<html lang="en">

  <head>
    <title>The spatiotemporal patterns of major human admixture events during the European Holocene
    </title>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta http-equiv="X-UA-Compatible" content="ie=edge">
    <link href="https://unpkg.com/@stencila/thema@2/dist/themes/elife/styles.css" rel="stylesheet">
    <script src="https://unpkg.com/@stencila/thema@2/dist/themes/elife/index.js"
      type="text/javascript"></script>
    <script
      src="https://unpkg.com/@stencila/components@&lt;=1/dist/stencila-components/stencila-components.esm.js"
      type="module"></script>
    <script
      src="https://unpkg.com/@stencila/components@&lt;=1/dist/stencila-components/stencila-components.js"
      type="text/javascript" nomodule=""></script>
  </head>

  <body>
    <main role="main">
      <article itemscope="" itemtype="http://schema.org/Article" data-itemscope="root">
        <h1 itemprop="headline">The spatiotemporal patterns of major human admixture events during
          the European Holocene</h1>
        <meta itemprop="image"
          content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20spatiotemporal%20patterns%20of%20major%20human%20admixture%20events%20during%20the%20European%20Holocene">
        <ol data-itemprop="authors">
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Manjusha Chintalapati"><span
              data-itemprop="givenNames"><span itemprop="givenName">Manjusha</span></span><span
              data-itemprop="familyNames"><span
                itemprop="familyName">Chintalapati</span></span><span data-itemprop="emails"><a
                itemprop="email"
                href="mailto:m_chintalapati@berkeley.edu">m_chintalapati@berkeley.edu</a></span><span
              data-itemprop="affiliations"><a itemprop="affiliation"
                href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Nick Patterson"><span data-itemprop="givenNames"><span
                itemprop="givenName">Nick</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Patterson</span></span><span data-itemprop="emails"><a
                itemprop="email"
                href="mailto:nickp@broadinstitute.org">nickp@broadinstitute.org</a></span><span
              data-itemprop="affiliations"><a itemprop="affiliation"
                href="#author-organization-2">2</a><a itemprop="affiliation"
                href="#author-organization-3">3</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Priya Moorjani"><span data-itemprop="givenNames"><span
                itemprop="givenName">Priya</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Moorjani</span></span><span data-itemprop="emails"><a
                itemprop="email"
                href="mailto:moorjani@berkeley.edu">moorjani@berkeley.edu</a></span><span
              data-itemprop="affiliations"><a itemprop="affiliation"
                href="#author-organization-1">1</a><a itemprop="affiliation"
                href="#author-organization-4">4</a></span>
          </li>
        </ol>
        <ol data-itemprop="affiliations">
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-1"
            id="author-organization-1"><span itemprop="name">Department of Molecular and Cell
              Biology, University of California, Berkeley</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">Berkeley</span><span itemprop="addressCountry">United
                States</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-2"
            id="author-organization-2"><span itemprop="name">Broad Institute of Harvard and
              MIT</span><address itemscope="" itemtype="http://schema.org/PostalAddress"
              itemprop="address"><span itemprop="addressLocality">Cambridge</span><span
                itemprop="addressCountry">United States</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-3"
            id="author-organization-3"><span itemprop="name">Human Evolutionary Biology, Harvard
              University</span><address itemscope="" itemtype="http://schema.org/PostalAddress"
              itemprop="address"><span itemprop="addressLocality">Boston</span><span
                itemprop="addressCountry">United States</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-4"
            id="author-organization-4"><span itemprop="name">Center for Computational Biology,
              University of California, Berkeley</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">Berkeley</span><span itemprop="addressCountry">United
                States</span></address></li>
        </ol><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
          <meta itemprop="name" content="Unknown"><span itemscope=""
            itemtype="http://schema.org/ImageObject" itemprop="logo">
            <meta itemprop="url"
              content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
          </span>
        </span><time itemprop="datePublished" datetime="2022-05-30">2022-05-30</time>
        <ul data-itemprop="genre">
          <li itemprop="genre">Research Article</li>
        </ul>
        <ul data-itemprop="about">
          <li itemscope="" itemtype="http://schema.org/DefinedTerm" itemprop="about"><span
              itemprop="name">Evolutionary Biology</span></li>
          <li itemscope="" itemtype="http://schema.org/DefinedTerm" itemprop="about"><span
              itemprop="name">Genetics and Genomics</span></li>
        </ul>
        <ul data-itemprop="keywords">
          <li itemprop="keywords">genomic clocks</li>
          <li itemprop="keywords">ancient DNA</li>
          <li itemprop="keywords">admixture</li>
          <li itemprop="keywords">molecular clock</li>
          <li itemprop="keywords">European Holocene</li>
          <li itemprop="keywords">Neolithic</li>
          <li itemprop="keywords">Human</li>
        </ul>
        <ul data-itemprop="identifiers">
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID"
              content="https://registry.identifiers.org/registry/publisher-id"><span
              itemprop="name">publisher-id</span><span itemprop="value"
              data-itemtype="http://schema.org/Number">77625</span>
          </li>
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi">
            <span itemprop="name">doi</span><span itemprop="value">10.7554/eLife.77625</span>
          </li>
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID"
              content="https://registry.identifiers.org/registry/elocation-id"><span
              itemprop="name">elocation-id</span><span itemprop="value">e77625</span>
          </li>
        </ul>
        <section data-itemprop="description">
          <h2 data-itemtype="http://schema.stenci.la/Heading">Abstract</h2>
          <meta itemprop="description"
            content="Recent studies have shown that admixture has been pervasive throughout human history. While several methods exist for dating admixture in contemporary populations, they are not suitable for sparse, low coverage ancient genomic data. Thus, we developed  DATES (Distribution of Ancestry Tracts of Evolutionary Signals)  that leverages ancestry covariance patterns across the genome of a single individual to infer the timing of admixture.  DATES  provides reliable estimates under various demographic scenarios and outperforms available methods for ancient DNA applications. Using  DATES  on~1100 ancient genomes from sixteen regions in Europe and west Asia, we reconstruct the chronology of the formation of the ancestral populations and the fine-scale details of the spread of Neolithic farming and Steppe pastoralist-related ancestry across Europe. By studying the genetic formation of Anatolian farmers, we infer that gene flow related to Iranian Neolithic farmers occurred before 9600 BCE, predating the advent of agriculture in Anatolia. Contrary to the archaeological evidence, we estimate that early Steppe pastoralist groups (Yamnaya and Afanasievo) were genetically formed more than a millennium before the start of Steppe pastoralism. Our analyses provide new insights on the origins and spread of farming and Indo-European languages, highlighting the power of genomic dating methods to elucidate the legacy of human migrations.">
          <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Recent studies have shown
            that admixture has been pervasive throughout human history. While several methods exist
            for dating admixture in contemporary populations, they are not suitable for sparse, low
            coverage ancient genomic data. Thus, we developed <em itemscope=""
              itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of Ancestry Tracts of
              Evolutionary Signals)</em> that leverages ancestry covariance patterns across the
            genome of a single individual to infer the timing of admixture. <em itemscope=""
              itemtype="http://schema.stenci.la/Emphasis">DATES</em> provides reliable estimates
            under various demographic scenarios and outperforms available methods for ancient DNA
            applications. Using <em itemscope=""
              itemtype="http://schema.stenci.la/Emphasis">DATES</em> on~1100 ancient genomes from
            sixteen regions in Europe and west Asia, we reconstruct the chronology of the formation
            of the ancestral populations and the fine-scale details of the spread of Neolithic
            farming and Steppe pastoralist-related ancestry across Europe. By studying the genetic
            formation of Anatolian farmers, we infer that gene flow related to Iranian Neolithic
            farmers occurred before 9600 BCE, predating the advent of agriculture in Anatolia.
            Contrary to the archaeological evidence, we estimate that early Steppe pastoralist
            groups (Yamnaya and Afanasievo) were genetically formed more than a millennium before
            the start of Steppe pastoralism. Our analyses provide new insights on the origins and
            spread of farming and Indo-European languages, highlighting the power of genomic dating
            methods to elucidate the legacy of human migrations.</p>
        </section>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="introduction">Introduction
        </h2>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Recent studies have shown that
          population mixture (or ‘admixture’) is pervasive throughout human history, including
          mixture between the ancestors of modern humans and archaic hominins (i.e., Neanderthals
          and Denisovans), as well as in the history of many contemporary human groups such as
          African Americans, South Asians, and Europeans <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib50"><span>50</span><span>Pickrell
                and Reich</span><span>2014</span></a></cite>. Understanding the timing and
          signatures of admixture offers insights into the historical context in which the mixture
          occurred and enables the characterization of the evolutionary and functional impact of the
          gene flow. Many admixed groups are formed due to population movements involving ancient
          migrations that predate historical records. The recent availability of genomic data for a
          large number of present-day and ancient genomes provides an unprecedented opportunity to
          reconstruct population events using genetic data, providing evidence complementary to
          linguistics and archaeology.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To characterize patterns of
          admixture, genetic methods use the insight that the genome of an admixed individual is a
          mosaic of chromosomal segments inherited from distinct ancestral populations <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib11"><span>11</span><span>Chakraborty and
                Weiss</span><span>1988</span></a></cite>. Due to recombination, these ancestral
          segments get shuffled in each generation and become smaller and smaller over time. The
          length of the segments is inversely proportional to the time elapsed since the mixture
          <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib11"><span>11</span><span>Chakraborty and
                  Weiss</span><span>1988</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib40"><span>40</span><span>Moorjani
                  et al.</span><span>2011</span></a></cite></span>. Several genetic approaches –
          ROLLOFF <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib40"><span>40</span><span>Moorjani
                  et al.</span><span>2011</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib49"><span>49</span><span>Patterson et
                  al.</span><span>2012</span></a></cite></span>, ALDER <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib37"><span>37</span><span>Loh et
                al.</span><span>2013</span></a></cite>, Globetrotter <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib27"><span>27</span><span>Hellenthal
                et al.</span><span>2014</span></a></cite>, and Tracts <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a
              href="#bib19"><span>19</span><span>Gravel</span><span>2012</span></a></cite> – have
          been developed that use this insight by characterizing patterns of admixture linkage
          disequilibrium (LD) or haplotype lengths across the genome to infer the timing of mixture.
          Haplotype-based methods perform chromosome painting or local ancestry inference at each
          locus in the genome and characterize the distribution of ancestry tract lengths to
          estimate the time of mixture <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib19"><span>19</span><span>Gravel</span><span>2012</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib27"><span>27</span><span>Hellenthal et
                  al.</span><span>2014</span></a></cite></span>. This requires accurate phasing and
          inference of local ancestry, which is often difficult when the admixture events are old
          (as ancestry blocks become smaller over time) or when reference data from ancestral
          populations is unavailable. Admixture LD-based methods, on the other hand, measure the
          extent of the allelic correlation across markers to infer the time of admixture <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib37"><span>37</span><span>Loh et
                  al.</span><span>2013</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib40"><span>40</span><span>Moorjani
                  et al.</span><span>2011</span></a></cite></span>. They do not require phased data
          from the target or reference populations and work reliably for dating older admixture
          events (&gt;100 generations). However, they tend to be less efficient in characterizing
          admixture events between closely related ancestral groups.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">While highly accurate for
          dating admixture events using data from present-day samples, current methods do not work
          reliably for dating admixture events using ancient genomes. Ancient DNA samples often have
          high rates of DNA degradation, contamination (from human and other sources), and low
          sequencing depth, leading to a large proportion of missing variants and uneven coverage
          across the genome <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib46"><span>46</span><span>Orlando et al.</span><span>2021</span></a></cite>.
          Additionally, most studies generate pseudo-haploid genotype calls – consisting of a
          haploid genotype determined by randomly selecting one allele at the variant site – that
          can lead to some issues in the inference. In such sparse datasets, estimating admixture LD
          can be noisy and biased (see Simulations below). Moreover, haplotype-based methods require
          phased data from both admixed and reference populations which remains challenging for
          ancient DNA specimens <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib19"><span>19</span><span>Gravel</span><span>2012</span></a></cite><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib27"><span>27</span><span>Hellenthal et
                  al.</span><span>2014</span></a></cite></span>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">An extension of admixture
          LD-based methods, recently introduced by <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib41"><span>41</span><span>Moorjani
                et al.</span><span>2016</span></a></cite>, leverages ancestry covariance patterns
          that can be measured in a single sample using low coverage data. This approach measures
          the allelic correlation across neighboring sites, but instead of measuring admixture LD
          across multiple samples, it integrates data across markers within a single diploid genome.
          Using a set of ascertained markers that are informative for Neanderthal ancestry (where
          sub-Saharan Africans are fixed for the ancestral alleles and Neanderthals have a derived
          allele), <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib41"><span>41</span><span>Moorjani et al.</span><span>2016</span></a></cite>,
          inferred the timing of Neanderthal gene flow in Upper Paleolithic Eurasian samples and
          showed the approach works accurately in ancient DNA samples <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib41"><span>41</span><span>Moorjani
                et al.</span><span>2016</span></a></cite>. However, this approach is inapplicable
          for dating admixture events within modern human populations, as there are very few fixed
          differences across populations <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib3"><span>3</span><span>Auton et
                al.</span><span>2015</span></a></cite>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Motivated by the single sample
          statistic in <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib41"><span>41</span><span>Moorjani et al.</span><span>2016</span></a></cite>,
          we developed <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES
            (Distribution of Ancestry Tracts of Evolutionary Signals</em>) that measures the
          ancestry covariance across the genome in a single admixed individual, weighted by the
          allele frequency difference between two ancestral populations. This method was first
          introduced in <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib43"><span>43</span><span>Narasimhan et
                al.</span><span>2019</span></a></cite>, where it was used to infer the date of gene
          flow between groups related to Ancient Ancestral South Indians, Iranian farmers, and
          Steppe pastoralists in ancient South and Central Asian populations <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib43"><span>43</span><span>Narasimhan
                et al.</span><span>2019</span></a></cite>. In this study, we evaluate the
          performance of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> by
          carrying out extensive simulations for a range of demographic scenarios and comparing the
          approach to other published genomic dating methods. We then apply <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> to infer the chronology of the
          genetic formation of the ancestral populations of Europeans and the spatiotemporal
          patterns of admixture during the European Holocene using data from ~1100 ancient DNA
          specimens spanning ~8000–350 BCE.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="results">Results</h2>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="overview-of-dates-model-and-simulations">Overview of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em>: model and simulations</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> estimates the time of admixture
          by measuring the weighted ancestry covariance across the genome using data from a single
          diploid genome and two reference populations (representing the ancestral source
          populations). <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>
          works like haplotype-based methods as it is applicable to a single genome and not like
          admixture LD-based methods, which by definition require multiple genomes to be
          co-analyzed; but unlike haplotype-based methods, it is more flexible as it does not
          require local ancestry inference. There are three main steps in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em>: we start by first learning the
          genome-wide ancestry proportions by performing a simple regression analysis to model the
          observed genotypes in an admixed individual as a linear mix of allele frequencies from two
          reference populations. For each marker, we then compute the likelihood of the observed
          genotype in the admixed individual using the estimated ancestry proportions and allele
          frequencies in each reference population (this is similar in spirit to local ancestry
          inference). This information is, in turn, used to compute the joint likelihood of shared
          ancestry at two neighboring markers, accounting for the probability of recombination
          between the two markers. Finally, we compute the covariance across pairs of markers
          located at a particular genetic distance, weighted by the allele frequency differences in
          the reference populations (Materials and methods).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Following <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib41"><span>41</span><span>Moorjani
                et al.</span><span>2016</span></a></cite>, we bin the markers that occur at a
          similar genetic distance across the genome, rather than estimating admixture LD for each
          pair of markers, and compute the covariance across increasing genetic distance between
          markers. The estimated covariance is expected to decay exponentially with genetic
          distance, and the rate of decay is informative of the time of the mixture <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib11"><span>11</span><span>Chakraborty and
                  Weiss</span><span>1988</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib40"><span>40</span><span>Moorjani
                  et al.</span><span>2011</span></a></cite></span>. Assuming the gene flow occurred
          instantaneously, we can then infer the average date of gene flow by fitting an exponential
          distribution to the decay pattern (Materials and methods). In cases where data for
          multiple individuals is available, we compute the likelihood by summing over all
          individuals. To make <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> computationally tractable, we
          implement the fast Fourier transform (FFT) for calculating ancestry covariance as
          described in ALDER <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib37"><span>37</span><span>Loh et al.</span><span>2013</span></a></cite>. This
          provides a speedup from <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\rm O}\left({n}^{2}\right)"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R"
                          style="padding-top: 0.446em; padding-bottom: 0.372em;">O</span></span></span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-size1-R"
                        style="padding-top: 0.593em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                            class="mjx-mrow"><span class="mjx-mi"><span
                                class="mjx-char MJXc-TeX-math-I"
                                style="padding-top: 0.225em; padding-bottom: 0.298em;">n</span></span></span></span></span><span
                        class="mjx-sup"
                        style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span
                          class="mjx-texatom" style=""><span class="mjx-mrow"><span
                              class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-size1-R"
                        style="padding-top: 0.593em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span>
          to <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math"
                aria-label="{\rm O}\left(n\mathrm{log}n\right)"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R"
                          style="padding-top: 0.446em; padding-bottom: 0.372em;">O</span></span></span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.225em; padding-bottom: 0.298em;">n</span></span><span
                      class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.372em; padding-bottom: 0.372em;">l</span></span><span
                          class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.151em; padding-bottom: 0.372em;">o</span></span><span
                          class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.151em; padding-bottom: 0.519em;">g</span></span></span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.225em; padding-bottom: 0.298em;">n</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span>
          that reduces the typical runtimes from hours to seconds with minimal loss in accuracy (<a
            href="https://elifesciences.org/articles/77625#app1fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—figure 2</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To assess the reliability of
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>, we performed
          simulations where we constructed 10 admixed diploid genomes by randomly sampling
          haplotypes from two source populations (Materials and methods). Briefly, we simulated
          individual genomes with 20% European and 80% African ancestry by using phased haplotypes
          of northern Europeans (Utah European Americans, CEU) and west Africans (Yoruba from
          Nigeria, YRI) from the 1000 Genomes Project, respectively <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib3"><span>3</span><span>Auton et
                al.</span><span>2015</span></a></cite>. As reference populations in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em>, we used closely related
          surrogate populations of French and Yoruba respectively, from the Human Genome Diversity
          Panel (HGDP) <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib35"><span>35</span><span>Li et al.</span><span>2008</span></a></cite>. We
          first investigated the accuracy of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> by varying the time of admixture
          between 10 and 300 generations. For comparison, we also applied ALDER <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib37"><span>37</span><span>Loh et
                al.</span><span>2013</span></a></cite> to these simulations. Both methods reliably
          recovered the time of admixture up to 200 generations or ~5600 years ago, assuming a
          generation time of 28 years <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib41"><span>41</span><span>Moorjani et al.</span><span>2016</span></a></cite>,
          though <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> was more
          precise than ALDER for older admixture events (&gt;100 generations) (<a href="#fig1s1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 1</a>,
          <a href="https://elifesciences.org/articles/77625#app1table4" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—table 4</a>). Further, <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> shows accurate
          results even for single target samples (<a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1A</a>, <a href="#fig1s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 2A</a>) and even when
          few reference individuals are available for dating (<a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1A</a>, <a href="#fig1s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 2B</a>). However, the
          use of large numbers of reference samples, if available, can improve the inference. In <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>, allele frequencies
          of the reference populations are used for computing the likelihood as well as the weighted
          pairwise ancestry covariance across the genome (Materials and methods). With large
          samples, allele frequencies of the reference populations are more reliably computed, which
          in turn, can improve the precision of inferred dates (<a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1A</a>, <a href="#fig1s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 2B</a>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1" title="Figure 1.">
          <label data-itemprop="label">Figure 1.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 5
library(ggplot2)
library(maps)
library(ggrepel)

library(rnaturalearth)
library(rnaturalearthdata)
library(rgeos)

par(mfrow=c(1,2))

# Panel A
data=read.table(file = &quot;data/Figure1_data_panelA&quot;, header = T)
dd=data[data$n==1,]
plot(x=dd$admixture_time,y=dd$d_mean, col=&quot;darkorange2&quot;,pch=16,xlab = &quot;True admixture time (gen)&quot;,
     ylab = &quot;Estimated admixture time (gen)&quot;, ylim = c(0,max(dd$d_mean+dd$d_se)),
     main=&quot;(A) Variation in sample size&quot;,cex.axis=1.2,cex.lab=1.2); grid ();
segments(x0 =dd$admixture_time,x1 = dd$admixture_time,y0 =(dd$d_mean-dd$d_se),y1 = (dd$d_mean+dd$d_se),col=&quot;darkorange2&quot;);
segments(x0 =dd$admixture_time-2,x1 = dd$admixture_time+2,y0 =(dd$d_mean+dd$d_se),y1 = (dd$d_mean+dd$d_se),col=&quot;darkorange2&quot;);
segments(x0 =dd$admixture_time-2,x1 = dd$admixture_time+2,y0 =(dd$d_mean-dd$d_se),y1 = (dd$d_mean-dd$d_se),col=&quot;darkorange2&quot;);

dd=data[data$n==10,]
points(x=dd$admixture_time,y=dd$d_mean, col=&quot;green3&quot;,pch=16,xlab = &quot;True admixture time (gen)&quot;,
     ylab = &quot;Estimated admixture time (gen)&quot;, ylim = c(0,max(dd$d_mean+dd$d_se)),
     main=&quot;(A) Variation in sample size&quot;,cex.axis=1.2,cex.lab=1.2); grid ();
segments(x0 =dd$admixture_time,x1 = dd$admixture_time,y0 =(dd$d_mean-dd$d_se),y1 = (dd$d_mean+dd$d_se),col=&quot;green3&quot;);
segments(x0 =dd$admixture_time-2,x1 = dd$admixture_time+2,y0 =(dd$d_mean+dd$d_se),y1 = (dd$d_mean+dd$d_se),col=&quot;green3&quot;);
segments(x0 =dd$admixture_time-2,x1 = dd$admixture_time+2,y0 =(dd$d_mean-dd$d_se),y1 = (dd$d_mean-dd$d_se),col=&quot;green3&quot;);
lines(x=dd$admixture_time,y=dd$admixture_time,col=&quot;darkgrey&quot;,lty=2)
legend(&quot;topleft&quot;,legend = c(&quot;n=1&quot;,&quot;n=20&quot;),col=c(&quot;darkorange2&quot;,&quot;green3&quot;),pch = 16,bg = &quot;white&quot;);

#panel B
data=read.table(file = &quot;data/Figure1_data_panelB&quot;)
kol=c(&quot;tomato&quot;,&quot;darkviolet&quot;,&quot;forestgreen&quot;)
len1=c(&quot;missing proportion=10%&quot;,&quot;missing proportion=30%&quot;,&quot;missing proportion=60%&quot;)
len=c(10,30,60)
c=1;
dd=data[data$V2==10,]
plot(x=dd$V1,y=dd$V3, col=&quot;tomato&quot;,pch=15,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;,
     ylim = c(min(dd$V3-dd$V4),max(dd$V3+dd$V4)),
     main=&quot;(B) Effect of data quality&quot;,cex.axis=1.2,cex.lab=1.2); grid ();
lines(x=dd$V1,y=dd$V5, col=dd$V8,pch=6,type=&quot;p&quot;)
segments(x0 =dd$V1,x1 = dd$V1,y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=&quot;tomato&quot;);
segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3+dd$V4),col=&quot;tomato&quot;);
segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3-dd$V4),y1 = (dd$V3-dd$V4),col=&quot;tomato&quot;);
c=2;
dd=data[data$V2==30,]
points(x=dd$V1+2,y=dd$V3, col=&quot;darkviolet&quot;,pch=16,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;,
       ylim = c(min(dd$V3-dd$V4),max(dd$V3+dd$V4))); grid ();
segments(x0 =dd$V1+2,x1 = dd$V1+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=&quot;darkviolet&quot;);
segments(x0 =dd$V1+2-2,x1 = dd$V1+2+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3+dd$V4),col=&quot;darkviolet&quot;);
segments(x0 =dd$V1+2-2,x1 = dd$V1+2+2,y0 =(dd$V3-dd$V4),y1 = (dd$V3-dd$V4),col=&quot;darkviolet&quot;);
dd=data[data$V2==60,]
c=3
points(x=dd$V1+4,y=dd$V3, col=&quot;forestgreen&quot;,pch=17); grid ();
segments(x0 =dd$V1+4,x1 = dd$V1+4,y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=&quot;forestgreen&quot;);
segments(x0 =dd$V1+4-2,x1 = dd$V1+4+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3+dd$V4),col=&quot;forestgreen&quot;);
segments(x0 =dd$V1+4-2,x1 = dd$V1+4+2,y0 =(dd$V3-dd$V4),y1 = (dd$V3-dd$V4),col=&quot;forestgreen&quot;);
lines(x=dd$V1,y=dd$V1,col=&quot;darkgrey&quot;,lty=2)
legend(&quot;topleft&quot;,legend = len1,col=kol,pch = c(15,16,17),bg = &quot;white&quot;);</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="simulation-results">
              Simulation results.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We constructed <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em> admixed individuals
              with 20% European (CEU) and 80% African (YRI) ancestry using ~380,000 genome-wide SNPs
              for admixture dates ranging between 10 and 200 generations. To minimize any issues
              with overfitting, we used French and Yoruba from the Human Genome Diversity Panel as
              reference populations in <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of Ancestry Tracts
                of Evolutionary Signals)</em>. We show the true time of admixture (X-axis, in
              generations) and the estimated time of admixture (±1 SE) (Y-axis, in generations).
              Standard errors were calculated using a weighted block jackknife approach by removing
              one chromosome in each run (Materials and methods). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Effect of sample size: We
              varied the sample size (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">n</em></strong>) of target group
              between 1 and 10 individuals. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Effect of data quality: To
              mimic the features of ancient genomes, we generated <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">n</em>=10 target individuals with
              pseudo-haploid genotypes and missing genotype rate as 10% (orange), 30% (purple), and
              60% (green). See <a href="#fig1s1" itemscope=""
                itemtype="http://schema.stenci.la/Link">Figure 1—figure supplements 1</a><a
                href="#fig1s9" itemscope="" itemtype="http://schema.stenci.la/Link">!number(9)</a>
              for additional simulations to test the performance of DATES.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s1"
          title="Figure 1—figure supplement 1."><label data-itemprop="label">Figure 1—figure
            supplement 1.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 8
#&#39; @height 6
data=read.table(file = &quot;data/Figure1_Supplement1&quot;)
plot(x=data$V1,y = data$V3,col=&quot;deepskyblue&quot;,pch=15,
     xlab = &quot;True admixture time (generations)&quot;,ylab = &quot;Estimated admixture time (generations)&quot;,
     main = &quot;Varying time of admixture up to 300 generations&quot;,xlim=c(0,300), ylim = c(0,max(data$V3[1:30]))); grid (nx=5,ny=4)
segments(x0 =data$V1,x1 = data$V1,y0 =(data$V3+data$V6),
         y1 = (data$V3-data$V6),col=&quot;deepskyblue&quot;)
segments(x0 =data$V1-2,x1 = data$V1+2,y0 =(data$V3+data$V6),
         y1 = (data$V3+data$V6),col=&quot;deepskyblue&quot;)
segments(x0 =data$V1-2,x1 = data$V1+2,y0 =(data$V3-data$V6),
         y1 = (data$V3-data$V6),col=&quot;deepskyblue&quot;)
lines(x=data$V1,y=data$V1,col=&quot;darkgrey&quot;,lty=2)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="varying-time-of-admixture-up-to-300-generations">Varying time of admixture up to
              300 generations.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated data for 10
              admixed individuals with 20% European (CEU) and 80% African (YRI) ancestry and varied
              the time of admixture between 10 and 300 generations. The X-axis shows the true time
              of admixture, and the Y-axis shows the estimated time of admixture (±1 SE) inferred
              using <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution
                of Ancestry Tracts of Evolutionary Signals)</em>.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s2"
          title="Figure 1—figure supplement 2."><label data-itemprop="label">Figure 1—figure
            supplement 2.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 6
par(mfrow=c(2,4))
data=read.table(file = &quot;data/Figure1_Supplement2A&quot;)
kol=c(&quot;darkorange2&quot;,&quot;green3&quot;,&quot;violetred1&quot;,&quot;royalblue1&quot;,&quot;coral&quot;,&quot;yellow3&quot;,&quot;cyan2&quot;,&quot;darkgoldenrod1&quot;,&quot;darkorchid1&quot;,&quot;dodgerblue1&quot;,
      &quot;paleturquoise4&quot;);
len=c(&quot;n=1&quot;,&quot;n=5&quot;,&quot;n=10&quot;,&quot;n=20&quot;)
arr=c(1,5,10,20)
c=1;
for(i in arr)
{
  k=which(arr==i);
  dd=data[data$V2==i,]
  plot(x=dd$V1,y=dd$V3, col=kol[c],pch=16,xlab = &quot;True admixture time (gen)&quot;,
       ylab = &quot;Estimated admixture time (gen)&quot;, ylim = c(0,max(dd$V3+dd$V4))); grid ();
  segments(x0 =dd$V1,x1 = dd$V1,y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=kol[c]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3+dd$V4),col=kol[c]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3-dd$V4),y1 = (dd$V3-dd$V4),col=kol[c]);
  lines(x=dd$V1,y=dd$V1,col=&quot;darkgrey&quot;,lty=2)
  legend(&quot;topleft&quot;,legend = len[k],col=kol[c],pch = 16,bg = &quot;white&quot;);
  c=c+1
}
# Panel B - reference sample size
data=read.table(file = &quot;data/Figure1_Supplement2B&quot;)
kol=c(&quot;darkorange&quot;,&quot;green3&quot;,&quot;cyan2&quot;,&quot;violetred1&quot;,&quot;royalblue1&quot;)
len1=c(&quot;reference pop size=1&quot;,&quot;reference pop size=5&quot;,&quot;reference pop size=10&quot;,&quot;reference pop size=20&quot;)
len=c(1,5,10,20)
#par(mfrow=c(3,2))
c=1;
for(i in len)
{
  #len=1
  k=which(i==len);
  dd=data[data$V1==i,]
  plot(x=dd$V2,y=dd$V3, col=kol[c],pch=17,xlab = &quot;True admixture time (gen)&quot;,
       ylab = &quot;Estimated admixture time (gen)&quot;, ylim = c(min(dd$V3-dd$V4),max(dd$V3+dd$V4))); grid ();
  segments(x0 =dd$V2,x1 = dd$V2,y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=kol[c]);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3+dd$V4),col=kol[c]);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V3-dd$V4),y1 = (dd$V3-dd$V4),col=kol[c]);
  lines(x=dd$V2,y=dd$V2,col=&quot;darkgrey&quot;,lty=2)
  legend(&quot;topleft&quot;,legend = len1[k],col=kol[c],pch = 17,bg = &quot;white&quot;);
  c=c+1;
}
title(&quot;(A) Effect of sample size of target population&quot;, line = -1.5, outer = TRUE,cex=1.3)
title(&quot;(B) Effect of sample size of reference populations&quot;, line = -25, outer = TRUE,cex=1.3)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="impact-of-sample-size-of-the-target-admixed-and-reference-populations">Impact of
              sample size of the target (admixed) and reference populations.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated <span
                itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
                  class="mjx-chtml"><span class="mjx-math" aria-label="n"><span class="mjx-mrow"
                      aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.225em; padding-bottom: 0.298em;">n</span></span></span></span></span></span>
              admixed individuals with 20% European (CEU) and 80% African (YRI) ancestry and applied
              <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> with <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">m</em> reference samples of
              French and Yoruba ancestry. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Effect of sample size of
              target population. Each panel shows the results of simulations with <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">n</em> target individuals shown in the
              legend and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">m</em>=28
              French and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">m</em>=21
              Yoruba reference samples from each source group. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Effect of sample size (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">m</em></strong>) of reference
              populations. Each panel shows the results of simulations with <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">n</em>=10 target individuals and <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">m</em> reference samples
              from each source group shown in the legend. The true admixture time is shown on
              X-axis, and the estimated time of admixture (±1 SE) is shown on Y-axis.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s3"
          title="Figure 1—figure supplement 3."><label data-itemprop="label">Figure 1—figure
            supplement 3.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 6
par(mfrow=c(2,4))
data=read.table(file = &quot;data/Figure1_Supplement3A&quot;)
len=c(&quot;α=0.01&quot;,&quot;α=0.05&quot;,&quot;α=0.2&quot;,&quot;α=0.4&quot;)
arr=c(0.01,0.05,2,4)
kol=c(&quot;green&quot;,&quot;darkorchid&quot;,&quot;yellowgreen&quot;,&quot;blue&quot;,&quot;deeppink&quot;,&quot;red2&quot;,&quot;purple&quot;)
#print (arr)
c=1
for(i in arr)
{
  k=which(arr==i);
  dd=data[data$V2==i,]
  plot(x=dd$V1,y=dd$V3, col=kol[c],pch=18,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;, 
       ylim = c(0,max(dd$V3+dd$V4)),cex=1.5); grid ();
  #main=&quot;Admixture time for varying θ&quot;
  segments(x0 =dd$V1,x1 = dd$V1,y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=kol[c]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3+dd$V4),col=kol[c]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3-dd$V4),y1 = (dd$V3-dd$V4),col=kol[c]);
  lines(x=dd$V1,y=dd$V1,col=&quot;darkgrey&quot;,lty=2)
  legend(&quot;topleft&quot;,legend = len[k],col=kol[c],pch = 18,bg = &quot;white&quot;);
  c=c+1;  
}
title(&quot;(A) Impact of admixture proportion on the estimated time of admixture&quot;, line = -1.5, outer = TRUE,cex=1.3)
# panel B- proportions of admixture
data=read.table(file = &quot;data/Figure1_Supplement3B&quot;)
len=c(&quot;α=0.01&quot;,&quot;α=0.05&quot;,&quot;α=0.1&quot;,&quot;α=0.2&quot;,&quot;α=0.4&quot;)
c=1;
for(i in arr)
{
  #i=5
  if(i&lt;1) {rr=i} else {rr=i/10}
  k=which(arr==i);
  dd=data[data$V2==i,]
  lim=max(dd$V6)+rr/4
  plot(x=dd$V1,y=dd$V6, col=kol[c],pch=19,xlab = &quot;True admixture time (gen)&quot;,
       ylab = &quot;Estimated Theta (θ)&quot;,las=1,ylim = c(0,lim)); grid ();
  #main=&quot;Admixture prorportion inference&quot;
  segments(x0 =dd$V1,x1 = dd$V1,y0 =(dd$V6+dd$V10),y1 = (dd$V6-dd$V10),col=kol[c]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V6+dd$V10),y1 = (dd$V6+dd$V10),col=kol[c]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V6-dd$V10),y1 = (dd$V6-dd$V10),col=kol[c]);
  lines(x=dd$V1,y=rep(rr,NROW(dd)),col=&quot;red&quot;,lty=2)
  legend(&quot;bottomright&quot;,legend = len[k],col=kol[c],pch = 19,bg = &quot;white&quot;);
  c=c+1;
}
title(&quot;(B) Impact of admixture proportion on estimated ancestry proportion&quot;, line = -25, outer = TRUE,cex=1.3)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="impact-of-admixture-proportion">Impact of admixture proportion.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated data for 10
              admixed individuals with European (CEU) ancestry (<em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">α</em>) in the range of 1–40% (the rest
              derived from Africans). We ran <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of Ancestry Tracts
                of Evolutionary Signals)</em> to infer the time of admixture and ancestry
              proportion. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) Impact on the estimated time
              of admixture: Each panel shows the estimated date of admixture for a different value
              of <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
                  class="mjx-chtml"><span class="mjx-math" aria-label="\alpha"><span
                      class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                          class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span>
              shown in the legend. The true admixture time is shown on X-axis, and the estimated
              time of admixture (±1 SE) is shown on Y-axis. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Impact on estimated ancestry
              proportion: Each panel shows the estimated proportion of admixture for a different
              value of <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
                  class="mjx-chtml"><span class="mjx-math" aria-label="\alpha"><span
                      class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                          class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span>
              shown in the legend. The red dashed horizontal line further indicates the value of
              <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
                  class="mjx-chtml"><span class="mjx-math" aria-label="\alpha"><span
                      class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                          class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span>
              used. The true time of admixture is shown on X-axis with the inferred proportion of
              admixture on Y-axis.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s4"
          title="Figure 1—figure supplement 4."><label data-itemprop="label">Figure 1—figure
            supplement 4.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 9
#&#39; @height 9
par(mfrow=c(2,2))
data=read.table(file = &quot;data/Figure1_Supplement4&quot;)
kol=c(&quot;darkorange&quot;,&quot;green3&quot;,&quot;cyan&quot;,&quot;violetred1&quot;)
len1=c(&quot;Fst(Yoruba-Yoruba)=0.000&quot;,&quot;Fst(Yoruba-BantuKenya)=0.009&quot;,
       &quot;Fst(Yoruba-San)=0.103&quot;)
arr=c(&quot;Yoruba&quot;,&quot;BantuKenya&quot;,&quot;San&quot;)
c=1;
for(i in arr)
{
  dd=data[data$V2==i,]
  plot(x=dd$V3,y=dd$V4, col=kol[c],pch=15,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;,
       ylim = c(min(dd$V4-dd$V5),220)); grid ();
  segments(x0 =dd$V3,x1 = dd$V3,y0 =(dd$V4+dd$V5),y1 = (dd$V4-dd$V5),col=kol[c]);
  segments(x0 =dd$V3-2,x1 = dd$V3+2,y0 =(dd$V4+dd$V5),y1 = (dd$V4+dd$V5),col=kol[c]);
  segments(x0 =dd$V3-2,x1 = dd$V3+2,y0 =(dd$V4-dd$V5),y1 = (dd$V4-dd$V5),col=kol[c]);
  lines(x=dd$V3,y=dd$V3,col=&quot;darkgrey&quot;,lty=2)
  legend(&quot;topleft&quot;,legend = len1[c],col=kol[c],pch = 15,bg = &quot;white&quot;);
  c=c+1;
}
title(&quot;Impact of divergence between the ancestral population and reference populations used in DATES&quot;, line = -1.5, outer = TRUE,cex=1.3)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="impact-of-divergence-between-the-ancestral-population-and-reference-populations-used-in-dates-distribution-of-ancestry-tracts-of-evolutionary-signals">
              Impact of divergence between the ancestral population and reference populations used
              in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of
                Ancestry Tracts of Evolutionary Signals)</em>.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated 10 admixed
              individuals with 80% European (CEU) and 20% African (YRI) ancestry. We applied <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> to infer the
              timing of admixture using reference populations. In each panel, we show the estimated
              dates of admixture using French and a group that is increasingly divergent from Yoruba
              (shown in the legend as the <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
                  itemtype="http://schema.stenci.la/Subscript">ST</sub></em> with Yoruba). The true
              admixture time is shown on X-axis, and the estimated time of admixture (±1 SE) is
              shown on Y-axis.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s5"
          title="Figure 1—figure supplement 5."><label data-itemprop="label">Figure 1—figure
            supplement 5.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 12
#&#39; @height 6
par(mfrow=c(2,4))
data=read.table(file = &quot;data/Figure1_Supplement5A&quot;)
len1=c(&quot;CEU/YRI&quot;, &quot;CEU/CHB&quot;,&quot;CEU/MXL&quot;,&quot;CEU/TSI&quot;)
len2=c(&quot;French/Yoruba(0.154)&quot;, &quot;French/Tujia(0.110)&quot;,
       &quot;French/Maya(0.037)&quot;,&quot;French/Italian(0.004)&quot;)
len=c(&quot;YRI&quot;,&quot;CHB&quot;,&quot;MXL&quot;,&quot;TSI&quot;)
for(i in len)
{
  # i=&quot;ITU&quot;
  dd=data[data$V1==i,]
  k=which(i==len);
  plot(x=dd$V2,y=dd$V3, col=&quot;navy&quot;,pch=19,xlab = &quot;True admixture time (gen)&quot;,
       ylab = &quot;Estimated admixture time (gen)&quot;,ylim = c(0,250),
       main=paste(&quot;True source populations:&quot;,len1[k],sep=&quot; &quot;)); grid ();
  segments(x0 =dd$V2 ,x1 = dd$V2, y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=&quot;navy&quot;);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V3+dd$V4),y1 =(dd$V3+dd$V4),col=&quot;navy&quot;);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V3-dd$V4),y1 =(dd$V3-dd$V4),col=&quot;navy&quot;);
  lines(x=dd$V2,y=dd$V2,col=&quot;darkgrey&quot;)
  kol=c(&quot;white&quot;,dd$V7[1])
  legend(&quot;topleft&quot;,legend = paste(&quot; References&quot;,len2[k],sep=&quot;=&quot;),
         col=&quot;navy&quot;,pch = c(19),bg = &quot;white&quot;);
}
title(&quot;(A) Impact of divergence between the two source populations (n=10)&quot;, line = -1, outer = TRUE,cex=1.3)
# panel B- for target n=1
data=read.table(file = &quot;data/Figure1_Supplement5B&quot;)
for(i in len)
{
  dd=data[data$V1==i,]
  k=which(i==len);
  plot(x=dd$V2,y=dd$V3, col=&quot;red&quot;,pch=16,xlab = &quot;True admixture time (gen)&quot;,
       ylab = &quot;Estimated admixture time (gen)&quot;,ylim = c(0,250),
       main=paste(&quot;True source populations:&quot;,len1[k],sep=&quot; &quot;)); grid ();
  segments(x0 =dd$V2 ,x1 = dd$V2, y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=&quot;red&quot;);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V3+dd$V4),y1 =(dd$V3+dd$V4),col=&quot;red&quot;);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V3-dd$V4),y1 =(dd$V3-dd$V4),col=&quot;red&quot;);
  lines(x=dd$V2,y=dd$V2,col=&quot;darkgrey&quot;)
  kol=c(&quot;white&quot;,dd$V8[1])
  legend(&quot;topleft&quot;,legend = paste(&quot; References&quot;,len2[k],sep=&quot;=&quot;),
         col=&quot;red&quot;,pch = c(16),bg = &quot;white&quot;);
}
title(&quot;(B) Impact of divergence between the two source populations (n=1)&quot;, line = -23, outer = TRUE,cex=1.3)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="impact-of-divergence-between-the-two-source-populations">Impact of divergence
              between the two source populations.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em> admixed individuals
              with 20% European (CEU) and 80% ancestry from a range of populations with increasing
              relatedness to Europeans (shown in the legend as the <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
                  itemtype="http://schema.stenci.la/Subscript">ST</sub></em> to Europeans).
              Specifically, the other reference population we used was either West Africans (YRI),
              East Asians (CHB), South Americans (MXL) or Southern Europeans (TSI). We used the
              following reference populations for the inference: French (for all simulations) with
              one of the other references as either Yoruba, Tujia, Maya, or Italian, respectively.
              We show results for varying target sample sizes of (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">A</strong>) <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">n</em>=10 and (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">n</em>=1. The true admixture time is
              shown on X-axis, and the estimated time of admixture (±1 SE) is shown on Y-axis. We
              note the inferred dates for CEU/TSI mixtures were not significant for older timescales
              and hence not shown.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s6"
          title="Figure 1—figure supplement 6."><label data-itemprop="label">Figure 1—figure
            supplement 6.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 11
#&#39; @height 11
par(mfrow=c(2,2))
data=read.table(file = &quot;data/Figure1_Supplement6&quot;)
len=c(2,4,6,8)
a=c(&quot;A&quot;,&quot;B&quot;,&quot;C&quot;,&quot;D&quot;)
par(mfrow=c(2,2))
for(i in len)
{
  dd=data[data$V1==i,]
  k=which(i==len)
  rr=paste(&quot;(&quot;,paste(a[k],paste(&quot;Admixed pop (as target and reference):&quot;,i*10,&quot;%CEU+&quot;,(10-i)*10,&quot;%YRI&quot;),sep=&quot;) &quot;),sep=&quot;&quot;)
  
  plot(x=dd$V2,y=dd$V4, col=&quot;deepskyblue&quot;,pch=15,xlab = &quot;True admixture time (gen)&quot;,
       ylab = &quot;Estimated admixture time (gen)&quot;,
       ylim = c(0,max(data$V4+data$V5)),main=rr); grid ()
  lines(x=dd$V2,y=dd$V8, col=&quot;orange2&quot;,pch=19,type=&quot;p&quot;)
  segments(x0 =dd$V2,x1 = dd$V2,y0 =(dd$V4+dd$V5),y1 = (dd$V4-dd$V5),col=&quot;deepskyblue&quot;);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V4+dd$V5),y1 = (dd$V4+dd$V5),col=&quot;deepskyblue&quot;);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V4-dd$V5),y1 = (dd$V4-dd$V5),col=&quot;deepskyblue&quot;);
  segments(x0 =dd$V2,x1 = dd$V2,y0 =(dd$V8+dd$V9),y1 = (dd$V8-dd$V9),col=&quot;orange2&quot;);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V8+dd$V9),y1 = (dd$V8+dd$V9),col=&quot;orange2&quot;);
  segments(x0 =dd$V2-2,x1 = dd$V2+2,y0 =(dd$V8-dd$V9),y1 = (dd$V8-dd$V9),col=&quot;orange2&quot;);
  
  lines(x=dd$V2,y=dd$V2,col=&quot;darkgrey&quot;,lty=2)
  legend(&quot;topleft&quot;,legend = c(&quot;Refpops:French and Admixed&quot;,&quot;Refpops:Yoruba and Admixed&quot;),text.col = c(&quot;deepskyblue&quot;,&quot;orange2&quot;),pch = c(15,19),
         col = c(&quot;deepskyblue&quot;,&quot;orange2&quot;),bg = &quot;white&quot;);
  
}</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="impact-of-using-the-admixed-individuals-themselves-as-one-of-the-reference-groups-in-dates-distribution-of-ancestry-tracts-of-evolutionary-signals">
              Impact of using the admixed individuals themselves as one of the reference groups in
              <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of
                Ancestry Tracts of Evolutionary Signals)</em>.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated data for 10
              admixed individuals with European (CEU) ancestry (<span itemscope=""
                itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                    class="mjx-math" aria-label="\alpha"><span class="mjx-mrow"
                      aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span>)
              in the range of 20–80% (the rest derived from Africans [YRI]) using CEU and YRI as
              reference populations. Using a non-overlapping set of CEU and YRI individuals, we
              generated 10 additional individuals that we used as reference samples in <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>. For each
              simulation, we ran <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">DATES</em> with Europeans (French) and a
              non-overlapping set of simulated admixed individuals as the reference populations
              (shown in blue), or Yoruba and simulated admixed individuals (shown in orange). The
              true admixture time is shown on X-axis, and the estimated time of admixture (±1 SE) is
              shown on Y-axis.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s7"
          title="Figure 1—figure supplement 7."><label data-itemprop="label">Figure 1—figure
            supplement 7.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 12
#&#39; @height 9
par(mfrow=c(3,4))
data=read.table(file = &quot;data/Figure1_Supplement7A&quot;)
kol=c(&quot;darkorange&quot;,&quot;green3&quot;,&quot;cyan&quot;,&quot;violetred1&quot;,&quot;royalblue1&quot;,&quot;orangered1&quot;,&quot;darkorchid1&quot;,
      &quot;yellowgreen&quot;,&quot;slateblue2&quot;,&quot;tomato&quot;,&quot;palevioletred2&quot;,&quot;red&quot;,&quot;orange&quot;)
len1=c(&quot;missing prop=10%&quot;,&quot;missing prop=20%&quot;,&quot;missing prop=40%&quot;,&quot;missing prop=60%&quot;)
len=c(10,20,40,60)
c=1;
for(i in len)
{
  dd=data[data$V2==i,]
  k=which(i==len);
  plot(x=dd$V1,y=dd$V3, col=kol[k],pch=17,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;,
       ylim = c(0,220)); grid ();
  lines(x=dd$V1,y=dd$V5, col=dd$V8,pch=6,type=&quot;p&quot;)
  segments(x0 =dd$V1,x1 = dd$V1,y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=kol[k]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3+dd$V4),col=kol[k]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3-dd$V4),y1 = (dd$V3-dd$V4),col=kol[k]);
  lines(x=dd$V1,y=dd$V1,col=&quot;darkgrey&quot;,lty=2)
  legend(&quot;topleft&quot;,legend = len1[k],col=kol[k],pch = c(17,15),bg = &quot;white&quot;);
  c=c+1;
}
title(&quot;(A) Diploid genotypes with missing data for n=10 admixed individuals&quot;, line = -1.5, outer = TRUE,cex=1.3)

data=read.table(file = &quot;data/Figure1_Supplement7B&quot;)
data1=read.table(file = &quot;data/Figure1_Supplement7C&quot;)
kol=c(&quot;darkorange&quot;,&quot;green3&quot;,&quot;cyan&quot;,&quot;violetred1&quot;,&quot;royalblue1&quot;,&quot;orangered1&quot;,&quot;darkorchid1&quot;,&quot;yellowgreen&quot;,&quot;slateblue2&quot;,&quot;tomato&quot;,&quot;palevioletred2&quot;)
c=1;
for(i in len)
{
  dd=data[data$V2==i,]
  k=which(i==len);
  plot(x=dd$V1,y=dd$V3, col=kol[c],pch=16,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;,
       ylim = c(min(dd$V3-dd$V4),max(dd$V3+dd$V4,250))); grid ();
  segments(x0 =dd$V1,x1 = dd$V1,y0 =(dd$V3+dd$V4),y1 = (dd$V3-dd$V4),col=kol[c]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3+dd$V4),y1 = (dd$V3+dd$V4),col=kol[c]);
  segments(x0 =dd$V1-2,x1 = dd$V1+2,y0 =(dd$V3-dd$V4),y1 = (dd$V3-dd$V4),col=kol[c]);
  lines(x=dd$V1,y=dd$V1,col=&quot;darkgrey&quot;,lty=2)
  legend(&quot;topleft&quot;,legend = c(len1[k]),col=kol[c],pch = 16,bg = &quot;white&quot;);
  c=c+1;
}
title(&quot;(B) Pseudo-haploid genotypes with missing data for n=10 admixed individuals&quot;, line = -25, outer = TRUE,cex=1.3)

c=1;
for(i in len)
{
  dd1=data1[data1$V2==i,]
  k=which(i==len);
  plot(x=dd1$V1,y=dd1$V3, col=kol[c],pch=22,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;,
       ylim = c(min(dd1$V3-dd1$V4),max(dd1$V3+dd1$V4,250))); grid ();
  segments(x0 =dd1$V1,x1 = dd1$V1,y0 =(dd1$V3+dd1$V4),y1 = (dd1$V3-dd1$V4),col=kol[c],lty=2);
  segments(x0 =dd1$V1-2,x1 = dd1$V1+2,y0 =(dd1$V3+dd1$V4),y1 = (dd1$V3+dd1$V4),col=kol[c],lty=2);
  segments(x0 =dd1$V1-2,x1 = dd1$V1+2,y0 =(dd1$V3-dd1$V4),y1 = (dd1$V3-dd1$V4),col=kol[c],lty=2);
  lines(x=dd1$V1,y=dd1$V1,col=&quot;darkgrey&quot;,lty=2)
  legend(&quot;topleft&quot;,legend = c(len1[k]),col=kol[c],pch = 16,bg = &quot;white&quot;);
  c=c+1;
}
title(&quot;(C) Pseudo-haploid genotypes with missing data for n=1 admixed individuals&quot;, line = -47, outer = TRUE,cex=1.3)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="impact-of-sample-size-and-data-quality-of-target-samples">Impact of sample size
              and data quality of target samples.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated data for <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em> admixed individuals
              with 20% European (CEU) and 80% African (YRI) ancestry. In each panel, we varied three
              key features of the data from the target population, notably sample size (<em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em>=1 or 10), type of
              genotypes (diploid or pseudo-haploid) and missing genotype rate (between 10% and 60%).
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">A</strong>) Diploid
              genotypes with missing data for <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">n</em>=10 admixed individuals. Each
              panel shows the results of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">x</em>% of missing diploid genotypes
              (shown in the legend). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">B</strong>) Pseudo-haploid genotypes with
              missing data for <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">n</em>=10 admixed individuals. Each
              panel shows the results of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">x</em>% of missing pseudo-haploid
              genotypes (shown in the legend). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">C</strong>) Pseudo-haploid genotypes with
              missing data for <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em>=1
              admixed individuals. Each panel shows the results of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">x</em>% of missing pseudo-haploid
              genotypes (shown in the legend). The true admixture time is shown on X-axis, and the
              estimated time of admixture (±1 SE) is shown on Y-axis.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s8"
          title="Figure 1—figure supplement 8."><label data-itemprop="label">Figure 1—figure
            supplement 8.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 10
par(mfrow=c(3,3))
data=read.table(file = &quot;data/Figure1_Supplement8&quot;,header=T)
kol=c(&quot;darkorange&quot;,&quot;darkorchid1&quot;,&quot;cyan&quot;,&quot;deeppink&quot;)
ref_used=c(&quot;FY&quot;,&quot;FB&quot;,&quot;FS&quot;)
len1=c(&quot;Reference missing prop=0%&quot;,&quot;Reference missing prop=20%&quot;,&quot;Reference missing prop=40%&quot;)
len=c(20,40,60)
rlen=c(20,40)
for(w in ref_used)
{
  sub=data[data$references==w,]
  for(r in len)
  {
    c=1;
    rd=sub[sub$missing_target==r,]
    w=which(r==len);
    dd=rd[rd$missing_ref==0,]
    plot(x=dd$admixture_time,y=dd$dates_n10, col=kol[c],pch=15,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;,main=paste(&quot;Missing proportion in the target: &quot;,paste(len[w],&quot;%&quot;,sep=&quot;&quot;),sep = &quot;&quot;),xlim=c(0,210),ylim = c(0,250)); grid ();
    segments(x0 =dd$admixture_time,x1 = dd$admixture_time,y0 =(dd$dates_n10+dd$dates_n10_se),y1 = (dd$dates_n10-dd$dates_n10_se),col=kol[c]);
    segments(x0 =dd$admixture_time-2,x1 = dd$admixture_time+2,y0 =(dd$dates_n10+dd$dates_n10_se),y1 = (dd$dates_n10+dd$dates_n10_se),col=kol[c]);
    segments(x0 =dd$admixture_time-2,x1 = dd$admixture_time+2,y0 =(dd$dates_n10-dd$dates_n10_se),y1 = (dd$dates_n10-dd$dates_n10_se),col=kol[c]);
    lines(x=dd$admixture_time,y=dd$admixture_time,col=&quot;darkgrey&quot;,lty=2)
    c=c+1; err=3
    for(i in rlen)
    {
      dd=rd[rd$missing_ref==i,]
      k=which(i==len);
      points(x=dd$admixture_time+err,y=dd$dates_n10, col=kol[c],pch=15); grid ();
      segments(x0 =dd$admixture_time+err,x1 = dd$admixture_time+err,y0 =(dd$dates_n10+dd$dates_n10_se),y1 = (dd$dates_n10-dd$dates_n10_se),col=kol[c]);
      segments(x0 =dd$admixture_time+err-2,x1 = dd$admixture_time+err+2,y0 =(dd$dates_n10+dd$dates_n10_se),y1 = (dd$dates_n10+dd$dates_n10_se),col=kol[c]);
      segments(x0 =dd$admixture_time+err-2,x1 = dd$admixture_time+err+2,y0 =(dd$dates_n10-dd$dates_n10_se),y1 = (dd$dates_n10-dd$dates_n10_se),col=kol[c]);
      lines(x=dd$admixture_time,y=dd$admixture_time,col=&quot;darkgrey&quot;,lty=2)
      c=c+1; err=err+5
    }
    legend(&quot;topleft&quot;,legend = c(len1),col=kol[1:4],pch = 15,bg = &quot;white&quot;);
  }
}
title(&quot;(a) Reference populations of French and Yoruba (FST(true, reference) ~ 0) for target population n=10 &quot;, line = -1, outer = TRUE,cex=1.3)
title(&quot;(b) Reference populations of French and Bantu Kenya ( FST(true, reference) ~ 0.009) for target population n=10&quot;, line = -26, outer = TRUE,cex=1.3)
title(&quot;(c) Reference populations of French and San ( FST(true, reference) ~ 0.103) for target population n=10&quot;, line = -51, outer = TRUE,cex=1.3)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="impact-of-data-quality-of-target-and-reference-populations-as-a-function-of-divergence-between-true-and-reference-populations-used-in-dates-distribution-of-ancestry-tracts-of-evolutionary-signals">
              Impact of data quality of target and reference populations as a function of divergence
              between true and reference populations used in <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of Ancestry Tracts
                of Evolutionary Signals)</em>.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated data for <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em>=10 admixed
              individuals with 20% European (CEU) and 80% African (YRI) ancestry with pseudo-haploid
              genotypes. The reference populations used also had pseudo-haploid genotypes. We
              further varied three key features of the data, missing genotype rate in reference
              populations, missing genotype rate in target populations, and divergence between true
              source populations and reference population used for the analysis. In each row, we
              show the admixture dates using reference populations with increasing divergence to
              true source population (<em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
                  itemtype="http://schema.stenci.la/Subscript">ST</sub></em> shown in the row
              title). In each column, we varied the missing genotype rate in the target population
              (shown in the column title). Further, each panel shows results of missing data in the
              reference genomes (shown in the legend). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>) Reference populations of
              French and Yoruba (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">F<sub
                  itemscope="" itemtype="http://schema.stenci.la/Subscript">ST</sub></em>(true,
              reference)<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">0). (<strong
                  itemscope="" itemtype="http://schema.stenci.la/Strong">b</strong>) Reference
                populations of French and Bantu Kenya (_F</sub>ST<sub itemscope=""
                itemtype="http://schema.stenci.la/Subscript">_(true, reference)</sub>0.009).
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">c</strong>) Reference
              populations of French and San (<em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
                  itemtype="http://schema.stenci.la/Subscript">ST</sub></em>(true,
              reference)~0.103). The true admixture time is shown on X-axis, and the estimated time
              of admixture (±1 SE) is shown on Y-axis.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s9"
          title="Figure 1—figure supplement 9."><label data-itemprop="label">Figure 1—figure
            supplement 9.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 10
par(mfrow=c(3,3))
data=read.table(file = &quot;data/Figure1_Supplement9&quot;,header=T)
kol=c(&quot;darkorange&quot;,&quot;darkorchid1&quot;,&quot;cyan&quot;,&quot;deeppink&quot;)
ref_used=c(&quot;FY&quot;,&quot;FB&quot;,&quot;FS&quot;)
len1=c(&quot;Reference missing prop=0%&quot;,&quot;Reference missing prop=20%&quot;,&quot;Reference missing prop=40%&quot;)
len=c(20,40,60)
rlen=c(20,40)
for(w in ref_used)
{
  sub=data[data$references==w,]
  for(r in len)
  {
    c=1;
    rd=sub[sub$missing_target==r,]
    w=which(r==len);
    dd=rd[rd$missing_ref==0,]
    plot(x=dd$admixture_time,y=dd$dates_n1, col=kol[c],pch=15,xlab = &quot;True admixture time (gen)&quot;,ylab = &quot;Estimated admixture time (gen)&quot;,
         main=paste(&quot;Missing proportion in the target: &quot;,paste(len[w],&quot;%&quot;,sep=&quot;&quot;),sep = &quot;&quot;),xlim=c(0,210),
         ylim = c(0,250)); grid ();
    segments(x0 =dd$admixture_time,x1 = dd$admixture_time,y0 =(dd$dates_n1+dd$dates_n1_se),y1 = (dd$dates_n1-dd$dates_n1_se),col=kol[c]);
    segments(x0 =dd$admixture_time-2,x1 = dd$admixture_time+2,y0 =(dd$dates_n1+dd$dates_n1_se),y1 = (dd$dates_n1+dd$dates_n1_se),col=kol[c]);
    segments(x0 =dd$admixture_time-2,x1 = dd$admixture_time+2,y0 =(dd$dates_n1-dd$dates_n1_se),y1 = (dd$dates_n1-dd$dates_n1_se),col=kol[c]);
    lines(x=dd$admixture_time,y=dd$admixture_time,col=&quot;darkgrey&quot;,lty=2)
    c=c+1; err=3
    for(i in rlen)
    {
      dd=rd[rd$missing_ref==i,]
      k=which(i==len);
      points(x=dd$admixture_time+err,y=dd$dates_n1, col=kol[c],pch=15); grid ();
      segments(x0 =dd$admixture_time+err,x1 = dd$admixture_time+err,y0 =(dd$dates_n1+dd$dates_n1_se),y1 = (dd$dates_n1-dd$dates_n1_se),col=kol[c]);
      segments(x0 =dd$admixture_time+err-2,x1 = dd$admixture_time+err+2,y0 =(dd$dates_n1+dd$dates_n1_se),y1 = (dd$dates_n1+dd$dates_n1_se),col=kol[c]);
      segments(x0 =dd$admixture_time+err-2,x1 = dd$admixture_time+err+2,y0 =(dd$dates_n1-dd$dates_n1_se),y1 = (dd$dates_n1-dd$dates_n1_se),col=kol[c]);
      lines(x=dd$admixture_time,y=dd$admixture_time,col=&quot;darkgrey&quot;,lty=2)
      c=c+1; err=err+5
    }
    legend(&quot;topleft&quot;,legend = c(len1),col=kol[1:4],pch = 15,bg = &quot;white&quot;);
  }
}
title(&quot;(a) Reference populations of French and Yoruba (FST(true, reference) ~ 0) for target population n=1 &quot;, line = -1, outer = TRUE,cex=1.3)
title(&quot;(b) Reference populations of French and Bantu Kenya ( FST(true, reference) ~ 0.009) for target population n=1 &quot;, line = -26, outer = TRUE,cex=1.3)
title(&quot;(c) Reference populations of French and San ( FST(true, reference) ~ 0.103) for target population n=1 &quot;, line = -51, outer = TRUE,cex=1.3)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="impact-of-small-sample-size-and-data-quality-of-target-and-reference-populations-as-a-function-of-divergence-between-true-and-reference-populations-used-in-dates-distribution-of-ancestry-tracts-of-evolutionary-signals">
              Impact of small sample size and data quality of target and reference populations as a
              function of divergence between true and reference populations used in <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of Ancestry Tracts
                of Evolutionary Signals)</em>.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We simulated data for <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em>=1 admixed
              individuals with 20% European (CEU) and 80% African (YRI) ancestry with pseudo-haploid
              genotypes. The reference populations used also had pseudo-haploid genotypes. We
              further varied three key features of the data, missing genotype rate in reference
              populations, missing genotype rate in target populations, and divergence between true
              source populations and reference population used for the analysis. In each row, we
              show the admixture dates using reference populations with increasing divergence to
              true source population (<em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
                  itemtype="http://schema.stenci.la/Subscript">ST</sub></em> shown in the row
              title). In each column, we varied the missing genotype rate in the target population
              (shown in the column title). Further, each panel shows results of missing data in the
              reference genomes (shown in the legend). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>) Reference populations of
              French and Yoruba (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">F<sub
                  itemscope="" itemtype="http://schema.stenci.la/Subscript">ST</sub></em>(true,
              reference)<sub itemscope="" itemtype="http://schema.stenci.la/Subscript">0). (<strong
                  itemscope="" itemtype="http://schema.stenci.la/Strong">b</strong>) Reference
                populations of French and Bantu Kenya (_F</sub>ST<sub itemscope=""
                itemtype="http://schema.stenci.la/Subscript">_(true, reference)</sub>0.009).
              (<strong itemscope="" itemtype="http://schema.stenci.la/Strong">c</strong>) Reference
              populations of French and San (<em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
                  itemtype="http://schema.stenci.la/Subscript">ST</sub></em>(true,
              reference)~0.103). The true admixture time is shown on X-axis, and the estimated time
              of admixture (±1 SE) is shown on Y-axis.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Next, we tested <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> for features such as
          varying admixture proportions and use of surrogate populations as reference groups. By
          varying of European ancestry proportion between ~1% and 50% (the rest derived from west
          Africans), we observed <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> accurately estimated the timing
          in all cases (<a href="#fig1s3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 3A</a>). However, the
          inferred admixture proportion was overestimated for lower admixture proportions (&lt;10%)
          (<a href="#fig1s3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure
            supplement 3B</a>). Thus, we caution against using <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> for estimating ancestry
          proportions. <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> works
          reliably for dating admixtures between related groups such as Europeans and Mexicans (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">ST</sub></em>~ 0.03), though it was
          unable to distinguish mixtures of Southern and Northern Europeans (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">ST</sub></em>&lt; 0.005) (<a
            href="#fig1s5" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure
            supplement 5</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We found <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> is robust to the use of highly
          divergent surrogates as reference populations. For example, the use of Khomani San as the
          reference population instead of the true ancestral population of Yoruba (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">ST</sub></em> ~ 0.1) provides unbiased
          dates of admixture (<a href="#fig1s4" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 4</a>). In this
          regard, for ancient DNA where sometimes only sparse data is available, one can also use
          present-day samples as reference populations to increase the quality and sample size of
          the ancestral groups. In principle, as long as the allele frequencies in the reference
          samples are correlated to the ancestral allele frequencies, the inference of admixture
          dates should remain unbiased (Materials and methods). In practice, however, recent
          demographic events (e.g., strong founder events or admixture from additional sources,
          etc.) in the history of the present-day samples could lead to significant deviation from
          the ancestral allele frequencies. Thus, the reference populations should be carefully
          chosen.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Another idea is to use the
          admixed populations themselves as one of the reference populations as demonstrated by the
          single reference setup in ALDER <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib37"><span>37</span><span>Loh et
                al.</span><span>2013</span></a></cite>. Admixed individuals have intermediate allele
          frequencies to the ancestral populations and thus weighted LD or ancestry covariance can
          be computed with only one reference population (albeit, with reduced power). <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib37"><span>37</span><span>Loh et al.</span><span>2013</span></a></cite>,
          showed that the use of admixed populations as one of the references does not bias the rate
          of decay of the weighted LD (i.e., time of admixture), though the amplitude of the decay
          curve (not used in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em>) can be biased under some
          scenarios. To verify <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> provides reliable results under
          this setup, we applied <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> with a single reference
          population and used the admixed population as the other reference. Like ALDER, our
          inferred dates of admixture were accurate and comparable to using two reference
          populations. (<a href="#fig1s6" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 6</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">An important feature of <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> is that it does not
          require phased data and is applicable to datasets with small sample sizes, making it in
          principle useful for ancient DNA applications. To test the reliability of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> for ancient genomes, we simulated
          data mimicking the relevant features of ancient genomes, namely small sample sizes (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em>=1–20), large proportions
          of missing genotypes (between 10% and 60%), and pseudo-haploid genotype calls (instead of
          diploid genotype calls) in reference and/or target samples. <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> showed reliable results under
          various setups, even when only a single admixed individual was available (<a href="#fig1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1B</a>, <a href="#fig1s1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplements
            1</a><a href="#fig1s9" itemscope=""
            itemtype="http://schema.stenci.la/Link">!number(9)</a>). In contrast, admixture LD-based
          methods require more than one sample and do not work reliably with missing data. For
          example, ALDER estimates were very unstable for simulations with &gt;40% missing data. For
          older dates (&gt;100 generations), there was a slight bias even with &gt;10% missing
          genotypes (<a href="https://elifesciences.org/articles/77625#app1fig5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—figure 5</a>). This is expected as LD
          calculations leverage shared patterns across samples, thus variable missingness of
          genotypes across individuals leads to substantial loss of data leading to unstable and
          noisy inference. We also generated data for combinations of features including small
          sample sizes, pseudo-haploid genotypes with large proportions of missing genotypes in both
          target and reference samples, and use of highly divergent reference samples. We found <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> yielded reliable
          results with large amounts (~40–60%) of missing data, either in the target or references,
          even with highly divergent reference populations (<a href="#fig1s8" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 8</a>). This was also
          true when a single target sample was available, though as expected, the inference becomes
          noisier for older dates and large fractions of missing data (<a href="#fig1s9"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 9</a>).
          The robust performance of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> in sparse datasets highlights a
          major advantage for ancient DNA applications.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> assumes a model of instantaneous
          gene flow with a single pulse of mixture between two source populations. However, many
          human populations have a history of multiple pulses of gene flow. To test the performance
          of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> for multi-way
          admixture events, we generated admixed individuals with ancestry from three sources (East
          Asians, Africans, and Europeans) where the gene flow occurred at two distinct time points
          (<a href="https://elifesciences.org/articles/77625#app2fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—figure 1</a>). By applying <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> with pairs of
          reference populations, we observed that <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> recovered both admixture times
          for target populations that had equal contributions from all three ancestral groups (<a
            href="https://elifesciences.org/articles/77625#app2fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—figure 2</a>). In the case of unequal
          admixture proportions from three ancestral groups, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> inferred the timing of the recent
          admixture event in most cases. In some cases, however, the inferred dates were
          intermediate to the two pulses when the ancestry proportion of the recent event was low
          (<a href="https://elifesciences.org/articles/77625#app2fig3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—figure 3</a>). This confounding could
          be eliminated if the reference populations were set up to match the model of gene flow.
          For example, the inferred times of admixture were accurate if the two references used in
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> were: reference 1:
          the source population for the recent event and reference 2: pooled individuals from both
          ancestral populations that contributed to the first admixture event, or the intermediate
          admixed group formed after the first event (<a
            href="https://elifesciences.org/articles/77625#app2table1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—table 1</a>). This highlights how the
          choice of reference populations can help to tune the method to infer the timing of
          specific admixture events more reliably.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Finally, we explored the impact
          of more complex demographic events, including continuous admixture and founder events
          using coalescent simulations (Appendix 2). In the case of continuous admixture, <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> inferred an
          intermediate timing between the start and the end of the gene flow period, similar to
          other methods like ALDER and Globetrotter (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib27"><span>27</span><span>Hellenthal
                et al.</span><span>2014</span></a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib37"><span>37</span><span>Loh et
                al.</span><span>2013</span></a></cite>; <a
            href="https://elifesciences.org/articles/77625#app2table2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—table 2</a>). In the case of
          populations with founder events, we inferred unbiased dates of admixture in most cases
          except when the founder event was extreme (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">N<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">e</sub></em> ~ 10) or the population had
          maintained a low population size (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">N<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">e</sub></em> &lt; 100) until the present
          (i.e., no recovery bottleneck) (<a
            href="https://elifesciences.org/articles/77625#app2fig4" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—figure 4</a>, <a
            href="https://elifesciences.org/articles/77625#app2table3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—table 3</a>). In humans, few
          populations have such extreme founder events, and thus, in most other cases, our inferred
          admixture dates should be robust to founder events <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib55"><span>55</span><span>Tournebize
                et al.</span><span>2020</span></a></cite>. We note that while <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> is not a formal test of
          admixture, in simulations, we find that in the absence of gene flow, the method does not
          infer significant dates of admixture even if the target has a complex demographic history
          (<a href="https://elifesciences.org/articles/77625#app2fig6" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—figure 6</a>, <a
            href="https://elifesciences.org/articles/77625#app2fig7" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—figure 7</a>).</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="comparison-to-other-methods">Comparison to other methods</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We assessed the reliability of
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> in real data by
          comparing our results with published methods: Globetrotter, ALDER, and ROLLOFF. These
          methods are designed for the analysis of present-day samples that typically have
          high-quality data with limited missing variants. In addition, Globetrotter uses phased
          data which is challenging for ancient DNA samples. Thus, instead of rerunning other
          methods, we took advantage of the published results for contemporary samples presented in
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib27"><span>27</span><span>Hellenthal et
                al.</span><span>2014</span></a></cite>. Following <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib27"><span>27</span><span>Hellenthal
                et al.</span><span>2014</span></a></cite>, we created a merged dataset including
          individuals from HGDP <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib35"><span>35</span><span>Li et
                  al.</span><span>2008</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib5"><span>5</span><span>Behar et
                  al.</span><span>2010</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib28"><span>28</span><span>Henn et
                  al.</span><span>2012</span></a></cite></span> (Materials and methods). We applied
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> and ALDER to 29
          target groups using the reference populations reported in Table S12 in <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib27"><span>27</span><span>Hellenthal
                et al.</span><span>2014</span></a></cite>, excluding one group where the population
          label was unclear. Interestingly, the majority of these groups (25/29) failed ALDER’s
          formal test of admixture; either because the results of the single reference and two
          reference analyses yielded inconsistent estimates or because the target had long-range
          shared LD with one of the reference populations (<a
            href="https://elifesciences.org/articles/77625#app1table5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—table 5</a>). Using <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em>, we inferred significant dates of
          admixture in 20 groups, and 14 of those were consistent with estimates based on
          Globetrotter. In the case of the six populations that disagreed across the two methods,
          most of the populations appear to have a history of multiple pulses of gene flow either
          involving more than two populations (e.g., Brahui <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib48"><span>48</span><span>Pagani et
                al.</span><span>2017</span></a></cite>) or multiple instances of contact between the
          same two reference groups (e.g., Mandenka <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib51"><span>51</span><span>Price et
                al.</span><span>2009</span></a></cite>) or the model of admixture differed (e.g.,
          recent ancient DNA studies suggest present-day Bulgarians have ancestry from western
          hunter-gatherers [HGs], Near Eastern farmers, and Steppe pastoralists from Eurasia <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib24"><span>24</span><span>Haak et al.</span><span>2015</span></a></cite> but
          were modeled as a mixture of Polish and Cypriots in Globetrotter). In case of complex
          admixture scenarios, the inconsistencies across the two methods are hard to interpret as
          Globetrotter and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>
          could be capturing different events or the weighting of both events could differ. Finally,
          the estimated admixture timing based on <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em>, ROLLOFF, and ALDER (assuming
          two-way admixture regardless of the formal test results) were found to be highly
          concordant (<a href="https://elifesciences.org/articles/77625#app1table5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—table 5</a>).</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="fine-scale-patterns-of-population-mixtures-in-ancient-europe">Fine-scale patterns of
          population mixtures in ancient Europe</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Recent ancient DNA studies have
          shown that present-day Europeans derive ancestry from three distinct sources: (a)
          HG-related ancestry that is closely related to Mesolithic HGs from Europe; (b) Anatolian
          farmer-related ancestry related to Neolithic farmers from the Near East and associated to
          the spread of farming to Europe; and (c) Steppe pastoralist-related ancestry that is
          related to the Yamnaya pastoralists from Russia and Ukraine <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib1"><span>1</span><span>Allentoft
                  et al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib24"><span>24</span><span>Haak et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib53"><span>53</span><span>Skoglund
                  et al.</span><span>2012</span></a></cite></span>. Many open questions remain about
          the timing and dynamics of these population interactions, in particular related to the
          formation of the ancestral groups (which were themselves admixed) and their expansion
          across Europe. To characterize the spatial and temporal patterns of mixtures in Europe in
          the past 10,000 years, we used 1096 ancient European samples from 152 groups from the
          publicly available Allen Ancient DNA Resource (AADR) spanning a time range of ~8000–350
          BCE (Materials and methods, <a href="https://elifesciences.org/articles/77625#supp1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 1A</a>). Using
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>, we characterized
          the timing of the various gene flow events, and below, we describe the key events in
          chronological order focusing on three main periods.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="holocene-to-mesolithic">
          Holocene to Mesolithic</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Pre-Neolithic Europe was
          inhabited by HGs until the arrival of the first farmers from the Near East <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib23"><span>23</span><span>Haak et
                  al.</span><span>2010</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib29"><span>29</span><span>Hofmanová et
                  al.</span><span>2016</span></a></cite></span>. There was large diversity among HGs
          with four main groups – western hunter-gatherers (WHGs) that were related to the
          Villabruna cluster in central Europe, eastern hunter-gatherers (EHGs) from Russia and
          Ukraine related to the Upper Paleolithic group of Ancestral North Eurasians (ANEs),
          Caucasus hunter-gatherers (CHGs) from Georgia associated to the first farmers from Iran,
          and the GoyetQ2-cluster associated to the Magdalenian culture in Spain and Portugal <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib15"><span>15</span><span>Fernandes et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib18"><span>18</span><span>Fu et
                  al.</span><span>2016</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib30"><span>30</span><span>Jones et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib52"><span>52</span><span>Rivollat
                  et al.</span><span>2020</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib53"><span>53</span><span>Skoglund
                  et al.</span><span>2012</span></a></cite></span>. Most Mesolithic HGs fall on two
          main clines of relatedness: one cline that extends from Scandinavia to central Europe
          showing variable WHG-EHG ancestry, and the other in southern Europe with WHG-GoyetQ2
          ancestry <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib52"><span>52</span><span>Rivollat et al.</span><span>2020</span></a></cite>.
          The latter is already present in the 17,000 BCE <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">El Mirón</em> individual from Spain,
          suggesting that the GoyetQ2-related gene flow occurred well before the Holocene. However,
          the WHG-EHG cline was formed more recently during the Mesolithic period, though the
          precise timing remains less well understood.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To characterize the formation
          of the WHG-EHG cline, we used genomic data from 16 ancient HG groups (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">n</em>=101) with estimated ages of
          ~7500–3600 BCE. We first verified the ancestry of each HG group using <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">qpAdm</em> that compares the allele
          frequency correlations between the target and a set of source populations to formally test
          the model of admixture and then infer the ancestry proportions for the best-fitted model
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib24"><span>24</span><span>Haak et al.</span><span>2015</span></a></cite>. For
          each target population, we chose the most parsimonious model, that is, fitting the data
          with the minimum number of source populations. Consistent with previous studies, our <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">qpAdm</em> analysis showed that
          most HGs from Scandinavia, the Baltic Sea region, and central Europe could be modeled as a
          two-way mixture of WHG- and EHG-related ancestry (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2A</a>). To confirm that the
          target populations do not harbor Anatolian farmer-related ancestry (that could lead to
          some confounding in estimated admixture dates), we applied <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">D</em>-statistics of the form <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">D</em>(Mbuti, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">target</em>, WHG, Anatolian farmers) where
          target = Mesolithic HGs. We observed that none of the target groups had a stronger
          affinity to Anatolian farmers than WHG (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2B</a>). Together, these
          results suggest that the mixtures we date below reflect pre-Neolithic contacts between the
          HGs.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To infer the timing of the
          mixtures in the history of Mesolithic European HGs, we applied <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> to HGs from Scandinavia, the
          Baltic regions, and central Europe using WHG- and EHG-related groups as reference
          populations. <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>
          infers the time of admixture in generations before the sample lived. Accounting for the
          average sampling age of the specimens and the mean human generation time of 28 years <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib41"><span>41</span><span>Moorjani et al.</span><span>2016</span></a></cite>,
          we inferred the admixture time in years before present or in BCE (Materials and methods).
          We report the average dates (or median, where specified) in BCE in the main text and
          provide additional details in <a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2</a> and <a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a> including the sample
          sizes, dates in generations, and BCE for each population. Among HGs, we inferred that the
          earliest admixture occurred in Scandinavian HGs from Norway and Sweden with a range of
          average dates of ~80–113 generations before the samples lived (<a href="#fig2s1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1</a>).
          This translates to admixture dates of ~10,200–8000 BCE, with the most recent dates
          inferred in Motala HGs from Sweden suggesting substantial substructure in HGs (<a
            href="#fig2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2</a>). In the
          Baltic region, we inferred the range of admixture dates of ~8700–6000 BCE in Latvia and
          Lithuania HGs, postdating the mixture in Scandinavia. In southeast Europe, the Iron Gates
          region of the Danube Basin shows widespread evidence of mixtures between HG groups and, in
          the case of some outliers, the mixture of HGs and Anatolian farmer-related ancestry as
          early as the Mesolithic period <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib14"><span>14</span><span>Feldman et
                al.</span><span>2019</span></a></cite>. Further, these groups showed a strong
          affinity to the WHG-related ancestry in Anatolian populations, suggesting ancient
          interactions with Near Eastern populations <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib14"><span>14</span><span>Feldman et
                al.</span><span>2019</span></a></cite>. We applied <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">qpAdm</em> to test the model of admixture in
          Iron Gates HG and found that the parsimonious model with WHG- and EHG-related ancestry
          provides a good fit to the data. Further, when we tested the model with Anatolian-related
          ancestry using Anatolian HG (AHG) as an additional source population, the AHG ancestry
          proportion was not significant (<a href="https://elifesciences.org/articles/77625#supp2"
            itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 2A</a>).
          Applying <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> to Iron
          Gates HG with WHG and EHG as reference populations, we inferred this group was genetically
          formed in ~9200 BCE (95% confidence interval: 10,000–8400 BCE). Our samples of the Iron
          Gates HGs include a wide range of C14 dates between 8800 and 5700 BCE. We confirmed our
          dates were robust to the sampling age of the individuals as we obtained statistically
          consistent dates when all samples were combined as one group or when subsets of samples
          were grouped in bins of 500 years (<a href="#fig2s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a>). The most
          recent dates of ~7500 BCE were inferred in eastern Europe in Ukraine HGs, highlighting how
          the WHG-EHG cline was formed over a period ~2000–3000 years (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2</a>, <a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2" title="Figure 2.">
          <label data-itemprop="label">Figure 2.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 10
sf::sf_use_s2(FALSE)
data=read.table(file = &quot;data/Figure3_data_map&quot;,header = T)
world &lt;- ne_countries(scale = &quot;medium&quot;, returnclass = &quot;sf&quot;)
Europe &lt;- world[which(world$continent == &quot;Europe&quot;),]
# Hunter Gatherer distribution panel
dd=data[data$col==&quot;deepskyblue&quot;,]
ggplot(Europe) + geom_sf() + coord_sf(xlim = c(-15,40), ylim = c(35,70), expand = FALSE) + 
  geom_point(data = dd, aes(x=long,y=lat),col=dd$col,inherit.aes = FALSE,pch=dd$pc,cex=4,show.legend = F) +
  scale_fill_manual(values =&quot;deepskyblue&quot;) +
  theme(plot.title = element_text(colour = &quot;black&quot;))

#Neolithic Farmer spread
dd=data[data$col==&quot;orange2&quot;,]
ggplot(Europe) + geom_sf() + coord_sf(xlim = c(-15,40), ylim = c(35,70), expand = FALSE) + 
  geom_point(data = dd, aes(x=long,y=lat),col=dd$col,inherit.aes = FALSE,pch=dd$pc,cex=4,show.legend = F) + 
  theme(plot.title = element_text(colour = &quot;black&quot;))

# MLBA bronze age samples
dd=rbind(data[data$col==&quot;green3&quot;,],data[data$col==&quot;lightpink2&quot;,])
ggplot(world) + geom_sf() + coord_sf(xlim = c(-15,90), ylim = c(30,80), expand = FALSE) + 
  geom_point(data = dd, aes(x=long,y=lat),col=dd$col,inherit.aes = FALSE,pch=dd$pc,cex=3,show.legend = F) + 
  theme(plot.title = element_text(colour = &quot;black&quot;))


# Admixture time plots 
par(mai = c(1,1,0.1,3))
data=read.table(file = &quot;data/Figure3_data_admixturetimes&quot;)
fossil_range=read.table(file = &quot;data/Figure3_data_fossilages&quot;)
# Hunter Gatherer mixture panel
dd=rbind(data[data$V8==&quot;deepskyblue&quot;,])
target_fossil=fossil_range[fossil_range$V2%in%as.character(dd$V1),]
group_names=unique(target_fossil$V2)
target_fossil$V2 &lt;- as.character(target_fossil$V2)
target_fossil$V6 &lt;- as.numeric(as.character(target_fossil$V3))-1950
for(i in group_names)
{
  k=which(dd$V1==i)
  dd[k,9]=min(as.numeric(target_fossil[target_fossil$V2==i,]$V6))
  dd[k,10]=max((as.numeric(target_fossil[target_fossil$V2==i,]$V6)))
  dd[k,11]=mean(as.numeric(target_fossil[target_fossil$V2==i,]$V6))
}
plot(x=seq(1,length(dd$V1),1),y=dd$V6,type = &quot;p&quot;,
     col=as.character(dd$V8),pch=20,cex=2, ylim = c(4000,12200), xlim = c(0.5,length(dd$V1)+0.5),
     xaxt=&#39;n&#39;,yaxt=&#39;n&#39;,xlab = &quot;&quot;,ylab = &quot;Estimated admixture time (BCE)&quot;, main=&quot;&quot;);
grid(nx=8,ny=10);
segments(x0 =seq(1,length(dd$V1),1),x1 = seq(1,length(dd$V1),1),y0 =(dd$V6+dd$V7),
         y1 = (dd$V6-dd$V7),col=as.character(dd$V8),lty = 1)
segments(x0 =seq(1,length(dd$V1),1)-0.1,x1 = seq(1,length(dd$V1),1)+0.1,y0 =(dd$V6+dd$V7),
         y1 = (dd$V6+dd$V7),col=as.character(dd$V8))
segments(x0 =seq(1,length(dd$V1),1)-0.1,x1 = seq(1,length(dd$V1),1)+0.1,y0 =(dd$V6-dd$V7),
         y1 = (dd$V6-dd$V7),col=as.character(dd$V8))
axis(1, 1:length(dd$V1), lty = 1,col = &quot;black&quot;,tck=&quot;y&quot;,labels = rep(&#39;&#39;, length(dd$V1)))
name_lab=gsub(&quot;.SG&quot;,&quot;&quot;,dd$V1)
points(x=seq(1,length(dd$V1),1),y=dd$V11,type = &quot;p&quot;,col=&quot;grey20&quot;,pch=1,cex=1.1)
text(1:length(dd$V4), rep(3500, length(dd$V4)),
     labels= name_lab, col=&quot;black&quot;, srt=25, xpd=TRUE, adj=1,cex=1)
axis(2, seq(4000,12000,1000), lty = 1,col = &quot;black&quot;,tck=&quot;y&quot;,labels = rep(&#39;&#39;,length(seq(4000,12000,1000))))
text(rep(-0.2,max(4000,12000,500)), seq(4000,12000,1000),labels= seq(4000,12000,1000),
     col=&quot;grey30&quot;, srt=0, xpd=TRUE, adj=-0.1,cex=0.8)
abline(v=3.5,lty=3,col=&quot;grey20&quot;)
abline(v=6.5,lty=3,col=&quot;grey20&quot;)
text(c(1,4,7),rep(12000,5), labels= c(&quot;Scandinavian HG&quot;,&quot;Baltic region HG&quot;,&quot;Central European HG&quot;),
     col=&quot;grey30&quot;, srt=0, xpd=TRUE, adj=-0.1,cex=1)
legend(8.9,12000,legend = c(&quot;DATES in BCE ± 1SE&quot;,&quot;Average C14 radiocarbon age&quot;),col=c(&quot;grey20&quot;,&quot;grey20&quot;), 
       pch=c(20,1),lty=c(1,-1),xpd=T,bty=&#39;n&#39;)

# Neolithic Farmer mixture
par(mai = c(1.4,1,0.1,0.5))
dd=data[data$V8==&quot;orange2&quot;,]
target_fossil=fossil_range[fossil_range$V2%in%as.character(dd$V1),]
group_names=unique(target_fossil$V2)
target_fossil$V2 &lt;- as.character(target_fossil$V2)
target_fossil$V6 &lt;- as.numeric(as.character(target_fossil$V3))-1950
for(i in group_names)
{
  k=which(dd$V1==i)
  dd[k,9]=min(as.numeric(target_fossil[target_fossil$V2==i,]$V6))
  dd[k,10]=max((as.numeric(target_fossil[target_fossil$V2==i,]$V6)))
  dd[k,11]=mean(as.numeric(target_fossil[target_fossil$V2==i,]$V6))
}
plot(x=seq(1,length(dd$V1),1),y=dd$V6,type = &quot;p&quot;,
     col=as.character(dd$V8),pch=20,cex=2, ylim = c(2000,6800), xlim = c(1,length(dd$V1)+0.5),
     xaxt=&#39;n&#39;,yaxt=&#39;n&#39;,xlab = &quot;&quot;,ylab = &quot;Estimated admixture time (BCE)&quot;, main=&quot;&quot;);
grid(nx=8,ny=10);
segments(x0 =seq(1,length(dd$V1),1),x1 = seq(1,length(dd$V1),1),y0 =(dd$V6+dd$V7),
         y1 = (dd$V6-dd$V7),col=as.character(dd$V8),lty = 1)
segments(x0 =seq(1,length(dd$V1),1)-0.1,x1 = seq(1,length(dd$V1),1)+0.1,y0 =(dd$V6+dd$V7),
         y1 = (dd$V6+dd$V7),col=as.character(dd$V8))
segments(x0 =seq(1,length(dd$V1),1)-0.1,x1 = seq(1,length(dd$V1),1)+0.1,y0 =(dd$V6-dd$V7),
         y1 = (dd$V6-dd$V7),col=as.character(dd$V8))
axis(1, 1:length(dd$V1), lty = 1,col = &quot;black&quot;,tck=&quot;y&quot;,labels = rep(&#39;&#39;, length(dd$V1)))
points(x=seq(1,length(dd$V1),1),y=dd$V11,type = &quot;p&quot;,col=&quot;grey20&quot;,pch=1,cex=1)
name_lab=gsub(&quot;_published&quot;,&quot;&quot;,gsub(&quot;_published.DG&quot;,&quot;&quot;,gsub(&quot;.SG&quot;,&quot;&quot;,dd$V1)))
text(1:length(dd$V4), rep(1800, length(dd$V4)),
     labels= name_lab, col=&quot;black&quot;, srt=35, xpd=TRUE, adj=1,cex=0.7, cex.lab=0.7)
axis(2, seq(2000,6800,500), lty = 1,col = &quot;black&quot;,tck=&quot;y&quot;,labels = rep(&#39;&#39;,length(seq(2000,6800,500))))
text(rep(-3.5,max(2000,6800,500)), seq(2000,6800,500),labels= seq(2000,6800,500),
     col=&quot;grey30&quot;, srt=0, xpd=TRUE, adj=-0.1,cex=0.8)
abline(v=2.5,lty=3,col=&quot;grey20&quot;)
abline(v=20.5,lty=3,col=&quot;grey20&quot;)
abline(v=23.5,lty=3,col=&quot;grey20&quot;)
abline(v=28.5,lty=3,col=&quot;grey20&quot;)
abline(v=36.5,lty=3,col=&quot;grey20&quot;)
abline(v=42.5,lty=3,col=&quot;grey20&quot;)
abline(v=47.5,lty=3,col=&quot;grey20&quot;)
abline(v=56.5,lty=3,col=&quot;grey20&quot;)
abline(v=63.5,lty=3,col=&quot;grey20&quot;)
text(c(-1.3,10,20.6,23.8,28.6,31.8,37,43,48,53,57,63.53),rep(6500,5), 
     labels= c(&quot;Balkans&quot;,&quot;Hungary&quot;,&quot;Czech&quot;,&quot;Germany&quot;,&quot;Poland&quot;,&quot;Ukraine&quot;,
               &quot;France&quot;,&quot;Italy&quot;,&quot;Spain&quot;,&quot;Portugal&quot;,&quot;Britain countries&quot;,&quot;Scandinavia&quot;),col=&quot;grey30&quot;, srt=0, xpd=TRUE, adj=-0.1,cex=0.8)
text(c(20.6,23.6),rep(6200,5), labels= c(&quot;Republic&quot;,&quot;Austria&quot;),
     col=&quot;grey30&quot;, srt=0, xpd=TRUE, adj=-0.1,cex=0.8)

# Bronze age steppe mixture
par(mai = c(2.6,1,0.1,2.8))
dd=rbind(data[data$V8==&quot;green3&quot;,],data[data$V8==&quot;lightpink2&quot;,])
dd$V8=gsub(&quot;springgreen&quot;,&quot;green3&quot;,dd$V8)
target_fossil=fossil_range[fossil_range$V2%in%as.character(dd$V1),]
group_names=unique(target_fossil$V2)
target_fossil$V2 &lt;- as.character(target_fossil$V2)
target_fossil$V6 &lt;- as.numeric(as.character(target_fossil$V3))-1950
pch_str=as.numeric(dd$V9)
for(i in group_names)
{
  k=which(dd$V1==i)
  dd[k,10]=min(as.numeric(target_fossil[target_fossil$V2==i,]$V6))
  dd[k,11]=max((as.numeric(target_fossil[target_fossil$V2==i,]$V6)))
  dd[k,12]=mean(as.numeric(target_fossil[target_fossil$V2==i,]$V6))
}
plot(x=seq(1,length(dd$V1),1),y=dd$V6,type = &quot;p&quot;,
     col=dd$V8,pch=dd$V9,cex=1.5, ylim = c(500,5000), xlim = c(1,length(dd$V1)+0.5),
     xaxt=&#39;n&#39;,yaxt=&#39;n&#39;,xlab = &quot;&quot;,ylab = &quot;Estimated admixture time (BCE)&quot;, main=&quot;&quot;);
grid(nx=8,ny=10);
segments(x0 =seq(1,length(dd$V1),1),x1 = seq(1,length(dd$V1),1),y0 =(dd$V6+dd$V7),
         y1 = (dd$V6-dd$V7),col=dd$V8,lty = 1)
segments(x0 =seq(1,length(dd$V1),1)-0.1,x1 = seq(1,length(dd$V1),1)+0.1,y0 =(dd$V6+dd$V7),
         y1 = (dd$V6+dd$V7),col=dd$V8)
segments(x0 =seq(1,length(dd$V1),1)-0.1,x1 = seq(1,length(dd$V1),1)+0.1,y0 =(dd$V6-dd$V7),
         y1 = (dd$V6-dd$V7),col=dd$V8)
axis(1, 1:length(dd$V1), lty = 1,col = &quot;black&quot;,tck=&quot;y&quot;,labels = rep(&#39;&#39;, length(dd$V1)))
points(x=seq(1,length(dd$V1),1),y=dd$V12,type = &quot;p&quot;,col=&quot;grey20&quot;,pch=1,cex=0.8)
name_lab=gsub(&quot;.SG&quot;,&quot;&quot;,dd$V1)
text(1:length(dd$V4), rep(350, length(dd$V4)),
     labels= name_lab, col=&quot;black&quot;, srt=45, xpd=TRUE, adj=1,cex=1)
axis(2, seq(500,5000,500), lty = 1,col = &quot;black&quot;,tck=&quot;y&quot;,labels = rep(&#39;&#39;,length(seq(500,5000,500))))
text(rep(-2,max(500,5000,500)), seq(500,5000,500),labels = c(seq(500,5000,500)),
     col=&quot;grey30&quot;, srt=0, xpd=TRUE, adj=-0.1,cex=1)
abline(v=7.5,lty=3,col=&quot;grey20&quot;)
abline(v=26.5,lty=3,col=&quot;grey20&quot;)
text(c(1.6,15,29),rep(4900,5),
     labels= c(&quot;Late Neolithic&quot;,&quot;Chacolithic to Bronze Age&quot;,&quot;Middle to Late Bronze Age&quot;),col=&quot;grey30&quot;, srt=0, xpd=TRUE, adj=-0.1,cex=0.8)
legend(35.5,5000,legend = c(&quot;Corded Ware complex&quot;,&quot;Bell Beaker complex&quot;),
       col=c(rep(&quot;green3&quot;,2)),pch=c(15,17),lty=c(1,1),xpd=T,cex=1)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h5 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="timeline-of-admixture-events-in-ancient-europe">Timeline of admixture events in
              ancient Europe.</h5>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We applied <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of Ancestry Tracts
                of Evolutionary Signals)</em> to ancient samples from Europe. In the right panel, we
              show the sampling locations of the ancient specimens, and in the left panel, we show
              the admixture dates for each target group listed on the X-axis. The inferred dates in
              generations were converted to dates in BCE by assuming a mean generation time of 28
              years <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                  href="#bib40"><span>40</span><span>Moorjani et
                    al.</span><span>2011</span></a></cite> and accounting for the average sampling
              age (shown as gray dots) of all ancient individuals in the target group (Materials and
              methods). The top panel shows the formation of western hunter-gatherer (WHG)-eastern
              hunter-gatherer (EHG) cline (in blue) using Mesolithic hunter-gatherers (HGs) as the
              target and EHG and WHG as reference populations. The middle panel shows admixture
              dates of local HGs and Anatolian farmers (in orange) using Neolithic European groups
              as targets and Anatolian farmers-related groups and WHG-related groups as reference
              populations. The bottom panel shows the spread of Steppe pastoralist-related ancestry
              (in green) estimated using middle and late Neolithic, Chalcolithic, and Bronze Age
              samples from Europe as target populations and early Steppe pastoralist-related groups
              (Afanasievo and Yamnaya Samara) and a set of Anatolian farmers and WHG-related groups
              as reference populations. For the middle to late Bronze Age (MLBA) samples from
              Eurasia, we used the early Steppe pastoralist-related groups and the Neolithic
              European groups as reference populations. The cultural affiliation (Corded Ware
              Complex [CWC], Bell Beaker complex [BBC], or Steppe MLBA cultures) of the individuals
              is shown in the legend. See <a href="#fig2s1" itemscope=""
                itemtype="http://schema.stenci.la/Link">Figure 2—figure supplements 1</a> and <a
                href="#fig2s2" itemscope="" itemtype="http://schema.stenci.la/Link">!number(2)</a>
              we applied DATESfor decay curves for all samples and stratified datesfor Iron Gates
              HGs.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s1"
          title="Figure 2—figure supplement 1."><label data-itemprop="label">Figure 2—figure
            supplement 1.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 10
#&#39; @height 10
NRMSD &lt;- function(y, yfit,na.rm = TRUE) {
  # y is the vector of empirical values
  # yfit is the vector of fitted values
  if (length(y) != length(yfit)) stop(&#39;y and yfit should have the same length&#39;)
  if (na.rm) {
    isna = is.na(y) | is.na(yfit)
    y = y[!isna]
    yfit = yfit[!isna]
  }
  nrmsd = sqrt(mean( (yfit - y)**2, na.rm = na.rm )) * (max(yfit, na.rm = na.rm) - min(yfit, na.rm = na.rm))**(-1)
  return(nrmsd)
}
#Usage: nmrds=round(NRMSD(data$V2,data$V3),4)
admix_dates=read.table(file = &quot;data/Figure3_supplement1_admixture_dates&quot;)
par(mfrow=c(6,4),oma=c(0,0,3.5,0))
layout(matrix(seq(1,24,1), nrow = 6), heights=c(1,1))
# HG decay curves
dates_files=read.table(file = &quot;data/Figure3_supplement1_HG_curves&quot;)
for (i in 1:nrow(dates_files)) 
{
  file=dates_files$V1[i]
  path=&quot;data/Figure3_supplement1_decay_files/&quot;; var=paste(path,file,sep = &quot;/&quot;)
  mm=unlist(strsplit(as.character(file),&#39;/&#39;,fixed=TRUE))[1]
  mm1=unlist(strsplit(as.character(mm),&#39;.&#39;,fixed=TRUE))[1]
  data=read.table(file = var)
  jout=gsub(&quot;fit&quot;, &quot;jout&quot;, file); time=paste(path,jout,sep = &quot;/&quot;)
  estimate=read.table(file = time)
  name=gsub(&quot;estimate_&quot;,&quot;&quot;,gsub(&quot;.fit&quot;, &quot;&quot;, file))
  len=paste(&quot;Estimate:&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;+/-&quot;),sep = &quot; &quot;)
  title_name=gsub(&quot;EHG_WHG_&quot;,&quot;&quot;,mm1)
  bce=admix_dates[admix_dates$Population==title_name,]
  main_t=paste(&quot;Target:&quot;,paste(title_name,paste(paste(&quot;(n=&quot;,bce$n,sep=&quot;&quot;),&quot;)&quot;,sep=&quot;&quot;),sep=&quot; &quot;),&quot;\n&quot;,&quot;References:EHG-WHG&quot;)
  nmrsd=round(NRMSD(data$V2,data$V3),4)
  if(nmrsd&gt;0.7) {kol=&quot;grey20&quot;} else {kol=&quot;deepskyblue&quot;};
  plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=kol,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
       ylab = &quot;Ancestry covariance&quot;,las=1,main = main_t,cex=1,cex.main=0.8)
  lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=kol,lty=2)
  len=paste(paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;±&quot;),sep = &quot;:&quot;),
                  paste(&quot;DATES estimate (BCE)&quot;,paste(bce$DATES_mean.BCE.,bce$DATES_SE.BCE.,sep=&quot; ± &quot;),sep=&quot;:&quot;),sep = &quot;\n&quot;),
            paste(&quot;NRMSD&quot;,nmrsd,sep=&quot;=&quot;),sep = &quot;\n&quot;))
  legend(&quot;topright&quot;,legend = len,col = kol,bty=&#39;n&#39;,cex=0.7)
}
### Farmer formation 
data=read.table(file = &quot;data/Figure3_supplement1_decay_files/AAF.fit&quot;)
jout=read.table(file = &quot;data/Figure3_supplement1_decay_files/AAF.jout&quot;)

plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=&quot;darkorchid&quot;,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
     las=1,main = paste(&quot;Target: Early Anatolian farmers (n=9)&quot;,&quot;References: Levant_pooled-Iran_N_pooled&quot;,sep=&quot;\n&quot;)
     ,cex=1,ylab =&quot;&quot;,cex.main=0.8)
title(ylab = &quot;Ancestry covariance&quot;, mgp = c(4.2, 1, 0)) 
lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=&quot;darkorchid&quot;,lty=2)
nmrsd=round(NRMSD(data$V2,data$V3),4)
len=paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(jout$V2,0),round(jout$V5,0),sep = &quot; ± &quot;),sep = &quot;: &quot;),
                paste(&quot;DATES estimate (BCE)&quot;,paste(round(jout$V2,0)*28+8071,round(jout$V5,0)*28,sep = &quot; ± &quot;),sep = &quot;: &quot;),sep = &quot;\n&quot;),
          paste(&quot;NRMSD&quot;,nmrsd,sep=&quot;=&quot;),sep = &quot;\n&quot;)
legend(&quot;topright&quot;,legend = len,col = &quot;darkorchid&quot;,lty=c(2,-1,-1),cex=0.7,bty=&#39;n&#39;)

dates_files=read.table(file = &quot;data/Figure3_supplement1_FF_curves&quot;)
mt=c(&quot;Iran_N-Anatolian_N&quot;,&quot;Iran_N-Anatolian_N&quot;)
for (i in 1:nrow(dates_files)) 
{
  file=dates_files$V1[i]
  path=&quot;data/Figure3_supplement1_decay_files&quot; ; var=paste(path,file,sep = &quot;/&quot;)
  mm=unlist(strsplit(as.character(file),&#39;/&#39;,fixed=TRUE))[1]
  mm1=unlist(strsplit(as.character(mm),&#39;-&#39;,fixed=TRUE))[1]
  data=read.table(file = var)
  jout=gsub(&quot;fit&quot;, &quot;jout&quot;, file); time=paste(path,jout,sep = &quot;/&quot;)
  estimate=read.table(file = time)
  name=gsub(&quot;estimate_&quot;,&quot;&quot;,gsub(&quot;.fit&quot;, &quot;&quot;, file))
  title_name=gsub(&quot;published_merged&quot;,&quot;Anatolian Farmer&quot;,gsub(&quot;Anatolia_N_Serbia_Iron_Gates_HG_&quot;,&quot;&quot;,mm1))
  bce=admix_dates[admix_dates$Population==title_name,]
  main_t=paste(&quot;Target:&quot;,paste(title_name,paste(paste(&quot;(n=&quot;,bce$n,sep=&quot;&quot;),&quot;)&quot;,sep=&quot;&quot;),sep=&quot; &quot;),&quot;\n&quot;,mt[i])
  len=paste(&quot;Estimate:&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;+/-&quot;),sep = &quot; &quot;)
  nmrsd=round(NRMSD(data$V2,data$V3),4)
  if(nmrsd&gt;0.7) {kol=&quot;grey20&quot;} else {kol=&quot;firebrick&quot;};
  plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=kol,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
       ylab = &quot;Ancestry covariance&quot;,las=1,main =main_t ,cex=1,cex.main=0.8)
  lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=kol,lty=1)
  len=paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;±&quot;),sep = &quot;:&quot;),
                  paste(&quot;DATES estimate (BCE)&quot;,paste(bce$V9,bce$V10,sep=&quot; ± &quot;),sep=&quot;:&quot;),sep = &quot;\n&quot;),
            paste(&quot;NRMSD&quot;,nmrsd,sep=&quot;=&quot;),sep = &quot;\n&quot;)
  legend(&quot;topright&quot;,legend = len,col = kol,bty=&#39;n&#39;,cex=0.7)
}
### Farmer spread
dates_files=read.table(file = &quot;data/Figure3_supplement1_Neolithic_curves&quot;)
for (i in 1:nrow(dates_files)) 
{
  file=dates_files$V1[i]
  path=&quot;data/Figure3_supplement1_decay_files&quot; ; var=paste(path,file,sep = &quot;/&quot;)
  mm=unlist(strsplit(as.character(file),&#39;/&#39;,fixed=TRUE))[1]
  mm1=unlist(strsplit(as.character(mm),&#39;-&#39;,fixed=TRUE))[1]
  refm=paste(unlist(strsplit(as.character(mm),&#39;-&#39;,fixed=TRUE))[2],&quot;-&quot;,unlist(strsplit(as.character(mm),&#39;-&#39;,fixed=TRUE))[3])
  data=read.table(file = var)
  jout=gsub(&quot;fit&quot;, &quot;jout&quot;, file); time=paste(path,jout,sep = &quot;/&quot;)
  estimate=read.table(file = time)
  name=gsub(&quot;estimate_&quot;,&quot;&quot;,gsub(&quot;.fit&quot;, &quot;&quot;, file))
  bce=admix_dates[admix_dates$Population==mm1,]
  main_t=paste(&quot;Target:&quot;,paste(mm1,paste(paste(&quot;(n=&quot;,bce$n,sep=&quot;&quot;),&quot;)&quot;,sep=&quot;&quot;),sep=&quot; &quot;),&quot;\n&quot;,&quot;References:&quot;,gsub(&quot;Turkey_N&quot;,&quot;AnatolianN&quot;,refm))
  len=paste(&quot;Estimate:&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;+/-&quot;),sep = &quot; &quot;)
  nmrsd=round(NRMSD(data$V2,data$V3),4)
  if(nmrsd&gt;0.7) {kol=&quot;grey20&quot;} else {kol=&quot;orange2&quot;};
  plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=kol,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
       ylab = &quot;Ancestry covariance&quot;,las=1,main = main_t,cex=1,cex.main=0.8)
  lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=kol,lty=1)
  len=paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;±&quot;),sep = &quot;:&quot;),
                  paste(&quot;DATES estimate (BCE)&quot;,paste(bce$V9,bce$V10,sep=&quot; ± &quot;),sep=&quot;:&quot;),sep = &quot;\n&quot;),
            paste(&quot;NRMSD&quot;,nmrsd,sep=&quot;=&quot;),sep = &quot;\n&quot;)
  legend(&quot;topright&quot;,legend = len,col = kol,bty=&#39;n&#39;,cex=0.7)
}

### Steppe formation- EBA
dates_files=read.table(file = &quot;data/Figure3_supplement1_Steppe_formation&quot;)
for (i in 1:nrow(dates_files)) 
{
  file=dates_files$V1[i]
  path=&quot;data/Figure3_supplement1_decay_files&quot; ; var=paste(path,file,sep = &quot;/&quot;)
  mm=unlist(strsplit(as.character(file),&#39;/&#39;,fixed=TRUE))[1]
  mm1=unlist(strsplit(as.character(mm),&#39;-&#39;,fixed=TRUE))[1]
  data=read.table(file = var)
  jout=gsub(&quot;fit&quot;, &quot;jout&quot;, file); time=paste(path,jout,sep = &quot;/&quot;)
  estimate=read.table(file = time)
  name=gsub(&quot;estimate_&quot;,&quot;&quot;,gsub(&quot;.fit&quot;, &quot;&quot;, file))
  bce=admix_dates[admix_dates$Population==mm1,]
  main_t=gsub(&quot;_pub&quot;,&quot;&quot;,paste(&quot;Target:&quot;,paste(mm1,paste(paste(&quot;(n=&quot;,bce$n,sep=&quot;&quot;),&quot;)&quot;,sep=&quot;&quot;),sep=&quot; &quot;),&quot;\n&quot;,&quot;References:Iran_N_pooled-EHG_pooled&quot;))
  len=paste(&quot;Estimate:&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;+/-&quot;),sep = &quot; &quot;)
  nmrsd=round(NRMSD(data$V2,data$V3),4)
  if(nmrsd&gt;0.7) {kol=&quot;grey20&quot;} else {kol=&quot;deeppink&quot;};
  plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=kol,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
       ylab = &quot;Ancestry covariance&quot;,las=1,main = main_t,cex=1.2,cex.main=0.8)
  lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=kol,lty=1)
  len=paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;±&quot;),sep = &quot;:&quot;),
                  paste(&quot;DATES estimate (BCE)&quot;,paste(bce$V9,bce$V10,sep=&quot; ± &quot;),sep=&quot;:&quot;),sep = &quot;\n&quot;),
            paste(&quot;NRMSD&quot;,nmrsd,sep=&quot;=&quot;),sep = &quot;\n&quot;)
  legend(&quot;topright&quot;,legend = len,col = kol,bty=&#39;n&#39;,cex=0.7)
}
### Steppe formation - MLBA
dates_files=read.table(file = &quot;data/Figure3_supplement1_Steppe_MLBA&quot;)
for (i in 1:nrow(dates_files)) 
{
  file=dates_files$V1[i]
  path=&quot;data/Figure3_supplement1_decay_files&quot; ; var=paste(path,file,sep = &quot;/&quot;)
  mm=unlist(strsplit(as.character(file),&#39;/&#39;,fixed=TRUE))[1]
  mm1=unlist(strsplit(as.character(mm),&#39;-&#39;,fixed=TRUE))[1]
  data=read.table(file = var)
  jout=gsub(&quot;fit&quot;, &quot;jout&quot;, file); time=paste(path,jout,sep = &quot;/&quot;)
  estimate=read.table(file = time)
  name=gsub(&quot;estimate_&quot;,&quot;&quot;,gsub(&quot;.fit&quot;, &quot;&quot;, file))
  bce=admix_dates[admix_dates$Population==mm1,]
  main_t=paste(&quot;Target:&quot;,paste(mm1,paste(paste(&quot;(n=&quot;,bce$n,sep=&quot;&quot;),&quot;)&quot;,sep=&quot;&quot;),sep=&quot; &quot;),&quot;\n&quot;,&quot;References:Steppe EBA-Neolithic groups&quot;)
  len=paste(&quot;Estimate:&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;+/-&quot;),sep = &quot; &quot;)
  nmrsd=round(NRMSD(data$V2,data$V3),4)
  if(nmrsd&gt;0.7) {kol=&quot;grey20&quot;} else {kol=&quot;lightpink&quot;};
  plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=kol,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
       ylab = &quot;Ancestry covariance&quot;,las=1,main = main_t,cex=1,cex.main=0.8)
  lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=kol,lty=1)
  len=paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;±&quot;),sep = &quot;:&quot;),
                  paste(&quot;DATES estimate (BCE)&quot;,paste(bce$V9,bce$V10,sep=&quot; ± &quot;),sep=&quot;:&quot;),sep = &quot;\n&quot;),
            paste(&quot;NRMSD&quot;,nmrsd,sep=&quot;=&quot;),sep = &quot;\n&quot;)
  legend(&quot;topright&quot;,legend = len,col = kol,bty=&#39;n&#39;,cex=0.7)
}
### Steppe spread
dates_files=read.table(file = &quot;data/Figure3_supplement1_Steppe_spread&quot;)
for (i in 1:nrow(dates_files)) 
{
  file=dates_files$V1[i]
  path=&quot;data/Figure3_supplement1_decay_files/&quot; ; var=paste(path,file,sep = &quot;/&quot;)
  mm=unlist(strsplit(as.character(file),&#39;/&#39;,fixed=TRUE))[1]
  mm1=unlist(strsplit(as.character(mm),&#39;-&#39;,fixed=TRUE))[1]
  data=read.table(file = var)
  jout=gsub(&quot;fit&quot;, &quot;jout&quot;, file); time=paste(path,jout,sep = &quot;/&quot;)
  estimate=read.table(file = time)
  name=gsub(&quot;estimate_&quot;,&quot;&quot;,gsub(&quot;.fit&quot;, &quot;&quot;, file))
  title_name=gsub(&quot;Afanasievo_Anatolia_N_&quot;,&quot;&quot;,mm1)
  bce=admix_dates[admix_dates$Population==title_name,]
  main_t=paste(&quot;Target:&quot;,paste(mm1,paste(paste(&quot;(n=&quot;,bce$n,sep=&quot;&quot;),&quot;)&quot;,sep=&quot;&quot;),sep=&quot; &quot;),&quot;\n&quot;,&quot;References:Steppe groups-(WHG+AnatoliaN)&quot;)
  len=paste(&quot;Estimate:&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;+/-&quot;),sep = &quot; &quot;)
  nmrsd=round(NRMSD(data$V2,data$V3),4)
  if(nmrsd&gt;0.7) {kol=&quot;grey20&quot;} else {kol=&quot;green3&quot;};
  plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=kol,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
       ylab = &quot;Ancestry covariance&quot;,las=1,main = main_t,cex=1,cex.main=0.7)
  lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=kol,lty=1)
  len=paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(estimate$V2,0),round(estimate$V5,0),sep = &quot;±&quot;),sep = &quot;:&quot;),
                  paste(&quot;DATES estimate (BCE)&quot;,paste(bce$V9,bce$V10,sep=&quot; ± &quot;),sep=&quot;:&quot;),sep = &quot;\n&quot;),
            paste(&quot;NRMSD&quot;,nmrsd,sep=&quot;=&quot;),sep = &quot;\n&quot;)
  legend(&quot;topright&quot;,legend = len,col = kol,bty=&#39;n&#39;,cex=0.8)
}</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h5 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="dates-distribution-of-ancestry-tracts-of-evolutionary-signals-ancestry-covariance-decay-curves">
              <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of
                Ancestry Tracts of Evolutionary Signals)</em> ancestry covariance decay curves.</h5>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We show the weighted
              ancestry covariance decay curves generated using <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">DATES</em> for all the target groups
              analyzed in the study. Each subplot shows the decay curve for one target population
              with the associated reference groups shown in the title. For each target, in the
              legend, we show the inferred average dates of admixture (±1 SE) in generations before
              the individual lived, in BCE that accounts for the average age of all the individuals
              in the target and the mean generation time of human populations (see Materials and
              methods). We also show the normalized root-mean-square deviation (NRMSD) values for
              all fitted curves and the plots with NRMSD &gt;0.7 are shown in gray. For consistency,
              we use the same colors as <a href="#fig2" itemscope=""
                itemtype="http://schema.stenci.la/Link">Figure 2</a>.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s2"
          title="Figure 2—figure supplement 2."><label data-itemprop="label">Figure 2—figure
            supplement 2.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 9
#&#39; @height 6
dd=read.table(file = &quot;data/Figure3_supplement2&quot;)
plot(seq(1,NROW(dd$V1),1),dd$V8,col=as.character(dd$V10),pch=15, 
     ylim =c(3000,19000),las=1, xaxt=&#39;n&#39;,xlab=&quot;&quot;,ylab=&quot;Admixture time in years BCE&quot;,
     main = &quot;Admixture dates in Iron_Gates samples grouped by c14 age in bins of 500 years&quot;); grid()
segments(x0 =seq(1,NROW(dd$V1),1),x1 = seq(1,NROW(dd$V1),1),y0 =(dd$V8+2*dd$V9),
         y1 = (dd$V8-2*dd$V9),col=as.character(dd$V10),lty = 1)
segments(x0 =seq(1,NROW(dd$V1),1)-0.1,x1 = seq(1,NROW(dd$V1),1)+0.1,y0 =(dd$V8+2*dd$V9),
         y1 = (dd$V8+2*dd$V9),col=as.character(dd$V10))
segments(x0 =seq(1,NROW(dd$V1),1)-0.1,x1 = seq(1,NROW(dd$V1),1)+0.1,y0 =(dd$V8-2*dd$V9),
         y1 = (dd$V8-2*dd$V9),col=as.character(dd$V10))
points(seq(1,NROW(dd$V1),1),dd$V7)
segments(x0 =seq(1,NROW(dd$V1),1),x1 = seq(1,NROW(dd$V1),1),y0 =(dd$V2-1950),
         y1 = (dd$V3-1950))
segments(x0 =seq(1,NROW(dd$V1),1)-0.1,x1 = seq(1,NROW(dd$V1),1)+0.1,y0 =(dd$V2-1950),
         y1 = (dd$V2-1950))
segments(x0 =seq(1,NROW(dd$V1),1)-0.1,x1 = seq(1,NROW(dd$V1),1)+0.1,y0 =(dd$V3-1950),
         y1 = (dd$V3-1950))
axis(1, 1:NROW(dd$V1), lty = 1,col = &quot;black&quot;,tck=&quot;y&quot;,labels = rep(&#39;&#39;, NROW(dd$V1)))
text(1:NROW(dd$V1), rep(2500, NROW(dd$V4)),
     labels= gsub(&quot;IronGates-&quot;,&quot;&quot;,dd$V1), col=&quot;black&quot;, srt=25, xpd=TRUE, adj=1,cex=1)
legend(&quot;topright&quot;,legend = c(&quot;WHG-EHG admixture per c14 bin&quot;,&quot;WHG-EHG admixture in all samples&quot;,&quot;average c14 ages&quot;),
       col = c(&quot;blue&quot;,&quot;cyan2&quot;,&quot;grey40&quot;),lty=c(1,1,1),pch=c(15,15,1))</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h5 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="timing-of-western-hunter-gatherer-whg-and-eastern-hunter-gatherer-ehg-admixture-in-iron-gates-hunter-gatherer-hg-samples">
              Timing of western hunter-gatherer (WHG) and eastern hunter-gatherer (EHG) admixture in
              Iron Gates hunter-gatherer (HG) samples.</h5>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The time of admixture in
              Iron Gates HG samples grouped in bins of C14 age of 500 years. The C14 age is shown on
              X-axis and the admixture time in BCE for corresponding samples is shown on the Y-axis.
            </p>
          </figcaption>
        </figure>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="early-to-middle-neolithic">
          Early to middle Neolithic</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Neolithic farming began in the
          Near East – the Levant, Anatolia, and Iran – and spread to Europe and other parts of the
          world <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib23"><span>23</span><span>Haak et
                  al.</span><span>2010</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib34"><span>34</span><span>Kılınç
                  et al.</span><span>2016</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib53"><span>53</span><span>Skoglund
                  et al.</span><span>2012</span></a></cite></span>. The first farmers of Europe were
          related to Anatolian farmers, whose origin remains unclear. The early Neolithic Anatolian
          farmers (Aceramic Anatolian farmers) had majority ancestry from AHG with some gene flow
          from the first farmers from Iran <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib14"><span>14</span><span>Feldman et
                al.</span><span>2019</span></a></cite>. AHG, in turn, had ancestry from Levant HG
          (Natufians) and some mysterious HG group related to the ancestors of WHG individuals from
          central Europe – a gene flow event that likely occurred in the late Pleistocene <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib14"><span>14</span><span>Feldman et al.</span><span>2019</span></a></cite>.
          Using <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">qpAdm</em>, we
          confirmed that early Anatolian farmers could be modeled as a mixture of AHG and Iran
          Neolithic farmer-related groups (<a href="https://elifesciences.org/articles/77625#supp2"
            itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 2C</a>). To
          learn about the timing of the genetic formation of early Anatolian farmers, we applied <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> using Iran Neolithic
          farmer-related individuals and other reference as groups with AHG ancestry. Since there
          are limited samples of AHG ancestry, we instead used pooled individuals of WHG-related and
          Levant Neolithic farmer-related individuals to represent the main ancestry components of
          AHG. We note that the application of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> to three-way admixed groups such
          as early Anatolian farmers can lead to intermediate dates between the first and second
          pulse of gene flow unless the reference populations are chosen carefully (<a
            href="https://elifesciences.org/articles/77625#app2table1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 2—table 1</a>). Our setup with pooled
          reference populations should recover the timing of the most recent event (in this case,
          the gene flow from CHG or Iran Neolithic-related groups) reliably. We infer the Iran
          Neolithic farmer-related gene flow occurred ~10,900 BCE (12,200–9600 BCE) (<a href="#fig3"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3</a>), predating the origin
          of farming in Anatolia <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib9"><span>9</span><span>Bramanti et al.</span><span>2009</span></a></cite>.
          During the subsequent millennia, these early farmers further admixed with Levant Neolithic
          groups to form Anatolian Neolithic farmers who spread towards the west to Europe and in
          the east to mix with Iran Neolithic farmers, forming the Chalcolithic groups of Seh Gabi
          and Hajji Firuz (<a href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2C</a>). Using <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>, we inferred that
          these Chalcolithic groups were genetically formed in ~7600–5700 BCE (<a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3" title="Figure 3.">
          <label data-itemprop="label">Figure 3.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 6
#&#39; @height 12
dd=read.table(file = &quot;data/Figure2_Data_map&quot; ,header = T)
world &lt;- ne_countries(scale = &quot;medium&quot;, returnclass = &quot;sf&quot;)
ggplot(world) + geom_sf() + coord_sf(xlim = c(-25,120), ylim = c(35,80), expand = FALSE) + 
  geom_point(data = dd, aes(x=long,y=lat),col=dd$col,inherit.aes = FALSE,pch=18,cex=4,show.legend = F) +
  geom_text_repel(data=dd,aes(x=long+10,y=lat),label=dd$sample,cex=4)+
  theme_bw()
# decay curves
par(mai = c(1,1.1,0.5,0.5), mfrow=c(1,2))
data=read.table(file = &quot;data/Figure2_Data_AnatoliaFarmer.fit&quot;, header = F)
jout=read.table(file = &quot;data/Figure2_Data_AnatoliaFarmer.jout&quot;,header = F)
plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=&quot;darkorchid&quot;,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
     las=1,main = &quot;Early Anatolian farmers&quot;,cex=2,cex.main=1.5,cex.axis=1.2,cex.lab=1.2,
     ylab =&quot;&quot;)
title(ylab = &quot;Ancestry covariance&quot;, mgp = c(4.2, 1, 0)) 
lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=&quot;darkorchid&quot;,lty=2)
nrmsd=round(NRMSD(data$V2,data$V3),4)
len=paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(jout$V2,0),round(jout$V5,0),sep = &quot; ± &quot;),sep = &quot;: &quot;),
                paste(&quot;DATES estimate (BCE)&quot;,paste(round(jout$V2,0)*28+8071,round(jout$V5,0)*28,sep = &quot; ± &quot;),sep = &quot;: &quot;),sep = &quot;\n&quot;),
          paste(&quot;NRMSD&quot;,nrmsd,sep=&quot;=&quot;),sep = &quot;\n&quot;)
legend(&quot;topright&quot;,legend = len,col = &quot;darkorchid&quot;,lty=c(2,-1,-1), cex=1,bty=&#39;n&#39;)

data=read.table(file = &quot;data/Figure2_Data_SteppeFarmer.fit&quot;,header = F)
jout=read.table(file = &quot;data/Figure2_Data_SteppeFarmer.jout&quot;,header = F)
plot(x=data$V1,y=data$V2,type=&quot;p&quot;,col=&quot;deeppink&quot;,pch=&quot;*&quot;,xlim = c(0,20),xlab = &quot;Genetic Distance(cM)&quot;,
     las=1,main = &quot;Early Steppe Pastoralists&quot;,cex=2,cex.main=1.5,cex.axis=1.2,cex.lab=1.2,ylab=&quot;&quot;)
title(ylab = &quot;Ancestry covariance&quot;, mgp = c(4.2, 1, 0)) 
lines(x=data$V1,y=data$V3,type = &quot;l&quot;,col=&quot;deeppink&quot;,lty=2)
nrmsd=round(NRMSD(data$V2,data$V3),4)
len=paste(paste(paste(&quot;DATES estimate (gen)&quot;,paste(round(jout$V2,0),round(jout$V5,0),sep = &quot; ± &quot;),sep = &quot;: &quot;),
                paste(&quot;DATES estimate (BCE)&quot;,paste(round(jout$V2,0)*28+2881,round(jout$V5,0)*28,sep = &quot; ± &quot;),sep = &quot;: &quot;),sep = &quot;\n&quot;),
          paste(&quot;NRMSD&quot;,nrmsd,sep=&quot;=&quot;),sep = &quot;\n&quot;)
legend(&quot;topright&quot;,legend = len,col = &quot;deeppink&quot;,lty=c(2,-1,-1), cex=1,bty=&#39;n&#39;)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="genetic-formation-of-early-anatolian-farmers-and-early-bronze-age-steppe-pastoralists">
              Genetic formation of early Anatolian farmers and early Bronze Age Steppe pastoralists.
            </h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The top panel shows a map
              with sampling locations of the target groups analyzed for admixture dating. The bottom
              panels show the inferred times of admixture for each target using <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">DATES (Distribution of Ancestry Tracts
                of Evolutionary Signals)</em> by fitting an exponential function with an affine term
              <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
                  class="mjx-chtml"><span class="mjx-math" aria-label="y=A{e}^{-\lambda d}+c"><span
                      class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                          class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.006em;">y</span></span><span
                        class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                          style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                        class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span><span
                        class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                              class="mjx-mrow"><span class="mjx-mi"><span
                                  class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span></span></span></span><span
                          class="mjx-sup"
                          style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span
                            class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                  style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                                class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span><span
                                class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span></span></span></span></span><span
                        class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                          style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                        class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.225em; padding-bottom: 0.298em;">c</span></span></span></span></span></span>,
              where <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">d</em> is the
              genetic distance in Morgans and <span itemscope=""
                itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                    class="mjx-math" aria-label="\lambda"><span class="mjx-mrow"
                      aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                          style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span></span></span></span></span>
              = (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">t</em>+1) is the
              number of generations since admixture (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">t</em></strong>) (Materials and
              methods). We start the fit at a genetic distance (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">d</em></strong>) &gt;0.5 cM
              (centiMorgans) to minimize confounding with background LD and estimate a standard
              error by performing a weighted block jackknife removing one chromosome in each run.
              For each target, in the legend, we show the inferred average dates of admixture (±1
              SE) in generations before the individual lived, in BCE accounting for the average age
              of all the individuals and the mean human generation time, and the normalized
              root-mean-square deviation (NRMSD) values to assess the fit of the exponential curve
              (Materials and methods). The bottom left shows the ancestry covariance decay curve for
              early Anatolian farmers inferred using one reference group as a set of pooled
              individuals of western hunter-gatherer (WHG)-related and Levant Neolithic
              farmers-related individuals as a proxy of Anatolian hunter-gatherer (AHG) ancestry and
              the second reference group containing Iran Neolithic farmer-related individuals. The
              bottom right shows the ancestry covariance decay curve for early Steppe pastoralists
              groups, including all Yamnaya and Afanasievo individuals as the target group and
              eastern hunter-gatherer (EHG)-related and Iran Neolithic farmer-related groups as
              reference populations.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In Europe, the Anatolian
          Neolithic farmers mixed with the local indigenous HGs contributing between ~40% and 98% of
          ancestry to the Neolithic Europeans. To elucidate the fine-scale patterns and regional
          dynamics of these mixtures, we applied <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> to time transect samples from 94
          groups (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em>=657) sampled
          from 16 regions in Europe, ranging from ~6000 to 1900 BCE and encompassing individuals
          from the early Neolithic to Chalcolithic periods (<a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1A</a>). Using <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">qpAdm</em>, we first confirmed
          that the Neolithic Europeans could be modeled as a mixture of European HG-related ancestry
          and Anatolian farmer-related ancestry and inferred their ancestry proportions (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2D</a>). For most target
          populations (~80%), we found the model of gene flow between Anatolian farmer-related and
          WHG-related ancestry provided a good fit to the data (p-value &gt; 0.05). In some
          populations, we found variation in the source of the HG-related ancestry and including
          either EHG- or GoyetQ2-related ancestry groups improved the fit of the model. In five
          groups, none of the models fit, despite excluding outlier individuals whose ancestry
          profile differed from the majority of the individuals in the group (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2E</a>). To confirm that the
          target populations do not harbor Steppe pastoralist-related ancestry, we applied <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">D</em>-statistics of the form
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">D</em>(Mbuti, <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">target</em>, Anatolian farmers,
          Steppe pastoralists) where target = Neolithic European groups. We observed that four
          groups had a stronger affinity to Steppe pastoralists compared to Anatolian farmers, and
          hence we excluded these from further analysis (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2F</a>). After filtering, we
          applied <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> to 86
          European Neolithic groups using WHG-related individuals and Anatolian farmers as reference
          populations.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Earlier analysis has suggested
          that farming spread along two main routes in Europe, from southeast to central Europe
          (‘continental route’) and along the Mediterranean coastline to Iberia (‘coastal
          route&#39;) <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite
              itemscope="" itemtype="http://schema.stenci.la/Cite"><a
                href="#bib20"><span>20</span><span>Gronenborn et
                  al.</span><span>2014</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib21"><span>21</span><span>Guilaine
                  et al.</span><span>2003</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib52"><span>52</span><span>Rivollat
                  et al.</span><span>2020</span></a></cite></span>. Consistent with this, we
          inferred one of the earliest timings of gene flow was in the Balkans around 6400 BCE.
          Using the most comprehensive time-transect in Hungary with 19 groups (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">n</em>=63) spanning from middle Neolithic to
          late Chalcolithic, we inferred the admixture dates ranged from ~6100 to 4500 BCE. Under a
          model of a single shared gene flow event in the common ancestors of all individuals, we
          would expect to obtain similar dates of admixture (before present) after accounting for
          the age of the ancient specimens. Similar to <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib36"><span>36</span><span>Lipson et
                al.</span><span>2017</span></a></cite>, we observed that the estimated dates in
          middle Neolithic individuals were substantially older than those inferred in late
          Neolithic or Chalcolithic individuals <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib7"><span>7</span><span>Bollongino
                et al.</span><span>2013</span></a></cite>. This would be expected if the underlying
          model of gene flow involved multiple pulses of gene flow, such that the timing in the
          middle Neolithic samples reflects the initial two-way mixture and the timing in the
          Chalcolithic samples captures both recent and older events. Interestingly, <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib36"><span>36</span><span>Lipson et al.</span><span>2017</span></a></cite>,
          and other recent studies have documented increasing HG ancestry from ~3% to 15% from the
          Neolithic to Chalcolithic period <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib24"><span>24</span><span>Haak et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib36"><span>36</span><span>Lipson
                  et al.</span><span>2017</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib52"><span>52</span><span>Rivollat
                  et al.</span><span>2020</span></a></cite></span>, suggesting that there was
          additional HG gene flow after the initial mixture. This highlights that the interactions
          between local HGs and incoming Anatolian farmers were complex with multiple gene flow
          events or continuous admixture between these two groups, which explains the increasing HG
          ancestry and more recent dates in Chalcolithic individuals (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2D</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Mirroring the pattern in
          Hungary, we documented the resurgence of HG ancestry in the Czech Republic, France,
          Germany, and southern Europe. In central Europe, we inferred that the Anatolian
          farmer-related gene flow ranged between ~5600 and 5000 BCE across Germany and Czech
          Republic, with some exceptions. For instance, in the Blätterhöhle site from Germany, the
          inferred dates were more recent (~4000 BCE), consistent with the occupation of both HGs
          and farmers in this region until the late Neolithic <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib36"><span>36</span><span>Lipson et
                al.</span><span>2017</span></a></cite>. In eastern Europe, using samples related to
          the Funnel Beaker culture (TRB; from German <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Trichterbecher</em>) from Poland, we dated
          the Anatolian farmer-related gene flow occurred on average ~4700 BCE (5300–4200 BCE).
          Following the TRB decline, the Baden culture and the Globular Amphora culture appeared in
          many areas of Poland and Ukraine <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib15"><span>15</span><span>Fernandes
                et al.</span><span>2018</span></a></cite>. These cultures had close contact with the
          Corded Ware complex (CWC) and Steppe pastoralists’ societies, though we found a
          parsimonious model without Steppe pastoralist-related ancestry provides a good fit to the
          GAC individuals (<a href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2D</a>). Applying <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>, we inferred the
          Anatolian farmer and HG-related mixture in GAC ranged between ~4700 and 3900 BCE,
          predating the spread of Steppe pastoralists to eastern Europe <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib1"><span>1</span><span>Allentoft
                  et al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib24"><span>24</span><span>Haak et
                  al.</span><span>2015</span></a></cite></span>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Along the Mediterranean route,
          we characterized Anatolian farmer-related gene flow in Italy, Iberia, France, and the
          British Isles. Using samples from five groups in Italy, we inferred the earliest dates of
          gene flow of ~6100 BCE, and within the millennium, the Anatolian farmer-related ancestry
          spread from Sardinia to Sicily (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2</a>). In Iberia, the Anatolian
          farmer-related mixture ranged from ~5700 to 4300 BCE and showed evidence for an increase
          in HG ancestry from ~9% to 20% after the initial gene flow. In France, previous studies
          have shown that Anatolian farmer-related ancestry came from both routes, along the
          continental route in the north and along the costal route in the south <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib52"><span>52</span><span>Rivollat
                et al.</span><span>2020</span></a></cite>. This is reflected in the source of the HG
          ancestry, which is predominantly EHG and WHG-related in the north and includes WHG and
          Goyet-Q2 ancestry in the south <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib52"><span>52</span><span>Rivollat
                et al.</span><span>2020</span></a></cite>. Consistently, we also observed that the
          admixture dates in France were structured along these routes, with the median estimate of
          ~5100 BCE in the east and much older ~5500 BCE in the south (<a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a>). In Scandinavia, we
          inferred markedly more recent dates of admixture of ~4300 BCE using samples from Sweden
          associated with the TRB culture and Ansarve Megalithic tombs, consistent with a late
          introduction of farming to Scandinavia <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib39"><span>39</span><span>Mittnik et
                al.</span><span>2018</span></a></cite>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Finally, we inferred recent
          dates of admixture in Neolithic samples from the British Isles (England, Scotland, and
          Ireland) with the median timing of ~5000 BCE across the three regions. Interestingly,
          unlike in western and southern Europe, we obtained overlapping dates across eight groups
          including early to late Neolithic samples from British Isles. This is consistent with
          previous studies that suggest there was no resurgence in HG ancestry during the Neolithic
          in Britain <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib8"><span>8</span><span>Brace et al.</span><span>2019</span></a></cite>. Thus
          our dates can be interpreted as the time of the main mixture of HGs and Anatolian farmers
          in this region, implying that the farmer-related ancestry reached Britain a millennium
          after its arrival in continental Europe. By 4300 BCE, we find that Anatolian
          farmer-related ancestry is present in nearly all regions in Europe.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="late-neolithic-to-bronze-age">Late Neolithic to Bronze Age</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The beginning of the Bronze Age
          (BA) was a period of major cultural and demographic change in Eurasia, accompanied by the
          spread of Yamnaya Steppe pastoralist-related ancestry from Pontic-Caspian steppes across
          Europe and South Asia <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib24"><span>24</span><span>Haak et al.</span><span>2015</span></a></cite>. The
          archaeological record documents that the early Steppe pastoralists cultures of Yamnaya and
          Afanasievo, with characteristic burial styles and pottery, appeared ~3300–2600 BCE <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib42"><span>42</span><span>Morgunova and
                Khokhlova</span><span>2016</span></a></cite>. These groups were formed as a mixture
          of EHG-related individuals and CHG-related groups associated with the first farmers from
          Iran <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib30"><span>30</span><span>Jones et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib43"><span>43</span><span>Narasimhan et
                  al.</span><span>2019</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib56"><span>56</span><span>Wang et
                  al.</span><span>2019</span></a></cite></span>. Using <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">qpAdm</em>, we first tested how well this
          model fits the data from eight early Steppe pastoralist groups, including seven groups
          associated with Yamnaya culture and one group related to the Afanasievo culture (Materials
          and methods). For all but two Yamnaya groups (from Hungary Baden and Russia Kalmykia), we
          found this model provides a good fit to the data (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2G</a>). We note that the
          samples from Kalmykia in our dataset were shotgun sequenced, and in the <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">qpAdm</em> analysis, we are mixing shotgun
          and capture data that could potentially lead to technical issues. To understand the timing
          of the formation of the early Steppe pastoralist-related groups, we applied <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> using pooled
          EHG-related and pooled Iranian Neolithic farmer-related individuals. Focusing on the
          groups with the largest sample sizes, Yamnaya Samara (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">n</em>=10) and Afanasievo (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">n</em>=19), we inferred the admixture
          occurred between 40 and 45 generations before the individuals lived, translating to an
          admixture timing of ~4100 BCE (<a href="https://elifesciences.org/articles/77625#supp1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a>). We
          obtained qualitatively similar dates across four Yamnaya and one Afanasievo groups,
          consistent with the findings that these groups descend from a recent common ancestor (we
          note for the Ozera samples from Ukraine, the dates were not significant). This is also
          further supported by the insight that the genetic differentiation across early Steppe
          pastoralist groups is very low (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">F<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">ST</sub></em> ~ 0.000–0.006) (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2H</a>). Thus, we combined
          all early Steppe pastoralist individuals in one group to obtain a more precise estimate
          for the genetic formation of proto-Yamnaya of ~4400–4000 BCE (<a href="#fig3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 3</a>). These dates are noteworthy as
          they predate the archaeological evidence by more than a millennium <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a
              href="#bib2"><span>2</span><span>Anthony</span><span>2007</span></a></cite> and have
          important implications for understanding the origin of proto-Pontic Caspian cultures and
          their spread to Europe and South Asia.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Over the following millennium,
          the Yamnaya-derived ancestry spread across Europe through CWC and Bell Beaker complex
          (BBC) cultures. Present-day Europeans derive between ~10% and 60% Steppe
          pastoralist-related ancestry, which was not seen in Neolithic samples. To obtain a precise
          chronology of the spread of Steppe pastoralist-related ancestry across Europe, we analyzed
          109 late Neolithic, Chalcolithic, and BA samples dated between 3000 and 750 CE from 18
          regions, including samples associated with the CWC and BBC cultures. We first confirmed
          that most target samples had Steppe pastoralist-related ancestry, in addition to European
          HG-related and Anatolian farmer-related ancestry using <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">qpAdm</em>. We excluded 20 groups that could
          not be parsimoniously modeled as a three-way mixture even after removing individual
          outliers. After filtering, we retained 79 groups for dating Steppe pastoralist-related
          gene flow across Europe (<a href="https://elifesciences.org/articles/77625#supp2"
            itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 2I and J</a>).
          As BA Europeans have ancestry from three distinct groups, we applied <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> using the following two reference
          populations, one group including early Steppe pastoralists (Yamnaya and Afanasievo) and
          the other group that is a the proxy for the ancestral Neolithic Europe population using
          pooled samples of WHG-related and Anatolian farmer-related individuals.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To learn about the spread of
          CWC culture across Europe, we used seven late Neolithic and Bronze age groups, including
          five associated with CWC artifacts. Using <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em>, we inferred that the oldest date
          of Steppe pastoralists gene flow in Europe was ~3200 BCE in Scandinavia in samples
          associated with Battle Axe Culture in Sweden and Single Grave Culture in Denmark that were
          both contemporary to CWC. The samples from Scandinavia showed large heterogeneity in
          ancestry, including some individuals with majority Steppe pastoralist-related ancestry
          (and negligible amounts of Anatolian farmer-related ancestry), consistent with patterns
          expected from recent gene flow <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib38"><span>38</span><span>Malmström
                et al.</span><span>2019</span></a></cite>. Strikingly, we inferred the timing of
          admixture in central Europe (Germany and the Czech Republic) and eastern Europe (Estonia
          and Poland) to be remarkably similar. These dates fall within a narrow range of ~3000–2900
          BCE across diverse regions, suggesting that the mixed population associated with the
          Corded Ware culture formed over a short time and spread across Europe rapidly with very
          little further mixture (<a href="https://elifesciences.org/articles/77625#supp1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Following the Corded Ware
          culture, from around 2800 to 2300 BCE, Bell Beaker pottery became widespread across Europe
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib17"><span>17</span><span>Fokkens and
                Nicolis</span><span>2012</span></a></cite>. Using 19 Chalcolithic and BA samples,
          including 10 associated with Beaker-complex artifacts, we inferred the dynamics of the
          spread of the Beaker complex across Europe. We inferred the oldest date of Steppe
          pastoralist-related admixture was ~3200 BCE (3600–2800 BCE) in early Bronze Age (EBA)
          Mallorca samples from Iberia. We note the EBA Mallorca sample is not directly associated
          with Beaker culture, but <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">qpAdm</em> modeling suggests that this
          individual is clade with the small subset of Iberian Beaker-complex-associated individuals
          who carried Steppe pastoralist-related ancestry <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib16"><span>16</span><span>Fernandes
                et al.</span><span>2020</span></a></cite>. Most individuals from Iberia, however,
          had negligible Steppe pastoralist-related ancestry suggesting the Beaker culture was not
          accompanied by major gene flow in Iberia despite the earliest dates (<a
            href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2I</a>). In central and
          western Europe, where Steppe pastoralist gene flow was more pervasive, we inferred the
          median date of the mixture was ~2700 BCE with the oldest dates in the Netherlands,
          followed by Germany and France (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2</a>). There was, however, large
          heterogeneity in the dates across Europe and even within the same region. For example,
          comparing two BA groups from the Netherlands suggests a wide range of dates ~3000 BCE and
          2500 BCE, and four groups from Germany indicate a range of ~2900–2700 BCE. From central
          Europe, the Steppe pastoralist-related ancestry spread quickly to the British Isles, where
          people with Steppe pastoralist ancestry replaced 90% of the genetic ancestry of
          individuals from Britain. Our estimates for the time of gene flow in Bell Beakers samples
          from England suggest that the gene flow occurred ~2700 BCE (2770–2550 BCE). Our estimated
          dates of admixture are older than the dates of arrival of this ancestry in Britain <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib44"><span>44</span><span>Olalde et al.</span><span>2018</span></a></cite>
          and, interestingly, overlap the dates in central Europe. Given that a significant fraction
          of the Beaker individuals were recent migrants from central Europe, we interpret our dates
          reflect the admixture into ancestors of the British Beaker people, occurring in mainland
          Europe <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib44"><span>44</span><span>Olalde et al.</span><span>2018</span></a></cite>.
        </p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The middle to late Bronze Age
          (MLBA) led to the final integration of Steppe pastoralist-related ancestry in Europe. In
          southern Europe, EBA samples had limited Steppe pastoralist-related ancestry, though
          present-day individuals harbor between ~5% and 30% of this ancestry <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib24"><span>24</span><span>Haak et
                al.</span><span>2015</span></a></cite>. Using pooled samples of MLBA from Spain, we
          inferred major mixture occurred ~2500 BCE in Iberia. We inferred a similar timing in Italy
          using individuals associated with the Bell Beaker culture and EBA samples from Sicily (<a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a>). In Sardinia, a
          majority of the BA samples do not have Steppe pastoralist-related ancestry. In a few
          individuals, we found evidence for Steppe pastoralist-related ancestry, though in most
          cases, this ancestry proportion overlapped 0 and the inferred dates of admixture were very
          noisy (<a href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2I</a>). Using Iron Age
          samples from Sardinia, we inferred the gene flow occurred ~2600 BCE, though there is a
          large uncertainty associated with this estimate (3700–1490 BCE). In other parts of
          continental Europe and the British Isles, the Steppe pastoralist-related ancestry got
          diluted over time, as evidenced by more recent dates in LBA (late Bronze Age) than EBA or
          MBA (middle Bronze Age) samples in Germany, England, and Scotland, and an increase in
          Neolithic farmer ancestry during this period (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib45"><span>45</span><span>Olalde et
                al.</span><span>2019</span></a></cite>; <a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Finally, the CWC expanded to
          the east to form the archaeological complexes of Sintashta, Srubnaya, Andronovo, and the
          BA cultures of Kazakhstan. Samples associated with these cultures harbor mixed ancestry
          from the Yamnaya Steppe pastoralist-related groups (CWC, in some cases) and Neolithic
          individuals from central Europe (<a href="https://elifesciences.org/articles/77625#supp2"
            itemscope="" itemtype="http://schema.stenci.la/Link">Supplementary file 2K</a>; <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib43"><span>43</span><span>Narasimhan et
                al.</span><span>2019</span></a></cite>). Applying <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> to eight MLBA Steppe pastoralist
          groups, we inferred the precise timing for the formation of these groups beginning in the
          third millennium BCE. These groups were formed chronologically, with the date of genetic
          formation of ~3200 BCE for Sintashta culture, followed by ~2900 BCE for Srubnaya and
          Andronovo cultures. In the central Steppe region (present-day Kazakhstan), we obtained
          median dates of ~2800 BCE for the expansion of Steppe pastoralist-related ancestry in four
          Kazakh cultures of Maitan Alakul, Aktogai, and Kairan. By ~2700 BCE, most of these
          cultures had almost 60–70% Yamnaya Steppe pastoralist-related ancestry (<a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1B</a>). These groups, in
          turn, expanded eastwards, transforming the genetic composition of populations in South
          Asia.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="discussion">Discussion</h2>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We developed <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> that measures ancestry covariance
          patterns in a single diploid individual genome to estimate the time of admixture. Using
          extensive simulations, we show that <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> provides accurate estimates of
          the timing of admixture across a range of demographic scenarios. Application of <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> to present-day
          samples shows that the results are concordant with published methods – ROLLOFF, ALDER, and
          Globetrotter. For sparse datasets, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> outperforms published methods as
          it does not require phased data and works reliably with limited samples, large proportions
          of missing variants, as well as pseudo-haploid genotypes. This makes <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> ideally suited for the analysis
          of ancient DNA samples. We illustrate the application of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> by reconstructing population
          movements and admixtures during the European Holocene. We confirm and extend signals that
          were previously identified such as the resurgence of HG ancestry during the Neolithic and
          provide new details about the genetic formation of the ancestral populations of Europeans
          and the spread of CWC and BBC cultures across Europe. Together, our analysis provides a
          detailed timeline and insights into the dynamics of the Neolithization of Europe and the
          spread of Steppe pastoralist-related ancestry across Europe.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">First, we document that the
          Mesolithic HGs formed as a mixture of WHG and EHG ancestry ~10,200–7400 BCE. These dates
          are consistent with the archaeological evidence for the appearance of lithic technology
          associated with eastern HGs in Scandinavia and the Baltic regions <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib22"><span>22</span><span>Günther
                  et al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib32"><span>32</span><span>Kashuba
                  et al.</span><span>2019</span></a></cite></span>. Next, we studied the timing of
          the genetic formation of Anatolian farmers. The earliest evidence of agriculture comes
          from the Fertile Crescent, the southern Levant, and the Zagros Mountains of Iran and dated
          to around 10,000 BCE. In central Anatolia, farming has been documented c. 8300 BCE <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib4"><span>4</span><span>Baird et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib6"><span>6</span><span>Bellwood</span><span>2005</span></a></cite></span>.
          It has been long debated if Neolithic farming groups from Iran and the Levant introduced
          agriculture to Anatolia or HGs in the region locally adopted agricultural practices. The
          early Anatolian farmers can be modeled as a mixture of local HGs related to Caucasus HGs
          or the first farmers from Iran <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib14"><span>14</span><span>Feldman et
                al.</span><span>2019</span></a></cite>. By applying <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> (assuming a single instantaneous
          admixture), we inferred that the Iran Neolithic gene flow occurred around 10,900 BCE
          (~12,200–9600 BCE). An alternate possibility is that there was a long period of gradual
          gene flow between the two groups and our dates reflect intermediate dates between the
          start and end of the gene flow. An upper bound for such a mixture comes from the lack of
          Iran Neolithic ancestry in AHGs at 13,000 BCE, and a lower bound comes from the C14 dates
          of early Anatolian farmers, one of which is directly dated at 8269–8210 BCE <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib14"><span>14</span><span>Feldman et al.</span><span>2019</span></a></cite>.
          In either case (instantaneous admixture or gradual gene flow), the genetic mixture that
          formed Anatolian farmers predates the advent of agriculture in this region <span
            itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib4"><span>4</span><span>Baird et
                  al.</span><span>2018</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib6"><span>6</span><span>Bellwood</span><span>2005</span></a></cite></span>.
          This supports the model that AHGs locally transitioned to agricultural subsistence, and
          most probably, there was cultural diffusion from other regions in Near East (Iran and
          Levant) <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib14"><span>14</span><span>Feldman et al.</span><span>2019</span></a></cite>.
          Future studies with more dense temporal sampling will shed light on the demographic
          processes that led to the transition from foraging to farming in the Near East, and in
          turn, elucidate the relative roles of demic and cultural diffusion in the dispersal of
          technologies like agriculture across populations.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Using data from 16 regions in
          Europe, we reconstruct a detailed chronology and dynamics of the expansion of Anatolian
          farmers during the Neolithic period. We infer that starting in ~6400 BCE, gene flow from
          Anatolian farmers became widespread across Europe, and by ~4300 BCE, it was present in
          almost all parts of continental Europe and the British Isles. These dates are
          significantly more recent than the estimates of farming based on archaeological evidence
          in some parts of Europe, suggesting that the local HGs and farmers coexisted for more than
          a millennium before the mixture occurred <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib24"><span>24</span><span>Haak et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib36"><span>36</span><span>Lipson
                  et al.</span><span>2017</span></a></cite></span>. In many regions, after the
          initial mixture, there was a resurgence of HG ancestry, highlighting the complexities of
          these ancient interactions. We note that our results are consistent with two previous
          genetic studies, <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib36"><span>36</span><span>Lipson et al.</span><span>2017</span></a></cite>,
          and <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib52"><span>52</span><span>Rivollat et al.</span><span>2020</span></a></cite>,
          that applied genetic dating methods to a subset of samples we used in our analysis. <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib36"><span>36</span><span>Lipson et al.</span><span>2017</span></a></cite>,
          used a modified version of ALDER to infer the timing of admixture in three regions (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em>=151). We obtained
          statistically consistent results for all overlapping samples (within two standard errors)
          (<a href="https://elifesciences.org/articles/77625#app1table6" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—table 6</a>). An advantage of our
          approach over the modified ALDER approach is that we do not rely on helper samples (higher
          coverage individuals combined with the target group) for dating; unless these have a
          similar ancestry profile, they could bias the inferred dates. Our results are concordant
          with <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib52"><span>52</span><span>Rivollat et al.</span><span>2020</span></a></cite>,
          that used a previous version of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> to infer the timing of Neolithic
          gene flow in 32 groups (vs. 86 groups in our study). We find the performance of both
          versions of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> is
          similar, though some implementation details have improved (<a
            href="https://elifesciences.org/articles/77625#app1table1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—table 1</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The second major migration
          occurred when populations associated with the Yamnaya culture in the Pontic-Caspian
          steppes expanded across Europe. Our analysis reveals the precise timing of the genetic
          formation of the early Steppe pastoralist groups – Yamnaya and Afanasievo – occurred
          ~4400–4000 BCE. This estimate predates the archaeological evidence by more than a
          millennium <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib2"><span>2</span><span>Anthony</span><span>2007</span></a></cite> and
          suggests the presence of an ancient ‘ghost’ population of proto-Yamnaya around this time.
          Understanding the source and location of this ghost population will provide deep insights
          into the history of Pontic-Caspian cultures and the origin of Indo-European languages that
          have been associated to have spread with Steppe pastoralists ancestry to Europe and South
          Asia <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib24"><span>24</span><span>Haak et
                  al.</span><span>2015</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib33"><span>33</span><span>Kassian
                  et al.</span><span>2021</span></a></cite></span>. Starting in ~3200 BCE, the
          Yamnaya-derived cultures of CWC and BBC spread westwards, bringing Steppe
          pastoralist-related ancestry to Europe. Our analysis reveals striking differences in the
          spread of these two cultures: the CWC formation is similar across diverse regions
          separated by thousands of kilometers, suggesting a rapid spread after the initial
          formation of this group, while the spread of BBC culture was more complex and
          heterogeneous across regions. We find the earliest evidence of Steppe pastoralist-related
          ancestry in Iberia around 3200 BCE, though this ancestry only becomes widespread after
          2500 BCE. In central Europe, the gene flow occurred simultaneously with archaeological
          evidence and was coexisting with the CWC in some parts <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib57"><span>57</span><span>Willigen
                  and van</span><span>2001</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib44"><span>44</span><span>Olalde
                  et al.</span><span>2018</span></a></cite></span>. Finally, in the British Isles,
          the Bell Beaker culture spreads rapidly from central Europe and replaces almost 90% of the
          ancestry of individuals in this region <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib44"><span>44</span><span>Olalde et
                al.</span><span>2018</span></a></cite>.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Recent analysis has shown
          remarkable parallels in the history of Europe and South Asia; with both groups deriving
          ancestry from local indigenous HGs, Near Eastern farmers, and Steppe pastoralist-related
          groups <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib43"><span>43</span><span>Narasimhan et
                al.</span><span>2019</span></a></cite>. Interestingly, however, the timing of the
          two major migrations events differs across the two subcontinents. Both mixtures occurred
          in Europe almost a millennium before they occurred in South Asia. In Europe, the Neolithic
          migrations primarily involved Anatolian farmers, while the source of Neolithic ancestry is
          closer to Iran Neolithic farmers in South Asia. The Steppe pastoralist-related gene flow
          occurred in the context of the spread of CWC and BBC cultures in Europe around 3200–2500
          BCE; in South Asia, this ancestry arrived with Steppe MLB A cultures that were formed much
          later in 1800–1500 BCE <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib43"><span>43</span><span>Narasimhan et
                al.</span><span>2019</span></a></cite>. The Steppe MLBA groups have ancestry from
          Steppe pastoralist derived groups and European Neolithic farmers following the eastward
          expansion of CWC groups between ~3200 and 2700 BCE. Understanding the origin and migration
          paths of the ancestral groups thus helps to illuminate the differences in the timeline of
          the spread of Steppe pastoralists across the two subcontinents of Eurasia.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Genomic dating methods like <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> provide an
          independent and complementary approach for reconstructing population history. By focusing
          on the genetic clock based on recombination rate, we provide an independent estimate of
          the timing of evolutionary events up to several thousands of years. Our analysis also has
          advantages over the temporal sampling of ancient DNA, in that we can obtain direct
          estimates of when a population was formed, rather than inferring putative bounds for the
          timing based on the absence/presence of a particular ancestry signature (which may be
          sensitive to sampling choice or density). Genetic approaches provide complementary
          evidence to archaeology and linguistics as they date the time of admixture and not
          migration. Both dates are similar in many contemporary populations like African Americans
          and Latinos, though this may not be generally true <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib27"><span>27</span><span>Hellenthal
                et al.</span><span>2014</span></a></cite>. This is underscored by our dates for the
          Anatolian farmer-related mixture, which postdates evidence of material culture related to
          agriculture by almost two millennia in some regions. This suggests that European HGs and
          farmers resided side by side for several thousand years before mixing <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib7"><span>7</span><span>Bollongino
                  et al.</span><span>2013</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib54"><span>54</span><span>Skoglund
                  et al.</span><span>2014</span></a></cite></span>. This underscores how genetic
          dates can provide complementary evidence to archaeology and help to build a comprehensive
          picture of population origins and movements.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="materials-and-methods">
          Materials and methods</h2>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="dataset">Dataset</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We analyzed 1096 ancient
          European samples from 152 groups restricting to data from 1,233,013 autosomal SNP
          positions that were genotyped using the Affymetrix Human Origins array (the V44.3 release
          of the AADR; <a
            href="https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data"
            itemscope=""
            itemtype="http://schema.stenci.la/Link">https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data</a>).
          We filtered this dataset to remove samples that were marked as contaminated, low coverage,
          outliers, duplicates, or first- or second-degree relatives. We grouped individuals
          together from a particular culture or region. Details of sample affiliation and grouping
          used is described in <a href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1A</a>.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="modeling-admixture-history">
          Modeling admixture history</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We applied <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">qpAdm</em> from ADMIXTOOLS to identify the
          best fitting model and estimate the ancestry proportions in a target population modeled as
          a mixture of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">n</em>
          ‘reference’ populations using a set of ‘Outgroup’ populations <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib24"><span>24</span><span>Haak et
                al.</span><span>2015</span></a></cite>. We set the details: YES parameter, which
          reports a normally distributed Z-score to evaluate the goodness of fit of the model
          (standard errors were estimated with a Block Jackknife). For each target population, we
          chose the most parsimonious model, that is, fitting the data with the minimum number of
          source populations. We excluded models where the p-value &lt; 0.05 indicating a poor fit
          to the data. Details of the <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">qpAdm</em> analysis for each group are
          reported in <a href="https://elifesciences.org/articles/77625#supp2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 2</a>. We also applied <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">D</em>-statistics in some cases
          using <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">qpDstat</em> in
          ADMIXTOOLS with default parameters.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="dates-model-and-implementation"><em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em>: model and implementation</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> leverages the weighted ancestry
          covariance patterns across the genome of an admixed individual to infer the time of
          admixture. This method extends the idea introduced in ROLLOFF and ALDER and <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib41"><span>41</span><span>Moorjani et al.</span><span>2016</span></a></cite>
          to be applicable to dating admixture events between modern human populations using a
          single genome.</p>
        <h4 itemscope="" itemtype="http://schema.stenci.la/Heading" id="basic-model-and-notation">
          Basic model and notation</h4>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Assume we have an admixed
          individual <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C</em> with
          ancestry from source populations <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">A</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">B</em>, with ancestry proportion of <span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="\alpha"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span>
          and <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math"
                aria-label="\beta =\left(1-\alpha \right)"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.519em; padding-bottom: 0.446em; padding-right: 0.007em;">β</span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-mrow MJXc-space3"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span><span
                      class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                      class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span>,
          respectively. This mixture occurred <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="t"><span class="mjx-mrow" aria-hidden="true"><span
                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.372em; padding-bottom: 0.298em;">t</span></span></span></span></span></span>
          generations ago. First, we model the genotypes of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C</em> as a linear mix of allele frequencies
          of populations <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">A</em> and <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">B</em>. For any SNP <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">i</em>, let the genotype of <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">C</em> be <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{g}_{i}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"
                      style="margin-right: -0.003em;"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.003em;">g</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span></span></span></span>
          and allele frequency in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">A</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">B</em> be <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{p}_{A}\left(i\right)"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.446em;">p</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.36em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span></span></span></span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span>
          and <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="{p}_{B}\left(i\right)."><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-msubsup"><span
                      class="mjx-base"><span class="mjx-texatom"><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.446em;">p</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.36em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">B</span></span></span></span></span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                    class="mjx-mo MJXc-space1"><span class="mjx-char MJXc-TeX-main-R"
                      style="margin-top: -0.144em; padding-bottom: 0.372em;">.</span></span></span></span></span></span>
          We can then infer the mixing fraction <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\alpha"><span class="mjx-mrow" aria-hidden="true"><span
                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span>
          from population <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">A</em> by
          solving the simple linear regression by minimizing the residuals.</p><span itemscope=""
          itemtype="http://schema.stenci.la/MathBlock"><span class="mjx-chtml MJXc-display"
            style="text-align: center;"><span class="mjx-math"
              aria-label="R={\sum }_{i}{({g}_{i}-\left(\alpha {p}_{A}\left(i\right)+\left(1-\alpha \right){p}_{B}\left(i\right)\right))}^{2}"><span
                class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                    class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em;">R</span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span
                      class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mo"><span
                            class="mjx-char MJXc-TeX-size2-R"
                            style="padding-top: 0.74em; padding-bottom: 0.74em;"></span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.722em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                  class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                        class="mjx-mrow"><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                          class="mjx-msubsup"><span class="mjx-base"
                            style="margin-right: -0.003em;"><span class="mjx-texatom"><span
                                class="mjx-mrow"><span class="mjx-mi"><span
                                    class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.003em;">g</span></span></span></span></span><span
                            class="mjx-sub"
                            style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                              class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                          class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                          class="mjx-mrow MJXc-space2"><span class="mjx-mo"><span
                              class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span><span
                            class="mjx-msubsup"><span class="mjx-base"><span
                                class="mjx-texatom"><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.446em;">p</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.36em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span></span></span></span></span><span
                            class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                                class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                              class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span><span
                              class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                            class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                            class="mjx-mrow MJXc-space2"><span class="mjx-mo"><span
                                class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                              class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span><span
                              class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                              class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                                style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span><span
                              class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                            class="mjx-msubsup MJXc-space1"><span class="mjx-base"><span
                                class="mjx-texatom"><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.446em;">p</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.36em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.446em; padding-bottom: 0.298em;">B</span></span></span></span></span></span><span
                            class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                                class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                              class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span><span
                              class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                          class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span><span
                    class="mjx-sup"
                    style="font-size: 70.7%; vertical-align: 0.71em; padding-left: 0px; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mn"><span
                            class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span></span></span></span></span>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Let <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{a}_{i}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">a</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span></span></span></span>
          be the probability of observing <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{g}_{i}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"
                      style="margin-right: -0.003em;"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.003em;">g</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span></span></span></span>
          in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C</em> given the observed
          genotype in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">A,</em> and <span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="{b}_{i}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">b</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span></span></span></span>
          be the probability of observing <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{g}_{i}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"
                      style="margin-right: -0.003em;"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.003em;">g</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span></span></span></span>
          in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C</em> given the observed
          genotype in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">B</em></p><span
          itemscope="" itemtype="http://schema.stenci.la/MathBlock"><span
            class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"
              aria-label="{a}_{i}=P\left({g}_{i}\right|A)"><span class="mjx-mrow"
                aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"><span
                      class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.225em; padding-bottom: 0.298em;">a</span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.109em;">P</span></span><span
                  class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                      class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                    class="mjx-msubsup"><span class="mjx-base" style="margin-right: -0.003em;"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.003em;">g</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                    class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">|</span></span></span><span
                  class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span><span
                  class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span><span
          itemscope="" itemtype="http://schema.stenci.la/MathBlock"><span
            class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"
              aria-label="{b}_{i}=P\left({g}_{i}\right|B)"><span class="mjx-mrow"
                aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"><span
                      class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">b</span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.109em;">P</span></span><span
                  class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                      class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                    class="mjx-msubsup"><span class="mjx-base" style="margin-right: -0.003em;"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.003em;">g</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                    class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">|</span></span></span><span
                  class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em;">B</span></span><span
                  class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We can then compute the
          likelihood <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">L<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">i</sub></em> of observing a genotype
          <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="{g}_{i}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"
                      style="margin-right: -0.003em;"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.003em;">g</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.375em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span></span></span></span>
          in the admixed individual</p><span itemscope=""
          itemtype="http://schema.stenci.la/MathBlock"><span class="mjx-chtml MJXc-display"
            style="text-align: center;"><span class="mjx-math"
              aria-label="{L}_{i}=\alpha {a}_{i}+\beta {b}_{i}"><span class="mjx-mrow"
                aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"><span
                      class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">L</span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span><span
                  class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                        class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.225em; padding-bottom: 0.298em;">a</span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                  class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                  class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.519em; padding-bottom: 0.446em; padding-right: 0.007em;">β</span></span><span
                  class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                        class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">b</span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span></span></span></span>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">For a pair of neighboring
          markers <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S</em><sub
            itemscope="" itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">1</span></sub>, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub> located at a genetic distance
          of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">d</em> Morgans, the
          probability of no recombination between the two markers is given by <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\theta ={e}^{-td}."><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.519em; padding-bottom: 0.298em;">θ</span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span
                        class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span></span></span></span><span
                      class="mjx-sup"
                      style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.372em; padding-bottom: 0.298em;">t</span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span></span></span></span></span><span
                    class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                      style="margin-top: -0.144em; padding-bottom: 0.372em;">.</span></span></span></span></span></span>
          Accounting for recombination, the log-likelihood that the two markers have the same
          ancestry is then given by:</p><span itemscope=""
          itemtype="http://schema.stenci.la/MathBlock"><span class="mjx-chtml MJXc-display"
            style="text-align: center;"><span class="mjx-math"
              aria-label="\mathcal{L}=\mathcal{}\mathrm{l}\mathrm{o}\mathrm{g}[\left(1-\theta \right){L}_{1}{L}_{2}+\theta \left(\alpha {a}_{1}{a}_{2}+\beta {b}_{1}{b}_{2}\right)]"><span
                class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                    class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-cal-R"
                        style="padding-top: 0.446em; padding-bottom: 0.372em;">L</span></span></span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-texatom MJXc-space3"><span class="mjx-mrow"></span></span><span
                  class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.372em; padding-bottom: 0.372em;">l</span></span></span></span><span
                  class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.151em; padding-bottom: 0.372em;">o</span></span></span></span><span
                  class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.151em; padding-bottom: 0.519em;">g</span></span></span></span><span
                  class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.446em; padding-bottom: 0.593em;">[</span></span><span
                  class="mjx-mrow"><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                    class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span><span
                    class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                    class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.519em; padding-bottom: 0.298em;">θ</span></span><span
                    class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                  class="mjx-msubsup MJXc-space1"><span class="mjx-base"><span
                      class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">L</span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mn"><span
                            class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span></span></span></span><span
                  class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                        class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">L</span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mn"><span
                            class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span><span
                  class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                  class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.519em; padding-bottom: 0.298em;">θ</span></span><span
                  class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                      class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span><span
                    class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">a</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span></span></span></span><span
                    class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">a</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span><span
                    class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                    class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.519em; padding-bottom: 0.446em; padding-right: 0.007em;">β</span></span><span
                    class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">b</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span></span></span></span><span
                    class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">b</span></span></span></span></span><span
                      class="mjx-sub"
                      style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span><span
                    class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                  class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.446em; padding-bottom: 0.593em;">]</span></span></span></span></span></span>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Let <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">K<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">i</sub></em> represent the ancestry at
          marker <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript">i</sub></em>. Expanding as a power series
          in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">θ,</em> the coefficient of
          <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="\theta"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.519em; padding-bottom: 0.298em;">θ</span></span></span></span></span></span>
          is <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">QK<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript"><span
                data-itemtype="http://schema.org/Number">1</span></sub>K<sub itemscope=""
              itemtype="http://schema.stenci.la/Subscript"><span
                data-itemtype="http://schema.org/Number">2</span></sub>,</em> where</p><span
          itemscope="" itemtype="http://schema.stenci.la/MathBlock"><span
            class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"
              aria-label="Q=\alpha \beta"><span class="mjx-mrow" aria-hidden="true"><span
                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.519em; padding-bottom: 0.446em;">Q</span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span><span
                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.519em; padding-bottom: 0.446em; padding-right: 0.007em;">β</span></span></span></span></span></span><span
          itemscope="" itemtype="http://schema.stenci.la/MathBlock"><span
            class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"
              aria-label="{K}_{i}=\frac{\left({a}_{i}-{b}_{i}\right)}{{L}_{i}}"><span
                class="mjx-mrow" aria-hidden="true"><span class="mjx-msubsup"><span class="mjx-base"
                    style="margin-right: -0.04em;"><span class="mjx-texatom"><span
                        class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.04em;">K</span></span></span></span></span><span
                    class="mjx-sub"
                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-mfrac MJXc-space3"><span class="mjx-box MJXc-stacked"
                    style="width: 3.717em; padding: 0px 0.12em;"><span class="mjx-numerator"
                      style="width: 3.717em; top: -1.59em;"><span class="mjx-mrow"><span
                          class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                          class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                                class="mjx-mrow"><span class="mjx-mi"><span
                                    class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.225em; padding-bottom: 0.298em;">a</span></span></span></span></span><span
                            class="mjx-sub"
                            style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                              class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                          class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                          class="mjx-msubsup MJXc-space2"><span class="mjx-base"><span
                              class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                                    class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.446em; padding-bottom: 0.298em;">b</span></span></span></span></span><span
                            class="mjx-sub"
                            style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                              class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span><span
                          class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span><span
                      class="mjx-denominator" style="width: 3.717em; bottom: -0.924em;"><span
                        class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                              class="mjx-mrow"><span class="mjx-mi"><span
                                  class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.446em; padding-bottom: 0.298em;">L</span></span></span></span></span><span
                          class="mjx-sub"
                          style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                            class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span></span></span></span></span></span><span
                      style="border-bottom: 1.3px solid; top: -0.296em; width: 3.717em;"
                      class="mjx-line"></span></span><span
                    style="height: 2.514em; vertical-align: -0.924em;"
                    class="mjx-vsize"></span></span></span></span></span></span>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We can compute the ancestry
          covariance, <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">A(d</em>), across
          pairs of markers <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S</em><sub
            itemscope="" itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">1</span></sub>, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub> separated by distance <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">d</em> as</p><span itemscope=""
          itemtype="http://schema.stenci.la/MathBlock"><span class="mjx-chtml MJXc-display"
            style="text-align: center;"><span class="mjx-math"
              aria-label="A\left(d\right)=\frac{\sum _{s\left(d\right)}\left({K}_{1}-\overline{{K}_{1}}\right)\left({K}_{2}-\overline{{K}_{2}}\right)}{|S\left(d\right)|}"><span
                class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                    class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span><span
                  class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                      class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span><span
                    class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-mfrac MJXc-space3"><span class="mjx-box MJXc-stacked"
                    style="width: 12.216em; padding: 0px 0.12em;"><span class="mjx-numerator"
                      style="width: 12.216em; top: -2.389em;"><span class="mjx-mrow"><span
                          class="mjx-munderover"><span class="mjx-base"><span class="mjx-mo"><span
                                class="mjx-char MJXc-TeX-size1-R"
                                style="padding-top: 0.519em; padding-bottom: 0.519em;"></span></span></span><span
                            class="mjx-sub"
                            style="font-size: 70.7%; vertical-align: -0.439em; padding-right: 0.071em;"><span
                              class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.225em; padding-bottom: 0.298em;">s</span></span><span
                                  class="mjx-mrow"><span class="mjx-mo"><span
                                      class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span><span
                                    class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span><span
                          class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                              class="mjx-char MJXc-TeX-size2-R"
                              style="padding-top: 0.961em; padding-bottom: 0.961em;">(</span></span><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.04em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.04em;">K</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span></span></span></span><span
                            class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-munderover MJXc-space2"><span class="mjx-stack"><span
                                class="mjx-over"
                                style="font-size: 70.7%; height: 0.096em; padding-bottom: 0.283em; padding-top: 0.141em;"><span
                                  class="mjx-mo" style="vertical-align: top;"><span
                                    class="mjx-delim-h"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.301em; padding-bottom: 0.833em; margin: 0px -0.07em 0px -0.069em;">¯</span><span
                                      class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.301em; padding-bottom: 0.833em; letter-spacing: -0.274em; margin: 0px 0.048em 0px -0.187em;">¯¯¯¯¯</span><span
                                      class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.301em; padding-bottom: 0.833em; margin-right: -0.07em; margin-bottom: 0px; margin-top: 0px;">¯</span></span></span></span><span
                                class="mjx-op"><span class="mjx-msubsup"><span class="mjx-base"
                                    style="margin-right: -0.04em;"><span class="mjx-texatom"><span
                                        class="mjx-mrow"><span class="mjx-mi"><span
                                            class="mjx-char MJXc-TeX-math-I"
                                            style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.04em;">K</span></span></span></span></span><span
                                    class="mjx-sub"
                                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                                      class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                          class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                            style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span></span></span></span></span></span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-size2-R"
                              style="padding-top: 0.961em; padding-bottom: 0.961em;">)</span></span></span><span
                          class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                              class="mjx-char MJXc-TeX-size2-R"
                              style="padding-top: 0.961em; padding-bottom: 0.961em;">(</span></span><span
                            class="mjx-msubsup"><span class="mjx-base"
                              style="margin-right: -0.04em;"><span class="mjx-texatom"><span
                                  class="mjx-mrow"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.04em;">K</span></span></span></span></span><span
                              class="mjx-sub"
                              style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span><span
                            class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-munderover MJXc-space2"><span class="mjx-stack"><span
                                class="mjx-over"
                                style="font-size: 70.7%; height: 0.096em; padding-bottom: 0.283em; padding-top: 0.141em;"><span
                                  class="mjx-mo" style="vertical-align: top;"><span
                                    class="mjx-delim-h"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.301em; padding-bottom: 0.833em; margin: 0px -0.07em 0px -0.069em;">¯</span><span
                                      class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.301em; padding-bottom: 0.833em; letter-spacing: -0.274em; margin: 0px 0.048em 0px -0.187em;">¯¯¯¯¯</span><span
                                      class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.301em; padding-bottom: 0.833em; margin-right: -0.07em; margin-bottom: 0px; margin-top: 0px;">¯</span></span></span></span><span
                                class="mjx-op"><span class="mjx-msubsup"><span class="mjx-base"
                                    style="margin-right: -0.04em;"><span class="mjx-texatom"><span
                                        class="mjx-mrow"><span class="mjx-mi"><span
                                            class="mjx-char MJXc-TeX-math-I"
                                            style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.04em;">K</span></span></span></span></span><span
                                    class="mjx-sub"
                                    style="font-size: 70.7%; vertical-align: -0.212em; padding-right: 0.071em;"><span
                                      class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                          class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                            style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span></span></span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-size2-R"
                              style="padding-top: 0.961em; padding-bottom: 0.961em;">)</span></span></span></span></span><span
                      class="mjx-denominator" style="width: 12.216em; bottom: -1.09em;"><span
                        class="mjx-mrow"><span class="mjx-texatom"><span class="mjx-mrow"><span
                              class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.446em; padding-bottom: 0.593em;">|</span></span></span></span><span
                          class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.519em; padding-bottom: 0.298em; padding-right: 0.032em;">S</span></span><span
                          class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                              class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                          class="mjx-texatom MJXc-space1"><span class="mjx-mrow"><span
                              class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                style="padding-top: 0.446em; padding-bottom: 0.593em;">|</span></span></span></span></span></span><span
                      style="border-bottom: 1.3px solid; top: -0.296em; width: 12.216em;"
                      class="mjx-line"></span></span><span
                    style="height: 3.479em; vertical-align: -1.09em;"
                    class="mjx-vsize"></span></span></span></span></span></span>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">where <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S(d</em>) is a set of markers <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">1</span></sub>, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub> located <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">d</em> Morgans apart.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The ancestry covariance <span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="A\left(d\right)"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                      class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span><span
                    class="mjx-mrow MJXc-space1"><span class="mjx-mo"><span
                        class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                      class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                        style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span><span
                      class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                        style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span>
          is expected to follow an exponential decay with <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">d</em> with the rate of decay depending on
          the time since admixture (<span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle t+1}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.372em; padding-bottom: 0.298em;">t</span></span><span
                            class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                            class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span></span></span></span></span></span></span></span>).
        </p><span itemscope="" itemtype="http://schema.stenci.la/MathBlock"><span
            class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"
              aria-label="A(d)\sim {e}^{-\left(t+1\right)d}"><span class="mjx-mrow"
                aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span><span
                  class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span><span
                  class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;"></span></span><span
                  class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span
                      class="mjx-texatom"><span class="mjx-mrow"><span class="mjx-mi"><span
                            class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span></span></span></span><span
                    class="mjx-sup"
                    style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0px; padding-right: 0.071em;"><span
                      class="mjx-texatom" style=""><span class="mjx-mrow"><span class="mjx-mo"><span
                            class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                          class="mjx-mrow"><span class="mjx-mo"><span
                              class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.372em; padding-bottom: 0.298em;">t</span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                            class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span><span
                          class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span></span></span></span></span></span></span></span></span>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The factor of (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">t</em>+1) comes from the insight that in the
          first generation following admixture, the admixed population derives one chromosome from
          each ancestral group. The mixing of chromosomes only begins in the following generations
          as the chromosomes recombine. This means that if we fit <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">t</em> generations, we are likely to
          underestimate the time of admixture. We note that previous methods like ALDER and ROLLOFF,
          however, incorrectly fit <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">t</em> generations to infer the time of
          mixture. In practice, however, this has little effect on the inference except maybe in
          case of very recent admixture dates. We infer the time of the mixture by fitting an
          exponential distribution with affine term using least squares. <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> is applicable for dating
          admixture in a single individual. When multiple individuals from an admixed population are
          available, <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em>
          computes the log-likelihood by summing over all individuals.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="application-to-real-data">
          Application to real data</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We applied <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> using genome-wide SNP data from
          the target population and two reference populations. To infer the allele frequency in the
          ancestral populations more reliably, where specified, we pooled individuals deriving the
          majority of their ancestry from the population of interest (<a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1A</a>). We computed the
          weighted ancestry covariance between 0.45 cM (centiMorgans) (to minimize the impact of
          background LD) and 100 cM, with a bin size of 0.1 cM. We plotted the weighted covariance
          with genetic distance and obtained a date by fitting an exponential function with an
          affine term <span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="y=A{e}^{-\lambda d}+c"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                      class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.006em;">y</span></span><span
                    class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                    class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.519em; padding-bottom: 0.298em;">A</span></span><span
                    class="mjx-msubsup"><span class="mjx-base"><span class="mjx-texatom"><span
                          class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span></span></span></span><span
                      class="mjx-sup"
                      style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span
                        class="mjx-texatom" style=""><span class="mjx-mrow"><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span></span></span></span></span><span
                    class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                    class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">c</span></span></span></span></span></span>,
          where <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">d</em> is the genetic
          distance in Morgans and <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\lambda"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span></span></span></span></span>
          = (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">t</em>+1) is the number of
          generations since admixture (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">t</em>). We computed standard errors using
          weighted block jackknife, where one chromosome was removed in each run <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib10"><span>10</span><span>Busing et
                al.</span><span>1999</span></a></cite>. Following <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib55"><span>55</span><span>Tournebize
                et al.</span><span>2020</span></a></cite>, we examined the quality of the
          exponential fit by computing the normalized root-mean-square deviation (NRMSD) between the
          empirical ancestry covariance values <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle z}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.003em;">z</span></span></span></span></span></span></span></span></span></span>
          and the fitted ones <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle \hat{z}}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-texatom"><span
                              class="mjx-mrow"><span class="mjx-munderover"><span
                                  class="mjx-stack"><span class="mjx-over"
                                    style="height: 0.213em; padding-bottom: 0.06em; padding-left: 0.067em;"><span
                                      class="mjx-mo" style="vertical-align: top;"><span
                                        class="mjx-char MJXc-TeX-main-R"
                                        style="padding-top: 0.372em; padding-bottom: 0.298em;">^</span></span></span><span
                                    class="mjx-op"><span class="mjx-mi"><span
                                        class="mjx-char MJXc-TeX-math-I"
                                        style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.003em;">z</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>,
          across all the genetic distance bins (Appendix 1).</p><span itemscope=""
          itemtype="http://schema.stenci.la/MathBlock"><span class="mjx-chtml MJXc-display"
            style="text-align: center;"><span class="mjx-math"
              aria-label="NRMSD=\frac{1}{max(\hat{z})-min(\hat{z})}\sqrt{\frac{\sum ^{D}(z-\hat{z}{)}^{2}}{N}}"><span
                class="mjx-mrow" aria-hidden="true"><span class="mjx-mi"><span
                    class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.085em;">N</span></span><span
                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em;">R</span></span><span
                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.081em;">M</span></span><span
                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.519em; padding-bottom: 0.298em; padding-right: 0.032em;">S</span></span><span
                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                    style="padding-top: 0.446em; padding-bottom: 0.298em;">D</span></span><span
                  class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                    style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                  class="mjx-mfrac MJXc-space3"><span class="mjx-box MJXc-stacked"
                    style="width: 7.914em; padding: 0px 0.12em;"><span class="mjx-numerator"
                      style="width: 7.914em; top: -1.368em;"><span class="mjx-mn"><span
                          class="mjx-char MJXc-TeX-main-R"
                          style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span></span><span
                      class="mjx-denominator" style="width: 7.914em; bottom: -1.09em;"><span
                        class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.225em; padding-bottom: 0.298em;">m</span></span><span
                          class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.225em; padding-bottom: 0.298em;">a</span></span><span
                          class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.225em; padding-bottom: 0.298em;">x</span></span><span
                          class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                          class="mjx-texatom"><span class="mjx-mrow"><span
                              class="mjx-munderover"><span class="mjx-stack"><span class="mjx-over"
                                  style="height: 0.213em; padding-bottom: 0.06em; padding-left: 0.067em;"><span
                                    class="mjx-mo" style="vertical-align: top;"><span
                                      class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.298em;">^</span></span></span><span
                                  class="mjx-op"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.003em;">z</span></span></span></span></span></span></span><span
                          class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span><span
                          class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                          class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.225em; padding-bottom: 0.298em;">m</span></span><span
                          class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.446em; padding-bottom: 0.298em;">i</span></span><span
                          class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                            style="padding-top: 0.225em; padding-bottom: 0.298em;">n</span></span><span
                          class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                          class="mjx-texatom"><span class="mjx-mrow"><span
                              class="mjx-munderover"><span class="mjx-stack"><span class="mjx-over"
                                  style="height: 0.213em; padding-bottom: 0.06em; padding-left: 0.067em;"><span
                                    class="mjx-mo" style="vertical-align: top;"><span
                                      class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.372em; padding-bottom: 0.298em;">^</span></span></span><span
                                  class="mjx-op"><span class="mjx-mi"><span
                                      class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.003em;">z</span></span></span></span></span></span></span><span
                          class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                            style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span><span
                      style="border-bottom: 1.3px solid; top: -0.296em; width: 7.914em;"
                      class="mjx-line"></span></span><span
                    style="height: 2.458em; vertical-align: -1.09em;"
                    class="mjx-vsize"></span></span><span class="mjx-msqrt"><span class="mjx-box"
                    style="padding-top: 0.045em;"><span class="mjx-surd"><span
                        class="mjx-char MJXc-TeX-size4-R"
                        style="padding-top: 1.551em; padding-bottom: 1.551em;"></span></span><span
                      class="mjx-box" style="padding-top: 0.144em; border-top: 1px solid;"><span
                        class="mjx-mrow"><span class="mjx-mfrac"><span class="mjx-box MJXc-stacked"
                            style="width: 5.301em; padding: 0px 0.12em;"><span class="mjx-numerator"
                              style="width: 5.301em; top: -1.818em;"><span class="mjx-mrow"><span
                                  class="mjx-munderover"><span class="mjx-base"><span
                                      class="mjx-mo"><span class="mjx-char MJXc-TeX-size1-R"
                                        style="padding-top: 0.519em; padding-bottom: 0.519em;"></span></span></span><span
                                    class="mjx-sup"
                                    style="font-size: 70.7%; vertical-align: 0.71em; padding-left: 0px; padding-right: 0.071em;"><span
                                      class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                          class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                            style="padding-top: 0.446em; padding-bottom: 0.298em;">D</span></span></span></span></span></span><span
                                  class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                    style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                                  class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                    style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.003em;">z</span></span><span
                                  class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                                    style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                                  class="mjx-texatom MJXc-space2"><span class="mjx-mrow"><span
                                      class="mjx-munderover"><span class="mjx-stack"><span
                                          class="mjx-over"
                                          style="height: 0.213em; padding-bottom: 0.06em; padding-left: 0.067em;"><span
                                            class="mjx-mo" style="vertical-align: top;"><span
                                              class="mjx-char MJXc-TeX-main-R"
                                              style="padding-top: 0.372em; padding-bottom: 0.298em;">^</span></span></span><span
                                          class="mjx-op"><span class="mjx-mi"><span
                                              class="mjx-char MJXc-TeX-math-I"
                                              style="padding-top: 0.225em; padding-bottom: 0.298em; padding-right: 0.003em;">z</span></span></span></span></span></span></span><span
                                  class="mjx-msubsup"><span class="mjx-base"><span
                                      class="mjx-texatom"><span class="mjx-mrow"><span
                                          class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                            style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span><span
                                    class="mjx-sup"
                                    style="font-size: 70.7%; vertical-align: 0.71em; padding-left: 0px; padding-right: 0.071em;"><span
                                      class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                          class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                                            style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span></span></span></span></span></span></span><span
                              class="mjx-denominator"
                              style="width: 5.301em; bottom: -0.773em;"><span class="mjx-mi"><span
                                  class="mjx-char MJXc-TeX-math-I"
                                  style="padding-top: 0.446em; padding-bottom: 0.298em; padding-right: 0.085em;">N</span></span></span><span
                              style="border-bottom: 1.3px solid; top: -0.296em; width: 5.301em;"
                              class="mjx-line"></span></span><span
                            style="height: 2.591em; vertical-align: -0.773em;"
                            class="mjx-vsize"></span></span></span></span></span></span></span></span></span></span>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The estimated dates of
          admixture were considered significant if the (a) <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Z</em>-score &gt; 2, (b) <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\lambda"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span></span></span></span></span>
          &lt; 200 generations and (c) NRMSD &lt; 0.7. We converted the inferred dates from
          generations to years by assuming a mean generation time of 28 years <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib41"><span>41</span><span>Moorjani
                et al.</span><span>2016</span></a></cite>. For ancient samples, we added the
          sampling age of the ancient specimen (<a
            href="https://elifesciences.org/articles/77625#supp1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Supplementary file 1A</a>). When multiple
          individuals were available, we used the average sampling ages to offset the admixture
          dates. We report dates in BCE by assuming the 1950 convention.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="comparison-of-old-and-new-version-of-dates">Comparison of old and new version of <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em></h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">An earlier version of <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> (version v753) was
          released in <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib43"><span>43</span><span>Narasimhan et
                al.</span><span>2019</span></a></cite>. The current method (version 4010) released
          in this study differs in some key aspects of the implementation as described below.</p>
        <ol itemscope="" itemtype="http://schema.org/ItemList">
          <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement">
            <meta itemprop="position" content="1">
            <meta itemprop="url" content="#1">Use of regression model vs. likelihood approach: In
            v753, we used a regression model to infer the residuals at each site in the genotype by
            conditioning on the allele frequency in the reference population and the genome-wide
            estimate of the admixture proportion <cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib43"><span>43</span><span>Narasimhan et
                  al.</span><span>2019</span></a></cite>. In contrast, in the current version
            (v4010), we use a more rigorous likelihood framework where we infer the probability of
            ancestry from each reference population at each site in the genome (<a href="#equ5"
              itemscope="" itemtype="http://schema.stenci.la/Link">Equation 3</a>).
          </li>
          <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement">
            <meta itemprop="position" content="2">
            <meta itemprop="url" content="#2">Rate of decay of exponential fit: In v753, like ALDER
            and ROLLOFF, we fit an exponential decay with the rate of <em itemscope=""
              itemtype="http://schema.stenci.la/Emphasis">t</em> generations. However, this assumes
            that mosaic chromosomes are formed in the generation when the gene flow occurs. However,
            in reality, the mixing of ancestry only begins in the following generations as the
            chromosomes of distinct ancestry recombine. To correctly account for this effect, we fit
            an exponential with the rate of (<em itemscope=""
              itemtype="http://schema.stenci.la/Emphasis">t</em>+1) in <em itemscope=""
              itemtype="http://schema.stenci.la/Emphasis">DATES</em> v4010. In practice, this has a
            minor effect on the dates reported earlier, as in most cases the uncertainty is much
            larger than one generation.
          </li>
          <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement">
            <meta itemprop="position" content="3">
            <meta itemprop="url" content="#3">Goodness of fit test: In v4010, we implemented the
            NRMSD to assess the fit of the exponential curve. NRMSD computes the deviation between
            the empirical estimate and fitted data in order to provide a statistical way to
            characterize the noisiness of the fitted curve. Lower values of NRMSD suggest a better
            fit, however, there is no clear interpretation of the absolute value of NRMSD. Based on
            the empirical distribution of NRMSD values in our study samples (<a
              href="https://elifesciences.org/articles/77625#app1fig3" itemscope=""
              itemtype="http://schema.stenci.la/Link">Appendix 1—figure 3</a>), we infer a
            conservative threshold of 0.7 to define a ‘good’ fit. We caution that users should
            adjust this threshold based on their application and always visually inspect their
            exponential fits to ensure reliable results.
          </li>
          <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement">
            <meta itemprop="position" content="4">
            <meta itemprop="url" content="#4">Support for arbitrary number of chromosomes: Unlike
            v753 that was optimized for parameters in humans, the new version supports an arbitrary
            number of chromosomes (inputted by the user) so <em itemscope=""
              itemtype="http://schema.stenci.la/Emphasis">DATES</em> can be used in any species.
          </li>
        </ol>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">A comparison of the two version
          of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> using simulated
          data (<a href="https://elifesciences.org/articles/77625#app1table1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—table 1</a>) and empirical data (<a
            href="https://elifesciences.org/articles/77625#app1table2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—table 2</a>, <a
            href="https://elifesciences.org/articles/77625#app1table3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Appendix 1—table 3</a>) yields qualitatively
          similar results.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="simulations">Simulations
        </h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We constructed admixed genomes
          following the approach described in <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib40"><span>40</span><span>Moorjani
                et al.</span><span>2011</span></a></cite>. This method requires phased haplotypes
          from two source populations and uses two key parameters to simulate data from admixed
          individuals, (a) the mixture proportion (<span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle \alpha }"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span></span></span></span></span>)
          that represents the probability that a particular sampled haplotype comes from one of the
          reference panels, namely <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">source</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">1</span></sub> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">source</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub>, and (b) the time of mixture
          (<span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="{\displaystyle \lambda }"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                      class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span></span></span></span></span></span></span></span></span>)
          which is the number of generations since mixture. To simulate an admixed individual, we
          begin at the start of the chromosome and sample a haplotype from either <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">source</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">1</span></sub> with a probability (<span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="\alpha"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span>)
          and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">source</em><sub
            itemscope="" itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub> with a probability (<span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="{\displaystyle 1-\alpha }"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                      class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span
                            class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span><span
                            class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span></span></span></span></span>).
          At each subsequent marker, we check if there was a recombination event between the two
          neighboring markers. A recombination event occurs with a probability of (<span
            itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math"
                aria-label="{\displaystyle 1-{e}^{-\lambda g}}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-mn"><span
                              class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span><span
                            class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                            class="mjx-msubsup MJXc-space2"><span class="mjx-base"><span
                                class="mjx-texatom"><span class="mjx-mrow"><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.298em;">e</span></span></span></span></span><span
                              class="mjx-sup"
                              style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0px; padding-right: 0.071em;"><span
                                class="mjx-texatom" style=""><span class="mjx-mrow"><span
                                    class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                                      style="padding-top: 0.298em; padding-bottom: 0.446em;"></span></span><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span><span
                                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                                      style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.003em;">g</span></span></span></span></span></span></span></span></span></span></span></span></span></span>),
          where <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">g</em> is the genetic
          distance in Morgans. We use the time of <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="{\displaystyle \lambda =(t+1)}"><span class="mjx-mrow"
                  aria-hidden="true"><span class="mjx-texatom"><span class="mjx-mrow"><span
                        class="mjx-mstyle"><span class="mjx-mrow"><span class="mjx-mi"><span
                              class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span><span
                            class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span
                            class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.372em; padding-bottom: 0.298em;">t</span></span><span
                            class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.298em; padding-bottom: 0.446em;">+</span></span><span
                            class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.372em; padding-bottom: 0.372em;">1</span></span><span
                            class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R"
                              style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span></span></span></span>
          generations to account for the fact that in the first generation following admixture, the
          offspring inherits one chromosome of each ancestry. In the next generation, the crossovers
          lead to a mixing of ancestry. Thus, when a recombination event occurs, we resample the
          ancestry between <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">source</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">1</span></sub> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">source</em><sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub>, otherwise, we copy the
          haplotype from the same source population. (Note, a recombination event can lead to a
          switch to a haplotype of the same ancestry.) Once the ancestry is chosen, we randomly pick
          a haplotype from the ancestral pool (without replacement) and copy its sequence to the
          genome of the admixed individual. This process is continued until we reach the end of the
          chromosome. Using this approach, we generate the genomes of <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="n"><span class="mjx-mrow" aria-hidden="true"><span
                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">n</span></span></span></span></span></span>
          admixed individuals. The simulated haploid chromosomes are merged at random to construct
          diploid admixed individuals. This algorithm requires more than <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="2n"><span class="mjx-mrow" aria-hidden="true"><span
                    class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"
                      style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span
                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">n</span></span></span></span></span></span>
          ancestral haplotypes for generating data for <span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="n"><span class="mjx-mrow" aria-hidden="true"><span
                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">n</span></span></span></span></span></span>
          diploid admixed individuals <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib40"><span>40</span><span>Moorjani et al.</span><span>2011</span></a></cite>.
          For more than two reference populations, the same algorithm is repeated iteratively.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We used 111 CEU and 112 YRI
          phased 1000 genomes phase 3 dataset <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite"><a href="#bib3"><span>3</span><span>Auton et
                al.</span><span>2015</span></a></cite> for generating 10 admixed genomes for
          ~380,000 SNPs (unless otherwise stated). For the inference, we used French and Yoruba from
          HGDP <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib35"><span>35</span><span>Li et al.</span><span>2008</span></a></cite>. We
          generated data for various demographic scenarios, where we varied the time the admixture
          (<span itemscope="" itemtype="http://schema.stenci.la/MathFragment"><span
              class="mjx-chtml"><span class="mjx-math" aria-label="{\displaystyle \lambda }"><span
                  class="mjx-mrow" aria-hidden="true"><span class="mjx-texatom"><span
                      class="mjx-mrow"><span class="mjx-mstyle"><span class="mjx-mrow"><span
                            class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                              style="padding-top: 0.446em; padding-bottom: 0.298em;">λ</span></span></span></span></span></span></span></span></span></span>),
          proportion of mixture (<span itemscope=""
            itemtype="http://schema.stenci.la/MathFragment"><span class="mjx-chtml"><span
                class="mjx-math" aria-label="\alpha"><span class="mjx-mrow" aria-hidden="true"><span
                    class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I"
                      style="padding-top: 0.225em; padding-bottom: 0.298em;">α</span></span></span></span></span></span>),
          sample size in the reference and target populations, divergence between the ancestral and
          reference populations used and studied their impact on the estimated dates. We also
          characterized the impact of features of ancient DNA such as missing data, pseudo-haploid
          genotypes, and limited sample size. In order to simulate pseudo-haploid genotypes, we
          randomly sampled an allele at each heterozygous site and assigned it as the homozygous
          genotype at that site <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib26"><span>26</span><span>Harney et al.</span><span>2021</span></a></cite>.
          To generate missing data, we set the genotype call at a site as ‘missing’ or ‘unknown’ (in
          eigenstrat format as <em itemscope="" itemtype="http://schema.stenci.la/Emphasis"><span
              data-itemtype="http://schema.org/Number">9</span></em>) where the proportion of
          missing genotypes ranged between 5% and 60% in our simulations. We also evaluated the
          impact of the choice of reference populations used in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">DATES</em> in case of simple and multiple
          pulses of admixture.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To study the impact of complex
          scenarios of admixture involving founder events and continuous gene flow, we used a
          coalescent simulator, MaCs <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib12"><span>12</span><span>Chen et al.</span><span>2009</span></a></cite>. We
          simulated 100 Mb of three populations with an effective population size of 12,500,
          mutation rate of 1.2 × 10<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript">–8</sup> and recombination rate 1 ×
          10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">–8</sup> per base pair
          per generation, respectively <span itemscope=""
            itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a
                href="#bib25"><span>25</span><span>Halldorsson et
                  al.</span><span>2019</span></a></cite><cite itemscope=""
              itemtype="http://schema.stenci.la/Cite"><a href="#bib31"><span>31</span><span>Jónsson
                  et al.</span><span>2017</span></a></cite></span>. We assumed the admixture
          occurred continuously over a period of time or was followed by the bottleneck. In case of
          the latter, the duration of the bottleneck was 1–10 generations with reduction in
          effective population size from 12,500 to 10–1000 and the population recovered to its
          original size after the bottleneck or maintained a small size until present (no recovery
          founder event). For each simulation, we generated data for two haploid chromosomes and
          combined these to generate one diploid chromosome.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="software-availability">
          Software availability</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The executable and source code
          for <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">DATES</em> will be
          available on GitHub: <a href="https://github.com/MoorjaniLab/DATES_v4010" itemscope=""
            itemtype="http://schema.stenci.la/Link">https://github.com/MoorjaniLab/DATES_v4010</a>
          (copy archived at <a
            href="https://archive.softwareheritage.org/swh:1:dir:0cd95e97a6e3186515f8812dca928ba30829d132;origin=https://github.com/MoorjaniLab/DATES_v4010;visit=swh:1:snp:bb2c8ef48a7ffe4366f654ee057c257c7780e88c;anchor=swh:1:rev:e034dc0d6fe8d41a828796f07791d50011b6bb04"
            itemscope=""
            itemtype="http://schema.stenci.la/Link">swh:1:rev:e034dc0d6fe8d41a828796f07791d50011b6bb04</a>;
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a
              href="#bib13"><span>13</span><span>Chintalapati et
                al.</span><span>2022</span></a></cite>).</p>
        <section data-itemprop="references">
          <h2 data-itemtype="http://schema.stenci.la/Heading">References</h2>
          <ol>
            <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="bib1">
              <ol data-itemprop="authors">
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="ME Allentoft"><span
                    data-itemprop="givenNames"><span itemprop="givenName">ME</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Allentoft</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Sikora"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Sikora</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="K-G Sjögren"><span data-itemprop="givenNames"><span
                      itemprop="givenName">K-G</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Sjögren</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="S Rasmussen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">S</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Rasmussen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="M Rasmussen"><span data-itemprop="givenNames"><span
                      itemprop="givenName">M</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Rasmussen</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Stenderup"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Stenderup</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="PB Damgaard"><span data-itemprop="givenNames"><span
                      itemprop="givenName">PB</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Damgaard</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="H Schroeder"><span data-itemprop="givenNames"><span
                      itemprop="givenName">H</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Schroeder</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="T Ahlström"><span data-itemprop="givenNames"><span
                      itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Ahlström</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="L Vinner"><span data-itemprop="givenNames"><span
                      itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Vinner</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A-S Malaspinas"><span
                    data-itemprop="givenNames"><span itemprop="givenName">A-S</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Malaspinas</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A Margaryan"><span data-itemprop="givenNames"><span
                      itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Margaryan</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="T Higham"><span data-itemprop="givenNames"><span
                      itemprop="givenName">T</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Higham</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="D Chivall"><span data-itemprop="givenNames"><span
                      itemprop="givenName">D</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Chivall</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="N Lynnerup"><span data-itemprop="givenNames"><span
                      itemprop="givenName">N</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Lynnerup</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="L Harvig"><span data-itemprop="givenNames"><span
                      itemprop="givenName">L</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Harvig</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="J Baron"><span data-itemprop="givenNames"><span
                      itemprop="givenName">J</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Baron</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="P Della Casa"><span
                    data-itemprop="givenNames"><span itemprop="givenName">P</span></span><span
                    data-itemprop="familyNames"><span itemprop="familyName">Della Casa</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="P Dąbrowski"><span data-itemprop="givenNames"><span
                      itemprop="givenName">P</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Dąbrowski</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="PR Duffy"><span data-itemprop="givenNames"><span
                      itemprop="givenName">PR</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Duffy</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="AV Ebel"><span data-itemprop="givenNames"><span
                      itemprop="givenName">AV</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Ebel</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="A Epimakhov"><span data-itemprop="givenNames"><span
                      itemprop="givenName">A</span></span><span data-itemprop="familyNames"><span
                      itemprop="familyName">Epimakhov</span></span>
                </li>
                <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
                  <meta itemprop="name" content="K Frei"><span data-itemprop="givenNames"><span
                      itemprop="givenName">K</span></span><span data-itemprop="familyNames"><span
                      itemprop="