoYGhoATazHxUXM+GuawCZo3O7mA9crSwCY+7ymxQ18KYp4tmgE0HVxAgQ31xXHdYNDqweiPESgVMam39NzQTxGJF9pa9uJWyH2GDekHZsxOkUaEQhykhkEvBF7Y899byLGpjnD9/HvPnz0e3bt3w7bff4tNPP0VsbCwIIVi4cCGKi4vxzTffQCRq2Fe4y0u/d1wFr/l3WWOvpds/15r7Md3szXSbFMTh3pq/ui73qH13uqcOZnpij5djsd9DwFlYWPUGECsLhscDT8AHw+eDEQrAEwntjpUnEkISGuy+PTdIo8NgLCqzu0K+TAJWbwRPevszENyvO8yqCuizqhNPMmBA4F751hHWYIRAKgFraJjwePGhU4gZfz8Kj5z2+B+S5qQyPQuVVzLBmi3gTBZwVit4IgEEUgn4UjHA8MDwGDA8HsCrFjZvCksYMAzQZ8EzLq9Sh9vExMTEoFs3m2hI9+7dkZKSgtjYWKxZswZlZWXYvn17g50tAHR/cYavTKX4kaufbwRTdeJL0SEOhvxi8KJtIvTSuChIIkIQ1L0DcotKwBrMYE1m8MQisGbPYpbl569B2bszyk42bO8qZ7UCHIfER8cg4p4+DWqD4gxdNGtiJBKJ/XemRirsAQMG4LXXXsO8efNgsbQtRSRK3RBCoM2+nTJd3j4GVq0BpjI1ACB00F0o2XcUJXuPImxIXwCAsbCk6tiuZ+hvFUAeH92oE2WFh07AqtE3+H6KM9ThNhM9e/bEX//6VygUCnz++efNbQ7Fj1h1Blhq7KnlS8QQyCWwVDlcRsAHsbIwFZVCHBUGgMBYUApJHSfIXEFYzvYVuqF2VurAsVZos1veFrHWCnW4zQjDMHj33XexYcMGnD59uv4bKG0CU0m50xFecZgSpjI1xBEhMNWI77JaPQRSMYxFpZBGeZf3Tn3+GoJ71X3qrD5Kjp5FxeWbjWqDchuaJp1C8TN5O1OR+f0vYBgGggAZwofcBYFEgryUvQgddBdMeUUw5hQAAAI6twdPLkX5mXTEThuN7C17vdqqlfDYOGT/uKdR27uSZk5G+JDeEEgl9Vem1Amd4VIofqbi0g37yn9AYjtoM3JtqcIJgSw2Eoa8IntdXcYtyJPi0NBMtVadAQJZ4xyl+sJ1lB1vG2pdzQ11uBSKH+GsLPQ5tx2qPD4auuw82B1qrRNoteOw3uzHBYCSP84gvJG7DFSnr9hsoV+GGw11uBSKHzEWq2BW3943zRMJwZkst7eEEhfbQwkBwzCwVGghDAzwqj+zqgLCYEXj9tJyHPR5RVBfzmh4GxQA1OFSKH6l7ORFcCznWMgwIATgScTgXBxUMBaUQBIdDkNBCaQx3u1UAIDSY+cQ3sg06YUHT8JU7CysQ/EO6nApFD9BOA5lJy7aZ5ui0CCYSsshDAyAtUIDaXQ4jAXO0oi6mzkI6BAHY0EJpF5uDQNse3IlUWHgixueAZgzGGHV6lGZcavBbVCow6VQ/IaxWAVDDa1ZRWIstBk5EIcFw1RaDklMuEsBclNhKSSRYTCXqSEKCW5Q3wW7/0DMuPsadRAib2cq9LcKaSy3EVCHS6H4idyfDzrINsraRUKfWwRRSBAsqgpIqvbgOmFXCSNV//Pe4VkqNNBl5iGkX7cG22/V6KC7VdDg48IU6nApFL9gUlVAdfqKw+IVw+cBHAdxWDCMpeVg+HyXKmK+QnXqEiRhSig6Nly4u3Dfn7BqtDC4EEqn1A91uBRKE8NZrbi6bINDIkmeWAjWaFsgE8ikYGsllKwNq9NDIJeBcJxNvLyB5O88gqBuSQhIiG5wGxnf/YzKyzdhUlc2uI07FaoW5kPS0tLw0UcfISYmBjdv3oREIsGSJUvwzTffICAgAFevXkVhYSG6dOmC999/H3K5HOfOncOiRYtgMBggFArx6quvYsiQIc09FIqPMFdocPXzH1B5I9thdqvoEAfN9Wz7a6bW/2tjyCmELC4SpmIVJOFKGIrLG2xTbsp+xE0dBUIA3a0C7xuwsrj+zRa0G3cvQgf0REBiLHgtUHu2JUKfko+5ePEi/u///g/9+/fHxo0b8corr6Bz5864ePEi1q1bB4ZhMH36dOzatQsTJ07EnDlzsGjRIgwfPhwXL17EvHnzsGPHDvA8FB3J25kKq64eRafaIT+nGCCp+3LtBuptr/bleu6vp32PFmnq6YM4N9qo9pyr19Ae5jgYi1TQ3SoAazCCJxI6ZcZVdE5EwU+/g4HNyboTJa/GkFOA4AG9oM3Mgyw6HMZGOFwAyN26F3HTRoMR8BucNLLwwAkU7P0TAoUM8rhoiIICwJdJwPB4YPg8MDUzMLR8SV2fUXzoFAYsn+fyGnW4PqZr167o378/AGDq1KlYuHAhIiIicN9999l1bzt37oyKigpcu3YNPB4Pw4cPB2BTEPv555+96i9mzD2NWnmm+AgvDxawBhOK9x61OVkG9oUzd1Sn2THkn0H4sAFgqhM/NoLclH1I+Mt4yNrHIKhbUqPbc8sd9vmMf3ik22vU4foYvou8Sjwez6UuLp/PdzoBdO3aNSQlJUEg8OytaYz8HqX50OcWwqLRgicUgFhZiEKVMFfJM9YFqzdAIJd6nN+sPrI3/oqEGRPAl0qgSIptdHuUuqF/rT4mPT0d6enpAIBNmzahb9++CAwMdFk3KSkJDMPgjz/+AABcunQJTz31FDiOc1mf0nYoO3kJACBSBsFcprbvxa2PpvhmnvX9L9Bl3IKh0HkPMMW3UIfrY8LCwvDZZ58hOTkZ+/btwwcffOC2rkgkwvLly/H5559j0qRJmD9/PpYvX96olDuUlg8hBOpz18AwDMShQTCXlkMUGlzvDNdaoYEgKKC6EZ/ZwwC4ue4nVKZnwVjuPqxBaTxUD9eHpKWl4Z133sEvv/zS3KZQWjDGUjXOvvIhiMWKsHv6QHctC2H39kP+lt11zmAV3TuCAJAlxaFw/59u06o3GB4PHWc/guDeXSBUyH3bNgUAneFSKH6n/NQlcFUnzkShwfZcZvVhyC2ENC7KpqngRX4zj+E4ZKzcAvX5azDTPbZNAnW4PmTQoEF0dkupE0IISlJP3U61LhCAVM1U64vPWitt8oz6/OIGidh4ZJ+VxfWvNqEs7QL0+Q3bLkZxD3W4FIofMZWWN3jfazXmolJIosOabLsVQwgy1+1A3o7fUXHlJghdxPUZdFsYheJHCnb/Ac5krrEdkIAvk4CtlVSyLgjHOR4qaAIYhkHpH2dQfu4q4qeNRmCPjpA10az6ToI6XArFT7AmM1THLzjuvSa2jL1mD7aEAbfDCrZ7fbMXty5YrR43V6dAHt8O7ZKHQdEtEWJlUJP22ZahDpdC8ROFe47CVKa2O1yBQg6rRgdRmBLmMs8criG3ELLYSNvJs8AAWLT1HOv2AQzDQJ+Tj2srNiAgsR2ix90PRecEiMOUjUvdcwdCt4VRKH7AqjPg3NxPYC6/vfof0CEeQqkI4ohQlP95Fmyltt52BEEKKAfdBW1WPvgScbPkGSOEQBgciMgRA6HolABZXBSEQQrw+HRJqD7oDJdCaWIIIbj+5Q8wqSocZoSSiBDobmQjoGM8rJVaj06RWSs0EAYpoM/KQ+SYe5vF4TIMA2uFBnnb94MQAp5IBHl8NKSxkZDGhEMcGgyhQg5RWDBEwYHgi+lBnmqow20iZs2ahY8++gghISHNbQqlGSGEIHvDr1Cfv+b09VscroTq2JkGtcuZzeBLxX6J49YFwzAgFgu0Gbegrcp3Vv2lmeHxIIkOR1D3DraZcHw0pJGh4IkanluttUMdbhNRrY9AuXOxaPXIWLkF5aevAC62VjECPoi1ERkeuJYZDbT/w0IIjPnFMOYXo3DvUYDhQRSsQEBSLBRd2kMaHQ5hkAIiZSAEMil4YmGbjwlTh9sEzJtn08J86qmn8Oabb2L58uVQq22LJbNmzcLkyZPdipV36NDBq750OQXgjOamGAalHkj1fwgBYTlwVitYgxGGvCKoz1+DPqfQntXBfQM2vHEzVo0OQoUchrwiSGPCoc9vJaIzhIO5vAKqUxVQnbpUVWbTAuaJRRApFZBEhkESEQpxWDAEAXLwxELwxSIwQgGYanU9BgDDtFiJXX1uESJHDHR5jTrcJuC9997Dtm3bsHbtWkyfPh2vvvoqRo8ejaKiIjzyyCNISEgA4FqsfNu2bV71lf/LIRhcZHql+A+bE2DA8Pk2sXGpGOLQYIhDg+u8T6QMBI/P8/pggW2nQhS017KgHNIHsviYRljf8rBUaGCp0ICzsuDMFhCrFZyVtYVPCGnxWYODe3V2e4063CYkIyMDJpMJo0ePBgBERkZi9OjROHLkCAYNGuRSrLy8vBxKpdLjPjo981iT2E5pekpTT0EYEgSLh1oK1RhzCxE8oBcq0zMhCVci7pExdGGqlUD3cTQhDMM4xaQIIbBabWfnXYmVuyqjtE30OYUQh4V4JDxek+rsDyAErN6IiovXm8ZAis+hDreJ4PP5aNeuHQQCAfbs2QMAKCoqwu7du3HPPfcA8E6snNL20GXmQuSh8Lg7NOk3obuZ60OrKE0JDSk0EWPHjsXf/vY3fPHFF1i0aBGWL18OlmUxZ84cDB48GGlpaXax8ry8PISEhNQpVk5pWxCOg6mwFAFJcSj/s6Gi3wSVV24i+O4eIIS0+RX+tgB1uE3EJ598Yv99/fr1LusEBATgq6++8pdJlBaEpVILS6UWjEAAYrF4veJu1ehsR4O1BnAmMzTXshDYJbFJbKX4DhpSoFCaAUN+caO28+kzcxGQaEv6WJ52HtprWT6yjNKUUIfbTFCx8jsbzZWbVb81bIuTPisPsvbtAADajBwIFXJYNLp672NNZuiy86G5lgVTWXmL32LV1qAhBQqlGai8eN1+JLchkVfOZAZPIrIf7S3adwyEI4h4YJDL+qzRhLwd+1F25BTMpWoAgFAZiJhJD0DRJQnyxHYNHAnFG6jDpVD8DGswwlhQAr5cClbvufC4awgABrqMHJh6dYbmRjYUHRNuX+U4qNLOIWfjbzAVq2xOvsrRW9QaZK/dAUlMONpNtYmMi4IUjbSHUhfU4VIofkZ74xYsag1kSbEwFZU1uB2rWgNhsAKWClsoIT9lHywVGrB6IyRRYdBl5qLg54PQZeUBLOdW5MaYX4KMZesR3K8Hwh8YiIBOCdTxNhFUD5dC8TPXP10L1fELCBncG8acfBhzixrUjiwpFqJQJVQnLzleqPkn7e1WMUIgDA2G8u7uUHRJtGkbxERAIJM0yEaKI3SGS6H4EYtWj8r0TACAJDIU6pMXG9yWPisfwf16QHXioqNjbcx+XIaBRVWB4r3HULznKAAgoEt7hI8YhICO8ZC2i6T7fRtBq9qlsHz5cixcuNDj8rpITU3FpEmTnMqXLl3q1NbXX3+NsWPHYtSoUVi+fLl9ZTc7OxszZ87EpEmT8NBDD+Hbb7+137NkyRIMHz4ckyZNwqRJk/DSSy+5tOPgwYNITk7GmDFj8MILL0CrrV/1n9J6yf1xF6wVGgCw78FtMBwH8JrwT7gq3qu9lo3MrzYhffHXKNqdCmNhadP12ca542a4RqMRX375JTZs2IDIyEh7eWFhId59910cPnwYU6ZMsZcfOnQIO3fuxLZt28Dn8/H000+jQ4cOeOihhzB37lxMmTIFjzzyCDQaDaZNm4Zu3bphyJAhOHPmDD755BP069fPrS0qlQrz5s3Dxo0b0b59e3z44Yf46KOPsGDBgqZ8BJRmovLSDZT9ccanguGsVgeBQgartrGLb/XAMLZFtjXbkR9yANETR0DZrwfE4TSvmTe0yBluWloaJkyY4PY1AKxZswYTJ05ESYlNmjAjIwMzZszAhAkT8Morr7idKaampsJgMGDJkiUO5Vu2bMHAgQMxc+ZMh/K9e/diwoQJkMlkEIvFmDJlCn766ScAwLRp0+x2KRQKxMfHIz8/H2azGZcvX8bKlSuRnJyM559/Hvn5+S5t6dWrF9q3bw8A+Mtf/oKff/6Z7o1sIxBCwFmtMKkqkPvjblxf9l2tdOik0ZqumssZCOzunYZyo2AYWMorcWvNdlx8/TPk/PAbVCcvQZ9bBKtGB85ioZ/fOmiVM9xvvvkG+/fvx/r16+1iL7du3cLWrVuhVCrxyiuv4Msvv8Qrr7zidO+DDz6IBx98EGlpaQ7lzz33HABbeKImBQUFGDJkiP11VFQUiopsixxTp061lx8+fBhnzpzB4sWLUVRUhMGDB+Oll15Cp06dsGrVKjz77LNISUlxmA0UFhYiKirKoW2tVgudToeAgACPnsX5//sE5uLbX/GcPuv1ffhrXa/zj6X2NaeqtdtqnC1tAYbPA08qgVAhhzAwwJ7inCcW+mS8+ux8KIf0gT6vuFlmmurTl1F+8iJYnRGcyQTObAXhODACPpja4Y5a9jmb2zZmyjyJCP2+nO/yWqtzuHv27EFJSQm++uorB2WtUaNG2fOHTZ061WdCMLVFQQgh4NX6IG3fvh3vvfceli1bhoiICAC2fxSqefrpp/HFF18gNzcXcXFx9nKO41z+kdRuvy7uev9lj+tSWhZ5W/c0vpEqUe74x8dD2a9H49ujNCktMqTAMIzDTMtSY2EhISEBy5Ytw9tvv43Kytspp2vqyHIcB4FAgAsXLtgXrVwtkHlCdHQ0iouL7a+Li4vts1JCCJYsWYKlS5dizZo1DrKL27dvd2iHEAKh0DF5Xu22i4qKEBQUBJlM1iBbKa0LXZZvZBUrz1+DPivPJ21RmpYW6XBDQkKQn5+PsrIyEELw66+/2q916dIFY8aMwZAhQ/D222/by3///XdUVFSAZVls3rwZ999/P3r16oUdO3bYfxrCyJEj8dNPP0Gv18NsNmPbtm148MEHAQAffPABTpw4ga1bt6Jbt272e3g8HhYvXoycnBwAwIYNG9ClSxeH8AEA3HvvvTh37hyysrIAAD/88ANGjhzZIDsprQtCSIP339ZGcyUDwiAFOHMjdjxQ/EKLDCl07NgRjz32GKZOnYrw8HAMHz4cFy5ccKjz2muvYcKECfjtt98AAB06dMA///lPVFZW4u6778bs2bN9YssDDzyAa9eu4ZFHHoHFYsHIkSMxefJkFBYWYs2aNYiOjnZYaHvyyScxdepUvPHGG3jmmWfAsiyioqLsco0XLlzAG2+8gR07diA0NBTvvfceXnjhBVgsFsTHx+P999/3id2Ulg2rN8DqgdiMRxACQ04hSlNPIeKBwb5pk9Ik0JNmFEozoM/Ow6X/+9hn7fHEIsTPnIKw+/s7L1ZRWgz0naFQmgHtjVs+bY8zmaG5nAHV0TM+bZfiW1pkSIFCaetormT4vM2ywycg7xgHY0EJJNHhTtc5loMhpwAV59JBrFZIYiIhjY20Hdels2K/QB0uheJnCMdB5+MZbjW3Vqcg9vHxUPbvZXe6nMWKigvXULB9L3QZOTblsCqEyiDETBsNRbckSGMi3TVL8RE0hkuh+BlTaTkuvPweiNnaZH0IQ4Og6N4RnNEMfVYuzCV1ZwaWdYhDuymjEdAtCQKZtMnsutOhDpdC8TPF+44ie+WW5jbDJaH390fYiEGQJ8WBLxY1tzltDupwKRQ/QghB+tsroE2/WX/lZiTknj4IGdLXprkbEkwFanwEdbgUih8xlZbj4isfgjMYm9sUjxCGBSNy1FDIO8RD1r4dBAH0FGRjaFUOd/ny5SgvL8dbb73lUXldpKam4sMPP3Q6gbZ06VJUVFQ4tPX1118jJSUFLMti4sSJeO6558AwDLKzs7FgwQKoVCpYLBZMmzYNs2bNwvbt27F69Wr7/RqNBkVFRTh06BDCwsIc+jt48CA+/vhjmM1mdOnSBe+++67HwjWU1kfG599DlXqquc1oEIG9uyBs2EAEdG4PcZiyuc1pldxxuxT8oYc7efJkTJ48GYBNB+Kvf/0rZs+e7eRsqR7unYUm/SbUpy/VX7GFUnnuKirPXYU4MhSRE0YgqFdniCNDabjBC1rk5rvWrodbk2+++QYhISF47LHHXNpC9XDbPoRloUo7h4yl34HTt45QQl2Yispwa9UWXH7tU+Ru+g0V567CrK4E4bj6b77DaZUz3Jauh1uNSqXC6tWrsW3bNpfj8IUebta3W+0pWwA4a9TW1rut3YCTxq17Z1/vPwQ+1cutpy2vx1VHbadH4NSZV7bUxFRaDouqAny5FIxQCEFwoNu6rZHSgydQ+vufYI1m8MUiiMKU4EvE4ImFYKrU8Rzmv9WzYcdCP1nrHzTpN9H367ddXmt1Dre16OECwObNmzFy5EgHDdya+EIPt/2sqfVXolAoLYIWGVJo7Xq41fz2228O8eD62qZ6uBRK26ZFOtzWrocLABUVFbh16xb69u3rtm2qh0uh3Fm0yJBCW9DDzc7ORnh4uFOWB6qHS6HcubSqfbgUCoXSmmmRIQUKhUJpi1CHS6FQKH6COlwKhULxE9ThUigUip+gDpdCoVD8BHW4FAqF4ieow6VQKBQ/QR0uhUKh+IkWedKM0rx4Iopen8j6oEGDHJTQnn76aUycOLFRfQLAkiVLsGvXLgQFBQEAEhMT8dlnn4FlWSxZsgRHjhwBy7KYNWsW/vKXvzS6vx07dmDVqlVgGAZSqRSvv/46evXqBQAejdGTftzV8XZM3vTZ2HE1pE9fvXee9Ofrz6fPIBRKDcrKysjgwYNJZmYmIYSQDz74gMyfP7/Oe8xmM5k+fTrZuHEjIYSQjIwMMnr06Cbpc/r06eTUqVNO5evXryd///vficViIWq1mowZM4acO3euUf1lZGSQoUOHkqKiIkIIIQcPHiTDhg3zeIye9FNXHW/G5E2fjR1XQ/okxDfvnTf9VdPYz6cvoSEFigMNEUWvLbJ+5swZ8Hg8PP7440hOTsbnn38OlmUb3afZbMbly5excuVKJCcn4/nnn7cLvu/btw9TpkyBQCBAUFAQxo8fbxeKb2h/IpEIixYtsktu9uzZE6WlpTCbzR6N0ZN+6qrjzZi86bOx42pIn7567zztryaN/Xz6EhpSuEM5dOgQnnnmGafyZ5991itRdFci6yzL4p577sF//vMfWK1WzJ49GwEBAUhMTGxUn0VFRRg8eDBeeukldOrUCatWrcKzzz6LlJQUFBQUIDo62qGN1NRUdO/evcH9xcbGIjY2FoBNivO9997DAw88AJFI5HaMf/vb3+z3eyIwX1cdV2O6evWq03hq4kmfjR1XQ/r09r2ra5zeCPd78/msa4y+gjrcO5Rhw4bh8uXLTuVfffWVV6LorkTWp0+f7lBn5syZ+O6777B+/fpG9RkXF4dvvvnG/vrpp5/GF198gdzcXJdC8ZGRkdi0aVOjx6jX6zF37lwUFhZi5cqVdY6x5h+tJwLzddVxNab6xOm9EbVv6Lga0qe3711d4/RmjN58Pv3hcGlIgeKAt6LorkTWt2/fjvT0dPtrQggEAvf/tnvaZ3p6OrZv3+5QRgiBUCisUyi+MWPMz8/HY489Bj6fj3Xr1tmzjHgyRk/6qauON2PydmyNGVdD+vTVe+fNGAHffD59CXW4FAe8EUV3J7J+/fp1LFu2DCzLwmg04vvvv8dDDz3U6D55PB4WL16MnJwcAMCGDRvQpUsXREVFYeTIkdi6dSusVisqKyvx66+/2oXiG9qfVqvFE088gdGjR+PTTz+FRCLxaoye9FNXHW/G5E2fjR1XQ/r01XvnaX+A7z6fPsWfK3SU1sHBgwdJcnIyGTt2LJk9ezYpLy8nhBBy/vx5MnHiRHu9c+fOkQcffNDpfr1eT+bOnUvGjRtHRo0aRT7++GPCcZxP+ty+fTsZP348GTt2LPnb3/5G8vLyCCGEWCwWsmjRIvLQQw+RUaNGkZUrVza6v6+++op07dqVTJw40eFHpVJ5PEZX/dQekztbvB2Tp336YlwNGaev3jtP+/Pl59NXUAFyCoVC8RM0pEChUCh+gjpcCoVC8RPU4VIoFIqfoA6XQqFQ/AR1uBQKheInqMOlNBvDhw8HwzBuf5YsWeKzvhYsWODyaHJdtG/fHs8995zPbHDHmjVrwDAMSktLna7p9XoEBgbiiSeecHv/smXLwOfz7Xtcfdk/xbfQo72UZmXo0KH46KOPXF6Lj4/3szWOpKSkQKlUNqsNMpkM06ZNw5YtW2A0Gh0OKVSzYcMGjBgxwuH4qjeMHz8ex44dQ3BwcCOtpdQHdbiUZiU4OBiDBw9ubjNcUvuEUnPx5JNPYvXq1di5cycefvhhh2sZGRlIS0vDd9991+D2w8PDER4e3lgzKR5AQwqUFs/48eMRHByMoqIie9m4ceMQGxsLtVqNNWvWICAgAHv27EHXrl0hl8sxbNgwnD171m2bFosF8+fPR+fOnSEWi6FUKjFlyhSHr+U1Qwpr1qxBWFgY9u/fjz59+kAsFqN79+5OMoI3btzA5MmToVAoEBwcjCeeeMLpq/q6devQpUsXSKVSPPTQQygrK6tz/MOGDUP79u1dCvF8//33UCgUmDJlCgghWLp0KXr16gWJRAKFQoFRo0bhwoUL9vrDhw/H7NmzMWbMGAQGBuK///2vU0jB02fzwQcf4JlnnkFISAgCAwPx1FNPQaPR2OuwLIt3330XHTp0gEwmQ58+fZz0FJYtW4ZOnTpBLBajR48eLsfYpvDLeTYKxQXDhg0jDz30ELFYLC5/qsnJySEKhYI88cQThBBCVq9eTQCQXbt22V8LBAISFhZGli5dSn766ScyYMAAEhwcbBfZnj9/PpHL5fY258yZQ5RKJVm1ahU5ePAgWbFiBQkMDCRTpkyx10lISCBz5syx9yESiUh8fDz53//+R/bs2UPuu+8+IpFISFlZGSGEkMLCQhIZGUn69OlDtm3bRjZu3Eg6dOhA+vbtS0wmEyGEkM2bNxMAZM6cOWTXrl1kzpw5RCgUEgCkpKTE7bN68803iUwmIzqdzqG8S5cuZNasWYQQQj788EMiFovJZ599Rg4ePEhWr15NYmJiSL9+/RyeuUAgIP/617/I7t27yfHjx+3Ps7p/T59NUFAQefTRR8nu3bvJ0qVLiVAoJK+++qq9zvPPP09EIhF55513yL59+8js2bMJn88nR44cIYQQsmDBAiIQCMgbb7xBdu/eTV588UXCMAzZvHlzHZ+a1g11uJRmY9iwYQSA2x+DwWCv++WXXxIAJCUlhSiVSjJ79mz7tWqH8eWXX9rLiouLiUwmIwsWLCCEODvc6dOnk1WrVjnY88ILL5DQ0FD769oOFwDZtGmT/fq5c+cIALJlyxZCCCFz584lQUFBDo7z5s2bhM/nk7Vr1xJCCOnbty8ZO3asQ7/Jycn1Otzr168TAOSHH36wl504cYIAIIcPH7bbv2jRIof7PvnkEwKAaDQaQojtmSuVSmI2m52eX3X/nj6bHj16OGgQPPzww6Rnz56EEFtWBj6fTxYuXOjQzrBhw8jixYtJeXk5kUgk5PXXX3e4PmvWLJKUlOT2ObR2aAyX0qzce++9+PTTT11eE4vF9t//+c9/4ocffsDUqVORkJCAjz/+2Kl+taI/YItLDhkyBEeOHHHZdvVX1/z8fKSnp+PKlStITU2FyWSq096a8eZqEW+dTgcAOHDgAIYMGYLg4GBYrVYANh3Y7t27Y//+/Zg2bRrOnj2Lzz77zKHNqVOn4ueff66z344dO+Kee+7Bpk2b8OijjwKwhROSkpJw3333AQCWLl0KACgpKUF6ejrS09Pt7ZpMJvsujY4dO0IoFLrty9NnM3DgQAdd2tjYWHsYJy0tDSzLIjk52eGegwcPAgB27doFo9GI8ePH258VYAsVffvtt8jMzERiYmKdz6Q1Qh0upVkJCgpC//79663HMAwef/xxHDp0CPfdd5/TFi+JROK0yh4eHu42c8DRo0fxzDPP4Pz58wgKCkLfvn0hlUrrTCUEwEFztVrwmuM4AEBZWRnS0tJcOrOoqCio1WoQQhAWFuZ0zROeeuopvPjii9BoNJDL5di0aRP+9a9/2a+np6fjH//4B1JTUyGTydC7d2+7zm3NcVWn1nGHp8+mtv4sj8ezPwuVSlVnX9Vx63vuucfl9YKCgjbpcOmiGaVVoFKp8NZbb+Guu+7Cd999h0OHDjlcNxqN0Ov1DmXFxcUu/+ArKiowYcIEJCQk4Pr161Cr1Thw4IDbP35PCQoKwrhx43DixAmnn+XLl0OpVIJhGAfxbAD1LppVUz2z3bFjBw4cOIDCwkI8+eSTAGxOPzk5GRaLBRcuXIBGo8HRo0e9zkTrq2dTnZm3pKTEofzs2bM4c+aM/XpKSorL51WdQbitQR0upVXw73//GxzH4cCBAxgxYgT+8Y9/wGAwONT55Zdf7L8XFxfj2LFjGDFihFNb6enpKC8vx0svvYSOHTsCsDmsvXv31jvDrYt7770X6enp6NWrF/r374/+/fujZ8+eWLBgAVJTUyGVSjF48GCkpKQ43Pfbb7951H5QUBAmTpyIlJQUbN26FcOHD7cnUiwpKcGNGzcwe/Zs9OzZ0z773rVrFwB4PC5fPZuBAwdCIBA4vCeALTT04YcfYtCgQRAKhSguLrY/q/79++PixYtYuHBho96HlgwNKVCaFbVajT///NPltaCgIHTr1g27d+/GunXrsHbtWoSEhGDFihXo3bs35s+fjw8++MBef86cOdBoNAgPD8fChQsREhLi8JW7mq5du0KhUOCdd94By7IwGAxYsWIFzp07B4ZhnHJsecrLL7+MdevWYdy4cXjxxRchFArx8ccf49ixY1i0aBEA4O2338bYsWMxc+ZMPPbYY/j999+dHHBdPPXUU5g+fToCAwPx3nvv2csjIyMRHx+Pzz77DJGRkeDz+Vi7dq3d4dWe/bvDV88mIiIC//rXv7Bo0SIIhULcfffd+PHHH3H27FmsWLEC4eHheOGFF/Cf//wH5eXlGDhwIM6ePYvXX38dkyZNsodC2hzNtVpHodS3S2HkyJFEo9GQhIQEcv/99zvcO2/ePMLn88mJEyfsq+zr1q0jiYmJRC6Xk4kTJ5LMzEx7/dq7FPbs2UN69+5NJBIJiY2NJY8//jjZsmULAUCOHTtGCHG9S6HmToLy8nICgKxevdpedunSJTJ+/HgSEBBAFAoFGT58OPnjjz8cbN++fTvp2bMnEYvF5N577yUrVqyod5dCNVarlURFRRG5XE60Wq3DtZMnT5IhQ4YQmUxGoqKiyMSJE8n+/fsJALJx40b7Mx8/frzDfbXH5u2zqebFF18kCQkJDrYuWLCAxMXFEalUSgYMGED27dtnv86yLHn//fdJhw4diEgkIgkJCWTevHnEaDTW+xxaKzTjA6XVs2bNGsycORMlJSVOC1IUSkuCxnApFArFT1CHS6FQKH6ChhQoFArFT9AZLoVCofgJ6nApFArFT1CHS6FQKH6COlwKhULxE9ThUigUip/4f6tilr4v9VfEAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 360x1440 with 83 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for plotting Figure 3 Supplement 3 panel A\n",
    "plt.figure(dpi=380)\n",
    "fig, axes = joypy.joyplot(full_per_site_ev, column=['EV'], overlap=1.0, by=\"site\", ylim='own', fill=True, figsize=(5,20), legend=False, xlabels=True, ylabels=True, \n",
    "                          colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)), alpha=0.6, linewidth=.5, linecolor='w', fade=True, x_range=[-1,1])\n",
    "plt.title('Controls test EV per site', fontsize=18, color='black', alpha=1)\n",
    "plt.rc(\"font\", size=14)\n",
    "plt.xlabel('Explained Variance', fontsize=16, color='black', alpha=1)\n",
    "plt.ylabel('Site', fontsize=14, color='black', alpha=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 132,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0, 0.5, 'Site')"
      ]
     },
     "execution_count": 132,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 2280x1520 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAWvCAYAAAB+UkAAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXxU1d0/8M+5986SSSAJENZAAGUxqIiCSxW0rhWta7UuRRQUq9g+FlFqcam2v2pt0aePiEqVUpfWlaVi3XdERFARkX0NkH2ZyWx3Oef8/rgzkwwJZIMk9+b7fl48lZk7NzdD8s3Jued8P0xKKUEIIaRDKB19AYQQ0pVRESaEkA5ERZgQQjoQFWFCCOlAVIQJIaQDUREmhJAOREXYQWprazFnzhyMHTsW2dnZyMzMxIknnoj58+dDCHHYP35ZWRkikcghO98ZZ5yBwYMHH7LztUUsFsOTTz6JU045BT179kR2djZOOOEEPProo6itrT3g6wzDwN///neceuqp6NmzJ/x+P4499lj8+c9/hq7rzfrYtbW1KC8vP1SfSgNCCOzcufOgx+zcuROMsSb/fPvtt/jkk0/AGMP06dMPes6ZM2eCMYZ169Ydws+m/STfk9///vdpj2/fvv2QfhxG64SdYdOmTbjooouwY8cOXHvttRg7dizi8TiWLl2Kzz77DNdeey2ef/55MMYOy8d/6623cM011+Cbb745ZIXzjDPOwM6dO5ssEIfb3r17cdFFF+Hbb7/FpZdeih//+MeQUmLFihV49dVXMWTIECxbtgzDhw9Pe11JSQkuueQSrFq1CpdffjlOPfVUqKqKd999F8uWLcOPf/xjvPXWW/D5fAf82GvWrMFFF12EF198EWecccYh/9xCoRDOPvtsTJw4sUExqW/nzp0YMmQIxo8fj2nTph3wuAsuuAA5OTkYPHgwDMPA3r17oSgNx3JSShQUFCA3Nxdr1649FJ9Ku4tEIli8eDGOPfZYHHvssQCAP/7xj1i4cCG2bt166D6QJJ1eLBaTI0aMkD169JBr165t8Pytt94qAci//e1vh+0a7r//fglA7tix45Cd8/TTT5cFBQWH7HytYVmWPPHEE2VmZqb84IMPGjz/5Zdfyp49e8ohQ4bISCSSelwIIc844wzp9/vle++91+B1f/7znyUA+Zvf/OagH/8f//iHBCA/+uijNn8ujdmxY4cEIO+///5mHTd58uRmnXfWrFkSgPzkk08afX758uUSgHzkkUdaeMWd2+H4mqXpCAeYN28eNm3ahMceeyz1E7m+v/71r8jNzcVTTz3VAVfnbP/85z+xatUq/OUvf8GZZ57Z4PkTTzwRc+fOxY4dO/DnP/859fjixYvx8ccf4+6778bZZ5/d4HV33XUXRo4ciX/+85+IxWKH9XPoCL/4xS8AAK+++mqjz7/00ktQFAXXXHNNe16WMx3Skk4Oi3HjxsmsrCxpGMYBj9m8ebPUdT3tsU8//VSeddZZMjMzU2ZmZsof//jHDUYuBQUF8uabb5bPP/+8LCwslD6fTx555JFy7ty5qWMmT54sAaT+nH766VJKe1Rw3nnnydmzZ8vMzEyZl5cnv/vuOymllN999528+OKLZXZ2tvT7/fKkk06SixcvTvvY+48q4vG4/J//+R85ZMgQ6fV6ZX5+vrz11ltlVVXVQd+fyZMny1GjRsnly5fLk08+Wfr9fjlkyBC5cOFCaRiG/O1vfyv79Okjc3Nz5ZVXXikrKipSrz3zzDNlt27dZCwWO+jHGDBggDziiCNSf7/iiiskALlv374DvmbHjh1po+f9JX+7SP6p/14UFRXJSZMmyV69ekmfzyePO+44+cILL6S9XgghH3jgATl8+HDp8/lk79695S9+8Qu5e/duKaWUH330Udr5cZDfZFo6EpZSymOPPVb2799fCiHSHuecy759+8ozzzzzoK9P/hawatUqedFFF8lAICD79esnf/Ob38hoNJp2bCwWk7Nnz5aDBw+WHo9HDhkyRN57771pX/PJ87322mty8ODBMiMj46C/Abz22mty7NixMisrS3bv3l2effbZcvny5Q3ek+Q5CgoK0t7L+ud+44035CmnnCIzMjJkTk6OvOyyy+SmTZuaeAdtVIQ7OSGE1DQtVfiaa+nSpVJRFDls2DD58MMPy4cfflgeccQRUtM0uXTp0tRxBQUFctCgQTI3N1fed999ct68eXL06NESgHzzzTellFKuWLFCXnrppRKAfOyxx+S7774rpbSLaGZmphw6dKicN2+evPPOO6VlWXLVqlUyEAjIvn37ygcffFA++uijcsyYMRJAWnHfvwjfeOONMhAIyLvvvls+88wz8vbbb5eapslzzjnnoJ/r5MmTZY8ePWROTo6888475RNPPCGHDRsmFUWR55xzjjzxxBPl3Llz5fTp0yUAef3116de6/P55BlnnNHk+3nttdemFd2hQ4e2+dfStWvXymnTpkkA8ne/+13qh9TevXtl//79Zb9+/eSDDz4oH3/8cXn22Wc3+PX+j3/8o1QURf7617+WzzzzjJw9e7bMysqSI0eOlJZlyZKSEvnYY49JAPLSSy+Vzz//vAyHw41eS7LgXHXVVbK8vLzRP6FQKO01jzzyiAQgP/vss7THP/jgAwlALliw4KCff7JoDho0SJ588sny//7v/+SUKVMkAHnuueemjrMsS5511lnS7/fLX//61/LJJ5+UU6dOlYqiyAsvvDD1QyB5vm7dusnZs2fLRx55pMG1JX388cdSVVX505/+VD711FNyzpw5csiQIdLv98tt27alvSfJYrt48WI5cuRI2atXL/n888+npgb/8Y9/SMaYPPvss+Xjjz8uH3zwQdmvXz+Zk5PTrEJMRbiTKysrS31zNJdpmjI/P18OHDhQBoPB1OPV1dVywIABcsCAAalRdUFBgWSMpc01FxcXS8aYvOaaa1KPNTYnfPrppzc6n3nSSSfJrKwsWVRUlHosFovJ448/XmZkZMjy8vLU6+sXsoyMDDl9+vS0c91zzz1y7Nixsra29oCfb3Kk/vjjj6cee/PNN1Ojy3g8nnr81FNPlf3795dSSllRUdHs93bmzJkSgFyzZo2UUspAICBPPvnkJl/XlMbmhJM/VPYfZV9zzTXS5/PJ0tJSKaWURx11lLzgggvSjnnqqafk6NGj5datW6WULZ8TPtifiy++OO01RUVFUlEU+T//8z9pj0+bNk36/f60r72Dfe7jxo1LG9HOnj1bApBvv/122nHJvyc9/fTTEoBcsmRJ2nHNGc3fcsstslu3bmmj+O+++04OHz5cvvrqq2nvSf33bv+v2WAwKLt3797ga6i4uFjm5ubKSy65pMlroTnhTk5VVQAA57zZr/n666+xZ88e3HbbbejevXvq8ZycHNx2223Yu3cvVq9enXp8xIgRaXPNffv2RZ8+fVBSUtLkx8rIyMCECRNSfy8tLcWXX36JSZMmIT8/P/W43+/HnXfeiVgshvfee6/Rc+Xn5+Pll1/GwoULUVNTAwD4wx/+gK+++gpZWVlNXsull16a+u/kSobzzz8/bXXCkCFDUFxcDMC+g99cyRUAlmUBsP9dWvJv0lxCCCxZsgQTJkyAx+NBRUVF6s9ll10GXddT719+fj4++ugj/O1vf0NpaSkA4Oabb8a3336LI444olUf/9xzz8V7773X6J8HH3ww7dj8/HxMmDABr7/+euq9tCwLr7/+Oi666KK0r72DueOOO+D1elN/nzFjBgDgP//5DwDg9ddfR15eHk444YS092PixIlQVRXLli1LO995553X5MfMz89HbW0tfv3rX2PDhg0AgGOOOQabNm3Cz372s2ZdNwC89957CIVCuOSSS9KuTdM0nHnmmXjnnXdSXzMHQkW4k8vNzYXX60VZWVmzX7Njxw4AdnHd31FHHQUA2LVrV+qxvLy8Bsf5fL5mFZmePXumLVFKLjdr7seu78knn4QQAjfccAPy8vIwYcIEPPbYYwgGg01eBwD06dMn9d+apgEAevfunXaMqqqpgtGrVy/4fL5UUT6Y5DHJj9G3b98W/Zs0V0VFBYLBIJYsWYK8vLy0P8nisHv3bgD2DdlevXrh9ttvR79+/TBu3Dj84Q9/aNYPzwPp168fzj777Eb/NHZT+Be/+AX27NmDlStXArCLUmVlZerGXXMUFham/b1Hjx7o0aNH6mtp27ZtKC8vb/B+DBw4EJzz1PuRtP+/eWNuu+02TJgwAXPnzkVhYSGGDh2KX//61y1eTrdt2zYAwFVXXdXg+l5//XXEYrEm14BrLfqIpN0xxnDKKadgzZo1sCwrVVz2d88992Dbtm147LHHDjrCS27qqD/yaGydZ3MlR+pJLf3Y9Z111lnYvXs33njjDSxbtgzvvvsuZsyYgcceewxr1qxp9IdFfY29N02tmz711FOxatUqxGIxZGRkNHqMlBLLly9Hv379UFBQAAD40Y9+hH/+858oLi5Gv379Gn3dE088gffffx9/+tOfUj+AmpL8wfezn/0MN998c6PHDB06FABw7LHHYsuWLXj77bfxxhtv4O2338Z9992HRx99FF988QVGjhzZrI/ZFj/72c8wffp0vPbaazjllFPw8ssvo2fPnvjJT37S7HM09vXAOU/7LXDYsGGYN29eo6/Pzc1N+/v+X5ON6d69Oz755BOsXLkSS5YswVtvvYXHH38cTzzxBJ5//vlmr+pI/nvNnz8fQ4YMadb17Y9Gwg5w2WWXIRwO4+WXX270+VgshmeeeQbvv/8+evbsmdpMsXHjxgbHbtq0CQAwcODAw3Ktrf3Yuq7jyy+/RE1NDa666iq88MILKCkpwV/+8hcUFRXhpZdeOizX+4tf/ALhcBjPPPNM2uN//vOfMWfOHMRiMSxevBg7duzApEmTUs9fdtllAIAFCxY0el4hBJ555hm8+eab6NGjR7OvJy8vD4FAAKZpNhiJDh8+HOFwGJmZmeCc4+uvv8bu3btx0UUX4e9//zuKiorw8ssvo6amBn//+99b8W60XHZ2Ni688EIsWrQIlmVh6dKl+PnPfw6Px9PscyRHk0nl5eUIBoMYNmwYAPtrqrKyEmeeeWba+3H66aejsrKyWVNV+9u8eTO++uornHzyyXj44Yexdu1arF+/Hrm5uZgzZ06zz5P8es/Ly2vw76VpGhhjB92sA1ARdoRp06ahoKAAd9xxB77//vu05zjnuOWWW1BaWopZs2bB4/HghBNOQL9+/TBv3jyEQqHUsaFQCPPmzUO/fv1wwgkntOgakqOLprZH9+3bF2PHjsULL7yAPXv2pB43DAOPPvoofD4fzjnnnAavq6qqwimnnIKHHnoo9ZiiKBg3blzaxz/UJk+ejFNOOQV33303Pvjgg9TjwWAQ9957L44//nhMmzYN/fv3x5133pl6/qKLLsLJJ5+Mhx56CB9//HGD8/7+97/Ht99+i2nTpqVNk+xv//dV0zRMnDgRb775ZoNfjWfMmIFLL70UFRUV4Jzjxz/+MW6//fa0Y0466aS08zb3360trr32WuzcuRNPPfUUampqWjQVAQBz585N+w3qr3/9K4C6H3QXXXQRqqqq8OSTT6a97qmnnsJVV12F999/v8XX/Otf/xoXXXQRwuFw6rGRI0ciJyfnoF9rqqqmvZfnnHMO/H4//vKXv8A0zdTje/fuxcUXX4zf/va3Tf42RtMRDuD3+7F48WKce+65GDduHK699lqMGzcOlZWVePXVV/Htt9/iiiuuSN3Q8Hg8ePzxx3HllVdi7NixuPHGGwEAzzzzDPbt24fXXnutxVMQyamAv/zlLzj//PNx0UUXHfDY//u//8OZZ56JcePG4dZbb0W3bt3wwgsvYM2aNfi///s/5OTkNHhNv379cO2112LevHmIRCL40Y9+hMrKSsydOxd9+vTBlVde2aLrbS5FUVI3ks4991xceumlOPPMM1FQUIBTTz019Q1+zTXXNLjR9NJLL+Gss87C2WefjZ/97GcYP348otEoli1bhk8//RTjx49P2+DRmOT7+uSTT6KkpATXXHMNHn74YXz44YeYMGECpk+fjoKCAixbtgzLli3DzTffjFGjRgGwC8kf//hHXHrppfjJT36CaDSK+fPnIxAIYMqUKQDq5uz/85//oKCgAJdddtlBfz3evn07XnjhhQM+X38Lb9IFF1yA3Nxc3HvvvTjiiCNwyimnHPRz3t9HH32EiRMn4qc//SlWrlyJ559/Htdddx1OPfVUAMCNN96If/7zn/jVr36Fr7/+GieeeCLWrVuHp59+GscffzxuuOGGFn08wP6Bdv7552P8+PGYPHky/H4/lixZgm3btuH+++8/4Ovy8vLwySef4NFHH8Wpp56Kk046CX/6058wY8YMnHLKKfjFL34B0zTxxBNPIB6Pp36gHFST6ydIp7Fnzx45c+ZMWVhYKLOyslLLpBYsWNBgwbyUUr7//vvy9NNPl4FAQGZnZ8tzzz1Xfvrpp2nHFBQUNLoGef/Hq6ur5dlnny19Pp8cOXKklPLgWzjXrFkjL7jgAtm9e3eZmZkpTz311NRSoqT9Xx+NRuV9990nhw8fLv1+v+zZs6e88sor5ZYtWw76viSXqNV3oKVZjR0rpb2Ebt68efLkk0+Wubm5MisrSx599NHyd7/7nfzzn/8sMzIy5JFHHim/+OKLtNdVVlbKP/zhD3L06NGpjSnHHXecnDNnzkE31yQZhiGvvPJKmZGRIXNzc1ObRrZs2SKvvvpq2atXL+n3+2VhYaF89NFHpWVZqddyzuWjjz4qjz76aJmZmSmzs7PlxIkT5erVq9M+xkMPPSR79OghMzIyDrg9ujlL1Bp7P5NuuukmCUDed999TX7OScklZf/617/keeedl9pk89BDD0nOedqxoVBIzpw5UxYUFEiv1ysLCgrkr371q7SNNy3dAr5s2TJ56qmnytzcXJmRkSHHjRsn//3vfzd4T+p/zmvWrJFHHXWU9Hg8ctq0aanHX3nlFXnSSSfJjIwM2aNHD3nOOeekbfw4GGrgQ0gz7NixA3/5y19wxx13tHr5F0m3cOFC3HDDDfjoo48OS/Mip6DpCEKaYciQIQe8O09IW9CNOUII6UBUhAkhpAPRnDAhhHQgGgkTQkgHoiJMCCEdiIowIYR0ICrChBDSgagIE9JJ0D3yromKMCGdxHsbggjFDn2jeNK5UREmpJOojFjYURnv6Msg7YyKMCGdQNwSgAQqas2mDyauQkWYkE4gpgsYXCJ+8Dgy4kJUhAnpBKImB+cSXNDNua6GijAhnUBEF5AAOK2Q6HKoCBPSCUR0DsYASSPhLoeKMCGdQMyUYIzRSLgLoiJMSCegczs8UkpAtw5fKCfpfKgIE9IJGKY9ApYADItGw10JFWFCOgGDJ4qwBOImjYS7EirChHQCZr0pCCrCXQsVYUI6ATMxElYVhrBORbgroSJMSCegJ4swA8I6NfHpSqgIE9IJGIkpCFVliBo0Eu5KqAgT0sGklGk35miJWtdCRZiQDsYFkNwoJyRtXe5qqAgT0sFMLgBm/zcXEpKmhLsUKsKEdDAuJIRI/jdggUbCXQkVYUI6WKKfOwBASAlJU8JdChVhQjqYJaR9Rw72nDBNCXctVIQJ6WC6JaAq9qQwFxKCqnCXQkWYkA4mBBBNbNAQEjQj3MVQESakg+2p1lEdNREz6gqxoObuXQYVYUI62J4qAz5NQXXETvmUUsKkItxlUBEmpIOVhw1IidR2Zeop3LVQESakg4ViPLFtuW7rcnIbM3E/KsKEdLBgjCNuCqiJ70Yp0/sLE3ejIkxIB7K4QNyUiFsCmmJ/OyoKqJNaF0JFmJAOFDcFLCFg53xKSCmhKgwRgxpIdBVUhAnpQDFTwErUWynthA2FATEaCXcZVIQJ6UC1ugCUuptwBpdgYIhRzlyXQUWYkA4U0TlYoo+lhL2FWaIuc464HxVhQjpQVBephj2KwhDXBbiQoBrcdVARJqQDxU2eStVQmD1HLCQgqQp3GVSECelAuilgJQouF/aWZS4kaG1E10FFmJAOFLcAmdgpZ3IJxpjdwIcGwl0GFWFCOlBUt1IF1+QCDPZIWFJP4S6DijAhHShi1BVbk0swJdnKsgMvirQrKsKEdKCoyVNN3A0uobJEwgaNhLsMKsKEdBAuJHSzbomaWa8IU2P3roOKMCEdxOSJnhGJWiulfZNOSjtnjtpZdg1UhAnpIAaXsLhAYvALwK7HVmIETI3duwYqwoR0ENOSMDnSijAkYHGZaOxOd+e6AirChHSQuMkhIZEb0FDQwwspZWIkDEDaGzmI+1ERJqSDxAy76OZmelBcYyBqcDAAhiWgKIkOa8T1qAgT0kGSfSIUJsG5REy354d1U9iN3akIdwlUhAnpIDFTJHpFABFDQFMZAAbDEmCMIaJTB4mugIowIR3EMAWkZDAtgbjJ4ddYWhtLk27MdQlUhAnpILolwBOrIAwuoGkMppBQYG/koBVqXQMVYUI6iGFJSCkQNwVMDngUJa1/BKfNGl0CFWFCOohuCaiMJYqwhKYkVkYwULpGF0JFmJAOErekHWmUSFa2M+YklFRPYarCXQEVYUI6iL0KAtATN+AYEsvTGIMQkhq7dxFUhAnpIHFTJgqvXW2lBLgEBOypCOqi1jVQESakA0gpYQphF+HEMgjGAIsLiESyBpeSCnEXQEWYkA5gcgmLS6iqvU4YSBbhuk5qUtobOoi7UREmpAOYXIJzewoiWWYZAywh0jqp6bRY2PWoCBPSAUwu7UK8X1N3zus6qUkJRGnrsutRESakAxiWgMFlqn0lYE9FqCpLdVLTVIZgnIqw21ERJqQDJDuoAQzJkDmTC6iKPT1hWHYntWCMirDbaR19AYR0RTGDgwsBMIAlojVMLqGxZBMfCUiJmEFF2O1oJExIB4gZElxIQNbFGxmJ1RJcAILba4YtWhzhelSECekAMVOASwZL2muFAXsk7FFYqomPJeybd8TdqAgT0gEMLqBbAlLUjYRT64a5TDTxsRv5EHejOWFCOoBh2Zs17OmI9DlhkwsozC7GnJr4uB6NhAnpAHFTgEPCSEw3HNUvI7U6ov48sMVpSsLtqAgT0gGihgBLpGp086vI9quwEtU32TsCsJu719JaYVejIkxIB6iNcygKg2lKZPoU7K3W4dMYJBKpGkJCSHtuuCJsdvTlksOIijAhHaAqbMGrMhhcINOrYl+NgQyvCsBu5i4T/SNUhaE4aHTw1ZLDiYowIe1MCInKmAWfR4HBJTwqQ2XERMCrABKpZu4Wt+eMY2bDOeHSkIFt5bHUtAVxLkcW4WXLlmHEiBFYsGBB2uO//e1vMWLEiNSf0aNH4+c//znWrl3b4Bzbtm3DHXfcgVNPPRVjxozBFVdcgXfeeSftmPrnGjlyJE444QTccMMN+O6771p0vXv37sWUKVNw3HHH4fzzz8cnn3zS6HFLly7F1Vdf3aJzE+cxhERtjMOjMphW3ahXUxkkJIQQkADilkDclIjXa2cppcTHm4N4eXUlPtoYwudbazvuEyGHhGOLcEFBARYvXtzgufPOOw/Lly/H8uXLsXjxYhx33HGYNm0awuFw6phvvvkGV1xxBfx+P55++mksWbIEF1xwAWbMmIFXXnkl7Xz/+7//i+XLl+OTTz7B888/j969e2Py5MnYvHlzs65VSolbb70VOTk5eO2113DppZfi17/+NYqKitKOW7lyJe6///5WvBvEaXRDIBTnUBMbM4S0l6pBAkLYqyMUhlT2XMwU2FejQwiJ/34fxIbiOLr5Naiqgh2VOjaWxDr2EyJt4rgiHAwGsXz5ctx2223YvHkzfvjhh7TnvV4v8vLykJeXh6FDh2LGjBmIRCJYsWIFALso/va3v8VPfvIT/L//9/9w9NFHo6CgANdffz1uueUWzJkzB7FY3Rd1dnY28vLy0KdPHxQWFuLhhx9GYWEhHn300WZd78qVK7Fjxw48+OCDOPLIIzFt2jSMGTMGr732WuqYuXPn4qabbsLAgQMPwTtEOrvSWtMe+SosEXsvkzUYQtrbmQXsNGbALsafbqnFv76qQFGVDr+n7tvWEsA3RRGUhujmnVM5rgi/88478Hq9mDhxIgYPHoxFixYd9Hifz4fMzMzU37/++mvs3LkTU6dObXDspEmTMH/+fPh8vgOejzGGK664AsuXL08r1geydu1aFBYWIisrK/XYCSecgG+//Tb191WrVmHBggU499xzmzwfcb5vd4cThVRCwJ6OYMwO+uRCwEr0GU5FGzGGmClhcsDnafgtGzcl3lhbhfc3BLG5NEaRSA7juCL8xhtvYMKECdA0DWeddRaWLVsG02x8FGBZFl588UVomoYf/ehHAICNGzciMzMTRxxxRIPjs7OzMXr0aCjKwd+WI488EqZpYteuXU1eb3l5OXr37p32WM+ePVFSUpL6+3PPPYdx48Y1eS7iLHFLpKKLktYWhVERtqAqLNnBElzagZ8MdeGfpiWRairRDKqqoKjawIcbg1j6XTX2VOuH6tMgh5mjti2XlpZi9erV+Mtf/gIAOPfcc/Hss8/ik08+wdlnnw0AeOutt/DBBx8AAHRdB+ccM2fOTI1Ea2tr00alrdGtWzcAQCQSafLYWCwGj8eT9pjX6z3gD47Weuv7GoR165Cek7SMBGBZQHnEwL5qExFTQlUkemV6kJ2hoqzWRFQXCPgYKsMGcgMqYjpHJC6gWxKmkKiOWgAY9tbo6OZXYZVGW3wdO6t0LN9ai37dNfTM0pChqVDVQ/7pkoSRfQM4ZkCg1a93VBH+73//C1VVcfrppwMARo8ejd69e2PJkiWpInz66adj1qxZAADDMPDDDz/gT3/6E6SUmDZtGnJzc1Fb27Y7ysmbfM0p5j6fL+2mYPK6/H5/m65hfycUZNKvoZ2AqjD4PcpBB7FfbAshP9uH7hkKqmpNZHoU9O3uRU6GBoUx5PfwYUheBnIzNZx/dG6brodLibgpaSnbYZTpa9tPOEcV4eTUw0knnZR6TAiBjz/+GFVVVQCAQCCAgoKC1PPDhg1DSUkJFixYgGnTpuGYY45BNBrFli1bMGzYsLTzV1ZWYubMmbj33nsxdOjQA17Hpk2b4PF4MHjw4CavuU+fPti4cWPaYxUVFcjLy2vOp9xsvbt5mj6IdAoSgE9jUBmDz2O3s1QUQCSCjjwqg0dlUABk+pRUg5/Wys5o+zWTw8cxc8I7d+7E999/j7vvvhtLlixJ/Xn66adhmibefPPNA75WSgnO7f33hYWFGD58eIM1xgDw4osv4rvvvkO/fv0Oei2LFi3CmWeeedAbeEmjR4/Gxo0bEY3W/Vq5Zs0aHHfccU2+lrhTJBHeaQl7R5yZSFS2Eo16krckOEXedwmOGQkvW7YM3bt3x9VXX51W/IYPH44xY8Zg8eLFGD58OAzDQHl5OQB7lLxx40b885//xPnnn596zf33348pU6ZA0zRcc8018Hq9+O9//4unnnoK/+///T9kZNQNHYLBIMrLyyGEQEVFBRYsWID169fj9ddfb9Z1n3jiiejfvz9++9vf4le/+hU++ugjrF27Fv/v//2/Q/TOEKeJGXVF16syhLhdaE0uwRiQnMwQUiKiCwS8NKHrZo4pwm+++SYuvPDCRkefV199Ne666y7k5+fjnXfeSe18U1UVvXv3xuWXX47p06enjh87dixeeOEFzJs3D1OmTEE8Hsfw4cPx+OOP46yzzko79+233w4AUBQFPXv2xPHHH4+XXnrpoNMV9amqinnz5mH27Nm47LLLMGjQIMydOxf5+fmtfCeI04V1e7ecxSU8mpJqVWlyCU2pGwlrjKGs1kAeTTW5GpM0Y09Iu+FC4qlPShDwKDAsjt1VOjbsjSKsc+QEVAS8Kob1CaB/rg85ARU9Mj04fUR2R182OYwcMydMiBvEDA4h7LXAhmk37zHrTUeoCktr4BM1qZew2zlmOqIz+u677zB58uQDPt+tWzd8+umn7XhFpLOLmwJC2lMOhpDQFAWGJQDYfSQ8qj0fzIWEbklkUA12PSrCbTBy5EgsWbLkgM83tfOOdD2hGIdHsZenGZa044w4oKr2LjmVARJ2/wiT18UfEfeiItwGXq83bU0yIU2piljwagyKAphcQFMYkmVWAlAYA+cSlpDwwj4mHOfI8tMKCbeioRoh7SiYaGGpMAbTEhCJvhFJEvYut2TUPQNQQskarkZFmJB2FIrZk7wKY9Atu4Vl/VGuBCAFoCc2cCgM2FNNRdjNqAgT0o5qonbjJlUBDG5vXz55aDeYll2cGQDBJHQz2dCdVki4HRVhQtqJxQUiRnKEay9NC3hVbC2LQVPsSQkJCcGRWDGRWKZmiNQyNuI+VIQJaSehOE91ulMUwDAFPCrDvup4amsyg12crXqrIriQ2FoW75BrJocfFWFC2sm+GgM+zR7xMtjRRFZi9UNGvcQMw0pflmZYErsrqUm7W1ERJqSd7K024NXsb7nk7ILJJaKmQIbXfpwxQDcF6nevtLhETcxCWYhu0LmRI4uw2yLvn3vuOZx77rkYM2YMfv7zn+Prr79u0fmJM+ytt8qBSztl2TAFkCjIQtrN1+OWgLpfC+GYzvH17kjaNAVxB8cWYbdE3i9duhR/+9vfMGPGDCxZsgQnnngibrzxRpSWlrbhHSKdTU3ERMSoW+UghLRj7U0BlrwpJ+0pCiFkg92WEgx7quJ494dq1ETqorGklKiJmFi9sxZLvq7Av78sw+trKvDhhhr8sC+CUNyiVI1OznE75pKR93/6059w55134ocffkBhYWHq+WTkPQDk5eVhxowZePHFF7FixQqce+65DSLvk66//nqEw2HMmTMHP/3pT1M9hZOR94CdkvHwww9jz549ePTRR/HUU081eb3JyPsXX3wRWVlZOPLII7FixQq89tpr+M1vfoPFixfjmmuuwU9+8hMAwB133IF3330XH374Ia6++upD9r6RjrV6VyRt3tcSEipjqVh7wC6oJpeQYFAbGR6pioLiGgPPryxHToYKVVFQq3PopkCGR4GWGD7HTY5QjGNzaQwGl/BpCrL9CnweFR6NwasCmqLYzYIgIYWEqijo3V3D0LwM+DRHjs0cy3FFuH7k/RNPPIFFixalFeH9HSjyft68eQ2OnTRpEsaPH9+syPt77rkHsVgsrQF8Yw4Ueb969WoAdr/inj17NnidrtONGLeoiVjYWBJFZr3m7KYlEfApiOoiFV/EhYTFJRjkASONFMaQ5VPtm3pCwKsyeA+Q4unTFPgS3+ExUyJmHjwIdsM+ga92hDE6PxOFAwLwNPaTgBxyjivC+0feL1q0CLNmzWqQaAzYkfcvv/xyiyPvm1I/8n7kyJEHPbapyPv9Y44+/fRT7Ny5E+PGjWvyOuqLGxyU89nxJOwRrYBdaHdW6PhiWy28mpI2n2tKCZ+mojamA4l0e87tlRCaqoALCcMSUNqYL9cSqsKgmxLLt4SwZncER/b2Y1APH7r7NXg0+xoZYwcNMe2KVJW16bcHRxVht0fe79ixA7NmzcIll1yCUaNGteianl9ZjpoY7azqDJJFSgEQ8CnI8jf8Bo0ZAll+hvIaeyUES3ZPkwIBTUVimhgerf1LnkezR9bbymL4tigCM7G9GgDo53xDPx6RjbGDW19THFWE3Rx5v3nzZkyZMgVDhw7Fgw8+2OJrumlC3xa/hnScz7cEURX1YU9lHDkBFX6Pgj7ZHvTt7kXPLA+G9c3AWUflUrRRF+CoSZ/6kfeFhYUYNWoUysvLG428LygowLBhw3DxxRdjypQpqeVs9SPv91dZWYkbbrgB27dvP+h1tDTyPhk8mrR/5P26deswadIkDBkyBPPnz29WijNxNt0U0BQgnkhe1i0BD2MwhYSi2KPpUOzgc7jEHRxThN0aeV9UVIQbb7wRhYWFmD9/ftpNROJeumWnakQSjXoMy07V4FyCgUFTGaqjVIS7AsdMR7g18v6BBx5AIBDAgw8+iHA4nJq6CAQCVJBdLGpw9MjUEEuMhA0u4NeUxJyr/f+DVIS7BMekLZ9//vk4+eSTcf/99zd4bunSpbjrrrtw3nnnpe16S0beX3jhhZg+fXpacf3uu+8wb948rF27NhV5P23atLTI+xEjRqT+u37k/fTp09Oea8quXbswe/ZsrF27FoMGDcLdd9+N0047DeFwGCeccEKjr/nlL3+J3/zmN83+GMRZXviiFANzvXhg0U5oGkM3v4rcTA+YwjCohxdH9s1ETkDD+cf06OhLJYeZY4owIW4y/5NiDO3lwx+W7ITPo8DvUTAgxwsLDIN6+JDf04e8LC8uPK7hGnLiLo6ZEybELew1wPbuuCTDElATmyOEtJewWTQ86hIcMyfcGVHkPWkNwxIQQsKst7tGSDvKSEoJCTtl2eIi0UeCtke4GRXhNqDIe9IacVNCSEA304e69m47e3maaUkIIRHWObpn0Lepm9G/bhtQ5D1pjVrdsiPvG8mOs0fEzB4tA6gIm1SEXY6GaoS0s2DUgldjiFvpzdsBu6cwU+zNG5rCsKeKGjm5Hf2IJaSdVUcteFQFumFBZUBupoZhfTJQHbHsJkwSsCz75l3EoIBPt6ORMCHtrDbRaMkSEkxRkBvQEIpYiBscXAgICQhIxEzRIG+OuA8VYULaWTBqJbLkJBgD/B4FMVMgZgpwYefOJRtG6qZADe2cczUqwoS0IyklgnEBj8IQNXiq7aXFBQQXqcbuyWVpAhIb9kYPfELieFSECWlHEYPDtAQ8KkMsMd8rAcR0YUcaSQmD1wV9Rg2BiqhJOXEu5sgi7La05fnz5+P000/H6NGjMXXqVOzcubNF5yfOUR40wRRAUxliiQ5qQghETA5NUaEqDKZVNxKWEgjHLWwpjXXkZZPDyLFF2C1py6+++iqeffZZ/OEPf8DSpUuRnZ2Nm2++GULQXXE32lYeR4ZHgUdlqV7CUgKGKcCYhKYweyRc7zszakhsLIkhbjb8mhBCYl+NjuWbg3hzbSWWfVuBt9ZV4f311Vi+JYitpVEYFn0tdWaOK8LJtOXbbrsNmzdvxg8//JD2fDJtOS8vD0OHDsWMGTMQiUSwYsUKAGiQtnz00UejoKAA119/PW655RbMmTMHsVjdqCOZttynTx8UFhbi4YcfRmFhIR599NFmXW8ybfnBBx/EkUceiWnTpmHMmDF47bXXANgRSXfddRcmTJiAwYMHY9q0adi5c2eDRvDE+aSU2FWhgzEGj8oQTUxHCGmHdjJm9xHmouE3ZmnIwEcbaxAzEq0vLYFvdtZiwWclePWrCmwoiaIkZKK01sK+GgO7qnRsKonhre+r8dznpfhoYw12V8XT0p1J5+C4dcJuS1u+/vrrU4/X1tbiX//6F4YNG5aWvEHcYXeljqjJEfCp0FSGSGIkLKTd1F1hAEvekJN2ox818XeFMRRV6Xh+RRky/SpqIvYKC59HQZa/8bRlAAh46/Li1hVF0M2non8PL4b28mNo74zU+UnHcdxIeP+05WTkUWMsy8KLL77Y4rTlpno+1E9bbkpTactJL7/8MsaOHYvFixfjvvvuo74TLhOMWPjvumoEfHZR9CgKomZyOkLCEoCi2CNk+zGkpTMDdhqyqjLETQG/V4HP0/yvEcYYMv0qBAP2VBt4b30NXv2qHGt3hxGJ0xK4juSokbCb05ZPO+00LFq0CK+++ipuueUWLFmyBAMHDmz2NT37aTGCTaQtN+v+eituwstDkMF7OG7+H77PtwXHSiBmcMQtidyAltqm3LebB+G4gFdj0BO744QAwCQipkTcFCgNGqmifTjU6hxbSuOI6BwZXga/R4HKFLBEbacxcvOcdER3nHpk91a/3lFF2M1pywMGDMCAAQNQWFiIVatWYcmSJfjVr37V7GuaOuHguXikc4kbFv61woucgAeqAvTK8qCbX0Gv7j70y/Ujy6di7NAsHNE70NGXSg4zR/3O68a05c8//zxtWoMxhqFDh6K6urrJcxPnipkSEvb0gpXYmiwkQ7Kxmh30efDfbIg7OKYIuzVtee7cuXj++edTz1mWhY0bNzY6Z03cQzfthu2awmCmliNK8MR/KwwI0XblLsEx0xFuTVueNGkSZs2ahTFjxmDkyJF49tlnYZomLrnkkkPwrpHOKmZwCNg32+o36eHCbuZuCUnre7sIxxThN998ExdeeGGjo8+rr74ad911F/Lz8/HOO++kdr4l05Yvv/xyTJ8+PXX82LFj8cILL2DevHmYMmVKKm358ccfT0tbBoDbb78dQHra8ksvvYShQ4c267pVVcW8efMwe/ZsXHbZZRg0aBDmzp2L/Px8AMDEiRMRCoXwv//7vygtLcWYMWOwYMECirt3udo4h8Jgj4S5XWwZGCxLwBJ2/hynGtwlUNoyIR3g883VeOqDYhTk+bF5bxjBGMdR/QMQAIb3y0T3DA05AQ0XHd+roy+VHGaOmRMmxE1q49xe96sARr0t6pxL8MRI2BI0PuoKHDMd0RlR2jJprVCUQ1MT0xGJOWHGkJqKAOzNGnFTwN+CTRnEeagItwGlLZPWihgcjDGozE5WZoxBSHslT7K/g5QSoZgFv8fbwVdLDicqwm1AacuktcJxe8mkXXwlVMZgcQkpAZEYCasKQ3GNgd7dqQi7GQ3VCOkAESPZvEciuUE4OQdcf4tGWcho5ysj7Y2KMCEdIFRvN9yxgzLtJj480Ukt8TgFfXYNVIQJaWcWl6k2ll5NQc9MD7gQMLndCilZhA3L3rBBq0jdjYowIe3MsHiqObvfw7CzPIosrwou7JRlhdX1LzO4QHlt461aiTtQESaknUV0AT0RVeTXVBRV6sjwqfbSNMXuG5EkJbBpH6UtuxkVYULaWXXUQnLSgSlAMGYh06vac8KQqDcQRlQXqIlZNCXhYo4swm5LW07atWsXRo8ejS+//LJF5yfOUllrpiZ+LUvAsiRUBTAtDoWxVMQRYDeQD8c5tpZQ2rJbObYIuyVtuf5x99xzD+LxeCveEeIk5fWWnZlcQiZqrm7ZmXJ8vzbCMUNgU2ks1einJcJxCyU1OmI69SburBxXhN2Wtpz073//O9XzmLiXbgoE4xzJthAWF2ASABi4kFAYg5QisX7YJgGU1OhYsSUEXq+fRFWtgbW7w9iwN4LwfjlxZSEDr39Vjmc+KcFLX5bhpZVlWLOjFoL6UXQ6jtsx57a0ZQAoLi5ONXefOHHiQc9HnG1raRSyXiE0uUxkuslUgUyuGfZqddMSjDFs2BdBadBATkDFvqCBYJTDrykQUsIUEv26e5GVoaCi1kJ1xELAq6BbIolZAFi9I4RgzMSpw3Pg0xw3/nItx/1LuDFt+b777sPkyZNpC7TLGVzgi20hAPYKCFUBdJPb08MMidGxhCWRauJTn0dVUBvnKKoywDmQ5VOhqQxeTUGmV0UozrGv2oRhSWT6VDCWHtWpqQq2lMTx37WVqAzTsrfOwlEjYTemLS9ZsgRlZWWYOnVqm65pyZpy1MZpOqO1DtfiAwlACIlwnGN7eQyaqqBHQEN1xILFVdR67Vw5i0s7ldmUQMREVdhClv/wfHvuqIhh+eYg+mV7kZ2hwaMxqAplK7fWyP6ZGDekW6tf76gi7La05YqKCvz5z3/G/PnzoWkaLKv1mWLnHN0jbR6RdB4Ks4tccmD6zc5aZGeoyPSr2FEWRq9uHnTzq+iX7UX/XC8G9vRj9OBuGDWgbYOF5uJcgtPXTqt52zi146giXD9tOUkI0WjactKwYcNQUlKCBQsWYNq0aWlpy8OGDUs7f2VlJWbOnIl77733oPFFLU1b3rhxY9pjybTlzz77DNXV1bjuuuvSnr/ppptw66234pe//GWT50/K9KnNPpZ0LJMLeD0KAh4FumH3i+BCwudRwMCgKgqiumi/eVtHVQH3cczbXz9tOTm/C9g3taZNm9aqtOWHHnoo7bjDlbb89NNPIxqNIhAIAKhLWz7nnHNw/PHHp47lnOP888/HH//4R0yYMKHJcxNnihn2UjNVY9AT25d1S0JT7ekLSwhEdUpa7iocU4TdmLaclZWVNqWRnI7o06cPcnJy2vJ2kU4spttF2KMwxEx7GsCwBDRVAYO9S45CPrsOxxRht6Ytk64nmhj9aqqSauRjWAKZXhWMATGTUxHuQihtmZB29veP94KBoaCXD8+8X4RgjCPLr6JnlgcFeQFYUmL0oCxcfELvpk9GHM9x64QJcTIpJXQzGV+kIJ7opmZYAh5NgYSEaUlYNBLuMhwzHdEZUdoyaSndFKmtx6pirw1WFAWmJaEpDEJICGnH3scMjgwvrXpxOyrCbUBpy6SlYvWKsJRAooUwknOCFpdgsJes1capCHcFVITbgNKWSUuFYjy1Oy2ZrlyfwSU0VYFHVVBcTUnLXQEN1QhpRzVRM9WYp7EibFrC/qaUEuW1lLTcFVARJqQdVYUteFT7284SAsmJiNxM+5dSw7K7qumWhE5357oEKsKEtKPaen1/TbMuW3nCUbmIxAwYXICBIWYKmBR33yVQESakHdVvIWkkdmQEfAq2l0Th1VQYpkDyfq5uCdREqOWk21ERJqSdWFygNlbXbtSw7JUQ2Rka9lTG4fcoMLhM+6bcVExJy25HRZiQdlITsdLihfTEqDfTp6I8pENTAd20UkGfUYOjikbCrkdFmJB2sqsyDn+9db8GF2DMTsaIGQISdshnspMAF3bScmlQb/bHMCzRIG+OdG6OLMJui7w/77zz0j7WiBEjsGHDhhZ9DNL57SiLQVPtUS4D7PlfZjd750KCJzZqSFlXiGvjHN/uDqOpFi9CSHy5NYinPtyH55eX4JMN1a1KZybtz7FF2C2R94ZhoKioCP/+979T1718+fIGDeeJs8UNjn3BunW/msrsKCOgbrucRCpnyUpMWwgJ7KnUsWbHgdNgwnELL31Rgq92hBDwKvBoCjaXRPHpxhpYjWTVkc7FcUXYbZH327dvB2MMxxxzTOq68/LyoGm0mdFNvtgShEety3HzqAwxwwJjgIS0s+ggIROH8HrFUwL4emctlm+qgW7W3diL6hY+XF+FBZ8WI2wI+D11Ux2MMWwtjeKTDdWpxvGkc3Lcd7rbIu+3bduG/Pz8BmGgxD02F0ewbk8EgXoRVJ56I2EhASYT0xDC/l9LpI9gFYVh3Z4w1u+NIK+bB1GDozJswacpCBygv4SqKNhSGsPOijh6dvNANzh0S6BHlgdD8zIwrF8gtXGEdBzHFeH9I+8XLVqEWbNmNVrELMvCyy+/3OLI+6bUj7wfOXLkQY9tKvJ+69atUFUVN954IzZs2IAhQ4bgzjvvbNZ11FcVMdNGT6Tj2O0ogbJaHd8XRVBcYyDTp0I36+ZopV9FVLcghH0DTsJu7uNR7U5q0ThvtEAKSBTX2NMamsLsuWRx8H93LiT2VtXd3KuN69hUHMMXW4MY2juA/B4+ZPnU1Hw1aRmfR0H3jNaXUkcVYTdG3m/btg2hUAgzZ85Enz598Morr2Dy5MlYtmxZi9I3ln1TgZoI3RXvSIzZo1jGAIUBfq+CDK+KgT39DY7t2U2DySU0jUFhgKowxA2BgE+BLzGv2yPr8P92VFyjY3NxFAYXqWunmIeWOf2oXIwe1Pqa4qgi7LbIewCYM2cOdF1Pnev3v/89vv76ayxZsgS33XZbs6/putMOHk5KOp93v61A/xyJLJ+KbhkqFAbkZHpwZJ8MDOzpx0lH5nT0JZJ24KgJofqR94WFhRg1ahTKy8sbjbwvKCjAsGHDcPHFF2PKlCmp5Wz1I+/3V1lZiRtuuAHbt28/6HW0NPI+GTyalIy8BwCPx5NWzBljGDp0KMrKypo8N3G2mMETy9Ps9cJxk8OjMSiMIRKnm2ldhWOKcP3I+yVLlqT+PP300zBNs1WR9/s7XJH3GzduRDRat/00GXkPAD/72c8wf/781HNCCGzatKnZQaLEuSI6h0dlMBKNenRTQGMKhARMmt/vMhwzHeHGyHsAOOOMM/Dss89ixIgRGDhwIBYuXIhgMIjLL7/8ULxtpJMSQkA3JQI+BjPRslK3JFTF7ikshGPGR6SNHFOE3Rp5f8stt0AIgfvvvx9VVVUYPXo0Fi5cmLr5R9wpbgpIKeFRGaKJVRNcSCiMQTc5LOmYb03SRhR5T0gHqAobmP7sBuT39KMyFMe+anvZ2YlHdEef3ADye/pw8ViKvO8K6HceQjpAzOAQiZFw/ebtEgxRw2py7S9xD/qdpw0o8p60VkS3bxSrSt2NOZtE3BAQiSY+jNEGCrejItwGFHlPWisSt1OXNZXB2C9LLjkSjpuCIu+7ACrCbUCR96S1glELWqIIm/WKMAMQjXNIaY+WqQi7Hw3VCOkAtXELisKgMkDfr2Naco1wdZhSNboCKsKEdIBw3EIixQgDcn0Ye0R3SCkhhITF7UY+ZSHj4CchrkBFmJAOUBuztywLCfTI8qAqZMDiIrVhwxIS4RhtXe4KqAgT0gGCUcte+ZCYibAsCSEA3RDQFIa4wWFROlGXQEWYkHZmWAIRw66wAnYDn1DcQvcMDTGTQ1MV6JaEyWkk3BVQESaknYXjZiqmSAoBIYBI3ELApyBuiFQzd5NLhGLUI9rtHFmE3Za2/M033+Dyyy/Hsccei4svvhirVq1q0fmJs1SETNQf5BpcIG4I+D0KYol2loDdS2LzPjs4QAiJTzdUYenqMmwtaTpMgDiHY4uwW9KWi4uLMWXKFJx88smp6Kbp06en+iMT9ykNmjAT25I9moK4LhAz7aDOuCmhJZZNhOMclRETBhf4z5pyrN0dRmnQwJdbg9heFj3YhyAO4rgi7La05eeffx4jR47EnXfeiYKCAsyYMQP5+flYv379IXrHSGcipUR5yIBh1W1bjhhWKlrI4iK1dE1IYEtxFE++twd7quLwafa3a0QXWL0thIqQ3uD8hiXw5dYgvt0Vov4TDuG4Ilw/bXnw4MFYtGjRQY8/UNry1KlTGxw7adIkzJ8/v1lpy8uXL08r1gdyoLTlb7/9FoBdpM8777y08y9evBjjx49v8tzEeYqrdehcwEi0r/SqCmJ6vQBQCQgBmIki7dUUZHgUeLX0b9XqiIn3v6/Cnsp46rGobuHFz4uxZnsIX2wO4uP1VQ22RJPOx3FFeP+05WTkUWMsy8KLL77Y4rTlpno+1E9bbkpTactFRUUIBAK444478KMf/QhXXXVVqkATd4nqHMu+KUfAq8LkdhioogBRIzFBnGjaI2D3jTgYxhhCMY7FX5VhyVdleOvbciz4eJ+dzqEyqArDxuII3vy6HOuLarFpXwTrdteiqCKGmEGrLjoTR/WOcGPaciQSwZw5c3DLLbdg6tSpWLp0KW644Qa89dZb6Nu3b7Ov6an3i1ATOfTbXA/JL7QtOMnh+gW6ZV2zm39wc480LQndksjN1BDwKogbHApTIYVETOdgjEFAwrDsDmoVIQPNnU3YcpAbdVtLo1i/NwIpJRSFwTAFDEvC71XgVRkUhbq0tdWpI3Jx2oicVr/eUUXYjWnLqqpiwoQJuP766wHYGXgrVqzA0qVLcfPNNzf7mn559sBmH0s6VlS3UBEykZOpQWNA9wwNqqIgy6ehT7YP3f0aTh2Zi9OO6tHRl0ragaOmI9yYtty7d+8GUUmDBw/Gvn37mjw3cSbdkuAy2UtYwO6dhkTysoSiAmVB6hvRVTimCLs1bfm4445LW+EhpcT27dsxYMCAJs9NnMkwBSDtPDm7CNvzDkIAEBIMQEWYinBX4ZjpCLemLU+ePBnXXHMNFi5ciB//+Md45ZVXUFxcjIsvvvhQvG2kE4roPHXzzA78tB/XLQGPx468j8bp5llX4Zigz/PPPx8nn3wy7r///gbPLV26FHfddRfOO++8tF1vybTlCy+8ENOnT08rrt999x3mzZuHtWvXptKWp02blpa2PGLEiNR/109bnj59etpzTdm1axdmz56NtWvXYtCgQbj77rtx2mmnpZ7/+OOP8de//hW7du3C8OHDMXv2bBx//PHNPj9xlu92h/DZhmr07u7D9tIIPlhbAVVhGNTLj4jOcdTALHhUhrsuObKjL5W0A8cUYULcYsWmaqzbXYu87l6sLwph+fpqKApDnxwvGAMG9gog069i1iUNl1ES93HMnDAhbhE3BRizpyNMUyCZ5WlYEl5VgW4J+z4G7XjrEhwzJ9wZUdoyaY1oImmZMQarXqE1TAEtU4NpSQAMoaiF3CzPAc5C3IKKcBtQ2jJpjWTcPSBhJEbFgN33waMqMCwBlQElNToV4S6AinAbUNoyaY3aeF2PYN2qGwmbXEJVWWIHHbC3Ko6j8tu2u5N0fjRUI6QdSSkRS6RqMIlUc/cku5OaBOeg5jtdBBVhQtpRzOCwkhH3DDBM+7+PHtQNGR7FbuAjAQ6J2rhFzXa6ACrChLSjqMEhEqtCGQA90bIyy68iO0MBwOznpR1t9N2utvU5IZ0fFWFC2lF12EplyEnYy9IAIBQ1EfBpkNLeQSckEIpyFNfo9W7kETeiIkxIOyoN6fAlMuSklDC5Pe/LhQAYwLkE5/aKibjBURY0sGJTdd0UBnEdKsKEtKOqkJlakgbY/X39HgUxQ0ABwBOjYIWxVGP3baVRLN9YRYXYpRxZhN2UtnzmmWemfZzkn7vvvrtFH4M4Q1nI7o7GAJjcbuDu9yqI6RYk7Iw5Luw/yaKrMIYNe8P44PtKRHTrwCcnjuTYIuyWtOXXXnstdb3Lly/HI488Ao/Hg2uvvbYN7xDpjKK6hXDcHt2qKoNu2L2EvZoC3RR2YbYkhLDXD6v1Qi9URcGO0igWfVmK74tqIWhLs2s4rgi7LW25R48eqevNysrCY489hltvvRVHH330IXrHSGexqyIORbGLp6bYc76AhEdToCeWqsUNDlVhdlHeL3pIURhihsAn66uwdHUpNu0Lo6LWwLc7g1i0qgRLV5di7c4QTVs4jOOKsNvSlut77rnnwBhr9NqI8327oxZ+jwrATtXQE8XSq9lFlwsJ07KDOnVTwKM2nv/m0RSUh0y8s7YC//x4Lz7fVIOKkInSGgOfbajGG6tLsbMsiohuoaJWx96qGKI0jdFpOW7b8v5py4sWLcKsWbMahGkCdtryyy+/3OK05abUT1seOXLkQY9tKm05yTAMLFiwAP/zP//TrMQO4iwb9oZRFtKR4bWLsF1oOSAZvIl+EQaXYIzBozDoloDWxBDJ71Hh3+/L3utRUF5rYslXZZAAhLSTOjL9Kkb0z8KYgm7Izmz4vZL8AaAqDJ6mPjA5pBxVhN2Ytpz01ltvAQAuvfTSVl3TyyuKURtr22inyV9iW/hbrjwE2clt7XZ9KD6npg858BEWlygPmaiOWMjyq6nH++X6UFVrIG5xSAZEdAtxg8MUEh4pUR4y0DPTg1A8Wm81ReuVh0xsL41hyapS9Mn2ItOvQgKIxgWCMRO1sWRnN6BbhobsDA3dMlRoqgKF2TcSD8FluNLw/lkYPzK31a93VBF2Y9py0ltvvYXzzjsvLf2jJX7+o4Pn4pHO59kPduGI8gAG5PqQE9CQ4VEQ8CkYmJeJ3jl+9MjSMPGEPsj0qU2fjDiWo37vcGPaMmAX5ZUrV+Kcc85p8nzEPXRTgjF7tC9hL1lTGYOSuCHHBRCJ01yu2zmmCLs1bRmwi7qu6zjhhBOaPB9xB8MSiV7CddM2hmUXZTVRhBXGUFlLqctu55jpCLemLQPAli1bMGDAAAQCgba+TcQhdFPYy9AYs+e9pV2YVUVJjYxUBagIURF2O8cU4TfffBMXXnhho6PPq6++GnfddRfy8/PxzjvvpHa+JdOWL7/8ckyfPj11/NixY/HCCy9g3rx5mDJlSipt+fHHH09LWwaA22+/HUB62vJLL72EoUOHNuu6VVXFvHnzMHv2bFx22WUYNGgQ5s6di/z8/NQxFRUVyM7ObulbQhzMtDjiiV7CQtpjYdMS0DSW6rLGBRCOU/Met6O0ZUI6QFFFDPPf3YXiah2D8/z4bH0lVIXh6ILuyMnyIDfLh24ZGnIyNVw4tk9HXy45jBwzJ0yIm0R0C2Zis0baDuREU3dLSOiWoMTlLsAx0xGdEaUtk9aKxDgsK1mE7Q0VSULYcfcWt/9XSnlI1gqTzomKcBtQ2jJpLd0S0BMZclLU2wiRypizC7Ql7ISN7AClLrsVFeE2oLRl0lpxS6RCPuvvLJQSELBv0iX/XhY0qAi7GA3VCOkA0TiHye11wbzeAggJe117cpSsKgx7KppuFEWci4owIe2MC4moziFlcmOGRN9cexu73VPYbuoOADFDIGbSMjU3oyJMSDuL6hwmtwM9NYWhT44PA3v67Ww5AIbJkajBiOkcJu1cdjUqwoS0s5qIAZHoF6ElegZXh3V7kwZL9pRIhIHC3knX1g55pPOiIkxIOyuuNqAxBgkJVWGI6xaqak1kB+z75Hqip0SSkBJb9jXdNpU4ExVhQtpZSU0cXNhrg9VEikZt1EQ3vwaLS4hEcU6K6QIlQb3jLpgcVlSECWlnxdUGDC6hMMCnMcQMjqjOkeFT7Xw4aT+XpFsCMYMjotMNOjdyZBF2U+Q9ALz33nuYOHEixowZg6uuugrr1q1r0fmJc4RjFiJxCxYXUBhDhldFKGZvYfaqCgyTQwFLGwknX/ft9uABz2taAtQGxpkcW4TdEnm/ZcsW3HHHHZg6dSqWLl2KwsJC3Hzzzc2KTiLOs7k4Ap9XQTwx75vh1RBJ3nRj9nwwFAZlv23KcVNib3UcFaG6aYlwzMSnP1Timfd344m3d+H5T/bii83V1AjeYRxXhN0Wef/5559jyJAhuPzyyzFo0CDMmDEDlZWV2Lp16yF6x0hnsm53CAGvCt2wewln+JRU0ZTSLsJ2zqZsMLKtqjXx9rcVWL6hEq99UYy/v1+E73eHwQWQ4VURMwS+2R7CPz4swptrSrGhqNae3iCdmuOKsNsi73NycrB9+3asXr0aQggsWrQIWVlZtB3ahbYWR1AdNqEpDLplz+/6PGq95WcScZNDUxRIoEEHNcYYInGO9UURVNaaCPi0BtMWdlqyij2VOj5YV4Fla0qxryreDp8daS3H9Y5wW+T9xIkT8eGHH+Laa6+FqqpQFAXz5s1DTk5Ok9dR357KGLU97GSSA1lLCGwviWL1tiD8XhUGFwhGLZhcwKPYmzcE7DXBMZNDUQCTSwRjJvyetoV8bi+N4vvdYWT6VKiKvSOvW4aGXt296J/rQ3amJ1XIqVFb6/g9KvrkNB11diCOKsJujLwPBoOoqKjA7373O4wdOxbLli3DnXfeiVdffRWDBg1q9jWt3FyD6ojZgs+CtAsJMAXo5tdQOND+uumeoWFnaRS5mR74vXaR9SgMmsLAJJDp05DpVdEr24vszMPTuMfgAj/sDSNuCkgBgApwq00o7NF1irAbI+//+te/YujQoam+xKNGjcK6deuwcOFC3Hfffc2+pp+dQpH3TrKjJAJLAD2yPPB7FWiqAsYYumdo6NnNg4F5GThmUDcclSjcxL0cNSfsxsj7devWYdiwYWnPjxo1KrV6grhT1LSbQxiJHhIAEDc5PJoCwB4VV0fpN5uuwDFF2K2R971798amTZvSXrNt27YWTUUQZ7EsAZFs2m6K1FSAbgp4E0GfQgjURmmpWVfgmOkIt0beX3XVVZg5cyZOOOEEjBs3Dm+//TZWrlyJu++++1C8baQT0i0Bnhj+xi2BZE933RTolqGljgnQjdYuwTFpy+effz5OPvlk3H///Q2eW7p0Ke666y6cd955abvekpH3F154IaZPn55WXL/77jvMmzcPa9euTUXeT5s2LS3yfsSIEan/rh95P3369LTnmrJr1y7Mnj0ba9euxaBBg3D33XfjtNNOSz2/ePFiPPPMM9i3bx+OOOIIzJo1C+PGjWv2+YmzVNbq+MeHRejm96C7j2HhB7ugqQoCPhX9e/jRr2cAedk+9Mnx4cJxfTv6cslh5pgiTIhb7CqLYtHKEgR8KnyqxL8/KYKmKtBUhuEDstCjuw/dMrwY2MuPi0+iG65u55g5YULcIhS14NEYFAbEDQ4lsU7X4hIqUyCEhG4K0GxE1+CYOeHOiCLvSWuEovauOVVhiJjplVZCQgjA4gKWkIgZHBnetm3YIJ0bFeE2oMh70hphnYMxZvcSNjhYvZ0SDHYTd4MLcC4RjFpUhF2OinAbUOQ9aY3aRMMeTWGIGVaD7cJCAsKS0FSGfVVx9G3DbizS+dFQjZB2FkpswvBqDFHd3rSRzJqDlLAsDi4EhJBprSuJO1ERJqQdCSERjtkbhzyqgqhuF+TTCnsir5sXkjHohl2Ao4agVpRdABVhQtqRHXdvF1aPpiBu2P9dEdSRm+UBIBG3ZKrBu0GJGa5HRZiQdhSMmqnbcJrKENUtZPlVhKImFAYYpoBhWlCY/a1pWhLlFPLpalSECWlH+6r0VPtKBnttcIZPQ23MggQQTty0Sy6sMbnEhr0UdeVmVIQJaUelNXqqibqEBBdAwKcimii+0bi9fC0ZmFEbs1AbNWlu2MUcWYTdlrb85ptvptKWp06dil27drXo/MQ5iqvrooaktJtMZXhVRHULhilgcQFVQVrQZ2lQxzfbaxqciwuJPZUxfLGpCp9vqMTqrTXYURZFTKfua07i2CLslrTlFStWYObMmbjiiivw+uuv44gjjsB1111HacsuFI5ZqTXCgF2ELWEvVYsbAjGDQ1MZVEWBVm+jj8WBNduD+Pj7CuypiKKoIoaPvi/H39/dhVc+34e1O0L4fncYX22pwZKVJfjnR3vw8boKhGLUj9gJHFeE3Za2/Nxzz+H888/HDTfcgKFDh+Luu+9GIBDAG2+8cYjeMdJZrN9dC69W9y0nhAQX9jphCdQrwvZuuvoYGDbsCeOVz4vx6uf7sHFPBIwxZPo0sMSoWVEYAj4VjDFs2BvGG6tKsbMsiv1JKaGbnFZddBKOK8JuS1suKipKNXhPnn/EiBGp54k7WFxgzfYgPGrdtxwX9Zr0SHv5mldT4NEYpJQQ+xVJhTFk+jVk+rW06YrGKIwhHOf47+pSfLq+EuVBHWVBHR98V44n396Fp97ZhVc/34fvd4coILaDOa4I75+2nIw8aoxlWXjxxRdbnLbcVM+H+mnLTWkqbbn+fyft27cP1dXVTZ6bOEMkbuH1L4oh9it2hiUhgdTjUZ3D51GhJQr1obgZp6oK1u+uxXMf78HzHxdh894IVIXB71FRHbHw4XcVWPxlMX4oqkVU523+eKTlHNU7wo1pyxdccAEeeeQRnHHGGTj++OOxePFirF+/HieddFKLrmnuf3cgGNnvhkwzvodlcw5qpkP5222zTtWsz+/QfcSWfn4SEpwDYDIVLW9wkXo+4AGkkIlpAQnD5PCoDNyyN2nwmHnImvfYA2eGmNmw0O4uj2HLvgjCcQ6VAR6NIfl/lMLctAmjemB8Yc9Wv95RRdiNactXXHEFtm3bhilTpoBzjh/96Ee45JJLWnyNt00c0qLjScf7dF05+uX60T2gISvDA4UxZHg1ZGVoKOgbwOlH90J+r0BHXyY5zBw1HeHGtGVFUfC73/0Oa9asweeff45nn30W4XAYAwYMaM5bQhwsqlsAA3hd1ickJCwuISUQpKDPLsExRditacsLFy7Ek08+CZ/Phx49eiAWi2HlypUtno4gzhM3ORTGYHGZWuEAACa3Vy4EI7TErCtwzHSEW9OWBw4ciLvuugvHHHMM+vfvj0ceeQT5+fmpKRfiXuGYBZ+HQU+bp2UwTbt7Wi2t8+0SHBP06ea05b///e947rnnEI1GMX78eNx7773o2bP1E/3EGZ5+axvW76qFAoltxfZN3mOGZCNuWBjavzuG9MnEBZS27HqOKcKEuM2c1zehuEZHNGagqNzeznzskGwEoyby8wIYVZCNn55Iactu55g5YULcpjZuwasp0OuFfZqJ/sGmyVuyvo44mGPmhDsjSlsmbRGJW8j0azDMurXDhiWgMLunBG1k6xqoCLcBpS2T1hJCQjcFcjIVGFZdEdZNAY+mJFZNCJiW/XfiXlSE24DSlklrWVzA5Haicv3VEbop4PcqUFUFXEiEohZ6dvd24JWSw41+xBLSAQxLwrQEVJWlMucAQDc5FAYk+/yUU9qy61ERJqQDmFzAMAUSbSNw+jG9ACmgmwKKokBVGBhjKKnXBJ64ExVhQjpATOfg0t7N6fMo0BQ75siwBDyqHW+kmxxRgzqbuR0VYUI6QDBqALB7RHQLaNhdFkX3DI89MmZ2dFFU5+AWLZFwOyrChHSAYMQEY3bz9kyfiuKqODL9yfvkdj8JS9gJGKEobV92MyrChHSAqloTHpVBCCDg96AmbMCj2kVZSruTmsUl4qbA+l2hjr5cchg5sgg7LW05adeuXTj22GNhWektCleuXImf/vSnGD16NCZNmkRpy11AZa0BVVEgpIRPSyxTY0jdqDMtDosLhOMcRRUx7C6LoCJkIBKn9pZu49gi7JS05aTi4mLcfPPN0HW9weO33HILLrroIrz++uvo1asXbr31VgghDnAm4gaVIcNOu5Ay1UxYJm7UMcZgWvZGDcAu2K9+vg//eH8nFry7E/9dXYKyIK2acAvHFWGnpS0DwPvvv4/LLrsMXm/DRfevvPIKRo4ciZtuuglHHnkk/vSnP6G4uBgrV65s5TtEOjuLC1SHDQB2Q3d79Mtg12S7KFtCIG7YRZglAj67ZXjg8ajYVRbFix8XYdmqYuwsjaSKNXEmx+2Yq5+2/MQTT2DRokUoLCw84PEHSlueN29eg2MnTZqE8ePHNytt+Z577kEsFktrj3kgn332GX7zm9+goKAA1113Xdpza9euxbhx41J/z8jIwKhRo/DNN9+kwkmJu5RUxxGJW1AVwEpkzCWz/oRAak443kgeHGB/DWZ4NRRVxLClOIzuAQ8K8gLo2c0LTWEIxkzURjk0jaFPtg/DBmQiw+u4b/Uuw3H/MvunLS9atAizZs1qEKYJ2GnLL7/8covTlptSP2155MiRTR7/wAMPAAC+/PLLBs8dKI25tLS0yfMS57G4wNfbgjAtCU1VYJh2w5768UbJhj6siS6zyWJsWhJbiyPYtDcMISW0xEYPANhYVIsvN1dhxIBuKBzUDT27edNSPEjHc1QRdmLaclNisViDaQqv1wvDMFp0nn9/UoTaJjLJmkpWPhQJx4diVWvzOlw38bkcggtp8hQtTHs2ucS+yhiO7J+JsmAcmX4POBfI9KrgQkK3OISQqI1ZUBggGceeytgBz90SO8uiWLxyH3IDXmRnafAmmgS1uhxTHU85amA3jB/Vq9Wvd1QRdmLaclN8Pl+DgmsYBnJyclp0nqtPH9jmayHtQwgJw+DIyfJgZ0kEDBLdAxo8qoK+OT707OZFVoaK0UNzceFJ/Tv6cslh5qgbc05MW25KU2nMxH1MSySmDRQYJodIDNt1k8PrUaBbHIwlbtIR13NMEXZq2nJTRo8eja+//jr191gshh9++CGVxkzcR7fsIE9VYYkkDXt+1zAFvB57npgxBbTmoWtwzHSEU9OWm3L55Zfj2WefxZNPPolzzjkH8+bNQ//+/XHKKacckvOTzieuc0hIqCoDF4CZuBGnmwLdvR7oiSY+piVgcQFNdcxYibSCY4rwm2++iQsvvLDR0efVV1+Nu+66C/n5+XjnnXdSO9+SacuXX345pk+fnjp+7NixeOGFFzBv3jxMmTIllbb8+OOPp6UtA8Dtt98OID1t+aWXXsLQoUMPyeeVn5+Pxx9/HA899BCeeuopjB49GvPmzaNUDherjVtQFQWawsClhJ5Y52tYHF7Nh7hl58txIRGOWcjJoqbubkZpy4S0s2+31eCz9eUYlBfAR2vLIDnHjpIIPBrDsAHdURk2MWxAFgb0CuC0Ub1Q0Duz6ZMSx6LhFiHtLBQxoSr2Gi+PwlLrgk3Lnie2N28AQkqUVFOyhts5ZjqiM6K0ZdIaEcMCYwxcSGiaAqNevFG9XRvQDYGacMvWixPnoSLcBpS2TFojHLM31QgpoaqAUX97sqzbaBKKmLB60myh21ERbgNKWyatEUrsbBQC8ChKajoiSUgJhTGEoiY4ddNzPRqqEdKOuJCpnsAWt9OWdSu9UY+UdiHWTQ7LlLA4FWI3oyJMSDuK6TwVcc+FhEdjGNgrgPpdJoQQMCwBxhgsKVEdpngjN6MiTEg7qo2Zqe3IyT7ARw/JQbeMuplBIQDDFHbsPYAdpW1vFEU6LyrChLSjshodPo/9bWcmti7vq4iiR70NGUJKGIldc3FToCpEy9TcjIowIe2oLBiHptq75XSTI+BVsbciigyfmog2sotw3OBQNQXhmAXDkhCCVkm4FRVhQtpRaZU9qlVVe5OGR1MQiVmpRuucCzAwxA0Or2Z/e+oGx56KaIddMzm8HFuE3Za4DABLly7F1Vdf3arzks6Pc4HKxOYLVWHQTZHonsYTUfeAYdkrJkQidVlIiWDUxOa94YOfnDiWo4uwWxKXATv2/v7772/R+YizlAV1WImbcZpqF19NsQsvg70qwuQSHtUeFUsAFpcwuURpTRzbi6kQu5Eji7DbEpfnzp2Lm266CQMHUjqGm63bGYTfpwIANFVBzOD2SDhRmCXsFRPeROtKKWVqBUUoauGTdeVYtbkKNWGj0YbvMYNj054QPv+hAqs2VWFXWQR6vd14QkhUhHSs+KECS1bsxbtfl2Dz3lqab+5gjtwx57bE5VWrVmHBggVYuXJl6gcFcRfD5NhYVAtPYp7XozLEdGG3rEysG5aJpWl+n5bqJ6EbHJl++9s0bgp8ubESn64rR6/uXvTN9SMrwwPT4thXGUdZUAdjSM0lxwwOTWHI7eYFAxCMWtANDr9XhZJoILR1bxhF+VGcclRPBPyOLAeO58iR8P6Jy8nYo8ZYloUXX3yxxYnLTfV9qJ+43BwPPPAArrzyykafe+6559Ji74m7CCHx9upS1A851lQFcYODC5GadtASjdw9mn2gwhiievpuOk1VkOnXEDMEdpRGsW5nEBv3hBGKWfB7Vfg8Khiz05YDPg1ej4pInCMc51AVhoBfSxVgAGAKw8Y9tVi2qhi7SiMUqdQBHPejz42Jy4fCyg0VqI3xpg8kh1WyiAkpYXGJiloDG3aHoJsCWv3iJyWCUQMRndvN2+McigKEYhZyunlRHTZRGdJRETKgm4d/2/KOkghWbqzEoLwAeuf4kJVRl8gMILV6gzQ0bEAWBvdpfc9nxxVhNyYuHwp+rwZNc+QvNq6SDJFXFMCjKjh6cDbOHdOnwXFSStRGTQR8KjJ9GlQFyMv2A0xB/54ZGNg7Cz26eXHcUBUTju3drp+DxSVqYxYMiyPZP0iCRsgH0tYfUI4rwvUTl5OEEI0mLicNGzYMJSUlWLBgAaZNm5aWuDxs2LC081dWVmLmzJm49957DxphdCgTlw+F447I6ehLIC0QDBvIzNDAE018LEsiw6vC4BI+TYXfr0FVGDIzNPTv2fQ9B+JcjirC9ROXk/O7gL30a9q0aa1KXH7ooYfSjuuIxGXS9UQNDiWxRpjBjrvPDGgwOIdITGnUX9lA3MtRRditicuk64nETPi9CqpidUnLXlVBBMmNGxIC9o06LmQqDom4j6OKsFsTl0nXE4pZ8HlUWLxu11yysQ9gt7nUVJZKXM7O9HTg1ZLDidKWCekAH68tQ0VIx5aiIL78oQIAcOwROSiuimPEwO7QPPZys57dvRg3vAeG9O0cN4DJoUe30wnpAJG4nbhs7RdfJBMZc8ldbJrKUFwV74hLJO3EUdMRnRElLpPWqI1yZGYo0OPpIZ9CSggASBRh0xQIRihZw82oCLcRJS6T1ghGDHQLZEC3Go6EFdSlbkQNjqwAZcy5GRXhNqLEZdJSJhepJWomT1+GJoQAY4Bp2SPhuCHALSQavtMKCTeiYRoh7SwSs+w5XwboRvp9cSHslRGi3v1ygwuEYw37TxN3oCJMSDurChlQFAaWaOLu1RS7uQ+zb8hZXNjzEglSShSVU7KGW1ERJqSd7a2MwudRwBR7ffBpx+ahd7Y3dWPOtCTqt1wzLIE9FbGDnJE4GRVhQtpZWY0OxhiEFDBMgdqIgW4Zmh1tpDBYXEKtN/0bjlkwLUFtJl2KijAh7UgIiZJqe92vFIDFBXRDwKOp0BPhnqYloKr1XiPtVRK0XtidqAgT0o6qwwbiicY8QtgrHuKG/feYzuHxMJhcQGXp35o1YQObikI0GnYhWqJGSDvaVFQLn8ce5lpCwqfZRTgrQ0PMsNAt4LVHwvs17LG4xJa9YUgA2ZkemJZE7xwfBvfJTEvKIM7jyJGw2+Lun3vuOZx77rkYM2YMfv7zn+Prr79u1flJ5yalxA9FQagKg6YwGKaAz6sipnNICeiGvVLC4rLRwsqlxMaiEFZuqMQ326rxzupifPZ9eSoolDiTY4uwW+Luly5dir/97W+YMWMGlixZghNPPBE33ngjSktLW3R+0vmVVccRSmxBVlU7Zdnn1VJ9g3XDgsejgIvGizBgpziknmMM3++swQfflKI2SlubncpxRdhtcfeLFy/GNddcg5/85CcoKCjAHXfcgby8PHz44YetfIdIZ/Xxd2Xwe5OR9wy6acHnURDXeSJ0QMCTiLsXQjZr/ldRFGwvDuPFj3bh7dXFWLWpEjVh47B+HuTQclwRrh93P3jwYCxatOigxx8o7n7q1KkNjp00aRLmz5/frLj75cuXpxXrg0nG3c+ePbvBc7fffnujKcz7j5iJs23dV4t9VfHU1mNVYTAMAb9XRdyw7CBQTYWWWJsmpUz28GmSojBIaYd1frWpCv9ZuRfrdwXTirjFBfZURFFUFkn1pSCdg+NuzO0fd79o0SLMmjULHk/DpteWZeHll19ucdx9U+rH3Y8cObLJ4x944AEAwJdfftngueOOOy7t759++il27tyJcePGNXle0vkZFseWvWF88E1pahQMAKqi2LvlPPb/xg0Oj6akUjUABosLqIp64JM3QlEYInGOj9aWYndZFP16+FFWE8fmvbWp1ObcLB8KB3XDiPxu6B7wQFUdNxZzFUcVYbfH3e/YsQOzZs3CJZdcglGjRrXotX9bvLlFv4a2ZalTk688yAFdaYFV8nPN9KsI+LT9RqAShmlvTxZCQjc4/F4FUtq9I7gQsHSZipxvjS17a7FhdwiqwsAYUlMd4ZiJLzZU4p01JbAsAUVhddH2rf5oXdcZx/XBhGPyWv16RxVhN8fdb968GVOmTMHQoUPx4IMPtvj1/3Pp8EN2LaR9LHhrK1SFIcOvQVUZsnweZGd50DPHj/49MzB2eA8M6detoy+THGaO+j2kftx9YWEhRo0ahfLy8kbj7gsKCjBs2DBcfPHFmDJlSmo5W/24+/1VVlbihhtuwPbt2w96HYc67n7dunWYNGkShgwZ0uScNHEHKe2RsIQEpN0/2KPac7ucS6iMoYaauXcJjhkJuzXuvqioCDfeeCMKCwsxb968tJRn4l5cyMT0hD0BYFoCmqpAwu4prChAMExFuCtwTBF2a9z9Aw88gEAggAcffBDhcDg11REIBNJWdRB3MUwBwxKQQkACMLmEpilgsAuyxWVqezNxN8cUYTfG3YfDYXz22WcAkJrTTvrlL3+J3/zmN23+GKRzMi0B3bSgKXWF175xJmFYEiaXELwr3cbsuijynpAOUFYTw7wlm+H3KvhiXRkUhWH0Ebnw+TyIGRxHDuiGHt28uPCU/I6+VHKYOerGHCFuEYvzRIJGWv92mCYHYM8XN3ezBnE2x0xHdEYUd09aK2pwcN5wV5xucXhUhZq4dyFUhNuA4u5Ja8V1bq+O2K/Q6qZAhk+DhN2+0jDtXXXEvagItwHF3ZPWMiwBkwsIgVQ/CQlAN3hq95qQEqGoiV7ZtG7czehHLCEdIG5yCCFh8rplaAyAbvJUtBEDUBGkSCO3oyJMSAeI63Zjf8MS8GgKfjymr520bApoiSrMGENJFaUsux0VYULamZQSkTiHqiqwLIme3X3wKAzhqJFKXAbsUXHMoA0bbkdFmJB2Fje4HeapMpgWR/dMDyqCcZiWABeAkPbKiNqYBUHr1FyPijAh7SwUtcAtaefMWXZj96qQDk1hQKKhDxeJFpemQFS3mjwncS4qwoS0s9LqGFTVDvu0uIDC7B6/qqrCo9o9ha3ElmXD5NiwK9jBV0wOJ0cWYbelLc+fPx+nn346Ro8ejalTp2Lnzp2tOj9xhr0V9s02VVNTjd6jOoemMmgag4AdRwQANWETJVVxxHQLusERN2hU7DaOLcJuSVt+9dVX8eyzz+IPf/gDli5diuzsbNx8880QgnLA3EhKiT3lEVhcwKuyRE9hIBa34NEYNEWBAnu9MGCvHd5REsZT/9mCef/Zgmf+uw3vf12M6tqGKSpSStTU6vhyQwWWfbEHn60rQ2WIlrh1do4rwm5LW45EIrjrrrswYcIEDB48GNOmTcPOnTtT7TiJuwTDBmqj9g03j6bAtCQg7baVHlWFR2VgCkPcrPshrCoMfp8Kv1eBqjBsLgph8fLdWL2pEuU1Mewui+CTtaVY+PZ2PPv2dqzeVImi8ijWba/GR9+Uoqjs0MZwkUPLcTvm6qctP/HEE1i0aBEKCwsPePyB0pbnzZvX4NhJkyZh/PjxzUpbvueeexCLxZrVhD2ZtlxQUIDrrrsu7bnrr78+9d+1tbX417/+hWHDhiEvr/WZVaRzklLi4+/K4PMosLiEpjJYloCUdsQ9mF1wzUSf4QNhjEE3Bb74oRwffiOgKoDfp0JhDAGfmnZceVDHqo2V8HkU9M6lwIDOyHEj4f3TlpORR42xLAsvvvhii9OWm+r5UD9tuTkeeOCBRmPt63v55ZcxduxYLF68GPfddx/1nXCZaNzCu6uLsbM4DE1l0E0ORWHgkKn2EYJLqKpdYJNrhQ9GUxV0C2gI+LWDBoKWVsfw8dpS7C6LUFOgTshRI2E3py2fdtppWLRoEV599VXccsstWLJkCQYOHNjs1z//7g6E4+k/jJr3/dbwoEP5fdrKS2jkkGYd1Cyt/fRa8n4mD9VNgepaexNGpl+FpiqpLcsKAMuyl6IJISEScffVIR0+n4qymkM3n1se1LFmSxVysnzI8qlQVAaWiFZqQ6AzATBqcA4mHNu71a93VBF2c9rygAEDMGDAABQWFmLVqlVYsmQJfvWrXzX79ZPOHXLIroUcfh+sKUYoamBLURBZGRqyMjzwaArycvzon5eJXtl+XHRq838IE+dy1O+8bkxb/vzzz9OmNRhjGDp0KKqrq9t8btJ56YnRsMrsNcGMsdRI2LBoZUxX4pgiXD9tecmSJak/Tz/9NEzTbFXa8v46Im157ty5eP7551N/tywLGzdubHTOmriHbnJIAIqqwLTsr00GBktIcCFhcZFaK0zczTHTEW5NW540aRJmzZqFMWPGYOTIkXj22WdhmiYuueSSQ3J+0jnFDA5NYamty0mWJVJzxKGIiR7dqZew2zmmCLsxbRkAJk6ciFAohP/93/9FaWkpxowZgwULFlDcvcvFdY4MrwqPpsBKFGHG7CLMhX0bsqpWpyLcBVDaMiEdYO6ijcjN8mDt1ioYpoWi0iiOG9YDwYiB/r2zMKRfFnpl+zH+2D4dfankMHPMnDAhbsET8708uWsusTtOSAmemI4wTIFInPpEdAWOmY7ojChtmbSGkdglx6WEpia2LsNeM6xqdtJyJG6hW4ang6+UtAcqwm1AacukNXRD2KsguIRHYzATqyBMS0BT7CKsmwKWsJu7M9pN4WpUhNuA0pZJa8QMC5pq94jwaCos016iZnK7wXuyl7BpCQQjJnKyGjZ+Iu5BQzVC2lk4ZsHvsUe8qgIY9Yquwliqx7AEw47itu3uJJ0fFWFC2llN2IDPo8I0OTRVwYBeGcjw2kvV7BksuyjHdQtl1dQP2O2oCBPSzsIxE5qmpEbAA3pnoX/PDJhcgjFATdxLCMctWFxS5zOXoyJMSDsLRcxE0rKAhEQkYsDv1WCYHApjUFiiE5u0d9btq4w1cUbiZFSECWlnNWHD3q5scCgADC4ASBgmTxsJA3bs0abdFPTpZlSECWlHQkiEoiaURM8ITVMQi9mbMgyTQ1EUqGrdkrRw3EI0zqEnVlAQ93FkEXZb2nL950ePHo0vv/yyVecnnV80bsGw7E0ahsnhURXEDMvuG8ElGOzn6qsK6/h2S1UHXTE53BxbhN2StpwkpcQ999yDeJzuhrtZeTAOBjtLTrckPKqCuM7tm29SQkhgvxqMSMxCaXUcwXDDhGXifI4rwm5LW07697//nep5TNxr+75a+L0KlETHNFWzi7BuCng0BVLIRnda7i2PYOWGCsT05vWTMEyOz78vw2fflaKsmm7sdWaO2zHntrRlwB4lJ5u7T5w4scnzEWcSQmLbvnAiRcN+zKMyxA0Lhing8yiQYOBCQEiZHt7JGLbsCWFvRQT5vTKhqgwKA3pk+TBsYHcE/HXfyhXBOF77eBdMbgeG7i6N4OTCPBwxoFs7f8akORxXhPdPW160aBFmzZoFj6dhsxPLsvDyyy+3OG25KfXTlkeOHNnk8Q888AAAHHCu97777sPkyZNpC7TLbdkbQjTO4fMqqSgjVWEwLA7d4PB6VQB2Q3fOJRQtvWeEqjDohsC2fXW76Cwu8OWGchQOyUGvbB+27wtjc1EIXo+SmlsORU18srYEXAgMy+9OvSg6GUcVYTemLS9ZsgRlZWWYOnVqm87zybclqI1R68NOR9pxRUVlEWzdG4bPaxdGhdnF0TA5LC4RjVvwehVYloTFOcqCYXi05s8Wbt0XBhcCqqIcMD15064QCvplomd3H/xeFarCKGr5EBjaPwuFBTmtfr2jirDb0pYrKirw5z//GfPnz4emaQdcNdEcA3tnwuS0s6qzYQA0leHkUXnp6391C+VVMXQLeJDhVaEoDNmZPnTP8iArw4Pxx/VDnx5NT3W1hmkJRONWKsGDtE1uGxssOaoI109bThJCNJq2nDRs2DCUlJRgwYIFmDZtWlra8rBhw9LOX1lZiZkzZ+Lee+89aHzRoUpb/uyzz1BdXd1gnvimm27Crbfeil/+8pfNPtfQ/jTf5yRlVQIZfg1C2HO/lsXh96hQmT3XqypAr2yKNuoKHFOE66ctJ+d3Afum1rRp01qVtvzQQw+lHdfeacvnnHMOjj/++NTfOec4//zz8cc//hETJkxo07lJ5xY3ODwqg5HYhGGYAh4PAxjAEyGfpGtwTBF2Y9pyVlZW2pRGcjqiT58+yMnJafP5SecVMyx4NSWVtMyFfZNOSgmLS4QitCa4q3BMEXZr2jLpmuI6hzcRZVR3b4xBCkA3eKqxO3E/SlsmpAOs+L4UW4tCiMVNvLeyCIwxHDe8JzRNhcklxozshQtOGdjRl0nagWNGwoS4ia7zRMinSHvcMDmEBPUQ7kKoCLcBpS2T1oqbAppqt7Osv3nCsDgUVQXV4K6DinAbUNoyaa2YbsGjKYgb6f1CdFMiQwWkkJS03EVQEW4DSlsmrRXTLeRketOKsARgGBxZGRosIRE3ODJ89C3qdjRUI6QDRGIWPB4F0XjdLkmGusbuXEjURmmtcFdARZiQdiaERMzgicbuAj6PCq+mQEq7IY+qMqgMlLTcRdDvOoS0M93kdpc0Zo98jzkyF7rB7d1zzO6WJiRQVhUDhuZ29OWSw4xGwoS0s7jBwYUEg93G0uJ2+8qYbtm9IxQG3RSIU65cl0BFmJB2FooYSHaRNEwBSAkGIBozoSgKNEVBJGaCWpx1DVSECWlnlUEdXo8KpgCcC7sFKQNiOoemAEyxQz8NS6Qa/BD3oiJMSDurCul2Q3UAmqogGjMTS9UkPB57o4aUEpYQKCpre3AA6dwcWYTdFnl/3nnnpX2sESNGYMOGDa36GKTzqwzaidsWlwj4NMTiFuK6BU1VUmkaQkhEYxZ2FdelhK/bWom//2cjPltb0mCTB3EuxxZht0TeG4aBoqIi/Pvf/05d9/Llyxs0nCfuwIVEeY299MziAn6fhqhu2V3VPAq0xFI1LiTCMQuhmInaqIEv15fh/TXFMC2J77ZU4bO1Jc1OXiadm+OKsNsi77dv3w7GGI455pjUdefl5UHTaPWgG1XX6qlRLLcEMvwqYnErsY3ZXi+cDPsEgL1lEfz9jc1Y8X0ZfB4VAMAUhk07a/DB6n2oDDa+llhKaTcDEnR3r7Nz3He62yLvt23bhvz8/EbToon7rNlYAb/XLqaWADJ8KuK6BS4U9PPYWXNIjIQB++vNnyi+9Smqgl0lYRSVRXDU4BwM7puFzAwNZVVxFJVHUFIRQzBqoG+uH6OG9kDh4Bz73KTTcVwRdlvk/datW6GqKm688UZs2LABQ4YMwZ133tms66iPRjztRwKpFOW4wVFaHUNpVRxc2LvffB4VpiWgmxyqwpDbzYu8HD/2Vsbww84gvFoiQcPkUBUFJpfgksPnUwEJCClhWqJZ7SyFkFi/vRprNlaAC8DnUaCpiZt+CkNFUMeHa4qxq6QWo4bkok+PDHu0zRioJB8ajKFNjZYcVYTdGHm/bds2hEIhzJw5E3369MErr7yCyZMnY9myZcjPz2/2ef73lfUIUiROu2IM0BQFGT7VbrST+D5Mhncm/24YAjHdhNejIsNvf8spCoPB63oJSwkojEFIAQkJS0iwFoxck+dtjKYAu0ojWL+jBjGdQ1CfzEPqrBP6Y8JxfVv9ekcVYbdF3gPAnDlzoOt66ly///3v8fXXX2PJkiW47bbbmn2eGVcd3eZrIe3rg6/2ICugwe9RwRQGj6rA49UwMC8LBf2ycPLRfTr6Ekk7cFQRdlvkPQB4PJ60qRTGGIYOHYqysrI2n5t0bnGdA5JBwt7CLGGngltcpHVXI+7mmNUR9SPvlyxZkvrz9NNPwzTNVkXe76+9I+8B4Gc/+xnmz5+f+rsQAps2baIg0S5ANzmkFEjNW4CBCwHTEqkUZuJ+jhkJuzHyHgDOOOMMPPvssxgxYgQGDhyIhQsXIhgM4vLLLz8k5yedVyxmNYgxsrjdyEdQDe4yHFOE3Rp5f8stt0AIgfvvvx9VVVUYPXo0Fi5cmLr5R9wralj2VETdQBiWJRDTOQV9diEUeU9IB/m/l76DYXB8+X0pGGMYM6IXaqMmsrJ8OObInvjpaYM6+hJJO3DMnDAhbhPV7Xj7+nSTw7I4KG6563DMdERnRJH3pLU4FxDc7pSWXOhvcZG4iUwpy10JFeE2oMh70lomF+BCwKrXL1g3BRTGoCoMFhfgQqZaXhL3oiLcBhR5T1rL4hJCAnq9pWiGycEYoKoMQkrE4hayAtRTxO1oqEZIBzBMASkF9Hp9gQ1TQFEUKAoDFxIR2rDRJVARJqQDxHULKlNgGAKXnDEYQiQb/gCqokBhQEVNrOkTEcejIkxIB4jpFlRNAVPsG3EBrwrTFFBVBlVlUBQFZdWN9wom7kJFmJAOEI6Z8GoKNFVFSUUEmRkadJNDU1RoCoNucAr57CKoCBPSASJRE5qmwOdRUF4VQ8DvgWkJaJq9OiISM2FRj+gugYowIR0gFDXBYPcBLq2KIOBXU32IhbSbxQsuqVl/F+DIIuy2tOVvvvkGl19+OY499lhcfPHFWLVqVavOT5xBSolw1IQE4NUUBGsN+Lxqql+Exe3UDpMLlFRGGz1HOGZizcZyfLulApGY2Y5XTw41xxZht6QtFxcXY8qUKTj55JNT0U3Tp09P9Ucm7hOJWYgbwt6ZbEfKITnelbB303FuR95vLgo1eP367VV4ZulGrFhXhs++LcVHXxej6gCBn6Tzc1wRdlva8vPPP4+RI0fizjvvREFBAWbMmIH8/HysX7++le8Q6exKqqLgQoJBAhJgiT92NbZHwVwIhKJ23H0oXPeD+5vNFXh31V54PSpUxZ4/LioJY/XGirQ1x8Q5HFeE66ctDx48GIsWLTro8QdKW546dWqDYydNmoT58+c3K215+fLlacX6YJJpy7Nnz27w3MqVK3HeeeelnX/x4sUYP358s85NnGf9jhrYFdceBkuW+JN4TEgJ07R30u0uDuPDr4uxbW8Q7365B598XQLffunLEsC2vSF8ub4sFRC6tyyCT78txjebKxCl6YpOzXHblt2WtlxUVIRAIIA77rgDX3zxBQYNGoTf/va3OO6445o8L3GeymAMu/aFEPBpkFIkkpvtP8k5YW5JCGYXYaYw7C2LYPveWnhUBq+n8XGTlMC3Wyqxs7gWpiUQDNvzzEJIfLOpEqOH90Dh4Fw7kJR0Ko76F3Fj2nIkEsGcOXNwyy23YOrUqVi6dCluuOEGvPXWW+jbt/kJrv/87yaEIs0c8TRyw73Z9+CbeaBs/hmbd742nK75r23ega09XdwUqKnV0SfHjxpThxQSEBJSSkgJCG7/t25aiMQ4PGp6wW3OrG+43tdAXLenJ2ojJvaUhfH6hzuQk+WFz6tCaWFjIGojdGDHHtkTE8YcPBLtYBxVhN2YtqyqKiZMmIDrr78egJ2Bt2LFCixduhQ333xzs88zeeKINl8LaT/vrypCSXkUZZVRZPg1+Lwqumd50D3Li4ClYfzxPXDeydTUvStwVBF2Y9py7969G3yswYMHY9++fW0+N+m8dIPba4BZ3XBZCiRGwhyc0/rgrsIxRbh+2nJyfhewl3hNmzatVWnLDz30UNpxHZG2fNxxx6Wt8JBSYvv27TjmmGPafG7SeemGQNzkkIlOllwIKImMOW5JypjrQhxThN2atjx58mRcc801WLhwIX784x/jlVdeQXFxMS6++OJDcn7SORkWT62AYIzBtCQ8mgKTC0gmU8WZuJ9jirBb05aPPfZYzJ07F3/9618xZ84cDB8+HM888wz69OlzSM5POifT5NDNulRlw+TQPEqqMNM4uOugtGVC2hkXEs8t24jK6hhMi2Ptpgrk98mCaXFkd8+A36ti1JE98dPxg1u8ioE4j+M2axDidKbJoTA7PcNMxBuZloBHU2FZAqqqQEqJmE7JGl2BY6YjOiNKWyatETc4mJK+M860BAI+DYbFoakMFpcIRQxkZlDGnNtREW4DSlsmrRGJmdBUBULIVON20+TQNAXRmAlVVaAqDOXVMfTrldnE2YjTURFuA0pbJq0RihjwJ1pXJouwYQl7dYQpoKn2PHA5xRt1CTRUI6Sd1dQa8GoKJNh+c8Is2UgNkZgJ06KuaF0BFWFC2lkwbAAMUBW7CPfukYF+vQJQFPuGHKQ9WqaODV0DTUcQ0s6CEQMZXhWaqsCyOIYM6A4VErzealHDFDBNAc7t1RLEvehfl5B2JKVEdU0cQkioqr19WVUZLMteKWEPhCU4l7C4QGlV83pWE+eiIkxIO9INjpjJISSgKQosISCFhISEYdg76CQAi3PoFsfWopqOvmRymFERJqQdVQbjdoac4AADhEAqa84wrGTeBgxTIFhrIKZzaubjco4swm5KWz7zzDPTPk7yz913392qj0E6t13FtfB7NViJBu4MACQghISVqMiMMRgWBxf2ho3texuGfRL3cGwRdkva8muvvZa63uXLl+ORRx6Bx+PBtdde26LzE2fYsbcWisLALQmFMQASXAroBoeq2Bs4LC4ghb0yoqwqhk27alAbSf+6icRMfLu5Aj9sq0Kctjc7muNWRyTTlv/0pz/hzjvvxA8//IDCwsLU88m0ZQDIy8vDjBkz8OKLL2LFihU499xzG6QtJ11//fUIh8OYM2cOfvrTn6baWSbTlgGgT58+ePjhh7Fnzx48+uijeOqpp5p1ze+//z7uvffe1Hnq69GjR+q/Y7EYHnvsMdx66604+uijW/7mkE4tHDVQWh1Dhk9NrQ/2+zzQdQ7DtNcJC2nPG2uJ70zGGLbvDSEUMTCyIBfdMz3YsKMam4uCqV13/bYHMGZELxT064Zw1MTukjAAicH9uyOnW9t7XpPDy3FFuH7a8hNPPIFFixalFeH9HShted68eQ2OnTRpEsaPH9+stOV77rkHsVgsrffwgSTTlgsKCnDdddcd8LjnnnsOjLFGk6CJ833ydTG8mgJNVRDT7flfn1dFXLdgmBx+nxcysZVZq7flXWEMVUEdn32zDyaX8HmUVOKyqjBU1MSx7LNdYAywuITPq4IBWLG2BKOO7IFRQ3ugZ7YfjNG6487IcdMR+6ctJyOPGmNZFl588cUWpy031fOhftpyczzwwAO48sorD3qMYRhYsGABbrrppkOS2EE6DyEkvlpfhi27a6AoDB5NQdzggLSLsG5ye/SrKgAk4gaHR2v4NaiqCvxetdFi6vOq8HpUBPwaVIXZLTAZw/dbq/D8fzdj0UfbsWp9KfaWhhGOmna0EukUHDUSdmPactJbb70FALj00ktb9fp3VxYhGm9m2jI5fOwNb3aHNEugsjqOnSVhCGGPYAGgR3cfqkJxZAe8UBlDLG4m2lva8UbVwTgyfBr2lIYP/rFaoLwqhtXry1ON5H1eDT26e5Hb3Y9umR54VAWKwuwbhTRgbpFBfbvh+JENpxqby1FF2I1py0lvvfUWzjvvvGZNbzTmuOG9wAVl4nQWisKgqQo8moL9B64KY3jjk+3QDQHTtFBcZsKyAL9Pw5D+2cjrFUBB324486T8drlWziUMU9DXTyu1td2oo4qwG9OWAfuHxcqVK/H444+3+hy9e7SueJOOYVn2dIDPazdyNxLTER4vg6ooUBQgK8ND87hdgGOKsFvTlgG7qOu6jhNOOOGQnI90ftG4BY9mj5QN014TzBgSy9YALuzm7xk+x3yLklZyzL+wW9OWAWDLli0YMGAAAoHAITsn6bzsZu4WGNOgqUpquZqUdUVYSIlIzKQi3AU45l/YrWnLAFBRUYHs7OxDdj7SuRmWAJiSyJNjqZUKQkokbo1BColQ2ECvHJpmcjtKWyaknQXDOl5YthEWl/CoDJ99VQTGgLFH94FpAVnd/BjQOxP98wI48ei+HX255DBz3DphQpwupltQEr2E7QVtNimQWkkhhLSbvxPXc8x0RGdEacukNWrDJnweFTWmgN+rAoneaSLRxhIAdJPDb9K3Z1dA/8ptQGnLpDWCEQM+b13/iPqSS3XjOkf3TFq32xVQEW4DSlsmrREK69ASS9OklJDSnoZgDLAs+7GYbgGS1gh3BTRUI6Sd1UYMqIoC0+Sof1tcSnvbskgUZkvYLS6Ju1ERJqSdVYUMaCqDYQoIIZEV8EBVGRiztxALbldmzgWqgvEOvlpyuFERJqQdCSERjhpQFQbDEpCQOPHYvjiif3Zq9MsT64YZY9hd0rY+J6TzoyJMSDuKxi0YlrBHvYm7cMFaHYEMDabFwRhSmzciMQvBWlqm5nZUhAlpR9WhOKS0d8dB2muDpbDz5mJxC1piJx0A1EZN6mzWBVARJqQd7SmLwOdVEysi7HngWCIjLq5bUDWWWrpm95gQCNGmDVejIkxIO9pTGobC7H4RHpVBVRji8XpFWGGweN2KiJjO8cP2ygOej3OBuMER1y1QBwJncmQRdlPkPQC89957mDhxIsaMGYOrrroK69ata9X5SedmWRwlFVEAdntVVbP7BsfiFjiXsEwORWWp6QgAqArFEYqY4LzuMSklNmyvwj+W/oC5L6/DU6+uw/zX1+PdlUUorjh0aS+kfTi2CLsl8n7Lli244447MHXqVCxduhSFhYW4+eabD2l0EukcduyrhWnZo1wuJDRVgcIYYroF3eBQEn9XlLpNGlICRSW1+G5LZWoTx6IPtuHtFbsRjScawWsqVFXBll01+GJtCfaVHbpYJHL4Oa4IJyPvb7vtNmzevBk//PBD2vPJyPu8vDwMHToUM2bMQCQSwYoVKwCgQeT90UcfjYKCAlx//fW45ZZbMGfOHMRisdT5kpH3ffr0QWFhIR5++GEUFhbi0UcfbfY1v//++7jsssvg9XobPPf5559jyJAhuPzyyzFo0CDMmDEDlZWV2Lp1ayvfIdIZWZbAx6v3wOe1N6kKLuHRFKgqQzxRhD2qAgYGj5r+bRk3BD5dsxcLlm7A0699j33lUXgTacv1McawrzyCL9eVorQy2i6fF2k7x21bdlvkfU5ODrZv347Vq1fj+OOPx6JFi5CVlUXboR1MCInKYAzl1TGYprDndbdVIRrj0BIpylxIeDwMiqIgHregGxZUlQEM8Hgajo00TUVc5/BoDYtvfYwx7C2P4L2VRRh1RA/0yPZh575a7CoOwaMqGJqfjaOP6IHMQMMBAekYjivC+0feL1q0CLNmzYLH0zBsz7IsvPzyyy2OvG9K/cj7kSNHNnn8Aw88AAD48ssvGzw3ceJEfPjhh7j22muhqioURcG8efOQk5PT5Hnri8ZNSFrN1G7q3wITQsLiAsGwji27a7CtKIRQxIBHUxM9IexVEGCAlZjbNS0OVVHBuYCUdpRRdjcvmMLsZWq8bf+YlcE4Pl69F6Yl4PWoqRaZpZUxrNlQjmOO7IHB/bsjK9MDTVVTAcvUraLlVJXB34YEFEcVYTdG3geDQVRUVOB3v/sdxo4di2XLluHOO+/Eq6++ikGDBjX7PM+9sZH6z3aQZKH1aSqyMj3w+1T4fQf+DYnZA15k+rXUxgzDsOD1ZEBTGLw+DVmZbUvwbcrmXTVYvaEMpimBei00ScudfsIAnHxs65vvO6oIuzHy/q9//SuGDh2a6ks8atQorFu3DgsXLsR9993X7PP88opj2nwtpP2s+GYfuge8qKyOwqMpkBII+L0IZGgY2K87Ljz90MVnkc7NUTfm6kfeFxYWYtSoUSgvL2808r6goADDhg3DxRdfjClTpqSWs9WPvN9fZWUlbrjhBmzfvv2g13EoI+/XrVuHYcOGpT02atQoFBUVtfncpPMyLQ5VZfWmJwS8HgYp7Ay65AiZuJ9jRsJujbzv3bs3Nm3alPbYtm3b6Macy8UNDkVR0jZmAIn55cTmi0DG4Z2SIJ2DY4qwWyPvr7rqKsycORMnnHACxo0bh7fffhsrV67E3XfffUjOTzqnWNyCR1MgeF2uHMDAhYDFBaJxKsJdhWOKsFsj73/yk58gFovhmWeewR//+EccccQR+Mc//tHo6g3iHjHdgqZ6sP8tMcu0i3BtxECvXIq77woo8p6QDrBg0ffolZuBHbuq8dV3+8AYw5jCPjCFQN9eWSgc1gvjKO6+S3DUjTlC3CKuW3YLy/1GwpzbndOCYf0AryRu45jpiM6IIu9Ja1hcwOQCQtq9hFndpDC4KRCLm+CcfkHtKqgItwFF3pPWMEwOIewbcuZ+O+MsIRGNW6mcOeJ+VITbgCLvSWvoBofFBRgAw6grwkIISMERjYN2sHUhNFQjpJ1F4xaURJcGs15vacMUkGCJde0Cpklx910BjYQJaWehsA5NU8AYkN+3O3K7+6EyhqpgHIrCwFQFJheortXRu0egoy+XHGY0EiakndXUGtBUhu5Zdu+IlWuK8M36YvTpFQADoCp2c/dd+yjuviugkTAh7aw2okNRGPw+FRs2l4ExhljcQkVVBF6NAar99+pgrOmTEcejkTAh7SxYq6NHdz82bi5Pa9SzdVc18npkQmFAKGLQzbkugoowIe1ISonKGh09cvzYvKMqrdBySyIcMcBNDs4ldIMjGjM77FpJ+3BkEXZb2vKbb76ZSlueOnUqdu3a1arzk84vbliIGyZiMQOGwdNGwkJI7N4bRM9cP6SUMAyODdurGj1PTDcRrNUp5t4FHFuE3ZK2vGLFCsycORNXXHEFXn/9dRxxxBG47rrrKG3ZpcqrYsju5sfOoiAUhaF+22AhJUwuoCkKYnET1SEd1aF42uullFi5dh+efmUdFi5Zj3c/34WyyrqvFcvi2FZUg282lKGimsI+ncBxRdhtacvPPfcczj//fNxwww0YOnQo7r77bgQCAbzxxhutfIdIZ7ZxexV652ZgX0mw8TlfCVRURcCEgGkJhCIG9pTYqySklFj+9V6s/K4EXk2FR1OxdXcNXn9vK95evhP//WwH5r/2PZZ+tA0rvtmH/362E+s2V7Tr50daznFFuH7a8uDBg7Fo0aKDHn+gtOWpU6c2OHbSpEmYP39+s9KWly9fnlasDyaZtjx79uwGzxUVFeG4445LO/+IESPw7bffNuvcxDkMi2PL7hpwS8AwG0/PkABKKqLIzvJCSomS8gjWbi5HWVUU732+C2t+KIO3XuIyYwxSAtuLgti5JwRIwO/RwBhDOGLiq/UlWLuxjKYtOjHHFeH905aTkUeNsSwLL774YovTlpvq+VA/bbk5HnjgAVx55ZWNPtezZ0+UlJSkPbZv3z5UV1c369zEGeK6hf98uA2aqqCiKgJNUyAOUBiTCczRqAGAYeeeEJ5b+gM27qxOK8DN+rhxji++K8bn3+xDOEJBsJ2Ro9YJuzFt+YILLsAjjzyCM844A8cffzwWL16M9evX46STTmrReRYs+h7haPoPo9aMflo7YGpWXm9rDjk0p230EzsUY8ODvV8SEpBAVLegGxzdM70Y0DsL23Ykkl+4sJOOGUt7lRBAeVUEQjKg3oBANzh0tG4r8+df78M7K3Yh06/B51GhKPbHZIxC7ttq9Mg8nD42v9Wvd1QRdmPa8hVXXIFt27ZhypQp4JzjRz/6ES655JIWX+OUy45u87WQw49zgadeiID1AHbtDcLjUaHUK4SaqkDTVAT8GgqH5eGc8UOpULqco6Yj3Ji2rCgKfve732HNmjX4/PPP8eyzzyIcDmPAgAFtPjfpfGpCceiGBSklhAQaK69CCOgGh2FwVNIKB9dzTBGun7a8ZMmS1J+nn34apmm2Km15fx2Rtrxw4UI8+eST8Pl86NGjB2KxGFauXNni6QjiDHtLauHxKHZD9wPMZQhpd1TTDQsbt9HqBrdzzHSEW9OWBw4ciLvuugvHHHMM+vfvj0ceeQT5+fmpKRfiLsVltVAVBaYlDjifLIWEZXFUBe01xcTdHFOE3Zq2fNZZZ+GXv/wl7r77bkSjUYwfPx7z58+neUAXklJib3LNr5D2SJjtf4y9aYMLAdMUMEyOWNxEht/TAVdM2gOlLRPSTiIRA3//99fwelVE4yb2FNeiKhgDq1eJu2V6IMGQ3d2H/D7d0K93Fo4s6IFjjurTgVdODifHzAkT4nRlVXVLGjm3R8Jsv6GwvX9Dph4N1sZRXkU359zMMdMRnRGlLZOWKC4Lw+Oxxz0ikba8PyEkVKWuMEdjFixu765TFJqiciMqwm1AacukJUrKwqm5fktICCEaHLN/EQaAWNzEvtJa5Pfr3i7XSdoXFeE2oLRl0lycC5SU1yJ5J44L2WjvCCEkmMIgZGK6gjHURgz8f/bOPD7Oslz/1/vOviWTvUmaNG3apvu+AAUEiiAquOACSFHhICCcI2pBZVEUVPyBRxFFDioIih5AKRxalgLdKN3bLG32fc/s+/auvz8mM8l0lsxMZtIkfb6fT8S8y/M+kybXPHM/931fPQN2IsKzFLJUIxCmAKc7AL9/rORY4IPlyWcjCGKwgk4AWC54gdMVAEOcl2ctZCVMIEwBI0Y3pNKxNY8gBNPQAECnlWNBhR5SSfC8UimFzeFHgOEhlwUb9vj8HFzuAHTayRcIEaYXRIQJhClg+CwR5gUBNE1h/cpS+HwMTjeNgGF4iABUSikWzstHeWkOOEGEP8DB5fKjo8eKtSsSV3MSZh5EhAmEKWDIMNaQSRBEKOVSbFhZhmOn+uH1scENOyqYsCYIQEevFd39VqxdWYZcrRIOdwAu0opyVkJiwgRClmFYPsK+nqYpLFqQj4NHu8cEOILQph2NlnYzuvus0Gnk8HgZsCQ2POsgIkwgZBm7ww+WDcZ/aZrC3NIcfHS4Bxwnxi1PF8VgP2JRFGGyeNHYYoTfx6KjN7bxJ2HmMiNFeKa5LR8+fBjXX3891q5di6uvvhqvvfZaxPkjR47g2muvxerVq7Ft2zbitjzLGBxxQi4PbrBVzc3F/kM9YFk+ZhvLEKIYzKBgRsXb7WFw8vQQunts4PkYaRWEGcuMFeGZ4rbc09ODO+64A5/85Cfxxhtv4O6778bPfvYz7NmzB0DQhfmuu+7Cddddh3//+98oLCzEt7/97ZiJ/ISZyaDBCZqmUFygQVevDTa7L4kGTcF+wywngBtNVXO5GdQ3DuN4/WDMHGPCzGTGifBMc1t+++23sXTpUtx5552YN28errvuOnz+858Puym/+uqrWLJkCW6//XYsXLgQv/jFLzA8PIwjR45k6CdGOJeIoohhQzAzQi6j0dRqDBZiTHhf8L+CIMLjZ+H1sWA5AQ43g5N1gzh1egiCIMDjY2F3+sFx/Fn3i/D5WbJqngHMuOyI8W7Lf/jDH/D6669j2bJlca+P57b8zDPPRF27bds2XHLJJUm5LT/00EPw+XwRvYdjcc011+DSSy+NGiMQCAAA6uvrsXHjxvA5lUqF5cuXo7a2NmxOSpi5+PwcvD4WNdUF2PdxN7x+DhSFlAzuKFDgeBEsx462uOThcAfQ1mOFweaHIIjQ5yixdEE+KstyYXf6UddsgNnux7yyHKxeUowFFfpsvUTCJJlxK+GZ5rY8f/58rFgx5v9mNpuxa9eusPCaTCYUFxdH3FNQUACDwTDh2ITpj9HigU4rR1evDQazZ9RhOXEoQhSAWNEKiqLAMAJAAQazF53dVhTrlVApZQgwPE41G/HKOy348EgvnB4WcpkEwyYP3vuoCyfOjIBhuey8SMKkmFEr4Znutuz1enHPPfeguLgYN9xwAwDA5/NBLpdHXCeXy8EwqeWE7trfCZ8v9pvRbCadbthZc5Qed1qACKVMgp4+O9QqKQ6d6B9n6CmCoujRecToHyEKAKi4oQSOE+Dxs/APBzuslc7JxZA58e/i67vb8N5H3Sgt0kCtkkFCUzGFnpA65SU6XLg2fU/IGSXCM9lt2eVy4Y477sDAwAD+8Y9/hMMYCoUiSnAZhoFer09pTldsriSbNdMIiqIgldL48GAXWtpNyM9VRmzGMSwfbNYTZ8UroSmoVbHdNOQyCXJzlCguCIbZctVSXP2F5SgvzU1qbqIYbChE/Bwyg2y0tDxdZpQIj3dbDiEIQky35RCLFi3CyMgInn/+eXzrW9+KcFtetGhRxPgWiwXbt2/Hww8/nNC+KFW3ZavVittuuw1msxkvvfQSKisrw+dKSkrCnnghzGZz1NwmgtjfTD84jocoiujus0VlQ4hi7JBD8CQSRixYjodSkIKmAFAUbA4/TtQPQS6XoHxOckIMTE44CJljxsSEZ6rbMsMwuPPOO2Gz2fDyyy9Hifvq1atx6tSp8Pc+nw9NTU1Ys2bNhGMTpjduD4Pa00MxzyVahU4U9hDFYO8Jz7jwk8nixbFTgxgcdqQ3WcI5Y8ashGeq2/Jf//pXNDY24s9//jNUKlV4bjKZDHq9Htdffz3+8pe/4I9//CM++clP4plnnkFZWRkuvPDCTPzYCOeQoREXRoyemI4YE0YCRIT7CceCYXi4PQw06rH9hGGjG8dqB7GOFzBvbt5kpk6YQmaM0ec111yDCy64AD/5yU+izr355pu4//77cfXVV0dUvYXclj/72c/i7rvvjhDXhoYGPPPMM6ivrw+7LX/rW9+KcFuuqakJ///xbst33313xLlEfPGLX0RjY2PU8XXr1uGf//wnAGD//v345S9/ieHhYaxevRqPPfZYRMiCMDN55q9H0dJhjimkXh8LLkEOr1RCQ6mQJrQ00mnlKC3SgTrrmvxcJdavLseiBQXpT54wZcwYESYQZhIudwAPPv5B3JWsx8uG+wnHQiqhIZNJIJPGjxiqlTLotHLoc6Nz1VVKKdatLMWKJSWQSGZM1PG8hPzrEAhZ4NDxvoTZKsmsfSaqdguwHPyB2Lm/Pj+Hj4724sCR3ogOboTpx4yJCU9HiNsyIRZ+P4cjtf2gJfFDCcIEIiyK4oRxY54XwQsiGIaDXB79p0zTNJrajOgfdGDtylLUVBeGGwkRpg8kHDEJGIbB8PBw3PM0TaOiomIKZ0SYDhw7NYB/7WxEIEHvX4crkLBYgqIoSCXUhKmHcrkEGpUcxYWahNdxHI/yOTlYVlOEBfPyoYgh2oRzA/mXmATEbZlwNizL42TDUEIBTmbdIyZR3gwEsySUciFhJgUASKUSGMweDIw4UaAfwuLqQlRX5SFfr06ioxshm5CVMIGQQU63GPDOB23oH3bGzWwQRBEuFwNqgh0ZqYSGSimdUCRVSil0Gjny9Oqk5ymKIjhewILKPFTO1WN+hR45OmXS9xMyB1kJEwgZgucFHK8dhMfHJkwtEwUx4SJ3TpEWWq0cFqsPfj8HmSyxCAcCPOQyfoIyvEgoioJMKkH/kBM9A3YcOk5jUVUBKufmYl6FnoQrphDykyYQMkTfoANOlx8uTyDhdfGyJigK2LSmHEPDTowMO1BemovcXCU6e2xgufiZEoIoBpv6+Bho1BNXcZ6NhA42E2rrtqCxzYiiAg2WLCrE4gUF0GpSH4+QGiQcQSBkAFEU8cobp2E0e9Deax3XMS0af4CP2VZy1dISdPdaYLONOW8oFRJsXl+Jrj4b3N74XfJomoJOq8Ccosl1CAwhCCLycpVYsaQESxYVkpVxFiF5wgRCBjBbPBgxueF0BybcThPF6FWtRi0DIEZZHwUYHh8f60FZiRaF+fENBAQhuBr2+zPTzpSmKThcARw40oMPP+pC/6A9I+MSoiEiTCBkgCOnBiCTSUZTzxLLMB8jHFFTXYgzTcOgzpJwEYAgACfrB6GSSzF3ji7uuP4AC4crcSgkVSQSGj39duz7uBv1jcOkXWoWICJMIEwSt4dBV2/QBTleBdt4zhYyyegmXshZOQJxLF2tud0Iv59B9bzYzXl4PrgaDiQxh1RxeVkcOTWAY7UDCDDEoSOTzEgRnm2W9yHefPNN3HjjjSmNTTj3nKgfhERCw+FMXIABxK6EmzdXj+5eS1zfOVEcFW4R6Om3Y8TgwPJFhTGf5fMHjT+zAc+LqD0zjGOnBuDLUNiDMINFeLZY3oc4cuRIzA5xhOkNw/JobDWCpgC70z9hKILjo5U2P08Fs9mb8F5BCOb1CoKIEaMHLW0mrFpSjLPtEHlBBMvx8HgCcLj8sNq9GV25iiLQ2GrCsVoixJlixonwbLO8B4Df//73uP3220mJ8wykscUAnhcRYHgwCarkQrAsH7GCpaigwCZXRTcWcrA6fDjRMIhVNcVQKiL7QXi8LIwWL4YMbpisPgwZ3HA4/emb652FIIpobjfhRP1QUq+ZkJgZJ8LjLe+rqqrw+uuvJ7w+nuX9bbfdFnXttm3b8NxzzyVleX/w4MEIsY7HNddcg4cffjhqjJDlPQAcO3YMzz//PK666qoJxyNMHwRBwIn6IUilNMw2b8ICDSC4ADg737e4UAuj0ZnGs0W43Qw+OtqD6nl50KplEAQR/gAHpysAr58FTQVrQliWh9HqhdXhz9jGmiAALe0mHK8bIJt1k2TGJf+dbXn/+uuv4wc/+AFksuhGJxzH4ZVXXknZ8n4ixlveL1myJOG18+fPj/g+ZHl/zz33hI+99NJLAIIhiXSx2n3gY3zUJWQHigIGh52w2n2QyyRwTBCK4AUx/PF9/IJ0TpEWDY1D6fVvEAGOE/HR4R6sXVUGiqYwMBw0sfV4WRTkqcCwfDDjQhBhMHng9jDQamRQKmSgqck5LgcCQHObGTwnYuni4vQHmuHIZDT0OemXfM8oEZ6NlveZYte+DjhdzMQXEjLC/Ipc7DvYHVzdsjzcXjZxVzRQMVfKcjkNjhUmJYYURaH+zDAWVxdiQWUuegeDK2uXOxDV8F0QRdidAXCcbwInu+Tx+FmcaTdDPE8bAV28Ye75I8Kz0fI+U2z7/MqMjkdIzJDBidY2I+QyCTq6rcjVpV7eS1GAlKYhlVIZ6WTW1WtFzcJCLKjQw2jxAgj2s8jLUSI/L/nmPumwsCIX61aXozA/u8+ZjcyomPB4y/tly5Zh+fLlMJlMMS3v582bh0WLFuFzn/scbr311nA623jL+7OxWCz45je/ia6uroTzSMfy/pZbbkF/f3+U5T1hZnLwSC/kMgmcrgC4BDZFicjLVcFkcU98YQq0dpiRq1NApQxu1nGcALvTH9yYyyLd/XacaTGAS9DjghCbGSPCs9XynjDzsNm9GDa4QAEwWTwJ+0QkoqhAgxGDK+P9fOvODGFRVX44+MxyAkxWL2x2X1JZGOnACyJ6+2042TCYlfFnMzMmHDFbLe8JM4+PjvZCOlqizPFC2iKqVEjg9bLJ9G5PiWAurwFVc/XoGY0P87wAo8WDAMMhT6/KSkMej4+DweRGd58N8ytjV/URopkxIrxr1y589rOfjbn6vPHGG3H//fdj7ty5eO+998KVbyHL++uvvx533313+PoNGzbg73//O5555hnceuutYcv7p59+OsLyHgDuvfdeAJGW9//7v/+b9Ir23XffBcdx+MY3vhFxfLzlPWHm4HIH0N1nh1RCw2j2TGoVKwgiBFFMeyWdCIczgKqKYLyZ48ZWvw5XAF4fi7xcFXJzlBOm1aXK4IgLWo0CZXN0pPNakpBWlgRCCryzpw2dPTZY7V6YrYmr3BJB0xQWzc/Hidr+rNkLSSQU1q4oQ3OnJeYzcrQK5OUqoZzAxy5VVCoZFs8vwJZNZO8jGWZMTJhAONd4vAzau6wQRREWm29S4qnPUcJiS1/Ek4Hng8Ubcmlsh2WnOwCjxQOXO7Od13w+FhabB1291oyOO1shnxcmAbG8P7/46GgvaJrCkGFyKY5AsF9ER6c5A7NKTEuHCWuWl8ZdDfv8HEQxuGGXSY+5wREXdBoF5pblQi6L/SZACEJEeBIsWbIEb7zxRtzz9NndVQgzFo+XQVunBSzHw+0OgJpkLFWjksHtDmR8U+5sOE4Ay/GgEbdJG/wBDg5nADRFQavNjJ2RKAK9gw6oG4aweT3piZIIIsKTgFjenz/sP9wTLFUecU5agAEg2JlSjGring3auyxYMC8/nCkRC6+fhURCQSajoVBkJkbs9bEwWTwYGnGibE5ORsacjZClGoEwAU6XH+1dFpit3owVIwh84nEkNAWpNDN/nl4fC5VSGs6Vj4fby8DmCICfYG6p0D/sRFuXhTT5SQBZCRMIE/DhgS5wHA+bY3KbcSFUSilc7tgVbBKawtqVZeB5HhwnBOOpFIXBESdGjOlX1w0MOVBcoIHFHr9yThQBlycAmqZQXKDGpBpajBuzb8iB+qYRrF2RuAjqfIWIMIGQAIPZjZ4BG/qHM1fZps9RwmaP3XVt7coyNLeMwDnalU0URdA0hYq5ebhg3Vx099tgMKXWOAoAho1ubFozF+YJsjoEQYTLE4BUQmWs34TbzWDE6ILdqYc+J7M9U2YDJBxBIMRBFEXs3tuOIaM7o+W+uTlKWG3RQlpUoIHd4Q0LMIBRIQb6+m34+HA39Fol5lfo03qun+EgSeJ9hOMEOD0MnBlMXesdsKOxxZS1sumZDBFhAiEObZ1mNLebM26cqZBL4A9Ex2fnV+ahrd0Ud6VKURSaWw1QKaTI16eeTtbZY0VleW5S1wYCHJwuP3y+zFgYCQLQ029Fe5clI+PNJogIEwgxYBgO/3zjDNxeJuMFFbHsjOQyCQIBDmISG1hnmkZQs6AQ8ZPOYuPxMklt0I1dz8Lq8GXsTcjhYtA7YCfedGeRNRF2Op341a9+ha1bt2L16tW4+uqr8dxzz4Flg/8A27ZtwxVXXAG/P3KjYGBgADU1Nejt7QUQ7aC8dOlSXHTRRXjggQcizDvPhuM4PP7442E35e985zswm8eS40+dOhUxbk1NDT73uc+Fz9fW1uIrX/lKeO7x8oHtdjsuuuiiCJuliZ59NgzD4OGHH8bGjRuxZcsW/OlPf4r/gyVkHV4Q8NdXTsFsm1xviHgIQnQT94ryXPT2WZN+XnuHCVXl+pSfbbZ6kaORJ32928PAbPNmTIg7e61oaBrJyFizhayIsN1ux5e//GXU19fjsccew86dO/G9730Pf/vb3/CjH/0ofN3g4CCeeeaZCccb76C8b98+/Pa3v8WBAwfwi1/8Iu49Tz/9ND788EM89dRTePXVV2G323HfffeFz3d2dmLFihXhcQ8ePIi//vWvAIL9f7/1rW/hwgsvxM6dO3HXXXfhoYcewokTJ6Ke84tf/AIWS+RHrImefTb/7//9P9TW1uKFF17AT3/6U/zxj39M2JqTkD1sDh/e3dOOhmYjJFkotlEppfB4oh1Q8vUqWKzepMcxmj0oLtSmHGPtG7BjblluSve5PQyMZg883sk7twgC0N1rR0+/bdJjzRayIsJPPvkkZDIZXnjhBVx44YWoqKjA1VdfjV//+td46623UF9fDwAoLy/H888/j87OzoTjjXdQLikpwaZNm3DLLbdg9+7dce8RBAEPPvggNmzYgEWLFuGWW27B8ePHw+c7OjqwaNGi8LhFRUXIywu23xsaGsKVV16J7373u6ioqMDnP/95LFq0KEqE9+/fj4aGBuTn56f07PF4vV68+uqreOCBB7BixQpceeWV+I//+A/8/e9/T/gzIWQOURRhsnjw5nstOHpqAHsPdWe8u1iI3BwlrDEyIwRBTNkN2WxxIy9FWx1+NBQiiqnlAnv9LEaMbtjsvknn/FodPnT2WBFgMhtrn6lkXIQZhsGuXbvwta99Lart5KZNm/Diiy9i8eLFAIBrr70Wy5Ytw89+9rOUnyORSCCXx/9Y9f3vfx+XXXYZgKC55muvvYYLLrggfL6joyPKhDPEihUr8Mtf/hJAUFD37NmD7u5ubNq0KXyN2+3GI488gkcffTTKZHSiZ4+npaUFDMNg/fr14WPr16/H6dOnwXHklzRb+AIsegbs+PDjLvzllVr8/fUGgALOtBjAMHzWGuvoc5Sw2iMzI/S5StjtEzt3n01Pnw3zK/JSXg139VpRUZp6BRvHCzCY3RgcccLlDiQVv45He48V9Y0kLAFkIU+4r68PXq8XK1fG9jw7W4weeeQRfOlLX8Jbb72Fa6+9dsLxRVFEc3MzXn75ZVxxxRUTXv+b3/wGzz77LHJzcyP693Z2dkKlUuGzn/0s3G43Lr30Utx3331hE08A8Pv9WL9+PTiOww033IB169aFzz3xxBO45JJLsHHjxpSfPR6TyYTc3NyIN6zCwkKwLAur1Yri4vPXxXayCIIIhuXCvREMZg9MZg9GzC64vRwEXoBcLgFFUSjIV8Mf4NA34MhIWXI8FHIJfD4uIiZcUqRDf3/y8eAQHCdAIqEgCiKoZHLPRrE7/FhcXYSBYXfKr5WiKHh9LNxeBkq5FFqNHEqFFEqFFBIJDZpCUkUeAi+ib8COogI15lfmT3j9bCbjIux0BuvTx4tZIpYtW4Ybb7wRv/rVr3D55ZfHvGa8gzLLshAEAZdddlnCOGuIL3zhC7jyyivx3HPP4dZbb8WuXbtAURSGh4exbNkyPP7447Db7Xj88cfx/e9/H88991z4Xoqi8Oqrr6KzsxM//elPUVVVhW9+85s4duwY9u7dO2HcNtazzzYH9fl8USv60PcMk3wM7s//OAWXJzqvM+ZaRRz/f+OvZlJZYE20Gkt0Ou4cxIj/xDwXvl8cOyQKIhiWhyACEhqgJTRkUgmUCkmE0FE0BZYTIJXSKNCr8O6edoCa+LVMBj6cGTE2D61GDpcrvZxcq82LvBwl7O7U4rVmiwdatQyuSaSg+RkOfoaDwIvh10VRFGgq+LOlgLHeGDF0ubkd8Pg57HivJastPbPNuhVl+MQF6feQybgIh+KqDocj6XvuvfdevPfee/jtb38b5UABRDooS6VSFBQUQKkci4V95jOfwdDQEACgrKwsQhxDZpz/7//9P3ziE5/A7t278cUvfhHHjx+HRqOBRBJss/f444/j+uuvx9DQEMrKygAACoUCy5cvx/LlyzEyMoK//e1vuPHGG/HQQw/h4YcfnvCNJt6zx6NQKKLENvR9Ko7M/3HTuokvIsREEAT8c8dp1FQXZi0WHCI/V4UcrTyiw55SLoFUQqclRMMjLixZXIzOvtQ2uqw2L1YtL4Xby55TAWQCHDavmYuLNlTMaCGeDBkX4crKSuj1epw+fRqrVq2KOn/vvffis5/9bMQxnU6H+++/Hz/84Q+xefPmqHtCDsrxeO6558LxU6lUGo7jrlmzBoWFhQCCglZeXg6bLfjLmpMTGROrrq4GABgMBrAsi8HBQVx00UUR5202GxoaGtDb24v7778/fM7n8+EnP/kJ6urq8Mgjj0z47PGUlJTA6XSCYZjwCthkMkEulyM3N7nEekL6iKKIDw50wWL1QprlvrdBd+bITTmapsCyyeXtxiLA8JDJaAiCmNIbiCCI4FgO/gALlTL5lLVMw3IC+gftaNIpsHxJyTmbx7kk4xtzEokEn/nMZ/D3v/89aoV35MgRvPPOO+HV8niuu+46bNiwIbwhlgrl5eVhm/vy8nLQNI1HH30Ub731Vvgal8uF3t5eVFdXo6GhAWvXroXBYAifb2pqgkQiwbx583Ds2DF873vfi5h/Y2MjFixYgFWrVmH37t0Rjs+FhYX4r//6L3znO9+Z8Nlns3TpUshkMtTW1oaPnTx5EsuXL4dUSlp7ZJvjdYNo7jBlXYABQKOWwWaP7N2gz1XCMgmbJGDUqy6NzmedPVboczLTP3gyWO1+9A06YLKk36BoJpOVFLV77rkHgUAA3/zmN3HkyBH09fVhx44duPfee/HFL34xIhNgPD/5yU9gNBozMoevfe1rePbZZ3HgwAG0tbVh+/btqKqqwqWXXoolS5agpKQEDz74INrb23H8+HE89NBDuP7665Gfn4+rrroKUqkUP/nJT9Dd3Y0333wTL7zwAu666y4olcqw4Ie+QiagBQUFEz4bCIqy3W4HEFwlf/7zn8dPf/pTNDQ04MMPP8Tzzz+PW265JSM/B0J8TjeP4MiJfsji2P9kGo1aDostMhc4T6+GxZJ6Q57xGM0e6HNTL2P2+TlIaBrMNEgV6+63obHVdF6mrWVlqZWfn49//vOf+MMf/oAf/OAHsNlsmDt3Lr71rW9h27Ztce+rrq7Grbfeiv/5n/+Z9Bxuu+02sCyLhx9+GA6HA1u2bMEf//hH0DQNuVyOP/3pT/j5z3+OG2+8ERKJBNdee204xJCbm4vnn38ejz76KL7whS+goKAADzzwAK688spJPxsAfv7zn2NwcBB/+9vfAAA/+tGP8Mgjj+DrX/86NBoN7r77bnz605+e9M+AEJ/TzSPY+3H3lKyAQ8hlEni8TMQelUYtgzPNTbkQRqMbS2uK4U4xLgwA3b1WzC3Tg+XPdWMdCu1dFijkElyw/vyKDxO3ZcJ5hSiKOF43iCMn+qdUgAGgsjwHu/e2RVTirVpago+P9kzaYWPDmnI0dZjT2lhcs7IMdqcfMtm5D39p1DKsXjYHa86j3sOkgQ/hvIHnBby7p/2cCDAAMAwflW8XrJSb/NgiBfBceht87Z0m6NTnbnNuPB4vi7ZOM1o7TOd6KlPGuX/rIxCmAJc7gB1vN8Hu9J8TAZbJaLjcgYiVqlwuyVirSJczAJVSBi6NKjaPNzgHluEgk597STDbfGhuN0GlkifdenMmQ1bChFmNIIioPTOEF1+phcvDQDpFm3Bno1XLYbVFZkHk6JSwZ8gyyWTxoDA/fSeM1k4T9LmKadN0fcjgRn3jCIYNrnM9laxz7t/2CIQsIIoiho0uvL+/E3aHH7JzsPodj0Yth/Ws/hA5OgV6ujPT5Nzu8GF+VT6GTe60RJ1heLg9DHgB5+yN6mz6Bu2gKGDDqjLMKUmuAncmQkSYMKsQRRFDI04cONoLg9ENmUxyzgUYCIYj3GfZBWnUcrgyZCEkisHKYEEQIUmhj8R4OrstWL9mLqwOf1baeKYKRVHoHbBDEARsWD0XZXNmpxATESbMCrw+Fs3tRjQ0GeBwBle+8mkQ3wzB82JUVRsFMdiJbNzKddmSYmjUcpxuHI5pgZSIYNEGD4kkPQEVRaC334b8PDWmi0M9RVHoH3KCZfqwbnXprGz2M31+SwmEFBAEEXaHDx09VnT2WGE0e0DRFKQSelqJbwiO5aIa9whCsHVR6EhZaQ487gBamoexecM8HDrRn1JowWb3IUenhC9F8R6PyexBeWluMIQzTX6OFEXBYPHg4NE++Pwcli4qmlV5xNPjp0wgJEAURfgDHKx2L/oGHBg2uGAweeALsJDLpKBpalqEHOIhldJwupnIVTCFqOboc8tyceRIF0BR6B+0o6xEh2Fj8qW8ZosHc8tzMTAyuc2s1nYjFlUXwuvPXl/ldHB5GBw40guXm8Hq5XOgVMwO+Zodr4IwaxAEER4fA4vFi8ERJ4xmD0wWL3x+FoIghvv/AoBSIZtgtOmBViOH0eCKEDS1Kti+MnRMrZbB7R7zW+wbsOPCTVUYOuu+RLg9DLQaBUTROSnx9Pk5+AM8GIaDYpr9jAVBxPG6AZitHqxdUYqyOak3p59uEBEmnDNEUYTby8Bk9mJoxAmDyQWD2YsAw4ECIJONCe50XulOhE6jQJM10kUiR6eA3TGWLVFZrkdvrzUiPmx3eKFVy+DxJd9PQRTFSW3OhejoMmPdqjJYnYFpsUk3Hpqm0Tv6iWj18jlYsaQEKuX0erNIBeK2HMdteTy33norfvjDH0Yce/vtt/HZz34Wa9aswXXXXYc9e/ZEnN+zZw8+/elPY/Xq1bjhhhvQ2toad67ni9tygOEwbHDhWO0A3nynGc/97Tj+8vJJ/N/uFtQ3jcBgDja3UcilkMul0+qj8GSQSmm4zzLJzNFFWhpptXK4XJF/C909Viyoyk8pd5fnhUnZDoUQBBGDw05MUsuzCsMKOHJqAP/3bjOa2oyTagl6LsnKSthut+OrX/0qCgoK8Nhjj2Hu3LloamrCY489hra2Njz55JMAxtyWv/e97yUc7+qrr8bDDz8MINiAu7e3N3xPPMfl8Y7Hubm5eOyxx3DffffhhRdeADDmtvzss8+G74nVOvJf//oXPv74Y3zhC18IHztx4gTuv/9+/PjHP8bmzZuxf/9+/Od//idee+01LFu2DKdPn8Z//dd/Yfv27fjEJz6B//mf/8G3v/1tvPvuu1F+dECk2/LIyAjuv/9+lJWV4TOf+UzCn8t0hucFOF0BDBlcGBx2YsjggsvlB8sJUCjGBHY6bqJlGp4LCuN4KyGFQgKff2yFG0tn/QEOSoU07FiRDFabF7k6BTz+yXcjGza4sK5EB6sjMG0/iUhoGha7H+8f6MTpFgOWLSrGwqp8qFQzZ2Wclb+A8W7LIe+0iooK5OXlYdu2beFOaiG35c997nMxe+2GCLkthygpKcEtt9yC5557Lq4Ij3c8BoBbbrkF3/nOd8Lnx7stx8NoNOI3v/lNlF/ejh07cNVVV+ErX/lKeOx9+/bh7bffxrJly/DnP/8ZV199ddgl5OGHH8Z1112H7u7usMlpiJDb8rPPPosVK1ZgxYoVYbflmSDCoijC5+fgcvkxYvbAaHLDaPbA7vAhwPCQSiWQSoMfuCRSCSTTpBBgqqAowBeIYT0kiBAhggIFnU4BpyO20afR5EZxgRpmmz/m+bMxW7yompcHz5BzMtMO09phQnVVAXxM6v2KpxKZVAKL1Ye9h7px7NQAFi8swPyKfMwp1oZ//6YrGRfhkNvy/fffn5Tb8uHDh/Gzn/0ML774YkrPScZtOUQ8t+Xx7smxeOSRR3DTTTehu7s74vi2bduiVs0URSEQCCbeHzlyBI899lj4nEajCXvknU08t+VnnnkGHMed08buoiiC4wQwLI9AgIPby8DpCsDu8MPhCsDm8MHpCoBlefC8AJlcEo4fUjQNpXJ6//JPBWqVDGaLN8r7khdHG/dQQFGBBmaLO6ZBZt+AHWtWlsFkHU5qNez1sVArZSmtnhPh8bLgOAEsx0E2A0wGpBIaAZZHQ5MBJ+qHkJerQlWFHnOKtSgryYFWI8+6hVWqELflOG7Lb7/9Nvr7+/HUU0/hRz/6UcSYS5Ysifi+vb0dhw8fxle/+tVww3ZRFPGtb30LZ86cwZIlS/DQQw9hwYIFUfPLlNvy3o+7og9SozmoFAVKxNgfuRjMTxVFcXQjB2A5Hiw7KrgMh0CAh9/PghdECLwIThBAj+bhnl0MMF2q0qYjOq0Cff22KEsjjhtbWebmKNHVFbtrGM8LkEjolERVpJCyA3MiWjpMWLuyDA43M2Pi9BRFQSGXwutj0dRmQkOTAQIvQJ+rREmRFnl6FXRaBfJyldBqFFDIJRGZN1MJcVuO4bZss9nwi1/8An/4wx9ixnDHY7FYcM8992D9+vW48sorw84gjz32GO69917813/9F1544QV84xvfwDvvvAONRhNxf6bclg+f6I/4wyZMDwrzVBgxuCI213JzlLDZfOE3QYoCBI6PaxVvNrtQmKeC2RY7ZHE2LMMHN6ky+PswMOyEREJHxLFnIk53AH2DQRNiQRDBcDwEXgyXfatUUigVUkhlwTCabHTRIZXSkNBU0E1aAlCgQVHBf7LF1YXYsLo87TkRt+UYbsu//vWv8alPfQqrV69OOO+RkRHceuutoGkav/vd70DTdHi8L37xi2Fn5V/+8pe45JJLsHfv3iiT00y5LT/wnU8kfS1h6vB4AhgecURsQBYWaNDdbYY+N/jvq1QG/+jjrcKGDS6sXFEKlrcktVILMBwWLSiAUpXZHsGLqwtx0cZ5M2rTayZA3JZHGe+2vHPnTiiVSvz73/8GMCaKp0+fDgt8f38/vv71r0OlUuGll14Kv/nk5eVBJpNFhB7kcjnKy8vDbxTjIW7LsxujOdo/Tq2SweEMrmoVcgl83sSfeDhOgISmIfBCUhubVpsP1fMLwGT4k1HfgB1qlQwXboz/t0hIHeK2PMp4t+Xdu3fj//7v/8Juyp/4xCdwxRVX4LnnngMQTMH75je/CZ1Oh7/97W9hoQeCbwIrVqxAU1NT+FggEMDAwADmzp0bNXfitjy76R9yRMXLJRIKvtECDL1eBYvFM+EK12L1QKdNbmUbCHCQSumM9wb2BzhYbV4MDiX/KZcwMcRtOYbb8tluymq1GhqNBuXlwbjPb37zG9hsNjz++OPgeR4mkwkmkwkuV7Bm/7bbbsM//vEPvPnmm+ju7sbDDz8MtVqNyy67DABxWz6fGBqJLiHmOSHcNyLU2H0iBgYdKC/LTVpYBUHMSvHCwLADHT0WCALZf8gUxG05htvyRLz77rtwu934/Oc/H3H82muvxZNPPolPfvKT+MlPfoKnn34aRqMRq1evxl/+8heo1UHnA+K2fH7AcXyUm0bw+JiAqZRSeDwTb8CyLA+pJPmQBM8LCAS4jBfDCAIwOORA/ZlhrF2V/mYUYQzitkwgZAmj2Y2X/1Ub0WiIpink6hQ4dqIPFEVh1bI5OHSkK6kNt+oFBbA7/PAnUTgxp1gLuVwKeZZ6KiyYl4eNayuQn5e+pRIhCMmmJxCyRHevDfKzbORVKlmEr5yQwhqor9+OueX6pEIS1tHewtmib8COMy2GaeNJN5MhIkwgZInePmtUdZZaJYPDMVaCLPDJx1ZZlodMSid1D8PwkEioqJ7FmYLjRYwYnDjdNDLxxYSEEBEmELIAw/IwWWKnp4U24tQqGdzeQEpVWg6HD2pVcnFeQRARCLBJj50qFpsPBpMrnG5HSA8iwgRCFhgeccasYKQpCoFAMD1Np1XA6UiuMU+IUEgiGViODz8rW3T32XC6aYSEJSYBEWECIQs0tRogk0dnMXC8EBYs3VmN3ZMhwHCQyyTg+YnTz0xmD3K0igmvmww8L6Jv0E7CEpOAiDCBkGF4XkBvvz1mmIFj+XDvYLVKBvcE6WnFRVqsWDYHixcVQT1aLuxy+ZPyV7PavNBpFVlfpTqcAQyNOGGxJu+HRxiDiDCBkGH6B+0IMNFhAImEgtfHjm3WBVvZxRxDqZTiwk1VUCmkaG0ZwVC/DdVV+Vizqgz9gzZUJBGSEMXsFW2cTe+ADY2tJnApbDQSgpC6WAIhwxw/NRCzSEKjlkcUb8RLT5PJJFi/tgJHDneBZThgNI5c3zAIjVqGtWsrIUCEIAigJ/B/Y1kePh+TdQcTQQC6ui1QKaXYuLYiq8+abZCVMIGQQWwOH4aNsV0tNGo5bHZv+Pt4qWZrV5Xj2NHusACPx+NlcfhQJ1RyKXK1ExdimCwe6DTZjQuH8AU49Pbb0NYRuzcyITZEhAmEDLLvYCekccqKlUppOEdYpZTB62Oj4sZlpTkwmpwI+Nm4/YV5EfjoYAcWLSiCZoJ0NavNixxd9uPCIUwWLzp6LDAYXVPyvNkAEWECIUMMDNnRP+iIm/crCCJ4fjQzQquAI0ZmRGVFHro6zXEFOATDCmhoGEB1VT6Uivi9JIJxYcDvz16+8Nn0jKatkfzh5MiYCF9xxRV47bXXoo4fOnQINTU14e8ZhsEzzzyDa665BqtXr8bWrVvx5JNPRtjXp2tzH4uQf1sy1kln8/TTT6OmpiZmYx9RFHHxxRejpqYm3MsYAHiex4svvogvfOELWLt2LdatW4dt27bhwIEDEfcn+/MizAx8PgY7d7cktHniWD5cwabTKaJEqrhIi+EhR9zNulgcOdqNpQuLIEngm2Z3+DCVpj0URaG924wTdYMR1YGE2EzpxhzDMLjlllvg8Xiwfft2LF68GD09PfjlL3+J+vp6vPDCC+EeuunY3Mdi3759yM3NRWdnJxobG7F8+fKU5iyTybB//37wPB92zQCA+vp6mM3miGsFQcBdd92FhoYG3H///di4cSMYhsF7772Hb3/72/jNb36DT37ykyk9nzD98foY/O+OevC8GNdEkqaDmRGSUd83tVoGtzsyPa2yIg/Hj/ZMuAoO4fdzkEslOHGiF+s3zENd4zAQQ26HRpxYWlMCX5YLNyKh0NphQoDhsH51OUqKkrM7Ox+ZUhH+y1/+gt7eXrz99tvhxu4VFRWYN28ePvWpT2H37t3hFo7p2NzHYufOnbj00kvR0tKCHTt2pCzCS5YsQXd3N2pra7Fhw4bw8Q8++ABr1qyJaMb+2muv4ciRI3jrrbcinEC+/e1vg2VZPP3000SEZxG8IKC13YT9h7ohCPEFGIjOjKAQfNMOfS+V0uA5AaIopCDCLPS5Kjg9DJqahrB0YRGa2s0xW2dKaIBhMt/aMhEURaGnzwar3Yf1K8uwqLowbrz8fGZKRXjHjh24/vrro5w1Kisr8dJLL034MXwim/uzcbvd2LdvHx5//HGUlpbihRdewA9+8IMJzTvHI5PJcMkll2DPnj1RIvylL30pQoRfffVVfOELX4hpxXTbbbcl7KVMyDyCIMDnY2F3+WGx+mB3+OByBeDzs/D5WTAsHxRCkQIlAWRSKRQKKVRKKVQqGVQKGVQqKVRKGRRyKSQSGhwnwOnyY8TkQt+AfbSCTTqhjbpWI0d399gnp7Mb68wt06Ov35LS6xOBoJqLIhwOP2xWD0oK1TBaomOxdoc/pWZBmYKiKLhcAXxwoAPt3RYsWlCI+ZV5UGapxeZMZMpE2O/3o7e3FytXrox5frzAnU2qNvch3n//fQiCgEsuuQQGgwH//d//jf379+PKK69Mae5bt27FH/7wh3BsuKurC16vFytWrAhfwzAMGhsbceutt8YcQ6vVpvTMVBkacYDjzof6fTFc4yAKIjheAMvyCDDBfFiXOwCHyw+b3Q+XOxBcXSKYeztBSi2AQMyjAi+CF0RABCgakEjoiMWqP4kmORIJBYt1LD2NH1e+DACFhRp0dRoBUKPqmhwhMRdFEV3dFmzcMA8mixccHzlIT58NK5eXwuqIbjI/VXT2WNDaYYJEQqO0WIeiQg3UKhnUajkUCinkMhoSWgKKHh9UOTdzTQW5XII5xemHWzIqwj/72c+iQgWhGveQ+7JOl9xkJ2NzH2Lnzp3YvHkzdDoddDodFixYgB07dqQswp/4xCfwox/9CD09PaiqqsIHH3yAK6+8MuKX2W63QxRF6PX68DGLxRL1rF27dqGsrAxA4p9Xqhw9OXB+7UZTAAUKNE1BQgctyWUyCSQSCkqFDKUlMpSWTJ84ZEGeGiqVDBKagkIhBcfykEppUBQVtE4fVV4qxa1yf4CDSikDywV/b06fGcTatRVo7Yx2ZpbLJJhTpIVWm70+w6ng9bFwexgEGAc4TgDPixBFIZV9yWnBhRvnTR8Rvueee/CpT30q4lhtbS1+8IMfhEMQITGeiIls7ifCarXiyJEjePDBB8PHPvnJT+L555+H1WpFfn5+0mPl5ORgw4YN2LNnD2699VZ8+OGHuPfeeyOuCTkjO51jifp6vR5vvPEGAGBoaAjf+MY3Iry5Ev28UuULn0kt1k2YWvoHbSgp0kIhlyI3Rwmr1Q31qCV9QYEGFosHEppKeZXKcwK0GkXE6tzl8GNuiQ6QRMZfBZ5HZWUeLr2oOiOviZAZMponHMsks7i4GEBwo62mpgYNDQ0x73300UfxyiuvhL8P2dyHHJRTEWAguJLmOA6PPvooli1bhmXLluFPf/oTWJbFzp07U35tW7duxd69e2EymdDT04ONGzdGnFcoFKipqYmIEYfcm+fNmxde/Y4n0c+LMLsYHHJCPpq+plbLYbePfWopKdZheCh2w59k4cfFe3v7rCjI14DjIj9VudwMmAAPn2/qcoYJEzOlxRqf+9zn8Prrr4edhkN0dnbilVdegUqlytiz3nrrLWzatAlvvvlm2Lr+zTffxNKlS8Or01TYunUrTp06hTfeeAOXXXZZTDv6r371q/j3v/+NwcHBqHMGgyGdl0GYJRiMrrDIKpVSOF1j+bNyqWRSfX+DAhz5Gb672wR1jCIOk9mN+jPRv5+Ec8eUivDNN9+M8vJybNu2Dfv27UN/fz92796N22+/HZs2bcqYw/Dg4CDq6upwww03YPHixRFfN910ExobG9HW1pbSmGVlZVi0aBH++Mc/xk0zu+mmm7BlyxbccMMNeO2119DT04P29nb84Q9/wB133IFFixZFxIwJ5weCIMJgHCsyEkWEK+coCuB4flJxUL+fjSoSsVi90KgVYJjIVa/d4YfbzcDtib0JSZh6plSEFQoFXnzxRVx88cV49NFH8ZnPfAZPPPEErr32Wvz+97+PubpMh127diE3NzemWH72s5+FVqvFjh07Uh5369at4HkeW7ZsiXmeoig89dRT+M53voN///vfuP766/GVr3wFBw4cwPbt2/H6669nPUuCMP3weINpcSF4jg/vDehz1bDEsEFKBY4LdlM7W8i7uk3QqaJTOvsH7DjdODypZxIyB7G8JxCyTFuHCe++P1bSPKdEi48OdoKmKSxaWITODgPcrsTN3SciN1eFQICDVBq5rlq3pgIGiwdyRWRebkG+GquWl2FJDdmDONeQBj4EQpbp6bWGBVguk8DjDoQzGdQq2aQFGABYlotZaDcwZIdcFv1nbrF60dxmQF+/ddLPJkyOGdnU/ec//zn+9a9/xT1/0003TZhP/MILL+B3v/td3POXX345/vu//zvtORIIQLCIYnB4LC1TrZbBYnGHN+lEQYQoipMuoPD7OWi1yogUSAAwGl1YN1cPs80PiSRSjEcMLnx0qBtrVjOoWVQMqYSsyc4FMzIcYbVa4XLF71eq0+kmzAN2Op2w2Wxxz6vV6ojeFQRCOrg9DP7y0tFwelpZaQ4aTg/C4fCBpiksWVSE48d7M1LFlpurAscJUSviysp8CCIgU8QuFRYEAYsXFaNmYREq5urPWUXd+cqMXAnn5+enVGwRi5ycHOTk5GRoRgRCbHp6LaDHiZpSIYNrND1Nn6uCxZK5MmJRFMHzQlRceGDAhtWr5sLmCsR8Fk3T6Og0o6/fhjUry7ByeemUNvo53yGfPwiELNLeaY4QxZBQAsFKOZM5thVSKmg0wQyIQIALt8ocjyCICDAcfN7EaWkMw+P4qX4cO9kfkc1ByC5EhAmELMEwHIZHIkWW48Yau2diU279ukpUVebhoguqwDAcZHFaRfb0WFCQp55wPFEEmlpGcLJ2YEpcmglEhAmErNHdawXHRW6UMQw3tiknpmSiEcWihUUYHLDiTMMAzpwewLIlJRAR3SYTALxeBnKZBIEkOr7xvIi2DhNO1g1MmTfd+QwRYQIhS9TVD0ZUsikUUjhdY+lpwUyG9ESOpink56kxPGQHKAoOhx8qpWy0ECT2mEajC7IJ+h6HCAQ49PXbSFHHFEBEmEDIAja7FwZTpB+iRi0P+r1RFFRKGTyTKB1euLAIbW0jEUvpjnYDystyozbmQgyPOJCfp44r0mdjsXoxMOTAiGHycWtCfIgIEwhZ4KPD3VFiqFbL4LAHG7vr9SpYrelnRuTp1bBaPBFWSDa7Dzk5StA0FXN9LYpBQ1LGl3wcurfPitZ205S6NZ9vpCXCs9FZ+fXXX8ell14a89yNN96Ip59+OuJYXV0d7rzzTmzevBnr16/Htm3bcOTIkfD5o0ePRjkxx+NTn/oUNm/eDIaZfOUU4dxjsXjQ22uLbqoul8DlDq5+9bkqWK3p9YzIz9fAYnbFDCj7vAxoKthnOBbdPRYUFmpSeBqF1nYj6hqGogpBCJkhayvhkLPyO++8g+3bt2Pnzp145JFHsGfPHtx1110R4nT11Vfj4MGDOHjwIPbt24ff/va3OHDgQEqGnkC0s3K2eP/997Ft2zYsXLgQL774Il599VWsW7cOt912W5S1/UQ0NjbCZDKBpmns27cvOxMmTBk8L2Dne00xU8V4TgiHAuRyCQL+9NpXVs3LR3eXKaYhaG+vFXNKdHE97wIBDjRNIRBI/g2f50U0tY6g7vQQ2ajLAlnLyJ6JzsrJ4Ha78dBDD+HOO+/E3XffHT7+3e9+F0ajEY8//jguueSSlOa8bt065OTkYMeOHbjqqqsyPufzjeCKjZrQfDPzzxWxe08bXC4/JJLoVDGW5UdFjIKQZrkyRQVfF8fyMUXY6fShRlsCqZSOG/vt77eioECHVCwJAwEetQ1DoEBh5YpSUuKcQbImwjPRWTkZ9uzZA7fbja9//etR577zne/Abk/eIUEURbz99tu4+eabUVpaih/84AewWCwoKCjI6JxnM6Iowunyo6/fjoFBO4YNTvj8HGRSGnl6DUpLdSgu0GBuuR5qdfK/T6nCsBzeeb8FvX22mLm6cpkELlcg/MYgJrk5djaVlXno6zEnvEbkRQgcDx4UJDHeiKxWL6qqCmL2k0gEE+Bw+FgP7E4fVi0vRUF+cmGN0OqZlEPHJisiPJOdlSeipaUFCxYsiNkXeM6cOZgzZ07SYx0/fhwjIyO44oorUFxcDIqi8NZbb+Eb3/hGBmc8exAEYdRVmYXR5MbAoB39g3Y4nH5IJXRYUGiKAs+LMFvcMFvcwX4KNDC3XI/yOTkoLNAgP08NpVI26sKcujiEqtBcLj+a24xobjGA44S4xRJarQIjI46xzIgJqtfiUVysw7FOY8xVcIjhYTvy89UwWbyI51ZstXoh8iKQ4oqWoig0txjQ0mJAdXUhSoq0yM1RQiaXguMEeDwBOJx+OEe/HG4/WIaHVCKBRiNDbo4K+lwltFoF9Ho19DlKyBVSyGWSlN4QZhNpi/BsdVaeCJfLlbHG7Dt37kRVVRWqq4PGi5s3b8Ybb7yRlgg/+5fDY24JYsR/xhhdkcRbg0WH+8QE5+LdK8Y5nu49wW9CH60lo2KrVErDTXFC/40XrwzFZ4eGHBgacsAf4MAwfLh6LeTSHPRvRljgQjonigiHDwQhGNcVBBG0hIZcRkOjlofDBPHmoFHLYBndiEs3M0Iul4AJsMEJJRLhESfWrauE3RkAH2fF3dtnDfaTcPrTWqGKADo6zWjvMCHABH+ONE1BKpVAGiMeznI87A4edocfvf3Bfyt/gAPLCuD54FfofpoGxv9bBP+b8hSnjE3rK3HplgVp35+2CM82Z2WpVBp391cUxbDrR15eXoSjcrqwLIv33nsPX/rSl8LHrrrqKvz4xz9GS0sLlixZktJ4d9524aTnRMgePC+gf8AGCkBlRR6OHOmGVqtIaYxFC4vQ22OGREpPKJwhMSybkwO5IvafuT5HgY3rK7BoUUlK8yBklrTX/7PNWTknJwceT+yUIYfDEe64tnLlSnR3d8dspdnU1IQ777wTVuvEjbI//vhj2O12PP/88+E5//SnPwWAtKyXCNMbl9sPZtTMUyql4UshVzeEVquAw5bcCtrp9EEqoeF0xw97DA07MDwSvyUsYWrIWhBmpjkr19TUwOv1oqWlJeK41WpFX18fli5dCgDYsmUL9Ho9XnzxxagxXnzxRXR3dye18n7rrbdQVVUVMeeQk/Nbb72VVH4xYeZgNLnDYRGOjV9aHA+NRg6nwwcxyTLn/n4r5szJGW0aH/uaYAzXj8HB+H21Cdkna9kRN998M3bt2oVt27bh+9//Pqqrq9Hc3IzHH388K87Kv/71r7F48eKIczfddBMefvhhtLW1RZ07m9LSUlx11VW477778MADD6CiogKDg4N46qmnsGrVKqxduxZAcNX+0EMP4b777gPDMLjuuuvAcRxeffVV7Ny5E3/+858jxv34448jVi5SqRRr164N50ufPa9bbrkFt956Kz766CNcfvnlk/nREKYRQ4OO8MYTy/Ipx2Gr5hWg8XR/0vf5fCxUKhkYhoPT6UdubuxPlyMjDmg1SpSX58U8T8g+WRPhkLPyM888g0cffRQmkwklJSW49tprcccdd0yZs/KvfvUr7NixIxxzTsQTTzyBp556Cg8++CCMRiPy8vKwdetWfP/734/45f/0pz+NnJwc/M///A/+93//F4IgYPny5XjxxRejMj++9a1vRXyvVqvx85//HIFAAJ///Oej5nDRRRdh3rx52LFjBxHhWcSIMZgZIZdL4HT5E+2rxUQml8DrY0LbVUnBshyYAAtGIQ3upMW4NRDg4fMxGBp2oKw0N7VJETLCjLQ3IhBmEhwn4E/PBz8R5ecHO58NDia3aQ0A+flqqBRStLeNpLSCLirSQq1RwukKQKdTQqeLvRGoUEiwaGEJLr54YdJjEzLH+ZmYRyBMITa7FwEmGOPXahSwWr0p3T93bh66u80phzDMZjeKCrXw+Vn4A2zcOHQgwMPl8mNggMSGzwXT3kiKOCsTZjq9fRbIZcE/NamUhs/LJp33SlEAJYrgWD7lEIYoBqMQoijC42EgldDI06tjPntwyA6tVoHycmL0OdVM+3AEcVYmzHRef7MeRmPwd3heZT4++KA56eqw8rJceDx+DA1Ed2VLhqIiLbQ6FUaMbkilNPS5KuTkxN6kmzs3D0tqSrBwYXHKzyGkz7RfCRNnZcJMhuMEGIyu8OKTZbiUVrTFxTp8fDC1WPB4TCY35i8owrDBBY4TYLV5IYoidDplVLn28LAdOTolFiwoBE2TSOVUQX7SBEIWMZpcYEfjwQqFFE6nL2lBlckkCPjZyRnRAXDYvdCqg42sBEGE2eyBweCC2xWIiBPzvAib3YszZ4Ym9TxCahARJhCySHPLSNhnTqtRwJpkxRsQ7Bvc0W7EypXluOCC+dClWOYcor3diOrqorFuZjQFn5+FweSC0eiCw+mHwAfPjYw4YLV5idPyFEJEmEDIEoIgoKvbEhZdjVYOiyV5Nw2tVoGcHCWcdi+OfdyO5ctK01oVC4KIoUEbykojQ3IURcHrY2Exe2Ayu+F2ByAKgMXixqlTfSk/h5AeRIQJhCwxMuKEzzfmzSaTSoKZEUmg1Spgt3lQVpaLvm4zBAEwDNtRXJReB7/+fht0WgXy82K0C6AAj5eB0eSGxerB0JATXh8Dbxr9LQipQ0SYQMgSR0/0QSYb+xPjOAFCkivZqnkFsNu8MI44wqvf3h4LKubmpx0jrqvtQ55ehap58UuUHQ4fRgxO9PZayWp4iiAiTCBkAafTh8Gz0sqCG3TJCahUQqGkJAf9PeZw7+Bgz16kLcIUReHM6UE47V4srSmO3fuYosCyPBqbhmGxeNDTm9jFgzB5zokIn89uza+//jpqamrwta99Lea1X/nKV1BTU4Pe3t6U50CYPny4vw2ScZb3CoUUDkdymRF6vQpmsxsSGuC4yA0yq8WDPP3kOhAODtrR32fF4oVFcZvQUxSFlpYR7N3XjmPHe+Fw+if1TEJ8pm2ecMit2ePxYPv27Vi8eDF6enrwy1/+EvX19XjhhRfCTYCuvvpqPPzwwwCCmyG9vb343ve+BwApGYWe7dacDaNQAJDJZKitrYXNZovw4DMajThz5kxWnkmYOrq6zRgYsEdYHWk1CgwOJuc/OHeuHt0dJoDjohrvDA3ZsaC6CDanYVJzNJlc0OepkZ+ngs0eW2AtVi8qKwtw+FgXzjQOYunSUixcUIjCQi2pqssg0zYcEXJrfumll7B161ZUVFTgkksuwbPPPouTJ09i9+7d4WtDbs1FRUUoKSnBpk2bcMstt0Rckwwht+ZVq1ZltbF6fn4+KisrsX///ojjH374IVatWpW1557vcBwPtzsAtzuQtRQsk9mN995vjvKa0+kUsJiTa6AupWkUFeswOGCLsjHyeRmo1PJJ5w4DQHubAZUVeQlNR3t6zdCpFGBYAXX1A3j137V4570mnGkcgtXmBc/HdqMhJM+0XQnPVrfmEFu3bsXevXsj2ll+8MEHuPLKK1FbW5uVZ55viKIIlyuAtg4jOjpNsFqDoiECUKtkKC/To6w0B5UVedDr1ZNa3XEcj4YzQzhytCdmRRxNU/AHuAmfEQxFuJCbo4TXE8cVQxCDXzG83FKlr9eC4iLNqCloNDabD/OrCuExuyCTyyCRUOjrt6Gn1wKWE6BWypCXr0FOjhIatRwKhRRKhRT5eWrkjZqpklVzYqalCM9mt+YQW7duxe233w6GYSCXy+F2u1FXV4cf/OAHeOKJJ7LyzPMBjhNgd3jR2WlGe6cRNpsPEgkNmqZGvyTh63r7rOjusWD/wU7MLctFRUUeigq0yM/XQCYL+rjxggCWFeDzMnB7Gfh9DBiWB8vwYDkeDCvAZvPAZPaA4/i4bsvsqJuGZALhnFuuR31dH1YtL4tr6Oly+aHVKuD2JZfuloihIQc2bZ4Po9kTVyx7eiwoKtSCHbdipmkaCjkNXhBhNrthNo/tvwiCCJblIZXSKCrSoXRODuYU61BcrINWqzhvXZXjcc5E+Hx1aw6xZs0aKBQKHD9+HFu2bMGBAwewYcMGqNXqtMZ7860GeBP8UU7YpymeQ/NZR5NzT07n3sTzG39aHH9QBBiWg8fHwusOIBDgQEuDbsx0Ciuw9k4T2jtNoy7MAkRRDIdjQ07KUikNiYRKeWUnkdCwj350n8jWiAKgUcthMbvj5lGYTG4UFGrh7J3YyzAZHHYvZFIKPn/sEI3B6EJFRR6G+6zh6r+kCABuTwDdPWZwnACG4SEIAvT64ApZoZBALpMGO8VRFCiaCv+8Z9LiubxMj0u2VKd9/zkT4fPVrTkETdO4/PLLsWfPHmzZsiUcikiXz11LYsnTmX372+ByJc4wUCplkNAUKivz0d1hgDTOqtrp8GHBwiIYze6MfNQ3Gl1YtqQUbm/i4ozLL1mILVtI4/dMc84+F5yvbs3jCcWFGYbBxx9/jK1bt6Y0b8LMwWCYeFOuqEiL7m4zNFoF3K74LsmiKIICNfGnmyQJBDhIpRQCgfifpFwuP/x+Dg6HLyPPJIwxbYMzs9WteTxbtmyB1WrFyy+/jEWLFk26ZSdhesILwbjxRMhkkqCjsiBi4qIOEQKXucwEp8sPYYJMhxGDE2caSYe1TDNtRfjmm29GeXk5tm3bhn379qG/vx+7d+/G7bffnhW35htuuAGLFy+O+LrpppvQ2NiItra2CccZ79Z8+PBhDAwM4OjRo7jnnnsi3JrHo1AosGXLFjz99NNZiz0Tzj0upx9MgEt4DU1T8LgDkEhpBHzshBrsdgWgVmUuc2dwwI6CfE3Ca4KrYRYuNyncyCTTVoRDbs0XX3wxHn30UXzmM5/BE088gWuvvRa///3vp8ytWavVJp0z/MQTT+Diiy/Ggw8+iE996lPhIpPnnnsubuxu69at8Hg8RIRnMUPDjojquVgU5GvQ32dFcbEOxlFn5kRYrR7o89LbxI2F389CJpNEVeidjcHgwOmGwYw9lzAD7I0IhJnOe7ub0N2duAfDwuoifPhBI5YvL0fdiW5wbOLQgFRKY9nKcrS2mzI2zxUryjE84kRObuJQ36JFxdi0qQo6bWp7L4TYTNuVMIEwGxBFEcPDE2f5BBgOHCdCIqGTqubjOAFSCZ2w2i1VDAYndLqJG8cPD9mJ+0YGmZbFGpmEuDUTziU+Hwu3OwBpgnCETquAYcQBikJwc+ysfhGJEAQBEjqF3N0EmM0uzC3Xw+b0JwyHuD0MvB4GTqcPOTmZ2yA/X5n1InzXXXfh5ptvjns+mYKQ66+/PmH1XboFFoTZz9CQY8JUsoJCLY4e7oBCIQ16yiUJzwugMhhMFEeroQMBFkpl4pL/wSE71E1yXHjBgsxN4Dxl1oswcWsmnEs6Oo0TVpnRFAWPh8GcObmwWJIvwLDbfMjNVcKVpFtHMgQCLBg/N6EIe70MPO4ArFYP8ifIqiAkhsSECYQsIQgiBgfsCa+RSmm4XH6IIpCXr4HFlFynNQCwWt3Iy2CGBBCsntMn2a94cMiO5uaRjD7/fISIMIGQJex2Lzze+JVvAFBQoEFfrwU0TUGpkMI3ga8bTVNYuqwMixaXwOX0Q6dTZaxyDgBsNg90OmVSY/p8LJxOPwYH7Rl7/vkIEWECIUs0Nw9PGIrQ6ZQwGJwAMGFzH6mUxgUXVmOo3wKnzY2VK8ogikJGRVgUgxkd/iRj0/0DVnR3mzM6h/MNIsIEQhYQBBFt7cYJ47sswwc32CiA5/i4lXIKpQybL6xG7fEuOGweGEaCws0E2AnLjVMlEODAMYkr/EIIggiD0YlGUs6cNkSECYQsYDA64UrQhAcI2tobDMHUtJwcFRx2b0zRnluRj7XrKnHs43b4vEy4x3Bz4yD0eg0Ussz+GRsMTuTmJh9rNpncMFs88MRrQk9ICBFhAiELHD3SFWF3H4tgPNgKiqKQl6eJsj+aU5qLCy6qBgURRw60Bt2ax4k0xwngOB5a7cQFFqlgs3mhy1GkFGLo6DDi9OlBEpZIgykV4dnmstzQ0ICamhr09/dHHP/yl7+MpUuXRnWAu/TSS/Hiiy9iYGAgrqPyb37zG2zbti2leRCmF3a7FwODE/d/kEpouEdXjzk5SthtY20i55TmoqhQiyMHWtHfbcJo5/OoMbo7jCgtyc3sCwAgCmJKOcscJ6Cnx0Iq6dJg2q2EQy7L77zzDrZv346dO3fikUcewZ49e3DXXXeB48ZiVVdffTUOHjyIgwcPYt++ffjtb3+LAwcOpOSwDES7LCfLsmXLoFarUV9fHz7mdrvR1NSEgoICHDt2LHx8eHgYBoMBmzdvTmluhJmFKIrY/X7zhDZGEgkNt9sfLjumKEAcNQWgKGD+/EKcru2NK74hjAYncvXquIYC6eL3sxM28zkbu8OHzk7zhH0yCJFMOxGeSS7LUqkUa9eujWg+f/z4cVRVVeGyyy7DkSNHwsdra2uh1+snNCglzGzOnBmC0eCccBVckK9BX581rK/je0BUzS9CZ1vy+bcCL0Bgk9tISxaDwQm9PvUc5BGDA3V1A+jttWR0PrOZaSfCE7ksX3LJJQnvT9dledOmTbj88suxc+dOsGzyH8M2bNgQIcJHjhzBpk2bsGnTpggRrq+vx4YNG4jz7Cyms9OEjz5qhzQJH7acHCUMw8GQhUIhDW64jVJUpIVxxJFwBTweo9GBokJt2vOOhd3ug1aTWlw4hMHoxEcfdeDMmUGwGX5zmI1MKxFOxmU5Xq8HURTR1NQ0KZflrVu3wmazYf/+/Unfv3HjRjQ1NYXDJCER3rx5Mzo7O2EyBVsN1tXVYdOmTUmPS5g5BAIs9uxpwbvvNYJO0kmY5Xiwo84YeXmacLmyVJpcF7XxDPbbUFlZkPFNMUEQE1oeJcLtCWDf/na8+WYDTp7qQ3+/DXa7Fw6nD1arG339VrS0jKCurh8nTvTi5Kle1DcMoL3dCKPRCa+XOW82+aa8d8Rsc1levXo1RFFEa2srysvL0dbWhs2bNyM/Px9VVVU4cuQIrr76ajQ1NeGnP/1p0vNKlVO1ffB6EldbEdJHRDBkIIgiBF5EgGFht/swNOSA3e4FTdOgk1zS6PVqdHYYwTAcKIqCVqdAS68JvCCitCQHQwO2YLpwkiLk8zGQSmkwPhbIoJ283e6F0+GDw5G+k4bF4kZj09Cog3WwOZwgAjSNmD8zQRDB8yIoClCrFdDrldDr1dCoFZDJaEhlNKQSCSiaAj3OoRnAaGB96oW7rFyPBfML075/ykV4trksy+VyrFy5Eg0NDRgYGMDChQvD923atAknT55ERUUF1Gp1OB4skwVtaWJtpsRyZk4GmVQCjSazqUqEUSiErdhpCQWZTAKlQgaFQpp0y8nxKBVSvP6vU5g/+odbVqpHe9MQ1GoJKirycepYFySpiKkYLPQomaODSpO5RutSKY3Nm+Zj1ZqKjI2ZNiLAsjwYhgPD8uA5AYIgQhTFsfqWc7RwlsVxxU6WKRfhkMvyeAYHg3Yp412Wr7nmmqh7H330USxevBhf/epXAYy5LKfLeJflxx57DEBQBAVBwM6dO3HLLbckNc7GjRtx+vRpqFSqiOyHTZs24c9//jPmz58fEQ8OrfRjpdI5HI6kPwmMZ+XK8pTvIZwbvF4GPj8DpTL4ZhxKgJBIguEIgRdSFnfDiANFBVpw6bwrxEEQRMhkEhQX6VJ7UyCkxLT7yc40l2UgGKtuaWnBqVOnIkQ4FBc+efJkRDxYrVajoqICtbW1UWPV19dj2bJlk3pdhOlNd6cJoQ/RFAUE/CxomgJFUWA5HmIaSzqbzQutTpFRpw0gWFY9OGDL6JiESKadCM80l2UAWLduHbq7u9He3o6NGzeGjxcXF6O8vBwHDhyIyg/++te/jqeffhpvvvkmBgYGcObMGTz88MMYHh7Gl770pYy8RsL0pKV1OGz8qdEoYLN6QFEUdDlKOOOULk8Ey3CgKQr+CbqwpYrHF0BPL8n7zSbTToRnosuyRqPBggULUF1dDb1eH3Fu8+bN4TDLeLZt24bvfe97+POf/4zPfOYzuO2222AymfDyyy+jsDD9ID9hehMIsDAYxsqTc3JUsJiDYalcvRo2S2rVniFYhofXEwCV4cCo1eKZsLsbYXIQt2UCYQppbhrChx82Qzq6mVNdXYR9HzRCFIHlK8tRd7wbfJpd0eaU5qJsbgHc/szm5lZXF+GCC6uh0xF35Www7VbCBMJs5szpwbAAA8EMGZ4ProMkNA2eS7/82OthIJdLMt7a0udn0doynNExCWPMWo854rJMmG54vQyMRlc4HgwEwwghe+VgupUIKs0MB54XIAgCfJ4ANBl0QbZaPMglrspZY9aKMHFZJkw3mpuHIlLP5HIp3K6gvTxFUZNewQb8HJwOHxRJlE2ngt/PgmV5eDwBkoueBWatCBOXZcJ0QhBEnGkYiMi31eUoYRyyhavmnA7fpHqLcDwPi8mNeQuK4MygAzMAuFx+NJ0ZwsbN8zM6LoHEhAmEKcEwYofTFVn+q9MpYR5t5K7Xq2GzeSb9nECAhYSmU25DORFmsxs+//nTz2EqISJMIEwBR450R2zIAcEKOb8vmMmQk6uCzZpaeppEQiO/QBvRbI1hOIgQ4c+w1RDPC/B4AujrIy0qMw0RYQIhyzgcXgwO2qJCDRzLhyvcJDQNnk0+JlxUnINNFyyAPkeJCy9aBOloE/lAgIPL4YVSmflI49CwA/19pHou0xARJhCyzMED7VG9F2iagt/HjjV1H82MSAZdjhLzqgpweH8LutpGUHesE6vXVAJisKGN0eBEnl6d8dABy/Bwufzo77dmdNzzHSLCBEIWsdu86OkxR62CdTolzCZXsEMbhaQzIyQSGitXV+DU0c7RzDYKXh8Ln5cJp5G53QHIZVJwKfYlToa+Pgv6+6xpF5QQoiEiTCBkCVEU8d57Z2I2etfplLCYXcHMCK0SLmdymRHrNlSh/ng3BE6IcN5obRrCwsUlgBhsxE7RgM+dfh/geIgi0N5uwOmGgYyPfb5CRJhAyBJNjUMwmVwxxVWplMHpCLor5+rVsFknzoxYvLQUg30WeFz+KOuj0MpUQgePG4cd0GqTt/lKBZ+PRUvLMFpIFV1GyIgITzcr+6effjpijBUrVmDr1q146qmnUvKP27ZtG2pqamJW3nV1daGmpgY33nhjxHGbzYZf/epXuOqqq7By5UpceOGFuPfee9HZ2Rm+hljez37sdi8O7G+LyogIwfNCeFMuV6+asHFPSWkupDSFoT5LXO+53k4jKucFmz/19poxZ05u1sIGdrsPJ473oLFxkIQmJsmUFWuErOw9Hg+2b9+OxYsXo6enB7/85S9RX1+PF154Idwh7eqrr8bDDz8MIFhb39vbi+9973sAkLSd/apVq/DMM88ACHrXnT59Gj//+c8xPDyMxx9/POl5y2Qy7N27N6q95AcffBC1wjGZTLjhhhug0+nw4x//GAsWLIDZbMZLL72EG264AW+88QbKy0nz9dmO1xvAa6+eSNiYnWW40WLlYJyX4+I3ctdoFaisLMDxj9sSmn+azW7MX1SC7m4TWJYHx/KQUtkznHC7Aziwvx1WiwfLV5QjP1+TpSfNbqZMhENW9m+//XbYxqiiogLz5s3Dpz71KezevTvcKzhkZR+ipKQEt9xyC5577rmkRVgqlUaMUVFRgby8PHzjG9/AzTffjBUrViQ1zoYNG3Do0CEEAgEoFGMlmx988AHWrFkTce3jjz8OtVqNV199Nez4XFZWhieffBI333wzXnjhBTz00ENJPZcwM7HbvfjXayfAcXzcGK9aLYfV4o6wu4/XM0IipbF67TwcPdCKsGongOcF0BQgINh4h+M4SOSyiW9ME4oCzpwZRGenCatXV2BxTTE0GbRYOh+YspjwVFvZx+LCCy9EZWUl3n///aTvWb16NTQaTYR9vdFoRE9PT0SjdqfTiffeew933XVXzHn++te/xvbt2yc1f8L0heN4nDjejX/+4yhYNr4AA0BurgomgzN8TaJUsg0b56PuWBd4jk+4Cg4x1G9FeXmwXN844gDjZ1FanJPVSjeKouD3szh8uBP//tcpnDjRA5vNQ6rrkmRKVsLJWNnHQxRFNDc3p2xlH4/q6uqI+GwyXH755fjwww/xiU98AgCwZ88eXHLJJREN5s+cOQOWZSOcNcZTUlKS/qQJ0wZxNBeXZQUEAiwsFg+6ukzo6jAiwHBxY8Dj0WjksI5uxGl1Srji9IyoWVqGnk4DvO7ojbh4GEacWLd5AfoHrDAanFi1dh4aTw+gZlkZjGb3pHpTTARNU/B6GRw/1o2jR7pQWZmPsjI9Cgq1yMtTQ6GQQiqVQiKhsjqPmUbGRHi6WdnHQ6vVwmJJrfRy69at+PGPfxz+/oMPPsCXvvQltLe3h49ZrcEE9vHOGu+99x5++MMfhr8vKyvDrl27wt9/7nOfi/plZFkWa9euTWl+APDHP+yFyx2/VDXZVUn0ZfHvO28WOjHsfGkJDamEhkIhhVIpA0VRUCpkSY8nCAJomkZenhpWqzsqFKHWyKFRy9HWYE9NsEQRNABKBAReBE1RcLn9GBywoagkBx5PZu2PEmEYccIw4oTfzyLAcBD4YO9kURTDneMAhCMlM1WYL7xwAS65dHHa92dMhKeTlX0i3G43tFptSvdceOGFcLlcOHPmDKqqqlBXV4ennnoqQoRD3dZcLle4e9vFF18cNgx999138corr0SM+8c//hFlZWURx/7617+io6Mj1ZeFu+6+POV7COeG3m4TWpvyIJNJUbWgEIcP2KFSRQr46rXzcPJwO6g0Vo0ejx/6PDUCDA+aAgoLtFAqpNBp5LjgwmrMX1A08SCEKSNjIjydrOwT0dbWhs9//vMp3aNQKHDxxRdj7969qK6uxoYNG6DRRO4Er1ixAhKJBKdOncKVV14JIOg9F7ouVlvNsrKyqNdJWmfOfgb6reGwBU1RYAJcRLRBrVHA5wlMGFuOx2C/FXMrC9HdbYbJ5EKOTgERwNCgHWqNAjqdEoVFyX0qJWSfKduYm0or+3gcPnwYg4ODuPrqq1O+d+vWrdi7dy8+/PDDmOag+fn5+OQnP4lnn302Zi6ywWBIa86E2cfw8FiIgeMFCGfFdaoXl6DldH+yYeAo3C4/NDoFRFGExeRCbt7YgqGjbQStzUPwZrjLGiF9pkyEp8rKPgTHcTCZTDCZTOjv78cbb7yB7du348tf/nKU83EyXHbZZWhtbcX+/ftx+eWxP/r/+Mc/hsfjwc0334w9e/ZgYGAAdXV1eOCBB/D73/8e69evn+zLIsxwOE6A1TxWHccxHOhxYktRwehwgJmcWacgiBB5ATwvgALG9Rem0HRmCA31/Qj4M9v4nZAeU5YnHLKyf+aZZ/Doo4/CZDKhpKQE1157Le64446MWdmHaGhowMUXXwwgGN6YO3cubr/99rSr0fR6PdatWwcgdmgBAAoKCvDaa6/hhRdewJNPPomBgQGoVCqsXr0azzzzTEayOwgzG7vVjUCAhUIhg0olg2O0dDlE2dw8DPSakVRScAJMBgfyC7SwO3zgOB6Mn4VUGwyBiKKI03V94Dgeq9ZUIof4x51TiOU9gTCFnDzWheNHu0HTFIqKdRjss2BkyB4+v2ZDFY7ub5l0bYVUJsHylRVoaRlBSWkuFCo5zh5UFEXo89RYsqwM5eV50OWoIFdIZ2yWwkxl1nrMEQjTkb5eC+jR+INWq4xo3ENRFAROmJTjcgiO5SGVSiAKIsxGF5avroDdHrnqpigKDrsPhw92gGU5qFQyFBbloKKyAPMXFCG/MLUsIkJ6zDgRzoSVPQDcfffdOHToUNzz27dvx9e+9rW05kggxIJjeZiMrvD3tISKiMsWFutgGM6cc4U/wEAqpUZLmYNuzrHaatI0BYVCBkEAjAYnDCMOdHeZsHxlOZYsKyMr4ywz48IRVqsVLpcr7nmdTpeUy7LRaITP54t7Pj8/P+niEgIhGYYGbHj9tWOQy4M5wVXzC7Dv/abwynjlmkrUHusMlihnAH2+BgWFORgYsGHF6goYDC6o1MmX/uvz1Vi6rAwrV1dmZD6E2My4lXAmrOwBoLi4OAOzIRCSp61lGDLZ2J8cy0SKLS2hwDN8xnKW7FYPqheXor/fCrPJBbVKmlJHNbvVi74eC5QqGRYtLs3MpAhRkKbuBMIUIAgCurtN4Y/2KrUcdps3nAssk0kQ8DEQqcx+MBUFEQIvwGx0Qp+XeqvJwQEbhgbssNu8GZ0XYQwiwgTCFGAxe+AZVyCh1SmDPSNGVbioJAeGocR9ImiawpoN87Fh8wKsWjsvqeYdFrMTeXkacJwAiqLS6mzW1WFEc+MABGFGRS5nDESECYQpoL6uF7JxHda0WgWs5jE3jYJCHUwGZ8IxNl20CJ3NQzjxcTuGes1YvqpiwucODdhQWq4HECwUYdMoAmFZHkODdpyp70/5XsLEEBEmELIMy3Lo7jBFrHJpmooQRJqmEm7ILV9difamQbgcXoACzCYnZDIJlPLErTNZhoNcLoUoiLCaXZAr0tsGspjdMJtdsFrib4oT0oOIMIGQZZqbhsCykStQjuXDH+9pmgLH8hDjbJsVFOoAQYDF6Iyot2g9M4DFy8pi3jMet9sHhVICk9EJfZ467dfR3WlEW6uBeMplGCLCBEIW4TgBJ452RTR7pygKDMOF9TS/QAuLKXYoQiKlsXhpKRpre6Oq6Hw+BgqFDBASi2JftxmV8wrBsjzoNOPCAMDzIjrbDThNwhIZJWURnq3Oyj/84Q9j2g9xHIeamhocPXo04vj//d//4atf/SrWrl2Liy++GN/73vfQ19cXMa+znZhjYTAYsHTpUtx5551Jz5Uwczh1vAt+X+TvoUargNXiDotqQaEOZqMz5qbcmnVVaDjRE3d8s9GJwqLE7U+9ngBUKjlEUQTPpxcXDuFxB9Dfa0F3pzHtMQiRZCVPeKY6KyfLr371K7z++uv47ne/iwsuuAAulwt/+MMfcNNNN+G1115DaWnyOZVvv/02Kioq8NFHH8FisaCgoCDj8yWcGywWN06d6I2yPNLplOhotYVFV6mSwe3yR7WurJhXCIvJBY/LF7eXRF+PCavWzYfZ7EpogeT1BqCQ0cG4sHxyf/bDQ3YolFKoNArMmZM7qbEIWQpHhJyVX3rpJWzduhUVFRW45JJL8Oyzz+LkyZPYvXt3+NqQs3JRURFKSkqwadMm3HLLLRHXTETIWbmoqAgVFRX49Kc/jSeffBI7duzAmTNnMvraTpw4gRdeeAG///3vccMNN6CqqgorV67E7373O2g0Gjz77LMpjffWW2/hy1/+MgoKCvDWW29ldK6Ec4fXE8Cb/z4RUxfVGnlEzwgxRuqXSi1HSWkuetpHEjbz4TkBEgk9Ybpad4cB8xYUw2iYXFw4PF6nCbUnezA8lLky6/OVrIjwTHVWToY33ngDq1atijL0lMvleOqpp1IKK/T09KCxsRGbN2/GZZddhh07dmR0roRzg3HEgX/87RBYJrYzhiiIYf9FiYQe7fUbKaKr11Wh7lhyhrR+HwOlKvHfi8/LQKWSgfFzk4oLh6AoCv09FhzY04qWpiGwbGZKrc9HMh6OmOnOyhPR0tKC1atXxzy3ZMmSlMbauXMnioqKsHLlSthsNrzyyitobm7G0qVLMzFVwhTCcTzMRhdOHOtCf58FNE3HLbxgWR6iIIKiKeTla2AxRcaDl6yYi47mIXAMn1RLy8F+C8rm5qGr05TwOqPBgbx8NXheABNgoVBObqEDAA6HF3t2N6KjbQTzq4sxtyIfuhwlaJrs+SdLWiI8m52VJ8LlcqVsFBqPnTt34oorrgBFUbjwwguh1WqxY8eOtER4x79OwO8dc9KNl+40ejLW/41x3djZxNeN/79pPDdtJ+h41yW/yot/aeQJUYxhuiyK8AdYuF1+MCwPuUwSzFZIIJxqjQImgyPofCEKyMvXoKNlKDyPvAItpBIKZoMj1jRiYjO7Ub24FJ3txoRx4b5uM9ZuXACT0QGIFLzezFkcdbQb0NY6Ar+PhURCQ5ujgFwuhUIuHRNkOtigk6IQbNU5S5qzVVQW4OJPpO7WEyItEZ6NzspSqTRmNoUwmv4T2kjMy8uD05m4sikZGhsb0d3djR/96EcAguGMyy67DG+99Rbuv//+lJ1GvvCl+J8wCNOLd96qxQJfCQBg7rwCdDQPQa2Wg6KAVWvn4eMPzwTjvCmiUEghkSYu3pBIKMhoGsvWVOKSy8knrulAWiI8G52VdTodTKboj3MhwQ25IK9YsQK1tbUxx3jttdfQ1NSEn/zkJxM+b+fOnQCAu+66K3xMFEUIgoD9+/dj69atSc2bMLMQRRHGkbEFCj9atCGRUFiwaA5aT/cFQxUp9vBlAiykUnrChXNn2wgWLJoDjuXh8QSg0SjSeBWETJKVwM1MdFauqanBmTNnwDBMxPG6ujqoVCpUVVUBAK677jo0Njbi2LFjEdf5/X785S9/SSo3WRRFvPPOO/jsZz+LN954I+KrsLAQb7zxRlJzJsw8/D4GvtGwEU1T8HkZ0HTQjkiXo4RpJHa+8ESYDA4UF0+cLubzMpDLJbBYXWhrGkr5OYTMk5U84Ztvvhm7du3Ctm3b8P3vfx/V1dVobm7G448/nlVnZSAohidPnsQTTzyRkrPyVVddhd/+9rfYvn077rjjDuh0OjQ2NuJXv/oVvv71r0MmCzbiXrVqFW666Sbcc889uO+++7B582YYjUb87ne/g9frxX/+53+Gx3S5XDhw4EDEcwoKCuD1ejE8PIxt27Zh8eLFEee/9KUv4S9/+QtsNltUdglh5mM2ucFzAmg5jZxcVXhTrnrxHDTX9yNdg0+L0YUV66owYnBMKOJ9PWYUFufC4/Gn9yIIGSUrIjwTnZXVajX+/ve/48knn8R//Md/wO12o6ysDNu2bcOtt94ace3DDz+MBQsW4G9/+xt+8YtfQKPR4IILLsAvf/lLlJSUhK9rb2/H7bffHnHvZZddhjlz5mDhwoVYs2ZN1Dy+8pWv4LnnnsOuXbtw8803p/BTIMwEBvrMkMqCcducXDW62oZB0xTUajmcdm/aVkI8LwQ3wJLQcIvJharqYvg8DAlJTANmnL0RgTCTee3lw+FCjerFc7D/vQZUVBXCbfdgZNA2KT+3tZurcbq2B3QSi5zS8jzkFWixaGkZ1m+uTvuZhMlDkvkIhCmCZbmISjmeC27KFRbnYGSChu7J4LB5oNUlt98yPGiDWqOAyxUgzdrPMdPaY444KxNmExazG0yAg1whhURCw+cNQKmSwecJBBORJynCFpMLhSU58PZZk7p+eNAKn59BW/MwliyfuCUmITtM63AEcVYmzCYOf9SKhto+UBQFfZ4abocXCqUM3a3DcDvj/34mC0UBqzdVo7GhP+lV9YYLFiKvWIeLLq6BREo+GJ8LpvVKmDgrE2YTPeOMPnP1GnS1jWDxktKMCDAwupgO/5/kRNg4YofN5oE+V42Va7OTr09IDHnrIxCmAJ+PgWOcY7FMJgHHcvD7ApNupnM2QgrOF/29Zujz1GisH0B7yzCJD58DpvVKmECYLfR0miAKCC97OI5D2dx89HeNrY4XLikFzwno7jCk/RyXwwuNVgF/ILmuZqIYjCVzvIC9uxvR3WlE+dx8FM/JQX6BjoQopgDyEyYQpoCWxoGwoEkkNPxeBvo8ddg4s6wiHwLHQ6WSIjc3/YpSi8mFggmcNs6mt8uEkpJciKKIni4TDu5rwat/P4w97zeihzhoZB0iwgRClvH5GBhGxpo+5eSqwp3UQs0e5s4rRFfrENrODGLB4jnJt4w7C7vVgxy9OsVOciKsFnc4jEzRFGRyKbo7DDh+tBONDcRTLpsQESYQssyZ+v4IUc3Rq8EwfNA9GUBungb20RUxx/GgaSptERZFETRFJdUCczy9XUaUlOREibfN4kFnmwHtLcNpzYcwMUSECYQswvMCztT3gR7XmlIqlSA3VxWukKuqLkZ32zBC9cYBPwuFcnLbNcIEDszR14uw2zxBAT+LkWE7+nrMsJjjp4sS0mfKRfh8d2sOzfmpp56KutbtdmPFihW49NJLk34uYXrT2jQY7poWgmc5yBUyeN3BpuoyGR3hgGwYsqGkLP3mTR6XH6oJ7I5i0d1hQHGxLmYoo7N9BO0tw2DZ9J2aCbGZltkRs92tWSaTYe/evfjOd74TcXz//v3gOPJLPltgGQ6HP2qPcFuWySRwu3wIpkqIUKoU8PsiRdpqcmFFZSH6us1pVdFZTE4UFukwNGRP6T5BEOFweCGRUIheSFM4XdcPtUaBlWsqJ11iTRhjWoYjZrNbMwCsX78era2tGBqK7Of6wQcfxOysRph5iKKI999piFo55uVr4Hb5YbO4QVEUyisLMNhrxvjWZzwvQCJJX+RsFjf0+Zq08o+72kZQFCe7QhRF1J3sQUfrSNpzI0QzLUV4Nrs1A0BRURFWrFiBvXv3ho8xDIODBw9mxOCUcG4RRRGHDrSit9sUZXipy1VBKqExMhDs76DP18AWL9aa5uacIKS3ORe61zW6Go6F38ei7lQPOtuIEGeKaSfCybg1x+vzIIoimpqaprVbc4itW7diz5494e+PHj2K6upqFBYWZuV5hKnB7fLhzX+dQMOpPkgkMfzeBEChlMHtGjXZjCO0giAEsyTSRETqm3MhOlqHUVgY35vRZvHg4/2tqDvRk1Gz0POVcxITPp/dmkNs3boVv//97+HxeKDRaPDBBx/gk5/8ZNrjHTvcAb8v+Y1EQpqI4jizZRGCIIIJsLDbvBgcsMLnCYyabUYLKE1TsNvc4DgeoiCAktLguJBQRoqxy+GDRqeEw5Ge+4XL4YVCIYXXl94eg8PmhcvpA8PEr7wb6Lfig3frUV5RgBy9GnK5FFIpHbH6Px9ix0XFOixdMTft+8+JCJ/Pbs0hFi1ahNLSUhw8eBBXXXUV9uzZg5dffhknTpxIa67FJTngufRWPoQUGBUVCsGiBomEhkIhhUw+8Z+SREKj4VQ3+jqNUKrlKCjOgcPmjgpZAMEMB32+FoEEIpgIl9OHyqpCeNN8Y/Z6/bjw4kVYkqS4iKIIhuHABDjwvDC2wJ++TRozRq5ePan7z4kIn89uzePZunUr9u7di9LSUuj1elRWVqYtwlULSKe4mQDH8hgZtIGmaRQW5aCnfTimHZHT6UXVwjkwGdPLzXU5fJhXXQKWSy5VM94YXrcfc+eREFk2mXYxYWB2uzWPZ+vWrdi/fz/ef//9SYUiCDMDv4+BwItwjnZTU2nk8Lhit7H0exmo1PK0O6wFu6GJ4Ln0VtIAMNBrxkCfJe3YMiE5pqUI33zzzSgvL8e2bduwb98+9Pf3Y/fu3bj99tuz6tZsMpnQ39+PN954A9u3b0/ZrVkmk2H79u1obGxEX18f3nnnHTz22GMRbs3jWbduHURRxMsvv0xE+DxgZMiGgJ8di/6KSJjBQCG9DIfw8CIQ8DMTXxgHQRAx2G9BE+kdkVWmZbHGbHdrDiGRSHDZZZfh2LFjWLp0aUZeC2H60tdthsvpDddfiKIIEWJQbGMgQoQgCJDQMbIsksDj8kMimdw6y2pyw2JywWZxIa+AuM9kg2ltb0QgzBYEQcD7O+vQUt8XNvtcsaYSJw+1xs0gWLt5IRpO9kAiS2/Roc/XIL9Ih0CSvYXjQdMUVq6bh3WbqyOq/wiZYVqGIwiE2Ybd6oVEQsNqCW6UqTUKeN2+hClcgQALeRJZF/Fw2LzQ6VSTdu4QBBGtjYM4XdubcRcQwjQNR2QK4tZMmC60NQ1A4AWIogiKoqDLVcFp9ya8x+3yQatTwuFML1dYHM1p5jgesjRX0yH8Pha9nUYolTIsXVkxqbEIkczqcARxayZMB0RRxGt/+xg0gNOnekBRFBYuKUVv+zA87vgCm1+kQ06uBkOD9rSfvXzNPAwOWKDRZiajqKq6GEtXVWBuZUFGxiPM8pUwcWsmTAdsFjfkcikGxvnJqTUKeFz+mDnCIdxOP0rnTk7szEYHNJrMFC8BwXaXKrUcOXoVcnImV6RACEJiwgRClqk/2Y1cvRpm85jFUSgzIhFMgIVcIZ1UHNZiciG/QJP2/WdDURRaGgfQemYQHDu5DT9CECLCBEIWYVkOXe0GcLxwlhV9tLBSFIWSsjxIZZJEl6UEx/KgJTR4PnMFF6IANNb1oul0P9moywBEhAmELNLRPAyIgNvpjciEEIVI8ZJIaVx42VLIZRJs2rIYSsVYpHCyQsfzAgK+9Is2YsGyAprq+9FFWlpOGiLCBEKWEAQBJ490orAkB8MDtrAIq9Ry+DyBCFFetX4+6o60Y6DTgBMHmrFqw4Jw8xtxkmXDphEHtLrMxYVDuJw+NJ/uh3HYnvGxzyeICBMIWaKzbQQutw85uWqYR8a6Aupy1RHpaRqtEhzDwze6UceyPOxmF/IKtGBZDrJJVr2ZRhzIL9BmJXQwNGBDY0Mf3K700ugIRIQJhKzAczw+3tsMqUQCgRciGunocpRw2D3h7xctK0fr6d6ITInOlkFU15TC5fBCrZ3cKlYYDX1wk2jmEw+KotDePIwzdb0IBEg/63QgIkwgZIEjH7XB72UhlUpGU9HGFFajU8LjDOad0zQFiYQC649svi4IIjiWh9vugSZn8qEErzcAIUv9pimKwpnaXpyp7YtwjSYkx5SJ8Gy0uv/Tn/6Eyy67LOKY2+3G8uXL8bnPfS7ieE9PD2pqatDS0oLXX389rq39jTfeiKeffjqp5xOmJ4YhO87U9UIipZFfqMXwgCWyPFkc63U+t6oI/V3RfagBoKdtGEWledDpJl9oMdhrQfGc3EmPEw9RBGqPdaH+ZE+UezQhMdOqWGOmWd1v3LgRTz75JIxGY7ig48SJE8jPz0drayusVmu4WKSurg56vR41NTVoampK7QdDmDG43T7sev142C0jJ1eF+hORLjHju6cVl+pxcn9zzKINh82DxSsq4JtkAx4A8HoCUCik4Dl+1H4p84iiiNpjnQj4WSxfXQF9fnKuNOc70yocMdOs7lesWAG1Wo2GhobwsaNHj+LKK69EZWUljh07Fj5eV1eHDRs2nBeeW+crDrsXr7348TjfuLGwQgSjy2CJlAY/QcGDzxOAz+3NyKaay+WPSo3LPBQa6/tw4IMmdLWPkIbwSTCtRHimWd1LpVKsXr0ap0+fDh87cuQINm3ahE2bNuHIkSPh4/X19di0adOk5kaYnvC8gNOnevDqiwfBsnz4jVYmk8Dt8kUscpWqsfS0sopCDPaaE47d122EPi8zK8q+LiNKSvUZGSsRFEXBMGzH+7vq8dGHTRjssxD/wwRMm3BEMlb38RBFEc3NzefE6n7Dhg1hXziHw4HW1lZs2rQJLMuGQx0+nw9tbW3YvHnzpOcWD4EXJltcRYiFiHB5sSiKEHgRPC+ACXCw29zo7TKhq90AvzcQ/pgfWrXmFWgx1GeOOKYNZUaIQPGcXNQebAk/JxZOqwcqtRwCz4OWTC6MEPCzoGiAZVhIJ9lVLRkoAK2Ng2is70PxnFxUzi9CXr4G+nwtlCoZpFIpJBIaFD3mykyBSthPYzpCUYhp1posUyrCs9HqfuPGjfjrX/8KURRx7NgxLFiwAAUFBdi8eTPuu+8+GAwG9Pb2QqvVJm2VlA5/+t37CTtyESYHNfo/FEWNZjTQUChlUChlkEppaHOiN88KinQ4fbIrwt1Cn6fBQJcB1KjWiCImFB0mwEFO0xAnmS8MAP09JhTP0YOd4pWpz8ugtTHYb8LvZ8FxPARBhCiIwRj5DF5BXHDJYlx0WfrOOFMqwrPR6n716tXw+/3o6urCkSNHwqvdkpISVFVV4eTJkxgYGIiIB0ul0rixMlEU07JvuuO7yRmSEqYOl8OLMye7I9woyisL0NM6hJLyPDhsblA0NeE+wVCfGVWLihFgM6NUFfMKsfaChVBrFBkZjzA5pjQmHLK6H/8VyioYb3Ufi0cffRSvvPJK+PuQ1f28efNQXl6eMQEGglb3ixYtSupapVKJFStW4PTp0zh27FhEyGHTpk2ora2Nigfn5OTA4/HEGg4OhwM5OTmTewGEaUF/jzlaYMVgOKOsoiCitWUizCMO5BfqMrapNjxgRVN9b0bGIkyeabUxNxOt7oFgSOLYsWPo7OzExo0bw8c3b96M1tZW1NfXR4hzTU0NvF4vWlpaIsaxWq3o6+sjpp+zhO72kSijTZ4XIAoiZHIpmCSdkHmOH3VOzky4yW71IODn4POSfN7pwLQS4ZlodQ8EN+feeecdLFq0KCKzY9OmTWhoaADLshHjlZaW4qqrrsJ9992Hw4cPY2BgAEePHsU999yDVatWYe3atRl9nYSph+N4GIZsUcd5jgdNU+C55DdS5kyyDAABAABJREFUeUGEacSekaKNEEN9FjTW9WRsPEL6TJvsCGBmWt0DwPr16xEIBKJS0IqLizFnzhxUV1dHfex84okn8NRTT+HBBx+E0WhEXl4etm7diu9///skl3gWYDY44PezkI/LQpDJpfC4A8gv1sEyYk9pPNOQHcvWVWF42JGR3w+HzQOfl4HT4UVOLnHIOJfMao85AuFcceD902g9PRAhmPoCLdwODzRaBVpqe8Gk0PBGq1Nh6dp5GOizQK7MzIaaUi1HzYq52LhlcUbGI6THtApHEAizAUEQ0NNuiFqxarVKOKxuyBUyBJKMB48hYrjfCs0kO6qNx+9l4LJ7MdxvzdiYhNSZVuGITEGs7gnnEovJBY87AJkssrhCqZLB6fSm1c1MFAHDoBXrt9RgaMiesZBVb5cRGp0Sc+bmkTDYOWJWhiOI1T3hXLL/3Qa0NQ1GiVr1klKcPtEFrVqO7rbhlMZUqeXgOAGrN1VjaMgG2STL88czZ24+qpeUYunKioyNSUieWbkSJlb3hHMFx/Hoah+JuarkOQHFpbnoPDOQ8rg8L4CmKXS1DqFy4RzYbPEXB6kyMmBFYbEOPi8DlTpz4k5IDhITJhAySE+7AX5/9IYbRQEcw0GllMPvDaQ8Ls8JkEhoeFx+qFTyCKeOTNDZMoxmUsBxTiAiTCBkCEEQceJwO2Qx+vWq1Ao47G4Iohg3P7hqcSk2XboE1UtKo86FVsIAMNhnhibDJcc+LwPDsB09HcQ9eaohIkwgZIj+biPs1tjl6NocFThWgMMce69CrpAhv0CL43vPQJejglIZK1JIBTfoBqwoKNZB4DPbhGew14LBPgucjtivgZAdiAgTCBmAY3l89H4jpHE6nWlzVFAopRjut8SMFy9eWYHm2m4AQGt9DxYtn4tYrcVC++i97cPQ6zNfZNF6ZgCtZwYRiBFSIWQHIsIEwiQRRRF73qlP2EqUpinI5FJ441yjVEjh9wTP+b0MFApZDBEWw018zCMOqDVyQMzsaljgRZw+0Y3TtcQrbqqYldkRBMJk8XkD6O8xw2pyQhBFqFQKaHOUKJqjhy5HFW7MwwRY7H2nAd0dhrirYCDYM0IY7Rdx9jo4N08Dhy3SoNZp9yAnTw2nY0y0hbO6qDXVdmP5+gUYGsxc3nDoObWHOxDwsVi2uhJ5BcQrLptMKMJXXHEF7rrrLnz5y1+OOH7o0CF885vfRGtrK4CgSeef//xnvPXWWxgaGkJhYSGuueYa3HnnneHevD/84Q+xY8eO8Bg0TSMvLw+XXXYZHnjggaR6+D799NP4/e9/H/Pc1q1b8cwzz+Do0aO45ZZbIs6p1WosWbIE999/f1INcs4eQyKRYM6cObjhhhvwrW99CwDwyCOPoL29HS+//HL4us7OTnz6058OzyXExx9/jP/4j//AkSNH8NJLL+HQoUP45z//GfXcSy+9FPfeey+++MUvTjhHQuZxO334eG8TejuMEEUxogsazwsQBAEarRL6fC1YloPN4obACwkFWCaTgOd5OO2xY60VC4rR3hCZmTDYbUTFwjlwnh5LZ+M4HhLp2HOYAAer0QmlQoIAk9kVMUVRaKrrhcXkxMp1VahaWEKKObJERlbC59IleTwKReSO8YEDB8K2I263G0899RTuuOMOfPjhh0kXWYTGYFkWTU1NuP/++zFnzhxcd9112LhxI9544w3wPA/JqPXMkSNHUFxcjOPHj0MQhPDz6+rqUFNTg9zc7NmOE9KH5wQ0nOzCiY/bAWA0EyFSdCQSGhIJDSbAwThsDx+fyNomN18DURAxMhA7HqxQyqLaWnrd/mCJsigG89sQjDur1Apw49LTejtGsP7iJejrMWfcRZmiKBiH7NhnqMeK9fNRs2IuafaTBTISEz6XLsnjv85uhl5QUBA+N3/+fDz44INwOBw4evRo0s8KjVFWVoYrr7wSV155Jd5++20AwRaWPp8P7e3t4euPHj2Km266CSzLorGxMXy8rq6OGH1OU8wGB1598QCOftQKiprY6SJVcvM0YBkObrs36hxFIXGz9nFxYUEQQVFUVKi4qbYbpWX6jDgyx4LnRdQd7cSenbXobBkmpp0ZJiMiPB1ckpMhtFqVyWRpjzG+Eq+kpASVlZVhNxBRFHH06FFs2bIFa9eujXBbbmhoICI8zfB4/Nj95kn8++8fw+3wQTpJI81E8CwfMz+4oDgXFmNsSy+PyweNLjof+GzR9nkC8Lp9kNLZCxdQFAWz0YUPd9Xiow/OYLDPHBWjJqTHpEU4GZfkeB/9RVFEU1NTxlySE2G32/HEE08gLy8v7abpHR0d2LVrF6677rrwsQ0bNqC+vh4A0NLSAo7jsHz58gjL+66uLjidzgjXDcLUI4oifN4AejoN2PWv4/jH/+xFT4cREprOWrxTKpWAZ3m4HNGrYAAoKc/HSH9sU1nziB2FJfqIY0FTzGjx62gexJxyfVzvwkxB0zQ6moew67Vj+GBnLZob+mC3usjqeBIkFROebi7JdXV1MYX0v//7v3H55ZeHvw+JniAI8Pv9mDdvHn7zm9+k5OEWGoPjODAMg9WrV+PSSy+NOP/CCy8ACIYiNmzYAIlEgs2bN+O5554Dy7Kor6+PigfHew2JGgYl4vW/H4TfG8ztjPwbjZVrGn3/RB9lJxpz/KGYI40bQEx44ZjFfCpjxpqOOFqdJgoCPO4AGD8LWkJDrpBCLh/71eczWwEcQXGZHl6PH8N95mCE+aw5K5RSML7YZcx2swtz5xejt8MQjgszDAeJlI65CjUO2yGhRDAsl+mXEZPOliG0Nw7C72cgiiJUajkUCjmkcglomgIFChRNgZ7lG3rzqouxZevytO9PSoSnm0vy0qVL8Zvf/CbqeFFRUcT3//73vyGRSEDTNLRabVS4JBlCYwiCAJPJhD/+8Y+46aab8K9//QtyuRwbNmzAQw89BK/XG+G2HPpk0NzcjNra2qhQRLzXkG5rzC/efHFa9xGyC8fxOLK3CQE/C4UyOgwmkdCjcejoe0VRhEQmgVwpG1upUxTUGgVy86MziTiGw/J1VVi3ZQnkCpJ9OlNI6l8q5JI8nsHBQQCRLsnXXHNN1L2PPvooFi9ejK9+9asAxlySJ4NCoUhqjMrKyklbIo0fY/78+aiqqsIll1yCQ4cO4bLLLkNlZSUKCwtx+vRpnDhxAv/5n/8JIBh3Xrt2LU6dOoWGhgbcc889Sb2GiXbaCTOL4X4L/L4ARF4AdVbMViaXggkwQMzs4VFEMXhvKPNBFCGKwbzjWNkQdqsbjSe7sPYi4pYxU8jIX/x0cEmeKkIf2zlu7CPfhg0b8NZbb4GiqAin5M2bN6Ourg4dHR0kHnye0ljbC5fdG1Nj84tzYJnAM44JcJDJI8VWFAT44zgljwxYERgNDxBmBhkR4XPpkjz+y2KJvcExGSwWS3j81tZWPPLII8jLy8MFF1wQvmbDhg3YtWsXNm7cGLGS3bRpE/bt24eFCxeS/ODzEJfTC57jg/HgGEIbzIywJxzDZnIirzByD4Nl+Yhc4fHwnAC/lyXd0GYQGQkcnUuX5PHo9fqUcoCTYfwmnE6nw8aNG/HXv/41orpv48aN8Hq9UXHflStXgqIokpp2nnJsfzO0OUrYTLE7p8lkEgT8XLxABADAZnaiqqYcZqMzfIzneFCQQRTEqBAHABiHbZArpZi/KLolJmH6MSvtjQiEc43b5cM/n/sQ1TVlOPheA2Kl8K7aVI2T+5tibsqNZ+2WGjSc6I5YTStVcihUcqjjGH8uWV2J9RcvgVJFnDKmO2QXiEDIAh9/cBpKlRwOmxtUjAQ7iZQGx3KIm6c3DlFEVGobE+DAsfFz67yeAFrqelKcNeFcMK3yWDLlkjwRDQ0N+PrXvx73vE6nw4EDByb9HML5icPqRm+HERXzi9DdEm34CQC5eVrYLe4ki0RECIKI8T2CBEGAIIhgGQ4yefSfsXHQBm2cVTJhejGtRPiuu+7CzTffHPd8ppyNlyxZgjfeeCPueZImRpgMH71/GhQNqHXx48H6Ai2Ge41JjccEOMjlEpxtpBHwM5BIqJgi7Pcx4HgBLrsXuiw0fydkjmklwplySZ4IuVw+6VxlAiEWFqMDg31mSCQ0eJaHIAgxV7vaHBXccVpbno3D6kZunhZWS2TPYYEXwHFC3EIQt8OLltO92HjJ0qhzhOkDWfIRCBlCFEUceK8BNE1BrVXAanImvD7Z/jd2swu5+ZqY5/y+ABg/E7MTm3HYDoElPR2mO9NqJUwgzGRGBqzB/g1SGkUlejSe6Iwb8xVFMaJXcAiKolBRXYKCktzQhbAYHNDmqCGKYvR4YrCLGk3T0OREFkVxLI8Aw8Jmjs41JkwfiAgTCBlAEAQc2N0Qdr6QK6RwO2P7ycnkUrBMtJFm4Rw9Fi6bi+6WAdQdGAoepIDisnzk5qmxaFk5OluGo6rheF6A389AIqWhVEe2vrRb3OhoGsTGS4kIT1eICBMIGaCjaRA2ixtSKQ2aphDwMUFnlViZEfla2IyuiFXt3AUl0OdrcPT9hsiLRcA4aIXb6YVCKcOGLYvRVN8LjytS4Bk/C5oOOn/IFGPxYfOIAyXlebFX0YRpAYkJEwiThGU4HNrbCOnoKjivUIehHnPcSjh9gRZ2y1i8uKhUD32eBo1HO+I+gwIFu8WN4x+exqKaMhTNiS6D93kDcLv8YMbZ1YuiCL+XgXnEntZrI2QfIsIEwiTZ904dmMCY8OUV6jDUH9tPDgDUWiU8zmDfaLlChvk1ZWg8Fl+AgZDJpwSCIOLUgSYUFGhRVlEQcQ0FwO8NwGHzwOv2Qxxt8G4ecaCnjfSSmK5MqQhfccUVeO2116KOHzp0CDU1NeHvGYbBM888g2uuuQarV6/G1q1b8eSTT8LtHkvR+eEPf4iamprw19KlS3HRRRfhgQceiLguEU8//XTEGOO/vv3tbwMINmo/+9zatWtx4403ora2NunXXlNTg0OHDgEAXn/99YieFOO58cYb8fTTTyc9LuHc0tkyhO624YjccpEXE1azhdpRAsCqzQtRf6htwufwLB9eaYOi0HSiCzk5ShTP0Uddy7Ec7FY3rCYXvG4/rCbnqFM06VAwHZl2MeHZ7NxMmF1YTU7se7sW9LhSttw8DYb7zaOlygkyIyCitLIIpiErGF/stpTj4XkeCqkcwFgL1aYTXVh90WIEAgwctkj7JAoAE2ARCLBQKuWwW13o6xxBFWnqM+2YduGI2ezcTJg9WE1OvPmPjyGclalQWJKL/g5j3FCEUiWH3xsARQGVC+egr3U4qeeNPSbyefWHWrFoaTlkstgmpRSClXUdZwbQWt8Hjzt2xgbh3DHtRPh8cm4mzDxEUURH8yB2/O0jcBwfU2yDbhmxyS3QwmZyoXpZBbqa+tOYwNkHKNQeaMaaTdVj3nwxsFvd4AUBu3ccR1vjAPxJrL4JU8O0Ckck49wcD1EU0dzcPGOcmwkzC1EUYTE5ceiDMxgZtIKWRDs05+ZpYBiwJhxHn69FV2M/KuYXout0X0bmxrI8Wmu7sWxVJZob4gu7zeSE389i79u1kMulKJ1bgKI5udDpNSgqyUVOnjq8uCBMHVMuwuezc3M2Oby3EQF/dAEAIVVEQAQEBDfY3C4fHBYPDCNWiLwIqVyCeLHeuVVFOL6vCTwfjPnGQiaXomRuAXqah1KeGc/xoCU0+LM7+QCwmV0oLM1DfoEWRkPscumulmGs2rwQHa1DoCgKNosbqA++wfAsD4VKjsJRMVYq5ZBIJaAohN9sqLiv6vwmN0+LtRcsTPv+KRfh89m5OYRUKoUgxK7pF0UxLSeSxcsrYv5xElKHogCKpiCVSCCVS0Al9L4Yw+P0ort5ENIEq8lcvQYKuQTHWwZiumIkgucFyBXSUZGPprdtGBsuWzZarBF7bI1WgWu+uAnzFs5J+CxRDLbJ5HkB4rhsDkI0aq1i4osSMOUifD47N4fIycmBxxO7g5bD4UhrdV1QPD1W5OczJw82QyaXJqxM0+So0HWmN2bfiIngOQEKhRyCwMW95vSRNqy4YDH6emL72g31mZGj10KtVZAKumnCtNuYOx+cm2tqauD1etHS0hJx3Gq1oq+vL8KxmTAz4Fge3a3DCYVNoZRBrpBgsMuYsgADGC09TnwNE+Aw0GlAQYE25nmW4eF2eTHQlVwvY0L2mXYiPJudm0OUlpbiqquuwn333YfDhw9jYGAAR48exT333INVq1aRzb4ZSFfrEPwTxOTzS3Ix1G3EZCKrQaejxPcbByyQ0FTctLX+TgNGBq0TjkOYGqZVdgQwu52bx/PEE0/gqaeewoMPPgij0Yi8vDxs3boV3//+98nHxBmGKIqoO9wGqTRxZkHlgmK88/cDaa2Cz37eRL8jTSc6sfGKFejpMkWd4zgBxkEb2k73o2ZV5aTmQpg8xG2ZQJgkxiEb3nzpI9DSxB8sN2xZjDf/sifenllSqNQKsCwPOolNPaVGgWUbquPGh5evm48VGxZAmzPzQ3wzmWkXjiAQZhrH9jWCkiQWxeJSPdpP92KySV48x0MiSe7P1u8JYLjHiMKi2CmfrQ296GgcIFk155hpF47IFMS5mTAV2K1uDPdbI/pHxEJfqMOJ+m5MahmMYChBqZYmbhA0juFeM9Q5auhylHCd1WSe4wQ0nuqCTC7B0rXzk1pdEzLPrA1HWK1WuFyxnW6BoDhmwlSUYRgMD8ev/6dpGhUVFZN+DmF68s6rhzHYG/vjfgilSo78Ag0aj7TB6wlM+planQoMEz9NLRYrNi+C2x2AJ8bzZQoJ1l24GItXzoNcMWvXZdOWWSvCBEK2sVlc+Nef9064Cl6wpAzNx9vhsrgRCEy+qlGjU4EJcCnt74miiFUXLobHy0StiAFAFEQsXlmBxSsrUVKeRzaHpxASEyYQ0kAURXz0Tn1SVW8URPjdAbBJhhCSe35qcVyKotBwuA1yqQRFc6ILeyiaQnvjAN599QiO72+GcdhOUtimCCLCBEIajPRbYBiwTrhiLCrVo69tGDRNxS1VPxulWo6K6jlxV9iiIKa1v0dRFFpOdcFucGDeguKYMWBeENBwvBO7/30UdYfb4bDFD+kRMgMRYQIhRXheCDZznyAlDQDyC3OCBRpJfrxX65RYfeFiMD4/Nl+xImYmBMdykEyQk5yIoW4jzhxtReX8QuTo1VHnKYpCwM/i5MetOPxhI7paBsmqOIsQESYQUqT2UBtcdu+E1ymUMjitTohCsAlOMqvX5RuqcWLPaZgGLDh9qAUrNlXj7O453HirozTxexgc++A0RJZD5fyimEkbFEVhsMeMkwdb0VzXS4Q4SxARJhBSwG5xof5Ie1Ir0bJ5hWhv6INEKgHP8RNmp+UV5cBmcEAczdv1unyAIECpjjQpEDJkX09RFLoa+9FyqhMLFpZAqYpthuC0e9FwrAPNtT1EiLMAEWECIUk4jse7rx5JOhwrkdDwunyQSCVgk0gpm7e4FD0tkU3Z2+p6sHhVZdRqWAQyZtzpcfhw7IMGFBRoodHEbsvocfnRcKwTLfVkRZxpiAgTCEkgCCI+2HEcLqcvqVVo4Rw9+tuGAFGEREJPWFxB0RRoioLARW7eBXwM5HIZomIZohglzJNBFIHaj5qg1cqh1sReEXvcfjQc60BH00DGnktIQoTPV5v60Bjj3TXG893vfjfCxj7Enj178I1vfAObN2/GqlWrcN111+HFF1+M2Bn/4Q9/iO3bt0eNyXEcampqiHnoNEMURXz8Xj36Og0T5gSHKCjWYbDbEBbsiVaPJeX5MPSbY54z9JtRWlEYcYxj+aTnkiwUReH0kXbo9eq4HdjcTj9qP25DV0vqziCE2GSkPGY229SbTCa0tLRgyZL/z955x8dVXWv7OVPVuyz33nBvGDAYCA6EQCA3gSQ3AUIIAcIl5EtCCjXhElpCMQFCS7iQAAFTjOnN2GCMcW+yZcuWrN6l0fR6yvfHSGOPpmhURsXez+8nsE7dM/a8s87aa693Ztjr3bhxY8SxzzzzTOget99+OykpKWzbto0HH3yQuro6br311oTuKRg6qIrK5+/vpqykNuGKBFOKEWe7C1Xu7P/bfcQ6cnwBxZsORt1XX9nM/DNOoqGmLVRlEQgopKSZEl6+nCiSJLHny1JOPmcOFeXRXaMddg/bvziIqqpMOWmMWNjRR/pFhDtt6t9///2Q7c+4ceOYMGEC559/Ph9//HGoD3CnTX0nRUVF/PjHP+aZZ55JWIQ7beq7Iz8/PyT+hYWF3HbbbZxxxhls2bKFr3/96wnda8mSJXz66adhIrx582amTJkSFlWXlZXxt7/9jfvuu4+LL744tH3s2LGMHDmSq6++mp///Of9slRaMDDYrS4+Xr2V9mY7uh6UhI2dUMi+zQdD/mxqAg1y9DpdaEKuK5qqdczpaXTO7qmqmtReD8VbDjNz0SRqq6PXQjtsbrZ/foCAX2ba7HEYYkTOgu7pl+eZ49mmfsWKFaxfvz5s29q1ayNE/I033mDChAlhAtzJaaedxocffigEeJDQNA2/L4Db6cVhc+O0ufG4fAT8ckSaIOCXaay18PHqrbz6j3VY25w9EmAAvUHCafN0/FlPwB8/WjWnmvB54veUaG1oZ8SoLr6GWv9NznXF6/JhbbaTGqeXhMvl48tPitn0aTEN1W0JL0YRhNPnSPh4t6k/55xzuPfee2lubmbEiBFomsb69et54YUXeOCBB0LH7d69O+5rHT8+uc2zPS4fag+Xsg47OvRGC/1fC/6oGoqiIgcUvB4fLocPp82N0+7GYffgaHfhdvlQFRVV1UIRqk4nodPrMaUY0Ov1+Lx+ZL9MQFa7RHaJC13hqByqDtYHxV2S0Bt0+NzxBXbEmDyaa+M7uTRUtXDS4ik0N1hDKYlgC0oNrY+d2WJRUVrPyWfP5nBpQ9xUzME91RzYWcHoCYWMnlBAdm4GGdmpmFOM6PV6JJ101LG5c6jHUQZDp9ORmtZ7s8+ERPhEtqkvKipi1qxZfPbZZ3z/+99n7969ZGdnM3HixLDjLBZLxJPAd7/7XSoqKkK//+///m8oUj72fegPVj/3OS6np9+uN9QJfpiDH26JYHWB1GHpYzQbw0TDnGbGnMCHxJSS+BNSLMZPLuKzPZUYTcGPlsGg77auN78om33lsTvxAch+OWgiCiElk2UFo8mYVEEr21/N+Kmj8Pi6zz37fDIVhxoJ+AL4vQGUji89NA2N49execnymSw6fUb3B8YgIRE+0W3qV6xYwbp16/j+978fNRUBkJ2djd1uD9v2+OOPEwgEu2ZddtllyPLRWtFj34dOFEWJ6jKdCJf94rxenSfoX2rKGsjKSQtF0kpAwWnXxxVho9EQzPt2k+P1ef2kZZgJyEfVzJxiJDM7LalCnJOXzqLZ4xg1vvt5GEHPSUiET3Sb+hUrVvD000/j8Xj49NNPw9IQncybN4/t27eHbRs9enToz51VGp1Eex+OFWnB8GT3xtKwVIbfL8fVR51OCq6mO2bSLRYNVS0UjSugtuKob5ymagT8MsYk9gGuOtSAyWwSIpwk+mVi7ni3qZ8xYwaFhYW88soreDweZs+eHXHMpZdeyuHDh1m7dm3EPrvdjtcb2cNVcHzhsntoqbeEbfP7AnGb9+SNyMbSaE2owU97i43cwsywyURFUfB5/L0ecyL4PH68Hh+1RxqTep8TlX4R4RPBpv6cc87hsccei1naNnPmTH7/+9/zm9/8hscee4yDBw9SU1PDG2+8wX/9138BMHXq1KSNTzD4FG85FLEt4Iv/dJNXlE1royXuMSE0kJDQjqlCkP1KH13rEqO2vJH6ikjnZkHf6ZdnmBPBpn7FihX861//iltffOWVVzJz5kyee+45/vOf/+B0Ohk7diwXXnghV155JQUFBTHPFQxv5IBCWXFNWF5XU7RuTTRT0sx4HN6Ec7o+rx+zyUBACUqv2rF8WVU0dN2YjfYFr9uPHJBpqmmlaJz4d9yfCHsjgaAfKN9Xzfo129Af02LS7w1gabHHnZSbd+o0dn22L2ERzh+ZS1pWGvVVR5c4m1OMGE0G0pNsXZ+Zk8b4aaNZuiJ6Oaqgd4gGPgJBH9FUjV1fHgwTYACvxx8/1St1uGT0IKFgabKSPyIrLC/s98lJW7RxLA6rG1VRsbcn1udFkBhDylpV2NQLhiNtTVasLY4IEfZ7A8QLcTOz03FYnQm7bkBwgYokBfPCUscK0M4FKwFfcqskAFoaLJTu0nHyOSIa7i+GlAhff/31XH755TH3J7ogpDtmzpzJmjVrYu7vWk4mEMRjx2f7I/KxqqJ1NHKPLbC5hVlYmtp7fL+AP4DRoEc5Jvj1ef3o9FLSRbi1wUrR2IJgWZxpSMnHsGVIvYt5eXkD0l/BZDL1uVZZIABwOTzUV7VE5H0TKRvLykunqqS6x/dsbWinYGQOTQ3W0DZV1VBkFb83EHPlnxJQcDu9yHKwDabJZMSUYoyI4LvDYXVxcOcR5p46vcdjF0QiQj6BoA/s/vJgR143HI/b222aQadLrMNaV1ob2skflRPRfMjr8eP3BSKuqSoa1lYHrY1W3C4vfp+M1+3H3u7E2ubA6/L1aElxQ3ULHpdPOGz0E0MqEhYIhhN+X4DyLmVpECxNC9oZdZPr1Tr/09ncRuKU8+YjaRpbP92LokQXuaDRZ/SGOi6HB0VWMaea0OkkPC4fXo8/eJ+uXwqShBxQsLe7SJNVUtPNCUXFAZ+M3xegvrKFMZNGdHu8ID5ChAWCXrJ/axkBfyDC4cLt8na7CtlkNuL3hqcsJs8eR9nOI/jdPmYtmkLxtrI4d9fCJueOIuH1+PF0dG7rbHQUbzAa4HK4URSF1DRzQo2MGmtaMZmNQoT7AZGOEAh6gRxQ2L+tLNJiSAO3s/tURHBSzhZ2XE5+JpbGdlx2dzCSjXMJa6uD7Jz0mPslqbN9ZKKVFxJetx+X3YPX3X0+29HuQtM0PE6xHL+vCBEWCHrBwZ1HooqVx+3rdpUcQE5hJpYma+h3vUGHEjja7KeurIGxk4tint9Sb6FwTO+6AsbD75dDTe+7K1+2NNs4uPtIv4/hREOIsEDQQ+SAwp5NpRH5U03VcFjdCXmumVNMYc3e84tyaWs4Wq7WXNvKiDH5MR2VnTY3GVlpSZkcUxQVp9WN2+WNO2HXVNuG7FejTkwKEqdPIiycmHvmxByNWM7LgqHLwR1HgpHisWhgbXOENdeJixa+Uq5gdC6tdcc0oNJAkRWM3UyUJXy/HqJqwS8Ut8MTU2Q1VcPl8FB5SDgv94WkT8wJJ2bB8YTsl9ndJQrWNA1bmxOfN5BQFNy54u1YzCkmfB5/WAa39nA946aN5sjBuqjX8Xn9mIx65CS6WjltblRFIzXDHNXMs76iiYysVCbNHJO8QRznJD0d0enE/O9//5sVK1Ywbtw4li9fzlNPPcWOHTv4+OOPQ8d2OjEXFhZSVFTE0qVL+fGPfxx2THd0OjF3/elqaZSfnx/aN2nSJG677TZsNluPurB1OjEfS6cTs+D4ZPfGg/jcvqCvXUDp6CFsDQpogsuPs/LSsbV1Wa6sRTrFWRqt5BVlx0xJtNa3Uzg6yYubJAm3y4O93RXMgXcZis8bIOCXsVkcyR3HcUzSRVg4MQcbbz/66KMsX76cRYsWcf3119Pc3Nz3QQuShqqqtLfYObCrgs/f3c57L33BtvX7+HTNVlobrTTXt9PSYMVpc4dMPRMltzALS7P16AYJYs2CyX4ZYww7+dbGdvKKsgZg0YQUElq71RXsiXHMLRtr2ijf1/OVf4IgSRXhRJyYYz36a5pGSUnJkHdi3r9/f0hQO52Yu4rwY489xquvvsrdd9/Na6+9hs/ni/CXEwwusqxgtzopL6nls3e285/HP+K1Z9ay6aM9lJfUkZ6dxvbP9qMqakh/JJ3UI/HtJDMnHXubI+x3p9UV9dia0jomTB8ddZ+qqKHgYWAILv6wtNhpb7XjdniD7TqbrMh+pWOBiqCn9DknLJyY4zsxa5rGqlWr+M1vfsNZZ50FwJ133snrr7+O2o+TKq//81O8YZNFWtQ/Ev2IsEfeuHFV2GW7v0f4LRKL2MIP02Js7/7kGJcB7ejYZVkJLmzQgs7I5lQTho58b+f/0zLM+Nw+bK2ODs3tW+Sp00nBya4O/c7Oz8TWYo96rLXFzqS5E4KvK4rga5qKpipRFm0kD0kKrhb0+wKoarCDW3p2Gnu3loEkYTDq0en1wSUiXYcshf+hF99hQ45JM8ew7Lz5vT6/zyIsnJjjOzG3t7djsVjCfOnGjx8fmnDsLy792Yp+vZ7gKIqi8PpTnzBibF7Ced94pKYHJ7k6lzvnF+VwqDqyCVAnsi9AWpqZQJT6Y3u7i1HjCmCQO//5PX7mnzqdJWfP7tY1WhBOn0VYODHHd2LuSY5ZMDTZ+VkJznYXuh52G4uGyWzEY/eELWQzGA0EvIGY51QfrGPctJEcORhZCtbW0M746WNoixFJDxSKouK0u6k4WMvkWeMGdSzDjaR/fZ7oTsyZmZnk5eVRUlIS2lZZWcmyZcsi3hPB0KOt0cq+rWX9IsAAWbnptDVZo0S9sVMcdouTnPzoE3BupxdzmmlILJioLW/E0mwX3dV6SNLrhC+//HLee+89rrjiCm666SamTJnCgQMHuP/++5PqxNwVnU5Hfn5+v96rk04n5ksuuSTq/h//+Mc89thjjBo1ipEjR3LPPfcwa9YscnJygGC9cVcnjzFjxohSt0Em4Jf5eNUmNDSkhHswxCcrL4OK/V0qCTS124Y/bfUW8guysLRFloJpqkbAH8CUkvwqonjIAQW3w0NDZQujRWOfhEm6CAsnZrjmmmuw2+3cdNNNBAIBzjjjDP74xz+G9m/evJnNmzeHnXPZZZeFHSMYWDRVY+3rX+F2efrVacVg0OPr2nMigcCx+lA988+cRdumSONQj8sbt9nPQFJT3kh6ZooQ4R4g3JYFgijs+Gw/u788GNklrY9MnjWWzR/sDE1emVKMTJo+hoNbD3V77klLp1Jd1oi7i4jnFGSSPzIXu83Tr2PtLVNmj2PKnPGizWWCiAY+AkEXyoqr2fPVoX4XYJ1OIuALhKUd0rPScNmj1wh35fCuCqbNmxiRc7W2OcjISR8yudjKQ/U0VrcOmfEMdYZNU3fhxCwYCGrKGtn4/s6k1K9m5qSHta8ESM9MxWVJrLJBDij43F7S083h0bAGqEFjUYNx8D/SSkDB2mLnyP4apswZP9jDGfIMm3SExWLB4Yi9Pr2zCqGv+P1+GhoaYu7X6XSMGydKcI5Hasub+PSNr1CTVGkwbupIyvdWYjtmcm3GwklU7K3E17UrWwwMRj1zzjiJ3ZtKw3LDJ508lfqKZkyp5jhnDxySTmLeKdOZt2z6kPhiGMoMm3dHODELksmR/TVseHdHUh+hU9LM2C3hbVnNqeaEBRg6KhBsbrJz07Fb3aHtrfUWsvIy8Hpi1xsPJJqqUXmwDpPZyJxTpw32cIY0IicsOKHRNI09X5by2dvbk57DVNVYDdB7dt/DuyuYNndC2HjbGq3kFiTWHmCgsLU7sVoctNRZBnsoQ5phEwkLBP2NLCt8tmYrVaX1/T4JFw3FL6NpWniJWQI1wp0Ujs1ndIflUVpmKsu+sZD6qhZsbXbs7S4knQ5FVtDHcGIeDMqKq0jPTCWnMAujSchNNMS7IjghsVmcfPzyl9itzgER4IzsNCwttkixTTAInnv6TJztTvZu2IfUcU5WXiaSSU92fhbjJheRnZOGceZojGYjSBKWZjuW5sT6tiQLTYMDu45gNBmYvXRqv/TeON4QIiw4oVAVlb2bD7F740FUVR0QAQbIKcjiSHFlmAgFHTa6V+EZS6bQVNlEa21bmIa77G6MJgPVTTbQNAxmA5ImoaGh0+sZObmI6bPHUlvVgtuZeN65v/G5/RzaW4XRbGDGgkmDNo6hihBhwQmBpmk017ax4d0d2Nqc6A26AY3KUtMjJ+XSMlNwO9xx+zlm5mWg00m01rZF7FNkBVOKEZ1eh6qoKAGVlHQzAb+MqqrUlzVQV1bPgrPn0axY8QzipJ2tzUHprkoMBr0oW+uCmJgTHNdomkZrQzvvvbiBd/+9AYfVFeGSPBCoSuSkXFpmKi6bO8YZQaYvnMSh7WUx93ucXlLTzSARmW8GJCR2f7aXMePzg/nnQaStycqujQc5vLeqX3tpD3eECPeSaG7K27dvZ968edx9992hbaqq8uKLL/Ltb3+bBQsWcNZZZ/HHP/6R1tbW0DHCcbn/8bi8HNhxhDf/sZa3/m8dzbVt6PTSoOQk9Xodfq8/vAk+Havl4ohwZl4GDosDLUof4WPxOLykpQf7bmuqFlHlISGxf9NBxk4oGPRVbA6ri68+3s3erw7hssf/AjpREOmIfuLgwYP8/Oc/58ILL+S2224Lbf/Vr35FcXExN910E/PmzaO5uZkHH3yQK6+8klWrVpGRkTGIox66aKqGHJCRZQWlM4oMCUhQSDWCghPwy3hdPmwWJ+3NdhqqW3BY3WgdOd+ByvvGIjs/k+a6yHRCemYq1XFEePLs8ZRsPtjt9VVVxe8NkJJmJuAPYDDoUboIt8fpRQ0oSKoKA2qJFIkiq+zcUEJteSMnLZ7C+KmjMJpPXCk6cV95P1JTU8PPfvYzli1bxt133x2Ktt5++23WrVvHe++9F1oAMn78eJ555hlWrFjBf/7zH6699trBHPqgoaoqPo8ft9OLo92Fy+HBZXNjt7qxtztx2TyoqoIiq6HoLhTFdby/mtbxHynYl0GnP5rnlSSQBll8O8kdkUXF/qqIKFxv0KPIStRzdHodSMGytkSQAzI6vYRerw9eN0r0XLa7gulLplJT3TboVQqSJNFS305jzVZGjstnyuxxjJlcRGZO+qCPbaARItxH2trauPrqq5kxYwYPPvhgmPHim2++ybnnnhuxAi8rK4tnn32WMWPGDPRwBwxN05D9Ml6Pv0NcXdgtLhxWJ/Y2F3arCzkgEwjIwWhVFz1VIOmkYW+Xo9PpCHijialGrCLhMVNGUl8We/l8NDqjYTq+sLq+n36vHx2g+PwYUobG8ma9XkdLfTvNdRZAYuyUIkZPLCS/KIfcwizMqabjXpSFCPcBp9PJz372MxoaGnj11VcxmcKbah88eJBrrrkm6rnz5s0biCEmjWAjcRmf14/b5cVldWOzOHHYXNjbnNjbXfh9AWS/jIaGXq+PFFOJ476AX9JJ+L1+VFWNfP2aFnOhRsGYPHav39vjVvJet4/07LSYwlVX3kB+QSY2pz/q/sGic7x1R5qoLW9EkRWMZiP5RTkUjMwlOz+D9KxUsnLTSU1LCVWFHA8c35+AJHPXXXdRWFiIyWTimWee4fe//33YfofDkbDTdF/Ztn4fznj9ZIPP7qG0qtYpAB3bVE07OnuvBaeQlIBCICB32JkH8PtlfG4/HpcPOSAj6XRBR12dhN6g66b5+Ylph54/Mof6I02oqhZaZNFJ52K5rnSWnHU9PlE8Di+pGSl43P4IgW+pszBm2mjq62qQBtkctDv8XhmXzUP1oeATgSKrqIqCqoEkaaSkp5CWZsZoNmA0GTv+b+h4sjr6dKXTS0DHE5XW8a0X8R3V+2h75Ng8TlrSexccIcJ9IDs7m//7v//j/fff5+677+a8885jwYIFof05OTkJO033lXmnTu+2+1espzpJkjp+GPaP/kMNSZJ46x8fM3J8Qdh2g1GPTgcGkyEiai2aUEhrTWtQFnrxKN6ZO8/KTQumJ7pgNhs561sLOWnp9B5fe7ihaUcDjrB5hSjH9RajqW8TnUKE+8Af/vAHcnNz+dGPfsS7777LzTffzFtvvYXZHPyHP3fuXPbu3Rv13CeeeAJN07jhhhv6ZSzm1MH1FxNEx+v2YW93RwhtakYqbocnatqgcEw++7/Y3ysB7sTn9gW/UKNco7XeginVJFpMDhGG9vPIEKfTH0+SJO6++27q6up45JFHQvu//e1vs27dOiorK8POa2tr49///ne/epcJhib1FU1RKyBS080xa4T1egk1RtVEoiiqGizf80WuknNYHOj0uqj7BAOPUIF+YsqUKVx33XU8//zz7Nq1C4Dzzz+fM844g6uuuor333+fmpoaNm7cyE9/+lMKCwv58Y9/HDq/03H52J/y8vLBejmCfuLIvuqoXc1S01NwWSNtjUwpxkgj0N6gQcAXwO+NLrR+j5/qg7V9v4+gz4jnkX7kuuuu48MPP+SWW25hzZo1pKSk8Oijj/LPf/6TRx99lIaGBvLy8jj77LO58cYbSU9PD50rHJePP+SATGN1a9R9plQjbmfkRGrRhEIaKxr7lIo4en8FU0pwwrVrrt9ucaAz6JkyXzTUGWyGjb2RQDDcqDlcz8cvf4HeEBnrTJs3gS3vbY+ojph7xknsXb+3p33eY5KakYLRbCA1IzVsu96gZ/qSqSw+d8FxX4c71BHpCIEgSezbcjiqAENHSWCU+EcK7uy3Mfi9AdQoq+cUWUGRFRxdOrsJBh4hwgJBEvC6fTTHSEUAaIoaURalN+hQAn2bkOuKqihoKqhypBDLPpkjxZX9ej9BzxEiLBAkgeKvDqLEaNcoScF8cdf1AXlFubTVW/olH9yJpoGiKHjc3oh97c1WvK7I7YKBRYiwQNDPBPwypTsrYpYgpqSZcdsjJ+UKxuTRVhc7eu4tfm8gqoOHtdmGwWhIyN1DkDyECAsE/czujSUxS8OgozzN5oqYEDOaDHHP6y2qElwfLQfCl45rmoYSkLG2DK4P3YmOEGGBoB9xWF0c2Ho4bnOZ1IwUHNajCzVyCrMpHJtPx9rapIxLDshRo2/Zr1BZUp2UewoSQ9QJCwT9hCIrfPTS5yhKZBvJY+mMhCFocTRx5mj8bh9+Z/Lys35vgLTMVFQl3NzU1mZHbxzcJu8nOiISFgj6AUVW+Pg/X2C3RKYZuiLppVAVxJR5E9j3xX4O7zhMdn7yOu51Nq/xdBH69iZrMC8slgsMGkKEBYI+4rK7eeufa2moakmox23QKSRYOWHQ61C8fgwGPe2N7WRmpyVtnIGATMAXwOf2hbapihqsF24X9cKDhRBhgaCXuJ0eNn2wk9f//gG2NkfCTcZVWQEVcouysTRYgGATqOqSGsbPGpe08QZ8AXQGHT6PP2wCUJZlag7WJe2+gvic0DnhtrY2HnvsMdatW4fVamXUqFFcdNFF/OxnPyMlJaVP137sscfYtGkTL7/8crfHrl+/nocffpiqqiomTZrEb37zG84666w+3V+QHPy+ALXljRzYVkZLnSXUl6EnS38VRUWToHBMATX7KkN1wT6PD1OKscM3LwlLiTUACb/PH1oVbUox4rA40Yk+0oPGCSvCTU1N/PCHP2TMmDE88MADjBkzhtLSUh555BE+++wzXnjhBVJTU7u/UAx++tOfcsUVV3R7XFlZGb/85S/5wx/+wFlnncXHH3/MDTfcwAcffMC4ccmLigSJoaoqboeHuvImKkpqaK61EPAHQp3RetoE35xqwtNRpZCWYcbrCPYa7qzVDfgCmMwG/P7+XTnXiewPoNPpkP0yTtlNmppCe6OV/NF5SbmfoHtOWBG+6667GDlyJM8991yoL/DYsWM5+eSTufDCC3niiSe46aaben39YzukxaOhoYHLL7+cyy+/HICrr76ap59+mt27dwsR7mfkgIzT6sbSbMPWZsfj9OH3B0K9eyVJh6ST0DQNVVHxuLzY2xx4O1pLdqYborWmTJT0rDTsFkcwcg7aPqA3GUI9hxuPNDJy0giqS3tm8pkoAZ9MamYqfl8AVBWnzU3AFyDgk3HZXKRnJ/bvVtB/nJAi3NbWxrp163jyySdDAtxJVlYWV155Jc8++yy/+tWv2LBhA48++ihlZWWYTCaWL1/O3XffTUZGBk6nk9tvv51NmzYhyzLLli3jT3/6E4WFhWHpiEAgwN13383HH3+M2+1m0aJF3HHHHUyePJnly5ezfPlyAAKBAGvWrMHv94fZJJ2oyAEZn8ePz+PH4/YR8AaQAzKqqoYMMnU6HTq9HoNRh96gDwqlFnzk9/sCONudWFvttDXacLQ78fsCHeckPh3Sn4aS6VmpNB5pwJxmwttRqWAw6PF5gpNllsZ2xs4cR/XB+uSkJIAOU0HQSUgEy9fcDg8f/2cDC86ew+hJRZhThFPLQHFCivC+fftQVTWm4/GSJUt44IEHqKmp4cYbb+SOO+7g9NNPp7Kykt/+9re8/PLLXHPNNTzyyCPU1dXxwgsvoNfrueOOO7jvvvt4+OGHw6730ksv8eWXX/L000+TnZ3NAw88wC233MKqVatCx5SXl3PRRRehKAo33XTTCRUFd0ad7S12LI3tWJpstDXbcFldyLKCElCQ9Dp0HV54YT0XNNA6DUyP6UwW8s3rkq8dbEuflDQzLpuLgjH5WJut0DHGoyarHS8vWXlhgsuq9QZ98MusA3ubHafdw7rXN5OTn8GkWeMpGpdPweg8YZ2VZE5IEe4038zKyoq6v3N7a2srt912Gz/4wQ+AYLpi2bJllJWVAVBXV0daWhpjx44lPT2dv/71r9jt9ojr1dbWkpKSwtixY8nLy+POO++MsDwqLCzk9ddfZ+fOndx///1MmDCBb3zjG4m/JosDJRC9YUwk3ZgdalrIfVlVVAJ+GTkg4/f68bj8+Dw+fO7g/70eP16PLyiUkoROr8Ng1Aedb81GTCYjRpMRg0mPXq9H19EpzOf24XJ6sLbYcTu8yAEZDdDr9RGNbaSOSFTVElhR1iFcQU3WQBla9a+KoqLIKjkFWdQUV0Q9JuCXMZoMBKJ0PusPZL9MWmYqPu/RvHNzTSvjZoyhod5Ke6uD9g37UWQFk8lA4dh88kZkk5GdRkpaCuY0E0azAYPBgKST0ElBL7v43xnH78SfXi+RXRBdSxLhhBTh7OxsICiyI0eOjNjf3NwMQH5+PqNHj+bJJ5/k8OHDHD58mLKyMi688EIArr32Wq699lpOO+00TjnlFM4991z+67/+K+J6l19+OWvXrmX58uUsWrSIFStWcMkll4Qdk5WVxaxZs5g1axaHDh3ixRdf7JEIf/X+TixN1oSPj4501A28031ZkpB0QWHVG/QYjOEiqTPoSMuMPoEpBxTkgAJxOnVl5mWQmZfRx3EPH9IzUzAY9aRnpx014+xCa20rhWMLaKhqSdo4NE07mr4hKMzp2ekU6fVR0y/trXbaW+zIfplAQEYJKEfdvTUt+LV+gi74WHDmLCHCPWXu3LkYDAb27dsXVYSLi4vJzc3F5/Px3e9+l6997WssXryYn/zkJ/zrX/8KHbdw4ULWr1/PunXr+Pzzz7n//vt55513eOGFF8KuN3HiRD766CM2bNjAZ599xlNPPcWrr77K6tWrqaysDOWJO5k6dSo7d+7s0Ws6/3JR0jYcqD1UT3ZeJikpJnQdX26qrIalTCz1FmaeNpOm2takuV7IAYWUNDNpWUe/QM0pRqYtnMSYqaOTck9BdE5IEc7Ly+Mb3/gGjz/+OGeffXbY5JzD4eD555/nkksu4a233mLRokVhOd6qqiomTJgAwPPPP8+0adO4+OKLufjii9m+fTuXXXYZra3h7QjXrFmD0Wjkwgsv5Nxzz+XGG2/krLPOorS0lHXr1rF+/Xrefvvt0PH79+9n8uTJSX4XBINBe7MVnV6HqgRTAfpjJuU6UWQFgzG566i0DjfmY3tJuB0e6ssbhQgPMCfsirlbbrkFt9vNT3/6U7Zu3Up9fT2ff/45l19+OSNHjuQXv/gFOTk5HDp0iD179lBZWcn9999PcXExgUBwtVFjYyN//vOf2blzJzU1NbzzzjuMHj2a3NzcsHs5HA7uueceNm7cSG1tLW+88QZpaWlMnDiRSy+9lOrqalauXEllZSX//ve/ee+997juuusG420RJJn2ZjumFBNeR7BWWNJJUV0vNEVDSvLjvSIrYUuY2xvbhd/cIHBCRsIQnAh75ZVXePrpp7n55ptpbW2NWDF3xRVXUFJSwlVXXYXJZOLkk0/mF7/4RShq/X//7//hdDq54YYbcLlczJ8/n6eeeio4uXQMl112GU1NTdxyyy1YrVamTZsWqpTIzs7mn//8J/fddx/PPfcc48aN49FHH2X27NmD8bYIkkxbg4X07DTsbZ21wtGPa29qJ6cwG2ubI2ljCfjlsGqRzuY+iqz0qRZa0DOE27JAMEDIAZlVD65h5MQR1JZUY2u2YU4x4na46Vo9kJKewvhZ4zi8pzKpYzKnmTGnmjCajQBMWzSZSXMnUjRhRFLvKzjKCZuOEAgGGpfdjc/rJyU9BWd7sF+DEsUJGcDr8pKamZr0FpOyXybgO+q44XF4qT0kmvkMJEKEBYIBwtLQjk7SBcVXVoI107JCzBrazpVtSaRzuXTnYhFLkxV1iNVWH+8IERYIBojGjn7DqqKCqqLX6+Na3LvtbtIy+9bNLxHkgIy3Y4LObXcjdXxJCAYGIcICwQDRVBVcBKQpKlrHqph46YbmmlYKxuYnfVwBvxzmuBzwBWisbEr6fQVBhAgLBAOA3xvAaQ22rZT9HTlYLfSfqNhabOQUZCffekjTUFUVvzfYLc5pdVFf3pjcewpCCBEWCAYAS1M7fp+f1IwUXHYXOp2EpkaflAuVhyWvh08Efm8AuaOHcVu9BX0/do4TxOeErRMWCAaSypIa9Ho9aZmpOFqCq+bkKJNyM0+ZjjndjNvm5vCOcuSAjMGgQ0nyZFnnCjo5EIzSZVnB6/KSkp78nPSJjvi6EwiSjKZq1JTWIUkSaVmpONud6A2Rk3LpOcGG6sWf7sGcaiIl3URrbRv5I3OjXbbf8XuPes/53H6qDtQMyH1PdIQICwRJxm5x4LK5ATCnmkMVCGqXGuHJ8yZSvjPYJrVs+2GmLJxCa10bBWOSPzkHwb7OqqIi+2Xam9qxtUS2ZRX0P0KEBYIks/+r0lBPBk3TgrngKNkFvUGP0jFp5/f4MZmNKP4ABpM++ZNzHfg9fgK+ALYWe0Tjd0FyECIsECSRgC9Axf7qoyKsKmgqHb13jwprzogcrE3tYefamq3kFGYj+4N54YFA0zT8vgA+t4+Az09jRfOA3PdERohwEjjnnHOYMWNG6GfmzJksXbqU66+/noaGoIHjFVdcwcqVKyPOraqqYsaMGdTW1g70sAVJYOe6YgK+QOh3RVbRh1bKHaVo0giaKsJrcxuPNDJy8kiaKpspGlc4IOOFjqXMfpnWOgsN5ckxHBUcRYhwkrj55pvZuHEjGzdu5PPPP2flypUcPnyYP/zhD4M9NMEA0VTdQumOMnS6oy7NstePzqALOo4cUxmRkmbG28WBxOv0kpKRQlttG/mj8wYsJQHgc/uoK2tAVbUBve+JiChRSxIZGRkUFh6NXoqKivjlL3/J7373OxyO5LUnFAwN6sob+OzVTWG537TMVJxWV7CRu8sXcU7UkmANNNRgvXASzT+j4XF4cNvd7Pm8mFmnzsR0jAOzqqg4bS7a6ttpb7Eh+wKY08xk5KRTOCafzNyMqNZNgkiECA8gJlPwH3FnZCQ4vlBkhda6NnZ/vp/GqmakLrKalplKW01zxKRcWlYaLpsr6jUdbXay87Jw2dykZ6bijiLeyaSlro268kYO76ogf1QeeoMep9WJvc2Jt8Mj79h/z5qqIeklJs4ax9jpoxkzZZRwa+4GIcIDRGVlJY8++ijLly8nPT19sIcj6COyrOD3+HBa3TTXtFBf3kRrvQWv24der4vqUJGWlUpVu7Pj8V6jM/bNG5VLe4Ml6n3a6i3kjc6jtrSOCXMncGjnkSS+qkgayhuYddpJ1JY34nGG54ejNX6XdMFG9ZX7aziyt4qUjBQmzx3PiHEF5BXlkpqZisGoFw4exyBEOEncdddd3HvvvQDIsozRaGTFihXceuutSbnfG4++g9cZO0qKl9frUc5P6/qrFmdfvOtocX5N/EIRu465ULevKs49I9+S4CvVNAj4A6CBwWjAYNRjSjWFRCVe1GdKNSH75Y7lykdFKLswm8ay+qjn2FttjJ89gYriKlLSzAADKmCqoiHpJDRNw2DqmVzojXoUWeHwrgoObivD7/Ej+2V0Bh1GswmdTkKnk4KO3sNYlKcunMQp31zc6/OFCCeJX/ziF5x//vm43W4ef/xx6uvr+fWvfx3ynzMYDFHFr7Mu02g09uh+l/zyor4PWpBUvC4vZZsPYG9zoDcejSKNZiOarMRM9+qkoKD5PD7yinKQBrivg8fhYd7pM1n09QUDet8TBZGcTBJ5eXlMmDCBk046iZUrV6IoCjfccEPIJDQzMxOn0xlxnt1uD+0XHF94XV4CPrmjMuIYEnkS0VTqDtVTNL4gOYOLg6WxHaTIFX6C/kGI8ABgMpm4++67OXjwIM899xwAM2bMYNeuXRHH7tq1i4kTJ5KWljbQwxQkmc7Jt2N79+oN+m4bqDstTjJyMnDb3aRkpg6KGHqdXqpKqgf8vicCQoQHiHnz5nHppZfy5JNP0tTUxKWXXkpVVRV33nknhw8fpqKigtdee40nnniCq6++erCHK0gCjjYHsiyH1aJlF2Zja7bGdDgCsDYHnZc7rzFQq+eOpbGyKRgRC/odIcIDyK9//WuMRiN/+ctfKCoq4j//+Q/19fVcdtll/Nd//RcvvPACN998M9///vcHe6iCJOCwOEM9ezvJKsjC1myLe5691U52YTZoGjUHahg1qSiZw4yKy+ZG08Dj9HZ/sKBHiIm5JLBu3bqo2/Py8ti6dWvo95kzZ/LMM88M1LAEg4yj1X7UVaODjJw0qqyRcwPHosgKuo7JuIAvgE6vRw4EMPRw8ravtDdZKdtZxtwz5wzofY93RCQsEAwQlqb2iK5kkqRDSzTH25FLbqxsJDt34Cdum6takGUlLKct6DtChAWCAUBRFJyWKBFvgjXaqqqh0wcTx81VzeSPGdheEsExqHgcXmoP1Q3ofY93hAgLBAOAz+XH4/T0+nxHm43MvIzgLxoEvH7UQbClrz/SSEtt24Df93hGiLBAMAC47S4CvvB8cGpGCh6HO6Hzbc02cgpzQr9XldQwcsLAtbfsxOPwoCoqdotoQtVfCBEWCAaAtnpLRPogMz8LR5sjbnlaJw6Lg4z8zFD6wmV1kZqR2m2NcTJorGiiYm/lgN/3eEWIsEAwANSX1UeIbWZeBo5WO0gw56y5TFsyLWaOWFVUdF3WNdtabJiMkU10kk17sxVFUfF5Braj2/GKEGGBIMkoskJLdUtEk5q0zFTcDhdjpo2htbIJVVbI7c5Z+ZjKhJrSWkZNHjkoTddbalo5tL1swO97PCJEWCBIMtZmG9aozsUSqFA4YQRNFY1U7TnChDkTYkbDiqygP2a1nBIINv2R/YGoxyeT5uoWFEXF7xv4ex9vCBEWCJJMfXkDPleUlWaahiRJKAEZiWDKQZEV9DG6pNlabGQXZIVtqytrIG9ETv8POgHqDtdTtkNEw31FiLBAkESszVacoUbuxyAF+zjnjsrFekxD9+YOc8+o12pqJ6eL4LbVtZE7MrejR/HAYmlox+f147YnVuEhiI4Q4QFGlmWeeOIJzj33XObMmcPy5cu54447aGsL1l6uXr2aM888c5BHKegPNE1j87vbUGQ1YpVZRnY6rnYnhRNG0FJ11Fa+pbqZgvEjoqYkXDYX6TkZEfs8Ts+grWIr21XBEVEp0SeECA8wDz30EO+99x533nknH330EStXruTQoUNcc801wtX2OKPucD2WxnYCXn9kZUR+Jo42B+ZUEz73MVUGWseh0f4taKH/hBFs6jOiH0eeOF6Xl5baNir3izaXvUWI8ACzevVqbrzxRk4//XTGjBnDkiVLePDBB9m/fz979uwZ7OEJ+gmP08vGNzeTkZOBrdUeURmRmZeJoy04Wde1TNhlDfYPjkmXqNfj8GBONQ/KCjqA2kN1NFe30N4kWl32BiHCg8DmzZtRlKMfmHHjxvHee+8xc+bMQRyVoL9wO9y89/SH+L1+0nPSsbdEtqo0p5rxuaO3hWw60khRjLyw1+XFnBbpY9fe1I45ZWC7qh3Lwa2HKN1WRlsMw1JBbIQIDzA//vGPefnll/na177G7bffznvvvYfdbmfq1KmkpKQM9vAEfcDv9bP/ywO89fj7uJ0eJEkiLTM1FPF2JT07HXeUNpZOi4OMvMyoKQlrszVicg6g7lAdRROLBi2lJUkSh3aU8dXbWzm8sxx3H/pknGiIfsIDzA033MCkSZP4z3/+w+rVq3nttdcwm8388pe/5Gc/+1mvr/vlms3xazbDTJG7czOO58wc+7DurxubZLhB92Q88Vybo77Ojm2KrOCyubG32fF7A5hSjEi6o7GNHFAiPeU6rp9VmBOzobtE5+sOT1ZYm6xMWjCZxqqWsO2yXwFNw+fyIukHfhVdJ42VzTQcaUJVFLLyMsnIzcCYYsRoMgRTMpIEEkjB/wAJrdoe0qRmpnLKBUt6fb4Q4UHgggsu4IILLsBut7Np0yZWrVrFAw88wMSJE3t9zdP/69T+G6Cg37A0WCjfcQij4ehHTafXYTDqyR6RTfWuyJV0EIyGs/MycTnDlwarskpqRir5o3IjznNZnZz8jYUsWLEgKa9FkBxEOmIAOXjwIHfffXfo96ysLM4//3z+7//+jzlz5rBp06ZBHJ0gGbTVt2HQhUemqZmpOC1RKiOOPa+2lYJxsbukKQE5YlswqpYGpamPoPcIER5AFEXhhRdeYPfu3WHbJUkiMzOTvLy8wRmYIGm01rYi6cIj1vScdOytdjpWbEQ9z95qI6vDV64rSkCJKbROq5NKUbc7rBAiPIDMnj2br33ta/ziF7/gzTffpKamhuLiYlauXMmBAwe49NJLB3uIgn6mpao1Ylt6djr2NgdocVa5aQQFOIoItzdayMyPbm/UWNaAQ/T6HVYIER5gHnnkEb7//e/z9NNPc+GFF3LVVVdx6NAhXnrpJUaOjF6WJBie+H1+XDZXxHa9UU8ggTaQckDGEKVVpaXeQm5R9G5rPrcPWVawduPgLBg6SJpYpiUQJIWWmlbef+p9DIZwIZ2yaAq7PtzOSafOZP/6PcGKgSgUTR6JpkFzFDuhuV+bR3VJTUSqAyCrMIvxs8cz/2vz++eFCJKKiIQFgiRRf7guakc0VVFJyUzDbXPFFGAITs7lj82PvlPTYrawtLfY0RQNb7TObYIhhxBhgSBJ1B2qjygj0xv0BLx+0rPTcFkjUxXHIvtlDCZj1Lyw0+rEFGeFXH2ZaDM5XBAiLBAkAZ/Hh63ZGrE9LTsNh8VOek5GMBLuDk2DKG0qm440UTCuIOZp7Q3tBPyyaDM5DBAiLBAkgfrDDcj+yFreYC8Je9DaKAGBdLTZycyLrIRw292kpKfGXU1YuaeCI3sqejZwwYAjRFggSAKlW0rRRckHd4qwTq9HjbLgoiutNS0xI15N1ZB9sa/htrtpb2ynrrQu8YELBhwhwgJBP+OyuWiri6wPhmDPBEVRwmqE88YWMPOM2YydNT5CuJ0WZ8xmPk2VTeQUZccdS/X+KlrrWnHaIhsFCYYGQoQFgn5m58e7YjpdqKoa6ges0+uYf+5CMnPSObLtIB6bk0XfXExWQZf0Q4xFGy3VzeSPyY/f4EiD/Rv3U1VcFXOJtGBwEQ18BIJ+xNpspXp/ddSmPDq9DtkXCDVlm3/eIg5/dSDUzrK9thVrXRtzv7GY8m2HcFiC22V/cNGGrER2hVMCMkpAwWCK/VHWFI09n+5FUzUmLZhEelZ6v7xWQf8gImGBoJ8I+AKs/denMU03Oxu8G1NM5I7Ko2Z/ZUQ/YU3TKP54BzOWzcJgDH482+rayB8TvV64en81IycXdTs2TVXZ/elu9qzbS/MxnnaCwUeIsEDQD7gdbt594l28Dk/UKBggMzcTa5OV/DH5+F1eLNUtUY/TVI0Dn+3lpOVzQNOw1LWSNzp6cydHm4P07HRUtfvOaRISFbuO8MWrX1DyZYnoMTFEEOkIgaAPqKpK2Y5ydn68E9kXiCnAEKwRtrfaWfa1eex8c2Pc63ocbtztTgrGFdBa23Z00UaU69eV1pI7Igdba2Ki6nV62fnRTkq+LGHqoqmMmjKK/DH5cVMaguQxIJHwOeecw2uvvRaxfdOmTcyYMSN0zIwZM/jqq68ijtuwYQMzZszgt7/9LZC4LfyWLVuYMWMGstx9KVA83n77bX7wgx+wcOFCzjjjDH7zm99QXR10l927dy8zZsygpqYm7Jzvfe97nHTSSVit1rDtZ555Jv/6178AsFgs3H777Zx++unMmTOH888/nyeffJJAII5DhmDI0N7YzntPvM/mtzej+OW4AtxJWnYaXpsTXwL2PxW7ypgwf/LRibkYaY7WmlZyR+X1yPZekiR8Lh/7v9jPh89+xCfPfcL+jftpq2sL8z8UJJ8h9dVnNBpZv349p512Wtj2tWvXhv0Dv+CCCzj77LMHZEx/+ctfWL16Nb/+9a859dRTcTgc/P3vf+dHP/oRr732GrNmzSItLY09e/Ywbtw4AJxOJyUlJeTn57N161bOO+88ABoaGmhqauKUU04B4Nprr6WoqIinnnqK3Nxc9u/fz5///Gfa29u59dZbB+T1CXqO1+Vl63vbqN5fDZqGXpdYLKMqCpPmT6Js84FYbYTD0aD+YA1jZo4N+s7lZuC0Rxfvit1HGDFhBC1Rmv10h0Gvx1Jvoa2uDVVVGTGxiAmzJzByUhFZBVnoDZGd3FRVRfbLaJqGTqfDYDREbSYk6J4hJcJLlixh3bp1YQKkaRrr1q1j/vyjHaFSUlIGxBRz+/btPPfcc7zwwgucfPLJoe2PPvooF110EU899RT/+7//y8KFC9m7dy/f+ta3ANi2bRsTJ05k4cKFbN68OSTCu3btIicnhxkzZlBaWkpxcTHPPPNMqJn72LFjcTgc/PnPf+bmm29Gl+CHWzAw+L1+ijfs49CWQygB+ahnWgKkZKTgdXpBVfHGENJoNJXVs/DCpRz86gAF40fgLKmNepyt2caEuRPR1Mgm8okiSRJ6vZ62mlZaq1tQVY2M3AxyinIwpZpA1fC4vLhtLjxOL6qqoqlBEU7PTiNvdD65I3PJKsgkd2QuaVlp4t9wAgwpET7zzDN5+OGHKSsrY+rUqQDs2bOH7OxsJk2aFEorrF69mkceeYQNGzYAUFJSwr333ktxcTEFBQVcf/31YQ3SX331VZ566insdjvnnXcef/7znzGbzd2OZ82aNcybNy9MgAFMJhN/+9vfyM4OFsovWbIkNBYIWtovXbqUhQsX8tRTT4W279mzhyVLliBJUiiy37RpU0i8AS688EIWLVqU0KOtIPkoioK10cqBrw5Qc6AW2R9Ap9P1+O8nuzCb1MxUDqzf02ORrNlXRW5RLlkF2aDVxBT+w1sPMWnBZOrLGnp0/WgEBVnCY3fj6WZ5taoqONocONocVBVXoioqSBLpuekUjC0gtyiHtMw00nPSSc9JJyUjBaMpdvOhE40hJcKZmZksXbqUdevWhUT4008/5etf/zpNTU1Rz7FYLPzkJz/h/PPP56677qKkpISbb745zDTzgw8+4B//+AdtbW3ccMMNzJs3j8svv7zb8Rw8eDAsAj+WmTNnhv588skn89RTTyHLMgaDgc2bN/Pzn/+cRYsW8bvf/Y6WlhYKCwvZvXs3F1xwAQDTp0/ntNNO46abbuKZZ57hjDPOYNmyZZxyyilMnjw50bcsREt1i8jl9RQt+KOioSkqSkAh4AvgcXmxtdhoq23D2mxF9gfQH+NgrBLHESMGaVlpqIEAHpuTlPSePcW1VjUx/5sn43F64i7McNvdqLICWrAh/GDjaLHjaLFTQfCtVhUFTQO9SU96djrZBdlk5meSnp2OOc2M0WTAaDaiM+iQdDp0nY7MQzwekSQdRRNH9Pr8ISXCACtWrOCdd97h2muvBYL54L/+9a+89NJLUY//4IMPSE9P509/+hN6vZ7JkydjtVqDK5M6+NOf/hQS9WXLlnHw4MGExuJwOMjIyOj2uPnz56NpGqWlpYwZM4ZDhw5xyimnkJeXx8SJE9m8eTPf+MY3KCkp4X//939D5z3zzDM8//zzvPXWWzz77LM8++yzFBYWcv/993PGGWckNMZO9n5e3G1rREFsJJ3UkdvUB4VAryOrIDNy9VovGTV1FPvW7kLXyyec1somUrJSMaWY4qZAKvdWMufsubidsUvlhhI+lxevy4vsl1H8Moqioipq/FWAQ4x5Z8/t0/kDIsIGgyFMFDtRVRWDIXwIK1as4J577sFisWCz2fB4PMydG/tFlpWVMXPmzLBIpTPK3bJlCwDjx48P7cvMzMTnS2z5Zm5uLna7vdvjTCYTc+fOZe/evdTW1jJ16tRQnnfp0qXs2LGDcePGkZaWFqoG6Tzv2muv5dprr6W+vp7PP/+c559/nhtuuIG1a9dSWBjbbbcrK644J+FjBQOPvdVG46Fa9EZDj6oYOqk7WM2ib51KgdWN1xO/esZtdzNp/iQmzpvU2+EKBpAByZpnZmbidEY2ELHb7WRmhkcaI0eOZObMmXz22WesXbuWr3/963GvbTR2n1vqOjmQ6LfsnDlz2Lt3b9R9r732WlhUe/LJJ1NcXMzWrVtD1Q8QFOFdu3aF5YMBPv74Y1544YXQcaNHj+aHP/whL7/8MqqqsmPHjoTGKBgeNJbVowYUdDopakDSLRo4Wqykppm6PbShrB6X1RnMzQqGPAMiwjNmzGDXrl0R23ft2sWsWbMitp9zzjmsX78+lA+Ox4QJEygtLQ37h33LLbfwt7/9rc/jvvjii9m/fz9bt24N2+71enn22WfD6nmXLFnCwYMH2blzZ5gIn3LKKZSXl7Njxw6WLl0a2l5XV8ff//53XK7wFEJ6ejoGgyEUSQuOD8q2HAQ0JJ0OrZfiWLm7nLwxBd2LuAZVxZVU7avs1X0EA8uAiPBll13GZ599xmOPPUZFRQWHDx/mueee47XXXuOqq66KOP7rX/86GzdupKqqiiVLlsS99sUXX4zL5eLee++loqKCd999l3fffZfly5f3edzz5s3jRz/6Eb/4xS947bXXqK6uZvv27Vx77bW43W5uvPHG0LGLFi0KvbZjqylGjBjBmDFj2LBhQ5g4f+c73yE1NZWrrrqKL774grq6OrZu3cqvfvUrpk+fHlGRIRi++L1+6g/UBKti9FKvI9SAN4Cmqigef7fHWptsOFodBHxi4c9QZ0BywrNnz+af//wnf//733n++edRVZVp06axcuXKqGI5c+ZMcnNzWbp0aUTOuCuZmZk888wz3HPPPaxatYrRo0dz7733smjRolBOuC/ccccdTJ48mRdeeIF7772X9PR0Tj31VO677z6Kio42TklPT2fy5MnIskxOTk7YNU455RQ+/PDDsHxwTk4OL7/8Mn/729+47bbbsFgs5OTkcO6553L//fcPi0kVQWI0ljcgB2R0khSc6O/DpFN1cSWjp42ipb6922MPbz9EalYa006e1uv7CZKPsLwXCJLMJ0+/x5GtpUiShCnVhMeR+GKNrugMehZccDKHd5Sj00euZOvKtJOnMe3k6eSMzO31PQXJRSxnEQiSiCLLVO85Enqy6WvIo8oKtnoLaQlM0AGU7zpCQ1nDkKgbFkRnyNUJDxT33HMPr7/+esz9P/rRj/jd7343gCMSHI80VzQj++REVzcnRMOhWqaedhKVJbXdpq1UWeHAVyUYzAamLp4m+jsMQU5YEb7++uvjrprrWjonEPSG0o37CK4XC/aZ6E2NcFcC/gCaqqEGZPQJLP/1OrwUf7YXSScxcd4kDMYT9mM/JDlh/zby8vJEGZggqQR8ASp3lYWiVZ1e17sa4S7IfoXGw7WMGF9IW6M1oXO8Di873t+O3+Nn3KzxZOaJIGOoIHLCAkGSqDlQHWauKemil6fp9Doy8jITThVoqoqjxU5WQVaPyt2UgMKuj3dS+tUB6g7VJXyeILmcsJGwQJBMfB4ftfurwtwwdDodshJetztu7kRyR+XhbLWRPWIGLdVN1JbURLtkGJoGzjY7RoNEV//PeEhIHNpyCIfFQcDjY+L8njeLEvQvQoQFgn5G0zQObymlriTcdVmSCDMBHT93EpKkse+j7aFGYWPnTmLyoikc2Vke9x5yIED9gWomL51BdWl9j+vKGw43gBbMVk8SQjyoiHSEQNDPlGwswevy4mixxjwmLSedzIJMavYcCevUWFtcgV6vY0Q3rRGVgIKqqOiNetRelp81lDVQV1pLbWn0RvGCgUGIsEDQT8h+mW3vbGHvp7uRfYGolRCdW6afNotDXxRHbZV7ZGspY04aj9Hc/YNq4+E6ckdk93rM1fuqaThUR1t9z22RBP2DSEcIBH3A6/LSUtVM1b4qGsrq8bl8FE4opKWiIcIduXOhRv64QtrrWlADsZvwl36+l1lnzmXPxztj9g+WAzJtNS3MWbEIW3tVr5e6H9p2CFOamdT0FNKy03t1DUHvGbBIeLg6Lne9T0/GWFtby4wZM8J+5s2bx3e+8x3Wr1/fq/EIhgaWegtr/+9j3nzgDT5/6TOq91UR8AbQ6XXkjcqjubwhXBQlKdRCddycidTurYh7fZ/Li6PFRmGctIQSUDAYDPg9PuiDq4qExP4N+6jcWxlWzSEYGIZcOqLTcbkr0RyX16xZM4AjO0qiY+xk1apVbNy4kY0bN/Lee++xePFibrzxRqqrqwdiuIJ+JOAP8NXqL/nwqfdoqmgKGl3qIz9Gij/8S1/XUZ6WkZeJy2JPaP1y1a4yxs+ZxNEkRjidol69t4JRU0b2/MWEXQz2rttL+c4yvC5v364l6BFDToQ7HZePJZbj8mAttkh0jJ3k5uZSWFhIYWEh48aN4w9/+AMmkyniGoKhTUt1M++sfIsjO48AUtQv3NSsNBwt1gjjAEkf7CM8ceEUKnccTvieVbvLmLxwSsz9iqzgtbtJzUxD7aPHoKoo7P54FyUb92NttvbpWoLEGXIifOaZZ9LY2EhZWVlo27GOy510TROUlJRw+eWXM3/+fFasWBHRF+LVV1/lzDPPZMGCBfz+979P2OKoL2OMRWd7TpMp2ITlww8/5IILLmDu3Lmcd955vPHGG70em6D/8Xl8bHztCz559mO8Lm/cRRUjJoyg4WBNhEDrdDo0tGBE3INqhvbaVjILczAYo39UZb+M3mTA1mghJTWxpj7dcWBjCV+9sYmKXeUiPTEADDkRPtZxuZPuHDY6HZcnT57Mm2++ya9//WvuvPNOtm/fHjqm03H5iSee4JNPPoman07mGDtxuVysXLmSQCDAGWecQVtbG7/97W/5yU9+wocffsh1113H7bffTnl5/DpRQfJQFAWPw0NjeQMbX93AmgdWU7WnMlZWIAxzmhmXNdLKS5Jg1LQxNBzsfiFGV8o3H2DGstlRUxiapiEBtfurGTVlVL8YZEqSRHuDhS/f+JKP//Ehe9fvoeZATXCBhzd61Yeg9wzJ6oih5LjcH2P89re/HYqM3G43RUVF3HfffYwfP56SkhICgQBFRUWMGTOGSy65hNGjR1NQUNCj8bx+/6uxc3la1D+Gf6i7fK60WIoTa3OCH/6Yx2kJHNOba8VTTq3LHzp/lyQMBgPGVCOmVBMGkx6DqfvevTq9DlUOgEZktCxJFIwfwd4PtvbYwd1jc6FpGunZabij9CJW5KCVvKSTMBh1GBJo6pMofo+Pw1tKkf0yPo8fJSCjahpGo6GjJ5EEumBqRhrq3vRJYvopMzj5W0u7PzAGAybCw9VxORY9GeOTTz7J6NGjkSSJtLS0MIE96aST+Na3vsW1117L+PHj+drXvsZ3v/tdsrN7Vvt56c3f79PrEfQP29/6iqyCzMh0hF6Pz+3ttUyVbSph9rmL2BulZE1VVcxpZuzN7cxeNos5X1/Yy7sIBoMBS0cMV8flWPRkjKNHj2bChAmMHz8+IsKVJImHHnqI1atXc/HFF7Nt2zYuvfRSNm7c2KfxCQYeTdOoj5IPBiicPIr6kqpeX1sJyLTXtVI4IUrJmgaaCpaaViQdwmV5mDFgIjxcHZfj0ZMxxqK8vJz77ruP2bNnc+ONN/Lmm2+yZMkSPvnkk34erSDZuG0u3FHywQBp2Wk4W2x9un7NniOMnTU+6toNRVYIeP042hzUHRClj8OJARPh4eq4HI+ejDEWWVlZrFq1iscee4yamho2b95MaWkpc+bM6efRCpJNQ2lt1MkzvdGA39U/VQblWw4yZcn0iO2KLIMEDYdqsIvysmHFgIlwp+Py1q1bufTSS/n+97/PBx980K3j8llnnZWw4/LevXu5+OKLeeyxx0KOy8mkJ2OMRWFhIY899hiffvopF154Ib/73e/44Q9/yKWXXtrPoxUkm+q9FVHL1womFtFwsH+iU3uzFWOKkdSMlPAdHSkJt9WNqij4Pf5+uZ8g+Qi3ZYGgH5B9Ad6672Vkf2QN8LRls9j++oaEStwSQW80MPf8Jez+YHvYJJ3eaMBg1DNh/mTGzpnI1FNm9s8NBUllyNUJCwTDkbbaFnzuyOhTp9cRcPv6TYAhOElXW1zBxAWTI7YDNFc0ikh4GDEk64QHCuG4LOgvqnaXo9NHpiLyxxXSeKj/+/W2VjYxYspoUjNT8RxTO6xpGn6PH6/Tjb3FRlZh79tcCgaGEzodYbFYcDgcMfdnZmYKM1BBt6iqytv3rcLnilxIMW3ZLHau/rLPfR2ioTfqmXfBKex6fytw1EzUaDYyYtJIJi2ZxszlsevrBUODEzoSFo7Lgv7A0WLD43Cj6zIpJ0kSakBBS4IAQ7CVZeX2Q0xZPI3yHcE+Jp01wtamdhRZQVXViBp5wdBC/O0IBH2kcnd51Nrd3NH5tByp7890cATtda0YjAYy8zJC2+SAjN/jx9Fso/GwcFUe6ggRFgj6gKZp1BRXRF0llzeuICn54K4c2riPaaeeFPoiUDocO+oOVmNrtHZsk7HWt2KpbcEvOqMNKU7odIRA0FdcVidOiyN6TwiNqCVr/Y2maRz6ch8zls3i4Mb9IEnI/gCZBdlkFmZx4NOdlG0qwd0enP+YuGQ6Y+ZOYuxc4bI8FBAiLBD0gao9RyK85ACyRuRgqWmBJLZ91BsNZBRkYTAakHQSqVlpzP7afCS9Dp1OR0tZLesfexOdXo85zYzeEGxwVbO7HL/bR8DjZ9JSUUs82AgRFgh6iaZpVO0qi5qKKJhQRMnaHUnJB2cUZDFl6QwC3gDOFiuyX0ZTVer2HsGUZqbxYA1aRx8VSafDnB5sKN/ZalJVVWqLK0jJSqPxSCM5YwpIy0knd1Qe6bkZYd0IBclHiLBA0Etc7U7sLbaoqQi9QYc/yuKNvlI0dTQFE4vY99F2iNItTZIkjKmmUN5XU1VURcVr9yDppGDFhKKCBvs/2cG8C09l1wfbAAkNjcLxRYyeMYaCcQXkjx+BsR97Ewuik/DE3HB1S7755puZMWNG1I5qTqeTOXPmhMbReWysn9WrVyd0z06X5aqq3rcuFAx9jmwrjdqwJz0vE2uDBaL0z+4LWSNyyJ8wggNrd0YVYAhG56qsYDAeja9kn4ymagR8gaNtLiXQVI3q3WWMmliEpJPQ6XS01bZQ/OluPn32I3a8s4W6gzXCSSPJ9Ht1xFB0S441ps8//zxM3G+77baQK/IjjzwCEPp948aNXHDBBQndb9SoUWzcuJGxY8f2y/gFQw9VVancfSRqKmLEpJHU7qvo11SEpJOYumwWpet2d9sYXvbL6I36UJ5aVZSgI3SUAbXXtJCWmYLeEC4FOr2eil3lbF3zFWXbSvF7REVFsuh3ER6KbsmLFy+mtLSU+vr6sO1r165lwYIFod8zMzNDrsidzhadvxcWFpKS0qVzVQz0ej2FhYUit3Yc015vwWWJvtrSYDLis7v79X5TTjmJI1+VRI28o+H3+jGlHE0lKIoS06C0dMNeJs+dGNXowOv0sOPdLZR+WYKjzd67wQvi0u8iPBTdkgsLC5kzZ05YNOz3+9m4cSPnnHNOQtdQVZWlS5eydu3a0LZvf/vbXH/99aHf/+///o+rrroqIh0xY8YM1qxZw0UXXcTChQu54oorqK4+2trwb3/7G8uXL2fu3Ln84Ac/iNr8XjC0OPDZHqQon56UrDRsjZZEtTIh9CYDqVlpOJraEz5HUzU0LbiMGTqj4+hTQIpfprWykfyinOjX0qB4/R72frKLpvKGfjETFRyl30V4qLolr1ixImxMW7ZsYcqUKQkbaup0Ok477bSQZ53NZuPw4cNhgrlp06aYee7HH3+cW2+9lX//+9+0trby8MMPA/DJJ5/w0ksv8eCDD/L+++8za9YsfvnLX0b14xMMDQJeP42H6yJSEaqqkTsqn+o9R/r1fpOWTKdyW8+NaQNeP8YUU/AXTYsbRTeUVFEwrgBdtKV/BCf8qvdVsvHl9ZR8Xkx7g0XYKPUTSamOGIpuyStWrODxxx/H5XKRnp7O2rVrOffcc3t0jTPOOIMXX3wRgO3bt7N48WKKi4s5cuQIY8eOZfv27dx8881Rz73yyis57bTTAPjhD3/Iv/71LwDq6uowGAyMHj2acePGcdNNN3Heeef1eM3/l6s+J+A9Ohsf9nnr8uGL+VGM8yGNG/3E29Wba8a9VYQtdPR98YK1eG7MWsxf0DTIKszGZ3djbWxHkiQ0OioQZBUNjQkLpuBz9F8qQpIk0nMycMdIfXRHZwSsBGQCPj9Gs4mAPxD12NLPdjP9zPkc2FIaNdcN4AnI7PpgG9vWbMKYaiKrIBtjqgmj2Yh0zKOBJAX/E+MyxxUZuZksufjUXp+fsAgPd7fkadOmhSbMzjvvPNatW8dLL70UFm13x/Lly/njH/+I1Wpl27ZtnHLKKWiaxo4dO2hubiY3N5epU6dSWxu5VPXY8WdkZIQmBC+66CJWr17Nueeey9y5cznnnHO49NJLe+zUcfoPzurR8YLeocgK7z74Opn5mRH7UrPSkL0+dHpdTBHrKSOmjKalrPf9H5SAjDk9paNuWEKn15GenR4zNWGpbOTM/z6TCYsiLZQEySHhUOt4cEtesWIF69evp7i4mJycnDBhTISRI0cyefJktm/fztatW1myZAmLFy9m586dbNq0Ka6nXdfX2Dn+/Px8Vq9ezT/+8Q/mz5/PqlWr+M53vkNTU1OPX58g+dSWVOFqjx6Vjpw2huo90SsmesuIKaNo7mMTHtkXCImu7A8gB2J3dbM3tVP62R5q9x4R6YYBImERPh7cklesWMHnn3/OJ5980uNURCdnnHEGn376KWVlZcyfP58lS5awc+dONm7cmFDdc1c+++wzVq1axfLly7n99tv58MMPcblc7Nixo1fjEyQPVVHZ+9EO9ProHxtjihFvP1ZF6I0GFL/c54kwRVY62mxqqEowN6zIcYS4sZ0t//mUfR9spbmsjoAvevpC0D8kLMLHg1vyokWL0DSNl156qU8i/M4773DSSSeRmprKokWLqK2t5dChQ5x6as/zQqqq8te//pUPP/yQ2tpa3nnnHfx+PzNnijX9Q42qveU4Y5RpZRZm01bdknAJWSKMnD6GxtKafrlWwOvHYDICWjAa7qaxkKZqHNqwl8+eeJsNT7/D4S+Ksda19stYBOEknHjsdEv++9//zvPPP4+qqkybNq1bt+SlS5cm7JZ8zz33sGrVKkaPHh1yS+7MCfcHer2es88+m61bt3LSSSf16hpLly5Fr9ezePFiANLT05k5cyZpaWlkZGR0c3Yk55xzDr/61a/461//SnNzM+PHj+ehhx5i8mTR4WooIftldr+/LaJxeydFU0ax76Pt/ZqKyB2dT93e8n65ltqx6k2SpFA0HFzEEb+WXWfQ017biqWmhbxxhUw5fQ4TFk6LWXMs6DkntL2RQJAoW1dv5MjWg0hRKlZ0eh2TFk9n99ub+k2EJUli1ooF7P9wW79cr/OaplQzAZ8fnV6HwWzCnGbu0TWyR+Uz6ZSZTF02u9/GdaIjmroLBN3QXNFAxc7DUQUYoGjqGKr39E/E2kne+ELaqvp3clbriH4lnQ5V0dA0LeTQnCi2hjasDW3U7u3fWugTmWHdRU24JQuSjcfhZuOL6+L2Bc4qzOLwF8X9WxUxaRSHPt/db9frRPYFMKWnEPD6kb1+dJKEzqgPtblMhKptpaTnZiL7Ax15ZkFfGNYifP3114fqiaPRtXROIOgJfo+PT/7+Dn63N6bAZuRn0V7Xhqaq/SrCOoM+ZFPUn2h0LOAw6FFkNdhTwidjNCcuppqq0VbZCMBJ5yzs9zGeaAxrERZuyYJk4Wp3sPap9/HYnXHFdfTMcex596t+FWCD2Yjs7f9exJ0oARlDegqKrIYEWdO0Hr2GxtJa8sePENFwPyBywgLBMaiqStnWg3z4tzXdCnBqVhqudgeyr3995AomFtFa0dCv1+xKsGRNDxoEvIGwJe8JoWnYm62Ub9qfnAGeQAzrSFgg6C8UWaHxcB17PtiGrdmKTid1GxmOmT2B/X0sS9MbDUw+ZSZeu4uavRUA5I0t4MAnyV2soypqsMGDFPyzqqjIATmsGXx3NByoJqMgp8dRtCAcIcKCExZFVrA2WqjYWUbtvko8Njc6vRSzFvhY0rLT8drd+N2+3guQBHO/sYTD63eSWZDDtFNmcLijec5AuFkEPH5MqSYCvgABbwCdXoem1ydcAyz7Ash+P81ldRRNEwYGvUWIsOC4R1VUAr4AfrcPR5uNtupmWiqbsTa04XV60emDUa9On7iYjps3id1vb+5TBDh+/hRqdx7Ca3XitTrJHpVL9ohsAp7k5YOPJViyFuzWp6oafo8fkDCmGBN+XZ1ldEKEe48QYcGwRtM0/B4fjhYb9hYbrnYnbpsLj92F2+4h4PEh+2UUWUH2BYJP4MekGrra+iRC/rhCWisbkX3+PkXBOaPyqN12IFQcduSrEmZ/cyk1+wbOmzDgC2BOT0H1+tFUCPj8SBJH+xB3g6W6haJpY1ECsZvGC+Ij3jXBsEPTNJxtdqp2H6G6uAKnxYHcsQosnij2RnAjrmHUUzCxiB1vbOxTFDxy2hiaD1SHVeeqsoLil3G3JO6g0R8EJ+kMyH4FVQ4+NSBJiZWtaRp+l5eavRVMXDwt+YM9DhmU6ojh6twM8NVXX3HZZZexYMECFi1axBVXXBF1jAB//OMfmTFjBvv27YvYd8UVV4Q5Oc+fP5/vfOc7vP32270e2/GOIivU7Kvk47+/zXsPvcG+T3fiaLGiKQp6g35AJoemLJ3JgU93dfTn7T2Fk0bRXBbZd7pu7xHGzJ0U5YzkEWxZebQBuxJQOvK9iXVPa61qwlYvmvv0liFdojbUnJsPHDjAz3/+c84//3zWrFnDq6++yoIFC7jmmmsoLi4OOzYQCPDRRx8xYcKEmGO78sor2bhxI1988QWrV6/mm9/8JrfccgurV69O+msZTgR8fg5sKObdv77KxhfWYq1vC6YVBnhGfszsCTQcrMFlcfS5IkLxB5CitG3xWJ2k5Wb2aze2RAh4fRjMwS5rEFzQ4ff4CfgCke4jXbA1WDCYjT1eAi0IMqTTEZ3OzbfeemtoWyzn5kSdkPvCW2+9xamnnsoVV1wR2nbTTTexc+dOXnvttTD3kI0bNxIIBPjJT37Co48+yh/+8IeIxu6pqakUFhYCMGLECKZMmYLb7eaBBx7gwgsvxGzuWXOVZBPw+fHY3bjanfhcPlRZASm4usucbiY9J4PUzLSE84nd4bI6KflsD9V7KvB7vOh0upBx5UAzYvIoVFmhoaSqz+JfNHU0zVFaVOr0elRFxef0kJKRgtc1cDbzmna0+XvnSj0loKAqXjTNjMFkiG23pWkEPH7q9lUyfuHUARvz8cKQFuEzzzyThx9+mLKyspC/3LHOzZ1phdWrV/PII4+wYcMGIOjcfO+991JcXExBQQHXX389l156aei6r776Kk899RR2u53zzjuPP//5zwkJniRJHDp0iJaWlpB4Ajz88MMR9vbvvvsuixcvZsWKFdx111189tlnCfUw/sEPfsCTTz7Jjh07WLZsWfdvUpLQVA2Pw42lrpWWyiaaKxpxNFuDJVk6KWxyS9O0oLuvqpGak07+2EIKxheSUZhD7qg80rLT0Rvit0zsxO/x0XColkNfHcBS0xJaDtwTv73+ZtSMsaDB4S+Kuz84AfLGFVJSXB7RrUFv1CP7ZZoOVjNyxjgqd5ZFPT9ZKLKC3mhA0h0tkdNUDZ/Tg2I2YjQbg/ujfAm117eiSQgR7gVDWoSPdW7uFOFOp45Y9j+dzs3nn38+d911FyUlJdx8881MnDgxdEync3NbWxs33HAD8+bNi9uDopNLL72UV155hXPOOYfTTjuN0047jTPPPJMpU6aEHefxeFi3bh2/+93vKCoqYs6cObz55psJifCoUaNIS0ujrKxswERY0zQCvgDudiet1c20VDbSUtGEx+7u6Dl7VAD1xkgxlSQJSS+BHvwuLw2lNTSU1qCpKpomkZabQeGEEeSOziclMw1zegpGswFJ0iEHZNw2J9b6NpqPNOFotSH7A6F7DvYigDGzJxDw+Dmy+QCa2k+LElQ1aioiWB+s4mi2Mm7R9GB4OsCv3+/xYU5PIeA9Nh8sIftkZF9wibLBZEBn0IdNhFqqmxkxZXSPDWoFQ1yEYWg5N0+ZMoU33niDZ555hvXr1/P5559z//33c8YZZ/DAAw+E+lisW7cOj8fDihUrADjvvPN49NFHsVgsCfW6yMzMxOVyJTSmTo7sOIzHFn6OpgXbFaIGXYVVJegK7HN78Hv8eGxunBY7rnYnqqqiKWqwXWM/f+69Lg+W2paOQXU4HHcuRpA6IuohuOBq8pLp2Jut1O09EhLEvrbfzhqRg6MpkeoHDUnS0Abhjel04Yi2lDng9Ye2SzoJnb5DjHUSXoebr/6zjszCHCRdUKA7XZfDkDr/o0GP+rcNTTILsxk3Z2Kvzx8UER7Ozs2TJ0/m/vvvR1EUiouL+fDDD/nPf/7DHXfcwd///ncA3nnnHebOnUtRUREA5557Lg899BDvvvsuP/7xj7u9h8vl6rFLh04nheo0Q5NWHY/xkl5Cb9CjNxowmAwYTMYTwoq8L5gzUqktrqC4pIqMvP7rxjd+3mRqtkc2h5ckKWwCzFZvIWd0AbZGa7/dO2E0QNNIyUxNOI0E4La50On1ZI3ICeaTVTWYpupIVx29+PGFqY9zIIMiwr11bm5raxtU5+a//OUvXHDBBcydOxe9Xs+CBQtYsGABY8eO5aGHHgLAZrOxceNGZFmOMEB98803uxXh2tpanE4n06b1rOZyosjF9RuapnHw873s/2gH6CT0uv77mKRkpeG1uSK+BPVGfXCis4OW8jrGLZqOrcnab/fuCXJARmfQgyQlLMTtNS1MWjpT/FvsIYMiwr11bm5paeFXv/pV3GtPmDCBtWvXhuWmbrnlFkaOHNkrI85j2bhxIy6XKyISz8zMJDc3F4CPPvoIRVF44YUXyM7ODh3z8ccf89hjj1FaWhqqhY7GG2+8QWFhYbfmqILkoKkaez7YwqEviun3HIkEmqxE7T0s6XWox7ga+11ezOnmQckLh8bg9XekHOIvggkd7/KCpuGxuUjNTh+AER4fDEoGfbg6N99www289tpr3HfffRw4cIDKykreffddHnzwQX72s58BwaqIZcuWcfLJJzN9+vTQz5VXXklqampYzbDH46GlpYWWlhbKy8v5+9//zj/+8Q9+97vfdWuOKuh/NFVj59ubOPR5EgQYyMzPxhbDsVgixhPZYFpAasF+EgGvv9ta4U78Hj/Vuw4neWDHF4PySR+uzs3nn38+KSkpPPvss7zxxhv4fD4mT57Mr371Ky655BKam5vZtm0bDz/8cNRxXXjhhbzzzjvcdNNNAPzrX//iX//6FwA5OTlMmzaNRx99lHPOOadP4xT0HE3T2PXOV5RtKkmak3DO6Hzqdh6KGlVG01pni42M/Cyc7ZGpu4FCU9WOnhtSQvXf7bUtUStoBLERbssCAVCydifFn+xM6pP/tNPnUPzmF6CFT0pLej2SFFwscSxpeZkUThtL5Y7BjyyNZiMGswmDqZu4TZI4acVCTlqxaNAW1gw3xLskOOGp3HmY/WuTK8AAmqKgaZFVQXq9DjWKn5zb4iA9N2NwUxIdBHwBlECwG11cNI2Az09rRePADOw4QCQeOxDOzScmrVVNbH9jY9ILpwwmA36XJ+pEm6STopZshhjEyblj8XuOrpaMtyDDbXFSf6CSEVNHD+Dohi9ChDsQzs0nHh6biy+e+whV6X9X465kj8yjvbopej44znk+hwdzmhmfN7GOZsnG7w7W1BtTTDErJlorGphcFFnlJIiOEOEOhHPziYXsD/Dpk+8Go7sBiDKzR+ZSuq88YrskSRAnCm6rbCRvQhENpZFtLwcDTdNClk4Gc3QHDr/bB5qG1+khJSN1EEY5vBA5YcEJh6qqfPHcR7gs9gHrTaE36FGiRLM6gz5untXW0Ebu6IIhkRfuRNM0fG4fsi8Qc6GTz+WltvjIAI9seCJEWHBCoWkau97+iuay+qSVokW9r6JGbQSfWZiDKseOhDVVCzZHGmJoqoo/jhC31TTjtjgGYWTDDyHCghOK8q9KKP/qANIAlk+lZqfjbLFGbB+/eDqj50xkwsnT456vKuqAfmEkihpHiO2N7RhMxgFxjR7uCBEWnDDU7qtg97tbBrxjW87ofCxVkZNyWSNyKP1wC1kjckCKHQ1ba1vJHZ2f5FH2DlVV8bm9kUKsafi9fiw1LYM3uGGCEGHBCUHDoRq2vPJZ/FKwJJGRl4m9qS1sW87YAqy1LWiahrW6mbwxhTHOBktVE3kTipI9zF6jqRo+l5eANxCWcnG22Gg4WDl4AxsmCBEWHPdU7z3Cpn+v7X6hQZLQVBVNDn8sL5w6hpbSagCaS6spmj4u5vl+txdzmnlITc51RdM0fC4Pfq8fpaPkr62qEZ1OLGHuDlGiJjhuUVWVkrU7Obh+L2qUlWoDgU6vQ/EF6Gxg3onRbELuaI4u+wLoTYaIYyIYIos24uF3+1BlFWOKMWgkICv4XF7M6cn3gByuCMv7HtKd5f3q1avDrOyP/TnWIBRgzZo1/Pd//zdLlixhwYIFfO973+Ott97q9dgER3Fbnax/8h32fbJz0AQYgnlfW11LeD5YCkbHx0a2EiDFWbbhaXcOm/aQsj+A1+kh4PHjdbipLa4Y7CENaYZ0JNxpeX/aaaeFbY9meX/22WcnfTydlve//e1vueeee5BlmbfeeotrrrmGl19+mblz53LBBRdEdII7fPgw1157bdgXxZ/+9Cfeeustfv3rX3PWWWchSRJffPEFd955J1arlSuvvDLpr+d4Q9M0XO1OSj7dSc2eI8HG5IPcRCZ7VD6Vm8INQjPys3G12cIk19lqI7MgG3tr9LKutqom8icUUbuvMnmD7Uc688T1JVVowPiFUzCa+8eF+3hjSIvwcLS87zoWj8fDXXfdxfz587n66quBYHP4VatW8eKLL4b1R54wYQIpKSk88MADXHbZZSdkT2FN1ZADAWSfjCorqIqKhtbhuCx1eNLpAC1Yq+r147I4aatspKG0BkeLHVVTO/zNBv/R3ZRqxmd3h23LHlOAvUtfYVttCzljCmOKsL3Jwtj5U4aNCHfSVtPMyJPGs+mlT5m4aDojp47GLFbRhTGkP+XD2fK+k/vvv5/m5mb++c9/hpqevPrqq5xxxhlRG9RffPHFnHHGGce9AKuqis/pxWmx42y14Wy1Y29ux9rYjs/hQQkoKLKM2lFnKkGoeUzQjy1YP4umIel1YaI7FMS3k2DntHC7zszCHJr2hrendLZYGTlnMjHzwp2bh0FeOIyOcL9ufyWNB2tJy0ln4uJp5I0bQd7YQlIyU4fU39dgMKQ/6cPV8r6Tzz//nFdeeYV7772XsWPHhrbv3r075v1MJhMjR47sdixDjU5nZ00NujpriooiB23S/R4/HrsLZ6sdp8WOvcmKvcWK3+1DkZWY9jk6gz7mpIUEPTKhHAxMaWa8NleEcEo6CU0Jz/+qiorOED91ovjl4PJnZfBy3L3BUt1MVm4mbqcXj93NgfV7UBUVvclA/thCcscVkFWYQ0pGKimZaZgzUtAbDOiNnU7OutCX7/Eo2ENahGF4Wt4DtLe3c9ttt3HuuedyySWXhF3HYrGQk5MTtu2UU07B7z9qMf6Pf/yjRz5z7973Mrbm9qClvAahECT0P61/jW61yF8kSYKOD0vQ5VmHTqdDb9SjNxnQHxPd6w0GUrOG/D+/PlEwsQhrZSO6Lk9JOp0Utdzs6ORcdKGx1raQP7aQ1mG2AKKlvIEZX5tPY1lDhIi62p24OpxDOr+0Q2koVUVVg2knrcMBuvO9CV1H1+ksDgO+CqeDmWfOY/F3Tu/1+cLyPgmW9xAUek3TuOuuuyKukZ2djd1uD9v2+uuvo6oqiqLwzW9+M1RrmSjfuuWHPTpeMDB8dP9/SMvNCP2uNxmCfSSiHKsqKnqDHlWLLibttS1MXjYHj8ubpNEmj5SMVJb/5DxyxxQM9lCGHMLynv61vIegtf1HH33E008/HbU95rx58yLcpseNCxbr96V8TjC0CHh8eGyusG3peVk4mtujHu9qtZFRkI29xR51v+wLYDAbgjnmYfZYbq23oNNXCBGOwqDU7/TW8r4zHxyPCRMmUFpaGhZp33LLLfztb3/r87g3btwYtb75WMv7uro67r77bn7wgx/ELJv77//+bz777DOKi4sj9sXKdQuGH44WGwFP+FNWel4mzkZL1OOdrTbS87PjXlNTgx3ZhhutFQ3oDLqEA54TCWF53wMSsby/+eabyc7O5pprrgnZ2Xf+WCzBD99ZZ53F5ZdfzlVXXcXzzz9PeXk5FRUV/Pvf/+bSSy9l1KhRjBkzps/jFQwuLWW1Ed3aUnMycMaLhPOz4l7T2WLFnDH8Vp+psoLsk2nvUponEJb3PaI7y3uArVu3AkSN2MeMGcO6deuAYHS+ZMkSXnzxRZ588km8Xi+TJk3iyiuv5PLLLycjIyPifMHworU8ciJKp9PF7GER8PgwdfaIiJFuaKtqpHDqWFqGoZGmpboJnV5H3tjYzYpORITlvUCQBFRF5YO7/o3X5QnbPvnUWex/e2PM8046fyn7P94RtxZ41vlLqdxxOOb+IYskMfvcRcw4Z2Fco9ATDfFOCARJwGN14nV6IrariXRy6yYuCtZjD7+8MJqGx+Ghfn/lYI9kSHF8F2r2AGF5L+hP2qqb0DS1Y4l1EHNGCh5rfMsfVdXQ6SCexAY8vmG1aO5YGg9WY0pLYezcyYM9lCGDEOEOhOW9oD9pOliN1OWROyUrHUezNe55boudtNxMnO2umMdYqpvIGpGLvcXWH0MdUNztTiQp2OUuLUfMe4AQ4RDC8l7QX2iaRuuRhi4bISUznfaK+rjnutrspOdnxxVha20r085eMCxFGKCptBadQc9J5ywc7KEMCUROWCDoZ3xOD15b+GIkTVExp6cEe0nEwdViJaMgfq2w2tFvY1jmhQFLTTNoGgGvv/uDTwBEJCwQ9DOW6ibkgBLWy9jn9oLUfXcDn9ODOSOVjIIsJi+bA7JC/YFqWivCI2tNVVEDCnrz8Iyjmsvq0Rn0zDhrfvcHH+cMz79BgWAI01hSFSbAmqKiBOSEPeJ0eompZ8zlwJoNHHh7I7lFOYyaGe5BZ6tvIyNv+M5TtJTXB/tBuxPv23K8IkRYIOhHNFWj+VDtMRuC0a0kRe+cFo3c8UVUbNgDHb2UKzfuJT0rjTGzJ4SOaSmvJ3/S8Gt5eizVO8uo2JZYB8PjGSHCAkE/4rG7cLcfLUNTAjKKrJCak4HHGtm0Kho6gx5Xl6XNVZv2YTTqmXH2fIypZmSvH4PJOCz7SHRib2rHa3fRVnVi90sROWGBoB9pPlSLqqpIOl3QZ61jwUZGQRbOFmu35+eMLaSxuIKggVM4ddtLScnNZPKS6RhSTKRmpjDzrHkc2X5o2E5ylW0qIS03k+xReRhM3XdAPB4RIiwQ9CN1e8uD9cEaeO3uUNew9IJsGveUd3v+iBnjqd12AMmgR4uyus7b7uDI+p1A0KHDkGpixvmncXDjvoi65OGApqgcXL8bvdHApJNnIumG6SqUPjD8/tYEgiGKEpCxVDcFBdjhDluinJKZhtcRvzwNwGA24ne4E+qtoKkaKBrtR+rIzkvv09gHE5/Dw+EviqneXXZCtroUIiwQ9BPtdS14bG48NheKX46oR+suxjNlpOJ3etBUrUcRYcPeckZMHTOsBczRbGX/R1up3nkY2RcY7OEMKEKE+0BNTQ3XXXcdCxcu5Mwzz+Spp54Cgs3pf/SjHzF//nwWLFjA1VdfHWrWvnr1an74wx/y1FNPcfLJJ3P66afzzjvv8P7773P22Wdz8skn8/DDDw/myxL0AkVW2P/+Vrx2F6qiRCpuAgKZP2kUbeV1Pb5vsNmEBv7hmRfuxN3uYturn1GydgeWmuZgpH8CIES4l/j9fq6++moMBgOrVq3innvu4Z///Cdvvvkm1113HcuWLePdd9/l2Wefpba2lieffDJ0bnFxMZWVlbz++ut885vf5I9//CMvvfQSTz/9NL/5zW94+umnKS0tHcRXJ+gOVVXxuby0HKlnx+sbOLh+F1Xbo/+dJVqelj06H3t9z5qeq7KCXq/DWtNM5jCuGw6hwaHP97L+ibfZ+eYX1Owux9FqQwn0zHNxOCEm5nrJpk2baG5u5o033iAzM5Pp06fzxz/+Eb1ez3XXXcdPf/pTJEli3LhxnHfeeWF2Tqqqcvvtt5ORkcH3vvc9XnjhBW688UZmzJjBjBkzeOihhzhy5AgzZsxIeDxfPvchAd/RSCjsMx9HACJ3aXH2RT+u6zR+3MfisNMSO67rQMKNnuO9tsQjqZjv1zF/VBUFn8uLz+kh4PWjM+jRGw2YM1IYP39KMI0QJYuQaHma1BnR9gJLRSNjTp6Bs7RnkfRQRdM0KraVcmTzAWRfAE1VMWWkkpKRit5owGA0oDMaQmmbiPddirE9CWSNyGXRd3vv3CNEuJeUlZUxfvz4sO5qF198MRC0tH/++ec5cOAAZWVllJaWMm/evNBxubm5IeeMlJSgVc2xdkZmsxl/Dx8tT7/q/F6/FkHf2fLCx6TnZ0Y14MyfNAqP1RG3ekGn18ExNb+a1pkX7l5FVFVDUmSyR+Sy8Ptfw5Se2qvXIBgcRDqil8RydW5qauLiiy9m06ZNzJ49m1tvvTXCN0+v10ecN9zccwVHCfj8NJXWxPw7TM/N7LZGOHtsIdaa5tDvWketcSKosgKShOzz01oev0ubYOghRLiXTJw4kZqaGpzOo4+Zjz76KBdffDHp6en84x//4Morr2TJkiXU1NQM65lrQXxqdh4ONuiJgSndjM8evzwte3QB1tpjRFjR0PWgQkJTNfweP62HaxI+RzA0ECLcS8444wxGjhzJ7bffTnl5OZ9//jkvvPACN998M83NzXz55ZfU1NTwzDPP8PHHH/c4vSAYHqiKSun63d3W9Xb3JZySlYbf7j563R5EwhCsUXY0Wob1MuYTFZET7iV6vZ4nnniCu+66i+985zvk5+dzww03cPHFF7N7925+9atfATB37lxuueUWVq5cidcbO1oSDE8aDlTiarFGWNsfi6aowQm3eCmnPj4oaaqGo6GNvMmj+nYhwYAj3JYFgl6iyAqf/OVlXO2xfeP0RgNj502i9MOtsUVYgpPOXULpB1vCNhtTTMj+AIlMzkFwcm/WRcs46aLT0Rsi5x0EQxORjhAIesmhz3bjbI1vMZSen4WjqT1uFJyWm4nbEkPIexAiqYqKqqhYqxsTP0kw6AgRFgh6gaO5nUPrdsZNQwBk5GfhaLTEPSZrVAG2upaI7b15RlVkhUPrdnV/oGDIIERYIOghPpeXDU++TSCBHgdpeVm42qxxj8kamRtVqINlaj0rXVR8AXx2F/441RqCoYUQYYGgB7jaHXz68Kt47K4Ea7s1NDl+SKuL0bZSU9RuI+2I8bXakD0+qoRjxbBBVEcIBAmgygpHvtpPyYfb8Ht9CS+u0VQNTVOJO7kWQ6NVVcWoM6CSeNmZq81GemEufo8fW5OF7KK8hM8VDA5ChAWCOAR8fsq/KObIV/txtzuRdFLCAizpdSj+QFBkY5yiNxlQAzIAY5fMJL0gi4qNe/E7j00nxLlAF1wtNkbMHE/5l8WYUs1kjcgVqzGHOEKEBYIuaJqGo6mdko+20Xy4Fr/bi6TT9Tg/m1mYg72hLW5lRNbIPOz1rUw+awH2umaaiw9z0reXs+/NDSiBjgg4cQ1G8QfQmwz4XT6aD9ViTDMx8eSTejRuwcAiRFgg6EBVVJpKayj5eBu22lZUTUWSpF7bBmUV5dKw53DcY7JHF+BoaEOng/ayoEtz+SfbmHLmAg59uqNXFRJogKrQWFpNztgCbA1tZI/K78WFBAOBEGHBCY/sD1C94xCHPt2Fs80Wmgzr62N8SlZ67PrfzmOy00nPyaDsk6MLNTztDgxmIwaTHk1VkPS6njU41zTUgILeYODg+l2YM1JJzU7HlJbS25ciSCJChAUnJJqq4bTYKf9iL7W7yvA4g75uPa1GiHsPTetWPPVGA4rbg+qXw7bXbC1h3JKTqNxcgt5gQFETb2quyio6qeO+qkbJR9vQGQ1MWDwdvVF85Ica4m+kD6xcuZKdO3fywgsvxD3u5ptvRpZlHnzwQTRN45VXXuEHP/hBQmaOgt6hqmqwMkFRUVUVNSDjd/twtFhpPlxHc2k1rjY7qqYhSVL//11IBMvOtPg9I7LHFFL8yicR292tNtJOy+pVrbC73UFKVga+DmEPeP3sf28zOkli3MJp6E3iYz+UEH8bA8y2bdu48847+d73vidEuB+Q/QHsDRZayuuw1bfharXhtrlRZTkYiXZEo6qioPjlYHXDMe97sioH0vOycDa3xz0mNScDVBWvxR51v9fqJDUnHdkr06MKiVYb6XmZ+BqP3t/v8bHnrY2oisqY+VMwp4vUxFBBiPAAI/ol9R0lINN6pJ6KLQdoOVyH1+lJqHRMN4BNbXLGFNC0ryJuFFwwZQzWioaY+xv2HGb0wulUbznYowoJd5ud3EkjsTSGfwnIfpldb27A1WZn3KKp5IwpTOyCgqQiQrEeUFZWxg9/+EPmz5/PVVddhdVqDe3bvn07l156KfPmzePCCy9kzZo1EefX1tby4x//GIDZs2ezZcsWAoEAf/nLXzjzzDOZPXs2X/va1/jPf/4zQK9o+KDKCpaqJra/vI4P/vwCXzz5NnV7j+D3+NDpdUOuFjY1JwNXqzXuMWMWTKVm+4GY+312N+aMNFRZ7lGu2u/yYEpLif6Fr0HpZ7vY+tJaKrccwNNNs3lB8hGRcIL4/X6uvfZaFi9ezN13383mzZu55557WLx4MS0tLVx77bX8v//3/zj77LPZv38/f/zjH8nKyuKcc84JXWPUqFE89thj3HjjjWzYsIHc3Fz+8Y9/sG7dOh599FHy8/N58803ufvuu1mxYgVFRUV9GrOmagR8fvwuL167G4/djez14Xd78bu8wXyjXofeaMScnoIhxYQp1UxKVhqmjFSMKSYMZmPMtImmaaiyguyXkf1+Am4/AY+PgM+P4pdRZTVk5ilJEjq9Dr3JgMFswphiwpRqQt9h2Kg36JF0EpoGmqIg+2S8DhfttS00HaihtbIBr80FHRGvNMRbNWpq95NypjQznjZb3ABXUxQkOhZ+9GByDrSY+WhJknA0W9n+6noyCrOZtHQWeROKyB6djynV3IN7CPoDIcIJsmnTJtrb27nzzjtJT09nypQpbNmyhfb2dl566SVOOeUUrrzySgAmTJjAkSNH+Ne//hUmwnq9nuzsbADy8/MxGAxMnz6de+65hwULFgDw85//nL///e9UVFT0SIT3rPkCR4sNv9OLz+XBY3fhd3hCeVE66l27CxiDy2w7hJPgB9aQZkZvMCDpgr8rfhm/x4+mBEUhJDUdk1xIUlAsu14bOtyEtWD9a+fxscaiBcVniAW53WJIMQXtjFQ1ZjpC0kn4bM5uMwxt5XXkTxmNpao5aP6Z6CBUDdnthSh+hsdirWlhV83naIqK3mggozCHjIJsUrLTMaaYgl+OHU8akk4Kez2SJHX8JSU6qOMTc0YaU06f0+vzhQgnSFlZGePGjSM9PT20bc6cOXzxxRccOXKEL774goULF4b2ybJMXl736/a//vWv8+WXX3L//fdz5MgRSkpKgODsfk+YcvrcHp8jSA56o4GSDzaTmpsZ85i8CSNpL+/ent5ypJ5p5y2lraoZc5oZXYIlZnqTkfkXL2PM4hkJjzsail9G9geCTzVqsF8xHDO3IaY4yCjM7tP5QoR7QNccm8EQfPtkWebCCy/kf/7nf8L2J1L9sHLlSlatWsUll1zCt7/9bf70pz+FRc+JklGY0+NzBMlB0zSsFY1BG/sYjJwzkbL3v+r+Wooa/HekKGg6Ke41j0X2+tAZ9GSJBj5DHiHCCTJt2jSqq6ux2WyhlEJn1Dpp0iS2b9/OhAkTQse/9NJLNDc38+tf/zrsOl0fv1955RXuuOMOvvWtbwHBiBtEFcVwxudw47Y64x6TmpWOJ44t0rEoAbkjC5D4c7/H6sSYnprw8YLBQ1RHJMiyZcsYPXo0t956K2VlZbz++ut89NFHAPzoRz/iwIEDPPTQQ1RWVvLhhx/ywAMPRM3ppqWlAUEB9/l85OTksH79empqatixYwe///3vAYQ78zCmpawOVZZjHyCB7PGhJZg+aq9qJGd8EaAlfI7H4sAgVscNC4QIJ4jRaOSZZ57B6XTy3e9+l1dffZUf/ehHAIwZM4ann36aTZs28a1vfYu//OUv3HjjjaH9xzJ9+nTOOOMMfvSjH7FhwwbuvfdeDh06xIUXXsgf/vAHzj//fBYsWBCKsgXDj/o9ZXGb/mQU5mCraUr4etbKBnInjkRVVGR/HHE/Bo/Vid5sTPgegsFDuC0LBP2IIst89L/P43fFthcad/JMWovLsNU0J3zdGRcu4+AHWzCkmjGmmBI6Z/o3TmHGN5b2eNmzYGARkbBA0I9Ya1rwOtxxj8kakYuzKb75ZwSaFvpR5cRSEqqi4LXHz00LBh8hwgJBP1K1eX+3q/ckiYiuad1hr2sla1Q+il9GCSR2ruIP4Gqx9eg+goFHiLBA0E8oskzjgaq4Ipyak4Grub3H5bXtlfXkThoZqgXvrNeNhyor2OtaengnwUAjpk8Fgn6i9XAtPrsr7qRc7oQi2g7X9PjaXpuL1JxM0DRknz+4KFFnilu15rU5MZgTyx8LBg8RCQsE/cShdbu6tULKHJGLrbYP0WnHMnQlICN3k5bwWJ0n/JLi4YAQYYGgH3BbHLRXxm5L2YnBZET2+sK2ZY4uSKjNpt/pxpwRXIChyAqKPxA3P+yxONCbRJnaUEeIsEDQD5S8vxlFjt/lzJSegs/uCuuuljNhJKMXTGPmN0+lO1fP9opgvXAnSkAm4Al2rItWaRrw+IRxwDBA/A0JBH3EY3fRsK+826qI3PFFWMprw7aNmjeVw+9vwmd3B5024mCrayF7bHgjdlVR8Lk8QTEOKBE6HhTq8MhbMLQQE3MCQR/Z/dp6ZF+gWxHOGTeC0p2lod+DLsoqkgaNew4zcu4UKjbujXl+qJlPlD7Bss+P7POjNxrQGw0dbUslFJ+fmu0HMWWkoikqhhQzGSNySM/PTrgZkCC5CBEWCPpAy+Famkvil6V1Yk5PIeD2hH7PGT8Sa0ce2dvuCLa+7MYYVFM1JCl2B0klcEwdsQYBj58dL36CIc0c2ibpJcYvmcnIOZMpnDoGo2jkPqiIr0KBoJf4XB62vfBRQh3vDGYjAZcnLB+cO/GoCEMw0u1OzO31rWQn6g0ngdfhwpyREmzK3tmYXYPqbQfZ8uy77Hp1PY0lVd1WWgiSx7AX4ZUrV3LFFVd0e1xdXR0//elPWbBgAd/85jf5/PPPw/Zv3ryZiy66iPnz53PFFVdQVVUV9Tq33XYbK1euDP2+evVqZsyYEfWnvr4egPXr13PRRRcxb948vv3tb0fcu5Oqqirmz5/Pli1bEn35gkHC5/Ly+SOv4etmiXInuROKaO1SH2xKT8HvPBoZOxqCq+Li0V5ZT94xk3Pd4Wy2kh6j17Sk01G/p4xNT7/F7lXraD5ck/BqPEH/MexFOBE0TeN//ud/yMnJ4fXXX+c73/kOv/zlL6mpCX4oGhoauP7667n44ot54403KCgo4H/+538inCr+8Y9/8Prrr4dtu+CCC9i4cWPoZ8OGDcyePZtvfOMbjB49mrKyMn75y1/ygx/8gPfee4+LL76YG264IXTvY8d4++234/XGbvwiGHxUWaF212E+/ctLuFptCRuMjpw9ieb9FeEbuzgDtR+pJ3fS6LjX8dndmLPSu62k6MTe0NZtY3edXkftzkN8+cSb7Fq1jvq95fhdnrjnCPqPEyInvHnzZioqKnjppZfIyMhg6tSpbNq0iddff51f//rXvPrqq8ycOZNrrrkGgHvvvZfTTz+dzZs3s2zZMpxOJ7feeiubN29m1KhRYddOSUkhJSUl9PuLL75IfX09zz33HBAU+Msvv5zLL78cgKuvvpqnn36a3bt3M27cuNB5L7/8MorSEyNHQbLRVA2fy4OrzY69vpW2I/W0Hq7FY3OGJr4SxZyRSuCYzmo6gx61S9TptTpJycnoNi/cEwJuL8ZUU9CfrtueFkExrtl+kIwRuUw8dTa5E4rIGTcCg6g3ThrDToTLysq44447KCkpYdGiRYwfPx6AQCDA3Xffzccff4zb7WbRokXccccdTJ48mT179jBr1iwyMo6WAC1evJjt27cDsGfPHk4++eTQvtTUVGbPns2uXbtYtmwZtbW1qKrK6tWrueWWW2KOzel08vjjj/PLX/4y5L6xfPlyli9fHhrjmjVr8Pv9IWNPCAr1448/zgsvvMAFF1zQb++VoOf4XB6sNc20ltXRXFqNvdGC4guEzC6BblfFdUVn0OG1hLtopI/IxdXSHnFsItLrs7swZ6bicyb21KTRkW9O0KFa0ulwtdrY/+4mVEUhe3QBo+dPJWtUPlmj8knNSkdvNiJJ0tHVex4/fo8Pv8eLJitIOh2m9BRM6amY0lJEJUYchpUIx7Odf+mll/jyyy95+umnyc7O5oEHHuCWW25h1apVtLS0MGLEiLBr5efn09jYCBBzf1NTsPH2zJkzefzxx7sd36pVqzCZTHzve9+L2FdeXs5FF12EoijcdNNNYVHwH//4R6688sowe6SeosiyMF2MRsiPUutY8kvQsFJWUAIyPqcHR3M77VVNtJXX42y1ovjlsB68UoeA9Lb19pj5U2naXx62LbMoD2djW9Tj41U/QHDRRt7EUTTsq4hz1FE0RUWTZbReCKGk02FvtGBv3Bp6/4ypJoxmE+gk1IAcbDbvC3TYMHU4MncsrzaYjZgy0sgenU9mUS4ZhblkjMghJTMNg9mErsPNWaeTACk8Wh8uS64lCX2CX3DRGFYiHM92vra2lpSUFMaOHUteXh533nknlZWVAHg8HozG8Mcpk8lEIBAI7TeZTBH7e2IxpGkaq1at4vLLL4+4F0BhYSGvv/46O3fu5P7772fChAl84xvfYM2aNTQ3N3P11Vf38N0I5/3b/xm3kbgAkCQkgsIi6SV0ej16kwFjijm0bDg9v2/OudEYu3gGX658JWxbemEOTXsORxzrbrORlpeFyxLbf85e30LR3Ck0HYg+edwVZ3N7cJGHrvdCEZMEGwS5LQ7cFgeN+ysJeP0ovgCqoqAqQcsmrbNf8jBk+orFzP2v5b0+f1iJcDzb+csvv5y1a9eyfPlyFi1axIoVK7jkkksAMJvNOJ3hza39fn8ol2s2myME1+/3k5OTk/DY9u/fT3V1Nd/+9rej7s/KymLWrFnMmjWLQ4cO8eKLL7J48WL+8pe/8Mwzz2AwGJDj+ZJ1w0X3/7zX5wqSi7vdgeINX8yhNxogSjtKe10L2WNG4G6P04xdC06mmTPTEspLu9vsTDx9bnBptGDIMewSNbFs5ydOnMhHH33EI488wvjx43nqqaf4wQ9+gNfrpaioiJaW8M5Vra2tFBYG6y27258IGzZsYP78+RHmngcPHmTnzp1h26ZOnUp7eztffPEF7e3t/PjHP2bhwoWhvPQ111zDU089lfC9BUOblgNV0KXSJlZqw9nQRkY3ZWoAqiyH1RzHw+/0gCSJ8rMhyrCKhOPZzq9Zswaj0ciFF17Iueeey4033shZZ51FaWkp8+fP5+mnn8btdofcjnfs2BGaHJs/f35okg6C6YmSkhKuv/76hMfWdXKvkw8++ID169fz9ttvh7bt37+fyZMnc+6557Jo0aLQdkVR+OY3v8ndd9/NmWeemfgbIxiyaJpG3faDEdtjxa+qrATzi91USNhqW8gckY2rLXba4lgUX4C28jpGzOz9vIMgOQyrSDie7bzD4eCee+5h48aN1NbW8sYbb5CWlsbEiRNZunQpo0eP5uabb+bw4cM888wz7NmzJzSBdskll7Bnzx6efPJJysrKuO222xg9ejSnnXZawmM7fPgwU6dOjdh+6aWXUl1dzcqVK6msrOTf//437733Htdddx0ZGRlMmDAh9NNZ6VFUVNSjVIhg6BLw+Gg+WBkmqHqTEcUXiH9iN/lRa1UjOeOK4h5zLM7mdloP1XZ/oGDAGVYiHM92/rLLLuO73/0ut9xyC9/85jf59NNPQ5USer2eJ554AovFwne/+13eeustHn/8ccaOHQvA2LFjeeyxx3jrrbe45JJLaG1t5YknnuhRG8DW1taowjlu3Dj++c9/snHjRi6++GJWrVrFo48+yuzZs/vlPREMbdqrGsPqgwHS8rNwW2J7vwVreuNf1+/0YEwzJ1yx0Xq4FkOqcNkYigjLe4EgSWiaxsH3vmLfq2s5NgExYvYk/DYn9uqmqOeNO20OzQer8Nhcca8/48LTqNi4L1RC1x3TzlvKuJNnkhFjGbNgcBhWkbBAMJzw2py0llZFFP2m5WfhsdhjnudsspA5Mv5SYwBPuwNjD6LbtsM11O8uS/h4wcAgRFggSBK22hbaymojJtjMGWkEnLF7MzibLKR30+8Bgos2Eu6oBlgqGtAZdKLJ+xBDiLBAkARUVcVe30bA3fMFNAGXF3N6areTc45GC5kjc3t07apNxdTtOtTjMQmShxBhgSAJ2OvbcLdZIUotb79Nw3RcR1MjF33EwtVio7G4gobiI/0zBkGfGVZ1wgLBcKH5YBUtB6MvK064JUIC3dQUvxxcCNKDSp7mA5XIPj9qIMCo+dNEc51BRrz7AkE/E/D4UPwBbNVNESJqSDEh+4JL5EcvmcnCn1yAzhAptLLPn9CkW3tFQ4T5ZyJYjtRT8u5XVG/ej7ebKgxBchEiLBD0M0c+343ik9Gi9IZIzcvC0xqsEc4aW8iRjzYzZvHMiOOcjRYyEpics1TUkztxVK9SHB6LnZJ3v6R+z2EcTZFtNQUDgxBhgaAfkf0BWg7VYK9rjjqxlpafhbvNRnphDq6mNpwNraQX5dO1js3ZlJgId/rSab00BJA9fvat+YKm/RU4Wqy9uoagbwgRFgj6kQPvbiJ7dAFN+8qj5nPT8rJwt9nJmTQa65GgByGahtRFhD1tNtLysxNq7+ix2DGlpXR7XExUjZJ3NtK07wgea5zubYKkIERYIOgn2muaqP5qP3qTATlGLa4xLQXZ7SW9KBdXkwUAb7ud1LyssOOC1vaJTeE1H6ikcPq47g+MhwYlb39JQ3E5/l6U1Ql6z7AX4YFwW3a5XNx1110sX76cpUuX8otf/CLkugFQXV3Nz3/+c04++WTOPPNM7r//fny+ox/C7tyWd+3axSWXXBLav3Xr1t6+HYJBwtnSzpan3iYlOx17XWvU0jTgqLBqWqhKwlpRT86EGA7KCUTCnd50PSlVi3Wv/W9+Qf3uw8jdNRgS9BvDXoQToa9uy/feey9bt27lb3/7Gy+++CJerze03+/38/Of/xyTycQrr7zCgw8+yNq1a1m5ciVAt27LDQ0N/PSnP+XUU0/lnXfe4cwzz+SGG27AYrEMzpsl6BGqqlK9ZT9fPPQqPqebwpkTaCyOnooAQqJ67F5noyVqXlhTtYTLx7xWB4YEXS7ioakqxW98Rt3OQwS8iTvLCHrPCSHCnW7Ld911F1OnTuXaa69l4cKFIfv6Y92Wp06dyr333ktDQwObN28mEAjw7rvv8oc//IFFixYxffp07rnnHvbt20dFRQV79+6lurqa++67jylTprB06VL+3//7f7zzzjtAuNvyuHHjuPrqq0lLS2P37t0AvPDCC8ycOZPf/e53TJgwgd/85jeMHTuW/fv3D9bbJUgATdOwVDSw4cFX2PWftQS8PiRJwmAyEHC6455rTE8JW7asKUpUjzJXqzWYF06Ahj1ljJzVP72CNUWj+I3PqNl2AI9N5IiTzbBbrDHQbstLlizh8ccfD2u+3vlI6ff7mTx5Ms8880yY5ZIkSSG7pO7cljdv3szFF18cdu6bb77Zn2+ZoB/RNA17QxvFr63HUtEIHM3d5kwoou1wTcxFFoZUM7LHR0ZRHs7maE86GsfGyM7GNjJH5uNsjd32shOfzYU5Kx1NVXvsBh0NVVYofv0zHA1tjF0yk7xJoxLOUQt6xrCKhDvdlseOHcvq1av5+te/zmuvvQYQ5rb89ttvk56eHrKn74vbsslkYvny5WEi++9//5ucnBymTp1KXl4ey5YtC+1TVTXkH3cs5eXlzJ8/n9tvv53/+Z//Cbkt19TUkJaWxk033cSyZcv47//+71CULBgaaJqGz+mmbtdhvlj5KhseeJm2I/V0TR/kTxlDc0lFzFREWl4Wbos9aHffFCnCXc9yNbeTXpR4bwhbdSPp+VndH5ggkiRRtWkfW555m4MfbKaltBq/y9t/y64FwDCLhIeC2/JHH33Es88+y9133x3VVfm+++7jwIEDoVRHJ7Hcll0uFw899BDXX389V199NW+99RZXXXUVH3zwASNHxpisifbe/H11eA4vxgcl4gMU4/OU8AftmOMiT9Fi/DGxMXS9oJbALxFjSPR9iHoQ+GxOfC4vOoMeY6oZndGAzmSMiF4MKSZUv4wqKzEjxvSCbNwtVkbNn0L9FnuY6HptDlJyMvBYj6YyFF8Ag8kYPC6BKLSx+AjTLziNqq0H+zVq1TQ48vkeyj7ZTsDrx5iWgjkjBUOKKehcLUlIOumEjZRzxhcx73tf6/X5w0qEB9tt+b333uMPf/gDV111VejanWiaxj333MPLL7/M3/72N6ZNmxa2P5rb8je+8Q30ej1nnnkmP/nJTwCYNWsWmzZt4q233uK6665L+L1ZdsN3Ez5WkBy2PLUGc1Z6TDHKHFOItawWkJC6fAm4mtrJGJGH19alxaUkYcpMRdInZlevyQoLvnc2Y08+qTcvQTAIDKt0BAye2/Jrr73Gb3/7W6644gp+//vfhx2rqiq33norr7zyCitXruTrX/96aF88t2WAESNGMHny5LD9EydOpL6+PuH3RDD4eG1O2g7XxI0G/3975x0eVdG28fts3/ReICH0DiE0qQKCIiAW9LNjey3YUF+7giCCBRsKqPCiUiw0KQpSpIMQaggJSUjvPdlNtrcz3x+bXbLsbnY32ZLA/C5zSc6ZMzPnEO7MPueZ5+aJBNAqbOfgquoaILYVSiAErN751LPS81nQyJQ0ZNCB6FAi3Nxt2URzt+UDBw7g1ltvxZIlS7Bjxw7k5eWZ3ZazsrKgVF79qHet23JzoTS5LZvO//PPP5g/fz6effZZvP3221bz+vTTT/HXX39h+fLluO222yzO7dmzBwsXLrQ4ZnJbBoAhQ4aY7wEw/pLJz89H586dXX9AFJ+Rtfsk9FonzDvtiKNaKoMoJMjqvKZRAb5Y6PQ8DBodZBV1KD9/xelrKL6lQ4mwL9yWlUol5s+fj4kTJ+LRRx9FTU2N+Uur1eLixYtYt24d5s6di4EDB1qcB1p2WwaAxx9/HIcPH8batWtRVFSEL774AhUVFbjrrrt885ApLqORKVGRku04JkoIwMBqizLQVAOCY329vEqCgEjn0tRMlJ7NgFappg4aHYQOZ/RZUlKCefPmISUlBX379kVSUhIyMjKwbt06fPXVV9i5cyekUil69eqFd955ByNHjgQAFBUV4f3330dqaiq6dOmCd999F+PGjTP3e/ToUXzyySeoqKhAYmIiFi9ejC5duuDw4cOYM2eOzbn8/PPPOH78OH766Seb5y9fvgwej4dz587hk08+QU5ODuLj4/H666/jlltuMbc7cuQIvvjiCxQVFaF37954//33LVLiKO2b8+v+Rtk5xy/Dut2ciKLDFxAzuAdKjl+0Ot9zxlhk7z5l8RJOGOSPmKReKL+U59Kc/MKD0PPWEegyetAN+8Kso9DhRJhCaU/IKutwfOmvMOhbrmImCBAjomccGvLLIAgQoTbd2tnCKMInAcbyA2qvO8ag4MQll8U0olccEsYlolNSb5euo3iXDpUdQaG0JwjL4sLav6HX6R0KpDg0EKraBohCg6CsqrPbjmFsBCsIjLUouK6JcG1OqXHrM4+L6AHdbYY7KL6nQ8WEKZT2RN7Bc2goq3FqhSoODYSyTgpRaCDUUpnNNhqpMVfYCkLAtrJecF1eGS79/g+KTl6CmpapbJdQEaZQWkFjWQ1y9p1xOkQgDgmEqq4BfLEQejulIlX1jRCHBVodN2i04DmZJ2wLjVyFS5sO4uyaP1FyOgMqie1fAhTfQMMRFIqL6JRqnP5hB3QardMizOFxYdC2vJpV1jUgOCEWyK+0ON5YXoeA6DDIaqWtnTIYhoG0uAopv+yFOCQQXccNRniveATHR4HLpzLgS+jTp1BcwKDV4+SyzVBJZS69KDO+/275HbhaIkNMUh+r47KyGsQk9WqTCJtgGAbqBjmydp8EAYuYgT3RaUgvhPWMg1+Y++pOUJyHijCF4iQGrR4nv92MhopalzMVCEsAlrRod8/q9ODwuFZV2DSNCggC/UDI1YptwXFRiOyXAKI3oPSccZecqzDgoCo9H5VpeRD4ixB/0wBE9k1AaEIs+H7ObxChtA0qwhSKE+hUGvy7bBMay10XYIbDATHom4S1lRmhzTIk4m/qD1alQe4fB8HhcND77okoOpsJVSut6xmGgU6pQf7hC8g7eA6BMeHoPKwPguOjEdwlGsJAP5pr7EGoCFMoDpBV1iH5u21QSVwLQZjwCw+CsloKYaAfNI3OCKVlXWHjIWOGRPyIflBXS1BzIRMAwBpYXPnjIPr83xRk7TttlWPsKgyHA3m1BFf2JIOwLHhCIcJ7dUZ4jzj4R4ciICoM4hB/cIUCKsxugoowhWIHlmVRdPwSsnb9a3bOaA3+ESGQl9dAFBYEtROZCbbWy8raBkT0jgefx0F5SqbFOcISlJ9MRaeB3VB+uQjuguFwYNDpUJ1RiOqMQmNcmyUQBooRGBuB4LgoBMSEQxjsD7+wIAiD/CHwE7qlqPyNBBVhCsUGKokM53/eBUlBBcC0rVauX0Qwqi5kI6JPFyhr7G/UAJrS0UQC6DR6i+OKGil63n4TUldtsxnRaCypRsyIAcClfKAN6WwtwTAMwGWgVWpQl1eGurwyAKZ4Nwu+vwiBnYziHBgTBmGQPwJjwyEODaIZGC3Q4X9ltQe35by8PDzxxBNISkrCpEmTsGbNGou+HbkttzQ2xbsYdHpk7foXRz5eh/omAW4rXD4Peo0WotAAhythVX0jRKHWucJRA7qi4O8TQAubNqpTriCql/er7zEcBgyPC71GB0lBBQqPpyJty2GcXfMXDi1ai1PfbkHOP2dQk1VEiwrZoMOLsDN40m1Zp9PhmWeeQWxsLHbs2IEPPvgA3333Hf78808AzrkttzQ2xTuwLIuyC1dwePHPyN6bDL1G576YZ1N6Gt9PZHejhgm1RGa1YSMoPgpaqQyK8poWfylIC8oRkhALtJOfHZPjhqSoEll//YtTK7bi9PfbUXj8EuRV9bTmcRM3hAh70m25qqoKgwcPxoIFC5CQkIBJkyZhzJgxOHv2LADHbsstjU3xPCzLoupyPo5+ugEXft4NlUTu9pgm25Se5gwqSSNEoZb5uvGjB6L0xEVjGMKBcKnrGyAUWdtutQcYDgeSwgpc2nwAx7/4DZk7j0NSWAHW0D5+afiKDifCubm5eOihh5CYmIgnn3wSUqkUgNHJeMGCBRg9erT5XH6+sVKVPbdlkxC25LZMCGnRbTkuLg7Lli2DSCQCIQTnz5/H2bNnMXr0aABGt2VTIXidToctW7ZYuC23NDbFc+g1WpScvoyjS9bhzPc7IK+sd0vo4Vr4fiJoncqIMKJpUEAUfPXnNDapN6ouZIEhxCJP2B6V57IQm9iz1fP1BgzDQK/RIe/QeZz48necWbUdFam5N2yookNFy01uy8OGDcPixYuRnJyMJUuWYNiwYRZuy8HBwfj888/x7rvvYtOmTW5xW25Oc7fl5tx8882orq7GpEmTMHXqVItzeXl5mDlzJgwGA15//XWz23JLY1PcB2FZaOUq1BeUo+x8FuqyS6GRK42rXg9WFwuMDUdjabXzAm9a6RIChstBaPdOyN56wJgxYWDBcDkgLawctXIl+H4iY+zYQy/o3ArDoCarGNUZhRAFB6DLqAEI7d4JwXFREAT6gXMDZFp0KBFu727L3333Haqrq7Fw4UJ88sknmDdvnvmcPbdlV8ZuiZz9Z6DXuHZNh8esV1eFixACYmChU6mhlaugkasgr6qHukFhjFEyDJhmJSGJh+OnAVGhKMooABhi01HDPgSdR/ZDxel0c8YwIQQchjE7dNhDXdcAkZgPpbJj/TyoJI24sucUwBKwBgJhsB/EoUHwDw8G308ErogPLo9n/vtjGI7Vc2AYxuuxZi6fh963j2r19R1KhNuz2zIADBo0CACgVqvx9ttv46233jILrD23ZWfHdkTMoO5gHRQWv35gLP7IMIw5jYzD5YDD57WbXFUOj4OqC1eA4ADo5Cqn7OsZADyxECEJsahOTrPUGYYBXyxssTZw/ZUidLtlOOLGJbnhDtoXhGXB6vRgDaxRbJt+8Vr+fvOuCAuD/B03aoEOJcKAY7flY8eO4ciRI/jhhx+wefNmbNu2DdHR0cjKyrK4zhm35ea29Vu2bMEHH3yAJ554wsJtuaqqCunp6Zg8ebL5WI8ePaDT6SCXy1FdXQ2lUmkRU+7Zs6fZWNSZsZ0hMDbCpfYU76Cqb4ROpUFQXKSxjrCTYYmIPl1QdznPqo6EceccCy7X/j9dnUIFDocBq9XCLzK0rbdA8TDtY7ngJO3RbTkvLw8vv/wy6uquJuFfvnwZYWFhCAsLc+i27GhsSsdGXlkHYjBAFOw4R9iEplGByAHdUHc530q0nQ2fKGukKD9z2eX5UrxPhxLh9ui2PGLECPTo0QPvvPMO8vLycPjwYXz55Zdmc1BHbsstjU3p+NTnlQEMA2FwAFSSRqeuISwLTX2jzXxf4qASm4najHxqZ9RB6HBGn+3NbXnMmDEoLy/HokWLcObMGfj7++PRRx/Fs88+a04ncuS2bG9sSsfn1FcbUZ9Xiu5TRiB7+xGHeb4A0O//JqP40Fmo6xpsnufweeDwOA7j3r3unoi4cYkQBPi1ZuoUL9HhRJhC6SgYdHocmrcaWrkS3SePQPb2w44vYhj0nTUReX8eA6vT227C44JhGHAFLb/SiZ8wDAGxEegycWiL7Si+pUOFIyiUjoSyRgqtzLRRg4Uzb+1De8ahPquwxdgvcTILpvZyHvRKlVNtKb6DijCF4iFqrxSZZdc6jco2EX26oDazsCmU1fIFxMFWaFWtFAyfB4OdFTWlfUBFmELxEJUXc8w5zMTgXNSP4XKuVkpr4RLCsk7lhWukctSm5zo1NsU3UBGmUDyAXq2FrKwWAIyOGg1yB1cAQV2iISu+ul29JdkmBtaplOO6rALIK1quYUzxLVSEKRQPUJ9XCq3CmJcuCgmEur7R4UaNyP7dUXM5z+kxCEscroblZTXgCvge355NaT1UhCkUD1B07KI5hUwcHgRljaTF9mG94sEV8cFqjPVMnKmYxuoNTqW8aWVK1GUVOjdxitehIkyhuBmtUo363FLz9+LQQCjrbef8AkBQfDRih/YBdM1qiLDEqc0WrMFxbLg+pxjS/DLHE6f4BCrCFIqbKT6ealEbl+FwWkwrixrUA4V/nwCPLzCvbMm1NSPsQAwsCEtaDDc0FJSDJxLSkEQ7hYowheJGDDo9io6mWIYSHKSnMVwODGot9BotuDxO0yWOwxEmWJ0OBq3eWGfY1jiEQCdXoibd+XgzxXtQEaZQ3EjuvtNQXVOohxDWfuyWYYyuGQYDZCVVCIyLvqaBM6ltDIiBhV6lgU6lgUGjA6s3WOQRV13KgayEGgW0R6gIUyhuQlnXgMLDFyxiuRweF4aml2228I8MhapWCkII5GXVCOgUadnAlaICTQXfWb0BBo0WerXW/PJOUV4LrlAAvfrGtBBqz3R4Ee4IlvcmtFotZsyYgeXLl1scnzp1Kvr06WPxlZmZ6cpjoPgYg1aHM8u3QqeydFMWhwVBVdtgN74bEBsOTX0DQAjU9Y0QhwdbrJpbX9jFKMgGzdVQhby8FqWn0lrdI8UzdHgRdgZfWt43x1SusjlarRYlJSX4/fffceLECfOXq0XdKb5Dr9Hi1NcbIa+ut4rjisODoayV2r1WHBECjVRuDB0Qck39dufjwi3B6g3Qa3SoOHsZBqUGksJyVKRkI//gORSdSEVNRgG0CrXjjigeocM5a7QGk+X9r7/+ioCAAPTs2RMnT57E1q1b8dprr1nYzgNG0R07diySk5MxYsQI7Nq1y8JxecmSJbj55ptRUFAAoVBotrwXiURISEgwW97feeed5jlkZWVhy5Yt5mLuJvLz88EwDAYNGmTlWUdp3xCWoD63FBc37IWqTmpTMP2jQlGTmm23D76fEDqZpRszAwLStJJ1m2caIdBIZdApVDj52S8gTXZQpvsI6dYJCeMHI7J/V4iCA9s+HsVpOtxKuKNZ3gOAwWDAe++9hzfeeMPKOy4vLw9xcXFUgDsIhCVQSWQoPJqCE59uQPK3m6Gub7C7YuXyeTC0YMDK4XItSlayeoOxfkTTWO51gmZQfjodnZJ6W8yX4TBoKKpA6oa9OL5kAzJ3HEP5+StoLK+hMWQv0KFWwh3V8v7HH39EaGgo7r77bmzatMnimtzcXHC5XDz99NPIzMxEt27d8OabbyIxMdGlZ6NpVJjDJxQ30JR7a9AZoJUrIa+SoD6nBPW5pVBL5SAGg3N5vCwLsPZzfgUBYrC6qy/u1BIZxKFBUNQ1mt2VWeKcm4YzKKvqETduSNP8rddgGpkCeftOAyAgLIEgQIzghFiEJMQgICYc4tAA8APE4PL5YLicpgJFbppcB4VhGIiCAxw3tEOHEuGOaHlfUFCAH3/8EX/88YfNe8rLy0NjYyPeeOMNREdHY/PmzXj88cexa9cuxMXFOf9svvwdWhmtHesWjIXPwHA4YDgMOHw++P4icLhciEICIQpx/uM6XywETGJlAy6fa5G9pqqVQBwRAkXdVSskDte9H1hrM/IRM7A7NCr7WRvNMWh0qMsuQW1mIXRKDQxaHViDocnpGN42N253dJ8yDL2mj2n19R1KhDui5f3777+P559/3q6gfvnll9BoNOZQycKFC3HhwgXs2LEDL730ktPPZtKHTzvdluI9Co9cAN9PZFOE+f4iaBst48GqWinCB/YEk11sPMCY7Iy4bpuTrKQKfW4aiM6jB4HvL3Zbv5TW0eFiwo4s75ctW4YuXbrghx9+wAMPPAC1Wm3XVt6R5b3pPGC0vH/jjTcwe/ZsK8v7gwcPWlxrsryvqanB+fPnsWzZMiQlJSEpKQkXL17EqlWr8PTTRtHk8/kWsWqGYdC9e3dUV1e39hFR2hGNxZV2V8F+EaFWPnIaqdz40db0c06cd1h2hYaCcpQcS3F7vxTX6VAi3NEs76Ojo7F//37s3LkTO3bswI4dO9CvXz88+OCDWLJkCQCjG/Pq1avN17IsiytXrlhlUVA6HoQQSAvsF84J7RkHReU1tX4JsTDw9FS9h6rUbHCo60a7oEOJcEezvOfxeEhISLD4EgqFCA4ORnS0cXvqxIkT8eOPP+Lo0aPIz8/HwoUL0dDQYDPcQelY6FVaaBqVds8HxUdBWV1v40yzzRosAeOBN19Eb4CqVoqS43Q17Gs6VEyYz+dj9erVmDdvHmbNmoW+ffvi4YcfRkZGBh555BFUVVXh3XffNVvemzIlAONLs/fffx+zZs1Cly5dsGLFCnOcNi4uDsuXL8cnn3yCH374AYmJifjuu+/A4XDML/4OHz6McePGWczHZHm/atUqLFq0CP/3f/8Hf39/PP7443jsscecuqfnn38eLMtiwYIFqK+vR2JiItauXYvAQJqr2dFR1kqgkyvBcG3Hc3kigX3HDXMVNWKUZCerqrlCxdkMdL3tJrdtCqG0Dmp5T6F4iIJD55C55aBNgePweUh8YjoufPGL1bnuM29G3q7jIE3XcXg8MBwOOHz3vZwzjzVtDIK6xiI6sbfb+6Y4R4cKR1AoHYnajHy7K8zgLjHGmhI20DbKIQj0M39PWGKsxOYBKs5mQF5e47ghxWNQEaZQPIBBp4esxH6GS3BCDDRSmc1zaokMotAg8/eEZT0WLlDVSsEwHKhaqG9B8SxUhCkUD6CorIe6QWH3PIfHtZv5oJE0QmixIcS4KYIYPLMabiiqQOnJSx7pm+IYKsIUigcoP5dhdzsvh8cFq9XZzXnQSGUQhVq+mCUGA1gPiXBtWi54YqFxFxzF61ARplDcDGFZVKVk2w0hBHWJRkNxhUXhnuZo5SoIAv0t6wqzrClZwogbazawegN0ChWqUuxXe6N4jg6VokahdATkFXVQ1tl+6QYAIQmxqDhzGSJ7W4avqStsgtUbwBOL0O22m8DqdOBwuVDWSlFxru0GANWpOeDwqBz4AvrUKRQ3k7vnZIsv0zgCHnjCFnKEYduSjiPgoccd41C447C5BnFY/26IGzUQpcnpbZqzoqIWXAEfWoUKAlpPwqvQcASF4kY0jQrUZhTYFWCGywGr1UMY6GdVvMeiHQMrJe45czwKth+0KAJfn1EAvUyB0K6xbZ67vKIG5dT+yOtQEaZQ3AQhBOm/7oVOZb8QenB8NBryyyEI9oem0f5KGLAM+caO6I/61Bzo5dblSiuT0xDRryvAsiAGtskqyfX5V6fmmPbnUbwIFWEKxU2UnryEmsv2V8EAENKtEyS5xRAE+kEvs19XQqdQgednLLXK4fMQFBcNSVaB3fbFB04jYeJQ6JVq6NVNNX91erPbsjPolWoQrR7yilqn2lPcQ4cXYV+7LW/bts3KKdn0VV5eDgA4fPgwZs6cicGDB+Ouu+6yGtvEzp078dBDD7X2UVB8hF6jxZUdR5G5+aDDqmccAQ8GtRYcHs8okHYwbtgwpql1mTgMZYfPtpgMoalvhEGtRUBMWJPtvR4GrQ4GtdZYiF2jM+YZO9DjmowCVKfmtNyI4lY6vAg7gyfdlqdPn27hknzs2DEMGDAAU6dORadOnZCbm4u5c+figQcewO7du3HnnXfixRdfNI9tIjk5GQsWLPD6s6G0DoNWh+pLuTj33VYcnbcKeXuTHZaF5PCNAuzMylQjaYQoNAhcocD4Eq/efraFibIj59Bl4jDL/hkAMIqyXqWBTqWGQaMDqzPYDF1I80rAFfA8VkKTYs0NkR3hSbflHj16mB06AOCXX35BeXk5fv75ZwBGgX/00Ufx6KOPAgD+85//YNWqVbh48SLi4+MBACtWrMCqVavQtWtXLz4VSmsw6PQoS05H3p5TUNU3mGv/Mk4YcoZ0jYU0p9T4jQMhVksaEREfjc7RYag6edGpuREDi9qLVxA7tC8qUq5YN2h62cfq9Rb5xgyXAw6X02TnxIGqrgE16XmIGtzLqXEpbaPDrYTbm9tyc+RyOVasWIG5c+eaS2iOHz/eXAhep9Nhy5Yt0Gq15oLxAHDmzBn89NNPuO2229zzkChuhzWwqErNwYmPfkT6r/uglsosiq87Q1CXGEgLSp3aZKFpUEAQ7A9xaBDULtR1kGQVIqR7J8d2SAzMq2RiMMCg0UGv1sKg06HibIZ1sXmKx+hQImxyW46Li8O2bdswZcoUbNmyBQAs3Jb//PNP+Pv749133wVg303ZFbfl5r529tyWN23aBIFAYC4W35y8vDwkJiZi3rx5eOGFF8yrYFN/zX8JUNoHrMEAlaQRRcdScGLxT7iwahuUtQ1OrXptYdyubAxZOOyBEATERKA+PdflcUoOnEHPaWOcfiF3dUIErE4PRXkt9Gotio+lQF5VR903PEyHCke0Z7dlQgg2bdqERx991GosAIiMjMTWrVtx4cIFfPrpp0hISMDUqVPb+kjMnFy6AXq7qVHE9h9b+kdq55zVNcT2NxbNnBWD5tt07Y7RUjv741jMu8XOjejkKui1OvCEAqNRJ49r3ErcSvh+IugVKoAQcAR8p4RNFB4MyZUil3cnaySNkBWWo9OI/ig/l+X6ZBmgsaAcqgY5MjYdgEGngyDADzwhHxwB/xqbe+vZ3Wj14cN6dcGAh1r/KbZDiXB7dlu+fPkyiouLcdddd9mce1BQEPr374/+/fsjOzsbv/zyi1tFeMxbjjNEKL4ldc0O8APEEIUFGR03WmjLFfKhqWsE00rPhdrUbMSOS0LXW4aj7Ey6y3nDddlF6HPvLYifMBQcO84gFPfQocIRQPtzWzZx7NgxJCYmmr3jTGRlZVmYiAJAz549IZFIXLxzSkeG1RsgzTW+lBME+EHbwpZlAIgY1AtVZ9q2FbniRAoa84rRY+podLvtJoT16gIO37l1FzGwkJfXouLM5TbNgeKYDiXC7dFt2cS1L/dM7NmzBwsXLrQ4dvnyZeqmfIMhr6iFWmIs4i4I8odWZn/LMgAExkdBmlPc5kJpsoJy5G35B0V/HQWrVKHL2ER0v+0mcLiO/+lXnL0MvUpL09U8TIcS4fbotmwiJyfH6kUdYLS0Ly4uxtdff43CwkKsX78eu3fvxnPPPeedh0ZpF1ScvWzeEiwI9IOmhYLvYBgQQmBQa9wWYGW1ekizClD411GUHT6LntPHOrzGoNFBXlaNSjdUaaPYp0OJsMltWS6XY9asWdi8eTMefvhhAMAjjzyCWbNm4d1338W0adNw8OBBs9syl8vFd999h/r6esyaNQs7d+606ba8c+dO3HvvvaitrbXrttz869y5c+a51dbWWsWQASA+Ph5r1qzBiRMncOedd2LTpk349ttvMWDAAK88M4rvYVkWVReu1hcWBPpZFOG5luDundGYXwaw7ndYBoy768qOnkfcTY5/BstOpRm3QdMMCY9B3ZYpFA8jL6/ByUU/mlfCXW8bhfxth+xmc3SdPgalB8+AaHTGqmsectToOmMcys9mQKuyzgJqTkj3zug0ehDixyd5ZB43Oh1qJUyhdESKj6eAtXBLJmgpXYEr4IPV6IwtPJjvVXr4HDqPHuwwhVCaXwZVjRSS3JIW21FaBxVhCsWDsHoDaq61OmpBgxkuF/DSizC9Ug0YDODyHMtA/v5TaCiqhLKGZvW4GyrCFIoHqcssgFrSaHmwhZVnUNdYNBaUe3hWV6k8nY6YoX0dtmPA4MrWg6hOzYaiqt4LM7txoCJMoXgIQgjy95y0Dim0IMIhPeMg9eLHflWNBOLwYMAZp2VCkLXlIEqOXoAkr9Tzk7tBoCJMoXgIRVUdGosqLY7xxELolGq71/DEQhhacObwBPKSKvhHBDvVlmEYFB06i8yN+1GVcgV6tXfnej3SobYtUygdiazNB2HQ6y3iwYJAf4e75SwgBM2d7tuCOCoM4QO6QxB0tZogGKAhrxSRg3tBceSC0y8CZSVVuLhmB/rcMwlhfRMQFBft+CKKTagIUygeQFZWDUlOsZXVkSDIz67LMj/AD7prLI8IIQCHMeYMuwhXJEBYv+4ISogFGEBdXY+6lCxoJI3mnXgMh4OQ/t0R2DkSgZ0iIKtwoYSlgUXWlgOIG5OI6GF9ETGge4vWThTbUBGmUNwMYVmkr90Fg1ZnJUrCQH80VNkWuqCusWgsqrimM2PBeEcGnILgAAR0jkJAfDT4YmNhKoNWC2lGPgpSMi0KATWfEWFZSNJzIb2ci7jbxiAgNgIVF2wUhLcDwzAoO3UJsrIasDo9Igf3pAV/XISKMIXiZgoPnEFjSZXNVaEgyB9aqe3dckFdYlD8T7LFMUIIGMb61Y0oPBhRw/qB7y8GCIFWKoO8tAqVx85Dr1RbCK0za1NCgLIDyQhL7I24kf1ReibDiauu0lhcgYzf9qGvwYCowb3AFViXc6XYhoowheJGGooqkP/3SbvneSIB9GrbL+Y4Ah6Ig+3BgiB/dLl1FLRSGapPpULXaC3obQkI1F7IQuSwfohN7ImKVNcKymtlCqT99Bf6PzwV0Ul9jL8gKA7p8NkRvnZbBoCGhga88cYbGDlyJMaPH48vvvgChmYpPy25Ld9yyy02nZpNriCUjoOiuh4pK7e0mDFAWt4s1yJhA3ogfspIFP91FGUHkm0KcJsgRgGvOZ8JvoCP0C6uv2wjLIv0DX+j6OBZKF2wZbqR6fAi7AyedFsGgA8//BBVVVX45Zdf8Pnnn2PHjh1mo09Hbstbt261cGteunQp+Hw+HnnkER88KUprqbtSiDOfb4DaQeaD0UXIWoW5IkGLqWnRIwdAHB6Ewj8OwqBpudZDayEsCzT55pUdPI2Ivl0hCnLdTYRhGOTuPoGcnUdRn13csoML5cYQYZPb8qJFi9CzZ088++yzSEpKwtatWwHAwm25Z8+e+Pjjj1FRUYHk5GTodDrs2rULb7/9NoYOHYrevXtjyZIlSE9PR0FBAQDg6NGjePzxx9G7d2+MGjUKd9xxB5KTjbG95m7L8fHx+M9//gM/Pz+zyWhYWBgiIyMRGRmJgIAAfP3113jhhRcwcOBAnzwrimtoZApc+ulPXFixBVqZ0mF2gD1BCugUCXlZtc1zYf27gycSoPLo+TbPtyUILDPUCrYfQtdJQ52qPXwtDMOg8mwGUv+3AyXHUqCg253t0uFiwrm5uZg/fz4yMjIwdOhQdOnSBYDRyXjx4sXYv38/lEolhg4divnz56N79+523ZZNpShbclsePny4Q7flkJAQ/Pnnnxg7diwaGxtx/PhxTJkyBYDRbXn8+PHmOe7YscPKbdnE+vXrwTAM/vOf/7jxiVHcjV6jRWNRBYoPn0ddViF0SrXzqVn2RDguCnU2TD39osMQ1LUTinYebsuUWwUxGFC8+zi6T74JufuSW1VMSCtTIOO3vRCHBaPLxGEI6dEZgXFR4ImEHphxx6RDibDJbXnYsGFYvHgxkpOTsWTJEgwbNszCbTk4OBiff/453n33XWzatMktbsvNudZtecGCBXjrrbcwdOhQsCyLUaNG4eWXX7a4Ji8vDzNnzoTBYMDrr79u4bZsureffvoJr7zyCoRC+gPqKqxeD51CDU2DHGqpHAa1BjqVsQ4uT8AHTyQAz08EYUgghEH+4PuJHNvCw+i4rFOooayuR312MeqzCiEvq4FGpjS7LjsrwHw/kVUesAlRaBC09ZY1JhguB/FTbkLe73ud6t8dEJYYU+Ka8pI19Y2QZuQhNqk3Ki7mtKpPhmGgljQie/thEJYgoFMkIgZ0R1BCDPyjQiGOCAXfTwiGc0N8MLeiQ4lwe3VbLi4uRv/+/fHiiy9CLpfjo48+wmeffYb333/ffJ0jt+U9e/YAAO65555WPZvcXcdh0Opada0FxPQ/YvG98c+Wq7iW3ZotrzG3tHGNuZ+rjSxdoVnj2yxjMwKiN0ArU0KrUEErU0IjlcGg1oLhcsBwGDAcrs1VGyEExGAw7kLjcCAI8ocwOAD8ADG4XC7A4YCwLHQKFXQKFdR1DdCb++UYK5w10RrBEIYGWRfzaYH4KTeh7ECycc5eghACDodjkZcsychH/O1jEBgdBllV28IKDIeBorIOikpjrjQx6EEMBDyxAOKIEAgC/cH3F4PvJwSHxzM++6bnD4a5+vPTjvaEED2LvvdPafX1HUqE26PbcnFxMT7++GMcOnQIMTEx5v6eeuopPPfcc4iIiADg2G15z549mDp1KsTi1qX1dJ088rp9AcIwjHHV2dFXSgyDzA27wfMTWZ/icix0RRgWBA6XA1Xl1Y0d3tMdBlw+z+IXWfnhc+j92B0I7pMAcWSY12YCACAEhGXNq/P2hrPmqfboUCIMOHZbPnbsGI4cOYIffvgBmzdvxrZt2xAdHY2srCyL65xxW+7Vq5f5+y1btuCDDz7AE088YeG2nJ6eDn9/f7MAA8ZfDAaDAeXl5aitrTXHqE307NnTwlhUq9UiOTkZy5cvb+1jAU9MQxgdAVVtg9UxfoDYKt0sfvJIFF4TBybwjhATQgCWgLEI1xDkbdmPXg9NgzgsBFyRwO71FNfoUEuL9ui2HBUVhcbGRlRUXN1umpeXB8DoXeeM2/KVK1eg0WgwbNiw1j8cSruHEAJ1rfXHef/YCCjKry4CAuKjoayoAatxQ3ipNbCszXCOQaVByT/JqPj34nX7qcsXdCgRbo9uy0OGDEG/fv3w7rvvIisrCxcvXsT8+fNx1113ISwszCm35ZycHHTu3Bl+fn4+ea4U72DQaGGwIaz+MRGQl13d/BMzahCqTl7y5tSssbOpRFFSCXlBGUoPnvH6lK5XOpQIt0e3ZR6PZx7n8ccfx0svvYSRI0di0aJFAJxzW66trUVwsHP1XCkdF51CBb1SZXWcH+gHXaPxU5pfbARU1fVefRlnG2Mc1hYV/6aA6HSouZDp5Tldn1C3ZQrFS0jzSnHm45+sMiu6ThuDgj8OAgC63zMJxX8dBWunhoTXXs4xjDEjxI7/HEfAR6+HpyG0X3eIo7z8ou46o0OthCmUjoyiotb2hoemdRBXLASr09kVYMA9xd2dgjQVkrAzIKvVoWjXMdSn59pdMVOcg4owheIllJW11vWFQwKhadqkETNqEKqT03wxNdsQ+yEJAFDXSiHJzEe5h7dTX+9QEaZQvIS8vMbqmH9MOBRNNSPEESFQt6MaC4QlLZqSAkDNuQwQlkBZTR2YWwsVYQrFCxCWNYYjrsG/UwQU5dUITIiFrKDMub7cPTm7A5GmXWotNyvZfxJ1F51346BYQkWYQvECepUGOrl1ZgRXJIReqUHE4F6oS832wcwcQOBwNayurger00NypajFdhTbUBGmULyAqq7BttV9k8BxBDywTtT+YDgcRN00EMLQIHdP0SaEOLdduPzoOcjyS7wwo+sPKsIUihdoLCy3nRnBEgT3jEdDTrFT/XS9ayK0NfVImDEOHL4X/vmyxKm8OFMsuzHfuZAK5SpUhCkULyDJLrbOjAgNgrpOirD+3VGfnuewj+DeCVBX1kCeX4qy/ScRO26ow2vcAoFRjB1QfT4DdWmtK3d5I0NFmELxMCzLoiHP+qN6QKcIKMpqwOEygIMdchw+D1HD+6PmVCoAYxxWHBECYlF00jM4G5KQ5ZUaaybLbddMptiGijCF4mE0kkaoJTKr434x4QBYKEpt2xo1J+7WUSj/x9LFWSNphCjE6BbTBv9QxzgZkgAAeWklzRt2ESrCFIqHqUnNAau3XulyhQKE9EpAfXrLH+EDu3WGQa2G5pocYsnlXIT272FxjMBDguxkSKLmfOYN65DRWm64p1VaWoo+ffpYWNpTKJ6CEIKKk6m2LZAIAd9PBL3CRtZEE+KoUESPGoiqQ9ZVy1QVtfCLjYA9ySUOvly7D9ap7cl6hQogBLLiCodtKUY6XFF3CqUjIS+vgazUeqccGIDD5UIntW935NcpEp1uHorCzfvstmEAMCAgrSjt40iILXpkCcDjOFVZvrGwDHqVGoFdYl2e043IDbcSplC8BSEEWb/sBau3LsgjCgsG308IiQ2HZQAQRYQYBXjTXsBgfwWqV6jBt2GX5A6sVs4mjz6WtKjg9ZdywPMX08LvTnLDivChQ4dw6623YvDgwXjuuecgkRjjbSdPnsSsWbOQmJiIGTNm4NChQwCAbdu24f7778fXX3+NoUOHYsKECdi4caNTY+3evRsjRoyw8LE7duwYbrrpJuh0OlRXV2Pu3LkYMWIEBg4ciLvvvhtnz551/01TvAYhBLl/HERDXonNUERAp0iAYcx1I64lfuoYFG3Z73C3mqygFEHdOrtlzo4gLAtCAINOD1avBzGwNgXZoNGC6A2Q05CEU9yw4Yht27bhyy+/BCEEL730ElavXo377rsPzz77LObMmYOvvvoKR48exSuvvIK///4bgNFKKTAwEBs3bkRaWhoWLFiA2NhYTJgwocWxbrnlFsybNw///vsvJk2aBOCqsSefz8dbb70FPz8/bNy4EYQQfPHFF1iwYIF5XGdQVNbRkoK+gJBmq0QCg0YDeWk1Sg6fg6Ki1u5q0D82AroGuc1zof27Q5Ke41Rhd3lhOWKnjELt5YI23IRzEGL0WiUwFvchrHF+ZiNWxhgcYRhjxThVrRSdp4wCmKYIhq24+PUAIQjoHNXqy29YEX7jjTcwePBgAMC0adOQlZWFrVu3YtCgQXjppZcAGM1DFQoFFIqrJoyfffYZIiIi0Lt3b5w5cwabNm1yKMJisRiTJ0/G3r17MWnSJGi1Whw4cAArVqwAAEyaNAm33XYbYmONMbRHHnkETz/9NAghtl/o2ODy2r+gtfOPmuIFGIBhOGB4XAgCxBCFB0MUbt8tJahrLOrOZ9g8FzqgO4q2/uNUlNeg0YIrFMBrNqDEKLrXDkVIU8W1poVxbcoVRN00CKnfbfZixSHfkHDbKCrCrSE+Pt7858DAQGg0GuTl5VnYDgHACy+8AMC4Co6Pjzdb2ANGV+VffvnFqfFmzpyJ119/HVqtFv/++y9EIhFGjBgBAHjooYfw999/48KFCygoKEB6ejoAwGAwmN2kHTHynSecakdpH2gaZMj7ZbeVbHL4PBCNFoyL8VROK1/OuQphWTA8Lhhuy5FMvVIFcUQIhr8xG6Iwat3VEjesCHO5XIvvCSHg8/ktXnOtIBoMBnCczIkcO3YseDweTp48ib1792L69OngcDhgWRZPPfUUGhoaMH36dNxyyy3Q6XTm1Tjl+kQjkUFVI7GSzZC+3dCQ5VpoQS9XgB/oB63MfqqbWzHlDHNaFn1NgwxVyWlImD7OO/PqoNywL+ZskZCQgMxMS/PCJ598Eps3bwYAlJSUQC6/+pE/PT0dffr0capvHo+HqVOn4uDBgzh+/DhmzJgBAMjNzcXZs2fx448/4vnnn8fEiRNRXW18WUPfLl+/KMqqba5bg3rEodHGFueWkBWWIzDBOy/nAOe3MUuvFMKg8tIvhg4MFeFmPPTQQ0hNTcXq1atRVFSEdevWISUlBaNHjwYAqFQqfPDBB8jLy8PmzZuxd+9ePPLII073P3PmTOzcuRP+/v7meHRQUBA4HA7+/vtvlJWVYe/evVi+fDkAWGRTUK4vJBn5No8zHKbFlDRbKIoqENAlxh3Tcg7TNmYHOiwvrgQ/wM9mih7lKlSEmxEfH4+VK1fir7/+wh133IFt27Zh5cqV5vhxVFQUOnfujPvuuw9r1qzB0qVLzXFdZxg2bBhCQ0PNq2AAiImJwcKFC/Hzzz9jxowZWLVqFebNmwc+n2+1KqdcH7B6A+ptVBtjOBygFRkuBo0WXJEQXn0DxrbsPwcAIAQGtRbSrEKvTKmjQi3vnWTbtm1YtmwZjh071uo+VCoVxowZg61bt6JHjx6OL6Bcl6jrG/Dvy59aaWZAfAz8YkJRd/ayy30mzJqC/G0H4ZUMiSaceUEXPToR/CB/9Hrwdi/NquNxw76Y8zZ79+7FoUOH0LdvXyrANziNheVmR/nmBHTthMZMx3WFbaFXKMH3F0Gn0LR9gs7SlBvNcO0LvzSrAJ0mOf9p8UaEirAbePHFF3Hy5Em759944w2sX78eer0e3333nRdnRmmP1KVm21yviiKCUV0nbdVaVl5UgcCEWNRnFLZxds5DDCwYnnGDhj00kkZweDzoZArwA/29NreOBA1HuIHq6mqoVNYmjibCwsIQGBjoxRlR2issy+Lkq59DUyu1OtftnltQvP1Aq/rlikWImTgcxXvsLwY8AcPlAAzTYlgi4Y4JEIaHoPPEYV6cWceBroTdQFRU63fLUG4sdDIlNHUNds62fj1kUKnBE4vgtZ1zTRhXw9wWh20sKEWgE1uwb1RodgSF4kUaC8ps5n9z+DywOstULq5I4FrnPvpQSwwt1xpuyCkGP8if5r3bga6EKRQvUpeSZXPB6BcTAVXl1brD8XdMAE8shCyvBLUXnEtVNKg04ImF0Ku8nF9OmtLVTIV8roHV6kD0LFTV9fCLDvfu3DoAdCVMoXgJVqdH7cUrNs/5dYqEsrwWACAMCwar1aJ48z4E9eziMA3MhLy4HIEJPiqkzrZca1jT0Iiac66n3t0IUBGmULyEsroeahsv5ABAHBUGVVUdACBi5EDUJV8CANScvIjomwY71b+8sBwBvhJhAGAJWF2zOsPNkGYV2vTZo1ARplC8hjS7yG51NA6Pa7a95wf4mWsNK0sq4dc5yql4r16pBt9P7L4JtxLWYDCKsf7qylhRVg2eWERrXtuAijCF4gW0jXI0XCl02I7D54Fc84JOJ1NCEORkji3jRFEHD2OKChMD2+TCYQDRszCoNWjMK/Xp3NojVIS9iLNOz3369Glx8wel41Gblof6zJZKVBqFM6BrJ8gLyizO1KdkIizRuWp9BrUGPFHLJVm9CQMALAtWr4e8qBLlJy5Ar6GFqZpDRdiLxMbG4sSJE4iLi2ux3YkTJzB8+HAvzYriadR1UmikMmjtxIMZLtf40R1AYI94yK8pZamurIVfdIRTIQlFcUW7dDlmANSn54LDcFC0+zga7KTq3YhQEfYiXC4XkZGRVgXlryUyMhICgYs5opR2Cas34NJ3W0C0OrsiKgoPhqZeCgDg+4mhlyut2hDCGqusOUBWWI7Arp3aNGdPYdq6XLjrBC59+zvKjpyDqlri62n5HCrCXsQUjti4cSP69OmDU6dOAQAaGxsxbtw4s+ccDUdcHxi0OqSu2Ai9Ug1leY3ddqLIUKhrTGJkW6hleaUI7hFv81xz9HIleIEBdvvxNaxOBw6HgbZRiawNfyO1SYwVFbU37Es7ulnDB4wePRqzZs3C4sWLsXPnTnz22WcIDw/Hc8895+upUdoIqzdAK1Og9lIOivf+C2WVBHGThqPmVKrda0QRIZCmZYPhcOw6VjRk5KHztHGQ5hQ5di1mWXA4TGtKE3uchuwiBPeIgyS3FAzDQFFRi8z1u8ET8hE5tB/CBnSHODIUoogQ8P1E4Aj4TpvddlSoCPuIt99+G9OnT8fbb7+Nffv2YcuWLQ497loiecEPFlYy1p98ScvfOorPXXve6lti95yNztw6lxbv9dpz117roG9Xxmb1esDAgisUgOcvAofHgzgiBH7RYdDJlHbFUxgSCI2kEX7R4VA35QpfC6vVgePkz0djbjGCe3WBJNs1myRv0JBbioSZE6Csb7QSV2lOMaQ5xTBotDBotGC1OoDhgCPkg9NUu5jD48LZ2hiuaXfrhT5icC/0eXR6q6+nIuwjQkJC8Pbbb+Ott97Cf/7zH/Tr169N/Y36cI6bZkZxN/LiSjA8Dhg70T+GzwNDCPw6RULVQthCJ1NAEOQPrcw6ZtychqwCxE0fj4aCcleVyCvwxAIMfuE+BHVr+QX1jQKNCfuQrKwscLlcnD17Fmx7/OxIcQs1KZktr+6bzvl1ioSyotpuM0laNkIH9nI4HqvTgysUtMoqyRvIiipQezHb19NoN1AR9hEZGRnYsGEDVqxYgeLiYmzYsMHXU6J4iLrU7BbjmqYzHD4fRKOz205VXgO/Ts7tnmvILkRwT8cv8nxBfXoO+P4iX0+j3UBF2AcYDAbMmzcPM2fOxC233II33ngDy5YtQ3l5ua+nRnEzOrkSqkrbcV4A4Aj4MLiyeYEQp0IMkks5CBvY02flLVvCoNaC1RmgtBP/vtGgIuwDDhw4gJKSErz55psAgPvuuw+9e/fGwoULfTsxituRXimETmnfdUUUHgx1rTE9zZnorbywDEHdOjtsR1jWWEsiwPe1JGyhKK9G1ek0X0+jXUDtjSgUD5K2/PcW6wGHDeoFnaQBytJKdJ4yGuW7jrbYH1csROyUUSja5dj1m+cvRqcpo1C0599294KOKxai2923IP620b6eis+hK2EKxUMYtDqHBWtEESHQ1EggCg+BpqbecZ8qDbhCoXNV1RQqEAMLQaCf03P2FgaVBqxOD1lxha+n4nOoCFMoHqIxvxRaiazFNvwAP+hkCogiQm2af9pCJ1c4XVWt/MApxE2+qV3Ghusv56LOTpH7GwkqwhSKhyg/fM65f2GEQBgRao4NO6Lu3GVEDB/gVFuDWgtFSSWC2mE9CWlWIfgBflbeejcaVIQpFA9g0Gidqh9sWqEKgvyhbyrk7ghNrRSiiFCnV7fVyZcQNXJg026zdgQhkJdUovLUJV/PxKdQEaZQPEDdpRyopY2OG7YyTKBrkEEQHOBcY0JQ+vdxxE9pf2GJqlOXQHS6G7qsJRVhCsXNEEJQ8s8ph4VnuGKhud6HqW1Qn67o+uBUOCrAUXv2MiJHDHR6Tpr6BqgqahE+qKfT13gDg0YLVa0UtSlZvp6Kz6AiTKG4GVVVHeSFjjfeiMJDrIw/w5L6QpFfikAHZSu19Q0Qhoe4tLKtOZMG/9gIBMRFOX2NNyg7dAa6RsUNW8qSijCF4mbytx2EQWt/+7EJUXgI1DX14PB5YHU6cMUi6BVKSC9mIXRQLzhaDSuKKlwu4F6y+zjCB/RAaN+uLl3nSVitDtKsQlSdvDFjw1SEKRQ3oq5vgCQ9z6kauKKIYGhqpBCGh0BTK0VA105Q5JUYy1Y68RKt7vxlRAwb4FqclxAU/3kEfKEA3e6eBH47ySGuOn3JGJqou/GcNqgIUyhughCC7LV/trhNuTk8PzH0SpXRWaNWAv8uMVCWVDZ15niTG9HpQVgWXKHrdahrzqSh5M/D6DQmEZ0njWgXhdPz/vgHDdnFTn2KuJ6gIuwjtm3bhptvvtnlc5T2S/3lXNRnFLgmaIQYN2rUSMAL8INepgAAqKvrII4Od3h57elLiLppcKvma1BpUPznEUgvZaP73ZNa1Yc7Mag0yN96AHWp2cYC+TcIVITbIdOnT8eOHTt8PQ2KC2hlClz5aSeIwQXxMOUIBwdA2yBH8xiwoqgcfvExDrswlreMbFPqmbK8GtWnUtFp7JBW9+EuNPUNyF73F2rOZUInd+4TRUeHinA7RCQSISwszNfToDiJXqXGxU9/grq+wbULTcLJMGCuEVF1dT3E0RFOdaMorkRAF8eC3RLyonLwA8Tg+/m+zq9OocTlVVtQtPsYGvJKrvusCSrCHsTkrrxv3z7ceuutGDZsGObMmYP6estCLYQQvP7665g2bRrq6+tpOKIDIS+twrmFP0BeVu1SGILnb2ltzxHyjZ5qTbBqjdEdwwnX5Lqz6cac4TZueCg/eBqdbh7aLjZ0MABK9v6L1M/WIf+PA6hLz4VOcX2ujKnHnBdYtWoVvvjiC2i1Wrzyyiv48ccf0aNHD/P5pUuX4sKFC/jtt9/oCrgDwOr1UJTVoPjv46i/lAOdSu3yiy2/6HAom4q9M4A5Ltyq+ej0ICwBV8CHoQ11GPRNIsfl82DQG1rdjzsx6LQo/vsEinYfhzgyDOGJvRHcMx6iiFCIIkPA9/drf9uxXYSKsBd46aWXkJiYCACYOXMm0tLSzCK8du1a7Ny5E7/++itiY2NbPUbeln8sVlLNV1AWCxtnVznEzvXX9G25UGvhGnvjtmac5te05NxsZ0xn/N6u7UunUEIjkUFVKwGr1oLD54HDN/7z4QkF9vuzg3/nKDSkZ4PD44Lo9RBGhNosZcmAgDhR7r32dBqibhqEyhMpLs/Fop+z6Yga3h/VF9rfDjZdoxyVxy+g8vgFsHoDiIEFw+GAH+gHQVAA+IH+4DY5M3P4PDB8Hjhcjv00E4Zpdoqx+J8rCEOC0GX6uNbcEgAqwl6hS5cu5j8HBARA3/Tmt76+HkuXLkVERASiotq2i6nH/93apusp3ufcO8sgjg6Hpq4BoshQ1Bda1h5m9Xpw+DwYdI5joqryakTfPNS4KmxDupmmRoLAW0ej6323QhQe0up+KM5DY8JegM+3zONsvhJbs2YNhEIhVqxY4e1pUXyIQaM15ghHhEJTKwE/yB+6RssqauqqOoiiHKepmVCUVBkzJdqIoqQSVcfOt7kfinNQEfYhYWFhGDNmDN555x2sX78e2dnUBvxGQSdXQidXQRhxtX7EtRkSmloJhOHBTvdZdybN9R10tvpJyQJX5HqIhdI6qAi3AyZPnoxRo0bhww8/9PVUKF5CU9cAotdDEBIIrZ3UNnORHidhdXoQQtr8okovV4IQQFFW3aZ+KM5BRbid8N577yE1NZVu0rhBUDYJHAOmycbeuo1WKgM/JAjOpKmZqDuThvBhzrlutISqvBo1p2/MgjrehrotUyg+IHfDX6g4kIwud05C8db96HLvZJT98Y9Vu7h7b0XRHwfgymv7rg/ejsI/DrTpBR0vwA/xMycg7vbWv/WnOAddCVMoPkBeUAYAIMT9u8FUlbUQR7Yt31wvVwIEUDvhAE1pG1SEKRQvw+r00NQ1gOFxQfQGcIR8EI39ymGMC+EIAKhNTkPEyLbvoFOUVqL6dFqb+qA4hoowheJltA0yaGUKCMOCoamTgh8UAG2DzG39G9QacHg8MJy2laesT8kCV+B6mUyKa1ARplC8jLK8BkSvhygiBJoaCQRBAVY5wiYMChX4/mKXx6i/mIXQwb3bNE+9QgXCEmhcLUxEcQkqwhSKl2nMKQLDMBCGh0JdIwE/OAA6OythTZ0UgjDnc4VNyHKLEdQjvu0hieJyVJ9KbVMflJahIkyheBlpVj4AQBAaCK2kEfzgQOgajcXcQxL7wL+Zb5y2zrVc4eZo6hshCA5o01zrUrLAdPACOe0dKsIUihcxaHVQVzXLOCAEgiB/6Bvk4AX4IbBnF0SNH24+rZE0QNBKEa45dRGRo1rnumGer1INsASKcrpxw1NQEaZQvIiqsqbJRQPmPRgMjwtiMCB0aH/U/XsBjZeuILhvNwCATiqDIDgQrmzYMKGXKcHzb7uRpyQ9B3XnM9vcD8U2VIQpFC9SdyGrWZzWUlhF0eHQVNSiMT0HQf26G9vZ2U3nLA0ZeQjpk9D6DgBIL+eB5ye6plQqxV1QEaZQvAQhBHXnM8AwjDlHuOkEgKtaS/QGcHjuqTIrTc9FcL8ebXtBRwgUxeWoOnXRLXOiWEJFmELxEpo6KVSVtQBgtLlvthuNIxTAoNFeI8RXX4i5umHDDCHQK9XgtdE7rupECkAAYmgfjhvXE1SEKRQvUfbPKRg0WgCAOCocqopa8zm/+BioSirM36vKquDXOdot49acvIjIkYPa1AfRGyC9nIuqkxfdMifKVagIUyheQK9Soyb5ktmLThQTDnVVHcDhAISFKCYCmooac3tVcYXZ8l4vV4HXig0bJswlMduYM1x7Jh2sRgdldV2b+qFYQkXYTZiclf/880/cfPPNGD58OBYtWgSdTodt27bhoYcewooVKzBq1CiMGzcOS5YsAdvMynvDhg2YPHkykpKS8NhjjyEvL8+Hd0NxJ4QQ5K7dCa2k0XyMKxTAoFSDH+gHXaPCyuhTXVkLUUwEQAi09VIIW7FhozmS1CsIG9yrTX0AQP7GPZDlFF+3zse+gIqwm1m5ciW++uorrFy5EgcOHMCyZcsAAGlpacjLy8Ovv/6KV199Fb/88guOHz8OANiyZQu+/vprvPbaa9ixYwdiYmLwwgsvtGxISekQEJZF4bYDqD2XYeHIzDRFf4275eSWL+qApqwIYxttfQMEYSFtmkdDZj6C+3Rv82qY6PTI/nEbqo6dh7Ky1vEFFIdQo08388Ybb2D4cGOy/SuvvIKlS5fizTffhF6vx6JFixAYGIgePXrg119/RVpaGiZMmICNGzdi9uzZuOOOOwAA8+fPx3fffQe5XI7AwECnxpXll4IY3F8WkWIPSzG7mnVGwBr0MKi0kOWVoPpUKjT1UuCavxrTL9iW6kYwTV+a+gaEJnSy2cYVGnOLENC1M2RNZTRbDWtA/m9/o3TPcUQMHwC/uGjwA/zAFYuMLscc48xtlzNuW1Gh9gir1yOkX/dWX09F2M0kJSWZ/zxw4EBIpVLU1dUhNDTUQlCbuy7n5eVhzpw55nOBgYF4++23XRq3eNdRuzY5FC/CMGA4DLgCAbh+IgT1jAcQb9mExwVPJAADQBAcCHleEWAjHZjVaMERCowbNkKCLFbSraH+XAa6zb4DwohgMFz3bEXWyRRouJwHvVoDg0bbtBAgrdlb0mGJm9a2wvdUhN0Mt9kPtynmyzCMleMycHU1ZOucqwyY+0ib+6B4j9K/joDhciEICYRBoQZp+oXcHKPbchgUpVUAY/w5aotbBmDMGw5L6ovYyaPa1A/FfdCYsJvJysoy/zk9PR0REREID2/ZtjwhIQEZGRnm75VKJcaOHUvdl69jFMXGdDSuSAievwjaOqlVG01lLcQxEW4dV3rxChguF1qp++oXU9oGFWE38/HHHyMtLQ2nTp3Ct99+i4cfftjhx8jHHnsMGzZswL59+1BYWIgFCxYgJCQEPXv29NKsKd6EEAJF0dWcYEFIkEXmhAl1ZS1E0RHNL3TL+KV/HYXkYpbjhhSvQMMRbmbGjBmYM2cODAYDHnzwQTz//PMOHZTvvPNOVFVVYcmSJZDJZBg6dCi+//57cDj0d+T1iEGthU6mNH/PDwmEptlGDROsRguOSGi31kRr0VTVQVlWjfqULIQl9XVLn5TWQ92W3URpaSkmT56M/fv3IyGhbQVTKNc3yooapLz1FUCA+LsmQa9QQnLiPAxypVXbTvdNRfHWfYidfjOqjp2HQe2mIjoMg55Pz0JoYh8IQpzLwKF4BrrUolC8jLKsGoS9uvbhB4iht7P5wZymVieFKDTIfZMgBAW//Y2GjDxaD8LHUBGmULyMoqD0mvcEjN14L6vTgcPnQVvXAH4ri7vbw6BQoXzfv6g5dcmt/VJcg8aE3URcXByuXLni62lQOgCN2UUAAK5YCINaDZ7YfoUzTXU9hJFh0EoaENIl1u1zkeeVoiEuF1w/IcKH9nd7/xTH0JUwheJFWJ3eWLgHMFrdN6WK2cuf0VTXQRQdDq2k0WOx2+qjF6AoqoAsr8Qj/VNahoowheJFNHVSs/DygwLMBp9221fXQxQVbgxXcOyHLdpK8dZ/oCgqh6pZjWOKd6AiTKF4kcacInOND36wP/SNshaFVS9TgBfo7zHxNcEwDPLW/4XGzAJopNY5yxTPQUWYQvEiktRs80s5QVAAiIGFXtbyatgC4sEiTXoDctdsg+RCpoXrB8WzUBGmULwEqzdAnlts/p4XFACGy4HO4crTi6n8LIvcH7ej6vBZyHJpjNgbUBGmULyEqqLGWNayCQZN9YQd1HEw5QrrZUrwAttuYe8IhmFQ+ucRFG3dj/qUTLB6mkfsSagIUyheoubfCyAGy1WtIDgQuoaWRVjXIAM/OADqqlqIo1ouBuVOGtJzkffTdtSfv2yxzZriXqgIUyhegDUYUHf28jWbNAj4wYEOV8KaKmOGhLrKmK7mTbQSGa58vxl15y9DXSdxfAHFZagIe4jMzEycO3fO19OgtBMaMwugrr7mZRcxlrJkmxyY7aGuroMwKhyaGgmEkaEenKUdml7Y1Z66BFUVtTRyN1SEPcSLL76IgoICX0+D0g4gLIvCzXst36+5UJxdWyOBKDIUxGAAw+V4PF3NFgyAwt/3oGL/KcgL22iPRLGAijCF4mGqjp2DorDc4hjPXwydwrnUNGIwgOHxfCK+zWEYBhX7TqJo0z5ILmXDoNH4dD7XC7R2hAeYPXs2ysrKMG/ePJw/fx7PPPMMPv74Y6SkpMDPzw8PPPAAXnzxRXA4HCxfvhw5OTkICAjA7t27ERMTgzfffBNTpkzx9W1Q3IA0Iw9Fm/cBrKWA8oMDoJPIIAjwd936krAA4x6PuNYgTcuB5FI2wob1R/jwARBHh0EQEQp+oD+4grZbdd1oUBH2AMuXL8ddd92FJ554ArfddhtmzZqFW265BVu2bEFBQQHmzZsHsViMp59+GgBw6NAhzJgxA9u2bcOhQ4cwd+5cbN++HX369PHxnVBchRACVqODpr4BZXuOo+70JRiU1itGQUggtA0y+MfHuNS/QaUxFv7RWHvSeROGYSC5kIn680ZbLg6fB0FIIPy6xMA/PhZ+cdEQxURAEBIInlgIjoAPhpoU2ISKsAcICQkBl8tFQEAADh48CKFQiEWLFoHP56NHjx6oqanBN998YxbhoKAgfPTRRxAIBOjRoweOHj2KrVu34v3333d6zHP/XQqDUm3+3vqTK7H5R1uNSQvnrPcNNO/Xjg28F+dgNWZLH+E99PGew+eBKxaCF+AHQXAgEGxdeMc/IRYNl7JtGnzaguj14PJ5UJdVI6BrJ2gb22fKmLqiFuqKWtSevgSDSgNWqwWr1YM1GMBwueBwOWB4PDCcthmWtg7PjBlx0yD0ePLuVl9PRdjD5OXloX///haOyklJSZBIJKivN74t79+/PwQCgfn8wIEDkZOT49I4w796yz0TpniNrLIq6BvkTrXVVNdDGBUGZXk1oiePQtxdt3h4dhRvQT8feBihUGh1jGVZi//zeJa/Cw0Gg0NzUErHhrAswDDQNThXLEdTVQtRZBi0dVJwRQLj9ZTrAirCHqZHjx7IyMiATnfVGywlJQUhISEICwsDAGRnZ5sFGQDS09NpPPg6x6DWgCMWOtyoYUJTXW/eqMFqddDU0o0T1wtUhD2Ev78/8vPzMX78eLAsiw8++AB5eXk4ePAgli9fjgcffNDsplxWVoZPP/0U+fn5+OGHH5Ceno7/+7//8/EdUDyJXqkGzwURNpe0BMBq9ZBlF3pwdhRvQmPCHuKRRx7BZ599htLSUqxZswaLFy/G3XffjbCwMDz22GOYM2eOue3AgQMhk8lwzz33ICEhAatXr0bXrl19N3mKx9E1yMEL8IfOyZiwGUKgrZPCoNYgcpxn5kbxLlSEPcSDDz6IBx980Pz9L7/8YretQCDAJ598gk8++cQbU6O0A7R1UjBcjnEjhtNXGVvKcosQMXqIh2ZG8TY0HEGh+ABNdR1alTJFCFTlNeD6ienLuesEKsIUig9QVde5fI2+QQZBcABACFiNFqryag/MjOJtqAj7mJdffhm///67r6dB8TLqsmpzsXZn0VTXQRhpzKjRShshuZDpkblRvAsVYQrFyxCWhabG9RQzTXWd0XkZgPRiFt0GfJ1A/xYpFC+jl6tACIFBpXbcuBnN6wmrq+rA4fNc7oPS/qAiTKF4Ga2kAVyhADpJg0vXEb0BDI9rrnmhLK9G7b8pnpgixYvQFDUKxcsoSyvBDwmETuLclmV71Jy4gIDH7gRhWYvQBCEEqrIqVB85C61UBr+4aPh37QT/bnHGgkKUdgUVYQrFy8iyiyAIDYIyr5WW8oQADANWrUFdcir4QQEITeoHANA2yFD06y7Un7kEVqsHGAZ1TdcE9OyC6CmjEdA9DuJOUTSm3E6gIkyheBFCCOQ5hQga0KtVK2Gi04PD54E1GHOEpZeyoW2QQVlcAUVpFRrTs4278BjG0kKJYSDPK4E8txj8kADE3j4eQX27w79bHDh8KgO+hD59CsWLGJRqaOoawBUJYVCpXd6uoamRQBgRClXV1TxjZVEFiosqrjZqqQIfw0DXoEDxpr3gCHiIu3sKgvr3QECPeLoy9hHt6qlv27YNN998s8vnnOH999/H119/bXVcq9XijjvuwMmTJy2Ol5WV4amnnsKQIUMwbdo0HD161OL8+vXrcdtttyEpKQkPPPAALly4YD5XVVWFPn36WHwNHz7c7tykUinmzp2LoUOH4pZbbsH27dtbfZ+U9o2ioBR6mXPecrbQVNdBHOMe23tWq0fx5r248vV6VB89C2VppVv6pbhGuxJhT/G///0PW7dutTqu0Wjw3//+16qAOiEEL7zwAkJCQrB161bcc889mDt3LkpKjDG8nTt34ptvvsF///tf7NixAyNHjsTTTz+NqqoqAMZC7hEREThx4oT5a9++fXbn984770AqleL333/HCy+8gA8++MBC1CnXDzUnLrjktHwtqtIqiDu7ZonkCF2DDPn/24r8H7eh/lw6NNK2vTCkuMZ1HY6Qy+V47733kJycjNjYWItzubm5eP3110FsWNwkJyejoKAAv/76KwICAtCzZ0+cPHkSW7duxWuvvYbt27fj4Ycfxu233w4AeP3117F//34cOnQIDz30EHJzc9G9e3dERkY6nGNxcTEOHz6M/fv3IyEhAX369EFKSgp+++03DB061D0PgtIuMKg0aEjLbvqOtMpsh1VrwBEJzC/n3AbDQJZdiCtXChBz+1iEjRiEoD7daIjCC3j9CZeWlqJPnz4oKioyH1u+fDkeeughi3aEELz++uuYNm2a2QYIAL7++msMHToU48aNw5YtWxyOxbIstm3bhvj4eItz586dw9ixY7Fp0yar61JTU9G/f38EBASYjw0bNgwXL14EALz66qu4//77ra7TNFmA5+bmolu3bi3OrflYkZGRSEhIsDkW5fqhdPsBaJtexjFt9TvzkD8eGAaV+04i+5sNqD56FmpaPN7jtNuV8NKlS3HhwgX89ttvZgeKqqoqZGVlYdOmTUhPT8f8+fPRuXNnjBkzxmYfffv2xYoVK2yea15m8lpqamoQFRVlcSw8PByVlcaY2ZAhQyzOHTt2DIWFhRgxYgQAYzhCJBJh1qxZqKmpwfDhw/HOO+8gOjra5bEoHR9CCGr/TUH14dMAw4ArFrVpp9u1GRKeQC9TIv9/WxE0oAdipoxGYO+u4IcEUdstD9AuRXjt2rXYuXMnfv31V4swAp/PxyeffIKwsDD06tULZ86cwcaNG+2KcGtRqVQWxpyAseZvc4siEwUFBXj77bdx9913Y8CAAQCMItytWzfMmzcPLMviq6++wjPPPINt27ZZ+cmpVCoLk8/mYxFCnP6hL1i3A6z2mvm15HYMB27Itq5vyRHZVocO+3c0H1/M6dpvXRv/2ga6BjkUhWXg8Png8HngB/hB1CnK5d1yzVEVVyCgayeoquodN24jquJK5P+4DaxOD2FEKAThQeAH+AMcDhguxxiuuMGFmeFy0P3JWa2+vt2JcH19PZYuXYqIiAirFWJcXJx5VQwYXYo3btwIwOhgbGLYsGFYs2ZNq+cgFAohl1s6Hmi1WohEIotj2dnZeOqpp9C9e3csWrTIfPzgwYPg8/lmcV2+fDnGjRuHlJQU82q5+VhardbmWK6sOro9frfTbSm+p/Cnba2+VllUjqjbxmIAdVy+LvC6CNsSFr1eb/H9mjVrsGDBAqxYsQJvv/22+TjnmpcELMuaV6w7duwwH79WLF0lOjoaWVlZFsdqa2stXrSlpaXh6aefRu/evfHDDz9YuCr7+/tbXBseHo6QkBBz9sS1Y9XW1rY4FuX6Q1Nd67iRHUyOy2xTWILSsfH6izmTaDZfaZaWlpr/HBYWhjFjxuCdd97B+vXrkZ2dbdFOobiaY3np0iX06NEDAJCQkGD+shV7dYXExERkZWVBqVSaj50/f94cCy4pKcHTTz+N/v37Y/Xq1RaiW1tba/VirbKyEhKJBN27d7caa8iQIaiqqrJ4BufPn0diYmKb7oHSfiGEQF3dtlCCQa2BoqDUcUNKu8frIhwREYHY2FisWrUKJSUl2LFjB44cOWLVbvLkyRg1ahQ+/PBD8zGdTod33nkH2dnZ2LhxI/bt24cnnnjC7XMcOXIkOnXqhHfeeQc5OTlYvXo1UlNTzQ7IH374Ifz8/LBo0SLI5XLU1NSgpqYGCoUCERERGDBgAD766CNcvnwZaWlpePXVVzFmzBj0798fgHFzhkxmdNmNj4/HuHHj8PbbbyMrKwt//PEH/vrrLzz66KNuvy9K+4Do9GBVmjb1oatvhPRiluOGlHaP10WYw+FgyZIlyM7OxvTp07Fr1y688MILNtu+9957SE1NNYca+vXrh06dOuGBBx7AqlWr8PHHH2PQoEFunyOXy8V3332H+vp6zJo1Czt37sSKFSsQFxcHuVyO48ePo7y8HFOmTMG4cePMX6tXrwYALFu2DN26dcNTTz2FJ554Al26dLHYrffyyy9jyZIl5u+XLl2KwMBA3H///Vi5ciUWL15sEeOmXF/oFSoYFKo29dGYmQcOj+umGVF8CUNs7VagUCgeQ1FUhstvf9XmfhL+cy8iJ40Eh0fjwh0Zuh2GQvEymmr3bIDQy5VoSL3ilr4ovoOKMIXiZdRl1lkyraExLRvKonK39EXxHVSEKRQvo3KTCMsy88EPDrTepEPpUFARplC8jKJ57d+2QAiUReWo/ZdW3OvIUBGmULwIq9XBIJM7bugkNYeSwXC5YK/Z8ETpOFARplC8iFbaCF2j+0SY6A2oO3YO9cmXnGrP6vXQSWUwqNuWp0xxHzS3hULxIqrSKsDN1c8a03Mg6hwNQUQIgvpa78oEjDvsKncdRs3R89DL5Ajs1wPRU8cioFdX8PzFbp0PxTWoCFMoXkSWXeiRfqv3nYC2Tgqi0yOgT1dwm4pHsVodao+fQ/mOQ9DWXN0q3ZCSCdnlXCQ8NQsBfbtDHBPhkXlRHEM3a1AoXiTjg+WQe0iITfj3SoA4Lhq6RjlUheXQ1klbbB/34HQEJ/WDf0Inj86LYhu6EqZQvIRBpYa6qvXV05xFkVMERU6R44ZNlG78G9o6KdjxwxDYu6vnJkaxSbt6MXc9uC2b7JtsfTUvt9kc6rZ8Y6AoKIW+wX0v5dxJ9T8nUfL7bkhTs+hLOy/TrkTYU3jTbTk2NtbCZfnEiRN46KGHEB8fj8mTJ9ucH3VbvjGoOZDs6ym0iDwzH9mfrkHpxr/RcDkHemXbigxRnOO6Dkf4ym25eUH2zMxMbNmyBevWrUNgYKDVWNRt+cZAr1SjMSPX19NwDCGo2nsCVXtPILB/D0RMGAG/rp0g7hxNCwV5COq27AG35eZ88cUXuPXWWzF8+HCbc6RuyzcGpZv3QCeV+XoaLiHLyEPB9xuRMe9bFK3bAWlKJvQKpeMLKS7Rbn+1dWS3ZRNpaWn4999/sWvXrlaPRen4SM6moe74eV9Po9UQnR41/5xCzT+nII6LRtSUMQgc0AOimEhqr+QG2uUT7OhuyyY2btyIcePGoWfPni2O5Q635bqTKTC00a2B4g6I8T+WQCdtQN2JFGjqJADLAteBKbGqrApF67YDYCDqFAn/nglGMRbwwPC4YDgc488sA6ML8w2QAMsVCxE+pvUmDO1OhK8Ht2UAMBgM+Oeff/DBBx84HMsdbssGtYZW02oPMADD4YIj5COwXw+EJPX39Yy8gl6pgl6mBKvRghgMICx7QwgwAIhi22bKS92WbdBWt2UASElJgVKpxMSJEx2O5Q635ahbRrnUnkKhtA+o27IN2uK2bMLWyz1bULdlCuXGhrot26AtbssmcnJy7MaCqdsyhUIxQd2WbdBWt2XAGFIIDg622T91W6ZQKCZoAR8KhULxITfEtmUKhUJpr1ARplAoFB9CRZhCoVB8CBVhCoVC8SFUhCkUCsWHUBGmUCgUH0JFmEKhUHwIFWGKFYQQfP311xg9ejRGjBiBzz77DAaDwWbbd955x6aVU3MXkalTp1qdz8zMbNV4ADB//nyr/tauXWs+n5ycjJkzZyIxMRGzZ8+2qF3dmvFOnTqFe++9F0lJSZg6dapVHWtb9/fSSy9hxIgRGDt2LP73v//Z7TsrKwsPPPAAEhMTMWvWLFy6dMni/N9//41bb70ViYmJeP7551FXV2fVh1arxfz5850a7++//8Ydd9yBIUOG4M4778ShQ4fM51iWxeDBg63upbGxsdXjPfXUU1b9HThwwCP3N3v2bJs/i4899phL9+d1CIVyDT/99BMZN24cOX36NElOTibjxo0jq1atstm2sbGRVFdXm78yMzNJUlIS2bBhAyGEEI1GQ/r160fOnz9v0U6n07VqPEIIefDBB8maNWss+lMqlYQQQsrLy8mQIUPI6tWrSU5ODnn11VfJ9OnTicFgaNV4BQUFZNCgQeT7778nhYWFZOfOnWTgwIHk4MGDdu/vvffeI9OnTydpaWnkn3/+IUlJSWTXrl1WfSsUCjJ27FiyZMkSkpubSxYvXkxGjRpFZDIZIYSQ1NRUMmjQIPLHH3+QzMxM8uijj5KnnnrKqp+PPvqIzJgxw+F4Z8+eJQMGDCCbNm0ihYWFZN26daR///7k8uXLhBBCCgsLSZ8+fUhpaanFs2VZtlXjEULI+PHjye7duy3602g0Hrk/iURiMc7JkydJ//79zX9Xzt6ft6EiTLFiwoQJZPPmzebvd+zYQW6++Wanrn355ZfJE088Yf4+MzOT9O/fn2i1WreNN3LkSJKcnGzz3LJly8iDDz5o/l6pVJKkpCTy77//tmq8lStXkvvvv9/i2Lx588irr75q8/4UCgUZNGiQxXgrV660mJOJLVu2kIkTJ5p/QbAsS2699Vbz3N58803y+uuvm9uXl5eT3r17k8LCQvMxV8Z77733yGuvvWZx7MknnySff/45IYSQAwcOkEmTJtl8Dq0ZTyaTkd69e5OSkhKbfbn7/prDsiy59957yXvvvWc+5sz9+QIajqBYUFVVhYqKCgs7pmHDhqGyshIVFRUtXpuSkoIDBw7g3XffNR/Ly8tDXFycVZH81o5XU1MDqVSKbt262ewvNTXVwuFELBZjwIABSElJadV406ZNw/z58y2OMQxjtrK69v6ysrKg1WoxbNgwi/7T0tKsSrampqZi6NCh5hKtDMNg6NCh5rleey+xsbHo3Lmz+byr482ePduqTsu192LvubZmvNzcXAiFQnTq1MlmX+6+v+bs3r0b+fn5eO2118zHnLk/X0BFmGJBTU0NAFgU1I+IiAAAh5ZLP/zwA2677Tb07t3bfCw3NxdcLhdPP/00xo4di0cffRSpqamtHi83Nxc8Hg/ffPMNxvbLjlMAABD1SURBVI8fjzvvvBPbtm2z6M+WXVRVVVWrxuvWrRsGDhxo/r62tha7d+82i8e19zdv3jwEBARY1JeOiIiATqez8Ep0Zq7V1dUtnjf1ERwc7NR4ffv2tajsl5OTg1OnTlnci0KhwCOPPIJx48bhmWeeQX5+vtWcnR0vNzcXQUFBeO211zBu3Djcd999OHr0qPm8u++vOatWrcJDDz1k/rt19v58ARXhGxCNRoOioiKbX2q1GgAsLJdMf77WAaQ55eXlOHbsGJ588kmL43l5eWhoaMCUKVPw4YcfIioqCrNnz8bp06dbNZ7pH03fvn3xv//9D/fddx8++OAD7NmzB4DRLophGIt70mq1qK+vb9P9AYBSqcRLL72EqKgos0dhXl4eGhsb8fDDD2P16tWIiIiATCazqA9tr3971lamdmq1usXzLfXh6H7q6urw0ksvYdiwYZgyZYr5XhoaGvDSSy/hu+++g1AoxGOPPWYuu+rqeHl5eVAoFLjllluwZs0aTJgwAXPmzDH/EvbU/Z07dw75+fmYPXu21Xwc3Z8vaHf2RhTPk5aWhkceecTmuTfffBOA8Qfc9BHb9MMuFovt9rl371506dLFqhj9l19+ieTkZDz99NMWx01vrF0d7+GHH8aMGTMQEhICwCjGRUVF+P333zFt2jQIhUIUFRVZ2U0BwD///NPq+5PJZHjuuedQWlqK3377zdz2yy+/hEajMRfvf+ihh3D27Fns2LEDL730Uov9t2Rt5cz5ltq0dD+VlZV46qmnwOFw8O2335rDIb/99hsMBgP8/PzM9zZhwgQcPHgQd999t8vjvfHGG3j++ecRFBQEwPh3dfnyZWzcuBGJiYkeu789e/Zg1KhRiImJsTjuzP35AroSvgEZPnw4rly5YvNr5syZAGBhuWT6CN+S5dKxY8dw2223WR3n8/kYP368xRi33347HnjggVaNxzCMWYBNdO/e3fwRNjo6GmKx2GK8ESNGYO7cua2+v/r6ejz22GMoKSnB+vXr0aVLF4v7a+6eEh0dDZZlLeLLNTU1EAgEVvWlo6OjzWObaG5t5Yz1VXR0NBobGy2Eyt54gNEV5uGHHwbDMNiwYQNCQ0PN54RCoVmgTN/HxcVZhAdcGY/L5ZoF2ET37t1RXV3tsfsDjD+Lt956q9VxZ+7PF1ARplgQHR2NTp064fz5qxbt58+fR1RUlIXzdXMIIbh06ZLFSxYT9913n0Wxe5ZlceXKFXTv3r1V43366ad47rnnLI5lZmaa+0tMTMSFCxfM51QqFTIyMszWVK6Op9VqMWfOHEgkEvz666/mcezdX58+fcAwjMVH6PPnz2PAgAHg8Sw/eCYmJiIlJQWkqaQ3IQQpKSnmuSYmJlrMs6KiAuXl5ebzgNHogM/nW7zMsjeeVCrFk08+icDAQGzYsMEiXqrX6zF+/Hjs3r3bfEyhUKCoqMjinl0Zb+7cuVi4cKHFsczMTPPLMXffH2D8hVlcXGz1s+js/fkEH2dnUNohq1atImPHjiUnT54kp0+fJuPHjyerV682n6+rqyNyudz8fUlJCenduzcpLy+36mv58uVk5MiR5MiRIyQvL4/Mnz+fjBo1ijQ2NrZqvNOnT5O+ffuSdevWkaKiIvLLL7+QAQMGkLNnz5rnMmjQIPLdd9+RnJwc8tprr5EZM2ZY5Am7Mt6qVatI//79ycmTJy1ySyUSid37GzRoEJk6dSpJTU0lBw4cIEOHDiW7d+8mhBBSXV1NVCoVIcSYwjVq1Cjy4YcfkpycHLJkyRIyevRoc57whQsXzHm9WVlZZPbs2eTpp5+2esbz588n06ZNczjeBx98QIYOHUoyMjIs7sX0d/HOO++QyZMnkzNnzpArV66QOXPmkGnTplnkdLsy3vbt28nAgQPJn3/+SQoKCsg333xDBg0aRIqKijxyf4QQkpycTAYMGGDx923C2fvzNlSEKVbo9XryySefkOHDh5ORI0eSTz/91OKHetKkSeTbb781f3/x4kXSu3dvolAobPb1zTffkAkTJpBBgwaRRx99lGRlZbVpvN27d5MZM2aQgQMHkmnTppF9+/ZZ9HfkyBEydepUMnjwYDJ79mzzP/rWjHfPPfeQ3r17W32Z8lRt3V9qaip56623yJAhQ8jYsWPJjz/+aO67d+/e5I8//jB/n5qaSu6++24ycOBAcu+995K0tDSLuW7bto1MnDiRDBkyhLzwwgukrq7O6hkrlUqnxhs5cqTNezHl6ioUCrJo0SIyduxYkpiYSObMmUPKyspaPR4hhGzYsIFMmTKFDBw4kMyaNYucOXPGY/dHiPFn46abbrLqw5X78zbU3ohCoVB8CI0JUygUig+hIkyhUCg+hIowhUKh+BAqwhQKheJDqAhTKBSKD6EiTKFQKD6EijDFJ0ycOBEMw9j9+vTTT9021sKFCy22FjtD165dzbUfPMnatWvBMIzV9l3AWDAoKCjIqhBNc7799ltwuVyUlJS4fXyKd6AFfCg+Y+zYsfjiiy9snmten8EXbN++3aKugi/w8/PDfffdh61bt0KtVlsUtjHx22+/YdKkSYiPj2/VGDNmzMCpU6es6nFQvAcVYYrPCAkJwahRo3w9DZskJSX5egoAjNXmfv75Z+zZswf33HOPxbm8vDycPn0aGzZsaHX/kZGRLRZmongeGo6gtGtMZSubV7qaNm0a4uLiIJVKsXbtWgQEBGD//v3o27cv/P39MWHCBFy8eNFunzqdDgsWLEDv3r0hFAoRGhqKWbNmWXykbx6OWLt2LSIiInDw4EEMGTIEQqEQ/fv3x59//mnRb25uLu6++24EBgYiJCQEs2fPtvqYv379evTp0wdisRjTp0+3aWzZnAkTJqBr167YtGmT1blff/0VgYGBmDVrFggh+OabbzBo0CCIRCIEBgbi1ltvRVpamrn9xIkT8eyzz2Lq1KkICgrCG2+8YRWOcPbZLF26FM8//zzCwsIQFBSExx9/3KIur8FgwMcff4wePXrAz88PQ4YMwY4dOyzm/+2336JXr14QCoUYMGCAzXu8IfDxtmnKDcqECRPI9OnTiU6ns/lloqSkhAQGBpLZs2cTQgj5+eefCQCyd+9e8/c8Ho9ERESQb775hvz5559kxIgRJCQkhFRVVRFCCFmwYAHx9/c39/niiy+S0NBQ8uOPP5IjR46QlStXkqCgIDJr1ixzm4SEBPLiiy+axxAIBKRLly5k9erVZP/+/WT8+PFEJBKZax1UVlaS6OhoMmTIELJt2zby+++/kx49epCkpCSzseXmzZsJAPLiiy+SvXv3khdffJHw+XwCgNTU1Nh9VvPnzyd+fn5WtTn69OljNsb8/PPPiVAoJMuWLSNHjhwhP//8M+nUqRMZOnSoxTPn8Xhkzpw5ZN++feTMmTPm52ka39lnExwcTB544AGyb98+8s033xA+n0/eeustc5uXX36ZCAQC8tFHH5EDBw6QZ599lnC5XHL8+HFCCCELFy4kPB6PzJs3j+zbt4+88sorhGEYC++/GwUqwhSfMGHCBALA7lfzyljff/89AUC2b99OQkNDybPPPms+ZxKR77//3nysurqa+Pn5kYULFxJCrEX4/vvvtygCQwghc+fOJeHh4ebvrxVhAGTTpk3m86mpqQQA2bp1KyHEWKErODjYQkzz8/MJl8sl69atI4QQkpSURG6//XaLcWfOnOlQhHNycggAsnHjRvOxs2fPEgDk2LFj5vkvXrzY4rqvvvqKADBXZZswYQIJDQ21MF29VoSdfTYDBgywcCm+5557yMCBAwkhxip0XC6XLFq0yKKfCRMmkCVLlhCJREJEIhF5//33Lc4/9dRTpHv37nafw/UKjQlTfMa4cePw9ddf2zzX3FPsueeew8aNG3HvvfciISEBX375pVV7k90QYIxzjh49GsePH7fZt+ljb3l5ObKyspCZmYkTJ06YDS/t0Tx+HRcXB8BYkxYADh8+jNGjRyMkJMRsQBkfH4/+/fvj4MGDuO+++3Dx4kUsW7bMos97770Xf/31V4vj9uzZE2PGjMGmTZvwwAMPAIC5tvH48eMBAN988w0AY8HzrKwsZGVlmftt7vzRs2dPu6arrjybkSNHgmEYi+dhCgGdPn0aBoPBXEDfxJEjRwAYXVjUajVmzJhhYdY5bdo0/PTTTygoKGiXhpyegoowxWcEBwdbuB7bg2EYPPzwwzh69CjGjx9vlW4mEoms3u5HRkbiypUrNvs7efIknn/+eVy6dAnBwcFISkqCWCw2F1e3R3NXBpMlEMuyAIyebadPn7YpcDExMZBKpSCEWBRSN51zhscffxyvvPIKZDIZ/P39sWnTJsyZM8d8PisrC8888wxOnDgBPz8/JCYmml0tmt/Xtcaa1+Lss2n+LADj8zA9C5MBp72xTHHwMWPG2DxfUVFxQ4kwfTFHaffU19fjgw8+wODBg7FhwwYLx17AaBipVCotjtly8gWAhoYG3HHHHUhISEBOTg6kUikOHz5sVxCcJTg4GNOmTcPZs2etvpYvX47Q0FAwDGO29jHh6MWcCdMKeOfOnTh8+DAqKyvNPn0sy2LmzJnQ6XRIS0uDTCbDyZMnceedd7p0D+56NibboWutmy5evIiUlBTz+e3bt9t8XoMGDXJpvI4OFWFKu+e1114Dy7I4fPgwJk2ahGeeeQYqlcqiza5du8x/rq6uxqlTpzBp0iSrvrKysiCRSPDqq6+a7d9ZlsU///zjcCXcEuPGjUNWVhYGDRqE4cOHY/jw4Rg4cCAWLlyIEydOQCwWY9SoUdi+fbvFdX///bdT/QcHB+POO+/E9u3b8ccff2DixIno2rUrAKPY5ebm4tlnn8XAgQPNq/S9e/cCgNP35a5nM3LkSPB4PIu/E8AYVvr8889x0003gc/no7q62vyshg8fjvT0dCxatKhNfw8dERqOoPgMqVSK5ORkm+eCg4PRr18/7Nu3D+vXr8e6desQFhaGlStXIjExEQsWLMDSpUvN7V988UXIZDJERkZi0aJFCAsLs/i4bqJv374IDAzERx99BIPBAJVKhZUrVyI1NRUMw4AQYhHrdJb//ve/WL9+PaZNm4ZXXnkFfD4fX375JU6dOoXFixcDAD788EPcfvvtePLJJ/Hggw/i0KFDVqLcEo8//jjuv/9+BAUF4ZNPPjEfj46ORpcuXbBs2TJER0eDy+Vi3bp1ZhG89lOCPdz1bKKiojBnzhwsXrwYfD4fw4YNw5YtW3Dx4kWsXLkSkZGRmDt3Ll5//XVIJBKMHDkSFy9exPvvv4+77rrLyhz0usdXbwQpNzaOsiMmT55MZDIZSUhIIDfffLPFte+++y7hcrnk7Nmz5rf769evJ926dSP+/v7kzjvvJAUFBeb212ZH7N+/nyQmJhKRSETi4uLIww8/TLZu3UoAkFOnThFCbGdHNM9gkEgkBAD5+eefzccuX75MZsyYQQICAkhgYCCZOHEi+ffffy3mvmPHDjJw4EAiFArJuHHjyMqVKx1mR5jQ6/UkJiaG+Pv7W3j8EULIuXPnyOjRo4mfnx+JiYkhd955Jzl48CABQH7//XfzM58xY4bFddfem6vPxsQrr7xCEhISLOa6cOFCEh8fT8RiMRkxYgQ5cOCA+bzBYCCfffYZ6dGjBxEIBCQhIYG8++67RK1WO3wO1xvU3ojSoVm7di2efPJJ1NTUWL30olA6AjQmTKFQKD6EijCFQqH4EBqOoFAoFB9CV8IUCoXiQ6gIUygUig+hIkyhUCg+hIowhUKh+BAqwhQKheJDqAhTKBSKD/l/wNhcPGdSNDQAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 360x1440 with 60 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for plotting Figure 3 Supplement 3 panel B\n",
    "plt.figure(dpi=380)\n",
    "fig, axes = joypy.joyplot(qc_per_site_ev, column=['EV'], overlap=1.0, by=\"site\", ylim='own', fill=True, figsize=(5,20), legend=False, xlabels=True, ylabels=True, \n",
    "                          colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)), alpha=0.6, linewidth=.5, linecolor='w', fade=True, x_range=[-1,1])\n",
    "plt.title('Controls mQC test EV per site', fontsize=18, color='black', alpha=1)\n",
    "plt.rc(\"font\", size=14)\n",
    "plt.xlabel('Explained Variance', fontsize=16, color='black', alpha=1)\n",
    "plt.ylabel('Site', fontsize=14, color='black', alpha=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 134,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0, 0.5, 'Site')"
      ]
     },
     "execution_count": 134,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 2280x1520 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVgAAANvCAYAAACYjMJ8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5xU1f3//7xTtxeWBamLKCxFgyhKUAQVBEUwBlvQgJ38jMb4UUBE/VooETX2ilExagwaAUMTDIqGgAVEinSQvn13Znbqbef3x7DDDjuzvYHn+XiMMvece+6Z2ZnXnPs+76IIIQQSiUQiaXQsLT0BiUQiOVmRAiuRSCRNhBRYiUQiaSKkwEokEkkTIQVWIpFImggpsBKJRNJESIGVAHDzzTejKErUw2q1kpaWxsCBA3n33XfrPXZhYSE+n6/KtZoSVVU5fPhwo423d+/eRhurvuNfdNFFVf5Gxz/uvfdeAE477TQyMzNRVTXueD/99BOKonD//fc31stodi666CK6desWday8vJyioqKWmdBx2Fp6ApLWxXPPPUfbtm0BEELgdrt5//33ufnmmykuLq7zl3HZsmXccMMNbNiwgeTkZAD+8Ic/MHz48EafewX79+9nxIgRPPjgg9x8880NHm/kyJF06NCBuXPnNnisWMyYMYO5c+eye/fuWvV/77334rb17t0bgBtuuIEZM2bwn//8h1GjRsXs++GHHwLw+9//vo4zbj089NBDUT/e69ev58orr+SDDz7goosuarmJVSAkEiHETTfdJADx888/V2nz+/2iW7duIi0tTQSDwTqN++ijj8Ydt6n48ssvBSDeeeedRhkPEDfddFOjjBWLoUOHipycnFr1q+1Xdtu2bQIQt9xyS9w+PXr0EH369KntNE8I3nnnHQGIL7/8sqWnIoQQQpoIJDWSmJjImDFj8Hg8/PTTTy09HUkt6NWrF+eccw4LFy5E07Qq7evXr2fXrl0n9Or1hKClFV7SOqhuBSuEEH/+858FIL799lshhBCmaYrXXntNnHvuuSIlJUU4nU6Rm5srnnzySWGaZtSYFY+hQ4dGHa/MwYMHxfjx40Xbtm2F0+kUZ511lnj//ferzDE3N1d89913YsiQISIxMVG0a9dO/OlPfxJ+v18IcWwFU/lRwWuvvSbOPPNMkZiYKNq0aSOuuuoqsWXLlrjvyc8//1xlrIqVkWEY4plnnhG5ubnC4XCIjh07invuuUe43e6oMVatWiUuvPBCkZ6eLpKTk8X5558v/v3vf0fac3JyosZ/9NFH486nLitYIYR49tlnBSA+++yzKm2TJ08WiqKIffv2VTsGIKZPny5mzZolOnToIFJSUsSll14qNmzYUKXvokWLxKBBg0RiYqLIyMgQY8eOFTt27Kgy3sMPPyzGjBkjHA6H6N27t9A0Lea19+/fL8aOHStOOeUU4XQ6Re/evcXs2bOFYRiRPpVX/xV3SxWPyncFtfl8NQVSYCVCiOoF1jAM0a9fP+F0OkV5ebkQQoiHHnoocus8Z84c8de//lX069dPAGLu3LlCCCHWrFkjfvvb3wpAPPfcc2LFihVR16rg8OHDomPHjqJDhw7iiSeeEC+99JIYPny4AMRTTz0VNcfMzEyRkZEhJk6cKObMmRMZf/LkyUIIIfbs2SOmTZsmADFx4kTx3nvvCSGEeP/99wUgJkyYIObMmSNmzpwpsrOzRdu2bYXL5Yr5nni9XvHee+8JQFx44YXivffeE/n5+UIIIW6++WZhsVjErbfeKl5//XXx5z//WTgcDnHOOeeIQCAghBBi+/btIjk5WQwePFi88sor4uWXXxb9+vUTiqKI//73v0IIIRYsWCB69eol2rZtK9577z2xcePGuH+jCoEtKiqK+6j4cRNCiLy8PGG1WsVtt90WNY5pmiInJ0cMGTIk7rUqAETXrl1FRkaGeOyxx8SsWbNEu3btRGpqqti+fXuk3zvvvCMURRHDhw8XL730knjiiSdEhw4dREZGRpTIAiI5OVkMGzZMvP766+LZZ5+NeV1VVUXv3r1FTk6OeOqpp8ScOXPEVVddJQAxc+bMqPekQkg3btwoJk6cKAAxbdo0sWDBAiFE7T9fTYEUWIkQ4pjo/fDDD5Eva15enli7dq247rrrBCD+7//+TwgR/vCnpaWJ3/3ud1FjuN1u4XQ6xZgxYyLHYtlgjxfYm266SbRp00YcOXIkarwbbrhBOJ1OUVBQEHXeiy++GNWvd+/eomPHjpHnsWywl19+uejbt2/UeUuWLBF9+vQRq1evrva9qfghOX78119/Parf8uXLBSCef/55IYQQs2fPjghiBcXFxaJnz55Rr6GuNtjqHmVlZVHnXHrppSIrKytqlbhmzRoBiDlz5tR4TUBYLBaxfv36yLFt27YJm80W+fu73e6Yn4e8vDyRmZkprrrqqqjx0tPTq8zzeL799lsBiI8//jhyzDRNMXLkSDFhwoSo96TyexfLBlvbz1dTIL0IJFGcffbZVY45nU7+9Kc/8eSTTwJgt9spKCioYtsrLi4mLS0Nr9db6+uZpsnChQu5+OKLsdvtFBcXR9rGjh3LP/7xDz7//HNuvPHGyPHrrrsuaox+/frx8ccfV3udzp07s2LFCh5//HFuuukmunXrxqhRo+LusFfHJ598gqIojBo1Kmq+Z599NqeccgqLFy/mz3/+M507dwbg7rvvZvLkyZxzzjlkZWWxY8eOOl+zMp9//nnctpSUlKjnN954I59//jmrVq2KeG7885//xOl0cu2119bqeiNGjIj6XPTq1YvLL7+cJUuWYJomn3/+OR6Ph6uuuirq/bDZbFxyySUsXboUXdex2cJyM3DgQDIyMqq9ZseOHVEUhVmzZpGamsrFF1+Mw+Hgs88+q9WcK6jP56sxkQIrieL999+nffv2AFitVjIyMujduzcJCQlR/RwOB0uWLOHTTz9lx44d7Nq1i7KyMiD8oa4txcXFuN1uFi5cyMKFC2P2OXDgQNTz7OzsqOdOpxPDMKq9zv/7f/+PtWvX8thjj/HYY4/Rp08frrzySm6//XZOO+20Ws8XYM+ePQgh6Nq1a8z2tLQ0AK699loWLFjAvHnzmDdvHh06dGDUqFHcdNNNXHjhhXW6ZmXq4uI2duxY7rzzTj7++GOGDx+OaZp8/PHHXHHFFTWKXAV9+vSpcqxHjx4sWrSIkpIS9uzZA8Dvfve7uGMUFRXRoUMHANq1a1fjNTt37sxTTz3Fgw8+yGWXXUZKSgrDhg3j+uuv57rrrsNqtdZq7vX5fDUmUmAlUVxwwQVVHLePRwjB73//ez788EMGDx7M+eefzx/+8AeGDBnCJZdcUqfrVQjjNddcwx/+8IeYfbp37x713GKpu/NL586d2bhxI19++SWffvopn332GU8++STPPvssK1asYOjQoXWac2pqKvPnz4/ZnpiYCIRX+h9//DGbN29m/vz5LFu2jHfeeYe33nqLv/zlL0ydOrXOr6OupKamcuWVV7JgwQJeffVV/vvf/5KXl1cn7wGHw1HlWMXfzWq1Rv49Z84cTj311JhjZGZmRv5dW3GcNGkSN9xwA/Pnz2fp0qWsWLGCTz/9lL///e8sW7asVmPU5/PVmEiBldSZ//73v3z44Yc88sgjPPHEE5Hjuq5TUlJSpw9sdnY2SUlJaJpWZWV24MABfvjhh0iAQkPYvHkzAMOGDWPYsGEA/O9//+Piiy/mxRdfrJPAduvWjRUrVjBgwIAqq8BPPvmErKysyPwPHDjA4MGDOfPMM3n00Uc5dOgQl1xyCU8//XSzCCyEAwnmzZvH6tWr+de//kVmZiZXXHFFrc+vWKFWZteuXWRlZdGmTZvID3J2dnaVv+GqVaswDAOn01mnOZeWlrJx40bOP/987r77bu6++258Ph8333wz//rXv9i8eTNnnnlmjeM01+crHtIPVlJnSkpKgKq3jm+++SZ+vx9d1yPHKlYr8cwGNpuNUaNGsWTJEjZu3BjVdt999/Hb3/42ym5WG2Jd89prr2X8+PFRpoT+/fvjcDhqXFFZLJaosa688koAZs6cGdVv0aJFXHPNNfzjH/8AYNasWQwbNiwqZLdz58507tw56ppWq7VOZpW6MnLkSNq2bcuSJUtYvHgx1157bcxVaTz+/e9/s3///sjzLVu2sHz5csaOHQvApZdeSkJCAk8//XSUXf7w4cP85je/YerUqXUOjV6xYgWXXHIJixYtihxLTk7mjDPOAOKvgo//2zfF56suyBWspM6cf/75pKWl8X//938cOHCAjIwMvvzyS+bNm0dCQgLl5eWRvhX20qeffprLL788Ik6VefLJJ/niiy8YMmQId911Fzk5OSxevJjFixfzhz/8gb59+9ZpfhXXfP/99xFCcNNNNzF58mRuv/12hg0bxrXXXosQgvfee49gMMgf//jHGsdbtWoVb775JiNHjmTUqFH85je/4ZlnnmHv3r1ceuml7Nu3j5dffpmuXbsyadIkAO666y7+/ve/M2TIEP7whz+QmZnJF198wZdffhm18s/Ozuarr77i2Wef5YILLmDgwIHVzuf999+P25aSksJVV10Vdcxut3Pdddfx5ptv4nK56hxcoCgKgwcP5k9/+hOqqvL888+TnZ3N448/DkDbtm2ZNWsW9913H4MGDeL3v/89mqbxyiuvEAwGeeaZZ+p0PYAxY8aQm5vLbbfdxvr16zn99NPZvn07L7/8MpdccklMuzAc+9u/9tpr5Ofnc8MNNzT656tONJl/guSEoqZAg+NZvXq1uOCCC0RKSorIysoSgwYNEvPmzRP33XefsFqtEX/RsrIyMXz4cOF0OkWvXr2irlWZXbt2iXHjxom2bduKhIQE0adPH/Hss88KXderzDHe3Cvzpz/9SaSmpoqUlBSxe/duIYQQ7777rjjnnHNEWlqaSE5OFkOHDo345lbH3LlzI87uf//734UQYVe1GTNmiJ49ewqHwyE6deokJkyYIPbv3x917v/+9z8xYsQIkZ2dLZxOpzjzzDPFSy+9FOWvun79etG7d29ht9vFxIkT486jNm5a8dy9/ve//0XaK1+7JjjqO/z444+LrKwskZGRIa677rqYAQofffSRGDhwYCSQ49JLL63iAkcdwo73798vbrrpJtGlSxfhcDhE165dxX333RcVzHG8m5aqquK6664TiYmJIjMzM+KTXJvPV1OgCCGLHkokktgoisJNN93UZIluTnakDVYikUiaCCmwEolE0kRIgZVIJJImQnoRSCSSuMgtmoYhV7ASiUTSREiBlUgkkiZCCqxEIpE0EVJgJRKJpImQAiuRtAIMU24mnYxIgZVIWhhVN/nnuhL8atMlfJG0DFJgJZIWJt+tohsmuwsDLT0VSSMjBVYiaWHy3CqJDgt5LrWlpyJpZKTASiQtTFnARDcgZEg77MmGFFiJpIXxBHRU3cSQJtiTDimwEkkL4w2ZGAI0U2BKb4KTCimwEkkLYpoi4j1Q+d+SkwMpsBJJCxLUTYyjCVWEAK8U2JMKKbASSQsS0gQVCausFij1adWfIDmhkAIrkbQgfu1YlVubVaHEq1fTW3KiIQVWImlBvEETh/VYSWu/alTTW3KiIQVWImlBfKqB7ajA6oZAlybYkwopsBJJCxJQTayWsMBqppBJX04ypMBKJC1I5egtw5RZtU42pMBKJC1IUDtmE9ANgdTXkwspsBJJC6JqxxRVEF7FymiukwcpsBJJC1LZTQvCVVz9mtzpOlmQAiuRtCAhPXq1aopos4HkxEYKrETSggSOD41VwBuSvrAnC1JgJZIWQtNN9OPsrTaLgtsvBfZkQQqsRNJCaMaxPAQVWBRwB2S47MmCFFiJpIVQYwisKaraZSUnLlJgJZIWQtVNjpdS3RSR9IWSEx8psBJJC+HXTKzHfQN1Q8jSMScRUmAlkhYioIpIopcKdFNgyhXsSYMUWImkhQhoBjaLQpdMO56jG1umAEM6EZw0SIGVSFqIoCZw2BT2FQUp8x6rZKCZAiFXsScFUmAlkhYipJsk2i3sLw1FmQqECUHpSXBSIAVWImkhVF1gtyq4/DpCgHZ0d8tAVI3wkpyQSIGVSFqIkG5isyh4gyYgUI+uWgXgk+GyJwVSYCWSFiJ0NFRWCEBA4Gg9LpsFSv0ymutkQAqsRNJCBDVxNMm2QLEoUWaBchkue1Jga+kJSCS/VIKaiXJ0jWNRwBsKC6wQcpPrZEEKrETSQqiGwKKYWCwKuilQjgbOyuqyJw9SYCWSFkDTTQwzvLFlVcIeBYoiq8uebEgbrETSAqiGQBDe6LJYFDRDUOEJK6vLnjxIgZVIWgDNCK9cQ0eLHqq6wFop2EAzpMCeDEiBlUhagJBmYlEUQkeNrZphYq3UrhtC1uY6CZACK5G0AH7NJMGuRERUNaIza5mAX0ZznfBIgZVIWoCAauKwWSICK0Q4gqtyqkK3DDY44ZECK5G0AD7VwGlTosrDCHFsc8thVSiqlGFLcmIiBVYiaQGCmondaiFYyQwgCEd2VTxzBWQ+ghMdKbASSQtQEamlmZUEVhAp460ZVBJbyYmKFFiJpAUIauHihsfn1a5wz1INERFbyYmLjOSSSFqAkGZiChFVVdaihI9DWGhluOyJj1zBSiQtQEA1wgJbSWEVRUGtpKqaLmTAwQmOFFiJpAUIaALVECiVisoqEEm6DeHKBp6g3Og6kZECK5E0M6YpCBkmqh6O5qognFHrGFagqFy6ap3ISIGVSJoZ1RQglEg+ggq041a0VqtCvkdt/glKGg0psBJJM6PqJroQaFq0oOqGwGI5dsAwZfHDEx0psBJJMxPSTGwKhAwzkgMWwivYSvqKYQoS7RbE8b5ckhMG6aYlkTQz5UETp13B448WTs08ZjLITLJSHtRZ+mMRm/Z7yEyycXr7RM7KSSXRYY0xqqQ1IgVWImlmykMGCXYrQT0UdTxsg1XISLSyvyjAhn3lpCRYAQW/avLDPi95LpULeqbTPt3ZMpOX1AlpIpBImpnyYDjRy/H5XnVDkOS0Uh7Q+WFfOQ6bBQT4QkfLeVsViso1Vu9wU1IuN79OBKTASiTNjF81sVqUSNRWZbKTbXy93YXTdrTarEXBfVwJ7xKvyprdnqigBEnrRAqsRNLM+FUTm0UheFyUVlayjR2HvVH1uExTRKoeVCBQKHSHWLvL3SzzldQfKbASSTPjDRlYFFCPc8Fqk2xje34gynUrXGG26hi6CflulSNloaqNklaDFFiJpJnxhUxMAWalVC/JTgt5rhACovIThJNwE1Nky4M6G/aXN/2EJfVGCqxE0ozohkDVBYYZnejllDQHO4/4sVrCZoHKCCHwq1VzEhgmeAI6u/P9TT1tST2RAiuRNCMBzcAQRwW20nHdMAjoJgg4PoGWoiiUxqnP5Q+Z7MjzNd2EJQ1CCqxE0ox4Q2HDgG6akRVsZpKNA8UqVgUUhSqJtk0RP2RWNwXekMmBkkATz1xSH6TASiTNSJlPI8GmoOrHwmLbJFs5UBJAURSEANOMFlPNEFGeBccTUA22HJKr2NaIFFiJpBkp8enYrUpUqkLDCOeGBcKbXzG0VDdEVAXayoR0gTdo4pW5Y1sdUmAlkmbEHTCwKOFy3RYLJDosFJWrkRwEcReqCpRUU8ZbN0zW/+xp/AlLGoQUWImkGSn16Vgt4bLdFkUhO8XOvqJgJKuWKUTML6VhhkNs4+ELGZT5dJl5q5UhBVYiaSZMU1AeOhome3TTym5VooTTMCEq0iByXFRbadYUENRN9pcEm2TukvohBVYiaSZ8qhGuYmBRwi5ZQFCLXpWax5WNqYxuCPLd8c0Emm6y/Yj0iW1NSIGVSJqJovKweaAi0UuSw0KRW41Osi2ik25XRjcFroAet9KsXzXxhQy0WGFfkhZBCqxE0kwcLAuRaLdgO2qDzUiyUeBWo6oamIKYJoIK/CGTHQWBuPZYuYptXUiBlUiaiQKPjqIo2CwK/lC4HIwrRoTW8aGylVEUCKgmWw772V0YrLKaVXXBgWIZdNBakAIrkTQDuiEoOupmVRHJFdQM4m36V6OxQDj5dqlfZ3dhAL2SyAY0E79WNcWhpGWQAiuRNANFXi0ihLoZtrP6AgaWGN9AQfWRWxUohENv9xaHooTaME12HJGRXa0BKbASSTPw0xE/Sc7w103XBamJNoo80fbXCIJaCWwFnqDOoUp5YUOa4GCJzBPbGpACK5E0MYYp2FMcioTGqoZJRqKVAk8cl6sYCV+qQwgoLNcoLA+PF9RM/JopzQStACmwEkkTs6swgFopj0BIN8MVDeIIoIKCVkdxNAXsLwlx2KUeTdItzQStgVYpsIsXLyY3N5e333476vjUqVPJzc2NPPr168f111/Pxo0bo/rl5uayZs0aAObPnx91Tt++fRkyZAgzZszA6/VGzvn222+j+lV+DBgwoE7z37FjB/fffz8XXnghZ5xxBpdccgl/+ctf8HiOxYrPnz+fIUOGxDx/3LhxvPTSS3W6pqR1EtJNvtpZTpLjaBFDBXxBE1UzUeJ++2png43FoTKVXYVBvEGTQ6XSTNDS2Fp6ArFYvHgxOTk5LFiwgFtvvTWqbeTIkTzyyCMAlJeXM2/ePCZOnMjKlStJSUmJOV52djYLFiwAQFVVdu/ezcyZM9m5cydz587FUmmn4euvv456DlR5Xh3ffPMN/9//9/9x8cUX88orr9C2bVv27t3L888/zy233MK8efOw2Vrl2y5pZFw+nYUbS6kcmmWzKOimGUn6EotY4bLtUu1kJNnwBXUM08RmtXDEpWIeF/dlUcDl19l02EdqghVVN8PlvyUtQqv7prvdblavXs2sWbOYPHkyW7dupU+fPpF2h8NBdnY2EBbO++67jw8++IA1a9YwYsSImGNaLJbIOQCdOnWiS5cujBkzhs8//5yRI0dG2rKysuotgKqqMm3aNEaPHs2MGTMixzt27MiZZ57JsGHD+PLLL7n00kvrNb7kxKDMr7Nqh4cDZSGSHBZslUKzbNawH2yhO/7qUjdF1DmnZieQVxrku50uFEWgKOCwWejfLZX8cp3jg2sVBbxBk/0lIbYc8nJ2t7TGf5GSWtHqftqWL1+Ow+Fg1KhRdOvWjfnz51fb3+l0kpycXOfrdO/enQEDBvD555/Xd6pVWLNmDUeOHOGee+6p0paens6CBQsYNmxYo11P0rrQdJOvdrr5+zdFFPs0UpzWKqtUuzWcVLvEF7sEDIR9Ziv0tUOGg8PFAbYf9mK1gsWioCgKmiHYuL+cNknWmBm0LEo4cuyrHW7KA1Wv5Q8ZeIJ6nW29krrR6lawixYtYsiQIdhsNoYNG8b8+fN54IEHsNvtVfrquh655T7//PPrfK3TTz+dH374oTGmDcCGDRvo1q0b7dq1i9nepUuXRrvW8Xy5w11tOjtJ41IhaYYZLudyxKVyoEzFbgGrNf66pXOGgwOlQXxHs2rFIqCAYlEwfTptk21s2FeOxaJUumoYbwj2Fwax2hTK4zgkJDmsPLb4EF0yndis4AkYFHo11KOaa7NCVqKN7DQ76Yk2Eh0KFsLXjx+wK6lM7w5J9GiXELOtVQlsQUEB69at4+mnnwZgxIgRvPXWW3z11VcMHz4cgGXLlrFy5UoAQqEQhmEwadKkuPbX6khJScHni95pPffcc6v0u+GGG5g8eXKN45WVlZGRkRF1bObMmfzrX/+KPB8zZgxPPPFEnedaE13bOOu9MSKpP1aLgtNmIcFeOzmyKDBn1RF6tEuI7QN7lGSnhSG56azZXkr3bGe1fXt3SMRqs8a0tWYm2+jRPpFenWr+foR0QVALlxSXeWVrT3qiNW5bqxLYpUuXYrVaGTp0KAD9+vWjXbt2LFy4MCKwQ4cO5YEHHgDCNs+tW7cya9YshBBMnDixTtfz+XxVhPmTTz7Bao1+w1JTU2s1XlpaGuXl0XXq77zzTn7/+98DMHv2bFRVBcBms1WpvVSBEKLOduDTsmP/gkpaF/6Qgdunk2Cv3jpntShYAXdAx2mL/wUGKPJotEtXSE6uepeHAG/QoG1KjDZJk9OqBHbx4sVomsbAgQMjx0zTZNWqVZSWlgKQlJRETk5OpL1Hjx7k5+fz9ttv11lgd+zYQY8ePaKOde3atd6bXP369ePtt9/G5XJFVrJt2rShTZs2kblXkJaWVmX1XIHb7SYtTW5MnIyEdJPDrhD2GjxT0hIs7MzzYauFB4snYHBKBoQ0E+dxwq0a4XpdQdUgwVG9UEsan1azybVv3z62bNnCgw8+yMKFCyOPN954A03TWLJkSdxzhRAYRt3sj/v27WPdunVcdtllDZ16hCFDhtC+fXteeeWVKm1CCIqKiiLPc3Nz8fv9bN++PapfaWkpBw4coHfv3o02L0nrobhcQ9Vqvv1um+pg2xF/XFeu4ykp13D7YhtiNcNk80FvzDZJ09JqVrCLFy8mLS2NcePG4XQ6I8d79uxJ//79WbBgAT179kRV1YhQmabJ9u3beffdd7n88svjjm2aZuQcTdPYunUrs2fPZtCgQVx88cVRfUtKSmL6vWZmZta4snU6nTz99NP84Q9/wOVy8bvf/Y5TTjmF3bt38+abb/LDDz/w6KOPAtChQwdGjBjB5MmTmTZtGl26dOHw4cO88MIL/OpXv6J///61e+MkJxT7i4NRLljxUAR4AzqJdketxi3x6rRNc6AbYR/ZyvhUg8J4YbmSJqXVCOySJUsYPXp0lLhWMG7cOKZMmULnzp1Zvnw5y5cvB8BqtdKuXTuuvvpq7rrrrrhjFxUVMXjwYCAsgh07dmTMmDHcfvvtVfrGi65atGgRPXv2rPF1DBgwgAULFvDmm28yadIkioqKaNOmDeeffz4PP/wwvXr1ivR9+umneeGFF3jooYcoLCwkMzOTYcOGcf/991e7qSE5cdlfHMRhq/5v67AplHpDCOq20VQeMFB1k3YZ0fZ4w4TykEGRWyU7vXaCLWkcFCG3CyWSZuP//WsPh13Vrybbp9k5VOynzKeTnVp7QbRa4LRTkshItlf5gU6wKXTKSmB43zb1mrekfrQaG6xEcrIjhOBAqVpjv9REK4VuNW4y7ngYZjjYocxb9RpBXeDx6zLDVjPTakwErZ3ly5czderUuO25ubn885//bMYZSU40ynwaAc0kxVn9br5pgmYQMxl3TRS4VDq2qWpmA/CGDH7Y52HQ6Rl1H1hSL6TA1pLBgwezcOHCuO0Oh7RtSapnX3Ho+GCsmARVA0UJVzbQTIG9FptiFfjVcPoXf0gnyRn99Q6oJgVuDc0wsVcTbSZpPKTA1pLk5OR65TyQSCrYkeer4qd6PKkJVorK1XDOARRUzcRew4r3eEp9OqmGqCKwAG6/zg/7yhl4WnqdxpTUD/kzJpE0E7sLAjW6aKUlWikuP2ZDDdbDZlpSruG0KzFDp4OayeGSIF6Zt6JZkAIrkTQDumFypCx0fJrXKiQ6LLiOZtoyhai2hHd1+EMmJeWxUyKW+HTW7nbVa1xJ3ZACK5E0Ay6/hidU86rRNEEcXbSaouby3fEocKtxV8umgIMlQX7Y54nZLmk8pMBKJM3AnsIgmDVvVum6GVUBQYj6lY9RdYEwwRuIFz4Lmw542SbrdjUpUmAlkmZgZ56/mhpcYayWcFjr8QvPgFY/31W3X4+ZbLuCkC74304XG/eXx+0jaRhSYCWSZmDbET+OGlyjUhNslHm1qCgsAQS1+m1IFZdrJNgt1dpxDRPW7Hbz5dYyQvUUckl8pMBKJE2MP6RTWK7VuMGVkmCl1Bt9S2+YYbtsfRCAZghKY0R2VcaiKGw/4mPpphIKXLISbWMiBVYiaWIOlYXwqzWvQhPtCu4Yt/SGKWp1fiyKPVqtNsosFoVCt8rKrWXsKfTX61qSqkiBlUiamM37vbWqb2UKEDHU0BDgCxl1zk0AUB40sFnCbmK17f/t7nL2SZFtFFqdwC5evJjc3FzefvvtqONTp04lNzc38ujXrx/XX389GzdujOqXm5vLmjVrAJg/f37UOX379mXIkCHMmDEDr/dYAuJvv/02ql/lx4ABA2o17/nz58dMdfjEE0/Qr18/1q1bx6FDh8jNzWX//v1RfZYuXUrv3r0jr3nq1KlMmjSpVteVtH7W7/fWWPYFwh4E8TQ0qJkUlKu4Ajp+1ahTzSxNFxR7ak4yU0F5UGfdvnJKymt/jiQ2rS5UdvHixeTk5LBgwQJuvfXWqLaRI0fyyCOPAFBeXs68efOYOHEiK1eujFv0MDs7mwULFgDhGl67d+9m5syZ7Ny5k7lz50Yl1/7666+rJNuOlXy7trz88st89NFHvPbaawwYMIBDhw5V6bNmzRqmTJnCnXfeWeX1Sk58/CGdfcUhEh3Vf47ap9mxWJSj1WOroigKuiHwGgamKUiwW8hIttW4cQYVNbvqVpOr1KvxzW43I3/VFptV5iauL61qBet2u1m9ejV33303O3fuZOvWrVHtDoeD7OxssrOz6d69O/fddx8+ny+yYo2FxWKJnNOpUyeGDh3K66+/zvr16/n888+j+mZlZUX6VjyysrLq9Vo+/PBDXn31Vf76179y4YUXxuyzadMm7rrrLsaNG8c999xTr+tIWjerd7qpKcNLRpINKwJD02sVWWCxKKi6oNSrodYilNYXMrBZFLQ6hN0KFAo9Gt/IiK8G0aoEdvny5TgcDkaNGkW3bt2YP39+tf2dTme9ErB0796dAQMGVBHYxmLZsmVMnz6dmTNnMnLkyJh99u7dy8SJE7n88suZNm1ak8xD0vx4Qzo78vxsOuhl5dYy/rvTU2MF2VPS7fy0383efC9tkmuZ2EUB3YRir1Yr+6yqm3W+5VcNwRGXSqFbmgrqS6syESxatIghQ4Zgs9kYNmwY8+fP54EHHsBur3p7o+s68+bNw2azcf7559f5Wqeffjo//PBDY0w7irVr1zJ58mQuvfRSfvvb38bsU1BQwAMPPIDNZuOJJ56Q5WGaESEE5QGDA6UhPEEdh81CpwwHbVPs2G2WcHvQ4FBZiDKfjsOm0DnTGWmH8IZRcbnGIVcIX8gEAYYIi1FRuY7NomCzKHTIsFPoUWv8+4ZUAwU4UBykb5dUygKhWn8mTAElXg2XRSfBYSHRbiHBbqlSLLHQo9ExM3ae2OrwBHS+/9nDFWe1rfO5klYksAUFBaxbt46nn34agBEjRvDWW2/x1VdfMXz4cCC8Mly5ciUAoVAIwzCYNGlSXPtrdaSkpFQpm33uuedW6XfDDTcwefLkWo1ZXl7OXXfdRf/+/Vm5ciXbtm2LWR32vvvuo2vXrvz444/MmzePG2+8sc7zP545q47g8lfcAsZeztR48xmnQ102r2vVt07XqXnE2uz3CCHQhcAfCoeiJjusOGxKeIc+aKCbAosSFixFgSSHFadNwTy6g68ZYbunYQo0Q2CzKCQnWKnOPJnggOJyNSLMsUhPtHKw2I/FAr6QiSkgoOrYarEpVhndEIQCJmW+cJIYi6JEEnYrR30Y7DYLGw8HsNYhvyxAt7YJrN3jIS1R5jyOxQU90rigR1rMtlYjsEuXLsVqtTJ06FAA+vXrR7t27Vi4cGFEYIcOHcoDDzwAhDestm7dyqxZsxBCMHHixDpdz+fzVRHmTz75BKs1+oOdmppa6zH9fj933HEH9913H+PGjWPq1Kn861//qrICP/XUU/nb3/7GCy+8wDPPPMOQIUPo0qVLneZ/PBMv6tig8yWNz9bDXsp9erU5YNum2vl6SxHt0524fBoKgq7pDhKaQMzSE21kpdiqFEWsCYsC7dMdjD6rbdxNOElsWo0NdvHixWiaxsCBA+nTpw99+/alqKiIVatWUVpaCkBSUhI5OTnk5OTQo0cPfvOb33DrrbdWcemqDTt27KBHjx5Rx7p27RoZv+LRpk3ti8RlZ2czadIkLBYL06dPZ8+ePbz++utV+j322GM4nU7uuece2rZty7Rp0+rkdiM5Mdie568xwbbdouD2aeGELkKh2KORkVK3Hf/aUuhWq5T0rg2mgHK/wY8HvDV3lkTRKgR23759bNmyhQcffJCFCxdGHm+88QaaprFkyZK45wohMIy6Rbns27ePdevWcdlllzV06lFUdunq2bMnd9xxB2+88Qbbtm2L6mezhW8cEhISeOKJJ/juu+/4xz/+0ahzkbQsuiE4XFpz2GlANcLFCg0TRQknaEl2WpvkBzekm2CKeuUc8KoGB0uCaLUMWJCEaRUmgsWLF5OWlsa4ceNwOo8Z4nv27En//v1ZsGABPXv2RFVVioqKADBNk+3bt/Puu+9y+eWXxx3bNM3IOZqmsXXrVmbPns2gQYO4+OKLo/qWlJTE9HvNzMyMiGJduPPOO1m+fDkPPPAAn3zyScw+gwYNYuzYsY1mKpC0Do64QmiGwFHDx8Yf1LFZQNXMyMaUEGGBttsa/3bcGzLQhKB9Hc0EEBb/H/eXc253WW6mtrQKgV2yZAmjR4+OEtcKxo0bx5QpU+jcuTPLly9n+fLlAFitVtq1a8fVV1/NXXfdFXfsoqIiBg8eDITdujp27MiYMWO4/fbbq/SNFYkFYe+Gnj171vl1ORwOpk+fzo033sirr77K1VdfHbPf1KlT+frrr5k2bRp///vf63wdSetj0wEvSTUEFzisCmUeFafdEpXkRQGCqo7d1vh22EKPxuntE+t1bkAzOVwWop9u4qhm405yDEVI459E0qjohslrK4/gqGEFmppgZdsBN2VejQPFAVQt/FXs3j4Rl09vko0ugFOzE0hwWklLqrut12FV6NMpmYGny1VsbZA/QxJJI7OvKFir5CoJdgtlXg2rRYmyi7p8OqlJTXdzmecKYRj1W1eFgw9CMndsLWkVJoLWzvLly5k6dWrc9tzcXP75z38244wkrZnv93pIqkWpbatVwRvUSUu0YQoiPrUun0aHNk5K/WaTBKEENYFAEAzpJMQo7V0TpT6N7/d6GJyb0ehzO9mQAlsLBg8ezMKFC+O2OxzSAVsSxu3XOOJWSamFwOq6iWmG870KcTTCgYpgBwXTFFibKNHK4ZIQXbMTSah7cBe6AfluFU8g/OMgiY98d2pBcnJyvXIeSH55/G+nm6QafF8rCKoGAoFuiEi0VQVCCDTdxFoPv9Xa4FdNgpqOPaSQVI9VrNuv8d1eD8P71t5P/JeItMFKJI2EL2SwIz9Q62inQMjAZrWEXbSO/yYK0Ovo311XDhSFEEb9qtbqJhR5VPYXB5pgZicPUmAlkkbi8y2lOGvpu2qzhO2vDqtCUDOrrGDdfp0kR93yEdQVU8DewgDBUPzKs9VRHjTYfNCHXs8Ns18CUmAlkkbgcGmQvYW1T6TisCmUB3RsVgvBGHlaXT6N1ISmFVgImwqKyzXK/VrNnY9DiHD47fd73E0ws5MDKbASSQNRNYOF64tJrsXGVgUOmwVPIJzaMJbLkzdokNjEK9gK8l0qmm7ir8dKVjMF+0pCHCyRpoJYSIGVSBqAYQj+9X1Rnc9z2BS8AQ0UEfcW2wTMethH68PewgCGYdbLHusJ6Kzf58UXalqb8YmIFFiJpJ7ohskn6wop9mp1rlulKAr+UNhNK24wpRCoevOIlmFCgUvD7au7qQAg3xVi9Q6XTAZzHFJgJZJ64A3q/H11PgVuFWc94vJ13YgkdRFxinrruohZxrupKPGG89HWJ0pLURR+LgqweoerXqvgkxXpByuR1AEhBJsOeFm13YXDptQ76YmqmwgEqm4Sb1/M7ddIcljqVFGioRR5NDINyM6oewSCoihsP+IHFC7MzZDVaJECK5HUmkOlQVZsLqE8aNZYyLAmgqqJ/aiL1vH1sypw+3W6Zifiacaag2U+nXbpdjTdrLbUTTwsFoWtR3xousmQXhkkNNNGXWtFCqxEUg1CCA6WhPhqWxlFXo1kp7XB4qoAwZCB02bBU417lF81cdgtoDavXdPjNwhqglMy654zFsI+vrsLA3hCBkN6ZtAu/ZcbSt4iNtjFixeTm5tbpdTL1KlTyc3NjTz69evH9ddfz8aNG6P65ebmsmbNGgDmz58fdU7fvn0ZMmQIM2bMwOs9VuLi22+/jepX+TFgwIBazbtijFjVB6ZOncqkSZPw+/1cdNFF/PnPf67Sx+v1MnjwYGbMmAHAJZdcwscff1yl35o1a8jNza3VnCRNQ3lA55vdbv626gj/+r4Qv2bWyQ2rOuy2cJCBzWap0d4pRLiIYXNSeDRHbUMymVotCiXlGos2FLHxQHmzeUO0NlpkBbt48WJycnJYsGABt956a1TbyJEjeeSRR4BwldZ58+YxceJEVq5cGbd6bHZ2NgsWLADCxRB3797NzJkz2blzJ3Pnzo2qUvD1119XqVoQq4pBdTz33HOMHDmSrKysKm1JSUk8+OCD3HPPPaxdu5ZBgwZF2l5++WUsFgv33ntvna4naRo03SSgmQRCBq6ATnG5RqlXJ88Vojxo4LQr2K2WRhPWChw2C+VBHYsCp52SRFA12FcUjNnXFOGkMA57891qG2bYQ6LMq9EmtWGrT92Er7e72FcU5LzTUulQj0oKJzLNLrBut5vVq1cza9YsJk+ezNatW+nTp0+k3eFwkJ2dDYSF87777uODDz5gzZo1jBgxIuaYFoslcg5Ap06d6NKlC2PGjOHzzz9n5MiRkbasrKx6lX+pTGpqKrNnz+app56K2T5y5EiGDBnCzJkzWbhwITabjT179vD+++/z/PPP16vMuKRhqLpJoUdlf3GQArdKcbmGXw37fZpC4LBZcNiUiD00pQmjqBxWBW9AxzQhwQ6KNezvGiuHQUg1UJp1mytMkVslO61xbu0dNgv5bpV/fVdEbock+nVNoX16PdJ4nYA0u4lg+fLlOBwORo0aRbdu3Zg/f361/Z1OZ70yWXXv3p0BAwbw+eef13eqcXnooYf49NNP+f777+P2eeSRRzhw4AAffvghALNmzeKiiy6KlCCXNC2qbnLEFeS/2138Y00+r/7nMPO+KWDTQS9F5RoCSHRYSEmwkpZoI8FuibvZ1NjYbQrlQR1FCdtiBcQt3On2a7XOztWYlAdNbFalVonDa4vDZmFvYYAP1xTwyfeF/LCvHJdfO6krKjf7CnbRokUMGTIEm83GsGHDmD9/Pg888AB2e9XyFbquM2/ePGw2G+eff36dr3X66afzww8/NMa0oxg6dCjDhw/n8ccfZ8GCBTHn3rVrV+644w5eeeUVsrKy+PHHH1m6dGmjz6WCXfl+Tl4f7/AXMPw9FBhm+N+aaaIbYb9Nn2riDRq4/TolXhW/aiKEQpLTEuUG5Q22fLRRitOCL2iQmmCjoCyEw2Yh0a4QjGGnLPXqZKU58Pqa/4/r8ul4AjqZqY2/2txbGGBnnp+gZpKSYCU7zUFagpUkp4UkhxWnzYLdpmC1KFgVhXDWRoXo38DW4QaW5LTQNSu26aNZBbagoIB169bx9NNPAzBixAjeeustvvrqq8jKbtmyZaxcuRKAUCiEYRhMmjSpXrfVKSkp+Hy+qGPnnntulX433HADkydPrtPYDz/8MKNGjWLu3LnccccdMftMnDiRRYsWMXnyZKZNm0b79u3rdI26sDPfT6mvflmRThQqvk4WJfxvxaJgO/pw2BSSE6wkJ1jp2KZ1334m2BTapjpISbByQDMxTMhKceBWY6/kUhNtWFpgt8QQ0LVNAqee0ny5kIUQlPl0dEOgHzXfhDf6jrY320xqz4U949cna9Y/29KlS7FarQwdOhSAfv360a5dOxYuXBgR2KFDh/LAAw8A4Q2rrVu3MmvWLIQQTJw4sU7X8/l8VYT5k08+wWqNtq+lpqbW+bV06NCBO++8k1dffZXRo0fH7ON0Orn55pt58cUXGTduXJV2m82GaVZdmZimWWc78RVnta1Tf0nLcbg0QNcsJ3abBe1oKGxWGye2UGz5SHJYOCXTWetMXY1Jm2QbZ3dNoX09Ag8kzSywixcvRtM0Bg4cGDlmmiarVq2itLQUCO/C5+TkRNp79OhBfn4+b7/9dp0FdseOHfTo0SPqWNeuXRu8yVXBLbfcwqeffsrMmTPjrrATEhJwOBwxPRVSU1OjXMkq8Hg89RJ9yYmB26vhsFnQTIGqC3TTCLtFBfWYNbiEGa5+kJzQ/MvYgGqy5WC5FNh60mx/sX379rFlyxYefPDBKHtqXl4eEydOZMmSJXHPFULE3QSo7nrr1q3j1Vdfrfeca8Jut/Poo48yfvx4OnXqxNlnn12n83Nzc9mwYUOV4xs2bIjyrJCcXLj8OlYL+FTz2D2vEHFrcAU0AyxKywisZuIO6Ki6We+w4F8yzfYXW7x4MWlpaYwbNw6n89ivYc+ePenfvz8LFiygZ8+eqKpKUVE4/Ztpmmzfvp13332Xyy+/PO7YpmlGztE0ja1btzJ79mwGDRrExRdfHNW3pKQk5moyMzOzXivb8847jyuvvJJ///vfdRbYG2+8keuvv56XXnqJ0aNHo+s6q1ev5uOPP+all16q81wkJwblAR3NCPu3hhU27IilG7FrcPmaMTdsLPxBkx9/9nBej4wWm8OJSrMJ7JIlSxg9enSUuFYwbtw4pkyZQufOnVm+fDnLly8HwGq10q5dO66++mruuuuuuGMXFRUxePBgIGz37NixI2PGjOH222+v0nfIkCExx1i0aBE9e/asz0tj6tSprFq1qs7n9e3bl7/97W+88sorzJ07F9M06dGjB8899xwXXnhhveYiaf34gjq+UDib1rFtcQXdEMS6EfcGDTq1abnVozdkkO8OYZiiRezAJzKKOJmd0CSSVsjcL/az47CPBJuFb3aUoCgK/bqlsSvfT3pKbFtnbqdk0pJbzg6a5LDQt0sK53SPv2MuqYo0qkgkzYgQgvKAQUA1o5JTBzWT6kychhlObdhS+FWTgyVBgmrL+xGfSMhsWkdZvnw5U6dOjduem5vLP//5z2ackeRkRNNNdN1EN00Cqoh4DQRVk4Rq8g2YBpQHNLKawOm/thR7NL7Z5eKivlVzcEhiIwX2KIMHD2bhwoVx2x2OX27KNUnjEVANQno4B2ywUhpCf0jH6bASb30Y1A0sZsvecOqmYH9xgC0Hyzmji3QjrA1SYI+SnJxcr5wHEkld8AbDuVbtNgv+SrlgA6pBerKdeCWxvAGDNqktn7w6oAp+OuglLdFK17ZJLT2dVo+0wUokzYjLpxJUdZKcVgKV7Jn+kFFtIu/yoI6jlZRgKfPprNvjoag5Sy2coEiBlUiakVKvjj8UtrdW3jAyBVgUJW5mqYrE22o9ChI2BUUelbU7y2Sp7hqQAiuRNCPegI43ZITrccXYka+uIqsQ4Pa3jlWjQCHfpfLfbaW/2GoFtUEKrETSjBR7QmiGACWcraoyAlGtWHmD+tHor9aBKeBwaZBvdrlaeiqtFimwEkkzcqAkGDYFVETJVkJRlGoFtMynk9TKqrRqRvg17S/2t/RUWiVSYCWSZsIwBYdLgtisCqYwEccprKKAfvyythKqHj7HqKZPS+D262za723RQIjWihRYiaSZCIQMPIFwUnTTEByXnh9Nj7GsPQ4hBO5qSn23BEJAoVvlm52ulp5Kq0MKrETSTBwsCaDpYQE1RdWCJwHVJNFR/VfSFzRQW2G4qmYIDpeGOCBNBVFIgZVImokth8px2sOyaprm8QvYsC9sDTbWonKNJGfr/Nq6Azob90lTQWWa9S+1ePFicnNzefvtt6OOT506ldzc3MijX79+XH/99WzcuDGqX25uLmvWrAFg/vz5Uef07duXIUOGMGPGjKgqAd9++21Uv8qPAQMG1GreFWPoetWaV5MmTYrKYVBaWsrDDz/MBRdcwBlnnMFll13Ga6+9hqYdu6275JJLyM3NZe3atVXG+/rrr8nNzWXSpEm1mpvkxCCgGhwoDGCzWlAgZoHKmoINIGyjFaJlE79UR54rxJodZS09jVZDs5eMycnJYcGCBdx6661RbSNHjuSRRx4BoLy8nHnz5jFx4kRWrlwZtxxLdnY2CxYsAML1u3bv3s3MmTPZuXMnc+fOjUqs/fXXX1dJtB0r8XZDmThxIu3bt+f1118nMzOTn376ienTp1NWVsa0adMi/ex2O19++SWDBg2KOv8///lPzLIhkhObdXs9eAMGiqLgsFsIqkaVv7M/ZJDitJKRascX1HH5YxexVHVB0BuifUZic0y9TpgC9hYESE9y0/9Umdqw2Vawbreb1atXc/fdd7Nz5062bt0a1e5wOMjOziY7O5vu3btz33334fP5IivWWFgslsg5nTp1YujQobz++uusX7+ezz//PKpvVlZWpG/FIyurcbMC7dixg82bNzN9+nTOPPNMOnfuzMiRI7n33nuZN29eVIHDAQMG8MUXX0SdL4Tgiy++oF+/fo06L0nLUupV+bnQj+fo5pTDZiEYIyJLCEFu51SOFJaDrtEpvWo5eIDichV7K058rRqCH/eXs/Vg1XpzvzSaTWCXL1+Ow+Fg1KhRdOvWjfnz51fb3+l01iv5Svfu3RkwYEAVgW0OKlYkx/8oXHHFFSxYsCBqxTJkyBDy8/PZvXt35NjGjRtJT0/n1FNPbZ4JS5ocX1Dnw//lkZZow33Ug8Bhix3F1adLKmu3FHKk2M/OQ16KXQHSE6oKqTdoYLMqrc5dqzIhTbB6Rxnf73ZV63p2stNsArto0SKGDBmCzWZj2LBhkQqzsdB1nQ8++ACbzRZVILG2nH766ezZs6ehU64zPXv2ZNCgQdx///1ceeWVPPXUU6xevRqbzUb37t2jBDY1NZXzzjsvahW7cuXKSPlyyYlNUDX4cZ+bt748HPm7V3gQOGyWKgJrsypYFShyh6jwLzhYFCDVYQkngz1+/JCByxdq2hfRQEwBa3a6+XhtPht+9uDx63FzLZysNIsNtqCggHXr1vH0008DMGLECN566y2++uqriKAsW7aMlStXAhAKhTAMg0mTJsW1v1ZHSkoKPp8v6ti5555bpd8NN9zA5MmT6zx+dcyZM4e5c+fy6aef8tZbb/HWW2+RnZ3Nk08+GakbVsGwYcNYtGhRpBz5f/7zH5566ik++OCDOl/3zZUHKQ8c+yIe78ReFxr6Haj29BrGrq65zq+pmu4NeYmx3p8K4dANE28wXK0g2WnFeXTTymEFb1DDbrNgCgeegHbU7zVM9/Yp/LTPhd2ioOoGtqPFDzfsKeOMbhnsKQlF/UD/XOSna9skijytW2QBPAGNbUe8eIMGdgskOW3YbWC1WLBajv6cxNh3UKo4srVOzj0tnQt7Z8ZsaxaBXbp0KVarlaFDhwLQr18/2rVrx8KFCyMCO3ToUB544AEgvGG1detWZs2ahRAiIkC1xefzVRHmTz75BKs12gUmNbV2SYMrqs1WtqFWIISIqkbrcDiYOHEiEydO5MiRI3z11VfMnTuXu+66i//85z9kZ2dH+g4bNoyZM2dSWlqK2+0mEAhw5pln1vp1VuaOYV3qdZ6kefi5wIe7XCXJaaVDZgKFJX6yKn1Eu7dP4udDbjLTnNitCilJx+yvSXYLZ3dNJi0lIWrMdulOLj0rm7Sk2LZaScvTLAJbYQ4YOHBg5JhpmqxatYrS0lIAkpKSyMnJibT36NGD/Px83n777ToL7I4dO+jRo0fUsa5du9arLDdAWloaAF6vlzZt2kS1ud1u2rVrB8CKFSsoKChg/PjxAHTs2JFx48YxcuRIhg4dyvr167nssssi555yyin06tWLVatWUVJSIs0DJzFF7lBkNasQLtldUaLbYbPgPpppWzcEx+d72V/k44xu6ZimwFJpc8sX1Nj4s5sL+7ZtltcgqTtNboPdt28fW7Zs4cEHH2ThwoWRxxtvvIGmaSxZsiTuuUIIDKNuUSv79u1j3bp1UULWUHJyckhISGDDhg1RxzVN46effqJPnz4AHD58mFdeeaWKeSI5ORmbzVZFnCHsE/vll19K++tJTkm5Fil5bQoRZWZon+Fkf74Xi6Kgm2aV0thCgMer4S6PNgf4QialXj2qeKKkddHkK9jFixeTlpbGuHHjcDqPFWzr2bMn/fv3Z8GCBfTs2RNVVSkqKgLCq9vt27fz7rvvcvnll8cd2zTNyDmaprF161Zmz57NoEGDuPjii6P6lpSUxPR7zczMrHFl63A4GDduHE888QQAvXr1orCwkDfffJOUlBRGjBgBwG9/+1v+/ve/c8stt/CnP/2J7t27c/jwYd555x169uwZ0w48fPhw3nrrLRISEmod+CA58SgpP5bH1TCjrcmpSTaKXCEsR5O9JNir2h4PFPs5I6fqKrY8EF7FDjg9tg1Q0rI0ucAuWbKE0aNHR4lrBePGjWPKlCl07tyZ5cuXs3z5cgCsVivt2rXj6quv5q677oo7dlFRUWTjyOl00rFjR8aMGcPtt99epe+QIUNijrFo0SJ69uxZ4+uYPHky6enpPPXUUxw5coTU1FQGDRrE+++/H3ltGRkZfPjhh7zwwgs89NBDlJaWkpGRwaWXXsqTTz4ZM4CgV69eZGZmct5559XbhCFp3QghKPNq2I6WfNFNM2o33dBNhDBBsaDpguSEqgsBIcDj07CqJplpx2yx5QGdvNIgmm5ir67ut6RFUMQvzW9CImlmvAGdN5bvI8kZ3mRNS7SyfH0BdpuFRIeVtAQLm/aURX6A26Q6wmJ53O+xRYG+OenYnHYslX6snXYLvTunMKiXLKfd2pA/eRJJE1PZPADhvK4V+pid7uBQUSDq7kaI2KVjTBEOpz3eFhvSTA6VBCkoCzb+5CUN4hd/T7p8+fKoZC3Hk5ubyz//+c9mnJHkZONQSYCESmkINd2M2FFTEmyUeYMcv1zVDYE1RhXZA4U+crukIYSIEuUST4gf9roY3q+dNBW0In7xAjt48GAWLlwYt93hcDTfZCQnJfmuUOSW3mpRCIWMiJyapsAwwHqcJmqGiTPGDaZmCDTdJKCpZKQe29cQKOwvDLBmeylD+mbJhEGthF+8wCYnJ9cr54FEUhuEEBS4QhFBtVkVXFo4k5YCaLpRJV5JN81qw+n2F/o49ZSqEY4C2JnnJcFh5bweGVJkWwHyXkIiaUJ8QYNA6Jgvt82qEFTDfqupSTZKPKEqUaJhE0L8r2ZQNVEEeANVc3noumDLfjc/7nU3zguQNAgpsBJJE3KoJEDluAG71RIR3MwUBwVlwSorTVUX1GRGLXAH0dX4+WJ/3Odh034psi2NFFiJpAnZneeLhMhCeAUbOCqMyQlWXF61yjmmeXQDqxoHyhJPOK+BHieKK6garN/lYvN+T8NegKRBSIGVSJoIIQQHi6NdsOxWBX8oLIqmIRBxolyFEOgxXLUq4w1ouKrJphXUTL7dWcYPe1y/uDSBrQUpsBJJE1FWruELRufSsChKJE1htTkEKvWLx8HiACkJlmrFU9NN1mwvYdWW4pg2W0nT8ov3IpBImoqN+z1R/q8QDhYwhSDRbsXr12KlQQ33M8XR2//4VWb1oytgb0AjNSm+O6HVYuGnA+XsOuLj9I7JnJLuJCnBiqoLfEGDkGbgsFnolJVAu3Sn9D5oRKTASiRNgGEKth8qr5IZyzBNhID0JDul7qobXBVoRtWsWrEo9YZwOmzVCiyE/W8NU7D9YDmb93nQDYFFAbvNgkUJC79uCHI7JnNOjwzapSdUO56kdkgTgUTSBPxc4COgVU21aZjhsttpSTaKPfFDW1WtdgJb4AqRkmDDrKWNVVEUHDYLSU4rCQ4rVouCoihYLQpOu4WfC/2s3FjM3nxfzYNJakQKrETSyJim4KstJSTaq97e67qAoyJX2T+2Sj9DhKO/aiqxI8AwzCr5CeqLoii4fBrrdrnYVyBFtqFIgZVIGpkf97nwBOL5qBpYlLAo1qYwmFGLlWmhO4jSyF4CJV6VdXvcFLpkApmG0CwCu3jxYnJzc3n77bejjr/00kvk5uZGHmeccQbDhg3jhRdeiKo4O3/+/Kh+ffv2ZciQIcyYMQOvN7r2+tKlSxk9ejRnnXUWV155ZVTV1or2Sy+9lH79+nHnnXdSUlISaRNC8NxzzzFo0CDOPfdcZs+eXeuKCvPnz4+Zc/aJJ56gX79+rFu3jkOHDpGbm8v+/furzKl3796R92fq1KlMmjSpVteVtC7yy4J8taWUBHvVr5ZCOJOWxaKg62aVdITHIwiXlqmJ0nKNBLsFswa3rrpS6AqyZnsZHr/0PqgvzSawOTk5LFiwoErbr371K1avXs3q1atZtmwZ999/Px999BGPPPJIVL/s7OxIvxUrVjB9+nS+/vpr/vjHP0aKEa5bt44pU6YwYcIEPv30U6655hr+9Kc/sXXrVgA2bdrE1KlTufPOO5k3bx5er5cpU6ZErjF37lzmz5/PCy+8wMsvv8zixYt566236v26X375ZT766CNefvnluNUK1qxZw5QpU7jzzju59dZb630tSctzoMjPP/97GKcttnJarQr+kEGSw4rHr9VYMzUzxc4Z3dLp1SmFNinVFzY0TIHL27gVZhVF4UhpgFVbSqTI1pMmF1i3283q1au5++672blzZ0TsKrDZbGRnZ5OdnU2XLl0YNWoUzzzzDAsWLGDLli3HJmqxRPp16tSJoUOH8vrrr7N+/Xo+//xzABYsWMCIESO47rrryMnJYcKECQwcOJClS5cC8P777zNixAjGjh1Lr169eOqpp1i9enVkRfnuu+9yzz33cN555zFw4EAmTZpUrxLaAB9++CGvvvoqf/3rX7nwwgtj9tm0aRN33XUX48aN45577qnXdSQtT1A1+Gx9Af9acwSn3RLXM8BuVQiEDNKT7ZSUq9W6Q6Ul2Wif4eTr9Uf4ekM+DkWQ4ozvslVSHkI0QW0uRVE4WOTnsw2F5JVKc0FdaXKBXb58OQ6Hg1GjRtGtWzfmz59f4zmDBg2ia9euEeGMR/fu3RkwYECk3/jx4/njH/8Y1UdRFEKh8C/7xo0bo+pidejQgU6dOrFhwwYKCgrIy8uLWmmec8455Ofnk5eXV+vXC7Bs2TKmT5/OzJkzGTlyZMw+e/fuZeLEiVx++eVMmzatTuNLWh7DMDlSGmDx9/m89tk+duX5SHTEF0AIu0T5Q8ZRF63qV5t9uqax+sd8FAUsFoUtP7tpn2ZHxCgdD1DsUUl21t6boC5YLArF7hCffHOEz38sZE++F7dPxRfUCagGQdVA100ZLRaDJveDXbRoEUOGDMFmszFs2DDmz5/PAw88gN1e/S3Paaedxp49e2oc//TTT+eHH34AwvWtKrNr1y7Wrl3L9ddfD0BhYWGkxHYFWVlZFBQURIonVm5v2zZcDjk/P58OHTrUOBeAtWvXMnnyZC699FJ++9vfxuxTUFDAAw88gM1m44knnmgUx+7DpQHqWIBXEhNx7L9HgwI0XRDUDMoDOsUelSK3SqE7hC4ESQ4LCgqqKYiTeyVCSoIVl08jJcGGP6SjxHHD6tAmgQMFXlTdJMlpxRQCBdi0p4weXdLYXxKK+ZlRdRNXaZC0lKbLYbxpn4fvdpahm0QlsVEskGC3kJpoIy3RTmqiLfJIdFhw2C1YFCXsGaFUNj+f+EENCQ4L7dKr1hyEJhbYgoIC1q1bx9NPPw3AiBEjeOutt/jqq69qLFGdkpIStQFVXb/jy2RDuIrs3XffzTnnnBO5VjAYrJJA2+FwoKoqwWAw8rxyG4CqVk3IEYvy8nLuuusu+vfvz8qVK9m2bRu9e/eu0u++++6ja9eu/Pjjj8ybN48bb7yxVuNXx/+2lVLmlXayRkEQ+d4rgKKEb+8ddgsOm5WMFDsZNdhEY9E2zcEPu8pw2hTsNgvW47NsH6X7KSn8d8MRbNawucFmDYuTboSzcSU7LNjsVb+6umGSlmAlp11SnefW2AQ1E18oxIGiAKpuUGG9EJH/cDJoKwBD+mS1jMAuXboUq9XK0KFDAejXrx/t2rVj4cKFNQqs1+slJaVqUuHj8fl8Vfrl5+dz6623YrFYePHFFyO5NZ1OZxWxVFWVhISEKDGtWF1X9E1MTKzFqwW/388dd9zBfffdx7hx45g6dSr/+te/qqzWTz31VP72t7/xwgsv8MwzzzBkyBC6dOlSq2vE47oLOjXofEnTY5qCH3eVkZFkJSvVETOQwGm3IIxw6KrlqLgmJ1hxHPVKKCzz06NDGnZn1a+uokDXdimM/nUHGe7aSmhSG+zixYvRNI2BAwfSp08f+vbtS1FREatWraK0tLTac3fu3EmPHj1qvMaOHTui+h08eJAbbrgBRVF47733yMw8Vi++ffv2FBcXR51fXFxMdnY27du3jzyvoMJskJ2dXfOLPdpv0qRJWCwWpk+fzp49e3j99der9HvsscdwOp3cc889tG3blmnTpkn71S8AVTex26C0XCVekFantknsPOg5VjVWCZ9XQVA1sSjgi5G4RQgIaTqFsvhhq6HJBHbfvn1s2bKFBx98kIULF0Yeb7zxBpqmsWTJkrjnrl27lsOHD8fdIKp8jXXr1nHZZZcB4HK5uOWWW0hNTeW9996L2FAr6NevH+vXr488z8vL48iRI5x11lm0b9+ejh07RrWvX7+edu3a1dr+WjkLfc+ePbnjjjt444032LZtW1Q/my28+khISOCJJ57gu+++4x//+EetriE5cQmpBgl269EqBrEVNslpjYrKEkJw/L5WXqk/HKgQ6xqayVaZaLvV0GQmgsWLF5OWlsa4ceNwOo/ZJ3r27En//v1ZsGABF198MbquR1aKwWCQ9evX8/TTT3PttdeSm5sbOc80zUg/TdPYunUrs2fPZtCgQVx88cUAPPfcc5SVlfHSSy9hGEakf0JCAqmpqYwbN47x48dz9tln069fP2bOnMmQIUPo1q0bAOPGjePZZ5+lQ4cOWK1Wnn32WSZMmFDv9+DOO+9k+fLlPPDAA3zyyScx+wwaNIixY8c2mqlA0nrxhQySE2yUxAlrtVoUgkENEY6mBcJmBXHcMqjEo9KxbTKGYVax47p9GpnJslBna6HJBHbJkiWMHj06SlwrGDduHFOmTKFz585s2rSJwYMHA5CUlETnzp254447GD9+fNQ5RUVFkX5Op5OOHTsyZswYbr/99kifzz77DK/Xy1VXXRV17pgxY3jmmWfo378/06dP58UXX8TlcnH++eczffr0SL/bbruN0tJS7rnnHiwWC2PHjuW2226r93vgcDiYPn06N954I6+++ipXX311zH5Tp07l66+/Ztq0afz973+v9/UkrRuXT4vU5LLFsBG0y3ByoMAXKekN4dt+IUTUxhuEV8MBzaTNcVmvTFPgDxm4fSrpUmhbHEVI459E0iys3VbMgQIfS745Etm0qkyfnDRWb8jj+IhXm81CWqINq/WYwiYl2OjaLglnQlURbZPqIKd9Mhec0a5Km6R5kcleJJJmwuPX8IeM+GkIBTHLxFTkMKiMP6hjs1piVj3w+DXKZWhrq0Am3K4Fy5cvZ+rUqXHbc3Nz+ec//9mMM5KciKiaSYknRKyK3FaLQkjVY7qGmkKgGYLjnQVDuok/oNK2TbTfq24I/EEDb0AjJbHu/rqSxkMKbC0YPHgwCxcujNt+fPCCRBILVReUuGPnIMhMcZBfEojZFmujCyC/JECHNrF9tEO6yea9Lgb1rZ2LoaRpkAJbC5KTk0lOTm7paUhOYExTgAIlcaoYZKU7WXfIFbMt3kZXuV8jp31KTG8Cj1+lzCtXry2NtMFKJM2AP2Rg6CaqHntP2WZRCKrxk0kIqtphIX41A00XBEOGTDPYwkiBlUiagXK/RlAz42a7Mkyz2gIHQghCWlWBLS0Pxa1M61d1Nu6uPmJS0rRIgZVImoECd4igqsf0IAgHGMTe4KrAMEQV9y2AYneI1ER7zFBrt0/D49dlGHYLIgVWImkG3D6VUk8oZg6CjBQ7xdWU8K4gnDoxehVbUaU2EKqaK1EI8Id0DhbK4oUthRRYiaQZ8AWMuFUMMlMcFNUiQYthmATVqsUSVd2k3Bfb1urxqew4VF6vOUsajvQikEiaGMMUBFWDMk/svMIJDiveGkwEEF6RBlUD0xSRcFq7zUKJJ0RGnCTbAdXEG9DxBXSSE+XXvbmRK1iJpIlx+1SCmoEeJwOWaZqIOlSEVXWT4NFSLb6gzuGiAIlOW1xbq8evsn53zcnrJY2PFFiJpInZV+BDNwzi7TVpMbwDaotpClTdxDBM/MHYNWvK/Tpur4bagOtI6ocUWImkidmb58NVHs6kdTyJDivlfi2uq1Vt0A0Tf8jA441f2sjlVflRumw1O40msIsXLyY3N5e333476vhLL71Ebm5u5HHGGWcwbNgwXnjhBTTtmGF+/vz5Uf369u3LkCFDmDFjBl6vN2rMpUuXMnr0aM466yyuvPJKvvjiiyrtl156Kf369ePOO++Mqu0lhOC5555j0KBBnHvuucyePRujltUCv/32W3Jzc2Mmx546dSqTJk3C7/dz0UUX8ec//7lKH6/Xy+DBg5kxYwYAl1xyCR9//HGVfmvWrInKhSs5cQmoBt6gQWFZbC+BtGQ7pdUk4K4NQkB+aaBaG67bp1HoDspVbDPTqAKbk5PDggULqrT96le/YvXq1axevZply5Zx//3389FHH/HII49E9cvOzo70W7FiBdOnT+frr7/mj3/8I+bRtO7r1q1jypQpTJgwgU8//ZRrrrmGP/3pT2zduhWATZs2MXXqVO68807mzZuH1+tlypQpkWvMnTuX+fPn88ILL/Dyyy+zePFi3nrrrTq91ueeey5uQcakpCQefPBBPvvsM9auXRvV9vLLL2OxWLj33nvrdD3Jicu320tJS7JR5I7tJZCWZKcsRiTWKW0SyUqLXUgvFvmlQRKd1nBIbhxKPSrrd0pbbHPSKALrdrtZvXo1d999Nzt37oyIXQU2m43s7Gyys7Pp0qULo0aN4plnnmHBggVs2bLl2GQslki/Tp06MXToUF5//XXWr1/P559/DsCCBQsYMWIE1113HTk5OUyYMIGBAweydOlSAN5//31GjBjB2LFj6dWrF0899RSrV69m//79ALz77rvcc889nHfeeQwcOJBJkybxwQcf1On1pqamMnv27LjtI0eOZMiQIcycORNdD9vF9uzZw/vvv8//+3//r1bFHCUnPi6fyg+7y1AUYkZhATjsliq207N7tsGuCDKTrOR2qt1nxTQFhiE4WOSP28fj1yh2h/DH8JmVNA2NIrDLly/H4XAwatQounXrxvz582s8Z9CgQXTt2jUinPHo3r07AwYMiPQbP348f/zjH6P6KIpCKBReBWzcuJFzzz030tahQwc6derEhg0bKCgoIC8vjwEDBkTazznnHPLz88nLy6v1633ooYf49NNP+f777+P2eeSRRzhw4AAffvghALNmzeKiiy6qsZqu5OTAH9T4xxcHcNgUgiE9ZhQWHPUgqNTWvWMKhwvK2XPIzbafXRi6SZvk2iVtMQXkFfk5WOinxKOSXxokvywYJaj5ZQHW75Cr2OaiUQR20aJFDBkyBJvNxrBhwyLVZGvitNNOY8+ePTX2O/300yP9evXqxemnnx5p27VrF2vXro2IamFhIe3aRWdyz8rKoqCgIFKjq3J7RWHE/Pz8GudRwdChQxk+fDiPP/543NfZtWtX7rjjDl555RWWLl3Kjz/+WMUkIjn5MEzBjoMe3ly+D8MUOGwWSj0q9hgbXABGpcgsRYHsNCeH8r0oRy2q2/e7OK1jcq3CXd0+lUSnheJylX0FPvJKg+SVBtl2sJy9eT5KPSplXpWf83wsX5/Hmq3FbD3gwePXZDhtE9Fgz+OCggLWrVvH008/DcCIESN46623+Oqrr2pcraWkpMS1ZR7fz+erGu5XUlLC3XffzTnnnBO5VjAYrJKf1eFwoKoqwWAw8rxyG4Cqxt+BjcXDDz/MqFGjmDt3LnfccUfMPhMnTmTRokVMnjyZadOmRUqDNwVzP9+HJ0Yp5yhq+BI19CtW1+9ozf0bON8aOjT89YpK/wZf0MDl03DYLCQ5rQC0S3ey+4iXgFrVRGC3KpQHNAwznGegc7sk9h7yYJjimFeBgLxiP5lJNoq91d/a55cG6JidTJ6r6mc5Xw1yuCSAYQoS7G5+dVoG3pAZTs4dMkiwW8hMdeC0WVAsHCsbLqmRX52awdAzY+fdbbDALl26FKvVytChQ4Fwaex27dqxcOHCGgXW6/XWyh7p8/mq9MvPz+fWW2/FYrHw4osvRkpmO53OKmKpqioJCQlRYmq32yP/BkhMjJ24OB4dOnTgzjvv5NVXX2X06NEx+zidTm6++WZefPFFxo0bV6XdZrNFNu8qY5pmpLR3bbn50m516i9pHoQQvP7vXZzWoWo+4dREG4cLfXRsG/7sndEtnS+/P1SlCkFhWZD+uVnY8n01eht0bZtIzikpUYUTY5Ge5KDfaRn86rTMOr4iSV1osImgwhwwcOBA+vTpQ9++fSkqKmLVqlWUllbvd7dz50569OhR4zV27NgR1e/gwYPccMMNKIrCe++9R2bmsQ9J+/btKS4ujjq/uLiY7OzsyAqycnuF2SA7u+6Z32+55RY6duzIzJkz4/apEHZLjDohqampVVzQADweD6mpqXWej6T14Q+Fo61ikei0UXrUg8BqUQiqOiLGXljFBpYZIx9slb5C4A/WbJ5z+8NmBF9Abng1JQ0S2H379rFlyxYefPBBFi5cGHm88cYbaJrGkiVL4p67du1aDh8+zMiRI2u8xrp167jssssAcLlc3HLLLaSmpvLee+9FbKgV9OvXj/Xr10ee5+XlceTIEc466yzat29Px44do9rXr19Pu3bt6NChQ51fv91u59FHH+Xzzz/nu+++q/P5ubm5bNiwocrxDRs20KdPnzqPJ2l95JcGEHEWk067BXd5+A4qOyOBQ/m+uAEHew976JBV812WKcBbyyTbh0v8fLO9SNpfm5AGmQgWL15MWloa48aNw+k85rPXs2dP+vfvz4IFC7j44ovRdT2yUgwGg6xfv56nn36aa6+9Nsqh3jTNSD9N09i6dSuzZ89m0KBBXHzxxUDYB7WsrIyXXnoJwzAi/RMSEkhNTWXcuHGMHz+es88+m379+jFz5kyGDBlCt27dABg3bhzPPvssHTp0wGq18uyzzzJhwoR6vwfnnXceV155Jf/+9785++yz63TujTfeyPXXX89LL73E6NGj0XWd1atX8/HHH/PSSy/Ve06S1sPPeV4SYpTohnBxQsMUWK0KbdOdbN9bEtcE4PFp9OxqI98Vqvb23+VVcVhrt24yDMGRogBbfnZxZndpKmgKGiSwS5YsYfTo0VHiWsG4ceOYMmUKnTt3ZtOmTQwePBgIO+J37tyZO+64g/Hjx0edU1RUFOnndDrp2LEjY8aM4fbbb4/0+eyzz/B6vVx11VVR544ZM4ZnnnmG/v37M336dF588UVcLhfnn38+06dPj/S77bbbKC0t5Z577sFisTB27Fhuu+22hrwNTJ06lVWrVtX5vL59+/K3v/2NV155hblz52KaJj169OC5557jwgsvbNCcJK2Dg0X+uKKpasbR1aOCEAJDN2OakirwBXSsikBUE7NVWh7itI61Ny+5/Rq7j5TTKSuJNum1D2yQ1A5FyPsDiaRJUDWDlxbuxBljBasACXaFNZsLsdssdGuXzPc/FVS7iZXgsNIzJ4ODJYFqr3tGtwywWqoUQoyHguD0Tmlc0v8U7DaZnqQxke+mRNJE5JcG44auJjqtuMpVLBaFNmlOCkrir3QrCKoGTptSbTgshDe66rJ5JVDYm+dlzVZpj21sZAbeoyxfvpypU6fGbc/NzeWf//xnM85IcqKz46CHBEfsNUyi08YeT9iDoG26k3UHy2o1ZpErSLLTQkCLL4Qh3SQYMkiLk4Q7FoYp2HWonBSnjXNys2p9nqR6pMAeZfDgwSxcuDBu+/HBCxJJTewr8MZdlSY6rZR5jrlohVQDRan5hvJggY+zcrPYWxA/50CZJ0RGat3tqUHVYNtBDylJNnK7pNf5fElVpMAeJTk5meTkqs7gEkl98AY0XD6NRIc1bp+QZmKxKhiGiRBKrXLCGqYAAaZhYoljYy3zqnRsm1Svebu8Kpv2ukhOsNM5u35jSI4hbbASSROw+3A5tmrcqTTdxBQCq0VBVc06Jdw+XOijTTW3/0KEH8dXoK0t+aUB1u8qjZlGUVI3pMBKJE3AtgPuanfkgyEdFEhPtlPqqblkd2XySwO0TXdWuyFlmgKvr275NSpQFIUDhV6+3VZCSK1dMnpJbKTASiSNTFAzOFISvwy3w2bB5VWxWhQyUhwUu6p3u4pFSDUgRh6LCrxBDaMBHgEKCruPeFi7tThslpDUCymwEkkjs/uQh+pydSUd3eBSFIWkBBvuamppxePnI+V0rCZ0tsSjkuyMb/+tHQpb97n4fkeJdN+qJ1JgJZJGZsPuMpz2+OKW6LRR6jlm36yPdpX7NZIT7HHryfmDOg6btcHCaAIb95Sxea+rQeP8UpECK5E0IuV+jfyy+OYBALtNwXs0EEDXzXonpt1zyE3HzPirWNMUBBqhPIymm6zfVcqOg+4Gj/VLQwqsRNKIfLutCEcN4aaaLjDNsAeBphn1Ltld6lFJS7Ih4thiDdOs90bX8fiCOut2lLL7sKdRxvulIAVWImkkVM1gyz4P1hqSXVckeUlJtOHyqg0q2f3Tzy5y4virFrtDJDgaz9W9zKuy5qdidhyUIltbpMBKJI3Et9uKa7R5WiwK5T4Ni1UhNcmOu7x6c0JN+AI6hmniiFHzq9QTIiWh4XbYynj8Gqt+LGDdjhJ0o35+tr8kpMBKJI2AP6ixbmdpjdmokpxWSj0hLEpYYEs9Db+F/2mvi+6nJFfZLROAIUSj+7JqhsnqLYX8e80hdh32hO3IkpjIUNlGwuPx8Nprr7FixQqKi4s55ZRTuPrqq7nllluw2+1MnToVXdd55plngHDymMsvv5znn38+apz58+fz/PPP8/XXX7fAq5DUByEEi789UmMdLIAkp40ST3jVarUo6HrtchBUf33Y+nMZOR3TOFgc7VMb0kyCqkGCs3G/6jarhSMlAX7O85KcaOOUzETSkm3hFImC8EMJr9iddgttUp2c0iaB5ARbg0wiJxpSYBsBl8vF9ddfT1ZWFjNmzKBz585s3bqVGTNmsHPnzoioHs+yZcu49tprueCCC5p5xpLG5IedpRws9FXrmlVBgsNCWbmKooSF2RRQcXdvsyqcndsWXTf4YWcJVJNY+3jcXg1V1Ul2WPBVqmBb5ArSvhpPg4bidFjRDcGhYj8Ux+4jhCCkmVgtCjntkzn1lBRyu6SRlHDyy8/J/wqbgWeeeQa73c4777wTqe7QpUsXMjMzGT9+fJXKDRV06tSJJ554gkWLFslsXScom/eW8dWmwlqJK4TLxJhHy8ToholSSUT798zix60F2G0W+uZk8NP+urlFbd/n5tdntGP7IQ/K0coIHp9G1/bJmKao1Qq7KVAUhYSjSW+OlAQ4UOjjm23F9MlJo09OBm3TnSftqlbaYBuIqqosWbKEG2+8sUrpnPPOO493332Xnj17xjz3nnvuobi4mDlz5jTHVCWNSCCk8++1h1ixLg9HnJpbsQiqYQ8Cm1UhFDzmopWWbMfnV/EFNNzeEE67goW62zY37iqhR8fUqI0tVROUN5K7VmNgs1owTMGmvS7+/vle/r3mED/tczWKz25rQ65gG8iBAwfw+/2ceeaZMdt//etfxz23Xbt23HPPPfz1r3/lN7/5DV26dKn3PMrKVYxqYtMldUOIo6ZEEXbY1w0TX1CnoCzIvnwvh0uC2K1hO6qq1W4TyW6zUOIKoCiQkmiPZKsSQtC9UyqbthZErr1zv4tu7VPYk++r07z9QZ28Ih9tku2UeMPVZfOKfbTLTKz1PJsTBdhzpJxtB8KuX53aJtEuw0l6kp20FDvJTht2uwWLomCxHFvvt6YFr8NmJS3ZHrNNCmwD8XjCH4zU1NoXmqvM73//exYsWMD06dMbtJKd/98DuH21K9csqT0VX2SLouCwWUh0WrFaLHSpR77V1CQb2/e5SHLaaZuWwL5DLmxHc7o67VZUzcRy9ILucpVep2ayr7DmUjLHk1cS4KyeWQRCBkKxoGqCjBQHTocdW2uvuSWgsCzEkZIAQdWIpHWsWJC3xpQIF53VnrN7tInZJgW2gWRmhssdu931CyO0Wq089thj/O53v2PFihX1nsdto06v97mS5uMdd4CURCtd2yez/4iLjFQHGakOPN4gDoclSkyFEKQkWLA7Yq+OquNAgZf+PbII6CZWq4WURCs9OqcysG+7xnw5khpo5T9nrZ+uXbuSkZHB5s2bY7bfe++9/Oc//6l2jLPOOotrrrmGWbNmEQjUPXWd5MRAN0zcR2/bEaAd3e0/JSuJg0fKq6xU84r9tE1PqNe1TFNwsNCHdtQs4PJqlHnUeifhltQPKbANxGq1csUVV/D++++jqtEbCd988w3Lli2LrHKrY9KkSQSDQd56662mmqqkhfF41YgdVDPCt74ATrsFf6Cqeaew1E/bjIR6R2IVlgVIdtoi1zxU5GP99ji+VJImQQpsI3D33XcTCoW45ZZb+Oabbzhw4AALFizg3nvvZezYsZxzzjk1jpGRkcH999/P4cOHm2HGkpbgcLEf+1GPA00zQAnbeFU19u65EKAIMBqw6jxS7EM/KrBBzWDnQTfb97vqPZ6kbkgbbCPQpk0bPvzwQ1555RUeeOABysrK6Ny5MxMnTozrAxuLa665hvnz50uRPUk5VOjDbrNgUcAf0LFaFLLSEygo9seNKdBN82i2rPolzy4sC9KhbRKqYWKzWvD4NVauO8KRYj+9ctJpn5kYjr6SNAmKkKnKJZJm4e3FO/CHDJITbJS6Auw84CY3J4PN2wvwB2OvYju1S0ZRFLxq/b+m3TumopuC9LRj9lwhBCHVpENWEj27pnHGqZkk/gIiq5ob+dMlkTQDqmbgOrrBleC04vKGfWCddgu+GPbXCgpLA/Xe6KrgUJGPtCR7lC1XURQSnFbKvCHWbC7ks28PcaDA26DrSKoif7Ikkmag2B3CMEywW0h02nAdLRljGGYkMUosND18a2+aJhZL/dZDqmaiKAr+oE5SYlWXL6tV4XCxH31rEaYp6Nahfj7dkqrIFaxE0gzsPeLBeTQe36KEQ2YtFiW8wVVDHIGJiGxU1RdXeSjuZloFBaUBNu0upageVW4lsZECK5E0A/vzfZFkK4YRjkzKTHVSXBasMVIrGDKwNTBRS16Jn7QUR40uXwcLvfywo6RVhtWeiEiBlUiaGE03KKpUCFHVDEwBbdIcFJbUnGugxBUkM9VZY7/q0I1wcoVgDQlVBAp7D3v4fmuRLNXdCEiBlUiamILSAJoeXhEqCgSCYRetBKcVr7/mDFIl7iBt0hqezjKkGnj9NeerMARs2y/9ZRsDKbASSROzdZ+LBGfY/prgCHsQKAqYhkDUoma3bphYLRZMs2EryrwSP+lxsj4dT1Az+HFXKcVl0h7bEKTASiRNiBCCvYeP5RlIdNpwlYfCaQ5VvdZp9wSg6w2zi/oCOnabNey5UAuK3UG+2Vp8UuZpbS6kwEokTUiJJ0R54JhAJTqsuMtV0lOdlLhq3uCqQNMNLLVY7daEMAUeb+2SbyuKwt48D2s2F8hNr3oiBVYiaUI27CjBWanigc2m4A3otElzUlTqr/U4Je4gGSkNt8N6fCpmHRKzWxSFrftcfLUhH6+/9VRFOFGQAiuRNBGGYbLjgDuqFpauC4QpSE6w4alDGZdiV5DMtIZ5EgAUuoKkJdVNqBVFYdt+F4vXHGT7fpdMeVgHZCSXRNJE7DroRtUMHI5jiVpCqoEAzBoiuI4npBo4bVaEEA0qEBhSDWxWBU03sdehuoHFolDsDrF07SHSkh10aZdEZqqTrDQn7dokkJJoP2kLFzYEKbASSRNgmoL/biyIElerRcEb0LBalUi6wrqi6wZ2e8O+tqYAjzdEVj3KeTvsFoKqzq5Dnkg5bptF4dSOqeR2TadHl3SsLVS9tjXSZCYCj8fD7NmzGTZsGP369WPkyJHMmTMHTQv74Y0fP55LLrmEYDAYdd6hQ4fIzc1l//79AEydOpXc3NzIo3fv3px//vlMmzYNrzd+cgpd13nyySe54IIL6N+/P3/+858pLj6WbPiHH36IGjc3N5ff/OY3kfYNGzZw3XXXRea+cOHCmNdxuVycf/75zJ8/v9bXPh5VVXnkkUc499xzueCCC3jzzTfjv7GSE4Jt+1x4jquRlpRgo/Ro0ECpu/YbXBUYQjTYVQvCYbP1TGsQRUU5bpvNwsFCH599c4j/fH+YYhlqG6FJBNblcnHttdeyceNGZsyYweLFi7nvvvt47733ePDBByP9Dh8+zKuvvlrjeCNHjmT16tWsXr2aVatW8fzzz/P1118za9asuOe89NJLrFy5khdeeIGPPvoIl8vF5MmTI+179uzhjDPOiIy7evVq5s6dC0BpaSkTJ05k0KBBLF68mDvvvJOHH36YdevWVbnOrFmzKCkpqdO1j+epp55iw4YNvPPOOzz++OO89tprLFmypMb3RdI6CYQ0/rP+CE5ndA7X5AQbpZ4gbdITKCytvQi1zUgg0WmjzBMkNbHhN51FriBpyQ3fMDsem83CzoNuln97mB0HXI0+/olIkwjsM888g91u55133mHQoEF06dKFkSNH8te//pVFixaxceNGADp16sTbb7/Nnj17qh3P4XCQnZ1NdnY27du357zzzmPChAnVFgk0TZOHHnqIAQMG0KNHDyZMmMD3338fad+9ezc9evSIjJudnR0p7XLkyBGGDx/O//3f/9GlSxeuuuoqevToUUVgv/rqKzZt2kSbNm3qdO3K+P1+PvroI6ZNm8YZZ5zB8OHDuf3223n//ferfU8krRPdMPlo5b6Yd/9OuwVXuUpKog330ZLd1aEoMOhXp5CWaKV31zQS7JYGh8xCOEOXBdCbYLNKURTKvCor1x3h258Kf/EbYo0usKqqsmTJEm688UaczugPw3nnnce7775Lz549ARgzZgx9+vThiSeeqPN1rFYrDkf8X+H777+fiy66CIDi4mI+/vhjfv3rX0fad+/ezamnnhrz3DPOOIO//OUvQFgsv/jiC37++WfOO++8SB+v18tjjz3G9OnTsdujo2NqunZltm/fjqqqUWVlzjnnHDZv3oyuSwfvE4mQavDh53spLQ9FeQ5UYJgC3TDDEVy1iPM/8/S2bNtZyO69JazbnEeCVSHFaWmUHAGmKSj31yzy9R5fwNqfCvnsm4PkFdecb+FkpdE3uQ4cOIDf7+fMM8+M2X680Dz22GNcc801LFq0iDFjxtQ4vhCCbdu28cEHH3DJJZfU2P+5557j9ddfJz09nQ8//DByfM+ePSQmJjJ69Gi8Xi9Dhgxh8uTJpKYey4UZDAY555xz0HWd3/3ud5x99tmRtqeffpoLL7yQc889t87XrkxRURHp6elRP0Zt27ZF0zRKS0tp106WWW7t+IMaW/aW8e1PRZgQd3de1QyEAMOoeYPLabdit0GpK0BFuNeP2wsZcX43dub5sFrrV0KmgjJvqE5eBPXBZrWwL9/Lz0e85Oak06NLGp3aJkfSNv4SaHSB9Xg8AFFCVR19+vRh3LhxzJ49m4svvjhmn2XLlrFy5UoANE3DNE0uuuiiau2aFfz2t79l+PDhzJkzh1tvvZUlS5agKAp5eXn06dOHJ598EpfLxZNPPsn999/PnDlzIucqisJHH33Enj17ePzxx+nWrRu33HIL3333HV9++WWNdtJY105JSYnqEwgEqqzEK54fX6W2Ov6xYg/eSpnxq13jiGqfHtcYv7W+66i6LMDqu1oTcZ/U0LfqBGIeMkyBN6Dh9mnouklSgg27Lb5q2qwKpm6QmGClsMSPYYhqw2R7nJbB1u2FCFNEBNYwBEVlfpyKSXmoYavYgwU+enXLoKiZcg2s2Rzki3V56IZJarKd5AQbCQ4rVouCYlFQFIUT1fmgZ9d0LurfIWZbowtshR3T7XbX+px7772X5cuX8/zzz3PzzTdXaR86dCgPPPAAADabjaysLBISjpXRuOKKKzhy5AgAHTt2jBK+bt26AeGNpKFDh7JixQrGjh3L999/T3JycmQl8OSTT3L11Vdz5MgROnbsCIDT6aRv37707duX/Px83nvvPcaNG8fDDz/MI488UuOPSLxrV8bpdFYR0orniYm1d6O5YcRpte4raRk+W3OADm0S+XFbIe1qcJFql5nAdtUgwRn9FT14xMOZvdqhKdYG+512aZ/CyPO7kvALWlE2N40usF27diUjI4PNmzfzq1/9qkr7vffey+jRo6OOpaamMmXKFKZOncrAgQOrnJOUlEROTk7ca86ZMydir7TZbBG76VlnnUXbtm2BsFh16tSJsrIyANLS0qLGOO20sEAVFBSgaRqHDx/m/PPPj2ovKytj06ZN7N+/nylTpkTaAoEAjz76KD/++COPPfZYjdeuTPv27fF4PKiqGlm5FhUV4XA4SE9Pj/uaJSceBaU+stISKXMHq+3XJj2BvILymGaEYMhA1028QZXUtKQGzUc3TA7kldMzJ6NB40ji0+hGGKvVyhVXXMH7779fZWX2zTffsGzZssgqtzJXXnklAwYMiGwu1YVOnTqRk5NDTk4OnTp1wmKxMH36dBYtWhTpU15ezv79+znttNPYtGkT/fv3p6CgINK+detWrFYrOTk5fPfdd9x3331R8//pp5/o3r07v/rVr1ixYgULFy6MPNq2bcs999zDn//85xqvfTy9e/fGbrezYcOGyLH169fTt29fbDYZB3KyYBgmrnIN3TDRa8hm1bFdMgcOu2KuUFXdIK+wnNQYtbXqSiCkc1AWOmxSmsTKfffddxMKhbjlllv45ptvOHDgAAsWLODee+9l7NixUTvmlXn00UcpLCxslDnceOONvP7663z99dfs3LmTSZMm0a1bN4YMGUKvXr1o3749Dz30ELt27eL777/n4Ycf5uqrr6ZNmzaMGDECm83Go48+ys8//8ynn37KO++8w5133klCQkJEzCseFouFrKwssrKyarw2hAXX5XIB4dXtVVddxeOPP86mTZtYuXIlb7/9NhMmTGiU90HSOvB4VVTNJBinPHdlLEAoFDt7lRDhsZx2S4PTF3p8Wo1iL2kYTbJEatOmDR9++CGvvPIKDzzwAGVlZXTu3JmJEycyfvz4uOeddtpp3HrrrbzxxhsNnsNtt92Gpmk88sgjuN1uLrjgAl577TUsFgsOh4M333yTmTNnMm7cOKxWK2PGjInc9qenp/P2228zffp0fvvb35KVlcW0adMYPnx4g68NMHPmTA4fPsx7770HwIMPPshjjz3GTTfdRHJyMnfddRejRo1q8HsgaT0cKvKRlmyn2BWI6cJVQXKiDbcnUK2XgRAQCGr4ggbpGcn1npNpCoIhg6BqSDtsE6EIWXhHImlylq7ehy+gs3FHISVl8W2wp3VJ5+d9JdUGIqSnOEhMtNO1YzoWZ8MistpnJXLGaVn0PrWq2U7ScGS6QomkGThU6CPRaaO0GnEFSE2y4/ZU30fVDMq9KkkJtlpXJ4hHKGRwqKC8QWNI4iMFViJpYvwBjXKfhmGY6DUkuzYMk5ryuahaONWgYZiUl1cvxjXh8WvouryJbSqkwEokTczBAm+kmmx1UQ0pSXZcrkCNdboMMxykUFjqw2ltmC+saQpCmoG7lmVkJHVDCqxE0sTs2FdGZqqTglJ/tRtc7bOSOFxQXqsAAiEgr8hHRqqjwbkJNN1k297SBo0hiY0UWImkCTEMk/35PlKTHRQU+6oVz5QkOy5P7ROwaKoZ9igIaDV3rgaXV8Uj6201CVJgJZImJK/YT0jTSXRaKatBPE3DBGq3aRVSDSwWBa9fRVcbJrAh1SAYMgipsnJsYyMFViJpQn7YVoTTbiWkGdXu+FuUo2VkallHJqQa2O0WDhd4adMIxRBVzWD7z9JM0NhIgZVImoiQarD3SDk2m4Vyb6ha80BmupPiUn+tE7iYQqAAwZCO1aI0OKrLVa5SWIMLmaTuSIGVSJqI9dsKQQjSkx0cKfBWu8HVNiORwuI65gUQ4aoEIdXA72tY8uygahAI6fgaaM+VRCMFViJpAlTNYN3WImw2C6nJDvKK/dX2T3BY8frrJm6aYWIKwZFCb6PU6vL6NTbujF+cU1J3pMBKJE3AF98fxjzqPiWEIKRWn+TFNM06ZzAPhnQcdgser0qi09Zgd61STwiPV21wdJjkGFJgJZJG5ufDHn7aW4rNGv56+f1atVUcbFYLoaBW2/2tCLohsCgKQgh0w2hwVBeEXbY275abXY2FFFiJpBEpdgX59KufcdrD2anSku0cLqze/pqVkUBhHTa4KiOO2mELiv0kOhr+dS5xByko9cs0ho2EFFiJpJE4XOTlg6U7sFYS04xUJwfzvdWKZ1ZGAoX1rLyqamHvgaLSAGlJ9gabCYSAvGIf67cVNWgcSZgmE1iPx8Ps2bMZNmwY/fr1Y+TIkcyZMwdNCxvyx48fzyWXXEIwGH1bc+jQIXJzc9m/fz8AU6dOJTc3N/Lo3bs3559/PtOmTcPrjb/rqus6Tz75JBdccAH9+/fnz3/+M8XFxwz4P/zwQ9S4ubm5/OY3v4k51q233srUqVOjji1dupTRo0dz1llnceWVV/LFF19EtX/xxReMGjWKfv368bvf/Y4dO3bEnauqqjzyyCOce+65XHDBBbz55ptx+0paH6Yp+HZLAR+t2IPVaqkipoFg9VFSdqtCMFS/Eu3BUNgfFjjqTdBwM4HXr3OkyEf+L7jcdmPRJALrcrm49tpr2bhxIzNmzGDx4sXcd999vPfeezz44IORfocPH+bVV1+tcbyRI0eyevVqVq9ezapVq3j++ef5+uuvmTVrVtxzXnrpJVauXMkLL7zARx99hMvliqpCu2fPHs4444zIuKtXr2bu3LlVxvnXv/7F//73v6hj69atY8qUKUyYMIFPP/2Ua665hj/96U9s3boVgM2bN3PPPfdw3XXXsXDhQrp168Yf//jHyI/L8Tz11FNs2LCBd955h8cff5zXXnutxoq1ktZBmSfIe0t28L+NeVXKYFssCuU+tcYqupU3uLp2SKNnt9rnZq3whzVNwcE8DykJDS8lA3C40MuGncXSbauBNInAPvPMM9jtdt555x0GDRpEly5dGDlyJH/9619ZtGgRGzduBMK1tN5++2327NlT7XgOh4Ps7Gyys7Np37495513HhMmTGDFihVxzzFNk4ceeogBAwbQo0cPJkyYwPfffx9p3717Nz169IiMm52dXaVWWGFhIc899xxnnnlm1PEFCxYwYsQIrrvuOnJycpgwYQIDBw5k6dKlAPztb39j5MiR3HzzzZx66qk88sgjAPz8889V5un3+/noo4+YNm0aZ5xxBsOHD+f222/n/fffr/Y9kbQswZDOirUHeOffO/D4VBy2qhUBMlMd7D/srtb+6rRb8fuPbXB1aJdMRpINYdQ+cEDXzXDqQp9GgqPhpWTCKOw54Oa/G/LwNNDH9pdMowusqqosWbKEG2+8EaczOoTvvPPO491336Vnz54AjBkzhj59+vDEE0/U+TpWqzVShTUW999/PxdddBEAxcXFfPzxx/z617+OtO/evZtTTz212ms89thj3HDDDZHy2xWMHz+eP/7xj1HHFEUhFAp/EL/55hsuu+yySFtycjIrV66MvO7KbN++HVVVo+qUnXPOOWzevDlSKVfSevD6Vb747hCvf/IT234uw2GvahKoIDXJweHCGuyvmQkUloQ3uCwWBV3TcbmDZKTUvlKBPxh21wIoKPYjGutzoyjsPODiszUH2X3QhVlTolpJFRq9JteBAwfw+/1VVn0VVBY5CIvYNddcw6JFixgzZkyN4wsh2LZtGx988AGXXHJJjf2fe+45Xn/9ddLT0/nwww8jx/fs2UNiYiKjR4/G6/UyZMgQJk+eTGpqKhC2sR48eJAXXnghyqwB0KtXr6jnu3btYu3atVx//fWRgoZCCCZOnMiWLVvo1asXDz/8MN27d68yv6KiItLT06N+jNq2bYumaZSWltKuXbsaXyOEV1SmrP7TMI6+faYI33obpomqmbjLVQ4Vetl/pJwiVxC7zULForQ6n1FV01FDJlZbfIFtk+Zkz55iEILMtARKywK4XH7aZibh9teu0oBhhCeu6wZHCsvp3+cUPCGj2pVzXcgr8rEwr5xO7VLo2iGF9m2SSE9x4LBZsFjD74UCdXYzO1mwWiw449Q0a3SB9Xg8ABGhqok+ffowbtw4Zs+ezcUXXxyzz7Jly1i5ciUAmqZhmiYXXXRRlE01Hr/97W8ZPnw4c+bM4dZbb2XJkiUoikJeXh59+vThySefxOVy8eSTT3L//fczZ84cysrKmDVrFq+88gp2e/U2rZKSEu6++27OOecchg8fHqmKO2PGDO69917uuece3nnnHW6++WaWLVtGcnJ0kbpAIFBlJV7x/Piy59Xx1qfbZNLkRkNBARQLWC0KTruVpAQbKNAmvXaJVZISbBSXBbA7LNUKnd1mQTcMFItC28wk8vNcuD1BunfLhCO1yw0Lx5K/WK0WAgEVBYXklMRanVtbfEGNrXtLWfdTISHNxDQFQoCoa4TEScbFAzox6FenxGxrdIGtsGO63e5an3PvvfeyfPlynn/+eW6++eYq7UOHDuWBBx4AwGazkZWVRUJCQqT9iiuu4MiRIwB07NgxaoOo4vb+qaeeYujQoaxYsYKxY8fy/fffk5ycjNUa/uV58sknufrqqzly5Ah//etfueyyy+jXr1+1887Pz+fWW2/FYrHw4osvYrFYIuONHTuWsWPHAvCXv/yFCy+8kC+//JLRo0dHjeF0OqsIacXzxMTaf0Huui72HYOk5fj7v7fS59Q21fbJSnOSkuTAZrXQLiuJ/T8XYbdZsFutpCU7IpWIa0Nqsp2O2SlYLQq5OZkMH3xqvXxrJY1Howts165dycjIYPPmzfzqV7+q0n7vvfdWEZnU1FSmTJnC1KlTGThwYJVzkpKSyMnJiXvNOXPmROyVNpsN0zT54osvOOuss2jbti0QFqtOnTpRVlYGQFpaWtQYp512GgAFBQUsXryYhIQEPvnkE+CY4G3evDki3gcPHuSmm24iMTGRv//975EflszMTOx2e5Q5wOFw0KlTp8iPQGXat2+Px+NBVdXIyrWoqAiHw0F6enrc1yxp3QRCGsWlARz2+OWwHXYrpa5gxG/WqijoRrgcjBAC0zDrJLAh1aDUHSArMwl/QGP7nmJ6n57d4NciqT+NvslltVq54ooreP/996uszL755huWLVtWZbce4Morr2TAgAH85S9/qfM1O3XqRE5ODjk5OXTq1AmLxcL06dNZtGhRpE95eTn79+/ntNNOY9OmTfTv35+CgoJI+9atW7FareTk5LBixQr+/e9/s3DhQhYuXMjQoUO55JJLmDNnDhB2Q7vllltITU3lvffei4g4hAX+jDPOiLhsAYRCIQ4dOkTnzp2rzL13797Y7XY2bNgQObZ+/Xr69u2Lzdbov3+SZmLXPleNtbXSUxwUFB/bBDOFGQkUUKhIwF17VM0M37obJoWlPg7lyWqxLU2TuGndfffdhEIhbrnlFr755hsOHDjAggULuPfeexk7dmzUjnllHn300YgNs6HceOONvP7663z99dfs3LmTSZMm0a1bN4YMGUKvXr1o3749Dz30ELt27eL777/n4Ycf5uqrr6ZNmzYRsa54JCUlkZycTKdOnYDwxllZWRlPPvkkhmFQVFREUVER5eXhD/Rtt93GP/7xDz799FN+/vlnHnnkEZKSkiJeDRUbYRBeWV911VU8/vjjbNq0iZUrV/L2228zYcKERnkfJC3Dll3F2GO4blUmOclGccmxLFumKSL7RKpmYKvHJpXPr1HiChJSTUKqzhFZkrtFaZIlUps2bfjwww955ZVXeOCBBygrK6Nz585MnDiR8ePHxz3vtNNO49Zbb+WNN95o8Bxuu+02NE3jkUcewe12c8EFF/Daa69hsVhwOBy8+eabzJw5k3HjxmG1WhkzZgxTpkyp1difffYZXq+Xq666Kur4mDFjeOaZZ7j00kt59NFHeemllygsLKRfv3689dZbJCUlATBz5kwOHz7Me++9B8CDDz7IY489xk033URycjJ33XUXo0aNavB7IGkZ/AGN/GJ/teYBAGGCqhsRM4AwRWQnvtynkpLswK/VbQPJMAW+gEaCN0SpO8j2PcV0bF+7DWdJ46OIhgYvSySSKL7fnM//NhyJZNOKxylZiaz8389YrRYcDitdspPY+FMeiqKQlZlEWqqTQnf9PEOSEmy0zUzkzNxsLjm/G06HNDe1BDLZi0TSiAgh2LijqEZxTUqwUVhyrIx3otOGP6BH7LE+v0piA8Je/QGNwhI/Lk+QzTtk4paWQgqsRNKIFJb6a1V6Oy3FQUHRsQ2uxAQb/sCx1WowpJOY0IAk2opCUDXYvLOYPfvLZPrBFkIKrETSiKz9MS9uVE9lkhJslLoCkeeJThv+4HGJVQR1rnJwPB6viscbYsXqnykqrb5sjaTxkYYZiaSR8AU0fj7krtF7AEA3THTDxHrUlJCQYCNwXE0ugcAUJlZqHq86VM1k/eZ8/EGTPqe3oc9pWQ0aT1J7pMBKJI3E2h+P1CowQFHCZWQq47BZCYb0KN/ZsC+swNowfSWvyEvbNknkF/vweEMEAhr9+7RvtFwFkvhIE4FE0ggEQzpbdpVEVTOIR0pSOMCgssDFjOdX6h5sEAuXJ0RKgh3TNPEHddb9VMg3m/IwZHasJkcKrETSCKz67lCtk0mlpzjIL/RF5wmIkTRFVQ3s1sZZZeqGifdoXldNN9m0o4jvNuXJFIRNjBRYiaSBlLkD/LSnJGJPrQm73YLHG+1pIIRAOU7r/AG9Qa5alSlxBaIiw3Rd8OO2Ir7bnC9FtgmRAiuRNADTFCxcuQeHrfZfJVXVMUT0rb8wzSr5VH1+laTExtkmKSjxk5GWEOX2ZZiCDVsLWf9TQYOLJUpiIwVWImkAq9cfpswTqnVaQKfDSklZAOtxm2GxFpG+gEpSYuOsYE1TgBBoWnQ5GcMUfP9TPj/8VChFtgmQAiuR1JPte0tZt7WgxpwDlclIdXKkIDqRtt1uQY1RVdbv10hOrH3pmJoIhHRCx/vaAqYB327O47st+dVWaJDUHSmwEkk92L6nhKX//TlmscPqSE60UVQS7fAfDpPVqqyCDVNgsYhGW1nmFXpJS40t2KYJ327MY9X3h3B7a45E03WDcp+K2xsiGNLl6jcO0g9WIqkDumHy3+8PsWF7UZ1WrpHzj1aAtVTaEEtw2ggE4iR1EeEsW0ojeBN4/RpOm5WALmKaNCyKhZ92l7DviIczTs+ie+d00lIcgEJQ1Sko9nMgz8PhQi9l7hCGYWICDpuFju2S6dYxnR45GWSkJVQZ+5eKFNhGwuPx8Nprr7FixQqKi4s55ZRTuPrqq7nlllsidb28Xi9vvPEGS5cupbCwkOzsbEaMGMEf/vCHqCTk48eP5+yzz+b//u//WurlSI7DMEx27ivjq3WHCAT1eomr1aqEvQeOE7fEBBtuly/mOYJwCXpLLT0UakI3TAJBjaTE2LXFLIpCIKDz7cZ8vvr+EHabBUG4sKLVomC3havo2qyWqIQ2BcUB8gr9fL8lnzN7tOXMnm2l0CIFtlFwuVxcf/31ZGVlMWPGDDp37szWrVuZMWMGO3fu5JlnnsHn8/H73/8eIQSPPPIIPXr04MCBA7z00ktcf/31fPDBB2Rny/IerQ2PN8S6nwrYvreMQFDD6bDVKhQ2FukpTg4cLqsSQZXgrBomC5CW4gxHc5mNZxctLPWTmlJz4UaLRSGpsotYLZTCYlEwTfhxexGbdxbRv+8p9MttGz3OLwwpsI3AM888g91u55133omU3+7SpQuZmZmMHz+e8ePHs2TJEgKBAPPnz49Ulu3UqRPnnHMO119/PX/5y1949tlnW/JlSI6iagY795Xxw9YCCksDOGxWLBalwTlV01Ls5BdWXak6HTaCoWiB7XFqFslOK1npCeFE3I1EcVmATu1TCdQxkXddUBQFU8D3m/LZ8FMB55zRnjNOzyI5qfE27E4UpMA2EFVVWbJkCVOmTImIawXnnXce7777Lj169OCTTz7hvvvuq1K22+FwMHHiRCZNmoTL5SIjI6MZZy+pwDAFBcU+1m0p4OfDbgxD4LBbSWjERNXCFKiqXuV2P7xKjbaLts1MZO3avQw4uzMZyXYCjbSINU2BYQp03cRWB9/d+mCxhIX2m435fLc5n76nZ3Fal3Q6tkup913AiYYU2AZy4MAB/H4/Z54Zu2z2r3/9a/bs2YPX643bZ8CAAei6zk8//cQFF1zQlNOVHEUIQSCok1/sZ8e+UvYedBMI6jgdVqwWC41k8owQtr+qVYIJoCJE9lhD++wU8vNcIAQ7dhVyZp+O/LjX1WgluL2+EKYAm61mU0FjUJGf4addJfywtZDUZDtdO6TRrk0S7dsmkZmWQKLTdlImn5EC20A8Hg8QLj0ej4oCh/HKcFccrygpXh/mf74LXyB8m1kXj5ma3GtE3CcVh+KcL+KeUs1Y1Xeo6XWJ4+P5xbH/m4Rv/QNBDV9Qp9wb3rW326047U3vrXhK22R27C0hpBpAtLO/qhph/9Oj+tKxfQo/bjiISThc1m6z8P+z997xcVVn/v/7Th/1arkXXOSCDQbbBMeU2CG0JSRLEpa+oTkJzm+zCd8YQsiyYEK+CxsgzpqEb1haSEKooTkQbMCAsY2xbNlW710aaXqfuff+/hhprPHMSCNpxjb4vF9R0Jx777lnZM1H5z7nOc/H6wmgSdOsr6ndzrzZRfQOJF5YyzQOV4COHjeKGrEaV2QFrU5DXrYBk1GH0aDBoNei1WrQEJkJSxJIg/8dQkq5+kNmmTE5l/NXzUh4TAjsBBla/Xc4HEnPGXrst1gszJo1K+74kH34RMID/3zB/HFfK8g8qqry//5SwaQic9yxaZNyyM81RmsZ5GYb0WhAq9EiSRJeb4BFswvIystK23jmzSrggjWnpFw/QTA+xE93gsycOZOCggIOHjyY8PiPfvQj6uvrKSgo4NChQwnPOXjwIDqdjsWLF2dyqILjiMcbxO1NnOsaCsvRmZlGIxEKho88Aagqnd1OSgrjhXki+P1hWjrsae1TEI8Q2Ami1Wq59NJL+eMf/0gwGPsB2rVrF1u3bqW0tJTvfOc7/OEPf8DtdsecEwqFeOyxx7jgggsoKio6lkMXHENaO51opPiPmyRBOCRH46vFBWYsw7y6IPIYrZEkwkfVEZgILm+Qlo7kT12C9CAENg1s2LCBQCDAd7/7XXbt2kVbWxuvvPIKP/rRj/jnf/5nzjzzTH7wgx8wdepUrr32Wj744AO6urrYs2cPN954Iz6fj7vuuut4vw1BBmlssyVctdfrtPiG1QcoLDAzYHXHnacoCh63L659vDjdQcKyIopuZxgRg00DRUVF/PnPf+Z//ud/2LhxIzabjenTp3Prrbdy3XXXAWA2m3n66af5wx/+wC9/+Uu6u7spKSnhggsuYPPmzSI96wuMrKi0dzkTHjMYtLgcR6pxZZn1uFzxtQAs/R6M+jSmjKng84dparUyf47w6MoUkiqqNAgEGaXf6uHplw5iNMYLZHGBmbZ2K109LgBOX1zGxzsbY0IEOdkGJEni1CVT8MrpWzk3G7XMmVHI2tWz09anIBYRIhAIMkxtsxV9ktoFer0Wn+9IiCDRttiwHCkQo9NqCIfTF4f1BWQCwTBeX/w2XUF6EAIrEGSYxpb4+gNDGPQavP7I4qjBoMXvi68LGwpFdl0pioI3hVKCY8HmCHCguietfQqOIARWIMggPl+IAXvyxSmdVoPfH5mVFuabsNo88XVhZQWNRsJm92HQpTe53urw4faGCItC2xlBCKxAkEEa22wJt8cOoShHCmrn55qwWr0Jz1NV6OlzU5if/hKANoePg9W9ae9XIARWIMgoVfWWEQubRAQ28n2WWR+11k6E1xdEPxgqSCcWq48Bu1/MYjOAEFiBIEMEAmG6+uJzWocTu2ilJq23oKoqiqygKgo+TxL3g3GiqtBrcbP/cHda+xUIgRUIMkZDq23UAjXhsBKNuSojJP2HQgparQa7M4CG9M80ba4AVrtfZBSkGSGwAkGGOFDVmzQ9C0Cn0+D1BaN1CCKFtROLbCAko9dp6bO4KcxLb12CIdq6nFQcFhkF6UQIrECQAVzuAD39I5cDNBq0eLxBJEnCoNcmtNQeQpEVNBJ4vUGMRk1GXFz9QZm+AQ+tnaJGQboQAisQZIC9B7tHdQwwGXS4PRFRzc0x4HD6RyyqrRLZdqvIKv5kLrQTpLPXRWOrjVBYLHilAyGwAkGaCYUVqur6R63QbzLqolkDOdlGnM6Ri7kMLXS5PAGUNFbWikWiud3GvkNiwSsdCIEVCNLMgaoegvLoAmg0aHEN7szKzTHgSFDkZTj+gIxOp6G3z01BXubsXnwBmY5uJ83t9ozd42RBCKxAkEaCIZnd+ztTMvVTVRVZjsRSdVrNqPVeg6GIfYzbHSDLpEur2+zRdFs8NLRYRVbBBBECKxCkkR272gjJqQlfWFaOpGap6ugLV2okZ1VRVBRFxedNb12Co2lst/PZoe4R08cEIzOqwK5du5YXXnghrn3nzp2Ul5dHXweDQbZs2cLFF1/Maaedxrp163jooYdiKvjfcccdlJeXR78WLVrE6tWr+dnPfhZX6T8Zmzdvjulj+NcPfvADAHbv3h13bPny5Vx11VVUVFSkdJ+j+1i8eDFr167l8ccfj55zzz33cM0118Rc19jYGDOWIT7++GMWLVqEw+Fg8+bNXHXVVQnve+655/Lyyy+nNEbBiUV7t5ODdX3oUvS5CoWOWMWkujsrMutVsDl8aJJbSqaFcFihtmmAfSJ1a9ykpYJvMBjk+uuvx+PxcPvtt7NgwQJaWlp44IEHOHDgAE8++SQ6XeRWF154IXfffTcQ+aVqbW3lxz/+MQC//OUvU7rfsmXL2LJlS1y70Rgbl9qxYwcaTeSX3e128+ijj7J+/Xq2bds2ogtsoj5CoRBVVVX89Kc/ZfLkyXz9619n5cqVvPrqq8iyjFYbeSTctWsXkyZN4tNPP0VRlOj99+/fT3l5eVJnWcHnmwG7l1ffrhkx73U4Op0GjycYdUyVZZWFCyah1UhU1fRCkmwCf0DGoNfQ3eNi4YJSPPHFt9KKPyBT3dCP2ahlyYJJmb3ZF5C0hAieeOIJWltbeeaZZ1i3bh0zZszgnHPO4Xe/+x2fffYZ77zzTvRcg8FAaWkppaWllJWVsWrVKq6//vqYc0ZDp9NF+xj+lZeXF3NecXFx9NicOXO46667cDgc7N69O+V7DfUxdepUvvrVr/LVr36Vt956C4AVK1bg8/mor6+Pnr97926uvvpqQqEQhw8fjrbv37+fVatWpXxfwecDRVE4WNPLc68cSiqKiTCbdNG0rOwsA6qioNdIKMEQpUXJ3WODoTA6nYZgMIxWk976sMlwuAJ8drCHw3V9Gcm//SKTlhnsK6+8whVXXBG1sB5i5syZPPPMMzGhhERotVoMBkM6hjLqfQD0ev24+ygqKsLpjNh/lJWVMXPmTCorK1m4cCGqqrJ7925uvvlm9uzZw65du1i6dCkAlZWVXHnllRN/E4LjQiAo43IHcLj8OFwBXO4gdpefzh4XgaCc8sx1iGyzgZaWAQDycowU5Jv44LMWVEXlzDNmYrF6Ewv24GYvWVEJBMMEPAF0+emz806G0xPkwz3tOFwBTl88mSzz+D9DJxMTFli/309ra2tUSI5mxYoVSa9VVZXq6mqee+451q5dO9GhjIjdbufBBx+ksLCQ5cuXj6uPhoYG3nzzTe68885o24oVKzhw4ADf+c53qKmpIRwOs2TJElatWsWuXbu45ZZbaGpqwul0snLlynS9HUEaGJqNRXaoRhaOwrJCMCTj8oTo63fTa/HQ3efC5QkRDMtotRp0Wk1MjutYxRUgy6TD7ojkveZkGwj6w1F3WUkCFAW0ifsNywqqotLT66KoODvDkdhh91VU9h7soaahn/lziplalkNxYRZGozbyM5Gk6M9lpA0TJxMpCey9994bFx+VB/P8HI7ItrpUY5pbt25l27ZtQMSyWlEUzj//fP7P//k/KQ96//79CUXy17/+NV/5yleir4cETVEU/H4/s2bN4uGHH44LJYzEUB/hcJhgMMhpp53GueeeG3P8ySefBCLhgRUrVqDVajnrrLN4/PHHCYVCHDhwIC7+muw9+Hzjcw799R924XRnZnfPF5KjHnUljYQ0+F+dRoNOr8Fs1EUXrIwGLUbD2IU0GRKRFC2NJFGQb6K/2xYtG2uzeSkqMGN1Jf739PnD5GQbsNt9zJlVhCugHDtB00gEQwqH6izsPdiN3x8mrEQEf+gPVZSTRGS/8qVZnPelWQmPpSSwGzZs4KKLLoppq6ioYOPGjdGwwJDQjsZ5553Hxo0bIzfX6SguLsZkGlsR4UWLFvHwww/HtZeWlsa8fumll9BqtWg0GnJycuJCGKkw1IeiKFgsFh577DGuvvpqXnzxRQwGAytWrODnP/85Xq+XXbt2cdZZZwFEZ/TV1dVUVFTExV+TvYejsxJS5cc3f2lc1wmOD70WN4erezGbdJwyo5CayjZ0g7mzvb0uZs8pJtRmT3q92aRjUkkOhfkm1iyazOyZRcdo5IKxkJLAFhUVMWtWrEJ3dnYCkUWr8vJyKisrufjii+Ouve+++1iwYEE0/piVlRXX11gxGo0p9TFz5sxo9sJ4Gd7HnDlzmD17Nueccw47d+7k/PPPZ+bMmZSUlHDw4EH27t3LD3/4QyAS512+fDn79u2jsrKSDRs2pPQehrIOBF9sei0uDPrIv7Ver2Gg3400OIf1eoOYzQZUVU06M1UUFa83iNcbpKm5XwjsCUpaPs2XX345L7/8Mna7Paa9sbGR559/HrM5M+XVjgdDcbtw+Eh+zIoVK3j99deRJIlFixZF28866yz2799PQ0ODiL8KYui1uNEOhh8C/iDq0WmwqooywnbbcFjB6w9htXpRFMTq/glKWgT22muvZdq0aVx33XW8//77tLe3884773DLLbewatUqLrnkknTcJko4HMZiscR9DQwMpPU+AAMDA9H+a2trueeeeygsLORLXzrySL5ixQrefPNNVq5cGTMDXbVqFe+//z7z5s0T+a+CGLp7XQDodRpcTj9IsQKpKArSCKIZCiugRha8QmEZmz2xl5fg+JKWNC2j0cjTTz/Nli1buO+++7BYLJSVlXHZZZexfv36CT+mH01lZSVr1qyJay8oKBhTjmsqDF/Qys3NZeXKlTz11FPk5ORE21euXInX642Lsy5duhRJkkT+qyCGUEjG4fSj0WgoyDNh6XdFwwNDWK1eCgvMOJLtJFBVZEUlGAwTCskcru7lnNWnHIPRC8aCpIpnC4HgmNJrcfPHF/djMupYOL+Uz/Y00doc+/SVm2tk6rRCWkYofm006jCbdMycXsi0qflcsHbkfHPBsUesqAgEx5j2LgeGwdzZgjwTvd3xIupyBcjJNowYWw0GZWRFxeMNRoq/jOCIIDg+pPfZfYLcf//9vPjii0mPX3311WPKl01GZWUlN9xwQ9Ljubm57NixY8L3EQgS0dHljCbkazQSPn+YZBmjI2USRApwq4RCMuGwTF1dH6ctm5ahUQvGwwklsN///ve59tprkx5PdTPDaCxcuJBXX3016XGRKiXIFIqi0N3jjL4OBEIji6iswAi/j2FZweH043QF6LW40j5ewcQ4oQS2qKiIoqLM5/MZDIYJ5+IKBOPB7vTj84cwGiMfPa8nGNn9lEBgZVlBGmUjbCAoY9Brsdt9lBRnx1RwExx/xL+EQHAMaW6zohvcYKDTanA5fSSLDzidfvJyR7GGUSP1E5xuP6GQTGe3c+TzBccUIbACwTGkscWGdnCGWVRoxmJxoZESfwxtNi8FKVTKCgTC+HxhgkGZ+vq+tI5XMDGEwAoEx4hgMExv3xHnjuLCLPpGiJs6HD7yc0ev0zFUBayzy44s7F1OKITACgTHiPYuB+Fh218L8k1Y+pJbJSmKiqSRUtoG6/eHsFi9yLKC251Zry5B6giBFQiOEZVVPRj0R9aVJSJZBKORinusoqiEwzI+f4iaut6JDFOQRoTACgTHAL8/RPtRu7ICgVB8kZcEKHJqhog+X5iOLgc2+/hqCgvSjxBYgeAY8FllV1yb1xuEUdKwfL4gJkNqH1NVVenuceLzhZBTFGVBZhECKxBkmEAwzP5D3dHyhABZZj0Oe/IUrSGcDj95eakXpPf7w/j8IeoaLOMdriCNCIEVCDLM+zub4maUJUVZI6ZoDWF3+MjPG1s95Z4+F3v3txMKZd5xVjAyx1Rg165dywsvvBDXvnPnzhjn2WAwyJYtW7j44os57bTTWLduHQ899BBu95EV1zvuuIPy8vLo16JFi1i9ejU/+9nPYs4bic2bN8f0MfzrBz/4ARDx2Tr62PLly7nqqquoqKhI+b2Xl5ezc+dOAF5++eWYMojDueqqq9i8eXPK/QpObDq7HFTXWmJmrwCFBSOnaA3hdgfIzhqb43J3txNZVvm0ohO/KABzXDmhtspCRFyvv/56PB4Pt99+OwsWLKClpYUHHniAAwcO8OSTT0bry1544YXcfffdQGSPd2trKz/+8Y8B4kwak7Fs2TK2bNkS1240xu6g2bFjR3QLotvt5tFHH2X9+vVs27YtbTUSBF8sfL4gf3u7OqHrrNGgiYQIRmD4dSPVKziaYEhGI0ns3teK2xtg+bKplBZlj23wgrRwwgnsE088QWtrK2+99VbUpHDGjBnMmjWLiy66iHfeeSfqkGAwGGKMDsvKyrj++ut5/PHHUxZYnU4XZ5aYiOLi4qiwl5aWctddd7FmzRp2797NV7/61bG+TcEXnHBY4YXXD0WcYzXxwigBbk8ATZIgbFFhFosXTSYcCqPVaVEVFUmbukur3x8iFJCpa+xnwOblzGVTmX9KibDTPsaccDHYV155hSuuuCLOAXbmzJk888wznHPOOSNer9VqMRjG9kg1HrSDnvV6vT7j9xJ8vpBlhVe2HsZm9ycUV6NBi9MVGHF9a/HiKezcUcOejxswGTTopLFlBXR1OynINyJJElabj3+838D7HzfT159a+EyQHk6oGazf76e1tTVqeX00K1asSHqtqqpUV1fz3HPPsXbt2kwNEQC73c6DDz5IYWEhy5cvz+i9BJ8vnC4/f/t7NTa7D50u8fylsMCMzeaJZGglUNnp0wpoa7aAAkgSB/a3s7S8jP11/SnPQJ0uP/PMJdhcwYjISxKHa3upruujfF4p8+cUMXVKXtQqXJAZjrnA3nvvvXGP7/Lg9kGHI5KInWpMc+vWrWzbtg2AUCiEoiicf/75YyrKvX///oQi+etf/5qvfOUr0ddDrrCKouD3+5k1axYPP/wweXl5Kd8rk2zdVov3WC5ojJC+qSZ9cfR56tENY71V/LkpOiClapQ0Yn9q5LgKeL0hevpcuD1BzCZdwvKDQ0wqycbl8KEoakKBnTwln8921g8eU3E5/eh0GtSwTFAdW5igp8eJ3hj7Me8b8LDtw0ZMRh2TJ+WQnW3AoNciSdKRYYtIQsqUleSy5qzE5U+PucBu2LCBiy66KKatoqKCjRs3RsMCQ0I7Gueddx4bN24EIrHU4uJiTKbUcwYBFi1axMMPPxzXfnRc9qWXXkKr1aLRaMjJyYkLYYwFnU6HoiR+5FNVdVwmkWvPmZvSlkpBGhkUJM1wYUoBl8vPm1sPk5NjiJuRajQSBp2EVitFj6mqSme7ldOXTMYdTD1UkGXWse7cOZy7em5K58uKGvnDI2z6xkSyJxU4DgJbVFQUV+y6s7MTiCxalZeXU1lZycUXXxx37X333ceCBQu48sorAcjKyppw4Wyj0ZhSHzNnzkybO25eXh4ejyfhMYfDMa5ZsdFwQkV7BCPQ0+vG7Q6gSaDKUybn0dlmjWlTFRW3O8Ap2QYcXg86fWr/1naHn8mT89FqNSmFFsRvUPo54Ra5Lr/8cl5++WXsdntMe2NjI88//zxm89iSrk9EysvL8Xq91NTUxLRbrVba2tpYtGjRcRqZ4FjQ3evA5fInPFZamktvjz1eEFUVq9UNoSQ23glQ1Uit2AFr4j/mgsxzwgnstddey7Rp07juuut4//33aW9v55133uGWW25h1apV0RStdBEOh7FYLHFfAwMDo188TqZMmcLXvvY1/s//+T988skndHR0sHv3bjZs2MCyZcvEwtkXmGAwjM8fxulInAOr1UiEQ/FhABVoax1gUmlOynFmiNQ7qKkTRbiPFyfcU4HRaOTpp59my5Yt3HfffVgsFsrKyrjssstYv3592h7Th6isrGTNmjVx7QUFBezevTut9xrOgw8+yKOPPspdd91FX18fhYWFrFu3jp/85CciV/ELTENTP5IUWYA6+l9Zp9MQDIRIlF6gqirBgIJWGznHaEotFXHA6qWw4PP/1Pd5RVLH8udQIBCMG1VVee75vRQX5bDtH4fjYrBlZXkQCtPeFv/0ZDbrUVSYt6AMrz+MLiv1xdx5p5Rw9lmzyUvBHUGQXk64EIFA8EXF0u/G0u9FDssJF+pLSnLo60ucQRMOK+i0GtrbrGMOE3g8QaprRRHu48EJFyJIF/fffz8vvvhi0uNXX331mPJlk1FZWckNN9yQ9Hhubi47duyY8H0En29UVWXb+/Xo9RpCITlhmqnBoCXgT7yIFQ7LmM16QiEZrUYiFAhhSDFM0D/gprBwdPNEQfr5wgrs97//fa699tqkx9NVoGXhwoW8+uqrSY8Lj3oBQHPLAH19LrJzjLhc/oR5s6qiJC3qEpmwSqAqeLxB1FAYUhTYUFghEAhFbMDHUFtWMHG+sAJbVFREUVFRxu9jMBgmnIsr+GITCIZ5e1stOr2WLLMea78rTkT1ei3BwGgpWJFdYx1tVmafUoozkPqmA7cnyMGqbr78pTljfwOCcSOmVwJBBlFVlTe2HiYcjmwHzzIbcDnjU7SKirLpt8QLb0xfRMwNvd4gRqMWOZx6QW1Lv5tgMDym2K1g4giBFQgyyP7KTto77dFQkdmsx+mMt9UuLMzCOkqlK0VRo9tYQ0GZgCfxZoVk13p9QdrabWMYvWCiCIEVCDJEf7+bD3c2oR9WsUpFjc5mh2M26/F44oV3OOGQHBXqri47hfljy2/t63PTctQ2XEFmEQIrEGSAUEjm1TcOxdWDVcJKwkI/qqKOWjYskqoV6c864CEvzxSZ1aaI1xciGAzjSBCiEGQGIbACQZpRVZV/vFeL1xeMi6lGUrQSZAkoKqMprCwrMYKtyAoBz9jEsqvbyaGq7jFdIxg/QmAFgjTT1DJAfX1/nNGhXq/F7Q7EpWgZjTr8/mDK/Q8tVPX1Ockyji0RyO0J4vEEsdm9Y7pOMD6EwAoEacTnC/H3f9Sg08d/tHKyDTgc3rhZbX6+GfuAJ+UaFENhgd4eJyXFY9vVBdDSZqOquldkFBwDhMAKBGlCUVT+9ubBpHHRrCwDdmv8zLGgIAurLTWvLFUlWlh9yBEhUiAmdUIhmbYOG1U1PWO6TjB2hMAKBGli995WevtcCY0OAcwmPc4EdWCzsw14XCNnEAwxtFV2CIfdizaJO8ZIWG1e6uotIqsgwwiBFQjSQENjP59+1jaiiaCKihxOnEGQ6uN6MBRGpz9yj44OG5NKc8Y+YKCrx8knu1uoqetNamEkmBijCuzatWt54YUX4tp37txJeXl59HUwGGTLli1cfPHFnHbaaaxbt46HHnoIt/vIo88dd9xBeXl59GvRokWsXr2an/3sZzHnjcTmzZtj+hj+9YMf/ACA3bt3xx1bvnw5V111FRUVFSndZ6iP4caHw/n3f/93ysvL2blzZ0z79u3b+dd//VfOOussli1bxte//nWefvrpmF/gO+64g9tvvz2uz3A4THl5eUbr0ArST32jha3/qI5b1DqacEhJGD4Yi5eaIqtoJKIbDoKBMDqtNKZdXcOx2ry8s72WN9+u5nB1Nza7l0AwTDgsEwiEcbsD2O0+nE5/wvxdwcikpRZBMBjk+uuvx+PxcPvtt7NgwQJaWlp44IEHOHDgAE8++WS0UPaFF17I3XffDUQcWltbW/nxj38MEOc2m4xly5axZcuWuHaj0RjzeseOHdHEbLfbzaOPPsr69evZtm1bysVeLBYLNTU1LFy4MOb9fvTRR3HnPv7449F7/PznP8dkMvHpp5/y0EMP0dnZyc9+9rOU7in4fOAPhPjgoyZqantHNL6DiMlsKBiKyyCI1CCIjaFmZRlYuHgK4ZBM1eEuwglmvYqqRuvJen0hwoEgWt34CmtrNRra2m00twwQDsvodbpIvW9VRVZUFFlBkiTyC8zMP6WUOXOKmDYlXxSGT4G0COwTTzxBa2srb731VtRtdcaMGcyaNYuLLrqId955J2r1YjAYYhxby8rKuP7663n88cdTFlidThfn+pqI4uLiqLCXlpZy1113sWbNGnbv3s1Xv/rVlO61YsUKtm3bFiOwu3btYu7cuTGz4YaGBh599FEeeOABvv71r0fbp0+fzuTJk7npppv43ve+d0wK0AjSj6qq+Pwh7HYfnV0O2jrsdHU7UFFHFVeI1CCw2bxxAltQYMZmO5JBYDDqOGPFLD79qBaDXsfqs09h585GwvKRWa6qDs5kB2/b2WFj2vQi3KGJZQVotZqjZuESGi0wGJLw+UIcONRJ5eEuliyazNIlUyguyp7QPb/opEVgX3nlFa644oo4K+uZM2fyzDPPxIQSEqHVajEYUiu9NhG02sgvil6vT/madevW8be//Y3bbrst2vbuu+/y1a9+NUZgX3rpJWbNmhUjrkOcffbZ/P3vfxfiegKgKArhcORRXVEju6fUwXZZVpFlhUAwjN8fxuUKYLd7sdq89PW78fvDyGEZvVGHRpIGF7NSm8Xl5BhpaXTEzfoKCrJobTzimXXa6TPY90k9oUCYUFBm364GVq6czSefNDOkzsFQGK32SD8up5+sLAMumx8pyQJbuhga/6Gqbmrq+jh92TQWl5eJMohJmLDA+v1+WltbWbp0acLjK1asSHqtqqpUV1fz3HPPsXbt2okOZUTsdjsPPvgghYWFYzIVXLt2Lb/85S/p6+tj0qRJqKrKe++9x7PPPsuDDz4YPW///v0jvteZM2dOaPyC0VFVFVlWCYVlAv4wTrcfm82Lw+HD4fTjcPhxugPIsoyqDO2bipQAVFUVRVFRFRWNRoNGI6HVamIyAnQ6TUqz1UTk5hix2eLdXXNyjLicPiQgO9tIyB/C7w1GxdTrC9HTaWPWzCJaBwu1BIMyOTnGmFltKBQm4A9gGoOVzESQJAlZVvh0Xxv7KzuZP7eEKZPzKJuUQ3aWEb1Bi1bUQk5NYO+99964x3dZjgS8HY6IxUWqMc2tW7eybds2AEKhEIqicP7554/JXWD//v0JRfLXv/51zKLUypUrgcjsxO/3M2vWLB5++GHy8vJSvldZWRmLFy/m/fff5zvf+Q6VlZXk5+cze/bsmPOsVmvcDP6f//mfaW5ujr7+z//8z+gMd/jPIR389vcf4nInT/WJXaROsNAyytPlRK/PJNEVeBUkjYRWI6HRShj0OkxGXcysUQJ0Wi0kX+zPCBKRClgJK20PUr5oMlUVLXHntDb3c/a55bS3W1GQUBU1Mm9W1ei5Pd0O8vKzCB/juKhGioynrt5CdU0vHl+QcFiJbOuVJJCIzvSHhvZFi92evXIW550zL+GxlAR2w4YNXHTRRTFtFRUVbNy4MSoqQ0I7Gueddx4bN26M3Fyno7i4GJNpbH91Fy1axMMPPxzXfnRc9qWXXkKr1aLRaMjJyYkTwFRZt24d27dv5zvf+U40PHA0+fn5OJ3OmLbf/va3hEKRBYxrrrmGcPhIQeXhP4chZFnm4osvHtcYN6w/Z1zXCY4NVquHqkMdGA2xH7m8HCMmkw6NRoPZbCAckhNmI9RVdbLk1Kk0NEUMEfV6LXl5ZnJyjizsLlwwiTXnlX/hBOzzTEoCW1RUFFe1v7OzE4gsWpWXl1NZWZlQHO677z4WLFjAlVdeCUBWVtaEHQCMRmNKfcycOTMtNt/r1q3j97//PT6fj23btsWEBoZYtmwZe/fujWmbOnVq9PujrWMS/RyGC7Dgi4XF4op7ZNZqNfgHC8KUTc6juyN50r/d5mX+oqlIqooqSYTDkVhxDkcE1u8L0dfrpGxyfsbeh2BspCVIcvnll/Pyyy9jt9tj2hsbG3n++ecxmz/fvuzl5eWUlpbyl7/8BZ/Px5IlS+LO+da3vkV9fT3vvvtu3DGn04nfn3pxZMEXj55uR1z8NifHiM0aySCYMrWAzhbLiLPPmsOdzJsXeUoLheJzUl1OH431wj32RCItAnvttdcybdo0rrvuOt5//33a29t55513uOWWW1i1alU0RStdhMNhLBZL3NfAQLyffLpYu3YtmzdvTpretXDhQn7605/y4x//mM2bN1NTU0N7ezsvvfQS3/jGNwCYNy9xnEbwxaenxxnXlpNjxDoQWfjSEClHOBIuh4/cXCOqIkcW5pTIgt4QA/3uUfsQHFvSkqZlNBp5+umn2bJlC/fddx8Wi4WysjIuu+wy1q9fn5bH9OFUVlayZs2auPaCgoKM7YJat24dTz/99Ij5szfccAMLFy7kySef5E9/+hNut5vp06dz6aWXcsMNN1BSUpKRsQlObBRFwWaLL/JizopU18rONuJOsQh2S6OFGdML6ehyIssKHneAgoKIJbcsKwQDYew2DwWFIj/1REBSRc0ygSCj2O1enn5qJ4ajFrjmzivlvb8fYsGiKXQ09eJMsUbrWWvms/ezdrRaiexsI0XDkv2nTCtg0uQ8zv7ygrS+B8H4EIlqAkGG6el2JMwMkEMyiqqSk2vEmWCGmwxLr5OiAhOKGilZODxMYOl1Ik9wR5cgfaT32X2C3H///bz44otJj1999dVjypdNRmVlJTfccEPS47m5uezYsWPC9xEIANrarXECq9FIkQwCjYSqKKioCa1kEtHS2McZq07BWtlJKCTjdgcoHAwThMMKgUAIm9VNYdH4qmwJ0scJJbDf//73ufbaa5MeT3Uzw2gsXLiQV199Nenxo1OqBILxoqoqnR3xVtk5OSasVg9Go56AL3W7GIjMWmVFQYtKKCRjNOpQObJp12H3UF3Vxeo1IkxwvDmhBLaoqOiY7Nc3GAwTzsUVCFLB5wvi9gTRHTWDzc010tXeT3FJDpYe55g3BzTX9zJrdjHNrbbILNblJzc3smGn3+KmtCwfVVXFpoPjjJiqCQQZpKPDnnAfsTnLgMPmpbgkh/7e1HZBDsdu81JYmIWqqAQC4Zi8WEVR8fuCtLdlLm1RkBpCYAWCDNLQ0JfQ5UBVIpW79DoNweD4dvA57T6yTFpUIBgM4xpmR9Pb46C9VQjs8UYIrECQIWRZoaM9Pv4KIIflwepd498Y0NLYx+w5kdzqQFAmFJKjjgluV4BwSMY3xviuIL0IgRUIMoTF4sLni3d8HapBkJVtwOcJjDtO6veHMBn1KIOV7bzeAM5hGxZsVg+HDrSPb/CCtCAEViDIEJUHOtDr4z9i2dlGBgbclE7Kw9Iz9vjrcJwOL7lZkWL1shJxHXAPlq3s7XESCITF9tnjiBBYgSADhMMyTU39CWenubmRGgSFRdkMWOJrFIyFliYLs2Yf2YIdDMl4vUF8vhCqqmIdcFN9uHNC9xCMHyGwAkEGqK3tTbp4lZVlwG7zoNWQ0NBwLAT8IQxGbUws1+cP4XL58ftD9HTZcdi9YhZ7nBACKxCkGUVR2LO7Cb0+sW2CLCuosooqp2dLq88bxHhUKcSIQaMXtztAv8VFlZjFHhdOqI0GAsEXgaqqbtzuQML0LIBwSCYrx4Db5UvLRoD2lgGmzyiiqTW2YHcgKNPf7yYYDFNYlE0wGI4rODNExFYpTDgsAxIGgxbjUXY7grEjBFYgSCM+X5APP2xIKq5msx67zRNZ4Oqe2ALXEE6Hl/LFUxPu3FIBh8PHvr2tDFg9zJxditmsR1FU3O4AdpuXAasHp9NPOCyjyCqgojdomTQpl+nTCimbnM/UqfkYjam7MQsiTEhg165dy/e//32+/e1vx7Tv3LmT7373u9TW1gIQDAb5wx/+wOuvv05XVxclJSVcfPHFfO973yMnJ1KQ4o477uCVV16J9qHRaCgsLOT888/nZz/7WfS8kdi8eTO//e1vEx5bt24dW7ZsYffu3Vx//fUxx7KysqIFs1NxnB3qY+rUqbz33ntxx//93/+dt956iyeffJLVq1eP2Ncdd9xBOBzmoYceGvW+ghMbWVZ45eUKFFmJcaMdTl6+mbYmC1Om5tNc3RF3XJIipoBD+aypEpZlpGEmiEd32tvrZNqMQnZ/0oA6GBkcutcQOq0mxgzS0ufG0ucmFGohK8vAnFNKmTIlj0mlueTkmjAYtKJuxyhkfAYbDAa5/vrr8Xg83H777SxYsICWlhYeeOABDhw4wJNPPhktyH3hhRdy9913A5FHltbWVn784x8DxLnaJmPZsmVs2bIlrt1oNMa83rFjR/SXw+128+ijj7J+/Xq2bduWclEZi8VCTU0NCxcujHm/H330UUrXC744BINhXnllH1arJ2FpwiFyc0wM9LuYOjUPWY6dcer1Ws4+ZwGKLHO4siNhke5kdHfYmFyWS48l3hp8iMoD7Zxx5my6e11jevTX67WEQjJ1tT3UVHcRCsnodFq0Wg0Ggw6jSUd2loG8PBMFBdkUl+RQVpaH2SxmvBkX2CeeeILW1lbeeuutqKvrjBkzmDVrFhdddBHvvPNO1FLGYDDEOMOWlZVx/fXX8/jjj6cssDqdLs5dNhHFxcVRYS8tLeWuu+5izZo17N69e0TXguGsWLGCbdu2xQjsrl27mDt3LhUVFSn1Ifh8oygqzc39bN9WTTAYHlFcI6iEQ3LCBa4ly2awf2cdPreXL609lQ8/qBvR5ns4fT0Olq+cQ3efO6l4hkMKHW0D5Bdm4/GNb3uuRqPBaDzyHoPBcGSbrtNPT48TVVUJhxWMJh2zZxUzY2YRs2YVk51tHKHXLy4ZF9hXXnmFK664Is4ye+bMmTzzzDOUl5ePeL1Wq8VgMGRyiNH7AOj1qf/VXbduHX/729+47bbbom1Dtt7DBVaWZf7nf/6HF154AY/Hw1lnncV//ud/MmnSpPS9AcExQ1EU7HYf9fW9VFV143L50etSe1wOBcPk5Zmx22KFUJIkjEYtXpcPJInO5j6mTy+gozO1OK2iRGbDqqwgJYn/AnR1OSidlIc/ECYTmVuSJKHXa1Fklaamfurr+1BVlclTCpg9u5gZMwopKspOutj2RSOj79Lv99Pa2srSpUsTHl+xYkXSa1VVpbq6mueee461a9dmaogA2O12HnzwQQoLC1OKwQ6xdu1afvnLX9LX18ekSZNQVZX33nuPZ599Nsbae/Pmzbz44ovcf//9TJ8+nfvvv5+NGzfy5JNPpu09vP9+Lf4E2zIFY2NoXqmqKqqioqqRalVeXwivJ4DV5sXnjezvNxh0qU4wgYjJYVenncKiLPo6rajD4qzTZhXR2WKJjECVaG+2cOaactrbbCnPYh02D9kmHU7vyL8Hn33azNlr5lNT28ex8j5wOnuorekhFJKRJMjLM5ObZyQnx4TRoEOv16DRaAZj19LQ/z4XlJTksGLl7ITHJiyw9957b9zjuzy4N9rhiPz1TTWmuXXrVrZt2wZAKBRCURTOP//8MbkY7N+/P6FI/vrXv+YrX/lK9PXKlSuBofQUP7NmzeLhhx8mLy8v5XuVlZWxePFi3n//fb7zne9QWVlJfn4+s2fPjp6jqirPP/88P/7xjznvvPMAuOeee3jxxRdRJlDo42hOO206cpryKgURxwFJktBqNWi16fmoazQSf3/jADk5RjobezENi1HOnF3Cvh3VMbNgVVHIztIhp5iubulzsmDhZAZsoxsoDvQ5Wbu2nCVLpyddkDuWqGpkkVBRlEgRnM/Rr/JIseYJC+yGDRu46KKLYtoqKirYuHFjNCwwJLSjcd5557Fx48bIwHQ6iouLMZlMYxrPokWLePjhh+Paj47LvvTSS2i1kce6nJycuBBGqqxbt47t27fzne98JxoeGI7NZsNqtbJkyZJo28yZM6OLd+miULiInvAoisJAv5vsLEMkpeqokIKqKDHTto5mC9OmF9GeYpjA7wthNOqRJN+o4QpZVmmo7SEry8Cy02eO+b0IUmPCAltUVBTnDtDZGdk1YjAYKC8vp7Kykosvvjju2vvuu48FCxZw5ZVXApF0qYk6DRiNxpT6mDlzZlrsxNetW8fvf/97fD4f27ZtiwkNwNhiuoIvNm53gIAvRNAfinnsNxp1BH0BiDF+gf4+B2fMm0xbhz3lVf9QKEzIH8KYNfqiktvlp66mG6NRR/miqWN9O4IUyHgS2+WXX87LL7+M3W6PaW9sbOT555/HbDZneggZpby8nNLSUv7yl7/g8/liZqoQCY8UFRVRVVUVbWtpaWH16tVxPxPBF5vOdit5BWYGLLFpUmVTC+hpH4iLtapqRG5VWSZVujtt5Oal/tTX3+eitrqbpobelK8RpE7Gl/KuvfZa3nzzTa677jp+8pOfMHfuXKqrq/nVr37FqlWroila6SIcDmOxWOLaNRoNxcXFab3XEGvXrmXz5s1cccUVCY9ff/31bN68mSlTpjB58mTuv/9+Fi9eTEFBARDJpz3axXbatGnMnTs3I+MVHB9amiwUF+dQtb8lpr2wKIe2BJsOAKz9TgoLzDjcqS1gDlhczJpTSk+fO+VxdXXY0Go0aLQaZs8ZPcVRkDoZF1ij0cjTTz/Nli1buO+++7BYLJSVlXHZZZexfv36tDymD6eyspI1a9bEtRcUFLB79+603muIdevW8fTTTyfNn73llltwOp385Cc/IRQKsWbNGn7xi19Ej+/atYtdu3bFXHPNNdfEnCP4fKMoCl0dNubMLcVhj12E0molFFlJuGze2drP/CUzcFT3pHQfVY0srIZDYXT61D9b7W0DaLQR4/BZQmTThqSqn6f1OoHg84nN6uGPT35E+cLJfPDOwZhFqOUrZvPZB4eTpmOd+eUF7NvXnnIcds68SQSDMmiT58MmvXZuKYtOnc7MWZl52jvZEBuJBYJjQENdD3qDFr8vGCOURqOOgC8w4rWKrKIZwzyoq8NGUcnotTsS0dxoobaqk86OxF5igrHxudlOcf/99/Piiy8mPX711VePKV82GZWVldxwww1Jj+fm5sbFSwWC0aiv7aagIIv+XmeMwBYW52DtdY64maC3c4Cysjx6LKnFVQP+EHq9NmF1rVRoqOtFo9Gg12uZVJZ6Xrggns9NiMBqteJyuZIeH1qtnyjBYJDu7u6kxzUaDTNmzJjwfQQnD26Xj6f/8CFz55exf3cDHveRGeuS02ZQt7+ZwAjur1qthmWr5nLgQOpFs089bQYWixvdOEsMqqrKwiXTOGPFLPILRI71ePnczGCLiorSIqCjYTAYJpyLKxAMp+pQF5IEeoM2RlwBDEYdgVG2OMuyglajGdOMtLvLRmFxLr5A6ilew5EkiZrDneh0Gs5cNYesFPJqBfGIGKxAkEEURaHqUAcajYZwKBy/PVqFVPaF+n1BDLrUP64DFjf5BWYm8oAqSRKHDrRzYF8rgYCoczEehMAKBBmkrXUAl8uPTq/F6wrEz0CViIPAaHS1WZg2vWBM91YUlVAS48VUkSSJA5+1UlnRRig0vtnwyYwQWIEgQyiKykfv16LXaSkszKK3O3bLq0YjIYdTE0DbgJvCorFlBlj73eh1aSjkIkns3dPEgYrWpE65gsQIgRUIMkR9TTf2QVeC/IIsLD32mOM5eWZcDm9K5Qij22bHYCXT3WGjpDQ9WQASEnt3NbH/sxZ8IyzICWIRAisQZACPO8AH26vR6Yb8r6RI8v8w8vLNOG3JLV6OxmFzk5eTevH5YDCMXheJ/aaLz/Y0s+ujevotyTN6BEcQAisQpJlgMMxLz+9GHmYZEAqGIuUIhzFWge1stTBtxtgyaSy9TvRjWBwbDUmSqKnqYtvbh6it6hJx2VEQAisQpBG7zcNzT32Me9iCVla2AduAOy4UYDTpR8x/PRqvJ0jWYC3ZVOloG2BSWd6EsgmORpIkbFYP2945zHv/OExrS39ai8d/kfjc5MEKBCcy4ZDM7k8aqaxoBYhxCSgozKaptitJBsHYUFUV6ai6sSOhKBGTxXAojN6Q3trEGo1EU0Mf9XW9lC+cwtz5k5gxqxjdCJ5gJxtCYAWCCaCqKo31vXywvRq/N4Q2weN4To4Ra6KYpTqUopX6Sn9ft42S4mz6raPbwgzRUNvN3AVTsNpTv2YsaDUSDXU91NZ0MX/BZE6ZN4lZc0rR64XQihDBGFi7di0vvPBCXPvOnTuj7riJzmlsbOSss87itttuQ5ZlNm/ezFVXXZXwHueeey4vv/xy+gcvSDsup48X/7Kbt988QCgoJxRXADksR8oRDkOjkeLaUqGnw8qUaWOLw3o9QfR6DXI4s/FSrUZDU0Mf/3jrINvePkRDXc9JH6MVM9gM09PTw0033cSSJUt4+OGHo/bggs8viqKwf18ru3c2gqqO+G9qMGhxO/1x8dfsXFNKKVp6g47Fp82kv9dBZ9sAoZCMQa9BVZQ4T6+RqD7USfmSaVj6U19UGy+SRqKlyUJjfR9z509i4eKpzJhVjFZ78s3nhMBmELvdzk033cTkyZP5n//5HwyG1FNsBCcmNqubra8fwDbgRqvTjiqQRcU5dLRY4uKveflZOO0ji50kwcpzyjnwUTVzFkyF6YV0dthw2r3k5hhwe1NPv/J5g3jdAQx6DcHQsVmQ0mqHhLaX+eVTKF88hekzik4qoT153ukxxufzsX79egwGA//v//2/z7332MmO0+lj6+sH+PMzO3HYvRFxTYHcPDP9vfGusLl5plFTtOYunEbToTYCngA1FS3MnluGpKo01/cwZ+6kMb+HuuouioqyMZmO7bxKq9XQ1NDLG69U8M5bB6mt7sLvPzlqG4gZbAYIhUL88Ic/ZP/+/bz55pvk5uYe7yEJxoAiKwSCYdwuPx1tVupre7BYnGgkaVQ77Li+FJVwWImbwZqzDPg9gRHXt0om5dF8sAVp8KTGqnbmL5xCXW0PBr0WRZbRjDHk9NmuBk49fRaTJuVhs3nxeoMx+bqZRKuVaG220NTQi9lsYPYpJUyanE9xSQ65uWaMJh06nXZcNWxPVITAjpF7772XX/7ylzFt8lGun1u2bMFoNDJ16lQ2b97Mo48+GtfP/v37Wb58eVy7zze+ld4nfvce3mGl8JImAKnDv1UTtic5PWnVJzW1F6N1M8I5yS9I1lcqeZ/q0W9fVVEGG7VaDTqdFrPZgEYrjSv1SK/X4nH5kIjXUWmU4ZVNK6K3vT/muv5uB3MWToOabrrbB5g2NZ+e3tTNDQfvzKGKVoxmPTNmlVBUZMag14E0+B4l6OyyI4czJ7o6jZZQWKa+rpe6mh78/hChoBz5HEkSer0WjQRoNGiI5N0iccIK7+lnzuKc8xcmPCYEdoxs2LCBiy66KKatoqKCjRs3xrQ99dRTNDU1ceutt7J161YuvvjimOOLFi3i4Ycfjuv/mmuuGde4bvreV8Z1nSCzvP23fcxI4G+VnW3AYNAhaRKLxpz5ZVS8fzhuxuxxeCkqyMLS62DFmnK0en3SPkYj4AsS8AWjf4xkWcFoMnDaGbOZt3AKhcXjs50RHEEI7BgpKiqKK8jd2Rlbaf62225jxowZzJgxg3/6p3/i3nvv5ayzzoopGG40GhMW9h7rI6jgxEVRFDrbBxIeC4fCycMD0mBhF1mJW0Rrquli4fLZVFa04bC6kVQFmFhmytDMUKfTIodl9u1uwOnwUr5kGtNnlUyo75Md8WnOAMOtyO+66y4UReGee+45fgMSHBfsNi8+b/xWWHOWAbfTm/SRt2RSPv2d1oTHgv4QBoMeFIWm2m6mzihK6zZYiAhuY203TXU99B5VAUwwNoTAZpiioiLuvPNO3n77bd56663jPRzBMaSxtitaTWs42bkmHINlDBMxdWYxnc29SVPA+ntsFJfkIocVgv4QSoZqtNZWddJc10swIGrAjhchsMeAb3zjG6xZs4Z7772XgYHEj4yCLx6Ntb0JZ6nZ2Sac1uSLUzqdhvAIotbe2MeMU0oBaKjqZPK0grTPYiFSe7a5vocDnzWnve+Thc+Nq6xA8HnC6w7w9GPbEm6fXbB4Gh++tS9hBkROnpkpU/Kpq2gecRPDmect4rPdjUiShuVnz6etpR+9KTMbWeaWTxHx2HEiZrACQQZoqO1Oqo+KoiSdcc6cO4n2hu5Rd4j1tg1QVpYPQFNtFyWlmcu1bmnspb25H2Uc1b9OdoTACgQZoLqyHU2SLaFKWE4qViazAd9R1t6J6Gy1MG1mJP3LYfWQk2ciFMzM7ig5rGAdcFO1vy0j/X+REQIrEKQZl8OHdSC5pUo4JCeMzRpNegLeQEo7MY725upq7Scn2zj2waZIV/sALqd3wi61JxtCYAWCNHNgX0vSFCyT2YDbmXi33ow5qYUHhuhq7mPqtAIAujuslJTmZsxZQFVVujttHBwsKC5IDSGwAkEaCYdl6g53xDgaDCc7x4jD5k4owHmF2TjGYCbY02ll8rTCyAsVfN4AcgZTqvr7nPi8gYS5vYLECIEVCNJIY003Pm/yWGh2jgmnNb6KllanQQ6GUivUMIQaiY9qBgsbNNf1MHlwRpsp2posVB0QsdhUEQIrEKQJRVHY/XE9en3yj5XJrMftig8RTJtVSmdT35jv2d7Qw4yZkfQpnyeA0agnFMhcKUCX04fb7cfpSL5RQnAEIbACQZqoq+rC7RxZeFRFjbPvBigpy8fSPZBy/HWIgV4HJZPzo2lflh4bJmNmS4y0NPRSe6gjo/f4oiAEViBIA8FgmJ3vVY9a1lCWlbgMAEkjocoyyOPLM3XbPeTlmQDobOmnbEpmdnYNEfCHcDp89HTaMnaPLwpCYAWCCaKqKtvfOkAwhTzUcDAcN0udPK2InlbLuO9fd7Cd+YumoqrqYIFvecSttumgtbGX1sa+jAr5FwEhsALBBDm0v43mht5RS02as40Ro8OjmDKjiO5Wy5jDA0MosoLX6SM/P2JL1NbYS3FJ9rj6SpVwWKG7y0b1QREqGAkhsALBBKir6uLj7VUpGfnl5BixD8SmaEWyB+RI7dcJUHOglUVLZ6CqKvYBNzm55ozlxA7R123H2u9KmtcrEAIrEIwLRVbY9UEN27ceSJrzejTZuWYcR1XRmj1vMq21nUmuSB1VUWmu6YyaIbpdPqQMCyxAXVUntYc7RZ2CJAiBTZG1a9fywgsvxLXv3LmT8vJyAK677jrKy8tjvs444wyuv/566urqYq5TFIU//vGPXH755Zx++umcd955/OIXv6C/v/+YvB/B+FAUlY7Wfv7y5A727W5KWVwBDAYtPk9snYGCkhxsfY5xhweG09thpagkB71OoqW+h7KphRPuczTCIZm6qk6RG5sEYRmTZm644QZuueUWILL40d7ezv3338+GDRv4+9//Ho3T/ehHP+LgwYP85Cc/YdmyZfT19fHQQw9xww038Pzzz5OTI/yQThTksILD7qGxtoeaqg5cdh86nQbdCPmuiVBkNWZRKCvHhMfhjWwuSJOh36HdDZy6ah779jSh00rIIRmtfmKWMqPhcvqor+nClGVgXvmUjN7r84YQ2DRjNpspLS2Nvp40aRJ33XUXV199NXV1dSxcuJDXXnuN7du38+abb0Z9uWbOnMnjjz/OunXr+NOf/sStt956vN7CFxpVVfF5AvR02enrseNxBwgEQlH/Kwkpkjalqsiygsvpi5zjD6HTadBopIQuBakgyzKKqqCRItefUj6Fun1NUXHNL87h1BVz8Xv8fPZhzbhEN+APYbc4KSvLo6fThtmkIzjO9K+xYOlxULk3Uph77oLJJ6wD7LFGCOwxwGCIFELWDnrYv/LKK1xwwQVxpod5eXk88cQTTJs27ZiP8YuMqqq4nX4aa7upq+5kwOICVUU7Bitug2GCxoIaiVAghDTM6dBo1EWqZw1SvmwWe7buY/q8MqbPLqGjdXzuF03VnZy17lQ+3VnP8tXldHbZj4ng9fc5+Xh7FR6Xn/Il0zCZM1MA/POEENgM09fXx69+9Svmz5/PKaecAkBNTU00jHA0y5YtO5bD+8IihxXsdg9Ntd001vZgs0ZW7zUaKaUV/3STk2vC3u+KCl3p5AIsHQPR8EBWjgmvy4uqKrTX97Diq8voaOkfd+jg8KeNLFk2k4A/iBIMozXq0/l2khLwh/jkg2oaa7tZsHgaM08pJTfPfNLOaIXAjoF7772XX/7ylzFtsizHvH7iiSd45plnYo6tXr2a//qv/4rOYF0uF7m56a1Av+ejOvy+L1iVo6EP5VHJ7Oqw/1OUyFcwEMLrDeJx+hgYcOMdLFqt1WnQnAAf7vyCbLq6bITDkd+JqTOL2f9h1eDbUJkxt4z2mqFsAhWvy0uWWY/HN766Ai6HFzkcprutnylzymhuOraLp067j7rqLmRZoagwm4LiHHLyzBiNOrQ6LRpNJBQjDXqUJ/0XkqSxFcA5DhSX5rHk9JkJjwmBHQMbNmzgoosuimmrqKhg48aN0dff/va3+dd//VeCwSDPPvssO3fu5Ec/+lHMY39BQQEOhyOtY5syvQg5LI9+4hcBSUKSIvbSWq0GrU6DXq9Dqz3+QpoMvUHHXx/fhtmkR6ORyMkxoNNISIMW7wXFOTRVHLHybqvpYu7iadRMYM9/4+F2zjh3MTqjgTNXz6eoNC8t72UiKCqEgmHCITmybVhVI/p5govoSOQVZCU9JgR2DBQVFcXFTTs7Y3MY8/Lyouf853/+J7fccgvr16/n9ddfJy8v8gu+dOlSKisrE95jy5YtqKrKbbfdNqaxzZgtDOlOZIKBELKsoNNpmTy9iLb6HqTBRTUAFBVpWDaB1+klO9eMpDLuMIGqQG97P6YsEzn5Zk4pn5qmdyNIFZEHm0EkSeLee+/F6XTy3//939H2yy+/nO3bt9PS0hJz/sDAAM8888yoWy4Fnz/cDh/BwfoABcU59LRZorPVvKIcnP3OuGtCwTC6MeTZJqKjsY+Cklw8Lh8OW3KrcEFmEJ/kDDN16lTWr1/PX//6V6qqqgC46KKLWLNmDd/97nd56623aG9v56OPPuLGG2+ktLSU66+//jiPWpBu+nsd6LQadHotXqcPdVjqVNGkPAZ6bHEz1Z5WC2XTiyZ87/rKVtw2D3WH2ifcl2BsCIE9Btx4441Mnz6de++9N5po/pvf/IZvf/vb/OY3v+Gf/umfuPvuuznjjDN4+umnyc7ObKEOwbHH0mNDo9VQNq2I1rqumFX1/MIcHAlmsP2dVkqnFk44PukYcKPRSNgtTqxjsKQRTBxJFfXGBIKM8/LTH2DtdVK+bCYfvbF3MAsiwumrF7B/e+KY/PLzl1DxcR1oJ5aHazDqOPVL8yksK2DVeYsn1JcgdcQMViDIMHJYwTHgRtJIBH3BuILbqGrSWarH4SU7Z+J23MFAGLfDS1/HAB3jsKYRjA8hsAJBhnE7vfj9IUrK8ulo7o05ZjTpCY6Qv9zV3MvU2aVJj4+F+so2TEY9HS19GS9lKIggBFYgyDB93TY0kkRhSS49LZaY+GthaR7WXnvSVCy33UtOflZa8kRVRaWzuY+eFgvVFS0T7k8wOkJgBYIM09U2gFarQZGVuM0geUU5OAdGWXhSiSS1pmMsLRayc030ddlwOeLtwwXpRQisQJBhulr7MZoNuKzxQpqVbcTrGtmJtr/LSsmk9O3CqjvQisvqpv5Qh/DUyjBCYAWCDOLzBnA7vZRMyqPrqPBAlFE0rqfVwpRZ6YnDAjhtHrQ6DY1VHdQeFIWyM4kQWIEgg/R2WpHDCtl5Zqx98bmuwKjx1VAwjE6vTet+/br9LZhNevp7HNgHkoxLMGGEwAoEGaSppgudTks4FEZNtHKfYmw1HAijT2MxG783iCRJVO1tpLGmi1AoszbfJytCYAWCDKHICu1NfZjMBlzW+DoA5mwjPpc/pWIu3a19TJ5RnNbx1Ve2MnlaEVX7WqmuaBHx2AwgBFYgyBD9fQ58ngDFZfl0tcXHX3MLsxMufCXsq9tGyZSJb5sdjs8TwGDQ4ba7qa1so6ZSxGPTjRBYgSBDHN7bhFarITvXhD1B/DWvIBtngpltQoYqGaZ5g0BHcy/5BVk4rB5q9rdQf1gUhEknQmAFggwQCoZpGaz5Gg6G47fHAtl55oirbIo4rS5y883pHCaWThvFZfkoisJAr5P9uxqoO9QuwgVpQgisQJABqg+0EAyEMWcljr9CxCZlLELW0dDDjLllaRrhEbwuP8rgIpdjwM2e96uo2tdMMDA+uxrBEYTACgRpJhgMs+/jOrRaDcVlBXS1Jst/TV7kJRF+TwBTljHt9iptdd1Mnnak7qzfG2TnPw7y0T8O0tHchxwWdQvGi7CMSZG1a9fy/e9/n29/+9sx7Tt37uS73/0utbW1XHfddZxxxhn8+7//e8w5ra2tfO1rX2Pbtm1Mnz6dO+64g3A4zEMPPRRzXjgcZsmSJTzzzDOcddZZGX9PgvSjqirvv/4ZQX8IjUZDVo4Re3+yhayxC2XQF8Sg0xCU0yeyXrcfU5YBORRGq49IgqTR0FTVSd3BdiZPL2Ly9CLMWUZkWcHnDuByenE5vAT8QbKyTUyZUcykqYVMn12KUdh1RxECKxCkCUVR2fP+YVrqe6K2P3IojKLIaKTYh0Wj2UDAE4jro3BSPkVlBTQebE14j47GHqbNKaW5Ib0lB112T8QT7Ch0Wg393Xb6u+1Jr/V7glj7nFTuaaRsehGLTpvJ7PKpGI+RVfiJjAgRCAQTJByW6ekY4NVndnBgd2NUXM3Zxkgd2ASm1LkF2ThtnpgcWKPZwPxlswg43Sw8fVbcNQB2i5PC0ry0hwna63uYPHNiebbaQTH+4M39vP3iblrquk/68IKYwQoEKRIOy3icPmwDLgb6nNgHXFgtLlwOL0F/KGIhrj0yZykuy6f5UGvC+GteYTb9rbG1YeedNpuaT2rwubxMmzcFSVVQpfg5kCIrSKioCYR7vAT8IfR6HXJIRqufmHuCRquhr9PG2217mHFKKYvPOIVps0rQG04+uTn53rFAMAqKohD0h/B6A9gsTno7bVi67Qz0OQn4g2gkCY1WEyOcOl28KGXnmLAnKUWYk2emxR5bLtCcZcA3WFmru6mHqbMn0dnaH3dtb5uFsqmF9HQ7JvI24/C5fSjyxAV2CK1WQ1frAG1NfZSU5TN7wRRKJuVTNCkPc7YRnU6bePHvC4QQ2DFw77338stf/jKmTZblJGePzNatW9m2bVs6hgXAn3/3D3wJYnpAzFpKzINlksdMNckLNdmizBj7T3rKMR6PetR3qgLBQAhVUdHoNOh0WgxGfYx4GgypxxXlsIwqq0gJrLc1WiniKjB4KK8oN8a6u6e5l6XnnkpnqyVuK21vxwDLvryInm57SttsU6WjuY8Zcydjtaaem5sKep0Ox4CHA580EAqFCfhDyGEZrVaD3qRHq5WQNBo0koQ0+PV5onzpDL78tWUJjwmBHQMbNmzgoosuimmrqKhg48aNAOh0uoR5jUP2HHr9kQ/neeedF71uCFmWufjii8c1tqu+d8G4rhNkjoO76ymbVpRQYLNyTGiHzeBmLZxGy/7GI+KiglYrodNqEhoe6vRaikpy0ZvSu2JfNr2Ii65cjTnHlNZ+T1aEwI6BoqIiZs2KXXzo7OyMfp+bm4vbHZ9U7nQ6o8eHyMrKiusrHBYVjb5ItDf2JhRXAOWoxR9TlgG/2x8TVfW5/GRlGfAG4p+S7P1OjAYd6V5CCviC1B9qY9mXFqS555MTkUWQRsrLy6moqIhrr6ioYPbs2WRlZR2HUQmOB3JYob/LmvCYzqAj6DsqnKOqcWlSls4BSqYlXtnvauqjbHp6q2sBDPQ6cI9h+65gZITAppFvfetbtLa2cs8991BfX09zczMvvPACW7Zs4aabbjrewxMcQxxWFz5v4ph4do4Jp9UdDQfkFGTjSrAYZuuxUVSWnzA2HfQH0Rm0cR5fE8VpdaPRaAiH0tvvyYoIEaSRsrIy/vSnP/HrX/+aa665hkAgwKxZs7jjjjv453/+5+M9PMExpK2uO2FmAUSKvHTW26KvS6cV0d8ev5ilKmokp1ZVEy5m+b0BkGVIcp/xEvAHaa/vZs7i6Wnt92REUkXZHIEg7bz25Hv099gTHpu/dCafvbufUCAScz9tzSIqt+9HSvBJPO38U6n4qBq08XOh3MJspswpY6A/xZKHKVJUlk/Z9GLO/tppae33ZESECASCNBMKhpL7bwGSRiIcPPIILkkkFFcA54CL/ILshMdcNg/ZuebEVjQTwNbnQKPRJCyxKBgbQmAFgjRj6bQSDASTHldkJUa8pBGqatl67RRNLkzaVzAQQk5zvFRVIRgM0pdkkU6QOkJgBYI0U3+wDe0IcVFFUaL50uZsEz63L+m5jn4n+SW5SQW4o6Gbksn5Extwwvu6aantSnu/JxtCYAWCNKIoCh2NvUl3I+n0WoLeQHQHV1FZPrYeW9IdWdGFriQ4+l3kFWSn3YGgv8eOJI2tILggHiGwAkEasfe78br8SY9n55pxDLiiAlwwKR9bksWwIVRFHdGLKxwMIwfT6z6gyArBQAhrb3rrHZxsCIEVCNJI7YFmNLrkH6vs/Cycw3JeDQYdoVGsWfweP+YRilh3NvdSVJI39sGOgr3fTWOVMEGcCEJgBYI0oSgKTYc7RixWMrTJIEqCHVxHY+u1UzgpuYBaeyLH073qbxlc5BLZBONHCKxAkCYsXTa8zuQLVhBJ0Rq+6p9KjNPWZ6ewLHkmAYDf7Y9sOkgjqqIS8AXpbE6ve8LJhBBYgSBNVHxUM2J4AGJTtAwmQ2TBaxRC/hAGo27E8o/N1e0TdiRIRG/HAF0tQmDHixBYgSANeN1+upr7Rq1lqshKtI5tfnFOpAZsKvVPVUZc6PK5AxizDIRD6a3I5rR6UBnclisYM0JgBYI0sPe9Q6M+7htMenyuIyGE/OJcHAPJd3wNR1EUNElKHw7RUd9NUXFOSv2Nhb6OAWoqmtPe78mAEFiBYIK47B4aDrWPOnvNLcjG1ueInpedl4XbllodAafFSUFx7ojnWDqsFJXlo8jp3Tpr6bIRCsmEgqJe8VgRAisQTABFUXj3xV0pLVblFmRhtxyZsWo0yWsQHI21z07hpNF3bLXVdlJckv5ZbGdjD9X7mtLe7xcdIbDjpLy8nJ07d8a07d27l2XLlrFp06Zom6Io/PGPf+Tyyy/n9NNP57zzzuMXv/gF/f1HzOzuuOMObr/99mM2dkF6UFWVXf+opL/blpKPlMF0xNQw0gEp22+7rC5yC0cXTkuHlbyinLTvwLL2OfG6/bEpZoJREQKbJmpqavje977HpZdeyl133RVt/9GPfsQTTzzBLbfcwmuvvcZ///d/U1dXxw033JDQXkbw+UCWFT7eWkHVp40j1h0YjiorKEM5pRKoY0mrUonEYFMQzqrd9cyeV5Z2ka3b30JzTWfaQxBfZITApoH29nZuvvlmVq9ezaZNm6Kzmddee43t27fz1FNP8U//9E/MnDmTFStW8Pjjj9PX18ef/vSn4zxywVgJh2Saqjt44XdvU/1ZExpt6h8hORyOpmjlFmTj9wQ499tfZtbCaal1oI68ZXYIvzdAX3s/hUWJyxyOl3BIpmpvI7UHWsTmgxQRjgYTZGBggJtuuony8nIeeughtMMcQF955RUuuOCCOHPDvLw8nnjiCaZNS/GDJThuqIqK2+mlo7GX5poO+rvs+H1BdHptyjNXGJZBMMymu6Asn8/e3MOSc5bQWtUeCcqOgM8d2TLrC44+8+1o6OH0cxfjcviQ0yiGPk+Aig9rQIV5S2egH4ON+cmIENgJ4Ha7ufnmm+nu7uavf/0rBkPsfvGamhpuueWWhNcuW5bYR11wfFFVNTID7LDSUtdJZ1MfHlfE7XVotqrTj92iJbcgG2vvkQyC/OJc1FCYoMePo9dOYUkuNqtnxD5sfZEtsb4O24jnDVH5cQ0r1i2lvqpzxIpcY8XvDbDz7xX0tPczd8kMpswqRW8QUpII8VOZAPfeey+lpaUYDAYef/xxfvrTn8Ycd7lcMVbdmeTQnnr83uRFngWx21JVRUVRVGRZxu8N4nF4GehzYB9wRS21x/L4PxpTZpXS19aPPNi3OduI1x4p+tLb3MvkeVOxDoy8Sm/tsTP/zLm0twykdE85rFD9aSNT55bRUN2V0kLcWNj/cS37dlSTlWdm0pRCCkpyMZj0aHVatFoNkkaK3jPd9z6RKJqUzylJ/MuEwE6A/Px8/vd//5e33nqLTZs28bWvfY3TTz89erygoACH49iUe9PpdZiyvri/xOkg8hmXkCTQ6jRotVr0Bh1GsyGtYpoIg0lHd31n1AW2ZEohBw82IUkSXoeHnMJsdDppxF1dqixjyjZSVJY3JsHKyjbxlcvPZNopUyb8PkZDDsv4vQFCQRlFVqLFxb/IZWXN2cakx4TAToCNGzdSWFjI1VdfzRtvvMEdd9zB3/72N4zGyA986dKlVFZWJrx2y5YtqKrKbbfdlpaxLFw+Jy39CDKDY8CFqqjRR2lzjgl7z7BH/aGqWqM9yqug1Uho9al/dDsbuimeXEB+UQ7GEcoeCtKPyCKYADpd5JdckiQ2bdpEZ2cnjzzySPT45Zdfzvbt22lpaYm5bmBggGeeeSatcTHBiU1/lzU6OdXptYT8IeRhdQMUWUE7ylZYAFVRUEapHxt3jarSWtNB9af1Y7pOMHHEJzxNzJ07l/Xr1/PUU09RUVEBwEUXXcSaNWv47ne/y1tvvUV7ezsfffQRN954I6WlpVx//fXR6y0WCzt27Ij5amxsPF5vR5Bmelst0TBEdn42Xoeb4XKa6kYCh8WJOdc85vvbLU6C/hCO/tRqHwjSgwgRpJH169fz97//nTvvvJNXX30Vk8nEb37zG/7whz/wm9/8hu7uboqKijj//PP54Q9/SHb2kTzFXbt2sWvXrpj+rrnmGn7xi18c67chyAC9bUdK/uUVZuO1x24ycfTayS/Nw273Hn1pDLZeO2Wzy+i3jF0o2+u70Go1nLlOZLAcKyRVuJoJBBkl6A/xl//+G8rgJoFlaxbRtq+B9kMt0XM0Oi2L1izm4Mc1o5YvPO0rS2mu6x7XyvyilfOZv3w2RaMU8BakBzGDFQgyjK3PQdAfQmeI5M+as004+uwx5yhhOWaTykioKighGe04ck/b6jrRG7VCYI8RIgYrEGSY9vpOtPojHzWdUYcrUR3YFLfChvzBsdUxGIbH4SXoDzPQk9pmBcHEEAIrEGSYjvqemMd5JSSjhMfvnzXQbSW/ZPwbWFqq22mr7Rr39YLUEQIrEGSQgC8Ys3Jvzjbhd3lJFD0N+gIYU3jsH+iyUpRCbdhk+D0BfC4flo7UdoQJxo8QWIEgg3Q198T4ZOUUZMXWhB2G2+4hp2j0VC05JKPRalEm4CLbXNVOR0N32ksaCmIRAisQZJC6fc0xVbfyS/JwD7gSnuu2usgpSK3EoByWkSdg4RIKhHAMOGmp7hh3H4LREQIrEGSIUDBEX3t/TFtOQTZOiyNhKpbL6iKnKLXYqqXNQsEE4rAArdWd2C1OQmPcGSZIHSGwAkGGaKvpJOiPrXCmN+iSGh3KIRmdQZeSa0F/5wDFUwon9IivqiqNlS3U7hM7BjOFEFiBIAOoqsrBnTVxRbn1Rh0ee3KrIClFny5FVpCQJpSNAJG4b0+rhZbq9gn1I0iMEFiBIAPY+hxYe2NLVWp1WtSQQsg/yiN5irNSn9uHNg0VKjvqu+lt68faa594Z4IYhMAKBBlg11ufxYVZc/Kz8Li8kbKESVAUJeUPZWddF5NnTRr/IIdRvaee1uoOPEkyHATjQwisQJBm+joG6G0fiKsVkFOQjd85soB5HR6y87NSuo/X6cWUZYzWOJgoBz+upmF/C35vIC39CYTACgRpRQ7LfPDyJ0D8LDUrz0zIN7Ktj9vmISeFsoVDBLx+SJONtqKo7N9RRd1nTfi8/rT0ebIjBFYgSBOqqrLrrX04re6Ela70el3STQZDuKyuMQlsR10XU2aWjHmsyVAVhYr3D1G1qw5nkmwHQeqIalrjpLy8nCeffJLVq1dH2/bu3cuNN97Id77zHRYvXsydd96Z9PpvfvObdHZ2smfPnqTnPPPMM5x11llpHbcgc9R+1kTd/ma0Sfy9dHotHptrxHKEPpeXrLysyEJXCuUI3TY32flZKB3WtPmKqahUflSNrddB+Yq5TDtlcsY9y76oCIFNEzU1NXzve9/j0ksv5a677iIQCHDOOecAkYWLc889l82bN7N8+XIATCYTsiwTCkVWlN944w2eeuopXnzxxWif+fnj328uOLbUVTSx6+/xC1tD6PRaNBopcQ6sBDOXzMLaZcVtdaWiqzE4LA4Meg3h9EQKIkOSJDoaummv72Jm+TSmzZ1MQWkeOQXZGM1GYdOdIuKnlAba29u5+eabWb16NZs2bUKSJEwmEyaTCYBwOLKlMT8/n9LS0oR95OTkoNVqkx4XnJgossJn2ys5tKsuYQGXIXILc5BDYTx2T9yxhasX4ewaYNGXFnDovYOR8G2KM1iAtuoOFp29kNaGnrTbY0uSRHtdF221EUdcjUYz6GxbSNmsEorKCpk8sxRjljBTTIQQ2AkyMDDATTfdRHl5OQ899FDKRZMFn3+svXY+ePkTbL2OUR+h84py8HuChIPhGCE2mA0YDHosjV04ugdY8KXFKKqaci4sEOlTklBCYbQG/TjfzchIkoRu0Mk26A/R09pHT2sfsqyQk5/F3GWzmD5vCqXTiuM2V5zMCIGdAG63m5tvvpnu7m7++te/YjCIv+JfZBRFwecJ0NPSR/XuOixdVoCU4pPGLCNBpyeSAztslnnK8rm07K0DIOgNoNNr6O+0YjTqCYzhmb+rvoviSQXYE8yQM4lWq8Hn9nNoZy0HPqiiYFI+pyydSenUYgrL8jFnm07q+K0Q2Alw7733UlpaisFg4PHHH+enP/3pcRvLa4+/E5u/qA7/doTZ0EiHVDW182IvSq2/EYg9TR3hWGqdxF+TuJNEfatEhNXvDhAOhdDqtRhNBnR63dhs11UVVYm/gTnXjM9xJC7bXddJdlEeOYXZBCyJq24lor9zgJmLZmC3uZGOkx28zqDDbfdQ+WE1oWCYUCCEoigYzQaMZiNarQZJo0GjkUACTZrDGceL6QumcvYlZyY8JgR2AuTn5/O///u/vPXWW2zatImvfe1rnH766cdlLF+/9WvH5b6C1Ohp7qFhbwManSYaJzWYDYR8gZiQQX9LD9MWzSCsgqoZ26N2wB9g5bqlLPny4jSOXDARTt65exrYuHEjhYWFXH311Zx++unccccdBAJiF4wgnv4uK363L6Ztyvxp9NQcVWRFjST8a0d6ZEhCb1MvoUAo4UxZcHwQAjsBdLrIA4AkSWzatInOzk4eeeSR4zsowQmJa8CF56gNCPkleTj64s0HvTY3cig05lKEiqzgcXhpOdw64fEK0oMQ2DQxd+5c1q9fz1NPPUVFRcXxHo7gBEJRIhW03LZ4J1kpwWyzt7GLvNIC1HFsgW2vasdpcQormBMEIbBpZP369cydO5c777wTv1/s5RZE8Dl96Aw6PLYjK/w6gw45mLhsobvfiTnHTDjJ8ZEIBUJ4XT66m3rGPV5B+pBU8adOIMgorYda6W7qoeKN3dGZZdkpk5HCYSwNie2zT7t0FYc+rsaYP3ZbGL1Jz6KzF3LaV5ZNaNyCiSNmsAJBhmmv60SCmMWn4mklWNstSa+Rg+GULLwTEfKH8Di8dNYnFm/BsUMIrECQQVRVpaepF0WJzUbW6rWERzAbtHUNUFhWMO77tlQ2M9BlFRkFxxkhsAJBBvG5fHhdnkHvrOEbN9QRaxcMtFkonFI07vvKYYW+VgsN+xrG3Ydg4giBFQgySHdjD0aTEZ/zyAKXJEkwiguB3+VFb9QjT8DUsLuhC7fdi3sEk0VBZhECKxBkkMbKZrLzs3HbjuTA5hTn4h4YfRusKivIE3QWqNlVQ1t1+4SEWjB+hMAKBBkiFAjR39ZPVp4Zz7A6sPmlBTh6rKNer6gqSmhki5nRCAfDHPrgMI37m1DSZC0jSB0hsAJBhuhq6CboC2DONeMd9pieV5KHq98xwpURXP0OCksLJjyOgDfA3rc+o2pnNV6HcI09lohiLwJBhjj8cRVanRaNVkM4GI62a/ValGGvk2HvtlI8cxK+TvuExyKHZfa9U0Htp/XMWjyDvOI8DGYDOoOOrLwscgtz0BszU0v2ZEYIrECQATwODwOdg2EAZbBU4WDagJTi3h5Hj41Zp81FabeOrTRiEiRJwmv3UL2zJrLhQY2kkSmKSvG0IuavmMfUuVPILxVWRelChAgEggywf9sB1MFMAUVRojV5JUmKto+GEpaRJJD9E4vDJkKSJCSNhEarQafX4uhz8Ombe9n9+h5aDragpDhGwciIGaxAkGZ8Lh8tB9siWQMSKMOcCXKKc3H3xxd9SYYiK6jh0cMJ6UCSJHpb+rB22/C5/Mw5bQ6mbOMxufcXFTGDFQjSiKqqfPzyTuRBUTRlm/AOcywomFSAoze+RGEyQoEQuTmmtI9ztHt+unUvB7YfwN5nP6b3/qIhBFYgSCPt1e10NXZHc16z87Nx9buir/NK8nBaRs8gGMLRayOvNO+Ylx+UJInaPXXsfPkTOuu7RPnDcSIEViBIE84BJx+//AnSsE2w2QXZuAaOCKpWp0UNpf7I7+ixkZWfjTyGa9KFJEkMdFnZ8fyH1O6uw+8RJTjHihDYcVBeXs7OnTtj2vbu3cuyZcvYtGkTAHfccQe333573LXhcJjy8nJ2797N7t27KS8vT/p13XXXHZP3I5g4zgEnWx9/m9BRBVxMWcbY3NMxzgQ9VhfGbBM67fEzCAwHw+x541M+3foZ3Y3dYjY7BsQiVxqoqanhe9/7Hpdeeil33XVXytctX76cjz76KPr6m9/8JrfccguXXHIJAHq9yEs80VFVlZbDbex6dRehQCjGEiZ6zuCKfCoZBMUzJ7Hw3FP59KUPCfoitjFyKEzJ1CL6e1NfHEs3kkaipbKF9uoOlnx5EbNOnUnBpILjNp7PC0JgJ0h7ezs333wzq1evZtOmTQk/YMkwGAyUlpZGX2s0GnJzc2PaBCcmqqpi67Gz+409WNoskbSnROIqK6gKSBrILc7FPcoOrhlLZ3PgpR2Uf2kxB7cfAElCVVQ0UkSoj5cl9xByKMyB9yqp3lXDwrPKmXLKZIqnF6PTCylJhPipTICBgQFuuukmysvLeeihh9Bqx2azLPh8oSoqXqeXtpp26j5twDG4wp70j6oU2UGFpAIS+WUjZxBotBrkQJCg14/epEdCRUUiHAzhs3tQZfm4CyxE3m/IH+LgB4fYv+0AeaX5lM0sJb80H2O2EYPZgNFsxJRtxGiOvNbqTs7PhhDYceJ2u7n55pvp7u7mr3/9KwaD4biOp7e1TxTzGC9q5P/UwZ1NqqIgh2VCgTA+tx/XgJOBbhu2HishfyjpbPVozLlm3FZXNOyaW5RH98GWpOcXTC3G3tkPgM/hITvPjNsVwNFjQ1WhZFoxfR2jF4k51jh67Th67dHXiqKiqpGZu1anQW82kF+cS05xHjn52ZhzTBjMBvRGPTqDDo1Wg0aj4ciPVGLEYrknGJIkMXlOWcJjQmDHyb333ktpaSkGg4HHH3+cn/70p8d1PIc/PIx7mKmeYKxEZplAdIeTVqdFb9Sj0WrIKcgmpyB7TD3mFefS19CF0RT546s36UGRk4pzycxJdO2vRwL6G7somzcNz/5mnH12yhZMJ3dyMab8HDTa4z+LHS8ehwe33U04GCYcDEc2UqjqMOeFI/8OnxeWnb806TEhsOMkPz+f//3f/+Wtt95i06ZNfO1rX+P000+PHtfpdIRC8ZYgQ1sQdbr0/ujXXvuVtPYnSA/vNHeTnR8RZr1eByPMfs25WQTdPiTA2WNl+unzkCQJn9NHTmEuqqpwypIZzDlj3jF8B4KJ8Pn9U3ic2bhxI4WFhVx99dWcfvrp3HHHHQQCgejx3Nxc3O74SvJOZ2QlOC8v75iNVXB8UBQF5+C2WEkjoYTCMa4x8ajEnqAiqcrgdyq9Dd1iZ9XnDCGw42RoBipJEps2baKzs5NHHnkkery8vJxDhw4RDMYW6ti/fz9ms5nZs2cfw9EKjgcBT4CgP/IUk5WfjavfMXLs9mifLnXYB1RVcfbZ0Wi1hIPJzRIFJxZCYNPA3LlzWb9+PU899RQVFRUAfO1rX0Ov13P77bdz+PBh2tra2Lp1K5s2beKGG24QOa4nAR67O+ocm1eSh6MneQaBVqeNzHCH4ey1kTcpUjow6A2i1WjwOty0VDZnbtCCtCIENk2sX7+euXPncuedd+L3+8nKyuKPf/wjGo2Gm2++mUsvvZRHHnmE6667jh/96EfHe7iCY4CtyxpNT8ouyh2xBkF2US4ea+xGAnuHhcLpJUCkJkFOUQ49DT14rMLE8POCWOQaB7W1tXFter2eN954I6Zt+vTpMWGD0dixY8dEhyY4gbB2DURDAhqNhDzCo33ECDFWgN0DDmacuSAaHpi+dA7dTb2oQNAXwGAWpQRPdMQMViDIEP0d/dHvFVkesQ5BTnEe3qPrxKpEc0P9Lh+m7EjZQveAi8bPGtI+XkH6EQIrEGQAOSzjsUasuSMZBPKIdV4MJgNBbyDhseGZBKqi0NvUTdCXfpcDQfoRAisQZACPzU3QGxHB7IIcnCmlV8UrsN/pIytnMBQwWPgl4AmghGUcllT6FBxPhMAKBBmgv90SfbyPZBBYR9leqybcv+To7id/SjEQCRPoB4uq9Db10FrZktYxC9KPEFiBIAP0NPVEC7NkF+WMycVgOI6uAfKnFEW+77WTU5QDgLVzAAlETuwJjhBYgSDNqKpKX1NP9LUkSXE5rkeTbG4bDoQwmAzRTIK80iM7APtae6n/tD4dQxZkCCGwAkGa8Tm9eO1HCu+MlkEgaSRUWR6hx8gW2qA3gMFkjDoK9Db0DMZkhZXLiYoQWIEgzXQ3dEWL+mh1WsL+4IgZBKYcMwG3L+lxJayg1UTmuKqqgnKks7qPq2g71DKsGpXgREIIrECQZpr3N6EZjL/mFOfi6LGNuMBlyjXjdyUXWFefjfzSyJZZFRV5WJU2vyfA4R2HaN7fKOKxJyBCYAWCNBL0Behvs0Rf55XkYe8auUi2KTeLgDN5LV97Zz8FUyOZBD67JxKTHYbX5uGTv37Ep6/vpqOmnXDw2DvQChIjBFYgSCONexuiBV4AzHlZeGwjmxWac834Xd6kxz1WJznFuQA4++zkFufEnSNpJJo/a2THs9s49N4BLO2WuHMExx4hsAJBmpDDMtUfHoqGBwCIqdafGFPOyCGCyJZZKZpJkFuSP8K5EoffP0jj7lo6azvG+A4E6UYUexEI0sSBf1TgdXiPWLpIoIRlVEUdMQar0WlQwuFRjFIixbdD/hB6gw5VTd6nJEk07WtE0khodRomz5067vckmBgn9Qx2YGCAe+65h3PPPZdly5Zx4YUX8tvf/ha/f+JpL5s3b+aqq65K6dxPPvmEK664guXLl3PhhRfywgsvTPj+gmNL++FWandWxfhlZRfk4BzBRXaIVByo/E4f5pxIsRdVVUfNq4VIuKK1soW+1r4U7iDIBCftDLa3t5errrqKadOm8eCDDzJt2jRqa2t55JFHeP/993n22Wcxm83j7v/GG2/kuuuuG/W8lpYW1q9fzw9+8AMuvvhiDhw4wF133UVxcTFr164d9/0FxwY5LHNw+wGqPzyEKseGAgrKCumtbRvdgVZVKZ5VhqvXRsifuIiLo7ufgqlFeBt6kUMyKKk5CDfsqSPgDaCEZMrmTk7JDVeQPiRVHSlD74vLbbfdhs1m45lnnokxIHQ6nVx66aV84xvf4Cc/+UnGx7FlyxY++OADnn/++Wjb3Xffjdvt5uGHH874/QXjw+/x07i3ntqPq2LDAsNYcPZC9r/+CWp4ZDFc+c3VhN1utFoNB97YRaI5rc6oZ87qJVR9WM3kBdOQZQWvJ/WKWhqdhpmnziZ/UgGKouB3+fC6vJHFNUmioKyQ4ukllMycRH5pPpJGCHE6OClnsAMDA2zfvp3HHnsszt01Ly+PG264gSeeeIIf/ehH7Nixg9/85jc0NDRgMBg455xz2LRpEzk5Objdbn7+85+zc+dOwuEwq1ev5j/+4z8oLS1l8+bN7Ny5kz//+c+EQiE2bdrEO++8g9fr5YwzzuDuu+/mlFNO4eKLL+bcc8+NGYMkSTEGioLjj6IoeGxuOqraaD3Ygq3bihKSkTSa5Dbaqooqjz7TLJhaxM7/eY+5a5ZhzjXjc8WHqMKBEHpjZMusrXOAWcvn4m3oSdBbkvGHFVr2NyU9PtDWT8OeOnQGHfNWlTO1fBqTZk9Cm2b345ONkzIGe+jQIRRFYdmyZQmPr1ixAqvVSnt7Oz/84Q/5l3/5F7Zu3cqjjz7Krl27+POf/wzAI488QmdnJ88++yx//etfGRgY4IEHHojr77nnnuPjjz/m97//Pa+99hrZ2dnceeedAMyZM4dTTz01em5/fz9vvvkmK1euzMA7F6SKoih4HR7aD7Wy868f8uqvXuC1h15m35t7sXYMoMpqtJhLIiSNhBwMj5pBoNXrkP0B1LBMX3ULk8tnjHB2pK+Ax4/BfGTLbLqQJAk5JFP7cRXbn3iHD//0AY2f1eOwOFDCI23lFSTjpPzz5HBEKhsls84eau/v7+euu+7iyiuvBCIWMKtXr6ahIVJNvrOzk6ysLKZPn052djb/9V//FbXlHk5HRwcmk4np06dTVFTEPffcQ0tLS9x5Xq+XDRs2MGnSJP7lX/5lTO/p3SfeJjSsCHPsZ09N+G2SM0bcNx/zoU5nXxO4X6p9DR9LrDm2GnXMlkNhPHYP4UAIrV6L3qiP+mppxvDYnD8pH1tnf+Rpf4TL8srycXZHKmO5em1MX7FwcHTxF0W2zIIMqKqCEgqjM2bGPFOSJLprO+iq6SDoDyBJEubcLIzZRjQ6LZJGQqPRjPhH5mShZHoJKy//UsJjJ6XA5udH8gj7+/uZPHly3PG+vsiqa3FxMVOnTuWxxx6jvr6e+vp6GhoauPTSSwG49dZbufXWWzn77LM566yzuOCCC/jGN74R19+1117Lu+++yznnnMMZZ5zBunXruOKKK2LOcblcrF+/no6ODv70pz+NeYHtqzddOKbzBZnn3S2vkT9Sziowa+kcbM2dRxpU0EoSagLhcllslMwowecNodFqOO2rp7PsohXpHrYgjZyUf36WLl2KTqfj0KFDCY8fPHiQwsJCAoEAl156KfX19Zx55pncf//9XHLJJdHzli9fznvvvcemTZvIy8vjV7/6FTfddFNcf7Nnz+btt9/mkUceYebMmfzud7/jyiuvjKaDWa1Wrr/+etrb23nmmWeYOXNmZt644Jghh8I4e+yjnpc/pQhby5FYasgXwGBKPCt1dlvJLyuMfN9jIxwUtjEnOiflDLaoqCia83r++efHLHS5XC6eeuoprrjiCv72t79xxhln8Otf/zp6vLW1lVmzZgHw1FNPMX/+fL7+9a/z9a9/nb1793LNNdfQ398fc79XX30VvV7PpZdeygUXXMAPf/hDzjvvPGpra1m0aBHf+973sNlsPPfcc0JcvyC4+h34PX60yRbABjGYjQQ9R3ZxOTot5E8roa+5N+5cz4CTWSsXojb14uixMWWh+F050TkpZ7AAd955J16vlxtvvJE9e/bQ1dXFBx98wLXXXsvkyZPZsGEDBQUF1NXVceDAAVpaWvjVr37FwYMHCQ1WM+rp6eG+++5j3759tLe38/rrrzN16lQKCwtj7uVyubj//vv56KOP6Ojo4KWXXiIrK4vZs2fz1FNPcfjwYR544AHMZjMWiwWLxYLdbj8OPxVBuuiq7kgpZqvKMuqwnFZ7h4WC6aXJz1dVlHAYRVaQQ6GosaLgxOSknMEClJaW8pe//IXf//733HHHHfT39zNlyhQuu+wybr75ZkwmE9dddx1VVVV897vfxWAwsHLlSjZs2MBrr70GwL/927/hdru57bbb8Hg8nHbaafzud79Dq9XG3Ouaa66ht7eXO++8E7vdzvz58/n9739Pfn4+f//73wmHw/zrv/5rzDVnnHFGNFtB8Pmjs6olpaT+sC82JSvk9WPMMkUW5BJcH/IF0A62B31BOqpaKV9zatx5ghODk3ajgUCQKUL+IH+7/0/IgZG3s+rNBuadMYdDL30Q077oki9xcOunkGChq2jmJIx5OVh7HRROL6F0ThnLLzs7reMXpI+TNkQgEGSKgbY+Qt7RN4pkF+bi6Ys3Q1RVkJLkpNk6+4+YIHZb0RkNac+HFaQPIbACQZpp+rQOzVFhokRkF+Xi6osvxu13eDDnZSW8RpUVJI0GVZYH47Ayrv7xOdYKMo8QWIEgjcjhML31naOfCGTlZ+Ox2OPa3X02cksLkl6nhEKgRHZWee1u2g80j2eogmOAEFiBII30NfXgG8HAcDh6o45wgupZ7j4buZMKE1wRob+pm8JpJQBYmrojrrWCExIhsAJBGqn94CDaFLePajSahHVd/U4PpvzspNuMrW29FE0rQVVV/C4fKhEvMMGJhxBYgSBN+JxeLM2pV7jSSETtvceCqqggRXJoh+7bWtEw5n4EmUcIrECQJqre24+cgtNAFFWBEaptSWpy8fU7PBgMkYW03roO/O6Ju3AI0o8QWIEgDQS8flo+q0/ZMUBn1BP2B5OmWClhOVrFKxF9de2UzpkCgM/hRVVVfM7kzrSC44MQWIEgDex79ZOYcpGjYco143e4kx73WOzklCQupwngsbrILsyJ1pu1dw3QtKc29QELjglCYAWCCdLf0kP7weYx+V2Zcsz47MkF1m2xkVuaPJMAIBQIghqJw/bUdiBJ0rhiuoLMIQRWIJgAAY+fj55+NyVrmOGY87Lw2ZIXanFbHGSPkAsL0F3VQtkpkXrGqqLitNhp+ax+TOMQZBYhsALBOAn6A/zjt6/hTzHvdTjGHPOIAisHQ+gMuhEdIVw9NvJKC6Jx3I7KZgKegJjFnkCctNW0BIKJ4Oq3897vt+K1u8dlha3RaggHJl4wO+jzo5VAIWIh3tvYhd6kZ96XFk24b8HEETNYgWAMhAJB9r+xh78//Mq4xRUGc2BTSOkaKVULoG1fPdOXHCm83VvbQcDtw22N94YTHHtOaoEdGBjgnnvu4dxzz2XZsmVRl4MhK5eJsHnzZq666qqUzn3vvfe47LLLWLZsGZdffjkffPDB6BcJjhlyWMbaYWH3X3fw+i//Qs37+yOW3eMUV4gYKCqjxG1DvgAGs3HEcwJOL4YsU3TTAUD1+5V017QTDo4hJ1eQEU7aerC9vb1cddVVTJs2jQ0bNjBt2jRqa2t55JFHMBqNPPvss2M2HhyOx+MhFApRUFAw4nkNDQ1885vfZOPGjZx33nm88847PPzww2zdupUZM0aycP58oaoqqqKiyDJKWEGRlUjb4K+fpJHQaLVodVq0eu2ExGui4wz5g7gsDnobuuhr6sbW2Y/P6UOjkdI2riVfWUrtmzuZd97paLQSnfsbsLbE7gIrWzwbv8fPQMfAiH3lTS6i6JQpdNcfud6QZWTZJSuZvXweWr2IBB4vTlqBve2227DZbDzzzDMxnlxOp5NLL72Ub3zjG/zkJz/J+Dg+/PBDdu7cycaNG6Ntq1at4u677+ayyy7L+P3ThaIo+F0+XP0OnL12vHY3Hpsbr9ND0Bsg6AlExFVRUBUVdfC/Q2VPJY2EpNWg0WowZJnIKcwhuygHc34O5rwsDGYjplxz9Hu92YBmgpbRqqoS9AZwW10MtPXR39pHf2svAbePkC+IRqvJiNBLGolFaxajk1SqX3kfJRBi/iVn07a3FpflSOnB7JICCmdPpqWicdQ+F31tJe1VbYSGFfnW6LUsvfBMZi6bS1ZBdtrfh2B0TkqBHRgYYM2aNTz22GOcf/75ccf/8Ic/8MQTT/DRRx+xY8cOfvOb39DQ0IDBYOCcc85h06ZN5OTk4Ha7+fnPf87OnTsJh8OsXr2a//iP/6C0tJTNmzezc+dO/vznPxMKhdi0aRPvvPMOXq+XM844g7vvvptTTjkl5r6hUIhXX32V+++/n9dff/2EncGqikrA68dlsdPX1EN/cy/Wzn6CHj+KLCNp0i9MqqqiyAoSoDMZ0Jt0mPNzyCnKJasgB1NeFqZsEzqjHr1Bj0avRRo0HFRlmXBQJuQL4nW48do9OC0OnL1Wgt4gIX/mxDQR5vwsTrtgOYdfeBdvT6QerKTVsOgb57H/pQ+iVjGSRmL+BSuperdi1D41Oi1LL1tN/e66mO26qqoyad5UTllZTtm8qUnrzAoyw0n57HDo0CEURWHZsmUJj69YsYIHH3yQ9vZ2fvjDH3L33Xfz5S9/mZaWFm6//Xb+/Oc/c8stt/DII4/Q2dnJs88+i1ar5e677+aBBx6IcaEFeO655/j444+jPlwPPvggd955J88//3z0nMbGRi677DJkWeYnP/nJmMXVaXEgh8eyDz7+tYoKihoVs3AoTDgQigiT3Y1rwImz147TYifsDyGH5YgwHd2VrCSpxz8xhu4T9gcJ+4P47F6srX2xb0lVI5lNqhodgwQgSZFZcpJ+MzXmRGTlZRPy+PD0WKPjUWUFR2sPRTNKsXZEXIlVRUWj0QwWdxlZ/OWQzOG3drPkkrNo2d+E1+6JHuut7aCnph2dSc/k+dMpnFaMKTcLY7YJvdmI3qCL/Gw0UuTndPS9jk+05nODJEkUTC5KeOykFFiHI/IYlpeXeCviUHt/fz933XUXV155JQDTp09n9erVNDREKhd1dnaSlZXF9OnTyc7O5r/+679wOuNXbzs6OjCZTEyfPp2ioiLuueceWlpaYs4pLS3lxRdfZN++ffzqV79i1qxZXHjhhSm/p31/24mzx5by+TAoqEBUdoZmTpIEGgZjohq0eh1avQ5JAkOWgZJZk8Z0H0Es885eTPXz78TpVldFLeX/9GWs7ZYYQdXqNAn9uY5GkWUOvr6ThResIByS8XniF2vlcJj+1l4UWSHkDyGHwoOLbSqRhAX1yB9bhv1uCJKyaO3pQmCHk5+fD0QEdPLkyXHH+/ois6Li4mKmTp3K517JJAAAW9tJREFUY489Rn19PfX19TQ0NHDppZcCcOutt3Lrrbdy9tlnc9ZZZ3HBBRfwjW98I66/a6+9lnfffZdzzjmHM844g3Xr1nHFFVfEnJOXl8fixYtZvHgxdXV1/PGPfxyTwJ5/88Upnys4vvidbj7ttMS1q7KCHAxHCnGHIxkGEioGox6taeRsguG07qpi6tJTmLtiPjPPWJC2cQvGzkmZprV06VJ0Oh2HDh1KePzgwYMUFhYSCAS49NJLqa+v58wzz+T+++/nkksuiZ63fPly3nvvPTZt2kReXh6/+tWvuOmmm+L6mz17Nm+//TaPPPIIM2fO5He/+x1XXnklfr+fmpoa9u3bF3P+vHnzsNnGNhsVfH5o33kINZzYhaD3YCNTTj0Sm/c7PRizUxfXIboONtF1sIm2z+rGPU7BxDkpZ7BFRUXRnNfzzz8/JovA5XLx1FNPccUVV/C3v/2NM844Iyam2trayqxZswB46qmnmD9/Pl//+tf5+te/zt69e7nmmmvo7++Pud+rr76KXq/n0ksv5YILLuCHP/wh5513HrW1tWzfvp333nuP1157LXr+4cOH4xbABF8MFEWh7ZODkRBAgvVlZ0cfU84op72iHiQJV5+d7OI8HH1j3zjQeaCJ3EmFWFt7KJoV/6QmyDwn5QwW4M4778Tr9XLjjTeyZ88eurq6+OCDD7j22muZPHkyGzZsoKCggLq6Og4cOEBLSwu/+tWvOHjwIKFQCICenh7uu+8+9u3bR3t7O6+//jpTp06lsDC2CpLL5eL+++/no48+oqOjg5deeomsrCxmz57Nt771Ldra2nj44YdpaWnhmWee4c0332T9+vXH48ciyDCeXhvePtuIVtuqLKPRRGKfHoud7OL8cd+v7v0D9Lf0jq0QuCBtnJQzWIgsKv3lL3/h97//PXfccQf9/f1MmTKFyy67jJtvvhmTycR1111HVVUV3/3udzEYDKxcuZINGzZEZ5v/9m//htvt5rbbbsPj8XDaaafxu9/9Du1Rls3XXHMNvb293HnnndjtdubPnx/NKMjPz+cPf/gDDzzwAE8++SQzZszgN7/5DUuWLDkePxZBhun8tGrUYiz25m6KZ0/G0twT8efKy0JV1XGlkSmhMB0VDUjA/PNOG+eoBePlpMyDFQiOB6qi8sH9T+LssBD0Jt+OrdHrOGXdCqrf+RQkiYUXfYnGXdVIE9hYsfCCFUxdOofC6aXj7kMwdk7aEIFAcKzx2py4+2yoo8xglVD4qO2tKkqSRbFUafiwEkt9pyhleIwRAisQHCOsDR2oYXnE+OsQciAUNTVUwjKaCQpj2B+kv6WH5l2HJ9SPYGwIgRUIjhF9BxuRJCnqozUStuYuCmdFTA1dvVayR/DnSpXug02EfSE8A6KU4bFCCKxAcAwI+4P017YCjBoiALC1dFM0ZwqoKs7uAXKT7BQaK02fHKZtX11Ks2jBxBECKxAcA5ydFgKuiK12KjPY4XFY74CT7KK8tIii1+rCZ3fT+HHiTTaC9CIEViA4BlgbI66vkTo0qQmlKitoNYPnS0AKwpwKLXtqkIOhEV1tBelBCKxAkGFUVaX3UCT+OpKJ4dE4O/oomD5YWEcFRU7PZgFVVug80CRmsccAIbACQYYJurw4WnuB1GevALbWbgpnlEX68PjQG9K3L8jW3oeqqnQcGL2Yt2D8CIEVCDKMvb0XORDZXp1K/HWIgMODMT8bVBVHVz+5kwrSOq7mT6rw9DtG9QYTjB8hsAJBhrHWtUWKWZNaBsFwJEBSVRydFgqmpncXVsgXwNraS9MnIlSQKYTACgQZRFEUeg81ARHHBWWMC1VyMITeoCPsD6Iz6sc0A06FrsPNyGGZUCCY1n4FEYTACgQZxG934e4drO2rqjDGGayjrZeCwThsZMtsmqtiqdCxv5HWPTXp7VcACIEVCDKKvaUbVY7UEVBkZcwzUHtbLwWzIgLrd3owmPTpH2NbH+FACP9gnq4gfQiBTZFwOMyWLVu44IILOPXUUznnnHO4++67GRgY4K233uLUU08lEAjEXPPlL3+ZVatWxRTY8Pv9LFmyhHfffTfaVlFRQXl5Offdd98xez+CY4OlquVI/uugoeRYCHn96M1GUFVs7X0UTC3OyDibP6mivaIhI32fzAiBTZH//u//5s033+See+7h7bff5uGHH6auro5bbrmFFStWEAqFqKqqip5fX19PIBAgGAxSXV0dbR9ytF25cmW07c0332TWrFm88cYbBIMiFvZFQZEVLDUtAMjBMPFWvrFodFrypscbSg4tdDk7LeRNKc7INlevzYXX6qS/uTvtfZ/MCIFNkZdffpkf/vCHfPnLX2batGmsWLGChx56iMOHD9PV1cXs2bOprKyMnr97927OOOMMli9fzq5du6LtQ7PVIeNFWZbZunUrt956Kx6Phw8++OCYvzdBZvAOOPDb3CiqmpKjwClrVzBjxULyjqo7EPL6MWYZUWQFjVYz5jhuqjR8eBBbh4WQX/yRTxdCYMfArl27kOUjdTlnzJjBm2++ycKFC1mxYkWMwO7atYtVq1axatWqGIE9cOAAq1atijlvYGCA888/n7POOouXX3752LwZQcaxNnSgyDIhbyAy6xxl4qk3G2h8fQczVi6K2fFlb+2hYGbEU0sJhRn0104/qkr11j107G8QWQVpQghsilx//fX8+c9/5itf+Qo///nPefPNN3E6ncybNw+TycTKlSujAqsoCp9++mlUYPfu3Ut4cPV3//79MQL7xhtvsHTpUkpKSli7di0ffvghVqv1uLxHQfoI+YM079hPyBcctHsZWV/NxXn4++2oYRlJI6EZ5g7j6OijYEYkdGBt7aFgSnoqayUb974X3qfq7U/pq2vHZ3fjs7uxd/bTebCJho8OUv/BAVp2V9N1uBlXn53w4CYKQTwnrSfXWLntttuYM2cOf/rTn3j55Zd54YUXMBqN/H//3//HzTffzIoVK2hra8Nut9PV1UU4HGbJkiXRBa7KykrKysoYGBiIxl+DwSD/+Mc/uOWWWwC44IILuO+++3j99de54YYbxjS+Xc+8HftoN/zTfFTMbsSJ1EhmfCP0GXveGGKEw86Nv0xN+G3cyzHcL2ZscX0mP5a0j5hzVfwuLx6Lg0VfW4GlpgVJVZEgqYvsEAUzJ+No6QLA1d5LwfRJWDssQKT4ts6oB1XF2tLD3POW4xjIbKGWhh2V1G2riIY2JK0GrV4X3TABkU0TcjCMIsuY83MwF+SiN+rQGnRIg7500bOH/MSi/xm7v9iJSnZRLsu/dV7CY0Jgx8All1zCJZdcgtPpZOfOnTz//PM8+OCDzJ49m69+9atMmTKFyspKGhoaWLlyJVqtFq1Wy/Lly/nss8+YOnVqTPz1/fffx+Vy8dWvfhWASZMmcfrpp/Pqq6+OWWC/dP2FaX+/gvHj7LLQ9o9dMTISCoSSGhfmlhVhO1gPQH9VM9PPXY6t84j9uwQYs0xoDHqyCnO49BfXY8rLzuA7EKQDESJIgZqaGjZt2hR9nZeXx0UXXcT//u//cuqpp7Jz504AzjzzTA4ePMiePXs466yzouevWrWKioqKuPjrG2+8AcBll13G4sWLWbx4Mfv376eqqoqaGpH4/XnGUtUS/+QwwuKURq+LxFeBsC+AzmSMuT7g9GA0R3JgQ74A3Qeb0j9oQdoRApsCsizz7LPPsn///ph2SZLIzc2lqCgSE1u5ciXV1dVUVFTECOxZZ51FbW1tjMC63W4++OADbrzxRl599dXo1/PPP49er+fVV189Vm9PkAF6KxviZqsjbTKQIPahWYnUgh3C3tZL3mAtAnuHBbfFlr7BCjKGENgUWLJkCV/5ylfYsGEDr7zyCu3t7Rw8eJCHH36Y6upqvvWtbwERgf34449RVZWFCxdGr1+6dCk2m43a2tpo/PXdd98lFArxr//6ryxYsCD6ddppp3HhhRfy+uuvRxfGBJ8vwoEgzq7+mDZ12P8n5KjZrrO1Z9gWWXB29pE3rQQAe2svhiyTsH35HCAENkUeeeQRvvOd7/D73/+eSy+9lO9+97vU1dXx3HPPMXlyJIVm7ty5mEwmVqxYgWaYh71Op2P58uXMnj07Gn994403WLNmDWVlZXH3uuqqq+jv7+fDDz88Nm9OkFYc7X0E3UdtOx0hTUtnMhD2x+4CtDV2UDRvevS1EpLRaLWoiooiy4SDIZzdA+keuiDNSKr4MygQpJVDL2yjeftnMSECRVYI+QIJz88pK6Jwegm9n1bFtM+7/DyqXvsougK/4NLV1L+/H41Bz7QzFpBdWsDiS87O3BsRTBgxgxUI0oiqqliqW+LiryMVtTYV5BBI4I8lqSqaYfMfv92NKdsIQH99R8xTkuDERPwLCQRpJOBw4+13xLWPlEFgzM8h4HDFtbt7BsgZtm3W0X5koWvIodbv9Ex0yIIMIgRWIEgj/bVt0XSr4YwksOb8HAKO+BmsraGd4vlH4rDOTgt5w6ppuS122j+rneCIBZlECKxAkEa6PquNT89i5N1tWqM+6tk1HL/VibkwL5phoMoKkkYTTffqq25BCctx1wlOHITACgRpQg6GsLfEl/tTlVEKvQxtp03AUKnC4eeqg/bdQY8fVZbx9NvHO2RBhhECKxCkCUd7X8KY6GhGhyPtyh/y5BrCZ3VizjFFX1vqO+jcVz/msQqODUJgBYI00bHnMIlKDSjy+B/jHW095M8sG/a6l7xpR9xlBxo6kXRaUdHqBEUIrECQBhRZwXK4OWExF3WEFK3RcLZ0UzB7SvS1q2eA3LJY25i+2lbadlcdfangBEAIrECQBjx9Vrw2Z1y7qqoj1iDQZ5sIeXxJj4e8fvRZptiFLik27GCpaSMcCuGxxt9fcHwRAisQpIHOT6shgZCOtMEAwJSfQ8AenwM7nPiFLlCPqlNRs3U3vVUtBEcQa8GxR9SDFQgmiKoodO2LT88CRk2jMhXk4h9FYOVQGJ1eS0iOiKy3305WfjZ+35G4qxIKc+CF7fQeaqJg1mRCvgDuPjshj5ecsmImlc+k6JQpZBfnj+MdCsaLEFiBYIK4+2x4Lfa4dpVUZrDZOLr7Ru6/u5/cycVYBwtw29t6yZ9Zhr++M+Y8CYne6lZ6q1tj2m1tfbTtqaJozhTmnns6kxbNwpBlQpB5RIhAIJgg7R9XJkzFUmR5VDsbU152wl1cw3F3WciZWnLkda+VnNKCMZUrlCQJW0sPnz69lX1/fJvOijr8To8oeZhhxAxWIJgAiqzQXVGXMDwgB0av5yvptChhecRcWK/FzpSzTo2I9aC3l6SRIvbdg95XqSJJEj2HW+g+1IzOZKBk3nSK5kwmp6SQvKnFZBfno9GNrU9Bco7JDHbt2rW88MILce07d+6kvLw8ek55eTmffPJJ3Hk7duygvLyc22+/HYCXX36Zc889d9T77t69m/Ly8gkXrn7ttde48sorWb58OWvWrOHHP/4xbW1tQMTMsLy8nPb29phrvv3tb7No0SLsdntM+7nnnsvTTz8NgNVq5ec//zlf/vKXOfXUU7nooot47LHHCIVETuPnBUd7L94Eq/eKrIy6wQAigjeq/Z+qxgl42BdEm8TfKxUkSUIOhOg93Ez1G5+w58k3efeXz/Lp01tp212Fu98uZrdp4IQKEej1et5777249nfffTfmF+ySSy45ZpYq//f//l/uv/9+vvnNb/LKK6/w2GOP4fV6ufrqq+nu7mbx4sVkZWVx4MCB6DVut5uqqiqKi4vZs2dPtL27u5ve3t6oncytt96KzWbjd7/7HX//+9/593//d5577jkefPDBY/LeBBOnadvehK694UAw8QVHM+zaKSsXU37FV9CZjQlPHZ5JYGvqjFp5p4Mhoe+ubOSz597ho0dfoO4fn9Lf2Iks6h2MmxNKYFesWMH27dtj2lRVZfv27Zx22mnRNpPJFPXByiR79+7lySef5Le//S3/8i//wuzZs1m6dCm/+c1vyM7O5ne/+13UraCysjJ63aeffsrs2bM5//zz2bVrV7S9oqKCgoICysvLqa2t5eDBg9x3330sXbqU6dOnc+GFF/KjH/2I559/Pmr3LThxCfuD9NfE134N+4Mj5r4OZ+hKQ142WaUFtL31EfMvPjtOtJVQGJ3uyMfV3tabVoGNGZMk4Xd6qX7zEz7a/CKHXv6AnsPNsbbwgpQ4oQT23HPPpaenh4aGhmjbgQMHyM/PZ86cOdG2o0MEVVVVXHvttZx22mmsW7eOF198Mabfv/71r/z/7Z15XNTV/v9fs8GwDAMoiysKCiQgqIj7rrlQVupN08zsl17NFrtlNyvTTE0zM+XrrTCvmrdccE3NJUVUckdElEV2ZR+WYWD2mc/5/TEyMswMDMsMLuf5eEz5Oed8zvIBXnM+73PO+z18+HCEhYXhk08+gVJp2rN8fQ4fPozevXvr42jVYmdnh02bNmHBggUAdF8MdQX2ypUriIiIQEREhIHAJiUlITw8XDdbePhHWRuRtpbIyEgcOnTIbHhnyuND/vVUqKof7Tsl0EV8tdjD1UN7KgB0CH8OJX/fglamgKK8Cs5ehhMImagSTh6u+mtGowWby7bIDNEiCJDzdzIu/3QY17Ydw4PrqZCbcA5OMc1jtcglEAgQERGB2NhY9OjRAwBw9uxZjB07FiUlJSbvqaiowJtvvokJEyZg5cqVSElJwaeffopu3brpy5w4cQJbt25FeXk5Fi1ahN69e+P1119vtD9paWkGM+e61A1q2L9/f/z000/QaDTgcrm4cuUKFixYgL59+2LJkiUQiUTw8PDArVu3MGnSJACAv78/Bg0ahI8++gjR0dEYOnQoBg8ejAEDBsDX19fSR6ZHIZFZ/4/tmefhaSoCcHhcZP11FQQEjIYBo9E22XWgvbMDVA+dw9g/PHDAAlB8OQldxw9G+h8X9eFiZKWVcPRwg7hE/Kg3GkZ34IBrmz/j0jTdFjA7R3t06O0HNx9vOLgJ4CB0BseeBzaHrZs8sGsnB8/GJIHFZoHv4mQy77ESWAAYM2YMjh49ivnz5wPQ2V+//fZb/PbbbybLnzhxAk5OTli+fDk4HA58fX0hFosNXrGXL1+uF+zBgwcjLS3Nor5UV1fD2dm50XKhoaEghCA9PR2dOnXCvXv3MGDAALi7u6Nbt264cuUKxo8fj5SUFHz11Vf6+6Kjo7Fjxw4cOXIE27Ztw7Zt2+Dh4YG1a9di6NChFvWxlos/7IOiWtZ4QUqLsRc4wDuwK8R5xQBYOg1kscDiNO2F0KGdCxRV1WDzuCBqjV6OtEo12Bw2OFw2tLWHC0SVcAvwAavOHlfxgxJ4+HUC0wahY2pKK1FdUgm1XAmNQgVGq33olpE0tjPtqaPnmH4InDDAZJ5NBJbL5Zq0KTIMA269b98xY8Zg9erVqKioQFVVFeRyOUJCQszWnZmZicDAQHDqbFepnZ1evXoVANC1a1d9nkAgsNhE4ObmBomk8fPddnZ2CAkJwe3bt5Gfn48ePXrobcQRERFISEhAly5d4OjoqN81UXvf/PnzMX/+fBQWFuL8+fPYsWMHFi1ahDNnzsDDw8Nck0aM+/JNi8tSWs7ljXth7+TQojqcPdygLK2AsIsXqu8b+pEtS86EZ5Avim9nAQC0ciXsHOxhx7fTz2prCsvQc+JA9Bg/sEX9oFgPm3z1CQQC1NQY220kEgkEAoFBmre3NwIDAxEXF4czZ85g7NixDdbN4/Eabb9+cDhLt58EBwcb2FbrEhMTYzAb7d+/P5KTk3Ht2jX9LgFAJ7CJiYkG9lcAOH36NHbt2qUv17FjR7z22mvYvXs3GIZBQkKCRX2k2J6a0gpU5ha2uB57oROUVdUQdu8ISXa+QV5VVj5c/TobH1SoM1HRqtTQahiT28Qojwc2EdiAgAAkJiYapScmJqJXr15G6aNHj8a5c+f09teG8PHxQXp6usEMeenSpdi0aVOL+z158mTcvXvXYKsVACgUCmzbts1gv2p4eDjS0tJw8+ZNA4EdMGAAsrKykJCQgIiICH16QUEBtmzZAqnU0EGzk5MTuFyuTXZJUJpH6oE4aFUt36ts7+wIlUQGO2dHqOubdwgB0TLg8Dh1koiBwAKAUlKDosR7Le4LxTrYRGBnzZqFuLg4REVFIScnBxkZGdi+fTtiYmIwd+5co/Jjx45FfHw88vLyEB4e3mDdkydPhlQqxZo1a5CTk4Njx47h2LFjGDZsWIv73bt3b8ycORPvvvsuYmJicP/+fdy4cQPz58+HTCbDe++9py/bt29f/djq7jrw9PREp06dcOHCBQPhfeWVV+Dg4IC5c+fi4sWLKCgowLVr17B48WL4+/sb7VygPB5ISysgSstrnV0ebBaIVgvAdMiY8juZ8Ax+tODJaLRg1ytYmVkAjVzR8r5QrIJNBDYoKAi//PILrl27hmnTpuHVV1/FiRMnsHHjRpNCGBgYCDc3N4wYMcLIRlsfgUCA6Oho3L59G5MnT0ZUVBTWrFmDvn37tkrfly1bhvfffx+7du3CSy+9hMWLF8PT0xO7d++Gl9cjT/NOTk7w9fWFn58fXF1dDeoYMGAA7OzsDOyvrq6u2L17N/z8/PD5559j/Pjx+Ne//gVvb29ER0fTbVqPIYQQ3N79V6vMXnUV6v9jkqqsfAh9H5kJ5KJKONTzhlVdXAaOHY8GP3xMYRF6Ho5CsYjyzHxc2bTv4ayz5fiN7Y/82Ovw7t0DhedvmCzTffIIZJ28DK1aC5eu3uC3E6I0y9D+22PCQLTr2QUez3VrlX5RWo/H6qABhfK4wmi0uP3byVYTVwAAIXDu0B7SIpHZIuW3M+AV4gdAZ55w9HQzKlOZU4jyew+M0iltz2O3D9ZWrF692ujEV11mzpyJJUuW2LBHlMeZeycuoaaoos4m+pbBsedBq1TCqUM7iK4lmy0nyS2EX7/nUJiQDq1CBa693SOvWg+pyMyHZ6/uICacwlDalmdWYBcuXNjgaa7628cozy6SAhFyYm+2mrgCulAxinIJnL3coa6WNXjmiVGrwbXnQqN6OHtmCMB5dAfRMtAoVKjMLoS7X6dW6yOl5TyzAuvu7k63QlEaRaNU4/rPh6BRKFt1dsh3dYZCrBPYxmotS8qAZ0gPFCak6xIYLVDv1FhFdgEIQAX2MYPaYCkUMxCGwfWfD0EmErf6qzdf6AxFRTVYDewiqKU6rwguPh0AQqBRKA32xtZSfu8BeI58upvgMYMKLIViAsIQJO89i/LW2vNaD51zF8u9UjFKFbj2XMhKKuDU3nihC4RAXl6FwsT0VuwlpaVQgaVQ6kEYgtRDcbgfn9R44WbCYuu8TjFqy6JtiJLuwSu0J6TF5QZuC+tSlJgOeWXDEWoptoUKLIVSB8IwSN57BtmxCY0GLGxZQ4CDuwsU5WKLitc8KIGgizdkIjEczAisskoKomEgKWg4Si3Fdjyzi1wUSn1qF7TK0vKs7smUBfJQYKssvkerVIHDY4PN4Rht1aol/9pdcHhcuHSyTrQDStOgM1gKBUBVfinOr96OstRc67uJZrFAtAwc2gmbJLCixDR4h/nrLswceJCVVoLRalFdVNYaPaW0EDqDpTzTaFUapB65gAeXbkOjUNlkoz7fxQmKSgkc6kQxsARpgQjeA3tDKVOCzQLMxa/IjbsJLt8Ogg7tW6vLlGZCBZbyTEIYBoUJ6Ug9cgHy8iqDOGnWxqG9EHKRGA5CZ4NIsZaglSshyS6Es3c7SESmZ79KiRTVRWUoSspEh9AerdFlSjOhAkt5LCAMAfPwtZfFZoPdxPArlsJotChOykT6n3+jprAcLBZsfrzUsZ0Q5Un30K5H0w8FiBLT4NKjKxgu16zAAsD9+CQIOrSHokoKvtB0vCiK9WkTgR09ejQWLlyIf/zjHwbply5dwty5c5Geno7Ro0ejoKAAO3bswKBBgwzKXbhwAfPmzcOLL76I7777DgcPHsQPP/yACxcuNNju1atX8cYbb+Du3buNukE0x+XLl/F///d/uHv3LthsNoKCgvDOO+8Y9REAvvzyS+zduxcHDhxAcHCwQd7s2bMNHHnz+Xz4+vpi7ty5mDx5crP69iTAaBkoxNWoLiyD+H4xqgvLIBVVQiWR6Z2ms7kc8IXOcHAXwtnbDU4ebrAXOMLR0w0OQgE4dk372RGGQFZehQeXkpF//S7k5ZKHM1ZrjLBxdIcMmheFQFpUBu/BoVBrGLMLXQAAAqQfvQiOvR06hQeCw6NzqbbgsX7qPB4P586dMxKvM2fOGMw6Jk2ahJEjR1q9P6mpqViwYAE+/vhjrF69GhqNBkeOHMG8efOwe/dug9hharUap06dgo+PDw4fPmwksAAwZ84czJs3D4QQVFdX4+zZs1i6dCk0Gg2mTJli9fHYAsIwkItrIM4rQln6fZSl5EJWUQWiZRqcOSrFNajKK65TDwFYgL2rM1y7eMGlixecvdzAFwrAFzqBy7cHi6ub9TJqLdRSOWpKKlCWfh+i9PuQl1eBaLU2NQWYg8Vm6eyuTTAPsHlcOHX0QPX9YmhkCqilCt1CVwMTBY1chdRDceBw2fAO9W/yFxOl5TzWTzw8PByxsbH47LPP9GmEEMTGxhqE0+bz+eDz+Vbvz5EjRzBw4EDMnj1bn/bRRx/h5s2biImJMRDY+Ph4qNVqvPnmm9i8eTP+/e9/G8UPc3Bw0Ac29PT0hJ+fH2QyGdavX4/IyEjY29tbfUytCSEEGqUKisoaiHOLUJ5xH+WZBVBUSsBotAbC1lSRq3W0oqqSorQqG6V3snUhVB5GMeXYcXXblwBoNVowao1OyFrQptUgRBePS2zZLJbn7Ai/KaMgSc1Gx4EhuB93Ax5hAXB0c4asuuFoBuoaOW7/fhpquQrevf3Ad6VOjGzJYy2ww4cPx/fff4/MzEx92O2kpCQIhUJ0794dGo3uFEx9E0FKSgrWrFmD5ORktG/fHgsXLsS0adP09e7btw8//fQTJBIJnn/+eXz99dcWiRmLxcK9e/cgEokMIr5+//33BlFtAeDYsWPo168fxowZg5UrVyIuLg7jxo1rtI3p06fjxx9/REJCAgYPHtz4Q2oCjJbRhVfWaEEYBgxDAIaAEFJHrAgIw4BoCRiNFoTRgtEwuvIara4OjQYauRJquRJqmQLKajmkpRWQicRQK1RQ18iBerZNa4gbS2dABQs6j1Ja7aN1dWvZcFsFhgHfXQh5mWVbtLpFDkXuvlNg5Eqoq6rh2sULdgInuPfoDFliZqP3a5VqJO8+jbI0f3QZHAL3Hp3B4z9ZX95PKo+1wAoEAkRERCA2NlYvsLWBEEtKSkzeU1FRgTfffBMTJkzAypUrkZKSgk8//RTdunXTlzlx4gS2bt2K8vJyLFq0CL17927QdWEt06ZNw549ezB69GgMGjQIgwYNwvDhw+Hn52dQTi6XIzY2FkuWLIGXlxeCg4Nx6NAhiwS2Q4cOcHR0RGZmZpMEVi6uhqpGBqVEBrVUAWW1FEqJFMoqKeRV1VCIpVBL5Tqh1BKAMGC0jF5Ua4UWBCCkVqhY+v+xDP+huzIjmq3p1u9pw87ZEcqqGji0E0Kak99oeVf/rqjJzgcj14War0rPg++MCai6XwJwOLogiOzGv0xYLBaKb2Wg6OY9tPPvgg59AyDo6AGBtzt4Tg6P9xfSE8xjLbAAMGbMGBw9ehTz588HoLO/fvvtt/jtt99Mlj9x4gScnJywfPlycDgc+Pr6QiwWG0SdXb58uV6wBw8ejLS0NIv64ufnhwMHDiA6Ohrnzp3D+fPnsXbtWgwdOhTr16/Xuz+MjY2FXC7HmDFjAADPP/88Nm/ejIqKCotcJAoEAqNos43x17//A7B0MzcW29jbknkevkZzYP0N9hQ4d2gHaXE5XH06oDzhbqPlPcICkLvvlMHPpuZ+EWQFpfAcGAqnAhFkVXKL22dxgMqcIlTmFIHR6kwpbB4X9i6OsHNyhJ0jH2w7Lthcjm43B5cNFptt/GVq8pfFRKLRbU/fbxmHx0XIa6YnT20isFwu10DwamEYxmh1f8yYMVi9ejUqKipQVVUFuVxuYOusT2ZmJgIDAw1e2Wtnp1evXgUAdO3aVZ8nEAigVCot7ruvry/Wrl0LrVaL5ORknDx5Er///juWLVuGLVu2AACOHj2KkJAQfVDEcePGYcOGDTh27BjeeOONRtuQSqVwdna2uE8AMPnnfzepPKXtuPHDHvAc7EEacS3Ib+8KZbnYaK9seUIqOo0fDHmZGB1CfBHwj3FgWTCLpdieNhFYgUCAmhpjV20SicQokoC3tzcCAwMRFxeH8vJyjB07tsG66y8kmYJd75fR0riP69atw6RJkxASEgIOh4OwsDCEhYWhc+fO2LBhAwCgqqoK8fHx0Gg06NWrl8H9hw4dalRg8/PzUVNTg549e1rUJ8qTBSEE0pJyCH28Gt1F0GFgCIrOXDZK1ypV4NjxUHjsIgLmvoT8S0noMrSPtbpMaQFtIrABAQFITEw0Sk9MTDQSJUC3b/bcuXMQiURYvHhxg3X7+PjgzJkzYBhGL6RLly6Ft7c3Bg4c2KJ+x8fHQyqVGs2gBQIB3Nx0PjpPnToFrVaLXbt2QSh8FGL59OnTiIqKQnp6ukH47vocOHAAHh4eCA8Pb1FfKY8nGrkSGrnCoi1aXL6d3vZaH3WNDHZOfGQfOAv/mROglivAc7D+ThpK02iT94pZs2YhLi4OUVFRyMnJQUZGBrZv346YmBjMnTvXqPzYsWMRHx+PvLy8RoVn8uTJkEqlWLNmDXJycnDs2DEcO3YMw4YNa3G/Fy1ahJiYGHzzzTdITU1Fbm4ujh07hu+++w5vv/02AN3ugcGDB6N///7w9/fXf+bMmQMHBwccPnxYX59cLodIJIJIJEJWVha2bNmCrVu3YsmSJc0+CEF5vFFW1UAlbVxgBV29UXO/yGx+5d0suD/XHcqqGqRs/wMPzlyDJNd8eUrb0CZ/xUFBQfjll1+wZcsW7NixAwzDoGfPnti4caNJIQwMDISbmxsiIiIaFR6BQIDo6GisXr0ae/fuRceOHbFmzRr07dtXb4NtLhMmTACfz8e2bdtw4MABKJVK+Pr6YvHixZg6dSpKS0tx/fp1fP/99yb7FRkZiaNHj+Kjjz4CAOzcuRM7d+4EALi6uqJnz57YvHkzRo8e3aJ+Uh5fZKWVsHPk67ayNUD7UH8Unoo3my/NL0H78CDgWgoYhQqZMX+h7FY6fCYOgUdYANjcpix0UqwFi1hqgKRQKC0m6/jfKElIBd/ZAaKEFLPlekwdjfv7/2qwrm5TxyLjwFkQ1kPfDSwWhH6d0XF4X3QeSU1MjwN06ZFCsSHVhSLwG4lkwBM4QlMta7QuotGA+9DHAHl4yKI6txDqahkq0nJapb+UlkENfQ9ZvXo19u/fbzZ/5syZWLJkiQ17RHkaqckvhbt/V1QmZ5gt0y7ID5V3zOfXUp1TCJduHVCeqQvZzSIEjJZBwfkEsLgcuAd2b8WeU5oDFdiHLFy4sMHTXPW3j1EoTUWjVEElkYLnyIdGat4G69zJE+WXbzW6JV+S9QDew/uhPLMAgG4Wy+JyoKyQgAWgpqAEzp28Wm8AlCZDBfYh7u7uFp2yolCai24HwUNhbWjpgxCLzjtppHJwHfl6t4W6WazOg5k4Kx8ahQrOr1CBbUuoDZZCsRHS4gqdGBJzwV4AfjshlBZGmq1FJ606CMOAEILKu1ngOthbfIiGYh2owFIoNkKSV6g709+A6Ln27ArJvVyL69RI5bAXOOqvawVVo1CB0WhRc7/Y3K0UG0AFlkKxEZK8YnDs7aCRq8yWceroAVkTIsJW5+TDpXtHw8SHLiflokqUNLAVjGJ9qMBSKDaAMAyq8x9u0SqrNFuOBTQpEGJ1biFcfAwFljx0pCROzwO7SZ7VKK0NFVgKxQaopAqopDI4tBNCXm7a0TbXwR5aecMRCurDKNVg2/EMzA61/5SVlIPDt4NGYX7GTLEuVGApFBsgK62AVq5scAYr6NYR1TkFTa6bxWIZLHQB0DlQZxho5UpUpmQ3p8uUVoAKLIViAyrv3QdYLNg5OUBt5pSWi08HSBtw8GIOZUUVHNxcDNJqzQTyMjEq7+U1vcOUVoEKLIViA8rT8x5GBTBvX+U2cgDBHJKcArj4djJIq22lMj0XPCfqxrCtoAJLoVgZrVqDmoJS3cXD4JImsfCAQX2k94sh6OptXN3DnQRsOx60SmqHbQuowFIoVkZaXA5l1cMIHma0lWPPA1Gpm1U/0Wp1IWPqCTdhdNdahRrizAfNqpvSMtpEYEePHo2YmBij9EuXLum9/Y8ePRoBAQG4fNk4ZMaFCxcQEBCAjz/+GIAubPfw4cMbbffq1asICAjQh/tuDpcvX8asWbMQFhaGvn37Yvbs2QZ9PHjwIAICAkx+Zs+ebVDX4cOHMWPGDISHhyMsLAz/+Mc/cOTIkWb3jfJ4UpyQChCA58iHusa0/dW5S8MOti3BaKELAAiBrKQclam5Laqb0jwea18EPB4P586dw6BBgwzSz5w5YxDlctKkSRg5cqTV+5OamooFCxbg448/xurVq6HRaHDkyBHMmzcPu3fvRkhICCZNmmTkNDwjIwPz5883+BJYvnw5jhw5gg8//BAjRowAi8XCxYsXsWLFCojFYsyZM8fq46FYH8IwKL6RChaLBUdPN8hKK0yWc/HpgPJryfrrTuMGgs3h4MGJeMBMePS6yEsr4OjpDqlIbNi+loE4Iw+dhvdt0TgozeOxFtjw8HDExsbis88+06cRQhAbG4vQ0FB9Gp/PB59vfUP+kSNHMHDgQIOZ6EcffYSbN28iJiYGISEhRn2Ry+VYuXIlQkND8f/+3/8DoIvttXfvXvzvf/8zCIHj4+MDPp+P9evXY9asWTRszFNAeVouZCIxWAAcPd0gNrNlyk7oDLWkBiwArr38oKmogrZKgk6jwlEQl9BoO9XZ+RD6djIWWACy4gqwOBwQhqHRZ23MY/20hw8fjuLiYmRmZurTkpKSIBQK0b37I1+X9U0EKSkpeP311xEaGooxY8YY+Xndt28fhg8fjrCwMHzyyScWh+1msVi4d+8eRCKRQfr333+P999/3+Q9a9euRWlpKdatW6cPwrhv3z4MHTrUZHyxyZMn48iRI1RcnwK0KjVS9pzWn8ziuwuhMHPIoO4Cl3uwHyoT7qAmIw8O7YSwc3ZotC1ZoQhOHTxMV80w0KrUKL5Bj83amsf6r1ggECAiIgKxsbHo0aMHAODs2bMYO3YsSkpKTN5TUVGBN998ExMmTMDKlSuRkpKCTz/9FN26ddOXOXHiBLZu3Yry8nIsWrQIvXv3btAXbC3Tpk3Dnj17MHr0aAwaNAiDBg3C8OHD4efnZ7L8+fPnsWfPHqxZswadO3fWp9+6dctse3Z2dvD2Nl4RbgytWmNRpFKK9SAAQAgYtQay0krc/d8JyIrKHxVgsUC0WpP3suqUASF6US46cRFdIkcga99fDZsKCAGLzdK7LqyPXCRGeWoO2FwuBF29wXPkg8VhG5jaKM2ExQKHZ1pKH2uBBYAxY8bg6NGjmD9/PgCd/fXbb7/Fb7/9ZrL8iRMn4OTkhOXLl4PD4cDX1xdisRgM88hF3PLly/WCPXjwYKSlpVnUFz8/Pxw4cADR0dE4d+4czp8/j7Vr12Lo0KFYv369gT/ZyspKfP755xg3bhymTp1qUE9FRQVcXV0N0gYMGACV6tFWmq1btzYpdHfcJ5uhbsYeSkprwtKdquKwwXPkw87FCYIuj/yx8pz4D7XPUNTsXJ2hEksAAE6dPSF/UKQvoZXKoS4XQ9DVC9UPShtsnTAMOGw2TDlDrMq4D5eeXXDvUBxUEik0KrXuMAL9Um4x3cZEIHD6OJN5bSKwXC7XQPBqYRjG6NV4zJgxWL16NSoqKlBVVQW5XI6QkBCzdWdmZiIwMBAcziMnF7Wzxdqosl27dtXnCQQCi00EAODr64u1a9dCq9UiOTkZJ0+exO+//45ly5Zhy5Yt+nLLly8HIQQrV640qkMoFEIikRik7d+/HwzDQKvVYuLEidCamemYY8zGfzWpPMX2iDPug83lGs0aXbp2gLxYN9MV+HZGTYphuJjSc9fg8/oLSP/1eIOzWFmhCIIuHqgpERvlKcrE6Pr8QAS//QqdtdqQNhFYgUCAmpoao3SJRGIUmsXb2xuBgYGIi4tDeXk5xo4d22DdPB6v0fbZ9Qz9ljolXrduHSZNmoSQkBBwOByEhYUhLCwMnTt3xoYNG/TlDh06hFOnTuHnn382GSWhd+/eSExMNEjr0qULALRoCxnl8aamUGQy3dG7Pcou3QIA8Nu7oUJUabg4wjCovJkKz/DnUJpg/m2rOjsfrr38TAosoAtZIxdVwtGTRu6wFW2yyBUQEGAkMACQmJiIXr16GaWPHj0a586d09tfG8LHxwfp6ekGM+SlS5di06ZNLe53fHy8yf27AoEAbm5uAICCggKsWrUK06dPN7t1bMaMGYiLi0NycrJRnjnbMuXJp+ZBscnZo52LI9SSagDm3RVK7mRA6O8De1dns/UrRJXgt3c1+9qvKK9CWdK9ZvWd0jzaRGBnzZqFuLg4REVFIScnBxkZGdi+fTtiYmIwd+5co/Jjx45FfHw88vLyGrVLTp48GVKpFGvWrEFOTg6OHTuGY8eOGe1NbQ6LFi1CTEwMvvnmG6SmpiI3NxfHjh3Dd999h7fffhsA8Omnn0IoFGLevHkQiUQGn4oK3R7IESNG4PXXX8fcuXOxY8cOZGVlIScnB7/++iumTZuGDh06oFOnTg11hfIEUp1n5iBBHUFkwfxx2YL9p9H95VHg2DXylmZGYKsyHkArt9wcRmk5bWIiCAoKwi+//IItW7Zgx44dYBgGPXv2xMaNG00KYWBgINzc3BAREdHo9iWBQIDo6GisXr0ae/fuRceOHbFmzRr07dtXb4NtLhMmTACfz8e2bdtw4MABKJVK+Pr6YvHixfqFrGvXrgGAyZl2p06dEBsbC0A3qw4PD8f//vc//Pjjj1AoFOjevTvmzJmD119/Hc7O5mcqlCcPRqNpcIsWAHAc7BsUQEalRv6Bv9BjxvO4t+tPk6YtrVIFrh0XGo3xGoe0UATOwzhd1A5rG1iERkWjUKyOokKCS59uAqknfBy+HToNDUP+sfNw6toBAk8hxNfvNFgX37s93AaGIudwnNGil3P3TuC3c0XpHdMHGnynjIJn3+fg1NH0nllK6/JYHzSgUJ4WZMVlYNTGO0McvdtBVqjbfuXg5Q6lmaO0dVEUl4GRKSDo1N4orya3EM4+HRu0w5ZcpwcObMVjvw/WVqxevdroxFddZs6ciSVLltiwR5SnCYmZSAWO3u1RnaabbTp4uqMs2bI92aVnr6DzP55H9Z7ThrNYQsBiA2AYgGMcj6v8diY6j+nf5P5TmgcV2IcsXLiwwdNc9bePUShNQZx536Td06G9K8pEuhAyHL7OBmvJayXRaqGVKmDnZA+VzNDXq6xQBCdvd0hFxjZfZaUELA4bGpkCXEfqiNvaUIF9iLu7u8k9qxRKS2G0WtSYOYXFqnN8loX6Z7wapuJ6Mjz7ByH/vOGWx/Kke+gwIhzSs9dN3qesrEbx9RR0HkE9bFkbaoOlUKyMsrIaqirjgzUA6m3RaprAKorL4ODtYWRv1dTIwHXi68wEJii7nQF1tbQJLVGaCxVYCsXKSLILwGiMF7hYHDbA1E1v+oYeRqEEz87Y1iorKoOTh6vJe+TF5eDY86jvChtABZZCsTJlt++ZtL/y27tCXqLzQdDYHlhzVKfnwDXAxyi9PCEFHn0Dzd5X86AERX8nNbk9StOgAkuhWBFGq4X43n2TeU7e7SEtLAMA2Lu5QFUpbnL91Rl5cOnZzdhMIFOA42Bv1kxQeiMFLDbLYj8clOZBBZZCsSJyUSUUFaZPcDl6t4O8SOcAxt5dCFWFxGS5hiAaLVhcjknbrTglG+7+XU3kAFqFCipJDcrvZJjMp7QOVGApFCtScu0OiNb0LJJjzwOj0JkF7N1coDYjxI2i0YLDMZbYyrtZcHuuu9lDB/lxNyEvFTevTYpFUIGlUKwEYRiUXL1r/tx/Hd2zc3OBqrJ5AivNK4TAx0QUDEKgkcnBdbAzeZ+mRgZFRRXKbtNZrLWgAkuhWInq/BLISsrN5td1S8jmccGom+cLuCbrPgS+XUzmlV5OQoeIILP3PvjrKpTiapO7HCgthwoshWIlsg/GmjUP2AmdoRQ/srk2dQ9sXdTiati5uZg0BSgrJLB3cwGI6X4QjRYlV5NRdPl2M1unNAQV2CYwevRokw63L126hICAAERFRSEgIMDsJyoqSn/PqVOnMGPGDISFhWHAgAGYP38+EhIaD89MeTKQFolQmZ5n1jzg1KE9ZEV1Ixy0fDWfZaaOiuQMtHuuu8k8AKhMzYWyogpVWQ9a3AeKIVRgW5G33noL8fHxiI+Px969ewEAMTEx+rS33noLAPDjjz/i3//+N55//nkcPnwYu3btQs+ePTFnzhwcP368LYdAaQUYjRZ3og9Cq1CZLaPzovVIYFsygwUARqkCz970yXdxSjbcArs1GOAw548LqH5QCnll03cyUMxDfRG0Ik5OTnBycgIAyGQyADofBx4ej3xvpqSkYPPmzYiOjjZwLr5kyRK4urpi+fLlGDhwINq1a2fbzlNaBUIIUnceRXVeUYNOre1cnKEW68LE1IbqbgmyvEI4d+2AikzTXrvkxWVwau8KaQNOv+/9dgIBbBba9e4Jvit1btQa0Bmsjdm/fz969eplMnLDm2++CQD4888/bdwrSmugVamR/J8YFF9KAqvR+SjRiypP4AS1xIyvAguR5hbAuXtns/kll5LgNTC4QSEnWi1SdxxF/pmrkOQW6sJ6U1oEncHamOTkZPTu3dtkHo/HQ2hoKG7duoXZs2fbuGeU5kAIgUYqR9Gl27j/12UoyqosC8dSR+js3QRQi1v2aq6uqoGdi7OuXhPtMyo1iEYDroMdNAq12XpYAPL+/Bv3/7qC9sE94NChHThcLhgtAzAELA4LfHch7IQCOHq3A7+dsPEYYc8wVGBtTFVVFVxcXMzmC4VCiMXiJtebffgctHU95jf2ylkn37goMX9Zr7DxrQ3MkOrnNdTH+u0YXDbQv3qFm9K/xp7Zo2wClUQKRUUVpAWlANFtswKbBbZd439SXEc+NLJHjlbshAKoas0FLYQF88tlheduoPOIfsiLs2wxtexOJnAn03QmQ8BotWCxWHDq4AF+OyG4Tg7gOtqDxeaAxWKBxWbpxP4pj/+lVSgRODvSZB4V2CbA5XINwoHXwjBMo8EYaxEKhSgrKzObX1paCi8vryb3zfflUU2+h9J25B48A/bDiAP27i6oKSxucZ1EowHXjgszO8OglcrBdbBHn/dnwC2oR4vbozQOtcE2AYFAgJoaY1uZRCKxOOJBaGgo7twxHdROoVAgIyPDrAmB8vRQc/+RoNq5CqBpoYkAAGT3i+Dc2bPBMvmnL0NeWkGdvNgIKrBNICAgAImJiUbpiYmJ6NWrl0V1vPrqq8jMzMTJkyeN8n799Veo1WpERpp+3aA8HRBCIMsv0V+zuVxom3mKqy7SnPwGF7oAQFMtQ01uEUTXGo5cS2kdqImgCcyaNQvTp09HVFQUXnjhBWg0GsTHxyMmJsbgEEFD+Pv746OPPsLSpUtRXFyMUaNGQaPR4OjRo9i2bRu++eYbtG9vHC2U8vSgkSuhqefsujWslKpKCezdXcwudNVSdO46BL6doBRLYO9qfj2A0nKowDaBoKAg/PLLL9iyZQt27NgBhmHQs2dPbNy40eS2K3O89dZb6NatG/773/8iKioKXC4XYWFh2LFjB/r162fFEVAeB1RiCVQ1cr2o2nwJiBBk/fYnOHw7tAsNBIdv2hkMpeWwCDXGUCg2pSwhBXc2/k+/navbK6NQGGNsMmoOnV4Zi7xjF8FY8FfNcbCH/1svw7WXH+xcnFqlfYoh1AZLodiYmtxCw72yrTjFkecXw7mTZSYmrVyJ1B9jILp2G1UZpqMuUFoGFVgKxcZI6jhVYdvbgVE2PRaXOaQ5BXDu1snyGxgGGTuOQnQtGWU3U1utHxQd1AZLodgQwjCQFT3aB20nrOOToBVQllXCw8OtSfewWCwUnLwEFksXo8ujn2U7YiiNQ2ewFIoNUUmkUEuk+ms7VwFUrbAH1ohmLK3kn/gbanE1pAZuFCktgQoshWJDZEUiaJWP3Bi29gwW0M2Sm3s6NfdQLKpSc+hBhFaCCiyFYkMk9/IMrnUz2GYGOzSDoqAUTt7Nc3eprqqBvEiEknjjAzWUpkMFlkKxIeK0HIMdBDxnR2hr5A3c0XSkuQUQdG/CQlc9Cs9eA6PRNDtGGOURVGApFBvBqDWQFZQapbf267iipBwOXs132M6oNZBk3EfxeRrCqKVQgaVQbIRCVAFVlbG9tdVPchHy0G9h84W75O8ksHgcA3sxpelQgaVQbETFnSwQraHosay1mESI2SCIFsEwKLuZiuK/b7Val55FqMBSKDaiPCHFZLQDa/giUBSXwdGzafth61NxMw1sDhsamaKVevXsQQWWQrEBGrkS0jouCgHoPF5ZKe6VNDsfLr4Nuy60hOILN1F6+XYr9OjZhAoshWIDxKnZUFUZOmvnubQ82KE55IWlcOjk2eJotbptZQTKitbdSvasQAWWQrEBBacvGZkH7F1bHuywIVgAWKTlM+T7xy6gIjmj5R16BqEC2wI2btxoUfTXTz/9FB9//DEA3Zac3bt3m4ztRXk6UVZUoTqnwCjd3l0IZbnYau0qisvg6OXe4nqUZWLU5BZCdDOlFXr1bEEF1sZcv34dK1asoAL7DJG19xQ0UuOFInt3IVQVYqu1W5V8D27BrRPcsPDMVajKqyAvKW+V+p4VqDctG0PPeD9bSLLzUZGYZnL3AM/FCRqJ1GoRDVSVEti5CxsNIWMpmb/9CX8eDywuF/x2wlbo4dMPncE2gczMTLz22msIDQ3F3LlzIRaL9Xk3btzAtGnT0Lt3b0RGRuLw4cNG9+fn5+ONN94AoAs/c/XqVajVaqxbtw7Dhw9HUFAQRo0ahd9//91GI6LUhdFqoZEpoJYpWuWYqLykHCmbf4dWbt7fq7W/cBmFEjz7VppHaRmkbzuE4gs3UHO/qHXqfMqhM1gLUalUmD9/Pvr164dVq1bhypUrWL16Nfr16weRSIT58+fjgw8+wMiRI3H37l18+eWXcHFxwejRo/V1dOjQAVFRUXjvvfdw4cIFuLm5YevWrYiNjcXmzZvRrl07HDp0CKtWrcKYMWPg5eXVhiN++iAMA0bLgKg10CqUUFbVQFFaAVmhCNL8EkgLSqCRSEEIAdeRD8eOHnDq4g3Hjp5w8G4HO1cBuA58sHlcsLgcsNmP5ieEEBAtA0atgUpcjaLzN1By8SZUVTUmZ6+1WDseV2XCXbTv+xyKrrROFFkWgLyDsSi+kICO4wZB0LUDHLzbg+vEB5vHA4vDbnC8zxpUYC3k0qVLqKysxIoVK+Dk5AQ/Pz9cvXoVlZWV+O233zBgwADMmTMHAODj44Ps7Gzs3LnTQGA5HA6EQt2rVbt27cDlcuHv74/Vq1cjLCwMALBgwQJs2bIFOTk5TRLYvxeuerQh3GBSREz/09TM6RkwX7A4bLC5XLB5XLDteOA68vWvzyywwHNx1pdViMRQiMQov5kKrVwJrVIFRq0B0WjBaJlHr94PnxuLzQKbxwOHbweewEn/MQfXwd7qAivPL4HHiP5wyCsGi926L6wlF26iSK2GRioHo1Lrng1DwOKwW8Uk0VTaStg7jAxHzzdfMplHBdZCMjMz0aVLFzg5PfqDCQ4OxsWLF5GdnY2LFy+iT58++jyNRgN398ZXcMeOHYu///4ba9euRXZ2NlJSdCu1TV0EG/LjF00qT2l7JGk5NmlHVS6Gz/MD4TV2kE3aozyCCmwTqD/r43J1j0+j0SAyMhLvvPOOQT7bghnDxo0bsXfvXkydOhUvvfQSli9fbjDrpTy9KMsqbdKO6MIN+MyMBCGEvr7bGLrIZSE9e/bE/fv3UVX16ERL7Wyze/fuyM3NhY+Pj/4THx+P/fv3G9VT/xd8z549+OKLL7BkyRJERkZCLtf5BqW7DZ5+bCWwWpkCyooqiG/fs0l7lEdQgbWQwYMHo2PHjvjss8+QmZmJ/fv349SpUwCAmTNnIjU1FRs2bEBubi5OnjyJ9evXm7ShOjo6AtCJs1KphKurK86dO4cHDx4gISEBn3zyCQDdohrl6UYpqrBZW0XHL0ArlYHRUCfatoQKrIXweDxER0ejpqYGU6ZMwb59+zBz5kwAQKdOnfDzzz/j0qVLeOGFF7Bu3Tq89957+vy6+Pv7Y+jQoZg5cyYuXLiANWvW4N69e4iMjMS///1vTJgwAWFhYfrZMeXpRVZo7HzbWjBKFfIP/IWq2/fAaLU2a/dZh0XouyiFYnMIwyDxw7VQltpuFgsALC4XHiPC4RLQHVyBIxw6eoLv2fzoB5SGoQJLobQBGqkciYu/gaZG1qb98BwzEK69A9AuIqRN+/G0Qk0EFEoboK6WQiNt3WCHzaH07BUoSsshvku9ZVkDKrAUShugKq96bA525O8/DWVJBRgNtc22NlRgKZQ2QF5Y0nghG8EoVZDdL0LJuatt3ZWnDiqwFEobIC94fAQWAEpjr4DNYYPQHQatChVYCqUNqMk2dsDdljBqDeSFIogu3WrrrjxVUIGlUGwMo9FY1dF2cymNvQKiVrd1N54qqMBSKDZGXVVjtWCHLUErV0JVWQ3Jvdy27spTAxVYCsXGKIpFIK3g0NsaFJ/+G4oC250we9qhAkuh2BhbuSlsDhpJDTQyhc0c0TztUIGlUGxMVUpWW3ehQYpPXkRVSmZbd+OpgAoshWJDtEoVFEWitu5GgyjLKqFVqKCqlLR1V554qMBSKDZEnl8M9RMgXCV/XUZFwt227sYTDxVYK5GamoobN260dTcojxmiiwlt3QWLkOcXQyOVQ5J1v6278kRDBdZKLFq0CDk5j+9iBsX2MGoNKhPT2robFpO//xSUJeWPhVOaJxUqsBSKjSi/ngxlaXlbd8NiiEaLnP8ehPj2PWikbetW8UmF+oO1ArNnz8a1a9cAAK+88grmzZuHNWvWIDExEY6Ojpg+fToWLVoENpuNqKgoZGRkwNnZGcePH4e3tzeWLFmCsWPHtvEoKK2JVqFE0qffQ1ny5AisHhYL3uOHwK1vEJy6dwLP2bGte/TEQKPKWoGoqCi89NJLePPNN/H8889jypQpGD16NGJiYpCTk4MvvvgCDg4OePvttwEAsbGxiIyMxMGDBxEbG4v3338fhw4dQkBAQBuPhNIaqGVypH277ckUVwAgBMUn41F8Mh527YQQBvWEILA7HDp4wKGTF7jOjjRarRmowFoBV1dXcDgcODs74+zZs7C3t8fKlSvB4/Hg5+cHkUiETZs26QXWxcUFX3/9Nezs7ODn54fz589j//79+Pzzzy1us/DPC4/t6SBbYfQyZvRu1nA+aSS/Mf+thDCPLhgClViC6nu5UJSUg83lgs23a/D+JwGNVI7ya7dRfu02CEMAhgFPKICzX1fw3ATgOjuBzWEDtYKr/9/TK8AamQI+r00ymUcF1spkZWWhV69e4PF4+rQ+ffqgsrISFRW6eEy9evWCnd2jP77g4GBkZDTNw3y7gaHU1dxjAAsA2GywuRywuM/mnxfRasGoNbovJGL0tfXUwXV0MJ9nw348k9jb2xulMQxj8H9uvT9ErVbb5Fcue3dhM3tIoVCsBd1FYGX8/PyQkpICdR03cImJiXB1dYW7uzsA4N69e3qxBYA7d+5Q+yuF8hRABdZKODk5ITs7G8OGDQPDMPjyyy+RlZWFs2fPIioqCjNmzACbrXv8BQUFWLt2LbKzs/HTTz/hzp07+Mc//tHGI6BQKC2FmgisxKxZs7Bu3Trk5+fjl19+wapVq/Dyyy/D3d0db7zxBhYsWKAvGxwcjOrqarzyyivw8fFBdHQ0unXr1nadp1AorQLdB9vGREVF4dKlS9i9e3dbd4VCobQy1ERAoVAoVoIKLIVCoVgJaiKgUCgUK0FnsBQKhWIlqMBSKBSKlaACS6FQKFaCCiyFQqFYCSqwFCMIIdi4cSMGDRqE/v37Y926ddCacSTz6aefIiAgwOgzZswYfZnx48cb5aempjarPQBYtmyZUX07duzQ51+5cgUvvvgiQkNDMXv2bOTl5TV7fABw+fJlTJ06FX369MH48eMRExNjkG9qfO+++y769++PIUOGYOvWrWbrTktLw/Tp0xEaGoopU6bg9u3bBvl//vknxo0bh9DQUCxcuBDl5cYuD1UqFZYtW2ZRe3/++SdeeOEFhIWFYfLkyYiNjdXnMQyD3r17G41FIjGMIdaU9t566y2j+s6cOWOV8c2ePdvk7+Ibb7zRpPG1KoRCqcd///tfMnToUHL16lVy5coVMnToUPLzzz+bLCuRSEhpaan+k5qaSvr06UN27dpFCCFEqVSS5557jiQkJBiUU6vVzWqPEEJmzJhBfvnlF4P6ZDIZIYSQwsJCEhYWRqKjo0lGRgZZvHgxmTRpEtFqtc1qLycnh4SEhJAff/yR5ObmkiNHjpDg4GBy9uxZs+P77LPPyKRJk0hycjL566+/SJ8+fcixY8eM6pZKpWTIkCFk9erVJDMzk6xatYoMHDiQVFdXE0IISUpKIiEhIeTAgQMkNTWVvP766+Stt94yqufrr78mkZGRjbZ3/fp1EhQURPbu3Utyc3PJzp07Sa9evcjdu3cJIYTk5uaSgIAAkp+fb/BsGYZpVnuEEDJs2DBy/Phxg/qUSqVVxldZWWnQzqVLl0ivXr30PytLx9eaUIGlGDFixAiyb98+/fXhw4fJ8OHDLbr3vffeI2+++ab+OjU1lfTq1YuoVKpWay8iIoJcuXLFZN4PP/xAZsyYob+WyWSkT58+5O+//25We1u2bCGvvvqqQdoXX3xBFi9ebHJ8UqmUhISEGLS3ZcsWgz7VEhMTQ0aOHKkXf4ZhyLhx4/R9W7JkCfnoo4/05QsLC4m/vz/Jzc3VpzWlvc8++4x8+OGHBmlz584l69evJ4QQcubMGTJq1CiTz6E57VVXVxN/f3/y4MEDk3W19vjqwjAMmTp1Kvnss8/0aZaMr7WhJgKKASUlJSgqKkJ4eLg+rV+/figuLkZRUVGD9yYmJuLMmTNYunSpPi0rKwudO3c28IfbkvZEIhHEYjG6d+9usr6kpCT0799ff+3g4ICgoCAkJiY2q72JEydi2bJlBmksFgtKpdLk+NLS0qBSqdCvXz+D+pOTk6HRGDpET0pKQt++ffVOf1gsFvr27avva/2xdOjQAZ06ddLnN7W92bNn45133mlwLOaea3Pay8zMhL29PTp27GiyrtYeX12OHz+O7OxsfPjhh/o0S8bX2lCBpRggEokAAJ6envq09u3bAwCKi4sbvPenn37C888/D39/f31aZmYmOBwO3n77bQwZMgSvv/46kpKSmt1eZmYmuFwuNm3ahGHDhmHy5Mk4ePCgQX116wKAdu3aoaSkpFntde/eHcHBwfrrsrIyHD9+XC8M9cf3xRdfwNnZ2cAPcPv27aFWq/UO1i3ta2lpaYP5tXUIhUKL2gsMDESPHj301xkZGbh8+bLBWKRSKWbNmoWhQ4di3rx5yM7ONuqzpe1lZmbCxcUFH374IYYOHYpp06bh/Pnz+vzWHl9dfv75Z7z22mv6n62l42ttqMA+gyiVSuTl5Zn8KBQKADCIsFD7b5VKZbbOwsJCXLhwAXPnzjVIz8rKQlVVFcaOHYuvvvoKnp6emD17Nq5evdqs9mr/IAIDA7F161ZMmzYNX375JU6cOAEAkMvlYLFYBmNSqVSoqKho0fgAQCaT4d1334WnpydmzJihH59EIsHMmTMRHR2N9u3bo7q6Gvn5+Y3WL5fLDfpRW7a2nEKhaDC/oToaG095eTneffdd9OvXTx9gs/Zn9e677+I///kP7O3t8cYbb6C6urpZ7WVlZUEqlWL06NH45ZdfMGLECCxYsED/BWut8d24cQPZ2dmYPXu2UX8aG19rQ90VPoMkJydj1qxZJvOWLFkCQPfLW/vaW/uL7OBgPjTGyZMn0bVrV4SGhhqkb9iwAVeuXNHHH6uldmW3qe3NnDkTkZGRcHV1BaAT2ry8POzevRsTJ06Evb098vLysHLlSqN7//rrr2aPr7q6Gv/85z+Rn5+P33//XV92w4YNUCqVcHZ2BgC89tpruH79Og4fPox33323wfrt7e2NREKlUoHP51uU31CZhsZTXFyMt956C2w2G5s3b9abKH7//XdotVo4OjrqxzZixAicPXsWL7/8cpPb+/jjj7Fw4UK4uLgA0P2s7t69iz179iA0NNRq4ztx4gQGDhwIb29vg3RLxtfa0BnsM0h4eDjS09NNfl588UUAulfhWmpfqz08PMzWeeHCBTz//PNG6TweD8OGDTNoY8KECZg+fXqz2mOxWHpxrcXX11f/Wunl5QUHBweD9vr374/333+/2eOrqKjAG2+8gQcPHuDXX39F165dDcZXK6617TMMY2DPFYlEsLOzg1BoGNbHy8tL33YtZWVl+n54eXkZ9LN+fm0ZiURiIELm2gOABw8eYObMmWCxWNi1axfc3Nz0efb29nrxqb3u3LmzwSt7U9rjcDh6ca3F19cXpaWlVhsfoPtdHDdunFG6JeNrbajAUgzw8vJCx44dkZCQoE9LSEiAp6cnOnToYPIeQghu375tsGBRy7Rp0xAdHa2/ZhgG6enp8PX1bVZ7a9euxT//+U+DtNTUVH19oaGhuHnzpj5PLpcjJSUFYWFhzWpPpVJhwYIFqKysxG+//aZvx9z4AgICwGKxDF5rExISEBQUZBR7LTQ0FImJifpouIQQJCYm6vsaGhpq0M+ioiIUFhbq8wHgueeeA4/HM1gYMteeWCzG3LlzIRAIsGvXLgP7pEajwbBhw3D8+HF9mlQqRV5ensGYm9Le+++/jxUrVhikpaam6heaWnt8gO7L8P79+0a/i5aOr9Wx6Z4FyhPBzz//TIYMGUIuXbpErl69SoYNG0aio6P1+eXl5aSmpkZ//eDBA+Lv708KCwuN6oqKiiIREREkLi6OZGVlkWXLlpGBAwcSiUTSrPauXr1KAgMDyc6dO0leXh753//+R4KCgsj169f1fQkJCSH/+c9/SEZGBvnwww9JZGSkwT7YprT3888/k169epFLly4Z7J2srKw0O76QkBAyfvx4kpSURM6cOUP69u1Ljh8/TgghpLS0lMjlckKIbhvTwIEDyVdffUUyMjLI6tWryaBBg/T7YG/evKnft5qWlkZmz55N3n77baNnvGzZMjJx4sRG2/vyyy9J3759SUpKisFYan8Wn376KRkzZgy5du0aSU9PJwsWLCATJ0402LPclPYOHTpEgoODyR9//EFycnLIpk2bSEhICMnLy7PK+Agh5MqVKyQoKMjg512LpeNrTajAUozQaDTkm2++IeHh4SQiIoKsXbvW4Bd21KhRZPPmzfrrW7duEX9/fyKVSk3WtWnTJjJixAgSEhJCXn/9dZKWltai9o4fP04iIyNJcHAwmThxIjl16pRBfXFxcWT8+PGkd+/eZPbs2fo/6Oa098orrxB/f3+jT+0+TFPjS0pKIp988gkJCwsjQ4YMIdu2bdPX7e/vTw4cOKC/TkpKIi+//DIJDg4mU6dOJcnJyQZ9PXjwIBk5ciQJCwsj77zzDikvLzd6xjKZzKL2IiIiTI6ldi+qVColK1euJEOGDCGhoaFkwYIFpKCgoNntEULIrl27yNixY0lwcDCZMmUKuXbtmtXGR4jud2PAgAFGdTRlfK0J9QdLoVAoVoLaYCkUCsVKUIGlUCgUK0EFlkKhUKwEFVgKhUKxElRgKRQKxUpQgaVQKBQrQQWW0iaMHDkSLBbL7Gft2rWt1taKFSsMjrNaQrdu3fS+BKzJjh07wGKxjI6MAjrnMi4uLkZOS+qyefNmcDgcPHjwoNXbp7Qc6uyF0mYMGTIE3333ncm8uuf924JDhw4ZnNNvCxwdHTFt2jTs378fCoXCwAlKLb///jtGjRqFLl26NKuNyMhIXL582ci/A6V1oAJLaTNcXV0xcODAtu6GSfr06dPWXQCg8zq2fft2nDhxAq+88opBXlZWFq5evYpdu3Y1u34PD48GnfhQWgY1EVAea2pdE9b1eDRx4kR07twZYrEYO3bsgLOzM06fPo3AwEA4OTlhxIgRuHXrltk61Wo1li9fDn9/f9jb28PNzQ1TpkwxeM2uayLYsWMH2rdvj7NnzyIsLAz29vbo1asX/vjjD4N6MzMz8fLLL0MgEMDV1RWzZ882evX+9ddfERAQAAcHB0yaNMlkkL+6jBgxAt26dcPevXuN8n777TcIBAJMmTIFhBBs2rQJISEh4PP5EAgEGDduHJKTk/XlR44cifnz52P8+PFwcXHBxx9/bGQisPTZfPvtt1i4cCHc3d3h4uKCOXPmGPhV1Wq1WLNmDfz8/ODo6IiwsDAcPnzYoP+bN29Gz549YW9vj6CgIJNjfOKx6kFcCsUMI0aMIJMmTSJqtdrkp5YHDx4QgUBAZs+eTQghZPv27QQAOXnypP6ay+WS9u3bk02bNpE//viD9O/fn7i6upKSkhJCCCHLly8nTk5O+joXLVpE3NzcyLZt20hcXBzZsmULcXFxIVOmTNGX8fHxIYsWLdK3YWdnR7p27Uqio6PJ6dOnybBhwwifz9efnS8uLiZeXl4kLCyMHDx4kOzevZv4+fmRPn366IP87du3jwAgixYtIidPniSLFi0iPB6PACAikcjss1q2bBlxdHQ08vUQEBCgDxK4fv16Ym9vT3744QcSFxdHtm/fTjp27Ej69u1r8My5XC5ZsGABOXXqFLl27Zr+eda2b+mzEQqFZPr06eTUqVNk06ZNhMfjkU8++URf5r333iN2dnbk66+/JmfOnCHz588nHA6HXLx4kRBCyIoVKwiXyyVffPEFOXXqFPnggw8Ii8UyiJX2NEAFltImjBgxggAw+6nrIenHH38kAMihQ4eIm5sbmT9/vj6vViB+/PFHfVppaSlxdHQkK1asIIQYC+yrr75q4DCEEELef/990q5dO/11fYEFQPbu3avPT0pKIgDI/v37CSE6T01CodBAKLOzswmHwyE7d+4khBDSp08fMmHCBIN2X3zxxUYFNiMjgwAge/bs0addv36dACAXLlzQ93/VqlUG933//fcEgN4714gRI4ibm5tBAMr6AmvpswkKCjKIxvrKK6+Q4OBgQojOGxmHwyErV640qGfEiBFk9erVpLKykvD5fPL5558b5L/11lvE19fX7HN4EqE2WEqbMXToUGzcuNFkXt0YTP/85z+xZ88eTJ06FT4+PtiwYYNR+doQLoDOrjho0CBcvHjRZN21r6KFhYVIS0tDamoq4uPj9cH/zFHXXty5c2cAOp+iAHDu3DkMGjQIrq6u+mB8Xbp0Qa9evXD27FlMmzYNt27dwg8//GBQ59SpU3H06NEG2+3RowcGDx6MvXv3Yvr06QCg9007bNgwAMCmTZsA6JxRp6WlIS0tTV9v3YgLPXr0MBuAsinPJiIiAiwWy+B51Jplrl69Cq1Wq3duXktcXBwAXfQLhUKByMhIg8CFEydOxH//+1/k5OTYPDihtaACS2kzhEKhQXRXc7BYLMycORPnz5/HsGHDjLZc8fl8o1VwDw8PpKenm6zv0qVLWLhwIW7fvg2hUIg+ffrAwcFB7/jaHHW94deGWWEYBoAuxtXVq1dNipe3tzfEYjEIIQZOrmvzLGHOnDn44IMPUF1dDScnJ+zduxcLFizQ56elpWHevHmIj4+Ho6MjQkND9dEE6o6rfpDB+lj6bOo+C0D3PGqfRW0wQnNt1dqdBw8ebDK/qKjoqRFYushFeeypqKjAl19+id69e2PXrl0GkUkBXfA8mUxmkGYqYikAVFVV4YUXXoCPjw8yMjIgFotx7tw5s3/sliIUCjFx4kRcv37d6BMVFQU3NzewWCx9uJRaGlvkqqV25nrkyBGcO3cOxcXF+rhmDMPgxRdfhFqtRnJyMqqrq3Hp0iVMnjy5SWNorWdTG8qlfjicW7duITExUZ9/6NAhk88rJCSkSe09zlCBpTz2fPjhh2AYBufOncOoUaMwb948yOVygzLHjh3T/7u0tBSXL1/GqFGjjOpKS0tDZWUlFi9erA9hzTAM/vrrr0ZnsA0xdOhQpKWlISQkBOHh4QgPD0dwcDBWrFiB+Ph4ODg4YODAgTh06JDBfX/++adF9QuFQkyePBmHDh3CgQMHMHLkSHTr1g2ATsgyMzMxf/58BAcH62fXJ0+eBACLx9VazyYiIgJcLtfgZwLoTD3r16/HgAEDwOPxUFpaqn9W4eHhuHPnDlauXNmin8PjBjURUNoMsViMK1eumMwTCoV47rnncOrUKfz666/YuXMn3N3dsWXLFoSGhmL58uX49ttv9eUXLVqE6upqeHh4YOXKlXB3dzd4ha4lMDAQAoEAX3/9NbRaLeRyObZs2YKkpCSwWCwQQgxsi5byr3/9C7/++ismTpyIDz74ADweDxs2bMDly5exatUqAMBXX32FCRMmYO7cuZgxYwZiY2ONBLch5syZg1dffRUuLi745ptv9OleXl7o2rUrfvjhB3h5eYHD4WDnzp16gas/uzdHaz0bT09PLFiwAKtWrQKPx0O/fv0QExODW7duYcuWLfDw8MD777+Pjz76CJWVlYiIiMCtW7fw+eef46WXXjIKlPhE01ara5Rnm8Z2EYwZM4ZUV1cTHx8fMnz4cIN7ly5dSjgcDrl+/bp+FfzXX38l3bt3J05OTmTy5MkkJydHX77+LoLTp0+T0NBQwufzSefOncnMmTPJ/v37CQBy+fJlQojpXQR1V/orKysJALJ9+3Z92t27d0lkZCRxdnYmAoGAjBw5kvz9998GfT98+DAJDg4m9vb2ZOjQoWTLli2N7iKoRaPREG9vb+Lk5GQQE40QQm7cuEEGDRpEHB0dibe3N5k8eTI5e/YsAUB2796tf+aRkZEG99UfW1OfTS0ffPAB8fHxMejrihUrSJcuXYiDgwPp378/OXPmjD5fq9WSdevWET8/P2JnZ0d8fHzI0qVLiUKhaPQ5PEnQkDGUJ5odO3Zg7ty5EIlERgtIFEpbQ22wFAqFYiWowFIoFIqVoCYCCoVCsRJ0BkuhUChWggoshUKhWAkqsBQKhWIlqMBSKBSKlaACS6FQKFaCCiyFQqFYif8Pt2rdYUC4cHkAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 360x864 with 30 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for plotting Figure 3 Supplement 3 panel C\n",
    "plt.figure(dpi=380)\n",
    "fig, axes = joypy.joyplot(pt_per_site_ev, column=['EV'], overlap=1.0, by=\"site\", ylim='own', fill=True, figsize=(5,12), legend=False, xlabels=True, ylabels=True, \n",
    "                          colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)), alpha=0.6, linewidth=.5, linecolor='w', fade=True, x_range=[-1,1])\n",
    "plt.title('Patients test EV per site', fontsize=18, color='black', alpha=1)\n",
    "plt.rc(\"font\", size=14)\n",
    "plt.xlabel('Explained Variance', fontsize=16, color='black', alpha=1)\n",
    "plt.ylabel('Site', fontsize=14, color='black', alpha=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 135,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Text(0, 0.5, 'Site')"
      ]
     },
     "execution_count": 135,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 2280x1520 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVgAAAEwCAYAAADyy2l3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABzPElEQVR4nO2deXxURda/n16SdPYQVkPYCSIEsiDIDgqoiKISt58DLigIqMyIjC8RwciAuA46Lgjv6wgyjIosQUEFUUG2ICBEJARJICEJ2ff03n3r90dIkyadPZFA6vlMO/Ste6vqVrq/XffUqXNUQgiBRCKRSJoc9ZXugEQikVyrSIGVSCSSZkIKrEQikTQTUmAlEomkmZACK5FIJM2EFFiJRCJpJqTAtnIee+wxVCpVra/HHnvsSne1CsePH+fGG29Ep9PRvXt3msPjMCUlpU7jc/z4cfbs2YNKpeLpp5+usc758+ejUqk4ceJEk/f3z6BiTGJiYpyOnz179sp0qAWjkn6wrZuDBw+SnJzseL93715Wr17NzJkzGTVqlON4r169GDZs2JXoYrXceOONJCYmsmTJEjp16sTDDz/c5G2kpKTQo0cPRo0axcyZM6s9b9KkSQQEBNC9e3csFgsZGRmo1VXnL0IIunXrRps2bYiPj2/y/v4Z6PV6tmzZwsCBAxk4cCAAS5cuZc2aNSQlJV3h3rUwhERSiU8++UQA4pNPPrnSXakVNzc3MWXKlGZt49y5cwIQjz76aJ3O/5//+R8BiD179rgs37dvnwDEG2+80YS9vPKMGTNGdOvW7Up3o8UhTQSSqxar1Yqvr++V7oYTU6dOBeDLL790Wf7555+jVqubZbYtaXlIgZXUmZiYGHQ6HVu2bKFTp074+vry8ccfA/Drr78SFRVFx44dcXNzo0OHDjz88MOkp6dXuf7MmTPceeed+Pr60qZNGx599FHy8/Od2vroo48YOHAgXl5etG3blnvvvZeTJ08CsGbNGlQqFQBr165FpVKxZs0aAEwmEy+99BI9evTA3d2dnj17snjxYiwWi6Puius3bdpEjx498PLyqmJPbCihoaEMHDiQzZs3V7EJK4rCxo0bGTt2LJ07d662jor+HT58mLvvvhtvb2+CgoKYN28eRqPR6dzmuN9NmzYxePBgfH198ff3Z8KECezfv99RfrkNtnv37uzZs4fU1NQqttlt27YxfPhwvLy8aNOmDVFRUfzxxx91GMlrA+2V7oDk6sJqtfLkk0/ywgsvYDKZGDlyJCdOnGDkyJGEhIQQHR2Nl5cX+/fvZ926dWRmZvLTTz85rrfb7dx8882MGjWKt956i8OHD/Pxxx9jNBrZsGEDAOvXr2f27Nk88sgjPPvss+Tm5vLOO+8wduxYkpKSGD16NOvWrWPatGkO2+jw4cOx2+3ceeed7N+/n5kzZ3LDDTdw5MgRli1bxrFjx/jqq68cwgzw+OOPM3fuXPz9/Wu1L5vNZvLy8lyWeXh4OM2kp06dygsvvMD+/fsZOXKk4/ju3bvJysri1VdfrdNY33fffQQFBfHaa69x/PhxVqxYwcmTJ9mxY4djLJv6fvfs2cODDz7IHXfcwZNPPoler+f9999n/PjxnDx5kp49e1a55p133iE6Opq8vDxWrFjhsMuuWbOG6dOnM27cON544w0KCwtZuXIlN910E4cOHaJPnz51Goermitto5C0LGqywb788ssCEC+//LLT8VmzZgkvLy+Rn5/vdPyhhx4SgON4xfXz5s1zOu/2228XWq1W6PV6IYQQEydOFP3793c6Z/v27aJfv35i3759jmNcZhut6Pt3333ndO2qVasEIGJjY53Oq4tdtcIGW9Pr7rvvdromLS1NqNVq8de//tXp+MyZM4VOpxPFxcU1tlnRv8GDBwuz2ew4vnDhQqf7a477nT17tvD19RWKojiO/fbbb6JPnz7iyy+/dBqTyp+Dy22wxcXFws/PTzz00ENO9WdmZoo2bdqIe+65p9a+XAtIE4Gk3tx2221O7z/88ENSUlIIDAx0HCspKUGn0wFQVlbmdP4DDzzg9D48PBybzeYwEwQHB5OYmMgrr7xCSkoKAHfccQcnT55kxIgR1fZr06ZNtG/fnkGDBpGXl+d43XHHHWg0GrZt21bjfdTErbfeyvfff+/ytWTJEqdzg4ODGT16NJs2bXKYCWw2G5s2bWLy5Mn4+fnVqc3nn38ed3d3x/t58+YB8NVXXzXb/QYHB1NaWsrcuXM5deoUAAMGDOD06dPcd999deo3wPfff09JSQn33HOPU9+0Wi233HILO3bswGaz1bm+qxVpIpDUmw4dOji9V6lU5Ofns3z5cn777TeSk5NJTU11iIuiKE7nt2/f3um9h4cHUP7IC7B48WIOHjxITEwMMTEx9OvXj8mTJ/Pkk0/Sq1evavuVnJxMbm5ulforOH/+fI33URPXXXcd48ePr/P5U6dO5cknnyQuLo5hw4bx/fffk5+f71gEqwv9+vVzeh8YGEhgYKDjR6c57veZZ55hx44dvP/++7z//vv06NGDO++8kyeeeIKwsLA6973C9e+hhx6q9pzc3Fyuu+66Otd5NSIFVlJvNBqN0/vt27dz9913ExQUxC233MLEiRO58cYb2bFjB8uXL69yvSv/0MoEBwcTHx/PTz/9xNatW/nuu+947bXX+Oc//8nOnTsZM2aMy+vsdjshISF8+OGHLsvbtGlT4300Jffddx9PP/00GzduZNiwYXzxxRe0bduW22+/vc51VJ69VmC32x39bo779fPzY8+ePcTFxREbG8u3337Le++9xwcffMC6devq7P1Q8WO5evVqevToUaf+XYtIgZU0mmeffZaQkBCOHDmCt7e34/j69esbVF/FDqdx48Yxbtw4APbv38/NN9/Mv/71r2oFtnv37hw5coRbbrnFScStViubN2+mS5cuDepPQ/D39+fOO+9k8+bNvP7662zdupWHH34YNze3OteRnJzM9ddf73ifm5tLcXExISEhQPPc7x9//EFxcTFDhw5l6NChvPbaayQkJDB69GjefvvtOgts9+7dgfKnlctn/rt378ZutzueXK5lpA1W0mjy8/Pp1q2bk7impaWxefNmgHrb2u6//36mTZvmmAUBRERE4O7uXuMsbPLkyRQUFLBy5Uqn4x999BEPPfQQu3btqlc/Gstf/vIXUlJS+OijjygqKqqXeQDg/fffd3L1euuttwCYMmUK0Dz3O3fuXCZPnuxkN+/bty8BAQE1jr1Go3EyBU2YMAGdTsebb76J1Wp1HM/IyODuu+9mwYIFTh4O1ypyBitpNBMnTuSLL75g1qxZDB48mLNnz/K///u/6PV6AEpLS+tV39///neefPJJxo0bx/33348QgnXr1mEymZgzZ0611z355JOsXbuWZ599ll9//ZUhQ4Zw4sQJVq1aRWRkJI8//niD7/Hs2bP85z//qba88rbRCiZNmkSbNm1YtGhRg7Ya//TTT9xxxx3cddddxMXFsW7dOh555BHHQl9z3O+8efOYOHEio0aN4tFHH0Wn0xEbG0tycjIvv/xytde1b9+ePXv28M9//pMRI0Zw00038eqrrzJv3jyGDRvG1KlTsVqtfPDBB5hMJsePxTXPlXVikLQ06uKmde7cOafjBQUF4oknnhCdOnUSnp6eok+fPuL5558X+/fvF4B46623arze1fG1a9eKQYMGCT8/P+Ht7S3GjBkjdu7c6XQdLlyPSkpKxPz580W3bt2Eu7u76Natm3j22WdFXl5elXv86aefah2Purhp4cJ1rYIZM2YIQCxevLjWti7v33//+19x2223CZ1OJ3r06CGWL18u7HZ7s96vEEJs27ZNjBgxQrRp00Z4enqKwYMHi88++6zKmFS+56NHj4obbrhBuLm5iZkzZzqOb9iwQdx0003C09NTBAYGigkTJji52l3ryGAvEkkLY82aNTz++OP89NNPjB079kp3R9IIpA1WIpFImgkpsBKJRNJMSIGVSCSSZkLaYCUSiaSZkDNYiUQiaSakwEokEkkzIQVWIpFImgkpsBKJRNJMSIGVSCSSZkIKrETSBAghOHlBT1KOsfaTJa0GGexFImkCjp7Xs+23IroGumNX4PpOnle6S5IWgJzBSiSNxK4IfjhVjJe7mkKDjfgMfZWMspLWiRRYiaSRnM83Y7CUC6pdAb1ZITFLmgokUmAlkkYTn67Hy/1S8Gi92c4pKbASpMBKJI1CCEFyntkpOr/BIjCYFcw2pYYrJa0BKbASSSMoMysUm+xVjlsVwckLhivQI0lLQgqsRNII0gstqKmaW8psVTibZ74CPZK0JKTASiSNICXfhKdbVYEtNSlYbEJ6E7RypMBKJI3gQpHFZXZUAZhsClnFlj+/U5IWgxRYiaSBCCHILq0+JbkaFScypB22NSMFViJpIKUmBbO1ek8Bg8VOoaHqApik9SAFViJpIHllVmqysJaZFayKwK5IO2xrRQqsRNJALhRb8HSr+StksQkyi6QdtrUiBVYiaSC5pTY06qoLXJVRq1QkyF1drRYZTUsiaSC5ZdZazzFa7RQb5DymtSL/8hJJAxBCkFdWvQdBBWVmBYtd+sO2VqTASiQNwGgtF87aEAIsdkV6E7RSpMBKJA2g2GjHVsdgLmpUJOWYmrlHkpaIFFiJpAHklFjxqMWDoAKbopBWKOMStEakwEokDSC3zIa7pmYPggpKzQoWuwxd2BqRAiuRNIAig81lDAJXWGwCqx0sMj5sq0MKrETSAPLr4KJVGZsiyJAbDlodUmAlknoihKCgnl4BGlScyZYbDlobUmAlknpisiqY6vm4b7AqlJikiaC1IQVWIqknpSY79V2z0pvtWGXQl1aHFFiJpJ7kl9lxq6MHQQWKKE8jU+Yif5fk2kUKrERST3LLrHho6yewUL6rKyW/+f1hFUVQZrJhskgxv9LIYC8SST3JN9hQ19FFqzJCwLl8M6GdvZqhV1BqtPJTfA6/p5Zistrx0Kjp29WPgd39COns2yxtSmpGCqxEUk+KDbUHeXGF3qLgW0MGhIYihOBgYj47f81Bo1ahVqvwcNMAkJheSkq2gZuuNzOiX9s6++5KmgYpsBJJPcnTN0xgjVYFq11BCNFkQmexKXy2+zxnswy4V7N112S1c+SPQuyKYHRoOymyfyLSBiuR1AObXaA3N3wWarYJioxNYxs1mGys+vYsKTnVi2sFeoudMxll/JpU2CRtS+qGFFiJpB7oLfZG5dgSApJzGx9Zq9Rg5aNvz1JUZkWrqdvXOLvYzNlsA3nFMvDMn4UUWImkHhQZbDQmdrbNLsgsqt8228spMVhZ9e05DGY76lpS1lxOSraeg4n5MgD4n4QUWImkHuSW2tDVMUyhK/SWxkXWKjVYWfXNWUxWe4NsqRaboLDUwm8pxQ3ug6TuSIGVSOpBXpkNbSO+NVa7wGhVUBpgZigz2Vj57VnMNqVRC1UZhSbOZhqwyRCKzY4UWImkHhTWI0xhdVhtgvx6eiIYTDY+3JaM2do4cQVQFCgotXAoUS54NTdSYCWSelDYQB/YyigCknPrHlnLZLGzcvtZzFalQRscXJFdbCKnyCRnsc2MFFiJpI4IISg0Nl5gzTaF3NK61WM023j/62QMlvovaNWEEFBQZuHgqYImq1NSFSmwEkkdMVkVLLbGr76XL3TVXk+Z0cp7XydjbGJxrSC72ExuiVnOYpsRKbASSR1pSJhCVwhRLrK2GkQ2t9jEO1uTMduUZhHXin4UlVk58oecxTYXcqusRFJH8spsdQ5T6KFV4eOhQQAGix2T1VlMbXZBTqmFoAAPp+NCCI6fLWZr3AW0GlWT2VyrI7vYRKCvG4oimk3IWzNSYCWSOpJdakVXS5hCL3c1Qf5upGaVcSrdgADaeGsJ8PHAz9sNjZuWErMdm11wJsfsJLC5RSa2HLxARr6p1q2vTYWiQLHeSnxKMRE9A/6UNlsTUmAlkjpSm4uWv6cGL43gi59SsdsvzQjTckGIEmx2BR9PDd06eNOpjQfZeXaOquzkFptJytSTU1QurH+WuFaQVWSmTY6B8B7+MhBMEyMFViKpIzX5rnpoVfi6qdi0Nw21SlXlcVulUuGm1WC2wh8Zek6nl+HjoaZ7Ow80ahUqlQoPd01z34JLbHZBscHKmQul9Onsd0X6cK0iF7kkkjoghCCvBteqboHubItLR61S1WkWqFKpUFABdTu/ucksMHE6vexKd+OaQwqsRFIHTFYFczWZZDv5uXE4sQCLtX5xXoUQlJlbRloXq11QYrCRlmu40l25ppACK5HUgVKTnepcYHUaSDxfXO9VeEURlLagVN5ZhSZOyCAwTYoUWImkDmSXWnF3IaCd/Nz4JTG/QS5ONgVsLSiVt8mqUGKwkVci48U2FVJgJZI6kFnsOpOsl5uKc1llDbKjKgLsimhUfNmmJqvQxJE/ZBCYpkIKrERSB/L1VV20/D01nEotRkXDF6nsisDYgtJr6812SgxWSgyNCwouKUcKrERSB3LLqgpOO28tJ1OLGr0DqtDQcgQWymMUxCXmX+luXBNIgZVIasFuFxRdJoIaFRSVmbE0Mg23TRGNynDQHJQYbBTrbZQ1QeSw1o4UWImkFkrMdqyXBWZp7+fGibOFaNSN+wrZ7JQHkGlBdliA3BIz+0/mXeluXPVIgZVIaiGnxMrlMV683FRk5pvw93ZrdP12RWBoQXZYgMIyKyVGK3qTnMU2BimwEkktpBVZnBIdatRQUGymVydvbu3ri2Jt/IJQgb5lCSxAkd7Kz7/nXuluXNVIgZVIaiGr2OIUNrC9jxunUovpGODBmeR8fBRLo+q32ATWFmaHBcgptlBmtMtZbCOQAiuR1EJ2qfMM1dtdRVqeARQ7eUVG2jbSTKCIi5sO6pDl4M+m1GRlzwk5i20oUmAlkhowWRVKjZdmlyqguMyCogA2hcISIwE+jbfDKkJQ1AQJFZuarEIzZSY7BnPL69vVgBRYiaQGCsps2CtttQrw0nD2QhluGhWKzUapwYavpxbRyO1YVrug1NzyzARCgNFi56d4OYttCFJgJZIaSCkw4VlpgSvAS8PZrDJ8PLWU6c2gUgGiPDVAI7BfjEtgb0GxCSrILDBRZrRhamGeDlcDUmAlkho4X2BBW2mnltVix2Sx46PTUqa/aJstDyrQ6LbsdkGeix1jVxq7IrAqgh/lLLbeSIGVSGogvfCSh4C7RkV2gQmNWo2PTkOp/mLUKRUIW+NtlBa7wGBRWtymAyifxZYYrFiqiYkrcY0UWImkGvRmu5NdtK2PluQLpahUKnx0Wkr1F8VXpQJ74wVWiHKXrdIW6BZlsSnYFYW90i+2XkiBlUiqoXz2emk6qdOqyCo0lf/bXY3RVP44b7UqNN6PoByLTZDfAjcdQHlyxNxiC7YW6LPbUpECK5FUQ2K2Ea9KC1xleotjLUsNiIsLUmUmK966pvkqKQLMNoWSFhhoxWRREELw6xkZL7auSIGVSKrhXJ7JEQPWT6chNVuPpiIogRBURMo2mmx4uTVdRliTVSFfb0O0wIlidrGZ1FxDo93SWgtSYCUSF5SZ7RQaLilcoLeG5MxKmQsqC6zZjod7U2aGVaE3K2SVNG4LbnOgN5VHFjubpb/SXbkqkAIrkbjgj2wTlTPEKHYFvemSbVRU8ns1mm14eWibtH27AkVGe4vc3ZVfapHJEeuIFFiJxAXxGXo8LtpftWoV+UUmp4Av5cbY8vdGs80p2lZTYbEJckqtGFpIau8KSgw2zFZFppWpA1JgJZLLMNsUzhdcejxv660l6UKZc2oYRanQV0xmOx7ummaxSxotChlFVoyWlmWQLTFYOXhKppWpDSmwEsllnMo0ODn7+3ioSc83Op0jLtsaqwKaJz2sCoPFTnqhpUUF5c4tsVBmsrfIrb0tCSmwEkklhBDsTy51ij9gNNmwV/L91LmpMZntF+MQVKKR8Qiqp1xkU/MtLcZ9SwgwmG2cOFd0pbvSopECK5FUIrvESk7JJRHzdleTlqN3yr2lc1djujx8nxDlTqzNhgqLTZCabyGnxNoittPmlZhJyTFc6W60aKTASiSV+Ob3IrzcL30t2vloSbq4PbYCT3cNpsu3s6pAKM3/CK8IyCiycC7fhOkK22UNZgWTxU6xXi52VYcUWInkIsm5Js4XmJ3EVK0qz01VGZ27GoPpclFRgf3PsZGqVSpKjHZO55i4UGS5opkQykx2fvmj4Iq139JpWuc9ieQqxWix88WRfLzcL+3I0qigqNRcZe3K011DvqsI/3/qHn0ViHKTRl6ZjTZeWtp4afByVzt7OzQzucVmAn3dEUI4/TBJymnwDHbFihVMmzat1vMyMjKYPn064eHhTJw4kT179jiVx8XFcddddxEWFsa0adNITU11Kl+3bh2jR48mIiKC6OhoDIaqNh+LxcKdd97JgQMHqpSlpqYycOBAbJeFk7vtttu4/vrrnV6nTp2qy61LrjEMZjsf/ZzD5fIQ6K3lTEYpmssEy9NN4wj0UoEiBOorYBhVq1QIAQV6K6ezTMSnGziVaeRsron0AgvZJVbKTHaUZrIPK6J8/M7JnV0uaVYTgRCCOXPmEBAQwMaNG7n33nuZO3cuaWlpAGRmZjJ79mwmT57Mpk2baNeuHXPmzEG5uBq7c+dO3nnnHV5++WU+/fRTTpw4wWuvvebUhtlsZt68eZw5c6ZK+5mZmTz11FOYzWan4xaLhbS0ND777DP27dvneIWEhDTTSEhaImabwi8pZfzzh0xMVqWKkPrpNJzPNlSZmXm4qTFfNoM1me3oNFdyBqdCq1GhVqkuhjwsj2eQWWQhMcvIyQtG0grM5bvRmlhrC0vNnEwrbdpKrxGa1UQQFxfHuXPnWL9+PT4+PvTu3ZsDBw6wceNGnnvuOTZs2EDfvn2ZMWMGAK+++iojRowgLi6O4cOHs3btWqZOncq4ceMAiImJ4fHHH+d//ud/8Pb2Jikpieeff96lg/euXbtYtGgR7du3r1J29uxZVCoVAwYMwM2tqQLNSVoqRoudnFIrmSVWCsrsFBms5OttFBrsoAKd1vU8w2yxY7Ha0WqdA7moVKI8EEslPTVZbHjq1Jia8T4agkqlKs8fJqBAbyO3zIa/p4a23lr8PbVVPM0aQonRjslsx2JTcK9mLFsrdR6NpKQk/t//+3+EhYXx+OOPU1RUBIDVauXll19m2LBhjrKzZ88CEB8fT79+/fDx8XHUM2jQII4fP+4oHzx4sKPM09OT/v37c+zYMex2OydOnHAqDw8Px263Ox7ljxw5wogRI/jiiy+q9Hfv3r0899xzLFy4sEpZcnIywcHBUlyvYfRmOweSS/hwTzav77jAx/tz+fFUCb9fMJBeZMVoFejc1NWKa4V7llrjotzF47bBZEOnbbqIWs2DCo1KRZlJITnXzOlsI7ml1iZZJCs1WPntbFHju3iNUSeBtVgszJw5k+DgYDZv3sz48eP58ssvAVi/fj379+9n1apVfPXVV3h7exMdHQ1Abm4uHTp0cKqrbdu2ZGVl1VienZ1NSUkJZrPZqVyr1RIQEOC4/qGHHuKFF17A09OzSp9feeUVHnjgAZf3k5SUhEaj4cknn2TEiBFMnTqV+Pj4ugyFpAVjtNiJT9Pz8f4c3tx5gR9Pl1BmsuPlrsHHQ4O2Ho/wbX20nLlQ6hx/wAlnUTKZ7ejcr57Zm1atwmwVpBda+P2CgXN5JvLKLqaEaYDe5pVZHMHIJZeok4ngwIEDFBYWEhMTg7e3N7169eLQoUMUFhaSnp6OTqcjODiYwMBAYmJiSElJAcBoNFaZJbq7u2O1Wh3l7u7uVcotFgsmk8nx3lV5Y0hOTqakpIT58+fTsWNHNmzYwKOPPsq2bdsIDg6uUx2/pes5eLb12J1q/M7VUNjQuZGrXafi4n8UQFEENkVgsNgpMSrklFgw2cFDq8KjCR5TPd1UpOYaXQqs0WIrn/WpYExkEB18NBw9nY/WTU1xUcvYaVVfSoz2i7kbBW4aFR5uatw1KjTq8oU0leqSRUTl+I8zWq2Wf+3KwMO9pc/km5a+nbwY08fPZVmdBDYpKYkuXbrg7e3tOBYaGsrevXuZOnUqu3btYtSoUURGRjJu3DiioqIA8PDwoKyszKkui8WCTqdzlF8ulhaLhYCAADw8PBzvq7u+obz99tuYzWaH6SImJoZff/2V2NhYnnnmmTrVERrkRbe2Ho3qh6T+qCj/sqtVoFarXH3Pm4SE88Vkpfs4ImpVplsbdxI8NfTuGoAoKeGXg+e5ZUJ/UkoURvT2aqYeXVkqhb9FVPOzqUbh+kAtQ29o+yf27MpT0w96nRe5Ll9I0mrLL+3evTs7duzg559/Zvfu3Xz00Uds2LCBzZs307FjRxITE52uy8vLcyw8dezYkdzc3CrlISEhDpHNy8ujT58+ANhsNoqKiqqYFeqLm5ub08xapVLRs2dPcnJy6lyHWq3C31O6EV+rnDhXjJeH65mYUBRUQK9gfw5+9ysq4GxSNv7tfNGrvV1ec23h+mdNb7Jjttrx02mkT+xF6vQsFRISwvnz5ykuvhRkNyEhAYDY2Fh27drFhAkTWLZsGbGxsSQnJ3P69GnCwsJITEx08l09evQo4eHhAISFhfHrr786yoxGIwkJCYSHh6NWqxkwYABHjx51lB8/fhyNRsMNN9zQqJu+7777WL16teO9oiicPn2anj17NqpeybWB1WYntYY99opdwVOnxVyqR3XRpTAlJY8ObbywW69OE0FTUVRqJSNf2mIrqJPADh8+nKCgIF588UWSkpLYuHEjO3bsAKC0tJRly5axb98+0tPT2bRpE15eXnTv3p0hQ4YQFBTEggULOHPmDKtXryY+Pp77778fgKioKOLj41m5ciVJSUksXLiQoKAghg0bBsDDDz/Mv//9b3bu3MmJEyd45ZVXiIqKcjJVNISxY8fy8ccfs2fPHs6ePUtMTAzFxcUO04akdXM224DF5voxWKUCm03h+h5tOPdHpiOilhBgNlmw57fuhIC5JWYS00qudDdaDHV6xnVzc2P16tW89NJLTJkyhb59+/Lwww+TkJDAX/7yF7Kzs4mOjqaoqIiQkBBWrVqFv78/AB9++CELFy5kypQpdO3alffff9+xkBQcHMx7773H8uXL+eijjwgLC+PDDz9EfTFy0aRJk8jIyCAmJgaLxcKECRNYsGBBo2969uzZKIrCyy+/TEFBAWFhYaxZswZfX99G1y25+jnyR2G1HgFuGjUms5VAfx3JOSVOD8vnzxfQua0/uS6vbB2YrArFeis2u4LWlYtbK0MlZHpIicSBxWrntY1/VNnVVYGPToPQG2inU3Ho+3inmLDenm4MGRFCgkmHqhWLS3s/d4bfEEho94Ar3ZUrTuv9FEgkLjidUYbNVn3QFjetGgQYS1zvvVdsdmxFrfsROa/UTHqetMOCFFiJxImDp/Jr9ON016pp4+dOZnpB1YwGQF5eKT5Ky0u3/WcihIpCvUUmRUQKrETioNRgJS3PWOM5blo1Pp5u5Ga5nqWmnS/gunbXpi9sfcguMnM8uehKd+OKIwVWIrnIwcT8chNADbhr1eWuWEpVdywhBAaDFU93NYq1dc/e9CY7+aWWZguTeLUgBVYiAex2hSNniqpd3KrATaPCZra43AOsKAK1CoTdjq2o9Wyjro7CMgun0lu3PVoKrEQCnEwrqVOOKzetGpvR7LJMEeVm2dzcMvzUrXvDAUBeiYWzma07KaIUWEmrRwjBj8dz8ahDNCxPNzVFBWUuF7gq0qZcuFDMdW2lHdZqF5QZreS04ihbUmAlrZ6kzDLyS+u28u/prqEg1/Xjf4WJwGi0oHNTI/6kJIgtmZxiM7+24sUuKbCSVo2iCLb/komujiH2PLRQmF/msqzcRKCqqBhrievzWhNlJjslRiulrdRlSwqspFXz27kiCsvq/uW3ma0oNtczUyGEY+tsQYEeH3vr9oetIKvQxMHE/CvdjSuCFFhJq8VksbPtcDbubnUPEG0qM9YaRVwAGRlFdApsXNzia4VSo51iva1VzmKlwEpaLbEHLmBXavccqIzFYK4uHOolhKCszIy3TusyIWdrJC3fyMHTBVe6G386UmAlrZITKcUkpJXWK+KTr6eWogK9Sw+Cyjgk1a5g19e8M6y1YDTbyS02k57buty2pMBKWh05RSY2H8iok1tWZdr4upGbW7PjvHD8B4qLDegsUmArSMs1cPxccava3SUFVtKqKCqzsOrbc7Xu2HJFWx93crOKaz2vwixw4UIxHf3dazm79WBX4FyWvlUteDVIYFesWMG0adNqPS8jI4Pp06cTHh7OxIkT2bNnj1N5XFwcd911F2FhYUybNo3U1FSn8nXr1jF69GgiIiKIjo52Sj1z/vx5Zs2axeDBgxk9ejSvvfYaZvOlHTYHDx4kKiqKiIgIbrvtNkea8Qo+/fRTbr31ViIiInjwwQedUtdIrk1yiky8vy25PENqA3JGuasUTIbaPQPExRlaUZEBf2+3Ws5uXZQYbZy5UEbyhdaxlbjZZrBCCObMmUNAQAAbN27k3nvvZe7cuaSlpQGQmZnJ7NmzmTx5Mps2baJdu3bMmTMH5eKiw86dO3nnnXd4+eWX+fTTTzlx4gSvvfYaUJ5ZdtasWbi7u/P555/z1ltvsWvXLlasWAFASkoKTz31FBMmTCA2Npann36aJUuW8OOPPwKwdetW3n33XebNm0dsbCxDhgzhySefJDs7u7mGQ3IFEUIQn1zEym/OAg0TVwBhtWKv0+aBS4/Awq6gWFrf6nlNZOSbOHymiOzCa9980mwCGxcXx7lz51iyZAm9e/dm5syZREREsHHjRgA2bNhA3759mTFjBr179+bVV18lMzOTuLg4ANauXcvUqVMZN24cAwYMICYmhi1btqDX6/ntt984f/48y5cvp1evXgwZMoS//vWvfP311wB888033HDDDcyaNYtu3boxefJk7rnnHkf5li1bePjhh7n99tvp1q0bzz//PO3bt3cIsOTaoVhv5ZPvU9l8MAOtRt2obKeK0UJt5kNFEU5OBvpSI26m1rWwUxeSMsvYdTyX9FrCQ17t1CknV1JSEosWLSIhIYHIyEi6du0KgNVqZenSpezcuRODwUBkZCSLFi2iZ8+exMfH069fP3x8fBz1DBo0iCNHjgAQHx/P4MGDHWWenp7079+fY8eOcdNNN3HixAlmz57tKA8PD8dut3Pq1Cl69uzJ6tWrnZIfqlQqLJbyx7eJEycyevRop3tQqVQOE8Lf/vY32ratmru9solBcnVTUGLmh/hcTqaWoNGq6uXr6gpPdw2GMgO1eV0pQqCqZN9NzyiiY7cOZDaq9WsPlUrFuWw9xXorI/q1JbS7f4Ps4i2dWmewFouFmTNnEhwczObNmxk/frzDnrl+/Xr279/PqlWr+Oqrr/D29iY6OhqA3NxcOnTo4FRX27ZtycrKqrE8OzubkpISzGazU7lWqyUgIICsrCwCAwMZPny4o0xRFP7zn/8waNAgAHr06EFoaKijPC8vj+3btzsEPTw8nC5dujjKf/75Z1JSUpwEX3J1Ybcr5BaZ2f1bDu99lcSKrUkkZpTi5qZG3YhZawUBPm4U5peh1KKw5fEILrVXWKCnjY9c6HKFSqWiUG8l9sAFvtyXTsL5YszWayt+Q60z2AMHDlBYWEhMTAze3t706tWLQ4cOUVhYSHp6OjqdjuDgYAIDA4mJiSElJQUAo9GIm5uzgd/d3R3rxUDERqMRd3f3KuUWiwWTyeR476r8cpYvX86pU6cc5ofKGAwGnnnmGTp06MBDDz1UpfzcuXP8z//8D/fccw/9+/evbTgcKIrAYLm2PgxXlErCJcQldydFgCIUFAE2u8BmUzCY7ZQabRSUWigss5BTbCan2ILFquDhrkatAq1GhaIIlNq2XdURX08tZ3OKq53BXt+3E56ebpyIT0erxWFKEKI8PqzVbEWlbdws+ppFDafTSzlxrhhvnZYeHb3oEKAjwMeNAG83PN01uLup0ahUqNWq8kVKLnNHboIf0YaiVauqjWVRq8AmJSXRpUsXp8fx0NBQ9u7dy9SpU9m1axejRo0iMjKScePGERUVBYCHhwdlZc7BLiwWCzqdzlF+uVhaLBYCAgLw8PBwvK/ueihfvFi2bBmfffYZ7777LiEhIU7nl5aW8tRTT5Gens5///tfPD09ncr/+OMPpk+fTs+ePVmyZEltQ+HEL38UsOXAhXpdI6mNiwFVBVDxJbr4j4pZoVpdnjrbw02Nu1bt+F4F+jTvan2ApwZDqcnlJq4+13eijVZgy8xi3JBgDsRnOdl6TQYzfkKg9vJr1j5eK2QXmckuNGOyKZgsdmx2gRCi/EdLCBRwfEbKf/GurGlh2A1tuWdYkMuyOtlgL9/up9WWX9a9e3d27NjBzz//zO7du/noo4/YsGEDmzdvpmPHjiQmJjpdl5eXR/v27QHo2LEjubm5VcpDQkIcIpuXl0efPn0AsNlsFBUVOcwGiqKwcOFCvv76a1asWMH48eOd6iooKOCJJ54gLy+PTz/91GE3ruDEiRM8+eST9OnTh48++sgh6nVlaN+2DO1b1Y4ruTYpLNRzRI2TqEP570HfkPYc2/gzagTBvTvR1l2g8vZwfO/NZUaG3tCG4WNCXFcuuWap1QYbEhLC+fPnKS6+5GCdkJAAQGxsLLt27WLChAksW7aM2NhYkpOTOX36NGFhYSQmJjr5rh49epTw8HAAwsLCnHxPjUYjCQkJhIeHo1arGTBgAEePHnWUHz9+HI1Gww033ADAa6+9xtdff817773Hrbfe6tTnCjeuwsJC1q9fT8+ePZ3K09LSePLJJ+nXr1+VxTKJxBUlhfqLpgvnyUa37u3IOpWKWpS7FyYePE3YgCAU+6UYB4UFZVd6kiW5QtQqsMOHDycoKIgXX3yRpKQkNm7cyI4dO4DyR/Bly5axb98+0tPT2bRpE15eXnTv3p0hQ4YQFBTEggULOHPmDKtXryY+Pp77778fgKioKOLj41m5ciVJSUksXLiQoKAghg0bBsDDDz/Mv//9b3bu3MmJEyd45ZVXiIqKwtvbm+PHj7N27Vrmzp1LaGgoubm5jhfAmjVrOHnyJMuXL8fT09NRVlRUBMArr7yCl5cXS5YsoayszFGu17vOdS+RFFwUSdVlStm9R3uyTqc7bIAmvQmdhxbFdMkjRQgwG62YTdIftrWhEnUI95OWlsZLL73EsWPH6Nu3LxERESQkJLB27Vr++c9/snXrVoqKiggJCWHBggUMGTIEgNTUVBYuXEh8fDxdu3YlOjqakSNHOurds2cPy5cvJzMzk7CwMJYuXer0KL969WrWrFmDxWJhwoQJvPzyy+h0Ol5//XX+/e9/u+zryZMneeCBBzh58mSVssjISP73f//X4W1wObNmzeK5556rbTgkrZBd3/5G3IEkikqc7bDjb+7Dia37nWyu3UO7orcIcu2XFj769utMyPXX0aefa1ud5NqkTgIrkbR2Plu7lzOnsynVX1p4bdfel17t3Ek9lOi0iu3mriH05jCOncl3HG/XwZeePTsyaly/P73vkiuHDPYikdSCoggKcsuwKy7sr2cuVHERslrtuGlUUMkLpiCvDJVGGmJbG1JgJZJaMBktmC22KgLr5+eBsdBF0BIBxlIjXuKSzVVRBBazDb1e7hZsTUiBlUhqobTUiMVsw253zn6gsSuoqrGwpf+RQecu7ZyOmUxWkk5L3+nWhBRYiaQWCnLL0GhVTjNYH18d5qLSar2vinKKCWjr47RDrSC/lLyc1hGmT1KOFFiJpBbycktQq9SOOK8Ana7zJz89r8YtmipFgYvbvgHyckrRajUyT1crQgqsRFILuTklKIrzFoMOHfwovFB9ZH4BmA1mdIrNccxuV7Ba7RTkl1V7neTaQgqsRFIDQghys4uxK8Ip0Iu7mxq7ufrsBiog81w2nTq3cTpuNls5dSK9mXoraWlIgZVIasBisWE0WLHbFSd7q0ZRUNfwqC8E5F8ooF1Hfyc7bE52MSaj3NHVWpACK5HUQFmJEbPZitWmOMytHh5aFKOp5gsBxa6Uf8Gsl8wEBXllaN3U2Gwy1GVrQAqsRFIDebmlqNUqJxetDp38yc/Ir1MMUsWuoDY5p0WxWOykn289mVVbM1JgJZIayL5QhFqjxmq7JLDt2/tSlF1Yp+sLswpp469zOmYymjmTKJPItAakwEokNZCTUwICpxmsr68OY1HtngACyD6fS4frnBe6sjKLG5V8UXL1IAVWIqkGIQQ5WcXY7YqTB4FaiBoXuC5VAPoiPb5+nqBcEujSEiMajRqTsXovBMm1gRRYiaQaTEYrZpMFi9XuFDBbLezVbpF1iaLAZRmLrVYbyX9kNVFPJS0VKbASSTUUFxmwmO2YLXaHvmo0alTWurtZCQFWsxU3m/M1JcVG0tPkQte1jhRYiaQaMi8UoNGqMVfKHhzY1puS3JJ6ZTHNycinbVsfp2PZmUW4u9UpJZ7kKqZBArtixQqmTZtW63kZGRlMnz6d8PBwJk6cyJ49e5zK4+LiuOuuuwgLC2PatGmkpqY6ysrKyoiOjuamm25iyJAhLFq0qNqULgsXLqy2P6mpqQwcOBCbzeZ0/NixY0RFRTFw4EDuvvtufvnll1rvR9K6yMwowmZXUCrFIGjbru4eBBXkns+jXacASkrNmM02hCiPrKUgKCut3Z9WcvXSbDNYIQRz5swhICCAjRs3cu+99zJ37lzS0tIAyMzMZPbs2UyePJlNmzbRrl075syZg3JxMSAmJoYzZ87wySef8PHHHxMfH8/y5curtHPw4EE2btzosg+ZmZk89dRTmC+zf2VmZjJ9+nSGDh3K119/zejRo3n66acpKCho4lGQXM1kphdQUmZxmqy2betNaW5RveqxGC3oPNwwGswUFJsoLjVhsdixWuz8cUqGL7yWaTaBjYuL49y5cyxZsoTevXszc+ZMIiIiHGK4YcMG+vbty4wZM+jduzevvvoqmZmZxMXFIYTAw8ODxYsX069fPwYMGMB9993H4cOHndowGAwsWrSIyMjIKu3v2rWLKVOm4O7uXqVs3bp19O3bl7///e9069aNefPmERwc7DKPl6R1YrHYyM3Tly9wVcJNq0ax2Kq5qiYEbjYrKsBkslFUYiLzQhG5OSUuzzaabfyRUsDBo+n8+nsWBUVGl+dJWjZ1MgIlJSWxaNEiEhISiIyMdCQmtFqtLF26lJ07d2IwGIiMjGTRokX07NmT+Ph4+vXrh4/PJdvToEGDOHLkCADx8fEMHjzYUebp6Un//v05duwYw4cPZ9myZY6yjIwMtm3bxtChQ536tWLFCoYMGUL79u2dUoAD7N27l+eee45u3brxyCOPOJXFxcUxefJkx3uVSsWWLVvqMhSSaxi7omA22zBbFFJT88nLL6vir6pWLgbZrqcfq7HUSKCXmqyLa12KIvjjTA5t2vux/0g63l5uWK128ouNpF0oJTtPj82u4KZVIwToPLQMDruOyH4d8fXxaKpbljQztQqsxWJh5syZDBo0iKVLlxIXF8eyZcsYNGgQ69evZ//+/axatQp/f3/efPNNoqOj+eKLL8jNzaVDhw5OdbVt25asrHLXlOrKs7OznY49//zzbNu2jc6dO/PMM884jh87dozvvvuObdu2ucww+8orrwBw6NChKmVpaWl4eXnx/PPPc/DgQbp27cqCBQsIDw+vbTgk1xBCCIpLzSQm55OYnE9Wnh6rzY67VkOXANdfDa1Qqhzz8PLAbKg5FUzO+VyCggPJOncp4LbNakexK/y4LxmVVotKhUPQ1WoV7uryrLQqFVisdvb+ksbRE5mE9mlPYIAOtVqNyWzDYrGXxzZQqdBq1Gi1asf/a9Qq3Nw0+Pm4E+Cnw8fLDbVarm3/WdQqsAcOHKCwsJCYmBi8vb3p1asXhw4dorCwkPT0dHQ6HcHBwQQGBhITE0NKSgoARqMRNzc3p7rc3d2xXnRxMRqNVR7f3d3dsVicna9nzZrF1KlTefPNN5kxYwabN2/GZrOxcOFCXnzxRfz9/et903q9nrfffpvZs2fzxBNPsHXrVh5//HG+/fZbOnXqVKc6jp/K5udD5+vVblXXyZp9KS8/v1bPyyrn16+Cenavav21UJvraG2BqBvVv8r/FAKDyUZxqRm1Wo23pxa15pLodO7kR/rZDAQqpz77+Oowlhic2ug3vC9du7cl+fAZzpzJqbYv+RcKCOvXFSXZ2QPBYrFhLtWj8vGp9trKmK129h5JB1F+fypUVJtW4eI5dkVgsypYbQqKouDr7Y6vjzsebhrUahWguijudeqC5DJCerTl9tE9XZbVKrBJSUl06dIFb29vx7HQ0FD27t3L1KlT2bVrF6NGjSIyMpJx48YRFRUFgIeHB2VlztsJLRYLOp3OUX65mFosFgICApw7HxIClJsDxowZw+HDhzlw4ADdunVj4sSJtXXfJRqNhtGjR/PYY48B0K9fPw4cOMDWrVt56qmn6lRH+A0dCb+hY4Pal7RshBD873tZaDo6i15Q5zYYCgqcxLhj50BOrtnOwP83gXNJ2SiqamaHQuCmVRHUzhO0l752FqOZW4YEc8ttA5vlXiRXljo9K1w+s9Be/IB0796dHTt28M4779C1a1c++ugjHnzwQUwmEx07diQ3N9fpury8PNq3bw9QY7nJZOK7777DYLg0W+jYsSN+fn4UFhby9ddfs2/fPiIiIoiIiODjjz/myJEjRERE1OmmO3ToQM+ezr843bt358IFuaIrAYPBTGlJVfepgEBvJxct/3Z+GDOy0SIwZufTOaDqgmplhF1BZXI2JeTnluIm/WGvWWoV2JCQEM6fP09xcbHjWEJCAgCxsbHs2rWLCRMmsGzZMmJjY0lOTub06dOEhYWRmJjoJJJHjx512DnDwsKcFqaMRiMJCQmO8vnz57Nv3z5HeVpaGsXFxfTq1Yt169axbds2YmNjiY2N5f777yc0NJTY2Ng63XR4eLjjHqD8B+Ts2bN07ty5TtdLrm1yMoux2avGa/XycsdYdMkXu8sNweSdPAtA1vEzdB3QrcZ6C7OKCPR1NpspisBisVFcZKjmKsnVTK0CO3z4cIKCgnjxxRdJSkpi48aN7NixA4DS0lKWLVvGvn37SE9PZ9OmTXh5edG9e3eGDBlCUFAQCxYs4MyZM6xevZr4+Hjuv/9+AKKiooiPj2flypUkJSWxcOFCgoKCGDZsGDqdjqioKN544w2OHj3KiRMnmDdvHuPHjyckJITOnTvTrVs3x8vPzw+dTke3bjV/wCt49NFH+emnn1izZg2pqam89dZbZGZmcvfddzdiKCXXCufO5qDRuPhqKIpT0BbfNj6Y8ooAMBaU4NPGF7WLRbAKss/n0iGoTZXjBoNFhi+8RqlVYN3c3Fi9ejVlZWVMmTKFDRs28PDDDwPwl7/8hSlTphAdHc3EiRP54YcfHB4FGo2GDz/8kIKCAqZMmcLWrVt5//33CQ4OBiA4OJj33nuPrVu3EhUVRV5eHh9++KFjhTM6OpqxY8cyd+5cHnvsMXr37s3rr7/eJDc9cOBA3n//fTZu3Midd95JXFwc//d//0fHjtKmKoHU5FzX4QRtdqi0q0uDQFNJUFVC4KlUHyFLX6THx8+zympfbnYxZaXSz/VaRCVkDmGJxIHRaOGjFTtQLvtaaDRqwvq04/j2XxzL7WPuGkTKl987zukyYiAZ57I5V1B9MJgbb4/kl98ywcPZXjtkWG9G3nyDjBN7jSEd4iSSSlxIK8BirbpTyz/Ai+K8Sy5W3v5eWAqdd2EVnbtA++41PwVZTBY87FUF2Gy2kZ8n03lfa0iBlUgqcfrUBbRaTZXjAYHeFGVd8iBo06kNZZl5TueUZubjf13bGh1+c9PyaN++qs+rQW/ij4SMRvRc0hKRAiuRXERRFFKSXW8W8Pf3ojjnkieNX1tfDJcHfRECtQrcRPUZY3PT8mjfKaDK8eysYiwNinEgaclIgZVILlJYoK82fKBGrUKxXHq0923jgym/uMp5KkXgKaoXSpvFhpubBi4Ln1lSbESlUmGzynTe1xJSYCWSi5z87TxqTTWLTHZ7+esiGo3a6X0F+txCAtt6VzleGcVmR22qKuQmk5XkMzKNzLWEFFiJhHKH/9MnL1S7iq+yO8841UKgdhEMoSQ9hzZB7WpsKy8tjw6BVUU4O7OIzIz6BfOWtGykwEokQGF+GUWFrjNmePt4oC8odTqmForLL0/phTzadG5bY1tZKdl06hJY5XhuTgkajdoRdF5y9SMFViIBjh5KRqV2PXttE+hDYVaRw0VLpVKhrmYhy262onV3q3FHl8Vkxd1N49LEYDRaOZdUfVQuydWFFFhJq8dmtfNHYvXmgTaXBXnx9NVhKXE92wVQI3BTavYIUGx21Maqu7fSUnO5kC5TF10rSIGVtHoST2Zg0Fe/xdXDww1Tpa2s3v7emAqr3xQgFIEnNXsDZKfkcF173yrHiwoN5UkRjdX3R3L1IAVW0qpR7AoHfj6NRlvDV0FRUFWyi3r5eWEuLq32dH12AYHt/WpsN/NsFtd1db0pIT0tnxPHU11cJbnakAIradWcPpVBcTWLWw5sNqcoWt4B3piLqhfYkvQc2nSu2ZNAsSto1CqwVt02m5lRiMVix2iQs9irHSmwklaL1Wrjp50nUdcwe/Xw0GIpc47V6u3nhamoehNBaWYeAddV9RK4nJLcYvyribV94ngqp35Pd5lGRwiBvszEhbQC0lLzKC7UY7dLz4OWiAylLmm17Pr2BHq9qcYkgAGBPuUxCCotgLm5aRAuAsJUoFjtaNy0qIVSfQoZIO10Oj0ie3MitWrqbn2ZmeNHzuKhc+P6G4LQumkwGi38ceoCx4+cIy+nBKtNQQWo1Cp69upA7+uvo2uP9gS2rVt+L0nzIwVW0io5nZBBwm9ptWZYbRPoTUaSc3JLlRCoasm4qELgptgxuwrcfRFDiRFvHx3YC0FTNcBMYaGBb2J/Zd/uU6hVKspKTdhs9vKcYKrybLEVpKbkkXIuFy9Pd8IH96BHr450CgqQ4Q+vMA0yEaxYsYJp06bVel5GRgbTp08nPDyciRMnsmfPHqfyuLg47rrrLsLCwpg2bRqpqZcM+2VlZURHR3PTTTcxZMgQFi1ahF7v2la2cOHCKv3Jzs5mzpw5hIeHM3bsWNavX+9Uvn37du644w4iIiJ44oknnNqWXNukpeTx7dZj1WdjrYSPjwdll4UlVCNq/+LYFXS1eBIA6AvL8KkhdoFaUy6sJSVGFCGcEi5ejkqlwmiycuDn02z67CCH9v1BXk7V2bHkz6PZbLBCCObMmUNAQAAbN27k3nvvZe7cuaSlpQGQmZnJ7NmzmTx5Mps2baJdu3bMmTPHsYslJiaGM2fO8Mknn/Dxxx8THx/P8uXLq7Rz8OBBNm7c6HRMURRmz56N2Wxm06ZNzJ8/n+XLl7N//36gPBX5/Pnzuf/++9m0aRO9evXikUceqVbAJdcGiiI4dvgsmz4/iL2uu6UUgcrmfK5aKLVqsz6nkLYu3LAu5+xvKfQMadpMGiqVCrPZxr49iXy95Si/Hz+P2VR9EHBJ89FsAhsXF8e5c+dYsmQJvXv3ZubMmURERDjEcMOGDfTt25cZM2bQu3dvXn31VTIzM4mLi0MIgYeHB4sXL6Zfv34MGDCA++67j8OHDzu1YTAYWLRoEZGRkU7H9+7dS0pKCm+//Ta9evXizjvvZMqUKRw7dgyATz/9lIkTJ/L444/Ts2dPoqOj8fLy4uuvv26u4ZBcQWw2O6nnclj3f7v54dvfsNvrkcTjMg8CwGUMgsspycgloJaYBADGUiNenm5Voms1BSqVioK8Ur79+le+/zae9PP5LhfNJM1HnWywSUlJLFq0iISEBCIjI+natSsAVquVpUuXsnPnTgwGA5GRkSxatIiePXsSHx9Pv3798PG5ZHAfNGgQR44cASA+Pp7Bgwc7yjw9Penfvz/Hjh1j+PDhLFu2zFGWkZHBtm3bGDp0qFO/VqxYwZAhQ2jfvr1Thtq4uDhuuukmAgICHMeWLFni+HdaWhoPPvig471KpeL666/n+PHjPPTQQ3UZEkkLQ1EUDHoLJcUGigoNFBWWUVRgID+vlKJCPUaDGY1Wg6qGR+zL0Xm6Yb5sx5abhxv2y1Jvu6L0Qh49wkLg99qTGRZmFtLWA/KbKVKhWq3mdMIFkk9nceOw3lzfL4i27XylffZPoFaBtVgszJw5k0GDBrF06VLi4uJYtmwZgwYNYv369ezfv9+R6PDNN98kOjqaL774gtzcXDp06OBUV9u2bcnKKg/HVl15dna207Hnn3+ebdu20blzZ5555hnH8WPHjvHdd9+xbds2/v3vfztdc/78eYKCglixYgWxsbH4+Pjw2GOPOTLaVu5HBRcuXKBNm6oZPyUtE7tdoahQT/r5fNJS80lPzStfBLIraDRqVCqcBETjIktBbbRt50t+Rr6TB4G3v1eNu7gqUKw2tG5aVEIgahGys7+lEH5rBPkJOU5tNTU2u8LBvaf5Zf8ZQvpeR1BwG3x8PfHQuaFSle95UKlA66bB09Mdnc4dD50b6mpiNEhqp1aBPXDgAIWFhcTExODt7U2vXr04dOgQhYWFpKeno9PpCA4OJjAwkJiYGFJSUgAwGo24uTnngHd3d8d60bHaaDTi7u5epdxicXaunjVrFlOnTuXNN99kxowZbN68GZvNxsKFC3nxxRfx9/ev0me9Xs/WrVu59dZb+eCDD0hISGDJkiW0adOG8ePHM2nSJN544w3Gjh1LZGQkW7Zs4eTJk9x00011HrjkP7K40EpCy1V8vf6ch0tR8T8QAkUIhFIeL6CszERxoZ6c7GLKSs0IoaBWq5ttJubdV8fZozlOj9Ve/l6YiuuWO0uFQKvYsKhr/prZrDbsZitKqR69qP8PQUM4EpcMlK+VCMX5Lysu/gHUGhWeXh74BXjhH+CFn58nHh5uaLTq8h8xtar8s6Gq+H/Hf1oVbQK9CQ3r6rKsVoFNSkqiS5cueHtfil8ZGhrK3r17mTp1Krt27WLUqFFERkYybtw4oqKiAPDw8KCszPmDaLFY0Ol0jvLLxdRisTg91gOEhIQA5eaAMWPGcPjwYQ4cOEC3bt2YOHGiyz5rNBr8/Pz4xz/+gUajITQ0lMTERD777DPGjx/P/fffT3JyMtOnT8dutzN8+HDuueceSkur351zOcFd28qdNs2JCtRqFWq1Gq1Wg4dOi7u79k99rNXptOQd/h1LpchYgR38sZw5W7cKFIGfuwqjh0etp6afTOXmsf3oGtG7od39U7ArCmaTFavFht0usNuV8h+gVmzabduu+sXMOtlgLzeMa7Xll3Xv3p0dO3bw888/s3v3bj766CM2bNjA5s2b6dixI4mJiU7X5eXl0b59ewA6duxIbm5ulfKQkBBMJhO7d+9m9OjReHl5Oc738/OjsLCQr7/+mtzcXCIiIoByW7DdbiciIoJjx47RoUMHFEVBU8m3sEePHhw8eBAot0m9+OKLPP/88+j1egIDA/nrX/9K586d6zIcAHjo3AgNd/2rJbk2KC0oxWa2OrlGeQd4k1PDLq7K6HMKaRPog9l1FhonTHoTarUKrbATWIddYJKrg1ot/iEhIZw/f57i4kv5hxISEgCIjY1l165dTJgwgWXLlhEbG0tycjKnT58mLCyMxMREDIZL2wyPHj1KeHg4AGFhYU4LU0ajkYSEBEf5/Pnz2bdvn6M8LS2N4uJievXqxbp169i2bRuxsbHExsZy//33ExoaSmxsLAARERH88ccfDnMElM/EKwR0zZo1rFy5Eg8PDwIDAzEajY6FMYmkgqLsoirBrz08PbCWVQ0z6IrSjBwCrqu7XT/p1yTOJ5yv/UTJVUOtAjt8+HCCgoJ48cUXSUpKYuPGjezYsQOA0tJSli1bxr59+0hPT2fTpk14eXnRvXt3hgwZQlBQEAsWLODMmTOsXr2a+Ph4x0JTVFQU8fHxrFy5kqSkJBYuXEhQUBDDhg1Dp9MRFRXFG2+8wdGjRzlx4gTz5s1j/PjxhISE0LlzZ7p16+Z4+fn5odPp6NatGwB33HEHWq2Wl156iXPnzrF161Y2b97Mww8/DECXLl34v//7P/bt28fZs2d57rnnCA4OZsyYMc01zpKrkKxzWVVMEiohUNUQTLsypRfy8O9U99locU4xQhEU51VNpii5OqlVYN3c3Fi9ejVlZWVMmTKFDRs2OITqL3/5C1OmTCE6OpqJEyfyww8/ODwKNBoNH374IQUFBUyZMoWtW7fy/vvvExwcDEBwcDDvvfceW7duJSoqiry8PD788EPH1sXo6GjGjh3L3Llzeeyxx+jduzevv/56nW7Kx8eHTz75hOzsbCZPnsy7777L4sWLueWWWwAYN24cs2bNIjo6mvvvvx+dTsfq1aul24rEiawk1wLrKsSgK+wWG1p3LdRRkAGSjiaREp9Sn25KWjAqIT2PJZIq2G12/hvzX0x6ZwPq4PEDOfvZd3Wup2/UWOJ++B27m3vtJ1/kxjtupMfAHgR0DKjzNZKWiQz2IpG4QF+kx1hmdDGDrV9YQJUQuNssGOshsIkHE9FoNVJgrwFkPFiJxAXZ57KrHFOpVahs9dtupc8pxD+gaorumigrLMOkN5GVklX7yZIWjRRYicQFGUkZVWavnr6edd5kUEFRahaBXdrXu/1TB06Rm5IrYwdc5UiBlUguQ1EUspKqzh69fL0wF9cv4lrphTz8rwus88JYBRajheK8YlJ+S6nXdZKWhRRYieQyDMUGylxsJvDy88JUWPfdfgDCrqBWqZySJtaVP375A32xHns9zRKSloMUWInkMjKTM1FsVQXR088TU2H9A1irVKC11R6B63LsVjtpp9I4feh0va+VtAykwEokl3Eu/hwqFxGkyk0E9bPBApgKSvD3qrsXQWXSE9OxWW0YSgy1nyxpcUiBlUgqYbPaXHoQQLkXgbDX/3G9KCWTtsG1B9+ujpN7T3L2WB0DzEhaFFJgJZJK5J7PxVjqOtZA+TbZ+q/qF6fl0KZzwwW2rKCM0oJS0k+nN7gOyZVBCqxEUonEg4nVhjRtqMAqVhsaNy0qpeGLVSf3naQkrwSrWebWupqQAiuRXMRmsZGemF5tTAqVUnuyw+pQIdBa67/QVYFQBCd2nyDp16QG1yH585ECK5FcJDUhFUOp68UklUrVqBmoMa+YAO+GLXRVUJJXQvqpdM79dq5R9Uj+PKTASiSUzxDjd8U7orldjs5Xh7mOgbZdUZCUTvsenRp8fQUpJ1LIOJ1BZnLtyRQlVx4Z7EUiAXJScsi/kF9tuZefF6ai+m0yqExJRi7X3dQf/shtdGLDUwdOYTaaURSFoN5B1Zo0FEXBbDRj0VuwWW2o1CrcPNxw17njpnOr9sdE0nRIgZW0ehRFYf/m/TXmlfL288aU2YhZoxCoVaC221G0jf/anT12lgtnLhA6OpSO3Tvi27Y8DbehxEBOag7ZKdlkn8vGpDdhNVkvJTJUq3HzdMO3jS8BHQNo06kNvoG+ePl74d/OHy9/rwZl4JW4pkF/6RUrVvDrr7+ybt26Gs/LyMhg0aJF/Prrr1x33XUsWLDAKWtARQrw8+fPM3DgQJYuXerISlBWVsayZcv48ccfEUJw2223sWDBAkfyRavVyltvveVIE3P77bezcOFCR6baRYsWsWHDBqf+REdH89hjjwGwevVq1q9fT1FRETfeeCOLFi2ie/fuDRkOyVXO6UOny9Nz14CXvxeFJ+u/i6sywmZHZ7dgaAKBBTCVmTjyzREURUGtKp+NKopSHvWr0qy2ck4xAJvZRmFWIYVZhZyLP1eeWVYI1Go1bYPb0rVfV9oFt6N9l/Z41zMSmMSZZntGEEIwZ84cAgIC2LhxI/feey9z584lLS0NgMzMTGbPns3kyZPZtGkT7dq1Y86cOY4cSDExMZw5c4ZPPvmEjz/+mPj4eJYvX+6o/4033uD777/nww8/ZOXKlezdu5cPPvjAUZ6UlMQLL7zAvn37HK8HH3wQgC+//JKPP/6Yf/zjH2zduhV/f3+eeuqpKvmXJNc+xXnF/PL1L7We5+njibkRJgKA4vNZtOsU0Kg6XKFWq8tdy1TlYlrfzBwqlcphLshPz+fYzmPs/HgnsStiOfzNYdIS07CYZAblhtBsJoK4uDjOnTvH+vXr8fHxoXfv3hw4cICNGzfy3HPPsWHDBvr27cuMGTMAePXVVxkxYgRxcXEMGzYMDw8PFi9eTL9+/QC47777WL9+PQAlJSV89tlnrFq1ikGDBgHwzDPP8M033zjaP3v2LKGhoY4stpXR6/W88MILjB49GoCZM2dy9913k5ubS8eOHZtrSCQtDH2xnu3vb8dsMNcqSiq1Chr5A1yQlMF1wwdy/mhqo+r5M6gwNxz//jiKotChWwf6DOlDUO8g/Dv4S/ttHamTwCYlJbFo0SISEhKIjIyka9fydNVWq5WlS5eyc+dODAYDkZGRLFq0iJ49exIfH0+/fv3w8fFx1DNo0CCOHDkCQHx8PIMHD3aUeXp60r9/f44dO8bw4cNZtmyZoywjI4Nt27YxdOhQoDw7rU6nY/jw4Y5zpkyZwpQpUwDIzc2lqKiIHj16uLyfCjMBlCdu/O9//0tISIhLMZZcm2QmZ/LD2h8wlBjqNONTCaVBmwwqYy7Ro/P1LM/Rpbp6BEqtVpOXlkfu+VxUahU9B/ak24BudOjWAZ9AHym2NVDryFgsFmbOnElwcDCbN29m/PjxfPnllwCsX7+e/fv3s2rVKr766iu8vb2Jjo4GykWuQ4cOTnW1bduWrKysGsuzs533gT///PPccsst5OXl8cwzzwBw/vx5OnfuzLZt25g0aRI333wzr7/+OhZL+WNMUlISWq2Wd999l1GjRjF58mQ2b95c5d6++OILbrzxRrZs2cLixYvlB+UaR1EUCjIL+G71d3yz8huMpVVTwlSHWmnYLq7LUQmB1np1Pm6rVCoQcDb+LD+u+5Evl3/Jzo93cnLvSTLOZGAsNSIUGSC8MrXOYA8cOEBhYSExMTF4e3vTq1cvDh06RGFhIenp6eh0OoKDgwkMDCQmJoaUlBQAjEYjbm5uTnW5u7tjtVod5RULUpXLK0SyglmzZjF16lTefPNNZsyYwebNm9Hr9aSnp/Of//yHV155Bb1ezyuvvILNZmPhwoWcPVseGKNv375MmzaNX375hcWLF+Pp6cnEiRMddY8cOZLNmzfz5ZdfMnv2bGJjY+nSpUv9R1HSYhCKwG63Y7fZsZltGMuMFGUVkXkuk/RT6egL9ShCqZ+dUgUqxd7gXVyVsZQa8HVTUdgEdV1JVCoViqKQlpDG+ZPnEULg5uFG285t6dSjE37t/fDy88Lb3xudtw6tuxatuxa1Wl1l0e1aplaBTUpKokuXLo7Ve4DQ0FD27t3L1KlT2bVrF6NGjSIyMpJx48YRFRUFgIeHB2Vlzo7ZFosFnU7nKL9cTC0WCwEBAU7HQkJCgHLPhTFjxnD48GG0Wi1lZWW8+eabDnPFCy+8wAsvvEB0dDQPP/wwkyZNctTVt29fUlNT+eyzz5wEtnPnznTu3Jl+/frxyy+/EBsby7PPPluXceP3n38nbkuc0zFRk59P+Qk1n3/55aLyP2s+tz51ue5aI+tvAThckTTlX2KNVoPGTYO7zt3xpfZuU/9VcZ2PDltZ04QLLEhK57reQVgLGr5ttiVjKDZw9nj5BMdus2M1W7Hbyn/wFLuCsAuESqBWqVGr1ag0qnovyrlC1RQ/fw2sou+wvoy8f6TLsjrZYC/PC6S96GbSvXt3duzYwc8//8zu3bv56KOP2LBhA5s3b6Zjx44kJiY6XZeXl+ewc3bs2JHc3Nwq5SEhIZhMJnbv3s3o0aPx8vJynO/n50dhYSEdOnRAq9U6xBWgR48emM1mCgoKaNeuXRWh7tmzJ/v27QNg//79BAcHO1zCVCoVPXv2pLCw7vOK0NGhhI4OrfP5kqubU5v3NEk9RSmZDBwxkOETBjeJsEhaNrXO1UNCQjh//jzFxcWOYwkJCQDExsaya9cuJkyYwLJly4iNjSU5OZnTp08TFhZGYmIiBsOlX/6jR48SHh4OQFhYGL/++qujzGg0kpCQ4CifP3++QxAB0tLSKC4uplevXoSHh2Oz2Th9+lKk9+TkZLy9vQkICOC1117jqaeecrqPU6dO0bNnTwDef/99Jx9em81GYmIivXr1qnXAJK2TsuyCJqlH2BUUmw1DblGT1Cdp2dQqsMOHDycoKIgXX3yRpKQkNm7cyI4dO4DyFfhly5axb98+0tPT2bRpE15eXnTv3p0hQ4YQFBTEggULOHPmDKtXryY+Pp77778fgKioKOLj41m5ciVJSUksXLiQoKAghg0bhk6nIyoqijfeeIOjR49y4sQJ5s2bx/jx4wkJCaF79+6MGzeO6Ohofv/9d44cOcJbb73FAw88gFar5ZZbbuHnn3/m008/5fz586xfv57Y2FieeOIJAKZNm8YXX3zB9u3bSU5OZvHixVitVu65557mG2nJVU1pZs0bEeqD1Wgh+/fkJqtP0nJRiTrkBU5LS+Oll17i2LFj9O3bl4iICBISEli7di3//Oc/2bp1K0VFRYSEhLBgwQKGDBkCQGpqKgsXLiQ+Pp6uXbsSHR3NyJGXbBV79uxh+fLlZGZmEhYWxtKlSx2P/SaTibfeeotvv/0Wk8nErbfeysKFCx1uXxU7vXbu3IlWq+Wee+5h/vz5joW1b775hg8//JDU1FS6dOnC3/72N2699VZH259//jkff/wx2dnZREREsHjxYjmDlbhEsSvsmPcvjPnFtZ9cB66L7INv5/aEPji+SeqTtFzqJLASSWvGXKJnx/PvYTM2zcKUu68X1989ipDbhzZJfZKWS+vxl5BIGoipuKzJxBXKXbXUajV2i8xOcK0jBVYiqYWyrKZZ4KqMzWShIPlCk9craVlIgZVIaqEkPafJ69TnFJJ7SmYmuNaRAiuR1ELx+awmrzP/TBpqGXf1mkcKrERSA0IIis9n135iPSm9kIu7l67KJh7JtYUUWImkBixlRizVJEJsFAJsJitlTehfK2l5SIGVSGqgLLsAq6F54gZY9AYuHE2s/UTJVYsUWImkBvJPn2+2uvMSz2M3S1etaxkpsBJJDeQ045bWwuR0PAJ8pB32GkYKrERSDXaLlZKM3NpPbCBCEdjNFopTm95LQdIykGm7JZJqKMnIxVTQuESHtVGWmY/NbCOg+3XN2o7kyiBnsBJJNaTt/63Z27hwJBEPH89mb0dyZZACK5G4QLHbyTz2R7O3YykzIoRAn3O1J5GRuEIKrETigoKk9D9N9PISU0k/dPJPaUvy5yIFViK5DCEEp7b8/KflHbtwJBGdvw92i+3PaVDypyEFViK5jJL0HArOpP15DQrBhSOnSIs78ee1KflTaJDArlixgmnTptV6XkZGBtOnTyc8PJyJEyeyZ49z4ri4uDjuuusuwsLCmDZtGqmpqY6ysrIyoqOjuemmmxgyZAiLFi1Cr9c7youLi5k/fz5Dhgxh1KhRvPXWW9jtdkf5wYMHiYqKIiIigttuu40vv/zSqe1jx44RFRXFwIEDufvuu/nll18aMhSSawyhCI5/sv1P3wCQ+esfmEsMFKc1feQuyZWj2WawQgjmzJlDQEAAGzdu5N5772Xu3LmkpZXPDDIzM5k9ezaTJ09m06ZNtGvXjjlz5qAoCgAxMTGcOXOGTz75hI8//pj4+HiWL1/uqP+VV14hOzub//znP7z55pvExsbyySefAJCSksJTTz3FhAkTiI2N5emnn2bJkiX8+OOPjranT5/O0KFD+frrrxk9ejRPP/00BQVNH/dTcnVx7scj5CelX5G2T36+i9Sfj5GXmIqlzIjVYMKQX0xBUjpZ8UlkxZ8hLzGV4rRsyrILKM3Mo+h8NiXpOZiKyxCK3LDQ0mg2P9i4uDjOnTvH+vXr8fHxoXfv3hw4cICNGzfy3HPPsWHDBvr27cuMGTMAePXVVxkxYgRxcXEMGzYMDw8PFi9eTL9+/QC47777WL9+vaP+PXv28Prrr9OnTx8A7rzzTuLi4njyySf55ptvuOGGG5g1axYA3bp14/Dhw3z99dfccsstrFu3jr59+/L3v/8dgHnz5rFv3z5OnjzJqFGjmmtIJC2covNZ5em5r6BQJX0bR9K3cbh5e6JSq7AZTSg2pdbr3Hx0dB0RRseBvWjTqzMePl5/Qm8ltVEngU1KSmLRokUkJCQQGRnpSExotVpZunQpO3fuxGAwEBkZyaJFi+jZsyfx8fH069fPkaQQYNCgQRw5cgSA+Ph4Bg8e7Cjz9PSkf//+HDt2jOHDh7Ns2TJHWUZGBtu2bWPo0Es5jAICAvjqq68YMWIEJSUl7N27l/Hjy5PITZw4kdGjRzvdg0qlwmwuD9oRFxfH5MmTncq2bNlStxGTXJMUp+Vw8O3PMJfoaz/5T8CqN9bv/DITyTsOkbzjEO3796DHLYNoe31XPAN8m6mHkrpQq4nAYrEwc+ZMgoOD2bx5M+PHj3fYM9evX8/+/ftZtWoVX331Fd7e3kRHRwOQm5tLhw4dnOpq27YtWVlZNZZnZzvH3nz++ee55ZZbyMvL45lnnnEcf/nll/nll1+IjIxk9OjRtGvXjmeffRaAHj16EBoa6jg3Ly+P7du3OwQ9LS0NLy8vnn/+eYYPH85DDz3E8ePH6zRgkmsLm8lC4ta97Fv+Kcb8kivdnSYh9+Q5fnlvI3uXreXsrsMUnL2ATQaVuSLUOoM9cOAAhYWFxMTE4O3tTa9evTh06BCFhYWkp6ej0+kIDg4mMDCQmJgYUlJSADAajY4U2hW4u7tjtVod5e7u7lXKLRaL07FZs2YxdepU3nzzTWbMmMHmzZtRq9WcP3+efv368fTTT1NWVsY//vEPXn/9dRYuXOh0vcFg4JlnnqFDhw489NBDAOj1et5++21mz57NE088wdatW3n88cf59ttv6dSpU50GLvPX0+QmpDgdqzVox2Xlrk8XNb69/ECVOmrpg8s+/hlt1HJ91UM1j0Njx9pSqqc4LQdLmRGtzh2VWoWbt67mOq8yzCV6Tn75I4rNjtpNg0/Htni1C0Dr4YbGww2V2vX8SqVSua6wmsOtHbvFRsTjk1yW1SqwSUlJdOnSBW9vb8ex0NBQ9u7dy9SpU9m1axejRo0iMjKScePGERUVBYCHhwdlZWVOdVksFnQ6naP8cjG1WCwEBAQ4HQsJCQHKPRfGjBnD4cOHue6663j11Vf58ccfHYLo4eHB9OnTeeqpp2jXrh0ApaWlPPXUU6Snp/Pf//4XT8/yLYkajYbRo0fz2GOPAdCvXz8OHDjA1q1beeqpp2obEgCui7ye6yKvr9O5EomkdVInL4LLZwtabbkud+/enR07dvDOO+/QtWtXPvroIx588EFMJhMdO3YkN9c5ElFeXh7t27cHqLHcZDLx3XffYTBciiTfsWNH/Pz8KCws5Pfff8fb29tpthkaGordbufChfJMnQUFBTzyyCOkpaXx6aefOuzGAB06dKBnz55ObXfv3t1xrUQikTQFtQpsSEgI58+fp7i42HEsISEBgNjYWHbt2sWECRNYtmwZsbGxJCcnc/r0acLCwkhMTHQSyaNHjxIeHg5AWFgYv/76q6PMaDSSkJDgKJ8/fz779u1zlKelpVFcXEyvXr3o0KEDJSUlZGZmOsqTk8vjdgYHB2OxWJg1axaFhYWsX7++ipiGh4c77gHKf0DOnj1L586dax0wiUQiqSu1Cuzw4cMJCgrixRdfJCkpiY0bN7Jjxw6g/BF82bJl7Nu3j/T0dDZt2oSXlxfdu3dnyJAhBAUFsWDBAs6cOcPq1auJj4/n/vvvByAqKor4+HhWrlxJUlISCxcuJCgoiGHDhqHT6YiKiuKNN97g6NGjnDhxgnnz5jF+/HhCQkIIDw/nhhtuIDo6msTERI4fP86iRYu4++67CQwMZM2aNZw8eZLly5fj6elJbm4uubm5FBUVAfDoo4/y008/sWbNGlJTU3nrrbfIzMzk7rvvbr6RlkgkrQ6VqEM49bS0NF566SWOHTtG3759iYiIICEhgbVr1/LPf/6TrVu3UlRUREhICAsWLGDIkCEApKamsnDhQuLj4+natSvR0dGMHDnSUe+ePXtYvnw5mZmZhIWFsXTpUsejvMlk4q233uLbb7/FZDJx6623snDhQofbV3Z2Nq+++ipxcXG4ublx++23M3/+fHQ6HVOmTOHkyarBMyIjI/nss88A2L17N2+99Rapqan06dOHhQsXEhkZ2fgRlUgkkovUSWAlEolEUn9ksBeJRCJpJqTASiQSSTMhBVYikUiaCSmwEolE0kxIgZVIJJJmQgqsRCKRNBNSYCUSiaSZkALbQhFCsGLFCoYNG8bgwYN5/fXXnVLiVGbBggVcf/31VV7jxo1znHPbbbdVKT916lSTtA+waNGiKvWvWbPGUV5TeqCm6kNtaYLqMgYWi4VFixYxePBgRowYwf/+7/9W215iYiIPPvggYWFhTJkyhd9++82p/JtvvmHChAmEhYUxe/Zs8vPza73n+rT/zTffcOeddxIeHs7kyZMdGTsAFEVh4MCBVe63pKTmkIz1aX/69OlV6t+1a1ej7r8+fZg2bZrLz/0jjzzSqDFoUoSkRfLvf/9bjBw5Uhw6dEjExcWJkSNHilWrVrk8t6SkROTk5Dhep06dEhEREWLdunVCCCHMZrO44YYbxNGjR53Os1qtTdK+EEI89NBD4v/+7/+c6jcYDEIIIS5cuCDCw8PF6tWrxZkzZ8Tf/vY3cccddwi73d5kY3Du3DkxYMAAsXLlSpGSkiK2bt0qQkNDxQ8//FCvMfjHP/4hJk2aJE6cOCG+//57ERERIbZt21alPb1eL0aMGCGWLVsmkpKSxNKlS8XQoUNFaWmpEEKI+Ph4MWDAALFp0yZx6tQpMXXqVDF9+vQa77c+7R8+fFj0799ffPHFFyIlJUWsXbtW9OvXT5w8eVIIIURKSoq4/vrrRXp6utP9KorSJO0LIcSoUaPE9u3bneo3m82Nuv/69KGwsNCp7QMHDoh+/fo5/uYNHYOmRApsC2XMmDFiw4YNjvexsbFi9OjRdbr22WefFY899pjj/alTp0S/fv2ExWJptvaHDBki4uLiXJa988474qGHHnK8NxgMIiIiQuzfv7/J+vDBBx+IBx54wOnYSy+9JP72t78JIeo2Bnq9XgwYMMCpXx988IFT3yv48ssvxdixYx0/EoqiiAkTJjj6+/e//108//zzjvMvXLgg+vTpI1JSUpqk/RdffFE899xzTscef/xx8eabbwohhNi1a5e4+eabq22rse2XlpaKPn36iLS0NJd1NeT+69uHyiiKIqKiosSLL77oONaQMWhqpImgBZKdnU1mZiY33nij49igQYPIyspyiiDmimPHjrFr1y5HZgkojzQWHBxcJQB6U7VfEUinR48eLuurKT1QU/Vh4sSJLFq0yOlY5TRBdRmDxMRELBYLgwYNcmrzxIkT2Gy2KvcUGRmJ+mLQapVKRWRkpOOeLr/n6667js6dO9d4z/Vpf9q0acyZM6fG+63u79EU7SclJeHh4UFQUJDLuhpy//XtQ2W2b9/O2bNnee655xzHGjIGTY0U2BZIRZzcyil1KoKIV6TcqY6PPvqIW2+91ZEMEsq/DBqNhieffJIRI0YwdepU4uPjm6z9pKQktFot7777LqNGjWLy5Mls3rzZqb66pAdqTB9qSxNUlzHIzc3F398fDw8PpzatVmuVjMO13VNOTk6D7rmu7fft25fevXs73p85c4aDBw863a9er+cvf/kLI0eOZMaMGZw9e7batuvbflJSEn5+fjz33HOMHDmS++67jz179jjKG3L/9e1DZVatWsX/+3//z/EZaegYNDXNllVWUjNms7lasTSZTABOKXUq/n15FojKXLhwgZ9//pnPP//c6XhycjIlJSXMnz+fjh07smHDBh555BFWr17tMkVOfduv+ND27duXadOm8csvv7B48WI8PT2ZOHFitemBjEZjtYtdDR0DcJ0myNUYPProo2zbto3g4GCg+jRGrtqsLeWRyWSqU0qkutRZ2z3n5+fzzDPPMGjQIEfiz+TkZAwGA4sXL8bb25vVq1fzyCOP8O233+Lr6zoRYn3aT05ORq/Xc8sttzB79my+//57Zs2axeeff05YWFiD7r+hY3DkyBHOnj1bZTGsIWPQ1EiBvUKcOHGCv/zlLy7LKtKJWywWxyNtxYerIu2NK7777ju6du1KWFiY0/G3334bs9nsCPUYExPD/v37HautjW3/4YcfZtKkSY50P3379iU1NZXPPvuMiRMnVpseyGq1cuuttzbpGFSXJsjVGPz666/ExsY6kmlW109XbVZ3bm0pkSrKXVGf9ivIyspi+vTpqNVq/vWvfzlMFv/973+x2+14eXk57n/MmDH88MMP3HPPPY1uf/78+cyePRs/Pz+g/G9+8uRJh8A25P4bOgbffvstQ4cOrTJZaMgYNDVSYK8QN954I6dPn3ZZlp2dzZtvvkleXp4jF1rFI3NFyh1X/Pzzzy4Fy83Nzcn2qFKp6N+/P8OHD2fJkiWNbl+lUlXJpdazZ09HRorq0gMNGzaMDz74wOW9NGQMCgoKeOKJJ8jLy6uSJsjVGPTs2ZOcnBzHsY4dO1JSUoLFYnHMmnJzc3F3d8ff39+prbqkRMrLy6u23BX1aR/K4zQ/+uijeHp68umnn9KmTRtHWeVH7Ir3wcHBNT6i16d9jUbjENcKevbs6fhMN+T+GzIGUP65f+KJJ6ocb8gYNDXSBtsC6dixI0FBQRw9etRx7OjRo3To0IHrrrvO5TVCCH777TenhYUK7rvvPlavXu14rygKp0+frpJKp6Htv/baa1WSRZ46dcpRf23pgZqiD7WlCarLGNxwww24ubk5LcQcPXqU/v37O/LQVRAWFsaxY8cc+eqEEBw7dswpJVLlvmdmZnLhwoUa77k+7RcVFfH444/j6+vLunXrnGyPNpuNUaNGsX37dscxvV5PampqtX/z+rY/d+5cYmJinI6dOnXKsajUkPuvbx+g/Ef1/PnzVT73DR2DJueK+jBIqmXVqlVixIgR4sCBA+LQoUNi1KhRYvXq1Y7y/Px8UVZW5niflpYm+vTpIy5cuFClrvfee08MGTJE7N69WyQnJ4tFixaJoUOHipKSkiZp/9ChQ6Jv375i7dq1IjU1VfznP/8R/fv3F4cPH3b0bcCAAeLDDz8UZ86cEc8995yYNGlSrX6w9enDqlWrRL9+/cSBAwecfB4LCwvrNQaLFi0SEydOFPHx8WLXrl0iMjJSbN++XQghRE5OjjAajUKIcjeloUOHildeeUWcOXNGLFu2TAwbNszhB/vrr786/FQTExPFtGnTxJNPPlnj/dan/cWLF4vIyEiRkJDgdL8V97NgwQIxbtw48csvv4jTp0+LWbNmiYkTJ9bo+1yf9rds2SJCQ0PFV199Jc6dOyfeffddMWDAAJGamtqo+69PH4QQIi4uTvTv39/lZ6mhY9CUSIFtodhsNrF8+XJx4403iiFDhojXXnvN6UN08803i3/961+O98ePHxd9+vQRer3eZV3vvvuuGDNmjBgwYICYOnWqSExMbNL2t2/fLiZNmiRCQ0PFxIkTxY4dO5zq2717t7jtttvEwIEDxbRp0xxfxKbqw7333iv69OlT5VXhP1nXMTAYDOKFF14Q4eHhYsSIEeLjjz92lPXp00ds2rTJ8T4+Pl7cc889IjQ0VERFRYkTJ0441bV582YxduxYER4eLubMmSPy8/Nrvee6tj9kyBCX91vhe6rX68WSJUvEiBEjRFhYmJg1a5bIyMhosvaFEGLdunVi/PjxIjQ0VEyZMkX88ssvjb7/+vZh+/bt4qabbnJZT0PHoCmRKWMkEomkmZA2WIlEImkmpMBKJBJJMyEFViKRSJoJKbASiUTSTEiBlUgkkmZCCqxEIpE0E1JgJfVi7NixqFSqal+vvfZak7UVExPjiB1QV7p37+6ILdCcrFmzBpVKVWU7KJQHm/Hz82PatGnVXv+vf/0LjUZDWlpak7cvaTnIWASSejNixAjeeustl2WV9/9fCbZs2eK0J/9K4OXlxX333cfGjRsxmUwuA5z897//5eabb6ZLly4NamPSpEkcPHiwSgwISctCCqyk3gQEBDB06NAr3Q2XREREXOkuAPDII4/wySef8O2333Lvvfc6lSUnJ3Po0CHWrVvX4Prbt29fa+AUyZVHmggkzUJF+MLKkYsmTpxIcHAwRUVFrFmzBh8fH3bu3Enfvn3x9vZmzJgxHD9+vNo6rVYrL7/8Mn369MHDw4M2bdowZcoUp8fsyiaCNWvW0K5dO3744QfCw8Px8PCgX79+fPXVV071JiUlcc899+Dr60tAQADTpk2r8uj96aefcv311+Pp6ckdd9xRawK/MWPG0L17d7744osqZevXr8fX15cpU6YghODdd99lwIAB6HQ6fH19mTBhAidOnHCcP3bsWGbOnMltt92Gn58f8+fPr2IiqOvYvPHGG8yePZvAwED8/Px49NFHKS0tdZxjt9t59dVX6dWrF15eXoSHhxMbG+vU/3/961+EhITg4eFB//79Xd6j5CJ/6sZcyVXPmDFjxB133CGsVqvLVwVpaWnC19dXTJs2TQghxCeffCIA8d133znea7Va0a5dO/Huu++Kr776SgwePFgEBASI7OxsIYQQL7/8svD29nbU+fTTT4s2bdqIjz/+WOzevVt88MEHws/PT0yZMsVxTrdu3cTTTz/taMPd3V107dpVrF69WuzcuVOMGjVK6HQ6x774rKws0bFjRxEeHi42b94sPvvsM9GrVy8RERHhSOC3YcMGAYinn35afPfdd+Lpp58Wbm5uAhC5ubnVjtWiRYuEl5dXlfgQ119/vSMB4Jtvvik8PDzEO++8I3bv3i0++eQTERQUJCIjI53GXKvVilmzZokdO3aIX375xTGeFe3XdWz8/f3Fgw8+KHbs2CHeffdd4ebmJl544QXHOc8++6xwd3cX//jHP8SuXbvEzJkzhUajEXv37hVCCBETEyO0Wq146aWXxI4dO8Rf//pXoVKpnHKnSS4hBVZSL8aMGSOAal+VIx2tXLlSAGLLli2iTZs2YubMmY6yCoFYuXKl41hOTo7w8vISMTExQoiqAvvAAw84Bf4QQoi5c+eKtm3bOt5fLrCA+OKLLxzl8fHxAhAbN24UQpRHXPL393cSyrNnzwqNRiPWrl0rhBAiIiJC3H777U7t3nXXXbUK7JkzZwQgPv/8c8exw4cPC0D8/PPPjv4vXbrU6bp//vOfAnBE5hozZoxo06aNU8LGywW2rmPTv39/p6yq9957rwgNDRVClEcn02g0YsmSJU71jBkzRixbtkwUFhYKnU4nFi5c6FQ+ffp00bNnz2rHoTUjbbCSejNy5EhWrFjhsqxykOOnnnqKzz//nKioKLp168bbb79d5fyKlC5QblccNmwYe/fudVl3xaPohQsXSExM5NSpU+zbt8+R6K86KtuLK9LD6PV6AH766SeGDRtGQECAI6lely5d6NevHz/88AP33Xcfx48f55133nGqMyoqiq+//rrGdnv37s3w4cP54osvePDBBwEcsWpHjRoFwLvvvguUB5VOTEwkMTHRUW/lDAy9e/euMWFjXcdmyJAhqFQqp/GoMMscOnQIu93OXXfd5XTN7t27gfKMGSaTiUmTJjklIJw4cSL//ve/OXfu3BVPMtjSkAIrqTf+/v5O2V6rQ6VS8fDDD7Nnzx5GjRpVxeVKp9NVWQVv3759tZkeDhw4wOzZs/ntt9/w9/cnIiICT09PR9Dr6qhIGQI4UqooigKU57M6dOiQS/Hq1KkTRUVFCCGcAlpXlNWFRx99lL/+9a+Ulpbi7e3NF198waxZsxzliYmJzJgxg3379uHl5UVYWJgjU0Dl+7o8geDl1HVsKo8FlI9HxVhUJBWsrq0Ku/Pw4cNdlmdmZkqBvQy5yCVpNgoKCli8eDEDBw5k3bp1TllHoTwxoMFgcDrmKhspQHFxMXfeeSfdunXjzJkzFBUV8dNPP1X7Za8r/v7+TJw4kcOHD1d5vffee7Rp0waVSuWUWgaodZGrgoqZ69atW/npp5/Iyspy5EJTFIW77roLq9XKiRMnKC0t5cCBA0yePLle99BUY1ORkuXyVDjHjx/n2LFjjvItW7a4HK8BAwbUq73WgBRYSbPx3HPPoSgKP/30EzfffDMzZszAaDQ6nbNt2zbHv3Nycjh48CA333xzlboSExMpLCzkb3/7myNdtaIofP/997XOYGti5MiRJCYmMmDAAG688UZuvPFGQkNDiYmJYd++fXh6ejJ06FC2bNnidN0333xTp/r9/f2ZPHkyW7ZsYdOmTYwdO5bu3bsD5UKWlJTEzJkzCQ0Ndcyuv/vuO4A631dTjc2QIUPQarVOfxMoN/W8+eab3HTTTbi5uZGTk+MYqxtvvJHff/+dJUuWNOrvcK0iTQSSelNUVERcXJzLMn9/f2644QZ27NjBp59+ytq1awkMDOSDDz4gLCyMl19+mTfeeMNx/tNPP01paSnt27dnyZIlBAYGOj1CV9C3b198fX35xz/+gd1ux2g08sEHHxAfH49KpUII4WRbrCvz5s3j008/ZeLEifz1r3/Fzc2Nt99+m4MHD7J06VIAXnnlFW6//XYef/xxHnroIX788ccqglsTjz76KA888AB+fn4sX77ccbxjx4507dqVd955h44dO6LRaFi7dq1D4C6f3VdHU41Nhw4dmDVrFkuXLsXNzY1Bgwbx5Zdfcvz4cT744APat2/P3Llzef755yksLGTIkCEcP36chQsXcvfdd1dJgihBumlJ6kdtXgTjxo0TpaWlolu3bmL06NFO10ZHRwuNRiMOHz7sWAX/9NNPRY8ePYS3t7eYPHmyOHfunOP8y70Idu7cKcLCwoROpxPBwcHi4YcfFhs3bhSAOHjwoBDCtRdB5ZX+wsJCAYhPPvnEcezkyZNi0qRJwsfHR/j6+oqxY8eK/fv3O/U9NjZWhIaGCg8PDzFy5EjxwQcf1OpFUIHNZhOdOnUS3t7eTnnUhBDiyJEjYtiwYcLLy0t06tRJTJ48Wfzwww8CEJ999pljzCdNmuR03eX3Vt+xqeCvf/2r6Natm1NfY2JiRJcuXYSnp6cYPHiw2LVrl6PcbreL119/XfTq1Uu4u7uLbt26iejoaGEymWodh9aITBkjuSKsWbOGxx9/nNzc3CoLSBLJtYK0wUokEkkzIQVWIpFImglpIpBIJJJmQs5gJRKJpJmQAiuRSCTNhBRYiUQiaSakwEokEkkzIQVWIpFImgkpsBKJRNJM/H/2jXriVFS/9wAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 360x288 with 7 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Code for plotting Figure 3 Supplement 3 panel D\n",
    "plt.figure(dpi=380)\n",
    "fig, axes = joypy.joyplot(transfer_per_site_ev, column=['EV'], overlap=1.0, by=\"site\", ylim='own', fill=True, figsize=(5,4), legend=False, xlabels=True, ylabels=True, \n",
    "                          colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)), alpha=0.6, linewidth=.5, linecolor='w', fade=True, x_range=[-1,1])\n",
    "plt.title('Transfer EV per site', fontsize=18, color='black', alpha=1)\n",
    "plt.rc(\"font\", size=14)\n",
    "plt.xlabel('Explained Variance', fontsize=16, color='black', alpha=1)\n",
    "plt.ylabel('Site', fontsize=14, color='black', alpha=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "elife-72904-video1.mp4 video/mp4\n",
    "\n",
    "We validate our models with several careful procedures: first, we report out of sample metrics; second, we perform a supplementary analysis on a subset of participants for whom input data had undergone manual quality checking by an expert rater ([Table 1](#table1) – mQC). Third, each model fit was evaluated using metrics ([Figure 3](#fig3), [Figure 3—figure supplements 1](#fig3s1)–[3](#fig3s3)) that quantify central tendency and distributional accuracy ([@bib9]; [@bib14]). We also estimated separate models for males and females, which indicate that sex effects are adequately modeled using a global offset. Finally, to facilitate independent validation, we packaged pretrained models and code for transferring to new samples into an [open resource](https://github.com/predictive-clinical-neuroscience/braincharts) for use by the community and demonstrated [how to transfer](https://colab.research.google.com/github/predictive-clinical-neuroscience/braincharts/blob/master/scripts/apply_normative_models.ipynb) the models to new samples (i.e., data not present in the initial training set).\n",
    "\n",
    "Our models provide the opportunity for mapping the diverse trajectories of different brain areas. Several examples are shown in [Figure 1C and D](#fig1) which align with known patterns of development and aging ([@bib10]; [@bib16]; [@bib40]). Moreover, across the cortex and subcortex our model fits well, explaining up to 80% of the variance out of sample ([Figure 3](#fig3), [Figure 3—figure supplements 1](#fig3s1)–[3](#fig3s3)).\n",
    "\n",
    "A goal of this work is to develop normative models that can be applied to many different clinical conditions. To showcase this, we apply the model to a transdiagnostic psychiatric cohort ([Table 1](#table1) – Clinical; [Figure 2](#fig2)) resulting in personalized, whole-brain deviation maps that can be used to understand inter-individual variability (e.g., for stratification) and to quantify group separation (e.g., case-control effects). To demonstrate this, for each clinical group, we summarized the individual deviations within that group by computing the proportion of subjects that have deviations in each region and comparing to matched (same sites) controls in the test set ([Figure 2B–C](#fig2)). Additionally, we performed case-control comparisons on the raw cortical thickness and subcortical volumes, and on the deviation maps ([Figure 2D](#fig2)), again against a matched sample from the test set. This demonstrates the advantages of using normative models for investigating individual differences in psychiatry, that is, quantifying clinically relevant information at the level of each individual. For most diagnostic groups, the z-statistics derived from the normative deviations also provided stronger case-control effects than the raw data. This shows the importance of accurate modeling of population variance across multiple clinically relevant dimensions. The individual-level deviations provide complimentary information to the group effects, which aligns with previous work ([@bib44]; [@bib45]; [@bib48]). We note that a detailed description of the clinical significance of our findings is beyond the scope of this work and will be presented separately.\n",
    "\n",
    "# Discussion\n",
    "\n",
    "In this work, we create lifespan brain charts of cortical thickness and subcortical volume derived from structural MRI, to serve as reference models. Multiple data sets were joined to build a mega-site lifespan reference cohort to provide good coverage of the lifespan. We applied the reference cohort models to clinical data sets and demonstrated the benefits of normative modeling in addition to standard case-control comparisons. All models, including [documentation](https://pcntoolkit.readthedocs.io/en/latest/pages/tutorial_braincharts_apply_nm.html) and [code](https://github.com/predictive-clinical-neuroscience/braincharts), are made available to the research community. We also provide an example data set (that includes data from sites not in the training sample) along with the code to demonstrate how well our models can adapt to new sites, and how easy it is to transfer our pretrained models to users’ own data sets.\n",
    "\n",
    "We identify three main strengths of our approach. First, our large lifespan data set provides high anatomical specificity, necessary for discriminating between conditions, predicting outcomes, and stratifying subtypes. Second, our models are flexible in that they can model non-Gaussian distributions, can easily be transferred to new sites, and are built on validated analytical techniques and software tools ([@bib14]; [@bib23]; [@bib28]). Third, we show the general utility of this work in that it provides the ability to map individual variation whilst also improving case-control inferences across multiple disorders.\n",
    "\n",
    "In recent work, a large consortium established lifespan brain charts that are complementary to our approach ([@bib4]). Benefits of their work include precisely quantifying brain growth using a large cohort, but they only provide estimates of four coarse global measures (e.g., total brain volume). While this can precisely quantify brain growth and aging this does not provide the ability to generate individualized fingerprints or to stratify clinical cohorts. In contrast, in this work, we focus on providing spatially specific estimates (188 different brain regions) across the post-natal lifespan which provides fine-grained anatomical estimates of deviation, offering an individualized perspective that can be used for clinical stratification. We demonstrate the transdiagnostic clinical value of our models ([Figure 2](#fig2)) by showing how clinical variation is widespread in a fine-grain manner (e.g., not all individuals deviate in the same regions and not all disorders have the same characteristic patterns) and we facilitate clinical applications of our models by sharing tutorial code notebooks with sample data that can be run locally or online in a web browser.\n",
    "\n",
    "We also identify the limitations of this work. We view the word ‘normative’ as problematic. This language implies that there are normal and abnormal brains, a potentially problematic assumption. As indicated in [Figure 2](#fig2), there is considerable individual variability and heterogeneity among trajectories. We encourage the use of the phrase ‘reference cohort’ over ‘normative model’. In order to provide coverage of the lifespan the curated data set is based on aggregating existing data, meaning there is unavoidable sampling bias. Race, education, and socioeconomic variables were not fully available for all included data sets, however, given that data were compiled from research studies, they are likely samples drawn predominantly from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies ([@bib18]) and future work should account for these factors. The sampling bias of UKBiobank ([@bib15]) is especially important for users to consider as UKBiobank data contributes 59% of the full sample. By sampling both healthy population samples and case-control studies, we achieve a reasonable estimate of variation across individuals, however, downstream analyses should consider the nature of the reference cohort and whether it is appropriate for the target sample. Second, we have relied on semi-automated quality control (QC) for the full sample which—despite a conservative choice of inclusion threshold—does not guarantee either that low-quality data were excluded or that the data were excluded are definitively excluded because of artifacts. We addressed this by comparing our full test set to a manually quality check data set and observed similar model performance. Also, Freesurfer was not adjusted for the very young age ranges (2–7 yo) thus caution should be used when interpreting the model on new data in this age range. Finally, although the models presented in this study are comprehensive, they are only the first step, and we will augment our [repository](https://github.com/predictive-clinical-neuroscience/braincharts/models) with more diverse data, different features, and modeling advances as these become available.\n",
    "\n",
    "# Materials and methods\n",
    "\n",
    "Data from 82 sites were combined to create the initial full sample. These sites are described in detail in [Supplementary files 1-2](#supp1), including the sample size, age (mean and standard deviation), and sex distribution of each site. Many sites were pulled from publicly available data sets including [ABCD](https://abcdstudy.org/), [ABIDE](http://fcon_1000.projects.nitrc.org/indi/abide/), [ADHD200](https://fcon_1000.projects.nitrc.org/indi/adhd200/), [CAMCAN](https://www.cam-can.org/index.php?content=dataset), [CMI-HBN](http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/), [HCP-Aging](https://www.humanconnectome.org/study/hcp-lifespan-aging), [HCP-Development](https://www.humanconnectome.org/study/hcp-lifespan-development), [HCP-Early Psychosis](https://www.humanconnectome.org/study/human-connectome-project-for-early-psychosis), [HCP-Young Adult](https://www.humanconnectome.org/study/hcp-young-adult), [IXI](https://brain-development.org/ixi-dataset/), [NKI-RS](http://fcon_1000.projects.nitrc.org/indi/enhanced/), [Oasis](https://www.oasis-brains.org/), [OpenNeuro](https://openneuro.org/), [PNC](https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html), [SRPBS](https://bicr-resource.atr.jp/srpbsopen/), and [UKBiobank](https://www.ukbiobank.ac.uk/). For data sets that include repeated visits (i.e., ABCD and UKBiobank), only the first visit was included. Other included data come from studies conducted at the University of Michigan ([@bib11]; [@bib35]; [@bib41]; [@bib42]; [@bib43]; [@bib49]), University of California Davis ([@bib32]), University of Oslo ([@bib31]), King’s College London ([@bib17]; [@bib25]), and Amsterdam University Medical Center ([@bib29]). Full details regarding sample characteristics, diagnostic procedures, and acquisition protocols can be found in the publications associated with each of the studies. Equal sized training and testing data sets (split half) were created using scikit-learn’s train_test_split function, stratifying on the site variable. It is important to stratify based on site, not only study ([@bib4]), as many of the public studies (i.e., ABCD) include several sites, thus modeling study does not adequately address MRI scanner confounds. To test stability of the model performance, the full test set was randomly resampled 10 times and evaluation metrics were re-calculated on each split of the full test set ([Figure 3—figure supplement 2](#fig3s2)). To show generalizability of the models to new data not included in training, we leveraged data from [OpenNeuro.org](https://openneuro.org/) ([@bib26]) to create a transfer data set (six sites, N=546, [Supplementary file 3](#supp3)). This data are provided along with the code for transferring to walk users through how to apply these models to their own data.\n",
    "\n",
    "The clinical validation sample consisted of a subset of the full data set (described in detail in [Figure 1A](#fig1), [Figure 2A](#fig2) and [Supplementary file 1](#supp1)). Studies (sites) contributing clinical data included: Autism Brain Imaging Database Exchange (ABIDE GU, KKI, NYU, USM), ADHD200 (KKI, NYU), CNP, SRPBS (CIN, COI, KTT, KUT, HKH, HRC, HUH, SWA, UTO), Delta (AmsterdamUMC), Human Connectome Project Early Psychosis (HCP-EP BWH, IU, McL, MGH), KCL, University of Michigan Children Who Stutter (UMich_CWS), University of Michigan Social Anxiety Disorder (UMich_SAD), University of Michigan Schizophrenia Gaze Processing (UMich_SZG), and TOP (University of Oslo).\n",
    "\n",
    "In addition to the sample-specific inclusion criteria, inclusion criteria for the full sample were based on participants having basic demographic information (age and sex), a T1-weighted MRI volume, and Freesurfer output directories that include summary files that represent left and right hemisphere cortical thickness values of the Destrieux parcellation and subcortical volumetric values (aseg.stats, lh.aparc.a2009s.stats, and rh.aparc.a2009s.stats). Freesurfer image analysis suite (version 6.0) was used for cortical reconstruction and volumetric segmentation for all studies. The technical details of these procedures are described in prior publications ([@bib6]; [@bib13]; [@bib12]). UK Biobank was the only study for which Freesurfer was not run by the authors. Freesurfer functions _aparcstats2table_ and _asegstats2table_ were run to extract cortical thickness from the Destrieux parcellation ([@bib7]) and subcortical volume for all participants into CSV files. These files were inner merged with the demographic files, using Pandas, and NaN rows were dropped.\n",
    "\n",
    "QC is an important consideration for large samples and is an active research area ([@bib1]; [@bib24]; [@bib34]). We consider manual quality checking of images both prior to and after preprocessing to be the gold standard. However, this is labor intensive and prohibitive for very large samples. Therefore, in this work, we adopt a pragmatic and multi-pronged approach to QC. First, a subset of the full data set underwent manual quality checking (mQC) by author S.R. [Papaya](https://rii-mango.github.io/Papaya/), a JavaScript-based image viewer. Manual quality checking was performed during December 2020 when the Netherlands was in full lockdown due to COVID-19 and S.R. was living alone in a new country with a lot of free time. Data included in this manual QC step was based on what was available at the time ([Supplementary file 2](#supp2)). Later data sets that were included were not manually QC’d due to resource and time constraints. Scripts were used to initialize a manual QC session and track progress and organize ratings. All images (T1w volume and Freesurfer brain.finalsurfs) were put into JSON files that the mQC script would call when loading Papaya. Images were rated using a ‘pass/fail/flag’ scale and the rating was tracked in an automated manner using keyboard inputs (up arrow=pass, down arrow=fail, F key=flag, and left/right arrows were used to move through subjects). Each subject’s T1w volume was viewed in 3D volumetric space, with the Freesurfer brain.finalsurfs file as an overlay, to check for obvious quality issues such as excessive motion, ghosting or ringing artifacts. Example scripts used for quality checking and further instructions for using the manual QC environment can be found on [GitHub](https://github.com/saigerutherford/lifespan_qc_scripts)([@bib38] copy archived at [swh:1:rev:70894691c74febe2a4d40ab0c84c50094b9e99ce](https://archive.softwareheritage.org/swh:1:dir:9c98ca93b3fb3b463607286eec7dfc9c4c3e97db;origin=https://github.com/saigerutherford/lifespan_qc_scripts;visit=swh:1:snp:84918033541e80549e91c96e85a29d191321d0a3;anchor=swh:1:rev:70894691c74febe2a4d40ab0c84c50094b9e99ce)). We relied on ABCD consortium QC procedures for the QC for this sample. The ABCD study data distributes a variable (freesqc01.txt; fsqc_qc = = 1/0) that represents manual quality checking (pass/fail) of the T1w volume and Freesurfer data, thus this data set was added into our manual quality checked data set bringing the sample size to 24,354 individuals passing manual quality checks. Note that QC was performed on the data prior to splitting of the data to assess generalizability. Although this has a reduced sample, we consider this to be a gold-standard sample in that every single scan has been checked manually. All inferences reported in this manuscript were validated against this sample. Second, for the full sample, we adopted an automated QC procedure that quantifies image quality based on the Freesurfer Euler Characteristic (EC), which has been shown to be an excellent proxy for manual labeling of scan quality ([@bib30]; [@bib34]) and is the most important feature in automated scan quality classifiers ([@bib24]). Since the distribution of the EC varies across sites, we adopt a simple approach that involves scaling and centering the distribution over the EC across sites and removing samples in the tail of the distribution (see [@bib23] for details). While any automated QC heuristic is by definition imperfect, we note that this is based on a conservative inclusion threshold such that only samples well into the tail of the EC distribution are excluded, which are likely to be caused by true topological defects rather than abnormalities due to any underlying pathology. We separated the evaluation metrics into full test set (relying on automated QC) and mQC test set in order to compare model performance between the two QC approaches and were pleased to notice that the evaluation metrics were nearly identical across the two methods.\n",
    "\n",
    "Normative modeling was run using python 3.8 and the [PCNtoolkit package](https://pcntoolkit.readthedocs.io/) (version 0.20). Bayesian Linear Regression (BLR) with likelihood warping was used to predict cortical thickness and subcortical volume from a vector of covariates (age, sex, and site). For a complete mathematical description and explanation of this implementation, see [@bib14]. Briefly, for each brain region of interest (cortical thickness or subcortical volume), $y$ is predicted as:\n",
    "\n",
    "$$\n",
    "y={w}^{T}\\varphi \\left(x\\right)+ϵ\n",
    "$$\n",
    "\n",
    "where ${w}^{T}$ is the estimated weight vector, $\\varphi \\left(x\\right)$ is a basis expansion of the of covariate vector **x,** consisting of a B-spline basis expansion (cubic spline with five evenly spaced knots) to model non-linear effects of age, and $ϵ=\\eta \\left(0,\\beta \\right)$ a Gaussian noise distribution with mean zero and noise precision term β (the inverse variance). A likelihood warping approach ([@bib33]; [@bib39]) was used to model non-Gaussian effects. This involves applying a bijective non-linear warping function to the non-Gaussian response variables to map them to a Gaussian latent space where inference can be performed in closed form. We employed a ‘sinarcsinsh’ warping function, which is equivalent to the SHASH distribution commonly used in the generalized additive modeling literature ([@bib21]) and which we have found to perform well in prior work ([@bib9]; [@bib14]). Site variation was modeled using fixed effects, which we have shown in prior work provides relatively good performance ([@bib23]), although random effects for site may provide additional flexibility at higher computational cost. A fast numerical optimization algorithm was used to optimize hyperparameters (L-BFGS). Computational complexity of hyperparameter optimization was controlled by minimizing the negative log-likelihood. Deviation scores (Z-scores) are calculated for the n-th subject, and d-th brain area, in the test set as:\n",
    "\n",
    "$$\n",
    "{Z}_{nd}=\\frac{{y}_{nd}-{\\hat{y}}_{nd}}{\\sqrt{{\\sigma }_{d}^{2}+({\\sigma }_{\\ast }^{2}{)}_{d}}}\n",
    "$$\n",
    "\n",
    "Where ${y}_{nd}$ is the true response, ${\\displaystyle {\\hat{y}}_{nd}}$ is the predicted mean, ${\\sigma }_{d}^{2}$ is the estimated noise variance (reflecting uncertainty in the data), and ${\\left({\\sigma }_{}^{2}\\right)}_{d}$ is the variance attributed to modeling uncertainty. Model fit for each brain region was evaluated by calculating the explained variance (which measures central tendency), the mean squared log-loss (MSLL, central tendency, and variance) plus skew and kurtosis of the deviation scores (2) which measures how well the shape of the regression function matches the data ([@bib9]). Note that for all models, we report out of sample metrics.\n",
    "\n",
    "To provide a summary of individual variation within each clinical group, deviation scores were summarized for each clinical group ([Figure 2B–C](#fig2)) by first separating them into positive and negative deviations, counting how many subjects had an extreme deviation (positive extreme deviation defined as Z>2, negative extreme deviation as Z&lt;−2) at a given ROI, and then dividing by the group size to show the percentage of individuals with extreme deviations at that brain area. Controls from the same sites as the patient groups were summarized in the same manner for comparison. We also performed classical case versus control group difference testing on the true data and on the deviation scores ([Figure 2D](#fig2)) and thresholded results at a Benjamini-Hochberg false discovery rate of p&lt;0.05. Note that in both cases, we directly contrast each patient group to their matched controls to avoid nuisance variation confounding any reported effects (e.g., sampling characteristics and demographic differences).\n",
    "\n",
    "All pretrained models and code are shared online with straightforward directions for transferring to new sites and including an example transfer data set derived from several [OpenNeuro.org](https://openneuro.org/) data sets. Given a new set of data (e.g., sites not present in the training set), this is done by first applying the warp parameters estimating on the training data to the new data set, adjusting the mean and variance in the latent Gaussian space, then (if necessary) warping the adjusted data back to the original space, which is similar to the approach outlined in [@bib9]. Note that to remain unbiased, this should be done on a held-out calibration data set. To illustrate this procedure, we apply this approach to predicting a subset of data that was not used during the model estimation step. We leveraged data from [OpenNeuro.org](https://openneuro.org/) ([@bib26]) to create a transfer data set (six sites, N=546, [Supplementary file 3](#supp3)). This data are provided along with the code for transferring to walk users through how to apply these models to their own data. These results are reported in [Figure 3](#fig3) (transfer) and [Supplementary file 3](#supp3). We also distribute scripts for this purpose in the GitHub Repository associated with this manuscript. Furthermore, to promote the use of these models and remove barriers to using them, we have set up access to the pretrained models and code for transferring to users’ own data, using [Google Colab](https://colab.research.google.com/github/predictive-clinical-neuroscience/braincharts/blob/master/scripts/apply_normative_models.ipynb), a free, cloud-based platform for running python notebooks. This eliminates the need to install python/manage package versions and only requires users to have a personal computer with stable internet connection."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using lifespan models to make predictions on new data (transfer models code)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "2d8fb4c8-4360-4fdc-b0a2-e1c2e22bd8f9"
   },
   "source": [
    "This notebook shows how to apply the coefficients from pre-estimated normative models to new data. This can be done in two different ways: (i) using a new set of data derived from the same sites used to estimate the model and (ii) on a completely different set of sites. In the latter case, we also need to estimate the site effect, which requires some calibration/adaptation data. As an illustrative example, we use a dataset derived from several [OpenNeuro datasets](https://openneuro.org/) and adapt the learned model to make predictions on these data. View notebook on [GitHub](https://github.com/predictive-clinical-neuroscience/braincharts/blob/master/scripts/apply_normative_models.ipynb) or run on [Google Colab](https://colab.research.google.com/github/predictive-clinical-neuroscience/braincharts/blob/master/scripts/apply_normative_models.ipynb)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 138,
   "metadata": {
    "id": "ff661cf2-7d80-46bb-bcfb-1650a93eed3d"
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import pickle\n",
    "from matplotlib import pyplot as plt\n",
    "from pcntoolkit.normative import estimate, predict, evaluate\n",
    "from pcntoolkit.util.utils import compute_MSLL, create_design_matrix\n",
    "from nm_utils import load_2d"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "802b1da6-04cc-4310-af81-f50d38c3e653"
   },
   "source": [
    "Next, we configure some basic variables, like where we want the analysis to be done and which model we want to use.\n",
    "\n",
    "**Note:** We maintain a list of site ids for each dataset, which describe the site names in the training and test data (`site_ids_tr` and `site_ids_te`), plus also the adaptation data . The training site ids are provided as a text file in the distribution and the test ids are extracted automatically from the pandas dataframe (see below). If you use additional data from the sites (e.g. later waves from ABCD), it may be necessary to adjust the site names to match the names in the training set. See the accompanying paper for more details"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 140,
   "metadata": {
    "id": "f52e2a19-9b63-4f0f-97c1-387f1a1872a2"
   },
   "outputs": [],
   "source": [
    "# which model do we wish to use?\n",
    "model_name = 'lifespan_57K_82sites'\n",
    "site_names = 'site_ids_82sites.txt'\n",
    "\n",
    "# where the analysis takes place\n",
    "root_dir = os.getcwd()\n",
    "out_dir = os.path.join(root_dir, 'models', model_name)\n",
    "\n",
    "# load a set of site ids from this model. This must match the training data\n",
    "with open(os.path.join(root_dir,'docs', site_names)) as f:\n",
    "    site_ids_tr = f.read().splitlines()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "8dbaebd7-4f86-47d8-82a5-1776eb96690f"
   },
   "source": [
    "### Download test dataset\n",
    "\n",
    "As mentioned above, to demonstrate this tool we will use a test dataset derived from the FCON 1000 dataset. We provide a prepackaged training/test split of these data in the required format (also after removing sites with only a few data points), [here](https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo/tree/main/data). you can get these data by running the following commmands:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "3aab54a5-2579-48d8-a81b-bbd34cea1213"
   },
   "source": [
    "### Load test data\n",
    "\n",
    "Now we load the test data and remove some subjects that may have poor scan quality. This asssesment is based on the Freesurfer Euler characteristic as described in the papers below. \n",
    "\n",
    "**Note:** For the purposes of this tutorial, we make predictions for all sites in the FCON 1000 dataset, but two of them were also included in the training data (named 'Baltimore' and 'NewYork_a'). In this case, this will only slightly bias the accuracy, but in order to replicate the results in the paper, it would be necessary to additionally remove these sites from the test dataframe.\n",
    "\n",
    "**References**\n",
    "- [Kia et al 2021](https://www.biorxiv.org/content/10.1101/2021.05.28.446120v1.abstract)\n",
    "- [Rosen et al 2018](https://www.sciencedirect.com/science/article/abs/pii/S1053811917310832?via%3Dihub)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 142,
   "metadata": {
    "id": "262d429a-160b-4ba3-9ba4-9acc195bc644"
   },
   "outputs": [],
   "source": [
    "test_data = os.path.join(root_dir, 'docs/OpenNeuroTransfer_te.csv')\n",
    "\n",
    "df_te = pd.read_csv(test_data)\n",
    "\n",
    "# extract a list of unique site ids from the test set\n",
    "site_ids_te =  sorted(set(df_te['site'].to_list()))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "c636509a-8b12-43f1-811c-08cb22640be2"
   },
   "source": [
    "### (Optional) Load adaptation data\n",
    "\n",
    "If the data you wish to make predictions for is not derived from the same scanning sites as those in the trainig set, it is necessary to learn the site effect so that we can account for it in the predictions. In order to do this in an unbiased way, we use a separate dataset, which we refer to as 'adaptation' data. This must contain data for all the same sites as in the test dataset and we assume these are coded in the same way, based on a the 'sitenum' column in the dataframe. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 143,
   "metadata": {
    "id": "53551023-aff6-4934-ad2d-d77bc63c562d"
   },
   "outputs": [],
   "source": [
    "adaptation_data = os.path.join(root_dir, 'docs/OpenNeuroTransfer_tr.csv')\n",
    "\n",
    "df_ad = pd.read_csv(adaptation_data)\n",
    "\n",
    "# extract a list of unique site ids from the test set\n",
    "site_ids_ad =  sorted(set(df_ad['site'].to_list()))\n",
    "\n",
    "if not all(elem in site_ids_ad for elem in site_ids_te):\n",
    "    print('Warning: some of the testing sites are not in the adaptation data')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "4f73e30e-c693-44b8-98c6-52b71b577ea8"
   },
   "source": [
    "### Configure which models to fit\n",
    "\n",
    "Now, we configure which imaging derived phenotypes (IDPs) we would like to process. This is just a list of column names in the dataframe we have loaded above. \n",
    "\n",
    "We could load the whole set (i.e. all phenotypes for which we have models for ... "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 144,
   "metadata": {
    "id": "b48e104c-cbac-4ae2-8377-cd3ff80162fd"
   },
   "outputs": [],
   "source": [
    "# load the list of idps for left and right hemispheres, plus subcortical regions\n",
    "with open(os.path.join(root_dir,'docs','phenotypes_lh.txt')) as f:\n",
    "    idp_ids_lh = f.read().splitlines()\n",
    "with open(os.path.join(root_dir,'docs','phenotypes_rh.txt')) as f:\n",
    "    idp_ids_rh = f.read().splitlines()\n",
    "with open(os.path.join(root_dir,'docs','phenotypes_sc.txt')) as f:\n",
    "    idp_ids_sc = f.read().splitlines()\n",
    "\n",
    "# we choose here to process all idps\n",
    "idp_ids = idp_ids_lh + idp_ids_rh + idp_ids_sc"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "280731ad-47d8-43e2-8cb5-4eccfd9f3f81"
   },
   "source": [
    "... or alternatively, we could just specify a list"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 145,
   "metadata": {
    "id": "8b74d75f-77a5-474a-9c9b-29aab1ce53a2"
   },
   "outputs": [],
   "source": [
    "idp_ids = [ 'Left-Thalamus-Proper', 'Left-Lateral-Ventricle', 'rh_MeanThickness_thickness']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "56ee1f7f-8684-4f1c-b142-a68176407029"
   },
   "source": [
    "### Configure covariates \n",
    "\n",
    "Now, we configure some parameters to fit the model. First, we choose which columns of the pandas dataframe contain the covariates (age and sex). The site parameters are configured automatically later on by the `configure_design_matrix()` function, when we loop through the IDPs in the list\n",
    "\n",
    "The supplied coefficients are derived from a 'warped' Bayesian linear regression model, which uses a nonlinear warping function to model non-Gaussianity (`sinarcsinh`) plus a non-linear basis expansion (a cubic b-spline basis set with 5 knot points, which is the default value in the PCNtoolkit package). Since we are sticking with the default value, we do not need to specify any parameters for this, but we do need to specify the limits. We choose to pad the input by a few years either side of the input range. We will also set a couple of options that control the estimation of the model\n",
    "\n",
    "For further details about the likelihood warping approach, see the accompanying paper and [Fraza et al 2021](https://www.biorxiv.org/content/10.1101/2021.04.05.438429v1)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 146,
   "metadata": {
    "id": "62312b8e-4972-4238-abf9-87d9bb33cc10"
   },
   "outputs": [],
   "source": [
    "# which data columns do we wish to use as covariates? \n",
    "cols_cov = ['age','sex']\n",
    "\n",
    "# limits for cubic B-spline basis \n",
    "xmin = -5 \n",
    "xmax = 110\n",
    "\n",
    "# Absolute Z treshold above which a sample is considered to be an outlier (without fitting any model)\n",
    "outlier_thresh = 7"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "42bc1072-e9ed-4f2a-9fdd-cbd626a61542"
   },
   "source": [
    "### Make predictions\n",
    "\n",
    "This will make predictions for each IDP separately. This is done by extracting a column from the dataframe (i.e. specifying the IDP as the response variable) and saving it as a numpy array. Then, we configure the covariates, which is a numpy data array having the number of rows equal to the number of datapoints in the test set. The columns are specified as follows: \n",
    "\n",
    "- A global intercept (column of ones)\n",
    "- The covariate columns (here age and sex, coded as 0=female/1=male)\n",
    "- Dummy coded columns for the sites in the training set (one column per site)\n",
    "- Columns for the basis expansion (seven columns for the default parameterisation)\n",
    "\n",
    "Once these are saved as numpy arrays in ascii format (as here) or (alternatively) in pickle format, these are passed as inputs to the `predict()` method in the PCNtoolkit normative modelling framework. These are written in the same format to the location specified by `idp_dir`. At the end of this step, we have a set of predictions and Z-statistics for the test dataset that we can take forward to further analysis.\n",
    "\n",
    "Note that when we need to make predictions on new data, the procedure is more involved, since we need to prepare, process and store covariates, response variables and site ids for the adaptation data. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 147,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "07b7471b-c334-464f-8273-b409b7acaac2",
    "outputId": "76fddc99-bed3-4bfc-f663-c21b1f39be37"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running IDP 0 Left-Thalamus-Proper :\n",
      "Some sites missing from the training data. Adapting model\n",
      "Loading data ...\n",
      "Prediction by model  1 of 1\n",
      "Evaluating the model ...\n",
      "Evaluations Writing outputs ...\n",
      "Writing outputs ...\n",
      "Running IDP 1 Left-Lateral-Ventricle :\n",
      "Some sites missing from the training data. Adapting model\n",
      "Loading data ...\n",
      "Prediction by model  1 of 1\n",
      "Evaluating the model ...\n",
      "Evaluations Writing outputs ...\n",
      "Writing outputs ...\n",
      "Running IDP 2 rh_MeanThickness_thickness :\n",
      "Some sites missing from the training data. Adapting model\n",
      "Loading data ...\n",
      "Prediction by model  1 of 1\n",
      "Evaluating the model ...\n",
      "Evaluations Writing outputs ...\n",
      "Writing outputs ...\n"
     ]
    }
   ],
   "source": [
    "for idp_num, idp in enumerate(idp_ids): \n",
    "    print('Running IDP', idp_num, idp, ':')\n",
    "    idp_dir = os.path.join(out_dir, idp)\n",
    "    os.chdir(idp_dir)\n",
    "    \n",
    "    # extract and save the response variables for the test set\n",
    "    y_te = df_te[idp].to_numpy()\n",
    "    \n",
    "    # save the variables\n",
    "    resp_file_te = os.path.join(idp_dir, 'resp_te.txt') \n",
    "    np.savetxt(resp_file_te, y_te)\n",
    "        \n",
    "    # configure and save the design matrix\n",
    "    cov_file_te = os.path.join(idp_dir, 'cov_bspline_te.txt')\n",
    "    X_te = create_design_matrix(df_te[cols_cov], \n",
    "                                site_ids = df_te['site'],\n",
    "                                all_sites = site_ids_tr,\n",
    "                                basis = 'bspline', \n",
    "                                xmin = xmin, \n",
    "                                xmax = xmax)\n",
    "    np.savetxt(cov_file_te, X_te)\n",
    "    \n",
    "    # check whether all sites in the test set are represented in the training set\n",
    "    if all(elem in site_ids_tr for elem in site_ids_te):\n",
    "        print('All sites are present in the training data')\n",
    "        \n",
    "        # just make predictions\n",
    "        yhat_te, s2_te, Z = predict(cov_file_te, \n",
    "                                    alg='blr', \n",
    "                                    respfile=resp_file_te, \n",
    "                                    model_path=os.path.join(idp_dir,'Models'))\n",
    "    else:\n",
    "        print('Some sites missing from the training data. Adapting model')\n",
    "        \n",
    "        # save the covariates for the adaptation data\n",
    "        X_ad = create_design_matrix(df_ad[cols_cov], \n",
    "                                    site_ids = df_ad['site'],\n",
    "                                    all_sites = site_ids_tr,\n",
    "                                    basis = 'bspline', \n",
    "                                    xmin = xmin, \n",
    "                                    xmax = xmax)\n",
    "        cov_file_ad = os.path.join(idp_dir, 'cov_bspline_ad.txt')          \n",
    "        np.savetxt(cov_file_ad, X_ad)\n",
    "        \n",
    "        # save the responses for the adaptation data\n",
    "        resp_file_ad = os.path.join(idp_dir, 'resp_ad.txt') \n",
    "        y_ad = df_ad[idp].to_numpy()\n",
    "        np.savetxt(resp_file_ad, y_ad)\n",
    "       \n",
    "        # save the site ids for the adaptation data\n",
    "        sitenum_file_ad = os.path.join(idp_dir, 'sitenum_ad.txt') \n",
    "        site_num_ad = df_ad['sitenum'].to_numpy(dtype=int)\n",
    "        np.savetxt(sitenum_file_ad, site_num_ad)\n",
    "        \n",
    "        # save the site ids for the test data \n",
    "        sitenum_file_te = os.path.join(idp_dir, 'sitenum_te.txt')\n",
    "        site_num_te = df_te['sitenum'].to_numpy(dtype=int)\n",
    "        np.savetxt(sitenum_file_te, site_num_te)\n",
    "         \n",
    "        yhat_te, s2_te, Z = predict(cov_file_te, \n",
    "                                    alg = 'blr', \n",
    "                                    respfile = resp_file_te, \n",
    "                                    model_path = os.path.join(idp_dir,'Models'),\n",
    "                                    adaptrespfile = resp_file_ad,\n",
    "                                    adaptcovfile = cov_file_ad,\n",
    "                                    adaptvargroupfile = sitenum_file_ad,\n",
    "                                    testvargroupfile = sitenum_file_te)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "75210821-ccb8-4bd2-82f3-641708811b21"
   },
   "source": [
    "### Preparing dummy data for plotting\n",
    "\n",
    "Now, we plot the centiles of variation estimated by the normative model. \n",
    "\n",
    "We do this by making use of a set of dummy covariates that span the whole range of the input space (for age) for a fixed value of the other covariates (e.g. sex) so that we can make predictions for these dummy data points, then plot them. We configure these dummy predictions using the same procedure as we used for the real data. We can use the same dummy data for all the IDPs we wish to plot"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 148,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "2d0743d8-28ca-4a14-8ef0-99bf40434b5b",
    "outputId": "00343be9-866d-4c9d-f243-351cbe9e4231"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "configuring dummy data ...\n"
     ]
    }
   ],
   "source": [
    "# which sex do we want to plot? \n",
    "sex = 1 # 1 = male 0 = female\n",
    "if sex == 1: \n",
    "    clr = 'blue';\n",
    "else:\n",
    "    clr = 'red'\n",
    "\n",
    "# create dummy data for visualisation\n",
    "print('configuring dummy data ...')\n",
    "xx = np.arange(xmin, xmax, 0.5)\n",
    "X0_dummy = np.zeros((len(xx), 2))\n",
    "X0_dummy[:,0] = xx\n",
    "X0_dummy[:,1] = sex\n",
    "\n",
    "# create the design matrix\n",
    "X_dummy = create_design_matrix(X0_dummy, xmin=xmin, xmax=xmax, site_ids=None, all_sites=site_ids_tr)\n",
    "\n",
    "# save the dummy covariates\n",
    "cov_file_dummy = os.path.join(out_dir,'cov_bspline_dummy_mean.txt')\n",
    "np.savetxt(cov_file_dummy, X_dummy)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "126323a3-2270-4796-97c4-94629730ddf7"
   },
   "source": [
    "### Plotting the normative models\n",
    "\n",
    "Now we loop through the IDPs, plotting each one separately. The outputs of this step are a set of quantitative regression metrics for each IDP and a set of centile curves which we plot the test data against. \n",
    "\n",
    "This part of the code is relatively complex because we need to keep track of many quantities for the plotting. We also need to remember whether the data need to be warped or not. By default in PCNtoolkit, predictions in the form of `yhat, s2` are always in the warped (Gaussian) space. If we want predictions in the input (non-Gaussian) space, then we need to warp them with the inverse of the estimated warping function. This can be done using the function `nm.blr.warp.warp_predictions()`. \n",
    "\n",
    "**Note:** it is necessary to update the intercept for each of the sites. For purposes of visualisation, here we do this by adjusting the median of the data to match the dummy predictions, but note that all the quantitative metrics are estimated using the predictions that are adjusted properly using a learned offset (or adjusted using a hold-out adaptation set, as above). Note also that for the calibration data we require at least two data points of the same sex in each site to be able to estimate the variance. Of course, in a real example, you would want many more than just two since we need to get a reliable estimate of the variance for each site. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 149,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "id": "cdd68cc6-212b-4149-b86a-24e842078e1a",
    "outputId": "f25fc8bb-3a7c-41f0-ebd7-60f39ebaf7bd"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running IDP 0 Left-Thalamus-Proper :\n",
      "Making predictions with dummy covariates (for visualisation)\n",
      "Loading data ...\n",
      "Prediction by model  1 of 1\n",
      "Writing outputs ...\n",
      "metrics: {'RMSE': array([0.55690777]), 'Rho': array([0.]), 'pRho': array([1.]), 'SMSE': array([0.]), 'EXPV': array([0.])}\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEXCAYAAAB/HzlmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACEz0lEQVR4nO2deXxTVfr/P2mSpvvedG9Zyr5LXSrYDuggixVFQKnCiOOIo4PKjFV+iCIIIzp8cfkO4qCO+sUFAZEiIriwCIIKZSlL2dvSfV+StEmz3N8fjycnLaUkhTRpe96v132luc1y7s2953Oe5zzneWSSJEkQCAQCgcAJeLi6AQKBQCDougiREQgEAoHTECIjEAgEAqchREYgEAgETkOIjEAgEAichhAZgUAgEDgNITKCTkNhYSFGjBjh0Hv27duHMWPGYOrUqbhw4QLmzp3b6uvWrFmDyZMnY/LkyRgxYgTGjh1rfX7p0iWMHTsWx48fd+i758+fjw8++MCh9ziT//3f/8Utt9yCyZMn45577kFaWhoefvhh5Obmurppgi6MwtUNEAicyTfffINp06bhiSeewK+//nrFDvWxxx7DY489BgCYOXMmHnzwQYwfP74jm9ohTJw4ES+99JL1+dq1a/GPf/wDmzZtcmGrBF0ZITKCTk9TUxNWrFiBgwcPwmw2Y+DAgVi4cCHWrVuHH3/8ESqVChqNBj/88APKysrw5z//uV0WxhdffIFFixahuroakydPxrx582CxWPDPf/4Tx44dg06ngyRJWLp0KUaOHNnsvRs3bsQXX3wBo9GIuro6/OUvf0F6ejo2bdqE7777DhaLBcXFxYiIiMD06dPxySefIC8vD7Nnz8YjjzyCTZs2YceOHfjPf/4DAM2eHzp0CMuXL4fFYgEAzJkzB3feeaddx5ScnIyVK1cCIHENDAzExYsXMWPGDPzxj3/Eyy+/jKKiIkiShHvuuQePPvooCgsLMXPmTNx22204duwYJEnCSy+9hKSkJADA6tWrrccUExODRYsWISIi4rLPnzlzpsO/gaDzIURG0OlZs2YN5HI5Nm3aBJlMhpUrV2LFihV4+eWXcf78efTp0wd//vOf8Yc//AGvvPJKu11YKpUKmzZtQkVFBcaOHYsHHngApaWlKC8vxxdffAEPDw+sWbMG7733XjOR0el02LBhA9asWYPg4GAcPXoUs2fPRnp6OgDg0KFD+PrrrxEREYG0tDR88803+Pjjj3H27FlMnz4dDz/8cJvt+t///V/Mnj0bkyZNwunTp/HFF1/YJTImkwkbN27EzTffbN0XEBCAbdu2AQAeeugh3H777Zg9ezY0Gg0efPBBREVFYdiwYSguLsaNN96IJUuWYM+ePXjmmWewa9cufPPNNzh79iw2bNgAhUKBL774AgsXLsR777132ecLugdCZASdnt27d0Oj0WD//v0AAKPRiNDQ0Ov+PXfddRcAIDw8HGFhYaiqqsKIESMQGBiIdevWoaCgAL/++it8fX2bvc/X1xfvvvsu9uzZg7y8PJw+fRoNDQ3W/w8ZMgRRUVEAgNjYWIwePRoeHh6Ii4uDwWBAY2Njm+2aMGEClixZgp07d+LWW2/F3//+9yu+dtu2bcjKygJA52nQoEF45ZVXrP9n1khDQwMOHz6M//73vwAAf39/TJkyBT/99BOGDRuGwMBApKWlAQBSU1Mhl8tx5swZ7Nq1C8ePH8d9990HALBYLM3azz5f0H0QIiPo9FgsFixYsACpqakAyHIwGAxtvufzzz/HunXrAACDBw/GsmXLrvo9CgW/XWQyGSRJwu7du7Fs2TLMnj0bt99+O3r16oUtW7Y0e19paSnuv/9+TJ8+HSNHjsT48eOxa9cu6/89PT2v+D0tv49hNBqtfz/wwAMYM2YMfv75Z+zduxf//ve/sX37dkyfPt36mqVLlwK4fE6mJT4+PgDonLZMa2ixWGAymQAAcrn8sv/J5XJYLBY8+uijViutqakJdXV1l32+oPsgossEnZ7Ro0fj008/RVNTEywWC1588UXrPIMtcrnc2jnPmDEDmZmZyMzMtEtgrsTPP/+MMWPGID09HYMHD8YPP/wAs9nc7DUnTpxASEgInnjiCYwePdoqMC1f1xYhISE4d+4cDAYDjEYjduzYYf3fAw88gJycHEyZMgWvvPIK6uvrUVFRYT2+zMxMDBkyxKHj8vPzw7Bhw/Dpp58CADQaDTZv3oxbb70VAFBdXY2ffvoJALBz504olUr07dsXo0ePxsaNG6HVagEAb731Fp577jmHvlvQtRCWjKBT0dDQcFkY87p166DRaHDvvffCbDZjwIABmD9//mXvTUxMhEqlwtSpU7FhwwbIZLJrbs8DDzyAf/zjH0hLS4PJZMKoUaOsk96MUaNGYePGjRg/fjxkMhluuukmhISEID8/3+7vGTVqFG688UZMmDAB4eHhuPnmm3HmzBkAwLPPPot//vOfePPNNyGTyfC3v/0NsbGx13xsK1aswJIlS7Bp0yY0NTUhLS0NU6ZMQVFREVQqFTIzM7FixQp4eXlh1apVkMvlmDZtGsrKyjB9+nTIZDJERUVh+fLl19wWQedFJlL9CwQCRygsLERaWhqOHDni6qYIOgHCXSYQCAQCpyEsGYFAIBA4DWHJCAQCgcBpCJERCAQCgdPodtFlFosFOp0OSqXyukQXCQQCQXdAkiQYjUb4+vrCw8N++6TbiYxOp8PZs2dd3QyBQCDolPTt2xf+/v52v77biYxSqQRAJ6rlSmtXc+LECQwePNjVzWiGaJN9iDbZjzu2S7Tp6jQ1NeHs2bPWPtReup3IMBeZp6cnVCqVi1tzOaJN9iHaZB/u2CbAPdsl2mQfjk4ziIl/gUAgEDgNITICgUAgcBpCZAQCgUDgNITICAQCgcBpCJERCAQCgdMQIiMQCAQCpyFERiAQCAROQ4iMQCAQCJyGEBmBQCAQOA0hMgKBQCBwGkJkBAKBQOA0hMgIBAKBwGkIkREIBAKB0xAiIxAIBAKnIURGIBAIBE5DiIxAIBAInIbTRUar1eKuu+5CYWGhdd9zzz2HTZs2WZ8XFxfjwQcfxPjx4/HXv/4VOp0OAFBfX4/HHnsMEyZMwIMPPoiKigoAVKEtIyMDEyZMwL333osLFy44+zAEAoFA0A6cKjLHjh3DjBkzkJeXBwAoKyvD448/jh07djR73eLFi5Geno7t27dj8ODBeOeddwAAb775JpKSkvDtt99i2rRpWLZsGQBg7dq18Pb2xrfffosFCxbg//2//+fMwxAIBAJBO3GqyKxfvx6LFi2CWq0GAHz99de4/fbbMWHCBOtrjEYjDh48iDvvvBMAMGXKFGzfvh0AsHv3bqSlpQEA7rrrLvz0008wGo3YvXs37r77bgDAjTfeiOrqahQXFzvzUAQCgUDQDhTO/HBmeTAeffRRAEBWVpZ1X01NDfz8/KBQUFPCw8NRVlYGACgvL0d4eDg1VKGAn58fqqurm+1n7yktLUV0dLQzD0cgEAgEDuJUkbEHSZIgk8ma7Wv53Pa1Hh4el72H7XeEEydOON7YDsBWgN0F0Sb7EG2yH3dsl2iTc3C5yISEhECj0cBsNkMul6OiosLqXlOr1aisrERkZCRMJhN0Oh2CgoIQERGB8vJyxMfHAwAqKyut77GXwYMHQ6VSXffjuRaysrIwcuRIVzejGaJN9iHaZD/u2C7RpqtjMBjaNTh3eQizUqlEUlIStm3bBgDYvHkzUlJSAACpqanYvHkzAGDbtm1ISkqCUqlEamoqMjMzAQCHDh2CSqUSrjKBQCBwQ1wuMgCwaNEirF+/HhMnTsShQ4fwzDPPAACefvppHD16FJMmTcJnn32Gl156CQAwc+ZMNDU1YdKkSVi2bBlef/11F7ZeIBAIBFeiQ9xlO3fubPZ8+fLlzZ7HxMRg7dq1l70vKCgI77777mX7VSoVXnvttevbSIFAIBBcd9zCkhEIBAJB10SIjEAgEAichhAZgUAgEDgNITICgUAgcBpCZAQCgUDgNFy+GFNw7ZhMgE5Hm14PNDbS30Yj0NTEX+fpCSiVgEoF+PjQo5cX4O1Nz+Vy1x2DQCDomgiR6YTU1wNVVUBREVBcDFRXAyzLjsVCm4cHPUoSYDbT/+RyQKGgfRYLPWfvkyTA3x8IDQXUaiAkBAgIIAETCASC9iJEphMgSSQk+fnA6dMkMhYLWSoVFSQ2lZX0OvZ6mYysFpmMBEcmI8FoaqK/2WvZ/wICgOhoEhhvb/6+S5fCcOkS/S8qCggOBgID6X8CgUBwNYTIuDEGA5CbCxw9CtTU0PPiYuDsWfrbywuIjCQB6NuX3mPb+TOxaSk+ttaLxULPDQYSsqwsEjH2WSaTLzw8gJISsoI8PMgCio4G4uOB8HCyejw9O+y0CASCToQQGTdEpwNOngSOHePCcuwYiULPnsANN1CnLkmAnx919GFh9LeXF/3P05MLAoO50oxG2gwG2rRaoLaWhKy+nj6XCVBurgEVFcDx42QJyWRk7fToAVy8yK2l4GAgIYGsndBQwNfXVWdPIBC4E0Jk3Ai9XobffgOOHAEaGsiqKC8H4uKAm2+mDj0ggIQmIoI6di8vx7/H2/vK/7NY6Lu1WhIcDw89fH1JVGQy+r9ORxbWr7/Se1QqEpiCAgogkMnoMT4eiI0lSycwUAQWCATdESEyboDFQnMt27eHIDAQ+O03oK4OGDoUGDiQJuQHDABiYqizdiYeHmQR+fmRK06v12HoUIpaq6sja6e4mASuXz8eXFBZCRw4QALl4UHWVXw8WVhKJQlMZCSJjlpN7/fxce6xCAQC1yNExsVUVgJ79pAVkJXlB0kChg0jMUlIIHEJD3f9RLuXF20REUD//iQuGg0JT2kpUFhI4gGQ6Oj1tO/QIbJsVCqyyGJiSMAAEs+YGNqCg4GgIBIkgUDQdRAi4yLMZiA7G9i/H8jLo844MtKEIUNoEn/QIOdbLdeChwe1LzCQLJabbqL1OTU1POLN15eOhYVQV1aSi62xkd4fGkrvVaspqEAmI9dabCxZPUFBIpJNIOjsCJFxAVot8OOPwJkzwO7dNIofOxaQpEZMnkzPOyPe3rRFR5M1ZjTSvE51NUWneXuTJcQCCxobSYyyskhgPD35PI6vLw+vVqvJ2lGrSXgsFlcfqUAgsBchMh1McTHw7bfAuXPAL78At9xCnXJyMlBZqem0AtMaSiVZK6GhQJ8+JCw6HbnYKiroXPj5kbXD5nYqKsja0elIZIKCyM0WEcEj5goLQ1FaSuctPJysHX9/YfEIBO6IEJkOQpIoLPnHH2mCvKmJrJdhw2jz9KRV/F0ZmYwHFcTEAMOHU1h0fT1tpaUkGBER9FqzmUKsy8uBU6fIMpLLAZPJD2Zzc+GRy7nFw4QnIEAIj0DgapwqMlqtFg888ADeffddxMbGYv/+/Xj11VdhMBgwYcIEzJs3DwCQk5ODF154ATqdDklJSVi8eDEUCgWKi4uRkZGBqqoq9OzZEytWrICvry/q6+vx7LPPoqCgACEhIXjzzTcRHh7uzEO5JiwWslr27QN27KCorD59gJQUWlfSnVEoaB4mJITCpAESlvp6WrtTVsbnblgIdW6uAbW1QE4OiXVrFg9LmRMezjMZMOFRiKGVQNBhOO12O3bsGBYuXIi8vDwAgF6vx4IFC7B27VpERUVhzpw52LNnD1JTU5GRkYGlS5di+PDhWLBgAdavX4/09HQsXrwY6enpmDRpElatWoV33nkHGRkZePPNN5GUlIQ1a9Zg8+bNWLZsGd58801nHco1YTRS9Nj+/WTF3HgjhSbfeqsI4b0SKhWJQ3g4iTFA8zcaDQkPoIefX3PhYRYPEx65nAQlPr658AAkWlFRFFzAghdEVJtA4BycJjLr16/HokWL8NxzzwEAsrOzkZCQgLi4OABAWloatm/fjsTEROj1egwfPhwAMGXKFLz99tuYNm0aDh48iFWrVln3P/TQQ8jIyMDu3bvx6aefAgDuuusuLFmyBEajEUo36ymamoDvvwd++onmGVJSaFHlsGFiYaKjsKACtZqv3bEVntLSyy0evZ6E5/RpnrPN358snqio5sITGEj7oqJ4VFt7FroKBILmOE1kli1b1ux5eXl5M5eWWq1GWVnZZfvDw8NRVlaGmpoa+Pn5QfG7b4Ptb/lZCoUCfn5+qK6uRkREhLMOx2EMBmD7dmDnThpd33478Ic/AL17u7plXQdb4WG52/R6vn6nvJzEh2UrMJtJbCoqgL176TeSySiSLT6eBMbLi4THYiFBYsLDEoMK61MgcIwO805bLBbIWGZGAJIkQSaTXXE/e7Sl5XPb93g4OMN74sQJh17vCEajDAcO+OOXX/xRUOCFG27QoGdPDXQ6E7Kz235v9tVe4AI6a5v8/IDERPo9dDoPNDTIUVMjR1OTEh4edOlbLBR8kJ+vxOHDSuj1HpDJAC8vCyIjDQgPN0KlsgCQ/b6o1IKwMCPCwowIDDTD398MLy8LZDIgKyvLyUftOO7YJsA92yXa5Bw6TGQiIyNRUVFhfV5RUQG1Wn3Z/srKSqjVaoSEhECj0cBsNkMul1tfD5AVVFlZicjISJhMJuh0OgQFBTnUnsGDB0OlUl2XY7PFZKLJ/QsXaDR9zz3AhAlBCA29+nuzs7MxdOhQh76vqYnW3TQ0UNivRkOPBgNPhMmQy3nRMi8vGsH7+vLCZd7e9LetlrenTc7merTJZKJzpdHQItGyMoruY6HUBgPtLyykcwvQuYmLI/GqqqKFp2x9j053FikpfREWRhaPr2/z8+gKsrKyMHLkSNc2ohXcsV2iTVfHYDC0a3DeYSIzbNgw5ObmIj8/H7Gxsdi6dSvuu+8+xMTEQKVSWU9oZmYmUlJSoFQqkZSUhG3btiEtLQ2bN29GSkoKACA1NRWbN2/G448/jm3btiEpKckt5mMsFprk37aNROaOO4AJE67v4sqGBurgSkpoIWNtLc1NlJVRp9jQQB0kwNP6s1T/AP+buYn8/GgOIiiI3ENKJUV6sRT+NTUK6PVdb35CoaDfJTiYXGUA/X5aLQlPVRW528rLyc3GsldXVlJuOa2WC0xcHCBJXpDJeFSbpydFtcXE0HkMChKZqQXdE7tE5tNPP8WDDz54TV+kUqmwfPlyzJ07FwaDAampqRg/fjwAYMWKFVi4cCG0Wi0GDRqEWbNmAQAWLVqE+fPnY/Xq1YiKisLKlSsBAE8//TTmz5+PSZMmwd/fHytWrLimtl0PJInClLdto4WW48ZdP4HRaEhQzp0jMSkooFQ0TU28wmVwMHVmcXG86FhrI2kmMmYzWTxsfcq5czwcmBU8Cw0F5PJgXLhAkVoREc3TvXS1GjIeHnScAQEkDgBfQMoCDEpKaE5Hr6f/G40kSGfO+OLiRdqnVFLWgrIy4Px5LjxeXiQ8LDN1UFDXE2+BoCV2icznn3/ebpHZuXOn9e/k5GRs2bLlstf0798fGzduvGx/TEwM1q5de9n+oKAgvPvuu+1qj7M4cYJW8h88CEycCIwff20CYzZTh3byJKXVP32aVsgD1PkPGMDLJYeE8LT/rJaMQkGdm+1UlcVCn2s2k7uI1ZTR62lkXldHm1ZL+yorgfPnvZGf33zdSXw8fScLBY6I4JaQq11E1xvbBaRRUXTeAbIYmfCUlQFKpQ5hYeQTNRrJlXb8OJ1PgM4fSwZ65gwJkSRxQYuOFklCBV0Tu0SmZ8+eWLhwIZKSkuBjE14zbtw4pzWsM5GfD2zdSpFkzIIJCWnfZxmNJCpHjtAq99OnqTOKjwduu6151mI/P8dWtHt40Ha1Tsxk4nM8R49Wwd8/yOqKq6ggQWUp/W2rZAYHU0fM2hcYSPM/XREfH9oiImhxbVBQLfr0iW8mPOXldA4liYS9tpYEprqaPoMJT3w8CTRbJBoWRhZpZCSdx64o3oLug10iU1tbi9raWuTn51v3yWQyITKgDmPzZuCbb2gdzMSJNNp3FJMJKCjwxPHjwOHDJDShoZTTrEcP2kJDO2aUq1Bwt1FtrQEDBvCElhoNjdLLy0lwdDpyt/36Kw8yYAXLWFLLlivuu2qqlyuFVLPsBaWlJD6NjfQ/k4lbPLW1JCTe3lSUrqCAr+Px9KRzGRdH10BwcNdzVQq6LnaJTGsuKwF1INu2AVu2AElJ5CJjvnxHKCmhfGZbt4aiupo66DvvpIJlsbFtV7LsKFi1SzZ6t60pU19PglNWxp+XlABnz/KMyWyhZGQk39wpEstZsDo8tsLT2MgLwJWU0DVjNPLMBWVltICXreMJD6faQmyQIZPRuUtIoPMYEiKCCgTui10iU1FRgRdeeAH5+fn47LPP8Nxzz2H58uVunS/M2Vgs1BFs2UKdxB138BQo9tLQQHVkfvqJ0t17eclx112UESAqyv1zbNnWlPk9kYN1MWRNDY3cKyoooKCqiiLujhyhTtLDg46RVc+MiGi+2p6Vce6KMIsnMhJWK5Flp66spLk3Fk5tNtMc2aVLdK1IErkge/akfV5edC59fEh04uJ4uWuBwB2wqxtbvHgx7rjjDnzyyScICAhA//798cILL2DNmjXObp/bcuIE8PXX1AFMnkwZhR3h0iXKZfbdd+QSuf12IDi4Gn/4Q0inTjnDRu7h4TyFP4tiq6wkN1tNDR+xZ2XxEbtKRZZbbCyPZmPCExDQdS2eltmphw0jcamv55VHi4tJvIHmWQv0erp+YmPpNSdOcBebXu8Hf38S8aCgruumFLg3dolMUVERpk+fjs8++wxKpRIZGRlIS0tzdtvcltJSsmCOHAHuv5/mTey9gZuaqGPdvp3mXm64ARg1iiaPL15s6tQC0xoeHjRxzUotA+Qa0mqbC49GQ/tKSmg+irnZfH1pTic6mjrhiAigvt4LoaH0vKvWkWFh6cHBPDs1c7Mxayc+nmcsqK6m67G+nlcd9fKikggKBS8Il5BAA4CgoK4p2AL3wy6RYelfGFqtttnz7oReT5P8335L1sfYsfavdairA374AcjMpJHqvfdS0bL2RqJ1VpRK3oEmJNA+lrmAze9UVjavM3PuHLmKZDJAr49AVhYJT2AgdahqNXWeTNC6YhiwrZtt8GC6htjcTnExbQYDX1Sane2JwkI6Z8HBlGLnzBkuOj170vkPCxMRbALnYZfIjBs3Ds8++yw0Gg3WrVuHDRs2YMKECc5um9shSVQT5quvKF3/uHH2r4UpKiL32tat1EGMHUsT++4+79JReHpeXleGCQ9L/VJZSZ1qXl4jGhsDrRFtLDRbrSa3EVtvEhFB+wICqBN1hwCK64lczs9Z7950fWq1fD7MaGxEaCgP0LhwgbIVsMCBoiJah6VQkFXYsydZO+HhYpGo4PphVxf3+OOPY/PmzbBYLNi/fz/uv/9+TJs2zdltczvOnyehAEhgevWy731nzwIbNlBNmTFjgD/+kTpAQdvYCg+zeIxG4MiROkRHR6KqioSnpoYszIoKCgdubOQZD0JCeCi1nx8PMmDrTxxda+TOsFIG/v4kFl5etUhMjLdaOgUFJDaSRBbi6dPkZpPJ6JwkJvK5G7WahCs6mmV+cPXRCTordo+j09LS0LdvX3h4eKBfv35XzIjcVamvJzfZwYPAjBnAiBFXf48kkZ987Vqa6J82DRg9mjo2QftQKgF/f7M1QAAgt1FDA43ia2tJeKqqSGyqqoCLF4Fjx+i1bJI9OpqCCnx8SHhYkTQmPF1lESkLO4+JoYJ5DQ3cvRYTQ0EZzO127Bhd50olDaDy8ui9CgVZlz17khj5+7v6qASdCbtE5tChQ5g3bx4UCgXMZjOUSiVWrVqF/v37O7t9boHFAuzeTXMpo0aRNXK1xXAWC7km/vtf8pPPnAmMHNk15wpcjVzOR/CsnLUk8XQ5zN1WVcUjtsrKyMJk8zyentSBxsbyz1KraR9bmNoVwqpbio5WS9ZMYSGdO72erMWyMkr2ajTSuejXjywfhYKsnT596FyFhQmXr6Bt7Lo8li5dimXLllmzIO/cuRMvv/wy1q1b59TGuQtnztA8TFgYLbi82kS92UzJMt97j27Ahx4CBg3qOm6ZzgBbPe/tTRYKc22yyDadjjrXqip61GqpY7Wd55HL6TdnmZTZokq1mlxIzOrpzJ0sC52OjyfBra2lc5KfTy5KFkTA1unIZGQF5ueT8CqV9N7evYWVI2gdu28PJjAAMHbsWLz11ltOaZC7UV9P8zDnzgF//jON6NrCYqG5l3ffpZtwxgy+0lvgemwj25i7zWLhudpYWDWzeioqaASv0fAkoaxUc2QkCU9wMKDTecPfn37zzupuY1FoLBKNJfosKSHXWW0tDaCqq8lt3NBAVlG/fjzpZ0gIt3LEXI4AsFNkhg4dim3btmHixIkAgH379qFvN+g5JYkWvH3zDZCaCtx6a9vWiMVCFsyqVTR6Tk8nP7bAvfHw4CP6iAieucFg4Gn+ba0e1vGePMnfbzSGIzubrB5fXxKbyEies60zRrcpldxyGzaMRKWykqya6Ghan6PTkauNZXKIjycrx8+PXJC9etEWEdH5jl9wfbBLZPbt24f169dj8eLFkMvlqK6uhkqlwg8//ACZTIbDhw87u50u4eJFWnQZHk7RZG25AiSJFlmuXk0uloce4hFRgs6JSkWbbXRbyyCDigpWT0aPhgayYk0mEh6Fgq6d2FheCoHV5GHpeDpTx8sSn7JFoCxU+uJFEl+LhRbW7t9PAs3mcliYdEQEWfV1dXLrXJig6yMSZF4BvZ4WXB47BvzlL+RzbouTJ4E1a6hTEgLTdWkZZMByjx09WoOYmEiru62ykkSovBzIzqZIN1YQjrnqwsO5xcOKwQUEdA7hYVkFQkNpvrGxkQT30iXKn2Y0kpWTl0euNbmcrPqLF4GqqiBcukQWY0ICWUoiq3TXxS6RiYmJwbZt27B3714YjUaMHj0a99xzj5Ob5lp++41S+I8adXU3WW4uCYxeDzz2GF9MKOgeUNVLyepaSkyk/QbD5YtJ2cR6bi5w9ChfzxMYSBaCWk0i1DJvm7t3wt7e3Moxm7mVc+ECHbNtxFp1dRDy88mtxqLT4uLovEVG0vEKug52icwHH3yALVu24N5774UkSfjwww9RXFyMJ554ol1fumbNGnz55Zfw9PTExIkT8de//hX79+/Hq6++CoPBgAkTJmDevHkAgJycHLzwwgvQ6XRISkrC4sWLoVAoUFxcjIyMDFRVVaFnz55YsWIFfK9TvvPychIYT0+KJmsro21FBQlMaSkwZ47jmZgFXRfmbgsN5QMPFt3GhKeigjrhmhrqdI8d41mqWXmEsDBy2UVHk/i4e10eFpUXFkbZLXQ6uqdYxFp+vhb+/kE4fZqOm63LOXOGxMrfn9xqcXEiRLorYNfPt3nzZnz++efw+30V4dSpUzF9+vR2icz+/fvx9ddf48svv4S3tzeefPJJbNmyBStXrsTatWsRFRWFOXPmYM+ePUhNTUVGRgaWLl2K4cOHY8GCBVi/fj3S09OxePFipKenY9KkSVi1ahXeeecdZGRkONyellgsVOFy3z5ye7UVTabRAJ99RqvM58yhNDHuACuvbLHQxvzfzF3DSjMLn3jHYxvdFh9P+1oKT1kZreWxjWxjczwREdRRBwfTqJ+tyA8Kcl83m68vucp69qTrct++emvZaa2Wjr+0lLKSWywkqOfPkztRqSSB7t2bZ20QdC7sHiP42fy6/v7+ULRzeHHq1CmMHj3a+nm33XYbNmzYgISEBMT9XpQkLS0N27dvR2JiIvR6PYb/nkd/ypQpePvttzFt2jQcPHgQq1atsu5/6KGHrovInDsHbNoEDBlC5Y6vdJhNTRR19s03wJ/+RNmUO7LTNpl4x1RdTb7uixepc9LpaHLaZCKBYchkJC4qFXVIAQHUQUVH06gxMJBuYi8vmuQV4acdQ2vC09REvy0Tm/Jyniz00CFyxXl4UAeekECuNfZbMjebO+awVSiAkBAThg6lrBkaDR1bXh4dh9lM+06fpkhNpZIn8vT25iHSMTFk5Yhr1P2xe07m448/Rnp6OgDg008/RXR0dLu+cNCgQfjnP/+JOXPmwNvbGzt37sThw4ebJdxUq9UoKytDeXl5s8Jo4eHhKCsrQ01NDfz8/KxCx/Y7wokTJy7bZzDI8OWXYThzJhgzZpSjrEyH1j6W0sX44KOPonDzzfUIC6vF2bPS5S9sBzk5p1rdT0kO5aioUODECV/k5nqjvp6OXyYDfH3N8Pc3ITjYhPh4E/z9TfD0lCCXS1bxs1hkMBhk0Os9oNHIUVvriZISD/z2mxyNjR6wWGTWz/P3NyEkxIjERH/k5Z1HQIAFPj5mqFSSW1hAVzpPrsRZbWIZB/R6GXr0kKO+Xo7qaiVqahTQaOTIyVHil1+UkMmk311VTYiKMiAgIBhHjlxEeLgRAQEm+Pub3aZTzs7Obvac5qJkqK1VoLxcgaYmFUJCPGAyyVBYqMDhwypYLEBAgAnx8XoEB5uhUEiIjm5CTIwBwcEm+Ppem6pmZWVd0/udgTu2yVHsLlr27LPP4vXXXwcADBs2DCtWrGjXFyYnJ2PKlCmYOXMmgoKCkJycjH379jXLhSZJkrW8QGv72aMtjuZSGzx4MFQtVszt30+TsePHA1On+sPHp/X3nj5NkWe33AL8+c++8PePcui7r0ROzikMGMB9bhYLWSmnT1Nxs0uXSADUalq3068f+a99fMg6aW/nb7HQyNlgoOCFujpKpnj+PPDzzxoAFLutVPKIqsGDaSTJoqE6Unhanid3wBVtYqvx2aLRkhK+hic3F6itrYe/fwCCg2nOQ63mVisrZOaKNEfZ2dkYOnRom69h2QcqKshCLy/nhdzy8uhe8PQkq91gIOs7MJBbOczVZi9ZWVkYOXLkNR3X9cbd2mQwGFodnF8Nu0Tmhx9+wNq1a9HY2AiLxXJNE+xarRbjxo3D7NmzAQDvv/8+brrpJlRUVFhfU1FRAbVajcjIyGb7KysroVarERISAo1GA7PZDLlcbn39tVBTQ64vuZzWxFxJYKqqaKLf25sKljkjjYbBQJ3EV1/xldRDhgBpaXTzXO8cWh4evKJlYCBfz3D77cCZMyWIifGHTkc3/MmTFJL6/ffUySkUJDxDhtCCvZAQOiedccV7Z8PDg1s5sbHkftLrqSOmVfm1UKkCUFUF5OTQ78be07s3zelERZHosEJm7pJbzzb7QN++dFxVVVSeIDKSnhsMJKg//ECiFBJCEWphYXQc0dE83U1wsPsGSnR17BKZzz//HA8++CC8r8PMYmFhIZ5//nl8+eWXaGxsxMaNG7Fs2TL8/e9/R35+PmJjY7F161bcd999iImJgUqlsip6ZmYmUlJSoFQqkZSUhG3btiEtLQ2bN29ulvamPRw4QBOP06dfOUJMrwc2bqSO/x//4MkYrxd6vQz799N3VFXRDfPkkzx9iStouRp+8GC6oRsbaRTNhOeXX8i6A+gGj4mhktSDBtHN7+fnPh1YV4YNFtRqQJK06NOH5jiYhVNaSr/Z2bO0eJhVLu3Zk36z6GheUyYoyH3mPLy8qH0ssSezcvLyKFDCbKZ9Z85Q/jkPDzqWxEQSVZWK5nV69ODZtt3B7dsdsEtkevbsiYULFyIpKQk+NkP8cePGOfyF/fv3x7hx43D33XfDbDbj4YcfxsiRI7F8+XLMnTsXBoMBqampGD9+PABgxYoVWLhwIbRaLQYNGoRZs2YBABYtWoT58+dj9erViIqKwsqVKx1uC6O4GPjyS7oArzTZL0kkRF9+SelirmcCaoOBSjG/914MZDJamzN6tPuWyJXJeDZftZqEhOX/qq+nm/74cWDXLrLGWJbj2FgKkOjXj0aWLPWIwHkoFNwi6NWLFzCrrSXRKSkhV9TFi3zdDnM7MSuHudcCAtzjemxp5TQ10aCM5VjTamlfdTUJjl5P11mPHiQ0KhVdez16kKCGhrr4gLo4dolMbW0tamtrkZ+fb90nk8naJTIA8OSTT+LJJ59sti85ORlbtmy57LX9+/fHxo0bL9sfExNzXTIRsDT+J05QGPKV4hkuXqSklzffTPMh18P0tlho3uP992lUNniwDlOmBHTKME1biyc6mlw3ZjPP/VVcTMKzYwcVcJPJ6GaPiyM3W79+JKq+vu4bitsV8PDgKW1ssywzS6e4mESHuddYQbO+fWlAkZDAk1+6y+/k6UmCGBVFgxitlkTn0iVqq9FIQsPCpM1mXgk0Joauw4qKYDQ20uuZy9cdBLUr0O3TyuTmUp2YoUOBm25q/cLSaICPPiLXwbRp1+fmqqkBPvmERlo33UQCV1amgZ/fdfbBuRC5nM8ZMDeHyUQWDxOeEydIeNg4QqmkTq1fP5rnYWsjfH2FT90Z2M7rMNFhczrFxdQxFxWRFW80kmUUH09WUVQUL2QWEuI+iybZYIcdDytkd+kSHQ8b/LDrTyYD9Pog1NXRoMfTk+dpY4LKKoYKHKfNyyIvLw//+Mc/kJubi1tuuQWvvPIKQruQbWky0cjm0iWaY2mtTozFQpPcv/4KzJtHnd61YDZTxtr33qOO8x//oA5YJkOr4dJdDYXicuGxTTrJJqmZu81i4R1hQgJZSCaTEhERdP5EgMH1xcODOtSgIBISk4miDauqKOKwtJQef/yRXMje3jS5Hh9Pv09CgnvNeXh48BLeffuSULL5nPx8Eh+zGbhwoRE1NXTtWSx0XMzS8fbmAS5xcdQHuPPiV3ejTZFZsmQJ7r33XiQnJ2Pjxo14/fXX8dprr3VU25zO2bOUZfnmm8mSaY0zZ4APPwTuuosmva8FnQ744ANyQ0ycCKSkiDkJ4PKkkyy4gFW2rKsjX/uZM8C6dUBNTTR8fLibZMAA2sLCaAQrFpJePxQKngizb1+aP6ytpQFRQQF11rm5ZBEA/HWxsbyTDg11n8GAUslLbQ8cSHM3tbXA/v1aqFQkpmzQU1JCfYTZTNdTRASfn2IDHxYsERxMLkhxP19OmyJTWVmJhx56CADw7LPPYvLkyR3SqI6gqYncNLW1FLLc2jxIfT0JTFgY8Mc/Xlt0VGEh8MYbdME+/zxdsIIr07KyZWIicMcdNBI9caIEanWide7gt9/ot7S1emJjaeDQqxc9Z3M97jC67syoVHTtRkTQ+WXzOUVFdI2Xl1MAwYED9FvExfFsyz170m/pTpkIPD3JMunVy4ChQ7mlw8KlS0vJmjOZyIWYk0P9gocHd6lFRdG1xea72PxQZyzn4AzaFBnb1DFyubzdqWTckfPnga1bKZqstfxkzE129Cgwfz6NVNqDxUKWy+rVNEK//37XhSN3BZRKwM/PYg1nHTGCWz0sui0vjxawfvUV7Qf4SLRnT5rrYaWChcvt2mDzH3FxfLEkS/lfXk7Cs2sX/c/bmwYLXl40yR4X514BBEBzS6d/f7p/6+poY4ERWi29VqcjETp/nsSJRV3GxNCyA39/vgYtPJz2saAClr6pO9Cmaki2ia/g+Kp6d4b5+8eObf0iv3AB+PhjWgB5tZLLV8JkojxoW7YAU6cCycli8tAZ2Fo9oaEkJGPGUMfW2EidQU0NCc+5c7Smx2Rq3in07Usjbramx9dXrOtxFLn88gWULOX/pUtkHeTnA5cuBeHgQfIQ9O1LwsMSYAYHu5er08ODHxPLpN3YSKLDIvLKyri1w6qHstBpDw86nvBwOr7wcBIXFtYfEsKzbLNBj7d31xKgNkWmtLQUS5cuveLzhQsXOq9lTmbvXuAPf2h94aVOR26ykBByk7XnojcY+PzLU0+JMsyuQC5vvpCUrW0yGqkz0OnIJZKTQ3VOvvmGrCKWZj8ujuZ6YmJoolfM9ziGlxd3HQ0fzrNM//JLDeRyf1RU0Pqw/fvpnCYk0IAuMZH+Dg11z6zLbEATGcmL1jU0kPDU1vIFrwYD/Y/N+xQVUUCLxcKT1QYH03GyOR3mLJLLgcrKYJSX80AZZnWzzdOTBkLOGLiydrNUU2x+tD20KTIPPvhgm887M3L5lSfef/6ZxOH556lzcZTGRuDtt8lt89xzNFJxNlotuSfq6uhmrq+nC4Ol+7dY6IL08uI3SVAQH6W5k8vC2SiV3F8eHU0RbgDdUMzldu4cWT4bNpAoSRLd2JGR5Ifv1486T+b6aGH0C1ogk/HO0mDQIjGRd8iXLtHfhYWUo+/bb0nMExOpE2fFzEJC3HNinRLU0hYdzUt+NDbSvcgypVdU8DLVksSL2rFcgVotL2JHYdWByM3lAhMczF27TFgkic6Jlxc9MgFSKPjGynyw99j2CUYj3wwGEpbGRvqbHRtrryRRvkZHaVNk/va3v1227+TJkxg0aJDj3+Rm3HwzTQq3pLiYwotvv719bjKtFnj9dXrMyLj+uc0sFrogT52iaKuCAhoh1dZe2+f6+FCnyVLFR0fTZjJ1n2E7u0GDg2kkfccddL6Z+JSVkdVz8iSNvtkEdkAA4OOjRlISWaxhYdz1IVxurWM79zFkSPMAAnY9X7pEpasBcjX160fWKEsNExjo3u5nNphTq3n5dmb16HS01daS8NTVcZGxWMjVm5urh58fiVRpKT2azfzzWX0ogM4nc7MplbQpFPzRFlZfiiXGNRrpkW06HRcWdo1LEp3z6y4yrbFw4UJ89dVXjn+Tm3HLLZd3AEYjzaGYzcCkSY53EFot8Npr9DlPPUWdzPWgvp7mEX75hW46Zrb6+9MNd8stfLIxKIj2s+zIbAQjk/GVz42NdKGzioxs3UBJCWU22L/f9mLubU1J0rMnf4yLc5/Fd87Ew6P5fA8bpbL5Hq2WQnh//lmGH34gQWKJQyMimls9gYH024got8tpGUDA6uiwMOnKSsq1tncvd60NHEhWDgsguF73mzOxtXpawq6pxka6T48c0SIqiu5/jYbXiJLJuGXBNubaMhr5/FBTE/+7teuNzQspFDTIDAigv5klxPoNJkjtPb/doJtonZiYy/edOgV8/TXw6KOk2o6g05EF09RESS2v1f2k11O6m127uB83PJxymg0cSBtbxGkvCgW162qRcmYz3djFxcDBg+XQaNTWzAhGI/+shAQaobGJ2169uo/bzXa+JzISCAurQp8+oWhqos6ALSo9c4Zcr2YzdQb+/hRe3asXzQeGhjJLqHuItj3I5XwBZb9+zQMICgqo0y0qArZto/vCx4fOZf/+NACKiqL3drbJc9trCgBqagyXrd+zdW3ZurrYPubyYmJjsfDihbYuXTb4lMu5xaNUksAw15tS2dwF5+FBYu8oDl/WLSPOOistb2iNhibq+/QBkpIc+6zGRmDlSnp86qlru7gLCii0+ocfSLiio2nh5m230boEmYzXENHp2j8xyj4jIICeX7hAHSObbC0tpYs1OLgJI0bQefH1pc6yupqsn7w8snq++45/bmQkdQzx8eQmCAigiCK5nG5+mYza7eHBR0fe3vRoMFDH7OMDjBxJn6XVUlskid5ve7y2x+AuE8SenrQFBZHw3nUXHSezegoKyN22ezfNPTCrR62mczZsGB0nOybhbrs8gECrpWuwsJCs79paOq/HjtHr1WqKWuvViwZCLNW/O87nOAoTgyuVInEmJlP73uewyKxfvx7FxcXtrozprvz0E406X3zRsdG40Qi89RZd6NciMLm5wHvvRSE7mzqd0aOpg2J1MJgfFaCOVSajx/Z2rrafAdAIpbaWvqesjNpw8SLg4yNDdjaNDPPyyD03YEDz9DoHDvAUHY2NZBHu2cP/7+NDI3i2+js8nAkYjVBZOp+zZ3lCTVY3pL6euwdbHu/1OA8dASuT7OtLHR4bxNhaPadP03boEHdV+vuTK2joULIWmSu0OwsPVW2ljZVrZmtzCgt5qeqDB8m1plDQNctcvGzwExTUNUSnM2CXyHz//ff45ZdfMG/ePNx9993QaDT429/+hj/96U/Obl+HUFpKCTDvuMOxUGOzmYIECgqAZ59t3+iioIASZf70E6BS+eDBB2ltDotqa2lxAPR3y32OEhBAbrjychpxh4XRSPDAAerUevemUfbhw74YOpREsKSE37TV1WT9qNU0uszPJ3EYPZoWnH77LbBvH3UK+fn0etvcbEolCU5iIl+bEh9PnYTRSD750lLqoHU66qADAlgUncI62r9wgfZ5eJAoOQJL/shcp+xvRz+nvbS0eiZNap65Oj+ffqPMTBIjth4oIYEsvd69aZ6nO1s8Ldfm2OYmYxkIbHOtsQSftqJDgx4xSeYs7BKZ//znP1i2bBm+++47DB8+HEuWLMGsWbO6hMiYzeSeMpmo7LK9ayAkiVaUHzpEoc6OjqT1euCzz6g+jVJJxdJGjMjF8OGJzV5n66Nta5+jsKiVwECaexk3js5DRATdlLNmkesqOtqApibq4Hr1IrFITCQXWWAgfUZyMlkw8fG0+hmgDrtfPxqtM/+4Vkuuv40byYKpqCBRYyN3lYo6Tj8/ngl42DD6Xkmi/cXF3Hqh6DcSG2b5OEJREXXyRUX0nP3dUSLTGi0zV996K8+lpdFQx3n0KF03LJtBQAAJ/803U8cZGNg5JsGdQcvcZKyceHk5L2NQVESWtsnEU994eYWgoID+ZgE0vr4iQON6YJfISJKEfv364b333kNKSgr8/Py6zNwMK3M8Y4Zjk/0HDtAI85lnWs/e3BYHDwL//jeN7MeNAx55hC7qc+c6NqlT795kCbDwypEjKYKHlRUfOhTYtUuGoUNJRGz/Z897s7PR7L0338yTjJ46RZ1A3760IO/o0eYFz377jbczKIg60d69yS+v13taw8tjYppbI47Q8r3t/RxnY5tANDqaSkMw4amro2v42DFaQGw08sWkoaEhMJlo4BAY2D3T57BKoRERFCqt13NLp7iYXLwlJcCxY344fZrOXVQUWYtRUbwaZ1AQiXl3tRivBZlkh1pMmzYNs2fPxpIlS/D111/j1KlTeOutt7Bp06Z2fWlmZibWrFkDAEhJScHzzz+P/fv349VXX4XBYMCECRMwb948AEBOTg5eeOEF6HQ6JCUlYfHixVAoFCguLkZGRgaqqqrQs2dPrFixAr52DN8MBgNOnDiB8PDBMJtV+Ne/aC7mpZfsX9Ny8SLw8svAgw9SkSR70elIXHbtohHTU0/Rhc84d+4s+vTpa/8HdgCuaJMk0c2fl9d8u3SJR7exzqBnTxIgtkVFuWZFvjv8dkYjX3tx6hTw66+1MBiCrAtJe/Qggerdm1cmdcVIPSfnFAYMGNjxX9wKBgMNbg4dugCVqjfKymigU1x8uYsyNpavIWNBLf7+zrvesrOzMfRK6eFdgMlkQEXFCQwePBgqB0Ysdlkyzz//PP79739j3rx5CA8Px+rVq/HCCy+0q6GNjY1YtmwZtm/fjoCAAMyYMQM7d+7EkiVLsHbtWkRFRWHOnDnYs2cPUlNTkZGRgaVLl2L48OFYsGAB1q9fj/T0dCxevBjp6emYNGkSVq1ahXfeeQcZGRkOtYVNUP/97/YLTF0dhSqPHUvJGe3lzBlg+XK6gB96iNxjYuKxdWQy7vJgq/EBGr0XFwMHDhRDr49GXh4J/s8/8/BMT08ScCY6rMaJWt31XR9KJa8F06MH0KdPOeLigqwhv1lZwPr11LHKZOQWGjaMrmNWXrm7pcxRqeg669HDgAEDSKjZwtDych69VlREWSCYiy0khLvWIiPJUmJ1dLp7cEZL7BKZpKQkfPTRR9bn69ata/cXms1mWCwWNDY2wsfHByaTCX5+fkhISEBcXBwAIC0tDdu3b0diYiL0ej2GDx8OAJgyZQrefvttTJs2DQcPHsSqVaus+x966CGHRKaxkSb7BwzgC+yuRlMTpeuPjqb5G3s6LUmiBZ4ffkijx3/9C+gCCRNcglxON7Zer22Wc06vJysnL49cR/n55H778Uf+GpaW3VZ4evSg36Qriw9zF6nVvCQ2S3Ny/Dglcty+nV4bGEjXZnIyd7F1t85SqeSBBGwukKUaYsErlZXc0j52jEd+snm0qCg63ywhJks95Ovb/UQcsFNkHn/88Vb3v/vuuw5/oZ+fH55++mlMmDAB3t7euPHGG1FeXo5wmwkRtVqNsrKyy/aHh4ejrKwMNTU18PPzs5YeYPsd4fhxmth+8UX7fNWSBKxdS77c55+372IxGID/+R+KHLv1Vqqseb3TzAioE+3blzZbWIRWfj51CPn5tK6HdaoAr7jJRIeJUFf9neTy5pUv776bOtGaGhqpHzlC840WC4nMgAF07bLJ8O4mOrYr9KOiSITNZrJ2WCXX8nKeGqa0lLwWbJU9q1cTEUHWIisAx1IP+fjQxjIzd0XsEpk777zT+rfRaMSOHTswuJ1lIk+fPo0vv/wSu3btgr+/P5599lnk5eU1KyMgSRJkMhksFkur+9mjLY6WIfjvf+uRmChBr69ETs7VX3/ihDd27IjAzJklKCw0X/X1Go0ca9ZEIz/fC5MnV+L222tQWkoXYVucO3fWziPoODpzm1Sq5gIkSfTblJR4oqREZX384QdP6PV85BAQYEJ0tAFRUU2IiqLHyEgDvLyuPIXZmc8TQHMOsbGAwSCDRiNHQYEKx4/7YPduT0gS4ONjRs+ejRg2TIvwcBP8/MztzlKQk3OqfW90Iu1pk1LJrZfGRg80Nsqh0Xigrk6J2lo5tFoP1NcrUFiogE4nB0D9lEwmISDAhKAgEwICzAgMpPPp72+Bn58ZPj5meHkp8dNPJ+HpKcHT0+LyjBAymdSuZL92Nfvee++97PnMmTMd/zYA+/btQ3JyMkJDQwGQq+uDDz6A3MY0qKiogFqtRmRkJCoqKqz7KysroVarERISAo1GA7PZDLlcbn29IzQ2BuCxx1SIj7/6+6qqaN3Hn/4E3HRT72b/02opbPfXXymaii1urKmhEU9iIiBJ4aitDUdsbNur09s7eWybkpullWApJkwmHiLM1mXYJtFTqXj6CE/Py0dTLduk1ZKfWqfj9Vj8/Wnky47tSivx2f7GRvJzx8TQ57Aotd42p/bChdb3A8DRo+egVvexfr7tehcWfuxoNoCWwQb5+Qrk5yuwf7+vNSMtQCNSZvWwx7g4ID/f9RP/LbnWYITkZHpkEVkXLgAHDwYgMzMCFgv97oMGUTbzyEj753TcaeKf4aw2sWJ6trkCq6vp+mTPWc5AgOcK8/ICLJYq9OgRag0wYBYVK3jGLCB2PysUdP7ZZpt9mX0u0DznGUt3ZDbzvoIlzGxo4JkqdDqgqcmAlJQTDp+DdmmjJEkoLy9vz1vRv39//Otf/0JDQwO8vb2xc+dODBs2DF9//TXy8/MRGxuLrVu34r777kNMTAxUKhWysrIwcuRIZGZmIiUlBUqlEklJSdi2bRvS0tKwefNmpKSkONSOW26hUdvVMBopZUz//s0noRn19SRC585RJ6XT8fQLgYFkQtfXkwDFxV376nRWMKmsjPzBpaV0sTIhsb2gWia5Y8nybPMYsUfmFggMpHb26kWTm/X1cuj1JEZsfYpOR8cMkOnP1qywY7vSSny2/8IFGvkVFdHneHo2D4cG6Hlr+wFAp5M3+3zb9S5MZBzNBtBWsEFZGXe5Mbfb4cP8d/bwAMLCeqBPn+ZzPjExXSMfmZcXn+AeNYrnEjt/noIJ/vUvel1gIIWsjx5NLiJWGbI7w0QgJKR5f2M08mSYbM6HbTod7cvNtaCujke62aZ1sRUNuZyX8GCPSiUXGyY+LHOIbap/lu7fdpDKHlkkJ+sjgoNpQOEo7ZqTOXv2LG666SbHvw3A6NGjcerUKUyZMgVKpRJDhgzB3LlzMWrUKMydOxcGgwGpqakYP348AGDFihVYuHAhtFotBg0ahFmzZgEAFi1ahPnz52P16tWIiorCypUrHWpHaqp9N8DGjdSJP/546z7TgADqaPv04X5ZlqfL15fH1w8dSj+Wo6v0zWb6fpYduaSE1zaJiaEOsV8/ugB8fHhiO3ZRMZFhwsLSiJtMfMRiMND8RUEBfU9+PnUeFBIbaT2O6GheHoFdzL6+zS0Zdk5ay0jA9vfuzS2ZoKDWhaTlOhxbfH3Nzc5la2tlrkdWBIDOIyt7wEb2AJ2/oiI+53PihAF5eZ7W+QyAbu7Y2MvneyIiOvcEsG0usdtu46P006dpTmfvXnpdSAhdnzffTHMQYnEjh3kSWrs+WXmJ48erkZAQbrUq2MaEiWX8NpmaiwMrCcAGlCxRJhML1ifYJslkiTB9fHhBNJYU09eX9re3BL1d62RsU/vLZDIEBwdj9OjRzVxcnQW2TgYYDJms7Rn/CxeAxYspxPlqi/SOHgUWLaIO5NVXSXgchbk3JIlu2uxsumHr66lDHzKEqnmy+vTOnIRlZQGOHTuL0NC+yMmhkO/iYl7xj01q9u/Pc2v5+jo/NNsd1qS0hLWpqYnEmlk87NE2LkWloki3lgEHYWHXtxN21RonnY4GXCdPAidOULAMWXsk1EFB53DzzX3cKmN3Z3ThMQFhm9lMGxtItlYThsGuM1uhsc3KzDbbPkaSDACctE6Gzck0NjZa9zU1NcHbna6S60xjIyW+HDv26gKTlUViFB1NAtNexadCRRT9dPEiCcnYsTQSDA/v2MgeNtIKDTVhwACKMpoyhZcuZmsvDh+mbedOuphZTfTevSk0nI1gu0sNFU/P1ueRGhp4mDWzfg4fpmzbDB+f5vM9rHxCZ0oRI5PxtEfx8cCdd/IorGPHaNBUVBSNtWvJEho9mnLfuWvVS3dGJuP3qTtjl8h89NFHeOONN9DU1ASAR3nl2BOW1QmRJOC//6URp01gXaucPEkCExtLAhMY6Pj3NTVRBuJPP42EyUSTqYsW0We62wVkW7o4Lo7mtiwW6kS1Whq1ZmdTGOeRI9yv6+NDYj1kCB0XK97lbsfnLHx8yOLr37/5fhZmbTvfs28fBZowoqN53R5Wu6c9ZcFdgYcHz8XWsycNpI4eLYW/f28cPkwDqi++oFFzVBRVpB04sHuGS3dV7BKZDz/8EF988QXi4+Od3R634PRpyp21YEHbE7d5eSQG4eHAP//puMCYzdQZb9pElsGQITo8/HCAw7nQXI2HR/MCXixVDotMYXNK2dmUWFOn4xlxw8Ko02TzSr6+5PPvhJ7YduHvT/ncbFcESBLPcn3hAk2wnzvH5zoAft6Y8CQmXn93mzOgBKBm9OlDYeVNTXTtl5byxJ8ff0wCk5BAlny/ft0zG0FXwS6RSUhIQP+WQ7AuSmMjsGoVWTBtdfbl5cDChWTiL1vm2MhSkmgCf/16cjmNG0dp3ouLaxASEnXNx+AusLLF4eEUGHHnneQ7Zqnsy8vJ2rlwgUpLMx8yS/XRty9PZ+/jw8tJd3VkMr5ozza+RqNpLjwXLtBgiPnaAwPpPPfrR5tC4f69sqcniWNYGAmtwUCRa8XFtGB67Vq6J1Uqch2OGUOCGhDQPa6FroBdIvPQQw/hmWeewahRo6C0sWHvueceZ7XLZfzf/9EFPXbslV+j0ZDANDZS+KYjqeEbG6ls7P79FHH2j39wMSsuvra2dwYUCu5ui43lCUb1ehKf+npKZ3/sGHUye/bw8GyWHiUgwM/qhulO4uPvT/MXv2dZAkDn7eJFEp3z58ntmpXFhKe3tVJp3770mJjo3mWJVSoeLn3DDXxNVX4+BZ7897+whtT37Uv3aY8eIlzanbFLZNavX4/S0lLoWQGL3+lqIsPKCbeVNsZoBJYsIUtk2TIe0ns1JIkm9T/+mG6QF1+kG97d3RsdBVtPEBpKvvvbbqNzpteTy02jod+H0gH5ICeHR82oVCQ+iYn0e9haPl3dxeLlRXMYtvn3GhpIcH7+uQJVVeHIyeGVSj086Pz27cvz9sXEuO91yKzhqCgKgGEpcFgZ69WryeXm5UXzXWPGUMCBEB33wS6RKSsrw9atW53dFpdiNFIa/ttua7uuzH/+Qx3d88+TJWIPTU1kvezZA0yYANx3n3uPJq83Gg2NRln54CNHeK2ZESMu/7/t8/Pn+WvHjqV1FwcPVmDw4CDIZDxXVF4eRWt99x11mHI5iU9YGHWqLL09m/PpypFMPj50vry9a9CnD13M1dVk5Zw5Q9vevTy4IDCQC9WgQSTWzjo/tpVNgeZZGVpmbmiZtcE2j1hsLAWdMNH59Vey4A4e5BFXsbFU7bZ//+ZzOuw8MAuvLVpem8XFFCUYH08BGYKrY5fIREdHo6ysDBEREc5uj8vYsoVGzRMmXPk133xD1SOnTaMRkz1UVwPvv09m/+LFrS8u7OrU1tKosraWbtTsbOrEsrNJZFr+3/b5lV5rMLCMzLT24uab+boBnY46lcJCWqdx/jzN+bAUGkoliU90NM1hhIfzMGuW2aCrERJCnfItt9Bzi4WsgVOnyCI4dYoSYwJ0fvr04aIzYMD1i2azzcQAoM3MDVfL2mArOqdOAX/8IwnTiBEURHDmDPDuu3zA0bcvLcLOyaHjOXPm6iLT8tq8dInaeOmSEBl7sUtkZDIZ0tLSMGTIkGZzMu3JwuyOVFWRgMyZc+UR3IkTwDvvAElJwMMP2/e5Z85Qiv9Bg4DHHrv2ksmdlaAgPhoEmlfNbO3/ts9be60ktf5agP5mPvqEBEqDAvBcTDodLYxk4nPiBFmxFgt1RiEh5Hrr04cvemU5orqS683Dgy8GZQOrmhrqgJnoZGZSxguABH3wYPodhgxBuxIlAiT+ttkabLMytMzc4EjWBpYhYuBAsmCCgmhOR6mkgUdBAVm6775Ln2k00ntYaHlDg4c1Zb8tLa+v+HhuyQjsw+EV/7a0TJzZGWi54l+SqJiYxQL85S+tj2IrKoC5c2nE9NZbVxcLiwXYvZtbPZMmicSB15Pr2SZWxrihgXLPnTpFHW15OU/bIZNRJxMeTq43ts6HWT8KhXtnIWgvbP3WqVMkxidO0HkCaI5kyBC+ORL84spzxSphlpYChw6RYFCqFh2io30xcCBZe6zypStLVrvbvdchK/75l0nIz893qIHuyokTtAbhxRdbFxizmUTIYKCKmFcTGKORQpOPHqV5m3ZWRBB0EHI5r2YYEcELyrGgA1bO+PRpGuH//DO5Plm4dUAAiY+Xlz+MRp5ax9u788/7eHryNTzTp9O9cPEizUkeP07ute++o9eq1c1FJzraPd2OLDw+PJzayWrDHDtWDoOhJ06d4q5VhYKsquHD6RyEhND9LxaJOoZdIrNu3Tq8/vrrzdLKhISE4Oeff3ZawzqCpibggw9oncqVxOPTT6lzee65q5vIBgNV2ywtpdX/bHJT0Plgtd29vck1lJgI3HUX/c9goNFvXR13uZ086WstVgXQ9RQeTlZPjx4kPn5+nVt85HJyI/bpQymGLBYKLT5+nFyahw7xaqShoc3da3Fx7ik6cjkFPkRFGdGnD83r6PU04V9ZSYPF3bvJdcgym0dF0bENG8YDArpTII+j2CUya9aswYcffojVq1fjmWeewa5du1B6tepbnYBt26hTSE1t/f/HjgGff04XXlvrZgAa3b73HnU+y5a1L72MoHOgUtEWHEwCcscdQE5OIRITB6KxkdwxFy7wBJEHDvCMuL6+NOqPiaFw6+BgEh8fn85XFoCFQ/fsSRU2JYnmPpjosHVOAHXGTHQCAz3Ru7f7hhizcPrwcAp6YCWYWdqkEycomu3bb+l/cjmPYhw+nESIuVOF1WOnyAQFBWHYsGEYMGAAqqqq8Ne//hUTJ050dtucikZDEWV/+UvrN3dtLfDaa9QZPPlk25+l0/EoliVLOldCQ8H1wzZ9e2wsH7yYTLCKT34+dcCnT1NHxcTH25vEp0cPspoCA7nl466dcUtkMrL24+NpHpJltmCCc/w45WUDeuDf/27uXuvZ030DK2yj2CIiSCwliSxarZYs2pwcWgd35AjtZ1ZPSAj9poMHkzXH0uazNPrdAbtERqFQoK6uDgkJCcjOzsaoUaNgZsuwOykbNlBH0FpIsSRRoTKNBli6tG1TuKGB0tD4+ZFLzV0SU7NU32zugBU5Yum83dF10VVRKPi8T0wMcOuttJ9ltNbpaJ3PsWM0yf7zz82zHERG0lxRQgLPctAZXG4yGa/F83t5KJSWAj/8UIry8kgcP06LnwHqfAcP5qKTmOi+ogPw6pVeXjyPHMAHFCxn37lzNLA4doyLj0zG54bi4mi9TnQ0j2Jk9Vy6CnaJzPTp0zFnzhy8++67uOeee/D999+jl71L3d2UU6corLi1zvbbbykn1BNPtL2iv7GRLBh/fxKYjvLL2k5Ks7T7Gg1tej1tTU08NJcVLJPLeZlWVpSIFR7z8eEjZ3bzuDKypjtgm9E6OpqLT1MTz++Wm0uht3v3kntXkmigEB5O12b//nxC2svL/QcPkZHAzTfXo08fCkdjWbuZpfPrr/Q6Hx8KR2ZzOn36dA53ou2AIiqK3G0ADRr0euozWBj9hQsUSHHoEKwlvm1FSCaLQq9edG3ExdE8F1vL5enZvO6LQnH9fnvbOjVGI6+caTJROxw+J/a8aOrUqZg4cSJ8fHzwxRdf4Pjx47jtttsc/zY3YuDA1hNglpbS3MqIEUBa2pXf39REiyzlciAjw7kCI0kkJDU11L6SEro5y8posaftBcpMcHYRsmJEAAlOUxNttnW+bSvm+fnRPEFQEG1arT80Gj53wASpM9zwnRVPT9qCg8n1lJrafF6grIwmpFm2cDaQCAoi63zYMBKhxkYPa40fdyU8nNL73347Pa+q4oJz/DjlKgN4+hxm6fTt27lG+3I5d7mFhZFVypKfms28Qq1eT79zdTVw5IgBOh0NMvbs4fctwAWF3fPsmlEqSYTYIxsssuJkDFY5kw1IbbfGRh6+b9tHhIXRFIKjtNlVfPjhh1f832effYbZs2c7/IUbNmzAJ598Yn1eWFiIyZMn44477sCrr74Kg8GACRMmYN68eQCAnJwcvPDCC9DpdEhKSsLixYuhUChQXFyMjIwMVFVVoWfPnlixYgV8HZgMYea7LRYL8MYb9MM988yVRwYmE0/U9/LLznGRWSx0oRUV0WiH1RppaqKLhXUoAwaQn5iVefb25iJgKzAAXSiseh67oJlpX19PvuXaWoqqKSykiev6+iBkZdH7g4OpUwgLI4Fm2XNtxcfdR9KdlZbzAmxxqsFAI+OaGvq9jh8nVzAtPo1CRAR1aMOG0ZwPq+Pjrr9TaChVf/3DH+h5bW3zQIKPP6b9np507TPRGTCgc4mOLXI5j2RkUA4+bvGxMsvMsmCl05lQsPx+zLvBSjHX1PB5v5Z4ePDql2zRsY8Pj5hjkZBMtNrbz7UpMmfPnm3fp7bBtGnTMG3aNADAuXPn8OSTT+Ivf/kLZsyYgbVr1yIqKgpz5szBnj17kJqaioyMDCxduhTDhw/HggULsH79eqSnp2Px4sVIT0/HpEmTsGrVKrzzzjvIyMiwux1eXjzBImPrVvKdPv003citYbEAn31GHfHSpfSjXE80GorQYSuvi4p4vH5KCl18sbHU4bMIluvlu2aTmUx8GhqA334rRXCwP8rKyIIqK6McUWxUJZdz8VGruQjZWj6d9ebvDLBIt5AQmhe4+27qgLRa4NChYjQ19cGRI7R2ixWQCwrikVBskOCurtGgIMonyBwndXUU3cUsnU8/5amC+vblOdiuZyocd8DWWnFlG9pDmyLz6quvtu9T7eTll1/GvHnzUFBQgISEBMT97vBLS0vD9u3bkZiYCL1ej+G/5zafMmUK3n77bUybNg0HDx7EqlWrrPsfeughh0SmJcXFtGZm5MjWrRyALuYdO8hNsXw5dfLXA0ki0Tp82Bc7dlA6GpmMbpQ//IH87lFR1HE7001lO5nJblCdrtE6ambzQBoNWVnl5XTeiotJgM6d4+tEWH6w8HDyw4eH0yiVZUj28RHhnc5CqaRrJTbWiAEDKNKLCU9NDQ2kjh2jshYmE3UebDFlv3702/v4uOfEe2AgpQpi6YI0Gm7BnTwJfPUVWXIADcxYpumBA8n16M6uw66KXV3WkSNHsGbNGjQ0NECSJFgsFhQWFmL37t3t/uL9+/dDr9djwoQJ2Lp1K8JtUh+r1WqUlZWhvLy82f7w8HCUlZWhpqYGfn5+UPze47L9jpCXlwuDga44SQLefjsWHh4qTJ6cj/PnTa2+59QpL+zYEYbHHitCebkR5eWOHnVzJAmoqlLg7FlvnDzpi5KSMEREVCMpqQEDB+qgVpvg709hRiUltLmC7Ozsy/YpFDQhSQvTZGhokEOrlaOmRoHqagWqqpSoqpIjJ8cTv/yi+N2vK4OXlxlBQSYEB5sQGmpEYKAJAQFm+PlZ4OVlhpeXxS4hzck55YQjvTY6S5tYGeimJhl0Og9UVytw4oQvdu3yxpYtckiSDN7eFkRGGtC/vw7h4Sb4+Fjg6XnVDFR2c+7c9fOS2LrYjEYZLl1SITfXGxcveuOXX7zwww90QXl7m9Gjhx69ejWiZ89G9Oihh0rFj+l6tul64U5tUqks7araa5fILFy4EJMnT8aOHTvwwAMP4Mcff8S4ceMc/zYb1q1bZ53TsVgskNk4iSVJgkwmu+J+9mhLy+dXo0ePnrBYyEfw3Xe0cvvpp4Gbbmo9nKywkCJ8nn0WuPnmPg59V2uQ5UITemVlNNJKTc3F3Xf3REREiNuMuLKzszHU3poGNphMNHJm8wXl5RSsUFoKq+utsJD7iv38eDVIZvWEhNA8U8sMye6W0wno/G266y76LXQ6cknROh5/HDgQZp0HjIykuaC+fbm10565HWfnLrOtrSNJZGmfOgWcOiVHTo4vtm3ztUbp9ehBkWtBQWUYPToCPXq4j4XtbvnwPDwod5mj2J2F+bHHHkNNTQ169eqFtLQ03HfffQ5/GaOpqQkHDx7E8uXLAQCRkZGoqKiw/r+iogJqtfqy/ZWVlVCr1QgJCYFGo4HZbIZcLre+vj3U11OU2MCBVB64NbRaClWeOJFSyl8LDQ00iblrF7mXbriBsjoPHgwUFGi6TCoahYJHqLGsugDN5diKT2UlCU95OT1evEiRU2y+TKnk4qNW02N9vbc1wKG7FCfrCGQyEns/P/rNbr+d3Gx1dTQw2L+f8nrt2MGj2fr1o7md0FB6n7v9DjIZHUtMDGXuAOj6O32ahOfMGToujSYCX3xB1xsr6ta3LwlQfLz7HVdnwi6RYVFb8fHxOHfuHEaOHAmPaxhqnzlzBj169IDP77Pmw4YNQ25uLvLz8xEbG4utW7fivvvuQ0xMDFQqFbKysjBy5EhkZmYiJSUFSqUSSUlJ2LZtG9LS0rB582akpKS0qy3vv08d3ty5rftrjUYKaU5MBKZObfchw2KhCLHvv6e1AL17U+jziBF8/qOgoP2f31nw9CQLJSSkecw9E5+GBh7hVllJ1k95OXVyZ8+yuYUw/PADWTkswo0FG7AoO7awrTOsHXFn2NxaWBgtCLVY6H6prqbBwKFDtJnNJPY9etBAjGUxdherwBY/PyrZkZREzyUJ+OWXizAae+HsWbrOdu6kQCCALOjevXnl1Z49KWJP5CuzD7tEZujQoXjmmWfw9NNPY86cOcjLy7POh7SHgoICRNrkBlepVFi+fDnmzp0Lg8GA1NRUjP999n3FihVYuHAhtFotBg0ahFmzZgEAFi1ahPnz52P16tWIiorCypUrHW7HiRPkKps2jS6clkgSsGkTdXwvvtj+0YxWSyPAb76hm3T2bFr70E7jq0tiKz6xsXy/ycRXxWs0tI7i8OEqeHn5o7KSxCc7m6LhmOvN25s+h7ncQkJIgGxTtYjAg/bh4cEXGyYkAJMn07mvraXO+eefKeLLaCRrNjaWOnOWrcAdO2aZDAgLM6FPH4rgBOg+LSqCVXTOniULznZNWnQ0z93GxEetFsEFLbGrnowkSTh27BiGDx+O3bt3Y//+/XjggQc65ap/Vk+mvHwwHn9cBb0eWLOm9Yv/6FG6YZYvd6xeBoMlDNy6layXlBQStMTE1i/E9s5/OBN3bdOQIUOt0W5sHoFZP8zyqaigETdLscPWF7E1PoGB9JwJECvNzGrEOEJnn5O5nhiNJDoFBTTneP48RSbKZHQfqdVFSE2NQVCQ+6zZsWf+w2LhLt3cXNry8mjOh+HtTa652FjabP92dJ2JO87JhIQ4qZ6MTCZDVFQUTp06hfDwcEyePLlZ2v/OyHffUcGixYtbF5jqaloP85e/tE9gjEZKlrdhA/391FNkvXTX6pjXm5ap+G1h1g+zgGpqyAJiIdcVFeSP1+n4qmZvbxKb0FDucmMCxNxvLOWOGKm2jVLJa7bccAOJfH09Cf++fcAvv/jh2DE698wNN2QInWtfX/c9vx4ePBfb6NF8f2MjLZRmwlNYSOvc9uxpvggyLIwLT2QkrcVjW2Cge4itM7BLZN544w18+OGHCLO5m2UyGX5kxSM6IZmZVAGvtYl8o5Gsm5EjeT4pR9BqyaebmUk3z+zZNIF4vW8eo5EvmmTpKNjfbDUwW7cCkLuP5TliKSdYRljbXGadPUOsQkHC0FrZXpYXjAlQVRVZP0VFPF0Pm/thHURQEHe9+frS5wYH8wWxXl4UDixoHbZgNziYQqeTk4sQFxeIqirg4EEajO3bR2Lk70/zHzfeSCLl7+/+k+7e3jws3BaDgQY1hYV8Kyoi8dFqm79WpSJXG9uCgwGjMRBlZdzlGxTkWnfj1X1erWOXyHz99dfYuXNnM5Hp7JhMlCCzNTIz6YReKYFmW1RUAF9+SREr06YB993Xeo40RzGbySXE8peVl9Po0GKhi7m6muYsDAa+mUyXt982lQSzBHx9eU0TmYznWQoKAiorva0r91nqmM4sQLZ5wWxhSUdZAkO24LSsjEan5eUkPlot/RaSRJ/DxMdgCMKFC7wzta2QKaLfmuPhwQcBPXvSfdLQwFPj/PorFf8zmeg6jY2lwWB8PIlOZ8kgoVLxOZuWaLXcrVtWxv8uL6fEmXV1gCRdnnaEJbJl92TLRy8vXnKi5SaX03XLsrOzzWjkiXVtt7q65puvLy12dRS7RCY4OLhLCQxA1TCjoy/ff+4cTdK/+qrjF3N+PrB2Lfmin32W3GPXkq6joYF3csXF1AEWFdHIW6slsWCdXVAQn9i2rcDI1gOwi8tk4sn4WC2MykryLTc10ffKZLz8rNEYjFOnaHTFVoEHBvKIIzYJ3NnFx9b91nJQYLE0z3pdU0MCVFBAv01FBZCf74vcXB56zSLfmAsoMJD+DgnheaE6S8p+Z2Obly02lpYS6PU0r5OXRwO2LVvo+gfoWhw2jJYdBAa6z7yOI7D79ErT2mYzcPToBQQF9bZeb9XVdO3pdHwZQGkpf97QcH3aplCQWAUE0PmNiKBw7vZkYAauIjInT54EAAwcOBBLly5FWlpas6iyQawgeiektQzLjY0kEtOnty5AV0KSKN6eZYxdvJgWrbWn09XrSVDOnqXHoiIys5uaqIOPiqIbLDSULgQWOcWS2rGRulzOE2SyG5CNXFqm8WYJMjUa/sjqYpw4YYTZTGk7mpros0wmukFCQrhLQ6HgOcxCQ2kfE7vO1gG0xMODr8kBKFKKweZ/Dh0qRELCQKv1c+EC/X4XLtD5ZUkKWRQdm/thi1BtrR/mwuzOsDo6kZHk1jYa+bzOL79Q/rzvv6dz6u9P7uiRI+n6c8f1Oo4ilwMBAeZW611dCZbN2TaJpu1mNvOszbabQtG8xMeVgl6ckrts7ty5zZ7v3LnT+ndnn5Px8WmeIFOSKJJMrb5y7rLWsFgoD9T775MA/OMfrZvHV6O6Gjh+3AdHjpCwnD9PF0VkJJCcTB1RTAx1cLY5wJzRgdvWq/n11wrEx0dZI7eqq+lCZhmic3J4WKfJRG0KCaHRDxM9Jj6s7klnq/jYFmz+JyzMhN69mxfBY/NkOh11kBUVNGC4cIH+vniRp1QH6DdlAsSCEJgYdXfxsV2UO3AgnTOWi+34cRKdDz/kLraYGAo66NGDh0539sHO1Wgtm7M70KbIfPzxx9aklV2dI0eoY/+f/7F/FGSx0EK0NWtoUeWTTzoWiSZJNDI7dow6nH37QqzJCseO5Qn+YmLI9dJRozNb11FkpBFDhvD/WSzUcTKrp7yctspKGi3V1NAI/vx56gSY641lCmaRNKxgV2jo5eUCusr6FTYybOl+M5t56LVWy8OuL1ygx/Pn6fyy6phs7ic8nM4fy3TNwq670jmzF9t5nYQESovDXGwFBZQC6rvv6Fpl1k7v3nSfMmtHuCo7hjZF5qmnnsJX7Znp6WTodBRq/Mgj9qcHt1goMuY//6Fwxscfd2yCv6yMhO3kSdosFiA+3oDUVHK19epFo1l3G32xwmZ+fmS59etH+9lKcFaXholPdTWNLmtrKXorN5eLj8nUvAMNDCQh9ffn8xfBwdSJskl0dzsf7YFcITz6rc/vqfAsltYDD1iW6+JiulaY+LACWOHh9FvYzpP5+rY/GqizYutiu/FGOk+sDPLx47Tube1aHhATFsazNGs0cphMohifM2jzlNqxTrPTI0m0HiYhgdxS9sAsmHffpcn9v/6VOkh7qKujxJjZ2SQySiWJ1JAhgEJRgfHjozqlP9l2JXhMDE9SyNwatpYPc72ZTLSPhXn+PgVoDVLw9yehUaup01Qo6DzX1Pha3VS261c6uwB5ePAJcLWau94kiReX02h4vrdLl/j8XVYWnTOZjM+VAUGoqKC/WX0fd03h7wxYkEpgILd2mpq46zIri9y9+/YBOl0kfH1pwNO3L+USZG5KYfFcG22KjEajwffff39FsbnWTMzuwMmT5J544w375ggkicRh9WpgzBiyYFpbj9ESo5G+65dfyAKyWEigbryRm/BZWcYu1wHYujWY+w/gbjfWcVZV0Y1fVUUjeZOJd6anTlEn6+FBo1ONJhTHjnEfPVvnwxZPsvUrLILLHVOZOIJMxgMPbMWHWY8aDbceS0ooypFcln44c4auWT8/ttqerJ6ICB7pxgS8O+DpyS0+di02NgJHjhQhMLAvsrJ4hKntXFmPHuRhCAvjVnVXmFPsCNq8tKqrq/F///d/rf5PJpN1epFpbAS++AJIT7ffEjl5EnjnHRIIewWGrXT+9VfyF6ek0CLPG2+8fLV6d8HW7RYZyV1GAC8pbBtiXVVF7iOjETh3rh5KZZA1vJt1BiYT3fwsxDo4mK8RuJIAsfIBnRFb6zE6mneaLNnob78VIywswOqmLCyk+b8DB3iWg4gIEp3oaPrbNjKwu3SilO3BhAEDKPsAQPM7zGV54gRZPOvW8UW6TKwSE2kRJgvE6ewLmZ1BmyKTkJCAtWvXdlRbOpwNG+hCGTPGvtefP08WzA032CcwRiPd1Hv2kPXSqxcwZw4VV3IkRLq7YVtS2BbmNtq/vwa9e8ejtpbnJ6ut5e63sjKygE6f5u81m/l6FTbXI5dTZ8HWsDAB6uwuOBYmHR3dZK1qarFQp6nVkmCXlFCwSX4+daK//ELnV6XiohMTQ38zi8dZ0YzuCAvaCA/n845GI1nf9fUUWXn0KC1d+Plnnp6IpdRJSCABYlki2CLJ7nL+bOkmRvLlFBfTZODrr9vnoy4qojmY2FjgmWeuHiBQWwvs3k11Y2pqKFvtuHE0V9HVXGIdBXMbBQebLgsTZ+43FrXFygXYClBNDQlQYSG54GzXDzGLICyMBg8KBf1OLKEmW4fE3FadTYA8PPj8REwMuX4kia+Rqq6meyI3l4Tn2DFaBClJ9B4mOtHRZHkGBtJ56k7zFSwiMjCQFibecgvtZ6mKNBoS7+PH6RxmZXHLRybj4h8TQwIUFsYHM0pl1z2XbYrMxIkTO6odHc6mTcCECfal26+poTBllQqYP59cCm2Rm0sLxXbtIv/5zJnkXrPXJSdwHFv3W0tso7aYADH3W20tuedYAs3cXOosZDLaJImvfGbrfDw8eIfDouDKypSoru5cFpBM1jxYY8iQ5lGCbF3PuXPUaf70E3WaAI3WY2Kos42OpucBAd3LzcawTVUUH8/zIZpMfL2ZVksifvo0jxJsasLvZcnp9SoVj6yMjgYsFpXVqlepeN5BtnUkbDFxe2izqY+1ktzrxRdfxCuvvNK+b3MjLBbg3nuv/jqdjsIeq6uB115Dm5UrzWYKCvjmGxrNTJhA3zFwYPe78dwJ26itljAXnG3JgOpqLkJ6PXW2ZWXkGmls5AIkk/GMzU1Ngbh0iawf2zkgW1dTZ1hM2TJKcPhwnkW5vp7ckPn5XHiys/k6qMhIEp2EBPqbZbB292N2FgoFH/hERNCA87bb6H8s5yDLl2ebQqqkhCztkpIQ/PxzcyFisIS2LNGtt3fznGbsWpPL+TyRrQfFNvuHbZoptmk0PIeZTkf/Dw2lsicOnwdH33DixAnHv8UNefDBq5unRiMJxpEjwD//eeU8QwD9GHv3Al9/TRfM449TuebuOrHfWbCN3KKwX45t5gPmDmEuuOrq5kkOz53zRlERFx/mavP3p5uTrfFhJQWYANkmHnVXN6ptFuWEBBqpGww8YWtREXWOFy6Qm411jMw117MnuZlZtUzbTBvdFQ8PvuCZJWtNTARGjeKvOXmyAImJA62pYgwGnnndNpdZfT3PqVdSQtesyUTiz5K5sjkjW1iKGZaCytOTBItlY2eh75GRfP1Ve3BYZK7H2pmdO3fi3//+NxobGzFq1CgsXLgQ+/fvx6uvvgqDwYAJEyZg3rx5AICcnBy88MIL0Ol0SEpKwuLFi6FQKFBcXIyMjAxUVVWhZ8+eWLFihbVMtD3YRjO1BpVkpcR8GRk0orsSGg25xzIz6UaaM4ciyLrrCK6r0FbNGqC5AP3ySzEiIoKtFhALQGCLbm0zYjNXG5vvYSNN5pJj80JsEao7Xke2qen79Ws+v1NWRmt4Ll6kBJc7dtDxy+U0ovfyCkFVlbB2roaHB7dW2oNtxuW2voOJjT2f1x4cFpkHHnigfd/0OwUFBVi0aBE2bNiA0NBQ/OlPf8KePXuwaNEirF27FlFRUZgzZw727NmD1NRUZGRkYOnSpRg+fDgWLFiA9evXIz09HYsXL0Z6ejomTZqEVatW4Z133kFGRsY1tc2Ws2cpF9KMGZTi5Uo+9upqqny5ZQuFJD/8MCWwFO6xrg+LQAoNBSoq9Bg5kv/vSlU7a2poHqi8nFxPFy7wRZQWC30eEx8Wgu3jw9cEsUWVLGLJXWg5v3PDDTypZU0Nze0w4cnO9kJuLnVavr40/5CYSFZSd57bud4wi9rVFrJdIvPoo4/i/fffB8BFZvr06Vi/fr3DX/j9999j4sSJiPw9ydcbb7yB/Px8JCQkWPOkpaWlYfv27UhMTIRer8fw382IKVOm4O2338a0adNw8OBBrFq1yrr/oYceum4iU1FB6WJGjAAeeODKeaEqKiiA4NtvaTXxzJntS44p6HrYCpAtksSj4FiCRyZAtbV8UWVrIdh+fmTlRETwMGtm+dgurHQXq8A2qWViIj/2AwdKEBYWZC2VkJ8P/PgjuYPkcnp9fDytvI+Obl4cTtD5uGrustzcXBQUFCDNJje+yWSCZzvj7fLz86FUKvH444+jpKQEf/jDH9CnTx+E2zjE1Wo1ysrKUF5e3mx/eHg4ysrKUFNTAz8/P2vZAbb/etDYCHzyCV3sTz/d+mQxQJ3Axo3ADz+QED30kH2RaoLujW3tlJbXi8nE64TU1dEghi1E1evpka3PMBq59RMQQB1zRAQJDBOj2loVQkP5hLCrR7Ts2NVqI4YOJRe0rbVTXEyCc+kSPR4+zK27qCgSqh496DiZtdNdMhV0Ztr8iZ5++mlUVlbixRdfxIsvvmjdL5fLkZiY2K4vNJvNOHToENauXQsfHx/89a9/hZeXF2Q2/ihJkiCTyWCxWFrdzx5tafn8aly4cA5GY3N73GIB9u3zxy+/hOCZZwpRWmpAaenl762sVGDHjmAcPuyPu++uxA031KKgwIyCAoea0CpZWVnX/iHXGdEm+7jebWLikJAA6PUe0Ok8oNPJUVcnR3W1ErW1Cuj1MlRXK1Bc7ImTJxUwm2VW37mfXxh27y5DcLARnp5AQIAJISEmBAWZ4Otrga+vGZ6erslPmJ2dfdm+oCDa+vb1gFYrR02NAmVlSpSXe6KkRIEdO7yg19M96+9vQkSEEfHxjVCrTQgMNMHHxwJvb0u7w8dzck61/4CchDu1Sam0OFTfhtGmyPy///f/sH79etxxxx246aab2tu2ZoSFhSE5ORkhvy/nvuOOO7B9+3bIbYZZFRUVUKvViIyMREVFhXV/ZWUl1Go1QkJCoNFoYDabIZfLra93hN69+0Ama+5XOHmSImPmzQMmT+7X6sVaWkopxM+epdox06b5tTvqoiVZWVkYaevYdwNEm+zDFW1i4dctyy5UVJDlc+RIMczmaBQU8Elglg4lJoZcbv7+vIQAC8d2drbr7OxsDGWpCOyAlR6vraX7r6CAtvx8yqRhNpNrLiKC3Gy9elFQAYvus2fdUk7OKQwYMPCajut6425tkiQDAMeji9sUmcrKSrz77rv45ptvmrmtGLNnz3b4C8eMGYPnn38e9fX18PX1xd69ezF+/HisWbMG+fn5iI2NxdatW3HfffchJiYGKpXKegNnZmYiJSUFSqUSSUlJ2LZtG9LS0rB582akpKQ43Jbmxwp88AGFEI4f3/pFWVFBuc727aPaMVOnXtmdJhA4G9vw64gIHjEpSeRy27evEgkJ0SgtJfGpqiIxys+ndVwGAy/PHRJCHXNICM9pxqK/XF3iWC6ndoWE8GUErAa9rZstP59yjLHcbCyoICGBRFWt5tVIO8uC2a5AmyLzyiuv4JtvvoFer8fZs2evyxcOGzYMjz76KNLT02E0GjFq1CjMmDEDvXr1wty5c2EwGJCamorxv5enXLFiBRYuXAitVotBgwZh1qxZAIBFixZh/vz5WL16NaKiorBy5cp2t8lgoOR3MhnwxBOtTzDW1FCus507aQ2MEBiBuyKTUUcaHm7EgAE8cSbL7VZfT4OqkhKyDLRaiv4qKODlFiwW6pDZan4qYHe58LgKFlgREUEJKpmw1tXxuSsWQn3gAC9e5utL74mLI6uHFdFraPCAxSIi2pxBmyIzatQojBo1Ch988AH+/Oc/X7cvnTp1KqZOndpsX3JyMrZs2XLZa/v374+NGzdetj8mJua6Je/87TfaXnvt8gV5ALkjvvwS2L4d+MtfaKJfCIygs6FQcIugRw/a17JzZsXRNBp6zMsj64AFGYSGkvCwFDuRkTQpz1xtropsY8Lq58dzs9nWMqqo4LnZCgooqGDvXnqNtzegUoXj+HG+aNR2oWxXzSnWUdgVm3H//fdj8eLFuHjxIt566y2sXLkSzz//vEOLH92VggJKGzNjBq1vaYleT6v+t2yhEOX0dCEwgq5Da50zQCN/JjzFxbTV1pKFkJdHmZvZ+8PCqHNmySNZvRqWRNNVEWAtaxkNH95ceKqqyJLLywOyssw4dYrXkfHwIIstPJwsnqgoEliW0r87lrxuL3b9/MuWLYNarUZVVRVUKhW0Wi1eeukl/M///I+z2+dUGhupKmZ0NLm/WprKJhMlufziC2DKFGDWrPanVhAIOhOsI42KoiqRQHPhKSqirbaWBmpnz5JFJEk0h6JWk/CwwIKoKF5i25UFd1sKD8tGPXx4GeLj1db8bEx8SkvJ4tHreeAEKxceE0NiyrIWdPYSEc7CLpHJycnBq6++ij179sDb2xsrVqzAXXfd5ey2OZ29e2nB29tvXy4ekkRFxv7v/6g88p//zHMMCQTdkZbCwxZXsro+hYXkbqurow765EkayLE6K1FR1DHX1QWjspLXqnH1/I5MBnh5SdY5p759ab/RyBNGsiwNxcXNy16zTMosLVBQEAlQbCw/NhZowDZXr1fqaOwSGY8WQ3yz2XzZvs5GcTFN9v/5z7TIqyWnTpHA9OgB/O1vNGIRCAQc24WlLd1RLNy4sJBymdXV0UR8VhZQWRmAkyepw2U1aoKCSHRY6LE71KpRKnli0N+TkQDglUeZZVdZSSJbUMDLRWRl8aSULLM1cydGRPCEk7ZZGlhmZU/PriVEdonMjTfeiH/961/Q6/XYu3cvPv30U9zMiiZ0UjZtopDPCRMuN22LikhgJAn4+99FqhiBwF5s3VHx8cBNNzVf51JcDOzdWwV//0DU1JDw/Porzxrs708dOisFzeZ32Ge6Q+fLio+FhJDFwmCF89hWW8uzJZeU8Nx1ublk4TERIkuKC46vL312Y2MAysu5G87bm767ZV0Zlp/Mw4OeX4urzmLh2ZvNZvpdTCay6iyWtkudXAm7RObZZ5/FmjVr4O/vjzfeeAO33XZbp3eX5ecDixdfPolfV0dzMBcvAq+8widCBQJB+2i5zsXbuwZDhvBOuLiYrAC2oDQ3l1xRLIMwsyTCw2muJzKSJ9L093efsOO2CuexshGNjbTp9XS8LF8dy1/HFtaSBRiIQ4f4+5l42JYJYMXMlEpeXdPTk88NMRFi54h9hm2G5qam5pvRSO0zGPjW0EDHtWyZ4+fFLpFRKpV48skn8eSTT1r33XDDDTh8+LDj3+gmTJlyeX2YpiZKS75rF6X3T0kRE3gCgTPw9OSlAvr3p31s9F9ZScJTWEjBBCyU+uRJXsBLrSbhCQmhv5kLyl0zONuWjbgSrICYXk+P2dmF6NFjgDWhKituxqq7ssJiRiN/X309iQITDGYt2QZb2AqWTMYtIqWSHlk9maAgXhQtMJDEvT20O7jwetSVcSW3395cQCSJ1sqsWwdMmwakpYnkewJBR8ICC6KjedQXm9+pqCA3dnExdbIFBVSdU6vlnSarzBkQwIUnNJTPfbiDq60tWGfv40PPy8uN1iCE1mCVLW3dWszdxR7Z61qrrsnqyNgW2mNWD6vwyh49POjzbbJ82X9cjr+FNbBzD/FbusnOnwc+/pjWysyeLdbCCASuxrZGTVwc1aixWGgEbxvtVVJC+1g5aIOBXqdQkFuNBRawTNW2Fo+7lEVoDx4erg+OsAcxVgf5hT/7jJRaRJIJBO4LCxUODKScZAAJSn09L4/AhKeu7vI1PBYLudiio0lsAgNJiGprVdaIL19f93O3dWbaFJkRI0a0arFIkgS9Xu+0RnUkTU1UdCwrC1iyhC88EwgEnQMPD14mwFZ4tFo+qV5Swi2e0lJa63L6NHcrGY0ROHSIoqdYdFdYGA819vMjN5YQH8dpU2S2bt3aUe1wGVlZlJcsPb3tMssCgaDzYBtKHRdHVW7Z4lEW1cVW9ldWAidPamGxBOHo0eYT5qy4nFpNYhMc3LwSqY+PyG92NdoUmZiYmI5qh0soKKAqmAMHUmVLUd5VIOi62C4ejYri2amNRmDv3kr07h2LqipaPMqyU1dXU5QbK43AxMfHh8SG5TPz8+MLN4OCeBADCzPuzoPXbjsn09hIFkx1NbBokSidLBB0V5RKIDDQjIQE7m4DSFQ0Gtqqq3lBOFbHpqyMgg3q6kh8AC5AzN0WGEgiw5KFskcvLy5AbK1LV6ULH1rb/PYb8P33wPPPiwWXAoHgcpgAhIU1z/rBcprpdOR6q6oi8amu5mt9mADV19N7bEXI15fEhtXl8fKi72ELOZm1VVTkiZCQ5gst2XqWjg7HZos220O3FZnMTODOO4GJE8VknkAgsB/bnGYtMRhIfNiiyepqEp2aGrJ4jEae6aCyErhwgfYBzYVIJgOamiIQE0PCw+Z/WF4ztmhSpaL2tFz5z9a6KBR8LYxtP8fWzdimkWHpY9jGFnU2NtKjlxeQmur4+eq2IiOXU3LMgABXt0QgEHQVWMcfEnL5/1qmlmls5Glk6uu5a4518mfONMDPLxh1dTQvxDp7tqiy5aPt97DEnGyBpUzW+utYMTomdLaZANh72N9BQZ1IZGbOnInq6moofndELlmyBDqdDq+++ioMBgMmTJiAefPmAaAyAy+88AJ0Oh2SkpKwePFiKBQKFBcXIyMjA1VVVejZsydWrFjhUBG1P/2p9ezLAoFA4AzsSS0DcCvit98qMGBAjDVFjF7P08vo9Tz9DHu0FSCgeXLLlu0AmgsRSynDRMXDg2eE9vEhK4ZlInCUDhcZSZKQl5eHXbt2WUVGr9dj/PjxWLt2LaKiojBnzhzs2bMHqampyMjIwNKlSzF8+HAsWLAA69evR3p6OhYvXoz09HRMmjQJq1atwjvvvIOMjAy725Gc3L0jPgQCgXvCXF6BgWaHsh7bur/YI9t3pbQybGNiwzI5tzaFYDDwiqiO0OGzERcvXgQAPPLII7j77rvxySefIDs7GwkJCYiLi4NCoUBaWhq2b9+OoqIi6PV6DB8+HAAwZcoUbN++HUajEQcPHsSdd97ZbL8jtFeVBQKBwB1h+cc8Pcny8PWl+RwW1cYWrLKNRbqxLAdeXvTe6z1H3eEiU19fj+TkZKxatQofffQR1q1bh+LiYoSHh1tfo1arUVZWhvLy8mb7w8PDUVZWhpqaGvj5+VktIbZfIBAIBO5Fh7vLRowYgREjRlifT506FW+//TZGjhxp3SdJEmQyGSwWS7O0Nmw/e7TF0YSdJ9pj93UAWVlZrm7CZYg22Ydok/24Y7tEm5xDh4vMoUOHYDQakZycDICEIyYmBhU2OaQrKiqgVqsRGRnZbH9lZSXUajVCQkKg0WhgNpshl8utr3eEwYMHQ+VmKVizsrKaia07INpkH6JN9uOO7RJtujoGg6Fdg/MOd5dpNBq8/vrrMBgM0Gq1+Oqrr/D3v/8dubm5yM/Ph9lsxtatW5GSkoKYmBioVCqrmmdmZiIlJQVKpRJJSUnYtm0bAGDz5s1ISUnp6EMRCAQCwVXocEtmzJgxOHbsGO655x5YLBakp6djxIgRWL58OebOnQuDwYDU1FSMHz8eALBixQosXLgQWq0WgwYNwqxZswAAixYtwvz587F69WpERUVh5cqVHX0oAoFAILgKLlkn88wzz+CZZ55pti85ORlbtmy57LX9+/fHxo0bL9sfExODtWvXOquJAoFAILgOiIQqAoFAIHAaQmQEAoFA4DSEyAgEAoHAaQiREQgEAoHTECIjEAgEAqchREYgEAgETkOIjEAgEAichhAZgUAgEDgNITICgUAgcBpCZAQCgUDgNITICAQCgcBpCJERCAQCgdMQIiMQCAQCpyFERiAQCAROQ4iMQCAQCJyGEBmBQCAQOA0hMgKBQCBwGi4Vmddeew3z588HAOzfvx9paWkYN24c3njjDetrcnJyMGXKFNx555144YUXYDKZAADFxcV48MEHMX78ePz1r3+FTqdzyTEIBAKB4Mq4TGQOHDiAr776CgCg1+uxYMECvPPOO9i2bRtOnDiBPXv2AAAyMjLw0ksvYceOHZAkCevXrwcALF68GOnp6di+fTsGDx6Md955x1WHIhAIBIIr4BKRqa2txRtvvIHHH38cAJCdnY2EhATExcVBoVAgLS0N27dvR1FREfR6PYYPHw4AmDJlCrZv3w6j0YiDBw/izjvvbLZfIBAIBO6FwhVf+tJLL2HevHkoKSkBAJSXlyM8PNz6f7VajbKyssv2h4eHo6ysDDU1NfDz84NCoWi23xFOnDhxHY7k+pOVleXqJlyGaJN9iDbZjzu2S7TJOXS4yGzYsAFRUVFITk7Gpk2bAAAWiwUymcz6GkmSIJPJrrifPdrS8vnVGDx4MFQq1TUcyfUnKysLI0eOdHUzmiHaZB+iTfbjju0Sbbo6BoOhXYPzDheZbdu2oaKiApMnT0ZdXR0aGhpQVFQEuVxufU1FRQXUajUiIyNRUVFh3V9ZWQm1Wo2QkBBoNBqYzWbI5XLr6wUCgUDgXnT4nMyHH36IrVu3IjMzE0899RTGjh2L999/H7m5ucjPz4fZbMbWrVuRkpKCmJgYqFQqq8mYmZmJlJQUKJVKJCUlYdu2bQCAzZs3IyUlpaMPRSAQCARXwSVzMi1RqVRYvnw55s6dC4PBgNTUVIwfPx4AsGLFCixcuBBarRaDBg3CrFmzAACLFi3C/PnzsXr1akRFRWHlypWuPASBQCAQtIJLRWbKlCmYMmUKACA5ORlbtmy57DX9+/fHxo0bL9sfExODtWvXOr2NAoFAIGg/YsW/QCAQCJyGEBmBQCAQOA0hMgKBQCBwGkJkBAKBQOA0hMgIBAKBwGkIkREIBAKB0xAiIxAIBAKnIURGIBAIBE7DLVb8dySSJAEAmpqaXNyS1jEYDK5uwmWINtmHaJP9uGO7RJvahvWZrA+1F5nk6Ds6ORqNBmfPnnV1MwQCgaBT0rdvX/j7+9v9+m4nMhaLBTqdDkql0uHyAAKBQNBdkSQJRqMRvr6+8PCwf6al24mMQCAQCDoOMfEvEAgEAqchREYgEAgETkOIjEAgEAichhAZgUAgEDgNITICgUAgcBpCZAQCgUDgNITICAQCgcBpdDuR+frrrzFx4kSMGzcOn376qUvbotVqcdddd6GwsBAAsH//fqSlpWHcuHF44403Orw9//73vzFp0iRMmjQJr7/+ulu06a233sLEiRMxadIkfPjhh27RJsZrr72G+fPnu02bZs6ciUmTJmHy5MmYPHkyjh075vJ27dy5E1OmTMGECROwdOlSAK49Vxs2bLCen8mTJ2PkyJFYsmSJy89TZmam9d577bXXALjHNbVmzRrceeedSEtLw+rVq9vXLqkbUVpaKo0ZM0aqqamRdDqdlJaWJp07d84lbTl69Kh01113SYMGDZIKCgqkxsZGKTU1Vbp06ZJkNBqlRx55RNq9e3eHtefnn3+W7r//fslgMEhNTU3SrFmzpK+//tqlbfr111+lBx54QDIajVJjY6M0ZswYKScnx6VtYuzfv1+6+eabpeeff97lv50kSZLFYpFGjx4tGY1G6z5Xt+vSpUvS6NGjpZKSEqmpqUmaMWOGtHv3bpefK8bZs2elP/7xj1JxcbFL29TQ0CDdeOONUlVVlWQ0GqWpU6dKP/74o8vP088//yzdddddkkajkUwmkzRnzhwpMzPT4XZ1K0tm//79uOWWWxAUFAQfHx/ceeed2L59u0vasn79eixatAhqtRoAkJ2djYSEBMTFxUGhUCAtLa1D2xYeHo758+fD09MTSqUSvXv3Rl5enkvbdNNNN+H//u//oFAoUFVVBbPZjPr6epe2CQBqa2vxxhtv4PHHHwfg+t8OAC5evAgAeOSRR3D33Xfjk08+cXm7vv/+e0ycOBGRkZFQKpV444034O3t7fJzxXj55Zcxb948FBQUuLRNZrMZFosFjY2NMJlMMJlM8PPzc/l5OnXqFEaPHg0/Pz/I5XLcdttt2LBhg8Pt6lYiU15ejvDwcOtztVqNsrIyl7Rl2bJlSEpKsj53ddv69OmD4cOHAwDy8vLw7bffQiaTufx8KZVKvP3225g0aRKSk5Ndfp4A4KWXXsK8efMQEBAAwPW/HQDU19cjOTkZq1atwkcffYR169ahuLjYpe3Kz8+H2WzG448/jsmTJ+Ozzz5zi3MF0IBTr9djwoQJLm+Tn58fnn76aUyYMAGpqamIiYlxeZsAYNCgQdi3bx9qa2thMBiwc+dOHD582OF2dSuRsVgszZJiSpLkNkky3aVt586dwyOPPILnnnsOcXFxbtGmp556CgcOHEBJSQny8vJc2qYNGzYgKioKycnJ1n3u8NuNGDECr7/+Ovz9/RESEoKpU6fi7bffdmm7zGYzDhw4gH/+85/44osvkJ2djYKCApefKwBYt24dZs+eDcD1v9/p06fx5ZdfYteuXdi7dy88PDxcfp0DQHJyMqZMmYKZM2fi0UcfxciRI2EymRxuV7eqJxMZGYlDhw5Zn1dUVFjdVa4mMjISFRUV1ueuaFtWVhaeeuopLFiwAJMmTcJvv/3m0jZduHABTU1NGDBgALy9vTFu3Dhs374dcrncZW3atm0bKioqMHnyZNTV1aGhoQFFRUUubRMAHDp0CEaj0Sp+kiQhJibGpb9fWFgYkpOTERISAgC44447XP77AVQX5eDBg1i+fDkA1997+/btQ3JyMkJDQwEAU6ZMwQcffODy86TVajFu3DirGL///vu46aabHD5X3cqSufXWW3HgwAFUV1ejsbER3333HVJSUlzdLADAsGHDkJuba3UxbN26tUPbVlJSgieffBIrVqzApEmT3KJNhYWFWLhwIZqamtDU1IQff/wRDzzwgEvb9OGHH2Lr1q3IzMzEU089hbFjx+L99993aZsAqpP0+uuvw2AwQKvV4quvvsLf//53l7ZrzJgx2LdvH+rr62E2m7F3716MHz/e5efqzJkz6NGjB3x8fAC4/jrv378/9u/fj4aGBkiShJ07d7q8TQDdf0888QRMJhM0Gg02btyIZ555xuF2dStLJiIiAvPmzcOsWbNgNBoxdepUDB061NXNAgCoVCosX74cc+fOhcFgQGpqKsaPH99h3//BBx/AYDBYR3cA8MADD7i0TampqcjOzsY999wDuVyOcePGYdKkSQgJCXFZm1rD1b8dQB36sWPHcM8998BisSA9PR0jRoxwabuGDRuGRx99FOnp6TAajRg1ahRmzJiBXr16ufRcFRQUIDIy0vrc1b/f6NGjcerUKUyZMgVKpRJDhgzB3LlzMWrUKJeep/79+2PcuHG4++67YTab8fDDD2PkyJEOnytRT0YgEAgETqNbucsEAoFA0LEIkREIBAKB0xAiIxAIBAKnIURGIBAIBE5DiIxAIBAInIYQGYGggzEajRg9ejQeffRRVzdFIHA6QmQEgg7m+++/R//+/XHixAlcuHDB1c0RCJyKWCcjEHQwM2fOxMSJE3Hu3DmYTCYsWbIEANXu2LhxI3x9fZGUlIQff/wRO3fuRFNTE1asWIGDBw/CbDZj4MCBWLhwIfz8/Fx8JALB1RGWjEDQgZw/fx5HjhzB+PHjcc899yAzMxM1NTXYu3cvNm3ahI0bN2LTpk3Q6XTW96xZswZyuRybNm3Cli1boFarsWLFChcehUBgP90qrYxA4Go+//xzjBkzBsHBwQgODkZsbCzWr1+PiooKjB8/3lo+4MEHH8Qvv/wCANi9ezc0Gg32798PgOZ0WDJFgcDdESIjEHQQDQ0NyMzMhKenJ8aOHQuAMt1+8sknmDRpEmw917YZeC0WCxYsWIDU1FQAgE6ng8Fg6NjGCwTtRLjLBIIO4uuvv0ZQUBD27t2LnTt3YufOnfjhhx/Q0NCAQYMG4bvvvoNGowEAbNy40fq+0aNH49NPP0VTUxMsFgtefPFFrFy50lWHIRA4hBAZgaCD+PzzzzF79uxmVkpAQABmzpyJjz76CNOnT8f999+PKVOmQKPRwNvbGwDwxBNPICYmBvfeey8mTpwISZIwf/58Vx2GQOAQIrpMIHADjh8/jiNHjmDWrFkAqG7NsWPH8Oabb7q2YQLBNSJERiBwA7RaLRYsWICLFy9CJpMhKioKr7zyCiIiIlzdNIHgmhAiIxAIBAKnIeZkBAKBQOA0hMgIBAKBwGkIkREIBAKB0xAiIxAIBAKnIURGIBAIBE5DiIxAIBAInMb/B92VP9NfoVS5AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running IDP 1 Left-Lateral-Ventricle :\n",
      "Making predictions with dummy covariates (for visualisation)\n",
      "Loading data ...\n",
      "Prediction by model  1 of 1\n",
      "Writing outputs ...\n",
      "metrics: {'RMSE': array([4205.49266088]), 'Rho': array([0.45898577]), 'pRho': array([5.62632393e-25]), 'SMSE': array([0.81397727]), 'EXPV': array([0.19814613])}\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEXCAYAAAB/HzlmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB/+ElEQVR4nO29d3xb5dn//5HlbXnvOM529o5DJjFhZDlhhJEQRp/y5EtpKVB+D6EpUGhoaYGmhFIKlAceKDNNAiSQxUhIICSQPUycxBl2vPeQJWue8/vj4tI5kmVbdiRLju/366WX5SPp6NYZ93VfWyPLsgyBQCAQCHxAkL8HIBAIBILLFyFkBAKBQOAzhJARCAQCgc8QQkYgEAgEPkMIGYFAIBD4DCFkBAKBQOAzhJAR9EhKSkowYcKETn1mz549mD17Nm655RacO3cODzzwQJvvHTZsGOrq6jq1//Xr1+P999/v1Gfao63faDAYMHHiRBw9erTVa/fddx/efvvtLn3frl278Pe//93tazt27MCf/vSndj9/1113Yfv27V36bsHlixAygl7Dli1bcOutt2LDhg2oqanBhQsXvLr/Q4cOwWQyeXWf7oiKisINN9yADRs2OG2vqKjA/v37sXjx4i7t98SJE2hsbHT72jXXXIMnnniiS/sV9G6C/T0AgcCbWCwWrF69GgcOHIDdbsfIkSPxxBNPYO3atdixYwfCwsKg1+vx1VdfobKyEv/93/+NN9980+P919TU4Mknn0RtbS2qq6uRkZGBF198EYcPH8bOnTvx3XffITw8HHfccQdeffVVfPHFF5AkCRkZGXjqqaeQmpqKu+66C7GxsTh//jxuv/12jBkzBn/9619hsVhQXV2N6dOn489//nO747jjjjuwZMkSPPbYY4iMjAQAbNiwAbm5uYiJicHhw4exevVqtLS0ICgoCL/+9a8xe/ZsfPzxx/jyyy8RFBSEoqIihIeH47nnnkNzczPWrl0Lu92O6Oho9O/fHxs2bEBLSwt0Oh1uuukmfP755/jXv/6F6upqPPXUUzh//jyCgoKwdOlS3H333U7ja+v7Bb0QWSDogRQXF8vjx49vtf0f//iH/Oyzz8qSJMmyLMt/+9vf5KeeekqWZVn+7W9/K7/xxhuyLMvy999/L+fm5ra5/6FDh8q1tbWttr/99tvyv/71L1mWZVmSJHn58uXym2++2Wr/n3zyifyb3/xGtlqtsizL8tq1a+Xly5fLsizLd955p/y73/3Osc+HH35Y/v7772VZluXm5mZ5ypQp8okTJ9r8jcydd94pf/TRR7Isy7LdbpevuuoqOT8/X25oaJDnzJkjFxcXy7IsyxUVFfKsWbPk0tJS+aOPPpInTZokl5eXy7Isy08//bT86KOPyrIsyy+99JK8atUqWZZl+aOPPpInT54s6/V6x//33nuvLMuyfP/998vPPfecLMuy3NTUJOfm5sqFhYXynXfeKW/btq3d7xf0PoQmI7is2LVrF/R6Pfbu3QsAsFqtSExM9Nr+f/azn+HgwYN46623UFhYiIKCAowbN67V+77++mucOHECN998MwBAkiS0tLQ4Xs/OznY8f/bZZ/HNN9/gtddew/nz52E2m2E0GhEXF9fuWJYtW4b33nsPixcvxjfffIP09HQMHz4cu3fvRnV1Ne6//37HezUaDU6fPg0AGDVqFNLS0gAAI0eOxJdfful2/8OGDYNOp2u1fe/evVixYgUAIDo6Gps3b3Z6/ejRo21+f58+fdr9TYLLDyFkBJcVkiThscceQ05ODgBykpvN5nY/8+GHH2Lt2rUAgNGjR+OZZ55p871//etfcfz4cdx8882YMmUKbDYbZDfl/yRJwvLly7Fs2TIAZMZT+zvYxAUAd955J4YNG4Yrr7wS8+fPx7Fjx1rt8//9v/+HqqoqAMCDDz6Ia665Btdddx3+/Oc/o7CwEOvWrcMdd9wBALDb7Rg8eDDWr1/v+HxlZSUSEhLw2WefITw83LFdo9G4Hb/rGNUEBwdDo9E4/i8uLkZ8fLzj//a+X9D7EI5/wWXFzJkz8f7778NisUCSJPz+97/HCy+80Op9Wq0WVqsVAHD77bdj06ZN2LRpU7sCBqAItZ/97Ge48cYbkZiYiL1798Jutzv2abPZHOPYsGEDmpubAQB///vf8eijj7baX1NTE06cOIFHHnkEc+bMQUVFBS5evAhJkpze97//+7+OMV5zzTUAaLK/7bbb8M477+DkyZOYM2cOAGD8+PEoKirCgQMHAAD5+fmYO3cuKisr2/1t6vG3x7Rp0/DRRx8BAPR6PX72s5+hsLDQ8XpXv19weSI0GUGPxWg0tgrxXbt2LfR6PW666SbY7XaMGDECK1eubPXZIUOGICwsDLfccgvWr1/vtDJneDJnXnjhBdx///14/vnn8fe//x0hISGYOHEiLl68CACYNWsWnn32WQCkeVRWVuK2226DRqNBenq64zU1MTExuPfee3HTTTchMjISqampmDhxIoqKipCZmdnhMbjttttwzTXX4N5770VISAgAICEhAS+99BKef/55mM1myLKM559/Hn379sX+/fvb3NfUqVPxyCOP4I9//CNGjRrV5vuefPJJ/OEPf8CiRYsgyzJ+8YtfYPTo0Y7X2/t+Qe9DI7elKwsEAoFAcIkIc5lAIBAIfIYQMgKBQCDwGULICAQCgcBnCCEjEAgEAp/R66LLJEmCwWBASEiI24gigUAgELRGlmVYrVZERUUhKMhz/aTXCRmDwYAzZ874exgCgUDQIxk6dCiio6M9fn+vEzKcSzB06FCEhob6eTTO5OXlOeUbBAJiTJ4hxuQ5gTguMaaOsVgsOHPmjGMO9ZReJ2TYRBYaGoqwsDA/j6Y1YkyeIcbkGYE4JiAwxyXG5BmddTMIx79AIBAIfIYQMgKBQCDwGULICAQCgcBnCCEjEAgEAp8hhIxAIBAIfIYQMgKBQCDwGULICAQCgcBnCCEjEAgEAp8hhIxAIBAIOsSDztxuEUJGIBAIBO1SUQFs2dK1z/a6sjICgUAg8AxJAo4eBfbtA5KTu7YPIWQEAoFA0AqzGdi1Czh7FujTB+hqGTUhZAQCgUDghMEAbN8O1NYCmZnApbTeEkJGIBAIBA6amoDPPiNNJj390vcnhIxAIBAIAJCA2bQJsNu77oNxRUSXCQQCgQB6PfDpp+TsT0z03n6FkBEIBIJejtFIIco2G5CQ4N19CyEjEAgEvRirFfj8c3L2e1ODYYSQEQgEgl6KJAFffw1UVQEpKb75DiFkBAKBoJeyfz9QUOCdKLK2EEJGIBAIeiEFBcDBg0BGhmd5MFZr177Hp0Jm06ZNyM3NRW5uLp577jkAwN69e7Fo0SLMmTMHa9ascbw3Pz8fixcvxty5c/H444/D9lM1trKyMtxxxx2YN28efvnLX8JgMAAAmpqacO+992L+/Pm44447UF1d7cufIhAIBJcNVVXAV18BaWmAVtvx+0+fBv797659l8+ETEtLC5555hm8++672LRpEw4ePIidO3fisccewyuvvIKtW7ciLy8Pu3fvBgCsWLECTz75JD7//HPIsox169YBAFatWoVly5Zh+/btGD16NF555RUAwIsvvojs7Gxs27YNt956K5555hlf/RSBQCC4bDAYgG3bgNjYjkvFWK3Af/5DZrUbbuja9/lMyNjtdkiShJaWFthsNthsNuh0OvTv3x+ZmZkIDg7GokWLsH37dpSWlsJkMmH8+PEAgMWLF2P79u2wWq04cOAA5s6d67QdAHbt2oVFixYBABYuXIhvvvkG1q7qcwKBQNALsNuBnTspVDk6uv33NjQAr7wC9O8PLFgABHcxdd9nGf86nQ4PPfQQ5s+fj4iICEyePBlVVVVIVqWRpqSkoLKystX25ORkVFZWor6+HjqdDsE//TreDsDpM8HBwdDpdKirq0NqaqqvfpJAIBD0aA4dAoqLqR5ZexQVAR99BNx4I2k8l4LPhMypU6fw0Ucf4euvv0Z0dDQeeeQRFBYWQqPyMMmyDI1GA0mS3G7nv2pc/1d/JijIc8UsLy+vk7+oezh06JC/h9AKMSbPEGPynEAc1+U+pvLyEHz7bRySky04e7bt9124EIb9+2NwzTV1qK8H6utpe0SEHcOHd/57fSZk9uzZg2nTpiHxp+yexYsX480334RW5WWqrq5GSkoK0tLSnBz3NTU1SElJQUJCAvR6Pex2O7RareP9AGlBNTU1SEtLg81mg8FgQFxcnMfjGz16NMK6WrvaRxw6dAiTJk3y9zCcEGPyDDEmzwnEcV3uY2pupr4wEycCkZFtv+/ECYo6W74cCA52VmFCQswAGjv93T7zyQwfPhx79+6F0WiELMvYuXMnxo0bhwsXLqCoqAh2ux2bN2/GrFmzkJGRgbCwMIfU3rRpE2bNmoWQkBBkZ2dj69atAICNGzdi1qxZAICcnBxs3LgRALB161ZkZ2cjJCTEVz9HIBAIeiTsh9Fo2hcwx44B330H3Hpr1/0v7vCZJjNz5kycPHkSixcvRkhICMaMGYMHHngAM2bMwAMPPACz2YycnBzMmzcPALB69Wo88cQTaG5uxqhRo3D33XcDAJ566imsXLkSr776KtLT0/HCCy8AAB566CGsXLkSubm5iI6OxurVq331UwQCgaDHcvQoUFLSvh/myBHKmbn5ZqATXgeP8Gmp/3vvvRf33nuv07Zp06bh008/bfXe4cOHY8OGDa22Z2Rk4N133221PS4uDq+99pr3BisQCASXGRUVwPffU2fLtigooPfccov3BQwgMv4FAoHgssRkAr74gqoqt2X+Kiuj6suLF/tGwABCyAgEAsFlhywDe/aQoNHp3L+noQH44APv+2BcEUJGIBAILjMKCoBTp6hsjDtMJuD//o80mPBwz/Zpt3dtLKL9skAgEFxGNDYCu3aRgHGXVmi3A2+9BVx3nWeJlrIM1NYCXQ3eFUJGIBAILhM4XDk01H1dMlkGNm0Chg9vPxiAMZuBmhpg8GBg/Hiqe9ZZhJARCASCy4Rjx4Dy8rbDlffvBywWYOzYjvdVX09Ca/Zsql9mtwshIxAIBL2Wqipg3762NZSLFykXZsmS9vcjy7Sv+HggJ6fjQpodIYSMQCAQ9HAsFuoPExfnPlLMYADWrweWLWu/QZkkkSaUlQVMmdJ1P4waIWQEAoGgh/PDD4Be716LkSTg3XeB3Fzy1bSFzUbJmxMmAOPGeS9vRggZgUAg6MEUFZEvpi0/zPbt5LhXdVNphdVKJrKpU4GRI707PpEnIxAIBD0UgwHYsYMEiDvNo6CAzF8TJ7a9D6sVqKwEZszwvoABhJARCASCHoksA99+S3/dVVfW64FPPyUzWVvYbCRgZs4Ehg71zTiFkBEIBIIeyKlTwLlz7s1gdjv5YRYubNt5b7eTgJk2zXcCBhBCRiAQCHoc9fXAN9+0ndW/bRsJjqQk95+XJHLyT5oEjBjh27EKISMQCAQ9CJuNsvrDw91Hi505Q078CRPcf16WyU8zejQwZoxvxwoIISMQCAQ9isOHSYgkJLR+Ta8HNm8mM1lbVFVRtNmkSe3nzHgLIWQEAoGgh1BaSqVh0tNbvyZJwHvvkaNfq3X/+dpa8uFMm+a7/jGuCCEjEAgEPQCjEfjyS/KzuBMi27YBw4a17YdpbCTzWk6OdzL5PUUIGYFAIAhwJIkc/TYbEBXV+vXTpylSbNw4959vaaHSM9dcA0RE+HasrgghIxAIBAHOyZMUrpyS0vq1piZqodxWPozNRtFoV19Ntc26GyFkBAKBIICprqaky/T01o56zofJzXVfGFOSSMOZMsW9H6c7EEJGIBAIAhSTCfj8cyAmxr0fZds2akDWlh+mqoryYIYP9+0428NjIVNRUYHdu3fDbrejrKzMl2MSCASCXo8sA3v2kD8lJqb166dPk5Yzfrz7z9fVkXmtu0KV28IjIbNr1y4sXboUq1atQm1tLXJzc/HVV1/5emwCgUDQazl/PgynTwOpqa1fYz/MggXuP2swkGC58srujSRzh0dC5p///CfWrVuHmJgYpKSk4IMPPsBLL73k67EJBAJBr6SqCjh8OLpNP8x771HCpTs/jNVKQujqq91HonU3HgkZu92OFFVYw4gRI6Dxp/4lEAgElylGI/WA0ensbrWQzZupJH9iYuvXJIkE1PTp7feP6U48EjIREREoKytzCJaDBw8iLCzMpwMTCASC3oYkAV9/TdpIVJTU6vW8PNJS2qo5xo7+IUN8PNBO4FFnzP/5n//BPffcg+rqaixZsgSFhYX4xz/+4euxCQQCQa/i8GHqdJmZScJETV0d8NVXwLJl7j9bX0/ajb8d/a54JGQmTpyIdevW4ciRI5AkCePGjUOCu+psAoFAIOgSRUXADz8AGRmtX7NaKR/mhhvcl5QxGkkL6u6SMZ7QrpD54osv3G4/ePAgAGDOnDneH5FAIBD0MurrKR8mJaW1EJFlYN06KmrpLpTZZgMaGoB58wCdzjfja26mkOk+fTr/2XaFzLvvvtvmaxqNRggZgUAguERMJnL0h4fTw5W9e6ne2ODBrV+TZWo+NmUKNTDzNhYLkJ8PHDtGkWo+FTLFxcXIzMxEc3MzLl68iJEjR3b+2wQCgUDgQJKAXbtIU3AnJEpKaIK/7Tb3n6+uJie/L6bjigrgu+8o5yYpqeuFNT2KLnvvvffwq1/9CgBQX1+PBx54AOvXr+/aNwoEAoEAAHDwIBW+dCdgWlo0+M9/yA/jzpHf2AhER5MW401Hv81G49q6lUx3aWnu83E8xSMhs3btWnz44YcAgMzMTGzcuBHvvPNO179VIBAIejkFBW07+u124LPPkpCb696EZjKRKeuqqwBvZpPo9cAXX1DV5z59gMjIS9+nR/LJbrdDp/IoRUdHi2RMgUAg6CKVlcCOHVQZ2Z2jf/16YNgwA5KTY1t91majDpdz5gCxrV++pDHt3EkdM73p3/FIyAwaNAirV6/GkiVLAAAff/wxBgwY4L1RCAQCQS+B647FxrrXQr75hrSXzExzq9dkmYRBdrZ7DairnD1L/pfY2La1F7u9a/v2yFy2atUqFBYW4sYbb8Qtt9yCwsJC/OEPf+jwczt37sTixYsxf/58/OlPfwIA7N27F4sWLcKcOXOwZs0ax3vz8/OxePFizJ07F48//jhsNhsAoKysDHfccQfmzZuHX/7ylzAYDACApqYm3HvvvZg/fz7uuOMOVFdXd/a3CwQCQbdiMlF5/qAg9+HGZ86QGe3KK91/vroaGDQIGDXKO+ORZeDoUepXk5TkXsDYbPT6Rx917Ts8EjJJSUl4+eWXcejQIfzwww9Ys2ZNh8mYxcXFeOqpp/DKK6/g008/xcmTJ7F792489thjeOWVV7B161bk5eVh9+7dAIAVK1bgySefxOeffw5ZlrFu3ToAJOCWLVuG7du3Y/To0XjllVcAAC+++CKys7Oxbds23HrrrXjmmWe6dgQEAoGgG7DbyRzV1OS+7lhdHWk4ixa5/3xDA+XJTJ1KQupSkSRg/36qMpCW5j6JMz8feOstIDSUzHNdod2h8sR93333uX20x5dffokFCxYgLS0NISEhWLNmDSIiItC/f39kZmYiODgYixYtwvbt21FaWgqTyYTxPzVGWLx4MbZv3w6r1YoDBw5g7ty5TtsBaj+w6KezsXDhQnzzzTewWq1dOwoCgUDgQ2SZ8l2Kitz7O8xm4J13gJtuch/J1dJCGoW3HP02G40nP58c/K5+oZYW4D//ITPaTTcBw4Z1XbC165OZNm0aADgm+c5QVFSEkJAQ3HfffSgvL8dVV12FrKwsJKtKg6akpKCyshJVVVVO25OTk1FZWYn6+nrodDoE/3TUeTsAp88EBwdDp9Ohrq4Oqe6aLwgEAoEfOXqU8l0yM1u/ZreTtnD11RSS7IrVShUB5s1zn/HfWWw28r8UFrpv6Xz2LGlcs2Z5JwCgXSFz9dVXAwA2btyIf//7353asd1ux8GDB/Huu+8iMjISv/zlLxEeHu4UlSbLMjQaDSRJcrud/6ppK6pNlmUEdULU5uXlder3dBeHDh3y9xBaIcbkGWJMnhOI4/LVmC5eDMW+fbFISbHg/Hnn12QZ+PzzeKSlmWG1mlFY6Pz6hQsXUF0dinHjmlFVZUZV1aWNxW4HjhzRobIyFAkJVhQVKa9JErBvXwxMJi0mT26C1QoUFyuvR0V1zfPvUXSZXq+H0WhEZCeCppOSkjBt2jSH7+baa6/F9u3boVXpZdXV1UhJSUFaWpqT476mpgYpKSlISEiAXq+H3W6HVqt1vB8gLaimpgZpaWmw2WwwGAyIi4vzeHyjR48OuHYFhw4dwqRJk/w9DCfEmDxDjMlzAnFcvhpTSQnlwlxxhXsz17ZtwMCB5GdxpbDwAsLDB2LuXIomu9SsEdZggoOpUrMak4nqow0fDgwdCgBxrT4fFmYGUNfp7/W4n8zs2bNx9913e+yTmT17Nvbs2YOmpibY7XZ8++23mDdvHi5cuICioiLY7XZs3rwZs2bNQkZGBsLCwhwriU2bNmHWrFkICQlBdnY2tm7dCoA0qlmzZgEAcnJysHHjRgDA1q1bkZ2djZBAKz8qEAh6LdXVlDWfmOhewPzwA5nB3AkYAKirC0ZmJjBx4qULGLudBExRUet2ztXV5A+aOpUFTGtkuXXrAU/xSJO55ZZbOr3jcePGYfny5Vi2bBmsVitmzJiB22+/HYMGDcIDDzwAs9mMnJwczJs3DwCwevVqPPHEE2hubsaoUaNw9913AwCeeuoprFy5Eq+++irS09PxwgsvAAAeeughrFy5Erm5uYiOjsbq1as7PUaBQCDwBfX1wGefUZiyOwPQ6dPkp7n5Zvefb2gAdDoJM2a4L+3fGSQJ+P578sGkpTkLrLNnqXbawoXuxynLVL7GZHJfoNMTPBIyRUVF+M1vfuO07U9/+hNuuummdj93yy23tBJQ06ZNw6efftrqvcOHD8eGDRtabc/IyHBbDTouLg6vvfaaB6MXCASC7qO5mVokBwe7d+RXVJCZ7Pbb3Wsozc00uWdn6y85kkySgAMHKPfG1cl/7Bhw4gRw443uI9qMRhIwfftSXk5Xqwu0K2ReeuklNDU1YevWrWhubnZst1qt2LNnD5544omufatAIBBchhiNJGDsdve5MA0NwHvvAUuWuJ/YTSbax4IFQElJ6/bLnYETLU+ebC1gvv+enPrz57fWlOx2KlsTGQnMnk09bnh/XaFdITNu3DicOHECQUFBTk51rVYrzFMCgUCggrP5DQZlYlZjMAD/93/A4sXuTVNWq1KTLCGBggYuhR9/JG0lPd05x2XXLvKvXHtta02KtZeRIykIwBtu7naFTE5ODnJycjBr1iyMHTv20r9NIBAILkMsFupsWVfnPrfEZAL+939JQ3FndrLZgKoqyk3xRk2yggLK5k9LcxYwO3aQMLvyytYCpraWhMrVVwOqtMVLxiOfjE6nw+9+9zs0NDRAVulMwiciEAh6O1Yr8OWXVLgyPb316xYLCZi2Jm9JUopedtW5rqaoCNizh6LI1Ca5XbtoLD/l2Duw2ynCLCODItm62pysLTwSMitXrsTYsWMxefJkUeJfIBAIfsJqBb76ikxb7loT2+3A22/TxO5OQ5FloLycHOujR1/6eCoqSJgkJTmbur79lgIKZs50fr/FQhrMmDFkHvNGTTRXPBIyLS0twskvEAgEKmw24OuvKTS4b9/Wr0sSOflHjqSES3dUVgJZWd5JtqytJYEXF+ecl7N3L7121VXO7zcaSfBMn+6+3I238Ehu9e/fH1WXWs9AIBAILhNsNqrvde5c2xrKf/5Dr40Y4X4fVVX0ujeqKjc2kskuMtLZ3LV/P2lKrgKmsZGKcl59tW8FDOChJiNJEhYuXIhRo0Y5lWIRPhmBQNDbcBUwrhqILFOJlsREYMIE9/uoriaT1pVXug9l7gxGI2kwWq1zj5rDh0nLuu465/fX1ZGmM3Om+zweb+PRz7vuuutwnetIBQKBoJfBPpjCwrYFzPr1ZLJqqxRabS1FmF11FfVpuRRMJhJ4ViuFPTPHj1NVgblzncdYU0PfPX269x38beGRkLnppptQUVGB06dPY+bMmaisrEQfd14ugUAguEyxWMgkVVLi3gcjy9Q9MiaGfCzuqKsjk9Y111CL5UvBaqVWzY2NzlFrJ0+SkFmwwNkMV11N75s69dKFW2fwyBK4e/duLF26FKtWrUJtbS1yc3Px1Vdf+XpsAoFAEBBwomVpqfsoMhYwUVHA5Mnu99HQQGaq6667dC3CbieHfmWls4A5fRo4eNBZwMgyRZ2lpVGUW3cKGMBDIfPyyy9j3bp1iImJQUpKCj744AO89NJLvh6bQCAQ+B0uFVNV5T4PRpaBTz4hDeWKK9zvo76efCbXXec+278zcNvkwkLnygLnzgH79rUWMJWVQL9+wJQp3sng7ywemcvsdrujjwsAjBgxQuTLCASCyx69ngRMS4v7TH5ZBtauJR9MWwKmoYEEzJw5zo75riDL5NA/dcq5HllREbB7N3D99UogAQuYgQMpyfJSqzl3FY+ETEREBMrKyhyC5eDBgwHX8EsgEAi8CZfrl2X3mfp2O/DuuxQCPH582/vQaskB741Irrw8qpysrkdWUkK+ohtuUASMJJHmNWgQRbj5S8AAHgqZ//mf/8E999yD6upqLFmyBIWFhfjHP/7h67EJBAKBX6iqIgETGgrEx7d+3WYD3nqLcmDayoOpr6dJf84c7wiY/Hwq268WMNw24MYbFVMYl6kZPJg0GF9k8XeGdoXMv//9b9x8882YOHEi1q1bhyNHjkCSJIwbN87RVlkgEAguJ4qKaOKOjXVv3rJYgDfeaL/WWF0dCajrrvOOgDl7lvwtaWmKVlJVBXz6aWALGKADIbNv3z784x//wIIFC3DnnXciJyenu8YlEAgE3c7Jk1QqJjnZfQSYyQT8619ULblfP/f7qK2l8OQ5cyja7FK5cIFqj6kLXtbWUrDBDTco0WKyTIInkAQM0EF02WuvvYYtW7YgJSUF9913H+68805s3boVdru9u8YnEAgEPocjtnbuJHOUOwHT0AC88grluLQlYKqrSfuZO9c7AqaoiApeJicr2kp9PbBhA7BokZJrw07+QYMCS8AAHoQwp6am4te//jV27NiB5cuXY8uWLbjuuuvw8ssvd8f4BAKBwKdYrcCBA9E4cICSLN2F+ZaXA2++SZqDuzBmgLSI+HhqBnapYcoAUFERgq+/pvIzrK00NFDJmtxc5Ttco8gCScAAHubJAIBGo8FVV12FRx99FLNnz8brr7/uy3EJBAKBzzEYyMFfUhKGzEz3UVhnzlCxy9tuo1BlV9TJjtdc451yLcXFJPgSE5WKyg0NNI4FCxRfUaALGMDD6DKTyYTt27djw4YNKC4uxq233ioy/gUCQY+mpgbYupUixZKTrW5L7R84ABw6BNx+u/tClpJEAmbQIMqm90ayY3ExdbCMjbU5BExjIwmY+fOVQIJAyYPpiHaFzPHjx7FhwwZs27YNI0aMwJ133onrrrsO2kD9NQKBQOAB585Rbkl0NJm4GhudX5dler26Grj5Zvcagt1OAmbUKIo084YWUVREgQeJiYDFQl2IGxsp4XP+fKqLxuOrrAQGDAhsAQN0IGR+/vOf48Ybb8TatWsx2Bt9QQUCgcCPSBLV9tq/n8xb7nLK7Xaa1KOjgXnz3O/HaiUfzMSJwNixl95wDADOn6es/aQkZVxNTW0LmEDXYJh2hcy3336LSBcP1tdff43Zs2f7dFACgUDgbVpaSEu4cIEc/O4m5+ZmSrLMzgaGDm17P3V11AtmyBDvjK2ggMKUU1IUJ39Tkxaff06CrqcKGKADx7+rgAEgCmMKBIIeR3U1hf2WlVH4sbvJuayMcmCuu65tAaPX02POHO8JmJMnlTwYFjA1NcBXX8UjN5eSQgEl0ZLDlHuCgAE8dPyrkWXZF+MQCAQCryPLVExy924yf6Wmun/fmTPhOHcOWLq07T4vdXXk/F+wwLlB2KWM7dgx4MgRMt1xYEF5OUW8XXllI3Q68vKzgBkyhGqRBWIUWVt0WsioqzELBAJBoGI2A999R5pCerr7PiqSRCVkzp2LxO23u5+8OZM+IQGYPds7OTCSRFFreXnOpWKKi4HPP6d8nKoqyfHeykrSrsaN61kCBuiCkBH5MQKBINCpqQG++IJ8LP36uXfMG43AO++QdjBjRiOCglqrJ3a7okFccYV3Gn7ZbMD335MfRl3s8tw50rhuuEEJhbbbScCNHAmMHu2dAIPupl0hM2HCBLd9Y2RZhkajweHDh302MIFAIOgskgT8+CNpMDpd29n5Fy8C69eTUz0tjRqAuWI2ky8nO5smeG9oEGYz+V/KyqjDJk+vP/5Imo26HwwLmDFjqNJzTxQwQAdCZvPmzd01DoFAILgkDAbSBC5cIOHiLjFSloFvvqGy+bff7j6EGaDQYZOJggAyM70zPqORaqM1NDg3QNu3j3rC5OYqZjOLBaivD0FurvcCDPxFu0ImIyPD8fzkyZMwGo2QZRl2ux0XL17Ebbfd5vMBCgQCQUcUFlKWvCy3XbzSYgE++IB8K7fc4l4zkGUytUVG0qTvrpdMV6ivp/HZbM4tkz//nLZde60yHrOZ3j9mTHOPFzCAhz6ZJ554Ajt27IDZbEZKSgouXryISZMmCSEjEAj8islE/o28PKpU3JZT/uJFCmG+6iqgf3/377HZlCz6adPajjLrLBUVJGDCwpSoNEkCPv6YEi+vuEIRMEYj+ZFmzQLq663eGYCf8UjI7N27Fzt27MCqVatw//33o7y8HG+88YavxyYQCARtUlJCk7fZTCYtdz4TSSJtobgYWLKkbcFhMmlQWUkT/ogR3ovgOncO2LOHCmty4UyLhbL4R4wAsrKU9zY1kaC7+moSRvX13hmDv/HoUCYnJyMyMhKDBg3CmTNnMGXKFFRUVPh6bAKBQNAKk4l8L5s2kXagjtBS09AAvPoq+WZuvrltAVNTA1gsWsyfT3XIvCFgJInyX775hrQVFjBNTcC//w1MnuwsYOrq6HuvucY7OTiBhEeaTEhICA4cOIDBgwfjm2++wZQpU2A0Gn09NoFAIHAgy0oTL6uVSsO0lddy+DBFceXmtj1ps3ksIwMYMqQBaWne8fCbzWTCO3/eWQCWlFDV57lzlSx+WaYItoQEMtF5o01AoOGRzF6xYgXWrl2LnJwcnDp1ClOnTsX111/v67EJBAIBACrl8uWXwJYtNBGnpbkXMAYD1R47fx644462BUxzM4UHZ2eT0z083DuVTJqaFPNcnz7KGI8dI9PeTTe1LhOTkUF10C5HAQN4qMnk5eXhb3/7GwBg3bp10Ov1iOamBh3w3HPPob6+Hs8++yz27t2Lv/zlLzCbzZg/fz4efvhhAEB+fj4ef/xxGAwGZGdnY9WqVQgODkZZWRlWrFiB2tpaDBw4EKtXr0ZUVBSamprwyCOPoLi4GAkJCXjxxReRnJzcxUMgEAgCFbudMvb37aPw3szMtqPCjhwhM9qcOc4hwq7vq64m09mCBc6RXpdKeTkV4NRqnff75Zck/BYuVEKUrVYy040c6T0TnS+x28n82BVTnkc/7cMPP3T631MBs2/fPnzyyScAqPHZY489hldeeQVbt25FXl4edu/eDYA0pSeffBKff/45ZFnGunXrAACrVq3CsmXLsH37dowePRqvvPIKAODFF19EdnY2tm3bhltvvRXPPPOMZ79WIBD0GMrLKWHy22/Jr5GS4l7ANDcD//d/ivbSloAxmykJcuBAmvC9JWBkmQTh9u1AVJQS9myzAR9+SFUCcnIUAcNVnCdPpkTLQBYwej0lim7eTCbAruDRzxs4cCCeeOIJbNy4EV988YXj0R4NDQ1Ys2YN7rvvPgDUAK1///7IzMxEcHAwFi1ahO3bt6O0tBQmkwnjx48HACxevBjbt2+H1WrFgQMHMHfuXKftALBr1y4sWrQIALBw4UJ88803sFovj3A/gaC3o9cDX31FIb52O2kvbSVW7t8P/O//kj9j9uy2KxPX1tJ+r7oKmD7de+HJnMH//fdUfJNNXvX1ZLYbPZrqjbFwbGwkIXPVVVRNOVCpryftcft24PRp+l0GQ9f25ZG5rKGhAQ0NDSgqKnJs02g0mDNnTpufefLJJ/Hwww+jvLwcAFBVVeVk0kpJSUFlZWWr7cnJyaisrER9fT10Oh2Cf6qxwNtd9xUcHAydToe6ujqktlViVSAQBDwWC+W7HDjQvmkMIJPX+vXk/L/zzra1AYuF3puZCUydSqVmvEV9PQUhGAzkV+GxnjpFYcvz5yvfJ8sk6KKigBkzvDsOb9LQQFpZSQlF7gUHkyBvaqKQ667gkZB59913O7XT9evXIz09HdOmTcPHH38MAJAkyakOGtc/a2s7/1Xjro4afyaokzpnXl5ep97fXRw6dMjfQ2iFGJNniDF5jnpckgQUF4fh+PEomM1BSEy0QqslzcMVmw349ttY1NeHYOrURkRFSbh40f13NDZqYbdrMGaMAUlJFpw/3/6Yjh8/7tHYZRkoKwvF0aM6hIfbERUloaiIfsf+/TEwGLTIzm5CfT0JIrsdqK8PRnq6FenpRhQXex5kkJ9/0uP3XgomkwYXLoSjpCQMoaEympq0OHUqCsHBMrKyjEhPl6DVdi04wiMhU11djccffxxFRUX44IMP8Oijj+LZZ59t09m+detWVFdX44YbbkBjYyOMRiNKS0uhVemy1dXVSElJQVpaGqqrqx3ba2pqkJKSgoSEBOj1etjtdmi1Wsf7AdKCampqkJaWBpvNBoPBgLi4uE798NGjRyOsrcJFfuLQoUOYNGmSv4fhhBiTZ4gxeQ6PS5Zpxfzdd7TKHzWqbTMW+z2++IJMY5RjEuf2vWYzOdUnTACmTKE+Mh1x/PhxjB07tsP3WSxUyLKigvwpXJW5pYU0q8GDyZmv0dDYTCYSNHPnUqn+zqyF8/NPYsSIkZ5/oAvY7VTrLT+fNLGEBDKTJSRQ8VCzGbBaYxAdDWRlmQF0Pj/SIyGzatUqXHvttXjvvfcQExOD4cOH4/HHH2+z7P9bb73leP7xxx9j//79WLVqFebMmYOioiL07dsXmzdvxs0334yMjAyEhYU5LrxNmzZh1qxZCAkJQXZ2NrZu3YpFixZh48aNmDVrFgAgJycHGzduxH333YetW7ciOzsbIe6MtgKBIOCQZXLq79tHfxMS2q43BlCY78aNlDW/bJlSpdgVSSJhFRREjvaBA71bubiujqLXmpud81+Kiyn/ZfZs52CChgYak+v2QKGuDjh4kMYpy8DeveR7mTWLhKbRSCV4MjOp/XNXO3F6JGRKS0tx22234YMPPkBISAhWrFjhcLx7SlhYGJ599lk88MADMJvNyMnJwbx58wAAq1evxhNPPIHm5maMGjUKd999NwDgqaeewsqVK/Hqq68iPT0dL7zwAgDgoYcewsqVK5Gbm4vo6GisXr26U2MR+I6GBlpFJiXRpCAQqKmoAL75JgZhYTRxtSdcjEbK6m9uprBk7nPvDoOBrr2hQ0mD8UZjMUaSqPfL99+TT0Xt+v36axKUixcrwQmSRH6gxETSpKKivDcWb2C1kt8oP580sRMnyDQ5ZQppamYzMGwY+bu8ESDhkZBh3wnT3Nzs9H97LF68GIsXLwYATJs2DZ9++mmr9wwfPhwbNmxotT0jI8OtPyguLg6vvfaaR98v6F5qamjFU1MjhIyAkGUSLvv3A6WlgF4f7FRSxRWbjUrinzpFGknfvu2/t7qaTGLz5rXdP6arGI2kcV28SNoICxKDAfjoIyqmOX++cwXlujpg+HAy/7WldfmLujo6D3o9aX1Hj5JQjoggATNsGAl+bzRnYzw6BHPmzMEjjzwCvV6PtWvXYv369Q4tRCBQk5SkaDKC3o0kUV7KgQO02tfpyPRiNtvbfP+BAzSpjx9PprG2zF0crWWzAZMm0eTobYt5cTFFickyRY8xp09TTTLXOmMNDeTjuPJKyvYPJOx2GndeHpn5uGjnrFnkN8rMJD+Xt0K71XgkZO677z5s3LgRkiRh7969WLJkiSjzL3BLXJzQYHo7NhvVGDtwgFbOMTHtN/6SZeD4cQoHzsoi4dKe/V+vp5DaQYOAiRM9c+x3BpOJap+dPk0mL554bTbKGzGbqTyMuoNldTW1Gpg8OfDCk/V6Ohc1NaRRnjxJ1aYBMitecYVv71mPhMwHH3yAZcuW4cYbb3Rse/3113Hvvff6alyCHoTwwwgAMi0VFNAE3dJCme8dCZdTpyjxsm9fYOnS9s1LZjNpLwkJZKJqK7P/UigtpVW+1ers3C8tJef+5MlkImNaWijBcvRo0qa66hz3BbJM2tiBAyQg9+2j+3PqVPpdo0a1XWTUm7QrZD788EOYTCa8/fbbMJvNju1WqxVr164VQkYAQPhhejvV1eREPnWKJrbExPbNpbJMZptdu8jPcfPNbbdBBmiCrKmh91x5JUWNeXtiNJs12LuXtJf4eKU0jCRR7bH6euD665VxsrkuNJSixwKtdKLFQkU5z58nIXjwoNIcLS2Nwqy7qyBnu0ImODgYZ86cgclkwpkzZxzbtVotVq5c6fPBCXoGwg/T+7BYyBl+9ChVMw4LI4HR3krebqciltu3J2PkSBIu7TmY7XaayAEyiw0d6l2HNKCs9nfvjkNamrP2UlkJfPYZMHasc/dKdu4PGkSvBVi6HerrKRJOr6fIMauVSulotTTe9HTvhnZ3RLtC5tZbb8Wtt96Kr776Ctdee213jUnQwxB+mN4BVzAuKCC7vs1GZevbM4kBNMnt20cCZvBgYM6cOgweHNvm+znfxWYjk87Ikd4NSWaam2mFf+ECEBZmd+SycHRbVRVVaubvZu0lKAiYOZOc+905WXeEJJHmcuSIUlNt5EjyEaWmkknPF479jvDIJzNx4kS8/fbbMBgMkGUZkiShqKjIUf5fIBBcvjQ1kSP/xAkyvYSEkNbaUXhuUxOZmkpLSVjcfjutpgsL3b9fkkhDsFrJvzFqlPed+gBpSGfOUOZ+UBAJi6IiKply8SJVFRg3jvwvrtpLZqYS8htImEwkXIqKSDMrKiLti7WXvn39JxA9EjK/+c1vEB4ejrNnz2L69OnYu3dvQJarEAgE3sFgoJIv+fkUkQSQn6K9nBVAMT99+SUJi6lTqeJwe6g1l6FDSbi0l3h5KVRVkVbV0ECCksOerVbgk09oDNdfr5jlZJmEi0ZD5WzaK9rpL2pqFPPYDz9QYMSECeQbGz/e/8mgHgmZsrIyfPXVV/jDH/6ApUuX4oEHHsCvfvUrX49NIBB0I83NpHWcPk1/AZrsPTELWSw00R0/Tia02bOVDpBtYbPRBG63k+YycqTvhIvBQI7w06fpO9RJm3l5wJdfJmHOHOd8GK47NmAAaQOBpr1wJYJjx2ichw6RcAkNpYrJgwYFRrSbR0Im6SeP7oABA3DmzBlcf/31sNlsPh2YQCDwLZJEk1NpKZmPqqtJmERHO5eubwtZps/u2EGr6NGjgdtu63his1o1qKyk/Y8YQQLGV7klVqsSVh0U5OzYr6mhsOSkJGD27HpkZJBtTpKUaLZZs7xfRcAbtLSQP6mkhPxjJpNSwmbiRCU6LhDwSMgkJibijTfewPjx4/GPf/wDOp0OJpPJ12MTCARepqWFhElREXDuHP0fFESr+45MYYxeT5WTz56lgI+ZMz0L/DAayadjNGodTbt8pR2oc0QMBjIdsWnMYiG/S0MDaVzR0fRegPxIRiOVhRk+3PvRbN6gvJxKw3AU2dChpDX2709CO9DG7JGQefrpp7FlyxZkZ2dj9OjReOmll7BixQpfj00gEFwiJhP5OyoqSKjU1dH20FASDImJnu3HbKaV8/HjpKmMHw8sWdJxvookkWAxmWh1PWsWUF9fj1GjOghJuwSqqpRy/AkJStKmLFPI9cGD5CuaMUPR1qxWDSoqKN9lxozA0gQYq5V8ZPn5tEi4eJFK6oSFkTkv0KLdGI81Ga6MvGLFCqxYsQK7d+/26cAEAkHnkGXyq9TX02r366/jsH8/TTxaLWkrap9DR5hMZO8/dowmuJEjqZyKJzXCzGal1P2gQWQSS06msbhrRnapNDZS1FpJCQkZnc75txYWUlhyZiZVTGaTHgcdmExazJ5Nr/s6A74rNDaS1lJdTdpZYiL5X5KSKBLO38799uhyjdCHH34Yhw8f9uZYBIIOaWgALl4MxeDBIjeHS5rU1dHkWlZGggEgQcCFHT1d3coymZYOHSI7P0CmmNxcz/Ir1FpLZCT5BgYM8P0EqNeTX6ioiMKqhw5VfnNNDfD55zSe3FznjH0e6/DhwJAhjejfP8CqWoKO6blzJOirqugvByGMHEnHNxCc++3RZSEjy11rxSkQXAq9sYSNJJGGoteTQCkvJ1OQ0UivazQ06cTEOJu/mprkDgWMJJGAOniQMty12s5pLACNo6mJnvfvT5N8aqrvNYLmZhKG+fkUqZaQQL4JjYZe+/xz0qiuvNI5as1goPFmZFB3y9hYID8/8OYzozEIe/bQ+cnLo994xRXkQ5owoedc/10WMppANP4JLnuSkijk9XIsYcPChAVKdTWtXmtqaOUtyzRxh4eTdtAVv4Es0wR74gRNzlYrCabRo2ky9lQwmM2kCdjtNI7p02nS7o4wX71eabql1ToLtJYWYMsWOnbTpzt3pDSbyZQYG0u5OykpgenDkCTSyr7/PgYhIbQAGDkSP7VApkeg9alpj3aH2tDQ0E3DEAg8Iy4O6NfP0mNWca5IEq38jUalm2NNDfkFGhpo0mMjQXg4PS5FK2ATVl4ehSmbzbTPIUOoZEpnyoyYzSSgbDbyeYwbRz6M7joXDQ0kXE6fpkk2JUU5LiYTdamsrKRM/enT1U59Or4RERTmG6h+F4AWGIcPU7Rbfn4EwsKU9gGcYNnTaFfITJ06FRqNxq1pTGgyAkFrJIkmPO6RbjTS6rm+nkxd7PRmYaLVkp8gIsI5h6MryDKF5164QBPx6dNJiI5WhMq8eZ2vXdXSQoJFkkh7GjWKJumEhO7TAmpqgB9/JOd9SIiz0DWbqZpzWRmQnU1RYzwuTvbUammCHjDA+43NvIUk0Xk7coR+7+HDQEqKDQMGKIET/gpNNpkoqrCgAHjooc5/vl0hc+rUqa6OSyC47JBlmtRYiLS0KNrIoUOxOHWKVqKua7LQUBIkYWFk8vDG5MwCpbSUiiIWFdGKHaBQ1kGDgPT0egweHNep/bLJzmik74iNpQm6Tx8yi3WXYJEk8j3l5dFfV42uuZmES00NjU9dJdlmI6Gu0ZBQHDQo8Colq2loIOFSVqZUTZ48GTAYbJg50z/ai8FAfXV271bG1L+/D4SMO37/+9/jj3/8Y+e/SSAIYOx2Eh7qh15PpqamJnre3EyTH6BoIhoNTWDNzUHo29d7QoSRZfrOhgYSJhcuKKHBGg2ZjDIyqImX60TaViFKV1pa6LfZbLTqT0+niTslxTcFKtvDbCZT0bFjNKaoKOdWxvX1FIpsMJDmos51YeECUMTY4MH+qTrsKVYrmTB//JEETH6+4nsZMgQA9EhM7L5yA5JEeURffgns3Uvnok8fYOFCOtbjx3dtv50WMnl5eV37JoHAT1itivbBf1l4sABpaaH38oTFpqyQENJEQkPb943U10uXtFpmM1t5OU2ypaU0kbJQi4wkYTJ+PPlALiVs1WRShAprK6NGUdKiOjO+O2looFDdU6dI4MfGOpdzKSujVbUsk19Fvbq3Wkm4BAVRxvvAgYFXZ0yNLJPv6NAhClA4fJii37KzyQw5diyd44KC7hmPyUQh4Bs30rWn0wHXXQdcey2Z6fie6Kopt9NCRoQuCwIJSVJMV+wHaWykSauxkQSIxULvZe1DlklosACJjqab25fIMk2eTU00wVRWUhgyT/YACY7kZBJm06fTKv5ScyDUgQaSROOIiaEw4/R0+t3+mpBtNjoGP/5If4ODySTHkVOSRKaaI0dozDNnOmtWnPAZEkKhyAMGBLZZDKDzffw4mTcLCug64J4vI0YA/fp1X95LQwMJls2baVxZWcCKFRRl6E3/T6eFzNKlS7337QJBB8iysxO9uRk4ejQKZWWKFgK0FiD8UE9avhwjT+YcKVZbS8+bmpRxAaSRcHviyZNp0gwK8o6JTR10QBFVwYiMJLPX0KH0vXFx/l/l6/VaHDlCWovFQsI0LU05BkYjmWuKi0krWbjQ+RwaDHTeo6Jo9d+3b+e0L72eJti4uO4zB1qtVOvtxx9JWz1xgnxFEybQ+EeM8E1jNnfU1QEffUTCxWIhk+NNN5Gw84XPzaPbb/ny5XjjjTcAKELmtttuw7p167w/IkGvgwWJwUBCpKGBJum6Omf/A/tAysrCEBHhXUd6W0gSaSCNjc7Cg5trKT6TJMckzo+BA2mFqtV6f4xWq2L+s9tp/0FBpJn07UuCpbi4CdOmBUa4bkuL4nc4fjwW/frRAoCFgyyTv+n77+m3jR9PFQN47ByKbbHQ5668suN2z23R0ED7bWjwvZCRJPrd3Kb66FESjpMnk0lwzJjuy/nS64G1a6mltM1GuUJLl5L25EvaFTIPPvggLly4gOLiYixatMix3WazITTQSn0KAh5JUlahTU00WVdV0YRts9FEKUm0ag0LaztHxGi0X/LkIEnKyr+ujsbCWghHiKk1kKgoRXgMGkQTYGioMrkXFtZjwIC4SxuUCxxBZjKRaYjHIsukjSQm0kQbH0/CjAUa09Bg96uAsVjo/BYUKFWOo6OBpCSrI0nSaKQmYsXFNNnOmuVchsZiIeEiyxQ6nZV16VFucXGKJuNL6uoogIGj5PR6CkiIjibNJTOze0xjFguwaRPwn//Q/XfNNdSltDN17C6FdoXMQw89hJqaGvz+97/H73//e8d2rVaLIRT+IBC4xWSiyaGxkZyblZU0ibMjG1CSDZOSvHezsWZhtTonOtbU0P92u/MYgoMV4ZGQQFE9kZE0nu6YoCWJBIjFQn/VY9NolP7sXDIlKoq2Beoaz2ql811YSNFwkkQCUZ04yX6Yo0fp9bFjyWzEr3OhT6ORFhujRtFq21vmpOho32owej2Vu7lwgY7BxYskHAcPJu02K6t7ot7sdkpQ/fe/6ZxMngzccw+NoTtpV8j87ne/w7p163Dttdfiiiuu6K4xCXoYRiNN4PX1ZBooL6cVU1AQTRicbHip9axYgFgsVJadHehVVWSOYcc2oDTfioujle+oUTRJBwd3n/lIlklDs1pJiFgsdOOrTUDBweTUTk2lccbE0GQaEUF/A8HU1RFmMwnxCxdIuNjtNIkmJiqLB1mmGlzffw+Ulydi1ChaUasnW9ZaJImOx8SJFAjRU0qotLSQ1nb6NGlmp0+TtpKdTT6nESN81/lTjSxT5Nqbb9I5ycoCHnmEKjT4g3ZPX01NDV577TVs2bIFycnJrV7/+c9/7rOBCQITjuipraUw27IyurnYfBER0fW6WgBNUDYbTVpcCLK6WvF/UPXcRGRm0iSWkEBObZ6QuytZkIUH/62rC0ZEhOI34r8REaR5cM4JZ+DzIywsMOtndURzMwn3CxfoGpCk1oIFoPO3fz+ZjhISaDXd2NiAfv1otpUkMp2azXQsRo6EI9+op2A2k8Zy8iQtevLy6LdmZysLnMTE7jnPBQUkXI4epejB3/2uczXpfEG7QuaPf/wjtmzZApPJhDNnznTXmAQBApktghwTSUmJkuzGE2hXwn9JGyFBUlpKj9paxU8SFEQaSFISmUm4bznfKL7wf3Doc0QEfZdagADOE4Qk0YTIwjQ6GoiIMGL8ePqsWoD0BE3EEzgXpbycBEtjIx2TyEjSNtSmrvJy6nlSX08r9zFjnCfZxkYSUqztZmZS+HFSUs86XlYrHYsffySBm5dH53zcOPrdI0eSBtMdv6miAnj7baqCEBsL3HcftTYIhDI67QqZGTNmYMaMGXjzzTfx3//93901JoGfqK2lhDiAtJWSEqCgIAH9+tHNo9N1rvue3U7CpKSE8gJKShQHtkZDwiklhcwICQm+MYtwforV6iw41GY1WabfHhxMWhlPeOz/CA9XQqK5PIyrD+n4cTP69/f++P0FVxmorSWfQnk5bdNq6ZioEyVtNspcP3GChHVMDPlZ4uOdhY/BQI/6+mBkZpLwSUkJ/NwWV6xWMguePEmTe14eXRsjR9JvHz6cnOrd4dRvbAQ+/JDCkbVaiha79dbAamLm0W29ZMkSrFq1CufPn8ff//53vPDCC/jtb3+LqED6JYJOwwUEq6ropjl6lLbLMtUpiosDUlKsbnu/NzeTmSMmhi5om40morNnaVJiJ7ZWSxNJnz6UQRwe7j2zAQsM9QNwztrXaGgC0OlorByFxSHQYWH0eksLOWwTE2kl2Nuw2ZwboJWXK0mikZGttQxOKjx/noR4377AtGl0LaiPPwsWWaZjO3w40NDQiAkTAq9BWEeYzbRYOnlS0VyCg+k3xcZSdnxGRvdoDyYTJVKuW0fP584F7rwzMKs0eyRknnnmGaSkpKC2thZhYWFobm7Gk08+ib/97W++Hp/Ai9jtNIlUViq2dJ6IdTqKOmluViZjd3CRyBMnlBUuO28TE8n04Q1hwhFiZrOzAAkKAmprQxzaRVQUTYAsRNhMpX54Yq7Q6cjs0xuQZcU8yL41deRfZCQtMNSapcVCWu7Jk3SNhIaSL2zuXOdJVZKUMj0aDV0TI0bQQoOjwwKxQVh7tLTQIiw/nzSX/HylA2dcHP3tbEJoV7HZgO3bgfffJ3Pk1KnAz3+OgNaiPRIy+fn5+Mtf/oLdu3cjIiICq1evxsKFC309NsElIstk8mAHbXGxkrin07m3F6ujXzg66sIFurFKSpTPx8fTBJKd3fV8AxYiHMKr0Sjmq6Ag8nUkJtKYYmNJ+wgPBwoKGjBpUt+AsDcHOqxN6PU0KVVU0PXApXaCghRBrb4WrFZyIp88qXS97NtX6W2ifq/FQoLHaqXtffrAEZjh7+oCl4JeT5paQQEJ4tOn6ViNGEHX49Ch3ae5SBLVbnvnHVrYjR4N/P73ZKILdDwSMkEuM5Hdbm+1TRAYGAxKnsKFCzSBA3RzJCe3byfm2lqnTpGNnVa7SRgyhGL8J07s/A1lsynl8a1WZ1NKZCQJq9hYpdxJZKTiOG9LEyotlYSAcUGW6Rhz1YSaGuDgwRicOKEsDAClTbNaS5FlmlDPnaOHyUSTWno6+VZiY52FCl8nJpOyz8GDadESFxcYzuauIsskjM+coXuoqIjuo7g4cuizWSwtrXtCqzkc+a236NwMHAg8/TQJ+54SlejRYZo8eTL++te/wmQy4dtvv8X777+PKVOm+HpsAg/gcN+yMlpx1dcrGeGxse3f8FYrrdBOnKC/nDg3YACVnNDpPI/kstmUEvmcvc91xBISaGUbH0/CLjKSHj0l/yGQsFiUOm5GI5k/a2vpvLMmIct03s1mDQYMaK2tmkw0eZ47RwsSu53MipmZZH5xzc+x25XkSEBpB8A9ZnS6njPhtYXdrpS94b/19WTmmzSJtLKhQ50j6XyJLAOnT0fg9dfp/kxLA377WyAnx38ReHZ71z7n0W3+yCOP4PXXX0d0dDTWrFmDK6+8UpjL/IheT2YPzia22+nGj4lpu1QElygpKqKLtrqahEpyMq3MpkzxLBqGV8xc6oQJDaV9DRpEQiUqih6B3M8jEHFtS8C13Lh6ApsVOTqO/U7x8a3PX2OjhMZGOudFRUo/nKAgmjz79yft1FXYW610jfH55erQw4crmuflYshoaSEz8p49sdBoSLhYrbTQGjxYaQDXXQ3bWHP54APg5MlMJCQAv/oV9Qvqbg3RZCKNtbZWmS9uuaXz+/FIyISEhOD+++/H/fff79g2ceJEHD58uN3Pvfzyy9i2bRsAICcnB48++ij27t2Lv/zlLzCbzZg/fz4efvhhAOT3efzxx2EwGJCdnY1Vq1YhODgYZWVlWLFiBWprazFw4ECsXr0aUVFRaGpqwiOPPILi4mIkJCTgxRdfdJswejlgt9NJZrswV/ZtzwTGDvpz50ioNDTQtvR0sinn5HR801BtryDU1CiRRhoNTTIc5stBAj3Z9t4dcG4Q+6DMZiWijSP12K8BOPumOHza1czF2Gx0fZSX0yq8sZFNWolIS6NzzrkbrsLBbicTW0uLYlYLC6OM+9RUOtfR0d1Xfr47kCTSAM+dI5PYxYtAXl4MEhJIoHBx08zM7gsFlmWqhvDhh2SqS04Gbr21EnfdldptJYRkWakpWFpKz6maN23T6XwoZNwPqP0Ikb1792LPnj345JNPoNFosHz5cmzevBmrV6/Gu+++i/T0dPziF7/A7t27kZOTgxUrVuBPf/oTxo8fj8ceewzr1q3DsmXLsGrVKixbtgy5ubn45z//iVdeeQUrVqzAiy++iOzsbLz++uvYuHEjnnnmGbz44otd/TkBh9FIUWDnzpFNmLWV2Ni2tRWOADp2TGk/27cvqfsdrcRYQzEanSO5QkJkDBtGFz1nrAszF8F5QFQnTYvSUvqfK0pzawKjsXVTNCY4mFaoISFtNyPj+mbl5SRMqqro/NrtikYTG0vniEuXaLVASUkDMjOVSA6rVRkLf06rJVPQgAGkgUZHd1/J+e6GK0GfOUPHMj+fzk9iIpCVZcSwYdEYPJiEa3dN7JJEbQ0+/JDu3bQ0anF87bVAYWEjQkNTffr9LFgqKkijozwmEjJs9k5JoQCD1C4OpcvThaaDZXBycjJWrlzpqNY8ePBgFBYWon///sjMzAQALFq0CNu3b8eQIUNgMpkw/qf+nosXL8ZLL72EW2+9FQcOHMA///lPx/Y777wTK1aswK5du/D+++8DABYuXIinn34aVqsVIT3U60jlUrTIy6OboLJSyapvS1ux2yni6/Bher8skwDyRKioJxxeNcfFUYHIlBSaqGJigB9/bMLYsT772QGDus6YOmyaqyAbjXQD8nPu2QLQ8SspiXG0Ow4KIuHBAiQyko6lu/MhSfS9er1SUaGujrQR7lwpy7Sv2FiaEAcPbr8Om9VKY21s1DrK1rC/jYuAxsQoAqWn+1Paw26nVTibls+fp8k0JIQEa1wcLcTs9mZMnJjabcfCZAK++gr45BOa0DMygP/5H2D27O5ZxLW0kGC5cEExv1dW0nUSF0eJslzNgzumdrXUj89+TlZWluN5YWEhtm3bhjvvvNPJpJWSkoLKykpUVVU5bU9OTkZlZSXq6+uh0+kQ/NNR5+0AnD4THBwMnU6Huro6pHZV3PoBNnMUFZEZ7NSpePTvr2grrhe8JNENc+QIXRySRCarESOoa2BbdnJ15BGbvcLCyIySnq4UZgzUyr5dgVf/LCz4udmsOM25GRr7mDhniFFXBWChwQ9XraOlxYa0NOVzbK7kFs9NTWSybGggwcXFPPk7o6IU09SQIUqlZQ7rViPLSj8Z1qTURETQ+AYMMGHcOBIkUVGX1/ltDw7dLykhoVJRQfdXS4viWwoPV1o1h4UBBQX2bhEwtbXUz2XLFprchw6l+mIzZ/reJMl5coWFpMnV1ZHAtdlIS5k6la7Bvn3JFxUX53zNdLUpcrtCZsKECW41FlmWYeL4xQ4oKCjAL37xCzz66KPQarUo5OXeT/vRaDSQJMnpe3g7/1XTlgYly3Knwqrz8vI8fq83MZk0qKsLQXFxKEpLwyBJGgQHy9Dp7EhJkdHSctZhWiFnvQbnzoWjoCASFosGkZESBg5swcSJFsdFabHQKo1hX4rJFPTThaFBTIwNyclWpKTYoNPZEREhQaNR2haXlbU95uPHj/vqcHQKKg+jgdWqxa5dJ2G1amCxBKGlhR4mk+an362Fzaa+TpzvDq0W0Gpll0fbK3pOUrRYNDAatTAatWhuDkJzMz1vaQmCLCdAlhtVN6IGWq2EiAgJERF2RETIiIqyITNTQmio5OhD4w7SQjSw2TSw2zUuv4UID5cQFSUhKsqG+HgJ4eESwsLowSvhhASgqemkI88lkMjPP+n1fRqNQaipCUZxcThqaoJRVBQOg0GLsDAZaWlm9OljR2qqBUFBdOxqawGt1ub4fEGB7+ozlpSE4uuv43HoUAwkCRgzphnXXFOPgQNN0GhIGLrDG2MymzWorg5BcXE4mpq0KCsLhdkcBJ3OjgEDTIiPtyEjw4ykJJobNBqlQZ+akBAJgwd3/vvbFTKbN2/u/B5VHDp0CA8++CAee+wx5ObmYv/+/aiurna8Xl1djZSUFKSlpTltr6mpQUpKChISEqDX62G326HVah3vB0gLqqmpQVpaGmw2GwwGA+I6kRU4evRohHVT0aTGRprET5+mVRU77SdPdl69nD17FgMHDnEUGCwvp4loyBBgyZK2nes2m7I6B+gzgwfTioS7NXZ1FXv8+HGM9bG9jFf9HLHG0VXsFOdiihxZVVJSgr4/1bphUxIXrAwJoWPqzuTAmgM74Xn/er3yaG52NlOpV2/BwYpWwGYWnY62lZVdRL9+/dxqHgxXmFZXcFaX/methhMkuQQOB1aoqxl4surNzz+JESMCL1vPm+MyGMjMwxrLmTPkswoJISd+YiKZe/r1o+fBwc4lkbiyRUHBGWRlDfXKmBirlRqybdlCftLwcCpaeeONQJ8+0QDatz9dyphkmTSVoiJagFZU0BwUGkrm9PR0miMyMuha9kSLk2UzgM4vztsVMhmX0DqtvLwc999/P9asWYNp06YBAMaNG4cLFy6gqKgIffv2xebNm3HzzTcjIyMDYWFhOHToECZNmoRNmzZh1qxZCAkJQXZ2NrZu3YpFixZh48aNmDVrFgCKVtu4cSPuu+8+bN26FdnZ2QHjj5EkWgUUF1NiY2MjTRzuCkxyiY/jx4Hvvkt0JCiOHk0lut2dfJtNiQgC6MbhCCKuveVr1ZvrXHEzrfZQ955nE1Vjo2JGMhiUyCZ1mXx2iHPPFRYcLS1WpKYqAoOTA+vq6C933mxuVpzj6mZggCIwWGjExtK5iYx0NlO1p92wP4VMV0GOpmhtmRW4QrNacPD3cQ210NCenczoTfR6pYOl2h+g1ytVLMrLyWFeVqbUUMvOVip4Jye3DqPn4+8rKiqo9Mvnnyu5NvfcQ2HIvm5hYLXS9587pxwjvZ7MYbNmkXmQhW93RQz6zCfz5ptvwmw249lnn3VsW7p0KZ599lk88MADMJvNyMnJwbx58wAAq1evxhNPPIHm5maMGjUKd999NwDgqaeewsqVK/Hqq68iPT0dL7zwAgDq2rly5Urk5uYiOjoaq1ev9tVP8QirlVZUhYWUFGk2KyXrXQtM2u0kgA4cIJ+MVkuNhWbObEBWVnyrfXMynFqo9O1LqxCe5Ls7b6GujsZdV0ffr9amuIkZP7hAonrCDglRJlTXkiY8eXMV4MZGJVfEbAYaGxOcJgkuOR8d7SwwWLNpT2BwlWZ+cIUCm621YFLDob7h4SQskpJsGDJEaRXAv40f6lYFAs9oaKBjxu25+f6qqKB7jMxdpKkMHUr3Qno6RUJ1d4Sc3U7385YtwMGDdH1ccQVpLhMn+n5CNxhoTjl/ngRvUREduxEjSKgMG0b3hD9SDTRyR7HIlxlmsxl5eXleMZcZDMoFX1SkZLi7ltbgdrLHj1PvCauVJtaxY+HodQ4AhYUXMGDAQEiSc4Z1cLBSD6q7hYraXKYOIKioIDWcHewGg3PJGJ5Y+cGv8fs5S722liYRk8k5o5jrq3HhSw6fjogASkvJNOUKCye1wODnrqiFHmsYLDTUf1lYcKSY2vmvFlqBaJoKxDEBno3LYqFJs6CAhI1eT8/1ejr2GRl0DyUn04IrIoLuq/aKu7ZHV01TxcXAjh0UKVZTQ/fn/PnAvHmXXnC1ozFxvs+FC0rkXEMDjWHMGFq4stbijaAGNpd1du4UGQ+dgO2cHGtfVUXbo6JIHVWvVmw2EjwHD9JEGhJCq61Fi1r7RySJBEptLXVX1GiczV9xcd27CmZh0twMlJaGOhqM1dU5ly5hXwj3muFQWZOJ3l9YSKtPbqnLmgGbv2JjaaIYPFhJenPVaFz9GC0t1I+Eu1Cq0WoVAcECieugqbUKV4FxOYfw9hS4Qyabmbk5Gpc7CgsjYTJiBGkuffrQZOqPihJ6PRWr/OorMocHBZG28stfUuUMX4cgWyx0fLhw5/nzdC9kZZFJbNgwRfAGAkLIdIDVSsKkqIhOKueVcAkX9eq9qYnCi0+doskxJYUEhbsVDTu2eeKlhCcjZsxoXWbd17+PHd5cPqK2VilmWVysw8CBdMFy6RIWJOxMrKhQiiWy8ImLU1ojs49I7eBWNxDjelwsvFzbF4eHK1WYIyOBxEQDhg93r2UIegas3Tc00DXE19H583Q9AnTfjBmj3GspKd17b6ix2cgctmMH8MMPSumZ5cspt8XXfVwoj44EMBcyra2lYzN5MgmWrCwaR6CZZcVt6YbGRlqBnz1LJ1WSFDOYutUwl8E/eJBMP6GhFIN/ww2tnbdWKwkhLrEeF0fO/bQ02mdoKHVXTEry3e9qaVGc7VVV9NDrlUk9OFiZ0LVaGnNxsYyLF2kSaGhQ8jtCQpTOltOmkQDgi5s7UXIOh7pls1p4REXRTaHTKXkcYWG077CwtrUMm83qyEkR9AxYqDQ2AidPRuLMGRIqhYXK9REZScJk5Ei6rvjeUDdC605sNmrk9+23lJWv19O9sXAhcM01pIH7elwWixI9xwtdWSYz2JQppNn16xfYVRqEkAGdyOpqbjesTLyuPVc4yevwYXqf3U5mrUmT6GZQX3BqZz1XRR40SHHW+/Ki4Ii1pialh0h1NWkb7AAPC6MxpabSzVRfTxdxcTGNm01RshyFrCylhwYfCxYi3EvEYFC+PziYjl1KCpmtdDrnJmLCCX75wxpyQwNNkuXl9Le4GCgupijKiAi6HwYPVkKNExLartHWHdhsFG78zTeKYImMpAk9J4ci13w9Nm59XVAQjh9/pMUuay1TppDGMmRIx607AoVeK2S4RDpHYwBKbTB1SK7VSs76o0fpgouIoAnXVVtRt5rlSrd9+5KzngtJ+mLVI8skyBobSVBwfSvWmFhr0OnodzU00I1eUqJoJgAJg/R0YMIEeh4URDfc+fNGJCcnwGqlY8bCJzJSOVbckZJNW90ZgttWmKug+5AkpTFaTQ1pyGxKLS2lQA/ODUtLA3Q6I0aOjEZqKplgo6P9W43AZAJOnIjCli0kWJqa6FqeOpV8HJMmdc/4OKDm/HluFJiAqCgSwtOn07yTkdF9RTu9Ra8VMtu20UQcHe2srUgSnehDh2gylmUSFDNn0nvVgsJsphuL/RdcNj8lxX3pdW/A5bfZll1ZqZRkDwqiST4mhsbNvqSSEuVGj4wkYTJ8uBJQoO5QaTLRcZFl1nYkDByoNBXjR6CsoDjMtaFBCJnugGveNTfToobNrhUVtMBpalKKuVLhSboek5PpERMDVFY2Yvhw/5Z/qq0l38oPP9AC0mzOcGgs3SlYzGaltNT58+RrMZvJwjBhQhOuukqH/v1Jw+up2n+vFTJpaUrinMFAbWbz8miSjYkBRo1qnZHPhQx5wo6OpsmaC8h5u4CAzaYIlIoKerApT6MhgRIVRZN+WZmSQ8Ahu3FxFIVz5ZU0NnWXSrtdKRvBvhF1Fd7ISNJI8vObMWJEx2P1l0YRF6d8r8B72O1K4qw6KKSmRmmSp9crPra4OFpcDR1KC6zkZOVaUPvrAPq8P37PuXPkvP/+ezJ3AzTmuXOBzMwSzJvXPS292Spw8SJpLOfO0X0eHU2WhKFDybReV9eIsWP7+H5APqbXCpmTJ4H9++kGCg6mkzpnjnPYH4dVcr5KaChpNVyuxZtZw+RHCUJpKd3MZWV0IbI5i30o8fGkmXBXQ3UTqowMisbRaBTNxGpVSqdQZJYiTLhLpTdszP7SKDh/RtB51A3oWloU7aSuThEm3FaAqyaEhNA1mJFBptKEBCXMnq+nQNFyq6rIInHkCD14gTZsGPBf/0Vay4ABtK2gwOiRgHFXksYTOACmtJR8LGfP0r0SEUHj4eiw9HRlDtLrL48Uxl4rZGpqaIWvbh3LWg07voOClHyVpCTvJkFarc5+lPJy4Pz5OGRk0E3KmetVVXRBctkMFigDBpBKb7crNb80Gtofmyr69VNufs5+9xXe0ig60oioLHkI+vYVwqUjuCac2hTKJXcaG5VmVCxYuBI1RxrGx5MQGTiQrsX4eDovXK/NVUPxJ83NdA+VlFCfmMOH6TlAv2HKFMplmTCBfkdXaWqi+6ypqWMhY7HQcS0pUTSW+nqyQAwbBlx3HTnw09IC61rmwCGDQQke4kZ4c+Z0fn+9VsiMGaP0CuF8FY2GhAk36YqP984qXx2+WVWlaCkM538EBcmO7F32s7CwGDWKxqjuY1JXpzhTud+DTkcXcXeHfLanUXTGlNaRRtTQQL+tt/tg3LUw4GZpnPd08mQ8wsIUoaLXO9dWUwe6ZGUp55C3sSAJJB+cmvp6MnGfOEFCpbRU8SWOHQssWECCpX9/790PMTGKJuMOg0ERLGfPkgm7uZmO4dChNElzz6ZAuX4tFmXBW1UFp064gBIVGnD9ZAKd6mq6KbkYZWoqrXi84VdRayllZbTCYmd6SIgShcVRJEYj19DSYcwYcjyq+6FoNLS/2Fi6YdhUp9MFbjFFtWDpjCmtI40oLk5psHa5IElKcionqPL/XFRU3W2T67ix1s3bXYtzWq06pKbSdZKeTpMbL0T4r2tVhECtfiBJSvvxH38k4VJcTK+FhdHCcPJkYPx40lZ85bR3La5pt9O1Xl1Ni8Nz5+iv1Ur368iR5LcdMIAWroEQGWax0DXEvrWGBtrOkajR0fSesjISOrwgTkyknLjO0muFzIwZJFQutfQCm9hYSyktVZLLZJlu3uBgJbmTS6yEh5NvZ/JkmoDNZqCkpAUxMfEwGEj4ca0yTlYMxNVkW6gFS2dMaR35WCga0Bowq0AusEm9ZpR6aSww+MEmK27PzM3TuAq1Wpjww2p133KAAz74L09eXFGa/1ZW1mDo0GinKs+BYt7qCL2eBEp+PlXQOH2aBCpAv23UKNIKxowh4dmdeTVU2kjpLFlYqJSY6tuXFolZWcr9200dRdqEq5RXV9P8xAE/QUFKkA/lL5Flh7dnZJCrIDaW5qyuzj+9VsikpnbtwnTnS+GyKCYTXVC1tXTRVVfTZBIeTiavESPoudmslLa3WpUe60lJzRg/nm6injIZMK4mMbVg6Ypz3pfRauqqy64PFhKsXXDCqcXibJpiLYLPe2VlCqKinH0gFouiXbgrQ6tOilWbJJKS6DqJjHTOP1L3k1HXYuOSOq07aFovuUhjd1BfTxrA2bNKyRRuohcURPfOlVeSRjBsGE3e3bngsliUumoXL9I4S0roWoiKoqChWbPob0pK97Ta6AiqhaiU7OGIUw70OXuWhCRrLwMHKq2f2b8LKC034uK6bj3otULGE2RZcZSyL0WtpYSG0mTD7ZM57DMzk4RYRoaykuWKADodCRROQiNfDO0zP98WMCv0zuJqEnMnWNSCgz/j+pw/487ExseypSXI4Yh01Rx4cncVChaLIhhMJuftasHA4enuNAg1XGWaNYSWFo3Dn8GvqSs588P1f26w5vpor1NnT8VuJ43+yBEdvvtOESx8TwFKwdQ5c2hRlpXVteoYXY0CA5QSUBwNdu4crfL1ejq3/frRhJyVRSkC8fH+L0Zpt9O9UlVFgpC7oXJ5ppISpXtuTAwJ7EmTFP8uVyVJS1PymdicyvMTt4vvLELIqODM+bo6pQwGO8A4A76khIQKR+Jwv5jp05W+KXY7naD4eMUslpbWMzUUT2nPJMbCpbmZjkt1tSIc6uuV5xcv0iTN5oj6ejpee/bQPoxGEgIVFSmIiFCi6tjfxXXVXOG8Iq6Jpm5DwKs0/lx8vFLWhDUEvlHVmgO1cKbxabVAYWEdsrISHELjchQSnmK10oLs4kXlwVUmqBJFH2i1NFlPmkRChdv6ShJdI0OGXNoYOhMFZjYDDQ3BOHNGqW5cUqJEmSYkkHlu7FhaQMbHO0el+gsOMigtpXHbbMp1Xl9PpjyrlYT0kCEkuPk6Dw5WFsLx8XTf+cqs12uFjNlMJ6ixkdTGykqaxLiII2f+FxUppWKiouikTJxI++CTqtHQiRo5UonyupwFiitc/l+nUwQ1aw5GI2l5LGS45L/JRO+z2RTNQ6tVhDRP1EFBJAy4GRi3HmYBzjZlVy1BLRRYILgKBvX/lZVKFeg+Xch/i4qSAsKp213Y7YrjmM3GpaUkTLg8P5OaSgJlwgQyJ1mtJbj66r5OxWYBmtx5oXaptBUFxm019HoyJxUW0mR8/nwKgoKU3k3Z2WSa48aDEREUdONPrFZFW2HNCnAWKi0tdP0PGEAmRjbb8WKXWyRw6ajuoNcKmc2bFdMIQKvrwkK6MCWJLqr0dFrBaLWKTZPL/CcnO0d5+dsG6wvq64HCwjBHjo06sVOvV0IeWVOpr1fUb9YqNBpF6+OCnNzvJTVVCZVln4Ner2gYffoowkatIVy4UINhwxK8epPExrYfmtrb4NLynOXPZWPKy5VyRuow1+Bg0tb79aOgmn79aNWfmenc84UqU1gcrSHUpKd77xxwsIzJRL9BXVm9tFSpwxcVRWOcMqUJ06bpkJZG1wJrKq4m3u5EkpTGfmVlSvK1RqOY6RsblU65kyfTQot9fZmZdA/xPOUvzavXCpkffyShwolnHOIZFuYsUGJjFYHCGsrl0LdEXa+Mm5KVlSkXcGUlmQzKy5OwYYOicag1AG5Wxs5EDpHliYWFR3097Z9XUmq/gytsS29pofFkZLTuxxMc7P1VmK/7vgcSZB5SFgY1NTSB8YOz/XnBwHDdu4EDSZCkpyuPpCTPFlpcV8+dILmUc8CFYjlPqKpKCSDg3xISQgub4cMpZ0W9qr9woQEjRrRWYbuzogRHgXFQ0dGjcUhNVSozFBeTcNRo6HeMGqW0QQgNVVqyJyZ2vSCv1apYIAwGukaampQcq+nTO7/Py2C67BoZGUr9MjZ5XS4CRZYVhzb7LXhFVltLFzBnejc0KPkYAE3efGOFhgIxMXaMHEk3KJfs79evdXQTf4ero7W5mQRWv35KD5n24Inm0CH6/tJS+Kx3zKU4hwMFnlxZw+S/9fXA+fOJCApSzjM/uEySGq4SkZREE/CMGXQvcIvj1FTvVBKnFhC2SzreXKSTfXcsUMrL6ffZ7XRNJiXRxHv11c6loC7FlO3NqEd1gAFXT2dzssFAVoQLFxRz/MCBlAfEi7SMDOV3xcR07jdxi3e9XtHy6utpG7sMAGc/pkjG7CQpKXTBcR6KN0xe3Vkk0mpV6k6ZTMoEwjbymhr632BQwmi1WuViiYmhif+KK0i48oWVkEDvMZno4q2qqkFWVkKHE3JoqPvf3NREr507R45ToP3JnV/jQIKMjNb7NBg0KCtTVsNdFRSdcQ57C+4KygsAfqj/Vy8O1O9RCxF+3tysaN6uaDQJiIlRwk+zspTSMHFxyvOkJPobaCZfrsjBXWSrq8nvUFZGiyVuZxEaSguRUaNIm+7TRzF5qaM3vUFXa/SpezzV1pL5kZMgOTmyokLpEJuQAKSnWzBsmBJ80qeP0o+qMyWuJEmJkmXTZ22t4jdTd6BNSaHjzdW1a2qUZHH2O3eWXitkpk71vo2SI1Kam+FR5eL2YOe4+iZThyhWVtKF0tKi2Ma55llMjNL6ODFRueFcneNtXaRlZXTRqRuRcW0odvB7SkwMfW7wYOWiLi9Xeu9kZTm/nyf+iAgl4sgVg0HrEA5cJdho7HxEkjvnMGuBnkz86m0VFcmOHKiOPqt2inuCVqv0BOJMfV4k8f/8XF0aprq6AMOHD+3cl3UzXHuPr3M23128qGSbc4mlkBC6njnhUe1vYNOsr/E0sZg1e/ZrVVUpPmC9XilCykEuaWlUeYR7WUVHA2Zzs6Mdu2ubkbZQJ4ez1YI1JIC+KzKSBEZLi5KEyfcdtwtJT6dAh8mT6drjQrxdodcKGV+gTmDyRKthbYQzvE+fDkdZGZ10tiWzOQugkxwWRoJEp6MImMxMmiTVEVYccttZWIsIClIuqqqqYKSnk9mqPfNVW9qJTkdROurJnDOPMzJIyKg/21FtKKpNJTlyFsrK6IbSapUij54IBZNJMblw0iW/1tnoJjIZxiAyko4958dERioZ3+pkStfnHW3rqslWXR/PX3CRTjbfGo3U8bGkhK5zrvJsNitZ5eHhpF0NGEBtjtPTaVLkSMJLrc13KRYHdz4a9gVxVn1NDW1jkxQXInVtEJiVRRM4C5n0dEVLiYgAjh9vQb9+7Y+HozTZ5FZZqWh4QUG0n9hYpbVAWRnNJ0FBSiLpVVfRceVyRows03s5srarARlCyHiRjAy6eLVaCiyIi1OyvtXaCPd+qa6mC5D7u5jNaQ5TVmIirWw42YsnsLAwumA43Lcr4bZtceIE3fiZmVSjiAMBmprot7FgcEdFhbNGoRYcoaE0/oYGJbmNs7yLi2k7T/JaLR0r9epW/Zxu3s6pLCx83U30sbH0OodEezrxq59rtUBBwTlkZQW21uBt2PSnTmxVm7Z4Fd3YSNcFRxyazYlISFAEyVVXwdElk/sj+bLDaldNXna7ojmzplBbq1Tw4Mm+vl4RKBylygJFq6XfnZrqnPToiZag9q1WVdHx5VI7vAANCaExlZQofXuCg0nzzcykMjFqnwtHfXIPoIQE5RzwnMMC3WymmnGdRQiZS4QLWba0KDcWr9IKCpSLjRMO2YEeH0+rl8mT6eRGRwNlZeUYPnxwh5oI97m51FBPV+2jqoq+l+swcSRQdDSNu6WFcwqUiYS1gOJiusk4bJkjxLieV1vs2kV/eQXLEwz/TUhQJnPeZjDUoG/fJNX/yqSUmalECFosirnQk98vIFwLdao1bnYSV1cruU+c28Lnns178fG0CJo8mSZa1hyKi0swZswwh4Dubjoyeblr2FZfr0RYtbTQBF5XR89ZQMTG0mQ+YoRiluagCTbreZqf0tIC1NUFo6CAjrW6YSFA+7ZalShQ9uVwz6uRI2k83LKE72MeDyeUshndlwgh4wE2m3KTcRXc4mKacMvLFbsxX3Cs9rNzffBgpUNgSAit3tyd2OZmu0cJfZcabmuxkEaxZw9NGpGRdEFevEi/R6sFvvuOI1/6wWhsHc6qxtVElJhIF7O65hH3tOGHRkPHKTmZPtvS4t6R704QFBTUISsryfH97t6j9iu1JWQu57BlTmo1m51L79jtitDghNm6OmUFzkLDZKL3uwqP4GA6zrGxZGrhFTn3mQkPdzbbuptQm5o8u859BZu8zGb6zSYTUFQU5uhCy8KkuZmESWMjXZ9aLV2zoaEkTNiHEhxMv5+j8WJilPu9I7Oezab4cVlD4ZqHpaUxyMhQqrBXVtKDz0dsLM0vM2c6+1hDQmh8am2Jo0X9gRAyUJy9bI4xGrmJGE28NTVKFA+f4KgopVLytGl0cXHBS5uNbrCqKjrR7MNQm4+8Ddcu4nBV9cTh+mAV2xWuvsrh21RuogVJSdGIj1dKwaekKI7oiAg47MaeagWuQkFtlgOcI75czXCe0pFvJ5DgsFV+cIFO1+dqIcFVEjinoalJiTxjn1NtbR+EhChmKjaR8MTHGe4s+KOjyazDocwxMUo/GXU5Hg5bD3TYysDmVr7uGhvpYbUqwQZFRfEOIcLmpMhImqT79VNq0sXFKceH7xNPKqRz/onad1Nbq2Tt87nhwpaVlUBFhQ7nzyvRcwMGUAgzV6kA6B5NTaVHXJzin/V3yRs1vVbInDwJnDlD2gg7H7m0OkAnNi6OzDVTpyrZ6Wyi4ZvOleZmmhhlmeyfrk7wzsChh65Coq5OESj8nE1VrrDZIj6eokXGj1d8PLw6Gz6c/menv91OZo7z54H6+nr07RuNlJTWmgZHpJSXK45B/o1qQcKfCQqi38NmxL59SXBwiGR6uvP+AbopS0vpmKeluT+G7kKRO9JS1LXO1JOw6zZ3f9WTP2sMRUWhTsU5OaCAJzl1YIFaWLhqGO1VbQaUnC5+cKQgX5c6HZ27mBjAaKzHyJE6Jx8HX7fuinJ298R0qSH/aiHClgQO72ahy/1euIQU5wipzU7x8UBKihXDhtFxjIlR7hm+V9hP0Z6pi5sKGo304Puzrk75XklSqjpzNr86V4/N6AMHAtXVjRg0KA5Aa1MXa2M9IY+vBwzRN7zzDp3s+HhavfXtq5h11CXVPb3xeFKtrlbKVQA0oWo0ygTJ8fKsaai1jqKiVEfRSH7NXQ4E91lPSKD9jhhBzznvgZ+zM9vT8QOK7Zajy+rrtY7yFOr3sVmFb47aWnIKjh1LY1JP/AaDEnWTnEy/l0vIXLyodA7k0MuoKDo37FTlsjSnT9MKsrg41LGy59YLdXU0Xo3GuaKyeiK3WpUS/urS/urCmp5ElrleExoNYDQmQ6dTJmyumcYTOmsB0dHKtaV2rvJzNjfx54KClH2pa67xc3WNN1fy8/WXHErvS9pzwKu1Ndcq2vzg6MCmJuXB14paEOt0dN2MHKloZ3FxtGjk1X9hYS0mTUpFZGT7WgmbGvm71UmurJWw8FO3uuZ0AI2GzllyMi2qxoyhc87Xbny8Ym4uLm7EtGmKT7Sn0muFzIMPKjesNygqooix8+edJ0nWkLjuF0dSuUKZ9lGOts+DBjmvpviRkOB9dZgFpKumQKq7HRER1Djq3DklLPf8eboRWlrob34+TZbffUcCiftYhIYqK0kWmDy5a7XKapMdpQxXhGWtQKuFYwJoaUly+HXY5MM3oSQpoa4hIXQu1D4jde8WdTn+kBBlXzxpuz64sjJPCLxdowEKCi5i+PARrT4TSGYLf8LhsFYroNdrHZ1pa2vpmFdUKKHALEC4RAybmdT1zvjYhocrJqxBg0hgREWRAOGQ+Oho58ARd4vHpiabw0/D7SBMJufSKo2NyhjYysCmN655qDZF8v3Kzcv4muCeQSxQOCXBNXHUarW2KiLaE+m1QiY8vOOkOK56yiap9vwcXJbF3ffExCg2Vb7wOOOatY7oaODcufNeD4N1bcbFNzr/NZuVFtCNjXSRc+dGqmEWj717SQvRaBSBwN08eeJnU4FOR7+NKw2o20SnpZF5LCmJbiy2P1ssdGzS0+HoChoTQ/s9d47eFx1N+TZaLXDmTDFGjBjhsG/z+4uLlcCLzEyvHsYOCQ+X/d5TpDtgYdHWQ226Uq/41R1Ay8uTERqqvM6otQ82W0VHkw8wKkoJLmCzLJeIcQ0td7dwVEeBsrDg6DG9Hvjxx1gcP66YQU0muq953Gqtnc2Z7Lfs319pNMehxOr7m/0k/Ai0ygq+ptcKmcJCpbQDm6Zc/R5tOcg5BJlNbSEhdNE1NdGFlpiorEpCQ6k1QFv+hI7gm9pVQHDBSo5249/AjmB1AqI7+IYBlBUW39TR0WQ+DA8nu/Dw4dEoLSVn5IQJFC1nNCraQ3w8HSu26/frB3z9NX0/ryBDQ2m8U6cqY9Dryd8iy/R9QGsbfVUV7TMyUjl+oaEyQkNpPMHBNGlw+RR/VcwNVNwFEvD/6ufqsGVXMxVPzmymUvtB+Lm68gTD11dwsOIvosASG/r3VxYkvJ0DSbhGnmujN1f/A4epWyw07vp6RfNVm9b4fuDqAlzwsbmZ3muxAHp9nCMKUZLoO2NjSUgMGkTjDA6mceh0zqY21pQiI5UIUoFCrxUyTz1FDmsmPFwRHJmZ5FtQax1qn4drdFhzM3D8OAUTRESQuchopIua+6/X19PF56pJsBOwrg44fToG333nLCTYTMB2eUYtIHgiZ+c7q+dsenNtuqXuxqi257s6Yk+dAvLyrAgOprpQo0aRsHTVEjg4wWJRhMWwYeRDYY2npYW2ce92vZ7+5wRWQCneWFpK38XCri3B4SpUurNirhqewNVdBjlIgF93DSxw95zfr3b+u2sPzQ/exteTeuKnENhExMQ457yw0OAuohymzONWozYJctVt1hxY02ChwP5MNkeqs/Ndi6meOVOJ8eNTHNGKnNTJCye1ls2CgB3q/NxgUASM2rzG7+FGduoqHIAiPGJjSXPmVhOlpQ0YOTLWoSXxX/Xv7ayfVkD0WiHz4IN0wXTGQc4rPo4cUpvTLlygC/v0acr2Z7MSZ/yr/T/qC1+dvGa1hiIjQ+lWl5ysmJyCgsikpI4M8qZPCWhde40nnaAg2hYd7X6yZ8etJCmTfJ8+NPaKCvqfy2YUFSnC/exZ2qbRKGHMR4/SZ4uK6DVZVvJoOOmvujoEMTHKpMxROnx+eHJ2DQ1uL0JMHRDA55a3uQYKuOad2O1AbW2aY0xqDaG9sGR3k7vrNteJX+3ncX2u7uZJrcFDHNu47BAHGKgjptTtoNWaA5ue+FpzF43G+U6ux8PVhKau6nDqVBQqK1svpNxVeeDIPMY1uo7bTbB1ITNTEQ78UP/P2pI6lycsDDhxogbZ2f09v1kEHtNrhczo0UrCGSc6cSl8Nj/xqolXRq4EBdE++EaTJMV0lppKtuSsLKWFQHy8Ejmkvml5osjPr8CIEc6ePm9XdlabStSTMfey0Ovpt549SxFhRmOQQ2Dq9WRmdJ1EuJwGr0x5hckamt2uJKaZTEryKjvvTSZF4+HVNpdjVwcJcCkdo7EPIiPdr7zb+9vWa65mQ3fdM91Fd3F1XGpqZ0NamhJAwKt29aTsuqJXa5Kujdl4/2rh4S4YQT3huv7WU6fKMWJEgtPr7gSv2mTGQtVgULRT18x/1hrUdd/U546FCS+wXPNzDIZkx8JJrYmz5pOQoOTnsHbKJjQWjOr3q/N31G21O1PQUWgnvqPXCpmXX1YaAKlXRWx2iopSmjElJSlRXTyx8CRBjkz6fEwMaTIcUXbllXSTsTM6NbXt8fCEzzemevKPjFRWfK4rRb6p1SYGd6YDniz4M+qJg/ODeJ/qTqBGY7LD5KK2i6snOJ4IXSfU4GAlZFd987NdPD2dBDGPnR2n7CylAp3KZJGRwcEAJRg6dFirVS3TnlBpi7Y+39Z7XQXc6dP1yMpKaaU1uWo0gLJNrTnxJK3e5s4P56pF8V9331VTQ7Xw1OZZfj9fc+2Zyvg8A86Rda713NgExRM+awyc9a7WGMLDgQsXSjBu3AhH8U/Xa0b9t7c5yS9Heq2QWbnS+QLvaNXjzuTBMfk8SZeVkSBpbCStJT+fned0gx48qNiPeaJXC4CamgxERipCo63oN9dVuDqsVqttbfZgf5M6L8M1N4NX0by65D7oNTWlGDs2y2Hf5olJ7VMAnP0IahMUCzW17+DUKfreqir67qoqJUlNp6OIMv79rEnyxGOzAXV1SQ7TlOvkyv+rzWId5cG4M1d19jWjMaNVaHl7GhX/r9Zk+DyqNRn1e/j8qM+Vq/ajzs2JjjZj4EAl8orNZXxd8GfV2hVfP/y/u9wcd1qe2nzbkZCOiDA6egsJLn96tJD57LPP8Oqrr8Jms+FnP/sZ7rjjDo8/W1zsXKuJV/7qrG21s5QnSHcTP68w+SZV/883KmsBfANzzD47T8PDgZqaJgweHOuYCBj1RK5e8ZpMzmNsyybe3Ey/1d3r/HvaSkJsbk7Dli2tt7uaaNyZbNQ+J/XkxIEAMTHOK3cuN84+quBgpa2v2g9VWWlEv36JrSY4VzOkOpmRJ2xeTKhNTq7/q4U2j7+j9/z4YyHGjh3d5nFp78H7but19Rhdv9fdNubQoXJMmtTH/YkVCLqJHitkKisrsWbNGnz88ccIDQ3F0qVLMWXKFAzxsMDV+++TyUadTe26MlSHLPKN7LpCdhcWqvZ58E3P7+GQYlc7NQA0N8fi1Cllu7uJSJ1Jrrbts+DiqqosuNSmDfVK1jWvoK0ExLy8Cxg/fmybE1pbz939394k2xkOHarCpEndnAjTAc3N5k43TRMIegM9Vsjs3bsXU6dORdxP4U5z587F9u3b8etf/9qjz0dH00pevepUT9iuz9kEpa42zA5Lntw5Vl6dRe5qZnA1Oagn7mPHzmHixAluV8z+yh6vrbU6wpIFAoGgs/RYIVNVVYXk5GTH/ykpKTh+/LjHn3/nHQRchnZUlHTZlp4XCAS9kx4rZCRJgka1tJdl2en/jjh5Ms8Xw7pkDh065O8htEKMyTPEmDwnEMclxuQbeqyQSUtLw8GDBx3/V1dXIyUlxePPjx49GmFq73oAcOjQIUyaNMnfw3BCjMkzxJg8JxDHJcbUMWazGXld6L/ciXSlwGL69OnYt28f6urq0NLSgi+++AKzZs3y97AEAoFAoKLHajKpqal4+OGHcffdd8NqteKWW27BWBF8LxAIBAFFjxUyALBo0SIsWrTI38MQCAQCQRv0WHOZQCAQCAIfIWQEAoFA4DOEkBEIBAKBz+jRPpmuIP9Uz8XirnZ/AGBuq5WlHxFj8gwxJs8JxHGJMbUPz5lyW4UO20Ajd/YTPRy9Xo8zZ874exgCgUDQIxk6dCiiO9HcqtcJGUmSYDAYEBIS0qkKAQKBQNCbkWUZVqsVUVFRCOpER7heJ2QEAoFA0H0Ix79AIBAIfIYQMgKBQCDwGULICAQCgcBnCCEjEAgEAp8hhIxAIBAIfIYQMgKBQCDwGULICAQCgcBn9Doh89lnn2HBggWYM2cO3n//fb+Opbm5GQsXLkRJSQkAYO/evVi0aBHmzJmDNWvWdPt4Xn75ZeTm5iI3NxfPP/98QIzp73//OxYsWIDc3Fy89dZbATEm5rnnnsPKlSsDZkx33XUXcnNzccMNN+CGG27AsWPH/D6unTt3YvHixZg/fz7+9Kc/AfDvsVq/fr3j+Nxwww2YNGkSnn76ab8fp02bNjnuveeeew6A/6+p119/HXPnzsWiRYvw6quvdn1Mci+ioqJCnj17tlxfXy8bDAZ50aJFckFBgV/GcvToUXnhwoXyqFGj5OLiYrmlpUXOycmRL168KFutVvmee+6Rd+3a1W3j+e677+QlS5bIZrNZtlgs8t133y1/9tlnfh3TDz/8IC9dulS2Wq1yS0uLPHv2bDk/P9+vY2L27t0rT5kyRf7tb3/r93Mny7IsSZI8c+ZM2Wq1Orb5e1wXL16UZ86cKZeXl8sWi0W+/fbb5V27dvn9WDFnzpyRr7vuOrmsrMyvYzIajfLkyZPl2tpa2Wq1yrfccou8Y8cOv88HCxculPV6vWyz2eRf/OIX8qZNm7o0pl6lyezduxdTp05FXFwcIiMjMXfuXGzfvt0vY1m3bh2eeuoppKSkAACOHz+O/v37IzMzE8HBwVi0aFG3ji05ORkrV65EaGgoQkJCMHjwYBQWFvp1TFdccQXeeecdBAcHo7a2Fna7HU1NTX4dEwA0NDRgzZo1uO+++wD4/9wBwPnz5wEA99xzD66//nq89957fh/Xl19+iQULFiAtLQ0hISFYs2YNIiIi/H6smD/84Q94+OGHUVxc7Ncx2e12SJKElpYW2Gw22Gw26HQ6v47p5MmTmDlzJnQ6HbRaLa688kqsX7++S2PqVUKmqqoKycnJjv9TUlJQWVnpl7E888wzyM7Odvzv77FlZWVh/PjxAIDCwkJs27YNGo3G78crJCQEL730EnJzczFt2jS/HycAePLJJ/Hwww8jJiYGgP/PHQA0NTVh2rRp+Oc//4m3334ba9euRVlZmV/HVVRUBLvdjvvuuw833HADPvjgg4A4VgAtOE0mE+bPn+/3Mel0Ojz00EOYP38+cnJykJGR4fcxjRo1Cnv27EFDQwPMZjN27tyJw4cPd2lMvUrISJLkVBRTluWAKZIZKGMrKCjAPffcg0cffRSZmZkBMaYHH3wQ+/btQ3l5OQoLC/06pvXr1yM9PR3Tpk1zbAuEczdhwgQ8//zziI6ORkJCAm655Ra89NJLfh2X3W7Hvn378Oc//xn/+c9/cPz4cRQXF/v9WAHA2rVr8fOf/xyA/8/fqVOn8NFHH+Hrr7/Gt99+i6CgIL9f59OmTcPixYtx1113Yfny5Zg0aRJsNluXxtSr+smkpaXh4MGDjv+rq6sd5ip/k5aWhurqasf//hjboUOH8OCDD+Kxxx5Dbm4u9u/f79cxnTt3DhaLBSNGjEBERATmzJmD7du3Q6vV+m1MW7duRXV1NW644QY0NjbCaDSitLTUr2MCgIMHD8JqtTqEnyzLyMjI8Ov5S0pKwrRp05CQkAAAuPbaa/1+/gDqi3LgwAE8++yzAPx/7+3ZswfTpk1DYmIiAGDx4sV48803/XqcmpubMWfOHIcgfuONN3DFFVd06Tj1Kk1m+vTp2LdvH+rq6tDS0oIvvvgCs2bN8vewAADjxo3DhQsXHCaGzZs3d+vYysvLcf/992P16tXIzc0NiDGVlJTgiSeegMVigcViwY4dO7B06VK/jumtt97C5s2bsWnTJjz44IO4+uqr8cYbb/h1TAD1SXr++edhNpvR3NyMTz75BP/f//f/+XVcs2fPxp49e9DU1AS73Y5vv/0W8+bN8/uxOn36NAYMGIDIyEgA/r/Ohw8fjr1798JoNEKWZezcudPvYyopKcGvfvUr2Gw26PV6bNiwAb/5zW+6NKZepcmkpqbi4Ycfxt133w2r1YpbbrkFY8eO9fewAABhYWF49tln8cADD8BsNiMnJwfz5s3rtu9/8803YTabHas7AFi6dKlfx5STk4Pjx4/jxhtvhFarxZw5c5Cbm4uEhAS/jckd/j53AE3ox44dw4033ghJkrBs2TJMmDDBr+MaN24cli9fjmXLlsFqtWLGjBm4/fbbMWjQIL8eq+LiYqSlpTn+9/f5mzlzJk6ePInFixcjJCQEY8aMwQMPPIAZM2b4bUzDhw/HnDlzcP3118Nut+O//uu/MGnSpC4dJ9FPRiAQCAQ+o1eZywQCgUDQvQghIxAIBAKfIYSMQCAQCHyGEDICgUAg8BlCyAgEAoHAZwghIxB0M1arFTNnzsTy5cv9PRSBwOcIISMQdDNffvklhg8fjry8PJw7d87fwxEIfIrIkxEIupm77roLCxYsQEFBAWw2G55++mkA1L9jw4YNiIqKQnZ2Nnbs2IGdO3fCYrFg9erVOHDgAOx2O0aOHIknnngCOp3Oz79EIOgYockIBN3I2bNnceTIEcybNw833ngjNm3ahPr6enz77bf4+OOPsWHDBnz88ccwGAyOz7z++uvQarX4+OOP8emnnyIlJQWrV6/2468QCDynV5WVEQj8zYcffojZs2cjPj4e8fHx6Nu3L9atW4fq6mrMmzfP0T7gjjvuwPfffw8A2LVrF/R6Pfbu3QuAfDpcTFEgCHSEkBEIugmj0YhNmzYhNDQUV199NQCqdvvee+8hNzcXasu1ugKvJEl47LHHkJOTAwAwGAwwm83dO3iBoIsIc5lA0E189tlniIuLw7fffoudO3di586d+Oqrr2A0GjFq1Ch88cUX0Ov1AIANGzY4Pjdz5ky8//77sFgskCQJv//97/HCCy/462cIBJ1CCBmBoJv48MMP8fOf/9xJS4mJicFdd92Ft99+G7fddhuWLFmCxYsXQ6/XIyIiAgDwq1/9ChkZGbjpppuwYMECyLKMlStX+utnCASdQkSXCQQBwIkTJ3DkyBHcfffdAKhvzbFjx/Diiy/6d2ACwSUihIxAEAA0Nzfjsccew/nz56HRaJCeno4//vGPSE1N9ffQBIJLQggZgUAgEPgM4ZMRCAQCgc8QQkYgEAgEPkMIGYFAIBD4DCFkBAKBQOAzhJARCAQCgc8QQkYgEAgEPuP/B/h/90hSdROGAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running IDP 2 rh_MeanThickness_thickness :\n",
      "Making predictions with dummy covariates (for visualisation)\n",
      "Loading data ...\n",
      "Prediction by model  1 of 1\n",
      "Writing outputs ...\n",
      "metrics: {'RMSE': array([0.08652435]), 'Rho': array([0.77666469]), 'pRho': array([2.97430261e-103]), 'SMSE': array([0.40227749]), 'EXPV': array([0.59789079])}\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEXCAYAAACzhgONAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB8aklEQVR4nO2dd3hTZfvHv0m6956stoxCoYyyypAls4wyZCm8KigoguvHEBmCoKgggrhQ1FdRUFkFZFORUWbZS5ANbVmleyfn98f3PU1aOtI2adLyfK4rF+QkPbmTnDz3c2+FJEkSBAKBQCAoBqWpBRAIBAKBeSMUhUAgEAhKRCgKgUAgEJSIUBQCgUAgKBGhKAQCgUBQIkJRCAQCgaBEhKIQCAQCQYkIRSHQi8OHD6Nv375l/ruuXbuiWbNmSE9PL3B83bp1aNCgAbZt22YoEfPZsGEDBgwYgAEDBqB169bo2LFj/v1jx45h1KhRRb7u3bt3MXz48BLP/fnnn2Pu3LkGl7mi3Lp1CxMnTgQA3L59G82bNy/yeatWrcLy5ctLPFfXrl1x5swZg8soqLpYmFoAQfXH1dUVO3fuRGRkZP6xDRs2wMPDwyivFxkZmf9a06ZNQ7169TBmzJhS/87b2xurV682ikzGJi4uDteuXSv1eSNGjKgEaQTVDaEoBMVy+PBhzJ8/H3Z2dkhPT0dSUhLefPNNXL16FdnZ2Zg3bx5atmxZ6nn69++PjRs35i/ed+7cQUZGBgIDA/Ofc+XKFcyfPx9JSUlQq9UYNWoUhgwZAo1Ggw8++ACnTp1Ceno6JEnCvHnzEBYWhmnTpsHBwQH//PMPEhIS0KBBA3z00Uewt7cvVabdu3djxYoVePDgAcLDwzFv3jzExcWhX79+OHHiBPLy8vDJJ59gz549UKlUaN68OWbPnl3gHD/++CPWrVuHFStWYPXq1bhz5w7u37+PO3fuwNvbG5988gm8vLxw9+5dzJ07F/Hx8cjNzUVERATGjx+PvLw8vP/++zh+/DgsLS1Ro0YNfPjhh7C2ti7yeHHvS61WY8aMGbh79y7GjBmDOXPmQK1WY9asWThz5gxSU1MxefJk9OzZE59//jkePXqEWbNm4dq1a5g1axYSExOhVCrxyiuvoE+fPvnnTU9Px8svv4xmzZph8uTJ6Nq1KwYOHIiDBw8iPj4eAwYMwBtvvAEAiI6OxldffYXc3FzY2Nhg6tSpaN68Oa5cuYJ3330XOTk5kCQJQ4YMwbPPPlvscYGZIgkExXDo0CEpODhYun37tnTo0CGpYcOG0smTJyVJkqQffvhBGj16dKnn6NKlixQbGyuFh4dLd+/elSRJkr744gvp559/lp577jlp69atUm5urtSnTx/p7NmzkiRJUkpKitS7d2/pxIkT0vHjx6WJEydKarVakiRJ+uabb6Rx48ZJkiRJU6dOlYYNGyZlZ2dLOTk5UmRkpLRmzZoCrz916lTpu+++K3Dsueeek1555RUpLy9PysjIkNq3by8dPXpUunXrltSsWTNJkiTpv//9r/Tss89KmZmZklqtll5//XVp/fr10tKlS6U5c+ZIy5cvl4YNGyYlJydLkiRJS5culbp16yalpqZKkiRJ48aNk5YsWSJJkiSNGjVK2r17tyRJkpSVlSWNGjVK+vPPP6WjR49KvXr1kjQajSRJkvTxxx9LsbGxxR4v7buKiIiQJEmSbt26JdWvX1/atm2bJEmStGPHDqlbt275cs6ZM0eSJEmKjIyUVq5cKUmSJMXFxeXL36VLFykmJkYaNmyY9M033xT4LhcsWCBJkiQlJCRITZo0kW7evCldu3ZN6tu3r5SYmChJkiRdunRJat++vZSeni698847+ee4d++e9MYbb0hqtbrY4wLzRFgUghLx9fWFv78/bt++jZo1a6Jp06YAgODgYKxdu1avc1haWqJnz57YvHkzXnzxRWzduhU///wztm/fDgC4fv06bt68ienTp+f/TVZWFs6fP4+RI0fC2dkZq1evxq1bt3D48OECO+uOHTvCysoKAFC/fn0kJyfrJVOfPn2gUqlga2uLOnXq4OHDh/Dx8cl/PCYmBgMGDICNjQ0A4LPPPgPAGMWOHTtw//59fP3113Bycsr/m9atW8PBwQEA0KhRIyQnJyMjIwNHjx5FcnIylixZAgDIyMjAxYsX0aFDB6hUKjzzzDPo0KEDevbsidDQUKSkpBR5vCzInznA7+rhw4cFHk9KSsLFixfxzDPPAOD3vGvXrvzHJ0+eDAsLC4wePbrA33Xr1g0A3XTu7u5ITk7GqVOncO/ePTz//PP5z1MoFLh58ya6d++OqVOn4vTp0wgPD8eMGTOgVCqLPS4wT4SiEJSInZ1d/v8tLS3z/69QKCCVoZ9kZGQkZs+ejWbNmiEgIAAuLi75j6nVajg6OiIqKir/2IMHD+Do6Ig9e/Zg/vz5eOGFF9CtWzcEBgZi48aN+c+TF/KyymRhob30i/o73cdleTQaDQCgdu3amDlzJubMmYOwsLB8ZVGULBqNBpIkYfXq1bC1tQUAJCYmwtraGvb29oiKisLx48dx6NAhvPHGGxgzZgyeffbZYo/rS+Hvqrj3r/vY1atX4efnBwB45ZVXcPjwYXzyySeYOXNm/nOsra2LfI/h4eH5yhQA4uPj4eXlheDgYGzfvh0xMTE4ePAgvvjiC6xbtw5dunQp8riushaYD0KFCyqFpk2bIisrC4sXL8bAgQMLPBYQEAAbG5t8RREfH4++ffvi7NmzOHDgALp06YKRI0eicePG2LVrF9RqtdHlDQ8Px+bNm5GTkwONRoP33nsPf/75JwCgQYMG6NmzJ8LDwzFnzpwSz+Pg4IBmzZrhhx9+AACkpKRgxIgR2L17N/766y88//zzaN68OSZOnIjIyEicPXu22OMloVKpkJubq/f7c3BwQEhICDZs2ACAn/mIESOQmpoKAAgNDcV7772Hbdu2Yf/+/SWeKzw8HAcOHMCVK1cAAH///Tf69++PrKwsvP3229iyZQsiIiIwe/ZsODg44ObNm8UeF5gnwqIQVBoDBgzAL7/8go4dOxY4bmVlhS+//BLz58/Hd999h7y8PLz++usICwuDi4sL3n77bfTr1w95eXlo3749duzYkb+7NxbDhw/HnTt3MGjQIEiShNatW2PUqFH46quv8p8zffp09O3bF1u2bCnxXAsXLsT777+Pfv36IScnB3379kX//v2hVquxd+9e9O3bF3Z2dnB2dsb7778PX1/fIo+XRN26dWFtbY0hQ4Zg8eLFer3HRYsWYc6cOfj555+hUCgwf/58eHp65j/u5uaG2bNnY/r06di0aVOJrz137ly89dZbkCQJFhYW+Oqrr2Bvb49XX30V7777Ln777TeoVCo8/fTTaNWqFdzd3Ys8LjBPFFJZ/AcCgUAgeOIQFoWgQnz33XfF7jbHjBmD/v37V7JE1ZO0tLRiYxT29vb49ddfK1kiwZOEsCgEAoFAUCIimC0QCASCEqmSrieNRoP09HRYWloWmfonEAgEgseRJAm5ubmwt7cvU91KlVQU6enpuHTpkqnFEAgEgipJ/fr14ejoqPfzq6SikIuJ6tevn1+Vaw6cPXsWjRs3NrUYBTBHmQDzlEvIpB9CJv0xN7lycnJw6dKlAgWZ+lAlFYXsbrKysipQKWoOmJs8gHnKBJinXEIm/RAy6Y85ylVWl70IZgsEAoGgRISiEAgEAkGJCEUhEAgEghIRikIgEAgEJSIUhUAgEAhKRCgKgUAgEJSIUBQCgUAgKJEqrSjS0gAjjyUQCASCJ54qWXAn89JLVBY1agBhYUCXLkDNmkAZKtMFAoFAUApVWlHMnAk8fAgcOQLs3w+sX8/j1tZAo0ZAv35A06aAs7Np5RQIBIKqTJVWFO7ugLc3lQIASBKQmgpcuwZs3w58+CGQmwvY21NhPPMMn6tSmVZugUAgqEpUaUVRGIUCcHKiUmjalMcyM4Fz54AtW4C336YyadAAGDoUaNOG1odAIBAIiqdaKYqisLUFWrbkTZKAe/foolqwgNZG7drAc88B7dsDZWyoKBAIBE8E1V5R6KJQ0FU1fjzvJyYCGzcCn3wCfPABrZAxY2hxiHlIAoFAQJ4oRVEYNzfg+ed5S0gAfvoJmDiRVkjPnsDo0SKDSiAQCJ5oRaGLjw8wZQrrMk6eBFavBjZsAOrWpQUSGiqsDIFA8GRiVEWxZMkSbN++HQqFAkOGDMELL7xQ4PELFy7g3XffRXp6Olq2bIk5c+bAwsK0ukupBFq04C01FVi5Epg8GbCzA4YNAwYPBsxoqJ5AIBAYHaNVZh85cgSHDh3Cxo0bsXbtWvz888+4evVqgedMnjwZs2bNwvbt2yFJEn7//XdjiVMuHB2BV14Bvv8eePZZYM0aoG9f4P33gaQkU0snEAgElYPRFEXr1q3x008/wcLCAg8fPoRarYadnV3+43fu3EFWVhaaNWsGABg0aBC2bdtmLHEqhFLJrKjPPwfmzAGuX6dl8eabwM2bppZOIBAIjItR/TyWlpZYunQpvv/+e/Tq1Qve3t75j927dw+enp759z09PXH37t0ynf/8+YsAKj9w8MwzQGqqEhs2uGPIEDv4+OTguefuIigIiI2NrXR5SsMcZQLMUy4hk34ImfTHXOUqC0YPCEyaNAkvvfQSxo8fj99//x3Dhg0DAGg0mgIDviVJKvPA76++CkZ2tjVq1ABatWJcwcur8uoh2rcHsrIY+P72W09YWj7A3LkeaNmycl5fH2JjYxEWFmZqMR7DHOUSMumHkEl/zE2u7OxsnD17tsx/ZzRFceXKFeTk5KBhw4awtbVFjx498M8//+Q/7uPjg/v37+fff/DgAby8vMr0Gq++SjfQyZNAVBQDz0olA8/BwUCPHqyJsLEx0JsqAhsbptc++yywZEkGpk8HPDyASZOAtm2N97oCgUBQWRhNUdy+fRtLly7FqlWrAAC7d+/G4MGD8x/39/eHtbV1vsaNiorCU089VabX8PAAPD1pTQDaXk+XLwP79gEffwyo1YCDAxftXr0Af/+S01yTk1mI5+bGZoKF7xeHpSXQo0cS3nqrFqKigNmzARcX4PXXgXbtyvS2BAKBwKwwmqLo1KkTTp8+jcjISKhUKvTo0QMRERF46aWXMGnSJDRp0gQLFy7EjBkzkJaWhpCQEIwePbpCryn3egoL4w0AMjKA06eB6Ghg1y7AwoLWRmQkGwQqC4XzExPZNDAxkYqh8P3SUCqBgQOBAQOATZuAuXP5d2+/DbRuXaG3JxAIBCbBqDGKiRMnYuLEiQWOffvtt/n/Dw4Oxpo1a4wpAuzsaE20bUuL4+ZN4M8/2VlWkoCGDRmcltt2uLlpLQjg8fv6olRSWfTrR7fYjBmMn0yZwuI9gUAgqCo8UZXZCgWbAL76Ku/HxbH6es4cuo7CwoCRI4GAAO3fODtXbJ6FbGH068c6jLfeogxTpwL161fo7QgEAkGl8EQpisL4+VFpSBJw5Qq7yr72GmMfgwYBTz1luAwqCwtg+HCe96efWMhXvz7w7ruc0CcQCATmSpWemW0oFAr2dJo8GVi4EAgPB37+GfjPf4BPPwUePDDca1lZAWPHAt9+y3jK6NG0Mgz5GgKBQGBIhKIohKUl8PTTnFfx9ttAfDwwYQIX83KkHxeLjQ0zor7+GsjLY5xkxgzOABcIBAJzolyK4u7duzh27JihZTE5qanArVv8NzWVnWRffhn46CMgMBCYPx946SVgxw6m3RoCBwdg2jRgyRIOVRowgFZNTo5hzi8QCAQVRW9F8euvv+Ltt99GYmIiBg0ahHfffReLFi0ypmyVTlISg89JSQX/b2MDDBkCLFrEWoxff6Vb6qefgOxsw7y2hwfw3nscoHTyJBARAfzwA5WVQCAQmBK9FcWaNWvwzjvvYNu2bejWrRv+/PNPHDhwwJiyVTouLlyYXVwK/l9Gbg64YAEti4MHWZX95ZdAerphZKhZk4WCU6dyzndEBOsxJMkw5xcIBIKyonfWk0KhgIeHBw4ePIjevXvDwsICmmq23XV0LDjRrqTpdg0asPr6zh3u/MeMAQICPBAYSHdSRWnUiO6oQ4cY+F6xgsH29u0rfm6BQCAoC3pbFFZWVvj2229x5MgRtG/fHr/++itsbW2NKZtJ0Y1XlIS/P4PQ77wD3LljjTFjmCllqKB027a0WPr1Y4xk2DDDBtUFAoGgNPRWFPPnz8f169fx0UcfwdnZGbGxsZg3b54xZTMpujEKffD2Bl544S7efZcKRlYYhnBJKZVA797AV18BbdowA+s//wFu3Kj4uQUCgaA09FYUgYGBmD9/Pjp37oy7d+9ixIgRCAoKMqZsJqWoGIU+eHkxvjBjBnD7NvDii7QIsrIqLpOlJYv2vvoKqFOHymj8eFGDIRAIjIvIeioGR0cGlkuKU5SEpyf7Ok2bBpw7B7zwAov4DJH2amsLjBsHLFvG9iLPPEMrIyWl4ucWCASCwlTprKerV+kaMueYuq8vMHMm51Ps20cLY8MGw8js5MSivaVLgdxc1mDMmgVkZlb83AKBQCBTpbOe/vtf4OFDtuCwsmLPpGbNgCZNWJdQxoF5RiUggC3Hz50DfvmFyuL554FOnSoup7s7g+nx8XRLRUQwplGoca9AIBCUC70VhW7W07x588wi6+n111khnZ7OeMCpU8D27cC6dVx83d2B5s3Zu6mMw/OMRkgIi+oOH2bK66pVbEzYtGnFz+3rS2V04wbwxRdUGCEhXggJMe6UP4FAUL3RW1HMnz8fK1asMLusJ4WCdQvBwbzJPHrECuejR9lyQ6lkG46nn+YMCoti3nlqKvDPP/y3QQPGKO7cYcFbjRrlj1kUpk0bTubbuZMFfF5e2hbkFaV2bRbtXb8OzJ9vi4gIvu833mB8QyAQCMqC3ooiMDAQM2fOxI0bNyBJEubNm2dyi6IkXF2BLl14kyS6Zf7+m7v43FwGqnv2pJtKV2kkJbHnkkLBIUf+/tpaiqQkwykKgMqrZ0+ga1fOqpg8GQgKYhDc1bXi569TB5g4MQ7Ozh5Yvhzo2xfo2JHNDg35PgQCQfVGb0Vx8uRJvPbaa7CwsMDq1asxYMAAfPXVV2jRooUx5TMICgVnT4wYwfuPHlFpyL2UAgNZ0FavHtNhvbyoHGrV4oKank5lU9ZUWX2xtKRs/fuzj9TLLzPW8tZbhrEAatdmsd7t28Dy5Qx6t2lDheHhUfHzCwSC6o3eWU8ff/wxfvzxR7i4uMDHxwcff/wx5s+fb0zZjIarK2dmz5zJQUUWFmyX8cYbHJPq78/5FHJLD39/w7TlKA17e/aQmj2bld3/+Q/bdxgqZ6BGDcYwPvuMqbTDhjHN9vJlw5xfIBBUT/RWFFlZWahbt27+/U6dOkFtqF7bJsTdnbv5WbNYj3DuHDB9OudExMbyOWWt0q4oHh4M1L/9Ntt1jBwJbNxo2PO/+y4zpLy9OW9j2DDgr7/MO9VYIBCYBr0VhYWFBZKTk6H4Xy7n1atXjSaUKUhPp9Xw4ouMFbi4MI31lVeA/fvZTtxYrqfiqF2baa8vvshOsqNHAzExhju/gwMru5cvZyxn0SJmSn32Wek9rgQCwZOD3jGKV155Bc899xwePHiAt956CwcOHMDcuXONKVulkpLCWEZ8PF1AQ4YAycnApUuMZ+zfD4SFAUOHVo4bSpfQUKBxYxbsffcdYyv/93/MyjIEVlaMj/TrR4vq11+BgQNZ+/HKK0wxNqeaFIFAULnorSi6dOmCwMBAHDhwABqNBhMmTKhWvZ6cnLTKQqHg/52duRi3asUd9rp1tDbq1wdGjarcQLBSyeK88HBg61Zg3jzKN2MG4ONjmNdQKKiQPviASvL33+miUiqBp55ibykR/BYInjz0VhQA3U/NmjWDJEnIysrCuXPnEBISYizZKhUHB97S0qgknJy0x+THJ0ygwli7lgt0YCAVhq9v5clpZcWspW7dgM2bmRnl78/AvJOT4V7H2ZmB9bFjGSf54w/GcpydgUGDgM6dgYwMKo7KdskJBILKRW9FsWTJEnz//fdwd3fPP6ZQKLB7926jCGYqdJVDUTg6svVGRgbbcMyZwzTa//ynsiQkDg7sJNu9OwPdL71EF9X//R9gbW2411EoWGvSpAnjNPv28fW++IJKont3Njy0tzfcawoEAvNCb0URFRWFHTt2wNvbW++TL1u2DFu3bgXALKkpU6YUePzcuXOYNWsWcnNz4evri08++QROZdgWT5wIqFTcUdepwzqIoCDDLFqFLYvC2NkxGyk7mwvn++8D9vY+ePtt1mxUFu7uXKjv3KEco0Zxtz9+PF1GhsTamhXeTz/N19u2Ddi9m6/r7EylMXAgO+cKBILqg96KwtfXt0xKIiYmBvv378f69euhUCgwduxY7Ny5E927d89/zvz58zFp0iR06tQJCxYswIoVK/Dmm2/q/RrNmgHnzwPHjrEVhkyNGvS1h4byVh6/uhyvSEkp2cKwtmZabf/+wPff52HuXLqkXnihchdMf38Gnq9cAaKi6CYaMIC9pYz1emPG8JaRwfnhO3awwtzSkqNcn3mGgXBLS+PIIBAIKge9FUV4eDg+/vhjdOvWDTY6HeaKi1F4enpi2rRpsLKyAgAEBQUhLi6uwHM0Gg3S/zcCLjMzE87OzmUSfswYbd7/o0csHLt8mZlK+/dzxwtwUWvdmtXIISH6LVxOTkBCAiuy5bGmJVkY3G0noVYtL/zxB2MYISHc4RuiHYe+BAUxbnH+PLB+PbBqVR28/DLbdxgrc8nOjjGTbt3YpPGff5jOO3cu26U4O/Oz79ePhYyGtnQEAoFx0VtRrFu3DgCwTV59UXKMol69evn/v379OrZu3YpVq1YVeM60adPw4osv4oMPPoCtrS1+//33Mgmvi6srlUHr1ryvVgPXrgFnzrBwbvNmLpx2dnxOly5AixYFlUZCAl0qciV2cjIDtfJAIH0tjOeeY13G6tWsg2jRgsfs7Mr99spMo0Zsfrh+/UNs2uSEP/5gHUa3bsZNdVWp+NqNGvF+aipw5AhTjHfu5Gvb2wNeXj5QKPg80dlWIDBvFJIkSeX945SUlFJjCpcvX8a4ceMwceJEDBw4MP94VlYWBg8ejA8//BChoaH44YcfcPDgQSxfvrzU183OzsbZs2dx/Lg9srP1255mZytw6ZIdzpxxwKlTDsjIUMHOTo3mzVPRsmUqAgMzcfq0HXJzFbC0lODnl4PsbAVSU1WoXTsbAJCeroK9vRr29vp/ZMnJSuzc6YYHD6zQrFkqnn76UaW7YiQJOHfOFn/95QqFAujZMxFt2qSZpDYiLU2JS5dsceKEA+LirCFJtDA8PXPRpEkamjdPha9vrnBXCQRGpHHjxrAuQ9aL3opi0aJFePvtt/Pvx8TEYPr06dizZ0+xfxMbG4tJkyZh+vTpiIiIKPDY6dOn8d577+VbKhkZGWjXrh1OnjxZqiyyokhMbAyNpuwpPrm5wPHjwJ49rHTOzmYco2lTBsQDAujCKcnVVBSXL19CvXr1i3wsPp4WRloaYwddu1ZOEduFC+fRsCG395LEORhRUbS4IiMZWymu5boxOX36NEJDQ5GTw3bohw8zDff+fT6uUjFQHxwMdOhA68jd3bhuq9jYWISFhRnvBcqBkEk/zFEmwPzkktfOsioKvZeIEydOYMWKFRg1ahQ+/vhjbNu2DbNnzy72+fHx8ZgwYQIWL16M8PDwxx6vXbs2EhIScPXqVQQGBmL37t1o0qSJ3oJXBEtL+szbtAGysqgwdu0CoqPZ76hlS6BHD2ZSGQpfX+DNN4GLF1m4t3074xeV9JYBUDG1bcv3feYMA89r1jBbafhw08yqsLJiAWN9Hf2alUUX4LlzlHPxYo53VSioQDw8mJIsJyv4+lKZi+pxgcA46K0oli9fjjFjxuCXX35BaGgoNm3aBNcSorQrVqxAdnY2FixYkH9s+PDhiI6OxqRJk9CkSRN8+OGHeOONNyBJEtzd3fHBBx9U7N2UAxsbLjZNmwJ379LS2LaNfnUPD+78hw0zXJ1AcDDjFgcOsPGgjw+D8pWZUqtQaBfZf//llL3t25kpNm6c6dNbbWxo0QUF0eIBaA2lpwNxcVS2Fy6w8PH775nQoFTy5uTE7612bSqfunXZNt7JSWRfCQTlpVTX07lz5/L/n5KSgilTpuDVV19FaGgogOKznoxJRV1PhSlcM3HjBnDoEK2L69cZhI6IoKtGp97wMUpyPRVFXh5rEI4fZ4bUiy8avo+UruupJO7fB377jVljPj4sKmzWzHi7dNn1ZAg0Gn6H9+/z+7pyha6+R48YTJevcFmZWFszE8vNjanUNWrQeoyPP42OHUNhZ0elYg4Wirm5LgAhU1kwN7mM5nqaOHFigfuWlpb49ttvAVSfyuzC1dju7sxUCgvjArRlC3ev69czW2rwYMO4pSws2A6jZ0/u6v/v/ziBbujQyt/9enpyNkdWFt/vokV083TtygaJ5lx5LVsSTk60Qrp1e/w5ubncDCQnc4LhnTvArVtMIz58mArl4cNakDO0lUpt3y8LC14fjo7MgvP25s3Hh//Kc0tsbOhKE+m/gupGqYoiOjo6//9paWlwcHBAdnY20tLSCrTzqG6kpGin3U2fzh3qunUsKtu5E2jXDnj2WS5MFcXenj2VEhKoMN5+m4vzU0+V7TypqZyZ4eJS/lGnNjZUXgMHMj6waRNdcT4+rEQPC6uaC6GlJTcA7u4siCyK06dvIjTUBXl5VJhpabwlJ9Mt+eABlYxc5Jmezufp2uSycpHjKbIScXJiCrePD2MqPj7a4w4OtHKq4ucqeDLQO0axZcsWfPbZZ9ixYwfi4uIwcuRIzJ8/H127djWmfCZBVhJJSdwxAvxxT5jAeoiNG9nnKSaGCmPkSPrCK4qPDwPeZ8/SevnzT/Zw0vfchQcsJSUBaWnl85/oxjHS0hjD+PxzZks1bsz3XLt2uU5t9sgWRFndgGo1kJPDSvWMDK2CuX9f6xY7c4aPZWUV/FtZuSiVdHW6uNA1ptF4ID6ewXs3N95sbc3DLSZ4ctBbUXz99df46aefAAABAQFYt24dXn311WqpKOTSEG/vxxcLZ2dmKw0cSGWxfj0VRng40LGjNXTqDEukpF5SjRuzEO2vv4BPP9W253BzK/mcsnKT/1UqgbQ0fsUVsTYcHOhuGzyYu+moKLZblxMBhg0DatYs2zmrIyoVF3FbW1ouNWvyuywNjYYp2unpWtfYrVt0j128aId//6VyAbQKQqnk63h68voIDmbw3teX14lKZbz3KXjy0FtRaDQa+OgMPvD19YXGxHMzlyzhDs7NjT+UunUr9iPRXbxLy0JycKB1ERnJhXPdOuDgwdo4fJidZEv7+9J6SSmV9LV36MBzv/MOg8tjxtAPXhSym0MmKQlwcMjL/79sbZTXLSW/xujRyHfPbNsGTJ3KXXijRnRb1asndrxlQV70bW2ZsRUUxI0HAJw+HY/QUG0amkajtVZu3WLg/to14PTpglMJlUrtvPfgYF47deoIJSIoH3orCjc3N6xevRpDhgyBQqHA+vXr4WHiKTYvv8y+QhcvMktp1y7+kCwsmMnSujX90foG9/VtBKiLgwNjFQMGAN9++xB79rhj/36gd2+6Z4qzAuRBSaU1y7W2ZoO/hw9Z8/D668zAiogoeTGWlcG//1ogNbWgtVER5PO4ufE1GjTgZ37lCuM3c+bweX5+QK9erNsw50B4VUOp1LrF/P35+RYmK4vXy5UrdGPu3UvrV63Wxk58fGiBtG3Lfz09hQIRFI/eimLOnDl4++23MXfuXCgUCoSEhGDhwoXGlK1U/P2pEHSzXNLTmeK5bx93+tnZDGTWr8+MopIa4Oq7eBeFgwPQt+9DjB7tjlWrOIVu1y7usAcPfnyxLKsP3N2dNQ5Xr9LdtWsXLZfmzYv/m6QkLgxJSXSDVMSSkClstQBcvOrVQ77b7d49Lk6rVnF0q40NP//evWl1FGcRCQyDjQ1/G/7+BRMiJInWyJ07jJWcPs3fSW4urxNLS/5N06a0aOrWFUpeQMrc6yk5ORkqlQoOlT04Wgc5FxhoDIWiZHMhO5s/iuhomuqSxCBst25UMsXtykubR1EUunUUd+4A//0vF0xnZ1oFffoYZpGUW3Hs2kXZXn2VP/DCpKYCx45dRsuW9QyiJMpDbi6tvr17GczNy2Ow1skpAcOH+6Bx48ptllgShqztMBSVJVNaGuuHjh2jhX7vHi1FlYqbq8aNOYq3fn3g8mXzqg0AzK9eQcbc5DJaHcW3336Ll156Ce+//z4URayqM2bMKJuklYy1NVtytGzJBfbmTXaS/fFH/hDq1qWLxN29oHKQ3VAJCfLCVjYLwN+fabVDhrB6+OuvaeGMHctMqYr48OVWHGFhzEaaN4/9qV55peBu39ER8PHJNZmSALhLbdxYG9TNzORCtGmTEl9+yRiT7App0YLtRWrWFFXUlY2DA4s+detn1WqmhR87xg7Msms3NTUI9erR8ujWjcrDFO1fBJVHqYrC8X+rTEntOqoKCgWtiQkTqDTkIT9Ll1Kh1K4NtGrF58rKQpLKHrfQpX594MMP+UNbvpyT8EJDGV+paEqtpSXnTHTuTHfU//0f4zKjR5d9oU1NpRUkSbS0ZOViiNoMXWxt6S6zsXmAhg29kJurXYwOHqQSB+jOkpsCtm7NAK+TkwiSVyYqlbZyPTKSx9RqYM+eOKSlueDoUcalJInXW1AQrY62ban4RV1I9aFURTF8+HAAwGuvvWZ0YSoThYIL9dtv0z2yYQPdU0ePclc1aBADsrpWRkVeq2VLLpBbtwI//cQxrt27M85Q0bpFBwem7N67x4D3G2/QzdW7d8HnlbToJyVps2Z06zDS0/ncorKlDKFELC1ZI1CrlvZYTg57Ol24QOvj4EF+R0qltilgYCAbKtaty/si7lE5qFSAp2ceunVjAgdA9+7Vq5w58uuvwDff8Jp3deU136sXFb74jqouegezd+7ciU8++QQPHz6Ebljj+PHjRhGsMrG05MXcuDGzRQ4eZOqtmxuzi/StjSgNlUprAaxaRWtm7152bh04UP/srOLw8qI1cfYs3QQ7dwKtWtkjOFgb1FYqgdu3qVx0F3iVikpRblMhP1eS6G4oKlvKUCm3hbGyYipnnTpaZSdJVEzx8Yx5XLsGnDyprS9QKpnt5upKn3pQEJWIjw+PVfSzFRSPtTXbwDdsyPuSBCQm0oo+cID1QBoNA+MhIdzEhIaKQHlVQm9F8cknn2DKlCkIDg4uMlZR1XF05OLp5EQXlJcX21esWkVF0rUr3VKGMKcdHFhxHRHBrKAff2R/pRdfpOlekY83JYXyP/88W06sXu2K48epjIKDtZlQhRd4tZpuMo1GeywpqaAbqjCGSrnVB4VC28+pQYOCj6nVlOPePQbMb9ygAt60icFzQNu7ydKS53BxocXo56etek5PV0KtFmmiFUWhoJXcowdvABX6uXPcwLz/Pr8za2tek7160eKuiNUuMC56KwoHBwc8/fTTxpTF5OgufNbWDEQPHsz52xs3MnDcrh0tAkMM+/HzA2bNAk6dorm+YAFfZ9y4xxfDoigqM0s3xdfPD7CxScCjR05YuZLvadQo7tQLL/AuLtoYRWpq0WmwhSnuOYaOa5SGPOTI3V27q9VFo6ELLSWFO924ON4uXwZOnODnyCBtTTg6FuzXZGOjbQjo5kZrxctL27rczo47Y2trET8pCTs7brTkGGBODmfb79gBfPZZwTT2fv2oOEyZhCEoiN7LXZMmTbBr165qrywKk5bGhXXWLGZM/fILzenwcFoZhlAYTZuyj9LOnbQuXn8dePpp4IUXSo5f6FMgqFAwk6hVKyq85cu1MQ3dthuOjlzwDOFKMpZLqrzIVcpypXJxw6IuXLiDunWdkZnJHXBaGhXL/fu0zhIS6IvPyGD2VuFmgPK/KhU/S7lWRm4u6eXF71NWPLKCeRKDvlZWBbPhcnM5G2XHDg6qys6mkm7cmDNJQkNFZpUpKXWZa968ORQKBdRqNX777TdYWVnBwsICkiRBoVBUixiFTFELnO6xkBDggw/oI//pJ22Pp27dKq4wVCqa4B07ci7E+vVc2IcNY2C9KB97UQWCxSkPpZLFV+3aMej45Zd8fNgwbdGeoau3K8MlZWgsLbXuKX2RJC50crO/5GTGuh48oKK5cYNB+YwM7qR1kS0XgN+xoyPrbry8qMgzM23g4sLP0sGh+ioVS8uCcY6cHCYzbNnCan+1mu+/eXNmYAUHm2aE75NKqR/1ZjlfsQjKWKtn9hS1wBV1rEEDYP58rcI4eJCxBUNMqbO3Z6yiVy9gxQoW7W3dyvqLjh0LujeKqu4urbrcwoKKrVMnZnl99RXdAkOGAO3bF+9KKip1VvdxXVeTPm6r6oRCwR2ynNWj0xKtRCSJC2J6OpVIYiKtloQEButPnQISEryxYUNBd5hSyc/aw4PWbt26tJTc3c2neLGiWFnR0m7alPczM+km3L6daeAA32+HDkwQqWZLkdmhd2X22LFj8d133xU4NnToUPz+++9GEawkylKZXRmcO0eF8eBBCp55xgmGLMSU4xdXr9KiGT++bFlYJU3di4vjD+z0aWYQaTRUIr16FazDuHWLixfARbBmTa1yUKnoknN11bbH1ic+oe/kvcrE3GXKyeHnnpjIz/z6dQbwk5K0QXt50JKHBzcujRtrs78MpUTMoYI9OZkW/d9/s5V7amoSmjVzQUQElYc8gMrUPDGV2ZMmTcK1a9dw69Yt9OvXL/94Xl4erERiNAAu4B99BPz22yNs2+aE6GimuxpiRoUcv9ixg/GLSZOKrr8oT8sRpZKWQvPmTEM9f57dYLdu5Xt69lnkuz34Y9RmBMkuuZs3GeRNTOTCZG7xieqElZU2aF/UZkEeCXv3Lv39ly8Df/xRsEW5jQ2/p5AQXls1ahh+/G5l4OzMa7Z3b252oqPjcP26C779lgW0NjbsmDtoEPuLiUr/ilGqopgyZQru3LmDmTNnYubMmfnHVSoV6hpiJaxGhIam45lnuNiuXMkFdPhw+psrgkrFH8RTTzFdd8MGNnOT4xdWVuXrfKvRcNGQu8U3asTb3bscmvTOO9yJDhnC9+DrS18xoLUcatXisZCQgnGdqhifqOrojoStV69gwaVGwxnit2+z99m+fcywA3jdODvzuwwL4zVQlSqrFQptEeCYMbS8zp5lfGPqVCoSb29ayz178v8iQ61slKooatSogRo1amDbtm1QFnPlPPfcc1i5cqXBhatsDJHWqVSyoKh7d2ZILV3KKuLhwytu+ssjU/v0Ab79lhaGHL9o1ozy68Ym0tKAe/cs4Otb/MyLO3cebyjo7c253ffu0SX1zTdUBg0aMF0YePLiEFUduSWKu7vW7w9oFcjFi3Rzrl5NC0ShYHC9Zk2mqjZrxk1FVagxsbJi37AWLXg/OZkuqq1b+Zu0sGAwfOBAZgPa2JhW3qqA3nkDxSkJgLO0qwOGdJtYWrLobdAgLuoffsg01V69Kp6t4ecHzJ7N4N433zCw3qQJ6y+USgbZ/f25COhaGYXdU4UtCl1SUpiO2LYt38OZMwwkzpnD2QW9e/P9FDbpheupaiErkPbteZPJyGAM5Ngx9t9avZrHbWwAOztv9O3LhdjDw/x3587OTLHt35/X+tWrtJg/+ojZak5OzAYcPJiK0dzfjykwSIJZdanUNkZap5MT+0ndvs0MowULmKXRrFnFz928OfDFF3R1yf2jmjThLSmJC7kkaa2MhAQqi4wMxk9KypAq/Ji7O2MW2dlM99ywgYuHry8rzENDtdk4wvVU9bGz07oiZTIyuMhu3syeYv/9r7anU6NGdI3WrWveO3SlkjK+/jrvp6ezv9vOnbQ4lEp2Yo6MZJZhdckiqyhVOhN5/nz+6+PDhSoggAtUeQNXhd0phqwwrlGD8sbEcIH9+2+6o0oapKQPKhUX6k6dGL9Yv57555zhDXh55eW7neT8NvnfkoYnFX5MdlO5uND/3aABP5szZ6ikMjIYk+ndm1aICB5WP+zsmEWlUj1Ew4bekCReA6dP0/KIieGO3cqKv8WOHbkhKm3Wuymxt2enhc6d+bu4c4cbr6+/BhYt4ntu3Zqu2MDAqhO3MTRVWlGMGcOF6t9/ucOVq2WtrNgU7qmnyjYKtTCGcKMUVjbt2vHCW7WK2Uz16zMoXdGmdXL/qFatGLvYu5cBva5dnREYyM9GoeAPw9GRqbElZUgV56aKi+PjV67wM27fHnjmGSqno0fpA/79d5r77dszVRGo3JYegspBtiY6deINoCvn6lV2L/jlF/YyUyq5UerQgde+p6d5uncUCso5dizvZ2YybrNzJ/Daa1xb/PzYNbdbtyfrWjaqoli2bBm2bt0KAOjUqROmTJlS4PGrV69i9uzZSE5OhqenJz799FM4lyEBukmTgqNA5eZwFy7wy/3hB2ZAyDMQunalT1VfDOFGKUrZWFiwhUb//ty5zJ/PHU2XLhX/ATVrxt45u3dzwV6zxhuHDtGUloN7hWMXwOOKoXAWleyK8vfXWhZXrtCSA7hghISwCZyDAzuH7t9PX3BeHjNq2rSh8hbWRvXF0pLWptyrTKNhx9+YGGZZ/fKLVnGEh9P6NNcsJDlG17YtlUR8PLBnD1upf/klN3fNmtEz0LBh9bY2yjwKtSgiIyOxYcOGAsdiYmKwdOlS/PTTT1AoFBg7diyee+45dO/eHQCrunv16oV3330XTz31FBYuXAhJkjB58uRSX08uGvH0bAwLi5K34qmp3Olu2cIFTqlkxkP//hV3+xSmqIItfdxXly6xCjs3lxddQED5ZZAXfLmd+LFjd3H4sDfi4xmo69yZF76tbUGLIi6OP1Z511RcXUZaGmMdN2/yHB4edEUV/nuZvDzWZ+zbx7YWAH9gLi73MGSIFwIDzWdOgbkX3JkLFZFJktg7KyaGyRipqbxu/PxocbRvX7bNnExlFwFmZfG63rmT9SpqNeN4ffowBilvLp+YgjuZzMxM/PPPP2jWrBlWrVqFM2fO4LXXXoOfnx9++eWXx57v6emJadOm5RflBQUFIU72WwA4d+4c7Ozs8NT/pr+PHz8eKSkpeguuL46OtCS6duWXef48d9oLFnD307o1M5GMVXSkTxpp/fqUZ+tWuo18fWlxlKdfv2wJaDRUiNnZ6RgxAjh0iCNZf/6Z/580qeCC7uREBSBJVAbFxS9SUiiXRsO4hFzMpRv8LqxkQkO1lkdmJn9YO3ao8NVXPI+FBS2VFi2YuunmZp47TEHFUShYkxMZyZskMQ07JobX/+rVvB7q1OFv1ly7yNrYaFNwZeV34IA2scTCgr/rFi1s0axZ1UgrLgm9LYo33ngDNWvWRPfu3fHmm28iMjISJ0+exIoVK0r92+vXr2PEiBFYtWoV6tSpAwDYsmUL1q9fD09PT1y4cAGBgYGYOXMmXPTw85TFoigOtZqWxh9/cOft68sLt0GD8i9Shtj9ZWRwQT99mqZ5nz5lM2kLL9K6LTxu3mSwe+9eZnu0bg2MHEmFAhRvFRR1/vv3+Tx7+8erhPU5jyxXTg5bhJw4QfnS0rS9k/z8tFlcXl7GN+2r2+7dWBhTJo2Gv8e9e7mpy8rSzq3o2ZPZVUVZoObQVkRGbqG+axdw6NAj2Nq6wtGRruUhQwzvySgL5bUo9FYUgwcPxtq1a7FkyRKoVCq89tpr+cdK4vLlyxg3bhwmTpyIgQMH5h/fuHEjZs6ciZUrV6JJkyb47LPPkJCQgAULFpQqi/xmHz60gEZT8a1nRoYC27e7IjbWCUqlhGbNUhEengorK9N1GktIsMD69Z5ITbXA008nIiAg22DnzsxUYu9eF0RHuyIjQ4Xg4HT07v0Qjo45uH/fCp6eOfD0LKK4Qof0dAXS01Wwt1fD3l7S+zF9SEtTIj7eClev2uLhQ0ukp3M7plRKcHLKg5dXLurUyYS/fw5cXfNEF9FqTF4ecOOGNY4dc0R8vDU0GgUcHPIQHJyB8PAUeHvnmb31mZyswoULdjhxwh737llBoQB8fXPQtesjNGuWDhubyl9njKYoBgwYgKioKDzzzDOYOnUqmjdvjr59++YHq4siNjYWkyZNwvTp0xEREVHgsYMHD+LDDz/Exv/1Efj3338xadIkbNmypVRZDGFRFIUk0cr4+We2sQgJYcxA3/i6oXdaksQ02rVraSG88MLjspTW46mkpoAZGQw2r1nD6tXgYKba1q6tDWAXjk/I8Q+NRv++UkXJKMulb4+q7GxaMZcvsxAsMZFWkdxR1dKSn42zM63Chg3pwrK3199CfNJ27+XFlDJlZADHj9PNk5DAa9HfHwgKuoaRIwPMzk1V2NJRq3n97t7NjKr0dLqxwsJobQQHG9dNZfQYRfPmzdGnTx+oVCq0aNEC//nPf9CuXbtinx8fH48JEyZg8eLFCA8PL/J8iYmJuHjxIoKDgxEdHY2QkBC9BTcGCgXdMa1bM/D91VfAjBlMsX322Yr3bCqPPHLw+ddfgY8/ZpbF4MFaN0x5ejzJ2NkxtbVfPwb7//iDueO+vjTzQ0MZlCucCXXnDt1CRb1mUQt/4UI/XUp6rPC5atTgTZe8PCq5u3e5gNy7x3TpP/+kopUViYUF34uzM01/eQyqnGRgLgF1QcnY2THoLadd37vHRIldu1yxZw8TLEJCtLPuzS02oFIxrTwoiPczMpjGvmMHC3MliRuc9u35u6xZ0zyyqfS2KNRqNU6cOIEGDRrA0dERe/bswVNPPVVsa4958+Zh7dq1qFWrVv6x4cOHIzo6GpMmTUKTJk1w6tQpvP/++8jMzISPjw8+/vhjuJc00u1/GMuiKIrkZCqMEydY2Pef/xTvdzf2TishgdlRd+4wntK8OY/J/ZqKmoNQkkVRmJwc+obXrOGux8GBAcUuXbhD18ei+PdfbTBcXvgvX+bOSTeeIctV1GMy+sQ6dClKSWVn89jDh/yc5C648gwI3fYlGRkpcHR0gq2tdkKdqyvz/j09mY3j4MDHbG0rJ+AuLAr9uHDhPOrWbYSLFxkbuH2b142vL6/hdu34XVY2ZY2dPHwIHDnC1PI7d3iNubkxrbxPH26UKqL8jB6jKCnrqbIxlqJITqZLw82NO0/d+xYWrMvYt48X3/PPP74wV9YP6NAhZm6pVLx43N2LT2strCgKP657Py1Nay3cu0cL49gxvvfwcGaHNW9ecIfz+Os9vvCnpTEHXaHgZ6YrV0nKpzyt08uDJDEb69y5K/DwCMKjR5xO9/AhZcjK4uNZWQX/TneYkJUVZbSzo7weHvxePD21x+3syq5gzHVRrgoyPXrEBffIEX6P1tZaa6NBg8qxNioSZJezqY4cYVaYnDTq5sbC2h49+BsrS8sUo7ue3nnnHdSsWRNKpRLfffcdIiMjMXPmTL2ynqoKiYm8eBITqSh07wcEsDpzzBgWyX3wAYvISptrbQzatmVa3h9/0CXl7Q2MHs3HSnJFpaWxYaCcWObgUND1k5zMBS8ujj7Tpk25M/vzT/pU9+3ja/XsyYvUw+Px1/P1fbx/lLwLL0ouOQ1Xth50Hy+pxYghUSjkoUtqBAToV8eSl0fFkZVFxShvKpKSuEDFxWmVi67VIisJpZKfte5sbU9Pfr7e3rz+zM3fXtVwdaX7pl8/fl+XL7PuQW794+1Na/mpp8xn0JEucipx377aKX6JiYyjHjjA96LRMD5Xpw7fS3g435ehEzyMnvVkDExhURS+kNLTgWXLuOOuX58K49atyt9pPXzI5mz//AM8/TTzznUX6lOnrqJp08D8xTgzk4tZgwaPWwCOjsW7sXJyuKvZto2tx5VKWhfh4QzAyZZCcZTV0ikPFT1HWdx05SUvT1t/kpTEHWNiIm8ZGfwusrK08ZX09FQ4OjrCyorXoIsLP+s6daiU5cmClUlVsShKIimJ1sbRo7xmrK2ZehsZSZepoeICxk7blRs17tvHNeDRI8pubc2NbNu27Ijg58frJCfHyBZF3v9mLe7fvx9Tp06FWq1GhlxtZSLkBc5Q2lPOminuvi729hyKkpTElhnvvAMEBLiibt3KbVHh7g689RZzzn/+mRf/s89qlcCjRxaIj6eJKisPb2/tQqprATg4FD/v2cpK2zwtLo4tx/fsobK0tKQp3LkzL8qirj9d66CoORmGsB4qEtivLCwstMOFfHy0NSzFceZMAnx8HAvEWM6d45z2nBwqFKVSO7TI05NZa/Xr8/zOzqJ4sShcXLQ79dxc1j3s3s02+gA/u+7d2diwPIWvlYXcqLFxY97XaLjBvXqVLurNm1kAKEn0jvj4sMt0WTFa1lNl8M47XKidnRnkadOGQVd398prdeziArz3HovG3n3XClOn0gfatWvl/kAbNaJJLVeGyjMGAK0cRS3G8rG0tKIbBRa1S/fzowX1/PMceLNnD4PgMTHaVL82bZg9VlT9pLEW9JLapldVbGyk/GB6cUolI4MWyY0bLFo8epQBXdlXIM/Q9vfndRIYSCvZHLJpzAFLS8Yu5KTLhw+5Q1+3jta6rS3dsJGR3KWbs+JVKmllhoXxJpOZqb1GyoPRsp6Miex6cndvjIwMa5w/T+0pZ9xoNNrWET168MstS/pjWVxQupw+fRp5eaH4/HN+YaNGlb5jNAYZGWy+dugQ4Or6AC+95FFqq+fiMoz0zTxSq7UjNg8e5OelUFBxt21Li6NOHR5LSyvoEjMXKsP1VFYqKlNGBhMTLl/mIvHgAS0RgL8Jb2+6Wpo0oSLRx41VHVxP+pKTQwvu77+phBUKfk69e9PtWtqG1JwqxgEgLy8b9+8b0fWkUqnw4MED7Nu3D+PHj0daWppJlIQuvr5a3+KQITyWm0s/3dGjNLvmz+cxX19m7YSHl/5jKCmoXVrQq0ULtuDYsIHT57y82P67PI3OyoudHV+zWzfgk09UWLSIbqFu3YrfRRbV66mk44VRqVjjIQ+0v3mTKcXnzvHz+P577nSaNuVzXFzM1z1UnbCzo4L+X+ecfLKzmahw/jxjTn/9xeMKBb+bgAAq94AA83a9GBsrK8bimjfnbyAhgZuhX38Fli/n59uqFVuP+/qaWlrjobdFsXz5chw4cAAJCQlYvXo1RowYgX79+mHChAnGlvExypLipdHQrxsVxaKWlBQuWP370zVT1I6gIhaF7u4hK4sT6A4e5MU0cqTh4xcldae9dQu4cuUyFIp62L6d771PH8pSFEXVQAAVr2e4f59K48QJLkqPHvF5vr4MqteqReURHGxad0h1tCjKgkZDi+Off+hSvHuXlqJSyQ1PgwbcCKWnn0do6JNhUZRERgat6JgY/tYUChbI9e/P35ilZfWxKMrUwuOPP/7A0KFDsWHDBqSkpGDYsGEltvAwFuXNBQa46EdFccefnMyd1nPPMfhXUd9jcRdFQgK7w96/z0lZbdpU7HV0uXVLW4NQs2bBx+LigH37rqFjxwD4+dEVtWYNd5NdunCXpLurL674TW4tLhcwVcQSkCS6QHbuvIe4OC+cPUtlB/B1GzbkglS3Lm+VOZP5SVcURSErj9OnqUAePGAmlouLI2rU4ILYuLHpp9iZ2h2m28zw4kUqETs7oHbt2xg/vgY8PU0mWgGM7nqysLDIbxkOAE5OTrCogt3YnJ1ZczB6NHdM337LRdzCgvUBffsaPhDu48PMqP37WYOxaxddQ4ZoCVLScCW1GvD2zoNazfshIVzoo6OZtfTXX6w0r12bjxdVAwFQMUgSlYicQVUSJaWpKhRUzq1aJcPLywsKhba6/MoVukJiY7WBWGdnKoygIP5dzZq8mfNc5uqEbE08/TRvAHD+fDysrR0RGwts2sTiT/l5TZowRdvPz7yDvoZGqaRl/NxzvJ+aSuX65582eP117eP9+zPIXNWGd+m90vv6+mLPnj1QKBTIycnBihUr4O/vb0zZjI63N3s5aTT0O37zDS2Npk2Z1WPouEKHDrQmvv4amDuXF8xzz1XsopHnXaSm0rrQdUG5uHDBlZVIUpK2yrpzZ7rE/vtf7nwGD6Y/ujhrQf7Ry/+W1DqkcFZTUYojPV2V786SfcAymZnAtWt0hf37LxXI2rXIV3gAF6Vatag05H+9vZntJbJ5jIulZcF+RZJES+PUKcYGd+7k9+/kRAuxY0fz6VlUWTg60rXt5nYPDRp44MYNWhvLl/P6dnBgkkffvqZtO64veiuKmTNnYsqUKfltPJo2bYqFCxcaU7ZKQ6nUzv29dQtYuBB44w3+EMaOfdylUxEsLZnHPGwY8OGHwLRpwIgR3IVVhKJGrjo6Aj4+uQUUR1ISF3dHRyqGZ55h0P/nn7lLHzBAO8ZSFx+fgtbGlSt0YWVlaRsGyoqgcJpqUemw9vZqSFLRqay2tkxQaKTjScjNpWK6dYuBcvnf06e1WTwAP18vL/74fHxoJXl7a1tquLqKBoCGRqFg+q6u1ZGaymZ3p07R5alQ0Dps3JgLqL//k6M4lEoUqPiXrY2YGHoXlEpa9X36cPNoa2taeYuizKNQMzMzoVar4WDClJWKxCj0JSUF+PRTuou8vICXX2YcoyTKE7iSLRlXV2D8+PK3AykuqK2v7zY3l+6onTtpdXTvzsBlce6Dkyfpk7W15Y5edk8VFewuqc24Ps8tCbWa6Z937tDKkW937/JfOf6hi7Mzferu7gVvmZlxCA72yy+0dHAw/WJm6hhFUZRHJqZE87p58IDXlbs7kxjatqVS12dscHGYOkZRHKXJpdHw2v37b2YIZmVpO+D27m34nlRGj1E8ePAAq1evRlJSUoHjM2bM0PvFqhJOTiyky8oCvvuOabaenlzMC7fDrggdO9Id9cUXwKxZdE8NG1b2BUqfkaslYWlJM7hPH5rIUVHsJdW6NY/n5BRcwOvW5SItu7eKsg50F319e0eWtRhPpaLVUFxqYno6lcbDh4/fEhNZwZqUJPdjKiikUsnPVFYczs58L4Xvy8ecnETspDgcHGhJyEWgycnMgjt2jJsTpZLPCQvjItmwoWnlrSyUSnos5NhGVhZw4QI3kB98oJ0i2bw5a8ICAkyzedFbUUyePBk2NjZo1KgRFE9QlMrGhs0AX36ZO/+5c7koTZjAnbQhsLIC3nyTtSCffMLWIGPGmKZYT6lk/CIoiO6lLVuAefO4++venc+Rq7n9/UtucV6eCmxDV1fb27MSOTCw+Oeo1UzZPX36BpydayMlhQuZfJPv37zJf1NTCzb608Xa+nHlofv/wsee1FkYzs7aljAAMwL37ePOetcu7qrr1ePj9epVveBvebGxKRizS0lhCu6hQ9xIArxmmjVj5mJAQOVcP3orioSEBJOkwpoLVlaMLbz0EjOYpk/nl/T664YLetesCSxZwiHz33zDXfirr5qm4MnFhcpi5kzucn7+ma1BHBxYuNeqFRdLP7+iF025I62cUqsvldUxVheVit9hzZrZpWZ0AVQscsdYXUWSkvL4/+Pj+W96evHnk1uTy8pD1x2WnW0PhYLyOTmZ3hVmLDw9Wag5aJB2Cty+fUz80Gh4PYaF0SKp7AFipsTJqaAllpTE+MaRI/x8JEnbPbZzZ3ajcHMzfMaZ3orCz88PGRkZsKvsVpVmho0NA9Cvvca02kmTeAGPH2+Y8ysUdP906gQsXUrrok8f+isr05DTdWU5OrLxYG6uPE2MyszLiwNhiordpKRQwUlS2brKloXKmldRGJVKu7Drm+iQm0tLpDilIv+bmMhMr6QkOUVYm1loYaGNrcjBet2Avaen+U10Kw9FTYE7fpxp07t3a4O/nTpxYXySLDIXF7ZFf+op3pe7xx48CKxcyfuyGy8ggL/PRo0q3ttLb0Xh5eWFyMhItG7dGjY6jtjqGqMoDQcHumTu3QNmz6aiCA11QUiIYX6s9vZsenj+PK2MvXupnAqPAq1MLC3Z7LBrV77vDRuYMSVJVBY9emiD8fq6kCrSILCkMarmhqUlf6z6Fqbl5dEdduLETdjZ1SoQV5Grp/fuLWjNqVRU3n5+2noTOXW4KnSRLU7x644/lSRaafv3s43Gjz/KblBnuLs/WdYGUHT32MREFv2dPMlha1lZ2nHAQUF0o5cVvRWFv79/la+bMAZeXhyVev488MYb9hg3jim1bdsa5vyNGgFffqmdmV2vHpVSST5b3eyRoo7pE/Qu7fm2trRyhg9nRffmzVRoVlbM1OjaVb8AtqxQlMqiu9eWhJyvV7a8vaqBhQUthICArGLdYWo1ffsJCVw85YyvO3eYmpqdrX2uo6NWcQQEaOM25tTHSZ9Ng0LB62roUN7PyqIrZscOO8ydq7VGunbldfikxDZklEq6KXXniksSf88JCaxPKg96K4oRI0Y8Ns9627Zt5XvVakijRsAHH1zHvXvuWLqUBWJvv138fIeyoFKxE22fPlyM336btRfh4UU/X7emoqhj8sJfkjIo6vlFPZ6cTGU5diwzo9LS2Op82TL+qGvUoO80IKDoHW1JE+5Ko7hK8icFeb6Ajw+Dm7poNFQit24VrD2Rh0/JeHtzYQ0I4L9161JBmcL6KE8ig40NM/NcXe+jbl1X3LqlLWzTaLhotmvHjduTep3IxY9OTqV3VSgOvRXFmDFjsHLlSjg4OCAtLQ3vvfceYmNj0atXr/K9cjVEji88/TSwaBH9+uHhNPUMUe7h7s6sq0OH+EPYsoWFgYVrL3TbeqSlPX5MpiRlUFJrkKIeT0rijzIggG0cNBr62nfvBlavphJxcWE2h26ffJnyLBKmCHxXFZRK7VhV3WJOSaIL6+pV3q5dY3bbwYNay8zVla7EBg14q1+/csayVvT7VCgKttFIS2PQNzqa6d42Nky77dmTGxhzd8WZE3orisjISLz88ssYN24c3nvvPbRt2xabNm0ypmxVFisrxhdeeIHZUePHc8hPp06GOX/btlxwv/+e8ZGwMPZskoNVRdVUFHWsJGVQ+PmFrY+izidbMI6OlKV+fW2g++FD+pVjY5kCmZrqi6AgFvU1aiQW/cpCzqDy8OBOXCYri5lGly8z/nHpEnD4sPZxf3+t4rCzs0FAgOHnMhsaBwdtTC0vj+9p/37go4+0nV67dWNA/ElzUZWVMlVmf/fdd1i0aBGWLl2K7nJSvQmojMrs8hAbG4uwIrbLe/fy4nR2BiZPNmxvl9u3mR118yaVUWEXhKEqVkvqUqvP47poNEB09GUkJNTD+fNUQnJPqgYN2GvL27vyU0GrSxW0oUhP1yoO+fbwIR+ztmadT+PG2gI5U7aeKOvndO+eds50bi5/m+3asQDWkC4qc6sYl6RsAEaozJ43b57Oi0jw8PDATz/9hMP/2248qVlPZeGpp+iCWrSIhXUdOrAewxC7mBo1qIR272aDv40bmbJbnMuovJTVFaVLYWskPZ3+9QED6CbQaBijOHaMbQyOHWOgVq5vqFePC5GXl/nvYqsT9vbaYVQyDx4A0dFxSEz0w9mzwKpV/P6USsY4ZMXRuLHhr0FD4uXFRpiANv32wAG6c62saOX26mXYPm9VmVJ/di6Fvu1hw4YZS5ZqjaUl6y9Gj6Zb6tVXWd1d2AIoDwoF4yLt2zN2MX06/z98eMXPLVNai5CSHi8cC0lKoszyfaWSCq9GDc4lBqhMrl/nD/jyZfrQ5e6xjo7MfKlbl4VGLi5CgVQWHh5A8+Zp+UHR9HS2nDh3jplWf/4JrF/Px2rX1iqa0FDzyrDSRTf9Ni+PsbUDB7QuKn9/xjWaNHlyr7NS3/Zrr70GAMjNzcXWrVvRv39/3L9/H3/++SdGjx5tdAGrG35+3PlHRdHCqF+fVoYh/PO2tqwUHzSIDQ2nTAE6dLA1ed8clYquMbnlSeH250Vhb19w4D3AgHh8PHPEL16k62DrVm0Q1tKS56xRg4uUry9dCk9SQVZlIzeCDA5mnOzRI7acuHGDCmTbNl7rSiUtQ1lxNGpkmAQPQ2Nhwfcit8+Jj6fSWLmS6cbOztyEde6s33zx6oLe+nHu3LlIT09H//79oVQqERsbi9u3b5foelq2bFl+249OnTphypQpRT5vz549mDt3LqKjo8softVlwAD2Tnr3XeCVV7j779PHMJkYNWsCixezgnrpUjecOQOMG2e6vvdqNWXStQh025/ri5UVFUDt2tzhyeTm0nd++zatj1u36HvOytI2LAS0fZjc3LQVza6uVNLm2Nq5KlC49iEzkwqhbl2mdOfkaIu/Tp5ko8nffqNSDwmh0mjalBumzEzTVNqXhK8ve7ABlO3ECaYY//knr6eQEP5uq/O8bKAMiuLEiRPYvHkzAMDd3R1LlizBgAEDin1+TEwM9u/fj/Xr10OhUGDs2LHYuXPnY0HwBw8e4KOPPiqn+FUbOzsu6LGx7FQbHc1gtyFqLwC6o1xdb+DIkVDMm8cf79ixle8CKC2+UVEsLbX1BIXnekgSf+BJSYyD3LzJwqNz55hmnJenrW5OTfWFgwMXAAcHfj+urlQsnp6U39aWn5/IkiGF05oL37eyotspNJRu14wMuqhkxfHjj3yegwPjUE2aPG5JmgtOTtq5NTk5zKI6coRdXgFasr168T1Ut55ceiuK3Nxc5OTk5I9DzcvLK/H5np6emDZtWv7zg4KCEBcX99jzZsyYgddeew2LFi0qi9zVirAw+nUXLqQbqnt3mvGGaAViaUmLZdgw4PPP2TuqQwfukirL31rRFugVQR6Y4+xMS6S4IsXsbODYsTj4+jbA/ftUKg8ecNGLi6MvPienoIUio1RSgdjaapWLqyuVi5MTj9namqerpaIUTmsuLc3Zzo5puXJqrtzk7tgx3o4e5fHAQCr9sDC6qcxNMVtZaVtnSBKr4Q8dYuPMnBxe7x07Aj4+1aNYQ++lonPnzhgzZgwGDBgAhUKBzZs3o1MJhQH1dEoAr1+/jq1bt2LVqlUFnvPTTz+hUaNGaNq0aTlEr15YWDDY/eyzXMxffZUFe0VNmysPbm6subh6lem0kydzfm/nzqLwCOAi7uamLrUlOcCFITubyiMjg9XpDx5ob4mJdH+lp9MtVpRysbbWWicuLtpGf3LrcTu76rcrLQrdJneSxALA2FgqjXXrOI/b1pYuqpYteSurC9XYzSPlDgSyiyopidbSwYPAzZs14OpKhRIRYThvQWWjdx2FWq3GL7/8goMHD8LCwgLh4eEYPnw4lKVczZcvX8a4ceMwceJEDBw4MP/4pUuXMHfuXPz4449ISEjA6NGj9Y5RyHUU1RVJArZudUVUlAfq1s3AyJH3YWVl2IZGZ8/aYf16D+TlAd26PUJISKZBzy94nJwcBTIzlcjIUCIx0RKJiRZ49MgCKSkWSE9XITNTCbVaAUlS6CgWCba2GtjZqeHsrIaHRw48PPLg6JgHe3tNtVYmWVkKXLpkhwsX7HH+vD0SE2lW+Phko3HjdDRunIaAgKxSP4N79yzy57N7eZXsCTE0OTkK3LhhjYsX7XD3Lk1Kd/cctGuXjPr1S5fd0FhaahAUlF3mOooyj0ItC7GxsZg0aRKmT5+OiIiIAo8tXboUf/75J2xsbJCbm4ubN28iNDQUv/76a6nnrWoFd+UlKYmptP/+y2B0u3ZlP0dJ41klCdixgw0HFQpg5Ej6kisDcytEAsxLJrkt+bFj/8LKqm7+qNekJO6Q1WqtlWJjQ1eXjw/Thf38eN9Yi5ApigAlickKx46xYvzMGX4GTk6cjVKrVhz69vUrMv5mqnb0QMHPSpJoaR49yt90djblCQ+nZV8ZvajKW3BXqqIYMWIEVq1ahebNmxeYbCdJEhQKBY4fP17k38XHx2PgwIFYvHgxwotzDP+P27dvl8uiqO6KQuavv5jT7eND91RZLih95nhrNMzi+OMPusCGDzeMwiip6aA5LcoyVU2mnBymo964wWyv27eZ/ZWdXXA8rYcHXZh16tAFWdHYlzlUsKen00V1+DAX3pQUvq8mTdjipk0b88hEKumzSk5mfObUKX5vchvw3r3p/jSGojdaZfaSJUsAID/jSV9WrFiB7OxsLFiwIP/Y8OHDER0djUmTJqFJkyZlOt+TTJcu3HXMm0fLYuhQFqYZKragVAL9+vEC3byZOeMKBV+jbdvyv05pHWgFFcPKStv4T7dvE0Alcu8e04TPnWPNyfbt3BQoFLQ4atVioNjPr+rVBNjba2MbajWwc+dNxMXVwqFDnIr39dd8f23a8NawofkNdXJ2ZsC7Y0dm3127xtTbpUup5N3c+L2Gh+s/x8RYlMn1FBsbi8TEROj+SY8ePYwiWEk8aRaFLufOcXauJNEtVdqIEH0sisJoNBx4/8cfDNZ27cq6hbJmngiLouIYWqacHGbonDrF+oa7d7lIydZHzZqsa6hVq/gsLXOwKAq7k3Rlio+npSG7qPLy+LyWLbnxadiQrr3KcEWV97NKSmLNxunT2g2Xvz8zFps1K3+Ku9EsCpl3330Xe/fuRZ06dfKPKRQKkyiKJ5mQEBYsLVsG/N//8cIZN86wqa5KJRVDjx5sofHf/1JxNGrENFt96yFMmRYrKBorK7aCDwjQHtNoaH2cOUMFsmYNF1KAPZHq1+d37+VVujvEUPGA0s5T0pAjX19aw5GRj7uooqO11dfNm/Ma9/Qsv5zGwsWFnoQuXfj9yMpv/Xr217KwoOJo146K3dgKT+/l5eDBg9i5c2eBMagC02BhwTkUQ4eysvvll3nf0IFohYJ57GFh9IN//z0LA52d2SYkNFSk1lYHlEptwaJcD5uXR8vj8GFasQcOcMFiWq8bevWisincHqUio23Lch5955cUdlFduMBuzocPAz//zFvdunTvtG3L2IC5XdOyNTFoEO/n5WmD4lFRVBxKJRVe8+a0nPRR6mVBb0Xh4eEhlISZ4efHxXvDBhbrBQXRyjBG5XXt2sCcOdyhbdzIYUQ//MALs39/+rwF1QcLC227FBlmYQGbNyvw++90V6lUXMTCwnj96S7gFbEuSlME5ZlfolJpi+ReeYXB/4MHWSi3ciWVhpcXFUbbtgyMm1uhH8DvRtcq1GiYEXfmDBXgtm1UdlZWXCNCQ/lePD3LrzxKVRQ7duwAANSpUwevvfYa+vTpAwsdP4dwPZkWhQIYOJDtOubMoRtq2DCgb1/j7Izs7TmGdfhw+rhXruTUPVtb7to6d2a6pqD64ejI3Xe/fokICnKHtzfbWOzdy/bc2dnabqthYbQ8ra3LZ10Ye5CVPLioZk1a5klJXGQPHWLQf+NGXutyXKNVK/PpP1UYpZIKwc9P2wMtI4NegDNnmDUZFaUdWjVrVtlfo1RF8fPPPxe4r1tdLWIU5oOjI62K48eB99/nrqKYHowGQaFgUHD+fC4Qf//NFNtt2+hf7d6dPzIzyjUQGADdzr+6bSwAxjWuXgX27GF9TkoKnxsQwE2EOU/Fc3HhItuzJ5tJypXVhw/z2tZNvW3b1vwrrO3s+PvU7Rydnc2U3PJQ6tf2+uuvo2XhTmsCs6VFCwYjv/uOcyk8Pb2wYIFxd/nW1gwK9uhB98S2bVwo1qzhLqx9e6YAmus8AoH+lNT519JSOy4VoOK4cIGK448/eN/Ojt1lw8Pp5jG3eADA34qsEDQaWs6HDqFA6m1AgDauUa+eeb6Pwlhbl1/Blaoo5s+fj/XyJBJBlUClogtqyBAORxozhq4iY7mjdHF0BJ55hrfUVC4Su3bRnJcXku7dtR1bBdUXS0tt51iA8a3jxzm3+ptvaG14eNBNFRpqnrUcSiUzvho1Al58Udv879Ahxul+/ZXvoU0bKo7Q0Oo5/6RURWHEDh8CI+PuDkyefAeS5IMPPuCQnzffBHT6NRoVR0cW8vXrx/z948dpbSxbBjx6VAN+fvT9tm1LWavCrkxQfuzttQVmAFNy//6bRWbbt3OBDQykBervb57Xg78/R6gOHkzX2pEjVBq7d9P1amtLxde27eNFkFWZUhVFYmIifvjhh2Iff+GFFwwqkMDwtGxJN9CPPzLwXLs2s6Mqc6axlZXWnAeAv/++hcTEEOzfz2CbJFGxhITwOf7+5ldJKzAsXl5a6zM3l2m4u3czm06t5uMtWzI2YI6DpZycmETy9NPcCJ06pc2i2r+f1khgYI38zgp+fqaWuPyUqiiys7Nx6dKlypBFYESUSprOQ4cCCxawjXmbNsD48aYJOLu6qtGpEzO2JInpfXI17eefM1fc0pLFU82acbFwc3syWm8/iVhaasekAmzXvns3M6q2buU1Wr8+rRFzLJCzsqJ13KoV8NprbPp38CDw998qfPst8O23rHaX4xoNGlSta7lUReHn54cPP/ywMmQRVAIODuwZdfs2s6PGjmUdxODBprtwFYqC1bQAc/D/+Yc7s4MHadZrNLQyPDyYs9+kCecAiCB59cPDg2new4YxW+fkSVqeX33FjUXt2sykqlPH/BZcpZJKrX59oF27G3B0rJ8f15BHwbq6auMazZqZf3agiFE8odSowYDiyZPAhx8yD374cGYumYNv2MFBWxUuk5rK9Mvjx9kt9fhxmvwaDX+cbm50WdWvr+2Uau4/QEHpWFtrm/vJw422bmVFcm4uLYyaNW1L7E9lSnx8tJsguWjx0CFaS9u2UeYWLag0WreuXJewvpSqKJ5//vlKEENgKpo1Y/bG3r3sWvn778Bzz5nn5DtHR/a10R2IqNGwWOr2bRYXXb7MvlSpqQUnyzk6chfn58ciK39//iDt7c1vRyooHoWCAe8JE3j/4UO6qP76ywknTnCD0bQp3TvmWCDn6Kjt4ZSby2tWjmscPKitT5JdVDVrmlpiUqqiiPyfLyAzMxPbtm1DcnJyAStDBLOrPgoFB8Y/9RTrH776CvjlF45l7dTJvBdS2ZJwc3u815WsRO7fB65cod84IYG5/WlpVCK6abrZ2X6oWZNBSrl9t7e3VqFYW5v3Z/Ek4u7OuFuTJndQu7YzDh7kpufAAW3zv06d6MoyNywtaUm0aMGY4dWrWqWxYgVv/v7aJJDgYNO1FNG7TnLKlCm4c+cO6tevX2CAkaD6oFCwMrV7d6YrfvMN+9/07csUV3Pse1MSukqkuNnj2dm0PhITgQMHHkKlckFcHJuunTvH3H95mpyuF1alYt6/vT0Vi5cXXSCenrxvb89Mnar2mVVl7OyAbt14y80Fzp6ldfnFF1pLpHNn80y9VSgYdwsKokV//77WyoiKAtauZSFg48baoL+xhhsVhd6K4p9//sGWLVsK9HkSVE+USg4x6tWLOe5ffsnGg23bAqNHm6dJX16srXnz8ACystKL7cArSVQqaWlULI8eAXFxnOeQkABcv043Qnq61lIprFjs7bU3Ly9aK15e7Ink4EDFIiwWw2BpyYaVzZvze7h8mXG4H37gd1OrFi0NcwyGA9xwyDVI6emMJcq3777jc5ycaEU3b04FUrOm8d6L3qu+j7k3NxEYHIWCxU/t27ONwZIlTKcNDGSqrc5okmqPQsEdnY0NlUpAAF0GJaFWA5mZLMx69IhxlPh4Khddi6WwYlEq6ct2cgI0Glc8eMBdsKsrj4n6krKhUGizkAB+9ps2sao6L49xqw4d+Lg57oPt7bW/Q4Cpw7qKY/9+HndwYHxDriRv0MBwrXv0/ljq16+P0aNHo2PHjgXajYsYxZNBcDBjFw8e0JSfM4e7tj59aH2YY7aJqVGptF1Q/fxYTFgcssWSksLP+Pp1dv88dcoCf/1VMKYiSczbd3OjVVKvHtNF3d1F5159qFmTMQGA1eFbttC9k53NnXy7dtyhm6vb0MNDW+gnSbRsz50Dzp/n7ehRPk+p5HsNCmLX37p1qQzLM1ZVb0WRnp6O2rVr4+bNm2V/FUG1wcMDmD2bPuC//uL0u7VraWWMHMkL0dz8v1UBXYvFy4s7QgA4fToeoaHaCrPsbFont24xKP/vv/TD68ZS5HPUq8ddpa+vqDUpDi8vQE7sTExkX7Jdu9hm3NmZ7tbmzc13IyS3dff3Z2o7QNfohQv0Aly5worx6Gg+5utLa6qs6K0oRNGdQBdLS23H2Lt32VHzk09oyjduTKVRlVsWmCtyB1AfH1YB66JWc7H791/WmJw7x15KsgKxteV30rw5lYi7u3n6502FmxszqIYO1Ta0lPtQybMpWrc2z+aFujg6Uk7dXlOPHlFp3L1bvnPqrShOnDiB5cuXIyMjA5IkQaPR4Pbt29izZ0/5XllQbfD2ppUhSQzo/vQTW5yrVPTjR0ZyxyMwLiqVNvMqPFx7XKNhFs3582yRsn07sG4dj1taapVHSAgXS2ERFmxomZHBdNu9e6l4ra35ebVvX3USO1xdqeiMNuFOZsaMGRgwYAC2b9+O4cOHY/fu3WJokaAACgWzMBYu5C722DHWY8yYQSVSty7n/haXqiowDkqltiakSxft8ZQUtkk5cIAL4MaNVB4ODkxUkGdIV7e4R2oq62tcXFDkXI3C2NkxZbx7d7r+jhyhtXHwIBVtSAgzqKrzOGC9FYVCocDLL7+MR48eITAwEP369cPgwYONKZugCqNSadsuaDTczf72G/DZZ/LITH8MGMAiP3d3U0v7ZOLkpG1kB1CZJyYCsbFUHj/9xBYpCgWtjjZttNPsqjJJSVSeSUn6KQpdrK21rdJzc5l1tHs3uxoolXTpPf20eRb4VQS9FYX9/6JhtWrVwuXLlxEWFgalcHAK9ECpLDgy89494Ouvk3DkiDs2baIiqVGDu92wMPPsdfMkoFBQacuxJ4CK4soVLoY7dwLr1wOpqTVQty4VTNOm5cuiMSUuLlqLoiJYWmoVbV4eN0O7d7PuSG5cWL++qtLmvxgTvRVFaGgo3njjDbz++usYN24crl+/LorvBOXCywuIiEhCWBhdVFeuAJs3s0Psr79Scbi5Mb7Rrh1T/MSlZhqsrArOXtZogJ07b+P27UbYt4/fmyTxOw0Pp+/eycm0MpeGo2PZLYnSsLDQTvPTaJhQsGMHEBXliR07aJF160ZXXlWMAen985s+fTpOnTqFgIAATJ8+HTExMVi0aJExZRM8AahUTKl96y3eV6uBmze1/Xr++ovHlEpm+jRrRqvD3998UxarM0ol4Oubh549OWJXo2Gq7u7djHNERfE5tWvTb9+gwZP3Pem2GT9//jbs7Rth+3a6XrOzGSuSP5uqsgEqU4xCqVRi9erVGDRoEJydnREYGFji3yxbtgxbt24FAHTq1AlTpkwp8PiuXbvw+eefQ5Ik1KhRAx9++CGcnZ3L8TYE1QWVilXPAQHAf/7DY2lpbMGwdy+zqnbs0KZ82tlps3YaN2bGjzlOQ6uuyErhxRd5U6sZIP/zT7YBz8ri99GoEV2Lfn6G2VGXNSBtKhQKfj4vv8z7CQl04W3ezNkULi7MngoNNW+FqreiWLt2Lb7//ntkZ2eje/fuePXVV/Hmm29i6NChRT4/JiYG+/fvx/r166FQKDB27Fjs3LkT3bt3BwCkpaXhvffew9q1a+Ht7Y0lS5bg888/x4wZMwzzzgTVBgcHbd8emexsVqSeOcPsqr17tSmfksSdmjyfokEDZlx5evJcIrRmPFQqbQsJgKmlR44wJffTT/n9+PhwRx0aWv6ahIoEpE2Jjw8wahRvjx4xe2rfPu287ebN6W41t7RbvRXFypUr8dtvv+G5556Du7s71q1bh7FjxxarKDw9PTFt2jRYWVkBAIKCghAXF5f/eG5uLmbPng1vb28AQIMGDbCpPCWDgicSa2ut5dG/v/Z4bi5bYNy8CZw+DVy6RLfImjUF+ympVKy8dXPjjq9WLSAtzRK1arG4ylzbN1Q17OzYsbVzZ3728fFsmfHnn3TF2NlxUmHnznTJ6GttGCogbUpcXTkKeOBArULdt087l6J2bVphNWuaPq6hkPQcYTd48GCsXbsWkZGR2LBhAwCgf//+2LhxY6l/e/36dYwYMQKrVq1CnSI6yWVlZWHkyJEYNWoUBg4cWOr5srOzcfbsWX3EFgjy0WiArCwFkpIs8OCBJW7dssatW9Z49MgCKSkWyMhQ5bcTlyT+OFUqCba2Gtjbq+HsrIaHRw68vHLh7p4Le3sNbG01sLSUhJVSDnJyFDhzxh779zvh3j2r/43EzUKrVqmoXTu7yvjvDY1aDVy/bo1jxxxx65YN8vIUcHLKQ+PG6ahXLxM2NuWfOmptrUGLFulo3LgxrMvg69L7q3BxccGFCxfyZ1Fs3LhRr3jC5cuXMW7cOEyZMqVIJZGamooJEyYgODhYLyWhS1nfrLGJjY1FmO7sTjPAHGUCzFOu2NhYtGgRhpwc+sCTk5nKe/Mmb/fu0V1w4wZ3gIUHH8nN+uSsGi8v+uT9/Gi5ODuXfQDS6dOnEVpc73MTYUiZWrYEXniBn93Vq8C6dU7Yt88Lu3Zxx925M9NPS3NRXbhwHg0bNjKITIakvHI1bsw5MACvu717gdhYV5w5o23216EDCyPLolCVymwAZd9klynr6fXXX8fNmzfRoUMHWFtb48svvyzxb2JjYzFp0iRMnz4dERERjz1+7949jBkzBm3btsX06dPLLLxAYGgUioIzKoKCCrbDKIxazYBtWhpdIffuUZHcvs3A5aFDVDi5uY8rFrm7rJMTF8VatXjz8uJ9c+8pZEjkwT2TJ/N+YiKTFvbs4SwUOzsW/HXsWL0roIvCywsYMoS33Fw2+/v7b44tzsnhtRoUxEp6f3/jtKHXW1EEBQUhKioK169fh1qtRkBAACxLcOTGx8djwoQJWLx4McKL+KWp1WqMHz8evXv3xqtyz1+BoIqhO5DI25uB844di3++rFhkpXL9Oq2VW7fYyG/3bv74ZaWSnFwL3t5cHN3dWflbt6524FF1dc+4uQHDh/OWmUnf/ZYtVBxy24yePfmZP0lYWjKm06QJ76elMaEjJoaV9Go1rwl/f1prgYGG2XCUepnt2LGjyOPXr18HgGL7Pa1YsQLZ2dlYsGBB/rHhw4cjOjoakyZNQkJCAs6fPw+1Wo3t27cDoCtp/vz5ZX0PAkGVQVex+PsXzOTShfEU4K+/bsDR0QUXL7KI68ABtolWq7XWibMzF8xGjVgY5+fH85s6AGoobG211eK5ucCJE9xNv/eetiCwQQMLBAdXn/esLw4OtHjlvXh6Oi2OQ4eoWLOyuOlwcKC7Su6AW1ZKVRSTJk2Ch4cHAgMDUTjurVAoilUUM2bMKDLVdcSIEQCAJk2a4OLFi2WXWCB4AlAquRP08clDWBh7YukiSdxpJyQwu+v4cWbLbN7MdhIAF9gaNdhmo3FjpmaaUUivXFhacqHz9KRS+OcfdsRdtcoHmzZxBx0RQd/9k6Y0AG4QwsJ4A7ihSEhgy/mzZzlrwyiK4oMPPkBUVBQyMjIQGRmJfv36wcnca/QFgmqOQkFFEhjIW2Sk9jG1Gnj4kAvDgQN016xfr7VAvLyoPFq1oiKpit1h3dwYx2jbli6oU6euw94+FL/9xgmMajU/lz59mEL9pGalqVQFBxvpl+P6OKUqikGDBmHQoEGIi4tDVFQUnn32WQQGBmLQoEHo2LGjaAwoEJgZKhWVQdeuvMlkZgLXrtHff+QI4yEaDRdRPz8qjpYt6cYy95+1szNvMgoFYzfvvsvF8Pp1YPVqju9Vq6ks+vSh8jD392aO6B0K8/PzwyuvvIJXXnkFJ06cwKeffooZM2Zg3759xpRPIBAYCLmVRqNGwLhxPJaZyaLEXbuoQDZs4MLq5MTnde7MRbYquawUCsr8zjtUGjdvsp3IN98wxhEQQPeUUBr6U6aciQcPHmDz5s2IiopCVlYWnn32WWPJJRAIKgFbW7qhmjblfUliZXtMDNNTFy3i4mplxRTMnj2BvLyq4/yXK5ynTeP9GzceVxp9+1bdrq6VRamKIjMzEzt27MDGjRvxzz//oGfPnpgzZ47ZFQEJBIKKo1AwUDxgAG8AM2lOnuQEvK+/Bu7dqwUvL6YC9+xJl8//OvWYPbLSkCQqjd9+43vKzaWy6N+fzxFKoyClKop27drB1dUV/fv3x8SJE/NrJ86dOwcACAkJMa6EAoHApNjbs8Np+/a8v3//FWg0LbBuHbB4MRdZuXFjz56Md5i7S0ehYGbU1KlUGteuMeV22TJmjQUFMUGgRg2hNAA9FIXr/8ogN27ciE2bNhVIkVUoFNi9e7fxpBMIBGaHra1UIGU3OZmZVVu2ADNnMkDu789BPa1bm393V4WC1oRsafz7L5tILlnCeE3dumzc5+dnaklNR6mKIjo6utSTbN68GX3lxiQCgeCJwtlZ66qSJODOHabjbtwI/PwzA+GNG2vrG8zZ2lAoWP3+zjtUeJcuAWvXMlaj0dDdNnDgk1cRbpAGACtWrBCKQiAQQKGgu2biRN6ys5mK+/vvwLx53KH7+TFVtWVL8x4ypVQCwcFMudVoOBN7/Xrgo4+oEBs1onvK09PUkhofgygKPTuVCwSCJwxra/a+6thRa2388QeDyN99R2ukUyem4bq7m1ra4lEqaRU1bkxld+YMLaYPP+T7Cg2l0qiuDQsNoigUItojEAhKQbY23nyTt9RUpuCuX8/+VVZWDIj368cYh7kuKyoVZ7c3a8ZA/qlTHMT0/vt8vHlzZk9Vp6nO1bT3pEAgMHccHYHBg3nLyaGL6pdfGBAHtPGAevXMN65haUkXWsuWfA/HjwNbt7JhIRWjK2rUMP+AfmkIRSEQCEyOlRUH8XTowHjAxYvAf/8LfPKJtsZh4EC2FzfGvAVDYGXF3lNt27Jr6/HjwE8/qTBzJhVdmzYM6JvbPGx9EDEKgUBgViiVDBTLQeMbN4AffgA+/5y79oAAxgMaNzbfeRw2NkC7doCDQwLq1fPCsWPA9u3AjBlUdLLSsLc3taT6YZCPuV+/foY4jUAgEBRALoybM4f3b98GfvyRHWJzcviYbudcc8TWVhvQz8hgW/Rdu5hNpVLRAund27wtDb0VRWxsLJYtW4aHDx8WsCA2bdqEMWPGGEU4gUAg0KVGDe7KASAujpbGl18C9+/XRtOmwKBBtDTM1T1lZwd06cKbrDR27uR7srBgB99evcwvEK63opg5cyaGDh2Khg0biiwngUBgcvz8uCsHgK1br+P48aZYtozxgcBA4Jln6MIy10C4rtLIzASOHWN1++zZVHQtWrAlioeHqSUtg6KwsrLC888/b0RRBAKBoHx4eeXlK41bt4Dvvwc++4yB8AYNgKFD2b/JXPe4uu6p7GyOe924EZg/X9tipHdv0w1h0ltRBAYG4syZM2giT/UWCAQCM6RmTe7KJQm4ehX49lsuuADQpAmVhjnXaVhba7On1GpmgEVFabvcuruzQDEsjFZJZVCqopAD1UlJSdixYwdq1qwJC51Ug02bNhlPOoFAICgnCgWtiAULtC04vv2W7ipLS8YDBg0y7xYcKhVTgkNCqPju3mVMY/du9qCysGDTwqefZmDfWFlgpZ525syZkCQJ8+fPx6JFi4wjhUAgEBgRuQWH3BH2yBEGwv/v/+j26dyZ/aecnEwtafEoFICPDzBqFG+ZmZyLvm0bsHw5s8Ds7BiX6diRMZz/TYWoMKUqitatWwMA7O3tUatWLfj4+BjmlQUCgcAEqFRAeDhvOTlskb5yJQPJzs6MBXTpYt4NCwHK16oVbwDw6BFw9Cjw11+sOcnLo6KoVYuzROrWLX+FuN6GSkZGBrp16wYfHx/Y6TjGhOtJIBBUVaysgB49eMvIADZv5iyKVavYSnzQIC7EhtqZGxNXV+17ATgn5Px5KsI1a2iBuLgAs2aV/dx6K4p35ZQCgUAgqIbY2THQPXQokJTEDre//AJ89RX9/8OGmXe6bWGcnbWWE0AL49698p1Lb0Uhu6AEAoGguuPiAowbx1tcHNNtlyyhq6pBA+DZZ+nSMdfMqaKwsAC8vID798vxt4YXR8uyZcuwdetWAECnTp0wZcqUAo9fuHAB7777LtLT09GyZUvMmTOnQEaVQCAQmBo/P1ZOSxJw+TKVxnvv8bGWLWlpmENRnDExmhEVExOD/fv3Y/369diwYQPOnTuHnTt3FnjO5MmTMWvWLGzfvh2SJOH33383ljgCgUBQIRQKoH59pttu2cKJfcnJwFtvAWPHMq6Rnm5qKY2D0bbvnp6emDZtGqysrAAAQUFBiIuLy3/8zp07yMrKQrNmzQAAgwYNwtKlSzFy5EhjiSQQCAQGQaXSZhxlZzNg/NtvVCCOjhxc1KWLqaU0HEZTFPXq1cv///Xr17F161asWrUq/9i9e/fgqVPp4unpibt37xpLHIFAIDAK1tbsydSzJ5CSQmWxYQMD4SqVP8aPp0Ix10aF+mD0gMDly5cxbtw4TJkyBXXq1Mk/rtFoCjQXlCSpzM0Gz549aygxDUZsbKypRXgMc5QJME+5hEz6IWQqnnr1gMmTgcREFXbtcsHnnyuRnq6Et3cOevd+iDp1ckyWOaVUSuWaTW5URREbG4tJkyZh+vTpiIiIKPCYj48P7uuE3x88eAAvL68ynb9x48awtrY2iKyGIDY2FmFhYaYWowDmKBNgnnIJmfRDyKQ/bm6xWLCgDm7dkov6PJGVxVjHqFGVnzmVl5eN+/fLvsE2mqKIj4/HhAkTsHjxYoTLibw6+Pv7w9raOv8LjoqKwlNPPWUscQQCgcAkKBRUCNOns+fUP/9Qabz3HjOpmjYFRoxgew5zxWiKYsWKFcjOzsaCBQvyjw0fPhzR0dGYNGkSmjRpgoULF2LGjBlIS0tDSEgIRo8ebSxxBAKBwOQolUDDhuxmq1YDp04BP/8MTJ3KOoc2bTgb3NwaFRpNUcyYMQMz5FFUOowYMSL//8HBwVizZo2xRBAIBAKzRR5O1KIFC/mOHeOY1//7PyqNli2BwYOpNExd2Ceq2wQCgcDEWFkB7drxlpPD5n6//EKloVLRPTV4MOdomPXgIoFAIBAYHysrdntt356Dik6epHtKrg4PCqJ7qmHDymtWKBSFQCAQmCnygKVWrRjTuHSJlsbnn3M2uKsrhxZ17Mj+VMZyUQlFIRAIBFUAlYpWxLx5tCzu3ePQou3b2UZcqaS10acPn2fIMalCUQgEAkEVQ6HgvIz//Ie3rCzOnli7ltPuMjMZEA8KYsV4/frlH1oECEUhEAgEVR4bG20GFQCkpnJM6vr1VBxZWTxepw7wyitlP79QFAKBQFDNcHQsOLQoPR24cwc4dKh85xOKQiAQCKo59vZ0P9WuTUujrFSRoX4CgUAgMBVCUQgEAoGgRISiEAgEAkGJCEUhEAgEghIRikIgEAgEJSIUhUAgEAhKRCgKgUAgEJSIUBQCgUAgKBGhKAQCgUBQIlWyMluSJABATk6OiSV5nOzsbFOL8BjmKBNgnnIJmfRDyKQ/5iSXvGbKa6i+KKSy/oUZkJqaikuXLplaDIFAIKiS1K9fH45laCdbJRWFRqNBeno6LC0toTD1MFmBQCCoIkiShNzcXNjb20NZhpmqVVJRCAQCgaDyEMFsgUAgEJSIUBQCgUAgKBGhKAQCgUBQIkJRCAQCgaBEhKIQCAQCQYkIRSEQCASCEhGKQiAQCAQlUiUVxaZNm9CnTx/06NEDv/zyi8nkSEtLQ9++fXH79m0AQExMDPr164cePXpg8eLFJpFp2bJliIiIQEREBD7++GOzkGvJkiXo06cPIiIi8MMPP5iFTDIfffQRpk2bZhYyjRo1ChERERgwYAAGDBiAU6dOmVwmAIiOjsagQYPQu3dvzJs3D4BpP6s//vgj/zMaMGAAwsLCMHfuXJN/VlFRUfm/vY8++giA6a+p5cuXo2fPnujXrx+++uqr8sskVTESEhKkLl26SI8ePZLS09Olfv36SZcvX650OU6ePCn17dtXCgkJkW7duiVlZmZKnTp1km7evCnl5uZKL774orRnz55KlenAgQPSsGHDpOzsbCknJ0caPXq0tGnTJpPKdfjwYWn48OFSbm6ulJmZKXXp0kW6cOGCyT8rSZKkmJgYqU2bNtLUqVNN/v1pNBqpQ4cOUm5ubv4xU8skSZJ08+ZNqUOHDlJ8fLyUk5MjjRgxQtqzZ4/J5ZK5dOmS1L17dykuLs6kMmVkZEitWrWSHj58KOXm5kpDhgyRdu/ebVKZDhw4IPXt21dKTU2V8vLypHHjxklRUVHlkqnKWRQxMTFo27YtXFxcYGdnh549e2Lbtm2VLsfvv/+O2bNnw8vLCwBw+vRp1K5dGzVr1oSFhQX69etX6XJ5enpi2rRpsLKygqWlJYKCgnD9+nWTytW6dWv89NNPsLCwwMOHD6FWq5GSkmLyzyopKQmLFy/G+PHjAZj++7t69SoA4MUXX0T//v2xcuVKk8sEADt37kSfPn3g4+MDS0tLLF68GLa2tiaXS+a9997Dm2++iVu3bplUJrVaDY1Gg8zMTOTl5SEvLw8ODg4mlen8+fPo0KEDHBwcoFKp0LFjR/zxxx/lkqnKKYp79+7B09Mz/76Xlxfu3r1b6XLMnz8fLVu2NCu56tWrh2bNmgEArl+/jq1bt0KhUJhcLktLSyxduhQREREIDw83i89q1qxZePPNN+Hk5ATA9N9fSkoKwsPD8cUXX+DHH3/E6tWrERcXZ/LP6caNG1Cr1Rg/fjwGDBiAX3/91eSflUxMTAyysrLQu3dvk8vk4OCA119/Hb1790anTp3g7+9vcplCQkKwf/9+JCUlITs7G9HR0Th+/Hi5ZKpyikKj0RRoBChJklk0BjQnuS5fvowXX3wRU6ZMQc2aNc1CrkmTJuHgwYOIj4/H9evXTSrTH3/8AV9fX4SHh+cfM/X317x5c3z88cdwdHSEm5sbhgwZgqVLl5r8u1Or1Th48CA++OAD/Pbbbzh9+jRu3bplcrkAYPXq1XjhhRcAmP77u3jxItauXYu//voL+/btg1KpNPl1Hh4ejkGDBmHUqFEYO3YswsLCkJeXVy6Zqtw8Ch8fHxw7diz//v379/PdP6bEx8cH9+/fz79vKrliY2MxadIkTJ8+HREREThy5IhJ5bpy5QpycnLQsGFD2NraokePHti2bRtUKpXJZNqyZQvu37+PAQMGIDk5GRkZGbhz545JZTp27Bhyc3PzlZckSfD39zf5NeXh4YHw8HC4ubkBAJ5++mmTf38A5yocPXoUCxYsAGD639/+/fsRHh4Od3d3AMCgQYOwYsUKk35OaWlp6NGjR74y/e6779C6detyfU5VzqJo164dDh48iMTERGRmZmLHjh146qmnTC0WmjZtimvXruWb6ps3b650ueLj4zFhwgQsXLgQERERZiHX7du3MWPGDOTk5CAnJwe7d+/G8OHDTSrTDz/8gM2bNyMqKgqTJk1C165d8d1335lUptTUVHz88cfIzs5GWloa1q9fj7feesvk11SXLl2wf/9+pKSkQK1WY9++fejVq5fJ5frnn39Qp04d2NnZATD9dR4cHIyYmBhkZGRAkiRER0ebXKbbt2/j1VdfRV5eHlJTU7FmzRq88cYb5ZKpylkU3t7eePPNNzF69Gjk5uZiyJAhCA0NNbVYsLa2xoIFCzBx4kRkZ2ejU6dO6NWrV6XKsGLFCmRnZ+fvsgBg+PDhJpWrU6dOOH36NCIjI6FSqdCjRw9ERETAzc3NpJ9VYUz9/XXp0gWnTp1CZGQkNBoNRo4ciebNm5v8mmratCnGjh2LkSNHIjc3F+3bt8eIESMQGBhoUrlu3boFHx+f/Pum/v46dOiA8+fPY9CgQbC0tESTJk0wceJEtG/f3mQyBQcHo0ePHujfvz/UajWef/55hIWFletzEvMoBAKBQFAiVc71JBAIBILKRSgKgUAgEJSIUBQCgUAgKBGhKAQCgUBQIkJRCAQCgaBEhKIQCMpBbm4uOnTogLFjx5paFIHA6AhFIRCUg507dyI4OBhnz57FlStXTC2OQGBURB2FQFAORo0ahT59+uDy5cvIy8vD3LlzAbD//5o1a2Bvb4+WLVti9+7diI6ORk5ODhYuXIijR49CrVajUaNGmDFjBhwcHEz8TgSC0hEWhUBQRv7991+cOHECvXr1QmRkJKKiovDo0SPs27cP69atw5o1a7Bu3Tqkp6fn/83y5cuhUqmwbt06bNy4EV5eXli4cKEJ34VAoD9VroWHQGBqVq1ahS5dusDV1RWurq6oUaMGfv/9d9y/fx+9evXKb13+7LPP4tChQwCAPXv2IDU1FTExMQAY45AbyAkE5o5QFAJBGcjIyEBUVBSsrKzQtWtXAOzSuXLlSkREREDXk6vbOVSj0WD69Ono1KkTACA9PR3Z2dmVK7xAUE6E60kgKAObNm2Ci4sL9u3bh+joaERHR2PXrl3IyMhASEgIduzYgdTUVADAmjVr8v+uQ4cO+OWXX5CTkwONRoOZM2fi008/NdXbEAjKhFAUAkEZWLVqFV544YUC1oKTkxNGjRqFH3/8EUOHDsWwYcMwaNAgpKamwtbWFgDw6quvwt/fHwMHDkSfPn0gSRKmTZtmqrchEJQJkfUkEBiIM2fO4MSJExg9ejQAzr04deoUPvvsM9MKJhBUEKEoBAIDkZaWhunTp+Pq1atQKBTw9fXF+++/D29vb1OLJhBUCKEoBAKBQFAiIkYhEAgEghIRikIgEAgEJSIUhUAgEAhKRCgKgUAgEJSIUBQCgUAgKBGhKAQCgUBQIv8PvzGN9HaZpz0AAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "sns.set(style='whitegrid')\n",
    "\n",
    "for idp_num, idp in enumerate(idp_ids): \n",
    "    print('Running IDP', idp_num, idp, ':')\n",
    "    idp_dir = os.path.join(out_dir, idp)\n",
    "    os.chdir(idp_dir)\n",
    "    \n",
    "    # load the true data points\n",
    "    yhat_te = load_2d(os.path.join(idp_dir, 'yhat_predict.txt'))\n",
    "    s2_te = load_2d(os.path.join(idp_dir, 'ys2_predict.txt'))\n",
    "    y_te = load_2d(os.path.join(idp_dir, 'resp_te.txt'))\n",
    "            \n",
    "    # set up the covariates for the dummy data\n",
    "    print('Making predictions with dummy covariates (for visualisation)')\n",
    "    yhat, s2 = predict(cov_file_dummy, \n",
    "                       alg = 'blr', \n",
    "                       respfile = None, \n",
    "                       model_path = os.path.join(idp_dir,'Models'), \n",
    "                       outputsuffix = '_dummy')\n",
    "    \n",
    "    # load the normative model\n",
    "    with open(os.path.join(idp_dir,'Models', 'NM_0_0_estimate.pkl'), 'rb') as handle:\n",
    "        nm = pickle.load(handle) \n",
    "    \n",
    "    # get the warp and warp parameters\n",
    "    W = nm.blr.warp\n",
    "    warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1] \n",
    "        \n",
    "    # first, we warp predictions for the true data and compute evaluation metrics\n",
    "    med_te = W.warp_predictions(np.squeeze(yhat_te), np.squeeze(s2_te), warp_param)[0]\n",
    "    med_te = med_te[:, np.newaxis]\n",
    "    print('metrics:', evaluate(y_te, med_te))\n",
    "    \n",
    "    # then, we warp dummy predictions to create the plots\n",
    "    med, pr_int = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param)\n",
    "    \n",
    "    # extract the different variance components to visualise\n",
    "    beta, junk1, junk2 = nm.blr._parse_hyps(nm.blr.hyp, X_dummy)\n",
    "    s2n = 1/beta # variation (aleatoric uncertainty)\n",
    "    s2s = s2-s2n # modelling uncertainty (epistemic uncertainty)\n",
    "    \n",
    "    # plot the data points\n",
    "    y_te_rescaled_all = np.zeros_like(y_te)\n",
    "    for sid, site in enumerate(site_ids_te):\n",
    "        # plot the true test data points \n",
    "        if all(elem in site_ids_tr for elem in site_ids_te):\n",
    "            # all data in the test set are present in the training set\n",
    "            \n",
    "            # first, we select the data points belonging to this particular site\n",
    "            idx = np.where(np.bitwise_and(X_te[:,2] == sex, X_te[:,sid+len(cols_cov)+1] !=0))[0]\n",
    "            if len(idx) == 0:\n",
    "                print('No data for site', sid, site, 'skipping...')\n",
    "                continue\n",
    "            \n",
    "            # then directly adjust the data\n",
    "            idx_dummy = np.bitwise_and(X_dummy[:,1] > X_te[idx,1].min(), X_dummy[:,1] < X_te[idx,1].max())\n",
    "            y_te_rescaled = y_te[idx] - np.median(y_te[idx]) + np.median(med[idx_dummy])\n",
    "        else:\n",
    "            # we need to adjust the data based on the adaptation dataset \n",
    "            \n",
    "            # first, select the data point belonging to this particular site\n",
    "            idx = np.where(np.bitwise_and(X_te[:,2] == sex, (df_te['site'] == site).to_numpy()))[0]\n",
    "            \n",
    "            # load the adaptation data\n",
    "            y_ad = load_2d(os.path.join(idp_dir, 'resp_ad.txt'))\n",
    "            X_ad = load_2d(os.path.join(idp_dir, 'cov_bspline_ad.txt'))\n",
    "            idx_a = np.where(np.bitwise_and(X_ad[:,2] == sex, (df_ad['site'] == site).to_numpy()))[0]\n",
    "            if len(idx) < 2 or len(idx_a) < 2:\n",
    "                print('Insufficent data for site', sid, site, 'skipping...')\n",
    "                continue\n",
    "            \n",
    "            # adjust and rescale the data\n",
    "            y_te_rescaled, s2_rescaled = nm.blr.predict_and_adjust(nm.blr.hyp, \n",
    "                                                                   X_ad[idx_a,:], \n",
    "                                                                   np.squeeze(y_ad[idx_a]), \n",
    "                                                                   Xs=None, \n",
    "                                                                   ys=np.squeeze(y_te[idx]))\n",
    "        # plot the (adjusted) data points\n",
    "        plt.scatter(X_te[idx,1], y_te_rescaled, s=4, color=clr, alpha = 0.1)\n",
    "       \n",
    "    # plot the median of the dummy data\n",
    "    plt.plot(xx, med, clr)\n",
    "    \n",
    "    # fill the gaps in between the centiles\n",
    "    junk, pr_int25 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.25,0.75])\n",
    "    junk, pr_int95 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.05,0.95])\n",
    "    junk, pr_int99 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.01,0.99])\n",
    "    plt.fill_between(xx, pr_int25[:,0], pr_int25[:,1], alpha = 0.1,color=clr)\n",
    "    plt.fill_between(xx, pr_int95[:,0], pr_int95[:,1], alpha = 0.1,color=clr)\n",
    "    plt.fill_between(xx, pr_int99[:,0], pr_int99[:,1], alpha = 0.1,color=clr)\n",
    "            \n",
    "    # make the width of each centile proportional to the epistemic uncertainty\n",
    "    junk, pr_int25l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.25,0.75])\n",
    "    junk, pr_int95l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.05,0.95])\n",
    "    junk, pr_int99l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.01,0.99])\n",
    "    junk, pr_int25u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.25,0.75])\n",
    "    junk, pr_int95u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.05,0.95])\n",
    "    junk, pr_int99u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.01,0.99])    \n",
    "    plt.fill_between(xx, pr_int25l[:,0], pr_int25u[:,0], alpha = 0.3,color=clr)\n",
    "    plt.fill_between(xx, pr_int95l[:,0], pr_int95u[:,0], alpha = 0.3,color=clr)\n",
    "    plt.fill_between(xx, pr_int99l[:,0], pr_int99u[:,0], alpha = 0.3,color=clr)\n",
    "    plt.fill_between(xx, pr_int25l[:,1], pr_int25u[:,1], alpha = 0.3,color=clr)\n",
    "    plt.fill_between(xx, pr_int95l[:,1], pr_int95u[:,1], alpha = 0.3,color=clr)\n",
    "    plt.fill_between(xx, pr_int99l[:,1], pr_int99u[:,1], alpha = 0.3,color=clr)\n",
    "\n",
    "    # plot actual centile lines\n",
    "    plt.plot(xx, pr_int25[:,0],color=clr, linewidth=0.5)\n",
    "    plt.plot(xx, pr_int25[:,1],color=clr, linewidth=0.5)\n",
    "    plt.plot(xx, pr_int95[:,0],color=clr, linewidth=0.5)\n",
    "    plt.plot(xx, pr_int95[:,1],color=clr, linewidth=0.5)\n",
    "    plt.plot(xx, pr_int99[:,0],color=clr, linewidth=0.5)\n",
    "    plt.plot(xx, pr_int99[:,1],color=clr, linewidth=0.5)\n",
    "    \n",
    "    plt.xlabel('Age')\n",
    "    plt.ylabel(idp) \n",
    "    plt.title(idp)\n",
    "    plt.xlim((0,90))\n",
    "    plt.savefig(os.path.join(idp_dir, 'centiles_' + str(sex)),  bbox_inches='tight')\n",
    "    plt.show()\n",
    "    \n",
    "os.chdir(out_dir)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "about": [
   {
    "name": "Neuroscience",
    "type": "DefinedTerm"
   }
  ],
  "authorNotes": [
   "†These authors contributed equally to this work"
  ],
  "authors": [
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Ann Arbor",
      "type": "Organization"
     }
    ],
    "emails": [
     "saige.rutherford@donders.ru.nl"
    ],
    "familyNames": [
     "Rutherford"
    ],
    "givenNames": [
     "Saige"
    ],
    "name": "Saige Rutherford",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Fraza"
    ],
    "givenNames": [
     "Charlotte"
    ],
    "name": "Charlotte Fraza",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Dinga"
    ],
    "givenNames": [
     "Richard"
    ],
    "name": "Richard Dinga",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Utrecht",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Kia"
    ],
    "givenNames": [
     "Seyed",
     "Mostafa"
    ],
    "name": "Seyed Mostafa Kia",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Wolfers"
    ],
    "givenNames": [
     "Thomas"
    ],
    "name": "Thomas Wolfers",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Zabihi"
    ],
    "givenNames": [
     "Mariam"
    ],
    "name": "Mariam Zabihi",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Berthet"
    ],
    "givenNames": [
     "Pierre"
    ],
    "name": "Pierre Berthet",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United Kingdom",
       "type": "PostalAddress"
      },
      "name": "London",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Worker"
    ],
    "givenNames": [
     "Amanda"
    ],
    "name": "Amanda Worker",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United Kingdom",
       "type": "PostalAddress"
      },
      "name": "London",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "United Kingdom",
       "type": "PostalAddress"
      },
      "name": "London",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Verdi"
    ],
    "givenNames": [
     "Serena"
    ],
    "name": "Serena Verdi",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Sacramento",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Andrews"
    ],
    "givenNames": [
     "Derek"
    ],
    "name": "Derek Andrews",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Amsterdam",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Amsterdam",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Han"
    ],
    "givenNames": [
     "Laura",
     "KM"
    ],
    "name": "Laura KM Han",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Australia",
       "type": "PostalAddress"
      },
      "name": "Melbourne",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Australia",
       "type": "PostalAddress"
      },
      "name": "Melbourne",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Bayer"
    ],
    "givenNames": [
     "Johanna",
     "MM"
    ],
    "name": "Johanna MM Bayer",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United Kingdom",
       "type": "PostalAddress"
      },
      "name": "London",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "United Kingdom",
       "type": "PostalAddress"
      },
      "name": "London",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Dazzan"
    ],
    "givenNames": [
     "Paola"
    ],
    "name": "Paola Dazzan",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United Kingdom",
       "type": "PostalAddress"
      },
      "name": "London",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "McGuire"
    ],
    "givenNames": [
     "Phillip"
    ],
    "name": "Phillip McGuire",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Amsterdam",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Mocking"
    ],
    "givenNames": [
     "Roel",
     "T"
    ],
    "name": "Roel T Mocking",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Schene"
    ],
    "givenNames": [
     "Aart"
    ],
    "name": "Aart Schene",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Ann Arbor",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Sripada"
    ],
    "givenNames": [
     "Chandra"
    ],
    "name": "Chandra Sripada",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Ann Arbor",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Tso"
    ],
    "givenNames": [
     "Ivy",
     "F"
    ],
    "name": "Ivy F Tso",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Ann Arbor",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Duval"
    ],
    "givenNames": [
     "Elizabeth",
     "R"
    ],
    "name": "Elizabeth R Duval",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Ann Arbor",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Chang"
    ],
    "givenNames": [
     "Soo-Eun"
    ],
    "name": "Soo-Eun Chang",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Amsterdam",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Amsterdam",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Penninx"
    ],
    "givenNames": [
     "Brenda",
     "WJH"
    ],
    "name": "Brenda WJH Penninx",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Ann Arbor",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Heitzeg"
    ],
    "givenNames": [
     "Mary",
     "M"
    ],
    "name": "Mary M Heitzeg",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "East Lansing",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Burt"
    ],
    "givenNames": [
     "S",
     "Alexandra"
    ],
    "name": "S Alexandra Burt",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Ann Arbor",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Hyde"
    ],
    "givenNames": [
     "Luke",
     "W"
    ],
    "name": "Luke W Hyde",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Sacramento",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Amaral"
    ],
    "givenNames": [
     "David"
    ],
    "name": "David Amaral",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "Sacramento",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Wu",
     "Nordahl"
    ],
    "givenNames": [
     "Christine"
    ],
    "name": "Christine Wu Nordahl",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Andreasssen"
    ],
    "givenNames": [
     "Ole",
     "A"
    ],
    "name": "Ole A Andreasssen",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Norway",
       "type": "PostalAddress"
      },
      "name": "Oslo",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Westlye"
    ],
    "givenNames": [
     "Lars",
     "T"
    ],
    "name": "Lars T Westlye",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United Kingdom",
       "type": "PostalAddress"
      },
      "name": "London",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Zahn"
    ],
    "givenNames": [
     "Roland"
    ],
    "name": "Roland Zahn",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Ruhe"
    ],
    "givenNames": [
     "Henricus",
     "G"
    ],
    "name": "Henricus G Ruhe",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "United Kingdom",
       "type": "PostalAddress"
      },
      "name": "Oxford",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Beckmann"
    ],
    "givenNames": [
     "Christian"
    ],
    "name": "Christian Beckmann",
    "type": "Person"
   },
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     },
     {
      "address": {
       "addressCountry": "Netherlands",
       "type": "PostalAddress"
      },
      "name": "Nijmegen",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Marquand"
    ],
    "givenNames": [
     "Andre",
     "F"
    ],
    "name": "Andre F Marquand",
    "type": "Person"
   }
  ],
  "dateAccepted": {
   "type": "Date",
   "value": "2022-01-26"
  },
  "datePublished": {
   "type": "Date",
   "value": "2022-02-01"
  },
  "dateReceived": {
   "type": "Date",
   "value": "2021-08-19"
  },
  "description": "Defining reference models for population variation, and the ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging data from 82 sites (N=58,836; ages 2–100) and used normative modeling to characterize lifespan trajectories of cortical thickness and subcortical volume. Models are validated against a manually quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample (N=1985), showing they can be used to quantify variability underlying multiple disorders whilst also refining case-control inferences. These models will be augmented with additional samples and imaging modalities as they become available. This provides a common reference platform to bind results from different studies and ultimately paves the way for personalized clinical decision-making.",
  "editors": [
   {
    "affiliations": [
     {
      "address": {
       "addressCountry": "United States",
       "type": "PostalAddress"
      },
      "name": "National Institute of Mental Health, National Institutes of Health",
      "type": "Organization"
     }
    ],
    "familyNames": [
     "Baker"
    ],
    "givenNames": [
     "Chris",
     "I"
    ],
    "type": "Person"
   }
  ],
  "fundedBy": [
   {
    "funders": [
     {
      "name": "H2020 European Research Council",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "10100118"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "H2020 European Research Council",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "802998"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "Wellcome Trust",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "215698/Z/19/Z"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "Wellcome Trust",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "098369/Z/12/Z"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "Nederlandse Organisatie voor Wetenschappelijk Onderzoek",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "VIDI grant 016.156.415"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "National Institute of Mental Health",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "R01MH104438"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "National Institute of Mental Health",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "R01MH103371"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "Eunice Kennedy Shriver National Institute of Child Health and Human Development",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "P50 HD093079"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "H2020 Marie Skłodowska-Curie Actions",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "895011"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "Medical Research Council",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "G0902304"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "National Institute of Mental Health",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "K23MH108823"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "National Institute on Deafness and Other Communication Disorders",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "R01DC011277"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "National Institute of Mental Health",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "R01MH107741"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "Michigan Institute for Clinical and Health Research",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "UL1TR002240"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "National Institute of Mental Health",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "UG3MH114249"
     }
    ],
    "type": "MonetaryGrant"
   },
   {
    "funders": [
     {
      "name": "Eunice Kennedy Shriver National Institute of Child Health and Human Development",
      "type": "Organization"
     }
    ],
    "identifiers": [
     {
      "type": "PropertyValue",
      "value": "R01HD093334"
     }
    ],
    "type": "MonetaryGrant"
   }
  ],
  "genre": [
   "Short Report"
  ],
  "identifiers": [
   {
    "name": "publisher-id",
    "propertyID": "https://registry.identifiers.org/registry/publisher-id",
    "type": "PropertyValue",
    "value": "72904"
   },
   {
    "name": "doi",
    "propertyID": "https://registry.identifiers.org/registry/doi",
    "type": "PropertyValue",
    "value": "10.7554/eLife.72904"
   },
   {
    "name": "elocation-id",
    "propertyID": "https://registry.identifiers.org/registry/elocation-id",
    "type": "PropertyValue",
    "value": "e72904"
   }
  ],
  "isPartOf": {
   "isPartOf": {
    "identifiers": [
     {
      "name": "nlm-ta",
      "propertyID": "https://registry.identifiers.org/registry/nlm-ta",
      "type": "PropertyValue",
      "value": "elife"
     },
     {
      "name": "publisher-id",
      "propertyID": "https://registry.identifiers.org/registry/publisher-id",
      "type": "PropertyValue",
      "value": "eLife"
     }
    ],
    "issns": [
     "2050-084X"
    ],
    "publisher": {
     "name": "eLife Sciences Publications, Ltd",
     "type": "Organization"
    },
    "title": "eLife",
    "type": "Periodical"
   },
   "type": "PublicationVolume",
   "volumeNumber": "11"
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "keywords": [
   "normative model",
   "lifespan",
   "growth chart",
   "brain chart",
   "big data",
   "individual prediction",
   "Human"
  ],
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  },
  "licenses": [
   {
    "content": [
     {
      "content": [
       "This article is distributed under the terms of the ",
       {
        "content": [
         "Creative Commons Attribution License"
        ],
        "target": "http://creativecommons.org/licenses/by/4.0/",
        "type": "Link"
       },
       ", which permits unrestricted use and redistribution provided that the original author and source are credited."
      ],
      "type": "Paragraph"
     }
    ],
    "type": "CreativeWork",
    "url": "http://creativecommons.org/licenses/by/4.0/"
   }
  ],
  "references": [
   {
    "authors": [
     {
      "familyNames": [
       "Alfaro-Almagro"
      ],
      "givenNames": [
       "F"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Jenkinson"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bangerter"
      ],
      "givenNames": [
       "NK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Andersson"
      ],
      "givenNames": [
       "JLR"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Griffanti"
      ],
      "givenNames": [
       "L"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Douaud"
      ],
      "givenNames": [
       "G"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Sotiropoulos"
      ],
      "givenNames": [
       "SN"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Jbabdi"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hernandez-Fernandez"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Vallee"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Vidaurre"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Webster"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "McCarthy"
      ],
      "givenNames": [
       "P"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rorden"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Daducci"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Alexander"
      ],
      "givenNames": [
       "DC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Zhang"
      ],
      "givenNames": [
       "H"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dragonu"
      ],
      "givenNames": [
       "I"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Matthews"
      ],
      "givenNames": [
       "PM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Miller"
      ],
      "givenNames": [
       "KL"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Smith"
      ],
      "givenNames": [
       "SM"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2018"
    },
    "id": "bib1",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2017.10.034"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "29079522"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 166
    },
    "pageEnd": 424,
    "pageStart": 400,
    "title": "Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Bayer"
      ],
      "givenNames": [
       "JMM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dinga"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kia"
      ],
      "givenNames": [
       "SM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kottaram"
      ],
      "givenNames": [
       "AR"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Lv"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Zalesky"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Schmaal"
      ],
      "givenNames": [
       "L"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib2",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1101/2021.02.09.430363"
     }
    ],
    "isPartOf": {
     "name": "bioRxiv",
     "type": "Periodical"
    },
    "title": "Accommodating Site Variation in Neuroimaging Data Using Normative and Hierarchical Bayesian Models",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Bethlehem"
      ],
      "givenNames": [
       "RAI"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Seidlitz"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Romero-Garcia"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Trakoshis"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dumas"
      ],
      "givenNames": [
       "G"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Lombardo"
      ],
      "givenNames": [
       "MV"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2020"
    },
    "id": "bib3",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1038/s42003-020-01212-9"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "32887930"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Communications Biology",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 3
    },
    "title": "A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Bethlehem"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Seidlitz"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "White"
      ],
      "givenNames": [
       "SR"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Vogel"
      ],
      "givenNames": [
       "JW"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Anderson"
      ],
      "givenNames": [
       "KM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Adamson"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Adler"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Alexopoulos"
      ],
      "givenNames": [
       "GS"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Anagnostou"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Areces-Gonzalez"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Astle"
      ],
      "givenNames": [
       "DE"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Auyeung"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ayub"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ball"
      ],
      "givenNames": [
       "G"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Baron-Cohen"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beare"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bedford"
      ],
      "givenNames": [
       "SA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Benegal"
      ],
      "givenNames": [
       "V"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beyer"
      ],
      "givenNames": [
       "F"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Alexander-Bloch"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib4",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1101/2021.06.08.447489"
     }
    ],
    "isPartOf": {
     "name": "bioRxiv",
     "type": "Periodical"
    },
    "title": "Brain Charts for the Human Lifespan",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Cole"
      ],
      "givenNames": [
       "TJ"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2012"
    },
    "id": "bib5",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.3109/03014460.2012.694475"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "22780429"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Annals of Human Biology",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 39
    },
    "pageEnd": 394,
    "pageStart": 382,
    "title": "The development of growth references and growth charts",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Dale"
      ],
      "givenNames": [
       "AM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Fischl"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Sereno"
      ],
      "givenNames": [
       "MI"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "1999"
    },
    "id": "bib6",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1006/nimg.1998.0395"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "9931268"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 9
    },
    "pageEnd": 194,
    "pageStart": 179,
    "title": "Cortical Surface-Based Analysis",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Destrieux"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Fischl"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dale"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Halgren"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2010"
    },
    "id": "bib7",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2010.06.010"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "20547229"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 53
    },
    "pageEnd": 15,
    "pageStart": 1,
    "title": "Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Dimitrova"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Pietsch"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Christiaens"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ciarrusta"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Batalle"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hughes"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hutter"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Cordero-Grande"
      ],
      "givenNames": [
       "L"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Price"
      ],
      "givenNames": [
       "AN"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Chew"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Falconer"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Vecchiato"
      ],
      "givenNames": [
       "K"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Steinweg"
      ],
      "givenNames": [
       "JK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Carney"
      ],
      "givenNames": [
       "O"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rutherford"
      ],
      "givenNames": [
       "MA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Tournier"
      ],
      "givenNames": [
       "J-D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Counsell"
      ],
      "givenNames": [
       "SJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rueckert"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hajnal"
      ],
      "givenNames": [
       "JV"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "McAlonan"
      ],
      "givenNames": [
       "G"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Edwards"
      ],
      "givenNames": [
       "AD"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "O’Muircheartaigh"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2020"
    },
    "id": "bib8",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1093/cercor/bhaa069"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "32306044"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Cerebral Cortex (New York, N.Y",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 30
    },
    "pageEnd": 4810,
    "pageStart": 4800,
    "title": "Heterogeneity in Brain Microstructural Development Following Preterm Birth",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Dinga"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Fraza"
      ],
      "givenNames": [
       "CJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bayer"
      ],
      "givenNames": [
       "JMM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kia"
      ],
      "givenNames": [
       "SM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib9",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1101/2021.06.14.448106"
     }
    ],
    "isPartOf": {
     "name": "bioRxiv",
     "type": "Periodical"
    },
    "title": "Normative Modeling of Neuroimaging Data Using Generalized Additive Models of Location Scale and Shape",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Ducharme"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Albaugh"
      ],
      "givenNames": [
       "MD"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Nguyen"
      ],
      "givenNames": [
       "TV"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hudziak"
      ],
      "givenNames": [
       "JJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Mateos-Pérez"
      ],
      "givenNames": [
       "JM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Labbe"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Evans"
      ],
      "givenNames": [
       "AC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Karama"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "name": "Brain Development Cooperative Group",
      "type": "Organization"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2016"
    },
    "id": "bib10",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2015.10.010"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "26463175"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 125
    },
    "pageEnd": 279,
    "pageStart": 267,
    "title": "Trajectories of cortical thickness maturation in normal brain development--The importance of quality control procedures",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Duval"
      ],
      "givenNames": [
       "ER"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Joshi"
      ],
      "givenNames": [
       "SA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Russman",
       "Block"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Abelson"
      ],
      "givenNames": [
       "JL"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Liberzon"
      ],
      "givenNames": [
       "I"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2018"
    },
    "id": "bib11",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.janxdis.2018.04.004"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "29729828"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Journal of Anxiety Disorders",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 56
    },
    "pageEnd": 62,
    "pageStart": 56,
    "title": "Insula activation is modulated by attention shifting in social anxiety disorder",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Fischl"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dale"
      ],
      "givenNames": [
       "AM"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2000"
    },
    "id": "bib12",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1073/pnas.200033797"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "10984517"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "PNAS",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 97
    },
    "pageEnd": 11055,
    "pageStart": 11050,
    "title": "Measuring the thickness of the human cerebral cortex from magnetic resonance images",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Fischl"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Salat"
      ],
      "givenNames": [
       "DH"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Busa"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Albert"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dieterich"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Haselgrove"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "van",
       "der",
       "Kouwe"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Killiany"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kennedy"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Klaveness"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Montillo"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Makris"
      ],
      "givenNames": [
       "N"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rosen"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dale"
      ],
      "givenNames": [
       "AM"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2002"
    },
    "id": "bib13",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/S0896-6273(02)00569-X"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "11832223"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Neuron",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 33
    },
    "pageEnd": 355,
    "pageStart": 341,
    "title": "Whole Brain Segmentation",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Fraza"
      ],
      "givenNames": [
       "CJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dinga"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib14",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2021.118715"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "34798518"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 245
    },
    "title": "Warped Bayesian linear regression for normative modelling of big data",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Fry"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Littlejohns"
      ],
      "givenNames": [
       "TJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Sudlow"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Doherty"
      ],
      "givenNames": [
       "N"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Adamska"
      ],
      "givenNames": [
       "L"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Sprosen"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Collins"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Allen"
      ],
      "givenNames": [
       "NE"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2017"
    },
    "id": "bib15",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1093/aje/kwx246"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "28641372"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "American Journal of Epidemiology",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 186
    },
    "pageEnd": 1034,
    "pageStart": 1026,
    "title": "Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Gogtay"
      ],
      "givenNames": [
       "N"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Giedd"
      ],
      "givenNames": [
       "JN"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Lusk"
      ],
      "givenNames": [
       "L"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hayashi"
      ],
      "givenNames": [
       "KM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Greenstein"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Vaituzis"
      ],
      "givenNames": [
       "AC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Nugent"
      ],
      "givenNames": [
       "TF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Herman"
      ],
      "givenNames": [
       "DH"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Clasen"
      ],
      "givenNames": [
       "LS"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Toga"
      ],
      "givenNames": [
       "AW"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rapoport"
      ],
      "givenNames": [
       "JL"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Thompson"
      ],
      "givenNames": [
       "PM"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2004"
    },
    "id": "bib16",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1073/pnas.0402680101"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "15148381"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "PNAS",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 101
    },
    "pageEnd": 8179,
    "pageStart": 8174,
    "title": "Dynamic mapping of human cortical development during childhood through early adulthood",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Green"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Lambon",
       "Ralph"
      ],
      "givenNames": [
       "MA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Moll"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Deakin"
      ],
      "givenNames": [
       "JFW"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Zahn"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2012"
    },
    "id": "bib17",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1001/archgenpsychiatry.2012.135"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "22638494"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Archives of General Psychiatry",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 69
    },
    "pageEnd": 1021,
    "pageStart": 1014,
    "title": "Guilt-selective functional disconnection of anterior temporal and subgenual cortices in major depressive disorder",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Henrich"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Heine"
      ],
      "givenNames": [
       "SJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Norenzayan"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2010"
    },
    "id": "bib18",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1017/S0140525X0999152X"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "20550733"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "The Behavioral and Brain Sciences",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 33
    },
    "pageEnd": 83,
    "pageStart": 61,
    "title": "The weirdest people in the world?",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Insel"
      ],
      "givenNames": [
       "TR"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2014"
    },
    "id": "bib19",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1001/jama.2014.1193"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "24794359"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "JAMA",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 311
    },
    "pageEnd": 1728,
    "pageStart": 1727,
    "title": "Mental disorders in childhood: shifting the focus from behavioral symptoms to neurodevelopmental trajectories",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Jack"
      ],
      "givenNames": [
       "CR"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Knopman"
      ],
      "givenNames": [
       "DS"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Jagust"
      ],
      "givenNames": [
       "WJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Shaw"
      ],
      "givenNames": [
       "LM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Aisen"
      ],
      "givenNames": [
       "PS"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Weiner"
      ],
      "givenNames": [
       "MW"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Petersen"
      ],
      "givenNames": [
       "RC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Trojanowski"
      ],
      "givenNames": [
       "JQ"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2010"
    },
    "id": "bib20",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/S1474-4422(09)70299-6"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "20083042"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "The Lancet. Neurology",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 9
    },
    "pageEnd": 128,
    "pageStart": 119,
    "title": "Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Jones"
      ],
      "givenNames": [
       "MC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Pewsey"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2009"
    },
    "id": "bib21",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1093/biomet/asp053"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Biometrika",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 96
    },
    "pageEnd": 780,
    "pageStart": 761,
    "title": "Sinh-arcsinh distributions",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Karas"
      ],
      "givenNames": [
       "GB"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Scheltens"
      ],
      "givenNames": [
       "P"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rombouts"
      ],
      "givenNames": [
       "SARB"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Visser"
      ],
      "givenNames": [
       "PJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "van",
       "Schijndel"
      ],
      "givenNames": [
       "RA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Fox"
      ],
      "givenNames": [
       "NC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Barkhof"
      ],
      "givenNames": [
       "F"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2004"
    },
    "id": "bib22",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2004.07.006"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "15488420"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 23
    },
    "pageEnd": 716,
    "pageStart": 708,
    "title": "Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Kia"
      ],
      "givenNames": [
       "SM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Huijsdens"
      ],
      "givenNames": [
       "H"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rutherford"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dinga"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Mennes"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Andreassen"
      ],
      "givenNames": [
       "OA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Westlye"
      ],
      "givenNames": [
       "LT"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib23",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1101/2021.05.28.446120"
     }
    ],
    "isPartOf": {
     "name": "bioRxiv",
     "type": "Periodical"
    },
    "title": "Federated Multi-Site Normative Modeling Using Hierarchical Bayesian Regression",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Klapwijk"
      ],
      "givenNames": [
       "ET"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "van",
       "de",
       "Kamp"
      ],
      "givenNames": [
       "F"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "van",
       "der",
       "Meulen"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Peters"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wierenga"
      ],
      "givenNames": [
       "LM"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2019"
    },
    "id": "bib24",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2019.01.014"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "30633965"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 189
    },
    "pageEnd": 129,
    "pageStart": 116,
    "title": "Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Lythe"
      ],
      "givenNames": [
       "KE"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Moll"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Gethin"
      ],
      "givenNames": [
       "JA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Workman"
      ],
      "givenNames": [
       "CI"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Green"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Lambon",
       "Ralph"
      ],
      "givenNames": [
       "MA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Deakin"
      ],
      "givenNames": [
       "JFW"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Zahn"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2015"
    },
    "id": "bib25",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1001/jamapsychiatry.2015.1813"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "26445229"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "JAMA Psychiatry",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 72
    },
    "pageEnd": 1126,
    "pageStart": 1119,
    "title": "Self-blame-Selective Hyperconnectivity Between Anterior Temporal and Subgenual Cortices and Prediction of Recurrent Depressive Episodes",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Markiewicz"
      ],
      "givenNames": [
       "CJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Gorgolewski"
      ],
      "givenNames": [
       "KJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Feingold"
      ],
      "givenNames": [
       "F"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Blair"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Halchenko"
      ],
      "givenNames": [
       "YO"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Miller"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hardcastle"
      ],
      "givenNames": [
       "N"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wexler"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Esteban"
      ],
      "givenNames": [
       "O"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Goncavles"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Jwa"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Poldrack"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib26",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.7554/eLife.71774"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "34658334"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "eLife",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 10
    },
    "title": "The OpenNeuro resource for sharing of neuroscience data",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rezek"
      ],
      "givenNames": [
       "I"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Buitelaar"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2016"
    },
    "id": "bib27",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.biopsych.2015.12.023"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "26927419"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Biological Psychiatry",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 80
    },
    "pageEnd": 561,
    "pageStart": 552,
    "title": "Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kia"
      ],
      "givenNames": [
       "SM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Zabihi"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Buitelaar"
      ],
      "givenNames": [
       "JK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2019"
    },
    "id": "bib28",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1038/s41380-019-0441-1"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "31201374"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Molecular Psychiatry",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 24
    },
    "pageEnd": 1424,
    "pageStart": 1415,
    "title": "Conceptualizing mental disorders as deviations from normative functioning",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Mocking"
      ],
      "givenNames": [
       "RJT"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Figueroa"
      ],
      "givenNames": [
       "CA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rive"
      ],
      "givenNames": [
       "MM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Geugies"
      ],
      "givenNames": [
       "H"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Servaas"
      ],
      "givenNames": [
       "MN"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Assies"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Koeter"
      ],
      "givenNames": [
       "MWJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Vaz"
      ],
      "givenNames": [
       "FM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wichers"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "van",
       "Straalen"
      ],
      "givenNames": [
       "JP"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "de",
       "Raedt"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bockting"
      ],
      "givenNames": [
       "CLH"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Harmer"
      ],
      "givenNames": [
       "CJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Schene"
      ],
      "givenNames": [
       "AH"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ruhé"
      ],
      "givenNames": [
       "HG"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2016"
    },
    "id": "bib29",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1136/bmjopen-2015-009510"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "26932139"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "BMJ Open",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 6
    },
    "title": "Vulnerability for new episodes in recurrent major depressive disorder: protocol for the longitudinal DELTA-neuroimaging cohort study",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Monereo-Sánchez"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "de",
       "Jong"
      ],
      "givenNames": [
       "JJA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Drenthen"
      ],
      "givenNames": [
       "GS"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beran"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Backes"
      ],
      "givenNames": [
       "WH"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Stehouwer"
      ],
      "givenNames": [
       "CDA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Schram"
      ],
      "givenNames": [
       "MT"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Linden"
      ],
      "givenNames": [
       "DEJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Jansen"
      ],
      "givenNames": [
       "JFA"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib30",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2021.118174"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "34000406"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 237
    },
    "title": "Quality control strategies for brain MRI segmentation and parcellation: Practical approaches and recommendations - insights from the Maastricht study",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Nesvåg"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Jönsson"
      ],
      "givenNames": [
       "EG"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bakken"
      ],
      "givenNames": [
       "IJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Knudsen"
      ],
      "givenNames": [
       "GP"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bjella"
      ],
      "givenNames": [
       "TD"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Reichborn-Kjennerud"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Melle"
      ],
      "givenNames": [
       "I"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Andreassen"
      ],
      "givenNames": [
       "OA"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2017"
    },
    "id": "bib31",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1186/s12888-017-1256-8"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "28292279"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "BMC Psychiatry",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 17
    },
    "title": "The quality of severe mental disorder diagnoses in a national health registry as compared to research diagnoses based on structured interview",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Nordahl"
      ],
      "givenNames": [
       "CW"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Iosif"
      ],
      "givenNames": [
       "AM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Young"
      ],
      "givenNames": [
       "GS"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hechtman"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Heath"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Lee"
      ],
      "givenNames": [
       "JK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Libero"
      ],
      "givenNames": [
       "L"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Reinhardt"
      ],
      "givenNames": [
       "VP"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Winder-Patel"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Amaral"
      ],
      "givenNames": [
       "DG"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rogers"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Solomon"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ozonoff"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2020"
    },
    "id": "bib32",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.jaac.2019.11.022"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "31972262"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Journal of the American Academy of Child and Adolescent Psychiatry",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 59
    },
    "pageEnd": 1363,
    "pageStart": 1353,
    "title": "High Psychopathology Subgroup in Young Children With Autism: Associations With Biological Sex and Amygdala Volume",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Rios"
      ],
      "givenNames": [
       "G"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Tobar"
      ],
      "givenNames": [
       "F"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2019"
    },
    "id": "bib33",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neunet.2019.06.012"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "31319321"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Neural Networks",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 118
    },
    "pageEnd": 246,
    "pageStart": 235,
    "title": "Compositionally-warped Gaussian processes",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Rosen"
      ],
      "givenNames": [
       "AFG"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Roalf"
      ],
      "givenNames": [
       "DR"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ruparel"
      ],
      "givenNames": [
       "K"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Blake"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Seelaus"
      ],
      "givenNames": [
       "K"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Villa"
      ],
      "givenNames": [
       "LP"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ciric"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Cook"
      ],
      "givenNames": [
       "PA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Davatzikos"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Elliott"
      ],
      "givenNames": [
       "MA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Garcia",
       "de",
       "La",
       "Garza"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Gennatas"
      ],
      "givenNames": [
       "ED"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Quarmley"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Schmitt"
      ],
      "givenNames": [
       "JE"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Shinohara"
      ],
      "givenNames": [
       "RT"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Tisdall"
      ],
      "givenNames": [
       "MD"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Craddock"
      ],
      "givenNames": [
       "RC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Gur"
      ],
      "givenNames": [
       "RE"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Gur"
      ],
      "givenNames": [
       "RC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Satterthwaite"
      ],
      "givenNames": [
       "TD"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2018"
    },
    "id": "bib34",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2017.12.059"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "29278774"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 169
    },
    "pageEnd": 418,
    "pageStart": 407,
    "title": "Quantitative assessment of structural image quality",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Rutherford"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Angstadt"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Sripada"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Chang"
      ],
      "givenNames": [
       "SE"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2020"
    },
    "id": "bib35",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1101/2020.10.28.359711"
     }
    ],
    "isPartOf": {
     "name": "bioRxiv",
     "type": "Periodical"
    },
    "title": "Leveraging Big Data for Classification of Children Who Stutter from Fluent Peers",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Rutherford"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2022"
    },
    "id": "bib36",
    "title": "braincharts",
    "type": "Article",
    "url": "https://archive.softwareheritage.org/swh:1:dir:cd28f07707409fed9c4e3bcfefaa08b9638dbccb;origin=https://github.com/predictive-clinical-neuroscience/braincharts;visit=swh:1:snp:ad9fb4794977fbb77f867431c767d66d31781b3f;anchor=swh:1:rev:ee2b7ebcb46bab0f302f73f8d6fc913f63fccda5"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Rutherford"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2022"
    },
    "id": "bib37",
    "title": "brainviz-app",
    "type": "Article",
    "url": "https://archive.softwareheritage.org/swh:1:dir:5172634bcf0ed341052462df7780d000c5bd4f9e;origin=https://github.com/saigerutherford/brainviz-app;visit=swh:1:snp:70e2db995b8f63e9bdcb233217089d22000d2147;anchor=swh:1:rev:021fff9a48b26f2d07bbb4b3fb92cd5202418905"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Rutherford"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2022"
    },
    "id": "bib38",
    "title": "lifespanqcscripts",
    "type": "Article",
    "url": "https://archive.softwareheritage.org/swh:1:dir:9c98ca93b3fb3b463607286eec7dfc9c4c3e97db;origin=https://github.com/saigerutherford/lifespan_qc_scripts;visit=swh:1:snp:84918033541e80549e91c96e85a29d191321d0a3;anchor=swh:1:rev:70894691c74febe2a4d40ab0c84c50094b9e99ce"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Snelson"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rasmussen"
      ],
      "givenNames": [
       "CE"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ghahramani"
      ],
      "givenNames": [
       "Z"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2003"
    },
    "id": "bib39",
    "pageEnd": 344,
    "pageStart": 337,
    "title": "Proceedings of the 16th International Conference on Neural Information Processing Systems",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Tamnes"
      ],
      "givenNames": [
       "CK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ostby"
      ],
      "givenNames": [
       "Y"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Fjell"
      ],
      "givenNames": [
       "AM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Westlye"
      ],
      "givenNames": [
       "LT"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Due-Tønnessen"
      ],
      "givenNames": [
       "P"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Walhovd"
      ],
      "givenNames": [
       "KB"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2010"
    },
    "id": "bib40",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1093/cercor/bhp118"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "19520764"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Cerebral Cortex (New York, N.Y",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 20
    },
    "pageEnd": 548,
    "pageStart": 534,
    "title": "Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Tomlinson"
      ],
      "givenNames": [
       "RC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Burt"
      ],
      "givenNames": [
       "SA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Waller"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Jonides"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Miller"
      ],
      "givenNames": [
       "AL"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Gearhardt"
      ],
      "givenNames": [
       "AN"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Peltier"
      ],
      "givenNames": [
       "SJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Klump"
      ],
      "givenNames": [
       "KL"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Lumeng"
      ],
      "givenNames": [
       "JC"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hyde"
      ],
      "givenNames": [
       "LW"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2020"
    },
    "id": "bib41",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.neuroimage.2020.116536"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "31935521"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "NeuroImage",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 209
    },
    "title": "Neighborhood poverty predicts altered neural and behavioral response inhibition",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Tso"
      ],
      "givenNames": [
       "IF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Angstadt"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rutherford"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Peltier"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Diwadkar"
      ],
      "givenNames": [
       "VA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Taylor"
      ],
      "givenNames": [
       "SF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib42",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.schres.2020.11.012"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "33229223"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Schizophrenia Research",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 229
    },
    "pageEnd": 121,
    "pageStart": 112,
    "title": "Dynamic causal modeling of eye gaze processing in schizophrenia",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Weigard"
      ],
      "givenNames": [
       "AS"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Brislin"
      ],
      "givenNames": [
       "SJ"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Cope"
      ],
      "givenNames": [
       "LM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hardee"
      ],
      "givenNames": [
       "JE"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Martz"
      ],
      "givenNames": [
       "ME"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ly"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Zucker"
      ],
      "givenNames": [
       "RA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Sripada"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Heitzeg"
      ],
      "givenNames": [
       "MM"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib43",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1007/s00213-021-05885-w"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "34173032"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Psychopharmacology",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 238
    },
    "pageEnd": 2644,
    "pageStart": 2629,
    "title": "Evidence accumulation and associated error-related brain activity as computationally-informed prospective predictors of substance use in emerging adulthood",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Doan"
      ],
      "givenNames": [
       "NT"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kaufmann"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Alnæs"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Moberget"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Agartz"
      ],
      "givenNames": [
       "I"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Buitelaar"
      ],
      "givenNames": [
       "JK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ueland"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Melle"
      ],
      "givenNames": [
       "I"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Franke"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Andreassen"
      ],
      "givenNames": [
       "OA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Westlye"
      ],
      "givenNames": [
       "LT"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2018"
    },
    "id": "bib44",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1001/jamapsychiatry.2018.2467"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "30304337"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "JAMA Psychiatry",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 75
    },
    "pageEnd": 1155,
    "pageStart": 1146,
    "title": "Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Hoogman"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Buitelaar"
      ],
      "givenNames": [
       "JK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Franke"
      ],
      "givenNames": [
       "B"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2020"
    },
    "id": "bib45",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1017/S0033291719000084"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "30782224"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Psychological Medicine",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 50
    },
    "pageEnd": 323,
    "pageStart": 314,
    "title": "Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Rokicki"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Alnaes"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Berthet"
      ],
      "givenNames": [
       "P"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Agartz"
      ],
      "givenNames": [
       "I"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kia"
      ],
      "givenNames": [
       "SM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kaufmann"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Zabihi"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Moberget"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Melle"
      ],
      "givenNames": [
       "I"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Andreassen"
      ],
      "givenNames": [
       "OA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Westlye"
      ],
      "givenNames": [
       "LT"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2021"
    },
    "id": "bib46",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1002/hbm.25386"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "33638594"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Human Brain Mapping",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 42
    },
    "pageEnd": 2555,
    "pageStart": 2546,
    "title": "Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Zabihi"
      ],
      "givenNames": [
       "M."
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Oldehinkel"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Frouin"
      ],
      "givenNames": [
       "V"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Goyard"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Loth"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Charman"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Tillmann"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Banaschewski"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Dumas"
      ],
      "givenNames": [
       "G"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Holt"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Baron-Cohen"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Durston"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bölte"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Murphy"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ecker"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Buitelaar"
      ],
      "givenNames": [
       "JK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "AF"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2019"
    },
    "id": "bib47",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1016/j.bpsc.2018.11.013"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "30799285"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Biological Psychiatry. Cognitive Neuroscience and Neuroimaging",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 4
    },
    "pageEnd": 578,
    "pageStart": 567,
    "title": "Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum Disorder Using Normative Models",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Zabihi"
      ],
      "givenNames": [
       "M"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Floris"
      ],
      "givenNames": [
       "DL"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Kia"
      ],
      "givenNames": [
       "SM"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Wolfers"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Tillmann"
      ],
      "givenNames": [
       "J"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Arenas"
      ],
      "givenNames": [
       "AL"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Moessnang"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Banaschewski"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Holt"
      ],
      "givenNames": [
       "R"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Baron-Cohen"
      ],
      "givenNames": [
       "S"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Loth"
      ],
      "givenNames": [
       "E"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Charman"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bourgeron"
      ],
      "givenNames": [
       "T"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Murphy"
      ],
      "givenNames": [
       "D"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ecker"
      ],
      "givenNames": [
       "C"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Buitelaar"
      ],
      "givenNames": [
       "JK"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Beckmann"
      ],
      "givenNames": [
       "CF"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Marquand"
      ],
      "givenNames": [
       "A"
      ],
      "type": "Person"
     },
     {
      "name": "EU-AIMS LEAP Group",
      "type": "Organization"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2020"
    },
    "id": "bib48",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1038/s41398-020-01057-0"
     },
     {
      "name": "pmid",
      "propertyID": "https://registry.identifiers.org/registry/pmid",
      "type": "PropertyValue",
      "value": "33159037"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Translational Psychiatry",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 10
    },
    "pageEnd": 10,
    "pageStart": 1,
    "title": "Fractionating autism based on neuroanatomical normative modeling",
    "type": "Article"
   },
   {
    "authors": [
     {
      "familyNames": [
       "Zucker"
      ],
      "givenNames": [
       "RA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Ellis"
      ],
      "givenNames": [
       "DA"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Fitzgerald"
      ],
      "givenNames": [
       "HE"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Bingham"
      ],
      "givenNames": [
       "CR"
      ],
      "type": "Person"
     },
     {
      "familyNames": [
       "Sanford"
      ],
      "givenNames": [
       "K"
      ],
      "type": "Person"
     }
    ],
    "datePublished": {
     "type": "Date",
     "value": "2009"
    },
    "id": "bib49",
    "identifiers": [
     {
      "name": "doi",
      "propertyID": "https://registry.identifiers.org/registry/doi",
      "type": "PropertyValue",
      "value": "10.1017/S0954579400007458"
     }
    ],
    "isPartOf": {
     "isPartOf": {
      "name": "Development and Psychopathology",
      "type": "Periodical"
     },
     "type": "PublicationVolume",
     "volumeNumber": 8
    },
    "pageEnd": 848,
    "pageStart": 831,
    "title": "Other evidence for at least two alcoholisms II: Life course variation in antisociality and heterogeneity of alcoholic outcome",
    "type": "Article"
   }
  ],
  "title": "Charting brain growth and aging at high spatial precision"
 },
 "nbformat": 4,
 "nbformat_minor": 4
}