<html lang="en"> <head> <title>epitopepredict: a tool for integrated MHC binding prediction</title> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <link href="https://unpkg.com/@stencila/thema@2/dist/themes/giga/styles.css" rel="stylesheet"> <script src="https://unpkg.com/@stencila/thema@2/dist/themes/giga/index.js" type="text/javascript"></script> <script src="https://unpkg.com/@stencila/components@<=1/dist/stencila-components/stencila-components.esm.js" type="module"></script> <script src="https://unpkg.com/@stencila/components@<=1/dist/stencila-components/stencila-components.js" type="text/javascript" nomodule=""></script> </head> <body> <main role="main"> <article itemscope="" itemtype="http://schema.org/Article" data-itemscope="root"> <h1 itemprop="headline">epitopepredict: a tool for integrated MHC binding prediction</h1> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=epitopepredict:%20a%20tool%20for%20integrated%20MHC%20binding%20prediction"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Damien Farrell"><span data-itemprop="givenNames"><span itemprop="givenName">Damien</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Farrell</span></span><span data-itemprop="emails"><a itemprop="email" href="mailto:farrell.damien@gmail.com">farrell.damien@gmail.com</a></span><span data-itemprop="affiliations"><a itemprop="affiliation" href="#author-organization-1">1</a></span> </li> </ol> <ol data-itemprop="affiliations"> <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-1" id="author-organization-1"><span itemprop="name">UCD School of Veterinary Medicine, University College Dublin, Ireland.</span></li> </ol><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"> <meta itemprop="name" content="Unknown"><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown"> </span> </span> <ul data-itemprop="keywords"> <li itemprop="keywords">Software and Workflows</li> <li itemprop="keywords">Biomedical Science</li> <li itemprop="keywords">Bioinformatics</li> </ul> <section data-itemprop="description"> <h2 data-itemtype="http://schema.stenci.la/Heading">Abstract</h2> <meta itemprop="description" content="A key step in the cellular adaptive immune response is the presentation of antigens to T cells. Computational prediction of T cell epitopes has many applications in vaccine design and immuno-diagnostics. This is the basis of immunoinformatics, which allows in silico screening of peptides before experiments are performed. With the availability of whole genomes for many microbial species it is now feasible to computationally screen whole proteomes for candidate peptides. epitopepredict is a programmatic framework and command line tool designed to aid this process. It provides access to multiple binding prediction algorithms under a single interface and scales for whole genomes using multiple target MHC alleles. A web interface is provided to assist visualization and filtering of the results. The software is freely available under an open-source license from https://github.com/dmnfarrell/epitopepredict"> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">A key step in the cellular adaptive immune response is the presentation of antigens to T cells. Computational prediction of T cell epitopes has many applications in vaccine design and immuno-diagnostics. This is the basis of immunoinformatics, which allows <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">in silico</em> screening of peptides before experiments are performed. With the availability of whole genomes for many microbial species it is now feasible to computationally screen whole proteomes for candidate peptides. epitopepredict is a programmatic framework and command line tool designed to aid this process. It provides access to multiple binding prediction algorithms under a single interface and scales for whole genomes using multiple target MHC alleles. A web interface is provided to assist visualization and filtering of the results. The software is freely available under an open-source license from <a href="https://github.com/dmnfarrell/mhcpredict" itemscope="" itemtype="http://schema.stenci.la/Link">https://github.com/dmnfarrell/epitopepredict</a> </p> </section> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="background">Background</h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">An essential step in provoking adaptive immunity, delivered by the activated CD8+ or CD4+ T cells, is the recognition of epitopes by T cell receptors (TCR). During this process, short peptides processed from self or foreign proteins may be presented on the surface of the cell and bound to major histocompatibility complex (MHC) proteins for binding to T cell receptors. Those peptide-MHC combinations that bind and activate an immune response are called epitopes. This is the major determinant step and is computationally predictable. The most effective approach is to estimate the binding affinity of a given peptide fragment to MHC class I or II molecules. Algorithms that can identify MHC-class I or MHC-class II binding peptides rapidly and accurately are essential for vaccine development, neo-epitope discovery, and immunogenicity screening of protein therapeutics. Many MHC binding prediction methods exist for both class I and II and have been comprehensively reviewed <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref1"><span>1</span><span>Lundegaard et al., 2010</span></a></cite>. Currently the most effective methods are machine learning (ML) based approaches, which are trained on existing binding affinity data for a given MHC molecule. To do this, the peptide sequence is encoded and these features fit against the known affinity. To date, artificial neural networks (ANN) perform better at this task than other models such as linear regression. This is likely because the hidden layers in such networks are better able to account for the contribution of intrapeptide residue-residue interactions to the binding affinity. All methods vary in accuracy over MHC alleles depending on the availability of quality datasets. Pan-allele tools have been developed to deal with this issue <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref2"><span>2</span><span>Backert and Kohlbacher, 2015</span></a></cite>. These approaches can impute affinities for unknown alleles on the basis of neighboring MHC alleles with the highest sequence similarity and which have sufficient training data.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">By convention, peptides are selected using an arbitrary score threshold. For affinities, a threshold value of 500 nM is considered a binder and 50 nM a strong binder. The algorithms perform best at this classification task rather than re-producing exact affinities. This problem is intrinsic to ML-based approaches: the effect of the most dominant features is penalized intentionally to achieve better generalization on blind test data <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref3"><span>3</span><span>Domingos, 2012</span></a></cite>. Another source of the inaccuracy is the loss of sensitivity of experimental assays at either very high or low binding affinity regimes. As a consequence, epitope candidates for subsequent experimental validation selected by ranking the affinities may not necessarily be the best approach. Percentage ranking is now often the recommended method <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref4"><span>4</span><span>Chaves et al., 2012</span></a></cite>. However, the exact approach probably depends on the study in question. For example, searching a small number of proteins might mean taking the top ranked percentile from each sequence regardless of score. Threshold selection is discussed later in the examples.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="strategies-for-epitope-selection">Strategies for epitope selection</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">A typical approach to binder selection is to select the top n<sup itemscope="" itemtype="http://schema.stenci.la/Superscript">th</sup> percentile per protein rather than using an absolute threshold value; however, for whole proteome studies, this is likely to introduce multiple false positives from peptides in proteins that would otherwise score very low globally. We therefore include in our method a global standardization of the score over the entire proteome, similar to that used by Bremel et al. <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref5"><span>5</span><span>Bremel and Homan, 2010</span></a></cite> and others, by setting a global cut-off based on the top percentage of scores from the entire proteome. In addition, some alleles have a significantly higher score distribution and will dominate the results if a uniform score cut-off is applied; this applies in general to MHC binding predictors. Thus, separating global cut-off per allele so that low scoring alleles would be better represented is also advisable. This approach is consistent with recent work by Paul et al. <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref6"><span>6</span><span>Paul et al., 2013</span></a></cite> regarding allele-specific thresholds in MHC-I prediction. Three such alternative threshold strategies are provided in this library and discussed below.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="binding-promiscuity">Binding promiscuity</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Promiscuous MHC binders are defined in this context as those above the cutoffs in more than a given number of alleles. The rationale for this is that a peptide is more likely to be immunogenic in your target population if it is a binder in multiple alleles.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="tools-for-epitope-selection">Tools for epitope selection</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Software for T cell vaccine development or neoepitope prediction currently concentrates on using the binding prediction or eluted ligand likelihood as the main selection methods. Typically, when a binding prediction tool is published, the authors will provide a binary that can be used on the command line or via a web interface. Some tools provide both. Command line tools offer better control and perhaps higher throughput but may be harder to use for a general user. Virtually, all of these tools require users to input each sequence and its allele separately. It is then difficult or impossible to integrate results from multiple sequences and alleles. The results are often in different formats and it is not possible to compare between algorithms, for example.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">There are several computational pipelines that help a researcher to predict epitopes [<cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref7"><span>7</span><span>Schubert et al., 2013</span></a></cite>; <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref8"><span>8</span><span>Soria-Guerra et al., 2015</span></a></cite>]. Other commercial desktop software applications for epitope discovery are EpiMatrix <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref9"><span>9</span><span>De Groot and Martin, 2009</span></a></cite>. Commercial tools may be of high quality but are neither free nor open source, raising issues of reproducibility for academics. There is therefore a limited choice for users in readily available and easy to use tools.</p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="implementation"> Implementation</h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">This software is implemented entirely in Python <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref10"><span>10</span><span>Farrell, 2021</span></a></cite>. To achieve some level of uniformity between prediction methods, a standardized programmatic interface for executing the binding prediction methods and processing the results was designed. The results from each method can then be processed and visualized in a consistent manner. Prediction methods are implemented by inheriting from a Predictor object. Each predictor may wrap methods from other Python packages or call command line predictors. For example the TepitopePredictor uses the epitopepredict.tepitope module provided with this package. This approach allows us to integrate a new prediction method in a relatively straightforward and consistent manner. The prediction methods always return a Pandas DataFrame (Pandas, RRID:SCR_018214)[11] in a standard format. The predict_sequences method is used for multiple protein sequences and can be run in parallel. This can take a GenBank or fasta file as input. For large numbers of sequences the prediction function should be called with save=True so that the results are saved as each protein is completed to avoid memory issues, since many alleles might be called for each protein. Results are saved with one file per protein/sequence in csv format. More details on how to use the Python API are given in the online documentation and in the example notebooks referencing the examples below.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The web application is implemented in Tornado <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref12"><span>12</span></a></cite> using the Bokeh <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref13"><span>13</span><span>, 2010</span></a></cite> visualization library for making interactive plots.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="supported-mhc-binding-prediction-tools">Supported MHC binding prediction tools</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The following MHC binding prediction methods are supported through the API. This means they can be utilized via the command line tool. The first two are built into the package, the others require installation of external software by the user. NetMHC tools in particular have to be installed separately as they have a more restrictive academic license that does not allow them to be distributed by a third party or via a repository. Only the ‘pan specific’ versions of these tools are supported as they provide the best allelic coverage.</p> <ul itemscope="" itemtype="http://schema.org/ItemList"> <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement"> <meta itemprop="position" content="1"> <meta itemprop="url" content="#1">TEPITOPEpan <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref14"><span>14</span><span>Zhang et al., 2012</span></a></cite> is a position specific scoring matrix (PSSM) based algorithm. It uses 11 scoring matrices derived from combinatorial competitive binding assays on 11 HLA-DR alleles <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref15"><span>15</span><span>Sturniolo et al., 1999</span></a></cite>. This method is pan specific and covers 700 HLA-DR molecules with unknown binding specificities based on pocket similarity to the original set of 11 library sequences. We have implemented this algorithm as a Python module, thus it comes with the package. It is fast but not as accurate in benchmarks as netMHCIIpan with fewer alleles covered. </li> <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement"> <meta itemprop="position" content="2"> <meta itemprop="url" content="#2">The BasicMHC1 predictor is a built-in MHC-I prediction method further detailed below. It is implemented using the scikit-learn <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref16"><span>16</span><span>Abraham et al., 2014</span></a></cite> package. It only covers 103 MHC-I alleles and cannot currently be extrapolated for use with similar alleles (i.e. not pan specific) but provides a convenient alternative to the external tools. </li> <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement"> <meta itemprop="position" content="3"> <meta itemprop="url" content="#3">MHCflurry <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref17"><span>17</span><span>O'Donnell et al., 2018</span></a></cite> is an MHC-I predictor also using ANNs trained on affinity measurements. It currently covers 112 human alleles. This is an open-source tool available via pip and thus easy to install. It is recommended for MHC-I predictions unless there are alleles not covered. The latest supported version is 2.0.1. </li> <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement"> <meta itemprop="position" content="4"> <meta itemprop="url" content="#4">NetMHCpan <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref18"><span>18</span><span>Jurtz et al., 2017</span></a></cite> is an artificial neural network algorithm covering many human and animal MHC-I alleles. This is trained on both MS eluted ligand data and binding affinity data. It therefore returns two properties: either the likelihood of a peptide becoming a natural ligand, or the predicted binding affinity. Version 4.1 is currently supported. </li> <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement"> <meta itemprop="position" content="5"> <meta itemprop="url" content="#5">NetMHCIIpan <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref19"><span>19</span><span>Nielsen et al., 2010</span></a></cite> is also an ANN, trained on binding data for multiple MHC-II alleles. Predictions are now extended to all HLA-DR, DQ and DP known sequences as from version 3.0 <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref20"><span>20</span><span>Karosiene et al., 2013</span></a></cite>. Both this tool and netMHCpan have the broadest species support of any algorithms. They both have good web interfaces but are covered by free non-commercial academic licenses and the local versions must be installed separately. Version 3.0 is supported. </li> </ul> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="available-threshold-methods">Available threshold methods</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Thresholds for considering a peptide to be a binder are somewhat arbitrary. This tool provides three threshold methods. The results from each will overlap but will not be identical. These are applied per sequence/protein and per each allele using the currently loaded data. These three threshold methods are also available when calculating promiscuous binders. Ultimately, these are simply alternative methods of achieving the same result - reducing the set of predicted peptides.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><strong itemscope="" itemtype="http://schema.stenci.la/Strong">rank</strong> – Selects the top ranking peptides in each sequence above a rank cutoff. This is the most frequently recommended method of binder selection in general.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><strong itemscope="" itemtype="http://schema.stenci.la/Strong">score</strong> - Uses a single score cutoff for all peptides. Most binding predictors produce a binding affinity score (ic50) and a cutoff of 500 nM is common. There is no rule over which score cutoff is optimal, however. Some alleles will tend to produce higher scores. Also, unless some limit is placed on the number of peptides, large proteins will produce a lot of peptides compared to smaller sequences.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><strong itemscope="" itemtype="http://schema.stenci.la/Strong">global</strong> - Allele specific ‘global’ cutoffs, this uses a percentile cutoff to select peptides using pre-calculated quantile scores for each allele. The global quantile scores were calculated for each prediction method using a set of sequences from known human antigens such as apical membrane antigen, Tetanus toxin, thrombopoietin, and interferon beta. Therefore, peptides can be selected as measured against a standard scale as opposed to their ‘within protein’ ranking. A typical value would be using the top 5% in each allele across all sequences. This technique is designed for selection of a small set of candidates from very large numbers of proteins, such as across a bacterial proteome. There is limited evidence to suggest that this selection method is superior to the other methods but we have used it for selectiing a small set of candidates from large numbers of proteins, detailed in example 2 below.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="a-basic-mhc-i-predictor">A basic MHC-I predictor</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">This section details the built-in method for MHC-I binding prediction. It is implemented in Python using scikit-learn. The typical method of building such an algorithm is to encode the peptide amino acid sequences numerically in a manner that captures the properties important for binding. Then these features can be fit against their known binding affinities (or eluted ligand data) using a regression model of some kind. Several peptide encoding schemes were tested, including the NLF encoding scheme <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref21"><span>21</span><span>Nanni and Lumini, 2011</span></a></cite>, OETMAP <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref22"><span>22</span><span>Gök and Özcerit, 2011</span></a></cite>, a Blosum62 matrix, and a simple ‘one hot’ encoding method. One hot encoding was found to be adequate and the more complex schemes did not appear to offer any significant advantage. This may require further testing. For now, it is possible to create and train the predictor with any of these encoders. The regression model used is the <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">MLPRegressor</em> from sklearn, an implementation of a multilayer perceptron (MLP), a class of artificial neural networks. The data set used for training was primarily from the IEDB and was curated by the authors of MHCflurry <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref17"><span>17</span><span>O'Donnell et al., 2018</span></a></cite> from various sources. The regression model must be trained for each allele. When this is done, the model is persisted with the joblib module and can be re-loaded for new predictions for that allele. All of this functionality is encapsulated in the <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">BasicMHCIPredictor</em> class in epitopepredict. The predictor only supports 103 alleles currently and is not pan specific as of yet.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To test performance, a separate evaluation set of peptides originally created by Kim et al. <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref23"><span>23</span><span>Kim et al., 2014</span></a></cite> was downloaded from the IEDB. The training set sequences were subtracted from this set leaving 25,948 9-mer peptides. Only alleles for which there were more than 200 peptides were evaluated to give a reasonable performance estimate. This left 40 HLA alleles for testing. Both the Pearson correlation coefficient and the ROC AUC metric (with a threshold of below 500 nM set as a positive binder) were used as metrics. The results in Figure 1 show that our predictor performs similarly to the others with this test set. It is not meant to provide a definitive benchmark since these other tools have been more comprehensively benchmarked elsewhere. In particular, it can be hard to obtain a benchmark set of peptides that has not been used for training in one or more of the models.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In practical use, this predictor can be run directly from the API or command line without installing any other program. Models are trained once as needed for each allele/length combination using the current installed versions of scikit-learn and joblib. Once trained, each model is saved and can be re-used. Training only takes a matter of seconds for each model.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 1"><label data-itemprop="label">Figure 1</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-execution_count="2" data-programminglanguage="python"> <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code># Code based on the following notebook with the following changes: # - pre-calculated benchmark.csv file is used if possible # - commented out code removed # https://github.com/dmnfarrell/epitopepredict/blob/v0.5.0/notebooks/benchmarking.ipynb import os, sys, math import numpy as np import pandas as pd pd.set_option('display.width', 130) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set_context("notebook", font_scale=1.4) import epitopepredict as ep from epitopepredict import sequtils, base, peptutils, mhclearn # Change into notebooks folder if not already in it if not os.getcwd().endswith('notebooks'): os.chdir('notebooks') # If benchmark results are already available, then read them # in for plotting, otherwise generate them if os.path.exists('benchmarks.csv'): c = pd.read_csv('benchmarks.csv') else: def evaluate_predictor(P, allele): data = mhclearn.get_evaluation_set1(allele, length=9) print (len(data)) if len(data) < 200: return None,None,None P.predict_peptides(list(data.peptide), alleles=allele, cpus=14) x = P.get_scores(allele) x = data.merge(x,on='peptide') auc = round(ep.auc_score(x.ic50,x.score,cutoff=500),3) import scipy pr = scipy.stats.pearsonr(x.ic50, x.score)[0] return auc, pr, data def run_tests(): preds = [base.get_predictor('basicmhc1'), base.get_predictor('netmhcpan',scoring='affinity'), ep.get_predictor('mhcflurry')] comp=[] test_alleles = mhclearn.get_allele_names()#[:20] print (len(test_alleles)) for P in preds: m=[] for a in test_alleles: print (a) if not a.startswith('HLA'): continue try: auc,pr,df = evaluate_predictor(P, a) if auc==None: continue m.append((a,auc,pr,len(df))) except Exception as e: print (a,e) pass print (P, auc, pr) m=pd.DataFrame(m,columns=['allele','auc','pearson r','size']) m['name'] = P.name comp.append(m) return comp comp = run_tests() c = pd.concat(comp) c.to_csv('benchmarks.csv') a = pd.pivot_table(c,index=['allele','size'],columns='name',values='auc') r = pd.pivot_table(c,index=['allele','size'],columns='name',values='pearson r') def highlight_max(s): is_max = s == s.max() return ['background-color: yellow' if v else '' for v in is_max] fig = plt.figure(constrained_layout=True,figsize=(15,6)) gs = fig.add_gridspec(1, 2, hspace=1) ax = fig.add_subplot(gs[0]) sns.barplot(data=c,y='pearson r',x='name',ax=ax) ax.set_title('pearson r') ax = fig.add_subplot(gs[1]) sns.boxplot(data=c,y='auc',x='name',ax=ax) t=ax.set_title('AUC')</code></pre> <figure slot="outputs"><img src="index.html.media/bb7ed5935c69578c9438a0b862f54eea.png" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Performance of the basicmhc1 predictor compared to netMHCpan and MHCflurry for 40 human alleles. (a) Mean Pearson r and (b) mean AUC scores over all alleles. Only alleles with evaluation data for over more than 200 peptides were used. This test dataset used 9-mer peptides only. </p> </figcaption> </figure> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="results">Results</h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In the following, we use several examples to illustrate the use of this package in practice with real data. These examples are available as Jupyter notebooks stored at <a href="https://github.com/dmnfarrell/epitopepredict/tree/master/examples" itemscope="" itemtype="http://schema.stenci.la/Link">https://github.com/dmnfarrell/epitopepredict/tree/master/examples</a>. They are also archived permanently on Zenodo and the latest version is available there <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref24"><span>24</span><span>Pisoni, 2020</span></a></cite>. Some of these notebooks are also reproducible using the epitopepredict examples Code Ocean capsule (see Figure 2 <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref25"><span>25</span><span>Farrell, 2021</span></a></cite>).</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 2"><label data-itemprop="label">Figure 2</label><img src="index.html.media/figure2.png" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">An executable Code Ocean compute capsule for epitopepredict that can be launched on a cloud workstation.</p> </figcaption> </figure> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="example-1-predictions-for-selected-antigens-in-mycobacterium-tuberculosis--comparison-with-experimental-data"> Example 1: Predictions for selected antigens in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Mycobacterium Tuberculosis</em> – comparison with experimental data</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">A typical use of epitope prediction tools is to select a candidate list of peptides for testing from a large sequence space representing multiple potential antigens. This example provides a comparison of the three different selection methods in epitopepredict using a realistic example. It uses a set of known CD4 epitopes discovered in a study by measuring IFN-γ T cell responses to <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">M. tuberculosis</em> (Mtb) antigens in a healthy South African cohort <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref26"><span>26</span><span>Lindestam Arlehamn et al., 2016</span></a></cite>. The test data is available as supplementary tables in that paper. It comprises 75 15-mer epitopes selected from a set of known Mtb antigens.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Here, we performed a simple benchmark to find the percentage coverage of predicted MHC-II binders in two predictors, netMHCIIpan and Tepitope, using the three threshold methods for selecting promiscuous binders described above. These were then compared across a selection of cut-offs that each yielded a certain number of binders. Ideally we would want to produce as small a number of predicted binders as possible to reduce the number to be experimentally tested.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The sequences of all 29 proteins represented in the target set were retrieved and split into 15-mers. Then predictions were made for each of the 27 alleles in the target population tested in the study. This produced a list of 9,299 peptides predicted for each allele. With epitopepredict, selection of promiscuous binders can be done easily with a single command. Binders promiscuous above thresholds in at least five alleles were selected.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The results are shown in Figure 3, with the plots showing the percentage of experimental peptides covered versus the number of predicted binders, corresponding to a certain cut-off in each method. It is seen that the ‘rank’ method is superior in both cases as it achieves a higher coverage with the lowest number of binders. All the curves level off at about 80% coverage. The ‘rank’ method may work better in this case partly because some of the epitopes were originally selected by prediction algorithms using a similar approach.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 3"><label data-itemprop="label">Figure 3</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-execution_count="6" data-programminglanguage="python"> <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>#Note: this cell can take a long time to run! #load exp data sette = pd.read_csv('../examples/sette_SA_MTB_epitopes.csv') mtb = sequtils.genbank_to_dataframe(base.mtb_genome,cds=True) mtb = mtb[mtb.locus_tag.isin(sette.name)] df = pd.merge(sette, mtb[['locus_tag','translation']],left_on='name',right_on='locus_tag') df['start'] = df.apply( lambda x: x.translation.find(x.sequence), 1 ) df['end'] = df.start+df.sequence.str.len() #for i,r in df[df.start==-1].iterrows(): # print (r.locus_tag, r.sequence, r.translation) df=df.drop('translation',1) df=df[df.start>=0] prots = df.name.unique() exp = df donoralleles = pd.read_csv('../examples/sa_mtb_donor_alleles.csv') donoralleles = donoralleles.set_index('Donor ID') donoralleles = donoralleles.apply(lambda x: 'HLA-'+x) x = donoralleles.apply(lambda x : x.value_counts()) x = x.sum(1).sort_values(ascending=False) x = x[x>=2] drballeles = x[x.index.str.contains('DRB')] drballeles = list(drballeles.index) #run predictions Pt=ep.get_predictor('tepitope') Pt.predict_sequences(mtb, alleles=drballeles,path='/tmp/mtbsa_tepitope', length=15, overwrite=False, threads=4) Pt.load(path='/tmp/mtbsa_tepitope') Pn=ep.get_predictor('netmhciipan') Pn.predict_sequences(mtb, alleles=drballeles,path='/tmp/mtbsa_netmhciipan', length=15, overwrite=False, threads=4) Pn.load(path='/tmp/mtbsa_netmhciipan') def get_hits(P,n,m,cutoffs): import difflib res = [] for c in cutoffs: rb = P.promiscuous_binders(cutoff_method=m,cutoff=c,n=n,limit=30) df=exp#[exp.name==name].copy() def find_matches(x, p): return len(difflib.get_close_matches(x.sequence, p, n=10, cutoff=.6)) df.loc[:,'hits'] = df.apply(lambda x: find_matches(x, rb.peptide),1) f = len(df[df.hits>0])/len(df)*100 res.append({'cutoff':c,'binders':len(rb),m:f}) res = pd.DataFrame(res) return res cuts = {'rank':range(2,40,3),'global':np.arange(.99,.86,-.01),'score':range(50,1000,100)} fig,axs=plt.subplots(1,2,figsize=(14,5),facecolor='white') axs=axs.flat i=0 ['rank','global','score'] for P in [Pn,Pt]: res1 = get_hits(P,5,'rank',cuts['rank']) if P.name=='tepitope': scuts = np.arange(5,0,-.4) else: scuts=cuts['score'] res2 = get_hits(P,5,'score',scuts) res3 = get_hits(P,5,'global',cuts['global']) res1.plot(x='binders',y='rank',lw=2,ax=axs[i]) res2.plot(x='binders',y='score',lw=2,ax=axs[i]) res3.plot(x='binders',y='global',lw=2,ax=axs[i]) axs[i].set_xlabel('no. predicted binders') axs[i].set_ylabel('% coverage') i+=1 axs[0].set_title('(a) netMHCIIpan',fontsize=20) axs[1].set_title('(b) Tepitope',fontsize=20) plt.tight_layout() </code></pre> <figure slot="outputs"><img src="index.html.media/7d0f753dde64a06309dc42518c6273a2.png" alt="" itemscope="" itemtype="http://schema.org/ImageObject"></figure> </stencila-code-chunk> <figcaption> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Performance of three binder selection methods showing the percentage coverage of experimental positive peptides by predicted binders at different cutoff levels. The higher the cutoff the more binders are predicted until the curves level off. Results are shown for (a) netMHCIIpan and (b) Tepitope.</p> </figcaption> </figure> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="example-2-scanning-the-proteome-of-mycobacterium-bovis-for-cd4-epitopes">Example 2: Scanning the proteome of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Mycobacterium bovis</em> for CD4+ epitopes </h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We have previously used this package to prioritize CD4+ epitopes in the proteome of M. bovis (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Mycobacterium tuberculosis</em> variant bovis AF2122/97) for potential use in novel antigens for bovine tuberculosis <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref27"><span>27</span><span>Farrell et al., 2016</span></a></cite>. The results are documented in the paper. Briefly, we performed binding predictions over the entire <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">M.</em> <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">bovis</em> proteome using two different binding predictors, netMHCIIpan <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref20"><span>20</span><span>Karosiene et al., 2013</span></a></cite>, Tepitope <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref14"><span>14</span><span>Zhang et al., 2012</span></a></cite>. For each set of results we found only promiscuous binders above an allele specific cutoff using the ‘global’ selection strategy. In addition, clusters of binders were detected to find areas of high binder density in each sequence. The assumption underlying this method is that ~20mer peptides covering these regions will be more likely to yield at least one true positive epitope and hence elicit a T cell response. The results are a set of clusters for both prediction methods, ranked by number of binders per unit length. This has also been referred to as the ‘epitope density’ method <span itemscope="" itemtype="http://schema.stenci.la/CiteGroup"><cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref28"><span>28</span><span>Santos et al., 2013</span></a></cite></span>. We further contrasted this cluster selection with the more conventional ranking of top scoring binders. We also included random non-high-scoring peptides as a control. 20-mer peptides derived from these sets were synthesized and tested for IFN-γ responses in M. bovis naturally infected cattle. Approximately 24% out of 270 peptides had high responses (using known epitopes as the baseline response). The random controls had no responses above this threshold.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">This workflow was performed using an older version of this software. A newer and somewhat simplified form of the same analysis is now available as a notebook in the examples folder. Results from this output will be slightly different to our previous analysis since some of the extra steps have been removed, but the methodology is the same.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="example-3-predicting-cross-reactive-t-cell-epitopes-in-sars-cov-2">Example 3: Predicting cross-reactive T cell epitopes in Sars-CoV-2</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Eight months after the initial outbreak, puzzles remained about the human immune response to the SARS-CoV-2 virus. By then, a significant proportion in some large cities, such as New York, had been exposed. However antibody tests often revealed lower than expected rates of seropositivity in populations where the virus had spread <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref29"><span>29</span><span>Doshi, 2020</span></a></cite>. It is almost certain that other components of the immune system were important in protecting individuals just as in other infectious diseases. Robust innate immune responses were one candidate. Another possibility is T cells. SARS-CoV-2 reactive CD4+ T cells had been reported in unexposed individuals, suggesting pre-existing cross-reactive T cell memory in 20-50% of people <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref30"><span>30</span><span>Grifoni et al., 2020</span></a></cite>. It is possible that these were memory T cells generated from previous exposures to the human common cold coronaviruses (HCoVs), which circulate widely.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Mateus et al. <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref31"><span>31</span><span>Mateus et al., 2020</span></a></cite> identified such cross-reactive CD4+ epitopes by generating 42 short term T cell lines specific to previously identified epitopes in PBMCs from unexposed donors. Then homologs to these peptides in the HCoVs were tested against these cell lines for a response. These tests were done in both unexposed and convalescent COVID19 patients. Cross reactivity was found in 10/42 of the T cell lines. Responding cells in unexposed donors were predominantly found in the effector memory CD4+ T cell population, though the consequences of this for protective immunity are not yet known.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Here we show how it’s possible to predict such potential cross-reactive CD4+ epitopes just using the sequences.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The method used is as follows: </p> <ul itemscope="" itemtype="http://schema.org/ItemList"> <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement"> <meta itemprop="position" content="1"> <meta itemprop="url" content="#1">Predict MHC-binders in each SARS-CoV-2 protein sequence and selected the top scoring candidates. Here, we use epitopepredict to predict the most promiscuous binders across the 8 most representative human MHC-II alleles. Each protein sequence is split into 15-mer peptides and scored. </li> <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement"> <meta itemprop="position" content="2"> <meta itemprop="url" content="#2">Select the top scoring peptides in each protein. In this case we select the peptides using the global cutoff method in the top 5% percentile for each allele. We also limit the total for each protein to 70 to prevent a very long protein like ORF1ab from dominating the selection. </li> <li itemscope="" itemtype="http://schema.org/ListItem" itemprop="itemListElement"> <meta itemprop="position" content="3"> <meta itemprop="url" content="#3">Calculate conservation of each peptide with it’s closest homologous sequence in each of the other four HCoVs. Then rank them by percentage identity. </li> </ul> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Using a limit of 70 peptides per protein, we found 282 predicted peptides. Out of these, 162 were conserved with >67% identity in at least one HCoV (most commonly with SARS-Cov-1). Note that for a peptide to be cross-reactive, it does not necessarily have to share all residues in common with its homolog. The 9-mer core binding sequence could be conserved with perhaps similar residues at the ends. We finally checked our 162 peptides against the 10 epitopes identified by Mateus et al. We found a hit in 6/10 cases, shown in Table 1. Some hits are two peptides overlapping in our set, which probably indicates the same core epitope.</p> <table itemscope="" itemtype="http://schema.org/Table"> <caption><label data-itemprop="label">Table 1</label> <div itemprop="caption"> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Matches to the 10 cross reactive peptides found by Mateus et al. from our predicted binders shows hits in 6/10 cases.</p> </div> </caption> <thead> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Sequence</th> <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Protein</th> <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Start</th> <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Hit from Predicted Set </th> </tr> </thead> <tbody> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">PSGTWLTYTGAIKLD</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">N</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">326</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">GTWLTYTGAIKLDDK</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">SFIEDLLFNKVTLAD</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">S</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">816</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">FIEDLLFNKVTLADA, DLLFNKVTLADAGFI</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">YEQYIKWPWYIWLGF</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">S</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">1206</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">None</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">VLKKLKKSLNVAKSE</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">nsp8</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">3976</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">VVLKKLKKSLNVAKS, EVVLKKLKKSLNVAK</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">KLLKSIAATRGATVV</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">nsp12</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">4966</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">RQFHQKLLKSIAATR</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">EFYAYLRKHFSMMIL</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">nsp12</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">5136</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">NEFYAYLRKHFSMMI, YLRKHFSMMILSDDA</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">LMIERFVSLAIDAYP</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">nsp12</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">5246</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">None</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">TSHKLVLSVNPYVCN</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">nsp13</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">5361</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">None</td> </tr> <tr itemscope="" itemtype="http://schema.stenci.la/TableRow"> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">NVNRFNVAITRAKVG</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">nsp13</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">5881</td> <td itemscope="" itemtype="http://schema.stenci.la/TableCell">VNRFNVAITRAKVGI</td> </tr> </tbody> </table> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="usage">Usage</h2> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="command-line-interface"> Command Line Interface</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Installing the package provides a command line tool that is run from a terminal. It is envisaged that most users will utilize the package using this tool since it requires no programming knowledge. It provides pre-defined functionality with all inputs and settings specified in a text configuration file. One advantage of using configuration files is in avoiding long commands with multiple arguments that may be prone to causing errors. Also, configuration files can be kept to recall what setting was used for a particular workflow. Using this strategy, you can make MHC predictions with your chosen alleles and predictors in one run. If settings are left out generally defaults will be used so one can use a minimal file, simplifying usage. Other useful features of the tool are the ability to run predictions in parallel using multiple processing cores, the use of preset lists of alleles and resuming runs that have been interrupted without overwriting previous predictions. Results are saved to disk as text files and can be reread in a subsequent run of the tool without having to recalculate binding predictions.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">By default, the command line tool will calculate the promiscuous binders to give you a unique list of peptides and include the number of alleles in which it is a binder. The table is ranked by this value and the maximum score over the alleles tested.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="api-usage">API usage</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">A very basic example of how to use the library from the Python API is given here. More complex usage is detailed in the documentation.</p> <pre itemscope="" itemtype="http://schema.stenci.la/CodeBlock"><code>import epitopepredict as ep P = ep.get_predictor('basicmhc1') from epitopepredict import peptutils #get some random peptides, returns a list seqs = peptutils.create_random_sequences(10) #run predictions res = P.predict_peptides(seqs, alleles='HLA-A*01:01')</code></pre> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph"><strong itemscope="" itemtype="http://schema.stenci.la/Strong">The above code returns a pandas DataFrame sorted by allele and rank.</strong></p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="plotting">Plotting</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The API includes the ability to plot results for individual protein sequences for one or more predictor. In such plots, binders are shown as colored blocks at their position in the protein with multiple tracks, one per allele/method. This allows ready comparisons between methods. An example is shown in Figure 4. This shows binders for three MHC-class I predictors for an antigenic Mtb protein, Rv3875. Six HLA alleles are shown. We can see that each method has some overlap with the others.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 4"><label data-itemprop="label">Figure 4</label> <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk" data-execution_count="23" data-programminglanguage="python"> <pre class="language-python" itemscope="" itemtype="http://schema.stenci.la/CodeBlock" slot="text"><code>from epitopepredict import plotting m1_alleles = ep.get_preset_alleles('mhc1_supertypes') prots = ep.genbank_to_dataframe(base.mtb_genome, cds=True) proteins = ['Rv3615c','Rv3875'] P1 = base.get_predictor('basicmhc1') binders = P1.predict_sequences(prots, names=proteins, alleles=m1_alleles, length=9, threads=4) pb1 = P1.promiscuous_binders(n=2, cutoff=5, cutoff_method='rank') P2 = base.get_predictor('netmhcpan') P2.predict_sequences(prots, names=proteins, alleles=m1_alleles, length=9, threads=4) P3 = base.get_predictor('mhcflurry') P3.predict_sequences(prots, names=proteins, alleles=m1_alleles, length=9) #plot a single protein as tracks ax = plotting.plot_tracks([P1,P2,P3],name='Rv3875',cutoff=5,cutoff_method='rank',n=2,legend=True,figsize=(12,6)) plt.tight_layout() </code></pre> <figure slot="outputs"> <pre class="language-text" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"><code>predictions done for 2 sequences in 6 alleles </code></pre> <pre class="language-text" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"><code>/home/damien/gitprojects/epitopepredict/epitopepredict/base.py:702: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy binders['core'] = binders.peptide </code></pre> <pre class="language-text" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"><code>predictions done for 2 sequences in 6 alleles predictions done for 2 sequences in 6 alleles </code></pre><img src="index.html.media/5a3d0ed4553f8513e71f444889afecc1.png" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> </figure> </stencila-code-chunk> <figcaption> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Predicted promiscuous binders in a sample sequence for three methods. Each method will have some overlapping peptides but they are usually likely to differ.</p> </figcaption> </figure> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="testing">Testing</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The command line tool can be tested by calling <strong itemscope="" itemtype="http://schema.stenci.la/Strong">epitopepredict -t,</strong> which runs a set of sample Ebola virus sequences with the available prediction methods. Outputs are saved to a folder called zaire_test. It should be noted that this is not used as a benchmark test since the algorithms used have all been tested independently. This is an example run for the user to check that the command line workflow is working and to inspect the outputs.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="web-application">Web Application</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">A web interface that is launched from the command line can be used to view results from a set of predictions that have been previously made. This is an improved and much easier to use form of a previous web interface called epitopemap <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref32"><span>32</span><span>Bednar, 2020</span></a></cite> and replaces it. Widgets can be used to select thresholds and the kind of plot shown. Currently two kinds of plots can be viewed, a sequence view and one that shows the peptides as colored blocks in tracks along the sequence, as shown in Figure 5. This web interface can be tested by running the test command above and then launching the web app using the zaire_test folder as input.</p> <figure itemscope="" itemtype="http://schema.stenci.la/Figure" title="Figure 5"><label data-itemprop="label">Figure 5</label><img src="index.html.media/figure5.png" alt="" itemscope="" itemtype="http://schema.org/ImageObject"> <figcaption> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Web application showing results for a single protein sequence. Widgets can be used to select protein, cut-off levels and the type of plot.</p> </figcaption> </figure> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="conclusions">Conclusions </h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">This software provides a programmatic framework and command line interface for running multiple MHC binding prediction algorithms. This will be especially useful for performing high throughput calculations in many sequences and alleles. It is designed to scale for proteome scanning by allowing multiple processing threads to be used with any of the prediction methods. The API can also be easily applied to single sequences or small numbers of antigens. A web interface allows users to readily review results if they wish.</p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="availability-and-requirements">Availability and requirements</h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Project name: epitopepredict </p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Project home page: <a href="https://github.com/dmnfarrell/mhcpredict" itemscope="" itemtype="http://schema.stenci.la/Link">https://github.com/dmnfarrell/epitopepredict</a> </p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Archived version: v0.5.0 (DOI: 10.5281/zenodo.4056421)</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">SciCrunch Identifier: SCR_019221</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Operating system(s): Linux, Unix</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Programming language: Python </p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Other requirements: biopython, pandas, numpy, matplotlib, scikit-learn</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Optional requirements: bokeh, panel (web app only)[33]</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">License: GNU General Public License v 3.0</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Any restrictions to use by non-academics: None</p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="funding">Funding</h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">This work was supported by the Irish Department of Agriculture Food and the Marine grant 15/S/651 (NEXUSMAP). DF was previously funded under an Irish Research Council Postdoctoral Fellowship (GOIPD/2015/475) for part of this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="acknowledgments"> Acknowledgments</h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Thanks to Dr. Joseph Crispell for useful discussions on machine learning. Thanks also to Prof. Stephen Gordon for support during the development of this software.</p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="data-availability">Data Availability</h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All computational work described here was implemented using Python. The code is provided as a Python package called epitopepredict under the Apache license. Extensive use was made of the IPython (Jupyter) notebook environment <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref34"><span>34</span><span>Silaparasetty, 2020</span></a></cite> in prototyping the codebase.</p> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Documentation for users is available at <a href="http://epitopepredict.readthedocs.io/" itemscope="" itemtype="http://schema.stenci.la/Link">http://epitopepredict.readthedocs.io</a>. Snapshots of the code are available in the <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">GigaScience</em> GigaDB respository <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref35"><span>35</span><span>Farrell, 2021</span></a></cite>, and a CodeOcean capsule is also available <cite itemscope="" itemtype="http://schema.stenci.la/Cite"><a href="#ref25"><span>25</span><span>Farrell, 2021</span></a></cite>.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="installation">Installation </h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">This software should be run on a Linux operating system. Ubuntu is recommended but most major distributions will work well. Windows is not supported. If using Windows or macOS (OS X), users can simply install Linux using virtual machine software such as Oracle VM VirtualBox (<a href="https://www.virtualbox.org/" itemscope="" itemtype="http://schema.stenci.la/Link"><strong itemscope="" itemtype="http://schema.stenci.la/Strong">https://www.virtualbox.org</strong></a>). Software is then installed using the online documentation. The installation process is very simple, requiring only a single typed command. Externally used MHC binding prediction algorithms do need to be installed separately, these are all freely available.</p> <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="installing-netmhcpan-and-netmhciipan">Installing netMHCpan and netMHCIIpan</h3> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Due to license restrictions, these specific programs must be installed separately. They are free for academic users but require registration for the non-webserver version. You can go to <a href="https://services.healthtech.dtu.dk/" itemscope="" itemtype="http://schema.stenci.la/Link">https://services.healthtech.dtu.dk</a> to fill in the forms that will give you access to the install file for the respective programs. The install instructions can then be found in the readme files when you untar the downloaded file, e.g. netMHCpan-4.1.readme. There are four steps detailed and the process is relatively simple. Remember to test that the software is working before you use it in epitopepredict.</p> <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="abbreviations">Abbreviations </h2> <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">ANN: artificial neural networks; hCoV: human common cold coronaviruses; MHC: major histocompatibility complex; ML: machine learning; MLP: multilayer perceptron; PSSM: position specific scoring matrix; TCR: T cell receptor</p> <section data-itemprop="references"> <h2 data-itemtype="http://schema.stenci.la/Heading">References</h2> <ol> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref1"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Claus Lundegaard"><span data-itemprop="givenNames"><span itemprop="givenName">Claus</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lundegaard</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ilka Hoof"><span data-itemprop="givenNames"><span itemprop="givenName">Ilka</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hoof</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ole Lund"><span data-itemprop="givenNames"><span itemprop="givenName">Ole</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lund</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Morten Nielsen"><span data-itemprop="givenNames"><span itemprop="givenName">Morten</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nielsen</span></span> </li> </ol><time itemprop="datePublished" datetime="2010">2010</time><a itemprop="url" href="http://dx.doi.org/10.1186/1745-7580-6-s2-s3"><span itemprop="headline">State of the art and challenges in sequence based T-cell epitope prediction</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber">Suppl 2</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">6</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Immunome Research</span></span></span></span><span itemprop="pagination">S3</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=State%20of%20the%20art%20and%20challenges%20in%20sequence%20based%20T-cell%20epitope%20prediction"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref2"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Linus Backert"><span data-itemprop="givenNames"><span itemprop="givenName">Linus</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Backert</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Oliver Kohlbacher"><span data-itemprop="givenNames"><span itemprop="givenName">Oliver</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kohlbacher</span></span> </li> </ol><time itemprop="datePublished" datetime="2015-11-20">2015</time><a itemprop="url" href="http://dx.doi.org/10.1186/s13073-015-0245-0"><span itemprop="headline">Immunoinformatics and epitope prediction in the age of genomic medicine</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">1</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">7</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Genome Medicine</span></span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Immunoinformatics%20and%20epitope%20prediction%20in%20the%20age%20of%20genomic%20medicine"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref3"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Pedro Domingos"><span data-itemprop="givenNames"><span itemprop="givenName">Pedro</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Domingos</span></span> </li> </ol><time itemprop="datePublished" datetime="2012-10-01">2012</time><a itemprop="url" href="http://dx.doi.org/10.1145/2347736.2347755"><span itemprop="headline">A few useful things to know about machine learning</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">10</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">55</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Communications of the ACM</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">78</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">87</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Association for Computing Machinery (ACM)</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Association%20for%20Computing%20Machinery%20(ACM)"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20few%20useful%20things%20to%20know%20about%20machine%20learning"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref4"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Francisco A. Chaves"><span data-itemprop="givenNames"><span itemprop="givenName">Francisco A.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Chaves</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alvin H. Lee"><span data-itemprop="givenNames"><span itemprop="givenName">Alvin H.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lee</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jennifer L. Nayak"><span data-itemprop="givenNames"><span itemprop="givenName">Jennifer L.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nayak</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Katherine A. Richards"><span data-itemprop="givenNames"><span itemprop="givenName">Katherine A.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Richards</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Andrea J. Sant"><span data-itemprop="givenNames"><span itemprop="givenName">Andrea J.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sant</span></span> </li> </ol><time itemprop="datePublished" datetime="2012-03-30">2012</time><a itemprop="url" href="http://dx.doi.org/10.4049/jimmunol.1103640"><span itemprop="headline" content="The Utility and Limitations of Current Web-Available Algorithms To Predict Peptides Recognized by CD4 T Cells…">The Utility and Limitations of Current Web-Available Algorithms To Predict Peptides Recognized by CD4 T Cells in Response to Pathogen Infection</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">9</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">188</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The Journal of Immunology</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">4235</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">4248</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">The American Association of Immunologists</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=The%20American%20Association%20of%20Immunologists"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=The%20Utility%20and%20Limitations%20of%20Current%20Web-Available%20Algorithms%20To%20Predict%20Peptides%20Recognized%20by%20CD4%20T%20Cells%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref5"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Robert D Bremel"><span data-itemprop="givenNames"><span itemprop="givenName">Robert D</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bremel</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="E Homan"><span data-itemprop="givenNames"><span itemprop="givenName">E</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Homan</span></span> </li> </ol><time itemprop="datePublished" datetime="2010">2010</time><a itemprop="url" href="http://dx.doi.org/10.1186/1745-7580-6-8"><span itemprop="headline" content="An integrated approach to epitope analysis II: A system for proteomic-scale prediction of immunological chara…">An integrated approach to epitope analysis II: A system for proteomic-scale prediction of immunological characteristics</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">1</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">6</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Immunome Research</span></span></span></span><span itemprop="pagination">8</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=An%20integrated%20approach%20to%20epitope%20analysis%20II:%20A%20system%20for%20proteomic-scale%20prediction%20of%20immunological%20chara%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref6"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Sinu Paul"><span data-itemprop="givenNames"><span itemprop="givenName">Sinu</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Paul</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Daniela Weiskopf"><span data-itemprop="givenNames"><span itemprop="givenName">Daniela</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Weiskopf</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Michael A. Angelo"><span data-itemprop="givenNames"><span itemprop="givenName">Michael A.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Angelo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="John Sidney"><span data-itemprop="givenNames"><span itemprop="givenName">John</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sidney</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Bjoern Peters"><span data-itemprop="givenNames"><span itemprop="givenName">Bjoern</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Peters</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alessandro Sette"><span data-itemprop="givenNames"><span itemprop="givenName">Alessandro</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sette</span></span> </li> </ol><time itemprop="datePublished" datetime="2013-11-04">2013</time><a itemprop="url" href="http://dx.doi.org/10.4049/jimmunol.1302101"><span itemprop="headline" content="HLA Class I Alleles Are Associated with Peptide-Binding Repertoires of Different Size, Affinity, and Immunoge…">HLA Class I Alleles Are Associated with Peptide-Binding Repertoires of Different Size, Affinity, and Immunogenicity</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">12</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">191</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The Journal of Immunology</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">5831</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">5839</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">The American Association of Immunologists</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=The%20American%20Association%20of%20Immunologists"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=HLA%20Class%20I%20Alleles%20Are%20Associated%20with%20Peptide-Binding%20Repertoires%20of%20Different%20Size,%20Affinity,%20and%20Immunoge%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref7"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="B. Schubert"><span data-itemprop="givenNames"><span itemprop="givenName">B.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Schubert</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="O. Lund"><span data-itemprop="givenNames"><span itemprop="givenName">O.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lund</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="M. Nielsen"><span data-itemprop="givenNames"><span itemprop="givenName">M.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nielsen</span></span> </li> </ol><time itemprop="datePublished" datetime="2013-09-17">2013</time><a itemprop="url" href="http://dx.doi.org/10.1111/tan.12199"><span itemprop="headline">Evaluation of peptide selection approaches for epitope-based vaccine design</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">4</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">82</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Tissue Antigens</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">243</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">251</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Wiley</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Wiley"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Evaluation%20of%20peptide%20selection%20approaches%20for%20epitope-based%20vaccine%20design"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref8"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ruth E. Soria-Guerra"><span data-itemprop="givenNames"><span itemprop="givenName">Ruth E.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Soria-Guerra</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ricardo Nieto-Gomez"><span data-itemprop="givenNames"><span itemprop="givenName">Ricardo</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nieto-Gomez</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Dania O. Govea-Alonso"><span data-itemprop="givenNames"><span itemprop="givenName">Dania O.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Govea-Alonso</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Sergio Rosales-Mendoza"><span data-itemprop="givenNames"><span itemprop="givenName">Sergio</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rosales-Mendoza</span></span> </li> </ol><time itemprop="datePublished" datetime="2015-02-01">2015</time><a itemprop="url" href="http://dx.doi.org/10.1016/j.jbi.2014.11.003"><span itemprop="headline">An overview of bioinformatics tools for epitope prediction: Implications on vaccine development</span></a><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">53</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Journal of Biomedical Informatics</span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">405</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">414</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Elsevier BV</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Elsevier%20BV"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=An%20overview%20of%20bioinformatics%20tools%20for%20epitope%20prediction:%20Implications%20on%20vaccine%20development"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref9"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Anne S. De Groot"><span data-itemprop="givenNames"><span itemprop="givenName">Anne S.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">De Groot</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="William Martin"><span data-itemprop="givenNames"><span itemprop="givenName">William</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Martin</span></span> </li> </ol><time itemprop="datePublished" datetime="2009-05-01">2009</time><a itemprop="url" href="http://dx.doi.org/10.1016/j.clim.2009.01.009"><span itemprop="headline">Reducing risk, improving outcomes: Bioengineering less immunogenic protein therapeutics</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">2</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">131</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Clinical Immunology</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">189</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">201</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Elsevier BV</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Elsevier%20BV"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Reducing%20risk,%20improving%20outcomes:%20Bioengineering%20less%20immunogenic%20protein%20therapeutics"> </li> <li itemscope="" itemtype="http://schema.org/CreativeWork" itemprop="citation" id="ref10"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Damien Farrell"><span data-itemprop="givenNames"><span itemprop="givenName">Damien</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Farrell</span></span> </li> </ol><time itemprop="datePublished" datetime="2021-02-07">2021</time><a itemprop="url" href="http://dx.doi.org/10.1101/2021.02.05.429892"><span itemprop="headline">epitopepredict: A tool for integrated MHC binding prediction</span></a><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Cold Spring Harbor Laboratory</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Cold%20Spring%20Harbor%20Laboratory"> </span></span> </li> <li itemscope="" itemtype="http://schema.org/CreativeWork" itemprop="citation" id="ref11"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Fabio Nelli"><span data-itemprop="givenNames"><span itemprop="givenName">Fabio</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nelli</span></span> </li> </ol><time itemprop="datePublished" datetime="2015">2015</time><a itemprop="url" href="http://dx.doi.org/10.1007/978-1-4842-0958-5_4"><span itemprop="headline">The pandas Library—An Introduction</span></a><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Python Data Analytics</span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Apress</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Apress"> </span></span> </li> <li itemprop="citation" id="ref12">Tornado Developers (2020). Tornado: Python web framework and asynchronous networking library (Version 6.1). https://www.tornadoweb.org/en/stable/</li> <li itemscope="" itemtype="http://schema.org/CreativeWork" itemprop="citation" id="ref13"> <ol data-itemprop="authors"></ol><time itemprop="datePublished" datetime="2010">2010</time><a itemprop="url" href="http://dx.doi.org/10.5040/9781350088733.0029"><span itemprop="headline">Bokeh</span></a><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The Visual Dictionary of Photography</span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">AVA Publishing SA Distributed by Thames & Hudson (ex-North America) Distributed in the USA & Canada by: English Language Support Office</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=AVA%20Publishing%20SA%20Distributed%20by%20Thames%20&%20Hudson%20(ex-North%20America)%20Distributed%20in%20the%20USA%20&%20Canada%20by:%20Engli%E2%80%A6"> </span></span> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref14"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Lianming Zhang"><span data-itemprop="givenNames"><span itemprop="givenName">Lianming</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhang</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Yiqing Chen"><span data-itemprop="givenNames"><span itemprop="givenName">Yiqing</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Chen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Hau-San Wong"><span data-itemprop="givenNames"><span itemprop="givenName">Hau-San</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Wong</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Shuigeng Zhou"><span data-itemprop="givenNames"><span itemprop="givenName">Shuigeng</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhou</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Hiroshi Mamitsuka"><span data-itemprop="givenNames"><span itemprop="givenName">Hiroshi</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mamitsuka</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Shanfeng Zhu"><span data-itemprop="givenNames"><span itemprop="givenName">Shanfeng</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Zhu</span></span> </li> </ol><time itemprop="datePublished" datetime="2012-02-23">2012</time><a itemprop="url" href="http://dx.doi.org/10.1371/journal.pone.0030483"><span itemprop="headline">TEPITOPEpan: Extending TEPITOPE for Peptide Binding Prediction Covering over 700 HLA-DR Molecules</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">2</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">7</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">PLoS ONE</span></span></span></span><span itemprop="pagination">e30483</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Public Library of Science (PLoS)</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Public%20Library%20of%20Science%20(PLoS)"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=TEPITOPEpan:%20Extending%20TEPITOPE%20for%20Peptide%20Binding%20Prediction%20Covering%20over%20700%20HLA-DR%20Molecules"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref15"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Tiziana Sturniolo"><span data-itemprop="givenNames"><span itemprop="givenName">Tiziana</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sturniolo</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Elisa Bono"><span data-itemprop="givenNames"><span itemprop="givenName">Elisa</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bono</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jiayi Ding"><span data-itemprop="givenNames"><span itemprop="givenName">Jiayi</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ding</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Laura Raddrizzani"><span data-itemprop="givenNames"><span itemprop="givenName">Laura</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Raddrizzani</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Oezlem Tuereci"><span data-itemprop="givenNames"><span itemprop="givenName">Oezlem</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tuereci</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ugur Sahin"><span data-itemprop="givenNames"><span itemprop="givenName">Ugur</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sahin</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Michael Braxenthaler"><span data-itemprop="givenNames"><span itemprop="givenName">Michael</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Braxenthaler</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Fabio Gallazzi"><span data-itemprop="givenNames"><span itemprop="givenName">Fabio</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gallazzi</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Maria Pia Protti"><span data-itemprop="givenNames"><span itemprop="givenName">Maria Pia</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Protti</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Francesco Sinigaglia"><span data-itemprop="givenNames"><span itemprop="givenName">Francesco</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sinigaglia</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Juergen Hammer"><span data-itemprop="givenNames"><span itemprop="givenName">Juergen</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hammer</span></span> </li> </ol><time itemprop="datePublished" datetime="1999-06-01">1999</time><a itemprop="url" href="http://dx.doi.org/10.1038/9858"><span itemprop="headline" content="Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA clas…">Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">6</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">17</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Nature Biotechnology</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">555</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">561</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Generation%20of%20tissue-specific%20and%20promiscuous%20HLA%20ligand%20databases%20using%20DNA%20microarrays%20and%20virtual%20HLA%20clas%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref16"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alexandre Abraham"><span data-itemprop="givenNames"><span itemprop="givenName">Alexandre</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Abraham</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Fabian Pedregosa"><span data-itemprop="givenNames"><span itemprop="givenName">Fabian</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pedregosa</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Michael Eickenberg"><span data-itemprop="givenNames"><span itemprop="givenName">Michael</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Eickenberg</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Philippe Gervais"><span data-itemprop="givenNames"><span itemprop="givenName">Philippe</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gervais</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Andreas Mueller"><span data-itemprop="givenNames"><span itemprop="givenName">Andreas</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mueller</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jean Kossaifi"><span data-itemprop="givenNames"><span itemprop="givenName">Jean</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kossaifi</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alexandre Gramfort"><span data-itemprop="givenNames"><span itemprop="givenName">Alexandre</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gramfort</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Bertrand Thirion"><span data-itemprop="givenNames"><span itemprop="givenName">Bertrand</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Thirion</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Gaël Varoquaux"><span data-itemprop="givenNames"><span itemprop="givenName">Gaël</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Varoquaux</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><a itemprop="url" href="http://dx.doi.org/10.3389/fninf.2014.00014"><span itemprop="headline">Machine learning for neuroimaging with scikit-learn</span></a><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">8</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Frontiers in Neuroinformatics</span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Frontiers Media SA</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Frontiers%20Media%20SA"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Machine%20learning%20for%20neuroimaging%20with%20scikit-learn"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref17"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Timothy J. O'Donnell"><span data-itemprop="givenNames"><span itemprop="givenName">Timothy J.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">O'Donnell</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alex Rubinsteyn"><span data-itemprop="givenNames"><span itemprop="givenName">Alex</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rubinsteyn</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Maria Bonsack"><span data-itemprop="givenNames"><span itemprop="givenName">Maria</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bonsack</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Angelika B. Riemer"><span data-itemprop="givenNames"><span itemprop="givenName">Angelika B.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Riemer</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Uri Laserson"><span data-itemprop="givenNames"><span itemprop="givenName">Uri</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Laserson</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jeff Hammerbacher"><span data-itemprop="givenNames"><span itemprop="givenName">Jeff</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hammerbacher</span></span> </li> </ol><time itemprop="datePublished" datetime="2018-07-01">2018</time><a itemprop="url" href="http://dx.doi.org/10.1016/j.cels.2018.05.014"><span itemprop="headline">MHCflurry: Open-Source Class I MHC Binding Affinity Prediction</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">1</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">7</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Cell Systems</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">129</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">132</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Elsevier BV</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Elsevier%20BV"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=MHCflurry:%20Open-Source%20Class%20I%20MHC%20Binding%20Affinity%20Prediction"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref18"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Vanessa Jurtz"><span data-itemprop="givenNames"><span itemprop="givenName">Vanessa</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Jurtz</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Sinu Paul"><span data-itemprop="givenNames"><span itemprop="givenName">Sinu</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Paul</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Massimo Andreatta"><span data-itemprop="givenNames"><span itemprop="givenName">Massimo</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Andreatta</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Paolo Marcatili"><span data-itemprop="givenNames"><span itemprop="givenName">Paolo</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Marcatili</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Bjoern Peters"><span data-itemprop="givenNames"><span itemprop="givenName">Bjoern</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Peters</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Morten Nielsen"><span data-itemprop="givenNames"><span itemprop="givenName">Morten</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nielsen</span></span> </li> </ol><time itemprop="datePublished" datetime="2017-10-04">2017</time><a itemprop="url" href="http://dx.doi.org/10.4049/jimmunol.1700893"><span itemprop="headline" content="NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Bin…">NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">9</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">199</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">The Journal of Immunology</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">3360</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">3368</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">The American Association of Immunologists</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=The%20American%20Association%20of%20Immunologists"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=NetMHCpan-4.0:%20Improved%20Peptide%E2%80%93MHC%20Class%20I%20Interaction%20Predictions%20Integrating%20Eluted%20Ligand%20and%20Peptide%20Bin%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref19"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Morten Nielsen"><span data-itemprop="givenNames"><span itemprop="givenName">Morten</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nielsen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Sune Justesen"><span data-itemprop="givenNames"><span itemprop="givenName">Sune</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Justesen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ole Lund"><span data-itemprop="givenNames"><span itemprop="givenName">Ole</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lund</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Claus Lundegaard"><span data-itemprop="givenNames"><span itemprop="givenName">Claus</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lundegaard</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Søren Buus"><span data-itemprop="givenNames"><span itemprop="givenName">Søren</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Buus</span></span> </li> </ol><time itemprop="datePublished" datetime="2010">2010</time><a itemprop="url" href="http://dx.doi.org/10.1186/1745-7580-6-9"><span itemprop="headline" content="NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight opti…">NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">1</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">6</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Immunome Research</span></span></span></span><span itemprop="pagination">9</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=NetMHCIIpan-2.0%20-%20Improved%20pan-specific%20HLA-DR%20predictions%20using%20a%20novel%20concurrent%20alignment%20and%20weight%20opti%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref20"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Edita Karosiene"><span data-itemprop="givenNames"><span itemprop="givenName">Edita</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Karosiene</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Michael Rasmussen"><span data-itemprop="givenNames"><span itemprop="givenName">Michael</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rasmussen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Thomas Blicher"><span data-itemprop="givenNames"><span itemprop="givenName">Thomas</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Blicher</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ole Lund"><span data-itemprop="givenNames"><span itemprop="givenName">Ole</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lund</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Søren Buus"><span data-itemprop="givenNames"><span itemprop="givenName">Søren</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Buus</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Morten Nielsen"><span data-itemprop="givenNames"><span itemprop="givenName">Morten</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nielsen</span></span> </li> </ol><time itemprop="datePublished" datetime="2013-07-31">2013</time><a itemprop="url" href="http://dx.doi.org/10.1007/s00251-013-0720-y"><span itemprop="headline" content="NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II …">NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">10</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">65</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Immunogenetics</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">711</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">724</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=NetMHCIIpan-3.0,%20a%20common%20pan-specific%20MHC%20class%20II%20prediction%20method%20including%20all%20three%20human%20MHC%20class%20II%20%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref21"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Loris Nanni"><span data-itemprop="givenNames"><span itemprop="givenName">Loris</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nanni</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alessandra Lumini"><span data-itemprop="givenNames"><span itemprop="givenName">Alessandra</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lumini</span></span> </li> </ol><time itemprop="datePublished" datetime="2011-04-01">2011</time><a itemprop="url" href="http://dx.doi.org/10.1016/j.eswa.2010.09.005"><span itemprop="headline">A new encoding technique for peptide classification</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">4</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">38</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Expert Systems with Applications</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">3185</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">3191</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Elsevier BV</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Elsevier%20BV"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20new%20encoding%20technique%20for%20peptide%20classification"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref22"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Murat Gök"><span data-itemprop="givenNames"><span itemprop="givenName">Murat</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gök</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ahmet Turan Özcerit"><span data-itemprop="givenNames"><span itemprop="givenName">Ahmet Turan</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Özcerit</span></span> </li> </ol><time itemprop="datePublished" datetime="2011-07-30">2011</time><a itemprop="url" href="http://dx.doi.org/10.1007/s11010-011-1000-5"><span itemprop="headline">OETMAP: a new feature encoding scheme for MHC class I binding prediction</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber">1-2</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">359</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Molecular and Cellular Biochemistry</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">67</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">72</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=OETMAP:%20a%20new%20feature%20encoding%20scheme%20for%20MHC%20class%20I%20binding%20prediction"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref23"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Yohan Kim"><span data-itemprop="givenNames"><span itemprop="givenName">Yohan</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Kim</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="John Sidney"><span data-itemprop="givenNames"><span itemprop="givenName">John</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sidney</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Søren Buus"><span data-itemprop="givenNames"><span itemprop="givenName">Søren</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Buus</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alessandro Sette"><span data-itemprop="givenNames"><span itemprop="givenName">Alessandro</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sette</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Morten Nielsen"><span data-itemprop="givenNames"><span itemprop="givenName">Morten</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Nielsen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Bjoern Peters"><span data-itemprop="givenNames"><span itemprop="givenName">Bjoern</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Peters</span></span> </li> </ol><time itemprop="datePublished" datetime="2014">2014</time><a itemprop="url" href="http://dx.doi.org/10.1186/1471-2105-15-241"><span itemprop="headline" content="Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predict…">Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">1</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">15</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">BMC Bioinformatics</span></span></span></span><span itemprop="pagination">241</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Dataset%20size%20and%20composition%20impact%20the%20reliability%20of%20performance%20benchmarks%20for%20peptide-MHC%20binding%20predict%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/CreativeWork" itemprop="citation" id="ref24"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Enrico Pisoni"><span data-itemprop="givenNames"><span itemprop="givenName">Enrico</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pisoni</span></span> </li> </ol><time itemprop="datePublished" datetime="2020-10-01">2020</time><a itemprop="url" href="http://dx.doi.org/10.5194/gmd-2020-90-ac5"><span itemprop="headline">code on Zenodo</span></a><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Copernicus GmbH</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Copernicus%20GmbH"> </span></span> </li> <li itemscope="" itemtype="http://schema.org/CreativeWork" itemprop="citation" id="ref25"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Damien Farrell"><span data-itemprop="givenNames"><span itemprop="givenName">Damien</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Farrell</span></span> </li> </ol><time itemprop="datePublished" datetime="2021-02-07">2021</time><a itemprop="url" href="http://dx.doi.org/10.1101/2021.02.05.429892"><span itemprop="headline">epitopepredict: A tool for integrated MHC binding prediction</span></a><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Cold Spring Harbor Laboratory</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Cold%20Spring%20Harbor%20Laboratory"> </span></span> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref26"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Cecilia S. Lindestam Arlehamn"><span data-itemprop="givenNames"><span itemprop="givenName">Cecilia S.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lindestam Arlehamn</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Denise M. McKinney"><span data-itemprop="givenNames"><span itemprop="givenName">Denise M.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">McKinney</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Chelsea Carpenter"><span data-itemprop="givenNames"><span itemprop="givenName">Chelsea</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Carpenter</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Sinu Paul"><span data-itemprop="givenNames"><span itemprop="givenName">Sinu</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Paul</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Virginie Rozot"><span data-itemprop="givenNames"><span itemprop="givenName">Virginie</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rozot</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Edward Makgotlho"><span data-itemprop="givenNames"><span itemprop="givenName">Edward</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Makgotlho</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Yolande Gregg"><span data-itemprop="givenNames"><span itemprop="givenName">Yolande</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gregg</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Michele van Rooyen"><span data-itemprop="givenNames"><span itemprop="givenName">Michele</span></span><span data-itemprop="familyNames"><span itemprop="familyName">van Rooyen</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Joel D. Ernst"><span data-itemprop="givenNames"><span itemprop="givenName">Joel D.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ernst</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Mark Hatherill"><span data-itemprop="givenNames"><span itemprop="givenName">Mark</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hatherill</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Willem A. Hanekom"><span data-itemprop="givenNames"><span itemprop="givenName">Willem A.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Hanekom</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Bjoern Peters"><span data-itemprop="givenNames"><span itemprop="givenName">Bjoern</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Peters</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Thomas J. Scriba"><span data-itemprop="givenNames"><span itemprop="givenName">Thomas J.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Scriba</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alessandro Sette"><span data-itemprop="givenNames"><span itemprop="givenName">Alessandro</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sette</span></span> </li> </ol><time itemprop="datePublished" datetime="2016-07-13">2016</time><a itemprop="url" href="http://dx.doi.org/10.1371/journal.ppat.1005760"><span itemprop="headline" content="A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculo…">A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">7</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">12</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">PLOS Pathogens</span></span></span></span><span itemprop="pagination">e1005760</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Public Library of Science (PLoS)</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Public%20Library%20of%20Science%20(PLoS)"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=A%20Quantitative%20Analysis%20of%20Complexity%20of%20Human%20Pathogen-Specific%20CD4%20T%20Cell%20Responses%20in%20Healthy%20M.%20tuberculo%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref27"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Damien Farrell"><span data-itemprop="givenNames"><span itemprop="givenName">Damien</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Farrell</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Gareth Jones"><span data-itemprop="givenNames"><span itemprop="givenName">Gareth</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Jones</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Christopher Pirson"><span data-itemprop="givenNames"><span itemprop="givenName">Christopher</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pirson</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Kerri Malone"><span data-itemprop="givenNames"><span itemprop="givenName">Kerri</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Malone</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Kevin Rue-Albrecht"><span data-itemprop="givenNames"><span itemprop="givenName">Kevin</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rue-Albrecht</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Anthony J. Chubb"><span data-itemprop="givenNames"><span itemprop="givenName">Anthony J.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Chubb</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Martin Vordermeier"><span data-itemprop="givenNames"><span itemprop="givenName">Martin</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Vordermeier</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Stephen V. Gordon"><span data-itemprop="givenNames"><span itemprop="givenName">Stephen V.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gordon</span></span> </li> </ol><time itemprop="datePublished" datetime="2016-08-25">2016</time><a itemprop="url" href="http://dx.doi.org/10.1099/mgen.0.000071"><span itemprop="headline" content="Integrated computational prediction and experimental validation identifies promiscuous T cell epitopes in the…">Integrated computational prediction and experimental validation identifies promiscuous T cell epitopes in the proteome of Mycobacterium bovis</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">8</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">2</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Microbial Genomics</span></span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Microbiology Society</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Microbiology%20Society"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Integrated%20computational%20prediction%20and%20experimental%20validation%20identifies%20promiscuous%20T%20cell%20epitopes%20in%20the%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref28"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Anderson R Santos"><span data-itemprop="givenNames"><span itemprop="givenName">Anderson R</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Santos</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Vanessa Bastos Pereira"><span data-itemprop="givenNames"><span itemprop="givenName">Vanessa Bastos</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pereira</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Eudes Barbosa"><span data-itemprop="givenNames"><span itemprop="givenName">Eudes</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Barbosa</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jan Baumbach"><span data-itemprop="givenNames"><span itemprop="givenName">Jan</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Baumbach</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Josch Pauling"><span data-itemprop="givenNames"><span itemprop="givenName">Josch</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Pauling</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Richard Röttger"><span data-itemprop="givenNames"><span itemprop="givenName">Richard</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Röttger</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Meritxell Zurita Turk"><span data-itemprop="givenNames"><span itemprop="givenName">Meritxell Zurita</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Turk</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Artur Silva"><span data-itemprop="givenNames"><span itemprop="givenName">Artur</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Silva</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Anderson Miyoshi"><span data-itemprop="givenNames"><span itemprop="givenName">Anderson</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Miyoshi</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Vasco Azevedo"><span data-itemprop="givenNames"><span itemprop="givenName">Vasco</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Azevedo</span></span> </li> </ol><time itemprop="datePublished" datetime="2013">2013</time><a itemprop="url" href="http://dx.doi.org/10.1186/1471-2164-14-s6-s4"><span itemprop="headline" content="Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic …">Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber">Suppl 6</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">14</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">BMC Genomics</span></span></span></span><span itemprop="pagination">S4</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Mature%20Epitope%20Density%20-%20A%20strategy%20for%20target%20selection%20based%20on%20immunoinformatics%20and%20exported%20prokaryotic%20%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref29"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Peter Doshi"><span data-itemprop="givenNames"><span itemprop="givenName">Peter</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Doshi</span></span> </li> </ol><time itemprop="datePublished" datetime="2020-09-17">2020</time><a itemprop="url" href="http://dx.doi.org/10.1136/bmj.m3563"><span itemprop="headline">Covid-19: Do many people have pre-existing immunity?</span></a><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">BMJ</span></span><span itemprop="pagination">m3563</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">BMJ</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=BMJ"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Covid-19:%20Do%20many%20people%20have%20pre-existing%20immunity?"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref30"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alba Grifoni"><span data-itemprop="givenNames"><span itemprop="givenName">Alba</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Grifoni</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Daniela Weiskopf"><span data-itemprop="givenNames"><span itemprop="givenName">Daniela</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Weiskopf</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Sydney I. Ramirez"><span data-itemprop="givenNames"><span itemprop="givenName">Sydney I.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ramirez</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jose Mateus"><span data-itemprop="givenNames"><span itemprop="givenName">Jose</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mateus</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jennifer M. Dan"><span data-itemprop="givenNames"><span itemprop="givenName">Jennifer M.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Dan</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Carolyn Rydyznski Moderbacher"><span data-itemprop="givenNames"><span itemprop="givenName">Carolyn Rydyznski</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Moderbacher</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Stephen A. Rawlings"><span data-itemprop="givenNames"><span itemprop="givenName">Stephen A.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rawlings</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Aaron Sutherland"><span data-itemprop="givenNames"><span itemprop="givenName">Aaron</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sutherland</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Lakshmanane Premkumar"><span data-itemprop="givenNames"><span itemprop="givenName">Lakshmanane</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Premkumar</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ramesh S. Jadi"><span data-itemprop="givenNames"><span itemprop="givenName">Ramesh S.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Jadi</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Daniel Marrama"><span data-itemprop="givenNames"><span itemprop="givenName">Daniel</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Marrama</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Aravinda M. de Silva"><span data-itemprop="givenNames"><span itemprop="givenName">Aravinda M.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">de Silva</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="April Frazier"><span data-itemprop="givenNames"><span itemprop="givenName">April</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Frazier</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Aaron F. Carlin"><span data-itemprop="givenNames"><span itemprop="givenName">Aaron F.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Carlin</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jason A. Greenbaum"><span data-itemprop="givenNames"><span itemprop="givenName">Jason A.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Greenbaum</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Bjoern Peters"><span data-itemprop="givenNames"><span itemprop="givenName">Bjoern</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Peters</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Florian Krammer"><span data-itemprop="givenNames"><span itemprop="givenName">Florian</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Krammer</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Davey M. Smith"><span data-itemprop="givenNames"><span itemprop="givenName">Davey M.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Smith</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Shane Crotty"><span data-itemprop="givenNames"><span itemprop="givenName">Shane</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Crotty</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alessandro Sette"><span data-itemprop="givenNames"><span itemprop="givenName">Alessandro</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sette</span></span> </li> </ol><time itemprop="datePublished" datetime="2020-06-01">2020</time><a itemprop="url" href="http://dx.doi.org/10.1016/j.cell.2020.05.015"><span itemprop="headline" content="Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individua…">Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">7</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">181</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Cell</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">1489</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">1501</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Elsevier BV</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Elsevier%20BV"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Targets%20of%20T%20Cell%20Responses%20to%20SARS-CoV-2%20Coronavirus%20in%20Humans%20with%20COVID-19%20Disease%20and%20Unexposed%20Individua%E2%80%A6"> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref31"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jose Mateus"><span data-itemprop="givenNames"><span itemprop="givenName">Jose</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mateus</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alba Grifoni"><span data-itemprop="givenNames"><span itemprop="givenName">Alba</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Grifoni</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alison Tarke"><span data-itemprop="givenNames"><span itemprop="givenName">Alison</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Tarke</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="John Sidney"><span data-itemprop="givenNames"><span itemprop="givenName">John</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sidney</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Sydney I. Ramirez"><span data-itemprop="givenNames"><span itemprop="givenName">Sydney I.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Ramirez</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jennifer M. Dan"><span data-itemprop="givenNames"><span itemprop="givenName">Jennifer M.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Dan</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Zoe C. Burger"><span data-itemprop="givenNames"><span itemprop="givenName">Zoe C.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Burger</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Stephen A. Rawlings"><span data-itemprop="givenNames"><span itemprop="givenName">Stephen A.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rawlings</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Davey M. Smith"><span data-itemprop="givenNames"><span itemprop="givenName">Davey M.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Smith</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Elizabeth Phillips"><span data-itemprop="givenNames"><span itemprop="givenName">Elizabeth</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Phillips</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Simon Mallal"><span data-itemprop="givenNames"><span itemprop="givenName">Simon</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Mallal</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Marshall Lammers"><span data-itemprop="givenNames"><span itemprop="givenName">Marshall</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Lammers</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Paul Rubiro"><span data-itemprop="givenNames"><span itemprop="givenName">Paul</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Rubiro</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Lorenzo Quiambao"><span data-itemprop="givenNames"><span itemprop="givenName">Lorenzo</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Quiambao</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Aaron Sutherland"><span data-itemprop="givenNames"><span itemprop="givenName">Aaron</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sutherland</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Esther Dawen Yu"><span data-itemprop="givenNames"><span itemprop="givenName">Esther Dawen</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Yu</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Ricardo da Silva Antunes"><span data-itemprop="givenNames"><span itemprop="givenName">Ricardo</span></span><span data-itemprop="familyNames"><span itemprop="familyName">da Silva Antunes</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Jason Greenbaum"><span data-itemprop="givenNames"><span itemprop="givenName">Jason</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Greenbaum</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="April Frazier"><span data-itemprop="givenNames"><span itemprop="givenName">April</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Frazier</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alena J. Markmann"><span data-itemprop="givenNames"><span itemprop="givenName">Alena J.</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Markmann</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Lakshmanane Premkumar"><span data-itemprop="givenNames"><span itemprop="givenName">Lakshmanane</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Premkumar</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Aravinda de Silva"><span data-itemprop="givenNames"><span itemprop="givenName">Aravinda</span></span><span data-itemprop="familyNames"><span itemprop="familyName">de Silva</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Bjoern Peters"><span data-itemprop="givenNames"><span itemprop="givenName">Bjoern</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Peters</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Shane Crotty"><span data-itemprop="givenNames"><span itemprop="givenName">Shane</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Crotty</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Alessandro Sette"><span data-itemprop="givenNames"><span itemprop="givenName">Alessandro</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Sette</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Daniela Weiskopf"><span data-itemprop="givenNames"><span itemprop="givenName">Daniela</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Weiskopf</span></span> </li> </ol><time itemprop="datePublished" datetime="2020-08-04">2020</time><a itemprop="url" href="http://dx.doi.org/10.1126/science.abd3871"><span itemprop="headline">Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">6512</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">370</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Science</span></span></span></span><span itemprop="pageStart" data-itemtype="http://schema.org/Number">89</span><span itemprop="pageEnd" data-itemtype="http://schema.org/Number">94</span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">American Association for the Advancement of Science (AAAS)</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=American%20Association%20for%20the%20Advancement%20of%20Science%20(AAAS)"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Selective%20and%20cross-reactive%20SARS-CoV-2%20T%20cell%20epitopes%20in%20unexposed%20humans"> </li> <li itemscope="" itemtype="http://schema.org/CreativeWork" itemprop="citation" id="ref32"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="James Bednar"><span data-itemprop="givenNames"><span itemprop="givenName">James</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Bednar</span></span> </li> </ol><time itemprop="datePublished" datetime="2020">2020</time><a itemprop="url" href="http://dx.doi.org/10.25080/majora-342d178e-028"><span itemprop="headline">HoloViz: What's new and what's next</span></a><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Proceedings of the Python in Science Conference</span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">SciPy</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=SciPy"> </span></span> </li> <li itemscope="" itemtype="http://schema.org/Article" itemprop="citation" id="ref33"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Damien Farrell"><span data-itemprop="givenNames"><span itemprop="givenName">Damien</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Farrell</span></span> </li> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Stephen V Gordon"><span data-itemprop="givenNames"><span itemprop="givenName">Stephen V</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Gordon</span></span> </li> </ol><time itemprop="datePublished" datetime="2015-07-14">2015</time><a itemprop="url" href="http://dx.doi.org/10.1186/s12859-015-0659-0"><span itemprop="headline">Epitopemap: a web application for integrated whole proteome epitope prediction</span></a><span itemscope="" itemtype="http://schema.org/PublicationIssue" itemprop="isPartOf"><span itemprop="issueNumber" data-itemtype="http://schema.org/Number">1</span><span itemscope="" itemtype="http://schema.org/PublicationVolume" itemprop="isPartOf"><span itemprop="volumeNumber" data-itemtype="http://schema.org/Number">16</span><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">BMC Bioinformatics</span></span></span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Springer Science and Business Media LLC</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Springer%20Science%20and%20Business%20Media%20LLC"> </span></span> <meta itemprop="image" content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Epitopemap:%20a%20web%20application%20for%20integrated%20whole%20proteome%20epitope%20prediction"> </li> <li itemscope="" itemtype="http://schema.org/CreativeWork" itemprop="citation" id="ref34"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Nikita Silaparasetty"><span data-itemprop="givenNames"><span itemprop="givenName">Nikita</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Silaparasetty</span></span> </li> </ol><time itemprop="datePublished" datetime="2020">2020</time><a itemprop="url" href="http://dx.doi.org/10.1007/978-1-4842-5967-2_7"><span itemprop="headline">Python Programming in Jupyter Notebook</span></a><span itemscope="" itemtype="http://schema.org/Periodical" itemprop="isPartOf"><span itemprop="name">Machine Learning Concepts with Python and the Jupyter Notebook Environment</span></span><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Apress</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Apress"> </span></span> </li> <li itemscope="" itemtype="http://schema.org/CreativeWork" itemprop="citation" id="ref35"> <ol data-itemprop="authors"> <li itemscope="" itemtype="http://schema.org/Person" itemprop="author"> <meta itemprop="name" content="Damien Farrell"><span data-itemprop="givenNames"><span itemprop="givenName">Damien</span></span><span data-itemprop="familyNames"><span itemprop="familyName">Farrell</span></span> </li> </ol><time itemprop="datePublished" datetime="2021-02-07">2021</time><a itemprop="url" href="http://dx.doi.org/10.1101/2021.02.05.429892"><span itemprop="headline">epitopepredict: A tool for integrated MHC binding prediction</span></a><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher"><span itemprop="name">Cold Spring Harbor Laboratory</span><span itemscope="" itemtype="http://schema.org/ImageObject" itemprop="logo"> <meta itemprop="url" content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Cold%20Spring%20Harbor%20Laboratory"> </span></span> </li> </ol> </section> </article> </main> </body> </html>